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Abstract

In this dissertation, we investigate how convex optimization can be used to analyze

different classes of nonlinear systems at various scales algorithmically. The methodol-

ogy is based on the construction of appropriate Lyapunov-type certificates using sum

of squares techniques.

After a brief introduction on the mathematical tools that we will be using, we turn

our attention to robust stability and performance analysis of systems described by

Ordinary Differential Equations. A general framework for constrained systems analy-

sis is developed, under which stability of systems with polynomial, non-polynomial

vector fields and switching systems, as well as estimating the region of attraction and

the L2 gain can be treated in a unified manner. Examples from biology and aerospace

illustrate our methodology.

We then consider systems described by Functional Differential Equations (FDEs),

i.e., time-delay systems. Their main characteristic is that they are infinite dimen-

sional, which complicates their analysis. We first show how the complete Lyapunov-

Krasovskii functional can be constructed algorithmically for linear time-delay systems.

Then, we concentrate on delay-independent and delay-dependent stability analysis of

nonlinear FDEs using sum of squares techniques. An example from ecology is given.

The scalable stability analysis of congestion control algorithms for the Internet is

investigated next. The models we use result in an arbitrary interconnection of FDE

subsystems, for which we require that stability holds for arbitrary delays, network

topologies and link capacities. Through a constructive proof, we develop a Lyapunov

functional for FAST – a recently developed network congestion control scheme – so

that the Lyapunov stability properties scale with the system size. We also show how
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other network congestion control schemes can be analyzed in the same way.

Finally, we concentrate on systems described by Partial Differential Equations. We

show that axially constant perturbations of the Navier-Stokes equations for Hagen-

Poiseuille flow are globally stable, even though the background noise is amplified as

R3 where R is the Reynolds number, giving a ‘robust yet fragile’ interpretation. We

also propose a sum of squares methodology for the analysis of systems described by

parabolic PDEs.

We conclude this work with an account for future research.
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Chapter 1

Introduction >Arq  ¡misu pantì
>Aristotèlh

Well begun is half done

Aristotle

One of the primary concerns in control system design is guaranteed functionality

and performance under varying environmental conditions and uncertain system para-

meters. These properties should be verified before the design is implemented, so as to

avoid possible malfunctions which are usually a result of bad design or a design based

on an inadequate model. Nowadays, these objectives and specific system limitations

are well understood, something that is reflected into the design of reliably functional

chemical plants, nuclear power stations, aircraft, etc. A major future challenge that

is suggested by the technological advances of the 20th century [49], is the design and

analysis of large-scale networks-of-systems that inevitably adds an important adjec-

tive to the design objectives: the desired robust functionality and performance also

need to be scalable, meaning that the system properties should scale with the system

size and be independent of the introduction of new technologies, different network

topologies and varying system parameters [61].

In extracting valuable information about the functionality of designed systems,

it is basic good practice to construct truthful, robust, differential equation models

based on theoretical principles or experimental data. For example, we tend to model

simple mechanical systems or electrical circuits by a set of Ordinary Differential Equa-

tions (ODEs); simple communication networks or predator-prey models in ecology by
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Functional Differential Equations (FDEs); and systems involving heat transfer, fluid

motion or wave propagation using Partial Differential Equations (PDEs). In going

from finite dimensional models (ODEs) to infinite dimensional ones (FDEs or PDEs),

the richness of modeling tools increases, and delay/aftereffect and distributed systems

can be modeled adequately. What is indeed remarkable is the wealth of modeling

frameworks that are available for describing the world around us; what is distressing

is that the more complicated the system description, the more apparent is the absence

of efficient algorithmic tools to answer questions of interest about them.

What makes the problem more interesting, but at the same time almost in-

tractable, is the requirement that the functionality and performance of an arbitrary

interconnection of such components–modules to form large-scale networks be scal-

able. In this case, the components themselves may be described by finite or infinite

dimensional models. A particular example of a large-scale networked system in which

the modules themselves are infinite dimensional is the Internet [89]: the source/link

dynamics are adequately described by Functional (Delay) Differential Equations, and

the interconnection topology of the sources and links is arbitrary. Here, by ‘scalable

stability’ we mean the stability of an infinite-dimensional system on one hand, and

a large-scale interconnection on the other, which should also be robust to the sizes

of the round trip times and the capacities of the links in the network. Such ques-

tions will appear frequently in the future, as the advances and merging of computing,

communications and control create new challenges for system analysis and design.

It is indeed true that in most cases, the questions we wish to answer about such

systems fall into complexity classes that are computationally difficult to answer. Take

as an example the question of robust stability of a linear system under structured

uncertainty: it is known that the µ recognition problem with either purely real or

mixed real/complex uncertainties is NP-hard [11], implying that most probably there

is no polynomial-time algorithm to solve it exactly, unless P = NP. However, simple,

algorithmically verifiable criteria can yield valuable information about the system’s

robustness properties - in this case, in the form of upper bounds on the value of µ.

In this thesis, we take this viewpoint. Even though the questions we need to
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answer about our models may be computationally expensive, we seek algorithmically

verifiable tests/answers to analysis questions for nonlinear systems described by Ordi-

nary, Functional and Partial Differential Equations of either small-scale or large-scale.

At this point, we should stress that this methodology is not based on simulations.

Simulations can only be used to give an idea of the system behavior, but can never

guarantee that the system is flawless for all initial conditions and parameters, how-

ever fine a gridding of these spaces may be. The situation is even more complicated

for infinite dimensional systems; not only is gridding of the initial condition space

impossible, but also simulations are hard to set up and take a lot of computational

power, depending on the fidelity required.

To present the methodology we wish to follow, consider the following stability-

related question: ‘Do all trajectories of the following system, starting from an initial

condition in the initial set X0, go to the origin?’

dx(t)

dt
= f(x(t)), x(0) = x0 ∈ X0 (1.1)

Here, f is known exactly and f(0) = 0. X0 is a domain that contains the origin,

and we assume that solutions to this system exist and are unique, properties that are

guaranteed locally if f is Lipschitz in X0. Note that the question we are interested in

– whether for all initial conditions in the set X0 the trajectories of the system tend to

the origin – cannot be answered by simulation alone. Solving the differential equation

symbolically may answer this question, but most ODE systems do not have solutions

in closed form, let alone infinite dimensional ones or differential equations describing

large-scale network interactions. On the contrary, the method that A. M. Lyapunov

suggested in 1892 follows a complementary, ingenious approach [107]: by construct-

ing an energy-like function whose level curves are ‘trapping regions’ for the system

trajectories – i.e., whenever a trajectory enters one such trapping region, it can never

escape it – the boundedness of the trajectories is ensured. Under some stronger con-

ditions, the convergence of the trajectory to the equilibrium is guaranteed. If every

initial condition in X0 is contained in a level set of this energy function, the question



4

is answered exactly ; the distinct feature of this approach is that it does not require

the solution of the underlying differential equation. Still, a problem remains: how

does one construct this energy-like function, a function of state, that proves stabil-

ity of the equilibrium? For years, this was left to the imagination of the researcher

and general guidelines suggested considering energy-based candidates first. However,

intuition alone was never enough to allow their construction and an efficient algo-

rithmic methodology was needed. The technical conditions that a Lyapunov function

V (x) has to satisfy for asymptotic stability are a positivity condition V (x) > 0, along

with a negative definite time derivative along the system’s trajectories, V̇ (x) < 0,

properties that are inherently difficult to test.

For the special class of systems described by linear Ordinary Differential Equations

of the form ẋ = Ax, Lyapunov functions can be constructed by solving a set of

Linear Matrix Inequalities [10], i.e., a semi-definite programme [96]. This is because

it is necessary and sufficient to choose V (x) = xTPx, with P > 0; the derivative

condition then becomes ATP + PA < 0. The matrix A being Hurwitz is equivalent

to the existence of a feasible solution to the semidefinite programme with constraints

P > 0 and ATP +PA < 0. Semidefinite programming in general, and Linear Matrix

Inequalities in particular, have been an attractive algorithmic tool for robust systems

analysis for years [106], due to the fact that they are worst-case polynomial time

complex to solve [51].

Consider now the special class of nonlinear systems that are described by ODEs

with polynomial vector fields f and consider Lyapunov function candidates V (x)

of polynomial form. Even in this restricted case, the two Lyapunov conditions are

polynomial non-negativity conditions, and testing them is known to be NP-hard

when they are of a degree of at least 4. In part, this explains the lack of efficient

algorithms for the construction of Lyapunov functions. Nonetheless, if we relax the

non-negativity conditions to the existence of a sum of squares decomposition – a

method that was introduced in Pablo A. Parrilo’s thesis [66] – the problem reduces

to the solution of a semidefinite programme just as in the case of linear systems.

This observation has opened the way for algorithmic analysis of nonlinear systems
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described by ODEs.

Lyapunov theory now forms the basis of nonlinear control and dynamical systems

methodologies to investigate equilibrium stability, input-to-state and performance

calculations, estimating basins of attractions, synthesizing control laws, etc. It is

readily applicable to other system classes, such as stochastic systems, hybrid systems,

systems described by Functional Differential Equations and systems described by

Partial Differential Equations. For scalable functionality of nonlinear systems, a

‘scalable’ Lyapunov function argument is usually employed, i.e., we seek a function

which satisfies the Lyapunov conditions independent of the size of the network and

the interconnection topology.

Inevitably, therefore, the availability of efficient algorithmic tools for the analysis

of nonlinear systems described by ODEs has opened the way for the efficient analysis

of other classes of systems. This thesis is about the algorithmic analysis of nonlinear

systems ranging from a more general class of finite dimensional (ODE) models to

infinite-dimensional ones described by FDEs and PDEs. In a later chapter, we will

also consider the analysis of a large-scale network interconnection of FDE systems,

modeling sources and links in the Internet. The scope is to ensure scalable stability

of network congestion control for arbitrary networks, delays and link capacities which

we achieve by constructing a Lyapunov-type certificate.

1.1 Outline and Contributions

A schematic of the structure of this thesis is shown in Figure 1.1. It covers analysis

of systems along two axes related to scale as they were outlined in the previous

section: From Ordinary Differential Equations (finite dimensional) to Functional and

Partial Differential Equations (infinite dimensional); and from small-scale ODE/FDE

systems to large-scale, interconnected ones related to network congestion control for

the Internet. Here, we summarize the contents of each chapter, emphasizing the main

contributions.

