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Deformetion of the front of traveling waves

along power lines under corona conditions,

Intro&uctian.

lany experiments have been performed on actual and
artifiolal lines in order to determine the attenvation of
traveling waves, especially at their front,

Our object is to try to derive an expression, depend-
ing on the parameters of the line, which will give us the
infornation we desire coneermning the shape of the fromnt of
the wave at any point and any time,

From the kunowledge of the maximum gradient of poten~
tial, the engineers set up the protective devices for the
apparatus sonnected to the end of the line,

The telegraphists' equations, modified as we shall
see, will lead us to the result. As a method of handling
these equations, we have the choice between the elassical
method and the Heaviside operational caleulus, For net-
works with lunped paramebters, the classical method of
treatment of transients is easier and does not require
the symbolie operational caleulus, For networks with
distributed paremeters, however, it is almost impossible
t0 reach & solution with the classieal method, This is
due to the faet that the voltage and eurrent dlstributlions
debend on the boundary conditions, The physical truth is

thus disregarded since the waves, traveling at a finite



veloeity, ignore the terminal conditions until they reach
the end of the line,

The operational calculus considers the waves on thelr
trip along the line, and is therefore the natural method to
use, It doss not occur now to electrical engineers to use
anything but the veetorial or imaginary sywbolic method to
golve stea&y a,¢. problexs in all cuses, In a gimilaxr way,
the operational calculus will become more and more the sym-
bolic methed of solution of transients, and, in faet, it is
the only natural method of investigzation of transients

along lines,

Division of the work,

We are led to divide this work into two parts,
In the firyst part, we shall lay down a sound basis
for the operational caleulus, Thils will require the tho-

rough discussion of the Fourier integral formulation, on

which all the operatlional caleculus is buills,
The second part will be concerned with an applieation
of operational caleulus, i,e, the deformution of the front

of traveling waves under corona conditions,




First Part,

The Pourier integral forumulation.

Let #(t) be a single-valued funeiion having a finite
number of discontinulties and of maxims and ninima between
£a-g and = g9 , and such that / é//éj].zd/f
exists,

Then the function £{t) can be expanded in a convergent

Fourler series:
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Thus, for all values of t, we have:
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which represents the harmonic analysis of £(%),
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Trangformation of the Fourier series,
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These two rela,tiona (2) and (3) are most important,

They are the first form of Fourier transforms for
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functions having a finlte period.

If we drawc/jus)vs /w s we obtain the discontinuous
frequency spectrum of the funoction £(+t) with a finite perlod

. This " frequency spectrum " glves the relative impor-

tance of the sueccessive harmonics,
(. ()
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Funcetion with infinite period, i,e, having no perviod

whatever,

This case is the limiting one of the former relations,

when s tends toward infinity,

We had, for the periocd P 1 w= ;? = %

Vhen s tends toward oo ,iﬂ tends towsrd oo andwdoes T

Let £ denote the frequency, then:
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In order not to confuse thig new funetion £(t) with
the one having a finite period, let us denote G(t) a fune-

tion having an infinite peried. : omi¥
+ o Fof
Thens §/L() :/ Z’éi.zxﬂg/ f &)

., +oo - j2x A
with fé/«zﬂﬂ=/ 6/3)5% A 3
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The relation (4) gives the harmonic analysis of the

funetion G(t), whereas the relation (5) is the continuous

frequency spectrum of the funchtion G(t),

Zzgﬁgazé) zives the relative importance of any term
of frequency.f_in the harmonic analysis of the glven func-
tion, In other words, the equation (4) is the analysis of
(%), and the equation (5) is the synthesis to regain G(t),
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The relations (4) and (5) are Fourler transforms

and will serve to Justify all the steps taken in the opera-
tional caloulus,

We reecall that the relation (4) is 1iMiEE§ in‘gts
application to a funetion G(+4) such that : / [E}ﬁ‘)] )/

- o

exists,
This implies that G(t) goes to zero when t becoumes

large,
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Change of variables,

Let /3 = K

67( o ey
then (;?é{) 2775) S q&7 ©)
))
with 277%) v///ﬂ L;/CX) 3 7 C{A CZ)

P is a pure imaglnary quantlty and G(t) is altogether
deternined by the behavior of F(p) along the axis of

imaginaries,

Inportent particular case : G{t)=po for t <O
.é
Then: &/Z) = / Z’/@) £t ®)
with £yp) = /K/A)z )

@ <
The expension () counverges only if v//dfﬁﬁq]cﬁf
©

existe, If we snalyze further the relation ($), we can

draw some conclusions as to the nabure of the funection

P(p) by exmuining what happens when the complex p is equal

%o infinity, Let p in the relation (9) be equal to a come

plex énantiﬁy : Yo
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Then, our relation (%) becomes:

L= sk/fcnx -A/J/'/o‘@w( .
7/@) =/é’(r\)z . £ 42 ()
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Of eourse, £ is always less than uulty,

thus: ]7//’ ) = / OOG’ (A) Z,- "/" wi{ A G 9)

The integration in (10) is performed along the real
axie of thel - plane, and N 1is msitivm If/ goes to o
the integral (10) goes to zero for sosxdo, i,e, for points
P at infinity in the regions I and IV, or for x positive;

