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ABSTRACT

An exact similar solution of the modified boundary layer equations
has been obtained for the axial incompressible flow past paraboloids of
revolution, It has been shown that the usual boundary layer assumptions
are justified and that the local skin friction increases as the boundary
layer thickness becomes large compared with the body radius. o

An approximate method for obtaining the local skin friction on
arbitrary slender bodies of revolution in axial incompressible i‘low has
been developed, 4 comparison of the approximate results with ihe exact
solutions for paraboloids of revolution and eircﬁlar cyliridérs shows
good agreement, | B

The existence of energy integrals of the modified eompmssible
boundaz& layer equations is established, Similarity of the governing
equations for the axial compressible flow past paraboloids of revolution
has been shown; for the same bodies, a hypersonic similarity law is
deduceds | ‘ o

An approximate method for obtaining the local skin friction on
arbitrary slendér‘insulated bodies of revolution in axial compressible
~:E'16w has been developed, The results show thal compressibility counter-
balances the rise in local skin friction dus to curvature at high Reynolds
numbers (based on a characteristic length of the body) and increases
" the local skin frictlon at sufficiently low Reynolds m:mbers.

Velocity profiles on a slendéi' ogive=cylinder have been obtained
experimentally at a Mach number of 5.8 and at different Reynolds numbers,
The results indicate a curvature effect when compared with flat plate
results, |
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I, INTRODUCTION

A factor of prime importance in the design of projectiles
approaching the hypersonic speed range is the feasibility of using
slender shapes -in order to minimize the total drag. Since the total .drag
consists of the éressure “drag and skin friction drag, it is nece»ssary
to investigate the latter only since the former decmaées as the pro=-
jectile becomes more slender,

Due to the complexity of the problem, present day information,
both theoretical and experimental, regarding the laminar skin friction
properties of slender bodies of revolution is still quite méager. As a
body becomes more slender, the transverse curvature effects of ﬁle body
may become more important or, equivalently, the thickness of the boundary
layer may become of the same order of magnitude compared with the cross-
sectional radius of the body, Any analytical solution must account for
this effect, |

Beginning with the Navier-Stokes equations for an_incompmssible
fluid, C. Be Millikan (Ref, 1) obtained an approximate system of equations
which are applié:able in the laminar boundary layer on bodies of revolution
with arbitrary shapes, Mangler (Ref, 2) showed how this system can be
simplified when the boundary layer thickness is very small compared with
the body radius: by a suitable set of transformations, he reduced the
' given system to a corresponding two-dimensional systeme In a later work,
the procedure was extended to the cdmpressible case (Ref, 3)e¢ Thus

Mangler's theory is not applicable to slender¥ bodies,

4% Unless otherwise indicated, the word "slender® as a.ppl:'i.ed to a
body will be used to deseribe the situation when the boundary layer thick-
ness is of the same or of a larger order of magnitude compared with the

body radiuse



Seban and Bond (Ref. L) made the first attempt to circumvent the
restriction imposed by Mangler by solving the original system of equations
derived by ﬁillikan for a semi—iﬁfmite circular cylinder, Their results
are applicable in the region near the leading edge of the cylinder, Very
recently, Stewartson (Re;'. 5) obtained results which are applica;éle in a
region far from the 1ead:€ng edges Both results predict an increase in
the local skin friction as the cylinder becomes more slender, -

It is the aim of this work to investigate the laminar skin
friction properties of arbitrary slender bodies of revdlution. Because
of the complicated nature of the goveming equations, an approximate
solution will be soughte For this purpose, the von Karman integral
method will be used since it yields reasonably accurate results for the
local skin friction in two-dimensions, The precise accuracy of iha
approximate results may then be detemmined through a comparison with
exact solutions, |

The effects of compressibility on the laminar skin friét_ion
p_roperbies of slender bodies of revolution will be examﬁed.l Again,
an approximate solution will be soughte |

Finally, the characteristics of the velocity profile across the

laminar boundary layer cna slender ogive-cylinder in a eompréssible £luid
will be determined experimentally.



II. LAMINAR BOUNDARY IAYER CHARACTERISTICS OF SLENDER BODIES
OF REVOLUTION IN AXIAL INCOMPRESSIBLE FLOW

A. Modified Laminar Boundary Layer Equations in Cylindrical Coordinates

For a steady axial incompressible flow past a mn-Spmnﬁng body
of revolution, the general viscous £low equations (Cf, Appendix A)

reduce to the following system:

D(Ur) 2 aTr)

e 4 _9,. = (la)
2 w2, V3
Lo *7 Gr = ¢ 2z T (,. e )7(')7’2,5" (Ib)
24 2 , 2 EX LA 3] /-3”—’_;‘,”]
/A 9——z—- + e = ——%— ;‘ 779L9,, 9z P or e (10)

Together with the assumption that the thickness of the boundary layer is
of the same order as the transverse radius of the body, the application
of the usual limiting procedure on Egs. (1) yields the fbllowing
modified boundary layer equations (Cf, Appendix B):

Q(A/,) _’B(—W‘_Z = 0
2% 7 i (2&)

2 24 ; 2 72 2
g =t () (2)
2
o - 2% (2)

A similar set of equations was derived by Millikan (Ref, 1) using a



L

slightly different coordinate system, On the additional assuwmption that
the boundary layer thickness is small compared to the radius of the body,
Tys Egse (2) reduce to Mangler's boundary layer equations (Refs 2):

(at) (7%
cLa 2

= o - (Ga)

P 2 , 2%
wsp + 0oy~ Far * Y e | (3b)
i
e = ey (33)

The associated boundary conditions are “ =7 mwo at r= /% and «>7 as

r—=oo o where U is the free stream velocity,

B, Extended Mangler Transformation

Mangler has shown that Eqs, (3) can be reduced to an equivalent
two-dimensional fom by applying a suitable transformation, However, his
transformation is no longer valid when the boundary layer thickness
becomes of the same order as the body radius, Gonsequenfly, a new
transfomation is developed which transforms Eqs, (2) to a more
amenable form although they are mot strictly in the two-dimensional form,

Let ” X
_ r _ ry:
Fe [ F 3 L‘/(Z‘)‘/” ,
o (L)
_ K- L oz
s > iy Ay P

where 4 is a characteristic length of the body and barred guantities
are the new variables, Then, Egs. (2) reduce to (Cf, Appendix C):



inﬂuﬁ =9 (5a)

2 —2Z _ ., 37 2 [(r# '“': e '

Z ,ﬁv”fg; =9 92+’7 [ % ) 5 (5b)
' 2

0 = = ‘ (5¢)

The associated boundary conditions in the new variables are % = 7V = 9 at

F'O am Z ~= U as F%oo‘

Seban and Bond (Ref, L) and Stewartson (Ref. 5) have obtained
solutions to Egs. (2) near the leading edge and far from the leading
edge of a cylinder, respectively, Their goveming equations ccuid also
be obtained from Eqse (5), thus justifying to some extent the generality .
| Of E'élsc (L) -
By letting

(%]
IS
{

(o)

and | _
‘,/=\/;7%/F , ﬁ=%\/fg/£ ,  w=lorz'fEy)

Egse (5) transform into the single equation (Cf, Appendix D):
| ¥, A BN VY4
‘][972 +.3?/ /(/7‘;7)?7,_/ 5 97 ?;g? 95 ?7L)

which is the fom analyzed by Seban and Bond,
By the additional transformation
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the form of the equation analyzed by Stewartson is obtained (Cf, Appendix D):

| £ _ % 2
IEETE AR TS

Co _An Exact Solution of ‘the Governing Equations for Flows Past Pafabolo_i.:;dg

of Revolution

For a paraboloid of revolution defined as

%

34 .
S =4l x = 2V2 L Z o (6)

where . is the focal length, the inviscid solution gives for the axial
pressure gradient on the body (Cf, Appendix F)s ‘
FA
2 £
£ sr’ (Z)

2% e 22 =
A S Y S A

Therefore, L is mall 4f () </ and ~ not close to the lead-
ing edge, It will be shown, a posteriori, that 55; is also small
compared to the viscous terms in the momentum equation under the same
conditions, Hence, the boundary layer characteristics fer the axial
flow past paraboloids of revolution will be given by the 551ﬁtion to the

following systems

Az Fra ' (82)

(8b)

with the boundary conditions



(9a)

3
!
o

(91)

—

N

It is seen that this system becomes invariant under the following

mapping (Cf. Appéndix E) 2
z _— ,U——— |
T KT, FkF a2 , T (10)
From this invariance it follows that « and \/j_i— must be functions of \/TZ: ‘
How let
_ /T = Vroe f7) C
77 V5E ma gV S (1)
Then
_ - _ 12 + L
A A
s o - (12)
UL 74 — ey ’al/
— = U5 o __Z /.,
OF }/?Z ’97 k] 27 = U P ?7‘1

Subetituting Eqs. (12) in Eq. (8b) gives
~ 7 - sl _ v
I e [Cp7)f ] (13a)

where ‘
/
(%-7)

T

and primes denote differentiation with




respect to 7— « The associated boundary conditjons are
7
B 7o (130)
——/— : —
7/‘ —  / as 7 > oo | (133)

Equation (13) can be solved by an electronic computer for small
values of £ , i.e., for £ of order one. (For 4 =0 the solution is
known since it is the Blasius type of equation, as in the twc’:-dimensional
flat plate problem,) Some solutions for various values of /f are shown
in Fige le#* It is seen that the local skin friction increases as bl
increases or % decreases, |

For /# >>/ , the solution to Eqs, (13) may be obtained
analytically by a method developed by Stewartson for the cylinder problem.
Before this ca.n be done, it is necessary to perform the fdllowing_ trange

formation of the variables in Egs. (13):