• In Chapter 2, we review the theory behind polynomial non-negativity, the sum
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of squares decomposition and its algorithmic verifiability. We introduce posi-

tivstellensatz, a central theorem in real algebraic geometry, giving examples of

how it can be used, and we present key results stemming from positivstellensatz

that will be used in the rest of this thesis.

• In Chapter 3, we concentrate on systems described by ordinary differential equa-

tions, and show how small-scale dynamical systems can be analyzed effectively

using sum of squares. We investigate robust stability of nonlinear and switch-

ing systems as well as performance analysis, applying our results to examples

ranging from biology to aerospace.

• In Chapter 4, we extend our results to systems of infinite dimension described

by Functional Differential Equations. We first present how Lyapunov function-

als can be constructed even for the case of linear systems – something that

was difficult before as it involves the solution of parameterized Linear Matrix

Inequalities. We then consider the stability and robust stability of nonlinear

time delay systems, both delay-independent and delay-dependent, based on the

construction of Lyapunov functionals. We end the chapter with an illustrative

example from ecology.

• In Chapter 5, we investigate the problem of stability analysis of network con-

gestion control schemes for the Internet for arbitrary network topologies. The

subsystem dynamics are modeled by Functional Differential Equations, i.e., the

effect of heterogeneous delays in the network is accounted for, and so is the fact

that the system is an arbitrary interconnection of such subsystems. We present

a Lyapunov argument for the analysis of the linearization, as well as the full

global stability analysis for arbitrary topologies, delays and link capacities. The

proof is constructive and the structure of the system helps greatly in the choice

of the Lyapunov certificate.

• In Chapter 6, we consider the stability analysis of systems described by Partial

Differential Equations. These equations are usually used to describe spatially
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ODEs
(Ordinary Differential Equations)
• Nonlinear Constrained Systems
• Non-Polynomial Vector Fields
• Switching Systems
• Performance Analysis

Chapter 3

FDEs/ PDEs
(Functional Differential Equations

Partial Differential Equations)
• Linear Time Delay Systems
• Nonlinear Time Delay Systems
• Global Stability of Axially Constant 

Hagen-Poiseuille Flow
• Parabolic PDE Equations 

Chapters 4 and 6

System size

S
ta

te
 d

im
en

si
on

al
ity

Large-Scale ODE 
Internet Network

Chapter 5

Large-Scale FDE 
Internet Network

Chapter 5

Mathematical Background

Chapter 2

Figure 1.1: The outline of this thesis.

distributed systems, such as systems arising in fluid mechanics and heat transfer.

We show how the Navier Stokes equations with axially constant perturbations

and initial conditions for Hagen-Poiseuille (pipe) flow are globally stable, while

they retain an R3 growth on the background noise where R is the Reynolds

number. The ‘robust yet fragile’ properties of the system are evident, in that

streamlining the flow can prohibit bifurcations to instabilities at the expense

of increased sensitivity to disturbances and uncertainties. We then develop

an algorithmic methodology for constructing Lyapunov functionals for PDE

systems using the sum of squares decomposition.

• We conclude the thesis in Chapter 7 with future research directions.
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Chapter 2

Mathematical PreliminariesP�nta kat' �rijmìn g�gnontaiPujagìra

Everything is made of numbers

Pythagoras

In this chapter, we present some of the mathematical ideas and algorithmic

methodologies that will be employed in the rest of this thesis, based on the work

of Pablo A. Parrilo [66]. These tools are an assemblage of important notions and

machinery from algebraic geometry, optimization and control theory and find appli-

cation in fields ranging from systems analysis to combinatorial optimization, physics

etc. It will be appreciated later through particular remarks, that they do not only

unify known results in many fields in these areas, but also extend them in a natural

way. A particular example is Yakubovich’s S-procedure – an important tool in robust

control theory – for which better conditions can now be obtained.

We begin this chapter by introducing tools from algebraic and polynomial geom-

etry such as polynomial non-negativity and the Sum of Squares decomposition and

describe some of the properties of polynomials that possess such a decomposition and

how it can be computed algorithmically. We then briefly describe SOSTOOLS, a

software that facilitates the search for a Sum of Squares decomposition given a poly-

nomial structure (i.e., monomials that are present). Positivstellensatz – a theorem

central in Real Algebraic Geometry – is presented next, followed by a discussion on

some applications from diverse fields.
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2.1 Nonnegativity and the Sum of Squares Decom-

position

One of the most important differences between real and ordinary algebra is the notion

of “positivity”. In this section we will be concerned with two subsets of the commu-

tative ring of polynomials R[x] , R[x1, . . . , xn], i.e., of polynomials in (x1, . . . , xn)

with real coefficients: non-negative forms and sums of squares. Let us start with a

few basic definitions.

Definition 2.1 Let x = (x1, . . . , xn), x ∈ R
n and α = (α1, . . . , αn), α ∈ N

n. We call

the function zα = xα1
1 x

α2
2 · · ·xαn

n a monomial in (x1, . . . , xn) of degree |α| =
∑n

i=1 αi.

A polynomial p in x with coefficients in R is a linear combination of a finite set of

monomials:

p(x) =
∑

α

cαx
α =

∑

α

cαx
α1
1 x

α2
2 · · ·xαn

n , cα ∈ R (2.1)

The degree of the polynomial, deg {p(x)}, is the maximum degree of the monomials

in it.

A problem of great interest in Real Algebraic Geometry is whether a given poly-

nomial takes non-negative values.

Notation 2.2 Let Pn,m denote the set of nonzero forms (i.e., polynomials of homo-

geneous degree) in n variables of degree m, with coefficients in R that are non-negative

on R
n (m is necessarily even).

Non-negativity conditions appear frequently in control theory. For example, the

stability of an equilibrium of a nonlinear system can be concluded by verifying non-

negativity of certain conditions. However, even if we restrict our attention to the case

in which these conditions are polynomial, we are faced with a difficult problem as

testing polynomial non-negativity when the degree of the polynomial is greater than

or equal to 4 is NP-hard [50]. This has led researchers to seek sufficient conditions for

non-negativity that are algorithmically verifiable in polynomial time. A particularly
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attractive condition is the existence of a sum of squares decomposition, introduced

in [66].

By definition, a polynomial p(x) ∈ R[x] admits a sum of squares (SOS) decompo-

sition, if there exists a set of polynomials fi, i = 1, . . . ,M such that:

p(x) =
M∑

i=1

f 2
i (x). (2.2)

It is obvious from the above expression that all polynomials that are sums of squares

are indeed non-negative in the whole of R
n. The converse is not true: not all non-

negative polynomials can be written as sums of squares, apart from three special

cases, which were identified by Hilbert himself [80]:

• Polynomials in 1 variable;

• Polynomials of 2nd order;

• Polynomials of 4th order in 2 variables.

A celebrated example of a non-negative polynomial that is not a SOS is the

Motzkin form:

M(x, y, z) = x4y2 + x2y4 + z6 − 3x2y2z2 (2.3)

Hilbert was aware of the non-equivalence between non-negativity and sum of

squares, and he therefore posed the following question, now known as ‘Hilbert’s 17th

problem’: Can a non-negative polynomial over a real closed field be written as a sum

of squares of rational functions? The answer is affirmative, and the solution was given

by Emil Artin in 1922 which marked the birth of real algebraic geometry [9].

Notation 2.3 We denote by Σn,m the subset of Pn,m of those forms which are sums

of squares of polynomials.

It was mentioned that testing polynomial non-negativity is, in general, NP-

hard [50], and that means that there is no known polynomial-time algorithm for

deciding polynomial non-negativity. On the other hand, testing the existence of a
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SOS decomposition is computationally more tractable [73, 14, 87]; in fact, it has

worst-case polynomial time complexity, as it is reducible to the solution of a semidef-

inite program [51]. The following proposition shows why this is indeed so.

Proposition 2.4 A polynomial p(x) of degree 2d is a sum of squares if and only if

there exists a positive semidefinite matrix Q and a vector of monomials Z(x) contain-

ing monomials in x of degree less than or equal to d such that

p = Z(x)TQZ(x). (2.4)

Proof. ⇒: Denote by f(x) = [fi(x)] = LZ(x). The fi are given by Equation (2.2),

Z(x) is a vector containing all monomials in f(x) and L is a compatible coefficient

matrix. Then

p(x) = f(x)T f(x) = Z(x)TLTLZ(x),

and LTL = Q ≥ 0.

⇐: Suppose the decomposition (2.4) is given. Then perform a Cholesky factor-

ization on Q = RTR. Now write

p(x) = (RZ(x))T (RZ(x)) = g(x)Tg(x) =
M∑

i=1

g2
i (x),

where g(x) = [gi(x)] = RZ(x). Obviously p is a sum of squares.

In general, the monomials in Z(x) are not algebraically independent. Expanding

Z(x)TQZ(x) and equating the coefficients of the resulting monomials to the ones in

p(x), we obtain a set of affine relations in the elements of Q. Since p(x) being SOS is

equivalent to Q ≥ 0, the problem of finding a Q which proves that p(x) is an SOS is

a Linear Matrix Inequality [10]. An alternative formulation is in [39].

The following is an example of how this is done.

Example 2.5 Consider the quartic form in two variables described below, and define
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Z(x) = [ x2
1 x2

2 x1x2 ]T :

p(x1, x2) = 5x4
1 + 2x4

2 − x2
1x

2
2 − 2x3

1x2 − 2x1x
3
2 = Z(x)T

Q
︷ ︸︸ ︷






q11 q12 q13

q12 q22 q23

q13 q23 q33







Z(x)

= q11x
4
1 + q22x

4
2 + (2q12 + q33)x

2
1x

2
2 + 2q13x

3
1x2 + 2q23x1x

3
2,

from which we get the following relations:

q11 = 5, q22 = 2, 2q12 + q33 = −1, q13 = −1, q23 = −1.

Now, decomposing p(x) as an SOS amounts to searching for q12 and q33 satisfying

2q12 + q33 = −1, such that Q ≥ 0. For q12 = −1 and q33 = 1, the matrix Q will be

positive semidefinite and we have

Q = LTL, where L =




2 −1 0

1 1 −1



 .

This immediately yields the following SOS decomposition:

p(x) = (2x2
1 − x2

2)
2 + (x2

1 + x2
2 − x1x2)

2.

