POLYNOMIALS IN ABSTRACT SPACES

Thesis
by

Ivar E, Highberg

In Partial Fulfillment of the Requirements

for the Degree of Doctor of Fhilosophy

Pasadena, California

1936



INTRODUCTION

This thesis really had its inception in some work of Fréchet.
In 1909, Fr&chet, (1), gave a functional definition of a polynomial,
where the polynomial is & real, continuous function of a real variable.
His definition was essentially: f£(x) is a polynomial, if it is con-
n+t

tinuous, and if for some integer n, ) £f(x) = 0. He then show-

U et sUnyy

ed that such a funetion could be represented in the usual form. Gateaux
(1), next gave a definition of polynomials for functionals. His defin-
ition was that f£(x) is a polynomial if,

elpx + Ay) = Pk (xy) + Ak (xy) + - o 0 4+ Ak, (x,¥)

where A,y are complex numbers, and kJ(x,y) is a functional of x
and y. In 1929, Fréchet, (2), extended his definition of a polynomial
to a class of abstract spaces called "espaces algébrophiles”, essenzially
linear spaces with a topology. He practically showed the equivalence of
his definition and the Gateaux definition, and did in faet in the case
of functions on the real numbers to the abstract space.

He, however, did not consider "espaces algébrophiles™ in which
maltiplication by complex numbers is allowed. R.S. Martin, in his 1932
thesis, considered extensively the properties of polynomials from the
Gateaux standpoint in a complex Banach space. Some of this has been
published. See Michal and Martin (1)}, and Michal and Clifford (1).
Michal ,(1), has also considered the definition of polynomials by means

of polars., Martin conjectured that if £(x), besides satisfying
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Fré&chet's conditions, were also Fréchet differentiable at x = 0, then
£(x) would be a polynomial in the Gateaux sense. That this is not
enough is shown by the example f£(z) = 22 » Which possesses a Fréchet
differential at the origin.

To make Fréchet's definition equivalent to Gateaux' definition,
it has been found sufficient to add the requirement of Gateaux differ-
entiability to Frechet's conditions. See Chapter II, An algebraic
condition has also been found, see Chapter III,

It was thought profitable to investigate the nature of a
function which satisfies Fréchet's conditions in a "complex espace
algébrophile"”, and this led to the definition of pseudo-polynomials
and the consideration of their properties. Pseudo-polynomials are the
functions with which this thesis is mainly concerned, and in order to
develop the theory, the work is arranged in the following manner,
Chapter I contains the postulates for the space, and as much of the
theory as is needed in the sequel. For a more extended account, see
Fréchet (2).

Chapter II develops the theory of polynomials in both the
Gateaux and Fréchet sense, and consists mainly of rewriting theorems
from either Martin or Fréchet. Section 4, in which the equivalence
of the definitions for complex spaces is proved, is, however, new,

In Chapter III pseudo-polynomials are defined from whatb
might be termed a generalized Gateaux sense. The theory is developed
in mueh the same manner as polynomial theory. For every theorem on
polynomials, there is a corresponding theorem for pseudo-polynomials,
with one or two exceptions. The main result of the chapter is section

3, the equivalence theorems.
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Chapter IV is an application of the theory to the problem
of generating & norm by means of a Hermitian bilinear form, and Chapter
V is an example concerning the relation between the modulus of a poly=-
nomiael and its polar. Appendix A contains a theorem needed in Chapter
III, and Appendix B contains a simpler derivation of the equivalence
theorem of Chepter III, but which was not found until the other had been
done.

It seems as if most of the results proved in this thesis could
be established for a linear topological space. It was thought best,
however, to retain the "espace algébrophile" at this time. Modular
properties of polynomials are not discussed, and the theory of polars
has been barely touched., There is more variety of possibility in polars
of pseudo-polynomials., For example, A/A may have the polar A, 72
or AR, s

In general the notation is that of Martin's thesis, and we do
not give long explanations which may be found there. The functional
notation is that of E.H. Moore, and we use some point-set theoretical
notation also, The numbers after an author's name refer to the
bibliocgraphy at the end.

In conclusion I wish to express my appreciation to Professor
A.D. Michal, who first suggested to me the problem of polynomials in

complex spaces, for his criticisms and suggestions.
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CHAPTER I

THE ESPACE ALGEBROPHILE

In this chapter we give the postulates for an "espace
algébrophile” and develop as mmuch of the general theory as is used

throughout the body of the work.
91 The Postulates

A complex "espace algébrophile®™ E(C), is a system which
consists of:-

A set &, of elements of any nature whatever, and which we
may call abstract points;

Families {Vx} » of sets, V, , of abstract points associated
with each abstract point =x ; {Vx} constituting the family of "neigh-
borhoods", V, , of x ;

Operations concerning the abstract points, or the abstract
points and the complex number system C , and denoted by the symbols,
R g RN N EY

A system of relations between the set &£, the sets of neigh-
borhoods {VX} s and the operations denoted above,

In the following we shall assume that equelity has the prop-

erties of an equivalence relation.

I The First Group of Conditions.

1, If (x,y) ¢E, then (x + y)€E,



2 X +§¥ = ¥ +X o
s (x+y)+2 = x+(y +2) o

4, If a€C , and xe¢E , then (a-x)€E,

Se a-(x+y) = ax +a.y.,
6e (a+b)x = ax+b-x,
7 a'(b.x) = abx »

8e l'x = x.

9¢ If x€E , then |Ix|) is a real number 2 O,
10, There exists one and only one element O in E, such that
i = 0 .

1. fla-x| lal Nxll
We write x -y for x+ -1y , and I will now state some

definitions which are needed for the second group of conditions,
Abstract Line. The set of points z , where
z2 =x+%t-(y - x) t€c,

will be called the abstract line xy It is obvious that the points
x and y "lie on the line"., That the line xy coincides with the

line yx , may be seen by setting t = 1 - %
Translation. A transformation of E into itself by an equation of the
forn,

Yy = x +x, x €E ,

will be called a translation.

Homothetise. A transformation of E into itself by an equation of the

form,
Yy = x +a(x-x]),

where x is a fixed point in E , and a is a fixed point in C ,



will be called a homothetic transformation.

Contimiity. If 2z = f£(x,y) is a function defined on EE, to E,,
and z, = £(x,,y,) 5 then z =f(x,y) is seid to be continuous at
(x,s¥.) » if for every neighborhood V, of 2z, , there exists & neigh-
borhood on of x_, , and a neighborhood V9° of y, , such thet when
xeV, and yev, , then z €Y,

-] [ -

This definition of continuity hes been phrased in terms of two

variables for convenience. For functions of one variable, we drop one

variable from the definition.

Point of Accumulation. A point x will be called a point of accumla-
tion of a*set U , if each neighborhood of x contains at least one
point of U (different from =x ).

We now proceed with the second group of conditions,

ITI The Second Group of Conditions.

12, If U, end V, are any two neighborhoods of x , then there
exists a neighborhood W, of x , such that WX cU.-V, .

13, The logical product of all the neighborhoods of a point =x
is the point x alone.

14, The transformation 2z = x +y 1is continuous in the pair
(x,y) at all points (x,y) of E .

15, Homothetic transformations are continuous at all points of E

16, The points of accumulation of an abstract line lie on the line.

17, A necessary and sufficient condition that a point x, of an
abstract line be a point of accummlation of qpet of points U
on the line, is that the lower bound of |x - x_ |l be zere

as x ranges over U (remaining distinet from xo).
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$2 Some Theorems on Continuity

Theorem 1. If 2z =f(y) and y =g(x) are functions defined in
"espaces algébrophiles", and 2z is contimuous at y=y,6 , and y is

continmuous at x =x, , then z =f(g(x)) is contimmous at x=x_o,

Theorem 2, If z =f(x,y) is continuous in the pair (x,y) at (x_,v.),

and x =g(t) , ¥y =h(t) are contimmous at =x_ = g(t,) , ¥

o

= h(tc) ?

then z = f£(g(t),h(t)) is contimous at ¢t =% _.

Theorem 3. A linear combination 2z = a-g(u) + b-h{u} is continuous
if g(u) and h(u) are continuous.

