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ABSTRACT 

The study of neural computation has long concentrated on our cognitive abilities, with 

extensive research dissecting the mechanisms of memory, decision-making, and 

navigation. In contrast, the realm of social innate behavior and emotion has often been 

treated as a simpler problem, overlooking the immense complexity and biological 

significance it entails. This thesis aims to bring neural computation into the domain of 

emotional or affective states, employing data-driven modeling methods that approximate 

neural activity as dynamical systems. The application of these methods has uncovered brain 

representations that encode key qualities of persistence and escalation associated with 

aggressive states, formalized as line attractors. These emergent features of neural circuits 

arise from the complex interplay of connectivity and network dynamics, challenging long-

held notions of subcortical computation. This discovery led us to rigorously test various 

key properties of line attractor dynamics. Through closed-loop modeling and holographic 

neural activation, we demonstrate that the line attractor is intrinsic to the mammalian 

hypothalamus, providing some of the first causal evidence of this property for any 

continuous attractor. These experiments also suggest that functional connectivity within 

the hypothalamus underpins the stability of this attractor. Furthermore, using a new cell-

type-specific gene-editing system, we show that the implementation of this line attractor 

depends on neuropeptides, indicating a non-canonical mechanism that contributes to the 

robustness of this innate attractor. Finally, we reveal that line attractors encode emotional 

states beyond aggression, including states of sexual receptivity in the female hypothalamus. 

Longitudinal recordings of neural data across the estrus cycle show that the line attractor 

disappears during non-estrus states, suggesting long-timescale modulation of attractor 

dynamics by hormones. Together, these studies present a new paradigm for understanding 

subcortical computation underlying internal states and suggest a canonical motif that the 

brain reuses to encode diverse internal affective states. 
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PROLOGUE  

An organizational note 
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In his book Vision, David Marr articulates a framework for understanding the brain across 

multiple levels: the computational, the algorithmic, and the implementational. These 

concepts have been widely applied to illuminate the mysteries of perception, navigation, and 

cognition. Yet, they have seldom been turned toward a realm of our daily existence that 

resonates deeply within us and shapes our very being: our emotions. 

 

In this thesis, I introduce a novel framework for understanding the neural computation of 

emotional (affective) states through the lens of emergent attractor dynamics. The thesis 

unfolds across several chapters, each delving into a different facet of this computation: 

 

In “Representation,” I explore how data-driven machine learning methods can unearth 

computations at a representational level in an unsupervised manner. This journey led to the 

discovery of a line attractor deep within the mammalian hypothalamus, encoding an 

aggressive state and challenging long-held beliefs about hypothalamic function. 

 

In “Perturbation,” I detail efforts to gather causal evidence for this line attractor. Here, I 

present the first evidence of the existence of an intrinsic line attractor in mammals, utilizing 

closed-loop modeling of neural data and single-cell holographic activation of single neurons. 

 

In “Implementation,” I reveal how this computation is realized in a non-canonical form, 

relying on neural communication via neuropeptides to achieve the long timescales that set 

this attractor apart from others in the cortex. 

 

Finally, in “Generalization,” I demonstrate that line attractor dynamics extend beyond 

encoding aggression, revealing their role in encoding states of sexual arousal with 

remarkably similar properties. 

 

Together, these studies propose a new paradigm for understanding the computation of our 

emotions, offering a blueprint that may extend to other affective states as well. 
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C h a p t e r  I  

INTRODUCTION 

 

 

 

“എ�ത ക�ാലും മതി, കാണാെതേപാകു�, കാ��യുെട, 
കാ��െയ�ുറിെ�ാരു�ുമി�.” 

Vallathol Narayana Menon, Sahityamanjari, 1917 

Translation: “No matter how much one sees, it is never enough, for there is always 
something about the sight that remains unseen.” 
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C h a p t e r  1  

The neural coding of affective states:  

a dynamical systems perspective 

 

Summary 

Our experience of the world is constantly shaped by the motivational and emotional drives 

which comprise our internal state. An emerging view suggests that such states are encoded 

by the coordinated dynamics of populations of neurons deep in the subcortex. In this chapter, 

I introduce a dynamical system framework to understand internal states and bring together 

evidence across several studies that key features of internal emotional (affective states) such 

as aggression and sexual drives are represented by emergent continuous attractor dynamics 

in the hypothalamus.  These dynamics are discovered using data-driven modeling techniques 

that approximate neural data as dynamical systems and discover computations relevant to 

internal states in an unsupervised manner. The mechanistic implementation of these 

dynamics challenges dominant assumptions of subcortical computation and presents a new 

avenue to study the emergence of slow state-encoding dynamics across scales; from single 

neurons to network interactions and neuromodulation. 
 

 

 

 

This chapter provides a synthesis of all studies in this thesis and provides a 
comprehensive overview of concepts in dynamical systems applied to neuroscience. 
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Introduction 

A fundamental goal in neuroscience is to understand how animals use sensory cues to 

produce behavioral outputs. Essential to this process is the concept of the internal state, a 

low-dimensional representation of the organism's drive, motivation or affect, which can 

strongly influence how perceived sensory signals are transformed into behavioral 

decisions1,2. For example, internal states can shape an organism's intent and drive to display 

motivated behaviors: an animal’s state of aggression can influence the extent of attack 

behavior towards a conspecific in a resident-intruder assay2, or its state of thirst can modulate 

the extent of licking behavior in animals engaged in operant conditioning tasks3.  State-

dependent behaviors provide adaptability, allowing organisms to flexibly modify their 

actions based on past experiences and current needs1. The past decade has seen a surge in 

studies that identify neural circuits involved in a variety of innate goal-directed behaviors, 

including those driven by physiological homeostasis, such as hunger4,5 and thirst3,6,7, and 

affective states such as aggression8-11, mating1,2,12, and predator defense1,13,14. The time is 

ripe to begin to investigate whether and how these circuits give rise to emergent neural 

population dynamics and the role of these dynamics in states and behavior coding. 

Determining how and where the internal states underlying these behaviors are encoded in the 

brain is a long-standing challenge, particularly in the case of affective internal states15,16. 

Targeted neural perturbations have been key to revealing the role of neural circuits in the 

control of internal states10,12,17,18. This perturbation-first strategy has revealed that specific 

cell types within a distributed hypothalamic network, including the VMHvl10,11, MeA19,20, 

and BNST9,17,18, are essential for the regulation of an aggressive state. However, such 

perturbations in different brain regions can yield similar behavioral phenotypes which 

obscure important differences in neural computations performed by that region or 

information represented in neural activity. For example, loss-of-function manipulations that 

block a behavior at a given node in a pathway that transforms a sensory stimulus into a 

response do not distinguish whether that node plays an instructive or merely a permissive 

role. Furthermore, such manipulations do not distinguish whether the node encodes stimulus 
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identity, stimulus associations, motor program or internal state. While gain-of-function 

manipulations can distinguish whether loss-of-function phenotypes reflect permissive or 

instructive functions, they do not resolve issues of neural computation and function. For 

example, the evocation of a given behavior by stimulating a particular node could reflect the 

activation of a motor program, an internal drive state or the presentation of a fictive sensory 

stimulus. Solving these challenges require studies that focus on neural representation to 

disentangle these functions. 

However, such studies of representation are hindered by the problem of how internal states 

can be identified. Many studies determine the presence of an internal state based on 

observable behavior, often using subjective criteria1. For instance, a state of aggressiveness 

is typically inferred by quantifying the duration and number of attack bouts using a resident-

-intruder assay8,9. While such overt behavior may express an internal state, this behavior-

driven approach makes it difficult to distinguish the neural encoding of an internal state from 

that of the behavior that expresses it. 

Observational studies of internal affective states are particularly complicated by the 

challenge of recording neural activity in freely moving animals as they engage in innate 

behaviors. Studies focusing on neural representation typically rely on animals that engage in 

highly trained behaviors where neural data can be collected from hundreds of trials of a 

stereotyped task21,22. Methods developed for analyzing data from highly trained animals do 

not directly apply to single-trial conditions in naturalistic innate behaviors, where each 

encounter with a conspecific, for instance, might result in a different distribution of 

behaviors. Therefore, new methods to gain insights from such observational data are 

paramount for studying neural representation in internal affective states. 

In this perspective, we propose an alternative approach to identify and study affective internal 

states through unsupervised analysis of neural data from naturalistic behavior, based on 

dynamical systems analysis. We show how studying the dynamics of neural activity can 

serve as a “hypothesis generator,” uncovering features at the “manifold level” of analysis23-
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25, such as attractors26,27, that may represent or encode key internal state properties such as 

persistence and scalability16,28.  Recent results from the application of this neural dynamics 

approach in turn suggest a generalized conceptual framework for understanding the 

instantiation and implementation of internal affective states across different behaviors. 

Moreover, this approach emphasizes an integrated computational process that spans multiple 

levels—from individual neurons to network mechanisms and neuromodulation—providing 

an opportunity to achieve explanations of brain function that span and link different 

biological scales and levels of abstraction. 

Paradoxes in the neural representation of innate behavior 

When incorporating neural activity into the study of naturalistic behavior, bulk 

measurements such as fiber photometry have been widely utilized to uncover behavior-

related activity in specific brain regions29. However, this low-dimensional approach can 

obscure the heterogeneous activity of individual neurons or physiologically distinct neuronal 

subpopulations, potentially resulting in inaccurate interpretations of a brain region's role in 

encoding a state. For instance, while bulk measurements18 in BNSTpr indicated an encoding 

of conspecific sex (male or female) based on the overall level of activity (low=male; 

high=female), single-cell imaging data17 have revealed distinct populations of male- vs. 

female-tuned neurons in a female-biased ratio. Analysis of neural population activity, in 

conjunction with cell-type specific perturbations, has implicated this region in regulating the 

transition between appetitive and consummatory behaviors, thereby extending the 

interpretation beyond the identification of conspecific sex17. 

In addition, single-cell measurements can uncover significant paradoxes that challenge the 

straightforward relationship between specific regions and their roles in initiating a behavior, 

as indicated by experiments based on perturbations. For instance, activation of VMHvlesr1 

neurons can reliably trigger aggressive behavior through optogenetic stimulation11, yet 

single-cell imaging consistently shows that only a small number of neurons are specifically 

tuned and time-locked to attack10,12. Most neurons in this nucleus and others such as the BLA 
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exhibit mixed selectivity, a feature prominently seen in studies of the cortex where neurons 

encode for multiple variables in a multiplexed fashion. Furthermore, MPOAEsr1 neurons 

which alone are neither necessary nor sufficient to induce aggression, contain a much higher 

proportion of aggression-tuned neurons than VMHvl12. Addressing these paradoxes 

motivates further exploration of the information processed at the level of population activity 

and dynamics.  

The need to incorporate dynamics in the study of internal states. 

Neural circuits can encode information at a population level using various strategies. They 

may utilize a cell-identity code, where separable populations encode different features, or 

might use a distributed code, where overlapping neurons encode information in a multiplexed 

manner. Studies of neural representations in innate behavior-contributing neural circuit 

nodes have unveiled many examples of cell-identity codes. For instance, in circuits such as 

VMHvl and BNST, separable populations of neurons are activated in response to the sex of 

the intruder17,30. Similarly, in VMHdm, separable subsets of neurons are activated by 

threatening stimuli of different modality such as odor versus sound13. However, it has been 

challenging to infer whether these cell-identity codes in state-contributing circuits encode a 

representation of a stimulus, or of an internal state evoked by the stimuli. For instance, male-

activated neurons in VMHvl might encode a representation of intruder sex, or a state of 

aggression that is associated with the presence of a male-intruder. These alternatives are 

difficult to disentangle because male mice only exhibit naturalistic aggression towards male 

conspecifics. 

Studies examining the neural representation of internal states have also discovered 

distributed population codes in different organisms. Research in mice, fish, and worms has 

used supervised methods such as linear decoders to identify distributed population signals 

that encode opposing states, such as exploration and exploitation or defensive behaviorr31-33. 

Similar distributed signals have also been uncovered in brain-wide recordings of thirst states7 

and stress states34,35. However, these supervised population coding approaches require 
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defining an axis to classify either different types of states, different intensities of states or use 

reinforcement-learning approaches to define state variables. This limits their use in affective 

internal states such as aggression and mating, where it is challenging to define such a state 

axis during naturalistic behavior, in part due to the trial-trial variability notable in these states. 

Methods used to study population coding, which include matrix factorization, linear 

decoders, choice-probability and generalized linear models (GLMs), can identify neural 

populations that are “tuned” to particular stimuli or behavioral features.  However, by 

themselves they do not distinguish the encoding of behavior from the encoding of an 

underlying internal state. The reason is that an essential feature that distinguishes internal 

states from behavior is their dynamics. Behaviors are punctate: they are typically expressed 

in bouts, with defined onsets and offsets.  In contrast, internal motive states are often of 

longer duration than the behavioral bouts that express them.  In other words, they reflect 

persistent activity that is maintained across overt, observable episodes of behavior16. 

Therefore, if such patterns of persistent activity can be identified in a population of neurons 

during an otherwise episodic behavior, they are candidates for encoding internal states – they 

make something visible (patent) that is otherwise invisible (latent) at the level of behavior. 

In order to discover such features in neural activity, it is necessary to analyze the dynamics 

of the system.  One way to do that is to model the neural data as a dynamical system. 

What is a dynamical system, and why is it a useful way to approach the neural coding of 

internal states? A dynamical system is a system that displays a particular pattern of time-

evolving activity, for example in response to a stimulus36.  This pattern of temporal dynamics 

reflects the intrinsic properties of the system, which can include those of its components, and 

their connectivity36. A dynamical system can be described by a series of equations, which 

essentially define how quickly activity changes, and in what direction, at different points in 

a “state space” a coordinate system that encapsulates the dimensions along which activity 

evolves over time. Importantly, the exact pattern of activity in a dynamical system can be 

highly variable and dependent on “initial conditions” (the set of inputs and the state of the 

system at the beginning of a particular time epoch). Yet the equations for the system will be 



 

10 
 

able to predict the direction in which activity evolves, for a given set of initial conditions (see 

Box 1). In other words, it is a way of making something that is complicated – high-

dimensional, constantly changing and variable from trial to trial -- simpler to visualize and 

understand.  It is ideally suited for the analysis of naturalistic behaviors, which typically 

evolve in a unique sequence every time they are performed. 

Unsupervised data-driven discovery of population dynamics  

Population dynamics can emerge at multiple levels in a neural circuit: at the input to a circuit, 

through intrinsic dynamics as a feature of the interconnectivity between neurons, or even 

within single neurons. Complex dynamics may also emerge through meso-scale interactions 

between nuclei or brain regions37. In systems characterized by strong recurrence, emergent 

intrinsic dynamics resulting from the interconnectivity between regions and between neurons 

significantly influence neural dynamics. The framework of dynamical systems theory 

provides a conceptual foundation in engineering and physical sciences for understanding 

how feedback influences ongoing dynamics in physical systems36. This approach has 

recently been instrumental in elucidating emergent neural dynamics38,39. Within this 

framework, neural populations conceptualized seen as a dynamical system38,40. Such 

systems, through their temporal evolution—integrating a wide range of inputs via intrinsic 

dynamics—facilitate computations crucial for generating movement, making decisions, and 

mapping space in the brain38.  They also afford behavioral flexibility41. 

Dynamical systems are naturally suited to display features such as persistence and escalation 

or ramping in activity and have been hypothesized as candidates that encode features of 

internal states30. Studying the properties of a dynamical system can uncover important 

emergent features of neural circuits (refer to Box 1). This is performed by applying 

dynamical systems analysis to neural population activity. Here, dynamical models of the type 

illustrated in Equation 1 (Box 1, Figure 1A) are directly fit to the activity of a neuron 

population. One such emergent feature is attractor dynamics, a component of interconnected 

neural circuits that allows information to be maintained in persistent neural activity27,39,42,43. 
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While theoretical studies have long implicated the role of attractor dynamics in encoding 

variables such as memory44,45, spatial locations46 or eye position39, recent experimental 

studies have discovered attractor-like representations through the application of dynamical 

systems models to neural data25-27.  For example, a recent influential study by Inagaki et al., 

has linked observational studies with targeted perturbation to reveal experimental evidence 

for “point” attractor dynamics, which allows working memory to be held within a circuit12. 

Using neural perturbations, this study demonstrated that activity among neurons contributing 

to a point attractor encoding short term memory was robust to perturbation and could be used 

to guide the animal’s choice in a memory task.  

Attractors can exist in other topologies such as “line” or “continuous” attractors, which allow 

graded forms of information to be held persistently in circuits26. These continuous attractors 

can function as integrators, allowing a circuit to accumulate and represent a graded, 

integrated variable26,43. Each integrated value can be persistently represented within the 

circuit, enabling the encoding of continuous variables. The integrated positions function as 

“fixed points” which constrain activity within the circuit to exist within these points unless 

perturbed by external inputs to the circuit or noise.   Studies applying dynamical systems 

tools to neural activity have discovered representations of continuous attractors important for 

encoding head-direction across species47-49, with the graded form of persistence allowing for 

different angles of head-direction to be uniquely and persistently represented in activity47-51. 

Similar methods have also revealed continuous attractors encoding evidence in decision-

making paradigms22, for reward history in learning paradigms52 and for encoding space50,51.  

Recent advances in machine learning have enabled the approximation or 'fitting' of neural 

data by dynamical systems, allowing for discovery of the governing equations that produce 

the observed dynamics. This data-driven approach contrasts with traditional modeling in 

neuroscience, where models are preconceived, intellectual constructs designed to 

approximate specific aspects of neural data (refer to Box 2). The process of discovering such 

dynamical properties requires the use of new unsupervised machine-learning enabled 

methods that fit various forms of dynamical systems directly to neural data  50. Some 
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methods, such as LFADs52,53 (latent factor analysis via dynamical systems), directly fit non-

linear dynamical systems such as recurrent neural networks, while others, such as rSLDS54,55 

(recurrent switching linear dynamical systems), approximate non-linear systems as a set of 

interacting linear systems. A key feature of both model classes is that they use dimensionality 

reduction to identify functional groups of neurons termed “latent factors” or “dimensions” 

with shared dynamical properties. Dynamical models then explain the temporal evolution of 

activity along these latent factors, either using inputs to that circuit or through intrinsic 

dynamics via intra- or inter-region connectivity. Since these models are unsupervised, they 

do not assume any form of attractor dynamics or other dynamic mechanisms in the circuit. 

Furthermore, since they operate at the level of latent factors, they are agnostic to the exact 

implementation of the discovered dynamics in the neural circuit, instead revealing the 

computation performed by the circuit and not the mechanism of that computation. Hence, 

these emerging methods allow for the discovery of distinct dynamics in neural activity and 

generate hypothesis for how those dynamics operate at a computational level in the circuit.  

 

Box 1 

Primer on dynamical systems theory in neuroscience 

In its simplest form, a dynamical system tracks the evolution of a variable (x) over time as 

a function of inputs to the variable (u) and a set of rules that govern its evolution in the 

absence of inputs (Figure 1A). These rules are represented by a matrix (A) that represents 

feedback to x from its activity at previous time steps. The variable x could symbolize the 

activity of a local population of interconnected neurons or that of neurons connected across 

various brain regions or nuclei. The structure of this matrix, dictating the strength and 

direction of feedback in the circuit, can lead to new dynamics. Such dynamics can be 

emergent in that they emerge through the interaction of circuit components (defined by the 

matrix A) and are not features of the constituent elements or neurons. For instance, consider 

a simplified neural circuit comprising two cell populations, x1 and x2, (Figure 1B, C-inset). 
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In this system, the matrix A is a 2x2 connectivity matrix which describes the pattern of 

intra-region and inter-region connectivity between these brain regions (Figure 1B, left).  

Analyzing the connectivity matrix using dynamical systems methods, such as eigen 

decomposition, can reveal the emergent properties of the network. The most common 

approach is an eigen decomposition of this matrix which can give us an eigen spectrum, a 

plot of the real and imaginary part of the eigenvalue as a two-dimensional plot (Figure 1B, 

middle). The magnitude of the eigenvalues can reveal the time constant of dynamics of the 

two cell populations in our example (Figure 1B, right). From dynamical systems theory, 

an eigenvalue close to one indicates a corresponding dimension with a large time 

constant36. The time constant allows the cell population to remain persistent if it has 

received an external input.  

Let us consider this scenario in more detail, characterized by strong excitatory connectivity 

within region x1 but weak connectivity within x2 and between both populations (See 

connectivity matrix in Figure 1B, left and Figure 1C, inset) . We can visualize the activity 

of both regions in a two-dimensional plot of their activity against each other. This set of 

all possible combinations of x1 vs. x2 activity in a neural system is called the neural state 

space (Figure 1D). The pattern of connectivity creates constraints within neural state space 

that is visualized using a “flow field”: a set of arrows in each point of neural state space 

that together dictate the direction and speed with which activity can flow in this space. The 

flow field is inferred by analysis of the dynamics matrix A. The flow of activity in neural 

state space is represented by trajectories referred to as the population activity vector (PAV), 

since it summarizes net neural activity in this two-dimensional neural system at any given 

point. In this scenario, we see that arrows point to multiple points of stability (also termed 

“fixed points”) arranged as a line (Figure 1E). The neural state space and flow field can 

also be visualized as a 3D topographic “energy landscape” as a gully or trough (Figure 

1F). Such a feature in neural state-space is termed a line attractor. If repeated input is 

provided to both x1 and x2, activity can move along the line from one point of stability to 
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another, allowing the system to integrate inputs over time and represented an integrated 

variable (Figure 1E, F). Since the fixed points are stable, activity can be pushed to any 

arbitrary point, allowing the integrated value to encode continuous variables.  For this 

reason, a line attractor is often referred to as a type of “continuous” attractor. Other 

topologies of continuous attractors exist, such as the ring attractor in Drosophila. 

 

The pattern of connectivity can also create other strong constraints on where activity can 

flow in state-space. In Scenario 2, we illustrate the neural state-space and flow field for a 

variation on this network where both populations possess strong inhibitory intra-region 

connectivity with asymmetric but weak inter-region excitatory connectivity (Figure 1G). 

The flow field for this network shows arrows that point to a single position in state space 

that acts as a point of stability (Fig. 1H, I). The presence of such a single fixed point reveals 

a “point attractor,” which can be visualized in an energy landscape as a pit (Figure 1J). 

Activity in other regions of the flow field tends to flow into this pit (hence the name 

“attractor”); once in it the PAV resists other influences that try to push it out of the pit, e.g. 

from external inputs to the system (Figure 1H-J). In essence the attractor can be thought 

of as a “sticky” point in neural state-space. Many more types of flow fields can also be 

obtained depending upon the precise connectivity of the dynamics matrix27.  
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Figure 1: A: Anatomy of a dynamical system. Left: Cartoon depicting a neural recording with 

activity (x) of several neurons and external inputs (u) to the circuit. Right: Equation for a generic 

linear dynamical system. The dynamical system tracks the evolution of the variable x. The 

dynamics matrix (A) accounts for feedback within the network x and u represents feedforward 

external inputs to the network. B: Left: A dynamics matrix displaying the functional coupling 

between x1 & x2, interpretable similarly to a 2x2 connectivity matrix, with presynaptic regions on 

the rows and postsynaptic regions on the columns. Middle: Understanding the dynamics matrix 

through eigendecomposition, plotted in two dimensions to show the real and imaginary parts of the 

eigenvalues. Right: The magnitude of the eigenvalues can be used to calculate a time constant 

which shows the persistence and slow decay along each dimension in the presence of an external 

input.  C: Scenario 1: A cartoon of a coupled neural system consisting of two regions. Region x1 is 

marked by strong recurrent excitation.  D: The neural state space shows the set of all possible 

configurations of activity in this system. The flow field, inferred by analysis of the dynamics matrix 

A, shows the constraints that activity must obey in neural state space. The arrows reflect the 

direction and speed with each activity will move in this system at any given point. The flow field 

reveals a set of stable “fixed points” which define a line attractor in neural state space oriented 

parallel to dimension x1. E: Same as D) but showing the population activity vector (PAV) when the 

system is provided with a transient input. Each input pushes the system out of the line attractor, 

following which it returns to the attractor but at a different fixed point from its location when input 

was initiated. This property allows the neural system to “integrate” (i.e., to accumulate and store 

information about the history of the inputs) along the line attractor. F: Same as E) but showing the 

flow field as a 3D topographic energy landscape. The line attractor appears as a trough or funnel, 

with the base of the trough indicating the stable points of the dynamical system. G: Scenario 2 

showing a similar neural system, where both regions show inhibitory recurrent connectivity. H: In 

this configuration, the flow field reveals a single stable point called a point attractor. I: Same as H) 

but showing the PAV when transient input is provided to the neural system. J: Same as I) but as a 

3D energy landscape. The point attractor appears as a pit in this 3D landscape.  
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Box 2 

Discovering dynamical properties of neural circuits through data-driven modelling  

Classical approaches to modeling neural circuits begin with a defined hypothesis about the 

circuit's properties, such as a specific connectivity pattern or other mechanistic 

features13,56. This ”theory-driven” approach attempts to recreate specific properties of 

neural activity observed in neural circuits (Figure 2A). For instance, numerous theoretical 

mechanistic models of the oculomotor integrator have been constructed to explain 

persistent activity seen in neurons from in-vivo data43. In the study of internal states, 

mechanistic models have been used to explain persistent activity in VMHdm neurons 

involved in maintaining a defensive state13. In each system, different models were 

constructed that incorporated ad hoc various mechanistic features such as recurrent 

connectivity, cell-intrinsic persistent activity, or neuromodulator release. These models can 

then be compared with each other using various metrics of similarity to the data, with the 

model showing the highest similarity predicted to capture the underlying mechanism. In 

this approach the observed data are used as a point of reference, rather than serving to 

directly constrain model construction. 

Advances in machine learning over the past several years have enabled a different type of 

modeling framework that uses machine learning to “learn” the governing equations 

underlying neural data directly from the data itself50. These “data-driven” approaches fit 

equations of dynamical systems directly to neural data. The fitting process adjusts model 

parameters through iterative comparisons between a model's predicted neural trajectory 

and the actual trajectories in the data, using various machine learning algorithms. Some 

data-driven approaches, such as LFADs (Latent Factor Analysis Via Dynamical Systems)53 

and PINning (Partial In Network Training)57, attempt to fit nonlinear recurrent network 

models (RNNs) of observed neural data in a 1-1 manner, providing predictions of 
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underlying connectivity (Figure 2B). For instance, PINning has been used to create data-

driven models of neural activity during decision making tasks in the posterior parietal 

cortex (PPC)57. By analyzing the fit connectivity matrix, the authors discover a new 

computational mechanism for sequential activity in PPC that uses recurrent connectivity 

and external inputs. This capacity to discover new computations through analysis of the fit 

model parameters has evoked considerable interest in this data-driven approach50.  

 

A distinct class of data-driven approaches fit models at a more algorithmic level to neural 

data (Figure 2C). These methods, including SLDS (switching linear dynamical systems), 

use dimensionality reduction to find a set of low-dimensional composite neural signals 

(“latent variables”) which capture most of the variance in the original recordings, and then 

fit dynamical equations to these low-dimensional variables55. In addition to discovering 

latent population signals using dimensionality reduction, this approach can identify new 

computations and functions performed by those latent neural dimensions through 

examination of the fit parameters of the dynamical models. These methods have been 

recently used to uncover integration signals in the hypothalamus that function as 

continuous attractors encoding internal states54,58. Methods using SLDS models fit fewer 

parameters than RNNs and are thus well suited for single-trial neural data such as those 

usually obtained during studies of innate behavior. Moreover, the linear nature of the SLDS 

model allows for a comprehensive understanding of the fit model using methods from 

linear dynamical systems theory (see Box 1). However, unlike RNNs SLDS models are 

statistical, not mechanistic, meaning that they do not assign explicit connectivity strengths 

and dynamics to neurons in a model network.  
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Figure 2: A: Illustration of the theory-driven modeling approach to understand neural computation. 

In this approach, models are constructed with specific hypothesis such as detailed connectivity 

patterns or intrinsic properties and then compared to other models and to neural data. B: Illustration 

of the data-driven RNN modeling approach to understand neural computation. In this framework, 

non-linear dynamical equations are fit to neural data and the fit connectivity matrix can studied to 

reveal neural computations. C: Illustration of the data-driven SLDS modelling approach to 

understand neural computation. This framework uses dimensionality reduction to obtain latent 

dimension of neural data and fits dynamical equations to the latent dimensions. Analysis of the fit 

dynamics matrix can reveal novel computations in the circuit studied. 

 

 

Dynamical analysis reveals an encoding of internal states as continuous attractors in 

state-controlling circuit nodes across behaviors. 

A set of recent studies have applied unsupervised dynamical systems analysis directly to 

neural activity from state- contributing circuit nodes (male VMHvlEsr1 neurons54 and female 

VMHvlEsr1+,Npy2r- neurons58). Functional manipulation of these circuit nodes has revealed a 

role in regulating internal states of aggression and sexual receptivity, but neural 

representation studies have failed to identify an encoding of behavior at the single-cell 

level10,11,58,59. By incorporating dynamics into the study of neural activity, these studies 

discover latent factors with properties of ramping and stability that correlate with the 

computations of scalability and persistence that are essential features of many internal states 

(Figure 3). Nair et al., discovered a latent factor termed the “integration dimension” whose 

activity resembles that of a neural integrator that accumulates some input variable during 

aggression54 (Figure 3A). Activity along the integration dimension ramps up as an animal 

starts sniffing a male intruder and peaks as animals engage in attack behavior (Figure 3A). 

Notably, activity in this dimension remains persistent during the inter-bout intervals of 
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attack, suggesting that this latent factor resembles a state of aggression rather than a 

representation of attack motor behavior. Importantly, by dissecting the fit dynamical system 

through examination of the fit parameters, the authors find that the integration dimension 

functions as a line or continuous attractor, with the graded nature of the state mapping on to 

various “fixed points”, or points of persistence, along the attractor (Figure 4A).  

Remarkably, another study, Liu*, Nair*, et al., also found a qualitatively similar integration 

dimension during mating behavior that correlates with female sexual receptivity58 (Figure 

3C). This study used similar dynamical models to reveal a continuous attractor that integrates 

male contact to create a continuous representation of receptivity (Figure 3D). The integrated 

value along the attractor correlated strongly with the amount of receptive behavior displayed 

by females in a given mating trial. Surprisingly, the authors found that the line attractor 

disappears and then reappears in a periodic manner across the estrous cycle, with single 

neurons contributing to the attractor undergoing a transformation in their dynamics from 

persistent to transient.  Importantly, in both studies, activity along the integration dimension 

was distinct from that of the population mean of all recorded neurons, underscoring the 

importance of dynamical methods to reveal neural signals with distinct, behaviorally relevant 

dynamics.  

These studies suggest that continuous attractor dynamics might be a type of canonical 

computation reused by subcortical nuclei to encode key properties of internal states, namely 

its persistence and scalability. However, further work remains to elucidate the nature of both 

the external input variable that is integrated by the attractor and the resulting output state 

variable from the integration process. For example, while Liu*, Nair* et al., suggest that the 

receptivity encoding continuous attractor is integrating male contact, the actual dynamics of 

an input to the circuit that resembles such contact are yet to be uncovered. Furthermore, the 

state output variable that is integrated by such continuous attractor might reflect qualities of 

arousal, motivational drive or both. Hence, elucidating the downstream behavioral functions 

of state-encoding continuous attractors represents an important area of future research.  
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Figure 3: A: Summary of results from Nair et al., 2023. Unsupervised dynamical systems analysis is 

used to discover a dimension of activity termed the integration dimension in male VMHvl. This 

dimension possesses properties of ramping activity and persistent. B: This modeling approach 

discovers a line attractor in male VMHvl that correlates with an escalating aggressive state. C: 

Summary of results from Liu*, Nair* et al., 2024. Unsupervised dynamical analysis uncovers a 

similar integration during mating behavior in female mice with similar properties of ramping and 

persistence. D: Dynamical analysis discovers a line attractor in female VMHvl that correlates with 

escalating sexual receptivity.  

Revealing the causal implementation of state-encoding continuous attractors  

Understanding how continuous attractor dynamics are implemented in subcortical nuclei 

requires us to understand whether the attractor is an inherited feature of inputs to the nucleus 

or might be intrinsic to the nucleus under study. Given that sources of persistent, time-

varying sensory stimuli might be present in the environment, the observed continuous 

attractor could simply reflect ramping sensory stimuli, and the brain region being studied 

might not possess true attractor dynamics. Arbitrating between these possibilities requires 

perturbation experiments to rigorously test attractor dynamics in subcortical regions. 
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Behavioral perturbations can be informative to reveal the intrinsic nature of persistence in 

attractor circuits. By examining dynamics along the aggression-encoding continuous 

attractor in VMHvlEsr1 neurons upon removal of a male intruder, Nair et al., observed 

persistence and slow decay, as predicted by an attractor system, as activity did not collapse 

upon removal of male-derived sensory stimuli54 (Figure 4A, B). Liu*, Nair* et al., performed 

a more sophisticated version of behavioral perturbation for the receptivity-encoding 

continuous attractor in VMHvlEsr1+,Npy2r- neurons by using wireless optogenetics to induce 

behavioral pauses in a mating assay. By activating VMHdmSf1 neurons in a male intruder 

and examining activity in the female continuous attractor in VMHvlEsr1+,Npy2r- neurons, the 

authors observed slow decay along the attractor, with activity remaining persistent and not 

collapsing when the male ceased interacting with the female58. In some mice, the authors 

even observed continued ramping activity, suggesting an intrinsic source to ramping in this 

system.  

A rigorous test of the intrinsic nature of attractor circuits, however, requires direct 

experimental perturbations of neural activity in conjunction with neural recordings. These 

perturbations may be “on-manifold” if they are targeted to neurons contributing to the 

attractor and “off-manifold” if they target other attractor-orthogonal neurons in the 

dimensionally reduced neural state space. While on-manifold perturbations are crucial to 

reveal conclusive evidence for the intrinsic nature of persistence in attractor networks, off-

manifold perturbations are critical to illustrate the attractive nature of fixed points in an 

attractor. Until recently, on-manifold perturbations were only performed on a head-direction 

encoding continuous attractor in Drosophila49, while off-manifold perturbations were only 

performed in a murine point attractor and was not directed to specific neuron subsets. In a 

recent study, Vinograd*, Nair*, et al., utilized recent observations that VMHvlEsr1 neurons 

mirror aggression to instantiate the aggression-encoding continuous attractor dynamics in the 

VMHvl of head-fixed mice60. Using holographic on-manifold activation, they reveal the 

capacity of the hypothalamic continuous attractor to integrate inputs to various fixed points, 
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and by providing off-manifold activation, they also reveal the attractive nature of those 

identified fixed points (Figure 4D-F). Neural perturbations have also been used to reveal the 

intrinsic nature of the female receptivity-encoding continuous attractor58. Liu*, Nair*, et al., 

perform neural perturbations in freely moving animals, by using generic neural inactivation 

to induce off-manifold perturbations of the female line attractor, revealing the attractive 

nature of fixed points identified by the data-driven models used in the study (Figure 4G-H).  

These studies demonstrate the capacity of hypothalamic circuits to create intrinsic continuous 

attractor dynamics that encode representations of internal states. However, such intrinsic 

dynamics may emerge through either local connectivity or long-range connectivity. Given 

the densely interconnected nature of hypothalamic circuits61-63, further investigation is 

needed to understand how attractor dynamics are instantiated across state-contributing 

nuclei. 
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Figure 4: A: Neural state space showing line attractor dynamics in Nair et al., 2023. B: Behavioral 

perturbations performed in Nair et al., 2023: Left: Introduction of a male intruder results in a transient 

off-manifold response, with the neural trajectory returning to the line attractor as the resident interacts 

with the new intruder. Right: Removal of all intruders from the cage results in a slow movement of 

the neural trajectory along the line attractor, as predicted by the time-constant of the fit dynamical 

system model. C: Schematic of experiments performed in Vinograd*, Nair*, 2024. Targeted 

perturbations are performed towards either attractor aligned (x1) or orthogonal neurons (x2). D: 

Activation of attractor aligned (x1) neurons results in an on-manifold movement of the neural 

trajectory in neural state space. Each pulse of activation is integrated by the circuit, allowing the 

trajectory to move to the end of the line. E: Activation of attractor-orthogonal neurons results in an 

off-manifold response where the neural trajectory is perturbed in a transient manner orthogonal to the 
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line. Activity returns to the line at the end of the stimulation period. F: Cartoon summarizing results 

in Vinograd*, Nair*, et al., 2024 showing effects of on- and off-manifold perturbation in neural state 

space. G: Neural state space showing line attractor dynamics in Liu*, Nair*, et al., 2024. H: Neural 

perturbations, in conjunction with imaging in freely moving animals results in transient off-manifold 

movements of the neural trajectory in state space. 

 Linking internal state encoding continuous attractors to circuit mechanisms 

The success of dynamical models in revealing representations of state-encoding continuous 

attractors has relied on statistical models that are agnostic to implementation-level details of 

these emergent dynamics. Demonstrating the intrinsic nature of these dynamics is crucial for 

showing that the discovered signals exhibit attractor dynamics, utilizing some form of intra- 

or inter-region connectivity, and are not simply graded inputs persistently present in the 

environment. Furthermore, significant open questions remain regarding the circuit-level 

implementations of these discovered dynamics. More broadly, the mechanisms of how 

neural dynamics emerge within the neural circuits that they are studied within is yet to be 

fully understood, raising important questions about how population-manifold approaches can 

be linked to a circuit-level understanding25.  

Recent studies on hypothalamic line attractors have begun to address questions of neural 

implementation. Vinograd*, Nair* et al., provide evidence for functional connectivity among 

attractor-contributing neurons within the aggression-encoding continuous attractor in 

VMHvlEsr1 neurons. Interestingly, they find that such functional connectivity is specific to 

the attractor-contributing ensemble and attractor-orthogonal neurons do not possess similar 

connectivity (Figure 5A-C). By employing computational models, they propose that this 

connectivity is not implemented through traditional glutamatergic connectivity, as theorized 

for cortico-hippocampal and oculomotor attractor networks43, but instead through slower 

timescale neuropeptide-mediated connections. This study suggests that slow timescale 

neuromodulators such as neuropeptides, released either locally or through macro-level inter-

region connectivity are necessary to explain the slow timescale intrinsic dynamics of the 

observed continuous attractor60.  
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In another study, Mountoufaris, Nair et al., provided evidence for this hypothesis by 

performing a targeted CRISPR-based knockout of neuropeptide receptor signaling in 

VMHvlEsr1 neurons64 (Figure 5D). This study finds that the knockout of oxytocin (OXT) and 

vasopressin (AVP) receptor signaling results in the loss of the aggression-encoding 

continuous attractor in VMHvlEsr1 neurons, providing causal evidence of a need for peptide 

signaling to implement a hypothalamic line attractor. Dynamical systems analysis on 

OXT/AVP knockout mice reveal that the resulting dimension no longer possess the property 

of integration but rather shows activity time-locked to each bout of male-interaction (Figure 

5E). As a result, the system possesses a point attractor where the point of stability represents 

the baseline activity of the nucleus (Figure 5F). While these results point to the importance 

of peptide signaling towards the hypothalamic line attractor, the relevant peptides are not 

synthesized by VMHvlEsr1 neurons. Thus, further investigation is necessary to reveal the 

differential contribution of inter-region and intra-region connectivity for peptide-mediated 

continuous attractor dynamics.  

The importance of slow neuromodulator signaling to hypothalamic continuous attractors also 

appears to generalize to other internal states. By recording neurons across the estrus cycle, 

Liu*, Nair* et al., show that the female receptivity-encoding continuous attractor in VMHvl 

is lost during non-proestrus states when levels of cycling hormones of estrogen and 

progesterone are low, suggesting a strong modulation by steroidal hormones on a timescale 

of days (Figure 5G-H). Dynamical analysis from mice in the non-proestrus stage of the estrus 

cycle reveal that the resulting dimensions no longer integrate but possess activity time-locked 

to periods of interaction with the male (Figure 5H). This suggests that hormones may also 

play a role in instantiating hypothalamic line attractor dynamics (Figure 5I).  

 

These new studies challenge dominant assumptions in two different domains of 

neuroscience: 1) They suggest that traditional theoretical frameworks for attractor 

dynamics43 need to be expanded to accommodate new classes of mechanisms such as 
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peptide-mediated attractor dynamics as discovered in hypothalamic continuous attractors. 2) 

They indicate that the hypothalamus performs a greater degree of computation than 

previously recognized, challenging the conventional view that equates the region to a simpler 

network of behavioral action-specific relay stations65,66. This repositions the hypothalamus 

as a crucial platform to understand how attractor dynamics can emerge through multi-level 

mechanisms, incorporating hormonal and neuropeptide signaling with recurrent connectivity 

to elucidate the encoding of internal states. 

  



 

29 
 

 

Figure 5: A: Schematic of experiments in Vinograd*, Nair*, et al., 2024: single line attractor 

contributing neurons (x1) are activated and untargeted x1 and attractor-orthogonal (x2) neurons are 

examined. B: Left: Activity of untargeted x1 neurons showing functional connectivity within the line 

attractor contributing ensemble. Right: Activity of untargeted x2 neurons showing lack of functional 

connectivity between x1 and x2 neurons.  C: Summary of results in Vinograd*, Nair* et al., 2024, 

showing selective functional connectivity within the line attractor ensemble. D: Schematic of 

experiments in Mountoufaris, Nair, et al., 2024: miniscope recordings are performed in animals where 

oxytocin (OXT) and vasopressin (AVP) receptors in VMHvl are knocked out in Esr1 neurons using 

CRISPR unilaterally. This design allows researchers to study the effect of the knockout on neural 

activity, independent of its effect on behavior. E: Longest time constant dimension from dynamical 

system modeling in control (top) and OXT/AVP KO (bottom) mice. This dimension in control mice 

shows a long time constant with persistent activity that decays slowly in the post-intruder period.  In 

the KO mice however, this dimension possesses a smaller time constant and thus is unable to 

integrate, resulting in activity time-locked to interaction bouts. F: Summary of Mountoufaris, Nair, et 

al., showing the loss of line attractor dynamics upon removal of neuropeptide signaling. G: Schematic 

of experiments in Liu, Nair, et al., 2024: miniscope recordings are performed longitudinally across 

the estrus cycle in female mice. H: Longest time constant dimension in the same mice during the 

proestrus phase (top) and non-proestrus phase (bottom). This dimension during the proestrus shows 

a long time constant with slow ramping and persistent activity. During the non-proestrus phase, this 

dimension possesses a smaller time constant and thus is unable to integrate, resulting in activity time-

locked to interaction bouts. I: F: Summary of Liu*, Nair*, et al., showing the transformation of line 

attractor dynamics through the estrus cycle.  

Testing the limits of the dynamical systems perspective in internal states 

The discovery of internal state-encoding continuous attractors introduces a new paradigm to 

identify and study internal affective states through their unsupervised identification using 

neural dynamics. However, many critical questions remain about the value of this perspective 

in the field of affective neuroscience. Demonstrating that movement along hypothalamic 

continuous attractors causally influence behavior is essential to advance beyond correlation-
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based studies of attractor dynamics. However, conducting such experiments requires genetic 

access to neurons that contribute to continuous attractor dynamics. Since these neurons form 

a functional subpopulation, activity-based tagging methods may be best suited for accessing 

these subpopulations67. Whether these neuronal dynamics correspond neatly to genetic cell 

types marked by specific genes remains an open and significant question for enabling 

targeted perturbation studies of these dynamics.  