7 (457 - = S W)
Hence, the transfomed governing equation is
” 4 :
Frof +gf = Q%)

where primes denote differentiation with respect to 7 e The associated

boundary conditions are
jc=//—_—-.0 .,at 7:’?4' (15b)
7[ /__> /7 as 7 - °F » ’ (150)

Now Eq, (15a) may be written as

# Computations were made on the REAC at the RAND Corporation.



or

2 | (16)

where A is a2 constant, v
The solution to the system, Eqs. (15), now can be obﬁained by

successive iterations As a first approximation, take

£ = | Qn

Here, / clearly satisfies Eqs. (15a) and (1S5c). Substituting this on
the right hand side of Eqs (16) and integrating

V4 _( *’eL) o
JZ = A e 7 : (188.)
7
By successive integrations this yields |
\ / , |
£err [ |  (16b)

"/=7+/57M/Z‘?7 77

where 3 is a constant, The last equation can be reduced further by an

integration by parts; hence,



10
T, p7
ferer/Fs-fut'y 2
or |
/ -7 - Ae&y//—%—ﬂdy ac 7, 5 s (28¢)

‘The constants A and 3 are now determined from the boundary
conditionse Hence, Eqs. (18b) and (18¢) give, respectively,

The simultaneous solution of this system yields

A—/: é,leL/i?/y = ¢ es(%)
7
IeL

and
o . R,
B = -4 f—e e L) —=__¢
“ ez(@J[ “ “ ci(R,)
where
| o7 o
ei(y) = e o (exponential integral)
7

~or, in particular,
. -7
5 7
%
Hence, Egs. (18) become



7/ , e7
f = ei (%) 7 (193)
-2z (19b)
€L ()
/, o, 74&(]} __e:l N €~/€" (190)

ed(k)  el(t)  ed(k,)

Equations (19) represent the second approximation to the solution
of Eg (15)s This is essentially the Oseen result for the flow past
paraboloids of revolution (Cf, Appendix G),

For 7 small,
. 00—7 ) 7 ~ .
ac(y) :/710/7 =%z2? TR (20)
- / |
where 4 C = 04,5772

Hence, for 4, small and 7 near ¢

L

s Egs. (19) reduce to
= - | - (2a

F W | (21a)

£ - o (aw)

/

y /-
ck,

£ = [—7&077/__ 746~7~e~12‘/+’7‘ | (21c)

Consequently, in view of the analytical forms of Egs. (21), the

solution to Eqs. (15) is assumed to be of the form
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f = 72, (22)

or small

Z Z
values of £, if [/ satisfies Egs. (15) identically, Thus, substituting

Eq. (22) in Eq. (15a) gives

=3 7 oo ” '><: ” 74
rg+ ZXENT L) + 2T Xyf =

or
oo ” w °‘/’ P p ’ Y
S [eond +ah JX 4 ZE AL ¢ L A )R o
or
it 4 a+f
Sl d + 94 DNt FE A fo )2 =
where A = 7 ! y « Hence, equating coefficients of 7:/ to zero yields
£, C
V4 4 ”‘/’ 7
(4D fy Ty = =2 Ty | (23)

In particular, for 7~ =1, 2, and 3, Eq. (23) becomes
p v
(14 f + 74 =0 (2ha)

7 w 4
(1t 04 + 74 Z"J,['JC o (24b)

Va

(rf7)él+7‘7§ = ]5 (2e)

" Lvn,

The solution to Eq. (2ha) for £, small and 7 mear £, is obtained
directly from Egs. (21), Hence
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7 7 /
A R A A e @

It can be proved by mathematical induction that the following

expressions are valid for 7 near Ry, and for all values of ~ and for Ry

1 “
smalls £ =27 %w/ (26a)
ng = 2, ﬁwy + £, (26b)
Vi 2, :
A : (26¢)
2 5

where 2, is a constant,

For 7 mear % and 7, small, Eq, (23) may be written as

and if Eqse (26) are valid for <M n= » then the above equatien

has the form
(7]{1,//)/ :'4/2’4"67

where /, is a constant, Integrating this,

4

gt = Ay (lecy=1) 73,
or
Jﬁ,// - 7_2& + ;4,1(&67_/)

where 3, is a constant, By another integration,



i

/

72 =2, ,&7 + By +0(/%w/)

e
<

where Z= and 7%, is a constant,e Since these expressions are valid
for ~=/ , they are valid for all values of « s thus proving the result,
By virtue of this proof, each successive tem in Eqe (22) di.xninishes
in magnitude for %, sufficiently small, Hence, it is a sﬁitabie expan=~
'sion, The first two terms together are wniformly valid acroe:é the boundary
layer when < is sufficiently small, ‘
Now, for 7 near %, and £_ small,
o= lucy + 5
flereZ %M/, )ﬂf - (21)

zc

and since /=0 at 7R s

= 3, lu ek, + 5
0 = /4.2 VR
7=/
| (e %5 )
or
S o, < £ _ 7
2/ / n- —/L’—; (/ZC / )”/ ==
n=/ (AL ,?Ac) = ,ZL—C'
Therefore
o= and 2, = S sy 7 =2 ~ (28)

The procedure for determining the constants 2, and £, will be illus-
. /

trateds ~, is obtained from the boundary condition /4 — © as 7—>=,
and 32, is otherwise arbitrary, |



L =2 —- (29a)

and by subsequent integrations

. / 7‘7 "
ng»@//.f.;—rfyvaf/ (29v)

(==}

7 -y
-7

In the limit as 7—4 and R, »>2 4 f ~0 o Hence,
5o=-7
/
Since / ——° a8 7> 5 then

= =0 | (30)

Therefore, Eqse (29) become

-7
7 14
£ - Gw)
/ 7‘7 R
4= w/%‘@ =-e7) (31b)
7 ]
£ = 7/__;_747 + e7—/ (31c)

Now writing Eqs (2ib) as

74

£ *(/*‘7—)74 7



" and integrating

N
7677[; =—/%/7 +¢ ‘ (32)

where ¢ 1is a constant,

Substituting Eq. (31c) in Eq. (32) gives
, v 7 7 -7 7 -7
or
7 //_d ’ /""’e_yo/ -7 .
7e’f = +7)7~7—/_e + luy G, ‘ . ’(33)
In the limit as 7-? £, and & —> 9 , the right hand side of Eq. (33)
becomes

bl -/ 4g =2 =F

and by Eq. (30)

C = /4 L

Integrating Eqs (33) gives

/ 7. .y | | |
P :!%7/(/%7}7/%/7 _éjnmﬁjoy )

, |
and since /£ —>© as 7> 5 Eqe (3) yields in the limit as

7-——?”% and )?6-—>0

£ =_/_7€;7/(/f7)7/:;~;f/7” _ 6_7%%46/ 7&//0/7 :

7
— _eluz —

/2
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(cf. Appendix H for evaluation of the integral,)
Hence, by Eq., (28),

- z
D =g —-2bi-; o)

In a similar mamner, oﬁher constants may be determined, althovgl; it is
necessary to resort to ni\iimeﬁca.l integration.

It is now necessary to justify the initial assumptions,. and with
the above analytical solution ‘this can be readily done (Cf, Appendix I),
For this purpose it is sufficient to use only the dominant terms of the
expansion of the solution since the error made is small for.ufficiently-
small values of £ o Consequenily, the following considerations will be
based on the expression ‘

2c(7)

- |
7 =T ww) | (%6)

which is the Oseen solution,

The following orders of magnitude are obtained from Eqe (36)2

e Ut . el (%)
U . A
szem)| ~UE s S - o)

7%("%)4 2 2% )

/
» o (U2
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| where o g is the boundary layer displacement thickness and 4/ is the
pressure difference across the boundai'y layer, Thus, it is easily seen

_ that the iﬁitial assumptions are valid when 4 >/ and % <</ even
though ‘57/; >/ for K <</ A.lsd, it is seen that 5*’” <’ , 50 the
effective shape of the bgdy due to the boundary layer displacemént
thickness is another par;lboloid of revolution, The axial pressure gradient
along this effec‘l:i‘.\:g body again diminishes with xj consequently, the
pressure difference across the boundary layer will be small at large

distances from the leading edge, as shown by the order of magnitude

argument,
The local skin frietion, ft s is given by
u
. FoF ).,
£ [ o7
z 7
\ 2
5 2
- ’a( 971 7——‘ ZL
or o
) v 2 / 2’1
C = — ;
F \/—)67 Y,e: 2 (ﬁ(,é—z)”/
2 2.2/0 :
R T
| Ve, o (Z“,éfz |

This result represents an analytical extension of the numerical solution
~to larger values of (5 or smaller values of 7, o _Figu’re 2 shows the
combined solutions. It is seen that Eqe (37) is valid when £ < ,02
approximately. | |
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o, _Approximate Solutions of the Goveming Equations for Flows Past

Paraboloids of Revolution by the von Karman Integral Method

Following von Kamman (Ref. 6) an approximate solution of the |
govemirig partial differential equations for the flow past parabgloids
of revolution will be obtaineds The accuracy of this approximate solution
can then be determined from a comparison with the exact solution of the
previous section, Once sufficient accuracy z.s established, this approxi-
mate method may be applied to other body shapes under the same conditionse

In the preceding analysis, it was seen that the transformation to
the new coordinate system (z,7) played an essentiél part in facilitating
the solution over an extensive range of £ o Consequently, this
consistency will be maintained in the application of the von Kaman
in’oegral‘method; |

The von Karman integral form of the governing equations will be
obtained in cylindrical coordinates since it was shown previously that
similarity of the velocity profiles of the flow past paraboloids of
revolution stems only from the use of this system of coordinates. Hence,
the governing eq;xa;ticns will be integrated across the boundary layer from

rFeg %0 r= 5 o= 45 , where § is the thickmess of

’ché boundary layers

Combining Egs, (2a) and (2b) gives

X

Hence, on integration (with x fixed),

f i * Y A ¢
/9(‘4”- oI 4 Lo z————( )+77/”'§;_
%
4

2z p ¢ 9z (39)
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By the boundary conditions: # = ¢ = 0o

_ Qu
anfd 5, =0

at » =74 and

at ~ = 4 , Eqe (39) reduces to

,
5 2
/ ULT) L, e s 9/4 /‘~/') 9/r
7 2z r=r ¢ 2z " %

h

Now integrating Eq, (2a) across the boundary layer gives

5 v
/ 2 ({C/') 0//' -+ 207 =
z 0T z
or
I;,
L) e
(v/')é,_ = - / 2z

°

which, when combined with Eq, (L4O) yields

-9(r 3%

-]

/ 9(!11 o 914/,,/, — _f

But

:-o—g a(ﬁ a)rar 4 '—-"/14/'0//’

Vi

(-4

Hence, Eqe (L1) becomes

174

(L0)

(l11)

X 9(274) 97, .
S/ // | “wl?
/o- .