In the above three theorems I have not mentioned the domeins
of definition in order to avoid prolixity. It is clear, however, that
the domains may be situated in the same or different spaces. Theorem 1
follows from the definition of continuity. Theorem 2 requires postulate
12 in addition. The proof of theorem 3 requires postulates 15 and 14,

and theorem l,

Theorem 4. If £(A) is a continuous complex function of a complex
variable, and u, is a fixed point in E , then y =£(A)-u, is a
continuous function of A,

Proof: Let ¥, =£(2A,):u, , and let vé,° be & neighborhood of y, o

Let us assume that the theorem is false. Then there must exist at least
one sequence A, — A, , such that y = £(2,).u, is not in V, for

o
any n . However,

Iy, = v, = (£,) - 2 lull —o,

and hence . is a point of accumulation of the set {yn} °
We thus arrive at a contradiction with the hypothesis and hence the

theorem is true.
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Theorem 5, If u; are fixed points in E , and fL(7\) are continuous

functions of a complex variable, then,
(1) y = £(Au,+ -« - + £ (Aen,

is a continuous function of A .

Proof: Use theorems 3 and 4, and mathematical induction.
¢3 The Gateaux Differential

Definition 1. Let £(x) be defined on an "espace algébrophile"” E, ,
to a like space E, o Then £(x) will be said to possess a Gateaux

differentiel at x_ , if for any 2z in E,

i m $(x, + t-2) - P(x) - G
t-> 0

exists, independent of the way in which + — 0 . We denote the Gateaux

differential by £(x,;2)

Theorem 6, Let F(A) = £(A).u, , where £(A) is a function on C to

¢ having a derivative everywhere. Then F(A) is Gateaux differentiable

everywhere,
- F(2) (A + typ) = L(2)
Proof: AR t";/) = 4 s 1 . U,
Lty
Since lim £(A + ty) - £(A) = £'(A) , and since gly)-u, is
tao Tty

a continuous function of U , we conelude that the Gateaux differential

exists, and F(A;p4) = p2' (A)u, .

Theorem 7. A function of the form (1} is Gateaux differentiable if all
the £;(A) are derivable.

Proof: This is clear from theorems 5 and 6,



04 Examples of Espaces Algébrophiles

It is obvious that the complex number system C , is itself
an instance of an "espace algébrophile”, We may take for the family
of neighborhoods attached to the point 2z , the interiors of circles
having 2z as & center and rational radii. A complex Banach space is
also an instance, with spheres about a point as neighborhoods. For a

formal proof and for other examples see Fréchet (2).



CHAPTER II
POLYNOMIALS IN E
The object of this chapter is to give a definition of
polynomials, lay down some of their fundamental properties, and to
consider the equivalence of two different definitions which have been
given, The results of this chapter appear in a paper whieh has not

yet been published, Highberg, (1).
§1 Polynomials on C to E(C)

We begin by considering functions on C %o E(C) , and the

natural definition of a polynomial on C to E(C) is as follows.

Definition l. A function p(A) defined on C to E(C) , which can be

expressed in the form, valid for all A ,
(1) p(A}) = v, + Aam, + -+ A

where the u; are fixed elements in E , will be called a C-polynomial.
The index of the non-vanishing u; with highest index will be called
the degree of the polynomial. A polynomial of degree O is a constant,
A polynomial which is identically zero may be regarded as having any

degree whatever,

Theorem 1. A C-polynomial is contimuous.

Proof: This is a special case of I, §2, theorem 5, with f£,(A) = A



Theorem 2. 4 linear combination of C-polynomials of degree < m , is

a C-polynomial of degree < m.

Theorem 3, If p(A) is a C-polynomial of degree m , and g(7) 1is a
polynomial on C to C of degree n , then g(A)-p(A) is a C-poly-

nomial of degree m + 1 .

Theorem 4o If p(A} is a C-polynomial of degree m , and g(A) is @&
C-polynomial of degree n , and p(A} = q(A) ; then m =n and

un, = v,

; ; s where u; and v, are the coefficients in p(7) and

a(a) respectively.

Theorem 5. The representation of a C-polynomial in the form (1) is
unique.

The proofs of theorems 2-5 have been omitted, for the details
are no different from the method in Mertin's thesis, Martin (1),

PPe 19=21 o

Theorem 8, A Cepolynomial is Gateaux differentiable everywhere,

Proof: This is a special case of I, (3, theorem 7.
¢2 Polynomials on E, to E,

In this section we discuss functions defined on one "espace

algébrophile E, , to a like space Ez °

Definition 2, Let p(x) be a function on E, to E, » Then p(x)

will be seid to be an E-polynomial, if
1° p(x) is contimuous,
2° for every pair (x,y) , p(x + A-y) is a C-polynomial in A,

It will be said to be of degree n , if for some (x,y) , p(x + Ay) is
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a C-polynomial in A of degree n , and for all (x,y) is a C-poly-
nomial in A of degree < n ,

An E-polynomial can therefore be represented in the form,
(2) p(x +2Ay) = k. (xy)] + Ak, (xy) +---+ ?\7kn(x.y) ’

2
where the k;(x,y) are functions on E, %o E, . When p(x) is
represented in the form (2), the functions k;(x,y) are called the

asgociated functions to p(x) »

Theorem 7. A linear cbmbinat:lon of E-polynomials of degree < n , is
an E-polynomial of degree (1 o
Proof: This follows immediately from I, §2, theorem 3, and theorem 2

aboves

Theorem 8 If p(x) is an E-polynomial of degree < n , and c¢c¢€C ,
then p(e.x + x,) is an E-polynomial in x of degree < B o
Proof: First, p(e:x + x,) is a continuous function of x by I, ¢2,

theorems 3 and 1. Secondly, using (2),
ple-x + eAy +x,) = plex + x, + Aec.y)
= ko(c-x +x ,ey) + Ak {ex +x,,07) + o+ 7\7k,,,(c-x + X_,¢.¥)
and this is & C-polynomial in A of degree < n .

Theorem 9, If p(x) is an E-polynomial, and X (x,y) is an associated
function to i%, then Xk (x,y) is homogenecus in y of degree T ,
that is, i

k,.(x’ IU’Y) = /U ‘k’,(x'Y) °

Theorem 10, If p(x) is an E-polynomial of degree < n , and k (x,y)
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is an associated function to it, then for fixed x , Xk, (x,y) is an
E-polynomial in y of degree < n , and for fixed y , k (x,y) is an

E-polynomial in x of degree < 1 »

Theorem 11, If h(x) is an E-polynomial of degree n , and if it is

homogeneous of degree » , then n =r *

Theorem 12, If h(x) is an E-polynomial homogeneous of degree m , and
k (x,y) 1is an associeted function to it, then k (x,y) is homogeneous

in x of degree m - r , that is,
-
k(pexy) = p7 K (xy) .

The proofs of the last four theorems depend only on the
linearity of the space, the definition, and theorems 7 and 8 above,

Similar theorems mey be found in Martin (1), pp.28-3l,

By setting x =0, A =1, h/(y) = k. (O,y) in (2),
we get the theorem,
Theorem 13, If p(x) is an E-polynomial of degree n , it can be

uniquely represented as a sum of homogeneous polynomials in the form,
(3) p(x) = hyx) + h(x) +.--+ hi(x) o

Canonical Representation The representation of an E-polynomial in
the form (3), will be called the canonical representation.

’ﬁ\lote: A function which is homogeneous is not necessarily & polynomial,
For example, in a real Banach space, Ne-xi? =2 tx? s but llx 2
is not a polynomiale, If in faet it were a polynomial, the norm would be
of Hilbert type, that is, generated by a quadratic form.
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¢ 3 Differences

Let F(x) be a function defined on one "espace algébrophile®
E,, to a like space E, . We define successive differences inductively.

The first difference is written
]
AF(x}) = PFlx +u) - F(x) ,
U

and the nth difference with independent increments is defined as

A" ) = 4 [UIA"" F(x)] .

Uy * "3 Yn U 37y Vi

In particular, A" F(0) means [ A"F(x)] « It can easily be
EREL/) b3°° %y Un x=0

proved by induction that the nth difference of a function is symmetric

in the increments,

If we apply this to a function of the form (1), we see that

g - 2 2 n .n
apm = pu s aepls Ay ™ 1 ]y,
so that we may assert,

Theorem 14, If p(x) is & C-polynomiel of degree n , then A p(A)
- M

is a C-polynomial of degree < n - 1 , and for some choice of /u is
of degree exactly n-1 .