Population based studies of dynamics often assume that the dynamics are “read-out” by 

downstream targets of the brain region under study, an assumption that remains to be 

experimentally validated. Hypothalamic continuous attractors may be “read” by other 

recurrently connected hypothalamic regions and by pre-motor centers such as the PAG. 

Understanding these transformations will require simultaneous imaging of hypothalamic 

regions, along with imaging of activity in the downstream brain region. New imaging 

techniques that allow for simultaneous two-photon imaging within multiple brains regions 

will be crucial for determining whether and how continuous attractor dynamics are read-out 

downstream.  

A consistent feature of data-driven studies of hypothalamic continuous attractor dynamics is 

that key attractor parameters vary across individuals, even when they are genetically 

identical. For instance, Nair et al., found that the leak-rate of the aggression-encoding 

continuous attractor is strongly correlated with the fraction of time a mouse spends 

performing attack behavior, suggesting that experience and/or other features can modify the 

stability of the inferred continuous attractor54 (Figure 6A, C). Building on this result, 

Vinograd*, Nair*, et al., found that the leak-rate of a similar attractor in head-fixed mice is 

positively correlated with the degree of functional connectivity within the attractor-

contributing ensemble of neurons (Figure 6B, C). These results also suggest that attractor 

properties may be altered by conditions such as disease states. An exciting direction for this 

perspective is whether disease states predictably modify attractor properties and whether 

drug-based treatments might be used to restore such changes. Several neuropsychiatric 

disorders such Major Depression Disorder (MDD) feature persistent changes in behavior68, 
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suggesting that impaired attractor-dynamics might be involved in explaining aspects of 

disease etiology69-71. Furthermore, the unsupervised discovery of encoded states directly 

from neural activity holds significant promise as biomarkers for a broad spectrum of 

psychiatric disorders with variable and undefined behavioral expressions. This underscores 

the transformative potential of understanding continuous attractor dynamics, not only for 

advancing basic neuroscience but also for developing targeted interventions in clinical 

settings.  

 

Figure 6: A: Results from Nair et al., showing a correlation between the stability of the line attractor 

(time constant of the line attractor dimension) and aggressiveness (fraction of time spent attacking) 

in individual mice. B: Results from Vinograd*, Nair*, et al., showing a correlation between the 

stability of the line attractor and strength of functional connectivity within the line attractor 

contributing ensemble (level of activity evoked in untargeted line attractor neurons upon activation 

of a single neuron) across individual mice. C: Summary of individual differences and line attractor 

properties in Nair et al., 2023 and Vinograd*, Nair*, et al., 2024.  
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Conclusions 

The advent of machine learning in neuroscience has facilitated data-driven discoveries of 

neural dynamics across a wide range of paradigms. When applied to neural data acquired 

during innate behaviors, these tools can uncover an encoding of internal states implemented 

as continuous attractors, with key features such as persistence and scalability reflected in the 

emergent properties of attractor dynamics. While future work is necessary to address critical 

questions of behavioral causality, implementation and read-out, the paradigm holds promise 

to link the domains of manifold-based and circuit-based neuroscience25 that are increasingly 

becoming indispensable to understand neural computations in internal states. We hope and 

anticipate that the foundational ideas outlined in this perspective will inspire exciting 

research at the intersection of machine learning, circuit recording and manipulations for the 

foreseeable future.   
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C h a p t e r  I I  

REPRESENTATION 

 

 

 
 
 

“ആർ�ും �ശ�ി�ാ� കാ��കൾ�ു മു�ിൽ നിമിഷെമ�ിലും 

നിൽ�ുക. അവതെ� പറയാൻ എ�തേയാ കുറി�ാ� കഥകളു�്.” 

M. T. Vasudevan Nair, Naalukettu, 1958 

Translation: “Pause for a moment before the sights that no one else notices. They 
themselves hold countless untold stories.” 
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C h a p t e r  I I  

An approximate line attractor in the hypothalamus encodes an  

aggressive state 

 

 

Published as Aditya Nair, Tomomi Karigo, Bin Yang, Surya Ganguli, Mark J. Schnitzer, 

Scott W. Linderman, David J. Anderson, and Ann Kennedy. An approximate line attractor 

in the hypothalamus encodes an aggressive state. Cell 186, no. 1 (2023): 178-193. 

Summary 

The hypothalamus regulates innate social behaviors, including mating and aggression. These 

behaviors can be evoked by optogenetic stimulation of specific neuronal subpopulations 

within MPOA and VMHvl, respectively. Here we perform dynamical systems modeling of 

population neuronal activity in these nuclei during social behaviors. In VMHvl, unsupervised 

analysis identified a dominant dimension of neural activity with a large time constant (>50s), 

generating an approximate line attractor in neural state space. Progression of the neural 

trajectory along this attractor was correlated with an escalation of agonistic behavior, 

suggesting that it may encode a scalable state of aggressiveness. Consistent with this, 

individual differences in the magnitude of the attractor time constant were strongly correlated 

with differences in aggressiveness. In contrast, line attractors were not observed in MPOA 

during mating; instead, neurons with fast dynamics were tuned to specific actions. Thus, 

different hypothalamic nuclei employ distinct neural population codes to represent similar 

social behaviors. 

  

This chapter details the initial study which uncovered a representation of an internal 
aggressive state as a line attractor using data-driven machine learning. 
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Introduction 

 

A fundamental problem in neuroscience is to understand how the brain controls innate 

behaviors. Many such behaviors are governed by the hypothalamus, a deep subcortical brain 

region present in all vertebrates1,2. Classical brain stimulation and lesion experiments have 

implicated different hypothalamic regions (“nuclei”) in diverse innate behaviors (reviewed 

in3-9). More recently, optogenetic stimulation has identified genetically marked neuronal 

subpopulations that can evoke such behaviors10-13,(reviewed in14-17). Genetic ablation or 

reversible silencing has demonstrated that these subpopulations are essential for natural 

occurrences of these behaviors10-12,18. 

 

An important open question is how the activity of these neural subpopulations during 

naturally occurring behavior reflects their “causative” function. Relatively few single unit 

recordings have been performed in hypothalamic nuclei because of their inaccessibility13,19-

21. Recordings of bulk calcium signals22 have confirmed that these neuronal subpopulations 

are active during the natural behaviors they can artificially evoke23-25 . However, this 

averaging method obscures individual cell activity patterns. 

 

Miniature head-mounted microscopes allow calcium imaging with single-cell resolution in 

freely moving animals26,27. Application of this approach to the hypothalamus has identified 

cells exhibiting stimulus-locked activity during natural behavior28-30. For example, imaging 

of estrogen receptor type 1 (Esr1)-expressing neurons in the medial preoptic area (MPOA), 

whose optogenetic activation can elicit mounting behavior in male mice31,32, has revealed 

cells that respond specifically during spontaneous mounting of females (see also Figure 1E).  

Such results, together with single-cell transcriptomic analysis, have reinforced the prevailing 

view that the hypothalamus controls different survival behaviors via genetically determined, 

functionally specific neuronal subpopulations33,34.  
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The case of aggression, however, presents a paradox seemingly at odds with this view. On 

the one hand, optogenetic stimulation of Esr1+ neurons in the ventrolateral subdivision of the 

ventromedial hypothalamus (VMHvl) neurons triggers attack behavior12,35-37, identifying 

these neurons as the likely cellular substrate of electrical brain-stimulated aggression4,7,38.  

Conversely, genetic ablation of VMHvl neurons expressing the progesterone receptor (PR; 

co-expressed with Esr1) or optogenetic silencing of VMHvlEsr1 neurons blocks natural 

aggression18,12 . On the other hand, miniscope imaging of VMHvlEsr1 neurons during natural 

fighting revealed surprisingly few cells that exhibited time-locked, attack-specific activity29. 

Instead most such neurons exhibited “mixed selectivity,” responding during different phases 

of an aggressive interaction. Different subsets of Esr1+ neurons responded to male vs. female 

conspecifics, suggesting an encoding of conspecific sex29,31,39. Nevertheless, decoders 

trained on VMHvlEsr1 neural imaging data could accurately distinguish episodes of attack 

from sniffing29. 

 

Thus observational vs. perturbational studies of VMHvlEsr1 neurons yield seemingly 

inconsistent views: these neurons causally control aggressive behavior, yet very few of them 

are specifically “tuned” to attack. There are two possible explanations for this paradox.  First, 

the small fraction of VMHvlEsr1 neurons that are more active during attack may be the ones 

responsible for the specific causative influence of this population. Alternatively, the majority 

of VMHvlEsr1 neurons, despite their mixed behavioral selectivity, may control attack through 

some type of population code. 

 

In other systems where there is no clear correlation between single-unit spiking patterns and 

behavior, modeling neural populations as a dynamical system40-42 (reviewed in43) has 

revealed signals in the dynamics of population activity that can robustly predict motor 

actions44,45. We have therefore carried out similar modeling of VMHvlEsr1 neural activity 

dynamics during naturalistic social behaviors, using legacy data from previous studies29,31,39. 

Our results reveal line attractor dynamics in VMHvl that correlate with escalating levels of 

aggressive behavior, suggesting they may represent or encode an aggressive internal state. 
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Strikingly, line attractor dynamics are absent in MPOA activity during both mating and 

aggression. This analysis therefore reveals fundamental differences in the neural coding of 

social behaviors by different hypothalamic nuclei. 

 
Results  

 

Cellular tuning analysis confirms behaviorally selective neural populations in MPOA 

but not in VMHvl 

 

Calcium imaging of MPOAEsr1 or VMHvlEsr1 neurons revealed distinct patterns of neuronal 

activation during social interactions29,31 (Figure 1A, B). To quantify these differences, we re-

analyzed calcium imaging data31 from sexually experienced male C57Bl/6NEsr1-2A-Cre/+ mice 

during standard resident-intruder assays, using male or female BalbC intruders (Figure 1C, 

D). We then computed the mean activity of each neuron during each of 14 different hand-

annotated actions and clustered them using a regression model (VMHvl: N= 306 neurons 

from 3 mice; MPOA: N= 391 neurons from 4 mice, see Methods).  

 

Confirming previous observations29,31, many MPOA clusters contained neurons only active 

during specific behavioral actions, such as intromission or mounting towards females (Figure 

1E). In contrast, most VMHvlEsr1 neurons were activated in response to either males or 

females, with very few neurons showing behavior-specific activation (Figure 1F). 
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Figure 1: Cytoarchitectures and cellular representations in a neural system regulating social behavior 

A, B: cytoarchitecture of MPOA (A) and VMHvl (B). C, D: example traces from Esr1+ neurons in 

MPOA (C) and VMHvl (D).  E, F: clustering of recorded Esr1+ neurons in MPOA (E, n =306 neurons 

from 3 mice) and VMHvl (F, n = 391 neurons from 4 mice) using a regression model. Rows, hand-

annotated behaviors; columns, individual neurons. 
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Unsupervised dynamical systems analysis of neural activity during social behavior  

 

In other systems, population analysis via fit dynamical systems has revealed a neural 

encoding of behavioral actions that were not apparent in neuron-by-neuron analysis43,44,46,47. 

We therefore investigated whether behavioral representations among VMHvlEsr1 neurons 

might be encoded at a population level, using an unsupervised dynamical systems approach.  

 

To do so, we fit a dynamical model to the population activity of VMHvlEsr1 cells from each 

of multiple mice (n=6), from two different studies31,39  in which recordings were made 

throughout male-male or male-female encounters (average duration 5.1± 0.68 min and 11.4± 

0.68 min, respectively; mean ± SEM). Specifically, we fit a recurrent switching linear 

dynamical system (rSLDS) model48, which approximates a complex non-linear dynamical 

system as a composite of more easily interpretable linear dynamical systems, or “states” 

(Supplemental Figure S1A).  

 

rSLDS first reduces neural activity to a set of latent variables (also called “dimensions” or 

“factors”), defining a low-dimensional “state-space” in which the time-evolving population 

neural activity vector can be analyzed (Figure 2A➀). Population activity in this low-

dimensional space is then segmented into a set of discrete states (Figure 2A), while fitting 

a linear dynamical system model (Figure 2A) to neural activity within each state. Each 

state has a different dynamics matrix, which dictates how neural activity evolves over time 

from any given point within that state space. Quantitative examination of parameters from 

this matrix after model fitting can unveil dynamical properties of the neural circuit, such as 

the time constant of each dimension42. Finally, to visualize more easily the dynamical 

properties of each state, we plotted its “flow field” in 2D using principal component analysis 

(PCA) (Figure 2A right, see Methods).  
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In fitting the rSLDS model, we chose the minimum number of states and dimensions that 

could capture 90% of observed variance in neural activity, determined using cross validation 

in each mouse separately (Supplemental Figure S1B-E; 7-8 dimensions (7.2± 0.1, N=6 mice) 

and 3-4 states). We evaluated the “goodness of fit” of each model iteration using both the log 

likelihood of the data48 and an additional metric that we call the “forward simulation error” 

(Supplemental Figure S1F, FSE, see Methods). Plotting the FSE over time allows 

visualization of periods wherein model performance drops (Supplemental Figure S1G). By 

this metric, our best-fit models captured most of the variance in neural data (model 

performance (1 – FSE) = 0.72 ± 0.02, N = 6 mice; Supplemental Figure S1H). 

 

The rSLDS framework allows the fit dynamical system models to be either autonomous or 

to receive external input. Since VMHvl neuron firing rates correlate with the distance to 

another male or to male mouse urine49, likely reflecting the concentration of chemosensory 

cues50, we used the distance between animals and their facing angle as a proxy for external 

sensory input strength49,51 (see Methods).  
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Figure 2: Dynamical analysis of VMHvl neural activity reveals an integrator dimension that 

correlates with aggressive escalation. A: schematic illustrating rSLDS analysis. B: time constants of 

rSLDS dimensions (see A➀) in attack enriched state from VMHvl mouse 1. Dimensions with longest 

(red dot) and shortest (yellow dot) time constants are indicated. C: projection onto time axis of 

integration dimension with overlayed behavior annotations. D: average time constant of all 

dimensions, arranged in decreasing order. (***p < 0.001, n = 6 mice). E: average F1 score of binary 

decoder of behavior pairs trained on integration dimension activity (**p < 0.005, *p<0.01, n = 6 

mice). F: cumulative distribution of integration dimension value (normalized) for different behaviors. 

G: projection of fastest dimension in example VMHvl mouse 1. H: performance of binary decoder of 

behavior pairs trained on fastest dimension activity (n = 6 mice). For additional data see Supplemental 

Figure S1, S2 and S3. 
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rSLDS analysis of VMHvl neural activity discovers an integration dimension that 

correlates with aggressive escalation 

 

Next, we performed retrospective alignment of the unsupervised neural data model with 

behavioral annotations over time. This comparison revealed that the probability of attack was 

elevated during a single rSLDS state (state 3, Supplementary Figure S1I-K). Importantly, 

attacks were not time-locked to the onset/offset of this state; rather epochs of this state 

outlasted individual attack bouts (state 3 epoch duration: 79.5± 5.5s, attack bout duration: 

4.86± 0.44s, N = 6 mice, Supplemental Figure S1I5, J3. K3). This suggests that the state did 

not simply represent motor activity (Supplemental Figure S1A, cf. Case 2 vs 1).    

 

To understand better the neural population dynamics related to attack behavior, we examined 

the dynamics matrix for this state, which describes how dimensionally reduced neural 

activity in that state changes over time. The eigenvalues of this matrix reflect the rate at which 

activity along each of these dimensions decays to zero following external input, and can be 

converted to a time constant for each dimension52,53. Input to dimensions with short time 

constants will quickly decay to zero, whereas input to dimensions with long (large) time 

constants persists and decays slowly. Strikingly, one of the rSLDS dimensions had an 

estimated time constant of over 100 seconds that was significantly higher than that of all 

other dimensions (Figure 2B, red dot, 2C, 2D, N =6 mice). Because systems with long time 

constants approximately integrate their input over time, we refer to the longest time constant 

dimension as the “integration” dimension54,55.  

 

The integration dimension accounted for 19.5%± 1.9% of the overall variance in neural 

activity (N = 6 mice). In contrast a support vector machine (SVM) decoder trained to 

distinguish attack from sniffing periods explained much less variance (0.3% ± 0.1%, N = 6 

mice, p<0.001, Supplemental Figure S2B)  Examining the activity of individual neurons that 

were weighted strongly in the integration dimension (Supplemental Figure S2D) revealed 

that around 20% of neurons per animal contributed to this dimension, with some showing 
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ramping and persistent activity (Supplemental Figure S2I-J, L, N). Moreover most of these 

neurons were tuned to male intruders (Supplemental Figure S3A, B). Thus, the integration 

dimension encapsulates a signal that is present at the level of at least some individual neurons, 

but is also an emergent property of the population47.  

 

We next compared the time-varying activity of the integration dimension with the animals’ 

actions during aggressive encounters. In mouse 1, activity along the integration dimension 

was low during sniffing, ramped up at the onset of dominance mounting (a low-intensity 

aggressive behavior31), and increased further to a stable plateau value as the animal attacked 

(Figure 2C). A cumulative distribution function (cdf) of the normalized level of activation 

along the integration dimension during sniffing, dominance mounting, and attack revealed 

that these three behaviors occurred at low, medium and high values of this dimension, 

respectively (Figure 2F; distribution means: sniffing: 0.30, dominance mount: 0.66, attack: 

0.82, N = 6 mice).  

 

Remarkably, a binary classifier created by thresholding the value of the integration 

dimension could distinguish periods of sniffing from attack, or from dominance mounting, 

with a high F1 score (0.89 ± 0.02, N=6 mice, Figure 2E). The same method could also 

distinguish dominance mounting vs. attack (F1 score 0.74 ± 0.03, N=6 mice, Figure 2E). 

However such classifiers could not distinguish behaviors occurring close together in time, 

such as attack and sniff-attack (defined as periods of sniffing that occurred within one second 

prior to attack, as described recently56), perhaps due to the gradual ramping of activity along 

this dimension. Remarkably, none of the other seven fit dimensions could be used to 

distinguish aggressive behaviors from sniffing with above chance accuracy (Figure 2G, H; 

Supplemental Figure S2C). 

 

The foregoing analysis suggested that a low-dimensional signal in VMHvl represents 

escalating aggressive behaviors. To account for possible spurious behavioral correlations due 

to the slow decay of activity in this dimension, we devised a version of session permutation 
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as described recently57, by cross validating decoder thresholds between animals (see 

Methods). This more rigorous paradigm could still decode behaviors with high F1 scores 

(Supplemental Figure S2H). 

 

Sniffing, attack, and dominance mounting are performed in bouts separated by short inter-

bout intervals (IBIs). Because of its slow ramping and stable plateau, activity in the 

integration dimension did not decay during such IBIs and therefore could not distinguish 

behavioral bouts from adjacent IBIs (Supplemental Figure S1A, Case 1 vs 2). However 

decoders trained on this activity could distinguish IBIs from sniffing versus attack epochs, 

which were behaviorally indistinguishable to a human observer, with a high F1 score (0.83 

± 0.02, N=6 mice; Figure 2E, Supplemental Figure S1A, right, Case 2).  

 

Thus, our unsupervised approach uncovered a one-dimensional signal in VMHvlEsr1 neural 

population activity that closely tracks and scales with an animal’s escalating level of 

aggressiveness and is reflected in the activity of approximately 20% of individual VMHvlEsr1 

neurons. Different aggressive actions are observed as activity along this dimension reaches 

different thresholds, suggesting an aggression-intensity code in VMHvlEsr1 activity. The level 

of activity along the integration dimension could not be fully predicted from pose features 

such as the acceleration, facing angle, or velocity of the resident, or from the distance 

between mice (mean R2: 0.28 ± 0.04, N= 6 mice, Supplemental Figure S2A). Tracking metric 

used as inputs to the model were also not predictive of behavior annotations (Supplemental 

Figure S3F-H). Furthermore, models of VMHvl fit without any tracking inputs also 

recovered an integration dimension with similar time constants (Supplemental Figure S3D). 

These results further highlight that the relationship between the integration dimension and 

escalating aggressive behavior is not due to the incorporation of inputs such as facing angle 

and distance between mice. Even the incorporation of additional tracking metrics such as 

speed and area of the ellipse fit to the resident mouse did not improve rSLDS fits, suggesting 

that VMHvl was likely not integrating features of these sensory related signals (Supplemental 

Figure 3I).  
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This relationship between VMHvlEsr1 activity and aggression is consistent with our 

observation that increasing the intensity of optogenetic stimulation of VMHvlEsr1 neurons 

progressively evokes sniffing, dominance mounting and attack12, actions that can be decoded 

from the integration dimension as its activity ramps up. 

 

VMHvl contains an approximate line attractor that represents escalating 

aggressiveness  

 

We examined next how the integration dimension of the fit model influences the overall 

topology of neural state-space during social behavior (Figure 3A, see Methods). PCA 

indicated that the first two PCs accounted for 68.5%± 1.2% of the total variance in VMHvl 

activity (N=6 mice). In all imaged animals, PC1 showed slow ramping dynamics (Figure 3A, 

Supplemental Figure S4C, PC1 (behavior-triggered average, N = 6 mice). We confirmed that 

the rSLDS integration dimension makes the largest contribution to this PC (Supplemental 

Figure S4A). Activity along PC2 was high when a new intruder was introduced (Figure 3A, 

Supplemental Figure S4C, PC2 (behavior-triggered average, N = 6 mice)), but was otherwise 

low.  

 

To visualize neural state space dynamics, we next generated a 2D flow field in PC space, 

whose vectors at each point indicate how neural dynamics evolve according to the fit rSLDS 

model (see Figure 2A4). This revealed a region of low vector flow that forms an approximate 

line attractor (Figure 3B, right, 3C), meaning that the neural population activity vector tends 

to move towards persistent points along a line58 (Figure 3D, t50-t340).). To quantitatively 

delimit this attractor, we calculated the points in the flow field where vector length is at a 

minimum (“slow points;” see Methods) and linked these points into a dashed line (Figure 

3D, dashed black line). Such approximate line attractors were observed in multiple mice 

(Figure 3E, F and Supplemental Figure 4D, E). Importantly, these line attractors are largely 
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aligned with the PC1 axis, which principally reflects variance in the slow integration 

dimension identified by rSLDS (Figure 2B, Supplemental Figure S2A).  

To quantitatively test for the existence of a line attractor in each mouse, we devised a “Line 

Attractor Score” as the base-2 log of the ratio of the largest to the second-largest time 

constants of the eight rSLDS dimensions (Figure 2C). According to basic concepts in 

dynamical systems theory52, this ratio has a relatively high value in systems containing a 

single integration dimension (forming an approximate line attractor), and is otherwise close 

to zero. We find that all mice with VMHvl recordings possess a line attractor score greater 

than zero, indicating the presence of a line attractor (Fig 3G, n = 6 mice). 

 

As population activity progressed along the line attractor from low to high values of PC1, 

behavior progressed from sniffing to dominance mounting to attack (Figure 3D-F, 3L and 

Supplementary Video 1). This reflects the “ramping up” of activity seen in the integration 

dimension as social behavior progresses through these phases (Figure 2B), suggesting an 

encoding of an underlying continuous variable, as seen in line attractors in other 

regions42,46,59-61. 

 

To visualize the dynamical topology of the rSLDS model, we represented the 2D flow field 

as a 3D landscape, by converting the length of the flow-field vectors at each position in neural 

state space into the height (z-axis) of the landscape (Figure 3B); the x-y axes are still 

represented by PC1 and PC2.  In this topographic representation, a line attractor appears as 

a region shaped like a trough or gully, reflecting a slow rate of change (short vectors). A 

point attractor would appear as a locus of slow rate of change at the base of a cone (Figure 

3B59). We observed a trough-like structure in the 3D dynamics landscape in each imaged 

animal (Figure 3H-K, Supplemental Figure S4P), along which neural activity progressed 

slowly as aggression escalated (Supplementary Video 2). Consistent with the persistent, 

slow-decaying activity characteristic of “leaky” neural integrators55,59, VMHvl activity 

remained high following intruder removal, and slowly decayed along the trough of the 

attractor over tens of seconds (Supplemental Figure S4H-J). 
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Although the animals’ behavior appears to occur while the system is in the line attractor, it 

could be that other rSLDS dimensions also show a change in their activity during behavior. 

To test this possibility, we computed each behavior’s “dynamic velocity” by calculating the 

average vector length across all eight rSLDS dimensions at all time points in which a given 

behavior occurred. (Figure 3M, see Methods). Time points associated with initial intruder 

entry had the highest dynamic velocity and were present on the walls of the trough (Figure 

3H-K), whereas aggressive behaviors exhibited low dynamic velocities and were distributed 

along the base of the trough (Figure 3N).  

 

Once the system is in the line attractor, input that is not aligned with the attractor should 

produce a transient excursion of the population activity vector out of the trough; however 

once that input decays the vector should move back into the trough close to where it started 

from42 (Supplemental Figure S4F). We tested this prediction using a subset of experiments 

in which one intruder male was removed, and a second male introduced 30-60 seconds later.  

Strikingly, the introduction of a new intruder male drove a rapid rise in neural firing rates 

that pushed VMHvl activity away from the trough of the line attractor (Figure 3C-E, intruder 

#2). However, this signal decayed relatively quickly and the system re-entered the line 

attractor at nearly the same point (Supplemental Figure S4F-J and Supplemental Video 1). 

Importantly, the system recovered to the point in the attractor where it had been prior to 

introduction of the second intruder, regardless of when in the trial the first intruder was 

removed (Supplemental Figure S4K).  
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Figure 3: VMHvl contains an approximate line attractor that integrates aggressive escalation. A:  

behavior rasters shown with first two principal components of dynamical system (see Methods) for 

example VMHvl mouse 1. B: inferred dynamics shown as a flow field (with attractor highlighted) 

and 3D landscape for point attractors (left) and line attractors (right). C: neural state space with 

population trajectories and inferred flow field colored by rSLDS states for VMHvl mouse 1, with line 

attractor highlighted. D-F: neural state space for VMHvl mouse 1 (D), mouse 2 (E) and mouse 3 (F) 
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with line attractor highlighted (see Methods). G: line attractor score (see Methods) for VMHvl (red 

bar, n = 6 mice).  H,I: inferred 3D dynamic landscape in VMHvl mouse 1(H,I). J,K: Same as H but 

for VMHvl mouse 2 (J) and mouse 3 (K)  L: position of various behaviors along trough, i.e, PC1 in 

neural state space (n = 6 mice, **p<0.005, *p<0.01) M: schematic showing quantification of dynamic 

velocity. N: dynamic velocity for various behaviors in VMHvl (***p<0.001, n = 6 mice) O: 

relationship between the time spent attacking and the time constant of the integration dimension of 

individual mice (r2: 0.77, n = 14 animals).  For additional data see Supplemental Figure S4. 

 

The time constant of the integration dimension in VMHvl predicts levels of 

aggressiveness across animals   

 

Although VMHvlEsr1 imaging data from different mice always revealed a single integration 

dimension with a long time constant, the magnitude of this time constant varied across 

individuals. Unexpectedly, we observed a trend in which animals that displayed more 

aggressive behavior (calculated as the fraction of time spent attacking) also exhibited an 

integration dimension with a longer time constant (Figure 3O, r 2 = 0.77, n = 14 animals).  

This relationship held for imaging data from different studies29,31,39 using different versions 

of GCaMP (6s vs. 7f; Supplemental Figure S4L-O). This striking correlation of integration 

time constant with time spent attacking suggests that individual differences in aggressiveness 

may be reflected in the intrinsic dynamics of VMHvlEsr1 neurons.  

 

Mating behaviors are represented using rotational dynamics in the MPOA 

Since rSLDS was able to uncover evidence for integration in VMHvl, we next examined 

whether the same analysis would uncover population dynamics important for mating in 

MPOA, by fitting models to MPOAEsr1 neural data recording during interactions with female 

intruders (Karigo et al., 2021). 

 

Fit models of MPOA required three rSLDS states in every animal, with mounting and 

intromission mostly occurring in single but different states (Supplemental Figure S5A-J). 

Unlike in VMHvl, the bout length of mating behaviors was similar to that of the 
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corresponding state (Supplementary Figure S5 D, E). Strikingly, the eigenvalues of the 

dynamics matrix for such states did not include dimensions with long time-constants (Figure 

4A). Instead, the first two PCs of the fit model revealed fast dynamics that were highly 

correlated with specific behaviors (Figure 4B). PC1 peaked at the onset of USV+ mounting 

bouts, while PC2 peaked during intromission (Figure 4B, C, behavior triggered average, N 

= 3 mice). 

 

The 2D flow-field in PCA space revealed that neural dynamics were dominated by a 

rotational flow, with activity during mating epochs exhibiting periodic orbits (Figure 4D, F). 

The phase of the rotations was correlated with progression through sniffing, mounting, and 

intromission (Figure 4D, F, Supplemental Figure S5K-M), and corresponded to the 

sequential activation of different neurons during these successive behaviors (Figure 4E, G, 

Supplemental Figure S5A). Accordingly, the “sequentiality index” of the data62 was 

significantly greater than shuffled data or random matrices of similar sizes (seq. index = 0.22 

±  0.01, N = 3 mice, shuffle seq. index = 0.10± 0.002, N = 3 mice, Figure 4H).  

 

We assessed the relationship between the phase of rotational trajectories and behavior by 

calculating the angle of the population activity vector relative to its value at the start of 

sniffing (Figure 4I). This revealed that sniffing, mounting and intromission occurred at 

characteristic angles of the population vector (sniffing: 18.6o ± 6.2 o, mounting: 79.61o±13.6o, 

intromission: 132.2o± 8.1 o, N = 3 mice; Figure 4J). High dynamic velocities were associated 

with mounting and intromission, in striking contrast to the low dynamic velocity during 

attack behavior in VMHvl (Figure 3N, 4K). 

 

To quantitatively assess the presence of line attractor dynamics, we computed the Line 

Attractor Score for MPOA. These values were close to zero and significantly different from 

those for VMHvl during aggression (Figure 4L). Thus, unlike the slow ramping and 

persistent dynamics identified in VMHvl, rSLDS discovered fast, sequential and 

behaviorally time-locked rotational dynamics in MPOA.  
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A direct comparison of key quantitative dynamics parameters highlights the key differences 

between VMHvl and MPOA (Figure 5A-D, G-H). Nevertheless in both regions evolving 

behavior tracks a single continuous variable: the value of the integration dimension in 

VMHvl, and the angle of the orbit in MPOA (Figure 5E, F). These variables are instantiated 

as a line attractor vs. rotational flow, respectively (Figure 5I, J). 
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Figure 4: Mating behaviors are represented using rotational dynamics in the MPOA.  A: time 

constants of rSLDS dimensions in mating behavior-enriched state in MPOA (n = 3 mice) B: behavior 

rasters shown with first two principal components of latent factors for  example MPOA mouse 2. C: 

behavior triggered average of top two principal components aligned to USV+ mount onset (left) and 

intromission (right) onset (n = 3 mice). D: neural state space with rotational population trajectories 

from mating episodes shown in E of MPOA mouse 1, colored by behaviors performed by resident 

mouse. E: sequential activity of MPOA neurons during mating episodes whose rotational population 

trajectories are shown in D. F,G: same as D,E but for MPOA mouse 2. H: sequential index for MPOA 

(n = 3 mice, ***p<0.001). I: calculation of angle of rotation (θ) aligned to the start of sniffing during 

mating episodes (top). Empirical cumulative distribution of θ for various behaviors (n = mice, 

bottom). J: quantification of θ for various mating behaviors (n = 3 mice, ***p<0.001, **p<0.005, 

*p<0.01, top). Schematic depicting θ for mating behaviors (bottom). K: dynamic velocity for mating 
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behavior in MPOA (n = 3 mice)..  L: line attractor score for MPOA activity in mating behaviors 

towards females (left, pink bar, n = 3 mice) and VMHvl activity in aggressive behavior towards males 

(right, grey bar, n = 6 mice, **p<0.005, data from Fig 3G reproduced for comparative purposes). For 

additional data see Supplemental Figure S5. 
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Figure 5: Distinct neural coding schemes for similar behavior in VMHvl vs MPOA. A: line attractor 

score for mating behavior in MPOA and aggressive behavior in VMHvl  (n = 3 mice for MPOA, n = 

6 mice for VMHvl), reproduced from Figure 4L. B: scatter plot for line attractor score versus attractor 

stability score (magnitude of largest time constant) separates VMHvl and MPOA. C,D: dynamic 

velocity score in VMHvl during aggression (C) and MPOA during mating (D), reproduced from 

Figure 3N and Figure 4K respectively. E: empirical cumulative distribution of value of integration 

dimension (normalized) in VMHvl for various aggressive behaviors, reproduced from Figure 2F. F: 

empirical cumulative distribution of angle of rotation (normalized) in MPOA for various mating 

behaviors , reproduced from Figure 4I. G,H: Sequentiality index in MPOA  (n = 3 mice), reproduced 

from Figure 4E, and in VMHvl (H) in aggression (n = 3 mice). I: summary of line attractor dynamics 

in VMHvl. J: summary of rotational dynamics in MPOA. 

 

VMHvl exhibits an approximate line attractor encoding reproductive behavior 

 

The foregoing findings raised the question of whether the contrasting dynamics in VMHvl 

vs. MPOA reflect differences specific to aggression vs. mating, or rather generic differences 

in behavioral coding between  these nuclei. To address this, we fit rSLDS models to 

VMHvlEsr1 and MPOAEsr1 neuronal activity during mating vs. aggression, respectively. 

 

Models fit to VMHvl activity during male-female encounters yielded a single integration 

dimension with a long time constant, created by neurons that displayed ramping and 

persistent activity (Figure 6A red dot, 6B, 6D, Supplemental Figure S6L). In addition, the 

duration of the rSLDS-discovered mating states in VMHvl tended to outlast individual bouts 

of mating actions (Supplemental Figure S6D, H), similar to the case of aggression in VMHvl 

(Supplementary Fig. 1I-K).  

 

The cumulative distribution of the value of the integration dimension during various 

behaviors revealed that sniffing occurred at the lowest values, USV+ mounting at 

intermediate values, and intromission at the highest values of this dimension (Supplemental 

Figure S6J). Strikingly, pairwise decoders trained on this dimension performed with high 
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accuracy (intromission vs sniffing: F1 = 0.92± 0.01 N = 4 animals;  mounting vs sniffing: 

F1=0.81± 0.02 N = 6 animals Figure 6C). Such decoders could also distinguish periods of 

non-interaction between mounting bouts from those between sniffing bouts (Supplementary 

Figure S6I). Thus, VMHvlEsr1 neuronal dynamics during mating resembled those exhibited 

during aggression. However, the integration dimension seen during mating was biased 

towards neurons tuned to female intruders29, while male-tuned neurons primarily contributed 

to this dimension during aggression (7.73% 土 0.8% overlap, n = 6 mice, Supplemental 

Figure S6M, Supplemental Figure S3A,B).  

 

As for aggression, a single dimension of the rSLDS model for mating exhibited a long time 

constant, yielding a high Line Attractor Score (Figure 6D, H). The first two PCs of the fit 

model were similar to those seen during aggression, with PC1 exhibiting ramping during the 

progression from sniffing to mounting to intromission (Figure 6E). Examination of the 

underlying 2D vector flow field revealed an approximate line attractor (Figure 6F) and a 

corresponding trough shape in the 3D dynamic velocity landscape, with neural activity 

moving along the trough as the animal progressed from the appetitive to consummatory 

phases of mating (Supplemental Figure 6K). Transient movements out of the line attractor 

occurred only during the introduction of a new intruder and were aligned with PC2 (Figure 

6F, intruder #2). Accordingly, periods during intruder entrance had high dynamic velocities, 

while mating behaviors had low dynamic velocities (Figure 6G).  

 

Thus rSLDS modeling of VMHvlEsr1 neuronal activity during mating revealed an 

approximate line attractor, with many features similar to those observed during aggression. 

However, the mating and aggression line attractors incorporate primarily female- vs. male-

selective neurons, respectively (Supplemental Figure 6M). These data suggest that line-

attractor dynamics are a general feature of social behavior coding in VMHvl, rather than a 

unique signature of aggression per se. 
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Figure 6: Distinct coding schemes of VMHvl and MPOA are region-specific, not intruder specific. 

A: left: time constants of rSLDS dimensions of mating enriched state from example VMHvl mouse 

1. The red dot highlights the integration dimension. B: projection of integration dimension with 

overlayed behavior annotations. C: F1 score for decoding behavior pairs from integration dimension 

(**p < 0.005, *p<0.01, n = 4 mice for comparisons involving intromission as only 4/6 mice showed 

this behavior. n = 6 mice for all other comparisons). D: time constant arranged in decreasing order. 

(p < 0.001, n = 6 mice). E: behavior rasters shown with PCs of dynamical system for example VMHvl 

mouse 1. F: neural state space with population trajectories for VMHvl mouse 1 colored by behavior  

annotations and flow field showing a line attractor. G: quantification of dynamic velocity during 
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mating behavior in VMHvl (p<0.001, n = 6 mice). H: line attractor score for MPO (n = 3 mice) and 

VMHvl (n = 6 mice) during mating behavior with females (**p<0.005). I: time constants of rSLDS 

dimensions from MPOA during aggression. J: behavior rasters shown with PCs of dynamical system 

for example MPOA mouse 1. K: neural state space with population trajectories for MPOA mouse 1 

colored by behavior annotations and flow field. L: dynamic velocity during aggressive behavior in 

MPOA (**p<0.005, n = 3 mice). M: line attractor score for MPO (n = 3 mice) and VMHvl (n = 6 

mice, reproduced from Fig 3G) during aggressive behavior (**p<0.005). N: Schematic illustrating 

two line attractors discovered in VMHvl encoding aggressiveness and mating intent. 0: Schematic 

illustrating dynamics seen in MPOA showing similarity in stability of behaviors during interactions 

with males and females. For additional data see Supplemental Figure S5. 

 

MPOA does not exhibit line attractor dynamics during aggression 

 

Finally, we fit rSLDS models to MPOAEsr1 neuronal dynamics during male-male encounters. 

Analogous to the case of mating behaviors, we found a state (state 3) that is closely aligned 

to the onset and offset of attack behavior (Supplementary Figure S6N). No dominant “slow” 

dimension was apparent in the time constants of the rSLDS dimensions (Figure 6I, M). 

Reflecting this, PC1 of rSLDS state space exhibited a fast increase in activity at the onset 

and offset of attack (Figure 6J, Supplemental Figure S6O, blue trace), in contrast to the slow 

attack-related dynamics in VMHvl (Supplemental Figure S6O, red trace).  

Visualizing the 2D MPOA flow field in PC space revealed little change in the population 

trajectory during investigation (Figure 6K). During attack bouts, activity showed excursions 

into a separate region of state space, but quickly returned to the “sniffing” region after 

fighting (Figure 6K), reflecting the activation of different neuronal subsets (Figure 1E). 

Accordingly, attack and dominance-mounting had high dynamic velocities in MPOA, rather 

than the low dynamic velocities in VMHvl (Figure 6L, Supplemental Figure S6P). Lastly, 

the Line Attractor Score in MPOA during aggression had a value close to zero and was 

significantly different from that of VMHvl (Figure 6M, n = 3 for MPOA, n = 6 mice for 

VMHvl), confirming the absence of line attractor dynamics. 
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In MPOA, therefore, we find a representation of male-male encounters that alternates 

between investigatory and aggressive states, with the latter largely time-locked to the onset 

and offset of attack bouts. Strikingly, MPOA activity during aggression lacks the persistence, 

ramping and line attractor dynamics seen in VMHvl. Together with our analysis of VMHvl 

activity during mating, these results support the conclusion that MPOA and VMHvl exhibit 

fundamentally different coding of the same social behaviors. 
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Discussion 

 
MPOA and VMHvl control social behaviors using different population codes 

 

Here we report that MPOAEsr1 and VMHvlEsr1 neurons utilize very different schemes for the 

neural coding of mating and aggression, despite the fact that optogenetic perturbation 

specifically elicits mating in MPOAEsr1 neurons and attack in VMHvlEsr1 neurons. GCaMP 

imaging of Esr1+ neurons in MPOA indicates that specific actions can be decoded according 

to which cells are active31, consistent with transcriptomic studies33.  In contrast, most 

VMHvlEsr1 neurons exhibit mixed behavioral selectivity in both imaging and transcriptomic 

studies29,63. Thus, MPOA represents behavior via a cell identity code, while VMHvl 

apparently does so via population coding.  

 

Our studies suggest a possible mechanism underlying this population code. rSLDS analysis 

of VMHvl neural activity during male-male social interactions revealed one dimension of 

neural activity with a long time-constant that exhibits progressively increasing activity during 

escalating aggressive encounters. In a topological representation, these dynamics can be 

visualized as a progression along a stable “trough” or gully, which has the characteristics of 

an approximate line attractor59. In contrast, rSLDS analysis of MPOA revealed rotational 

dynamics, generated by the sequential activity of behavior-specific cell types during each 

bout of mating. Put simply, VMHvl coding of behavior appears to be analog, while MPOA 

coding of behavior appears more digital. 

 

In other neural systems, line attractors often encode a continuous, low-dimensional 

variable42,46.  Here, this variable may correspond to the intensity of an aggressive internal 

state. VMHvl neurons have previously been implicated in the motivation to engage in 

fighting, as operationalized using instrumental conditioning assays23. However, such assays 

cannot measure aggressive motivation during attack itself, for technical reasons. The 

escalating (scalable) nature of aggression has ethological relevance as a means of 
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establishing dominance while minimizing the risk of injury64. Unexpectedly, in comparing 

data across multiple animals we discovered a strong positive correlation between each 

mouse’s level of aggressiveness and the magnitude of the time constant of its integration 

dimension. This result reveals a neural correlate of individual differences in aggressiveness 

within VMHvl. 

 

The different neural codes for social behavior we have uncovered in VMHvl and MPOA 

may reflect their distinct neurochemical and cytoarchitectonic features. VMH neurons are 

primarily glutamatergic. Recurrent connectivity among excitatory neurons is often invoked 

as a mechanism to achieve persistent activity54,55,59.  Indeed, there is evidence that 

glutamatergic neurons in VMHdm that encode persistent defensive behaviors exhibit local 

connectivity65. However, slow dynamics can also be achieved using neuromodulatory 

signaling, and there is indirect evidence for peptidergic transmission in VMHvl63,66 

 

By contrast, MPOA neurons are 85% GABAergic; to our knowledge there is no way to 

achieve similar graded and persistent signals within a population of inhibitory neurons. 

However, GABAergic neurons could provide a substrate for reciprocal inhibitory 

connections between action-specific subpopulations. Such connectivity could produce 

winner-take-all dynamics or feed-forward dis-inhibitory circuits that control transitions 

between sequential action phases of mating, e.g., from sniffing to mounting39, giving rise to 

the rotational dynamics observed in neural data. The existence of such circuits in MPOA can 

be investigated using slice physiology or in vivo imaging once genetic access to the 

appropriate cell types is achieved. 

 

Why should MPOA and VMHvl utilize such different strategies for the coding of closely 

related social behaviors? It is tempting to attribute this difference in population dynamics to 

distinct features of reproductive vs aggressive behavior. For example, aggressive encounters 

can dynamically escalate or de-escalate to avoid serious injury or death to the combatants, 

whereas male mating must proceed to completion (ejaculation) to be reproductively 
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beneficial. These differences are well-suited to control by ramping and rotational neuronal 

dynamics, respectively. In this view, the different properties and coding strategies of VMHvl 

and MPOA may have evolved to be optimally adaptive for fighting and mating, respectively. 