In order to £ind out what happens when cosx €o or

X<o s, let us replace A by - , then:
= Apc A2 [ dimx
Apy-- ) v T a0 6

But G{A) is mero for negative values of the argunent
A/-’ Cer X

and £ ig zero for A= CO md}g«sg{c_

l,e. for x <o,
Thus, for all points at infinlty : 27/ ﬂﬁj/’ e B

Going back to our relatlon (), in order to investi-
gate how IMp). zﬁz‘behaves a.t‘ all points at infinity, we
write: ]%5)5/52; £75)- s AT and this will be
gzero if xt <o , i,e, for X))o with Z <o

and fTor «<o with £ >0

We arrive thus at this importent conelusion: the

integral (€) along the axls of imsginaries in the p-plane

can be replaced by a contour intezral composed of the axis
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of imaginaries and a half circle of infinite radius to the

left for £>0, and a half cirele of infinite radius to the

right for Z<o. Y |
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Cur equations (8) and (%) become now:
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with g/ﬂ =°, £<o and the condition that / [&ﬁ‘)] ié‘
exists, ©

The ilumportance of the conclusion appeurs here, as
we are able now to evaluabte the conbtour integral (11) with

the help of the theory of residues,

If the function F(p) has & pole at the origin, i,e,

- = &
12 o) T/G[/\)cﬂ oo , sixme/ Z15) g° 4’ st
° ©AB3CO
be zero, we have to avold the origin by o swall half circle
around 1t in the right half plane, This, of course, ¢oOrres-

ponds to wrlting:
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where ¢ has any positive value,

Theory of residues, Evaluation of the residue at

a pole of any order,

/34 P‘Fa'n&

Simply.

commected ’zejicm_

In order to use cousistent notations, let the com-
plex plane be spoken of as the p-plane,
Let ¢/6) be a complex function :

“R = plarfy) = Rlxy)+/ Tlay)

oF _ dp _ Djf . 27
bub OX - D/J - +% Bx
)go _ o

}Oy —D/)/ % +Jb}

Assume that @p)is single-valued and continuous in &

olosed region R, Them, all the derivatives of A/zy)and Z/xy)

with respect to x and y have a meaning, and we conclude at

once ¢ [ pY4 s <
dx ?% (%)
2B _ _»7
bdx dx
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Thus ¢ ;ﬂ//»).ééa = (A y‘.[)(c/x ytg)
= (R dx -'Ié) y(]‘«lx +~ R ‘?)
end ffofmﬁ = flade-1dy) 1 jHr 4 +R )

But, becauge of the relations (14), both expressions

under the integral sign in the right hand mewber are exaot
differentials, thus : 575/%77é)c§b =0

Corollaxry: Supgpsa n singularities, % 8_'*°'°34
¢

It appears at once that : The value of & line iute-
gral sbout & closed path in a given direction is equal to
the sun of the integrals sbout small closed paths in the
gseme directlion, each enclosing one point of discontinulty

in the original ares,

Cur next step is the evaluvation of residues,

1. Lemma § Gauchy'a Theoren,

Iet #/0) be an anelytic funotion ( contlauous and
single~-valued ) inside of C,
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Suppose e analytic between C and ¢, ¢ belng
a snall clrele of radius r arouwnd the point p=a.
p

"ﬁﬁuw "% dp = LA 2
2 N~
AC €

P2 poe = 28

dp =z 45 46 R
/ s =fde
gso that [ o[f//g #j f/) -:7//0.).29'
Thus : (ofa) = 47‘} . f{? s (%)

which is Cauehy's theorem,

We hava also:
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2, Theoren, Taylor's series,

Suppose ;ﬂ/z ) analytic within 2 cirele of radius R,
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We Xmow that, then: jﬂ/) J’y% D, 4/;
buss d = / - / . /
P geEleEeel gSe - 22D
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AR 2 - (z «) (z-«) o
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thus Sy/z) éw/ffoﬁ) Q?? +(2 a%;ﬁ% + —A]

or ffz) pla) + (2 - a-)gﬂ/)-:-(z““') Va) 4 = wn »

This is Taylor's series, It ig quite general, a&s it
holds for complex functions, If a function san be expanded
about & point a, it is sald to be rezulaxy at that point,

3, Poles and resldues,

An analytic function ¢») is sald to have a pole
of order m at & polnt p=2a, whens

7.
P -

Thus ¢/4) is & regular function et p=a, and can

where ¢/a) 7# ®



therefore be expanded in & Taylor's seriea, as:

)= ) ) yR) = B Yoy -

Consequently: -
-
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The integral % 7/ ‘éa along any contour C
enclosing the pole p=~a, is equal to the intemal%” )%
along a srall eirele of radius r a.rcmnd that pole,

Then : /J—-a:’z-i/
J/7 = 12'//&‘15
-~ 7t r“m)g
__‘ﬂ__ //e/ z// A&

(/5 -a) a-/-m. /ﬂ-m)-l/k j
%(/3 2™ ey < - !