Proof: This is evident from the equation above,

Theorem 15, If p(A)} is & C-polynomial of degree n , then

A™ p(A) =0 , and for some choice of the increments, A" p(A) ?_é 0.

Nl)‘..l/l”*l /‘jl"‘l,/n
Proof: Use theorem 14 successively.

Theorem 16. If p(x) is a homogeneous E-polynomial of degree n , then

A' p(x) 1is an E-polynomial of degree & n - 1 , and for some u is
U

of degree exactly n -1 ,
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Proof: Using the representation (2} and theorem 12,
plpex +2y) = Pk (xy) + TR Y 4 - e+ Ak (x)

Putting p =0 , we see that k (x,y) is independent of the first argu-

ment. Further, setting y =0 and A =1, we get p(y) = k, (x,7) »

From theorem 12, k,(0,y) 0 if i #n, so if in the equation above,

we set N = [ 1l ,replace x by u and y by x , we get
A'p(x) = k(ux) + Kk (u,x) + ¢« 4+ k(ux) .
u

By theorem 9 this is a sum of polynomials of degree ¢ n=-1 in x,
and hence is of degree € n =1,
To show the second part of the theorem choose u =A-x o Then
A'px) = px+ Az - px) = [(a+2)" = o)

= Zr:ko(x,x) + ﬂ"'fk, (x,x) +¢¢-+ ﬂ'kn_,(x,x) .
Equating the coefficients of A on both sides of the equation we get,
n.p(x) = k_(x,x) o

Since p(x) is of degree n , there is at least one value of x , sey x ,
for whieh p(x,) # O ., Choose u =x, . Then km(x,,x) #*= 0,

and hence is of degree exactly n - 1 , and from this, AI p(x) 1is of
x

!

degree exactly n -1 .

Theorem 17, If p(x) is an E-polynomial of degree n , then 9' p(x)

is an E-polynomial in x of degree £ n - 1 , and for some choice of u
is an E-polynomial of degree n - 1 o

Proof: Use the representation of p(x) in the canonical form (3) and

then employ theorem 16.
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Theorem 18, If p(x) is an E-polynomial of degree n , then
A" plx) =0 , and for some choice of the increments, A" p(x) *0
‘u"o‘o,un*{ 'U, '“,'Un
Proof: Use theorem 17 successively. ’

Theorem 19, An E-polynomial is Gateaux differentiable.

Proof: Using the representation (2) we have,
plx +2-y) = plx) = Ak, (xy) + ¢+ Ak, (x,5)

Dividing by A and letting A +tend to zero, it is evident that the

limit exists, and that

p(x;y) = k,(x,5) o

¢4 A Second Definition of E-Polynomials

and the Equivalence of the Definitions

In this section we shall give a definition of polynomials,
which for real "espaces algébrophiles® is due to Fréchet. In the real
spaces, condition 3° of definition 2' is unnecessary. The equivalence

theorems for complex "espaces algébrophiles™ are new results,

Definition 2'¢ Let p(x) be & function onan E, toan E, . Then

p(x) will be said to be an E~-polynomial, if

1 p(x) is continuous,
!
2° for some integer n , A" px) = o,
u/ 3 *e .Ivnu
3° p(x) possesses & Gatesux differential everywhere.

It will be said to be of degree n , if A" plx) * 0, for some

lll"‘.’uﬂ
u’, 5 e o un °

*
Note: The condition of Gateaux differentieability mey be replaced by a
purely algebraic condition. See Chapter III.
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This definition includes the case of polynomials defined on
C to E , and in discussing the equivalence of definitions 2 and 2°7,

it is convenient to consider the C-polynomials first.

Theorem 20. In definition 2' let E, be C . Then definition 2! and
definition 1 are equivalent,

Proof: That a function which is a C-polynomial of degree n by defin-
ition 1, is a C-polynomial of degree n by definition 2!, is clear
from theorems 1, 6, and 15, To show the converse we must show that a
funetion on C to E,, which satisfies conditions 1’ i By 3° above,

has the form (1), We make the proof by induction.

Case I, AI f(?‘) =0 .
M
In this case, f£(A) = u, , u, a constant, and is of form (1).
Case II, Azf(h) =0 .

Fn,u‘l

Setting A =0 in this equation we have,
(4) £(p + p) = 2(p) = £(,) + £(0) = 0 5

Let us define ¢(u) = £(M) - £(0) « Clearly ¢@(u) is continuous

and Gateaux differentiable everywhere. Also, using (4},
(5) Bl Ul = g + B .
Then by a well known limiting process,

Pp) = t-d() , t real.
Hence if A=A, +id,,

$(A) = Ad) + ;1) ,
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A %~ 4 :
- Z\_;___ ¢ + L2 9l)
() BA) = Au, + Au, ,

where A is the complex conjugate of A o Since @(A) is Gateaux
differentiable, and the first term on the right of (6) is likewise, we
conclude that A.u, is Gateaux differentiable. This is a contradiction
since A does not possess a derivative, and hence u, must be zero.

We have therefore proved that
£(A) = £(0) + Aw, ,

and is therefore of the form (1)

n+t

Case III. A" A =0 .
,u,,"',}-'m»/
Setting p,, = W , A" [g(a+p) -2£(n)] =o0. Now,
Pou = Po gttt

£(A+p) - £(A) , considered as a function of A , is continuous and
Gateaux differentiable everywhere. lMoreover, if f£(A) is of degree

n by definition 2', then f£(A+p) - £(A) is of degree n -1 by
definition 2°', Hence under the induction hypothesis we shall suppose
that £(A + ’1) - £(A) is a C-polynomiel of degree n = 1 by definition

1. Let us set,

°

(7) YA, pu) = £(A+p) -2 -2l .

Then Y(2,u) is a C-polynomiel in A of degree n -1 , and since

itlels symmetric in A sMo it is also a C-polynomial in }J of degree

ne-1,
* Note: It is essentiel that f£(A) be Gateaux differentiable everywhere,
for otherwise f£(A + M) - £(A) mey not be differentiable anywhere. 2

Differentiability at one point is not sufficient, For example @(A) = A
is differentiable at A =0 , but nowhere else.
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Then by a purely manipulative process, the details of which

may be found in Fréchet (2), pp.86-88, we find

(8) V(A M) = g(ﬂﬂu)-d?\)-g(p) ’
where gla) = u + Z’jaaz v, ,
and where the u; are fixed points in E , We set
Then, using (8),

A +p) = B+ B .

Now £(A) is conbtinuous and Gateaux differentiable by hypothesis,
and g(A) is likewise since it is a C-polynomial by definition l.
Hence @(A) 1is continuous and Gateaux differentiable, and therefore

by Case II, @(A) = A-¢(L) . Hence,
Il ’
f(h) = y + A8 + Z;J. AJ-UJ,

and this is of the form (1) To show that the degrees are the same,
we observe that the left hand side of (8) is of degree n-l in A,
while the right hand side is of degree r-l1 o Hence r =n , and the

equivalence of the two definitions is completely established.