 

However, our analysis also revealed approximate line attractor dynamics in a subset of 

VMHvlEsr1 neurons that is female-tuned and active during mating29. This suggests that line 

attractor-like dynamics are a general property of behavioral coding by VMHvl, not an 

aggression-specific feature. Conversely, MPOA contains specific Esr1+ neurons highly tuned 

to attack which do not exhibit line attractor dynamics (although there is no evidence that 

these neurons play a causative role in aggression). These data suggest that MPOA and 

VMHvl more likely encode different features of a given social behavior, such as action 

selection vs. motive state intensity, respectively. If so, then by extension the hypothalamus 

may contain GABAergic populations that control action-selection during aggression. Indeed, 

the anterior hypothalamic nucleus (AHN), which has a similar neurochemical and 

cytoarchitectonic structure as MPOA, can promote defensive attack67,68; it will be interesting 

to see whether rotational dynamics are observed in this structure. By the same token, PMv 

which controls aggression and is also primarily glutamatergic50,69,70, may utilize population 

coding like VMHvl.  

 

Potential functions of the VMHvl line attractor 

 

Line attractors have been identified in cortical and hippocampal regions involved in cognitive 

functions, such as decision-making, spatial mapping and sensory discrimination42,46. It is 

unexpected to find such neural dynamics in the hypothalamus, which is widely viewed as 

controlling innate behaviors via action-specific cell types (as observed in MPOA33).  What 

function(s) might such attractor dynamics serve, in the context of innate behaviors? Two 

explanations are possible, which are not mutually exclusive. 
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As mentioned earlier, progression along the line attractor may encode the intensity of an 

internal motive state of aggressiveness. This is supported by our finding that the integration 

dimension that contributes to this attractor can distinguish periods of non-social interaction 

during high- vs. low-intensity phases of aggressive escalation (Figure 2D).  In this view, the 

line attractor serves to maintain the system in a stable internal motive state that persists 

continuously during stochastic expressions of observable attack.  

 

Previous studies have indicated that the greatest source of variance in VMHvlEsr1 neural 

activity is intruder sex29. Whether VMHvl encodes intruder sex per se, or an internal motive 

state tightly correlated with intruder sex, has been difficult to distinguish because males only 

attack other males and not females. In female mice, however, lactating mothers attack 

intruders of both sexes. Recently, we identified a subset of VMHvlEsr1 neurons in females 

that express the GPCR gene Npy2r, called ß cells, which are both necessary for maternal 

aggression and sufficient to promote attack in non-aggressive virgins 37. Bulk calcium 

measurements revealed that ß cells are strongly active during maternal aggression towards 

both male and female intruders. However, these cells display low activity in individual 

females that are non-aggressive 37. Thus in females the encoding of aggressive state by 

VMHvlEsr1 neurons can be decoupled from the encoding of intruder sex. These data reinforce 

the idea that in males, the VMHvlEsr1 line attractor (which reflects a dimension weighted 

primarily by male-selective neurons) encodes aggressiveness, rather than simply intruder 

sex. 

 

An alternative function for the line attractor is that it may serve as an integrator that 

accumulates “evidence” used to make behavioral decisions, such as the decision to switch 

from sniff to dominance mount, or from dominance mount to attack. Such a function would 

require that different behaviors be triggered at different threshold values of the integrator. 

This type of ramp-to-threshold mechanism has been suggested to control sequential actions 

during male courtship behavior in Drosophila 71 and predator escape in mice 72. These two 
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hypotheses are not incompatible: the attractor could encode both the intensity of an internal 

state, and (indirectly) the selection of actions at different state intensities.   

 

Line attractor dynamics could also serve useful functions in the context of behavioral 

plasticity and individual variation.  For example, VMHvlEsr1 neurons show increased 

selective tuning for male vs. female intruders as a function of social experience 29, and exhibit 

a form of long-term potentiation that underlies the increase in aggressiveness that occurs 

when mice win a series of fights 73. It will be interesting to determine whether changes in 

flow field dynamics or attractor properties are associated with these forms of experience-

dependent plasticity. Finally, we note that differences in line attractor properties were 

observed among mice which exhibited different and characteristic levels of aggressiveness 

(Figure 3O). It is possible that individual differences in aggressiveness may reflect, or be 

caused by, individual constraints on population dynamics in VMHvl. 

 

Testable predictions of the line-attractor model 

 

Our rSLDS model of VMHvl dynamics makes several testable predictions and raises several 

interesting questions for future investigation. First, it predicts that once in the attractor, the 

system will return quickly to it following perturbations that move it out of this stable trough. 

This behavior is suggested by the brief excursion out of the attractor that occurs when a first 

intruder is removed and replaced by a second one. However, it would be ideal to demonstrate 

this directly by transiently activating neurons that contribute to the attractor, and determining 

whether the system rapidly returns to it following stimulus offset, as has been demonstrated 

for point attractors underlying working memory in ALM 74. Another prediction is that 

selectively inactivating the VMHvlEsr1 neurons that exhibit slow dynamics should eliminate 

activity along the line attractor. Such experiments will require combined optogenetic 

perturbations and calcium imaging in this deep subcortical structure. Such experiments will 

also be critical to confirm whether line attractor properties indeed play a causative role in 

controlling levels of aggressiveness. 
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The results herein show that about 20% of VMHvlEsr1 neurons exhibit persistent activity and 

ramping dynamics, raising the question of whether these cells constitute a genetically 

determined subpopulation. Single-cell RNAseq experiments have shown that the Esr1+ 

population in VMHvl can be subdivided into 6-7 distinct transcriptomic subtypes 63. Whether 

any of these subtypes selectively contributes to attractor dynamics can be addressed once 

genetic drivers specific for these subtypes are available. An additional question is whether 

the slow dynamics observed for some VMHvlEsr1 neurons reflects recurrent connectivity 

between them, as has been demonstrated for fear-encoding neurons in VMHdm 65, or the 

release of slow-acting neuromodulators such as neuropeptides. Recurrent connectivity in 

VMHvl can be investigated by slice electrophysiology66 and ultimately by EM 

connectomics.  VMHvlEsr1 neurons are known to express multiple neuropeptides, as well as 

receptors for neuropeptides and other neuromodulators.  New sensors for detecting 

neuromodulator release 75,76, as well as methods for dynamically perturbing neuromodulator 

function in vivo, should help to address these questions in the future. 

 

Limitations of the study 

 

Our discovery of line attractor dynamics in VMHvl derives from quantitative analysis of a 

dynamical system model fit to neural data. While this analysis has revealed several 

conditions required for line attractor dynamics, such as persistence in the absence of input 

and robustness to behavioral perturbation, a definitive test requires experimental perturbation 

of neural activity58. Perturbations are also required to determine the contributions to line 

attractor dynamics of region-intrinsic vs extrinsic (i.e, via other nuclei) recurrent dynamics 

and feedback, as well as whether the attractor is truly “autonomous” and not input-driven. 

The biological line attractor in VMHvl is a ‘leaky’ approximation of a mathematically 

defined line attractor, exhibiting slow decay over time scales similar to line attractors 

discovered in other neural systems46,59. Further knowledge of the underlying neural 
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mechanisms is required to understand the extent to which the region of stability identified 

here approximates a true line attractor. 

 

 

 

Experimental model and subject details  

Neural imaging data (Karigo et al., 2021, Remedios et al., 2017, Yang and Anderson, 

2022) 

We analyzed data from three sets of previous experiments 29,31,39 All experiments were 

approved by the Institute Animal Care and Use Committee (IACUC) and the Institute 

Biosafety Committee (IBC) at the California Institute of Technology (Caltech). All 

experiments utilized heterozygous Esr1cre/+ knock-in mice on a C457BL6/N background 

(B6N.129S6(Cg)-Esr1tm1.1(cre)AndIJ, JAX strain #017911). Expression of GCaMP6s 

(Remedios et al., 2017, Karigo et al., 2021) or GCaMP7f (Yang et al., 2022) was achieved 

by stereotaxic injection of a Cre-dependent GCaMP-expressing adeno-associated viruses 

(AAVs). Briefly, for data obtained from Karigo et al., 2021, mice expressing GCaMP6s 

selectively in Esr1 neurons in either the medial preoptic area (MPOA) or the ventrolateral 

subdivision of the ventromedial hypothalamus (VMHvl), were allowed to interact with 

BALB/c male and female intruders in a standard resident intruder assay (Karigo et al., 2021). 

Male or female intruders were introduced into the home cage in a random order, with a 5-10 

min interval between intruder session. Each session typically lasted 10-20 minutes. Behavior 

videos of interacting animals were annotated using a custom MATLAB-based interface. A 

total of 7 behaviors including sniffing, dominance-mount, attack, mount, intromission, 

interact (periods where animals were close to each other but other behaviors were absent) 

were annotated with male and female intruders. A head-mounted micro-endoscope 

(Inscopix, Inc.) was used to acquire Ca2+ imaging data at 15Hz from either MPOAEsr1 
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neurons (total of 583 neurons from 3 mice) or VMHvlEsr1 neurons (total of 421 neurons from 

3 mice) for neural data analysis described in sections below.  

 

For data obtained from Yang et al., 2022, Esr1-Cre mice in which GCaMP7f was expressed 

selectively in Esr1 neurons in VMHvl, were allowed to interact with BALB/c male intruders 

in a standard resident intruder assay. In addition to the behaviors annotated for above, male 

intruders were also “dangled”, where the ano-genital region of the dangled intruder is held 

next to the resident mouse. A head-mounted micro-endoscope was used to acquire 

Ca2+ imaging data at 30Hz from VMHvlEsr1 neurons (386 neurons from 3 mice) for neural 

data analysis described in sections below.  

 

For data obtained from Remedios et al, 2017, Esr1-Cre mice in which GCaMP6s was 

expressed selectively in Esr1 neurons in VMHvl were allowed to interact with BALB/c male 

intruders in a standard resident intruder assay. A head-mounted micro-endoscope was used 

to acquire Ca2+ imaging data at 30Hz from VMHvlEsr1 neurons (358 neurons from 3 mice) 

for neural data analysis described in sections below. rSLDS models were fit to data from 

n=14 mice to extract the time constant of the integration dimension used for correlation with 

individual differences in aggressiveness in Figure 3O. However 8 of those mice were 

excluded from decoder analysis of sniffing, mounting and attack, either because they were 

highly aggressive and attacked without any prior sniffing or dominance mounting (5 mice), 

or because they were non-aggressive and failed to attack (3 mice). Typically 20-25% of male 

mice from the C57BL6 background fail to show aggression in resident-intruder assays 

(Stagkourakis et al., 2020). 
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Method Details 

 

Tuning rasters for single neurons  

 

We examined the tuning properties of single neurons in VMHvlEsr1 or MPOAEsr1 by creating 

behavior tuning rasters (Figure 1 C, D). We first computed the mean activity of each neuron 

for each of the 14 manually annotated behavioral actions. To group neurons, we created a set 

of 40 regressors representing combinations of behavioral actions, and grouped neurons by 

which single regressor captured the most variance in each cell’s activity. In addition to 

regressors for individual behaviors, example regressors include signals such as all male-

directed actions, all female-directed actions, all male-directed/female-directed/sex-invariant 

investigative behaviors, and all male-directed/female-directed/sex-invariant consummatory 

behaviors. Neurons for which no single regressor captured at least 50% of variance in 

behavior-averaged activity were omitted from the visualization (approximately 5% of cells.) 

Computation of pose features for input to dynamical model 

 

As external input to the dynamical model (see next section), we selected two features of 

animal pose estimates produced by the Mouse Action Recognition System (MARS, 51 The 

first of these is the distance between animals, computed as the distance between centroids of 

ellipses fit to the poses of the two mice. The second is the facing angle of the resident towards 

intruder mouse, defined as the angle between a vector connecting the centroids of the two 

mice and a vector from the centroid to the nose of the resident mouse. In addition we also fit 

dynamical models with either no input or with additional inputs in the form of the speed of 

the resident (computed as the mean change in position of centroids of the head and hips, 

computed across two consecutive frames) and area of ellipse fit to the resident mouse’s pose. 
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Dynamical system models of neural data 

 

We model neural activity using a recurrent switching linear dynamical systems (rSLDS) 

according to previous methods48,77. Briefly, rSLDS is a generative model that breaks down 

non-linear time series data into sequences of linear dynamical modes. The model relates three 

sets of variables: a set of discrete states (z), a set of continuous latent factors (x) that captures 

the low-dimensional nature of neural activity, and the activity of recorded neurons (y). The 

model also allows for external inputs (u) which consists of extracted pose features including 

the distance between animals and the facing angle between the resident and intruder mouse.  

 The model is formulated as follows: At each time t = 1,2,…Tn, there is a discrete state  𝑧𝑧𝑡𝑡 ∈

{1,2, … ,𝐾𝐾}.. In a standard SLDS, these states follow Markovian dynamics, however rSLDS 

allows for the transitions between states to depend recurrently on the continuous latent factors 

(x) and external inputs (u) as follows: 

 

 𝑝𝑝(𝑧𝑧𝑡𝑡+1 = 𝑘𝑘, 𝑧𝑧𝑡𝑡 = 𝑗𝑗, 𝑥𝑥𝑡𝑡) ∝ 𝑒𝑒𝑒𝑒𝑒𝑒{𝑅𝑅𝑥𝑥𝑡𝑡 + 𝑊𝑊𝑢𝑢𝑡𝑡 + 𝑟𝑟} (1) 

 

where R , W and r  parameterizes a map from the previous discrete state, continuous state 

and external inputs using a softmax link function to a distribution over the next discrete states.  

The discrete state 𝑧𝑧𝑡𝑡 determines the linear dynamical system used to generate the continuous 

latent factors at any time t: 

 

 𝑥𝑥𝑡𝑡 =   𝐴𝐴𝑧𝑧𝑡𝑡𝑥𝑥𝑡𝑡−1 + 𝑉𝑉𝑧𝑧𝑡𝑡𝑢𝑢𝑡𝑡 + 𝑏𝑏𝑧𝑧𝑡𝑡 

 

(2) 

where 𝐴𝐴𝑘𝑘 ∈ ℝ𝑑𝑑×𝑑𝑑 is a dynamics matrix, 𝑉𝑉𝑧𝑧𝑡𝑡 ∈ ℝ
𝑑𝑑×𝑚𝑚 is a matrix that describes the 

contribution of external inputs (𝑢𝑢𝑡𝑡) to each dimension of the latent space and 𝑏𝑏𝑘𝑘 ∈ ℝ𝑑𝑑 is a 

bias vector, where d is the dimensionality of the latent space and m is the dimensionality of 

the external inputs. Thus, the discrete state specifies a set of linear dynamical system 

parameters and specify which dynamics to use when updating the continuous latent factors.  



 

77 
 

Lastly, we can recover the activity of recorded neurons by modelling activity as a linear noisy 

Gaussian observation 𝑦𝑦𝑡𝑡 ∈ ℝ𝑁𝑁 where N is the number of recorded neurons: 

 

 𝑦𝑦𝑡𝑡 =   𝐶𝐶𝑥𝑥𝑡𝑡 + 𝑑𝑑 

 

(3) 

For 𝐶𝐶 ∈ ℝ𝑁𝑁×𝐷𝐷 and 𝑑𝑑 ~ 𝑁𝑁(0, 𝑆𝑆), a gaussian random variable. Overall, the system parameters 

that rSLDS needs to learn consists of the state transition dynamics, library of linear 

dynamical system matrices and neuron-specific emission parameters, which we write as: 

 

𝜃𝜃 = {𝐴𝐴𝑘𝑘,𝑉𝑉𝑘𝑘, 𝑏𝑏𝑘𝑘,  𝐶𝐶,𝑑𝑑,  𝑅𝑅,𝑊𝑊, 𝑟𝑟} 

 

These parameters are estimated using maximum likelihood using approximate variational 

inference methods as described in detail in 48,77. 

 

Model performance is reported as the evidence lower bound (ELBO) which is equivalent to 

the Kullback-Leibler divergence between the approximate and true posterior, 

𝐾𝐾𝐾𝐾(𝑞𝑞(𝑥𝑥, 𝑧𝑧;𝜑𝜑) || 𝑝𝑝(𝑥𝑥, 𝑧𝑧 |𝑦𝑦;𝜃𝜃)) using 5-fold cross validation. 

 

Since the ELBO is sensitive to the inclusion of regularizers and the amount of data used 

during fitting, we also provide an additional “forward simulation error (FSE)” model 

evaluation metric calculated as follows: given observed neural activity in state space at time 

t, we predict the trajectory of the population activity vector over an ensuing small time 

interval Δt using the model, then compute the mean squared error (MSE) between that 

trajectory and the observed data at time t+ Δt (Supplemental Figure S1F). This MSE is 

computed across all dimensions of the latent space and repeated for all times t. This error 

metric is normalized to a 0-1 range in each animal across the whole recording to obtain a 

bounded measure of model performance (Supplemental Figure S1F) . This metric is 
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computed across cross-validation folds and can provide intuition about time segments where 

model performance drops 

 

Code used to fit rSLDS on neural data is available in the SSM package: 

(https://github.com/lindermanlab/ssm) 

 

Code to generate flow fields and energy landscapes from fit dynamical systems is available 

in (https://github.com/DJALab/VMHvl_MPOA_dynamics) 

 

Estimation of time constants 

 

We estimated the time constant of each mode of linear dynamical systems using eigenvalues 

𝜆𝜆𝑎𝑎 of the dynamics matrix of that system, derived by 53 as: 

𝜏𝜏𝑎𝑎 =  �
1

log(|𝜆𝜆𝑎𝑎|)
� 

 

 

Calculation of line attractor score 

 

To provide a quantitative measure of the presence of line attractor dynamics, we devised a 

line attractor score defined as: 

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =  log2
𝑡𝑡𝑛𝑛
𝑡𝑡𝑛𝑛−1

 

where 𝑡𝑡𝑛𝑛 is the largest time constant of the dynamics matrix of a dynamical system and 𝑡𝑡𝑛𝑛−1 

is the second largest time constant. This measure would be zero in a system without line 

attractor dynamics due to the similar magnitudes of the first two largest time constants and 

would be greater than one for systems that possess a line attractor. 
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Decoding behavior from integration dimension 

 

We trained a frame-wise decoder to discriminate pairs of behavior (such as sniffing vs attack) 

from the activity of the integration dimension on individual frames of a behavior (sampled 

at 15Hz) as described previously (Karigo et al., 2021). We first created ‘trials’ from bouts of 

social behavior by merging all bouts that were separated by less than five seconds. We then 

trained a linear support vector machine (SVM) to identify a decoding threshold that 

maximally separates the values of our normalized “integration dimension” signal on frames 

during which behavior A occurred from values on frames during which behavior B occurred, 

for the pair-wise behavioral comparison. ‘Shuffled’ decoder data was generated by setting 

the decoding threshold on the same “trial”, but with the behavior annotations randomly 

assigned to each behavior bout. We repeated shuffling 20 times for each intruder and each 

imaged mouse. We report performances of actual and shuffled 1D-threshold “decoders” as 

the average F1 score of the fit decoder, on data from all other “trials” for each mouse. For 

significance testing, the mean accuracy of the decoder trained on shuffled data was computed 

across mice, with shuffling repeated 1000 times for each mouse. Significance is determined 

by bootstrapping; we considered observed F1 scores significant if they fell above the 97.5th 

percentile of the distribution of chance F1 scores as done previously 29. 

 

As a stringent test for spurious correlations due to the slow decay seen in the integration, we 

performed a variation of session permutation 57  as follows. Consider a neural signal that 

displays a slow ramp in activity, which can be used to decode attack from sniffing 

Supplemental Figure S2E). If this correlation was spurious and occurred due to slow drift in 

activity, that decoding threshold would perform poorly if used on the integration dimension 

from another mouse (Supplemental Figure S2F). On the other hand, that same threshold 

would produce a high F1 score if the correlation was not spurious as shown in Supplemental 

Figure S2G. To implement this paradigm, we used the decoding threshold obtained in a given 

mouse on the integration dimension from all other mice and averaged the final performance. 
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Low dimensional (PCA) representation of dynamical system 

 

Since the latent states are invariant to linear transformations, it is possible to apply a suitable 

transformation to obtain an equivalent model using rSLDS. We use PCA for this 

transformation as it allows us to describe our high dimensional rSLDS latent space in a 

concise manner with few dimensions while capturing the overall dynamics. To perform this 

the following steps are applied: 

1. Given latent factors: 𝑥𝑥1, 𝑥𝑥2, . . . , 𝑥𝑥𝑡𝑡 of the raw neural data 𝑦𝑦𝑡𝑡 

2. Compute a whitening transformation 𝑊𝑊 such that 𝑊𝑊𝑊𝑊 is the identity 

3. Compute the transformed linear dynamical system 𝑥𝑥𝑡𝑡′  =  𝑊𝑊𝑥𝑥𝑡𝑡 with new emission 

matrix 𝐶𝐶′ =  𝐶𝐶𝑊𝑊−1. 

4. Compute the singular value decomposition (SVD) of the new emission matrix 𝐶𝐶′ =

𝑈𝑈𝑈𝑈𝑉𝑉𝑇𝑇. Let 𝑃𝑃 =  𝑆𝑆𝑉𝑉𝑇𝑇, such that 𝑃𝑃−1 = 𝑉𝑉
𝑆𝑆
 

5. Compute the final transformed latent states (i.e principal components) 𝑥𝑥𝑡𝑡′′ =

𝑃𝑃−1𝑥𝑥𝑡𝑡′ = 𝑃𝑃−1𝑊𝑊𝑥𝑥𝑡𝑡  

In this final transformation, since the singular values are ordered, the first two components 

of 𝑥𝑥𝑡𝑡′′ accounts for the most variance in the raw neural data 𝑦𝑦𝑡𝑡. This method of applying PCA 

also accounts for the emission matrix C of the fit dynamical system. 

Dynamic velocity as a measure of stability in a dynamical system and visualization as 

3D landscape 

 

We devised a metric termed the “dynamic velocity” to quantify the average intrinsically 

generated rate of change of the fit dynamical system during a given behavior of interest. We 

first calculated the average norm of 𝐴𝐴𝑧𝑧𝑡𝑡𝑥𝑥𝑡𝑡 for every value of 𝑥𝑥𝑡𝑡 associated with a given 

behavior, for a given state z. We then averaged this value across states, giving a definition of 

𝑉𝑉𝑏𝑏 =  1
𝑛𝑛(𝑍𝑍)

∑ � 1
𝑛𝑛(𝑇𝑇𝑏𝑏)

∑ �𝐴𝐴𝑧𝑧𝑡𝑡𝑥𝑥𝑡𝑡�𝑡𝑡∈𝑇𝑇𝑏𝑏 �𝑧𝑧∈𝑍𝑍 , where Z is the set of states, Tb is the set of all 

timepoints during which behavior b occurred, ‖·‖ is the Euclidean norm, and n(·) is the 

number of elements in a set. Finally, to facilitate comparison across animals, we normalized 
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this value to a 0-1 range, with respect to its maximum across behaviors in each animal. Low 

values of this measure close to zero indicate regions with high stability while large values 

indicate unstable regions of neural state space.   

We also converted the flow-fields obtained from rSLDS into a 3D landscape for visualization 

by calculating the dynamic velocity at each point in neural state space and using it as the 

height of a 3D landscape. 

 

 

 

Quantification and statistical analysis 

 

Data were processed and analyzed using Python, MATLAB, and GraphPad (GraphPad 

PRISM 9). All data were analyzed using two-tailed non-parametric tests. Mann-Whitney test 

were used for binary paired samples. Friedman test was used for non-binary paired samples. 

Kolmogorov-Smirnov test was used for non-paired samples. Multiple comparisons were 

corrected with Dunn’s multiple comparisons correction. Not significant (NS), P > 0.01; *P 

< 0.01; **P < 0.005; ***P < 0.001; ****P < 0.0001. 
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Supplemental Figure 1 
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Supplementary Figure 1: Unsupervised discovery of aggression-enriched states in VMHvl  

Related to Figure 2.  A: types of neural states identified by rSLDS. B1, B2: behaviors; Q0, Q1: periods 

of quiescence between behavior bouts; S0,S1,S2: rSLDS states. Case 1: rSLDS states cannot 

distinguish behavior vs internal states. Case 2: rSLDS reflects internal state-encoding due to 

persistence during behavioral quiescence. B: optimization of number of rSLDS states in example 

VMHvl mouse 1. Model performance is measured as ELBO (see methods). C: same as B, but for 

dimensionality. D: variance explained by dimension chosen in C. E: convergence of model 

performance. F: creation of a bounded model performance metric (forward simulation error, FSE, see 

methods). G: FSE for VMHvl mouse 1 & 2. H: average model performance (FSE) before and after 

training (n = 6 mice,***p<0.001).:  I1: rSLDS states in VMHvl mouse 1. I2: comparison of rSLDS 

states with behaviors. I3: behavioral composition of rSLDS states. State 3 possesses the highest 

amount of attack behavior across mice (see panel J, K). I4 : probability of attack aligned to the onset 

of state 3 (n = 6 mice). I5: timescale of behavior bouts and discovered states epochs. I6: state transition 

diagram from empirical transition probabilities. J: Same as F2, F3, F5 but for VMHvl mouse 2. K: 

Same as F2, F3, F5 but for VMHvl mouse 3. 
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Supplemental Figure 2 

 

 



 

85 
 

 

Supplementary Figure 2: Characterization of aggression-integration dimension 

Related to Figure 2. A: variance explained by a generalized linear model trained to predict integration 

dimension from pose-features including distance between mice, facing angle, speed, acceleration, and 

velocity of resident mouse (mean: 0.28 ± 0.04 R2, n = 6 mice). B: fraction of overall variance 

explained by integration dimension (purple) compared to variance explained by decoder dimension 

trained to distinguish attack from sniff bouts (integration dimension mean: 19.5%± 1.9%, attack 

decoder mean: 0.3% ± 0.1%, n= 6 mice, ***p<0.001). C: decoding behaviors from non-integration 

dimensions (average across dimensions, n = 6 mice). D: absolute rSLDS weight on integration 

dimension of VMHvl mouse 1 (cell number on x-axis), sorted by choice probability values for male 

vs female intruder encounter. E-G: paradigm to account for spurious correlations: decoding threshold 

obtained using integration dimension of mouse 1 (E, purple line) is used on integration dimension 

from mouse 2 (F). Spurious correlations lead to low F1 scores (F) while true correlations retain high 

F1 scores (G). H: decoding behaviors using paradigm described above (**p < 0.005, n = 6 mice) I:  

normalized activity of neurons times rSLDS weight for cells with significant weights for integration 

dimension of VMHvl mouse 1. J: example cells from I. K: integration dimension in VMHvl mouse 

2. L: same as I for VMHvl mouse 2. M,N: Same as K,L for VMHvl mouse 3. 
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Supplemental Figure 3 
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Supplementary Figure 3: Characterization of aggression-integration dimension and dependence on 

tracking feature based external inputs. 

Related to Figure 2. A:  aggression integration dimension in female and male trials in VMHvl Mouse 

1. B: mean projection  of neural activity from female vs male trials onto the aggression integration 

dimension (n = 6 mice, **p<0.005). C: low dimensional dynamics and flow field from model with 

no behavioral inputs included with line attractor highlighted. D: time constants from the fit dynamical 

system (n = 6 mice). E: line attractor score for VMHvl models without input. F: tracking features 

used in rSLDS shown alongside discovered states and integration dimension in VMHvl mouse 1. G: 

performance of decoder used to separate attack frames from sniff-alone frames using the distance 

between mice and facing angle of the resident. H: scatter plot of distance between mice and facing 

angle of resident. I: model performance (1-FSE) for different types of external inputs (n = 6 mice); 

current inputs = distance between animals, facing angle of resident. (***p<0.001).  
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Supplemental Figure 4 
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Supplementary Figure 4: Properties of line attractor dynamics in VMHvl. 

Related to Figure 3. A,B: absolute PCA weights of PC1(A) and PC2(B) on dimensions of dynamical 

system sorted by decreasing time constant in VMHvl mouse 1. C: behavior triggered average of top 

two principal components aligned to introduction of first intruder or first attack onset (n = 6 mice). 

D,E: low dimensional dynamics and flow field showing line attractor dynamics for VMHvl mouse 2 

and mouse 3 with line attractor highlighted. F: schematic showing how perturbations orthogonal to a 

line attractor do not alter the position of the system. G:  integration dimension in VMHvl mouse 1 

(reproduced from Fig 2B) with attack bout (1) and inter-trial interval (2) highlighted. H: neural state 

space with line attractor highlighted in VMHvl mouse 1, showing the persistence of activity during 

the inter-trial interval shown in G. The introduction of intruder #2 acts as an orthogonal perturbation 

and activity returns to the same point along the attractor. I,J: Same as G,H for VMHvl mouse 2. K: 

neural state space with line attractor highlighted in VMHvl mouse 4. The introduction of intruder #2 

occurs earlier in the trial when the animal displays sniffing behavior but results in a similar 

perturbation as above. L: relationship between fraction of time spent attack vs time constant of 

integration for animals with GCaMP7f recordings (n= 8 mice). M: integration dimension in VMHvl 

mouse 5 (GCaMP 7f) shows the same persistence and slow decay of activity. N: same as M for 

VMHvl mouse 4 (GCaMP 7f). O: line attractor score for mice with GCaMP7f recordings 

(***p<0.001). P: dynamics landscape for VMHvl mouse 4 (GCaMP 7f) showing a trough shaped 

landscape. 
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Supplemental Figure 5 
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Supplementary Figure 5: Mating enriched states and rotational dynamics in MPOA. 

Related to Figure 4. A: rSLDS states in MPOA mouse 1. B: comparison of rSLDS states with 

behavior in MPOA mouse 1 for period from t = 600s to t = 700s. C: behavioral composition of rSLDS 

states. D: probability of intromission and USV+ mounting aligned to the onset of state 2 and state 3 

(also see panel I, J, n = 3 mice). E: timescale of behavioral bouts and states epochs. F: Reproduced 

from Figure 4D but with state-specific inferred flow-field colors. G: state transition diagram from 

empirically calculated transition probabilities. H: state and behavior raster for MPOA mouse 1 for 

entire recording. I1:  same as H for MPOA mouse 2, selected mating bouts highlighted. I2: behavioral 

composition of rSLDS states (bottom). I3: timescale of behavioral bouts and states epochs. J1-3: same 

as I1-3 for MPOA mouse 3, selected mating bouts highlighted. K: rotational trajectories for 3 mating 

episodes in MPOA mouse 1. L:  same as K, for mating bouts highlighted in highlighted in I1 for 

MPOA mouse 2. M: same as K, for mating bouts highlighted in highlighted in J1 for MPOA mouse 

3. 
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Supplemental Figure 6 
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Supplementary Figure 6: Dynamical analysis of VMHvl activity in mating behavior and MPOA 

activity in aggression.  

Related to Figure 6. A: rSLDS states in VMHvl mouse 1 during interactions with female intruders. 

B: comparison of rSLDS states with behaviors. C: behavioral composition of rSLDS states. State 3 

possesses the highest amount of mating behavior across mice (see panel H). D: timescale of behavior 

bouts and state epochs. E: state transition diagram from empirical transition probabilities. F-H: Same 

as B-D for VMHvl mouse 2. This mouse did not achieve intromission. I: decoding behaviors from 

integration dimension (**p<0.005). ). J: empirical cumulative distribution of value of integration 

dimension (normalized) for various behaviors. K: dynamics velocity landscape showing a progression 

of mating behavior along the trough for VMHvl mouse 1.  L: normalized activity times rSLDS weight 

for cells contributing significantly to integration dimension of VMHvl mouse 1. M: absolute rSLDS 

weight on integration dimension of VMHvl mouse 1 during mating behavior (top, yellow dots) and 

aggression (bottom, black dots) sorted by choice probability values for male vs female intruder 

encounter. N: top: state and behavior raster for MPOA mouse 1 during aggressive behavior. State 3 

is aligned closely to the onset of attack bouts, bottom: behavioral composition of discovered states. 

O: behavior triggered average of principal component 1 in VMHvl (red line) and MPO (blue line) (n 

= 3 mice for MPOA, n = 6 mice for VMHvl). P: comparison of dynamic velocity for similar behavior 

between VMHvl and MPOA (reproduced from Figure 6F, 6K) (**p<0.005,***p<0.001) (n = 3 mice 

for MPOA, n = 6 mice for VMHvl).  
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C h a p t e r  I I I  

PERTURBATION 

 

 

 

“അവൾ ഒരു ക�ുംത�ി, സത�ം െപാ�ി�ിതറി�,  

കടലിെന ഒരു തു�ി അക�ി േനാ�ി.” 

Kamala Surayya, Ente Katha, 1973 

Translation: “She pushed a stone, scattering the truth, and looked at the sea,                     
one drop at a time.” 
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C h a p t e r  I I I  

Causal evidence of a line attractor encoding an affective state 

 

Published as Amit Vinograd*, Aditya Nair*, Joseph Kim, Scott Linderman, David J. 

Anderson. Causal evidence of a line attractor encoding an affective state. Nature (2024).  

Summary 

Line attractors are emergent population dynamics hypothesized to encode continuous 

variables such as head direction and internal states1-4. In mammals, direct evidence of neural 

implementation of a line attractor has been hindered by the challenge of targeting 

perturbations to specific neurons within contributing ensembles2,3. Linear dynamical systems 

modeling has revealed that neurons in the hypothalamus exhibit approximate line attractor 

dynamics in male mice during aggressive encounters5. We have previously hypothesized that 

these dynamics may encode the variable intensity of an aggressive internal motive state. 

Here, we report that these neurons also showed line attractor dynamics in head-fixed mice 

observing aggression6. We identified and perturbed line attractor-contributing neurons using 

2-photon calcium imaging and holographic optogenetic perturbations. On-manifold 

perturbations yielded integration and persistent activity that drove the system along the line 

attractor, while transient off-manifold perturbations were followed by rapid relaxation back 

into the attractor. Furthermore, single-cell stimulation and imaging revealed selective 

functional connectivity among attractor-contributing neurons. Intriguingly, individual 

differences among mice in line attractor stability were correlated with the degree of 

functional connectivity among attractor neurons. Mechanistic RNN modelling indicated that 

dense subnetwork connectivity and slow neurotransmission7 best recapitulate our empirical 

findings. Our work bridges circuit and manifold levels3, providing causal evidence of 

continuous attractor dynamics encoding an affective internal state in the mammalian 

hypothalamus. 

This chapter details first-in-class efforts to examine and test line dynamics 
important for internal states using closed-loop perturbations and modelling.  
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Introduction 

 

Neural circuit function has been studied from two vantage points. One focuses on 

understanding behaviorally specialized neuron types and their functional connectivity8-10, 

while the other investigates emergent properties of neural networks, such as attractors1,3,11. 

Attractors of different topologies are theorized to encode a variety of continuous variables, 

ranging from head direction12, location in space2 and internal states5. Recent data-driven 

methodologies have allowed for the discovery of such attractor mediated computations 

directly in neural data5,13-16. Consequently, attractor dynamics have received increasing 

attention as a major type of neural coding mechanism2,4,12 3,13.  

 

Despite this progress, establishing that these attractors arise from the dynamics of the 

observed network remains a formidable challenge2,3 4. This calls for combining large-scale 

recordings with perturbations of neuronal activity in vivo. While this has been accomplished 

for a point attractor that controls motor planning in cortical area ALM17,18, spatial ensembles 

that regulate short term memory19,20, and for a ring attractor in Drosophila21,22, there is no 

study reporting such perturbations for a continuous attractor in any mammalian system. 

While theoretical work on continuous attractors in mammals is well-developed2, the lack of 

direct, neural perturbation-based experimental evidence of such attractor dynamics has 

hindered progress towards a mechanistic circuit-level understanding of such emergent 

manifold-level network features3. 

 

Estrogen receptor type 1 (Esr1)-expressing neurons in the ventrolateral subdivision of the 

ventromedial hypothalamus (VMHvlEsr1) comprise a key node in the social behavior network 

and have been causally implicated in aggression23 24. Calcium imaging of these neurons in 

freely behaving animals has revealed mixed selectivity and variable dynamics, with time-

locked attack signals sparsely represented at the single-neuron level25,26. Application of 

dynamical system modeling27 has revealed an approximate line attractor in VMHvl that 

correlates with the intensity of agonistic behavior, suggesting a population-level encoding of 
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a continuously varying aggressive internal state5. This raises the question of whether the 

observation of a line attractor in a dynamical systems model fit to VMHvlEsr1 neuronal 

activity reflects inherited dynamics or is instantiated locally. 

 

This question can be addressed, in principle, using all-optical methods to observe and perturb 

line attractor-relevant neural activity3,28-30. A challenge in applying these methods during 

aggression is that current technology requires head-fixed preparations, and head-fixed mice 

do not fight. To overcome this challenge, we exploited a recent observation that VMHvlPR 

neurons (which encompass the Esr1+ subset) 31,32 33 mirror inter-individual aggression6, to 

instantiate the line attractor in head-fixed subjects. Using this preparation, we performed 

model-guided, closed-loop on- and off-manifold perturbations34 of VMHvlEsr1 activity. 

These experiments demonstrate that the VMHvl line attractor indeed reflects causal neural 

dynamics in this nucleus. They also identified selective functional connectivity within 

attractor-weighted ensembles, suggesting a local circuit implementation of attractor 

dynamics. Modeling suggests that this implementation is likely mediated by slow 

neurotransmission. Collectively, our findings elucidate a circuit-level foundation for a 

continuous attractor in the mammalian brain. 

 

Results 

 

A line attractor for observing aggression 

 

Recent studies have demonstrated that VMHvl contains neurons that are active during 

passive observation of, as well as active participation in, aggression and that re-activating the 

former can evoke aggressive behavior6. However, those findings were based on a relatively 

small sample of VMHvl neurons, which might comprise a specific subset distinct from those 

contributing to the line attractor (the latter represent ~20-25% of Esr1+ neurons5). To assess 

whether these “mirror-like” responses can be observed in Esr1+ neurons that contribute to 

line attractor dynamics, we performed microendoscopic imaging35 of VMHvlEsr1 neurons 
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expressing jGCaMP7s in the same freely behaving (FB) animals during engagement in 

followed by observation of aggression (Extended Data Fig. 1a-e). Analysis using recurrent 

switching linear dynamical systems (rSLDS)27 to fit a model to each dataset (Extended Data 

Fig. 1f) revealed an approximate line attractor under both conditions, exhibiting ramping and 

persistent activity aligned and maintained across both performed and observed attack 

sessions (Extended Data Fig. 1g-q, Extended Data Fig. 2 and Extended Data Fig. 3a-f). 

Activity in the integration dimension (“x1”) aligned with the line attractor during observation 

of aggression could be reliably used to decode from held-out data instances of both 

observation of and engagement in attack, suggesting that this dimension encodes a similar 

internal state variable under both conditions (Extended Data Fig. 3g-h). In addition, the 

integration dimension was weighted by a consistent and aligned set of neurons under both 

conditions, suggesting that a highly overlapping set of neurons (70%) contributes to line 

attractor dynamics during observing or engaging in attack (Extended Data Fig. 4a-d).  

 

The dynamical systems analysis also revealed a dimension orthogonal to the integration 

dimension (“x2”) that displayed faster dynamics time locked to the entry of the intruder(s) in 

both conditions (Extended Data Fig. 1g-l). To examine whether the neurons contributing to 

the two dimensions (x1 and x2 neurons) can be separated based on biophysical properties, we 

examined their baseline activity when solitary animals were exploring their home cage before 

any interaction. We did not detect a difference in amplitude or decay constant (tau) between 

x1 and x2 neurons (Extended Data Fig. 4e-i). However, we did see a slightly but significantly 

higher frequency of spontaneous calcium transients in x2 neurons (Extended Data Fig. 4f, g), 

suggesting that x2 neurons are more “spontaneously” active than x1 neurons when no 

interaction is taking place.  

 

While these observed attractor dynamics could be generated in VMHvl, they might also arise 

from unmeasured ramping sensory input or dynamics inherited from an input brain region36. 

Although behavioral perturbations in prior studies have hinted at the intrinsic nature of 

VMHvl line attractor dynamics5, a rigorous test requires direct neuronal perturbations37 34 
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targeted to cells that contribute to the attractor. Direct on-manifold perturbation of a 

continuous attractor has previously been performed only in the Drosophila head direction 

system12,21. In mammals, although a point attractor has been perturbed off-manifold using 

optogenetic manipulation17,18,28, direct single-cell perturbations of neurons contributing to a 

continuous attractor in vivo has not been reported. 

 

To do this, we employed 2-photon (2P) imaging in head-fixed mice of VMHvlEsr1 neurons 

expressing jGCaMP7s38 following observation of aggression and removal of the 

demonstrator mice (Figure 1a-c). As described above, during observation of aggression by 

the head-fixed mice, rSLDS analysis identified an integration dimension with slow dynamics 

(x1) aligned to an approximate line attractor, and an orthogonal dimension with faster 

dynamics (x2) (Figure 1d-h, k). We used the mapping between neural activity and the 

underlying state space to directly identify neurons contributing to each dimension (Figure 1i, 

j). Neurons contributing to the integration dimension displayed more persistence than those 

aligned with the faster dimension (Figure 1g, l, m). Importantly, only a small fraction of the 

neural activity could be explained by movements of the observer mouse (Extended Data Fig. 

5a-e). Thus, a line attractor can be recapitulated in head-fixed mice observing aggression, 

opening the way to 2-photon-based perturbation experiments. 
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Figure 1 | Attractor dynamics in head-fixed mice observing aggression.  

a. Experimental paradigm for 2-photon imaging in head-fixed mice observing aggression. b. 

Representative field of view through a GRIN lens in 2-photon setup (top).  Fluorescence image of a 

coronal slice showing expression of jGCaMP7s and ChRmine (bottom). Scale bars – 100µm. c. Left: 

Neural and behavioral raster from example mouse observing   aggression in the 2-photon setup. 

Arrows indicate insertion of submissive BALB/c intruder to the observation chamber for interaction 

with an aggressive Swiss Webster mouse (SW). Right: Example neurons from left. d. Neural activity 

projected onto rSLDS dimensions obtained from models fit to 2-photon imaging data in one example 

mouse. e. rSLDS time constants across mice (n = 9 mice, ****p<0.0001, Two-tailed Mann Whitney 

U-test, error bars - sem). f. Line attractor score (see methods) across mice (n = 9 mice, error bars - 

sem). g. Behavior triggered average of x1 and x2 dimensions, aligned to introduction of BALB/c into 

resident’s cage (n = 9 mice). Dark line – mean activity, shaded surrounding – sem.  h. Flow fields 

from 2P imaging data during observation of aggression from one example mouse. Blue arrows 

indicate the direction flow of time. i. Top: Identification of neurons contributing to x1 dimension 

from rSLDS model. Neuron’s weight is shown as absolute value. Bottom: Activity heatmap of five 

neurons contributing most strongly to x1 dimension. Right: Neural traces of the same neurons and an 

indication of when the system enters the line attractor. j. Same as 1i but for x2 dimension. k.