For mal, this integral is zero since r=0 and
///a—m.)abc
<

J/ﬁ & .
For = ——— = 'd =
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On the other hand, the terns grouped under the sign

II will countribute nothing 4o the integral, since these:

terms form an analytic expression, thus :

¥
sz//)‘%“ .l Y
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The quantity -———- which is the only coefficient
(n-D7 -
in the expamsion (16) which contributes to :§5Af%ﬂ&)¢§z
C

is ealled the residue of the pole, let us denote it R,
(m 1)

R - -(fn-;ﬁi wt ) = p-a) P

thus, the residue of a pole of mﬁh. orxdexr is :

Lo _,), W)]} 7)

Lma%/a)aya = / X Z (8)

There nay he several poles

of any order within C, then:

@ @ St =</ x

the sum of the resgidues,

The expression (17) is very iuportant: it gives a
direot and always simple way to obtaln the residue at a
pole of any order,

For a first order pole: m=1, thus,

R = /p;;” [[/s -a) f’f/o)J since 0% = 1

which is well known relation,

Evaluation of G(%4) by a contour integral.

e can now go back to our reciprocal relations (11)

and (12) and proceed further,
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Ag these &gﬁatims stend, they give either G(t) or
P p) when the other function is given, If the complex funo-
tion ¥(p) is given, G(t) is obtalired by a contour integral,

Since G(t) is zero when % is negative, we conclude
that the funetion Fﬁ). g z has no poles in the right
half plane, When t is positive, we have |

f ff") f / X sunm of the residues,
Consequently: G(%) is equal to the sum of the resi-
dues at the diffevent poles of the Punction []’&:) £ zj’

We have, in the expression (17), the means of eva-

luating these residues at poles of any high ordex,

The  integral {12) can be reduced to two resl
integrals, Thus, from the Imowledge of either F(p) or G(t),
the other function can be readlly obteined.

The operational ea}.eulua .

Balth, Van Der Pol, in a publication in the Philo-
sophiocal lagazine, gave in 1929 & really strong nathemae
tical basis to the original conception of E'@avﬁ.sme;

The entive theory of the operabional ocalsulus is
based upon & few remarkeble properties of the imtegral
equations (11) and (12),

In order to discover these properties, 1t is neces-
gary to make & change of funetion, replecing F(p) by 22,
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Our integral equations are thus:
| £
z’b

G‘ﬁ‘)=2§’/—.fﬂf/’) ~ 4 @3

Hp) = /:/2’//\) §./J)‘1/A (%0)

In o shorthand Lashion, we write:

Hip) = G/2) @)

which we read 3 H(p) is the symbolic represenﬁatgeﬁ or ié
symboliealxgweéuivalent to G{%), We may also say, together
~ with Van Dex Pol, that H(p) is the image of the originel
funotion G(t), The expreasion (21) is called an operational

emi}iou,
i%Z@ or M(p) is lmown as the Iaplace transform of G(%),

Since the equations (19) and (20) sre reciprocal,
we shall esteblish a few important rules on the basis of
the equation (20) &

e _pA
1, Let A =aZ , & being a positive constent,
P - Aal
ﬂ@):wfaﬁf)zﬁ L

o ~-pL
thus : JQCGE;) =-/A;//ﬂ Grat) s / W
Consequently: ,JQP/E%?)_ = C?(Eiéj &2)
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2, Let us replace G(A). 2/6 by 4G(3) . £ 4

o " 4
Ther: /J/ ‘{C/)) -/’)cl/\

integrated by parts, is equal to:

/’[z"/”\éﬁ) +/’/GKA) f'/’l{;\]w

o

We have shown that G(t) can net be infinite &t tzoo,

thus 3
PG T g [ K - 60

©

oz A7) -/’[f 40) 72 +c%)]=/a (42 5 ?}

Conseciuen*tly: /7./7'[ &5) = :{{;/z‘) o G(=) (47)

- /o[f[//o) 6’/)] ‘16’/)

A
3. Let us replace G(A) by /6"@) Ax

Phens /a/ [f@/x)da £ é(/‘ﬂ/&fd)c{ai]c(fs -
[ /,/6&)4«] +/z°’4[/¢/«)a&]

_[ /sz"{“] " / =Gy d)

We have geen that if {f__/f)

then ; fwﬁﬂ\)af) o,

o

has & pole at the origin,



The first term has the form 253—- "

Using 1'Hospital's rule:

A
v ~A:‘C7ﬂ¥)é‘§:] _ G(eo)

z'ﬂA /?x:oo

and, as we know,G(c=) must be finite,

Thus, under all sircumstances, the Tirst term cauncels

and: -
p 1o 5
or -——-~f¥Z29 -—:////~(?/2)¢i¥' &#)

4, In the same way, we could eutablish other

relations, such as ¢

-af
Hpra) =g CGE) @)

/’+a-
whioch is the Heaviside shifting formula,
Also:
s AR = o £ <a

@)
c;/g:-a) Z >«

where 5‘3"13 the Heaviside transfer operabor,

Conclusion, By looking at the operational eénae

tions (23) and (24), we can draw important conclusions,
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Suppose first that G(C)= 0, then p is equivalent to
taking the &erivativea;f' 5 wheraas;é- sorregponds to the
integral sigg;//ﬁc£?~ . Of course, if G(C) is not zero, then
there ig an aﬁ&itioual term in the derivative:

_ dord) ) @
PAPL & Sl y pEs)

° £
The second term pt(0) corresponding to the discon-

tinulty is called an impulse,

In the same way:

JQC‘;) aftgﬂﬁ) /6[aﬂ24) /6 6;4)

n

AE™
the function and the (n-1) Lirst derivebtives at the origin,

-n ¢ ¢ £
/° represents / / --—-- / AL
o o 4

Consequently, p which is the independent veriable in

A
aogﬁh&tf/b represents s Dlus the impulse terms in

the image, becomes a symbolie operator in the originsl func-

tion, This property, which is the clue of the operationsal

method, has glven the names: operational calculus,

Operational equations,

The fandamental problem in operational caleulus is %o
£ind the original function of o given image,
An operational equation is thus of the type:

G/8) = H/[p)
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where H(p) is a given function of p, and G(%) an vnknown

function of t, The solution of an operational equation

reduces 1tself to the solution of the integral equation

(20), and san be obtained by the thneory of residues,
However, this solution can be obtained in most cases

by reducing it to the solution of a certain number of fun-

&e.mmmli equations which we shall now conslder, We have

”T

elready Tound the mgaming of £ and o

Fundauental e@ﬁ%ians 1 Obtained from :
-, o0 - A
H/p) :/,/ Gy e
(=4

1. Let G(+t) be equal to unity,

] G2)

| Thig 1is the well-

'l known vnit function of
" K £ Heavigids,

- <
Ve notice at once that / [6%‘)] oAt does not exist,
i,e. G(%t) is not of sumrable squares, Such a function G(4)
is not representable by the Fourier inbtegral as established
in the eq}aatiana (8) and (9), Ve have there:

<+ JoO

cB. L TP ety e

" e £ £ x4 ®&D
This is not true any more,
e

However, the funetion & . C-%‘), where ¢ is a real

sositive constant, is of summeble squares, i,e.the integral -
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s
/&"’ CR) ot extuts,
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Thus, our eguation (27) holds for € . Gﬂ‘) :

-cL‘ .‘w wy /)
R // // i) <7

‘Tet « =¢ +/' dw =
‘/ o -«
544).- J Lty S0 N
& °©
or G4 = / f‘ M) A *8)
‘/ao

where /w) = oc/ GA) £ Aa/z) (CR))

These relations hold for / [G"/ )] ‘“/f

The equations (28) and (29) are the generalized

Fourler transforms, We notice that the equation (28) only

has changed, The equation (28 ) merely means that, when we

integrate along the axis of imagiuneries, we rust avold the

orligin by a small half eirele in the right half plane,
Thus, if G{t)=1, the generalized equation (29)
gives H{u)= 1., The wnit function is thus expressed by the
/o
/ £ . =
contour integral: /= Zz7 f/o % and /1 =/ @o)

Consemlently, a constant is its own image

. / l‘ Z‘ ”
2, Since /=y ana/T ?/___-/cé‘

7n
’ ’
we derive @ — i

/g"- ot 1)
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llany wore relations can be found; it is the objeect

of textbooks on operational caleoulus to establish them,

~Application of the operational ealeulus to electrie

unetworks,

So far, we have built a logieal eusenble of deduc-
tions frém the Fourier integral formulation, We have been
led to the operational caloulus, Now that the basis of the
operational caleulus is8 firmly established, we pass from
the ﬁurely nathenatical point ®f view to the practical
applications of operational caleulus to electricel engineer-
ing problems, The link bhetween the former part and its
application to eleetric networks vests on the following
property, Lot us consider the differential gduatian of

any high order with gonstent coefficients.

L™ L5
s ZR e g+ e nFrard o

with the conditions: Z/#) =o for F <o

L) =Zp) g6r E>o0

n~
and /_,5?‘::---- ;j%.-o for Z=o
Y

where i~ at Z =o i3 not necessarily zcro,

Theze conditions express that at £=o0 , a disturbing
forse B(t) is suddenly applied to a linear system previous-
1y in equilibrium;




Let us replace the equation (32) by an integral
equation,
: £ -4
We kuow that: & /%) = H/”J—’ /’/6@)‘ LA
(=]
Let P = A/(p)

Y = 4»/’_0/;(")5./)‘0
then & [ﬁf- +/>}/o)],='c§‘_//aﬁﬂ)s’/’i/fl

Since the system is in equilibrium: /ﬁ) =0, i,e,
the impulsive terw disappears, and:

. < /7 -4
ot ° %— = afn-//’ / ;(A) £ e

(]
‘
)

I

[]

/]
] n oo ;'

"+ <L
0. AL =2 4 y: ) £ )
P-3 Z(‘n. . ©
, o
gsince the (n-1) derivatives are zero at Z=o ,
The Image of the left hand newber ist

o - pA
plaprap e va prs) 20 @)

o

The imege of the right hand menber is:
o ~pA
/,/ 20) @4)
[

Images (33) and (34) uust be equals

n </ e ~pA ©© - pA
(s, +~/ +~-'+¢n)/}/f”‘ gz -/‘z’é)f L2 6o

[~}

The integral equation (35) takes the place of the
differential equation (32),



et  Z(%) & M/p)

n-/

and 2//)): a;/)“-l-d;/’ R L
Then, the integral equation (35) can be written as:

Z/P). ) = Mp) = BB
Thus: f[&») = AP (36)

Z(P)
4) = M (P) r  yff
H ) - —LZ[/S G or pl#) = 5 LY
We have also f/é _/a ‘M//’) s and so on,
¢ Z (7)

/a’z‘- L MP) | and so on,
Y/

Consequently, we have relduced the solution of a
linear differentisl equation (32) with equilibrium time
boundary conditions, to the solution of an operabional
equation (36),