The fact that Linear Matrix Inequalities are constraints in semidefinite programs [96]

allows us to optimize linear functionals of decision variables that appear in a problem.

As a first application of using the sum of squares decomposition as a substitute to

polynomial non-negativity, consider the problem of finding the minimum of a poly-

nomial function [69]. Here, a decision variable is introduced which can be maximized

to yield a good lower bound on the polynomial function.
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Figure 2.1: Finding minima of polynomial functions.

Example 2.6 Consider the following function:

p(x, y) = 2xy2 + y6 − xy − x2 + x4 + 3

A graph of this function in R
3 is shown in Figure 2.1. In order to find a lower bound

for the function p(x, y), we can try to maximize γ such that

p(x) − γ is a sum of squares.

γ appears as a new decision variable in the relevant semidefinite programme, which we

can optimize over. Indeed, implementation of the sum of squares programme results

in the maximum allowable value of γ = 0.9468 achieved at (-1.0799,-0.9752) – infor-

mation that may be retrieved from the dual solution of the semidefinite programme.

The above example shows that even if some coefficients of the polynomial are

unknown or constrained to lie within certain intervals, checking the sum of squares

decomposition can still be done using semidefinite programming. This is helpful, for

example when searching for Lyapunov functions for nonlinear systems.

As suggested by Example 2.5, the construction of an equivalent semidefinite pro-

gram for computing the SOS decomposition can be quite involved when the degree
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of the polynomials is high. For this reason, conversion of SOS conditions to the

corresponding semidefinite program has been automated in SOSTOOLS, a software

developed for this purpose. This software calls SeDuMi [90] or SDPT3 [93], semidef-

inite programming solvers, to solve the resulting semidefinite program, and converts

the solutions back to the solutions of the original SOS programs. These software pack-

ages are used for solving all of the examples in this thesis - Example 2.5 is solved,

for example, by using the command findsos and Example 2.6 by using the com-

mand findbound. A more detailed description of the software can be found in [75].

Moreover, in many examples, the polynomials possess special properties [67] or struc-

ture: they are sparse, or bipartite, as we will see in Chapter 4. In this case, we

can characterize what monomials are required in Z(x), which reduces significantly

the computational burden since the size of the LMIs is reduced, but it also helps

improve numerical conditioning. Such structure-exploiting algorithms are available

in SOSTOOLS.

2.2 The Positivstellensatz

Real algebraic geometry studies real algebraic sets, i.e., subsets of R
n defined by

polynomial equations. There is a fundamental difference between real and complex

algebraic geometry, as the field of real numbers is not algebraically closed. Real

algebraic geometry deals not only with the zeros of polynomials, but also with domains

where the polynomials have a constant sign.

An important result in real algebraic geometry is positivstellensatz, a theorem that

provides an equivalence relation between the emptiness of a semi-algebraic set (i.e., a

finite set of polynomial equalities and inequalities), to an algebraic relationship being

valid. Along with the algorithmic verifiability of the sum of squares decomposition,

they form the pillars of the theory that will be used in the rest of the thesis, unifying

and extending known results not only in optimization and control, but also in physics

and euclidean geometry [68].

We begin with a few definitions that are used in the theorem. Here, x ∈ R
n.
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Definition 2.7 Given polynomials {h1, . . . , hu} ∈ R[x], the Multiplicative Monoid

generated by the hi is the set of all finite products of hi, including 1. We will denote

this by M(h1, . . . , hu).

Definition 2.8 Given polynomials {f1, . . . , fs} ∈ R[x], the Algebraic Cone generated

by the fj is the set:

C(f1, . . . , fs) =

{

λ0 +
∑

i

λiFi|Fi ∈ M(f1, . . . , fs), λi ∈ Σn

}

. (2.5)

Definition 2.9 Given polynomials {g1, . . . , gt} ∈ R[x], the Ideal generated by the gi

is the set:

I(g1, . . . , gt) =

{
∑

l

µlgl|µl ∈ R[x]

}

. (2.6)

Now can now proceed by quoting Positivstellensatz, a theorem that we will be

using frequently in the sequel.

Theorem 2.10 Let R be a real closed field. Let (fj){j=1,...,s}, (gl){l=1,...,t} and (hk){k=1,...,u}

be finite families of polynomials in R[x1, . . . , xn]. Denote by C the Algebraic Cone gen-

erated by (fj){j=1,...,s}, M the Multiplicative Monoid generated by (hk){k=1,...,u} and I
the ideal generated by (gl){l=1,...,t}. Then the following properties are equivalent:

• The set

{x ∈ R
n|fj(x) ≥ 0, j = 1, . . . , s, gl = 0, l = 1, . . . , t, hk(x) 6= 0, h = 1, . . . , u}

(2.7)

is empty.

• There exist f ∈ C, g ∈ I and h ∈ M such that:

f + g + h2 = 0. (2.8)

A few things should be emphasized about this theorem. First, it is an equivalence

relation between a geometric object, the set defined in (2.7) and an algebraic rela-

tionship, given by (2.8). It can be seen as a generalization of the separation theorem
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in convex optimization, where the intersection of two convex sets is empty if and only

if there is a hyperplane separating them that certifies the emptiness. Here, the set

(2.7) need not be convex, in which case the certificate is not necessarily a hyperplane;

the algebraic relationship (2.8) certifies this emptiness.

It should be stressed that there is no guidance as to how, for example, the cone C
should be formed — what the degree or structure of f should be. Putting an upper

bound on these degrees and checking whether (2.8) holds, one can create a series of

tests for the emptiness of (2.7); each of these tests requires the construction of some

sum of squares and polynomial multipliers, resulting in a sum of squares programme

that can be solved using SOSTOOLS.

Let us give an example of a problem from combinatorial optimization whose deci-

sion version is NP-hard, and for which positivstellensatz results in a series of tests.

Example 2.11 Number Partitioning Problem. Consider the optimization ver-

sion of Partition:

Problem 2.12 Given a set of n non-negative numbers {a1, . . . , an}, separate them

into two disjoint sets such that the difference of the subset sums is minimized.

The above question can be converted into finding xi = ±1, i = 1, . . . , n such that:

F (x) =

∣
∣
∣
∣
∣

n∑

i=1

xiai

∣
∣
∣
∣
∣

is minimized. This is the same problem as

min F 2(x) =

(
n∑

i=1

xiai

)2

s.t. x2
i = 1.

We can turn this combinatorial optimization problem into an emptiness of a set as
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follows:

max γ

s.t.






x ∈ R

n

∣
∣
∣
∣
∣
∣

(
n∑

i=1

xiai

)2

− γ < 0, x2
i = 1, i = 1, . . . , n






= ∅.

In order to generate the ideal of the polynomials hi(x) , x2
i − 1 = 0, we look for

polynomials p̃i(x) such that:

I(h1, . . . , hn) =
n∑

i=1

p̃i(x)hi(x). (2.9)

The cone of f(x) , γ − F 2(x) is

C(f) = σ0(x) + σ1(x)(γ − F 2(x)). (2.10)

where σ0(x), σ1(x) are SOS. The monoid of f(x) is f 2k where k is a non-negative

integer. Choosing σ0(x) = 0 and k = 1, and structuring the multipliers p̃i(x) =

f(x)pi(x), the overall condition becomes:

max γ

s.t. F 2(x) − γ +
n∑

i=1

pi(x)hi(x) is SOS.

While the SOS condition is satisfied and hi(x) = 0 (i.e., xi = ±1), F 2(x) ≥ γ, i.e., γ

is a lower bound on the optimal cost.

When the pi(x) are constants, the standard SDP relaxation that was investigated by

Goemans and Williamson is retrieved [25] (see the remark at the end of this example).

For the Number Partitioning Problem, F 2(x) = xTaaTx = xTWx where W is rank-1.
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Figure 2.2: Performance of Positivstellensatz tests for the Ising spin glass problem.

In the case of constant pi’s, the problem reduces to

max γ

s.t.




W − diagp 0

0 −γ +
∑

i pi



 ≥ 0

and using the result by [40] the solution to the above is γ =
[

a1 −
∑n

j=2 aj

]+

, where

[·]+ denotes positive projection. When n is large, then this first positivstellensatz test

is most likely going to give a trivial lower bound γ, as the probability that a1 ≥
∑n

j=2 aj

is vanishingly small; this is suggested by Figure 2.2(a). Positivstellensatz allows us

to write other conditions for nonnegativity, by increasing the order of the polynomials

pi(x). Qualitative results are also shown in Figure 2.2(a) when the pi(x) are allowed

to be of higher degree. In this figure, comparison is made to the true ground states.

Alternatively, if W is allowed to be a generically full rank matrix, then better results

can be obtained, as shown in Figure 2.2(b). This case has another interpretation: it

is related to the problem of finding the ground state of an infinite-range Ising spin

glass with couplings Wij drawn from some probability distribution. Such a model is

the Sherrington-Kirkpatrick (SK) [94] spin glass model where the Wij are independent

random Gaussian variables with zero mean and variance 1/n, n being the total number

of spins.
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Remark 2.13 The special case in which the multipliers pi’s are constants corresponds

exactly to the convex relaxation obtained by standard Lagrangian duality. To make

our argument more concrete, consider the general program:

min xTWx

s.t. x2
i − 1 = 0

Denote P = diag(p1, . . . , pn) and Tr(P ) the trace of P. The Lagrangian of this problem

is:

L(x, p) = xTWx−
n∑

i=1

pi(x
2
i − 1) = xT (W − P )x+ Tr(P ) (2.11)

The dual SDP is therefore:

max Tr(P )

s.t. W − P ≥ 0

which gives a lower bound on the optimal value of the primal problem. The ‘dual of

the dual’ is easily found to be:

min Tr(WX)

s.t. X ≥ 0

Xii = 1

Now from the original problem, denoting X = xxT we see that this can be exactly

rewritten as:

xTWx = Tr(WxxT ) = Tr(WX) (2.12)

where Xii = 1, X ≥ 0 and X is rank-1. This last, rank-1 condition is what is missing

from the ‘dual of the dual’ formulation; the SDP relaxation is obtained by leaving this

non-convex condition out. If it turns out that the rank of X is 1, then the original

problem is solved exactly.



20

A nested family of conditions obtained to test emptiness of sets, under which the

more computationally expensive ones are at least as good as the previous ones, can

be applied to a tool commonly used in robust control theory, the S-procedure.