 Dynamic velocity landscape from 2P imaging data during observation of aggression from one 

example mouse. Blue – stable area in the landscape, red – unstable. Black line – trajectory of neuronal 

activity. l. Cumulative distributions of autocorrelation half width of neurons contributing to x1 

(green) and x2 (red) dimensions (n = 9 mice, 45 neurons each for x1 and x2 distributions). m.Mean 

autocorrelation half width across mice for neurons contributing to x1 and x2 dimensions (n = 9 mice, 

**p = 0.0078, Two-tailed Mann Whitney U-test, error bars - sem).  
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Holographic activation reveals integration in VMHvl 

Next, to determine whether VMHvlEsr1 line attractor dynamics are intrinsic to the nucleus, 

after removing the demonstrator mice we performed holographic activation of a subset of 

neurons contributing to the integration dimension (x1) using soma tagged ChRmine39, which 

was co-expressed with jGCaMP7s (Figure 1b, lower). These neurons were identified in real-

time using rSLDS fitting of data recorded during observation of aggression (in a manual 

closed-loop), followed by 2-photon single cell-targeted optogenetic reactivation of those 

neurons (Figure 2a). In each field of view (FOV), we concurrently targeted five neurons, 

chosen by the criteria that they 1) contributed most strongly to a given dimension (x1 or x2); 

and 2) could be reliably re-activated by photostimulation (Figure 2a). Repeated pulses of 

optogenetic stimulation (2 sec, 20 Hz, 5 mW) were delivered with a 20s inter-stimulus 

interval (ISI) (Figure 2b-d). Under these conditions we observed minimal off-target effects 

(Extended Data Fig. 6a-h) and did not observe spatial clustering of x1 or x2 neurons (Extended 

Data Fig. 6i-k, Extended Data Fig. 7a-b, and see Methods). 

In this paradigm, optogenetically induced activity along the x1 (but not the x2) dimension is 

predicted to exhibit integration across successive photostimulation pulses, based on the time 

constants of these dimensions extracted from the fit rSLDS model (Figure 1e). Consistent 

with this expectation, optogenetic re-activation of cohorts of ~5 individual x1 neurons yielded 

robust integration along the x1 dimension, as evidenced by progressively increasing activity 

during the ISI following each consecutive pulse (Figure 2c-d; n=8 mice). Activated x1 

neurons exhibited activity levels comparable to their response during observation of 

aggression (Extended Data Fig. 7d-f). Similar results were obtained using an 8s ISI 

(Extended Data Fig. 8a-b). Providing the same (digital optogenetic) input to the fit rSLDS 

model also resulted in integration by the model along the x1 dimension, similar to that 

observed in the data (Extended Data Fig. 8c). This activity also scaled with different laser 

powers (Extended Data Fig. 8e-f). Importantly, x1 stimulation did not evoke appreciable 

activity in x2 dimension neurons (Extended Data Fig. 8g-i). 

 



 

110 
 

To visualize in neural state space the effect of re-activating x1 neurons in the absence of 

demonstrator mice, we projected the data into a 2D flow-field based on the dynamics matrix 

fit to data acquired during the observation of aggression. Activation pulses transiently moved 

the population activity vector (PAV) “up” the line attractor, followed by relaxation back 

down the attractor to a point that was higher than the initial position of the system (Figure 

2e-f). To quantify this effect, we calculated the Euclidean distance in state space between the 

initial time point during the baseline period (denoted tinitial), to the time point at the end of 

stimulation or at the end of the ISI following each pulse (denoted tstim end and tpost stim 

respectively) (Figure 2e-h). This revealed that the x1 perturbations resulted in progressive, 

stable on-manifold movement along the attractor with each consecutive stimulation, as 

measured by the increase in both metrics (Figure 2g, h). However, we found that integration 

of optogenetic stimulation pulses saturated in the x1 dimension after the third pulse, 

suggesting that the line attractor occupies a finite portion of the neural state space (Extended 

Data Fig. 9a-d).  

 

Importantly, activation of x2 neurons did not lead to integration (Figure 2i-k) as predicted by 

the time constant derived from the fit rSLDS model (Figure 1e, red bar). Instead, following 

each pulse we observed stimulus-locked transient activity in the x2 dimension followed by a 

decay back to baseline during the ISI period, across stimulation paradigms (Figure 2k, 

Extended Data Fig. 8b), with little to no effect on x1 neurons (Extended Data Fig. 8j-l). In 

2D neural state space, we observed that x2 neuron activation caused transient off-manifold 

movements of the PAV orthogonal to the attractor axis during each pulse (Figure 2l-o). 

Following each stimulus, the PAV relaxed back into the attractor, near the initial location it 

occupied before the stimulus. The small Euclidean distance between tinitial and tpost stim 

reflected the attractor's stability (Figure 2o).  

 

To examine further the stability of different points along the line attractor, we performed 

photostimulation of x2 neurons after first moving activity in neural state space further along 

the attractor using photostimulation of x1 neurons (Extended Data Fig. 9e-f). This x2 
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perturbation also resulted in transient off-manifold movements of the PAV orthogonal to the 

line attractor, followed by relaxation to the position occupied after the previous x1 stimulation 

(but prior to the x2 stimulation) – rather than simply relaxing back to baseline (Extended Data 

Fig. 9g-i). This experiment confirms the attractive nature of different points along the line. 

Lastly, activation of randomly selected neurons not weighted by either dimension did not 

produce activity along either the x1 or x2 dimension, emphasizing the specificity of our on- 

and off-manifold holographic activation (Extended Data Fig. 9j-n). Activation of either 

ensemble did not result in overt changes in behavior of the head-fixed mouse (Extended Data 

Fig. 5f-j). Together, these findings demonstrate that a subset of VMHvlEsr1 neurons (x1) can 

integrate direct optogenetic stimulation, moving the PAV along the line attractor, while a 

different subset (x2) pushes the PAV out of the attractor. 
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Figure 2 | Holographic perturbations reveal integration dynamics in VMHvl. 

a. Experimental paradigm for 2-photon perturbation in head-fixed mice. b. Field of view of five x1 

neurons selected for 2-photon activation in example mouse 1. c. Neural activity projected onto x1 

dimension after holographic activation of five x1 neurons in example mouse 1. Pink vertical lines – 

time of activation. d. Left: average activity projected onto x1 dimension from activation of x1 neurons 
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(average in dark green ± sem in shaded green area, n = 8 mice). Right: Average z-scored activity of 

projected x1 dimension during baseline or inter stimulus intervals (n = 8 mice, *p = 0.0363, **p = 

0.0013, ****p<0.0001, **p = 0.0067. Kruskal-Wallis test with Dunn’s correction, error bars - sem). 

e. Cartoon showing quantification of perturbation along line attractor in neural state space. f. Flow 

fields from example mouse 1, showing perturbations along line attractor upon activation of x1 

neurons. Blue arrows indicate the direction flow of time. g. Euclidian distance between time points 

tinitial and tstim end across mice (n = 8 mice, n.s p = 0.061, *p = 0.029, **p = 0.0018, **p = 0.0059, 

Kruskal-Wallis test with Dunn’s correction, error bars - sem). h. Same as 2g but for time points 

tinitial and tpost stim (n = 8 mice, n.s p = 0.1965, **p = 0.0082, ***p = 0.0004, *p = 0.016, Kruskal-

Wallis test with Dunn’s correction, error bars - sem). i. Field of view of five x2 neurons selected for 

activation in example mouse 1. j. Neural activity projected onto x2 dimension after holographic 

activation of x2 neurons in example mouse 1. k. Left:  average activity projected onto x2 dimension 

from activation of x2 neurons (average in dark red ± sem in shaded red area, n = 7 mice). Right: 

Average z-scored activity of projected x2 dimension during baseline or inter stimulus intervals (n = 

7 mice, p>0.99, Kruskal-Wallis test with Dunn’s correction, error bars - sem). l. Same as 2e but for 

x2 activation. m. Flow fields from example mouse 1, showing x2 activation. Red arrows indicate the 

direction flow of time. n. Same as 2g but for x2 activation (n = 7 mice, n.s p = 0.1554, *p = 0.042, *p 

= 0.029, *p = 0.029, Kruskal-Wallis test with Dunn’s correction, error bars - sem). o. Same as 2h but 

for x2 activation (n = 7 mice, p>0.05, n.s p = 0.508, *p = 0.0383, n.s p = 0.0508, Kruskal-Wallis test 

with Dunn’s correction, error bars - sem).  
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Line attractor neurons form ensembles 

 

The integration observed in the foregoing experiments could reflect a cell-intrinsic 

mechanism, or it could emerge from recurrent interactions within a network40. To determine 

whether the latter mechanism contributes to the line attractor, we first examined whether 

putative x1 follower cells (i.e., non-targeted neurons that were photoactivated by stimulation 

of targeted x1 neurons) exhibited integration. Indeed, even after excluding the targeted x1 

neurons themselves as well as potentially off-target neurons located within a 50 µm radius 

of the targeted cell (Extended Data Fig. 6a-h and 10j-n), we observed integration in the 

remaining x1 neurons (Extended Data Figure 10a-c). In addition, optogenetically evoked 

integrated activity in targeted x1 neurons could be reliably decoded from the activity of their 

follower x1 neurons (Extended Data Fig. 10d-f). This decoding was significantly better than 

that obtained using the activity of non-targeted x2 neurons; furthermore, the x2 activity-based 

decoder performance was slightly worse than decoders trained on neurons chosen randomly 

(Extended Data Fig. 10g). These analyses suggest that selective functional connectivity 

between integration dimension-weighted x1 neurons contributes to line attractor dynamics in 

VMHvl. 

 

To assess more precisely the extent of functional connectivity among VMHvlEsr1 neurons, 

we activated solitary x1 or x2 neurons and performed imaging of non-targeted neurons (Figure 

3a). These experiments revealed a slowly decaying elevation of activity during the ISI period 

in non-targeted x1 neurons following each pulse of activation (Figure 3b, d) which was 

mostly positive (Extended Data Fig. 10h, i). Interestingly, the strength of functional 

connectivity was not positively correlated with distance from the targeted photostimulated 

cell (Extended Data Fig. 10j-n) and was still observed even after excluding neurons in a 50 

µm zone surrounding the targeted neuron to eliminate potential off-target effects due to 

“spillover” photo-stimulation (Extended Data Fig. 10o, p).  Comparing the activity of non-

targeted photoactivated x1 neurons during solitary x1 neuron photoactivation vs. during 

targeted 5 x1 neuron cohort activation revealed that the response strength of the non-targeted 
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x1 neurons scaled with the number of targeted x1 neurons (Extended Data Fig. 10q-r). 

Importantly, the observed functional coupling between x1 neurons could not be explained by 

local clustering of non-targeted x1 neurons near the targeted cell (Extended Data Fig. 6i-k 

and 10k-l). 

 

In contrast to the observed x1-to-x1 functional connectivity, we observed little activity in non-

targeted x2 neurons following activation of solitary x1 or x2 neurons (Figure 3c, e), suggesting 

that functional x1-x1 connectivity is selective. While there was some gradual increase in 

activity in non-targeted x1 neurons upon activation of solitary x2 neurons (Figure 3f-h), that 

increase was not statistically significant (Figure 3i, j).  

 

The functional connectivity we observed could arise either from a population of sparsely but 

strongly inter-connected neurons, or from a population with denser connections of 

intermediate strength41 (Figure 4a, left). To assess this, we calculated the distribution of 

pairwise influence scores in our solitary neuron stimulation experiments, defined as the 

average evoked z-scored activity in each non-targeted photoactivated x1 neuron following 

photostimulation of a single targeted cell. To estimate the amount of functional coupling 

within the x1 network, we considered the percentage of x1x1 pairs that had influence scores 

higher than the highest x1x2 pair, which had a z-score of ~0.6 (Figure 4a, right, vertical 

line). The fraction of x1x1 pairs above this threshold was ~36% (Figure 4a, right). These 

data suggest that VMHvlEsr1 neurons that contribute to the line attractor form relatively dense 

functional ensembles, confirming theory-based predictions40.  

 

We next used computational approaches to investigate the kinetics of the observed functional 

connectivity within x1 ensembles. Such connectivity could reflect either fast, glutamatergic 

synapses, as typically assumed for most attractor networks40; or they could be slow 

neuromodulator-based connections that use GPCR-mediated second messenger pathways to 

sustain long time-scale changes in synaptic conductance. To investigate systematically the 

density and synaptic kinetics of networks capable of generating line attractors with the 
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measured integration-dimension (x1) network time constants, we turned to mechanistic 

modelling using an excitatory integrate and fire network7 (Figure 4b). Because VMHvl is 

>80% glutamatergic42, we used excitatory networks and analytically calculated the network 

time constant using an eigen-decomposition of the connectivity matrix40 (Extended Data Fig. 

11a). By varying the synaptic conductance time constant (τ𝑠𝑠) and the density of the 

integration subnetwork connectivity, we found that only artificial networks based on 

relatively sparse connectivity (~8-12%) and slow synaptic time constants (~20s) could yield 

network time constants (τ𝑛𝑛) in the experimentally observed range (~50-200s; Figure 4c, e; 

red shading). In contrast, networks with fast glutamatergic connectivity failed to do so over 

the same range of connection densities (Figure 4d, f).  

 

In these purely excitatory network models, the density of connections that yielded network 

time constants in the observed range was much lower than the experimentally measured 

value (36%).  To match more accurately the empirically observed connection density, we 

incorporated excitation-recruited fast-feedback inhibition into our integrate-and-fire 

network7, since VMHvl is known to receive dense GABAergic innervation from surrounding 

areas43,44. The addition of global strong feedback inhibition allowed networks to match the 

observed connection density (36%), but importantly, maintained the slow nature of the 

functional connectivity (20s; Figure 4g; h, left). Indeed, networks simulated with a long τ𝑠𝑠 

(20s) and dense σ (36%) could integrate digital optogenetic stimulation in a manner like that 

observed experimentally (Figure 4i-j). In contrast, purely glutamatergic networks (τ𝑠𝑠=100 

msec) were unable to integrate at the observed timescales given the measured connectivity 

density (Figure 4h, right; k-l). Together, these results suggest an implementation of the 

VMHvlEsr1 line attractor that combines slow neurotransmission and relatively dense41 

subnetwork interconnectivity within an attractor creating ensemble. 
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Figure 4 | Mechanistic modelling suggests slow neurotransmission and feedback inhibition. 

a. Left: Cartoon illustrating strong but sparse connectivity among x1 neurons (1), or dense 

interconnectivity within subnetwork (2). Right: Empirical distribution of strength of pairwise 

functional connectivity between x1 neurons (green) and from x1 to x2 neurons (red) (n = 99 pairs, n 

= 7 mice). b. Cartoon illustrating different elements of an excitatory network that can determine 

network level persistent activity. c. Model simulation result showing network time constant (𝜏𝜏n) by 

varying subnetwork connectivity (σ) in range 0-20% density values and 𝜏𝜏s in range 0-20s. Blue 

portions - configurations that result in unstable networks with runaway excitation. d. Zoomed in 

version of 4c (region left of dashed line) showing glutamatergic networks with synaptic conductance 

time constant (𝜏𝜏s) in range 0.01-0.6s. e. Network time constant (𝜏𝜏n) against density of integration 

subnetwork for slow neurotransmitter (𝜏𝜏s:10,15,20s). 𝜏𝜏n varies monotonically with density for large 
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values of 𝜏𝜏s. f. Same as 4e but for glutamatergic networks (𝜏𝜏s:0.01,0.1,0.2,0.3s).  g. Cartoon 

showing modified VMHvl circuit with fast feedback inhibition incorporated. h. Left: Plot of network 

time constant (𝜏𝜏n) against density of integration subnetwork for a slow neurotransmitter network with 

𝜏𝜏s = 20s, for different values of strength of inhibition (inhibitory gain, ginh: 1.25,5,10). Right: Same 

as left but for a glutamatergic network with ts= 0.1s. i. Model simulation of a slow neurotransmitter 

network with fast feedback inhibition (ts:20s, 36% density of subnetwork connectivity). Top: Input 

(20s ISI) provided to model, Bottom: Spiking activity in network. First 200 neurons (20%) comprise 

the interconnected integration subnetwork. j. Ca2+ activity convolved from firing rate (see 

Methods) of integration subnetwork (top) and remaining neurons (bottom). k. Same as 4i but for a 

fast transmitter network (ts:0.1s, 36% density of subnetwork connectivity). l. Same as 4j but for a 

fast transmitter network (ts:0.1s, 36% density of subnetwork connectivity).  
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Attractor stability ties to connectivity 

 

The observed dynamics along the integration dimension exhibits two important 

characteristics that can reflect the stability of the line attractor: ramping activity up; and slow 

decay down, the integrator, respectively (Figure 5a). Both of these characteristics might 

either be intrinsic or be driven by external inputs to the line attractor5,40. Previously, we 

discovered that individual differences in aggressiveness among mice were positively 

correlated with the stability and decay of the VMHvl line attractor during aggression5. We 

therefore investigated whether individual differences in line attractor ramping or rate of 

decay might also be correlated with the strength of functional connectivity within the x1 

ensemble (Figure 5b, c). We plotted either the x1 decay time constants, or the rate of ramp up 

along the x1 dimension (obtained from rSLDS models fit to each mouse using data recorded 

during attack observation), against different quantitative metrics of functional connectivity 

between targeted x1 or x2 neurons and their non-targeted putative follower cells (obtained 

from the same animals following removal of the demonstrator intruder mice) (Figure 5d, e, 

Extended Data Fig. 12a). 

 

Strikingly, there was a strong correlation across mice between the time constant of the line 

attractor measured during the observation of aggression, and the strength of functional 

connectivity among integration-dimension (x1) neurons measured by post-observation 

optogenetic stimulation (Extended Data Fig. 12c, d). The strength of this correlation was 

higher after the third (r2=0.87) than the first (r2=0.59) stimulus (Figure 5g, Extended Data 

Fig. 12b), indicating that individual differences in integration dynamics become more 

apparent once the system has already integrated several inputs. In contrast, was no correlation 

between functional connectivity and the rate of ramp-up, suggesting that the latter might be 

driven by extrinsic inputs to VMHvl (Figure 5f, Extended Data Fig. 12b-d).  Importantly, the 

correlation between attractor stability and functional connectivity was specific to neurons in 

the integration (x1) subnetwork, and did not hold when rSLDS time constants were compared 

with the influence strength of targeted x1 neurons on x2 cells (Extended Data Fig. 12e-h). 
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Thus, individual differences among mice in the stability of the line attractor during the 

observation of aggression are correlated with individual differences in the functional 

connection strength among attractor-contributing neurons. 

 

Figure 5 | Strength of functional connectivity reflects line attractor stability. 

a. Example neural activity projected onto x1 (integration) dimension of one mouse observing 

aggression demonstrating the ramp when Balb/c intruder enters the cage (i.e movement up the line 

attractor) and decay following removal of a Balb/c intruder from cage (i.e movement down the line 

attractor). b. Dynamics of integration dimension aligned to entry of Balb/c intruder for three example 

mice. Note the different rates of ramping in different mice. c. Same as 5b, aligned to removal of 

Balb/c intruder showcasing different rates of decay. d .Z-score activity of non-targeted x1 neurons 

upon activation of single x1 neurons in the same mice from 5b-c. Pink vertical lines - photostimulation 

pulses. e. Illustration of different quantification approaches to the change in activity of non-targeted 

x1 neurons from 5d as either the average z-score activity following first stimulus, or the area under 
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the curve (auc).  Pink vertical lines - photostimulation pulses. f. Correlation between the rate of 

ramping of the integration dimension obtained from observation of aggression and auc of non-

targeted x1 neurons measured using area under the curve (auc) post third stimulus (r2: 0.01, n.s, n = 

8 mice). g. Correlation between rSLDS time constant obtained from observation of aggression and 

auc of non-targeted x1 neurons measured post third stimulus (r2: 0.87, ***p<0.001, n = 8 mice). h. 

Cartoon depicting summary of results illustrating causal evidence of a hypothalamic line attractor. i.

Cartoon depicting implementation of a hypothalamic line attractor encoding a behavioral internal 

state. 
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Discussion 

 

Using model-guided closed-loop all-optical experiments, we have provided causal evidence 

of line attractor dynamics in a mammalian system (Figure 5h, i). Our data and modeling also 

provided insight into the implementation of the line attractor. We found evidence of 

relatively dense, selective connectivity among a physiologically distinct subset of Esr1+ 

neurons. Whether this subset corresponds to one of the transcriptomically distinct subtypes 

of Esr1+ neurons remain to be determined31. Our models confirm the importance of rapid 

feedback inhibition7, as indicated in invertebrate ring attractor studies21,45. However, they 

differ from conventional continuous attractor models3,40 by invoking slow neuromodulatory 

transmission rather than fast glutamatergic excitation. Numerous theoretical studies have 

posited that continuous attractors relying on recurrent glutamatergic connectivity require 

precise tuning of synaptic weights to sustain stable attractor dynamics40,46,47. The slow 

neurotransmission predicted by our model may have evolved both to ensure attractor 

robustness, as well as to implement the relatively long-time scales of internal affective or 

motive states. These slow dynamics could be implemented by GPCR-mediated signaling 

triggered by biogenic amines or neuropeptides48. Consistent with this prediction, we have 

recently found that VMHvl line attractor dynamics and aggression are dependent on 

signaling through oxytocin and/or vasopressin neuropeptide receptors expressed in Esr1+ 

neurons49. However, that does not exclude a contribution from recurrent glutamatergic 

excitation in VMH, as in line attractors that mediate cognitive functions on time scales14,50. 

 

Lastly, our observations indicate a pronounced correlation between individual differences in 

the functional strength of integration subnetwork connectivity and differences in the 

measured stability of the line attractor, perhaps reflecting a leaky integrator. Previously we 

found that in freely behaving animals, individual differences in attractor stability were 

correlated with individual differences in aggressiveness5. By transitivity, this suggests that 

differences in the strength of functional connectivity within the attractor network might 
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underlie differences in aggressiveness. Because these differences are observed among 

genetically identical inbred mice, these observations suggest that attributes of the attractor, 

such as its connectivity density or strength, may be modifiable (either by genetics and/or 

experience26). Deciphering the underlying mechanisms that grant this attractor its apparent 

flexibility while maintaining its robustness represents a promising avenue for future research. 

 

Methods 

 

Mice 

 

All experimental procedures involving the use of live mice, or their tissues were carried out 

in accordance with NIH guidelines and were approved by the Institute Animal Care and Use 

Committee and the Institute Biosafety Committee at the California Institute of Technology 

(Caltech). All C57BL/6N (Bl/6N) mice used in this study, including wild-type and transgenic 

mice, were bred at Caltech. Swiss Webster (SW) male Residents and BALB/c male intruder 

mice were bred at Caltech. Experimental Bl/6N mice and resident SW mice were used at the 

age of 8–20 weeks. Intruder BALB/c mice were used at the age of 6–12 weeks and were 

maintained with three to five cage mates to reduce their aggression. Esr1 Cre/+ knock-in 

mice (Jackson Laboratory, stock no. 017911) were back-crossed into the Bl/6N background 

(>N10) and bred at Caltech. Heterozygous Esr1Cre/+ mice were used for cell-specific 

targeting experiments and were genotyped by PCR analysis using genomic DNA from ear 

tissue. All mice were housed in ventilated micro-isolator cages in a temperature-controlled 

environment (median temperature 23 °C, humidity 60%), under a reversed 11/13-h dark/light 

cycle, with ad libitum access to food and water. Mouse cages were changed weekly. 

 

Viruses 

 

The following adeno-associated viruses (AAVs), along with the supplier, injection titers (in 

viral genome copies ml–1 (vg ml–1) and injection volumes (in nanoliters), were used in this 
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study: AAV1-syn-FLEX-jGCaMP7s-WPRE (Addgene, no. 104492, roughly 2 × 1012 

vg ml–1, 200 nl per injection), AAVdj-Ef1a-DIO-ChRmine-mScarlet-Kv2.1-WPRE 

(Janelia Vector Core, around 2 × 1012 vg ml–1, 200 nl per injection).  

 

Histology 

 

Following completion of 2-photon\miniscope experiments, histological verification of virus 

expression and implant placement were performed on all mice. Mice lacking virus expression 

or correct implant placement were excluded from the analysis. Mice were perfused 

transcardially with 0.9% saline at room temperature, followed by 4% paraformaldehyde 

(PFA) in 1× PBS. Brains were extracted and post-fixed in 4% PFA overnight at 4 °C, 

followed by 24 h in 30% sucrose/PBS at 4 °C. Brains were embedded in OCT mounting 

medium, frozen on dry ice and stored at −80 °C for subsequent sectioning. Brains were 

sectioned in 80-μm thickness on a cryostat (Leica Biosystems). Sections were washed with 

1× PBS and mounted on Superfrost slides, then incubated for 30 min at room temperature in 

DAPI/PBS (0.5 μg/ml) for counterstaining, washed again and coverslipped. Sections were 

imaged with epifluorescent microscope (Olympus VS120). 

 

Stereotaxic Surgeries 

 

Surgeries were performed on sexually experienced adult male Esr1Cre/+mice aged 6–12 

weeks. Virus injection and implantation were performed as described previously25,51. Briefly, 

animals were anaesthetized with isoflurane (5%for induction and 1.5% for maintenance) and 

placed on a stereotaxic frame (David Kopf Instruments). Virus was injected into the target 

area using a pulled-glass capillary (World Precision Instruments) and a pressure injector 

(Micro4 controller, World Precision Instruments), at a flow rate of 50 nl min-1. The glass 

capillary was left in place for 5 min following injection before withdrawal. Stereotaxic 

injection coordinates were based on the Paxinos and Franklin atlas52. Virus injection: 

VMHvl, AP: −1.5, ML: ±0.75, DV: −5.75. For 2-photon experiments GRIN lenses (0.6 × 
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7.3 mm, Inscopix) were slowly lowered into the brain and fixed to the skull with dental 

cement (Metabond, Parkell). Coordinates for GRIN lens implantation: VMHvl: AP: −1.5, 

ML: −0.75, DV: −5.55). A permanent head-bar was attached to the skull with Secure Resin 

cement (parkell). For micro-endoscope experiments an additional baseplate was attached to 

the skull (Inscopix). 

 

Housing conditions for behavioral experiments 

 

All male Bl/6N mice used in this study were socially and sexually experienced. Mice aged 

8–12 weeks were initially co-housed with a female Bl/6N female mouse for 1 day and were 

then screened for attack behaviors. Mice that showed attack towards males during a 10 min 

resident intruder assay were selected for surgery and subsequent behavior experiments. From 

this point forward, these male mice were always co-housed with a female. 

 

Behavior annotations 

 

Behavior videos were manually annotated using a custom MATLAB-based behavior 

annotation interface53,54. A 'baseline' period of 5 min when the animal was alone in its home 

cage was recorded at the start of every recording session. Two behaviors during the resident 

intruder assays were annotated: sniff (face, body, genital-directed sniffing) towards male 

intruders, and attack (bite, lunge).  

 

Behavioral assays 

 

An observation arena was built from a transparent acrylic (18× 12.5× 18 cm, LxWxH), and 

a perforated part was put in front of the mice observing aggression. Perforations were 1.27 

cm diameter and spread evenly throughout the bottom third of the panel. Before initiation of 

the assay, the observation arena was scattered with soiled bedding from the cage of the 

aggressive SW demonstrator. For observation of aggression in freely behaving animals 
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(miniscope experiments) an observer was first habituates for 15 minutes. Then, a singly 

housed SW male demonstrator was introduced into the observation arena, followed 1 min 

later with the insertion of a socially housed stimulus male (BALB/c) in the same 

compartment. The observation of aggressive encounters persisted for ~1 min, then after 2 

minutes a different intruder was introduced for another minute. Observation assays were 

conducted under white light illumination. For experiments in engaging aggression, the 

resident mouse was first habituated 15 minutes then a BALB/c intruder mouse was 

introduced twice for 1-2 minutes.  For the experiments comparing neural activity of mice 

observing aggression and mice engaging aggression, we randomly changed the order of 

sessions.  For mice observing aggression in the 2P setup similar the approach was similar 

except that the observer mouse was head-fixed and on a treadmill instead of freely behaving 

in his home cage. 

 

Micro-endoscopic imaging 

 

On the day of imaging, mice were habituated for at least 15 min after installation of the 

miniscope in their home cage before the start of the behavior tests. Imaging data were 

acquired at 30 Hz with 2× spatial downsampling; light-emitting diode power (0.1–0.5) and 

gain (1–7×) were adjusted depending on the brightness of GCaMP expression as determined 

by the image histogram according to the user manual. A transistor–transistor logic (TTL) 

pulse from the Sync port of the data acquisition box (DAQ, Inscopix) was used for 

synchronous triggering of StreamPix7 (Norpix) for video recording.  

 

2-photon imaging and holographic optogenetics 

 

Two to three weeks after surgery mice were habituated to the experimenter’s hand by 

handling 15 minutes a day for three consecutive days. Once animals where habituated to the 

experimenter’s hand, they were manually scooped and gently placed on the treadmill. Mice 

were head-fixed 3 consecutive days for habituation. Head-fixation was achieved by securing 
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the head bar into a metal clamp attached to a custom head-stage. During habituation, mice 

were placed underneath the objective for 15 minutes and given access to random 

presentations of chocolate milk. Following habituation, combined two-photon imaging and 

behavior sessions were conducted. jGCaMP7s imaging was acquired via an Ultima 2P Plus 

and the Prairie View Software (Bruker Fluorescence Microscopy, USA).  Individual frames 

were acquired at 10Hz using a galvo-resonant scanner with a resolution of 1024px x 1024px. 

We used a long working distance 20x air objective designed for infrared wavelengths 

(Olympus, LCPLN20XIR, 0.45 numerical aperture (NA), 8.3mm working distance) 

combined with femtosecond-pulsed laser beam (Chameleon Discovery, Coherent). 

GCaMP was excited using a 920nm wavelength. For targeted photostimulation, the same 

microscope and acquisition system (Bruker) was used with a second laser path consisting of 

a 1035nm high power femtosecond pulsed laser (Monaco 1035-40-40, Coherent), spatial 

light modulator (512×512-pixel density) to generate multi- point stimulation montages 

(NeuraLight 3D, Bruker). During photostimulation the mice are head-fixed in complete 

darkness on a rotating cylinder that enables them to run. Neurons were selected for targeted 

photostimulation based on two criteria: 1. Their weights from the rSLDS model. 2. If they 

responded to photostimulation. In case a neuron did not show a significant increase in activity 

in response to photostimulation, a new neuron was chosen until a total of five photo-sensitive 

neurons were targeted for each grouped stimulation experiment (Figure 2).  During the 

photostimulation session, a 128-frame average image was generated in order to clearly 

highlight all neurons. To reduce off-target effect during photo-stimulation, we used small 

targets (10µm diameter) which were manually restricted to GCaMP expressing neurons. In 

addition, laser power was adjusted to be a maximum of 5mW per target. We used prairie 

software to elicit holographic photostimulation (10hz, 2s, 10ms pulse width). 

Photostimulations were done between frames to avoid laser artefacts. Importantly, to reduce 

cross activation of the ChRmine from the 920nm laser we kept laser power for imaging to be 

less than 30mW. 
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To extract regions of interest, data from mice observing aggression was uploaded to ImageJ. 

Then, videos were motion corrected using the moco plugin55. Motion corrected videos were 

averaged, and additional contrast and brightness adjustments were made to clearly highlight 

all neurons in the field of view. Then cells were manually extracted and an rSLDS model 

was used to identify x1 and x2 dimension neurons. Neurons were then identified on the field 

of view using the prairie view software and were targeted for photo-stimulation. While 

rSLDS models was running (15-20 minutes, see below), control experiments were 

conducted. 

 

 

Micro-endoscopic data extraction 

 

Preprocessing 

 

Miniscope data were acquired using the Inscopix Data Acquisition Software as 

2× downsampled .isxd files. Preprocessing and motion correction were performed using 

Inscopix Data Processing Software. Briefly, raw imaging data were cropped, 

2× downsampled, median filtered and motion corrected. A spatial band-pass filter was then 

applied to remove out-of-focus background. Filtered imaging data were temporally 

downsampled to 10 Hz and exported as a .tiff image stack. 

 

Calcium data extraction 

 

After preprocessing, calcium traces were extracted and deconvolved using the CNMF-E56 

large data pipeline with the following parameters: patch_dims = [4], gSig = 3, gSiz = 13, 

ring_radius = 17, min_corr = 0.7, min_pnr = 8. The spatial and temporal components of every 

extracted unit were carefully inspected manually (SNR, PNR, size, motion artefacts, decay 

kinetics and so on) and outliers (obvious deviations from the normal distribution) were 

discarded. 
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Terminology 

 

We use the following terminology to refer to the design and results of our experiments: 

1. “x1” or “x2” neurons:” cells that were identified by rSLDS modeling as contributing to 

dimensions x1 or x2, respectively  during observation of aggression. 

2. “targeted neurons:” rSLDS-identified cells that were purposely photostimulated. 

3. “photoactivated” neurons:  cells that were empirically found to increase their ∆F/F in 

response to photostimulation of 1 or more targeted neurons, i.e., photoresponsive neurons. 

This category includes both the purposely stimulated (targeted) and not purposely stimulated 

neurons.  The latter may include both “off-target” neurons and putative “follower cells.” 

4. “off-target” neurons:  photoactivated neurons that were not purposely photostimulated, 

but which responded to photostimulation of a selected target cell(s) with an increased ∆F/F 

because they were close enough to be inadvertently activated by light spillover from the 

targeted neuron  (15µm; see Extended Data Figure 6a-h). 

5. “putative follower cells:” neurons that responded to photostimulation and which were 

outside a 50µm radius around the targeted cell (to conservatively exclude off-target neurons; 

see Extended Data Figure 6h, 10k-n); they are putative targets (direct or indirect) of the 

targeted cell. 

 

Dynamical system models of neural data 

 

Recurrent-switching linear dynamical system (rSLDS) models16,29 are fit to neural data as 

previously described15. Briefly, rSLDS is a generative state-space model that decomposes 

non-linear time series data into a set of discrete states, each with simple linear dynamics. The 

model describes three sets of variables: a set of discrete states (z), a set of latent factors (x) 

that captures the low-dimensional nature of neural activity, and the activity of recorded 

neurons (y). While the model can also allow for the incorporation of external inputs based 

on behavior features, such external inputs were not included in our first analysis.  
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The model is formulated as follows: At each timepoint, there is a discrete state 𝑧𝑧𝑡𝑡 ∈ {1, … ,𝐾𝐾} 

that depends recurrently on the continuous latent factors (x) as follows: 

 

 𝑝𝑝(𝑧𝑧𝑡𝑡+1 ∣ 𝑧𝑧𝑡𝑡 = 𝑘𝑘, 𝑥𝑥𝑡𝑡) = softmax{𝑅𝑅𝑘𝑘𝑥𝑥𝑡𝑡 + 𝑟𝑟𝑘𝑘} (1) 

where 𝑅𝑅𝑘𝑘 ∈ ℝ𝐾𝐾×𝐾𝐾 and 𝑟𝑟𝑘𝑘 ∈ ℝ𝐾𝐾 parameterizes a map from the previous discrete state and 

continuous state to a distribution over the next discrete states using a softmax link function. 

The discrete state 𝑧𝑧𝑡𝑡 determines the linear dynamical system used to generate the latent 

factors at any time t: 

 𝑥𝑥𝑡𝑡 =   𝐴𝐴𝑧𝑧𝑡𝑡𝑥𝑥𝑡𝑡−1 + 𝑏𝑏𝑧𝑧𝑡𝑡 +  𝜖𝜖𝑡𝑡 (2) 

where 𝐴𝐴𝑘𝑘 ∈ ℝ𝑑𝑑×𝑑𝑑 is a dynamics matrix and 𝑏𝑏𝑘𝑘 ∈ ℝ𝐷𝐷 is a bias vector, where 𝐷𝐷 is the 

dimensionality of the latent space and 𝜖𝜖𝑡𝑡 ~ 𝑁𝑁(0,𝑄𝑄𝑧𝑧𝑡𝑡) is a Gaussian-distributed noise (aka 

innovation) term.  

Lastly, we can recover the activity of recorded neurons by modelling activity as a linear noisy 

Gaussian observation 𝑦𝑦𝑡𝑡 ∈ ℝ𝑁𝑁 where N is the number of recorded neurons: 

 

 𝑦𝑦𝑡𝑡 =   𝐶𝐶𝑥𝑥𝑡𝑡  + 𝑑𝑑 +  𝛿𝛿𝑡𝑡 (3) 

For 𝐶𝐶 ∈ ℝ𝑁𝑁×𝐷𝐷 and 𝛿𝛿𝑡𝑡 ~ 𝑁𝑁(0, 𝑆𝑆), a Gaussian noise term. Overall, the system parameters that 

rSLDS needs to learn consists of the state transition dynamics, library of linear dynamical 

system matrices and neuron-specific emission parameters, which we write as: 

 

𝜃𝜃 = {{𝐴𝐴𝑘𝑘𝑏𝑏𝑘𝑘,𝑄𝑄𝑘𝑘,𝑅𝑅𝑘𝑘, 𝑟𝑟𝑘𝑘}𝑘𝑘=1𝐾𝐾 ,  𝐶𝐶,𝑑𝑑, 𝑆𝑆}                                                      

 

We evaluate model performance using both the evidence lower bound (ELBO) and the 

forward simulation accuracy (FSA) (Fig. 3a) described in Nair et al., 202315 as well as by 

calculating the variance explained by the model on data. 

We employed two-dimensional models, selecting the optimal number of states through 5-

fold cross-validation. To ascertain which neurons contributed to each of the two model 

dimensions (x1 and x2), we initially confirmed the orthogonality of these dimensions by 

(4) 
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computing the subspace angle between them, (88.1 ± 0. 87º, n = 9 mice). Given this near 

orthogonality, we then utilized the columns of the emission matrix C to identify neurons that 

contributed to the two separate dimensions of the model. 

The contribution of neurons to each latent dimension are defined based on their weights from 

the emission matrix C, which is initialized by factor analysis and then optimized by rSLDS. 

In the matrix C, the rows define the weights that create the latent dimensions and columns 

defined the different latent dimensions (x1 and x2) in the model. Model performance is 

reported both as the evidence lower bound (ELBO) which is equivalent to the Kullback-

Leibler divergence between the approximate and true posterior as well as the variance (cvR2) 

explained. We cross validated the model  using 5-fold cross validation where we trained the 

data on four arbitrary portions of the data and tested on a left out fifth portion. In all 

experiments, the model must achieve at least 70% cvR2 before they are used for downstream 

analysis such as identification of x1 and x2 neurons. Models fit to miniscope data during 

engagement of aggression obtained a cvR2 = 84.7 ± 0.03%, while the same model explains 

67.2 ± 0.02% of variance in data obtained from observation of aggression. Flow fields 

obtained from head-fixed animals observing aggression where fit with input terms 

representing the presence of the BALB/c intruder. 

 

Estimation of time constants 

We estimated the time constant of each dimension of linear dynamical systems using 

eigenvalues 𝜆𝜆𝑎𝑎 of the dynamics matrix of that system, derived previously as57: 

 

𝜏𝜏𝑎𝑎 =  �
1

log(|𝜆𝜆𝑎𝑎|)
� 

 

The intrinsic leak rate is defined based on the time constant of the integration dimension 

across the whole session. The activity observed by the model takes into account both decays 

(i.e., the decays after the first and second time the intruder is removed), and therefore gives 

high prediction to the holographic perturbation experiments (cVR ~85% figures 2f, 2p). Note 

(5) 
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also that the dynamics captured by the perturbation experiments more closely resembles the 

2nd intruder interaction rather than the first. Furthermore, the SW mouse is still in the 

observation chamber between BALB/c intruders, but is removed after the 2nd intruder. For 

this reason, the observed dynamics is mostly consistent and across mice the 2nd decay seems 

faster. 

 

Calculation of line attractor score 

 

To provide a quantitative measure of the presence of line attractor dynamics, we devised a 

line attractor score as defined in Nair et al., 2023 as: 

 

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =  log2
𝑡𝑡𝑛𝑛
𝑡𝑡𝑛𝑛−1

 

where 𝑡𝑡𝑛𝑛 is the largest time constant of the dynamics matrix of a dynamical system and 𝑡𝑡𝑛𝑛−1 

is the second largest time constant. 

 

Calculation of auto-correlation half-width 

 

We computed autocorrelation halfwidths by calculating the autocorrelation function for each 

neuron timeseries data (yt) for a set of lags as described previously12.  Briefly, for a time 

series (yt), the autocorrelation for lag k is: 

 

𝑟𝑟𝑘𝑘 =
𝑐𝑐𝑘𝑘
𝑐𝑐0

 

where 𝑐𝑐𝑘𝑘 is defined as:  

𝑐𝑐𝑘𝑘 =  
1
𝑇𝑇
�(𝑦𝑦𝑡𝑡 − 𝑦𝑦�)(𝑦𝑦𝑡𝑡+𝑘𝑘 − 𝑦𝑦�)
𝑇𝑇−𝑘𝑘 

𝑡𝑡=1

 

 

and 𝑐𝑐0 is the sample variance of the data. 

(6) 

(7) 

(8) 



 

133 
 

 

Mechanistic modelling 

 

We constructed a model population of N = 1,000 standard current-based leaky integrate-and-

fire neurons as previously performed7. We first modelled a purely excitatory spiking network 

in which each neuron has membrane potential 𝑥𝑥𝑖𝑖 characterized by dynamics: 

 

 𝜏𝜏𝑚𝑚
𝑑𝑑𝑥𝑥𝑖𝑖
𝑑𝑑𝑑𝑑
  =   − 𝑥𝑥𝑖𝑖(𝑡𝑡) +  𝑔𝑔∑ 𝑊𝑊𝑝𝑝𝑖𝑖(𝑡𝑡)𝑁𝑁

𝑗𝑗=1 + 𝑤𝑤𝑖𝑖𝑠𝑠(𝑡𝑡)  

 

where 𝜏𝜏𝑚𝑚 = 20𝑚𝑚𝑚𝑚  is the membrane time constant, W is the synaptic weight matrix, 𝑠𝑠 is an 

input term representing external inputs and 𝑝𝑝 represents recurrent inputs. To model spiking, 

we set a threshold (θ = 0.1), such that when the membrane potential 𝑥𝑥𝑖𝑖(𝑡𝑡) >  θ, 𝑥𝑥𝑖𝑖(𝑡𝑡) is set 

to zero and the instantaneous spiking rate 𝑟𝑟𝑖𝑖(𝑡𝑡) is set to 1.  

 

Spiking-evoked input was modelled as a synaptic current with dynamics: 

 𝜏𝜏𝑠𝑠
𝑑𝑑𝑝𝑝𝑖𝑖
𝑑𝑑𝑑𝑑
  =   − 𝑝𝑝𝑖𝑖(𝑡𝑡) + 𝑟𝑟𝑖𝑖(𝑡𝑡),  

where 𝜏𝜏𝑠𝑠 is the synaptic conductance time constant. In excitatory networks, the network time 

constant 𝜏𝜏𝑛𝑛 was derived as 𝜏𝜏𝑠𝑠
|1−𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚| , where 𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚 is the largest eigenvalue of the synaptic 

weight matrix W40.  

 

We designed the synaptic connectivity matrix to include a subnetwork of 200 neurons (20% 

of the network), designated the integration subnetwork as suggested by empirical 

measurements, with varying densities of random connectivity as highlighted in Fig 3.  