This is the justification for our developed nathe-

ratioal background on operational caleulus,

Case of an applied unit foree,

Suppose BE(t)= 1.
Sinee : / 7—'- / s Mlp) =1

: 5 o
mbF e zﬂ,) (57
which means that: /J / pi {/\) £ 6{ A (>8)

Tet us now consider what the symbolie eqmtmn (37)



means, I the funcetion y(4t! that we ave trying to determine
is & current, and if the wnit Pfunction E(t) is & suddenly
applied walt voltage, then Z(p) plays the role of an

impedonce, Thus Z(p) 1s the symbolie or the operational
impedance of the cireult, for a suddenly applied unit

‘velta@e, This symbolic impedence is not & disturbing new

conespt; 1t is very much like the complex impedance %;/30)

in the case of sinusoidal a,c. currents, In the same way,
Z(p) gives the means to treat problems in the non-steady

state by means of &quatioﬁs having the form of the Ohm's
/

<f/P)
is ealled the laplacliah {transform

law, The inverse of Z(p), » is vdlled the generating

funetion , and
of A(t;o

£ 2(7)

The current respouse to a unit volitage has been calm

led the indieial admittance by Carson, and aaaotedlﬁ(tl.

thus: A/ = - 39)
// -7 o
which means: % =/J/ A/A) g a/) _ ({-o)

ands Al) = L _ vjy(ﬂ__lL__ & /siéka )
2 /o:zcb)“
These equations have the same limitations as before:
1;,4(bq) must be finite, which is physically the
cage for dissipative netwoiks ( all the roots of Z(p) ave
thus in the left half plane, with, eventually, the excep-

tion of the origin).

2/?,4/5)]44/2’ exists,
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The equation (4C) is known in electrical engineering
a8 the infinite integral theéorem, 1% is the definition that

was used‘by- Ba.lt;h; Van Der Pol for operators, Carson, in
hig " Theory of transient oscillatlons bF electrical net-
works' ( Trans, A,I,B,E,38,1919,p.345), makes of this theo-
ren the cenbtral feature of operational calculusg, He thus
agrees with Balth, Van Der Pol,

The equation (41) is kunown as the Brouwich-Wagner
theorem: its advantage is te give the indicial admittence

through & couplex integration in the complex plane.
Conocerning the infinite integral theorem, we should
point out that while Van Dexr Pol used it to solve diffe-
rential eqizations. Carson considered it rather as & cheek
on operational eciua'tiona; i otheyr words, Carson did not

use it to solve operational euuations,

The Heaviside expansion theoreu,

It is deduced quite naturally from the Bromwich-

Wagner theorem, by the usg of the theory of residues,
£

v
Z/0p)
/ //’ and Z(p)= 0

Z(p)= 0 is called the determinantal squation,
Heaviside establisheci his theorem in the case whare

The poles of are glven by p=0

all the roots are differvent, In the case vwhere there are

colneident roote, Vagner gave a general form of the



expansion theorem, but itwsimpler then to keep the integral
(41) coubined with the theory of residues,

Suppose that Z(p)= ¢ glves the single wroois:

PL e e

R@sicm@ at. the . erif‘"iﬁ.

| /“° /’2//’) Z (6)
Residue at the root /;k 4
pL
. [ k3 :
ﬁkz /m/a:/vk [[/’ /’/‘)/’Zf/ﬁ)]
vt Z/p) = alpof) e P pw) (P
e 2L < < (pop) ---//»-/u-,)//-/»,u.>---//»-/%)

/"/’k
[/’ i Vb K
Thuss ﬂ P /’k 2'//5/& )
and siuce Aﬁ‘)=_;€° +R o+ + &,
K=n s/b/«"‘

we have A/[%) = E ,

2& M K=/ /3/‘2’//’,,«)

Since A(t) must be real, we deduce that the complex

4=)

imaginary roots come out in pairs of conjugate complex
quantities,

In general:s A, = — o + J/sﬂ
«, i3 the natural decrement

/3 is the natural angular velocity
/sx 1s the genexalized natural anguler velocity




Heavigide egtablished hig theorem twice; in his
% Electromagnetic Theory ", Vol,II, ».127, and in his
" Eleetrical Tapers ", Vol,II, p.226, s a footnote,

Vellarte first presented sn algebraic indiscutaeble
proof, |

Bromwich studled the case of an infinite number of
roota; ‘

Cargson developed & form of expansion theorem for use
vhen the applied voltage ls of the forn € 4 ‘w#; let us
treat this cese.

Our equation (36) gives the solubion: 4/5) LML)
where ﬂ [p) = £ Ao 200

Lt

or = &£

/’/’

tws ;. L£(F) = «?y//s /’d“ 2//)‘#
r  £lZ) =
i & 7”/»/*’ =z ,,{f

We wust find the poles of

/
- P 5
i,e, for /3-/w=o and Z /p) =o

Pole at ./o?[w

R= A ‘).8’2‘.’ _ &
Pole at p=pgx

K =
Lhs: Lﬂ‘)

/%
-/> [(/’ ! ")/u/“’ 2//*)] 0’/“’)2'//%)
ZC/w) Z (/7,‘ w) 277,) (43)




w50 =

Digougsion of the eguations (42) and (43},

Lfter a tine z/=.oo , the exponential terms disap-
/

pear, The steady-state term is therefore >)
' [)

for & unit

applied voltage,
'“)f

The steady stats tezm for o voltage £° 1s —.