X [ For
2 fatr-)ro- et~ ZEE)HZ)
5

A

By virtue of the k‘extended: Mangler transformation, Eq, (42) reduces to the

two-dimensional form { « = £ )3

A —

A - <

» T/ N A A\ o4
fz/i(%i)‘/” - ?i/‘“/" S e 9z / (L3)
O/ZD 2

where 4:& '
A =
2L

In the region where the axial pressure gradient may be neglected,
Eqe (43) becomes

A _
2L araya 7 (5). (1)

Egs. (43) and (Lh) could have been obtained directly from Eq, (5).

The accuracy of this approximate method depends sirongly on the
choice of the analytical form of the velocity function # , and when-
ever possible it is convenient to choose elementary functions in order
‘to simplify the computations, The precise form of u dpeénds on the number
of boundary conditions imposed on ite In the following considerations,
several formms for the velocity function will be used, and the accuracy
and range of application of each result will be discussed.

The profiles chosen will satisfy some or all of the following
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boundary conditions: -

Z U
=0 , 5 /-57):0 at ro= g
2u
A L
= , Sy T gpr 9 at ro= 1

In the transformed coordinates they become

_ 2 LI N D , B
W = O s 9?[(/7& 4'1)5;'—;/:0 at =0
’3211,
Py = 0‘ 91‘/ — —, — O = = A
“ ’ 2~ 2F at ”
Z 2LA

et F=Z/U, x-— ,and o- = « The boundary conditions

ekpréssed in terms of these parameters are

(1) =0 at A =0

(2) 9/-{'- 74.6{5/{ =4d at }\:0

(3) £ o=/ at A =/
W =0 A
(s) f)? =0 at A =/

where ~ is, in general, a function of both A and o 4 i
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The governing equation is thus

J el
Ao—/_Z['A[] :7(92 1=0

or
s A
ol (5w l) = 225 (gx) n5)
where
/
Ve —_-/(/—“~,C)o/7 = /()
For a paraboloid of revolution
2 v % :
which combines with Eq. (45) to give
A 27y |
Hence, it is seen that
o = o = constant - (L8)
is a particular solution of Eqs, (47)e Since
/‘Z 2, 5' 2 ’
2L A v — 4 B (__‘ 7L/) .
T T T & (19)

Ve
then o = constant implies that §~ 7% ~ 2 or that the boundary

layer grows parabolically, This deduction agrees with the result of the
exact analysis (Cf. Appendix I)e



2

Therefore, Eq. (47) reduces to

2 ( oF
o L (4,) = ’é; 9‘} >/\=0; o=,
QY
a _95)
Y% T Ty A Ao amm (50)

which gives 4 as an explicit function of o, .
Following Pohlhausen (Ref. 7), a fourth degree polynomial will be

tried of the form

2 3 7
F—ak s 62wk #dA (51)

The constants « s 4 4 ¢4 and o/ are determined from all the boundary

conditions; hence,

It is seen that when o« — o0 ,
Co 7
PRy WS N

vhich agrees with the two-dimensional profile assumed by Pohlha:usen
under the same boundary conditions for o =9

Thus, from Eq, (50),

/2

- q:z (6—o)) Z(a) (52)

%

where
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- 5
A L00 =0.600a 20. 97 — €. 315 A, £ 0. £FE o,

L) = 6~ e - (6-or)*

In general, the local skin friection is given by

2
Y 3 AT VO P YL e
¢ = T = i am | T A (P
7[ gﬂ 'y: T r =0
‘ (53)
7)o |
= gr o ?1 A:o
For a paraboloid of revolution,
2 /! OF :
Ve - A (5
A Vi, % A [p=e - | )

A = 0o

Thus, for the fourth degree polynomial, the solution is given
jointly by Eqs, (52) and (5h)s Figure 3 shows the comparison of this
solution with the exact solution, The agreement is within '3;_3% down to
a value of 7. of about 7, The increase in Q Vg at £=7 over the
corresponding Mangler value is about 21%, E |

From the Oseen solution it was seen that fqr 7 mnear £, and

£, small, the velocity behaves logarithmically in 'bhé. 7 direction,

Consequently, the following profile is assumeds:

(§ Ve, ) gives the Mangler value,
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b (1))

F o=
L (174)

(55)

By inspection, this function satisfies boundary conditions (1), (2), and

(3)s Since for /6/ </
l \7.{ " 91 9\3 N
n (1#8) = @~ T | (56)

#=A as a0 , and hence, the linear profile is rétaihed for
small values of o

Substituting Eq. (55) into Eqs. (50) and (S4) yields the solution
in the form | '

/ /

Y T W T@ e () (57)
where
/ 2l 2
Ty - — 1
S (1) [ % u(rta) ]
and
cVe - < _ , A
/ 4 \/Z /&(,(//-%) v . \ (57b)

From Fige, 2 it is seen that this solution applies 'forv all values
of %, , approaching the exact solution for small values of £, and
~ deviating from it wifhin 15% for large values of % .

Better accuracy may be obtained at large \}aiues of X when a
profile is chosen which satisfies ﬁom boundary conditionse By assuming

the function

Lu(1#+A)

F=aq | o
i 2, A (57)
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to satisfy boundary conditions (1), (3), and (L), the constants « and

2, thus determined are

g = and a = -

where
& /
IFH L ()

Thus, when o —>©

e A=A

which is the two-dimensional forme, A comparison ﬁith the ekact solution
(Cf. Fige h) shows that the accuracy in this case for large values of
%, is within 10% for the skin frictions For ==, ¢—-/ and
a, — 3 hence, the logaritamic form is retained for émallvalues
of X, , and the solution approaches that given by Eqs. (57), (Cf.
Appendix J).
If the form

L (14 a)) 3

= _— a
F=a (D) + & X G X | | (59)

is chosen satisfying boundary conditions (1), (2), (3), and (L), then

the constants determined from these conditions are

2o -2 A '
g4 = — > Y =y and o ._
) 3 D
h A a d and ) (B2-a) A ALa ~Z
where T Jra lu (o) -

Thus, a8 o — ©
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z

Fe=Z X = FX
and the two-dimensional form is retained for large values of 2 and
yields an accuracy within 3% for the skin friction (Cfe Fige 5)3 and as

oA —= oo > ZL/‘;’/ 5 Qg—yO 5 QJ_;O1

the logarithmic fom is retained for small values of # (Cf. Appendix K),

Finally, if the form

L (14AR)

F— a + 4] %%}17‘% )3 : (60)
L (1#)

is chosen satisfying all the boundary conditions, then the consv\t‘ants in

this case are

6-39 64 +35
a, = = 9 a = - =
Where
o / o a
= — T = (77
FA (1) g (/M),éa.(/véa\’
and

£ = A(2a~6) # F(F -2) #6834

Thus, a8 o —> O

J
qu/—,Z/ 747
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and the two-dimensional formm is retained, yielding an accuracy within

3¢2% for the skin friction at large values of # ; and a5 o — oo

Q
-4/—__,-/ P 4, —=©° P ¢J~e— » d,f——3>0

the logarithmic fom is retained for small values of Z, (ct. Appendix L),

Figure 6 shows the compax;ison of this solution with the exact solution.

Ee Approximate Solutions of the Governing Equations for Flows Past

Circular Cylinders by the von Kaman Integral Method

The results of Stewartson (Ref. 5) and Seban and Bond (Ref, L)

show that the basic parameter for flows past circular cylinde'rs is

z

or
R = (61)
+ 9z
In terms of this parameter, Stewartson's result is
2 / 3.85F / B
GV - [ @
R R LAy () PR
where Jv 7 = — /v R - 0,577; Seban and Bond's result is
0. 658 0. #80 : : .
C V& = 0.6645 » - £ (63)
s T ' 2 o

where the numerical coefficients have been corrected by Kelly (Ref. 8).
Figure 8 shows that Seban and Bond's result is quite abccurate‘
‘down to values of about 0.7 for Z , which indicates that the convergence
of Eq. (63) is quite rapid; Stewarts;n's result seems to be valid up to
values of about 0,01 for £,
With the facility of these exact solutions for the circular

cylinders at small and large values of R , the accuracy and the range
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'of application of the-solutions obtained from the von Karman integral
method in conjunction with some of the assumed velocity profiles of the
previous section can again be determined.