 

Weights of the overall network were sampled from a uniform distribution:𝑊𝑊𝑖𝑖𝑖𝑖~ 𝑈𝑈(0,1/√𝑁𝑁), 

while weights of the subnetwork were sampled as 𝑊𝑊𝑖𝑖𝑖𝑖~ 𝑈𝑈(0,1/�𝑁𝑁𝑝𝑝), where 𝑁𝑁𝑝𝑝 = 200.  

(9) 

(10) 
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External input was provided to the network as a smoothened step function consisting of four 

pulses at 20 ISI as provided in vivo. This stimulus drove a random 25% of neurons in the 

network. 

 

To account for finite size effects and runaway excitation in networks, we also simulated 

models with fast feedback inhibition. This was modelled as recurrent inhibition from a single 

graded input 𝐼𝐼𝑖𝑖𝑖𝑖ℎ representing an inhibitory population that receives equal input from and 

provides equal input to, all excitatory units. The dynamics of 𝐼𝐼𝑖𝑖𝑖𝑖ℎ  evolves as:  

𝜏𝜏𝐼𝐼
𝑑𝑑𝐼𝐼𝑖𝑖𝑖𝑖ℎ
𝑑𝑑𝑑𝑑

=  −𝐼𝐼𝑖𝑖𝑖𝑖ℎ(𝑡𝑡) +  1
𝑁𝑁
∑ 𝑟𝑟𝑁𝑁(𝑡𝑡)𝑁𝑁
𝑛𝑛=1 , 

 where 𝜏𝜏𝐼𝐼 = 50𝑚𝑚𝑚𝑚 is the decay time constant for inhibitory currents. In this model, outside 

spiking events, the membrane potential evolved as: 

𝜏𝜏𝑚𝑚
𝑑𝑑𝑥𝑥𝑖𝑖
𝑑𝑑𝑑𝑑
  =   − 𝑥𝑥𝑖𝑖(𝑡𝑡) +  𝑔𝑔(∑ 𝑊𝑊𝑝𝑝𝑖𝑖(𝑡𝑡)𝑁𝑁

𝑗𝑗=1 − 𝑔𝑔𝑖𝑖𝑖𝑖ℎ𝐼𝐼𝑖𝑖𝑖𝑖ℎ(𝑡𝑡)) + 𝑤𝑤𝑖𝑖𝑠𝑠(𝑡𝑡)  

Model dynamics were simulated in discrete time using Euler’s method with a timestep of 

1ms and a small gaussian noise term 𝜂𝜂𝑖𝑖~𝑁𝑁(0,1)/5 was added at each time step. We used 𝑔𝑔 

= 1 and varied 𝑔𝑔𝑖𝑖𝑖𝑖ℎ = 1,5,10 as suggested by measurements of inhibitory input to VMHvl43. 

 

Spatial cluster decoder 

 

To examine whether x1 and x2 neurons are spatially clustered in a field of view (FOV),  we 

used a linear support vector machine (SVM) decoder trained to separate cell positions of x1 

and x2 neurons on each FOV. ‘Shuffled’ decoder data was generated by randomly assigning 

neuronal identity. Shuffling was repeated 20 times for each FOV and performance is reported 

as the average accuracy of each fit decoder.  

 

Decoding behavior from integration dimension. 

 

We trained a frame-wise decoder to discriminate bouts of attack during engaging in 

aggression from integration dimension activity during observation of attack. We first created 

(11) 

(12) 
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‘trials’ from bouts of attack during observation and engaging in aggression by merging all 

bouts that were separated by less than five seconds and balancing the data. We then trained 

a SVM to identify a decoding threshold that maximally separates the values of our 

normalized “integration dimension” signal on frames during observation of aggression 

versus all other frames and tested the accuracy of the trained decoder on held-out frames. 

‘Shuffled’ decoder data was generated by setting the decoding threshold on the same “trial”, 

but with the behavior annotations randomly assigned to each behavior bout. We repeated 

shuffling 20 times. We then tested the decoder trained on data from observation, on frames 

during attack while the animals were engaging in aggression. We report performances of 

actual and shuffled 1D-threshold “decoders” as the average accuracy score of the fit decoder, 

on data from all other “trials” for each mouse. For significance testing, the mean accuracy of 

the decoder trained on shuffled data was computed across mice, with shuffling repeated 1000 

times for each mouse. 

 

Examining the effect of motion on neural encoding during observation of aggression in 

head-fixed mice. 

 

We used an analysis designed to detect motion from video recordings of head-fixed mice58. 

To detect motion this method uses singular value decomposition (SVD) to extract groups of 

pixels showing high differences in luminance or contrast between consecutive frames. We 

extracted 500 SVDs from our video recordings that reflect different sources of motion 

including movements of the limbs, whiskers, nose, ears and more. To predict neural activity 

from behavior, we trained generalized linear models to predict the activity of each neuron k, 

as a weighted linear combination of the first 10 PCs of the 500 SVDs (reflecting over 90% 

of the SVDs variance) as follows:  

 

𝑦𝑦𝑘𝑘(𝑡𝑡) = 𝑥⃑𝑥(𝑡𝑡)𝛽𝛽 + 𝜑𝜑 

 
(13) 
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Here, 𝑦𝑦𝑘𝑘(𝑡𝑡) is the calcium activity of neuron k at time t, 𝑥⃑𝑥(𝑡𝑡) is a feature vector of 10 binary 

reduced SVD dimensions at time lags ranging from t-D to t where D = 10s. 𝛽𝛽 is a behavior-

filter which described how a neuron integrates stimulus over a 10s period (example filters 

are shown in Extended Data Fig.5c).  𝜑𝜑 is an error term. The model was fit using 10-fold 

cross validation with ridge regularization and model performance is reported as cross-

validated 𝑅𝑅2 (cv𝑅𝑅2).  

 

Statistical analysis 

 

Data were processed and analyzed using Python, MATLAB, and GraphPad (GraphPad 

PRISM 9). All data were analyzed using two-tailed non-parametric tests. Mann-Whitney U-

test were used for binary paired samples. Friedman test was used for non-binary paired 

samples. Kolmogorov-Smirnov test was used for non-paired samples. Multiple comparisons 

were corrected with Dunn’s multiple comparisons correction. Not significant (n.s), p > 0.05; 

*p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001. 

 



 

137 
 

Extended Data (Supplemental) Figure 1 
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Extended Data Fig. 1 | Shared line attractor dynamics in engaging and observing aggression. 

a. Implantation of miniscope, field of view (top) and fluorescence image showing histology (bottom) 

with jGCaMP7s expression in VMHvl. N = 5 mice. b.  Experimental paradigm to record 

VMHvlEsr1 activity in mice engaging in aggression. c.  Left: neural & behavioral raster of example 

mouse 1 when engaging in aggression. Right: example neurons. d. Experimental paradigm to record 

VMHvlEsr1 activity in same mice in Ex. Data 1c during observation of aggression. e. Left: neural 

& behavioral raster of example mouse 1 during observation of aggression. Right: example neurons. 

f.  Overview of rSLDS analysis. g. Left: rSLDS time constants in example mouse 1. Right: Neural 

activity projected onto two dimensions (x1 & x2) of dynamical system. h.  Behavior triggered 

average of x1 and x2 dimensions, aligned to introduction of male intruder (n = 5 mice, average trace 

in dark red and black ± sem in shaded area). i. Behavior triggered average of x1 dimensions, aligned 

to first attack onset (n = 5 mice, average trace in dark red ± sem in shaded red area). j. Left: rSLDS 

time constants in example mouse 1 during observation of aggression. Right: Neural activity projected 

onto two dimensions (x1 & x2) of dynamical system. k. Behavior-triggered average of x1 and x2 

dimensions from observation of aggression, aligned to introduction of BALB/c into resident’s cage 

(n = 5 mice, average trace in dark purple and black ± sem in shaded area). l. Behavior triggered 

average of x1 dimensions from observation of aggression, aligned to first bout of observing attack (n 

= 5 mice, average trace in dark purple ± sem in shaded purple area). m.Average activity in the x1 

dimension during sniffing of the SW mouse, vs observing the SW mouse a BALB\c intruder (n = 4 

mice, *p = 0.0286, Two-tailed Mann Whitney U-test, error bars - sem). n. rSLDS time constants 

across mice engaging in aggression (n = 5 mice, *p = 0.0079, Two-tailed Mann Whitney U-test, error 

bars - sem). o. Line attractor score across mice engaging in aggression (n = 5 mice, error bars - sem). 

p. rSLDS time constants across mice during observation of aggression (n = 5 mice, *p = 0.0079, 

Two-tailed Mann Whitney U-test, error bars - sem).  q.  Line attractor score across mice during 

observation of aggression (n = 5 mice, error bars - sem).  
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Extended Data Figure 2 

 
Extended Data Fig. 2 | Flow fields from miniscope experiments during engagement and observation 

of aggression.  

Flow fields from all mice showing neural trajectories aligned to removal of the intruder or 

demonstrator mouse in either observation or engagement of aggression. Dashed lines highlight region 

of slow points (line attractor).  
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Extended Data Figure 3 
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Extended Data Fig. 3 | Comparing neuronal activity of x1 neurons during engaging vs. observing 

aggression. 

a. Normalized neuronal activity of all x1 neurons from example mouse 5 when engaging in 

aggression (left) and observing aggression (right). Bottom: Raster plots of the activity of all neurons 

from x1 dimension in mouse 5. b.  Same as Extended Data 2c but for example mouse 2. 

c. comparing the activity of x1 neurons between observing and engaging in aggression. Left: Average 

activity across mice (n=5 mice, shaded area is sem). Right: comparison of the activity during 

observing attack bouts and engaging in attack (n=5 mice, p = 0.42, Two-tailed Mann-Whitney U-test, 

error bars - sem). d. Activity of x1 neurons aligned to removal of last intruder during observation and 

engaging in aggression (n=5 mice, shaded area is sem). e. Quantification of autocorrelation half-

width for x1 neurons in both conditions during the full interaction (mean achw during observation: 

25 ± 0.8s, mean achw during engagement: 20 ± 1.7s, n=5 mice, p=0.125, Two-tailed Mann-Whitney 

U-test, error bars - sem). f. Quantification of achw for x1 neurons in both conditions aligned to 

removal of last intruder (mean achw during observation: 14 ± 1s, mean achw during engagement: 11 

± 1.6s, n= 5 mice, p=0.187, Two-tailed Mann-Whitney U-test, error bars - sem). g. Decoding bouts 

of attack during engaging in aggression from integration dimension activity during observation of 

attack. Left: Decoder strategy. A SVM decoder was trained on data from integration dimension 

activity to separate bouts of observing attack from non attack bouts. Right: Quantification of the 

decoder accuracy performance (n= 5 mice, p = 0.0079, Two-tailed Mann-Whitney U-test, error bars 

- sem). h. Left: Strategy for testing the decoder. The SVM decoder that was trained on observation of 

attack is tested with data from engaging in attack. Right: Quantification of the performance of the 

decoder on engaging vs shuffled data (n= 5 mice, p = 0.0079, Two-tailed Mann-Whitney U-test, error 

bars - sem).   
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Extended Data Figure 4 
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Extended Data Fig. 4 | Single cell comparison of integration neurons across conditions. 

a. Single cell contribution of x1 dimension (rSLDS weights) from engagement of aggression in 

example mouse. b. Single cell contribution of x1 dimension (rSLDS weights) from observation of 

aggression in example mouse. c. Overlap in neurons contributing to line attractor x1 & x2 dimension 

from rSLDS performing independently in engaging versus observing aggression. Left: Example 

mouse, Right: Average across 5 mice, error bars - sem. d. Dot product of x1 neural weight vectors 

during observation vs. engagement in aggression. rSLDS weights of the x1 dimension during 

observation were compared to model weights of the x1 and x2 dimensions during engagement using 

a dot product of the two weight vectors. Example raster of baseline activity from one mouse freely 

behaving while solitary in the cage (n= 5 mice, *p = 0.0079, Two-tailed Mann-Whitney U-test, error 

bars - sem). e. Example raster of baseline activity from one mouse freely behaving while solitary in 

its home cage. f. Example single-cell traces from raster in Ex. Data Fig.e. Top - x1 neurons, bottom - 

x2 neurons. g. Comparison of frequency of Ca+2 transients (above 1.5σ in z-score activity) during 

baseline recordings across mice (mean frequency x1: 1.6 ± 0.2 events, mean frequency x2: 2.3 ± 0.2 

events, n= 5 mice, *p = 0.012, Two-tailed Mann-Whitney U-test, error bars - sem). h. Comparison 

of the mean amplitude of Ca+2 transients in x1 vs. x2 neurons during baseline recordings, averaged 

across mice (mean amplitude x1: 0.58 ± 0.04 z-score, mean amplitude x2: 0.71 ± 0.08 z-score, n= 5 

mice, p = 0.188, Two-tailed Mann-Whitney U-test, error bars - sem). i. Comparison of the decay 

time of Ca+2 events during baseline recordings across mice (mean tau x1: 1.7 ± 0.6s, mean tau x2: 

2.3 ± 0.4s, n= 5 mice, p = 0.34, Two-tailed Mann-Whitney U-test, error bars - sem).   
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Extended Data Figure 5 
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Extended Data Fig. 5 | Readouts of behavior and motion in head-fixed mice.  

a. Top: Experimental paradigm for 2-photon imaging in head-fixed mice observing aggression. A 

920nm 2-photon laser was used to monitor activity of Esr1+ neurons in VMHvl. Middle: One frame 

from a video recorded during observation of aggression. Bottom: An example of one motion SVD. 

b. Top: Neural activity raster during observation of aggression. Bottom: examples of SVD outputs 

over time during observation of aggression. c. Top: Predicted neuronal activity of single neurons and 

their variance explained by a generalized linear model (GLM) from SVDs readout over time. Bottom: 

Two example cells with different levels of variance explained. d.  Estimated cumulative distribution 

of variance explained by the GLM of either x1 or x2 neurons across all mice. e. Statistical 

comparison of variance explained by GLM of x1 activity or x2 activity neurons per mouse (n = 7 

mice, p = 0.8125, Two-tailed Mann-Whitney U-test, error bars - sem).  f. Top: One frame from a 

video recorded during group photo-activation of x1 neurons. Middle: An example of one motion 

SVD. Bottom: Time-evolving activity of top 3 SVDs aligned to x1 activation (vertical red bars = 

photoactivation pulses). g. Projection of top 5 motion SVDs and stimulus triggered averaged of each 

SVD aligned to the start of x1 activation. h. Average response in top 5 SVDs during pre-stimulus 

and stimulus periods (n = 8 mice, p >0.05, Two-tailed Mann-Whitney U-test, error bars - sem). i.

 Same as g, but for activation of x2 neurons. j. Same as h, but for activation of x2 neurons.  
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Extended Data Figure 6 
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Extended Data Fig. 6 | Controls for off-target effects of 2P photoactivation 

a. GRIN lens changes the spatial resolution based on the axial depth. Left: imaging a calibration slide 

with 40μm fluorescent squares at different axial distances below the GRIN lens. Right: imaging in-

vivo jGCaMP7s expressing Esr1+ neurons in the VMHvl at different axial distances below the GRIN 

lens. N = 9 mice. b. Magnification ratio at different imaging depths calculated from the fluorescent 

calibration slide. c. Quantification of the relationship between imaging depth and magnification error. 

Linear regression is used to estimate the degree of aberration caused by the GRIN lens. d. Example 

field of view illustrating the experimental procedure for mapping the spatial resolution of 2P targeted 

photo-stimulation through the GRIN lens. Reference neurons were targeted first with a spot centered 

on their somata, and then again stepwise at different distances from the soma center along each of the 

four cardinal directions, using 10µm diameter stimulation spirals. N = 17 cells. e. Average response 

of all tested neurons to stimulation at each location from the soma. The red-boxed trace indicates the 

response observed when the stimulation spot is centered on the reference cell (0 µm).f. Estimated 

cumulative distribution of the reference cell responses at different distances from soma. Lighter 

shades of red represent responses at distances progressively further from the soma. n=17 neurons, 

average trace in dark ± sem in shaded area. g.  Average neural activity of all 17 reference neurons 

tested using the procedure in Ex. Data Fig. e. Shaded area represents standard error of the mean. Note 

that at 15µm the average response in the reference cells is close to zero.  h. Normalized average 

activity of all neurons at different distances from soma. Each row is a different experiment on a 

different reference cell. i.  Representative examples of field of views from two mice. Green - all x1 

neurons, Red – all x2 neurons, black - non x1 or x2 neurons. Fov - field of view. j. Example 

illustrating how distances are calculated for estimating the spatial clustering of x1 and x2 neurons. k.

 Quantification of average distance within x1 and x2 neurons and between x1 and x2 neurons, across 

mice (n=8 mice, p>0.05: Kruskal-Wallis test with Dunn’s correction for multiple comparison, error 

bars - sem).   
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Extended Data Figure 7 

 

Extended Data Fig. 7 | Spatial clustering of neurons and activity comparison. 

a. Support vector machine decoder trained to separate cell positions of x1 versus x2 neurons. Scenario 

1 shows a cartoon where cells are perfectly separated by the SVM decoder and scenario 2 shows a 

cartoon where cells are inseparable based on their spatial location and shows low classifier accuracy. 

b. Accuracy of SVM decoder trained on data versus shuffled control (n=10 mice, p=0.156: Two-

tailed Mann-Whitney U-test, error bars - sem).  c. Classification width of SVM decoder trained on 

data versus shuffled control (n=10 mice, p=0.578: Two-tailed Mann-Whitney U-test).  d. Neural 

activity of five x1 neurons selected for grouped optogenetic targeting during observation of 

aggression. e. Neural activity of same five x1 neurons in Ex. Data 3d during grouped optogenetic 

activation. f. Comparison of peak z-score of x1 neurons selected for grouped optogenetic activation 

during observation of aggression and during optogenetic activation (n = 8 mice, p>0.05: Two-tailed 

Mann-Whitney U-test, error bars - sem).  
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Extended Data Figure 8 
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Extended Data Fig. 8 | Characterization of line attractor properties. 

a.  Average activity projected onto x1 dimension from activation of x1 neurons across mice using 8s 

inter stimulus interval (n = 7 mice). Shaded area – sem. Right: Quantification of average z-scored 

activity of projected x1 dimension during baseline or inter stimulus intervals (n = 7 mice, n.s p = 0.3, 

**p = 0.0012, **p = 0.0012, *p = 0.0192  Kruskal-Wallis test with Dunn’s correction for multiple 

comparison, error bars - sem). b. Average activity projected onto x2 dimension from activation of x2 

neurons across mice using 8s inter stimulus interval (n = 7 mice). Shaded area – sem. Right: 

Quantification of average z-scored activity of projected x2 dimension during baseline or inter 

stimulus intervals (n.s p>0.05, n = 7 mice, Kruskal-Wallis test with Dunn’s correction for multiple 

comparison, error bars - sem). c. Data and model prediction of applying stimulation paradigm in 

Figure 2c to rSLDS model trained on observing aggression. d. Data and model prediction of 

applying stimulation paradigm in Figure 2j to rSLDS model trained on observing aggression. e.  x1 

integration dimension activity with 1mW per neurons (blue) and 5mW per neuron (red). Shaded area 

– sem. n = 8 mice.  f.  Quantification of average z-scored activity of projected x1 dimension neurons 

in 1mW and 5mW per neuron during baseline or various inter stimulus intervals (n = 8 mice, *p = 

0.0295, *p = 0.0186, *p = 0.045, n.s p = 0.7, Two-tailed Mann-Whitney U-test, error bars - sem). g.

 Paradigm for examining activity in x2 dimension upon grouped holographic activation of x1 

neurons. h.  Average z-score activity of neural activity projected onto x2 dimension across mice (n = 

8 mice). Shaded area – sem. i. Quantification of activity in non-targeted x2 dimension upon grouped 

holographic activation of x1 neurons (n.s, n = 8 mice, Kruskal-Wallis test with Dunn’s correction for 

multiple comparison, error bars - sem). j. Paradigm for examining activity in x1 dimension upon 

grouped holographic activation of x2 neurons. k. Average z-score activity of neural activity projected 

onto x1 dimension across mice (n = 8 mice, Shaded area – sem). l. Quantification of activity in non-

targeted x1 dimension upon grouped holographic activation of x2 neurons (n.s p = 0.276, n.s p = 

0.276, **p = 0.0072, *p = 0.03, n = 8 mice, Kruskal-Wallis test with Dunn’s correction for multiple 

comparison, error bars - sem).  
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Extended Data Figure 9 

 

 

 

 

 



 

152 
 

Extended Data Fig. 9 | Examination of finite nature and stability of line attractor.  

a. Top: model prediction, assuming there is a finite length of the attractor, after the system reaches a 

certain point along the attractor, further pulses of activity will not cause a further ramp. Bottom: If 

the line attractor is infinite, then each activation should push the system further along the attractor. b.

  Example from one mouse comparing the prediction of finite (top) and infinite (bottom) model of 

the line attractor. Pink lines represent time of photoactivation. Mse - mean square error between 

model and the data. c. Comparison of the mse of the whole trace between the data and either the finite 

or infinite models (n = 8 mice, **p<0.001, Two-tailed Mann-Whitney U-test, error bars - sem). d.  

Same as Ex. Data Fig.9c but comparing only after the third pulse. Note that the scale of the y axis in 

Ex. Data Fig.9d is twice as big as in Ex. Data Fig.9c (n = 8 mice, **p<0.00, Two-tailed Mann-

Whitney U-test, error bars - sem). e. Testing off-manifold perturbations further along the attractor. 

Experimental design: first we ramp the activity mid-way along the line attractor using activation of 

x1 neurons, then test the population vector trajectory after targeting of x2 neurons. f. Left: 

stimulation paradigm. Right: Scheme of the quantification approach for the effect of off manifold 

targeting further along the attractor. g. State space and the activity ramp following x1 photo-

activation (showing only three pulses to avoid clutter). h. Same as Ex. Data Fig. 9g but for x2 photo-

activation. i. Quantification of the activity distance from baseline after each photostimulation (n= 8 

mice, Kruskal-Wallis test with Dunn’s correction for multiple comparison, **p = 0.0025, n.s p>0.05, 

error bars - sem). j. Effect of grouped holographic activation of randomly selected neurons on 

activated neurons. Shaded area – sem, n = 5 mice. k. Average z-score activity of non-targeted x1 

dimension upon activation of random neurons. Shaded area – sem n = 5 mice. l. Average z-score 

activity of non-targeted x2 dimension upon activation of random neurons. Shaded area – sem, n = 5 

mice. m. Left: Quantification of activity in non-targeted x1 dimension upon grouped holographic 

activation of random neurons (n.s, p>0.05, Kruskal-Wallis test with Dunn’s correction for multiple 

comparison, n = 5 mice, error bars - sem). Right: Comparison of grouped activation of x1 neurons 

(green, reproduced from Fig. 2c, right) and grouped activation of random neurons on activity of x1 

dimension (black, reproduced from Ex. Data 3m, left, error bars - sem).  n. Quantification of activity 

in non-targeted x2 dimension upon grouped holographic activation of random neurons (n.s, p>0.05, 

Kruskal-Wallis test with Dunn’s correction for multiple comparison, n = 5 mice, error bars - sem).  
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Extended Data Figure 10 
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Extended Data Fig. 10 | Impact of functional connectivity measurements on non-targeted neurons 

a. Experimental design. We grouped activated five x1 neurons (three are shown for illustrative 

purposes) and examined the activity of non-targeted photoactivated x1 neurons following exclusion 

of off-target neurons. b. Z-score activity of x1 dimension photoactivated neurons not targeted for 

photo-stimulation. N = 8 mice. Shaded area – sem. c. Quantification of average z-scored activity of a 

weighted average of non-targeted x1 dimension neurons during baseline or various inter- photo-

stimulation intervals. (n = 8 mice, error bars - sem).d. Experimental design for decoding analysis. 

We examined whether the activity of non-targeted but photoactivated x1 or x2 dimension neurons 

can be used to decode integration of direct photo-stimulation by groups of five targeted x1 neurons 

(three are shown for simplicity), using a support vector machine (SVM) decoder. e. One example 

mouse showing the activity of targeted x1 dimension neurons (black), activity decoded from non-

targeted x1 neurons (green), and activity decoded from x2 non-targeted neurons (orange).f. Same as 

Ex. Data Fig. 9e but averaged over 8 mice. Shaded area – sem. g. Decoding from non-targeted x1 

neurons can explain significantly more variance (80% versus 40%) than non-targeted x2 or randomly 

selected neurons (n = 8 mice, *p = 0.01, ***p = 0.0003, n.s. p >0.05, Kruskal Wallis test with Dunn’s 

correction for multiple comparisons, error bars - sem). h. Fraction of non-targeted neurons with 

either positive or negative response (defined by whether their mean response post photostimulation 

of targeted x1 neuron is 1.5 std above or below baseline activity).i. Averaged activity of non-

targeted neurons with either a positive (left), negative (middle) or no significant response (right). 

Shaded area – sem. N = 8 mice. j. Cartoon illustrating how the relationship between spatial distance 

and response 4in putative “follower” x1 neurons is assessed. k. Example field of view showing z-

score response in all neurons in a field of view. The filled-in black cell is the targeted x1 neuron and 

the shaded region around it shows a 50µm stringent zone of exclusion. Putative follower cells are 

shaded according to their z-score response (see color scale). Note that some of the most strongly 

activated cells are located >100µm from the targeted cell. l. Histogram of distance between targeted 

x1 neuron and all putative “follower” x1 neurons (mean: 139 ± 35 µm). m. Scatter plot showing the 

relationship between distance and response in putative “follower” x1 neurons. Blue line shows the 

regression line. 11% of all assessed putative “follower” x1 neurons are within 50µm of the targeted 

x1 neurons. n. Average response from scatter plot in ‘m’. Black line –mean over moving window of 

15um. Shaded area – sem. o. Average response in non-targeted x1 neurons from photo-stimulation of 

single x1 neuron with (black trace) and without (green trace) exclusion of neurons within a 50µm 



 

155 
 

radius of the targeted neuron (pink shaded region in Ex. Data. Fig. 10l-n). Shaded area – sem. N = 8 

mice. 

p. Quantification of data from Ex. Data Fig.10o at various time periods after each photo-stimulation 

pulse. n.s: not significant, Kruskal-Wallis test with Dunn’s correction for multiple comparisons, error 

bars - sem. N = 8 mice. q. x1 integration dimension activity with activation of one neuron (blue) 

versus five neurons (red). N = 8 mice. Shaded area – sem. r. Quantification of average z-scored 

activity of projected x1 dimension neurons with one neuron (blue) versus five neurons (red) during 

baseline or various inter stimulus intervals. N = 8 mice, *p = 0.0239, **p = 0.0063, **p = 0.0074, *p 

= 0.0341, Kruskal-Wallis test with Dunn’s correction for multiple comparisons, error bars - sem. 
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Extended Data Figure 11 

 

Extended Data Fig. 11 | Deriving network time constant for model simulations 

a. Analytical derivation of network time constant from connectivity matrix of purely excitatory 

recurrent neural network.   
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Extended Data Figure 12 
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Extended Data Fig. 12 | Additional quantifications of the correlation between functional connectivity 

and the stability of the decay and ramp.  

a. Illustration of different quantification approaches to the change in activity of non-targeted x1 

neurons from Main Figure 4b as either the average z-score activity following different stimulus 

pulses, or the area under the curve (auc).  Red vertical lines, photostimulation pulses. b. Left: 

Correlation between the rate of ramping of the integration dimension obtained from observation of 

aggression and average z-score of non-targeted x1 neurons measured using the average z-score post 

third stimulus (r2: 0.01, n.s, n = 8 mice). Right: Correlation between rSLDS time constant obtained 

from observation of aggression and average z-score across non-targeted x2 neurons measured using 

the average z-score post third stimulus (r2: 0.87, ***p<0.001, n = 8 mice). c.  Same as b) but 

calculated from non-targeted x1 neurons measuring the auc of activity post first stimulus. d. Same as 

c), calculated from non-targeted x1 neurons measuring the average z-score activity. e. Same as c) 

but calculated from non-targeted x2 neurons measuring the AUC of activity post third stimulus. f.

 Same as e) but calculated using the average z-score activity. g. Same as e) but calculated post first 

stimulus. h. Same as g) but calculated using the average z-score activity.   
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C h a p t e r  I V  

IMPLEMENTATION 

 

 

 

“�പകൃതി ഓേരാ അേ�ാംേയാടുംേപാലും സ്േനഹി�േ�ാൾ, അവെയാെ� 

േചർ�് ഈ �ഭമമായ ജീവിത�ിന്െറ ഒരു പാ�ുേപാെലയായി.” 

Sugathakumari, Ambalamani, 1994 

Translation: “When nature loved even each atom, they all came together like a song in this 
illusory life.” 
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C h a p t e r  I V  

A line attractor encoding a persistent internal state requires neuropeptide 

signaling 

 

Published as and adapted from George Mountoufaris, Aditya Nair, Bin Yang, Dong-Wook 

Kim, Amit Vinograd, Sam Kim, Scott W. Linderman and David J. Anderson. A line attractor 

encoding a persistent internal state requires neuropeptide signaling. Cell. (2024) 

Summary 

Internal states drive survival behaviors, but their neural implementation is poorly understood. 

Recently we identified a line attractor in the ventromedial hypothalamus (VMH) that 

represents a state of aggressiveness. Line attractors can be implemented by recurrent 

connectivity or neuromodulatory signaling, but evidence for the latter is scant. Here we show 

that neuropeptidergic signaling is necessary for line attractor dynamics in this system, using 

a novel approach combining cell type-specific CRISPR/Cas9-based gene editing with single-

cell calcium imaging. Co-disruption of receptors for oxytocin and vasopressin in adult VMH 

Esr1+ neurons that control aggression suppressed attack, reduced persistent neural activity 

and eliminated line attractor dynamics, while only slightly reducing overall neural activity 

and sex- or behavior-specific tuning. These data identify a requisite role for neuropeptidergic 

signaling in implementing a behaviorally relevant line attractor in mammals. Our approach 

should facilitate mechanistic studies in neuroscience that bridge different levels of biological 

function and abstraction. 

 

 

This chapter details efforts to probe the mechanisms underlying line attractor 
dynamics and uncovers a non-canonical implementation of attractor dynamics 

based on neuropeptides 
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Introduction 

Innate survival behaviors such as aggression, mating, feeding and defense are driven by 

internal motivational or affective states1-3, which are experienced in humans as subjective 

feelings4,5. How and where such internal states are encoded in the brain, and how they are 

causally related to overt behavior, is emerging as a major topic in circuit and systems 

neuroscience6,7. 

 

The study of internal states has been pursued via two approaches that have until recently 

remained relatively separate. One, a “bottom-up” approach, employs genetically or 

pharmacologically based manipulations of genes and neural circuits6,8,9 aimed at providing 

causal explanations for behavioral and psychological internal states10-12. The other, a “top-

down” approach, identifies internal states computationally in high-dimensional neural 

population activity13,14. The latter has revealed attractors as a mechanism for encoding low-

dimensional variables underlying cognitive functions15-19. More recently, such models have 

been applied in behavioral neuroscience as well20-22.  To test the causal role of such attractors 

it is important to understand their neural implementation at the level of cell types and genes. 

This in turn requires integration of these two approaches23, which has been accomplished in 

very few systems24,25. 

 

Persistent neural activity (on a timescale of seconds to minutes) is a characteristic feature of 

neural integrators and attractor dynamics18,26,27. Two alternative (but not mutually exclusive) 

implementation mechanisms are typically invoked to explain such persistence: recurrent fast 

synaptic connectivity or slow neuromodulation28. While there is evidence of recurrent 

connectivity underlying a ring attractor that encodes head direction in Drosophila24,25,29, to 

our knowledge there is no evidence of any neuromodulator that controls attractor dynamics 

in any system.  

 

Neuropeptides comprise a class of evolutionarily conserved neuromodulators30,31 that control 

behavior-specific internal motive states associated with mating32,33, aggression34-36, social 
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attachment37,  as well as other behaviors. Neuropeptides are well known to modulate synaptic 

strength and neural circuit properties such as patterns of oscillation38-40, but their role in 

implementing neural integrator and attractor dynamics has not been extensively studied in 

vertebrates. Experiments in C. elegans have identified neuropeptides that control persistent 

states of locomotor activity41,42, but whether they influence dynamical manifolds identified 

in that system43 is not yet clear . 

 

A powerful approach to this question is to combine cell type-specific genetic perturbations 

of neuromodulatory signaling with simultaneous large-scale recording of neural activity in 

the same brain region and genetically defined cell type. While these experimental modalities 

have been successfully integrated in C. elegans42,44, D. melanogaster45,46 and larval 

zebrafish47, they have been difficult to combine in mammalian systems, for technical reasons 

(Supplementary Figure S1A).  

 

Here we use a novel viral-based strategy that integrates cell type-specific CRISPR/Cas9-

based multiplex gene editing48,49 with single unit-resolution calcium imaging of neural 

dynamics in freely behaving adult animals50, which we call “CRISPRoscopy”. This method, 

when combined with dynamical systems modeling51,52, allows investigation of the effects of 

local inactivation of different neuromodulatory systems on neural population coding, 

dynamics and behavior, in the same brain region and cell type during naturalistic behaviors.  

 

As a proof-of-concept application of this approach, we have examined the role of oxytocin 

(OXT) and arginine vasopressin (AVP) signaling in a population of ventromedial 

hypothalamic (VMH) neurons that control aggression53,54. We chose these peptides for 

several reasons. First, they have been widely implicated in the control of social behaviors37,55 

(although the role of OXT in social behaviors, such as aggression, has been controversial56-

58). Second, VMH neurons are known to express receptors for OXT and AVP59,60 and 

infusion of the latter into VMH can enhance aggression in hamsters61.  Third, aggression is 

an instinctive and phylogenetically widespread social behavior that expresses an internal 
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affective state62,63. Finally, dynamical systems modeling51,52 of population activity from 

estrogen receptor-1 (Esr1)-expressing neurons in the ventrolateral subdivision of the VMH 

(VMHvlEsr1)64 has revealed an approximate line attractor (or leaky integrator). This attractor 

is intrinsic to VMHvl65 and represents a scalable, persistent aggressive internal state21. 

 

Here we show that genetic perturbation of OXT and AVP receptors in VMHvlEsr1 neurons 

disrupts aggressive behavior, persistent activity and line attractor dynamics, while only 

modestly affecting overall neuronal activity and population coding of behavior or intruder 

sex66. These data provide evidence of a requirement for neuropeptides in line attractor 

dynamics and strengthen the link between such dynamics and an internal affective state. 

 

Results  

 

Oxtr/Avpr1a-mediated neuropeptidergic signaling in VMH is required for male 

territorial aggression 

 

While OXT, AVP and their receptors have been studied extensively in rodent aggression 

using pharmacologic reagents and zygotic gene knockouts32,56,75-78, there are no reports of a 

specific requirement in offensive aggression for either Oxtr or Avpr1a in murine VMHvl. 

Using a newly developed, Cre-dependent gene editing strategy, we investigated the effect of 

Oxtr/Avpr1a co-editing on social behaviors in mice injected in VMH bilaterally with the 

OAR-gRNA LV (control) and a Cas9 AAV (experimental group), using a standard resident 

intruder (RI) assay. We used single-housed, sexually experienced wild-type C57BL/6N 

resident males pre-selected for adequate aggressiveness (Figure 2F, see Methods). Control 

animals were co-injected bilaterally with the scrambled gRNA (Scr gRNA) and Cas9 viruses 

(control group). Experimental mice displayed a notable reduction in aggression towards male 

intruders, as evidenced by significant decreases in the number and time-varying probability 

of attack bouts, the total time spent attacking and the average duration of each attack bout; 

in addition, the latency to the 1st attack bout was significantly increased (Figure 2Ai-ii and 
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Supplemental Figure S1A, Bi, ii). These behavioral effects were not due to defects in 

locomotor activity since average velocity during attack episodes was similar between 

experimental and control mice (Supplemental Figure S1Biii). In contrast, the time spent in 

close investigation (sniffing) of male intruders did not differ significantly between 

experimental and control male residents (Figure 2Aiii). Experimental males also did not 

differ significantly from controls in their sniffing or mounting behavior towards female 

intruders (Figure 2B and Supplemental Figure S1C). 

 

These data suggest that Oxtr and/or Avpr1a expressed in VMHvl neurons play a requisite 

and selective role in aggressive behavior. Furthermore, they motivated us to analyze next 

how disrupting these receptors specifically in Esr1 neurons affects behavior, neural activity, 

population coding and network dynamics in vivo. 

 

 

Figure 1 | CRISPR/Cas9 based co-perturbation of Oxtr and Avpr1a reduces territorial aggression in 

males. a) Quantification of the male directed behaviors in experimental and control males. b) 

Quantification of female directed behaviors in experimental and control males. n= 11 mice per group. 

Statistics: Mann-Whitney test was performed **p≤0.01. 
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Single cell “CRISPRoscopy” imaging of VMHvlEsr1 neurons with co-disruption of 

Oxtr/Avpr1a 

 

To investigate how co-editing of Oxtr/Avpr1a affects activity in individual VMHvlEsr1 

neurons, we imaged Ca2+ activity using a miniature head-mounted microscope50 in Esr1-2A-

CRE males co-injected with the experimental or control virus pairs. We call this approach 

“CRISPRoscopy.” To avoid reducing aggressive behavior, we performed calcium imaging 

and Oxtr/Avpr1a co-disruption unilaterally (Figure 2A). Because there are virtually no 

commissural connections between VMHvl, unilateral loss-of-function manipulations are 

typically compensated by the unmanipulated side82,84. Indeed, unilateral injected 

experimental animals displayed no deficits in sniffing or aggression compared to controls 

(Supplementary Figure 2A).  This design allowed us to determine the effects of Oxtr/Avpr1a 

co-disruption on neural activity and dynamics in behaviorally normal animals. 

 

 Effect of Oxtr/Avpr1a co-editing on VMHvlEsr1 activity and intruder sex 

representations 

 

Our previous single unit calcium imaging studies have shown that socially experienced males 

contain distinct VMHvlEsr1 subpopulations that are activated by males vs. female intruders, 

respectively66,82,84. This tuning separation was also clear in raster plots of VMHvlEsr1 units 

imaged in control vs experimental (Oxtr/Avpr1a co-edited) males (Figure 2B). To quantify 

the proportion of intruder sex-tuned neurons, we measured unit activity during the first two 

minutes after the introduction of a male or female intruder in two ways: either by z-scoring 

(relative to the cell’s mean fluorescence over the entire recording period), or by the change 

in fluorescence relative to the mean pre-intruder baseline82,84 (in units of σ; see Methods).  

During interactions with a male intruder, the experimental cumulative distribution function 

(ECDF) and mean activity of all units (pooled from n=4 control and n=7 experimental 

animals) were slightly but significantly decreased in experimental mice (Figure 2Ei, Fi; 
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Supplementary Figure 2Di). However, the mean activity among cells considered as “active” 

(≥ 2σ above baseline66) did not differ between control and experimental mice (Supplemental 

Figure S2E). During interactions with females there was no significant difference in activity 

(measured in σ above baseline) between experimental and control animals (Figure 2Eii, Fii), 

although z-scored activity showed a slight but significant increase (Supplementary Figure 

2Dii). 

 

Next, we measured the percentage of male-selective (activity ≥ 2σ during male but not female 

interactions) and mixed selectivity (activity ≥ 2σ during both male and female interactions) 

neurons within the Esr1+ population during male-male interactions. The percentage of all 

male-activated neurons (selective or mixed) was slightly smaller in experimental than control 

mice (34.6% vs. 38.3%, respectively; Figure 2G and Supplemental Figure S2F), while there 

was a ∼56% reduction in the small fraction of male-selective neurons (6.3 ± 2% vs. 14.4 ± 

4%, respectively; Figure 2G and Supplemental Figure S2F). Conversely, during female 

interactions the fraction of female-selective and mixed selectivity neurons was increased by 

∼4% and ∼44%, respectively, in experimental mice (Figure 2G and Supplemental Figure 

S2F). Together these data are suggestive of a shift in sex-specific tuning from male-selective 

to mixed selectivity, a conclusion consistent with choice probability analysis (see below). 

 

To determine whether this shift affected the ability to accurately decode intruder sex at the 

population level, we performed dimensionality reduction using partial least-squares (PLS) 

regression. This analysis revealed a clear separation of responses during encounters with 

males vs. females in both control and experimental animals (Figure 2C; Supplemental Figure 

S2B). In addition, linear SVM decoders trained on imaging data from either control or 

experimental mice correctly predicted intruder sex with virtually 100% accuracy (Figure 

2D). Thus in socially experienced animals, co-targeting of Oxtr/Avpr1a in VMHvlEsr1 cells 

does not disrupt the population coding of intruder sex66, despite the altered sex-selectivity of 

some of these units. 
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Figure 2 | Single cell “CRISPRscope” imaging of VMHvlEsr1 neurons with co-disruption of 

Oxtr/Avpr1a. A) A graphic illustration of “CRISPRoscopy.” Male ESR1-2A-CRE residents 

unilaterally co-injected with a Cre-dependent Cas9 AAV and Cre-dependent OARs-GCaMP8s AAV 

or Cre-dependent Scr-GCaMP8s AAV in the VMHvl (top). Coronal histology section showing the 

expression of GCaMP8s (green) in VMHvl (bottom). Section counterstained with Dapi (blue). B) 

Example of micro-endoscope single unit z-scored responses towards female and male intruders from 

a control (i) and an experimental (ii) male resident during a recording session. C) Example of 

VMHvlEsr1 ensemble representations of intruder sex, for a control (i) and experimental (ii) male, 

projected onto the first two axes of a PLS regression against intruder sex. Traces are colored by 

intruder sex identity. The percentage of variance explained by the first two PLS components is noted 

for each mouse. D) Accuracy of frame-wise decoders predicting the sex of the intruder trained on 

VMHvlEsr1neural activity in control and experimental animals. E) Average single VMHvlEsr1unit (σ) 

responses and F) cumulative distribution of VMHvlEsr1 activity (σ) relative to pre-intruder baseline, 

towards male (i) or female (ii) intruders in control and experimental mice during 1 minute of 

interaction. G) Percentage of male- or female selective or co-active VMHvlEsr1 units (≥ 2σ above the 

pre-intruder baseline) in control and experimental mice. n=5 control, n=7 Oxtr/Avp1ra targeted 

animals. Nested Mann-Whitney test was performed except (E), where nested Kolmogorov–Smirnov 

test was used in (F). **p≤0.01 ***p≤0.001   ****p≤0.0001   
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Effect of Oxtr/Avpr1a co-editing on behavior representation in VMHvl during social 

encounters  

 

Next, we examined the effect of co-disruption of Oxtr/Avpr1a on VMHvlEsr1 neuronal 

activity during the different behavioral phases of social interactions with males or females: 

appetitive (sniffing) or consummatory (attack or mounting, respectively). The ECDF and 

average single unit activity during male-directed sniffing or attack was slightly but 

significantly lower in experimental than in control mice (Figure 3Ai, ii, Ci, ii and 

Supplementary Figure S3Ai, Bi-ii). In contrast, during social interactions with females, 

activity during sniffing and mounting was similar (Figure 3Aiii, iv, Ciii, iv and 

Supplementary Figure S3Aii, Biii, iv). As an additional approach, we quantified the average 

activity in peri-event time histograms (PETHs) for each type of behavior (see Methods). The 

mean activity during male-directed sniffing or attack was slightly but significantly lower in 

experimental than in control mice (Supplemental Figure S3Ci, ii), while it was significantly 

higher during female-directed sniffing, but unchanged during mounting (Supplemental 

Figure S3Ciii, iv). In summary, the activity of VMHvlEsr1 units during different social 

behaviors was either unchanged or only modestly different between experimental and control 

animals, with statistically significant decreases or increases during male- vs. female-directed 

behaviors, respectively. 