Example 2.14 S-procedure. Many times in control theory we must ensure that

a certain condition holds whenever some other condition holds. A common test for

conditional satisfiability is the S-procedure. We can easily turn the same problem into

an emptiness of a set and seek a positivstellensatz test.

In particular, given m symmetric matrices P1, . . . , Pm, consider whether

D :=
{
x ∈ R

n : pi(x) = xTPix ≥ 0, ‖x‖ = 1, i = 1, . . . ,m
}

= ∅.

Using Positivstellensatz, with g(x) = ‖x‖2 − 1 and f(x) =
∑

i σipi(x) + σ0(x), with

σ0(x) an SOS and σi ≥ 0 constants, a sufficient condition for the set D to be empty

is given by the existence of σi that satisfy the condition:

−
m∑

i=1

σix
TPix−

n∑

i=1

x2
i is SOS, σi ≥ 0, (2.13)

which is the standard S-procedure [104]. It is well known that this condition may be

conservative, depending on the structure of the set D. With Positivstellensatz, a hier-

archy of polynomial-time computable stronger conditions can be obtained, depending

on how the cone C and ideal I are constructed. For example, a second test is the

following: Assume there exist solutions σi(x) quadratic polynomials that are SOS and

ρij ≥ 0 constants to:

−
m∑

i=1

σi(x)pi(x) −
m∑

i=1

m∑

j=i+1

ρijpi(x)pj(x) −
m∑

i=1

x4
i is SOS. (2.14)

Then, the set D is empty. The search for the σi(x) and ρij and the verification of the

sum of squares condition can be done efficiently and in a simultaneous fashion, using

semidefinite programming methods and SOSTOOLS. In this way, we obtain a nested

hierarchy of polynomial-time computable tests for the emptiness of the set D; each
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test is always at least as powerful as the standard one, and often strictly stronger.

In the sequel, we will come across various S-procedure type conditions which

we test using SOSTOOLS in the framework given above. Instead of using constant

multipliers such as the unknowns σi in (2.13), we will be using higher order multipliers

such as the σi(x) in (2.14) – condition that is at least as strong as (2.13) to test the

emptiness of the set D.

2.3 Conclusion

In this chapter, we have developed the algorithmic and mathematical tools that will

be used in the rest of the thesis for the analysis of nonlinear systems. These center on

the sum of squares decomposition and positivstellensatz – tools that may be used to

produce new tests that generalize the S-procedure for testing conditional satisfiability.

In the next chapters we will use the SOS decomposition to test nonnegativity

and we will formulate Lyapunov and S-procedure type SOS conditions for analysis

of nonlinear systems. We will then search for Lyapunov functions or multipliers that

satisfy those conditions using semidefinite programming.
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Chapter 3

Systems Described by Ordinary
Differential EquationsT� yuqr� jèretai, jermän yÔqetai,Ígrän aÎa�netai, karfalèon not�zetai.<Hr�kleito


Cold things become warm, and what is warm cools;
what is wet dries, and the parched is moistened.

Heracletus

In this chapter, we will investigate how various analysis questions for nonlinear

systems described by Ordinary Differential Equations (ODEs) can be answered using

sums of squares (SOS). ODEs have been an important tool for modeling the physical

world, ranging from simple mechanical and electrical systems to chemical processes

and simplified aircraft dynamics. They have also been the primary tool for modeling

components in biological networks or multi-agent systems. Usually, the far-from-

equilibrium behavior of such systems is of greater interest than the local ‘linearized’

properties, and most analysis tools for such systems center in what are now known

as ‘Lyapunov methods’, named after A. M. Lyapunov. The main feature of these

techniques is that system properties are assessed without solving the underlying model

equations, but rather through the construction of a function of state (a Lyapunov

function) that satisfies certain conditions.

In this chapter, we develop an efficient algorithmic procedure to analyze nonlinear

systems described by ODEs that evolve under constraints such as equality, inequality

and integral type. This allows robust stability analysis, input-output analysis, as
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well as analysis of non-polynomial systems to be performed in a unified manner.

The techniques we will be using are based on the sum of squares decomposition and

Positivstellensatz, as they were introduced in Chapter 2.

3.1 Introduction

Systems which appear in electrical or mechanical engineering and even biology are

usually modeled by a finite number of coupled first-order Ordinary Differential Equa-

tions (ODEs) of the form:

ẋ1 = f1(t, x1, . . . , xn),

ẋ2 = f2(t, x1, . . . , xn),

...
...

ẋn = fn(t, x1, . . . , xn),

where ẋi denotes the derivative of xi with respect to time, and xi are the state

variables. We use vector notation to describe this system. Let x ∈ R
n and let

f : [0,∞) × R
n → R

n. Then, the above can be written as:

ẋ = f(t, x). (3.1)

If f(t, x) is piecewise continuous in t and satisfies a local Lipschitz condition in x,

then the existence and uniqueness of the solutions is guaranteed locally [35].

In this chapter, we will concentrate on systems that are autonomous, i.e., take the

form

ẋ = f(x), (3.2)

where f : D → R
n is locally Lipschitz in a domain D ⊂ R

n. Suppose x∗ is an

equilibrium point of (3.2), i.e. f(x∗) = 0. Without loss of generality, we assume that

0 is an equilibrium – a simple change of coordinates can achieve this – and we are

interested in the stability properties of this equilibrium. There are different notions
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of stability of equilibria which are usually characterized using Lyapunov arguments.

Here, we concentrate on stability and asymptotic stability ; ‖ · ‖ denotes a norm in R
n.

Definition 3.1 The equilibrium x = 0 of (3.2) is:

• Stable, if for each ǫ > 0 there is δ = δ(ǫ) > 0 such that

‖x(0)‖ < δ ⇒ ‖x(t)‖ < ǫ, ∀ t ≥ 0.

• Asymptotically stable if it is stable and δ can be chosen such that

‖x(0)‖ < δ ⇒ lim
t→∞

x(t) = 0.

We can see that these definitions of stability involve ǫ − δ formulations, which

at first give the impression that a complete description of the flow of the vector

field is required to answer stability questions. It is fortunate that in many cases

stability can be proved directly by exhibiting an energy-like function, now called a

Lyapunov function [35, 107]. This is Lyapunov’s direct method. Under some technical

conditions, the existence of this function was also proved necessary for asymptotic

stability [27]. More precisely, the conditions are stated in the following theorem:

Theorem 3.2 ([35]) Consider the system (3.2), and let D ⊆ R
n be a neighborhood

of the origin. If there is a continuously differentiable function V : D → R such that

the following two conditions are satisfied:

1. V (x) > 0 for all x ∈ D \ {0} and V (0) = 0, i.e., V (x) is positive definite in D;

2. −V̇ (x) = −∂V
∂x
f(x) ≥ 0 for all x ∈ D, i.e., V̇ (x) is negative semidefinite in D;

then the origin is a stable equilibrium. If in condition (2) above, V̇ (x) is negative

definite in D, then the origin is asymptotically stable. If D = R
n and V (x) is radially

unbounded, i.e., V (x) → ∞ as ‖x‖ → ∞, then the result holds globally.
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In the case of linear time-invariant systems

ẋ = Ax, (3.3)

the stability properties can be characterized by the locations of the eigenvalues λi of

the matrix A, or equivalently, through a Lyapunov argument as follows:

Theorem 3.3 [35] The matrix A is a stability matrix; that is Reλi < 0 for all

eigenvalues λi of A if and only if for any given positive definite matrix Q there exists

a positive definite matrix P that satisfies:

PA+ ATP = −Q. (3.4)

P is unique, and V = xTPx is a Lyapunov function for (3.3).

We see that the construction of the Lyapunov function in the case of linear sys-

tems is reduced to solving an appropriate Algebraic Lyapunov Equation (3.4). Al-

ternatively, P can be obtained by solving two Linear Matrix Inequality (LMI) [10]

conditions:

P > 0,

ATP + PA < 0.

A feasible P exists if and only if A is Hurwitz. LMIs are constraints in semidefinite

programs [96], which can be solved using algorithms with a worst-case polynomial

time complexity. This makes them particularly attractive for computation.

The absence of a direct methodology for constructing Lyapunov functions for

nonlinear systems led to the development of other methods for assessing nonlinear

system properties. For example, in Lyapunov’s indirect method, one proceeds by

linearizing the vector field about the equilibrium and the (local) stability proper-

ties of the original nonlinear system are inferred from the stability properties of the

linearized system. However, this procedure is inconclusive when the linearized sys-
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tem has imaginary axis eigenvalues and the result is valid anyway only locally. Other

methodologies involve absolute stability theory [19], Linear Parameter Varying (LPV)

embeddings [23, 86, 53], Integral Quadratic Constraint (IQC) formulations [47] and

others.

In this chapter, we will build on the methodology introduced in [66] and we will

show how to use the sum of squares decomposition to analyze different classes of

systems described by ODEs using Lyapunov methodologies. There are mainly two

reasons why there has been no algorithmic methodology for constructing the Lya-

punov functions V (x) for so long. On one hand, the ‘terms’ that should appear in

V (x) are not known a priori, and on the other hand, testing the nonnegativity condi-

tions in Theorem 3.2 is a difficult task even in the case in which they are polynomial.

We can get to the bottom of the first problem by resorting to intuition and prior

knowledge of energy-like terms that are likely to appear in V (x). As far as the sec-

ond problem is concerned, this is closely related to the fact that testing polynomial

nonnegativity when the degree is greater than or equal to 4 is an NP-hard problem,

as was mentioned in the previous chapter [50].

For concreteness, let us assume that f(x) is a polynomial vector field. Suppose

that we also wish to construct a V (x) that is also polynomial in x. In this case,

the two conditions in Theorem 3.2 become polynomial nonnegativity conditions. To

circumvent the difficult task of testing them, we can restrict our attention to cases in

which the two conditions admit SOS decompositions. Note that even if the coefficients

of a polynomial Lyapunov candidate V are unknown, we can still search for them so

that the two Lyapunov conditions are satisfied, as was explained in the previous

chapter.