The equivalence theorem for E-polyncomials is now readily

established, and we shall give it as,

Theorem 21, Definitions 2 and 2' are equivalent,
Proof: That a function which is an E-polynomial of degree n by
definition 2 , is an E-polynomial of degree n by definition 2° ,

is clear from definition 2 , theorem 18, and theorem 19. To show the
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converse, we will suppose that F(x) satisfies the conditions of
definition 2' and is of degree n ., Then f£(A) = F(x + A.y) is

continuous in A, and is Gateaux differentiable everywhere, lMoreover,

n+t
A £(A) = 0, Hence by theorem 20, £(A) is a C-polynomial

Pu'“’,‘l"*'

in A of degree < n , Therefore, F(x) is an E-polynomial of degree

€ n by definition 2, To show that F(x) must be of degree exactly
n , we use theorem 18, and with that we have proved that the definitions

are equivalents



CHAPTER III

PSEUDO POLYNOMIALS

In order to preserve the equivalence of the Fréchet and
Gateaux definitions of polynomials in complex "espaces a&lgébrophiles”,
it was found necessary to add the condition of Gateaux differentiability
to Fréchet's conditions, It is of some interest to examine the nature
of the functions which arise when th differentiability condition is
suppressed, It is proved in this chapter that such funetions are pseudo=-
polynomials, that is, 8- or E-polynomials. The plan of this chapter is
to develop the properties of pseudo-polynomials which correspond to the
properties of ordinary polynomials, and finally, to show that a function

satisfying Frechet's original conditions is & pseudo-polynomial.
¢1 C-polynomials

Definition 1. A function p(A) defined on C to E , which can be
expressed in the form,

(1) p(d) = u,+Au, + -ﬂ-u”-y ce st 7\'311“ + 7\""7—\-um + o oo+ 7-:1,7,,,
where the wu,, are fixed elements in E , will be called a C-polynomiale.
It will be said to be of degree n , if not all the u,; are 0., 4
C-polynomial of degree O is & constant, and a C-polynomial which van-

ishes identically may be regarded as having any degree whatever.

Theorem 1., A C=polynomial is contimuous.
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Theorem 2, A linear combination of C-polynomials of degree <m , is &
C-polynomial of degree < m .

Theorem 3. If p(A) is & C-polynomial of degree n , and g(A) is a

C-polynomial on C %o C of degree m , then g(A):p(A) is a C-poly-
nomial of degree m + 1

The proof of the three above theorems is similar to the proofs
for C-polynomials,.

The next theorem which should be proved is that the represent-
ation of a ﬁ-polynomial in the form (1) is unique. To do this we must
be able to solve for the u,, in terms of values of p(A) » In order to
do this it must be shown that we can choose 3(n + 1)(n +2) values of

AssaY Ao A,s A, 5 A, A,, such that the determinant

3 n n=! — - N
/,A”,?\“,“-,ﬂ“,/'\“Zo.,o--,ﬂ“

- n el = n
,’ h/o E) aIc.» 9 9 7\/0’ 1o "o s s Zw
(] o o L3 ° o L) o L3 L3 £ e L]

= n Nel = w41
/a 2nn) Ann,‘ c oy Ann‘) nn s * 3 Znn

does not vanish. That this can be done is proved in the appendix. If

we denote by A"’ the normalized cofactors of the above determinant,
rs

(1) can be solved for the constants,

(2) Ups Z"’ gi A:‘n:lb(ﬂml) .

il

Using this result we are enabled to prove
Theorem 4, If p(A) and q(A) ere C-polynomials of degree m and n ,

and p(A} = q(A) , then m=n and u,  =v

s o Where u, and V.,

are the coefficients in p(A) and q(A)} respectively.

-
Lemma 1. Let p(A) = A A-u, . Then A'p(A) is of degree r + s - 1
7
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in A, and

r+s

A b(A) = rtsl! Z«”KFK."'FK,PK,,’,"P u,

K
PH'“’ P"*s r+s
where the summation is extended over all permutations of the » + s

incerements, I unbarred, and s barred.
) ' (AT - S r=S=S
Proof: A p(A) = [(7t+p)(7\ +f) - A A ]'U,,
H

which is of degree r» +8 -1 in A . The two terms of highest degree
are _ sl ri S
’ A5 2 F o+ r.A ,u7\ }-Uo

Repeating this process successively we get the result in the lemma,

Theorem 5, If p(A) is a Cepolynomial of degree n , then ) p(A) is
- M

a C-polynomial of degree < n - 1 , and for some P is of degree n -1,
Proof: This follows immediately from the lemma and the uniqueness theorem,

Theorem 6. If p(A} is a C-polynomial of degree n , then A" p(A) = 0 ,

" Pls“"/"nn
and for some choice of W, 4,4, A p(A) F 0.,

Hia®* 4 Hn
Proof: If p(A) is expressed in the form (1), then using lemma 1,

(8) An pn = n! F'”'P"'Umo + (ﬁ—-l)! Tl ZK nn }JK. ’JKn-«pxr,'Un;
Mig*=®s Mn

. — - | =
+ (n“Z)'.ZE ZKTTK ’JK"”FK,,_ZFK,,_,FK"‘UnZ £l 4 n'H'“r‘”‘u"” *

That this cannot vanish for all choices of the inerements follows from

the fact that

h n -0 —-n
(4) A p(a) — n! {F 'un° + },‘”,/J'Uhl + s 0 0 4 F -U,m} ’
’J’c..’/J
and by the uniqueness theorem, if this vanishes identically, u,; =0

for all i , and the original polynomial could not have been of the nth

degrees That the n + 1 8 difference vanishes is evident,
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¢ 2 E-Polynomials

In this section we discuss functions defined on one "espace

algébrophile®™ E, , to a like spegwe E,

Definition 2. Let p(x) be a function on an E, toan E, . Then

p(x) will be said to be an E-polynomial, if
1° p(x) is continuous,

2° for each pair x,y , p(x + Ay) is a C-polynomial in A ,
It will be said to be of degree n , if for all x,y , plx +A.y) is
a C-polynomial of degree < n , and for soms x,y is a C-polynomial of

degree exactly n .
An E-polynomial can therefore be represented in the form,

(6) »plx+ Ay) = k_(xy) +2Ak, (x,5) + Ak, (x,57) + -+

e -n
e Arfkno(x,y)w‘-h I?\-km (x,3) +-+-+ Ak (x,¥)

where the functions k., (x,y) are on E, to E, . When p(x) is
represented in the form (5), the functions Xk, (x,y) are called the

associated functions to p(x) .

Theorem 7. A linear combination of E-polynomials of degree < n is an

E-polynomial of degree < n .

Theorem 8, If p(x) is an E-polynomial of degree < n , and ceC , then

ple-x + x_) is an E-polynomial in x of degree < I

The proofs of these two theorems is similar to that of the

corresponding theorems in Chapter II, and are therefore omitted.
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Definition 3. A function f£(x) will be said to be pseudo-homogeneous

of degree r and s , if

ras

t{px) = H ,U-f(x) Hec .

Theorem 9. If p(x) is an E-polynomial of degree n , then the associated
functions k. (x,y) are pseudo-homogeneous in y of order » -s and s .

Proof:

I

plx + Apy) k,, (x,py) +oc -t Ar-sj\'fkps(x,},{y) PR

K, (x,y) + o+ A @k (x,y) 4.

By theorem 4 we can equate coefficients of ﬂr_sﬁ : in the two equations,
thus getting, Pk _$
k (mpy) = PPk (xy) .

Theorem 10, If p(x) is an E-polynomial of degree n , and k, (x,y)

is an associated function, then for fixed x , k. (x,y) is an E-poly-
nomial in y of degree < n , and for fixed y is an E-polynomial in x
of degree < n .

Proof: Using the numbers A’:: of 91, and the method given there, we

can solve for Xk, (x,y) in (5) as,

n m ,
mJ
(6) kf‘s (x’y) == Z;,m;J'APS'P(x ) 2 ﬂmJ-Y) ®
Theorems 7 and 8 now assure us of our assertion, since on the right we

have the sum of functions which are E-polynomials in either x or y .

Theorem 11. If h(x) is an E-polynomial of degree n, and if it is
pseudo~-homogeneous of degree r and 8 , then n=r + 8 .

Proof: Setting x =0 in (5) we have,

r_S n m M"J'-—"'
h(ag) = AA-h) = )0 ) AA k(0
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Hence by theorem 4, r + s ¢n o On the other hand,

hix+2:9) = h(aldax+yg) = A Koh(txsy)
_ [;m ;J arwJ-m;‘ A~k ij (Y, x) ]

In order for this to be a pseudo-polynomial, we must have for any m ,
(7) r+j-m 2 0 R s-3 20 .
Applying (7) for m=n ,weget *+ 8 > n,and hence r+s = n ,

Corollary le If p(x) is an E-polynomial end p(A-x} = A~ plx) 5

then p(x) has the form,
plx +Ay) = k_(x,y) + Nk, (xy) + A5k, (x,y) +« o+ Ak, (x50

Corollary 2. If p(x) is an E-polynomial and p{A.x) = AA.p(x) ,

then p(x) has the form,
plx + Ay} = k, (xy)] + 2k m(x,y) + Ak g (xZy) Aﬂ.k“ e
These corollaries are immediate applications of (7).