 

We next examined the proportion of behavior-selective active units (defined as units with 

activity > 2σ above pre-intruder baseline during, e.g., sniff but not attack or vice-versa)66,82,84. 

As we previously showed, a relatively small fraction of VMHvlEsr1 neurons was selective for 

sniff or attack (~2.5-10%), with the majority showing mixed behavioral selectivity (Figure 

3B)21,66,82,84. In experimental mice, during male interactions the fraction of sniff-selective 

units was reduced by ~40% relative to controls (3.9 ± 2% in OARs gRNAs mice vs. 8.9 ± 

3% in Scr gRNAs mice) while the small proportion of attack-selective units was reduced by 

~70% (1.8 ± 0.7% vs. 6 ± 0.9%; Figure 3B, Di). The fraction of neurons exhibiting mixed 

behavioral selectivity (i.e., active during both behaviors) was moderately reduced (~22%; 
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Figure 3Di). Overall, there was a ~38% reduction in the fraction of active units during all 

male-directed behaviors (from 36.2% in control to 22.4% in experimental mice). In contrast, 

the fraction of female-directed sniffing- or mount-selective units was similar between control 

and experimental males (Figure 3 Dii).  

 

As an alternative metric of a cell’s behavioral tuning, we calculated its choice probability 

(CP): a cell was considered “tuned” to one of two pairwise-compared behaviors if it exhibited 

a CP > 0.7 that was significantly different (p < 0.5) from shuffled data66.  We observed an 

∼80% and ∼70% reduction in the percentage of attack- and sniff-tuned units, respectively, 

in experimental vs. control mice during male-male interactions (Figure 3Ei), with a 

concomitant ∼18% increase in the fraction of units exhibiting mixed selectivity (CP for sniff 

vs. attack ≤ 0.7; Figure 3Ei, gray bars and Supplementary Figure S3D). In contrast, the 

percentage of units tuned to sniffing females (vs. sniffing males) was increased in 

experimental mice (28.8 ± 3% vs. 41.1 ± 3%; Figure 3Eiii). We also observed a slight 

increase in the fraction of sniff female (vs. mount female) -tuned units and mount female (vs. 

attack male) -tuned units in experimental vs. control animals (Figure 3Eii). This analysis 

suggests that perturbation of normal OXTR/AVPR1a-mediated signaling decreases the 

relative number of units tuned to specific male-directed behaviors and increases the fraction 

of female behavior-tuned and mixed-selectivity cells. 

 

Despite these shifts in behavior-selective tuning, there was no significant difference between 

control and experimental mice in the performance of linear decoders trained to distinguish 

attack from sniffing based on VMHvlEsr1 activity (Supplemental Figure S3E). Thus, the 

population coding of social behavior by VMHvlEsr1 neurons66 is unaffected by the co-

disruption of Oxtr/Avpr1a. 
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Figure 3 | Social behavior-selective activity and tuning of VMHvlEsr1 neurons with co-disruption of 

Oxtr/Avpr1a. A) Cumulative distribution of VMHvlEsr1activity (σ) during male- (sniffing and attack) 

or female (sniffing and mounting) -directed behaviors in control and experimental mice relative to 

the pre- intruder baseline. B) Scatter plots of single VMHvlEsr1 unit activity (σ) during male-directed 

sniffing or attack in control and experimental mice. Green data points depict units with ≥ 2σ activity 

during male-directed sniffing and < 2σ activity during attack, relative to the pre intruder baseline 
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activity. Red data points depict units with ≥ 2 activity during attack and < 2σ activity male-directed 

sniffing, relative to the pre intruder baseline activity. C) Average activity (σ) of single VMHvlEsr1 

units during male (sniffing and attack) or female (sniffing and mounting)-directed behaviors in 

control and experimental mice relative to the pre- intruder baseline. D) Percentage of VMHvlEsr1 units 

active (defined as ≥ 2σ relative to pre intruder baseline) during male- (i) or female-directed behaviors 

(ii) in control and experimental mice. E) Choice probability histograms of VMHvlEsr1 tuning during 

male- and female-directed behaviors in control and experimental mice. Statistics: Values plotted as 

means in (A) (± S.E.M), (D) and (E). Nested Kolmogorov–Smirnov test was used in (A), whereas the 

Nested Mann-Whitney test was performed in (C). **p≤0.01 ***p≤0.001   ****p≤0.0001 

 
 
VMHvlEsr1 line attractor dynamics require Oxtr/Avpr1a-mediated signaling 

 

In addition to the level of activity and degree of feature- (behavior or sex) specific tuning, 

neural dynamics can play an important role in the neural coding of cognitive function or 

internal state18. Using unsupervised linear dynamical systems modeling51,52, we recently 

discovered an approximate line attractor in VMHvl neural state space that encodes a low-

dimensional, scalable representation of aggressiveness21. This line attractor is implemented 

by a subset of male-tuned VMHvlEsr1 neurons (~20-25%) that are male-tuned, and whose 

collective activity ramps up as social interactions escalate to attack and thereafter decays 

with a long (~100s) time constant21, reflecting persistent activity in this subset. Since 

neuromodulatory signaling has been implicated in some forms of persistent neural 

activity28,85-87, we investigated whether line attractor dynamics during social behaviors are 

altered when OXTR/AVPR1a-mediated signaling is perturbed. 

 

We fit recurrent switching linear dynamic system (rSLDS) models52 individually to data 

from each experimental and control mouse, using data from animals with at least 31 imaged 

units. In both the control and experimental groups, the fit models reduced the 

dimensionality of the data to 5 latent factors and three states (S1-S3) capturing ∼85% of 

the observed variance in neural activity. Model performance (cvR2) was similar between 
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control and experimental mice (Supplementary Figure S4D). During male-male 

interactions, attack behavior occurred during a single rSLDS state in both control and 

experimental males. In control mice, the time constant (τ) of the 1st rSLDS dimension 

(derived from the first eigenvalue of the fit dynamics matrix; see Methods) was 

significantly higher than that of the 2nd dimension (~100-120s vs. ~40s; Figure 4A and 

Supplementary Figure S4E). This yielded a line attractor score (calculated as the log2 of 

the ratio of the τ ‘s of the 1st and 2nd dimensions) of ~1.6 (Figure 4F, gray bar), similar to 

that observed in mice without CRISPR/Cas9 gene editing21. In contrast, in experimental 

mice the first two rSLDS dimensions had statistically indistinguishable τ values (<50s; 

Figure 4C) due to a reduced 1st dimension τ (Supplementary Figure S4E), and consequently 

a line attractor score close to zero (Figure 4F, red bar). However, during mounting behavior 

towards female intruders, co-perturbation of Oxtr/Avpr1a-mediated signaling did not 

significantly reduce the 1st dimension τ values or the line attractor score in experimental 

mice compared to controls (Supplementary Figure S4F), consistent with the fact that most 

mating attractor-weighted neurons are female-tuned21. 

 To visualize neural dynamics in state space during male-male interactions, we generated 

2D flow field graphs spanned by the first two PCs of the rSLDS models. The flow fields 

are comprised of arrows that indicate the rate and direction of change in neural population 

activity at different points in state space during social interactions (Supplementary Figure 

S4C). The 2D flow field of control mice (Scr gRNAs) revealed a roughly linear region of 

low vector flow constituting the line attractor, along which the neural population vector 

progressed during an inter-male interaction (Figure 4Gi and Supplemental Figure S4Ci, 

dashed black lines). In a 3D dynamic landscape, where the length of the flow-field vectors 

at each position in neural state space is converted into the height of the landscape (and 

represented as a heat scale), in control animals the population activity vector (PAV) 

progressed slowly along a trough-like structure (the line attractor) as aggression escalated 

(Figure 4Hi).  In contrast, in experimental mice (OARs gRNAs) this line attractor was 

absent and was replaced by a point attractor (appearing as a circle in 2D and a cone in 3D), 

from which the population activity vector made transient excursions during bouts of 
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sniffing or attack (Figure 4Gii, Hii and Supplemental Figure S6Cii). This point attractor is 

called a “trivial” fixed point, corresponding to the resting state of a system in which 

population activity decays to a global minimum in the absence of inputs. This minimum 

(bottom of the cone in Figure 4Hii) represents the location of the PAV during baseline 

behavior in solitary mice. These data indicate that Oxtr/Avpr1a-mediated signaling is 

required for the emergence of line attractor dynamics in VMHvl during male-directed 

aggression but not during female-directed mounting21. 

To investigate in more detail how co-disruption of Oxtr/Avpr1a perturbs VMHvlEsr1 

attractor dynamics, we projected the weighted average of neuronal activity in the 1st rSLDS 

dimension (which generates the line attractor) onto the time axis and overlayed behavior 

annotations. As reported previously21, in control mice this activity ramped up during the 

progression from male-directed sniffing to attack, eventually reaching a plateau where it 

decayed slowly between attack bouts towards a single intruder and remained elevated 

between sequential trials with different intruders (Figure 4B, Ei and Supplementary Figure 

S4A, “post intruder”). In contrast, in experimental mice 1st dimension neural activity 

decayed rapidly between attack bouts, displaying a “sawtooth” profile, and was 

significantly lower during the post-intruder (i.e., inter-trial) interval (Figure 4D, Eii and 

Supplementary Figure S4B). The observation that 1st dimension activity in experimental 

mice is transiently elevated during aggressive episodes but does not remain stable across 

attack bouts and trials, indicates that these neurons are still activated during attack, but do 

not integrate recent activity in the same way as normal mice. 
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Figure 4 | VMHvlEsr1 line attractor dynamics require Oxtr/Avpr1a-mediated signaling  

A) Average time constant (τ) of all dimensions, arranged in decreasing order in control mice. B) 

Normalized activity projection onto the time axis of the longest time constant (integration dimension) 

for VMHvlEsr1 units in control mouse M1. C) Average time constant of all dimensions, arranged in 

decreasing order for VMHvlEsr1 units in experimental mice. D) Normalized activity projection onto 

the time axis of the 1st dimension (no integration) for VMHvlEsr1 units in experimental mouse M1. 
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E) Mean normalized VMHvlEsr1 activity of the 1st dimension during all behavioral bouts and after 

removing the intruder male (post-intruder) in control (i) and experimental (ii) mice. F) Line attractor 

score for VMHvlEsr population activity in control and experimental mice. n = 4 control and n =7 in 

experimental group. G) Neural state space with the trajectories projected over time within the inferred 

flow field rSLDS states for VMHvlEsr1 in  control (i) and experimental (ii) mouse. H) Inferred 3D 

dynamic landscape in VMHvl control mouse M1(i) and experimental mouse M1(ii). Different views 

of line (i) and point attractors (ii) are shown. Red arrows depict the neural trajectory associated with 

attack. All sniffing, dominant mounting and attack bouts following the introduction of an intruder 

male are depicted in the behavioral raster plots in (B) and (D). Statistics: Kruskal-Wallis test was 

performed in (A) and (C). Paired t-test was performed inin (E) and Mann-Whitney test in (F) *p≤0.05 

**p≤0.01. 

 

Oxtr/Avp1ra-mediating signaling controls VMHvl Esr1 persistent neural activity 

 

We next investigated the dynamics of individual VMHvlEsr1 neurons caused by the co-

disruption of Oxtr/Avpr1a.  We focused initially on cells that were strongly weighted by the 

1st rSLDS dimension (stem plots in Figure 5Aii). In raster plots from control mice, these units 

exhibited activity that persisted across inter-attack bout intervals and decayed slowly after 

removing the intruder male, visible as a “smearing” of rasters over time (Figure 5Ai, Scr 

gRNAs). In contrast, analogous units from experimental mice exhibited activity time-locked 

to attack bouts, visible as a vertical stripe-like pattern (Figure 5Ai, OAR gRNAs). To 

quantify these dynamics, we computed the average autocorrelation half-width (ACHW)66, 

an approximate measure of the decay constant88,89, for each 1st dimension-weighted unit. The 

mean ACHW of these neurons across the entire social interaction was significantly shorter 

in experimental (9.86 ± 1 s) than in control mice (28.6 ± 1.23 s), by ~20 seconds (Figure 5Bi 

and Supplementary Figure S5A). 

 

A reduction in the average ACHW was also observed among 2nd rSLDS dimension cells, as 

well as in the VMHvlEsr1 population as a whole (Figure 5Bii, C). However, the difference in 

mean ACHW between experimental and control animals was larger for 1st dimension-
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weighted units (~66%) than for 2nd dimension and total Esr1+ neurons (~61% and 50.9%, 

respectively). In contrast, the average and cumulative distribution of ACHWs among all 

VMHvlEsr1 neurons were only slightly reduced (by ~22%) during male-female interactions 

(Supplementary Figure S5B). Thus, the decay time of individual VMHvlEsr1 units is faster, 

on average, in experimental than in control mice during male-male social interactions, 

especially among neurons that contribute to the 1st rSLDS dimension. This reduction in 

ACHW is consistent with the loss of line attractor dynamics caused by co-disruption of 

Oxtr/Avpr1a and may be a cause or a consequence of this loss.  
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Figure 5 | Oxtr/Avp1ra-mediating signaling controls VMHvl Esr1 persistent neural activity. A) 

Behavioral raster plot and the corresponding neural activity (z-score) of individual VMHvlEsr1 units 

that contribute to the 1st dimension in control (left) and experimental (right) mouse (i). The absolute 

rSLDS weight of neurons contributing to the 1st dimension is shown as a stem plot (ii). B) Average 

single unit and cumulative distribution of neuronal persistence measured by ACHW of individual 

VMHvlEsr1 units that contribute to the 1st dimension (i) and the 2st dimension (ii) during the entire 

duration of male-male interactions. n=4 control, n=7 experimental animals. C) Average single unit 
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and cumulative distribution of ACHW of all units in control and experimental mice during the first 

1-2 minutes of male-male interactions.  n=5 control, n=7 experimental animals. D) A graphic 

illustration depicting our working model. Oxtr and Avpr1a-mediated signaling control aggression 

escalation by regulating VMHvlEsr1 single cell dynamics (transient and persistent activity) and line 

attractor dynamics (left) during male-male interactions. However, co-perturbation of Oxtr and Avpr1a 

results in a strong reduction of the slow neural dynamics, an increase of transient responses of 

VMHvlEsr1 neurons, and the absence of a line attractor (replaced by a trivial point attractor). Under 

such conditions, male animals fail to display a high level of territorial aggression against male 

conspecifics (right). Statistics: Values plotted as mean ± S.E.M. Nested Mann-Whitney test was 

performed for (Bi, Ci, Aii inset).  Kolmogorov test was performed (Aii, Bii, Cii) *p≤0.05 **p≤0.01 

****p≤0.0001 

 
OXT and AVP evoke persistent responses in VMHvlEsr1 neurons ex vivo 

 

The observation that co-disruption of Oxtr/Avpr1a shortened the average decay time of Esr1+ 

units raised the question of whether adding these peptides to VMHvl would, conversely 

lengthen this decay. Because it is not technically feasible to apply drugs or peptides directly 

at the site of miniscope imaging, we utilized the ex vivo VMH brain slice preparation (Figure 

1F). We imaged calcium activity in slices perfused with a cocktail of OXT & AVP, and fit 

an rSLDS model to the data (Supplementary Figure S5C). This fit model captured 85% of 

the observed variance in neural activity. The time constant of dimension x1 (~90s) was ~8-

9 -fold greater than that of x2 (~15s; Supplemental Figure S5D), similar to that observed in 

vivo (Figure 5A, C). Stem plots revealed that the neurons highly weighted by dimension x1 

were distinct from those weighted by x2 (Supplementary Figure S5E). Plotting the time-

varying weighted average activity of x1 and x2 neurons revealed that the former exhibited 

slowly decaying responses to OXT+AVP application, while the latter exhibited more 

transient responses (Supplementary Figure S5F-J). The two populations could also be 

identified independently of rSLDS analysis by quantifying the decay time of OXT+AVP 

mediated VMHvlEsr1 population responses (Supplementary Figure S7K). Interestingly, the 

inclusion of synaptic transmission blockers (20 𝜇𝜇M CNQX and 10 𝜇𝜇M MK-801) only 
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slightly increased the decay rate during later phases of the peptide response (Supplementary 

Figure S5L).  Thus, persistent activity can be evoked by OXT+AVP in Esr1+ neurons within 

VMHvl slices ex vivo, suggesting that it does not require long-range interconnections with 

anatomically distant structures. 

 

Discussion 

 

Using a novel approach that integrates CRISPR/Cas9 gene editing48,49 with miniscope 

imaging50 and dynamical systems analysis51,52, we show that OXT and/or AVP receptors are 

required for persistent neural activity, line attractor dynamics and aggression in VMHvlEsr1 

neurons64,84,90 (Figure 5D). These results in turn suggest that neuropeptides may control 

certain behaviors, at least in part, through an influence on population neural dynamics. Our 

approach should help unify molecular and circuit-level approaches with “manifold”-level 

approaches13,14,23 to understanding the neural control of behavior, emotion and cognition. 

 

The impact of Oxtr/Avpr1a co-disruption on VMHvlEsr1 activity, tuning and 

dynamics 

 

In principle, the observed reduction in aggression could be a consequence of reduced activity 

of VMHvlEsr1 neurons. Indeed, fiber photometry and CRISPRoscopy revealed a statistically 

significant decrease in average activity during sniffing or attacking males. The percentage of 

attack- and sniff-tuned cells was also reduced. These relatively modest effects, however, 

seem unlikely to account for the strong reduction in aggressiveness caused by bilateral 

disruption of Oxtr and Avpr1a. Nevertheless, as aggression requires a high level of 

VMHvlEsr1 activity64,82, we cannot exclude that these effects contribute to the behavioral 

phenotype. In contrast, co-disruption of Oxtr/Avpr1a caused a virtually complete elimination 

of the line attractor. Consistent with this finding, the average ACHW of VMHvlEsr1 neurons 

weighted on the integration (1st) dimension was strongly reduced. More specific 
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perturbations will be required to test decisively whether selective elimination of line attractor 

dynamics affects aggression. 

How co-disruption of Oxtr/Avpr1a eliminates the line attractor is not clear. Our between-

subject comparisons do not allow us to distinguish whether the reduced ACHW reflects a 

change in the dynamics of individual cells, or inactivation of a subset of cells with slow 

dynamics. However, persistent calcium responses evoked by bath application of OXT+AVP 

to VMHvlEsr1 neurons ex vivo were strongly reduced by co-disruption of Oxtr/Avpr1a. 

Persistent activity induced by OXT ex vivo has been demonstrated in hippocampal neurons 
87 

 

Notably, only a slight reduction in persistence was observed for VMHvlEsr1 units that were 

active during male-female interactions. These female-tuned units are largely distinct from 

the units active during male-male interactions66,82 . Consistent with this, a line attractor 

observed during male mounting of females21 was not perturbed by co-editing of Oxtr and 

Avpr1a and there was no deficit in male-female mating behavior. Together, these data argue 

that the effect of the Oxtr/Avpr1a perturbation on neural dynamics is unlikely due to 

indiscriminate changes in VMH cytoarchitecture or function. 

 

A line attractor dependent on neuropeptide signaling 

 

Most theoretical studies of attractor dynamics to date have assumed that they reflect recurrent 

fast synaptic connectivity17-19, as seen in the Drosophila ring attractor system24,29.  Our 

finding that neuropeptide signaling is required for line attractor dynamics and persistent 

activity is consistent with recurrent neural network (RNN) modeling of persistent activity in 

VMH circuits, which indicated that only models incorporating both recurrence and slow 

neuromodulation were accounted for the experimental observervations12,65. OXT can cause 

increased excitability in anterior VMHvl neurons91; it could also strengthen recurrent 

connectivity within this nucleus12,92 or between interconnected regions93. We note, however, 
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that neither OXT nor AVP are synthesized by VMHvlEsr1 neurons; therefore, their source(s) 

must be extrinsic to this nucleus91. 

 

A role for neuropeptides in implementing slow attractor dynamics that control innate 

behaviors is appealing for several reasons. First, it it may overcome the dependence of purely 

glutamatergic attractor networks on fine-tuned synaptic connectivity17,18,27. This requirement 

for fine-tuning makes attractors very “fragile”, i.e., highly sensitive to experimental or 

physiological disruption (but see94,95). RNN modeling has indicated that VMHvl networks 

incorporating slow neuromodulatory transmission can reproduce observed network time-

constants over a much wider range of synaptic connectivity densities than purely 

glutamatergic networks65, suggesting that neuropeptidergic based line attractors may be less 

dependent on precise patterns of synaptic connectivity. Second, neuropeptidergic signaling 

can yield decay constants on the timescale of 100s of seconds. Although sufficiently fine-

tuned glutamatergic attractor networks can in theory persist indefinitely18, persistent activity 

in other experimentally described attractors has typically been observed for just a few 

seconds19,96 , making it unclear if they can sustain activity on longer timescales. Finally, slow 

dynamics may be better suited to encode long-lasting and escalating affective states, such as 

aggressiveness, than the attractors invoked to compute functions like gaze stabilization17, 

working memory107 and head direction24. 

 

Neuropeptides may be also be advantageous for implementing line attractors or leaky 

integrators because their expression can be modulated by hormones97 and neural activity19. 

For example, longitudinal single-cell calcium imaging studies from a female specific VMHvl 

subpopulation that controls sexual receptivity20,98,99 has revealed an estrus cycle-dependent 

line attractor20. Finally, neuropeptide receptor expression is more restricted than that of 

receptors for biogenic amines100. This specificity could allow the regulation of different (and 

potentially competing) attractors within a local network21 by distinct neuropeptides.  

The results described demonstrate how the power of multiplex gene editing technology48,49 

can combined with single cell imaging to identify mechanisms that implement attractor 
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dynamics18. They also suggest that population neural dynamics may mediate the behavioral 

functions of some neuropeptides38,40. In this way, this approach may enable mechanistic 

explanations in neuroscience that unify different levels of abstraction and of biological 

organization23. 

 

Limitations of the study 

A technical limitation of our approach is that two different viruses were used to deliver 

gRNAs-GCaMP and Cas9.  Consequently, not all GCaMP+ cells captured in our imaging 

analysis are necessarily Cas9+ (and therefore mutant for Oxtr/Avpr1). Our data indicate co-

infection rates of ~65-80% at the injection site depending on the viruses used. Another 

limitation is our reliance on between-subject comparisons of experimental vs. control mice. 

Our rSLDS analysis showed that there was no effect of Oxtr/Avpr1a co-editing on male 

mounting of females but do not exclude a possible effect on intromission. Finally, our results 

do not distinguish the individual roles of OXTR and AVPR1a, nor do they establish the 

cellular source and release dynamics of the endogenous peptide(s) that activates these 

receptors in vivo during aggression. Further studies will be required to elucidate these 

biologically important details. 

 

 

 

 

 

 

 

 

 

 

 

 



 

191 
 

Experimental model and subject details 

All procedures were performed in accordance with NIH guidelines and approved by the 

Institutional Animal Care and Use Committee (IACUC) at the California Institute of 

Technology (Caltech). We used Esr1Cre/+ 64  transgenic mice. Animals were housed and 

maintained on a reverse 12 h light-dark cycle with food and water ad libitum. We used wild-

type (WT) C57BL/6N male mice (experimental), C57BL/6N female mice or BALB/c 

females (for sexual experience), and BALB/c male mice (intruders) were obtained from 

Charles River (Burlington, MA). Behavior was tested during the dark cycle. 

Viruses 

The following AAVs were used in this study, with injection titers as indicated. Viruses with 

a high original titer were diluted with clean PBS on the day of use. AAV1-Syn-Flex-

GCaMP7f (2.1 x e13) was purchased from Addgene. AAVDJ/8-EFS-NC-SpCas9-HA -NLS-

Poly(A) (pBK694) (2.00x e13) and AAV9-EFS-NC-SpCas9-HA -NLS-Poly(A) (2.17x e13) 

purchased from Duke viral vector core. The AAV9-EFS-NC-DIO-SpCas9-myc-NLS-

Poly(A) (2.31x+e13), AAV9-hPGK-DIO-SpCas9-myc-NLS-Poly(A) (2.31x+e13), AAV1-

gRNAsscramble-hSyn flex-GCaMP8s-wpre (2.75x e12) and AAV1-gRNAsOxtr/1Avpr1a -hSyn 

flex- GCaMP8s-wpre (2.44x e12) were packaged at the HHMI Janelia Research Campus 

virus and the Duke Viral core facilities. Viruses with hPGK or an Efs promoter were used 

interchangeably to drive the expression of Cas9. In the illustration in Figure 2Aii and 3Aii 

only the Efs promoter is depicted for simplicity reasons.  The RNAsscramble-ubc DsRed 

(TU/ML 1.5X e8) and RNAsOxtr/Avpr1a ubc DsRed (OXTR/AVPR1a) lentiviruses (TU/ML 

3.50 X e8) were also packaged at the HHMI Janelia Research Campus virus facility.  

 

 

 

https://www.sciencedirect.com/topics/neuroscience/adeno-associated-virus


 

192 
 

Method details 

Screening for aggressor male and resident intruder assay 

All experimental male mice (‘‘residents’’) were individually housed for two weeks and 

received sexual experience (for at least one week). Previously it has been reported that ∼20-

25% of inbreeding C57BL/6N male animals fail to display territorial aggression against 

conspecific male intruders during the RI assay 93. We pre-screened males for baseline 

aggression using resident-intruder testing sessions to identify and exclude no aggressors from 

our analysis. Animals that attacked two constitutively presented intruders were termed 

aggressors and added to the pool of animals for CRISRP/Cas9-based gene editing surgeries. 

On the experimental day, the preselected male residents were transported in their home cage 

to a novel behavioral testing room (under infrared light), where they acclimated for 5-10 min. 

An unfamiliar group housed BALB/c mouse (‘‘intruder’’) was then placed in the resident's 

home cage, and residents were allowed to interact with it for period of time. 

Acute brain slices preparation  

Briefly, male adult mice were anesthetized with isoflurane and transcardially perfused with 

cold NMDG-ACSF (adjusted to pH 7.3–7.4) containing CaCl2 (0.5 mM), glucose (25 mM), 

HCl (92 mM), HEPES (20 mM), KCl (2.5 mM), kynurenic acid (1 mM), MgSO4 (10 mM), 

NaHCO3 (30 mM), NaH2PO4 (1.2 mM), NMDG (92 mM), sodium L-ascorbate (5 mM), 

sodium pyruvate (3 mM), thiourea (2 mM), bubbled with carbogen gas (95% O2 and 5% 

CO2). The brain was sectioned at 250 μm using a vibratome (VT1000S, Leica Microsystems) 

on ice and was incubated in 34oc for 12 min, in NMDG – ACSF. Then transfer the sections 

to room temperature in aCSF/HEPES-GSH solution (adjusted to pH 7.3–7.4,) containing 

CaCl2(2 mM), glucose (25 mM), kCl (2.5 mM), HEPES (20 mM), NaCl (92 mM), MgSO4 

(2 mM), NaHCO3 (30 mM), NaH2PO4 (1.2 mM), sodium L-ascorbate (5 mM), sodium 

pyruvate (3 mM), thiourea (2 mM), and Glutathione Monoethyl Ester (0.5-1mM)-before 

proceeding with Ca2+ imaging.   
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Peptide perfusion and two-photon calcium imaging experiments  

Solutions of 400nM of Oxt and/or Avp, 20 𝜇𝜇M CNQX  and 10 peptides 𝜇𝜇M (Tocris) were 

prepared in aCSF and perfused with a rate of 1-2ml/min through a microfluidics chamber 

containing the brain slices. Calcium imaging was performed using a custom-modified Ultima 

two-photon laser scanning microscope (Bruker). The primary beam path was equipped with 

galvanometers driving a Chameleon Ultra II Ti:Sapphire laser (Coherent) and used 

for GCaMP imaging (920 nm). GCaMP emission was detected with photomultiplier-tube 

(Hamamatsu). Images were acquired with an Olympus20X XLUMPLFLN Objective, 1.00 

NA, 2.0 mm WD. All image acquisition was performed using PrairieView Software (Version 

5.3) with a framerate of ∼1.2Hz. 

Behavior recording 

All behavioral experiments were performed in conventional mouse housing cages (home 

cage or new cage) under red lighting, using the previously described behavior recording 

setup 109. The behavior video's top and front views were acquired at 30 Hz using the video 

recording software, StreamPix7 (Norpix).  

Behavior annotations 

Behavior videos were processed using an automated behavior classification system to 

generate frame-by-frame annotations of attack, mounting and sniffing behavior 110.  The 

output of the classifier and behavior videos were loaded into a MATLAB based MATLAB-

based behavior annotation interface and then manually corrected by trained individuals to 

produce a final set of annotations110. A 'baseline' period of 5-minutes was recorded at the 

start of every recording session during which the animal was alone in its home cage. Six 

behaviors were annotated during the resident intruder assays: sniff (face, body, genital-

directed sniffing), towards male or female intruders, and attack-, mount- directed behavior 

against male or female intruders. Post-surgery, male residents were exposed to a male 

intruder first, and subsequently to a female intruder. RI assay with a male or a female intruder 

https://www.sciencedirect.com/topics/neuroscience/gcamp
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was performed on separate days, except during CRISPRoscopy. For quantifying the interval 

(s) between behavioral bouts in Figures 2, 3, S2 and S3, animals that show ≤1 mount or attack 

bout were excluded. 15 min for male-male interaction was scored in Figure 2 and S2. In 

Figure 3 and S3 ∼15-20 min of RI was scored for male -male interaction. 10 min of male-

female interaction was scored during the RI assays in Figure 2, 3, S2 and S3.  

In addition to the classification of behaviors, automated pose estimation was performed on 

behavior videos to obtain key points of interacting mice110. The velocity of the resident 

mouse was calculated as the change in positions of centroids of the head and hips, 

computed across two consecutive frames as previously performed84. The distribution of 

this feature was computed for both experimental and control animals to obtain the data 

shown in Supplementary Figure S2C(iii).  

Stereotaxic surgery 

Surgeries were performed on socially and sexually experienced adult male Esr1Cre/+ mice 

mice 8–12 weeks old. Virus injection and implantation were performed as described 

previously66,84. Briefly, animals were anesthetized with isoflurane (5% for induction and 

1.5% for maintenance) and placed on a stereotaxic frame (David Kopf Instruments). The 

virus was injected into the target area using a pulled-glass capillary (World Precision 

Instruments) and a pressure injector (Micro4 controller, World Precision Instruments) at a 

20 nl /min flow rate. The glass capillary was left in place for 5 -10 minutes following 

injection before withdrawal. The injection volumes were ∼400-500nl for bilateral injection 

in mice used for behavioral analysis and CRISRPometry. For micro endoscope recordings, 

we performed unilateral ∼200nl injections. The Stereotaxic injection coordinates were 

based on the Paxinos and Franklin atlas (posterior VMHvl, anterior–posterior: −4.68, 

medial–lateral: ±0.73, dorsal–ventral: −5.73). For single fiber optogenetic and fiber 

photometry experiments (optogenetics: diameter 200 μm, N.A., 0.22; fiber photometry: 

diameter 400 μm, N.A., 0.48; Doric lenses) were then placed above the virus injection sites 

(fiber photometry: 150 μm above) and fixed on the skull with dental cement (Metabond, 
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Parkell). For micro-endoscope experiments, virus injection and lens implantation were 

performed on the same day Lenses with a baseplate were slowly lowered into the brain and 

fixed to the skull with dental cement. Mice were habituated with weight-matched dummy 

micro-endoscopes (Inscopix) for at least one week before behavior testing. Mice were 

head-fixed on a running wheel 3-4 weeks after lens implantation, and a miniaturized micro-

endoscope (nVista, Inscopix) was attached to the baseplate for imaging. Mice were singly 

housed after surgery and were allowed to recover for at least 4 weeks before behavioral 

testing. 

 

Histology 

Once the behavioral experiments were finished, virus expression and implant placement 

were histologically verified on all mice. Mice lacking correct virus expression or implant 

placement were excluded from the analysis. Mice were transcardially perfused with 1x 

PBS at room temperature, followed by 4% paraformaldehyde (PFA) (diluted from 16% 

EM grade PFA). Brains were extracted and post-fixed in 4% PFA 16-24h at 4°C, followed 

by 24 hours in 30% sucrose/PBS at 4 °C. Brains were embedded in OCT mounting 

medium, frozen on dry ice and stored at −80°C for subsequent sectioning. Brains were 

sectioned into 60 μm slices on a cryostat (Leica Biosystems). Sections were washed with 

1× PBS and mounted on Superfrost slides, then incubated for 15 minutes at room 

temperature in DAPI/PBS (0.5 μg/ml) for counterstaining, rewashed and coverslipped. 

Sections were imaged with an epifluorescent microscope (Olympus VS120) 

For some epitope staining 30 um sections were cut from either fresh-frozen tissue or post-

fixed 2h 4%PFA on ice, immersed in 30% sucrose:1xPBS 4C 2h before embedding in 

OCT. For Cas9 immunostaining, a cocktail of antibodies against the Cas9-fused HA or 

Myc epitope and the Cas9 protein itself was used. Animals were stained after 9-12 weeks 

post-injection. Estimates of the co-indefectibility between the Cas9 and the gRNA 

expressing viruses were made at the center of the injection site 

https://www.sciencedirect.com/topics/neuroscience/cryostat
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Microendoscope recordings 

On the day of imaging, mice were habituated for at least 5-10 minutes after installing the 

micro endoscope in their home cage before the start of the behavior tests. Imaging data 

were acquired at 30 Hz with 2× spatial down sampling; light-emitting diode power (0.1–

0.5) and gain (1–7×) were adjusted depending on the brightness of GCaMP expression as 

determined by the image histogram according to the user manual. A transistor–transistor 

logic (TTL) pulse from the Sync port of the data acquisition box (DAQ, Inscopix) was used 

for synchronous triggering of StreamPix7 (Norpix) for video recording. Imaging sessions 

typically lasted 1 h (20–25 min interactions per sex).  

 

Micro-endoscopic data extraction 

Preprocessing and Calcium data extraction was performed similarly to what has been 

previously described82. Briefly, data were 2x downsampled, motion corrected, and a spatial 

band-pass filter was applied to remove the out-of-focus background. Next, filtered imaging 

data were temporally downsampled to 10 Hz. Calcium traces were extracted and 

deconvolved using the CNMF-E111 with the following parameters: patch_dims = [42, 42], 

gSig = 3, gSiz = 13, ring_radius = 19, min_corr ∼0.57-0.62, min_pnr = ∼5.5-6, 

deconvolution: foopsi with the ar1 model. Every extracted unit's spatial and temporal 

components were manually inspected (SNR, PNR, size, motion artifacts, decay kinetics, 

etc.). Traces of units were either z-scored or normalized in units of σ relative to the baseline 

fluorescence (during 7sec or more)  of the neuron before the first trial of resident-intruder 

interactions, as previously described82,84, Distinct hypothalamic control of same-and 

opposite-sex mounting behavior in mice. In Supplementary Figure 5 C, the z-scored value 

during a behavioral bout for each unit was normalized by subtracting the mean of a 2-3 sec 

baseline before the onset of the bout.  The average normalized activity was quantified for 

a period of 15 sec. A total of 585 units (n=5 mice) from control and 546 units (n=7 mice) 

from experimental mice were recorded.  
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Quantification and statistical analysis 

Miniscope neural data analysis 

Choice probability  

Choice probability (CP) analysis was used as before84 to measure a cell’s tuning, defined 

here as how well two conditions could be predictively discriminated from a single cell’s 

activity112. The CP of a given cell for a pair of behavioral conditions was computed by 

constructing a histogram of that cell’s ΔF(t)/F0 values under each of the two conditions. 

These two histograms were plotted against each other to generate a ROC (receiver-

operating characteristic) curve. The integral of the area under this ROC curve generated 

the CP value for each cell with respect to each of the two behavioral conditions. This CP 

value is bounded from 0 to 1, where a CP of 0.5 indicates that the neuron's activity cannot 

distinguish between the two conditions. As in previous studies, the statistical significance 

of choice probabilities was determined relative to chance. We shuffled behavioral bout 

timings for each of the two compared conditions and computed the choice probability for 

this shuffled data. Shuffling was repeated 100 times for each of the two behaviors, from 

which we calculated the mean and s.d. (σ) of the ‘shuffled’ choice probabilities.  

As significant, we considered any observed choice probabilities >2σ above the shuffled 

mean and imposed an additional choice probability threshold > 0.7 as previously 

described84. The colored bars indicate the neurons that show a strong and statistically 

significant choice probability, and grey bars indicate cells for which the choice probability 

was either activated < 2 σ above (not responsive) the shuffled mean or was considered 

which choice probability not significantly higher than chance or choice probability ≤ 0.7 

for that neuron. 

Dimensionality reduction for visualizing intruder sex 

Low-dimensional representations for visualizing changing ensemble dynamics over time 

were constructed using partial least squares (PLS) regression (MATLAB). For PLS, all 
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traces were concatenated and regressed against a 1 × T vector with entries valued at −1 (if 

a male intruder was present), 1 (if there was a female intruder), or 0 (otherwise). 

Decoding intruder sex from neural data 

We constructed a frame-wise linear SVM decoders (as described previously66,84) to 

distinguish intruder sex. Training data was constructed from the set of N × 1 (N = neurons) 

population activity vectors from all frames occurring during social interaction in each 

mouse. Equal numbers of frames of male and female interaction were used during decoder 

training to ensure chance decoder performance of 50%. Shuffled decoder data were 

generated by the training the decoder on the same neural data but with behavior labels 

randomly assigned to each behavior bout (n=5 control and n=7 expreimental mice).  This 

training data, along with intruder sex labels, was then used to train a linear SVM decoder. 

Accuracy was evaluated using a stratified fivefold cross-validator. Decoding was repeated 

100 times, with decoder performance reported as the mean accuracy per imaged animal. 

For significance testing, the mean accuracy of the decoder trained on shuffled data 

(repeated 500 times per imaged animal) was computed to compare against the decoder 

accuracy trained on actual data. 

Decoding behavior from neural activity 

We constructed frame-wise linear SVM decoders (as described previously66,84) to 

discriminate male directed sniffing and attack from imaged control and experimental 

VMHvlEsr1 units. Briefly manual annotations of sniffing behavior and attack behavior for 

each intruder male mouse were used to provide training labels of behavior type in control 

and experimental mice. Bar graphs of decoder accuracy (Figure S5E) were generated to 

discriminate sniffing and attack from imaged activity on individual frames of a behavior 

(sampled at 15 Hz). Equal numbers of sniff and attack frames (frame-wise decoder) were 

used during decoder training, to ensure chance decoder performance of 50%. ‘Shuffled’ 

decoder data were generated by training the decoder on the same neural data, but with sniff 

and attack behavior annotations randomly assigned to each behavior bout.  
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Decoding was repeated 20 times for each intruder and each imaged mouse, and decoder 

performance was reported as the average accuracy across imaged mice for control and 

experimental mice. For significance testing, the mean accuracy of the decoder trained on 

shuffled data was computed across mice, in each condition, and shuffling was repeated 

1,000 times. Significance was determined across imaged mice using the Mann–Whitney 

U test between the mean accuracy of the decoders trained on real versus shuffled data. 

Statistical analysis  

Data were processed and analyzed using Python, MATLAB and GraphPad (GraphPad 

PRISM v.9). Data were analyzed using two-tailed, nested non-parametric tests. Wilcoxon 

signed-rank test (paired, non-parametric Mann–Whitney U-test) was used for binary paired 

samples. Kolmogorov–Smirnov test was used for non-paired samples plotted as ECDF 

graphs. N.s. P > 0.05, *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001. 

Dynamical system models of neural data 

As previously described in published work21, we modeled neural activity using recurrent 

switching linear dynamical systems (rSLDS). Briefly, rSLDS is a generative model that 

breaks down non-linear time series data into sequences of linear dynamical modes. The 

model relates three sets of variables: a set of discrete states (z), a set of continuous latent 

factors (x) that captures the low-dimensional nature of neural activity, and the activity of 

recorded neurons (y) during male directed behavior (sniffing, dominant mounting and 

attack). For how the model is formulated, see Nair, et al., 202321. Model accuracy is evaluated 

using a forward simulation metric as described in Nair et al., 202321. Briefly: given the 

observed neural activity at time t, we predict the trajectory of the population activity vector 

over an ensuing short time interval Δt using the model, then compute the mean squared error 

(MSE) between that trajectory and the observed data at time t+ Δt. This MSE is calculated 

across all dimensions of the latent space and repeated for all times t. This error metric is 

normalized to a 0-1 range in each animal across the whole recording and is computed across 

cross-validation folds to obtain a bounded measure of model performance.  
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Code used to fit rSLDS on neural data is available in the SSM package: 

(https://github.com/lindermanlab/ssm) 

Code to generate flow fields and energy landscapes from fit dynamical systems is available 

at (https://github.com/DJALab/VMHvl_MPOA_dynamics) 

 

Visualization of attractor dynamics as 3D landscape  

Conversion of the flow-fields obtained from rSLDS into a 3D landscape for visualization by 

calculating the dynamic velocity at each point in neural state space and using it as the height 

of a 3D landscape. Dynamic velocity was calculated as previously reported in Nair et al., 

202321. 

 

Estimation of time constants & calculation of line attractor score. 

We estimated the time constant of each mode of linear dynamical systems using 

eigenvalues 𝜆𝜆𝑎𝑎 of the dynamics matrix of that system as: 𝜏𝜏𝑎𝑎 =  � 1
log(|𝜆𝜆𝑎𝑎|)

� as derived by 

Maheswaranathan et al., 2019 113. We used a line attractor score computed as log2
𝑡𝑡𝑛𝑛
𝑡𝑡𝑛𝑛−1

 

where 𝑡𝑡𝑛𝑛 is the largest time constant of the dynamics matrix of a dynamical system 

and𝑡𝑡𝑛𝑛−1 is the second largest time constant. In the case of point attractors, the line attractor 

score is zero due to the similar magnitudes of the first two largest time constants, and it is 

greater than one for systems that possess a line attractor. 

 

 

 

 

 

 

https://github.com/lindermanlab/ssm
https://github.com/DJALab/VMHvl_MPOA_dynamics
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Supplemental Figure 1 
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Figure S1. Experimental validation and behavioral characterization of CRISPR/Cas9 based Oxtr and 

Avpr1a co-perturbations, related to Figure 1. 