For a circular cylinder let £ = % s then © =% and Eq, (45)

beconmes

0 L an) =22 (5 | (6)

where

/
_Z-___/(/:_Fz) ap = ()

Eq. (6L) may be written in the following form as

27 )l
(o{z ;/ag‘%q/]-)a/q,:ﬁ_; ):OO/Z
whence
z 3 o7 ‘ S
_/:/4}7(/1:/“%7*”149/ |
Z ) uvrt y (9 ) o (65)

Thus, it remains to carry out the integration for any assumed velocity
function F,

For the profile given by Eq. (51),

Z() #.200 = 0 6007 20,97 — 6. 315 + 0-#E6
= 6 — o B T 6 o)t
" and
Qf/ o
2 o o 6~

Hence,
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— 0 03420( 45-59( 2.970H faz.zan’
-_//4233« g.970a £ _8 /a/o(

/2 (6—-a) (6—m)*"

z 3 3. F6Z
)2
= 2.259 £ 0./07 (6~a) — 0.028 (6~a) + 0.003 (6-&x) — — = = 216 b (179) .

The local skin friction is

ey
(/‘5747 ~ 34 F
‘7(: j)ﬂﬁz B arna ?}a
or
2 ela o -
¢ V& = | (6D

For the above profile this gives

eF .
C Y = o
prd L x (6 _ (68)

Thus, the solution is given jointly by Eqs. (66) and (68) for the
foﬁr't.h degree polynomial, Fig. 7 shows the range of appﬁmbﬂity of
this solution and shows that the accuracy attained is within 3.3% of the
exact solution of Seban and Bond. -

For the profile given by Eq. (55)

/ 2 F
- ,
o (177)  [lu(rrx)] o L (1+ex)

T (@) =

°r ) __ X
R ﬁz&/(“‘“)

Hence,
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o

/ 7 / / S /
L=/ [/~ — . Pz
. / Lu (r#) 1o la(/ta) 7 1A e H()_/ 7

Although there is an apparent singularity of the integral at the lower
limit, it is a removable singulariiy, and the integral has a fiﬂite value,
Hence,

Lu (7e)

/ add e _ ‘
Z " w77 74/““ o %‘[A(/M)] 4 (69a)

which is valid for « >/ , The following expansion is valid for all « 3

Lol b /&z/(/%?/
/Zu,(/fa() +”’:Z/ n. ! o (69b)

= o+ F -

NI

(Cf. Appendix M,)

The local skin friction is

2 / -
GV =& e rre) ' . (70)

Thus , the solution is given jointly by Eqs. (69) and (70)e The comparison
of this solution with the exact solution is shown in Fig. 8, from which
it is seen that the accuracy is almost the same as that: for a paraboloid
with the same profile,

For other profiles, it is necessary to resort to numerical inte-
gration, but sufficient analysis has been given to demonstrate the general

" procedure for any particular case,
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III., LAMINAR BOUNDARY IAYER CHARACTERISTICS OF SLENDER BODIES
OF REVOLUTION IN AXIAL COMPRESSIBLE FLOW

A. Governing Equations in Cylindrical Coordinates

If the following assumptions are made

p==%e7

4=§gr J 6’76 constant
o/:/ge,/,e -~ constant
Yy = Cp /¢, = constant
r=-F

F o=@ =9

then the governing equations for a steady axial compressible flow past a

non-spinning body of revolution are

Qlewr) A(evr)

er i D = ‘ | (71a)
‘ 9,(L : 2
er(a~+ o QL(/é 9L> 9,.//‘ 97, ,2—/,2/-,,__
) ) o
.2 { A /’2(/"14 ?(r# /} - (71p)
2 2
'Qr(¢£+”?—§ —--"9—,, +-—//"' 2r )/742 &/ér - 27
2 |
_z ., {/[?(ra) (r(r}]} B (726)
LA 2 2 % £, %
€45z < S ._afyz..,o“?-p/: /'QL ;/"(9.4; /'/ (

(71d)



3k

whe:;e
Foan () op 2 (3 9")%, T IINY -
rep (7. ~3/‘/ {r]
By the assumptions
(s and 2 << o

Egs. (71) can be simplified, as in the incompressible case, to

atar | Aeon ., o

— A or o | (733)
%, 2k 4 |

e« +* 7 o ) = T 5z o 9/' (/U?/') ) (73b)

2 Y
o - Z o (130)

% % _ o, P2 L

3452 +€/r,5; = ¢49—£ 7‘/(9/4 /. 9/' a ?f’ (734)

These equations Will be called the modified laminar boundary layer
eqﬁations for a compressible fluidj; they are valid only within the above

assumptions,

Bs__Existence of the Energy Integral

For ¢ =/ , an energy integral may be deduced from Egs. (73).
If Eq. (73b) is multiplied by # and combined with Eqe. (73d), the

following form resulis:
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2 3\ A 2 Z «"
(eaiy #eogp (hrk) = f 52 [onse (e )] (1)
Hence, it is seen that

2
4 # % - a = constant - {19

is a particular integral of Eq. (7h).

%) ' R
If 5§ =9 | a particular integral of Eq. (7h) is

z

heg =atte e

since it reduces Eq. (7h) identically to the momentum equa‘bion in the x
direction, Hence, the energy integrals given by Egs. (75) and (76) exist
in aici-symetric flow as well as in twowdimensional flow,.

The constants a and b may be determined from the foilowing boundary

conditionss
£>=é/ at d =4
é = é’o at €4 =9
Q4
ar =4 at 4 =9

(Subscripts "1" and "o denote conditions in the free stream and at the

wall, respecii#ely.)v Under the first two conditions,

z ,
A:;/L(éf—é"%_i and @ =4,

Hence, Eq. (76) becomes

, 4, a4 / '
é:é,,%(é/“éo*?)?[’?a (77
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If the body surface is insulated, then

]
Y

!

0k 49 s« u _
or (4/‘40*7)97(7,.) 4Gy = av “
or

(Vg by + "")W(Zf)/ =<

or z

Lo Ak *
b, 4, 24
or
4 r-r gyt “ | .
/ o
«
since zi. = 2 #, , vhere A, is the free stream Mach number.
/ B N

Ce. Simplification of the Modified Compressible Boundary Layer Equations

for Flows Past Paraboloids of Reveolution

Egs. (73) can be simplified by an analysis similar to that used
previously. If the extended Mangler transfomation is applied to this
system, it reduces to (Cf, Appendix N)

5.2)  9(eT) |
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o7 ==L 4 P BLFN — D&
E“a%?‘ev&:*‘ag*ﬁ—/(/* ) @:] (79b)
9‘ .
0257; (79¢)

The energy integrals are invariant under the transformation since 4 is
a function of #« only and « =& |,
By assuming that the axial pressure gradient along paraboloids

of revolution may be neglected, the pressure is then constant everywhere,

Hence, from the equation of state,

e _ f
¢, / (80)
By the power law for ihe viscosity,
A (£)
A b
Fér the present purpose, « will be taken to be unity; hence
4
e 7 (81)
My
Also, an insulated surface will be considered; thus, Eq. (78) will be
applicable, ' :
If it is assumed that
=4 2(7) (82)
where ‘
2L .
7 = P ( A= W} |

then Eq, (79b) gives
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o7 =\/;7 {[(/7‘/77)/%/] #1574

which, when combined with Eq. (73a), ylelds

Lf [WM) J} = o (83)

where ? and /Z are functions of # or 2 onlye. (Pri‘me's denote
differentiation with respect to 7 o) ‘
Therefore, the assumption that # is a function of 7 only is
justified since Eq. (83) is an ordinary differential equation. By
letting ¢ £ ' and letting ¢ and K be constants, Eq. (83) reduces

to the incompressible form:
o L [cran) 77 wff =0

The boundary conditions associated with Eq, (83) are -

g = at 7—20 o ~ (8ha)
[Cta7) s [ =0  at 7 = (8b)
Py as 5w (8o

D, A Similarity Law for Hypersonic Flows Past Paraboloids of Revolution

yer 2 ‘
Iet o= #, 3 then, for M, >,

m >>/

and Eq, (78) simplifies to
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which, when combined with Eq. (73a), ylelds

_ /97 > o
dploanis o 5r-2  w

where ¢ and A are functions of 4 or ¢ only. (Primes denote
differentiation with respect to 7 o) ‘
Therefore, the assumption that # is a function of f only is
justified since Eq. (83) is an ordinary differential equatione By
"y

letting ;=,/ and letting ¢ and 4 be constants, Eq. (83) reduces

to the incompressible form:
0/ /4 4
< 0/7[(/7%7)7[ / *rF =9

The boundary conditions associated with Eq, (83) are

g =0 at 7=e - ~ (84a)
[(/74/;7")/[;’/:0 at 7 =9 | | (8Lb)
;—7/ as 7 —= o V | (&Lc)

Do A Similarity Law for Hypersonic Flows Past Paraboloids of Revolution

vroz '
let ‘m,:?/f/, $ then, for M >,

m >>/

and Eq. (78) simplifies to



= m(/=35) (85)

Combining Eq. (85) with Eq. (83) gives
/

I

v

Now let

AT = (2)Y
then Eq. (86) becomes

o2 _
d __/_—i[— =%y — ﬁ- — O
307{747% 0/7/[7/(/)0/7,”*/—L e

The associated boundary conditions are

/ 2 £, UL -
.9 =0 t /= = ¢ = (883.)
/ “ gy ey )
Ly g%y 2 = ' _ PR |
2 ./ as 7= : ~ (88e)