Theorem 12, If p(x) is an E~polynomial which is pseudo-homogeneous of
degree r and s , and k_ J(:c,y) is an assoeiated function, then

k ni(x,y} 1is pseudo-homogeneous in x of degree r + j -m and s - j ,
and is pseudo-homogeneous in y ofidegree m - j and J

Proof: The latter pert of the theorem has already been proved. To prove

the former we have,

r+s m

P(IUX ¥ ﬂ'.l_-/) = ZmZJ ﬂm~j.7-‘J'ij (/UX,H)

© ]

h+Ss 4 r\,‘,‘i_m -J

ppaeaw = pptpee g = B e
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5w
BEquating like powers of ﬂm A~ in these two equations we obtain,

ped-m _s-

km.i(/'l'x’y) = H /U {km.i(x’y) °

If in equation (5) we replace x,A, y by O0,l,x and set

h, (x}) = k, (0,x) , we get

Theorem 13, If p{(x) is an E-polynomial of degree n, it can be unique-

ly represented as a sum of pseudo-homogeneous polynomials in the form,

(8) p(x) = h (x) + b, (x) +h (x}) +-+h, (x}+ +-+h (x),
m-J —d

where h_.(px) = p"“pn (x) .

Canonical Representation The representation of an E-polynomiel in the

form (8) will be termed canonical,

Theorem 14, If h(x) is an E-polynomial which is pseudo=-homogeneous of
degree r and s , then 9' h(x) is an E-polynomial in x of degree
€r+s8 =1, and for some choice of u is an E-polynomial of degree
exactly r+s -1,

Proof: Let n=r+s , and lebt h(x) be represented by (5)e Using
(7) we have k;{x,y) =0 unless j=s., From theorem 12 we deduce
that k, .(0,y) =0 for m<n, and k, (x,y) = h(y) . In equation
(5) replace x by u ,andy by x , and set A =1, %Then,

’ A n-i  m
e' n(x) = ), Lk, wx)

and by theorem 7, this is an E-po]ynqznigl in x of degree { r+s -1,
Using (7) we find that the terms of highest degree in the above equation

are

kn_,,w(u,x) + kn_”s(u,x) .
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To show the second part of the theorem we must show that u can be
chosen so that the above expression is not identically zero. To do

this, set u = Ax . Then,

A hoxy = h(x +2.x) — htx) = [(/M)'ﬁ(wﬁ)s—/]'/;(,r)
-t om Ped-m = 5=V

= Z,,, ZJ' A A Km./ LY

Equating coefficients of A and A in these two equations we have,

n-J s-l(x'x) = s-h(x) ? kn~1,s(x,x) = r‘h(x) ®

Hence if we choose x, so that h(x,] #+ O , which is clearly possible

since h(x) is of degree n, we get
kn-:,s-/(x' X,) + k, ., {% x,) = (s+r)hix,) *+ 0.

For this value of x , AI h(x) is of degree exactly r + s -1,
xl

Theorem 15, If p(x) is an E-polynomial of degree n, then e’ p(x)

is an E-polynomial in x of degree ¢ n - 1 , and for some choice of u
is an E-polynomial of degree exactly n =1 o

Proof: The first part of the theorem follows by expressing p(x)} in
canonical form and then using theorem 14, To show the second part of

the theorem we will take only the highest degree terms in the canonical

representation,
pix}) = +. ..+ n (x) + h, (x} +:¢-+h (x),
9, p(x) = + . . + el hno(x) -+ LY ° . « o + 3' hnn(x) °

Now consider h,; (x) « It is pseudo-homogeneous of degree n - j and j .

Hence by the last part of theorem 14, the highest degree terms in AI hm-(x)
x
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consist of, (4] (i3
k . (xyx) + k. (x,x) = (=3 +3)h (x) .

=ty h-iyJ

Adding these terms together, we get
‘p(x}) = ) + h, (x) h_ (x)
epx = 4 = = = n.@;’m(x + h, (x) + .-+ nn(X] B

Now if p(x) 4is of degree n, there must be at least one value x, for
which
hno(xl) L hhn(xl) * 0 ?
and for that value of x , A p(x) is of degree exactly n -1 and
X

hence the theorem.

Theorem 16 If p(x) is an E-polynomial of degree n, then A" pi(x) =0,
n Uy oy Yy,
and for some U,, -+, U, , A p(x) #50.
Ygaeey U,
Proof: Use theorem 15 successively.
@3 A Second Definition of Pseudo-Polynomials and the

Eguivalence of the Definitions

Definition 2'. Let p(x) be a function defined on an E, to an E,.
Then p(x) will be said to be an E-polynomial if,

1° p(x) is continuous,

2° for some integer n , A" plx) =0,
Upger oy Uy,
It will be said to be of degree n , if for some choice of u ,:--:, u,
An P(x) $ 0.
ul’o--’un

It is to be remarked that this definition is the same as the
definition 2' of chapter II, except that the requirement of Gateaux
differentiability has been dropped., This definition, as in chapter II,
includes the case of C-polynomials, and in proving the equivalence of the

definitions it is convenient to consider that case first.
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Iheorem 17, In definition 2', let E, = 6 , Then definition 2' and
definition 1 are equivalent.

Proof: That a function which is a C-polynomial of degree n by
definition 1, is a C-polynomial of degree n by definition 2', is clear
from theorems 1 and 6, To prove the converse, we must show that a func-
tion on C to E, which satisfies conditions 1° and 2° of definition 2'

has the form (l1). We make the proof by induection.

Case I A2(A) = 0.
R H

In this case £(A) = u,,6 , & constant, and it is trivial,
Case II A'£(A) = O,

,U,,}lz

In this case, using equation (6} of II, ¢4 , we have,
£(A) = £(0) + A, + Au,

which is of the form (1).

Case III A™2(A) = 0.
Mige e Pas
Then A" [e(a + p) =2(A)] = 0., Now £(A + p) = £(2)
Poseeesn

is a continuous function of A , and moreover its nth difference vanish-
es identically, If f£(A) is of degree n, then for some choice of the
increments, the (n = 1)th differemce of £(A + p) - £(A} does not
vanish, Hence under the induction hypothesis, we will assume that

£ (A +p) - £(7A) is a C-polynomial of degree n - 1 by definition 1,
and will show that this leads to the conclusion that f£(A) is a C=poly=

nomial of degree n by definition 1. ILet us set
(9) YA, p) = £(A+p) =2(A) =2(u)

Since subtracting a constant cannot affect the degree of a Cepolynomial,
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Y(A,p) isa C-polynomial in A of degree exactly n -1 . DMNore-
over, since it is symmetric in A,y it is also a C-polynomial in p of
degree exactly n - 1 o By using (9) we may verify & result whieh is of

considerable use later, namely,
(10) VA + py V) + W(A,p) = £2(A +p+0) =£(A) = 2(y) - £(V)

The expression on the left is completely symmetric in the three variables

7\5’-" Ve
since Y(A,p) 1is a C-polynomial of degree n -1 in A and

in }J , Wwe may write it as,

(11) WA, p)

I

u, (p) + Au (p) + 7\-u“ (M) + <o

1l

u, (A + pu, (A + Fu, A+ .

oo

Using the numbers A':: s Npm; of $1, we may solve the latter of

equations (11) for u_ (2) es,

uf's(n) = thJArj'W(A’AmJ‘) °

If we caleulate the value of %(A,A,;] from the first equation,
introduce this into wu, (A} , and introduce this into the latter of

equations (11), we get an expression for Y (A,M) in the form,
_ P =9 r_S$
(12) Yir,p) = Z ANApPR 'AM’M ’

where the 4 . ns 8T8 constant elements of E, + This expression is of
degree n -1 in A,A together, and of degree n -1 in u,[ together.
Hence it is of degree 2n - 2 at most in the four variables A, A, HoHe
If we group together the terms which are of the same degree in the four

variables, we may arramge it in the form,



(13) W(Asp) = W A, Asps )+ o o - +Y(A,2,p,0)
where r < 2n - 2 , and
WA, 63, sp, tf) = ¥ (2,2, p,f)
for t real, Therefore,
(1) WA5p) = W + S W (A, A, p )+ -+ 8°¥(A, R, p, )