A) Quantification of the percentage of animals attacking (i), the average duration of each attack bout 

(ii), the latency of the 1st attack bout (iii), and the interval between attack bouts (iv) against a male 

intruder. n=11 mice per group. B) Quantification of the number and time-varying probability of attack 

bouts against a male intruder (i-ii). n=11 mice per group. Quantification of the average velocity during 

attack in control (n=9 mice) and experimental mice (n=8 mice) (iii). C) Quantification of the 

percentage of animals mounting (i), the average duration of each mounting bout (ii), the latency of 

the 1st mounting bout (iii), and the interval between mounting bouts (iv) in control and experimental 

mice during male-female interactions. n=11 mice per group. Statistics: nested Mann-Whitney test 

was performed, and values were plotted as mean ± S.E.M. *p≤0.05. ****p≤0.0001.     
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Supplemental Figure 2 

 

Figure S2. Effect of Oxtr/Avpr1a co-editing on intruder sex-specific representations and tuning. A) 

Quantification of the total time spent sniffing (i), the average duration of each sniffing bout (ii), the 

total time spent attacking (iii), the average duration of each attack bout (iv), the latency of the first 

attack (v), interval (s) between attack bouts (vi) and the attack probability (vii). n=5 control and n=7 

experimental unilaterally injected mice. B) VMHvlEsr1 ensemble representations of intruder sex, for 

control (i) and experimental (ii) mice, projected onto the first two axes of a PLS regression against 

intruder sex. Traces are colored by intruder sex identity. The percentage of variance explained by the 

first two PLS components is noted for each male resident. C) Quantification of the PLS1 variance 

explained (which accounts for intruder sex) in control and experimental mice. D) Cumulative 

distribution of z-scored activity of all VMHvlEsr1 units during 1 min interaction with male (i) or female 

(ii) intruders in control and experimental mice. E) Average single unit activity (σ) of male responses 

(≥ 2σ relative to the pre-intruder baseline) between control and experimental mice. F) Percentage of 

male- or female selective or co-active units (≥ 2σ relative to the pre-intruder baseline), per imaged 

control (i) or experimental (ii) mouse. n=5 control, n=7 experimental animals.   
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Supplemental Figure 3 
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Figure S3. Effect of Oxtr/Avpr1a co-editing on behavior specific single unit activity and tuning, 

related to Figure 3. 

A) Scatter plot of the average single VMHvlEsr1 unit activity (z-score) during male (i) and female (ii) 

directed behaviors in control and experimental mice. B) Cumulative distribution of VMHvlEsr1 

activity (z-score) during male-directed (sniffing and attack; i & ii) and female-directed behaviors 

(sniffing and mounting; iii-iv) in control and experimental mice. C) Average z-scored VMHvlEsr1 

activity normalized to the pre-behavior bout period during male-directed sniffing (i), attack (ii), 

female-directed sniffing (iii) and mounting (iv). D) Choice probabilities histograms of male-directed 

behaviors (attack vs. sniffing) in control and experimental mice. Mixed-tuned units (blue) and units 

tuned for other behaviors or not active (yellow) are highlighted. E) Accuracy of frame-wise decoders 

predicting attack vs sniffing (i) and attack vs no attack (ii) trained on VMHvlEsr1neural activity in 

control or experimental animals. Decoders were trained and tested on held out data from each group 

separately. Statistics: Values plotted as mean ± S.E.M. in (B). Nested Kolmogorov–Smirnov test was 

used in (B), whereas nested Mann-Whitney test was performed in (C) and (E). *p≤0.05 **p≤0.01 

****p≤0.0001 
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Supplemental Figure 4 
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Figure S4. VMHvlEsr1 line attractor dynamics require Oxtr/Avpr1a-mediated signaling, related to 

Figure 4. 

A) Normalized activity projection onto the time axis of the longest time constant (integration 

dimension) for VMHvlEsr1 units in control and B) in experimental mice. C) Schematic illustrating 

inferred dynamics shown as flow fields, with the line attractor illustrated by a black dashed line in 

control (i) and the point attractor with a purple dashed circle in experimental mouse (ii). The 

different rSLDS states (S1-S3) are depicted with different colors. D) Quantification of the 

performance score for the rSLDS model for each mouse in the control and experimental group 

during male-male interactions. E) Quantification of the average time constant (τ) of the 1st 

dimension in control and experimental mice during male-male interactions. n=4 control and n=7 

mutant. F) Quantification of the average time constant (τ) of the 1st dimension (i) and the line 

attractor score for VMHvlEsr population activity in control and experimental mice during male-

female interactions. n=4 control and n=6 mutant. All sniffing, dominant mounting and attack bouts 

following the introduction of an intruder male are depicted in the behavioral raster plots in (A) and 

(B).  Statistics: Mann-Whitney test was performed in (D, E, F). **p≤0.01  
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Supplemental Figure 5 
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Figure S5 | OXT and AVP evoke persistent responses in VMHvlEsr1 neurons ex vivo, related to 

Figure 5. 

A) Distribution plot illustrating the ACHW of VMHvlEsr1 units contributing to the 1st dimension 

during the entire duration of male-male interactions.  n=4 control, n=7 experimental animals. B) 

Average single unit and cumulative distribution of ACHW from all VMHvlEsr1 recorded units in 

control and experimental mice during the first 1-2 minutes of male-female interactions.  n=5 

control, n=7 experimental animals. C) rSLDS modeling of Esr1+ cells calcium responses to 400nM 

OXT & AVP. Acute brain slices from male ESR1-2A-CRE animals that express Cre-dependent 

GCaMP7f were used. D) Average time constant of the identified two dimensions (X1, X2), arranged 

in decreasing order for acute brain slices. E) Absolute rSLDS weight of neurons contributing to X1 

(top, blue) and X2 (bottom, green) dimensions sorted by choice probability values for activity during 

the OXT and AVP perfusion window. F) Heat maps of OXT and AVP induced slow persistent X1 

(left) and G) transient X2 responses (right) VMHvlEsr1 neurons. H) Projection of population activity 

onto the time axis of the slow persistent X1 and I) the transient X2 dimensions. J) Overlay projection 

of population activity onto the time axis of the slow persistent X1 and the transient X2 dimensions. 

K) Distribution plot illustrating the decay times of Esr1 calcium responses to a 400nM OXT and 

AVP cocktail. Cells whose responses decayed to 20% of the peak within the peptide perfusion 

window were categorized as "transient" (green), while those responses that decayed to 20% of the 

peak after the perfusion window were labeled as "persistent" (blue). L) AVP (100nM)-mediated 

calcium average responses of VMH slices in the presence of synaptic transmission blockers (20uM 

CNQX and 10uM MK-801; n = 45 cells). Statistics: Kruskal-Wallis test was performed, corrected 

with Dunn’s multiple comparison during time points 0s-1000s. *p≤0.05 **p≤0.01 ***p≤0.001 
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C h a p t e r  V  

GENERALIZATION 

 

 

 

ഒേര വാ�ു, പല മന�ുകളിൽ അനവധി ഭാവ�ൾ സൃ�ി�ു�ു.” 

Vallathol Narayana Menon, Sahityamanjari, 1925 

Translation: “The same word creates countless emotions in many minds.” 
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Encoding of female mating dynamics by a hypothalamic line attractor 
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Summary 

Females exhibit complex, dynamic behaviors during mating with variable sexual receptivity 

depending on hormonal status1–4. However, how their brains encode the dynamics of mating 

and receptivity remains largely unknown. The ventromedial hypothalamus, ventro-lateral 

subdivision contains estrogen receptor type 1-positive neurons that control mating receptivity 

in female mice5,6. Unsupervised dynamical systems analysis of calcium imaging data from 

these neurons during mating uncovered a dimension with slow ramping activity, generating 

a line attractor in neural state space. Neural perturbations in behaving females demonstrated 

relaxation of population activity back into the attractor. During mating population activity 

integrated male cues to ramp up along this attractor, peaking just before ejaculation. Activity 

in the attractor dimension was positively correlated with the degree of receptivity. 

Longitudinal imaging revealed that attractor dynamics appear and disappear across the estrus 

cycle and are hormone-dependent. These observations suggest that a hypothalamic line 

attractor encodes a persistent, escalating state of female sexual arousal or drive during 

mating. They also demonstrate that attractors can be reversibly modulated by hormonal 

status, on a timescale of days. 

 

 *co-first author. 

This chapter shows the line attractor dynamics also generalize to other internal 
states, specifically the state of sexual arousal in female mice 
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Introduction 

Mating is a complex social interaction whose success is essential to species’ survival. In 

rodents, female mating receptivity has been considered as a binary behavior defined by 

lordosis7–10, a reflexive acceptance posture. In fact, however, female receptivity is highly 

dynamic, exhibiting variability both within a mating interaction and across different 

physiological states11. Nevertheless, the female’s important contribution to the dynamics 

of successful mating has been under-appreciated and under-studied, relative to the male’s. 

 

Recent progress has identified circuits that control female receptivity1,3,4,12. The 

ventrolateral subdivision of the ventromedial hypothalamic nucleus (VMHvl) contains a 

subset of Esr1+ neurons that controls mating behaviors in female mice5,6,13–16. Recent 

findings have revealed hormone-dependent changes in the anatomy and physiology of 

these neurons. The axonal arborizations of VMHvl progesterone receptor (PR)-expressing 

neurons in AVPV increase in receptive females, in an estrogen-dependent manner17. In 

addition, a small subset of Esr1+ neurons defined by expression of the cholecystokinin A 

receptor (Cckar)6,18 has been shown to be necessary and sufficient for female receptivity 

and to exhibit estrus cycle-dependent changes in excitability ex vivo, and in response 

dynamics during the investigation phase of mating interactions in vivo6. While these studies 

have identified important circuit-level changes associated with the state of receptivity, how 

the dynamics of female behavior during mating are encoded in the brain is largely 

unknown.  

 

To address this issue, we have characterized neural population representations in female 

VMHvl during interactions with males across the estrus cycle, using longitudinal 

miniscope imaging of calcium activity19. We imaged a subpopulation of Esr1+ neurons that 

are Npy2r- that we call “α cells,” which causally control sexual receptivity5; these cells 

overlap with the aforementioned Cckar+ cells6,7. Unsupervised modeling of VMHvl α cell 

activity using a dynamical systems approach20 revealed an approximate line attractor in 

neural state space, which disappeared during non-receptive phases of the estrus cycle and 
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was hormone-dependent. Analysis of female mating behavior and line attractor dynamics 

suggest that the attractor integrates male contact cues and may represent a persistent, 

escalating internal state of female sexual arousal or receptivity during mating. 

 

Results 

 

Dynamics of female behaviors in mating 

 

Female mating behavior has been studied more extensively in rats than in mice4,21. To detail 

murine female mating behavior under our standard conditions, we manually annotated 

video recordings of sexually receptive females interacting with a male (Figure 1a). We 

identified 10 female motor behaviors and classified them as appetitive (approaching and 

sniffing the male), accepting (lordosis and wiggling), or resisting (darting, top up, kicking 

and turning), based on the behavior’s apparent intent6. The behaviors were dynamic, with 

the probability of accepting behaviors gradually increase, while resistance behaviors 

initially increased and then slowly decreased (Figure 1b and Extended Data Fig. 1a). Thus, 

receptivity is not binary but graded and dynamic.  

 

We categorized mating behaviors as “self-initiated” (appetitive and check genital area) or 

“male-responsive” (accepting, resistance and staying in response to make attempts). 

Females spent six times longer displaying male-responsive (83.9%) vs. self-initiated 

behaviors (16.1%) (Figure 1c). Due to this asymmetry, we also quantified male-initiated 

behaviors (sniffing, mounting and intromission). Male spent 11.3 times more time 

displaying self-initiated mating behaviors than females (Figure 1d), indicating males 

largely drive mating interaction. The number and duration of male copulation bouts and 

inter-bouts intervals varied across interactions (Figure 1e and Extended Data Fig. 1b).  

 

Next, we compared female behaviors during male copulation bouts vs. inter-bout intervals 

(Figure 1f). Behaviors were classified as “social” (accepting, resisting, and appetitive), or 
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“disengaged” (rearing, digging, and chewing). During copulation bouts, females primarily 

exhibited social behaviors (62% of each bout’s duration) and rarely disengaged behaviors 

(Figure 1g, left). During inter-bout intervals (IBIs), when females were separated from the 

males, they continued social behaviors initiated during the preceding bout (Figure 1g, right, 

23% of IBI duration). A behavior probability plot aligned to copulation offset showed 

females continued accepting or resisting behaviors and performed appetitive approaches 

and sniffing during IBIs (Figure 1h and Extended Data Fig. 1c). 

 

These results demonstrate that female behaviors during mating are dynamic and primarily 

driven by male-initiated behaviors. The persistence of female social behaviors observed 

during pauses in copulation (Figure 1h) suggests a corresponding persistent internal state 

of mating receptivity or engagement. The ramping dynamics of “accepting” behaviors (Fig. 

1b) further suggests that escalation may be a property of this internal state. Persistence and 

escalation (or “scalability”) are features of internal states underlying other dynamic social 

behaviors, like male aggression22. We next investigate how these state properties are 

instantiated by neural activity and dynamics. 
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Figure 1. | Dynamics of female behaviors during mating interaction.  

a, Raster plot of 10 female mating behaviors during one interaction with a male. b, The probability 

of mating behaviors during every 20 seconds (n=74 trials, N=28 mice). Behaviors were grouped as 

accept (comprising lordose, wiggle), appetitive (comprising approach, sniff), and resistance 

(comprising dart, top up, kick and turn), data presented as mean ± SEM. c, Distribution of the 

percentage of time females displayed responsive vs. self-initiated mating behaviors over the total 

mating behavior time in each trial (n=74 trials). Female self-initiated mating behaviors comprised 

appetitive behaviors and check genital. Female responsive mating behaviors comprised accepting, 

resistance behaviors and staying. d, Left, percentage of time female or male displayed self-initiated 

mating behaviors in each trial. Box boundaries range from min to max, with a line at the median. 

Right, male self-initiated mating time over female in each trial (n=74 trials). Data presented as 

mean ± SEM. Male self-initiated mating behaviors included male sniffing, mounting and 
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intromission. e, Distribution of the durations of male copulation bouts (left, n=1685) and inter-bout 

intervals (right) (n=1611). Male copulation included mounting and intromission. f, Raster plot of 

female behaviors during copulation bouts and inter-bout intervals. Social behaviors comprised 

accepting, resistance, and appetitive behaviors; non-social disengaged behaviors comprised 

rearing, digging and chewing. g, Percentage of time female displaying social behaviors in each 

male copulation bout or inter-bout interval; “others” indicates all behaviors other than the defined 

social behaviors or non-social disengaged behaviors during interaction. h, Female behavior 

probability aligned to male copulation offsets. 

 

Tuning of female VMHvl neurons in mating 

 

To uncover how the dynamics of female mating behavior are encoded in neural activity, 

we imaged VMHvlEsr1+,Npy2r- (“α”) cells5 in freely moving sexually receptive females 

interacting with males, using a miniature head-mounted microscope19 (Figure 2a). Initially, 

we analyzed responses observed in the first minute of exposure to either a male or female 

conspecific and observed distinct subsets tuned to intruder sex, with male-preferring cells 

~4 times more abundant, contributing to clear separation of sex in principle component 

space (Extended Data Fig. 1e,f,h). Correspondingly, the averaged population response to a 

male was ~4 times higher than that to a female (Extended Data Fig. 1g), consistent with 

prior bulk calcium imaging studies5.  

 

We next analyzed imaging data from females acquired during free mating interactions with 

a male, over 5-10 min observation periods (Fig. 2b; 16-207 units/mouse, mean 89±12= 

units/mouse; N = 15 mice). Choice probability23 indicated that a relatively small percentage 

of VMHvl α cells (~2-13%) were “tuned” to specific mating behaviors (Figure 2c and 

Extended Data Fig. 2a, b), while the majority exhibited “mixed selectivity” (Figure 2c and 

Extended Data Fig. 2a, b, gray bars), indicating relatively weak behavior-specific tuning at 

the single neuron level. 
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To further investigate the relationship between mating behaviors and neural activity, we fit 

Generalized Linear Models (GLMs) to each neuron using female mating behaviors (Figure 

2d), male mating behaviors (Extended Data Fig. 2c), or both female and male behaviors 

(Extended Data Fig. 2d). Across all animals, only ~8% of the variance in neural activity 

was explained by female mating behaviors (Figure 2e, mean cvR2=0.08, N=15 mice); 

~14% by male mating behaviors (Extended Data Fig. 2c, mean cvR2=0.14) and ~15% of 

the variance was explained by combined female and male behaviors (Extended Data Fig. 

2d, mean cvR2=0.15).  

 

Taken together, these single-cell analyses indicated that a large fraction of the variance in 

VMHvl α-cell neural activity during female mating could not be explained by behavior 

using a GLM. Nevertheless, a trained SVM linear decoder could distinguish mating 

behaviors with an accuracy higher than chance (Extended Data Fig. 2f-i), suggesting some 

relationship between neural activity or dynamics and behavior. To examine whether local 

interactions between neurons could improve the fit of our GLMs, we included coupling 

filters24,25 in addition to the behavioral variables (Figure 2f). The introduction of neuronal 

coupling dramatically increased variance explained by the GLM, suggesting that local 

circuit interactions contribute more than behavior to neuronal variance in VMHvl α cell 

activity (Figure 2f, g, mean cvR2=0.46, N = 15 mice). Because GLMs fit using low-

dimensional coupling matrices (as obtained here) can reflect slowly evolving neural 

dynamics, we were motivated to analyze next the dynamics of VMHvl α cell activity.  
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Figure 2 | Tuning properties of female VMHvl neurons during mating.  

 a, Left, schematic illustrating miniscope imaging of female VMHvlEsr1+,Npy2r- (α) cells; Right, 

an example imaging plane. b, Diagram illustrating mating interaction test. Single cell responses 

during mating interaction (top) and their corresponding behaviors (bottom), from one example 

female. Units were sorted by temporal correlation. Color scale indicates z-scored activity. c, Choice 

Probability (CP) histograms and percentages of tuned cells. cutoff: CP>0.7 or <0.3 and >2σ. (N = 

15 mice). d, Left, schematic showing the generalized linear model (GLM) used to predict neural 

activity from behavior; Right, example fit of selected neurons with cvR2 (0.50 and 0.01). e, 
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Distribution of cvR2 across all mice for GLMs trained using only behavior (left, N = 15 mice, 

mean: 0.08) and f, using behavior with cell coupling (right, N = 15 mice, mean: 0.46). g, Predicted 

cell coupling (relative strength of connectivity) between neurons in one example mouse. See also 

Extended Data Fig. 3. h, Left, example VMHvl neurons in female showing a range of persistent 

activity (z-scored ∆F/F); Right, auto-correlation half-width (ACHW) as a measure of persistent 

activity, for example units shown.  i, Left, cumulative distribution of ACHW for all units; Right, 

distribution of the number of neurons with ACHW > 25s (N = 4 mice). 
 

Neural dynamics in female VMHvl 

 

We first examined the dynamics of single neuron activity by measuring the half-width of 

each neuron’s autocorrelation function23 (ACHW), an approximation of the neuron’s time 

constant26,27 (Figure 2h). This analysis identified individual cells that exhibited apparent 

persistent activity across the mating interaction. Thirty percent of cells displayed ACHWs 

longer than 25 seconds (mean ACHW: 20s, Figure 2i), a duration longer than the mean 

copulation IBI (13.7s, Figure 1e, right). Notably, the ACHW of the same female cells was 

significantly lower when the male was confined in a perforated enclosure (pencil cup), than 

during free mating interaction (mean ACHW for pencil cup: 14.3 ± 0.42s, mean ACHW 

for free interaction: 19.64 ± 0.58s, Extended Data Fig. 3a-c), suggesting that the latter 

cannot be fully explained by persistent male odors.  

 

Given that the single cell analysis revealed evidence of persistent neural activity, we 

considered whether a systems-level approach could capture low-dimensional features of 

population neural dynamics. To this end we fit an unsupervised dynamical systems model 

(recurrent Switching Linear Dynamical Systems, rSLDS20,22) directly to neural data during 

individual trials (Figure 3a, d, e; N=15 mice, mean variance explained (calculated as cvR2 

between observed and predicted neural trajectories: 64.08 ± 6.8%). 

  

Applying rSLDS analysis to VMHvl α-cell activity revealed an “integration dimension” n 

state S2 with a relatively long time constant, in comparison to the other dimensions 
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(110.7±13.6s; Figure 3b, red dot, 3c, N = 15 mice). Examining the log2 ratio of the two 

longest time constants to calculate a so-called “line attractor score”22 revealed that the fit 

dynamical system contains a line attractor (see Figure 3e), which is aligned in neural state-

space to the integration dimension. The integration dimension could also be uncovered 

using supervised targeted dimensionality reduction (Extended Data Fig. 3d, e), confirming 

that slow integration dynamics is indeed a property of a subset of VMHvl neurons and not 

dependent on the method used.  

 

Projecting neural activity into the integration dimension revealed ramping activity that 

began to increase at the onset of sniffing, mounting, or intromission (depending on the 

trial), and which continued to increase across multiple mating bouts and IBIs (Figure 3d 

and Extended Data Fig. 3f-q). The continuous “ramping up” in the integration dimension 

observed over a long-time scale during mating is unexpected. It contrasts with studies of 

bulk calcium activity in female VMHvlCckar neurons, which showed a unidirectional 

decrease from the start of mounting until ejaculation6. 

 

To quantitatively reveal the variable integrated by the integration dimension, we modeled 

the dimension as a neural integrator using a single-state linear dynamical system, allowing 

the model to flexibly use male behaviors (male-sniff, mount and intromission) to move 

activity along the integrator (Extended Data Fig. 3r). We find that the model fits with high 

accuracy (cvR2: 0.88 ± 0.02) and possess a large intrinsic time constant (>200s), revealing 

that it does indeed function as an integrator (Extended Data Fig. 3s). To dissect how the 

different inputs contribute to the model, we obtained the transformed input from the model 

(Extended Data Fig. 3s) and found that it peaks following every male contact (Extended 

Data Fig. 3t, bottom). Thus, male-contact driven input, in combination with sustained input 

during male-engagement behaviors such as intromission, is used to integrate activity over 

time (Extended Data Fig. 3t, bottom, 3u).  
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 Analysis of the traces of individual neurons contributing to the integration dimension 

indicated that some single cells exhibited ramping-like activity (Extended Data Fig. 4a,b, 

56% of neurons r2 >0.5), but that different cells peaked at different times during the mating 

interaction (Extended Data Fig. 4c, d, orange arrowheads). This suggests that the robust 

ramping activity seen in the integration dimension (Extended Data Fig. 4c, upper) is a 

property of the population and not solely a collective property of all single neurons.  

 

To visualize the flow field of the rSLDS-fit dynamical system we projected it into a 2-

dimensional state space using PCA (Figure 3e). This projection revealed a stable region 

(white area) comprising a linear array of “slow points” that approximated a line attractor, 

which is primarily contributed by the integration dimension of the model (Figure 3d-g). 

Mapping annotated behaviors onto the neural trajectory in this state space indicated that 

the population vector entered the line attractor following initial close contact with the male 

and progressed along it during successive male intromission bouts (Figure 3f, g). This 

progression reflects the ramping seen in the integration dimension discovered by rSLDS 

(Figure 3d and Extended Data Fig. 3f-q). The pattern of fixed points discovered by rSLDS 

could also be uncovered by independently fitting recurrent neural networks (RNNs) to 

neural data using FORCE28,29, revealing that the putative line attractor is a feature of neural 

data and not an artifact of the rSLDS method (Extended Data Fig. 5a-b). Notably, in some 

animals the neural vector exhibited brief, loop-like excursions orthogonal to the attractor 

dimension during IBIs (Figure 3g; Extended Data Fig. 3i, m, q), suggesting “attractiveness” 

of the observed fixed points against either natural perturbations orthogonal to the attractor, 

or noise.  
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Figure 3 | An approximate line attractor in female VMHvl during mating.  

a, Left, rSLDS model performance measured by forward simulation accuracy (calculated as [1-

normalized mean squared error, mse])21 in an example mouse. Right, variance explained by rSLDS 

model fit without an input term (see Methods) for all mice (N = 15 mice, mean = 64.08%). The 

variance explained by the two outliers can be increased by incorporating an input term. b, Time 

constants reveal a single dimension with a large time constant. c, Distribution of time constants 

across animals fit by the rSLDS. Time constants sorted by magnitude in each animal 

(****p<0.0001, N = 15 mice, mean time constant of dim1: 110.7 ± 13.6, dim2: 24.5 ± 5.1, p value 

= 6.5e-05). d, Dynamics of the integration dimension reveals a ramping dimension, aligned to male 

mating behaviors in an example trial. e, Flow field of VMHvl α dynamical system colored by 
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rSLDS states. f, Flow field of VMHvl α dynamical system showing neural trajectories in state 

space. g, Neural state space of VMHvl α dynamical system highlighting regions where fixed points 

are present (dash line). h: Left: Time constants of latent factors from rSLDS model. Right: 

Projection of rSLDS latent factor activity from rSLDS model trained on neural data from 

unperturbed periods (i.e., excluding LED stimulation and 20s post-stimulation interval). i: Left: 

Flow field and neural trajectories from rSLDS model colored by time. Right: Neural trajectory 

colored by stimulation periods. j: Flow field and neural trajectories for each of the three stimulation 

periods for mouse 1. Note that trajectories are pushed away from the attractor during stimulation 

and then return to line attractor following stimulation offset, as predicted by the flow field. This 

approach also tests the validity of the extrapolated regions of the flow field uncovered by rSLDS. 

k: Stimulus triggered average of response in integration dimension (x1) and orthogonal dimension 

(x2) upon optogenetic stimulation. 
 

Perturbations of the female line attractor 

 

Definite evidence for the attractive nature of the fixed points discovered by rSLDS requires 

performing neural perturbations orthogonal to the line attractor. Such perturbations for line 

attractors have yet to be performed for freely behaving animals30. To achieve this, we 

performed optogenetic inhibition of the VMHvl network while concurrently imaging 

VMHvlEsr1 α neurons (Extended Data Fig. 5c-d). We found that transient optogenetic 

inhibition creates consistent transient off-manifold responses in neural state space during 

the period of photostimulation, with the neural trajectory returning to the nearest fixed 

point along the line attractor post inhibition (Figure 3h-k, Extended Data Fig. 5e-j). Using 

forward simulations of the model fit to data from the unperturbed period (excluding data 

during and 20s after stimulation), we find that the dynamical system model is able to predict 

neural trajectories in the held-out post-stimulus period, revealing the predictive nature of 

the flow field (Extended Data Fig. 5f-h). Moreover, by providing this inhibition at different 

positions along the line attractor, we show that different fixed points along the line attractor 

revealed by rSLDS are indeed attractive (Figure 3i-j, Extended Data Fig. 5i-j).  
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The presence of a line attractor suggested a mechanism to stably maintain population 

activity in a particular state during interruptions or pauses in male mating behavior. To test 

this hypothesis, we first examined activity during copulation inter-bout intervals, when the 

male is physically separated from the female. Notably, we found that the average value of 

the integration dimension during copulation IBIs was relatively high, similar to and 

statistically indistinguishable from that measured during the preceding copulation bout 

(Figure 4a).  Accordingly, it was not possible, using activity in this dimension, to train a 

decoder to distinguish videoframes containing copulation bouts vs. IBIs with accuracy 

greater than chance (Figure 4b).  

 

To further probe the stability of the identified line attractor in female VMHvl, we next 

carried out behavioral perturbation experiments to non-invasively and transiently interrupt 

male mating (Figure 4c). After several successful intromission bouts had been performed, 

we remotely abrogated copulation by optogenetic activation of VMHdmSf1+ cells in males, 

which promoted an abrupt defensive state31,32. During the laser-on period, males stopped 

all mating behaviors, including singing, and displayed no active approach to the female. 

The induced mating pauses lasted for several minutes (1-5 mins), which were much longer 

than the natural mating pauses (Figure 1f; average IBI = 13.7s). Nevertheless, activity in 

the integration dimension in the female brain remained elevated for minutes while the male 

was prevented from resuming mating (Figure 4d), consistent with the persistent activity we 

observed during the natural male copulation pauses (Figure 4a).  

Together, these data indicated that VMHvl α cell activity displays line attractor dynamics 

during mating, and that while male contact is integrated along the line attractor (Extended 

Data Fig. 3r-u), the stability of the system in the integration dimension does not require 

continuous male contact-dependent sensory input. In further support of this conclusion, in 

a cohort of naturally cycling females exhibiting variable receptivity (see below), we 

obtained some trials with high male intromission rates but low female receptivity behavior 

(Figure 4e, colored dots, Videos). Notably, analysis of those trials revealed relatively little 

if any ramping in the integration dimension (Figure 4f). These data suggest that ramping 
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does not simply reflect accumulated mechanosensory inputs derived from male 

intromission.  

 

Lastly, we sought to identify a correlate of the ramping activity revealed by line attractor 

dynamics in VMHvl (Figure 4j). Males display sequential mating behaviors with escalating 

intensity from sniffing to mounting, intromission and finally ejaculation, reflecting an 

escalating internal state of sexual arousal. We examined activity in the integration 

dimension during ejaculation and observed that it peaked just prior to ejaculation, and 

immediately dropped thereafter (Figure 4j, h), although this drop is characteristic of bulk 

calcium activity as well6.  

 

 
 
Figure 4 | Female line attractor encoded a persistent and ramping state during mating.  

a, Behavior triggered average of the normalized activity of the integration dimension aligned to the 

offset of male copulation. Data presented as mean ± SEM. b, Videoframe behavioral decoder 

performance trained on neural data from copulation bouts vs. inter-bout intervals (N=4 mice, p = 

0.2, Mann-Whitney U test, mean value of data:0.52 ± 0.007, shuffle: 0.49 ± 0.03). c, Dynamics of 

the integration dimension in an example female combined with optogenetic inhibition of mating 

behaviors in the interacting male. d, Behavior triggered average of the normalized activity of the 
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integration dimension aligned to first male contact (left), optogenetic mating inhibition onset 

(middle) and inhibition offset (right) (N = 4 mice). Data presented as mean ± SEM. e, Scatter plots 

of time spent performing intromission and time spent performing accept behaviors to identify trials 

with high intromission and low receptivity (colored dots). Data presented as mean ± SEM. 

****p<0.0001, Linear regression: R2=0.51, p value = 7.09e-12.  f, Example traces of the 

integration dimension for trials with intromission but low receptivity (identified from e). g, 

Dynamics of the integration dimension, aligned to male mating behaviors in an example trial with 

ejaculation. h, Behavior triggered average of the normalized activity of the integration dimension 

aligned to the ejaculation onset and offset (N=4 mice), data presented as mean ± SEM. 

 

Attractor encodes sexual receptivity 

 

We considered whether the line attractor observed during mating reflects or encodes the 

level of female receptivity by altering receptivity in two different paradigms. First, we 

performed longitudinal imaging in multiple females (N = 4 mice) across their 4-5 day estrus 

cycle, during which receptivity changes (Extended Data Fig. 6a). In each animal, we were 

able to obtain data from 1 sexually receptive day and 2 unreceptive days and to align 

neurons from those recordings across days (Figure 5a). Consistent with previous 

studies5,6,17, no change in average VMHvl α cell population activity (triggered on male 

mounting attempt) was apparent on receptive vs. unreceptive days (Extended Data Fig. 6b). 

However, raster plots revealed obvious differences in the pattern of single-unit activity on 

receptive vs. unreceptive days (Figure 4a, right).  

 

To determine whether there were also differences in VMHvl α cell dynamics across the 

estrus cycle, we fit rSLDS models to data obtained on both receptive and unreceptive days, 

for each individual. Models fit to data from unreceptive days failed to identify a single 

dimension with a very long time constant, indicating the absence of a line attractor (Figure 

5b, c). Accordingly, the first 2 PCs of rSLDS state-space did not exhibit integration-like 

activity, but rather relatively fast dynamics time-locked to male sniffing and mounting 

(PC2 in Figure 5d). In 2D flow-field projections, neural state space contained a single point 
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attractor, reflecting stable baseline activity prior to interaction with the male, from which 

the population vector made rapid excursions during sniffing and mounting, returning to the 

same point attractor after interaction (Figure 5e, f).  

To compare neural dynamics on non-receptive vs. receptive days more directly, we 

projected neural activity from unreceptive days into the rSLDS model fit to data from the 

receptive day using the same neurons aligned across days (Figure 5g). The projected neural 

data failed to show ramping behavior in the 1st rSLDS dimension (Figure 5h, Extended 

Data 6c). Accordingly, in 2D projections of the flow-field the neural population activity 

vector remained at one end of the line attractor (Extended Data Fig. 6d). Importantly, 

although male mounting occurred on unreceptive days (Figure 5h, purple rasters), activity 

in the 1st rSLDS dimension was low during this behavior (Extended Data Fig. 6e), 

indicating that it is not sufficient to explain the ramping observed on receptive days. 

 

These results suggested that a change in neural dynamics occurred between receptive and 

unreceptive days. This inference was supported by the lower ACHW of cells weighted on 

the 1st rSLDS dimension on unreceptive vs. receptive days (Extended Data Fig. 7a, b; 

distribution mean for ACHW on unreceptive days 16.1 ± 0.8s; on receptive days 25.2 ± 

1.5s, p<0.001). This difference in mean ACHW was observed regardless of the order in 

which receptive and unreceptive days occurred in different mice (Extended Data Fig. 7c, 

f). Neurons that did not contribute to the 1st rSLDS dimension did not exhibit a change in 

ACHW (Extended Data Fig. 7d, g). Finally, we compared the ACHWs of each individual 

unit on receptive vs. non-receptive days. A scatterplot of these data revealed a 

subpopulation (39 ± 5%) of line attractor-weighted neurons whose ACHW was higher on 

receptive than on unreceptive days (Extended Data Fig. 7e, h, red datapoints). Indeed, 

incorporating these differences in ACHW into a mechanistic spiking network model can 

recapitulate our empirical results, exhibiting a loss of line attractor dynamics during 

unreceptive states (Extended Data Fig. 8d).  
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As a second independent test of the hypothesis that the line attractor encodes receptivity, 

we subjected a cohort of females to ovariectomy (OVX) to render them unreceptive, and 

performed longitudinal imaging in the OVX animals before vs. after hormone priming to 

restore receptivity (daily injection of estrogen (E) + progesterone (P) in oil; OVX/EP; 

controls injected with oil only). The results indicated that attractor dynamics disappeared 

following OVX and were reinstated following hormone-priming (Extended Data Fig. 9j). 

The females used in this cohort had also been imaged during their natural cycle and fit with 

rSLDS models. In some individuals, the model possessed a poor fit on receptive days 

(Extended Data Fig. 9k, “forward simulation accuracy”).  Strikingly, in one such animal 

the fit of the rSLDS model was strikingly improved following OVX and hormone priming, 

compared to the fit obtained on her naturally receptive day (Extended Data Fig. 9k vs. l, 

m-n). Taken together, these data confirm a strong prediction of the hypothesis that the line 

attractor observed during mating encodes some aspect of mating receptivity. 

 

The foregoing data left open the important question of whether the continuous low-

dimensional variable instantiated by the line attractor reflects or encodes continuous 

variation in the degree of female receptivity.  In males, differences in the time constant of 

the integration dimension are strongly correlated with differences in aggressiveness, across 

individual animals19.  We therefore sought to examine line attractor parameters within a 

cohort of females exhibiting individual differences in receptivity across trials and days. To 

generate this cohort, we injected naturally cycling females with estrogen (but not 

progesterone) daily beginning 2 days before imaging and continued the injections during 

3-7 days of repeated imaging of the same animals during daily mating tests (N = 6 mice). 

These injections increased the number of days on which females exhibited receptivity, 

while still allowing variation in the level of receptivity (as measured by the amount of 

accepting behaviors displayed in a given trial) in response to changing levels of 

endogenous sex hormones across the estrus cycle (Figure 5i, j and Extended Data Fig. 10a). 

This design afforded the opportunity to correlate quantitative variation in receptivity with 

variation in line attractor parameters.  
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We fit rSLDS models to imaging data from each animal and mating trial and plotted the 

average activity of the integration dimension over time (cf. Figure 5h, receptive day 3). 

Strikingly, the area under this curve (auc) was strongly and positively correlated with the 

percentage of time that females performed acceptance behaviors during each mating 

interaction (Figure 5k, l; r2=0.62, p<0.0001, n = 50 trials). In contrast, other behaviors such 

as resistance and appetitive behaviors were not correlated with this measure (Extended 

Data Fig. 10b). Lastly, the population mean of neural activity did not show any correlation 

with the percentage of time that females performed acceptance behaviors, highlighting the 

value of rSLDS to identify physiologically distinct subpopulations whose activity is 

quantitatively correlated with receptivity during male mating (Extended Data Fig. 10c-d). 

Thus, these data indicate that variation in movement along the line attractor reflects 

variation in levels of sexual receptivity, across individuals and trials.  
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Figure 5 | Female line attractor dynamics encoded sexual receptivity across days.  

a, Left, illustration for longitudinal imaging strategy across estrus states of naturally cycling 

females; Right, example longitudinal imaging planes and traces from one female. Units were sorted 

by temporal correlation. Color scale indicates z-scored activity. b, Time constants of VMHvl α 

dynamical system on one unreceptive day. c, Line attractor scores for dynamical systems fit during 

receptive and unreceptive days (N = 4 mice, mean ± sem - unreceptive: 0.05 ± 0.02, receptive: 1.9 

± 0.2, *p<0.05, Mann Whitney U test, p value: 0.02). d, Low dimensional principal components of 

VMHvl α rSLDS fit model on unreceptive day. Principal components show fast time locked 

dynamics and lack ramping and persistence. e, Flow field of VMHvl α dynamical system on 

unreceptive day. f, Same as e, showing neural trajectories in state space colored by time and 

behaviors. g, Schematic illustrating the projection of neural activity from an unreceptive day into 

fit dynamical system from a receptive day. h, Dynamics of integration dimension in VMHvl 
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discovered during a receptive day (same example trial as shown in Fig. 3d) compared to activity of 

the same dimension on unreceptive days. I, Illustration for longitudinal imaging strategy across 

estrus states of naturally cycling females with estrogen injection. j, Accepting behaviors displayed 

in mating interactions across days from one example female. k, The scatter plots of the integration 

dimension values and the amount of female accepting behaviors (****p<0.0001, linear regression, 

R2=0.62: , n = 50 trials) in each trials. Data presented as mean ± SEM. l, The integration dimension 

activity aligned to the first male contact, in high, medium or low receptivity trials, defined in k. 

****p<0.0001, Wilcoxon matched-pairs signed rank test. Data presented as mean ± SEM. 
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Discussion 

 

Using unsupervised analysis of neural data, we have discovered an approximate line 

attractor in a genetically defined subset of VMHvlEsr1 neurons that causally controls female 

mating receptivity. Activity in the attractor scales with individual differences in receptivity 

and is estrus cycle-dependent. To our knowledge, there is no prior example of a line 

attractor that appears and disappears with periodic changes in behavioral/hormonal state 

on a time scale of days.  

 

Line attractor dynamics can afford internal states two important features: stability 

(persistence) and ramping (scalability). The stability of the line attractor across 

intromission bouts may function to maintain the female in a persistently aroused state 

during intermittent male copulatory behavior, facilitating its re-initiation following pauses. 

This interpretation is supported by our observation that female social behavior persists 

following natural interruptions in copulation (Figure 1f-h). The ramping activity seen 

during copulation may represent a continuous, scalable variable in the female brain. A 

reasonable interpretation is that this variable encodes the level of escalating female sexual 

arousal. We emphasize that this ramp-up was not visible in the bulk α cell calcium signal, 

but only in the integration dimension. This may explain why it was not reported in a study 

of mating-related VMHvlCckar neuronal activity using fiber photometry6.  

 

The idea that the line attractor encodes mating receptivity is supported by its presence or 

absence during receptive vs. unreceptive estrus cycle days or in ovariectomized females 

with vs. without hormone priming, respectively (Figure 5c). Importantly, however, it is not 

just a binary correlate of receptivity: the degree of movement along the attractor was highly 

correlated (r2=0.62) with the level of receptivity as measured by the frequency of accepting 

behaviors (Figure 5k and Extended Data Fig. 10b). In contrast, the integration dimension 

was not well-correlated with other female behaviors.  
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Our previous work has shown that transcriptionally distinct subsets of VMHvlEsr1 neurons, 

called α and β cells, control female sexual receptivity and maternal aggression, 

respectively5. Here we show that the α cell population exhibits further heterogeneity at the 

physiological level, including subsets that contribute to the line attractor or to orthogonal 

dimensions. Whether these subpopulations are transcriptomically distinct is not yet 

clear6,18. Yin et al., reported that VMHvlCckar neurons (a subset of α cells) displayed 

receptivity-associated changes in their spontaneous activity, and responsivity to males 

during investigation6. These cells may contribute to the integration dimension neurons 

identified here. 

 

Together, our data suggest that neural population dynamics represent the dynamics of 

female mating receptivity and can be reversibly sculpted by physiological state. They also 

generalize the concept that line attractors with slow dynamics encode internal states 

underlying innate social behaviors21. Because the molecular, cellular and connectional 

features of VMHvl are well-described5,15,16,35–37, this system may be advantageous for 

understanding how hormones, genes, cell types and local circuitry contribute to emergent 

neural population dynamics. 
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Methods 

 

Mice 

 

All experimental procedures involving the use of live mice or their tissues were carried out 

in accordance with NIH guidelines and approved by the Institute Animal Care and Use 

Committee (IACUC) and the Institute Biosafety Committee (IBC) at the California 

Institute of Technology (Caltech). All mice in this study, including wild-type and 

transgenic mice, were bred at Caltech or purchased from Charles River Laboratory. Group 

housed C57BL/6N female or singly housed male mice (2-5 months) were used as 

experimental mice. Npy2rcre mice (Jackson Laboratory stock no. 029285) (=N1), Esr1cre 

mice, Esr1flp mice (>N10), Sf1cre mice (Jackson Laboratory stock no. 012462) were 

backcrossed into the C57BL/6N background and bred at Caltech. Heterozygous Npy2rcre, 

Esr1cre or double heterozygote Esr1flp/+Npy2rcre/+ mice were used for cell-specific targeting 

experiments and were genotyped by PCR analysis using genomic DNA from tail tissue. 

All mice were housed in ventilated micro-isolator cages in a temperature-controlled 

environment (median temperature 23°C, humidity 60%), under a reversed 11-h dark–13-h 

light cycle, with ad libitum access to food and water. Mouse cages were changed weekly. 

 

Surgeries  

 

Surgeries were performed on female Esr1Flp/+Npy2r Cre/+ females aged 2 months. Virus 

injection and implantation were performed as described previously34,38. Briefly, animals 

were anaesthetized with isoflurane (5% for induction and 1.5% for maintenance) and 

placed on a stereotaxic frame (David Kopf Instruments). Virus was injected into the target 

area using a pulled-glass capillary (World Precision Instruments) and a pressure injector 

(Micro4 controller, World Precision Instruments), at a flow rate of 20 nl min–1. The glass 

capillary was left in place for 10 min following injection before withdrawal. Lenses were 

slowly lowered into the brain and fixed to the skull with dental cement (Metabond, Parkell). 
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Females were co-housed with a vasectomized male mouse after virus injection and lens 

implantation. Four weeks after lens implantation, mice were head-fixed on a running wheel 

and a miniaturized micro-endoscope (nVista, nVoke, Inscopix) was lowered over the 

implanted lens until GcaMP-expressing fluorescent neurons were in focus. Once GcaMP-

expressing neurons were detected, a permanent baseplate was attached to the skull with 

dental cement. The co-housed vasectomized males were removed. 

 

Virus injection and GRIN lens implantation 

 

The following AAVs were used in this study, with injection titers as indicated. Viruses 

with a high original titer were diluted with clean PBS on the day of use. AAV-DJ-EF1a-

Coff/Fon-GcaMP6m (4.5e12, Addgene plasmid) was packaged at the HHMI 

Janelia Research Campus virus facility. “Coff/Fon” indicates Cre-OFF/FLP-ON virus. 