Sy
in which we see that the symbolie impedance Z(p) becomes

#

the complex imeginary impedance 2 g/u>), and the whole
operational caloulus reduces to the complex imeginary cale-
suluvs, The examples (42) and (43) ave suffiecient to show
the wide use of application af the Carson and Bromwich-

Wagner theorens,

General scase,

The disturbing e.m,f, is a funetion (1) of any
shape whatever, We want the current solution i(%),

First method, Ve replace E(t) by its image:

MPIEEE)  wmere M(p) =p [ EO) €L
Then, it fdllows at once:

Ap A
i7) = ..zry /sz//,) €

As a check: A -/»/cf/\)s /Ja/A
<P

Second method, The solution iz reached in two steps.

We Pirst determine the indieial adnmititance:
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Then, by the use of the superposition theorem

( Boltzwenn-Duhamel integral ), we have

£
Rz =Z;4-/A(A) Z(#-2) &)

Conclusion: This fivst pert indicates the compact

forn into which the developuert of the whole of the opera-
tional calculua ney be put,

On the basls of the Fourier iuntegral theoren, we
have drawn conelusions on operational equations, By showe
ing then thet the solutlon of a differential equation can
be reduced to the solution of an operational equation, we
have applied our conclusions on operational eguatians to
electrical engineering prast;ce.

A1l the well known theorems of Carson, Bromwlche
Wagner, snd of Heaviside are readily obtalned, with thelr
right meaning and theiyp limitations;

This entire procedure is opposite to the historieel
developuent of the operatbtional caleulus,

Heaviside established his theorem, and also the
neaning of the operator p, but he proceeded by intuition,

and went wrong often, because the whole matter seemed



mystericus, ilalaly, the inpulse pl was a wmost indefinite
matber, | |

Yy opinlan is that operadbional coloulus should be
tauzht by finishiug with the Heaviside expansion thssrem;
The actual didaedtic method in &hiah this theorem is only

the very start can only lead into nisconceptions,




Second Part,

Defoymation of the frout of traveling waves along

power lines under corona conditions,

Introduction,

The problem of the deformation of the front of
traveling waves or surges aloug power lines is a very
important ana; It is kmown experimentally, that, as &
wave travels, its front flattens out, redusing thus the
dengerous meximum potentlal gradient which iz the direct
couse of Plashover in transformers and a,6, wmachiuery,

The attenuation of the waves at their front is nuech
higher for cables thar for serisl lines and is in faot
inversaly provortional Yo the square of the surge inmpedan-
ce of the line, as will come out of the theory,

The factors influencing these attenvation and dis-
tortion are skin-effect and corona,

Cur object 1s to introduce these fectors in the
theory and to predetermine tha.sh&pe of the waves at their
front, as they travel along the line,

Ve shall take corora into acceount by the introdusiion
of a lesakage condusiivity vhiech will be trested as & cons-
vant, The actual variation of that coefficient with the
voltage, aceording to experimental data, will be taken into

gocount afterwards in the solution,




General consideratiouns,

Lgt us consider a double line of cylindrical clrou-~
lar wirves, In a transversal plane, we have & geries of lines
of force flowing from one conductor to the other, The com-
ponent of the electric field in & traunsversal plane will be
denoted by %; ; In fact, the total vesctor elestric field
T has also & component Z_  in the direction of the wires,
The nognetic field is in the transversel plane and 1s per-
pendicular to the transversal lines of force,

Consequently, the Poynting vector 1s not parsllel
to the wires: +this means that, in the successive transver-
sal planes, at the front of the wave for lustance, the
flow of energy, traveling at the veloecity of propagetion,
i3 not a constant, but damps oub,

I? we cxpress the electrical quantities in the

¢.8.5. electrostatic systen and the magnetic cusntities

in the c¢.g.8. electronagnetic systen of units, then we

must introduce the ratio of the e.su.,u., to the e.s.u. of
charge, i.,e, the veloolty ¢ of light, as was first theore-

tically showm by Maxwell,
Thens S = £ [f xFJ
. 4



R Poyhting veotor

TxH : veotorial product,

e

We shall be interssted in the dase of a double wire
line. Ve suppose that the condustors are so rercte from
each other that the current flowing in each wire has no
effect whatever wpon the distribution of the current in the
other. In other words, the skin effect in each conduetor
will be the same as if 1t were isolated; this approximation
is excellent,

The vestorial Ohm's law ist N= o Z

where 7 =o~Z - ocurrent density vector
vad - conduvetivity
Z - electric field

Since we assume that there are no eddy currents,
and therefore E, are parallel to the wires, The electrie
field T, inside of the wires, is therefore purely longi-
@;ﬁinal, The Poynting vee*ba?. inside of the wires, is

therefore purely radial too, This meens that there is no
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longitudinal propagation of the electromagnetie field in-
side of the wire,

Thig, by the way, is a very good proof of the fact
that the energy is propagated along o power line by the
electromagunetic field outside of the wires, and not by the
gurrent inglds of them; We may also, as another consequen-
ce, expeet to have for A or Z . a aiffusion eq;uation;
This corresponds to neglecting the displacement current
inside of the wire, This lust assunption is excellent,
because the transversal dimensions of the wires are small,
and, ou the other hand, the velocity of propagatian_is very
close to that of light, 1.e.3x/0 eus, per see, .