To impose that V (x) should be positive definite rather than positive semi-definite,

we construct an auxiliary positive definite ‘shaping’ function ϕ(x) as follows:

ϕ(x) =
n∑

i=1

d∑

j=1

ǫijx
2j
i ,

m∑

j=1

ǫij ≥ γ ∀ i = 1, . . . , n, γ > 0, ǫij ≥ 0 ∀ i, j (3.5)

This makes ϕ(x) > 0, i.e., positive definite. If we impose V (x) − ϕ(x) to be a SOS,
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obviously

V (x) − ϕ(x) ≥ 0 ⇒ V (x) ≥ ϕ(x) > 0. (3.6)

Therefore, we have

Proposition 3.4 Given a polynomial V (x) of degree 2d, let ϕ(x) be given by Equa-

tion (3.5). Then, the condition

V (x) − ϕ(x) is a sum of squares (3.7)

guarantees the positive definiteness of V (x).

In the case of global stability, i.e., for D = R
n, the conditions in Theorem 3.2 can

then be formulated directly as SOS conditions. Therefore, we have the following sum

of squares program:

Program 3.5 To construct a Lyapunov function for system (3.2),

Find a polynomial V (x), V (0) = 0

and a positive definite function ϕ(x) of the form (3.5)

such that

V (x) − ϕ(x) is SOS (3.8)

− ∂V

∂x
f(x) is SOS (3.9)

Then V (x) is a Lyapunov function for system (3.2) and the zero equilibrium of (3.2)

is globally stable.

The above program guarantees that V (x) is positive definite and also that V̇ (x) is

negative semidefinite; therefore V (x) is a Lyapunov function that proves stability of

the origin of system (3.2). Note also that by construction ϕ(x) is radially unbounded;

therefore, V (x) will also be radially unbounded, and the stability property holds
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globally [35]. Also, if condition (3.9) is replaced by

−∂V
∂x

f(x) − ψ(x) is SOS, (3.10)

where ψ(x) is a positive definite polynomial constructed as per (3.5), then V̇ (x) is

negative definite and the origin is globally asymptotically stable.

Below is an example of how the construction of a Lyapunov function is performed

using SOSTOOLS.

Example 3.6 Consider the system

ẋ1 = −x1 + x3
2 − 3x3x4

ẋ2 = −x1 − x3
2

ẋ3 = x1x4 − x3

ẋ4 = x1x3 − x3
4,

which has the only equilibrium at the origin. As a first attempt, we will try to construct

a quadratic Lyapunov function of the form V =
∑4

i=1

∑4
j=i aijxixj where the aij’s are

the unknowns. We search for V that satisfy the conditions in Program 3.5.

It turns out that a Lyapunov function of the above form does not exist (the cor-

responding semidefinite program is infeasible), so we will next search for a quartic

Lyapunov function. One then finds a Lyapunov function that satisfies conditions

(3.8) and (3.10), and thus proves global asymptotic stability of the origin. To three

significant figures, this reads:

V = 1.12x1x2x
2
3 − 0.785x1x2 + 0.713x3

2x1 + 0.500x1x2x
2
4 + 0.768x4

4

+1.64x2
1 + 1.76x2

3 + 0.392x2
2 + 1.63x2

4 + 1.69x2
1x

2
2 + 0.557x4

3

+0.724x3
1x2 + 0.181x4

1 + 1.07x4
2 + 0.561x2

1x
2
3 + 1.61x2

2x
2
3

+0.525x2
1x

2
4 + 0.969x2

2x
2
4 + 0.569x2

3x
2
4 − 0.251x4x3x1 + 0.432x4x3x2.

The above can be obtained by using the findlyap command in SOSTOOLS.
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3.2 Stability of Constrained Systems

In this section, we extend Lyapunov’s theorem to systems that evolve under equality,

inequality, and integral constraints. This is a very general class of systems, special

cases of which are differential algebraic equations, robust stability analysis and per-

formance formulations. It will also allow us to treat non-polynomial vector fields

exactly.

Inequality constraints arise naturally when considering positive systems : systems

with inherently positive states, e.g., a chemical reaction in which the concentrations

of the reactants are positive. The same type of constraints can be used to describe

uncertain parameter sets for the study of robust stability of systems in the presence

of parametric uncertainty.

On the other hand, systems evolving over a manifold described by a set of equal-

ity constraints arise in a plethora of cases, and are also called differential algebraic

equations or descriptor systems [16]. Examples of equality constraints are holonomic

(configuration) constraints in mechanical systems and conservation laws – in electrical

networks in the form of current balance and in chemical engineering in the form of

mass balance. Sometimes it is possible to back-substitute and reduce the system to

an ordinary differential equation, but this usually results in more complicated vector

fields of higher order. In some other cases, this is not possible and a differential index

theory was developed as a measure of this singularity [91]. Equality constraints also

prove useful in robust stability analysis where they appear as constraints guaranteeing

that the equilibrium of the system is at the origin.

The last type of constraints that are going to be incorporated is of integral type,

in particular Integral Quadratic Constraints (IQCs) [47]. They provide a framework

rich enough to encapsulate many types of uncertainty and unmodelled dynamics:

dynamic, time-varying and L2 bounded uncertainty, just to name a few. Moreover,

one can formulate performance calculations using IQCs such as L2 input-output gain

estimation.
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Consider the nonlinear system

ẋ = f(x, u), (3.11)

with the following inequality, equality, and integral constraints that are satisfied by

x and u:

ai1(x, u) ≤ 0, for i1 = 1, ..., N1, (3.12)

bi2(x, u) = 0, for i2 = 1, ..., N2, (3.13)

∫ T

0
ci3(x, u)dt ≤ 0, for i3 = 1, ..., N3, and ∀ T ≥ 0. (3.14)

Here x ∈ R
n is the state of the system, and u ∈ R

m is a collection of auxiliary variables

(such as inputs, non-polynomial functions of states, uncertain parameters, etc). We

assume that f(x, u), apart from the required Lipschitz conditions for existence of

solutions, has no singularity in D, where D ⊂ R
n+m is defined as

D = {(x, u) ∈ R
n+m | ai1(x, u) ≤ 0, bi2(x, u) = 0, for all i1 and i2}.

Without loss of generality, it is also assumed that f(x, u) = 0 for x = 0 and u ∈ D0
u,

where

D0
u = {u ∈ R

m|(0, u) ∈ D}.

The following theorem is an extension of Lyapunov’s stability theorem, and can be

used to prove that the origin is a stable equilibrium of the above system. It uses a

technique reminiscent of the well-known S-procedure [104] in nonlinear and robust

control theory, that was discussed in Example 2.14.

Theorem 3.7 [62] Suppose that for system (3.11), there exist functions V (x), p1i1
(x, u) ≥
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0, p2i1
(x, u) ≥ 0, q1i2

(x, u), q2i2
(x, u) and constants ri3 ≥ 0 such that

V (x) +
∑

p1i1
(x, u)ai1(x, u) +

∑

q1i2
(x, u)bi2(x, u) > 0, (3.15)

− ∂V

∂x
f(x, u) +

∑

p2i1
(x, u)ai1(x, u) +

∑

q2i2
(x, u)bi2(x, u) +

∑

ri3ci3(x, u) ≥ 0

(3.16)

Then the origin of the state space is a stable equilibrium of the system.

Proof. If condition (3.15) is fulfilled, then we have that in D

V (x) > −
∑

p1i1
(x, u)ai1(x, u) −

∑

q1i2
(x, u)bi2(x, u) ≥ 0,

and so V (x) > 0 in D, where ai1(x, u) and bi2(x, u) satisfy (3.12).

Condition (3.16) can be integrated from time t = 0 to t = T to obtain

V (0) − V (T ) ≥ −
∑

∫ T

0

{p2i1
(x, u)ai1(x, u) − ri3ci3(x, u)}dt ≥ 0,

where we have used the fact that ai1(x, u), bi2(x, u) and ci3(x, u) satisfy (3.12)–(3.14).

This shows that the Lyapunov function is non-increasing along the trajectories

of the system, and is positive definite in D. Therefore, the conditions for Lyapunov

stability (see Theorem 3.2) are satisfied. The rest of the proof is similar to the proof

of Lyapunov’s theorem, which can be found in many standard textbooks, e.g., [35].

We note that even though the integral constraints used above are required to hold

for all T ≥ 0 (i.e., hard integral constraints), most of the ones that one can develop

during an analysis method are soft, i.e. they need not hold for finite-time intervals.

In the case of soft Integral Quadratic Constraints, non-causal multipliers were used

for stability analysis. See [47] for more details.

When the vector field f(x, u) is rational, i.e., f(x, u) = n(x,u)
d(x,u)

with d(x, u) 6= 0

in D, condition (3.16) can be multiplied by the non-vanishing denominator. We will

be using Theorem 3.7, along with the SOS decomposition to analyze various cases
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of systems with constraints. The procedure is similar to the one for the case of

unconstrained systems described in the previous section, and is based on relaxing

the conditions in Theorem 3.7 to SOS conditions. For this, we need to make some

assumptions, some of which will be removed in the sequel.

• The vector field fx(x, u) is assumed to be polynomial or rational, and the con-

straint functions ai1(x, u), bi2(x, u), ci3(x, u) are assumed to be polynomial. This

assumption will be removed in a later section through a recasting process.

• We search for bounded degree polynomial Lyapunov function V and multipliers

pi1 , qi1 , i1 = 1, . . . , N1 and pi2 , qi2 , i2 = 1, . . . , N2.

To make the above concrete, in order to use Theorem 3.7 and the sum of squares

decomposition, we have the proposition below.

Proposition 3.8 Suppose that for system (3.1) with f(x, u) = n(x,u)
d(x,u)

where n(x, u)

and d(x, u) are polynomials and d(x, u) > 0 in D, there exist polynomial functions

V (x), p1i1
(x, u), p2i1

(x, u), q1i2
(x, u), q2i2

(x, u), a positive definite function ϕ(x) of

the form given in Equation 3.5 and constants ri3 ≥ 0 such that

V (x) +
∑

p1i1
(x, u)ai1(x, u) +

∑

q1i2
(x, u)bi2(x, u) − ϕ(x) is SOS, (3.17)

p1i1
(x, u), p2i1

(x, u) are SOS for i1 = 1, . . . , N1, (3.18)

d(x, u)




−∂V

∂x
f(x, u) +

∑
p2i1

(x, u)ai1(x, u)

+
∑
q2i2

(x, u)bi2(x, u) +
∑
ri3ci3(x, u)



 is SOS. (3.19)

Then the origin of the state space is a stable equilibrium of the system.