Stereotaxic injection coordinates were based on the Paxinos and Franklin atlas. Virus 

injection: VMHvl, AP: −1.6, ML: ±0.78, DV: −5.7; GRIN lens implantation: VMHvl: AP: 

−1.6, ML: −0.76, DV: −5.55 (⌀0.6 × 7.3 mm GRIN lens). 

 

Vaginal cytology 

 

To determine the estrus phases of tested females, vaginal smear cytology was applied on 

the same day as the behavior test. A vaginal smear was collected immediately after the 

behavioral test and stained with 0.1% crystal violet solution for 1 minute. Cell types in the 

stained vaginal smear were checked microscopically. In this study, the proestrus phase was 

characterized by many nucleated epithelial, some cornified epithelial and no leukocytes. 

Hormone priming 

 

Female mice were ovariectomized and estrus was induced by hormone priming. Estradiol 

benzoate (E2) and progesterone (PG) powder was dissolved in sesame oil. For primed 

females, 50ul 200ug/ml E2 was delivered subcutaneously on day-2 and day-1 at 3pm. 
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10mg/ml PG was delivered subcutaneously on the day of test at 10am. Behavior test was 

performed 4-6 hours after PG injection. For unprimed female, sesame oil was injected at 

the same time points as hormone injections. Vaginal smear cytology was applied on the 

same day as the behavior test to make sure that the females were completely primed or 

unprimed. For estrogen-injected females used in Fig. 3 and Fig. 4, 50ul 200ug/ml E2 was 

delivered subcutaneously everyday at 10am. Behavior tests were conducted after the first 

two days of injection. 

 

Sex representation assay 

 

All behavior tests were performed under red light. Group housed C57BL/6N male and 

female mice (2-4 months) were used for the test. Tested female was acclimated in her home 

cage under the recording setup39 for 10 minutes. A toy, a female or a male was introduced 

to the tested female with a 90-second interval. Each interaction lasted for 1 minute before 

transitioning into the consummatory phase. The sequential representations were repeated 

for 3 times.  

 

Mating assay 

 

Singly housed sexually experienced C57BL/6N male were used for mating assay. Male 

mice used for test were initially co-housed with a female mouse for at least 1 week and 

singly housed at least 1 week before test. On the day of test. Male mouse was acclimated 

in his home cage under the recording setup. A random female mouse was placed into male 

cage until three male mounting bouts were observed. The tested female mice were 

acclimated in a new cage for 10 minutes before being introduced into the male cage. The 

male contact mating interaction lasted for 5-15 mins. At the end of the free interaction, a 

pencil cup was introduced to restrain the male. Then the imaging and behavior recording 

during the non-contact period continued for 3-5 mins. 
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Wireless optogenetic male mating inhibition assay 

 

Singly housed sexually experienced Sf1-Cre+/- males were used in this test. All hardware 

and wireless devices for optogenetic stimulation were sourced from NeuroLux (Urbana, 

IL). Specifically, AAV2-EF1a-DIO-hChR2(H134R)-EYFP-WPRE-pA (4.2e12, UNC 

vector core) was unilaterally injected into ventromedial hypothalamus (VMHdm) of the 

male mice at coordinates: AP: −1.5, ML: +0.4, DV: −5.6. Simultaneously, wireless 

optogenetic devices were implanted. A recovery period of three weeks followed the 

surgical procedures to allow for optimal viral vector expression and ensure the animals’ 

well-being. Subsequently, a mating assay was performed, and when multiple successful 

copulations were observed, male mice were exposed to a wirelessly powered blue light 

photostimulation (473 nm, 1-5 minutes, 20Hz, 10W). During the stimulation, male mice 

promptly discontinued all mating-related behaviors, including vocalization, sniffing, 

mounting or intromission, instead exhibiting exploratory behaviors within the homecage 

and distancing themselves from the female mouse. Following the cessation of 

photostimulation, male mice typically resumed mating-related behaviors, either 

immediately or with a delay. 

 

Behavior annotations  

 

Behavior videos were manually annotated using a custom MATLAB-based behavior 

annotation interface. A ‘baseline’ period of 2 min when the animal was alone in its cage 

was recorded at the start of every recording session.  

During female-male interaction, we manually annotated the following male mating 

behaviors: male sniff, mount, intromission and ejaculation.  

For the same video, we annotated the following female mating behaviors: approach, sniff, 

lordose, wiggle, stay, dart, top up, kick, turn, check genital. ‘Approach’: Female faced male 

and walked to it without pausing. ‘Sniff’: Female actively sniffed male. ‘Lordose’: Female 

abdomen was on the ground and motionless or showing an arched back posture responding 
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to male mounting or intromission. ‘Wiggle’: Female continuously moving her head or body 

responding to male mounting or intromission. ‘Stay’: Female quietly stayed in place, but 

abdomen was not clearly on the ground, responding to male mounting or intromission. 

‘Dart’: Female quickly ran away from male, responding to male mating behaviors. ‘Top 

up’: Female stood up to conceal the anogenital area, responding to male mating behaviors. 

‘Kick’: Female kicked the male, responding to male mating behaviors. ‘Turn’: Female 

turned away from male, responding to mating mounting or intromission. ‘Check genital’: 

Female examined her genital area, usually after male mounting or intromission. 

 

‘Lordose’, ‘wiggle’, ‘stay’, dart’, ‘top up’, ‘kick’ and ‘turn’ were grouped as responsive 

mating behaviors. ‘Approach’, ‘sniff’ and ‘check genital’ were grouped as female self-

initiated mating behaviors. 

‘Approach’ and ‘sniff’ were grouped as appetitive mating behaviors. ‘Lordose’ and 

‘wiggle’ were grouped as accepting mating behaviors. ‘Dart’, ‘top up’, ‘kick’ and ‘turn’ 

were grouped as resistance mating behaviors. 

All appetitive, accepting and resistance behaviors were grouped as social behaviors. 

For the same video, we also annotated the following female non-social disengaged 

behaviors: rear, dig, chew. ‘Rear’: Female extended her body upright and attempted to 

explore outside the testing chamber. ‘Dig’: Female dig beddings. ‘Chew’: Female stood up 

and chewed with her mouth. 

 

Fiber photometry 

 

The fiber photometry setup was as previously described in earlier research with minor 

modifications. We used 470 nm LEDs (M470F3, Thorlabs, filtered with 470-10 nm 

bandpass filters FB470-10, Thorlabs) for fluorophore excitation, and 405 nm LEDs for 

isosbestic excitation (M405FP1, Thorlabs, filtered with 410–10 nm bandpass filters 

FB410-10, Thorlabs). LEDs were modulated at 208 Hz (470 nm) and 333 Hz (405 nm) and 

controlled by a real-time processor (RZ5P, Tucker David Technologies) via an LED driver 
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(DC4104, Thorlabs). The emission signal from the 470 nm excitation was normalized to 

the emission signal from the isosbestic excitation (405 nm), to control for motion artefacts, 

photobleaching and levels of GcaMP6m expression. LEDs were coupled to a 425 nm 

longpass dichroic mirror (Thorlabs, DMLP425R) via fiber optic patch cables (diameter 400 

mm, N.A., 0.48; Doric lenses). Emitted light was collected via the patch cable, coupled to 

a 490 nm longpass dichroic mirror (DMLP490R, Thorlabs), filtered (FF01-542/27-25, 

Sem- rock), collimated through a focusing lens (F671SMA-405, Thorlabs) and detected by 

the photodetectors (Model 2151, Newport). Recordings were acquired using Synapse 

software (Tucker Davis Technologies). On the test day, after at least 5 minutes of 

acclimation under the recording setup, the female was first recorded for 5 minutes to 

establish a baseline. Then behavior assays were proceeded and fluorescence were recorded 

for the indicated period of time, as described in the text. All data analyses were performed 

in Python. Behavioral video files and fiber photometry data were time-locked. Fn was 

calculated using normalized (405 nm) fluorescence signals from 470 nm excitation. Fn(t) 

= 100 x [ F470(t) – F405fit(t) ] / F405fit(t). For the peri-event time histogram (PETH), the 

baseline value F0 and standard deviation SD0. was calculated using a -5 to -3 second 

window. Overlapping behavioral bouts within this time window were excluded from the 

analysis. Then PETH was calculated by [ (Fn(t) – F0 ]/ SD0. 

 

Micro-endoscopic imaging data Acquisition 

 

Imaging data were acquired by nVista 3.0 (Inscopix) at 30 Hz with 2× spatial 

downsampling; light-emitting diode power (0.2–0.5) and gain (6–8×) were adjusted 

depending on the brightness of GcaMP expression as determined by the image histogram 

according to the user manual. A transistor–transistor logic (TTL) pulse from the Sync port 

of the data acquisition box (DAQ, Inscopix) was used for synchronous triggering of 

StreamPix7 (Norpix) for video recording.  

For perturbation-imaging experiments, AAV5-hSyn-eNpHR3-mCherry (Addgene) was 

expressed together with GcaMP in VMHvl. Imaging data were acquired by nVoke 2.0 
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(Inscopix). One to three bouts of inhibitory LED stimulation (5 mW, continuous, 10 s) 

were performed during receptive mating trials. 

 

Micro-endoscopic data extraction and preprocessing.  

 

Miniscope data were acquired at 30 Hz using the Inscopix Data Acquisition Software as 

2× down sampled .isxd files. Preprocessing and motion correction were performed using 

Inscopix Data Processing Software. Briefly, raw imaging data from three recording dates 

were concatenated. 2× spatially down sampled, motion corrected and temporally down 

sampled to 10 Hz. Further and exported as a .tiff image stack. A spatial band-pass filter 

was then applied to remove out-of-focus background. After preprocessing, calcium traces 

were extracted and deconvolved using the CNMF-E large data pipeline with the following 

parameters: patch_dims = [32, 32], gSig = 3, gSiz = 13, ring_radius = 19, min_corr = 0.75, 

min_pnr = 8. The spatial and temporal components of every extracted unit were carefully 

inspected manually (SNR, PNR, size, motion artefacts, decay kinetics and so on) and 

outliers (obvious deviations from the normal distribution) were discarded. The extracted 

traces were then z-scored before analysis. 

 

Longitudinal imaging data extraction and preprocessing. 

 

The females performed mating assay and were imaged for consecutive 3-7 days. ‘Receptive 

day’ was defined as female displayed accepting behaviors on the testing day, while 

‘unreceptive day’ was defined as female did not display accepting behaviors on the testing 

day. Miniscope data from one receptive day and two unreceptive days were selected and 

concatenated to one .isxd file. Data was preprocessed and the traces were extracted as 

described in the last section. The three-day concatenated traces were z-scored, and then 

split to multiple traces for individual days. 
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Choice probability 

 

Choice probability is a metric that estimates how well either of two different behaviors can 

be predicted/distinguished, based on the activity of any given neuron during these two 

behaviors. CP of single neurons was computed using previously described methods38. To 

compute the CP of a single neuron for any behavior pair, 1 s binned neuronal responses 

occurring during each of the two behaviors were used to generate a receiver operating 

characteristic curve. CP is defined as the area under the curve bounded between 0 and 1. A 

CP of 0.5 indicates that the activity of the neuron cannot distinguish between the two 

alternative behaviors. We defined a neuron as being capable of distinguishing between two 

behaviors if the CP of that neuron was >0.7 or <0.3 and was >2 σ or <−2 σ of the CP 

computed using shuffled data (repeated 1000 times). 

 

Generalized linear model  

 

To predict neural activity from behavior, we trained generalized linear models to predict 

the activity of each neurons k, as a weighted linear combination of 3 male behaviors: male 

sniffing, mounting and intromission as follows:  

 

𝑦𝑦𝑘𝑘(𝑡𝑡) = 𝑥⃑𝑥(𝑡𝑡)𝛽𝛽 + 𝜑𝜑 

 

Here, 𝑦𝑦𝑘𝑘(𝑡𝑡) is the calcium activity of neuron k at time t, 𝑥⃑𝑥(𝑡𝑡) is a feature vector of 3 binary 

male behaviors at time lags ranging from t-D to t where D = 10s. 𝛽𝛽 is a behavior-filter 

which described how a neuron integrates stimulus over a 10s period (example filters are 

shown in Extended Data Fig.2d-e).  𝜑𝜑 is an error term. The model was fit using 10-fold 

cross validation with ridge regularization and model performance is reported as cross-

validated 𝑅𝑅2 (cv𝑅𝑅2). To account for cell-cell interactions within the network, we also used 

the activity of simultaneously imaged neurons as regressors in addition to behavior as 

previously performed24,25.  
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Dynamical system modelling 

 

Recurrent-switching linear dynamical system (rSLDS) models20,40 are fit to neural data as 

previously described22. Briefly, rSLDS is a generative state-space model that decomposes 

non-linear time series data into a set of linear dynamical systems, also called ‘states’. The 

model describes three sets of variables: a set of discrete states (z), a set of latent factors (x) 

that captures the low-dimensional nature of neural activity, and the activity of recorded 

neurons (y). While the model can also allow for the incorporation of external inputs based 

on behavior features, such external inputs were not included in our first analysis.  

 

The model Is formulated as follows: At each timepoint, there Is a discrete state 𝑧𝑧𝑡𝑡 ∈

{1, … ,𝐾𝐾} that depends recurrently on the continuous latent factors (x) as follows: 

 

 𝑝𝑝(𝑧𝑧𝑡𝑡+1 ∣ 𝑧𝑧𝑡𝑡 = 𝑘𝑘, 𝑥𝑥𝑡𝑡) = softmax{𝑅𝑅𝑘𝑘𝑥𝑥𝑡𝑡 + 𝑟𝑟𝑘𝑘} (1) 

 

where 𝑅𝑅𝑘𝑘 ∈ ℝ𝐾𝐾×𝐾𝐾 and 𝑟𝑟𝑘𝑘 ∈ ℝ𝐾𝐾 parameterizes a map from the previous discrete state and  

continuous state to a distribution over the next discrete states using a softmax link function. 

The discrete state 𝑧𝑧𝑡𝑡 determines the linear dynamical system used to generate the latent 

factors at any time t: 

 

 𝑥𝑥𝑡𝑡 =   𝐴𝐴𝑧𝑧𝑡𝑡𝑥𝑥𝑡𝑡−1 + 𝑏𝑏𝑧𝑧𝑡𝑡 + 𝜖𝜖𝑡𝑡 (2) 

 

where 𝐴𝐴𝑘𝑘 ∈ ℝ𝑑𝑑×𝑑𝑑 is a dynamics matrix and 𝑏𝑏𝑘𝑘 ∈ ℝ𝐷𝐷 is a bias vector, where 𝐷𝐷 is the 

dimensionality of the latent space and 𝜖𝜖𝑡𝑡 ~ 𝑁𝑁(0,𝑄𝑄𝑧𝑧𝑡𝑡) is a Gaussian-distributed noise (aka 

innovation) term.  

 

Lastly, we can recover the activity of recorded neurons by modelling activity as a linear 

noisy Gaussian observation 𝑦𝑦𝑡𝑡 ∈ ℝ𝑁𝑁 where N is the number of recorded neurons: 
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 𝑦𝑦𝑡𝑡 =   𝐶𝐶𝑥𝑥𝑡𝑡  + 𝑑𝑑 +  𝛿𝛿𝑡𝑡 (3) 

 

For 𝐶𝐶 ∈ ℝ𝑁𝑁×𝐷𝐷 and 𝛿𝛿𝑡𝑡 ~ 𝑁𝑁(0, 𝑆𝑆), a Gaussian noise term. Overall, the system parameters 

that rSLDS needs to learn consists of the state transition dynamics, library of linear 

dynamical system matrices and neuron-specific emission parameters, which we write as: 

 

𝜃𝜃 = {{𝐴𝐴𝑘𝑘𝑏𝑏𝑘𝑘,𝑄𝑄𝑘𝑘,𝑅𝑅𝑘𝑘, 𝑟𝑟𝑘𝑘}𝑘𝑘=1𝐾𝐾 ,  𝐶𝐶,𝑑𝑑, 𝑆𝑆} 

 

We evaluate model performance using both the evidence lower bound (ELBO) and the 

forward simulation accuracy (FSA) (Fig. 3a) described in Nair et al., 202322 as well as by 

calculating the variance explained by the model on data. Briefly, given observed neural 

activity in the reduced neural state space at time t, we predict the trajectory of population 

activity over an ensuing small time interval Δt using the fit rSLDS model, then compute 

the mean squared error (MSE) between that trajectory and the observed data at time t+ Δt. 

This MSE is computed across all dimensions of the reduced latent space and repeated for 

all times t across cross validation folds. This error metric is normalized to a 0-1 range in 

each animal across the whole recording to obtain a bounded measure of model 

performance. The FSA can intuition of where model performance drops during the 

recording. In addition to MSE, we also calculate the Pearson’s correlation coefficient (𝑅𝑅2) 

between the predicted and observed data for each dimension following the forward 

simulation. By taking the average correlation coefficient across dimensions, we can obtain 

a quantitative estimate of variance explained by rSLDS on observed data.  

 

The number of states and dimensions used for the model are determined using 5-fold cross 

validation. Visualization of the dynamical system using principal components analysis is 

performed as described previously 22. 

 

(4) 
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For neural perturbation experiments, the rSLDS model was trained on data from 

unstimulated periods of time (i.e., excluding data during and 20s immediately after 

stimulation) and then tested on data from stimulated periods along with a 20s post-stimulus 

period (Extended Data Fig. 5e,f).  

 

Code used to fit rSLDS on neural data is available in the SSM package: 

(https://github.com/lindermanlab/ssm) 

 

 

Estimation of time constants 

We estimated the time constant of each dimension of linear dynamical systems using 

eigenvalues 𝜆𝜆𝑎𝑎 of the dynamics matrix of that system, derived previously41 as: 

 

𝜏𝜏𝑎𝑎 =  �
1

log(|𝜆𝜆𝑎𝑎|)
� 

 

 

Decoding of behavior using support vector machines  

We trained frame-wise decoders to discriminate various pairs of behaviors as shown in 

Extended Data Fig. 4, from the population activity of all neurons during a mating 

interaction. We first created ‘trials’ from bouts of each behavior by merging all bouts that 

were separated by less than five seconds and balanced data to ensure chance performance 

of the model to be 50%. We then trained a linear SVM to identify a decoding threshold that 

maximally separates the two behaviors and tested the accuracy of the trained decoder on 

held-out frames. ‘Shuffled’ decoder data was generated by setting the decoding threshold 

on the same “trial”, but with the behavior annotations randomly assigned to each behavior 

bout. We repeated shuffling 20 times. We report performances of actual and shuffled 

decoders as the average F1 score of the fit decoder, on data from all other “trials” for each 

https://github.com/lindermanlab/ssm
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mouse. For significance testing, the mean accuracy of the decoder trained on shuffled data 

was computed across mice, with shuffling repeated 1000 times for each mouse. 

 

Dynamical system modelling using FORCE learning. 

 

We trained a recurrent neural network (RNN) to reproduce activity of individual neurons 

during mating interactions using FORCE as previously described29,42. The dynamics of 

each unit in the RNN is governed by the following equation: 

 

𝜏𝜏
𝑑𝑑𝑥𝑥𝑖𝑖
𝑑𝑑𝑑𝑑

  =   − 𝑥𝑥𝑖𝑖(𝑡𝑡) +  𝑔𝑔(�𝐽𝐽𝑖𝑖𝑖𝑖𝑟𝑟(𝑥𝑥𝑗𝑗(𝑡𝑡))
𝑁𝑁

𝑗𝑗=1

+ 𝐻𝐻(𝑡𝑡) 

 

Here, 𝜏𝜏 is the time constant of the system (0.5s as used previously42), H is the total external 

input to neurons (consisting of a weighted combination of male-sniff, mounting and 

intromission), J is a heterogeneous matrix of recurrent connections whose strength is 

determined by the parameter g. For chaotic networks, we use g = 1.5 as used previously29,42. 

The elements of the matrix J are modified through recursive least squares as described 

in29,43, by reducing an error term 𝑒𝑒𝑖𝑖(𝑡𝑡) =  𝑧𝑧𝑖𝑖(𝑡𝑡) −  𝑓𝑓𝑖𝑖(𝑡𝑡). Here 𝑓𝑓𝑖𝑖(𝑡𝑡) is the experimental 

calcium trace and 𝑧𝑧𝑖𝑖(𝑡𝑡) =  ∑ 𝐽𝐽𝑖𝑖𝑖𝑖𝑟𝑟𝑗𝑗(𝑡𝑡)𝑗𝑗 .  The network contains the same number of units as 

in experimental data (between 100-200 neurons) and dynamics were solved using Euler’s 

method (dt = 0.05s). 

 

To estimate the fixed points of the RNN, we reverse engineered the trained RNN with fixed 

point analysis44 using gradient-based optimization. The estimated slow points of the 

dynamical system were then projected into the same neural state space as determined by 

rSLDS to determine the similarity in attractor landscapes discovered by the two methods 

(Extended Data Fig. 5a,b).     
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Modeling of integration dynamics to reveals inputs to line attractor 

 

To reveal the input received by the integration dimension (Extended Data Fig. 3r-u), we 

modelled activity of this dimension using a single-state linear dynamical system model as: 

𝑥𝑥𝑡𝑡 =   𝐴𝐴𝑧𝑧𝑥𝑥𝑡𝑡−1 + 𝑏𝑏𝑧𝑧𝑡𝑡 +  𝜖𝜖𝑡𝑡 + 𝑊𝑊𝑢𝑢𝑡𝑡 

here x refers to weighted activity of the integration dimension and W is a matrix to used 

linearly combine behavioral inputs (male-sniff, mounting and intromission) to the 

integration dimension. The model was fit as described above for rSLDS and model 

performance was evaluated using variance explained with cross-validation. 

 

Mechanistic modelling of spiking neural networks 

We constructed a model population of N = 1,000 standard current-based leaky integrate-

and-fire neurons as previously performed45. We modelled an excitatory spiking network 

with feedback inhibition designed to account for finite size effects and runaway excitation. 

In this network, each neuron has membrane potential 𝑥𝑥𝑖𝑖 characterized by dynamics: 

 

𝜏𝜏𝑚𝑚
𝑑𝑑𝑥𝑥𝑖𝑖
𝑑𝑑𝑑𝑑

  =   − 𝑥𝑥𝑖𝑖(𝑡𝑡) +  𝑔𝑔(�𝑊𝑊𝑝𝑝𝑖𝑖(𝑡𝑡)
𝑁𝑁

𝑗𝑗=1

− 𝑔𝑔𝑖𝑖𝑖𝑖ℎ𝐼𝐼𝑖𝑖𝑖𝑖ℎ(𝑡𝑡)) + 𝑤𝑤𝑖𝑖𝑠𝑠(𝑡𝑡) 

 

where 𝜏𝜏𝑚𝑚 = 20𝑚𝑚𝑚𝑚  is the membrane time constant, W is the synaptic weight matrix, 𝑠𝑠 is 

an input term representing external inputs and 𝑝𝑝 represents recurrent inputs. To model 

spiking, we set a threshold (θ = 0.1), such that when the membrane potential 𝑥𝑥𝑖𝑖(𝑡𝑡) >  θ, 

𝑥𝑥𝑖𝑖(𝑡𝑡) is set to zero and the instantaneous spiking rate 𝑟𝑟𝑖𝑖(𝑡𝑡) is set to 1.  
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Inhibition was modelled as recurrent inhibition from a single graded input 𝐼𝐼𝑖𝑖𝑖𝑖ℎ representing 

an inhibitory population that receives equal input from and provides equal input to, all 

excitatory units. The dynamics of 𝐼𝐼𝑖𝑖𝑖𝑖ℎ  evolves as:  

 

𝜏𝜏𝐼𝐼
𝑑𝑑𝐼𝐼𝑖𝑖𝑖𝑖ℎ
𝑑𝑑𝑑𝑑

=  −𝐼𝐼𝑖𝑖𝑖𝑖ℎ(𝑡𝑡) +  1
𝑁𝑁
∑ 𝑟𝑟𝑁𝑁(𝑡𝑡)𝑁𝑁
𝑛𝑛=1 , 

 

where 𝜏𝜏𝐼𝐼 = 50𝑚𝑚𝑚𝑚 is the decay time constant for inhibitory currents. 

We designed the synaptic connectivity matrix to include a subnetwork of 200 neurons (20% 

of the network), designated the integration subnetwork as suggested by empirical 

measurements, with a connectivity density of 12% as opposed to 1% in the remaining 

network. Weights of the overall network were sampled from a uniform 

distribution:𝑊𝑊𝑖𝑖𝑖𝑖~ 𝑈𝑈(0,1/√𝑁𝑁), while weights of the subnetwork were sampled as 

𝑊𝑊𝑖𝑖𝑖𝑖~ 𝑈𝑈(0,1/�𝑁𝑁𝑝𝑝), where 𝑁𝑁𝑝𝑝 = 200.  

 

External input was provided to the network as a step function consisting of twenty pulses 

at 10 ISI. This stimulus drove a random 25% of neurons in each subnetwork. 

Spiking-evoked input was modelled as a synaptic current with dynamics: 

 

𝜏𝜏𝑠𝑠
𝑑𝑑𝑝𝑝𝑖𝑖
𝑑𝑑𝑑𝑑
  =   − 𝑝𝑝𝑖𝑖(𝑡𝑡) + 𝑟𝑟𝑖𝑖(𝑡𝑡), 

 

where 𝜏𝜏𝑠𝑠 is the synaptic conductance time constant, set to 20s for neurons in the integration 

subnetwork and 100ms for remaining neurons in the network.   

Model dynamics were simulated in discrete time using Euler’s method with a timestep of 

1ms and a small gaussian noise term 𝜂𝜂𝑖𝑖~𝑁𝑁(0,1)/5 was added at each time step. We used 

𝑔𝑔 = 2.5 and varied 𝑔𝑔𝑖𝑖𝑖𝑖ℎ = 4.25 as suggested by measurements of inhibitory input to 

VMHvl46 and used previously45. To simulate hypothesis 1 in Extended Data Fig. 12, we 

set the synaptic time constant for integration neurons to 100 ms. To simulate hypothesis 2, 

we changed the gain associated with input to each subnetwork, decreasing this quantity for 
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the integration subnetwork by 50% and increasing the same for the remaining neurons by 

50%. 

 

Calculation of auto-correlation half-width 

 

We computed autocorrelation halfwidths by calculating the autocorrelation function for 

each neuron timeseries data (yt) for a set of lags as described previously23.  Briefly, for a 

time series (yt), the autocorrelation for lag k is: 

 

𝑟𝑟𝑘𝑘 =
𝑐𝑐𝑘𝑘
𝑐𝑐0

 

where 𝑐𝑐𝑘𝑘 is defined as:  

𝑐𝑐𝑘𝑘 =  
1
𝑇𝑇
�(𝑦𝑦𝑡𝑡 − 𝑦𝑦�)(𝑦𝑦𝑡𝑡+𝑘𝑘 − 𝑦𝑦�)
𝑇𝑇−𝑘𝑘 

𝑡𝑡=1

 

 

and 𝑐𝑐0 is the sample variance of the data. The half-width is found for each neuron as the 

point where the autocorrelation function reaches a value of 0.5.  

 

 

 

Partial least squares regression to identify integration dynamics 

 

To identify the integration dimension using an independent method, we also used partial 

least squares regression. Towards this, all traces were concatenated and regressed against 

a 1 x T vector designed such that the vector shows ramping activity upon entry of the male 

intruder (see Extended Data Figure 3d-e). 
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Extended Data (Supplemental) Figure 1 
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Extended Data Figure 1. Behavior dynamics and neural responses to conspecific sex. 

a, The probability of female behaviors every 20s (n=74 trials, N=28 mice). b, Distribution of the 

percentage of time males displayed mating behaviors in each trial (n=74 trials). c, The probability 

of female behaviors aligned to male copulation offsets and d, copulation onsets. (e-h), Neural 

responses to conspecific sex. e, Left, diagram of sex representation test. Each intruder was 

presented for 1 min. Right, concatenated average responses to toy, female, or male (N = 8 mice). 

Color scale indicates z-scored activity. Units were sorted by temporal correlation. f, Percentages of 

male- or female-preferring cells (calculated by Choice Probability). g, Mean responses of female 

VMHvlEsr1 α cells to male, female and toy (N=8 mice). Data presented as mean ± SEM. h, PCA 

of neuronal responses to male, female and toy from one example female. 
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Extended Data Figure 2 
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Extended Data Figure 2.  Neural tuning to conspecific sex and behavior. 

a, Choice Probability (CP) histograms and percentages of tuned cells for female behaviors. cutoff: 

CP>0.7 or <0.3 and >2σ. N = 15 mice. b, Same as a, but for male behavior. c, Schematic showing 

generalized linear model (GLM) used to predict neural activity from male behaviors and 

distribution of cvR2 across all mice, or d, both male and female behaviors and distribution of cvR2 

across all mice (N = 15 mice). e, Example GLM fits and behavior filters for poorly and well fit 

neurons. (f-h), Decoder analysis. f, schematic showing linear support vector machine (SVM) 

decoder trained on frames of male mating behaviors. g, performance of SVM trained to separate 

female behavior. Left, performance of SVM trained to separate frames of lordosis versus all 

remaining frames (***p<0.001, N = 15 mice, data: 0.85 ± 0.03, shuffle: 0.49 ± 0.003). Right, 

performance of SVM trained to separate frames of lordosis versus resistance behaviors 

(***p<0.001, N = 15 mice, data: 0.80 ± 0.03, shuffle: 0.48 ± 0.01). h, Same as a, but showing the 

SVM hyperplane for separating male behaviors (mount versus intromission) on right. 

(***p<0.001). (N = 15 mice). i, performance of SVM trained to separate intromission versus mount 

(data: 0.89 ± 0.02, shuffle: 0.49 ± 0.003), intromission versus male sniffing (data: 0.90 ± 0.02, 

shuffle: 0.49 ± 0.003), mount versus male sniffing (data: 0.83 ± 0.02, shuffle: 0.50 ± 0.006) and 

intromission versus remaining frames male sniffing (***p<0.001, N = 15 mice, mean data: 0.88 ± 

0.03, shuffle: 0.48 ± 0.003).  
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Extended Data Figure 3 
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Extended Data Figure 3. | Additional example trials with rSLDS model fit, additional information 

for Fig. 3.  

a, Dynamics of persistently active neurons identified during receptive interaction with pencil-cup 

assay. b, Cumulative distribution & bar plot of ACHW for same neurons during free interaction vs 

pencil cup assay ****p<0.0001, Mann-Whitney U test, p value: 1.25e-11, N = 470 neurons from 5 

mice. mean ACHW during pencil cup: 14.3 ± 0.42, free interaction: 19.6 ± 0.58. c, Pie chart 

indicating fraction of neurons with ACHW > 25s in free interaction and in pencil cup assay. d, 

Schematic illustrating partial least squares regression to extract integration dynamics in VMHvl. e, 

Comparison of rSLDS integration dimension and PLS dimension for two example mice showing a 

high correlation. (f-q), Additional example trials with rSLDS model fit. f, Recurrent switching 

linear dynamical systems (rSLDS) model fit forward simulation accuracy aligned to male behaviors 

in example trial 2. g, Dynamics of the integration dimension in trial 2. h, Flow field of VMHvl α 

dynamical system showing neural trajectories in state space, annotated by time from male 

encounter (t0) for trial 2. i, Neural state space of VMHvl α dynamical system highlighting behaviors 

and the region containing the line attractor for trial 2. j-m, the same as g-i for example trial 3. n-q, 

the same as j-i for example trial 4. r, Integration model used to dissect the contribution of intrinsic 

decay and external inputs (male behaviors; male-sniff, mount, and intromission). A single state 

LDS model is used to fit external inputs to predict activity in the integration dimension. s, Top: 

External inputs to integration model, middle: learned input filter showing weights that are 

multiplied with the external inputs. Bottom: transformed input obtained by multiplying external 

inputs with input filter. t, Top: Data and model prediction from LDS to predict activity in the 

integration dimension. The learned model has a large intrinsic time constant (right). Bottom: 

Transformed input (weighted input from three male behaviors) and model prediction overlayed 

with behaviors. u, Behavior triggered average of transformed input and integration dimension 

aligned to male contact. Male contact is present for the duration of the shaded region. Data 

presented as mean ± SEM.  
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Extended Data Figure 4 

 

Extended Data Figure 4. | Dynamics of single cell activity. 

a, Correlation of example unit activity with an ideal ramp. b, Distribution of correlation of 

individual neuron activity with ideal ramp. c, Upper, relationship of male behavior to weighted 

average of all units contributing to integration dimension as a function of time. Data from the same 

example trial as shown in Fig. 3f. Lower, normalized activity (z-score) of individual units times 

rSLDS weight for each unit exhibiting a significant weight in the integration dimension, sorted by 

time to peak. d, Traces of example units from f, lower. Yellow arrow indicates peak of activity for 

each unit. 
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Extended Data Figure 5 
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Extended Data Figure 5. | Independent verification and neural perturbations of line attractor 

dynamics. 

a, Cartoon illustrating approach of fitting RNNs to neural data using FORCE. b, Slow points and 

attractor manifold uncovered by FORCE, overlaid with line attractor uncovered by rSLDS. c, 

Paradigm for simultaneous neural perturbation & imaging during a mating interaction in females. 

GcaMP was expressed in VMHvl-α cells while halorhodopsin (eNpHR3.0) was expressed in all 

VMHvl neuron using a pan-neuronal driver. d, Neural data obtained from a female showing 

annotated male behaviors and optogenetic inhibition (LED). e, Left: Latent factors from two-

dimensional rSLDS model fit to neural data. Reproduced for explanatory purposes from Figure 3h. 

Right: Time constants of the two longest-lived dimensions from rSLDS model fit to data from 

unperturbed periods (excluding stimulation period plus a 20s post-stimulus period). f, Left: 

Performance of model on held out data from 20s immediate post-stimulus period (taken from 

highlighted blue portions of graphs in e). g, Cartoon depicting quantification of flow field 

prediction following optogenetic perturbation. The flow field fit from unperturbed periods of time 

is used to predict the neural trajectory following perturbation (t-pred end, purple line). This 

trajectory is then compared to data (t-data end, black line). Scenario 1 illustrates when the model 

agrees with data, resulting in a low difference in activity along the line attractor (top). Scenario 2 

illustrates when the model diverges from data resulting in a large deviation in final position along 

the line attractor (bottom). h, Quantification of flow field prediction following perturbation as the 

difference in activity level at the end of the 20s post-stimulus period between data and model in 

both x1 and x2 dimensions across mice (activity difference for x1: 0.05 ± 0.03, for x2: 0.03 ± 0.01, 

n = 3 mice). i, Latent factors from rSLDS of mouse 2 during neural perturbation. j, Flow field and 

neural trajectories for mouse 2. Note that trajectories are pushed away from the attractor during 

stimulation and then return to line attractor following stimulation offset, as predicted by the flow 

field.  
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Extended Data Figure 6 

Extended Data Figure 6. Line attractor dynamics across the estrus cycle. 

a, Correlation between female estrus states and the presence of sexual receptivity, measured by 

whether female displayed accepting behaviors during interaction with male. b, Photometry 

recording in female VMHvl α cells during receptive and unreceptive mating interactions. Data 

presented as mean ± SEM. c, Low dimensional PCs of VMHvl α dynamical system in receptive 

day with neural data projected from unreceptive day. d, Flow field of VMHvl α dynamical system 

in receptive day with neural trajectories projected from unreceptive for t = 0 to t = 200s (left) and t 

= 200s to t = 400s (right). e, Quantification of normalized value of integration dimension during 

male-mounting in unreceptive and receptive days (*p<0.05, N = 4 mice, mean value during 

unreceptive day: 0.09±0.04, receptive day: 0.69±0.05. Mann-Whitney U test, p value: 0.02). f, 
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Dynamics of integration dimension in two more example mice discovered during receptive day 

compared to activity of the same dimension on unreceptive days.  
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Extended Data Figure 7  



 

278 
 

Extended Data Figure 7. | Single cell persistence at receptive and unreceptive days. 

a, Example units active during both receptive (red traces, left) and unreceptive (blue traces, right), 

showing persistence on receptive day and fast dynamics on the unreceptive days. b, Comparison of 

cumulative distribution of ACHWs to that of same neurons on unreceptive days. Data from example 

mouse 1. ***p<0.001, KS-test. c, Cumulative distribution of ACHWs for units with significant 

weights on integration dimension across receptive and unreceptive day, ***p<0.001, KS-test. Data 

from example mouse 1. d, Cumulative distribution of ACHWs for example mouse 1, for units that 

do not contribute to the integration dimension on the receptive day, compared on receptive vs 

unreceptive days. e, Scatter plot of ACHWs for units with significant weights on integration 

dimension for receptive day vs unreceptive day. Data from example mouse 1. (f-h) Same as c-e for 

example mouse 2. I, Cumulative distribution of ACHWs for units with significant weights on 

integration dimension across hormone primed (day 3) and non-primed days (days 2, 1). 

***p<0.001, KS-test. Data from example OVX mouse 1. ***p<0.001, KS-test. j, Cumulative 

distribution of AHWs for example OVX mouse 1, for units that do not contribute to the integration 

dimension across hormone primed (day 3) and non-primed days (days 2, 1). k, Scatter plot of 

ACHWs for units with significant weights on integration dimension for hormone-primed day vs 

non-primed day. Data from example OVX mouse 1 (l-n) Same as i-j. for example OVX mouse 2. 
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Extended Data Figure 8 
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Extended Data Figure 8. | Mechanistic model for loss of line attractor dynamics in unreceptive 

states.  

a,  Schematic illustrating the construction of a spiking recurrent neural network (RNN) with a line 

attractor. The line attractor is created by allowing a subset of neurons to possess a larger intrinsic 

time constant (20s vs 100ms), and by denser connectivity within the subnetwork (12% versus 1% 

in remaining network). b, Model simulation during the proestrus phase with pulse like input 

delivered at 10s ISI. Right, activity of integration subnetwork (green) and other neurons (red). c, 

Schematic for hypothesis 1: we hypothesize that during non-proestrus, there is a reduction in the 

intrinsic constant of the integration subnetwork (from 20s to 100ms). d, Same as b but for 

hypothesis 1 during non-proestrus.  e, Schematic for hypothesis 2: we test whether changes in the 

firing rate of different neuronal subsets can lead to the loss of attractor dynamics. To investigate 

this, we provide the integration subnetwork with 50% reduced input strength, while increasing the 

same for the remaining neurons. f, Same as b but for hypothesis 2 during non-proestrus. 
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Extended Data Figure 9 
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Extended Data Figure 9. | Population dynamics before and after OVX in the same female. 

(a, b,) Neural raster and behaviors and rSLDS model performance (measured as forward simulation 

error, see Methods) for one example mouse in receptive day of natural estrus cycle a, and same 

mouse on hormone primed day after OVX (day3, oil + E|P) b. (c, d,) Integration dimension 

identified by rSLDS on natural cycle receptive day c, and during hormone primed day after OVX 

d. (e, f,) Flow field e, and neural trajectories of dynamical system f, with line attractor highlighted 

of model fit during the receptive state of the estrus cycle. (g, h,) Same as e, f, for model fit during 

hormone primed day after OVX. I, Dynamics of integration dimension discovered during natural 

cycle receptive day compared to activity of the same dimension on unreceptive days. j, Dynamics 

of integration dimension in the same mouse discovered during hormone primed day (day 3) 

compared to the activity of the same dimension during non-primed days. (k, l,) Neural raster and 

behaviors and rSLDS model performance for mouse in proestrus day of natural estrus cycle k, and 

same mouse on hormone primed day after OVX (day3, oil + E|P) l. m, Principal components of 

mouse dynamic system fit during hormone primed day. (n, o,) Flow field n, and neural trajectories 

of dynamical system. o, with line attractor highlighted of model fit during the hormone primed day 

after OVX in mouse. 
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Extended Data Figure 10 

Extended Data Figure 10. Longitudinal mating assay and correlation with attractor dynamics. 

a, Behaviors displayed in mating interactions across days from all the recorded females. b, The 

scatter plots of the integration dimension values and the amount of female resistance behaviors 

(linear regression, R2= 0.008), appetitive behaviors (R2= 0.01), staying (R2= 0.01), checking genital 

(R2= 0.02) and male intromission (R2= 0.25). Data presented as mean ± SEM. c, correlation of area 

under the curve (auc) of the population mean of all neurons with the percentage of time spent 

performing accepting behaviors. Data presented as mean ± SEM. d: activity of population mean 

from trials with varying degrees of receptivity defined in a), Mann-Whitney U test. 
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EPILOGUE  

A future for dynamical systems in encoding affective states 
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This thesis presents a new paradigm in understanding the computations that shape our 

emotional states. It reveals how emergent continuous attractor dynamics in the 

hypothalamus—born from a complex interplay of connectivity, neuromodulation, and cell-

intrinsic properties—act as a canonical motif that encodes the persistence and scalability of 

diverse affective states. The insights gained in this thesis about the attractors’ implementation 

also deepen our understanding of the computation and algorithmic processes shaping innate 

affective states, resonating across all three levels of understanding proposed by David Marr. 

  

There is still much to uncover about this neural dynamics-based paradigm, particularly 

regarding the behavioral relevance of these signals. Are the discovered representations causal 

in enabling our affective states, or do they merely reflect feedback during those states? These 

questions also extend to the integration process along the line attractor. What is the modality 

(e.g., mechanosensory, olfactory) of input being integrated by the attractor, and which brain 

regions are relaying these inputs to the hypothalamus? A comprehensive understanding of 

this process is essential to fully grasp the computation of affective states. 

 

While we have identified the importance of neuropeptides in creating these emergent 

dynamics, the precise mechanistic details of this process remain unknown. The line attractor 

may reflect local connectivity within the hypothalamus, facilitated by the recurrent release 

of neuropeptides, or it might depend on macro-level interactions between multiple brain 

regions. Given the extensive interconnectivity of the hypothalamus1,2, macro-level 

interactions are likely to play a key role in creating and regulating the emergent dynamics 

we have discovered. 

 

Perhaps the most exciting potential of these ideas lies in their ability to reveal aspects of 

neural dynamics that are impaired in mood and neuropsychiatric disorders3-5. The shape of 

the manifold underlying hypothalamic dynamics may be malleable6, and specific mutations 

affecting neuromodulation or connectivity could alter the stability of the attractor. Such 

changes might manifest behaviorally as persistent alterations in social behavior, such as 
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ongoing fear or anxiety in models of post-traumatic stress disorder or depression7. Designing 

behavioral or neural interventions that can restore the attractor landscape could represent a 

promising avenue for therapeutic intervention. 

 

There are still other important factors that will determine the success of the ideas presented 

in this thesis. The discovery of these computations related to internal states relies on new 

machine learning methods that extract these properties from neural data in an unsupervised 

manner. Making these methods accessible to the broader scientific community, beyond just 

computational neuroscience, will be crucial for this research to reach its full potential. 

Ongoing efforts in the lab to create intuitive and accessible software platforms show promise 

in meeting this need. 

 

In closing, it is important to note that the studies presented in this thesis are deeply rooted in 

close collaborations with experimentalists, where theoretical and machine learning-driven 

insights have guided critical experiments, and those experiments, in turn, have fueled further 

modeling and theory. This synergistic cycle has been crucial to advancing our understanding 

of dynamical systems in affective states. I am optimistic that the lessons learned, and the 

collaborative framework established through these efforts will continue to unite diverse 

fields of neuroscience, paving the way for more paradigm-shifting discoveries in the future. 
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