The Poynting veetor, in-
gide of the wire, is radial

and directed toward the

center, as can be scen at

onee,

Therefore, the energy supplying the losses in the
wires, flows from the outside to the inside;

C,H,Manneback, in his publication " Rediation
from Transmission Lines " (n,35, ¥arch 1923« M,I,T, Bulle-
tin), developed that point very clearly, He showed, toge-
ther with Carson, that the electromagnetlic field was pro-
pagated from the cutside toward the inside of the wire,
Mannebaock, in that way, correcited Steinmetz's theory which
was that the field was propagated from the inside toward



the outalde of the wire,

Outgide of the wires, the conponent of the Poynting's
veotor, parallel to the wires, corresponds to the transmit-
ted power.

Ve ghall now establish the lMaxwell's equations which
are at the basls of our study, and to which we shall apply

the oper;a:bifma.l caleulus method,

The I:iax\vell*s equations for the electromagnetie

field,

We shall denote:
b electric field
H magnetic fleld
& apéci:ﬁ'io induetivity
/‘ magnetic permesbility

D=¢ Z eledtric displacenent
§= /«f nagnetio induvetion
o~ conductivity
f-— ﬂ s nagnetic Llux

A".:/b“au' eleotric £lux
(v gradient of
v x curl of
\74 divergence of
V'z Laplacian of
a

4 goalar produet



& X 4 : veotorial product

Note; Jeans uses the polarisation vector ?_
instead of the electric displacement vector J , where
?:.- Zj.z_Z o i my opinion, it is better to work with

Z , a8 it is quite analogous to B

First law, The first Maxwell equation, written

for a finite cloSed civoult, is:

47
-G - LA

For an elementary circuit, by Stbkes theorem:

—VXE = S;-f'-z— +VX[§XEJ

where ( is the veloeity of the elementary loop.

However, this law is true only if & is much less
than the velocity of propagation of the slectromagnetic
field., But we are interested only in fixed cireuits;y <« =o

and - VXE: —Di
ot
If Z is expressed in c¢.g.s, electrostatic unlts

S

and B in e,Z.8. electromagnetic units:

_VXEz C—I'J;);Z; @)

where ¢ is the ratlo between an e,m.unlt and an e,s,unit



of charge,

Second law, The second law of Maxwell for a

finite closed cirveouit is:

4nZr+ 4 ’f"‘?“//

Z
o f/ga?:f/f?,i:fﬁdzm(f‘zd?)

FPor an elenentary circult, by Stokes theorem:

Vx]7=¢nr§+s‘%€

—

I1# £ is expressed in c.2.8. electrostatic units,

o

and A end o~ in 6,2.8, electromagnetic units:

Vx]{ e,ui,u, = ¢ .V x]? e,8,.u,

4

o e,y = ¢ .0~ 6.8,u,
= = , _ OE
and VxH = ¢ncc & + 5 3 _D_f—
7 = s 2%
or Y XJZ[ = 4% [U'C £ -+ m F (J')

cc £  is the conduction current density

£ AE |
ane 3 is the displacement current density

We shall stick to the following rule 3 electric

quantities such ss £, 2, J will be expressed in o.g.s.

—

electrostatic units; megnetic quentities such as & Z, B
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snetic unlty,

7 ¢ will be expressed in ¢,z.s. electroms

Gantinuity_@éﬁatiena;
o4 = £x° (3)

where’/o is the density of electric charges., This is a
Eaissonatype equation,

VB =o &) s 8ince there are no free

magnetic charges., This is a Saplaoe~tzga equation,

e are now in possession of four important relations,
It was desirable to establish them for the sake of

the units as used,

Fundemental relations concerning L and C,

Ve consider a double line and make the fundanenteal
aggunption that the transversal section of each wire is
equipat&ntial;

Furthermore, we recall that each condustor is
treated as if it were at an infinite dilstance from the o-
ther, In other words, the action of the exterior flux is
the same on all the elements of current inside the wire,

end may thus be neglected, at least as far as the sgkin
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effect is concerned,

- OAm integral equation for skin effect in parallel
conductors of ‘amr shape of cross section has been developed
by C.H.,lenneback, but it only applies to the steady state
and could not be of any help in our problenm.

| Although we know that L and C are not really constant,
we shall seée that the assumption of comsidering them as such
is very good, We shall follow Abrahem and Becker in their
" Theorie der Elektrizitdt", and consider a double line of
infinite sonduetivity o ,
Stnce A =cZ , Z so inside of the wire,
or, 1f x is the axis dirvectiont £ =o also M =¢°
From e@ation (4)s B=vx A

Withfl=.z‘17; A}:_Azso

where .ﬂ: is the magnetlc vector potential

Then, from siuation (1)

where gﬂ is the sealar potential

In quasi-stationary fields, 3‘)—21 =0, thus:

. de _ oA
il R

de¢ _ _9A
. -3& (A --4

But, since there are no statie charges:

R < )P I
VI =V E=0 or V= y¢+‘)z¢=° 3)
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3
Mgo VxHKH =o thus F’ii ;LA ) zo0 )
%ZJ J‘zz

These two conditions (5) and (6) are sufficient to
define L and C as constants having & geometrical dimension
{ Abreham and Bécker, Tome I, p.200 ).

In the actual problem, however:

1. T <oo , though very large for copper

2, The electromagnetic field is not stationary; the
veloglty of light is, however, so large, aud we are inte-
rested in a region so near to the wires, that we have there
a double justification in assuming a stationary fleld.