The polynomials V (x), p1i1
(x, u), p2i1

(x, u), q1i2
(x, u), q2i2

(x, u), the constants ri3

and the positive definite function ϕ(x) can be constructed using SOSTOOLS [75],

and a program similar to Program 3.5 can be constructed.

It was mentioned that the particular class of systems with constraints that we

consider is rich enough to include as special cases various important analysis problems

in control theory. The rest of the chapter concentrates on some of these problems.
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3.3 Estimating the Region of Attraction

In many instances, non-global stability analysis may be the objective, i.e., when

dealing with physical models with positivity constraints on the states (often referred

to as positive systems [42]), or when several equilibria or limit cycles are present. In

such cases, one may define regions of interest using inequality constraints.

For example, let us consider local stability analysis of the zero equilibrium of

ẋ = f(x). Define the following inequality constraint on x:

a(x) , xTx− ξ ≤ 0, (3.20)

where ξ is a positive constant. Then local stability of the zero equilibrium can be

tested using the next corollary.

Corollary 3.9 Suppose for the system ẋ = f(x) and the inequality constraint a(x) ≤
0 given in (3.20) there exist a polynomial function V (x) and SOS polynomials p1(x), p2(x)

such that

V (x) + p1(x)a(x) − ϕ(x) is SOS,

− ∂V

∂x
f(x) + p2(x)a(x) is SOS,

where ϕ(x) is as defined in Equation (3.5). Then the zero equilibrium of the system

is stable.

A problem of particular interest is estimation of the region of attraction of an

equilibrium. An estimate of the region of attraction is the largest level set of V (x)

obtained from the previous corollary which can ‘fit’ in the region described by a(x) ≤
0. More specifically, given a Lyapunov function V (x) and a domain D in which a

Lyapunov function satisfying the conditions of asymptotic stability was constructed,

we seek a γ > 0 such that Ωγ = {x ∈ R
n|V (x) ≤ γ} is bounded and strictly contained

in D; then Ωγ is an estimate of the region of attraction. In order to get the maximum

value of γ, we can formulate the problem as one of testing emptiness of a set as
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follows:

{x ∈ R
n : V (x) < γ, a(x) = 0} = ∅ (3.21)

Positivstellensatz conditions take the form:

(
N∑

i=1

x2
i

)r

(V (x) − γ) + p(x)a(x) is a SOS (3.22)

where r is a non-negative integer and p(x) is a polynomial. Therefore, the task of

finding the maximum γ can be formulated as the following sum of squares program:

Program 3.10 Program to find the maximum γ such that {x ∈ R
n|V (x) < γ} ⊂

{x ∈ R
n|a(x) ≤ 0}:

Given V (x), a(x), maximize γ and find a non-negative integer r

and a polynomial p(x) such that
(

N∑

i=1

x2
i

)r

(V (x) − γ) + p(x)a(x) is a SOS.

In order to find good estimates of the region of attraction, one has to iterate

between V (x) and a(x).

Example 3.11 Consider the Van der Pol equation in reverse time:

ẋ1 = −x2 (3.23)

ẋ2 = x1 − (1 − x2
1)x2 (3.24)

The phase plane is shown in Figure 3.1(a); the presence of an unstable limit cy-

cle makes the stability of the only equilibrium local. In this case, we are interested

in determining how far from the origin we can choose an initial condition and the

trajectory will still converge to the origin. To obtain an estimate of the region of

attraction of the zero equilibrium of (3.23–3.24), we first initialize a(x) = xTx − ξ,

and search for V (x) of order 2 such that V (x) > 0 everywhere and V̇ (x) < 0 in D,

performing a search on ξ. Obviously, at some point, V̇ (x) = 0; therefore, we need to
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Figure 3.1: The Van der Pol system in reverse time, with estimates of the region of
attraction of the stable equilibrium.

find the maximum γ such that V (x) − γ is completely contained in the set V̇ (x) ≤ 0.

We then set a(x) = V (x) − γ, and increase the order of V (x) by 2. We can then

find a new Lyapunov function of this order adjusting γ, iterating between V (x) and

a(x). Estimates of the region of attraction in the form V (x) ≤ γ were constructed for

different degree V (x), shown in Figure 3.1(b).

3.4 Analysis of Systems with Non-Polynomial Vec-

tor Fields

Thus far, we have concentrated on systems that are described by polynomial vector

fields. It is true that physical systems, the functionality of which is in the focus of

many research areas, seldom are modeled by polynomial vector fields.

In this section, we will build on a recasting process [82] that produces a polynomial

system description from a non-polynomial one, with state dimension at least the same

as the original system or higher. The stability properties of the original system can

be concluded from the analysis of the recasted system [63]. To describe the original

system faithfully, constraints of the form xn+1 = F (x1, ..., xn) that are created when

new variables are introduced should be taken into account. These constraints define
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an n-dimensional manifold on which the solutions to the original differential equations

lie. In general such constraints cannot be converted into polynomial forms, even

though sometimes there exist polynomial constraints that are induced by the recasting

process. For example:

• Two variables introduced for trigonometric functions such as x2 = sinx1, x3 =

cosx1 are constrained via x2
2 + x2

3 = 1.

• Introducing a variable to replace a power function such as x2 =
√
x1 induces

the constraints x2
2 − x1 = 0, x2 ≥ 0.

• Introducing a variable to replace an exponential function such as x2 = exp(x1)

induces the constraint x2 ≥ 0.

We will identify two different classes of systems. We consider systems with non-

polynomial vector fields that under a change of variables are transformed into poly-

nomial with:

1. Only polynomial equality constraints;

2. Non-polynomial equality constraints.

A particular example of case (1) above is the simple pendulum, which is described

by:

d

dt




θ

ω



 =




ω

−g
l
sin θ





where g is the gravitational constant, l is the length of the pendulum, ω its angular

velocity and θ the angular deviation of the bead from the vertical. Setting x1 = sin θ

and x2 = cos θ, one can easily rewrite the above system as

d

dt








x1

ω

x2








=








x2ω

−g
l
x1

−x1ω








x2
1 + x2

2 = 1
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where the constraint x2
1 +x2

2 = 1 is a polynomial equality in (x1, x2) that restricts the

3-D recasted system to the original 2-D system.

However, in some cases (case (2) above), this technique results in a series of

equality constraints that are not polynomial equalities, for example, relating sin(θ)

and θ. These appear many times because of modeling descriptions. For example, in

order to model enzymatic reactions in biological systems [48], it is common practice

to use vector fields with non-rational powers, in the Michaelis-Menten sense. Also,

the model of an aircraft in longitudinal flight contains trigonometric nonlinearities of

the angle of attack and pitch angle, but in the same equations, one usually captures

the coefficients of lift and drag as polynomial descriptions of these variables. The

stability analysis of the closed loop system using the above methodology becomes

difficult, as the same variable appears both in polynomial and non-polynomial terms.

The same is true in the case of analysis of chemical processes, where the temperature

appears in the energy equation both as a state and also exponentiated in Arrhenius

law for the reaction rate.

Suppose that for a nonpolynomial system

ż = f(z) (3.25)

which has an equilibrium at the origin, the recasted system obtained using a recasting

procedure is written as

˙̃x1 = f1(x̃1, x̃2), (3.26)

˙̃x2 = f2(x̃1, x̃2), (3.27)

where x̃1 = (x1, ..., xn) = z are the state variables of the original system, x̃2 =

(xn+1, ..., xn+m) are the new variables introduced in the recasting process, and f1(x̃1, x̃2),

f2(x̃1, x̃2) are polynomial in their arguments.

We denote the constraints that arise directly from the recasting process (i.e., the
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polynomial ones) by

x̃2 = F (x̃1), (3.28)

and those that arise indirectly (the non-polynomial ones) by

G1(x̃1, x̃2) = 0, (3.29)

G2(x̃1, x̃2) ≤ 0, (3.30)

where F , G1, andG2 are column vectors of functions with appropriate dimensions, and

the equalities or inequalities hold entry-wise. We should keep in mind that constraints

(3.29)–(3.30) are satisfied only when x̃2 = F (x̃1) are substituted to (3.29)–(3.30). We

assume that all functions involved are polynomials in their arguments.

Proving stability of the zero equilibrium of the original system (3.25) amounts to

proving that all trajectories starting close enough to z = 0 will remain close to this

equilibrium point. This can be accomplished by finding a Lyapunov function V (z)

that satisfies the conditions of Lyapunov’s stability theorem. Here we use the recasted

system to construct a Lyapunov function that proves stability of the equilibrium of

the original system. Sufficient conditions that guarantee the existence of a Lyapunov

function are stated in the following proposition.

Proposition 3.12 Let D1 ⊂ R
n and D2 ⊂ R

m be open sets such that 0 ∈ D1

and F (D1) ⊆ D2. Furthermore, define x̃2,0 = F (0). If there exists a function

Ṽ : D1 × D2 → R and column vectors of functions λ1(x̃1, x̃2), λ2(x̃1, x̃2), σ1(x̃1, x̃2),
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and σ2(x̃1, x̃2) with appropriate dimensions such that

Ṽ (0, x̃2,0) = 0, (3.31)

Ṽ + λT1G1 + σT1 G2 − φ(x̃1, x̃2) ≥ 0 ∀(x̃1, x̃2) ∈ D1 ×D2, (3.32)

− ∂Ṽ

∂x̃1

f1 −
∂Ṽ

∂x̃2

f2 + λT2G1 + σT2 G2 ≥ 0 ∀(x̃1, x̃2) ∈ D1 ×D2, (3.33)

σ1(x̃1, x̃2) ≥ 0 ∀(x̃1, x̃2) ∈ R
n+m, (3.34)

σ2(x̃1, x̃2) ≥ 0 ∀(x̃1, x̃2) ∈ R
n+m, (3.35)

for some scalar function φ(x̃1, x̃2) with φ(x̃1, F (x̃1)) > 0 ∀x̃1 ∈ D1 \ {0}, then z = 0

is a stable equilibrium of (3.25).

Proof. Define V (z) = Ṽ (z, F (z)). From (3.31) and (3.32), it is straightforward to

verify that the first Lyapunov condition is satisfied by V (z). In fact, from (3.29)–

(3.30), (3.32) and (3.34), we have that

V (x̃1, x̃2) ≥ φ(x̃1, x̃2) − λT1G1 − σT1 G2 ≥ φ(x̃1, x̃2) ∀(x̃1, x̃2) ∈ D1 ×D2.