We may therefore solve (14) for W (A,A,p,7) as a linear combin-
ation of terms of the form ¥(LA,Ly) , where L is an integer say.
From this, using (9) end (10); it is easy to show that ¥ is symmetric
in A,p ,and  ¥(A *P A+, 0,0) + Y(A,A,p,f) is complete-
ly symmetric in A, /J,IJ s We shall now attempt to find the special form

of W(A,A,p ) o We write it in the following form,

(15) Y (2, 2,p,0) = ). A“jzfa + Z‘: s-J_jb s
2 {2Aup i Y TR
S s g 5=t W 5o -
+ _J‘ e S<J_y =54
Z.:Ja % Liap + NP,
-+ P =9 pr =P q_r
Z A P QP)?)" + Z A /UIU KP:%"
it Pz9-r p e,
+ u v=W_Jx
Z A /J 2 /J ’pU,V,w,x 9
where P+q+r =8 l < p,qyr € 8 =2
U+Vv+wW+XxX =8 lsu,v,w;,x <8 =3 o
Because of the symmetry of Ws(ﬂ,ﬁ,p,,ﬁ) in 7\,Iu , We have
bj =8; 4 C.; = € ds—i = dj 5
fi=e; Ipar = 8gep o Poe — Penp ?
1 Vv, W, x = V, ¥, X, W ?
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The expression Y, (A + p,A+f,v,0) + ¥(A,A,p,7) is

completely symmetric in A, sV 5, s0 we now consider it.

(16) KArpd+pw, o) + WAAR p,p) =
L, (e p) (i *p)j'aj + ) v5 o, E.(ﬂ +,U)S-Juj.c
o J oJ g — J

N
'J.(2+,u) Ve,

- ___S-J'—J' & " )
+ Z.(?Hp) U-dj +ZJ.(A+,U)SJDJ-6J~ +
P, - _9 nr
4 Z (ﬂ +/J) (ﬂ +/J) Vo QP,?," + Z (7\ +,U)PUQD," Qq,r,p
+ T A POk, + D (Arg o Ao p

LIRS Me S T

Uv,w,x
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In equation (16} consider the coefficients of AH’ZJ ant S0,
They are respectively 2a; and a; . DBecause of the symmetry we must have
2a; = &; or a, = 0 .

I oy .
Now consider the coefficients of A WU ena A’ J//UJ o The

condition of equality yields,
(17) (3')e, = (s =3¢, or ¢; =5 (3)e .

On considering the complex conjugates of the above terms, we are led in
a similar manner to,

(18) ©a = Y (5)e, .

J J
-f—j II_J. l‘-J

1 ....l' F g
We next consider the coefficients of A p'V and A p'U .

where we have permuted A and J , and where i,j > 1 o From this we get,

(19)

i

e of
g(.’jgs-l'—j < ' ).e‘l‘ °
In a similar fashion we prove,

(20) Ry o oedud = (5.:‘.)'35—(' *

k) ’ +

S K= S-i-d-k
If we consider the equality of the coefficiemts of A'w/g" s

-l-d-kK

and A'/JJD'([!S s Where i,j,k > 1, we get

= {l&y
{19 1K, 5= 04 = K KSR iy K *

On substituting the value of h from (20), we get

_ (iu’)(s-i_j
P o, ..
Lyd ,KyS~t-g-K J K S-t-y

We have now evaluated all the coeffieients of Y. (2,2, p, )

{21) 1

in terms of ¢,, d,, and the e; . It remains to find its special form,

First we will find all the terms which have the coefficient e , e
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They are from (17},
St

G %L, = A -7 -ple

Next we will find the terms involving e, o They consist of the
coefficients of
g = (S: l)_e' ’

byly §=1-¢

h

S-i,J,1-d (.;)'e' ’

but do not involve any terms from 1 Since the subscripts on the

uvwx ¢

h term must be at least one, we see that the h term contributes nothing,.

The terms in V¥

s Which involve e, , are then

- / i s-2 _

52 y i “1~d g 3
e, + LA e+ Loea pae, + ApTle,

AJ
(20) = [ aep =277 - p7p]e, .

Ve shall now calculate the coefficients of e, , where 2 <t <s =2,

Such coefficients arise from (19), (20), and (21), and are

g.i,t,S-t-.i = (S;t)'et ?
hs-t,J,t-J = (f‘)'et 2
Liseoimen = () Glee e

The coefficient of e, is then, from (15),

as~z~l‘_“. t e, + IZJ (S; t) AJ/:‘.t}lS-'!—J‘ e, + Z (Sjt) As-t—J/IJ'Ft. e,

S=i~1
T d

$1 AStad ot ) —t-d s-t_J
LN AR e+ BT e,
st s-t-J _ K _t-K Ft s-t
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s

7\54}71'61 + it[(ﬂ +F)$~t = 2 -t_IuS-t] e, + Pt [(A*F)S_t‘ As-t_/usd]'et

5=t vt =t St ot =i
+ a [(K+F) - A _/_,f],e* * P [(ﬂ "’P) —7‘ -/Jt]'et

=t st

[T AT T A ) - A=t e, + A

(24) = [@ep G p = AT - pTp e, ;

In a manner similar to that in which we got (22) and (23), we find that

the coefficients of e and 4, are,

§<1

(25) [Aa+p(A+m™ =22~ pg*'l e, ’
- R
(26) L [A+p -A-F 14 .
We finally get then, using equations (22) to (26), the result

that ¥ can be expressed in the form,

S

_ S-J' _ _ . S\Il.. ¢ -J._ .
WA A mp) = L L Ry = AT - ] e
where e =3, e, =, , e =3d . Let
. S = r
g = L; A Ae,  an g) = L.e A

Then Vo (A,A,p,0) g A+ -g(A) -g () ,

and using (13),

(27) Y(A,p) = ¥ + gd+p) - gd) - g} .
Let H(A) be defined by, H(A) = ¥ + £(a) - g(A) o Using (9)
and (27) it may easily be verified that, H(A +u) = H(A) + HME) .

Now from the definition of H(A) it is elear that it is a continuous

function, Hence, using the result of Case II, we have,

HQA) = A+ A, .
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Substituting this result in the definition of H(A) , we get

20 = =¥ + Ay, + Ay, + ):S

an expression for f£(A) as a pseudo-polynomial by the first definition.
The degree of YW( A, ,u) is ex@ctly n -1 in A by our induction hypothe=
esis, and the degree of the right hand side of (27) is exactly » - 1
Hence r = n , and we have completely proved the equivalence of the two
definitions of C-polynomials.

The equivalence theorem for E-polynomials is now readily

established, We state it as

Theorem 18, Definitions 2 and 2' are egquivalent,
Proof: That a function which is an E-polynomial of degree n by definition
2, is an E-polynomial of degree n by definition 2' is cleer from theorem

16 and the definition, To show the converse, let p(x) satisfy the con-

ditions of definition 2'e¢ Then f£(A) = p(x + Ay} is continuous in A ,
and A™'£(A) = 0, Hence f£(A) 1is a C-polynomial of degree < n
Fn““ Fnﬂ

by definition 2, That its degree is exacitly n, is assured by theorem 16,

and thereby the equivalence is completely established,

Note: In definition 2' of chapter II, the condition of Gateaux
differentiability may be replaced by an algebraic one. If the con=-
dition is left out we get a pseudo-polynomial by the results of this
chapter. Hence if in equation (2), we equate u _ =0, if s # 0,
we get an algebraic condition on p(A) equivalent to the

differentiability condition,



CHAPTER IV

CONDITION THAT A BANACH SPACE BE A HILBERT SPACE

This chapter concerns itself with the problem of generating
an arbitrary norm in a vector space by means of a Hermitian bilinear
form. The definition of a vector space will be assumed as will also the
notion of a Hilbert space. For the former ses lartin (1), and the
latter, Stone (1),

In a Hilbert space H , notions of continuity and distance are
derived from a real wvalued function nfllH » Which is generated from a
function of two variables (( £ , g }) , which has the following

properties,

1 ((£,g))¢cC
2° ((af ,g8)) = a - ((£,8g)) aeC
(1) 3 ((£+g,h)) = ((£,h)) + ((g,h))
£ ((£,g)) = (g, N