We conclude, thereforve, that it is possible with

sufficient accuracy, to handle L and C as constents, ex-

actly as for the steady state,

The &alegraghisﬁg' equations,

As we Xnow, the theory of propagation of electrical
disturbances does not give a correct pleture of what happens
near to the wave front, This theory was developed by Hea-
viside and Poincardé, Heavislde was the first to reach a
solution for the transient veltage and current distribu-
tion in the case of aun in%tial reotangular voltage wave,
His theory, entirely operationel, supposes an instanta-
neous penetration of the current in the wires, i,e, a
yniforn distribution throughout thelr oross seotion,

On the same hypothesis, Poincard developed the
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clagsical solution of the telesgraphists? egﬁaﬁions. The
classical solution introduses constants which can only be
determined by the boundary conditions, This fact does not
gorrespond to the physieal truth, since the waves ignore
the terminal conditions until they reach the end of the
11_&@.. Theréfore, the operational method,in which the waves
are acnsmexed. on thelr trip alon@,f the line i3 the only
natural method of investigation of disturbances,

e shall now bring in the skin effewb.

|

— 1 - et e o e e e — —Taa
A ’z:% |3 !
|
f
2 F
x x + dx

Let V be the difference of potential between A and Al

/zo/z
also V+ ct; /Ea[f

We now apply the first Maxwell law to the loop
ABBTA'A, outslide of the wires:

‘-["L‘ (V ‘)VOL") v-l-qZE(é(



I Tbeing the total current in the seetion
E_ the eleotric field at the periphery of the wires of
rading & '

@
L the self inductanse for the palr of sonductors

The term J{ edx replaces the kmown term R de. T §
since we do not know anything about R, due to skin sffect.
Thuss :
Jx ot
We have also the continuity equation:

Ldt =2 . dt + (e ‘.;’.;.Cdf - Gl Velt
Jx

We have a system of two equations (A) and (B),
with three unkmowns: V , T end Z_ .

or -2£-=GV+("—)‘2}. 0.))

The additional eq.ma.'i:ion will be given by the study
of the eleciromagnetic field, by the use of Maxwell's
eciuations.

We shall establish an operational relation between
the tangential electric field and the total cmrrent‘ in the
sectlion; 1t will be the third eq;mtion .

The electric and magnetic field eciuations.

1. £ and /t are supposed constant.

2., There are no free electrliec charges,
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Let ug take the curl of both equations (5) and (6):

VxVxZ = —?—F[Vx}[)

VxVxH = 4-7t[v-c Px

We have the general vectorial relation:

VxVx4 = 7(v.A) - vid

— —— ——
-

I A denotes either £ or H : V. 4 =0

thus: | °Z = b s Jf + j/:‘ S);Ez
7 J]? s YA
VA = 4ropsf + 28 35

The terms in -‘2— are diffusion berums.

ot
The terms in %; are propagation temms,
1. Outside of the wires, o-= o also &= 4 =/
V{Z‘—: -_/_ g)¢§
c«& ‘)14-2
— 6))
VA = _t K
¢t #?
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Ve have a pure propags tion,

2, Ingide Qf t'_ne wireg, o £ o

Ve may now neglest the dlgplacement current term,
Thig is an exdellent approximation, as can be shown by

what follows, Let us agsune for E- and _Z[' & ecissoldal
lol

oselllation £ , then
JE ABE )
52—— =L@ & ox /:’—t——'/ = w , E.,
<
We have also: I Z - ,E’
0%

OE

and 4 WOU/‘ISZ-I T 4T &)151
i /D‘Z’, _ 5_{;: YE|

c?  [a#2

The conditlon that the propegation term be smeller

that the diffusion term ise

g <
zé‘: w£<4.7r0'/4~®2 or 2(0(4.71’0'(&

Por conductors, € , though unlmown, is smell

« a% industrial fre@enciea, and
even volce fre@meias. is less that &7 X/oo0o0
o~ conductivity of eonductors is
always large.
For copper, the resigtivity in e.m,u. is 1800.

Thus, o~ (in e,m.u,) = 1 _

/800

4o

% I -
and oc’= I/ =38/ X/0 4 { conduectivity in e,s,u.)
/800




L

Por iron, the resistivity in e.m.,u, is 10 C00,

Thus o ( in e.m,u,) = B’F’B'F'
9. 10%° 4

prompali 3 xs0'7 conduetivity in e.s,u,)

<
and 9¢ =

For copper, £ w ghould be wuch less thah €. 4sxs0'®

<
which ig the case EWw << 4nTC

/8
For lron, 47r_rc“z =//3 X/0

/8
Sw << L/I3 X/

This justifies our approximation, We neglect the
displacenent current by putting simply £=o0 , wherever it

nay appear,

Thuss VJZ_'= 4T p 5‘-)?2-

v = 4 oz 7
= 47 <7~/a. 3
The physical wmeaning of these eq;u&.tions is that if
any modification oscurs at any glven point, its effects
are felt at the very sane instent at any other point,
Diffusion phenomensn is therefore a partloular cuse of

propagation with an iz;.:‘.’inite velosity,

The general formule for the Laplscian of & veotor
in ocurvilinear coordinates, applied to the cylindrical

coordinates, is:
S St -
=) ( YA ) A XA
V4 = 2 5—; 2% Y& i dx*
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