Therefore, the similarity law for A >/ is

2 o
ML; - % < 8, - i’;é) (89)
/

where £ is a constant,

The local skin friction is now a function of £ and EX or

LL‘ KC ) Z]I

Q,V?:G(/C) (% =‘i"—’5)
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Y Approximate Solution of the Modified Compressible Boundary Layer

Equations for Flows Past Insulated Paraboloids of Revolution by the

von Karman Integral Method
The following transformations

' L‘.‘ P z
(/,,_gﬁ dr )“ /[=(Z—)”/L

& = 4 ) r:—a/( )/ﬂ“;xz“—_/ = (9)

.+ o =0 . (91a)

2 e 2 207 /”w ) w

(cf. Appendix 0)

The boundary layer thicknésses are related by
‘ A

( ) /+— é’ze//; | (92)

0

whére A, is the transformed boundary layer thickness,
Now, integrating Eqs, (91) across the boundary layer from /[ -o¢
to ~ = A. , the momentum integral equation in the transformed |

' coordinates is

A o z . |
L [ec-oe =105, | (93)

The velocity profiies chosen will satisfy some or all of the
following boundary conditionss
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2 4
U =0 _— y — O
7 ar (/ ar
2
£z = U 9’4_. P ,?.;‘L_ = a
- Y p =

Also, an insulated surface will be considered,

coordinates, the boundary conditions become

_ Vi 2L o
“=0 . oA T e ’
ey
— 2 — 0
“EE G T g
. Z ;
Let = Z 2 >‘c = Z;
Then Eq, (93) becomes
A KA [A(.I] _ % 9
¢ oz 4 9A
A
or
s
0/ 3 _ 4)Z~ (
aé ;:-(/; Q/I) {(//37’ Q/lc
/
where Z(a) =I(’C‘F)”//?c R

~ditions are:

(1) £ =0 at
27 o, —9—’—: = O

(2) I~ 7 A Py at

(3) o= at

N

at 7

- T

In the transformed

at AR
c B
at ,’Z:AC
2 L Ae
and X, = .

)

)/\C —o

The associated boundary con-
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L

(k) on at A=/
0 -

(5) (g;' - © at N =/

Henceforth; a solution in the transformed plane is equivalent to
a solution in the physical plane under the transformations, |

For a paraboloid of revolution and for a viscosity power law,

Eqe (94) reduces to

/% %(7) o
Lz al) =" (%)z (95)

A — p
¢ Jr 240 2%

It is seen from Eq. (95) that

of = 9, = constant
is a‘particular solution, Since
5' 2
(E #) -
a = 7
[
‘ b 8

then o = constant implies that the bvoundary layer grows parabolically

as in the incompressible case,

Eq. (95) now reduces to

)wf/
ZLC: 7—(q,) Qﬂe)ﬂ—é,%=ﬁl
or, since the surface is insulated,
or ‘ :
S5y = (%)
¢ Ae=2 s 4 =%,
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The local skin friction is given by

@
yer z Z / 9/—_}
Ve = — M —
_762 Z, (/ a P ) (:\/géc o, D). § <o (97)

The solution for the compressible flow past paraboloids of revolution is
thus given jointly by Eqs. (96) and (97); in view of their foms, the
solution may be obtained directly from the incompressible resulis,

For M >/ and w=/ , Eqe (96) gives

2 DE
% (ﬁ)[ o }
/%4 2 %LI— 2 o

‘7(: = d‘a

This relation then establishes a significance for the constant £ in the
hype.rsonic similarity law as given by Eq. (89).

An example will now be given to show the effect of compressi-
bility, Let @ = 0,768, ¥ = 1,4, and

dn (74 a4 A)
A (144, )

=

For small values of &, or large values of £, , <~ > A  , which is
the linear profile in the Howarth coordinates (a good approximation for
hypersonic Mach numbers).

Eqs. (96) and )97) give

2 =(F) (= M*””L

where




and

( )[l/" ﬁc(/f%)/

These results are shown in Fig, 9 for various values of the free stream

Mach number #, o

A
§
4

Fe Approximate Solution of the Modified Compressible Boundary La.xe‘ r Equaticns
for Flows Past Insulated Circular Cylinders by the von Karmman Integral Method

For a circular cylinder, / =/ , and Eq, (94) reduces to

)_

d _
%&TL(%"[(,) 7_

wheré

z - [

By a slight manipulation, this can be written as

x W /- .
SRR g~ NS R LS S LA 0
7) 7 =i G () (58)
C [<] (o) 92"):0 P A
whers
/o 49,
Z Tz

The local skin friction is given by

f} Z <//) 9)¢ ) , . (99)

Eqse. (98) and (99) comprise the solution for the circular cylinder in a
compressible fluid for any particular profile,
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An example will be given for ¢ = 0,768, and ¥ = l.h and for a
logarithmic profile
; | Ln (1 F X A

T T i)

This profile again reduces to the linear profile in the Howarth plane

for small values of o, . From the incompressible results, the solution

is given by
f tn( 1#4)
‘a o~ i
w+/ oA + # —— 7’—/ p 0/4/(_ —-/&llz&4(/7z'%)</— Y (Q’C >/)

) (1)

/\
ey

R

7
A, cx:/ y/3 (/7‘92)

u (rta) non! (all 4 )

_7_;,“]
Ve, n (174)

These results are shown in Fig, 10 for various values of M, e |
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IV, AN EXPERIMENTAL DETERMINATION OF THE VELOCITY PROFILE
ACROSS THE LAMINAR BOUNDARY LAYER ON
SLENDER BODIES OF REVOLUTION IN AXTAL COMPRESSIELE FLOW

Ae Description of Test Apparatus

| The investigation-was conducted in Leg No. 1 of the GAICIT 5 x 5
inch Hypersonic Wind Tunnel, The reservoir pressure and temperature
controls, the manometer system for the measurement of static and impact
pressure, and the details of the turmel installation are desc_:ribe& in
Ref, 12,

Be Description of Model . and Instrumentation

4 slender cylindrical rod with an ogival frontal section, rigidly
supported by a long plate, was used (Fige 11), Three static pmssﬁre
orifices spaced 2,5" apart were located on the cylinder, A é‘ingle_
impact pressure probe with an 0,004" thick opening and an 0,030%
width was mounted on the vertical actuator system 1oca‘beci at t.hé top of

the nozzle blocke.

Ce _Test Procedure

411 the runs were made at a fixed reservoir temperature of 225°%F
. and at reservoir pressures of 2.3, 46.9, and Sh.l psia, respectively.
The impact pressure measurements were all iaken above the thixd static
pressure orifice located 8,5" from the nose where the axial static
pressure gradian‘b is quite small, Sufficient time was allowed for each
pressure to reach equilibrium before a reading was taken, 'Ihe measure-
ments show good agreement when repeated, |



L7

D, Reduction of Data -

- The following quantities were measured:

= reservoir temperature (°F)

oy
'

reservoir pressure (psia)

boundary layer impact pressure (cm, Silicone)

Y
¢

7 = eylinder surface static pressure (cm. Silicone)

The lecél Mach number, # , in the boundary layer can be obtained
£rom Rayleigh's pitot formulas |

.z)’ Y-/ )// 1)’74/ f‘
Z = w/ /

7

The static pressure, 7 , is assumed constant across the boundary
iayar. |
" By assuming that the Prandtl number is wnity and that the

cylinder surface is insulated, the velocity distribution canbe obtained

from the energy integral

” ‘ J—
. VT
4 - M V-7
/ \//+——DL M

where # is the free stream velocity and /# is the free stream Mach

. number,

E. Discussion of Results

Fige 12 shows the variation of impact pressures across the boundary

layer at a constant # = 5,8,
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In order to bring out the transverse curvature effect, the velocity
is plotted against the actual helght from the surface for /2 = 2he3
and 9&.& psia (Cf, Fige 13)s From this figure, it is seen that the
ratios of boundary layer thickness to the body radius are approximately
equai to 1l and 2.for 7 = 94k and 2i.3 psia, respectively, In Fige
1, the velocity is plot'ﬁéd against the nomalized actual height --
nomalized with respect to the boundary layer thickness (defined as the
height where the velocity is 0,995 times the free stream velocity).

The latter figure appears to indicate a transverse curvature effect
when compared with the flat plate data obtained by Korkegis .(correspond-
ing to a circular cylinder of infinite radius),

As far as local properties are concerned, the laminar boﬁndéry
layer velocity profiles of other slender bodies of revolution will be
gimilar to that investigated herein,

# To be published in a forthcoming report,
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V. SUMMARY

. Tt has been showm in this work that certain basic questions could
be answered regarding the laminar boﬁndary layer on slender semi-:x.nf:.nite
bodies of revolution in axial flow, and several new developments in this
regard were im;roduced. ‘They are sumnarized as follows: |

(1) The use of the modified boundary layer equations for the
treatment of slender bodies of revolution in axial incompressible flow
has been justified by an a posteriori arguments

(2) By adopting the wsual cylindrical coordinate system and by a
suitable transformation (of which Mangler's transformation is a special
case), it was shown that the modified boundary layer equations ekhibit a
similarity for paraboleoids of revolution in axial ,inconxpressible flowe
By virbué of this similarity property, an exact solution of the modified
boundary layer equations was obtained which is valid over the complete
range of ﬁ?,; (Reynolds number based on the focal length of the paré,-
boloid)e | |

(3) It was seen that this exact solution reduces to known solue
tions at the exbreﬁe ends of % , i.e., to the Oseen solution for
pa.ré.bqloids of revolution for small values of X and to the Mangler value
foi' l#rge values of 2. o |

(4) The following deductions were also made from the exact
solution for paraboloids of revolutions

(a) For R <</ s as for slender paraboloids, and for
2, >/ , the axial pressure gradient has a negligible effect on the
local skin friction, Also, for #Z <</ and & >/ , Prandtl's

assumption of a thin boundary layer together with the neglect of the
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" normal pressure gradient is still justified,

(b) The local skin friction increases as %, decreases

75‘ increases (Cfo Fige la)e

or

(5) Since the exact solution is valid for the complete range of
z or $/rn , the precige range of applicability of Mangler's ﬁi&eoxy,
valid only for g «<f , can be easily bracketed,

(6) On the basis of the exact solution for paraboloids . of
revolﬁtioxi, several approximate forms of the weloecity profile across the
boundary lé.yer were chosen, which, in conjunction with the von Kagix;n
integral method, yield results in good agreement with the exé.ct solution,

(7) The generality of this approximate method was then tested on
circular cylinders. The results again yield good agreement with knowm
exact solutions.