5° ((£,£)) > 0,and ((£,£)) = 0 implies £ = 0 ,

We then define If)l, = (( £ , # ))}2 » and prove thet ||£)|, has the
usual properties of a norm, namely, that it is real wvalued, vanishes only
for the zero element of the space, is triangular, and ua-xMH:}al-uxu e
In a Banach space B , notions of continuity and distance are
derived from a postulated norm, ||x| o Fréchet (3) has recently given
eriteria which |(ix|| in a Banach space must setisfy in order that there
exist a function (( x , y )} in the Banach space, which enjoys the

. %
properties (1}, and for which x| = ((x , x )) o These conditions
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have been simplified by J. von Neumann and P, Jordan (1), and may be

stated as,

Theorem 1l A necessary and sufficient condition that there exist a

function (( x , y )) defined in a Banach space B , having properties

(1), and the further property that (( x , x )))5 = |Ixll forall x,
is that,
(2) Ix+ g2 + Ix-gi® = zu=0® + 2yl*

for every pair of elements x,y in B o, Furthermore, the function

(( x ,y)) is defined by,

(x,y)) = % {ll:c*ryll2 - x-yl} - 3 {lli:u v - llix-yllz}

The proof of this theorem may be found in the reference above,

and is omitted because we prefer to give our owne.

*Theoren 1'e A necessary and sufficient condition that there exist a

function (( x , y )) defined in a Banach space B , having properties (1},
7.

and the further property that lxi = (( x , x )) ~ for all x , is that,

(3) A =Nt = o .

Uy ¥y 4 Uy

Proof: The necessity is evédent, for |ixll is a priori continuous, and

it Nzl = ((1:,:::))}é , then
lx + Ayl* = ((x,x)) + Ay ,x)) + A((xy))+2A2(( y,7)

80 that |x II2 is a pseudo-polynomial of degree 2, and hence A IIJ::II2 =0,

U,5Ug, Uy

Now to prove the sufficiency. Suppose therefore (3) holds. Then by III,

The corresponding simpler theorem in real Hilbert space was pointed
out by Prof. Michal in his seminar on abstract spaces, 1935,
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$3 » theorem 17, lell2 is a pseudo=-polynomial of degree 2, Bub
2 = 2
A-xll” = AA x| ’

so that llxll2 is a pseudo-polynomial of degree 2, pseudo-homogeneous
of degree 1 and 1, and hence by III, ¢ 2, corollary to theorem 11,

Ilx + Ay llz has the form,
2 -
(4) 1=+ Ayl =k, (xy) +2k (xy) +Ak (x3) + A%k, (xy),

where the functions k. (x,y) are complex numbers. We shall show that
the funetion Xk (x,y) has the properties (1), Setting y =x , and
equating coefficients of A on both sides of (4), we obtain

Ixi® = k (x,x) = k, (xx) = k, (xx) = k, (x,x) ,
so that Xk, (x,y) has properties 1° and 5 of (1), Further,
because of the pseudo-homogeneity (see III, ¢ 2, theorem 12), we have,

k, (px,y) = pk, (x,y) , so that it has property 2° . Now,

Ix+ a9l = Wa-(xx+9l> = A% 5 x+ o’
(5) = A%k, (v,x) + Ak (v,x) + Ak, (y,x) + k,(y,® .
Equating coefficients in (4) and (5), we arrive at

(8) I“ (y,x}] = kz, (x,¥) ’ k i (vy,x) = k W (X,Y) °

Taking complex conjugates of both sides of equation (4) and equating

coefficients, we get

k, (xy) = k,(x,5)
(7) k, (x,y) = k, (xv)

k (xy) = k, (xy) o
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From the latter of equations (6) and (7), we find

]

(8) k " (st) k i (Y,X) °

We have thereby proved that property 4° is satisfied, and there remsins

only the additivity. Now A*Il A-xl® # 0 , and in fact is & constant,
Uy, Uy

Caleulating it we £ind that
hax + IU,+uz)”2 = AR K, (KU %) + AK (XU +) + A K, (xu4u) + G, (XU +u,)
= A+l = =R K, () = Ak, (%) = Ak, () = Ky, ()
= lAx+ uzll2 == AA K, (X,0) = A KoK W) = A K, (X)) = Ky (x,1)
IA-xl? = AAK,(X,0)

If we add the four equations above, since k (x,y) is independent of

Yy » we get

A {k o (Zou, + u,) k. (xn) k,, (x,uz)}

A axi® = o+ Ak, = ru) -k, (xu) - k(X))

'U” UZ

ky (253,))

+ {k“"(x,u, +u,) = k, (x,u,)
If this is to be constant, we must have in particular,
(9) k (x,u, +u) = k, (xu) + k,(x,u,) o

Equation (9) together with (8) enables us to show that k  (x,y)
satisfies property 3° » and with that we have demonstrated the theorem.
This proof might have been simplified right from the beginning,
for from (3) it is easy to show that (2) holds. In fact (2) can be
written as, o’ nol* = o » Which is & special case of (3). We

X, Y, Y
preferred, however, to bring in the polar from the expansion.



CHAPTER V

AN EXAMPLE OF A MODULAR FPROPERTY

For the notation of this chapter see Martin (1), pe 45,
Martin proved that if h(x) is a homogeneous polynomial of degree
n in a Banach space, and if its modulus is denoted by M , and the
modulus of its polar is denoted by M, , then the moduli satisfy the
inequality,

M o< M, <

n:M °

However, it was not known whether this bound could be reduced, that is,

do there exist homogeneous polynomials, the modulus of whose polar comes

n
arbitrarily close %o 2! M o That the answer is affirmative in
the case n = 2 , is shown by the following example.

We shall be conecerned with C , the space of continuous

functions defined in the interval a < ¥ < b + This is a Banach space

with, Wxl = max |=x(t)| . Now consider the following function
ast<b
of x,
2 ° 2
H(x) = {x(t)} + fK(s) (x(s)] as ,
a

where K(s) is a continuous function, H(x) is a homogeneous poly-
nomial of degree 2, for

1° it is continuous,

2° H(x + A-y) is a polynomial in 2 ,

3° H(A-x) = A*H{x) .
As such it has a moduwlus M , satisfying the relation,

NEE) < M onxn® .
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Let us choose a =0, b=1, and K(s) a linear function
passing through the point (%,0), as in the figure.

K\ =X, (@)

/

(,0)

\

In order to calculate the modulus of H(x) , we must get the least

upper bound of the expression,

! 2
{m)}z + [x(s) {x(s} ds! ;

2
while the maximm of |x(s)| is unity. Now {x(t)} is positive,
but K(s) is negative between % and 1 . To get the largest
possible value from the integral then, we choose a sequence of functions

{x,(8)} , defined vy,
x, (8) = 1 X 0 <t €%-+

x, (%)

n(F-%) , F-F<t<3
xn(t) = 0 ? %<t$l %

These functions are continuocus, but of course do not have a continuous

limit, One representation is shown in the figure, The upper bound of
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the integral, under this sequence of functions, is -‘Kz— s where
1
X = flK(s)l ds .
(-]
2
Since the integral is added to {x(t)} , clearly the modulus of H is
K
M =1+ —-é-— ®
Now consider the expression,
H(xy) = =x(t)y) +  [K(s) z(s) y(s) as

H,(x,y) is the polar of H(x) , for it is bilinear, symmetric, and

H,(x,x) = H(x) ¢ Then,
lg, (=)l < M, uxi Uyl

To calculate M, , we must get the least upper bound of IH,(x,y)lIl ,

while Ixll Iyl = 1 « It can easily be proved that it is sufficient
to take |xll = (Ilyl = 1 o Much as in the first part, we choose
y(t) = 1 ,
x (t) = 1 , 0 ¢t <3-i
x,(t) = n(F-1) : Lol <t <3+t

W
+
3=
/AN
ot
IN
=]

®

xn(t) = -1 )
In this case, the least upper bound of the integral is X , and as
before, we find
Vie have therefore given an example in which,

M < M, and Mp<2M.
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obvious

M
It is also,that we can make —ﬁ—P approach arbitrarily near to 2 ,

for X can be increased by multiplication of K(s) by a real numbers

That is,




AFPENDIX A

In order to sclve the problems of Chapter III, it is necessary

to be able to solve the equation,

(1) £(A) = a_ + A.a_ + Aa +--.+Aa +-+A"°jﬁJ-a‘
1o no hJ ’

6o "

by means of determinants, In other words we wish to show thet if
£(A) = O ,then a,; =0 ,for s=0,---,0, J =0,0°,8 o,
In order to do this we must show that there exist complex numbers

A"'",;\,\ 1'=‘J§n(n+l) +3+1 9

such that the determinant

,’ Z' ’ h—l g Yy al”, = ’ /']’”"’/'TIJ
n n-d =
[y A3, A, N I )
D =
2= n n-J—J

does not vamish. We shall make a proof by induction, Therefore we
assume that there exist velues A,,. .., A, such that D # 0 , and
we now wish to show that we can choose a value of A , so that the

determinant, which follows, does not vanish,.