Since φ(z, F (z)) > 0 ∀z ∈ D1 \{0} and F (D1) ⊆ D2, it follows that V (z) > 0 ∀z ∈
D1 \ {0}.

Finally, by the chain rule of differentiation we have

∂V

∂z
(z)f(z) =

∂Ṽ

∂x̃1

(z, F (z))f1(z, F (z)) +
∂Ṽ

∂x̃2

(z, F (z))f2(z, F (z)),

and using the same argument as above in conjunction with (3.29)–(3.30), (3.33) and

(3.35), we see that the second Lyapunov condition is satisfied. Therefore, V (z) is a

Lyapunov function for (3.25) and z = 0 is a stable equilibrium of the system.

The above non-negativity conditions can be relaxed to appropriate sum of squares

conditions so that they can be algorithmically verified using semidefinite program-

ming, as discussed earlier in this chapter. This leads the way to an algorithmic con-

struction of the Lyapunov function V . For this purpose, the set D1 ×D2 is captured
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as a semialgebraic set:

D1 ×D2 = {(x̃1, x̃2) ∈ R
n × R

m : GD(x̃1, x̃2) ≥ 0},

where GD(x̃1, x̃2) is a column vector of polynomials and the inequality is satisfied

entry-wise.

Let us now give an example of how this methodology can be used.

Example 3.13 (Continuously Stirred Tank Reactor) Chemical reactors are

the most important unit in a chemical process. Here, we consider the analysis of the

dynamics of a perfectly mixed, diabatic, continuously stirred tank reactor (CSTR) [3].

We also assume a constant volume – constant parameter system for simplicity.

The reaction taking place in the CSTR is a first-order exothermic irreversible

reaction A → B. After balancing mass and energy, the reactor temperature T and

the concentration of species A in the reactor CA evolve as follows:

ĊA =
F

V
(CAf

− CA) − k0e
−∆E

RT CA (3.36)

Ṫ =
F

V
(Tf − T ) − ∆H

ρcp
k0e

−∆E
RT CA − UA

V ρcp
(T − Tj) (3.37)

where F is the volumetric flow rate, V is the reactor volume, CAf
is the concentration

of A in the freestream, k0 is the pre-exponential factor of Arrhenius law, ∆E is the

reaction activation energy, R is the ideal gas constant, Tf is the feed temperature,

−∆H is the heat of reaction (exothermic), ρ is the density, cp is the heat capacity, U

is the overall heat transfer coefficient, A is the area for heat exchange, and Tj is the

jacket temperature. For the analysis, we use the values shown in Table 3.1.

The equilibrium of the above system is given by (CA0 , T0) = (8.5636, 311.171). We

employ the following transformation: x1 = CA/CA0 − 1, x2 = T/T0 − 1; this serves

two purposes: first it moves the equilibrium to the origin, and second, it rescales the
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Parameter Units Nominal Value

F/V hr−1 1
k0 hr−1 9703×3600

−∆H kcal/kgmol 5960
∆E kcal/kgmol 11843
ρcp kcal/(m3 ◦C) 500
Tf

◦C 25
CAf

kgmol/m3 10

UA/V kcal/(m3 ◦C hr) 150
Tj

◦C 25

Table 3.1: Parameter values for the Continuously Stirred Tank Reactor (CSTR)
system.

state to reduce numerical ill-conditioning. The transformed system then becomes:

ẋ1 =
F

V

(
CAf

CA0

− (x1 + 1)

)

− k0e
− ∆E

RT0(x2+1) (x1 + 1)

ẋ2 =
F

V

(
Tf
T0

− (x2 + 1)

)

− ∆HCA0

ρcpT0

k0e
− ∆E

RT0(x2+1) (x1 + 1) − UA

V ρcp

(

(x2 + 1) − Tj
T0

)

Note that the system has an exponential term; the recasting will yield an indirect

constraint, as discussed earlier in this section. Define the state x3 = e
∆Ex2

RT0(x2+1) − 1.

Then an extra equation in the analysis would be

ẋ3 =
∆E

RT0(x2 + 1)2
(x3 + 1)ẋ2

under the constraint that x3 > −1.

Then the full system, after we use the equilibrium relationship simplifies to:

ẋ1 = −F
V
x1 − k0e

− ∆E
RT0 (x1x3 + x1 + x3) (3.38)

ẋ2 = −F
V
x2 −

∆HCA0

ρcpT0

k0e
− ∆E

RT0 (x1x3 + x1 + x3) −
UA

V ρcp
x2 (3.39)

ẋ3 =
∆E

RT0(x2 + 1)2
(x3 + 1)ẋ2 (3.40)

This system is now of the form (3.26)–(3.27), with x̃1 = (x1, x2) and x̃2 = x3. To
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Figure 3.2: Lyapunov function level curves for the Continuously Stirred Tank Reactor
system.

proceed, we define the set D1 as:

D1 = {(x1, x2) ∈ R
2 : |x1| ≤ γ1, |x2| ≤ γ2}

and then define the set D2 as

D2 = {x3 ∈ R : (x3 − e
−∆Eγ2

RT0(−γ2+1) − 1)(x3 − e
∆Eγ2

RT0(γ2+1) − 1) ≤ 0}

Then the system is ready for analysis as per Proposition 3.12. For γ1 = 0.12 and

γ2 = 0.05, a quartic Lyapunov function can be constructed for the system described

by Equations (3.38)–(3.40) using Proposition 3.12. Here the following φ(x) is used:

φ(x) =
2∑

i=1

∑

j=2,4

ǫi,jx
j
i +

4∑

j=1

ǫ3,jx
j
3,

with

ǫ1,2 + ǫ1,4 − 0.1 ≥ 0

ǫ2,2 + ǫ2,4 + ǫ3,1 + ǫ3,2 + ǫ3,3 + ǫ3,4 − 0.1 ≥ 0.

The level curves of the constructed Lyapunov function are shown in Figure 3.2.
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As mentioned earlier, it is common practice in modeling biological reaction path-

ways to ‘lump’ enzymatic reactions consisting of three species into a single equation

in the Michaelis-Menten sense. The simplified system dynamics are obtained by a

methodology similar to singular perturbation methods in nonlinear control. Many

times, the ‘fitting’ is done based on experimental data, which results in non-integer

hill function coefficients. We will illustrate the technique with an example of biological

significance: regulation and autocatalysis in yeast glycolysis.

Example 3.14 Consider a simple biochemical reaction pathway consisting of two

metabolites, represented by the state variables x1 and x2. The product of the first

enzymatic reaction is the substrate for the second reaction, and the final output affects

the production of x1. The equations become:

ẋ1 = xm2 − 1 + k

x1 + k
x1 (3.41)

ẋ2 =
1 + k

x1 + k
x1 − cxm2 − (1 − c)

1 + k

x2 + k
x2 (3.42)

The free parameters in the model are k, m, and c. The sign of m determines the effect

of x2 on the production of x1. The system has an equilibrium point at x1 = x2 = x3 =

1 that is independent of the parameters. Linearization about this equilibrium gives the

system:

d

dt




δx1

δx2



 =




− k
k+1

m

k
k+1

−cm− (1 − c) k
k+1








δx1

δx2





Linear stability analysis asserts that stability is retained for 0 ≤ c ≤ 1, k−km−m ≥ 0

and k(2 − c) + cm(k + 1) ≥ 0, if we assume that k > 0. The stability region then

becomes: 





k ≥ m
1−m

for 0 ≤ m < 1

k ≥ −cm
2+cm−c

for c−2
c

≤ m < 0






(3.43)

We can translate the equilibrium of the system given by Equations (3.41–3.42) to
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the origin by employing the transformation y1 = x1 − 1, y2 = x2 − 1 to get:

ẏ1 = (y2 + 1)m − 1 + k

1 + y1 + k
(y1 + 1)

ẏ2 =
1 + k

1 + y1 + k
(y1 + 1) − c(y2 + 1)m − (1 − c)

1 + k

1 + y2 + k
(y2 + 1)

If m is integer, then this system is polynomial. If m is not integer, then one can

proceed as in the CSTR example and try to analyze it directly. To illustrate a special

case when having non-integer (but rational) powers, consider m = 1/3. Denote

z = (y2 + 1)(1/3) − 1

Then we have the system

ẏ1 = z + 1 − 1 + k

1 + y1 + k
(y1 + 1) (3.44)

ẏ2 =
1 + k

1 + y1 + k
(y1 + 1) − c(z + 1) − (1 − c)

1 + k

1 + y2 + k
(y2 + 1) (3.45)

ż =
z + 1

3(y2 + 1)
ẏ2 (3.46)

(z + 1)3 = (y2 + 1) (3.47)

i.e., a 3-D system restricted by one equality constraint. The system is now in a DAE

formulation. We set c = 0.5 and k = 1 and use SOSTOOLS to construct a Lyapunov

function for this system, whose level curves are shown in Figure 3.3. In this figure,

‘+’ denotes the equilibrium point, solid lines are trajectories with initial conditions

indicated by ‘o’, arrows denote vector field and dashed lines are level curves of the

Lyapunov function.

In this example, m is an important parameter, and we wish to analyze robust

stability of the above system when m and k are allowed to vary. If we consider

stability analysis for −0.2 ≤ y1 ≤ 0.2 and −0.2 ≤ y2 ≤ 0.2, then we can approximate

(y2 + 1)m = 1 +my2 +
m(m− 1)

2
y2

2 + u(m, y2)
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Figure 3.3: Stability of the yeast glycolysis system.

and we can ‘cover’ the residual u by:

u(m, y2) = pmy2
2, p ∈ [−0.08, 0.06]

The system then becomes:

ẏ1 = 1 +my2 +
m(m− 1)

2
y2

2 + pmy2
2 −

1 + k

1 + y1 + k
(y1 + 1) (3.48)

ẏ2 =
1 + k

1 + y1 + k
(y1 + 1) − c(1 +my2 +

m(m− 1)

2
y2

2 + pmy2
2)

−(1 − c)
1 + k

1 + y2 + k
(y2 + 1) (3.49)

There are now three parameters in the system description, namely p, m and k. We

wish to prove stability of the equilibrium for the stable parameter set. To achieve this,

we construct two Lyapunov functions as shown in Figure 3.4: one for m ≥ 0 and one

for −m ≥ 0. In each region, there are five inequality constraints that we can write:

two on the state variables:

a1 , (y1 − 0.2)(y1 + 0.2) ≤ 0

a2 , (y2 − 0.2)(y2 + 0.2) ≤ 0,
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one describing p ∈ [−0.08, 0.06]:

a3 , (p+ 0.08)(p− 0.06) ≤ 0,

and two describing the m−−k space; for m ≥ 0 we have:

a4 , −k + km+m+ 1 ≤ 0

a5 , m(m− 0.9) ≤ 0,

and for m ≤ 0 we have:

a4 , −1.5k − 0.5m(k + 1) + 1 ≤ 0

a5 , m(m+ 2.5) ≤ 0.