(8) A comparison of the exact solutions for paraboloids of
revolution and eireular c¢ylinders shows that the shape effécﬁ' on the local

z

skin friction is negligible when . :;;z <«/  or when % >>/

(C£. Fig. 8a)e |

| (9) The modified boundary layer equations, appli_.eable for a
compressible fluid, are obtained, For this systen, anv énergy integral
was shown to exist which agrees identically with that dedueed'.‘ by Crocco
in two dimensions,

(10) vhen the axial pressure gradient is neglected, the com-
pressible modified boundary layer Qquatims exhibit similarity for para-
boloids of révolution, as in the incompressible case,

(11) A similarity law was deduced from the compressible modified

boundary layer equations for the hypersonic flow ( # >/ ) past



51

~ paraboloids of revolutions

4
M

&,

= K = gonstant

(12) By introducing a new set of transformations, the von Karman
integral equatieﬁ for a compressible fluid may be reduced to an equiva~
lent incompressible forme As a consequence, the approximatg results
obtained for paraboloids of revolution and circular cylinders in the

incompressible case can be transformed directly into the compressible

ar®

cases For sufficiently large values of — 7o compressibility

z

counteracts the rise in ¢ V2,  and, below a certain value of s
compressibility tends to increase the value of ¢ WTC (Gf;\ Fi_.gs.
9 and 10). | |

(13) The laminar boundary layer characteristics onv slender
ogive-cylinders in a compressible fluid were investigated experimentallye
Velocity profiles across the laminar boundary layer were obtained on the
cylmdncal portion of the body ét different Reynolds numbers. Measure-
ments were made at a fixed position where the effects of self-induced
pressure gradienté are smalle The results show clearly that tl;e
thiclgaess of the boundary layer can become of the same order of magni-
tude compared with the body radius and that the velocity profiles
exhibit a behavior different from that on a flat plate (cylinder of
' jnfinite radius), Both of these deductions serve to indicate that the

transverse curvature effects become more important as ‘Y//Z increases,
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APPENDIX A

EXPANSION OF THE COMPRESSIBLE VISCOUS FLOW EQUATIONS IN
CYLINDRICAL COORDINATES

In an unpublished set of notes, Lagerstrom has derived the com-
pressible viscous flow equations in generalized coordinates, ihey are
expanded below in cylindrical coordinates,

y

let &£, <=1, 2, 3 be the cylindrical coordinates and

L

%, s + =1, 2, 3 be the rectangular coordinates. They are related

by the following transformations

! 2 2 2 3
z = £ , % =F sk , % =5 cos £
The components of the metric tensor g = gxt' Qx«, are thus:
T S ) :

&= g = o g =) e ,;’,=o(2'¢/)-

/s
Now
/ 0 0
F=l0 1 o | =)
0 o (§‘°‘)2
and by definition,
4  cofactorof 4 in g
; =
b , _
Hence, ;//___ /o, jzez y 33 / . and .;{/z o (4'75/‘)

" s = (§2)2
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-

4 439, 2, W,
The Christoffel symbol 7= L o, Y P
e o symbols, /7 =4 %’dq 24+ # % Q;Z)
reduce, in cylindrical coordinates, to

2 2 J 7

= - , 7=/ =2 and all other /7 _,

2

23 32 ;_- /A

If ;z" ~are the contravariant velocity components, then
2 2 22, 3.2 '
(true velocity)? = (g0 (g2 + (£)(g) -

2 3
and denoting the components of the true velocity in the (£, &, &)

directions by # , o~ , and w , respectively, then

. ,
Denoting the coordinates ( ;:/, £ §J)‘by z g r ygand 8 ,

the compressible viscous flow equations are:

Continuity Equation

o(e V') L ol V7g7 g°)

2t b5
or ‘ 9f
2(er) 2(04r) 2(evr) g(ehf) | ' }
"ot 7 -ra 7 Ip 7 50 = 0 (A 1)
Momentum Equations
7 £ o< H 7 o .
T E +55,) = o WG T ) s oV
where v
‘/’ S, 4 s A )
~ :/Qi/{f—/—l(/%é *;/;Z) y Kzﬁ?(‘/{}ﬁ%) B



or

2 2 90 D
o 2 (wr2) 2 [/ff(% ~24)/
faﬁ[’%?’gf ,./299/ r o

9 g(ra) 9(/«1,*) ?
7”'9?://7 2z 2r //%(/';F (A-2)

9 do , w 0 £ 2 u , v | 2 .9
20 < o
B[ﬂ(F/gQ,ff G+ “27_)/—% ;{+a)

. [ A /9{m) zi,m wr // *F’F (A=3)

_/Z“f ;a.g;u_r v W w- oW /94 /9!" ‘?M/’ 4
‘a"(/‘%"rez*‘?é?*;;.,;g*”— /[ )//— r@e r)

/QW v wo

At *”)/”/‘797 =T

_z_»/ "9(ra) Q(/‘tr) // i s oL

/
* 7 28 Pz T or ¥ 26

(A=k)



Energy Equation .

PG -(Eegy) g e () e

where
Py (;,C; 747[ * 8, )+ r (g )(g)
or
(79f+ f?fa 9/’ /‘:rfgﬁé %a—_‘*yg/ /'99) j?‘€@
/'Qz )*/’9?-( 9/)*,-[99&99) (5‘5)
where

]{Ze/(gf)*/“gzgg )/gz[m)/ 2 ¢ 9/7&/49/' 97"“)*/«
LR T RV T B e B 2

90 e 2wy ow | o\
# A 96’““r>//'” 20 "r)+27(7 *,Te/fe/“(r‘f?ﬁ‘%?)

<
" Qu AU la v
s Mgt e A et

Equation of State

7= e0RT (4-6)

£
( £ and ¢ represent external sources of momentum and energy,
respectivelye » , A , ) and « are functions of the thermodynamical

varisables, )
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APPENDIX B

MODIFIED BOUNDARY IAYER EQUATIONS

The goveming equations for a steady axial incompressible flow

past a non-spinning body of revolution are as follows:

o(ur) . 0er)  _ . (B=1a)
o9z a7
s Qu ‘9 4 '
u - o 2 =~—/—9—L7497//'9/'(9)7C v (B=1b)
P ola ’9/ 2
aa—z—: + 'If?—/; 4 /9 zl /'9/’ ) / (B‘]-C)

Now, assuming that the thickness of the boundary layer is of the
same order as the body radius, that is, J-0(4) , letting ,r-V7 /" ,

o =7 s and leaving the other variables unchanged, Eqs. (B-1)

become
(e r” (") o
o e T
* 9“ * g&* / 9/*’. 7 2] (/'* 94*) Ql{é*
* o =0 g Tam U s/ TV G

* 2z X .
i 9” * 90 ! 9/* 94 7T 2 2 x9S . el
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Holding the asterisk variables fixed and taking the limit as
yields
(L) 057

_f.
2 z* p*

* 94 7= _ * Ja
“ * 2r* e 2z T o ( ¥
04"
9= o
vhich, in terms of the original variables, becomes
2(er) (07
= O B-22
x . P ( )
v P« _ 2 Y 2 P
Loz T = ¢ 2z %;'5‘;(/’57 (B-2b)
_ 2/ (B~-2c)

This system of equations will be called the modified boundary layer

equations,



59

APPENDIX C

EXTENDED MANGLER TRANSFOHMATION

The modified boundary layer equations of Appendix B can be

transfomed into the following systems:
Z vl
~ & , =9& _ _ o+ 2 2LF Y 94
€ 24T = G )5;] (C-1b)
oF
g = ra—;;' (c"’lc)
Proof let
r z . )
_ r — £
=/z—‘/" ’ 1=/(r)”/‘
e (c-2)
| e R |
Hence, the transfomation operators are
2 pa—
5\ 2. or 2 2 r 2
(")raszazfar‘ and 5 =7 oF
From the continuity equation,
L9 _ 27 _ g
“=F s T a7 T (C-3a)
°% _ o Lo op £~ L oam
U = »—/- —_— % _.g = —_ — — -
r Pz /(/ "% oF riL A P (C-3b)
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Hence, the x momentum equation becomes
-~ - 2 — a 2 D /P

r — L9 1 26 (L), L (L 2

F- g g;s%&)*é 2 (£ 27)

9/'“ ey
—:/+L e

/(/') 94 9,, 2

which simplifies to |
| "" 3 5 ¥4 2 — .
(EJ(e % o) - Z ()2 (5 %

A Z’Ba
; 2% 72 .___’_f_é (/' Ny
where -
¢ 2L R
/ 2
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APPENDIX D