/, Z, \ z-‘ , ’aln’ “ @ ﬂln-JZ‘J’ ;]IH-J-/Z-IJ“
= n n-dmd Nedl = J+1
ly Ay Pyy o ev ) By, A Zﬂﬂz ;
= n Nodmd  _Nedmi_d 42
Ly Ay 3 Ay °y dps® ¥ %y Aﬂ ars ﬂn A,
= n nedmd il s dtl
/‘)\’ﬂ,..,ﬂ,...,ﬂ Ay A A

Expanding this determinent by elements of the last row, we get

(2) ¢ = b,

where D =D #0,

nyd+

= n
+ Ab, + Ab, +---+ A-bn°+---+

ned =
AR ‘b,u. + A

d-1 =

A

.
J#i
.

We wish to show that ¢ (A) has at least one non-zero value,

or in other words, that it cannot vanish identically,
prove this, let us make the supposition that @ (}A)

that this leads to a contradictione.

A

1‘*‘1?'05:

Then by substituting in (2),

—

@A)

¢,

where @ and

Hence if ¢ (2)

¢l (I,y)

=

since and @, (x,y)

0 , then ¢, (x’Y)

In order to
= 0 , and show
Let us set
x=-1iy amd b, = b, + ib.
¢, (x,y) + 1i-9, (x,7)

are real functions of the real variables X,¥ .

0, ¢,(x,y) 0 o Now

are polynomials in x,y which vanish

identically, all the coefficients in the representation must vanish,

In particular all terms whose total degree is m must vanish ident-

ically.

are of total degree m, say

Clearly, these terms arise only from the terms in (2) which

nyJ+i
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M  med=d
(3) no(A,2) =22 Ay, .
-§ =
Consider the term A~ A . Replacing A by x + iy ,
AR = xrig) Tyt = ) (%

m-s-4 .« & N
L0 ) ) kg P

o

In the above expression the coefficient of x e (iy)/u is

(2) by = LN .
Or rewriting,
m-5S=$ m }
A A = ZF P,r, x" it
yields, 1 m i
h,, (2,2 = 2;4. b, ;}l P,Tj/(m Porgt

s

a n 3 m ! = e !
oFXm Pyt Z;,,'(l)'“f’m‘bmj * }";mepyﬂ g«'{')ﬂ ’b/'#"b'"»i

Since the coefficient of

x™#yH is real in the first of the above
sums when the coefficient of x™V yH

in the second sum is imaginary,
we may assert thet if h (7 ,A)

= 0 , then

m o 1 _ & m u s

Li; P, = O ) Zajj P Pmi = 0 e
These equations have one solution b,'n ;= b,;, = 0 , and we wish to

prove that that is the unique solution.

To do that, it is sufficient
to show that

}J,J =52)e,'-t..,,,7 ' p,zr"’ , #+ 0 o

Now consider (1 + x)m") 1- x)u .

This is equal %o
H AV (m=V - m

Z X } «(2)( = Z' xM

Y dt@=p ) ¢ ) ' P,u,l)

Ifweset X = «1 , we find



)
S
B

i
=

m
(5) ZF(—)"pm =0 , for V

Hence,
::),...,pof"’n po"’;,...’po""m_l
(8) cwE W oW w A - YL RIS .
Pr:os e 1P,::,,, pr:/,o,‘ ',P,:,’m_,

This is evident on multiplying every other row in the determinant on
the left by =1 , adding to the lest row, and using (5).

Now consider the determinant on the right of (6). I shall
now show that it is det lp’;},‘,‘,l e DBy writing out the expressions

and using (4) it is easy to verify that
(7) p/:r:u - pn7~l — pm-l .

Also, from the definition, p], = p':l; = 1, Hence, if in the

determinant on the right of (6), we replace p: , by p':; , and
subtract the first row from the second, we find that the elements of
the second row become p':’,':, o Subbtracting this row from the third,

and so on, we finally reduce the determinant to lpz:) ,

P’u =o,""m-l. Eence’
— L -1
IP:ul = (-2) ,p';u’ ’
and therefore, L m(m+)
B = (=2) ¥ 0 o

Hence in (3), b,; = 0, for 811 m and j , which leads to a contra-

diction since b . #+ 0 o Therefore we have proved, that for any

nyd+!
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Tr , there exist numbers A,,:>-,A. such that the determinent D
does not venish, and hence that the equation (1) can be solved for

the coefficients a, ;o



APPENDIX B

In a paper which has recently appeared in Studia Mathematica,
S. Mazur and W. Orlicz, (1), have made some contributions to the study
of polynomials which are very fundamental and beautiful, and which can
be used to sikplify some of the proofs in this thesise First we must

have some definitions; these hold in any linear space,

K-2dditivity: 4 function U (x,, X,y --,x,) will be said to be k=

additive if it is completely symmetric and additive in each place.

Rational homogeneity: 4 function U, (x] will be said to be rationally

homogeneous of degree k, if it can be expressed as
U (x) = Ul(xy.-x)
where U (x,,:-:,x,) is k-additive. In thisucase,
U ltx) = $“U/(x) , t a rational real,

Ux(x, 5 +,x,) is called the generating function of U, (x) .

They are then able to prove the following fundamental theorem.

Theorem IP U(x) is defined on one linear space E, to another, E, ,
and if A™' U(x) = 0 , (where the increments are all the same), then
Uyoee,u

U(x) 4is uniquely representable as the sum of rationally homogeneous

functions in the form,

U(x) = T(x) + U(x) + 2+ T(x} ,
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and where moreover,

UX(x,,:-o5x,) = L 8%0(0)

K! x”---,xK
The proof of this theorem is rather complicated and the reader is

referred to the Studia artiecle for details.
Let us now assume that A is a complex ratiomal, that is,

A=A, +1i2, , where A, ,A, are rational reals. Then if U, (x]) is

rationally homogeneous of degree k,

U (Ax) = U (A:x +2,ix)
al s K-S ik 3 ) '
= Zo'\s h' AZ ml_ UK ((X,‘-',X, (/X,‘--IIK,)
S K-S

(127—) K) U (L_"'axj (Xyoveyix)

n
™7
2
™
3
—~~
S
~
>
o)

L (59 AT R ™ o) u)

] o ot

[
]
™7
3
[

>)—.
>
iy

> Lom Lo "2 '"’i-’t(ﬁ)(s‘)("ngKU( . 5) .

If we now define H,  (x] as

B (x) = ) Jei'S et (5) (59 US(gyee o i
Km(x B o $ ZK Petam L_\/_J ,V

we have i Kol = : = K
U (ax) = AMH (x) + A AH (x} +:--+ AH (x)o

Using this result we see that U(x) is uniquely representable in the form
Uz} = H,(x} + B (x) + H (x}+-:-+H (x}+--+H (x],

where —
H,(ax) = ATAEH,(x)

for A a rational complex number,
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If the spaces are, besides being linear, also "espaces
algébrophiles™, then it is easily seen by taking a sequence {7\”} of

complex rationals tending to A , that
U(Az) = E, (x) + A-E,(x) + AH (x} +---
n = 1A,
+ AVH, (x) ++ -+ AH (x) ,

where A is any complex number, provided of course that U(x) is a

continuous function.
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