" REDUCTION OF MODIFIED BOUNDARY LAYER EQUATIONS
FOR FIOWS PAST CIRCULAR CYLINDERS

The modified boundary layer equations for a cylinder are

g—::‘— « L =0 (D-1a)
_ 97 94 2 2Ly
A A VG-IV (D-1b)
75 _ 2L JJE T 7
Let 7 V% Fo, £ = e 7/_’: and @ =VU/E L&)
Then,
LF 2 )77 2 2 _£ 2 , 772
2/;3 257’97“597 7 2z ez 2% 7‘95’2/
and
1 HF ‘ :
=== = Z/7 o (D-22)
£ F U7 |
)- C’[ (D-2b)

12 =7 (5 7
V=g =V Gz oy TaT

Hence, the above equations reduce to
77 A ¥ U o ¥ |
/97 /( 7‘;7) / /E(;_- 9;97 9; 97 ) (D"3)
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. vhich is the analytical fom of Seban and Bonde

B : c"f 7 /
Now let ]4:5— and Z—2§+2——~;é" R
Then,
2 _ 9,7 2 9 _ 2 .
2% % % 9y N T2 Ty 3 and
o Y FEANCE/
2 4 9 g 97°  GE 9y°
7# ) /% 29 94 ¥, . éy,’\ 2%
sy o o) o iU iy

Consequently, the analytical form of the Seban and Bond result

transforms into the analytical fomm of Stewartson:

oY 2 ., k% 5% % |




63

APPENDIX E

SIMILARTITY OF THE MODIFIED BOUNDARY IAYER EQUATIONS

FOR FLOWS PAST PARABOLOIDS OF REVOLUTION
%

As will be shown in Appendix I the axial pressure gradient, =~ ,

for flows past paraboloids of revolution is small under certain conditions

and, hence, may be neglected in the transformed modified boundary layer

equations, Thus,

9d ar  _ '

P + o= @ . (E-la)
_dd - o4 P 3LF\ P& :
a;;/f«r-é—/‘; =’}75r.~:[(//“2‘2‘)é—/§] (E“lb)

ro= & I_,i and

17’:0 at

X -—azxz

with the boundary conditions « =
@4 —>U as 7> o= , Now consider the mapping FkF ’

Egs. (E=1) thus become

ﬂ“'-»&b_: PY

¢ Pz £ or
5 24 | sc A 5 I [, Kk 2LF DL
U — =2 g = = — — e [
a L * Tz ar 162979’—:/ MLVE 07/5)9;/
and the boundary conditions become
74 ~ .
bz~ U a7 w0

@ =V =0 gt £p = o (ax) and



6l

In order that this system be invariant under the above mapping, it is
necessary that o =4, 4-/ and ¢ -/ + Consequently, « must be a

s Eqss (E-1) reduce to

fwmction of F% .
In terms of the stream function, #
. ‘. _ _ _ 2_ .
of T Q¥ 9¢ _ 52 2Ly op
. %{—f oL oF 9% or 27757[(” e )?F"’/ (E-2)
with the boundary conditions ¥ =¢ at 4 &% and ¥ — U~
F-_> = b B
F—kr Z—,-afb, ;Z-‘?cff.,

as
Now consider the mapping

Eqe (E-2) and the boundary conditions thus become

— R 2 — 2 — —

V4 2
c Y ¥ < W T _ e %[(/f_fé:)gp
Dr DT Ir ak® % £ or Ve vz / o2

N
at K4 =7(zz) ,

and ¥ =0 cf—>KT7 ag p—>o°o , In order
that this ksystem be invariant under the mapping, it is necessary that

Consequently, 7 must be a function of

2
a:;(: . 6::./6 IS

wflf) o
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APPENDIX F

INVISCID FIOW PAST PARABOLOIDS OF REVOLUTION

The fo]loviing transformation between the =z -2 +«<~ plahe

and the /' =£+ plane
2=t -cf (F-1)

maps the surfaces £ = constant into paraboloids of revolution,

, 7
@ | 6

Iet £ = £ be a particular paraboloid and / its focus lengthe It
is shown in Ref, 9 that the stream function for the flow over this body
is given by

%:eczy(§2_§3)72 B 2)

In the (z,7) coordinates, this may be written as

- 2z J
Y=z [/ L~z V-1t (F-3)

which identically satisfies the following inviscid equation of motions:

o_/%)+%2ﬁ(7/g_f)=0 ' ‘(F—h)

oz \I" 2z
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2
Eqe (F-3) also satisfies the two boundary conditions: (1) # =7 at /, ~ #L =

- Zg = Z/‘ a‘t s [.. .ty.

and (2) . -,
The velocity camponents are
2
I
7Y . 2(L-z+V ) =7
R A ’:/—L . (F=53)
(L -z +77) .
and
2 uLr / :
c 22 - -~ (F-5D)

=~ L =
r 2z 7 [-zT

where
V7 = Vx-2)+r"

PRy , the components reduce to

On the body,
&)
5 /+2 w5 /j% 7’ | #-4)
Hence, ¢ ~ U and ¢ -—>9 as % — 9 + In other words,

U <% when [<KZ
The axial pressure gradient on the body is

2 L
o o,é[ e u - ==
g - - - 2
pyafaza 2z \ U ] (H%)

Hence, the pressure gradient is favorable and approaches zero when

E e S S

either /-9 or
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. APPENDIX G

 SOLUTION TO THE OSEEN BOUNDARY LAYER EQUATIONS

FOR FIOW PAST PARABOLOIDS OF REVOLUTION

For sufficiently small values of £ , Egs. (2) can be simplified
by the Oseen approximation of linearization about free stream conditions,
Thus, replacing the operator « A 2 by Ué?; in

2z a9/
Eq. (2b) gives
D o (G-1)

where the axial pressure gradient has been assumed to be small in
comparison to the other terms when £, is small,
By the transformation operators of Appendix C, Eq, (G=1) becomes

0_/(/-) 2z o faa/ 77 [(z/:) 91/'  (@-2)

?z or

2 — o r
3 = 44‘Z = Z = Z
Since % and - Sz ¢ ten —% ot Also
2 7 o o ‘
e ] 8% r ’r '
L=y and = = /fyz——; « Hence, Eq, (G-2) reduces to

[ ENE ] P ) (@-3)

Now let
o)
)T g Y
/=/’/75— and & ”,27

and



%2 _ v/ (-£)

Pz

— = — 7
2 _ Z’j[ :
oY vz

Hence, Eq. (G-3) becomes

U T ryTr i U
Z//';e—;f —f)'ﬁ"//:;

¢ J N
Ji/(/f/ﬂf,)//
or

7 s e[ o] =
By Eqs. (1), this equation becomes

74
rof’ #9f =2 (G-b)

/ / :
with the boundary condition £ =¢ at 7 = %, and £/ as 7>
Eqe (G-4) is a linear differential equation and cante solved,

Write it as

and integrate
%/”:—7~&7+%4

or

//~i -7 : ' ‘
£y | (6-5)

where A is a constant, By a second integration,



or

g
/o= /**‘/7 4 (6-6)

oca

‘ <y
by virtue of the boundary condition at infinity, Now, since /=0

at 7= <, s the constant 4 is given by
7
~/ e . -
A :/7—— a// — g,,,(g)
ZL
Hence, Eq. (G-6) becomes

,/ et (7)
= /-
J/ esi (£,)

and this is precisely Eq. (19b).
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APPENDIX H

EVALUATION OF THE CONSTANT Eo

M§7 i )
¢ 7

The detail evaluation of the constant £ ocecurring in Eq. (27)

will now be carried out in detail. From Ref, 10,

7 B 0/ DOA -
4 . 7 7 o7
4 =/(/—e ) 7 ‘/7 ”/7 (H~1)
7 .

so that

o -, _ ,
__ /e e e T
€—07/7!7 7 € 74/74/(/ )? 7

(H-2)
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' Substituting

e "7
e 7—'/ = Yy Vi
in Eq, (H=2) gives
Z ~ Z (-/) Z 017 +/e 0/7/ (~r) Z 0/7
<z 7 "=

7 7

=7

/()/7’“‘70/7 7L/e70,7/”,/ (~/) /

S et ] [

From Ref, 11,

/;M‘{/ o/f = (n-1/

n oo n
SR S ()
> = = = :

Hence

2
7
EZ = vzﬁﬂ AZ
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APPENDIX I

JUSTIFICATION OF INITIAL ASSUMPTIONS

-
It is first necessary to define a displacement thickness, § ,
for an axially-symmetric boundary layer. The mass flux for an inviscid

fluid at any station along the body is

/(g U (exrdr)
%

while for a viscous fluid it is

/:zz (2Trar)

X
Hence, o may be defined as
- x 2 z o -
75—@0’/(/; #47) ~/:/ = Wég/(ﬂ*(d)rdf'

which reduces for an incompressible fluid to

L]

(5 +85)" - 4,'27‘2/(/"‘;) ror | - @

r

o

By Eas. (4), (11), and (s),
rar = L oam = % 4oy = Z/'La/ -7 4 ‘ (1-2)

Hence, Eq, (I-1) reduces to

57\ o
(7% =/7‘z/£/(/‘7)07

or



3

* = %
§ A -2
Feleifo) - -

From the Oseen solution

«© - 24 (7) -
Koo = o
U 20 (4) f | (I-4)
Hence,
o ;e i) z
3 2//7‘ z_z/ei(&) 0/// -7 | (I-5)
but

[ -[ofFr [T o

R,

Therefore,

_{ :/ €~ ‘ ~/’ 0 /
4 £, 2i(Z ) \/g 2d(k,)

for 4, sufficiently small.

Now

and hence,

NEES

/ ,
V& 44’(4)/ . (1-6)

Since the pressure gradient across the boundary layer must



h
balance the centrifugal force, then
2 *
P2 _ 0 ( el j: )
ar ©
and the pressure difference is thus

2~ o(ar)

Hence, by Eq. (I-6)

ffa = O/Te:(—z >/ (I-1)

which is small for £ >/ and 4 <</ , Consequently, it is

sufficient to establish the order of the following ratio on the. body surface:

Gid
2%
7 2 24
%5}7(/‘ 9/') ,er
Firomﬁppendij
ot _ o(ﬂ“ )
2L z*

when —f* </ "« ByEas. (b), (12), and (1L)

.
u r U 2r U er O

o L oF pne 97* pgh 97"‘

Hence,

P a4 Y | |
Lo (F 3 ) = (74) | (1-8)



By Eq. (I-h)

75

///) / e 7
(7 T (%)
Therefore,
/e/‘ —_ . __"_ oy (;@ )/
Zx
Finally, the following ratio must be examined:
Ju
2x*
4 = T, )
r 2 o

Now by Egse (L), (12), and (1h)

2 (1) 55 - (B (2) 3 -

so that
z F i /
Ju _ Y (_/i 4
- =) (777
but by Eqe (4) -
£
_= ya
z =
LL
Hence,

w7 7,/
A (7/}

and combining with Eq, (I-8) yields

)e _ /

‘4

(1-9)
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APPENDIX J

lu (1Far)
SOLUTION WITH Ff=aq —— 4t dx
L (1+a)

The von Karman intégral with the above profile will now be

evaluated for paraboloids of revolution,

/Fz/A = //a(mm)o’/ +§‘—
° Za.(/%o()

& [+ a,
= — L lu (7#a) —// + =
,&c(méo()/ A Z

/

’ ! 24 a, _1
/F.z(//( = )//1« (7#aA) IR+ (M}/}AL(/%«}MQ 74

z

/Rt J

_ /fa’[ (/M)//[ﬁc(/fn/) /_/74/—;;;

.za,aL[ (- Q//)[/Mﬁb(/f”)—/j+%/7‘3i;

L (174)

where

174 4 = A ,4 B( /
7/ = rA - > aIld /*q/ /&(/1‘0() PY




4]

The solution is given  jointly by

/ a, 2, ,
% :/rx? //il(/f%) 7w /ji% (J-1)

and

- \/,:;/&L((j;q’) ” :/ =Rl aL@) (d-2)

o=y

L (1+AN) ~7f-,;( A

o =

)_%)\L__)\(/—q’vﬂq’z'—'--) o
=2)=)r 2 0®@)

/ z
I =g = (r—ata o .. )

Hence,
z
A 2= A as x

/ /
= 7/ o . ag a/ ? eo I’ then
It L (174°)

Since A

2, -~/ and a,
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APPENDIX K
SOLUITON WITH £ — 2 27 g ra 2t
b (1+) .

The von Karman int.égral with the above profile will now be

evaluated for paraboloids of revolution:

/
/Fﬂl} = “ A Z £ %
/ by, (145) 2 J
/ . -, .
<z 4 / a S /
h = / L yeqf raq L)% s %
/F /-( /h(/.,éq’) ﬁ(,(/?‘&)’) / 7L Z 2 J Tz E) 5 2
where
sra
Z = T%L[/Hr} —7
I = 7% {[/tb(/%o’/——{/e-/—/__te_ /
/ ¥ /#a
/ /
L, =7 (1-F)4 +3
/ 2 - £
5 =5k e kT
2a -2 A —aA o
md &= 2 %=y 0 ST At L)

D= (Z2-a)4 +2a-2
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The solution is given jointly by

R A A 2 R
X = [afI /&(/m ” 7// (k-2)
"

and
G Ve, =z VZ(DYJ')#% (XK=2)
r (2a-2) dn (14aN) + (2A X~ XA Q") tu (7 fer)
- D on(r#a)
o T
o (2a-2) [ X~ Z X+ Z g ~--]+;§§/ (ZA—=aX)
B o (2~a) # (2a~2) (1+a) bu (/ta)
(2ah ~E Xt )(rra)
jf ot
- 3 RN
=S A-Fz X F a(«)
Hence,
F—->-53~)\——éf as o —>o
~ Now
& / .
T — 4 a8 o oo
, (Ha) (2%~2) L (1)
Also,
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APPENDIX L

SOLUTION WITH Fag 20 s rra X

du (r4a)

The von Karman integral with the above profile will now be

evaluated for paraboloids of revolution:

/
- _ % 2, % %
‘D/FK/A - ﬂ)z(/fv()J; R
, :
2 B 4 4 7 %gqji+eaf%.za]}
/F”//l *ﬁ(/*o(} {,&,{/%4’) ’ v e
Z z z

where
4, = %:—Lf e (¢Fa) ~/
7 = ﬂ{[ﬁ(/m—/]i/ 2 }
a /Fa
L =474 A5
A “3—'27 Z, +3£
L =F4 ";q{ja 74/?3—’
and a4 = 6;:{ PR M;U g 54;35 | %hw
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A =2 / o
D=A(Ra-¢) #B (3 ~2)+6-3a .

YFA Ly (rpe) (/+or /&(Ha{)

The solution is given jointly by

4 .
/o/J Y (/+or) 7/]2 o (L-1)
o = : .

9 ‘/-‘CT = £ \/E_Z (D(I)a':or, | » (L-2)

F=— | (6-3%) bn (1+ i y o
:Dj»z(mx)[ (1#aQ) [ LeCrra)] (64 +38)(A~3 %)4-(/44’#3 30/)Aﬁ(xﬂvf

(6r9a ~ :—mr)(u()\ > A+3 X’-—)\) (6aR -3 7“7‘\’71~~a//l)~zo(,l

3 7
o (Bar—6£2a°~6a) +,éf—zar 4 (6rIx—3a) (o~ —gi‘ ‘X —?‘X o)

-
._30(4/1_/_30(4)3—33 o A %O(Q/f)

2" s o06x”)

= 2x =2 X s Q0 £ O)

Hence,
3 #
F——22=-2) 7 A as @ —> o

Since A4 and F—° and 2> ag oA-> =° , then
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APPENDIX M

'SOLUTION OF THE VON KARMA/N INTEGRAL RELATION WITH

A
= Gty FOR CIRCULAR CYLINDER

o S (#%)

The evaluation of the following integral will now be carried out:

of
3 / / 49 /
L= /~ - d -
2 // n(rtx) [ F A () ” o ,&L?(,M,)’] q‘ , (M-1)
a .

Let & =/#4 , then

: \ _3 _ /7 £(6-1) :
Ing/[/ L 8 5ﬂ9+§2?—9“/”/‘9 (M-2)

«

’ w
y a
o 32 #/ e ~/
,_f:/(e~ A ) dw
£ / w w?

» @ a - « (dw :
“ 3e +/ @ -/ e
:(e—/)~/ ‘/‘”%’%/{g“/}_wa/ %/7,7 S
] a ,

@

= (e{/)._f(—e—:i ~/) 7L/e“’~/ o

@

o

— (e“_/) _ 4;/ WA A E;'(w) _nw ¥
La ‘
= - £l fln(r#a)) - bu [ lu (172)] ~¥ (a>r)
7 L (r#e) + Ll - )/ [ (7= _

(¥-3)
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~ since

/23/ Jo = Ei(w) /(/—e ) 2 / [
and \ |
y___/o;/— e ) gﬂ ~//;‘§:wa/w = 0. 5772
where

“ @ oo . ,
£ () Q/Zé— S Y w2/ e ()

By an expansion of the above result the following series is

applicable for all « :
0o 4
> S (i)

Ao
n (1) 7 n. n! - (M=5)

/ :«7‘4—



APPENDIX N

APPLICATION OF THE EXTENDED MANGLER TRANSFORMATION
T0 THE MODIFIED COMPRESSIBLE BOUNDARY IAYER EQUATIONS

The transformation equations are

r z
_ r - X% — ¥
FofEe e f(E) e, 72

% r (N-l)
The transformation operators are

2 2r 2

9 _ /&Y 2 = 5= 2 r 2
ﬁ“(f—)?i 7 9z 97 and 54 = L 3F

. AT 2
Cr="r o T "/(Z]?L f?z Y

Substituting these guantities in the x - momentum equation and

simplifying yields
9z oF 2 2LE Y 0L /
)3 Z raxl VR ey
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APPENDIX O

TRANSFORMATION OF THE MODIFIED COMPRESSIBLE BOUNDARY

LAYER BQUATIONS WITH -2- = o

2
The governing eguations are

P ar
4 U 9 ‘94
eUr 5z TN oL T 5. (4" 5
Let
£ — ¥
e - /h -
J’e':?l‘f ’ ‘/Zz(?)‘/z ’ %"gz.
o ANIC /) 2 _ 0 2
97,2(?)9?2 Y or o 7 o T el g
Then

RS &L/(’_’? fy L 2% a/
T oer Rz or ~/ C 2z

and substituting these quantities in Eq. (0-2) yields

_ 4 o4 A
7 +7{~-—=92 Z

2 i et 24
Dz of or ‘

£ e on

/

where

I

-
+

I
W R
\

I~
~

XN

(0-1)

(0-2)

(0-32)

(0=3b)

(0=La)

(0-lib)
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FIG. 13

040

0.36

0.32

0.28

0.24

y (in.)

0.20

0.12

008

0.04

VELOCITY PROFILES ON OGIVE-CYLINDER AT M;=58
AT DIFFERENT STAGNATION PRESSURES
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FIG. 14 COMPARISON OF VELOCITY PROFILES ON OGIVE-
CYLINDER AND FLAT PLATE AT M,=58