Using these constraints, the sum of squares program can be constructed and solved

with the aid of SOSTOOLS. The Lyapunov function V (y1, y2;m, p, k) for two ranges

of parameters, as well as the parameter region are shown in Figure 3.4. In this

figure, the shaded region in the center figure shows the parameter set for which a

parameterized Lyapunov function was constructed, and the region of stability given by

Equation (3.43). The figure on the left corresponds to a parameter set in which m is

negative, which results in system oscillations — the figure on the right corresponds

to another parameter set in which m is positive. In both cases, the level curves of a

Lyapunov function are shown dashed.

3.5 Robust Stability Analysis

The framework that we presented in this chapter allows the analysis of robustness of

systems with parametric and/or dynamic uncertainty.

In the case of parametric uncertainty, some of the auxiliary variables u in The-

orem 3.7 may now be taken to be parameters. Additionally, some other auxiliary

variables can be used to account for the location of the equilibrium of interest, as the
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Figure 3.4: Robust stability of the yeast glycolysis system.

location of the equilibrium of a nonlinear system usually changes when the parame-

ters are varied. The use of equality and inequality constraints in this case is natural.

The region of the parameter space that is of interest can be described by inequality

constraints, and if the equilibrium moves as the parameters change, one can impose

an equality constraint on the corresponding auxiliary variables.

Dynamic uncertainty, on the other hand, can be characterized using integral con-

straints [47]. For example, an uncertain but L2-norm bounded feedback operator

relating x and u can be represented by the IQC

∫ T

0

(γxTx− uTu)dt ≥ 0.

Stability of the whole system can then be verified using Theorem 3.7.

The Lyapunov functions that we will be constructing may be parameterized by

the parameters. The introduction of new, unknown coordinates makes the size of the

resulting semidefinite programs grow fast. However, in some special cases, one can

structure these multipliers and functions so as to reduce the size of the semidefinite

programs and increase the numerical conditioning.

Here we consider a simple model that describes the phenomenon of heat shock in

E-coli, developed in [20].
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Parameter Value

Kd 3
αd 0.015
η(T ) 10 @ T1 & 60 @ T2

α0 0.03
αs 3
Ks 0.05
Ku 0.0254
K(T ) 40 @ T1 & 80 @ T2

Kfold 6000
Pt 2 × 106

Table 3.2: Parameter values for the model of Heat Shock in E-coli.

Example 3.15 A simple description for the reduced order heat shock model is:

dDt

dt
= Kd

St

1 + KsDt

1+KuUf

− αdDt

dSt
dt

= η(T ) − α0.St − αs

KsDt

1+KuUf

1 + KsDt

1+KuUf

St

dUf
dt

= K(T )[Pt − Uf ] − [K(T ) +Kfold]Dt (3.50)

where Dt is the total number of chaperones, St is the total number of σ factors and

Uf is the amount of unfolded proteins. The rest are parameters that are tabulated in

Table 3.2.

In this example, we consider the problem of robust stability for the system under

parametric uncertainty. We first non-dimensionalize the states of (3.50) by their

equilibrium values (Dt0 , St0 , Uf0), followed by a shifting of the equilibrium of the system

to the origin, as it was done for the CSTR example. This yields a system with states

(x1, x2, x3) that is better conditioned, in the sense that the states are of the same order

of magnitude:

dx1

dt
= f̃1(x1, x2, x3) − αdx1

dx2

dt
= η̃(T ) − α0x2 − f̃2(x1, x2, x3) (3.51)

dx3

dt
= K(T )[P̃t − x3] −KTotx1
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with f̃1(x1, x2, x3) = K̃d
x2

1+
K̃sx1

1+K̃ux3

and f̃2(x1, x2, x3) = αsx2

K̃sx1
1+K̃ux3

1+
K̃sx1

1+K̃ux3

, and where K̃d =

KdSt0/Dt0, K̃s = KsDt0, K̃u = KuUf0, η̃ = η/St0, P̃t = Pt/Uf0 and KTot =

Dt0(K(T ) +Kfold)/Uf0.

A simple simulation reveals that the dynamics of the third state x3 are much faster

than those of x2 and x1. Such stiffness (large differences in time scales) creates ill-

conditioning in the resulting semidefinite programme. In our analysis, we investigate

a quasi steady-state approximation by setting dx3

dt
= 0, which results in a differential-

algebraic system.

To proceed, we first define the region D in the state-space where a Lyapunov func-

tion is to be constructed:

D = {xi ∈ R : (xi − xi0)
2 − γ2

i ≤ 0, i = 1, 2} (3.52)

with γi = 0.2, xi0 denoting the equilibrium of the i-th state. For robust stability analy-

sis purposes, we pick two important parameters, η̃ and αs. η̃ depicts the feedforward

gain, while αs forms part of the feedback gain. We ask whether the equilibrium of the

system described by (3.50) is stable for all values of η̃ and αs in a certain range for

T = T1:

P = {η̃, αs ∈ R
2 : (η̃ − η̃0)

2 − (γ3η̃0)
2 ≤ 0, (αs − αs0)

2 − (γ4αs0)
2 ≤ 0}, (3.53)

with γ3 and γ4 measuring the percentage variation. As these parameters change, the

equilibrium of the system also changes and the other equilibria may cross through

the region D. In order to fix the equilibrium at the origin, we impose two equality

constraints of the form:

αdαsK̃sx
2
10
− K̃d(η̃(T1) − α0x20)

(

1 + K̃u

(

P̃t −
KTot

K(T1)
x10)

))

= 0

K̃sK̃d(η̃(T1) − α0x20) − αsK̃s(K̃dx20 − αdx10) = 0

Note that the vector field is rational, but this case can be treated by using Theorem
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Figure 3.5: Robust stability of the model of Heat Shock in E-coli.

3.7, by multiplying out by the (non-vanishing) common denominator of the vector

field. Robust stability analysis is achieved by constructing a parameter-dependent

Lyapunov function, using the results in proposition 3.8 and SOSTOOLS. We start

with a quadratic Lyapunov function V that is not parameterized by any parameters;

in this case, we can prove stability for γ3 = γ4 = 0.45. When the Lyapunov function

is parameterized by αs and η̃, we can construct a Lyapunov function for γ3 = γ4 =

0.53. We see that by increasing the complexity of the certificate, we can construct a

Lyapunov function for a larger parameter range. The equilibrium is stable for even

larger parameter sets, but the other equilibrium in the system (which is unstable)

approaches the equilibrium of interest. To get a larger parameter set, we need to

reduce the size of the region D and increase the order of the certificate we seek to

construct. Figure 3.5 shows the level curves of the Lyapunov function for two sets of

parameters in a parameter set with γ3 = γ4 = 0.53.

3.6 Stability of Switching Systems

In this section, we show how the sum of squares decomposition can be used to con-

struct Lyapunov-type certificates for switching systems. These are systems that have

dynamics that are described by a set of continuous time differential equations in

conjunction with a discrete event process. Previous results on stability analysis of
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switched systems can be found in [12, 18]; here we do not consider hybrid systems,

which are treated in a similar manner in [74].

One way of ensuring stability of a switching system is by constructing a Lyapunov

function that is ‘common’ for all subsystems, a notion similar to quadratic stability

in Linear Parameter Varying system formulations. Another way is by construct-

ing piecewise quadratic Lyapunov functions [72, 32, 29], a concatenation of several

Lyapunov-like functions, each valid for each subsystem with some continuity argu-

ment on the switching surfaces. In the special case of switching systems with linear

subsystems and with hyperplane switching surfaces, the search for such Lyapunov

functions can be performed by solving Linear Matrix Inequalities (LMIs).

Here we will show how the sum of squares decomposition can be used to construct

polynomial Lyapunov certificates for switching systems with nonlinear subsystems

and polynomial switching surfaces. Uncertain switching systems can also be analyzed

in a unified manner.

The systems considered here are of the following form:

ẋ = fi(x), i ∈ I = {1, ..., N}, (3.54)

where x ∈ R
n is the continuous state, i is the discrete state, fi(x) is the vector field

describing the dynamics of the i-th mode/subsystem, and I is the index set. We

assume that the origin is an equilibrium of the system. Further, we assume that for

each x ∈ R
n, only one i ∈ I is possible. More specifically, the system is in the i-th

mode at time t if x(t) ∈ Xi, where Xi ⊂ R
n is a region of the state space described

by

Xi = {x ∈ R
n : Gi(x) ≥ 0}, (3.55)

where Gi : R
n → R

ki is a vector of ki polynomials and Gi(x) ≥ 0 means that

the inequality holds entry-wisely. Additionally, the state space partition {Xi} must

satisfy
⋃

i∈I Xi = R
n and int(Xi)∩ int(Xj) = ∅ for i 6= j, i.e., the partitions cover the
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whole of R
n and are non-overlapping. A switching surface between the i-th and j-th

modes, i.e., a boundary between Xi and Xj, is given by

Sij = {x ∈ R
n : hij(x) = 0}, (3.56)

for some hij : R
n → R. Note that even though the direction of transition for a partic-

ular x ∈ Sij can be determined from the vector fields fi(x) and fj(x), it is assumed

in our analysis that such a characterization is not performed a priori. Also, systems

with infinitely fast switching such as those that have sliding modes are excluded from

our discussion. We also assume that the functions fi, Gi, and hij are polynomials, for

otherwise, we can change coordinates to render the system polynomial as explained

earlier.

3.6.1 Common Lyapunov Functions

We will first consider stability of the system (3.54) under arbitrary switching. A

sufficient condition for such stability is the existence of a common global Lyapunov

function for all fi’s, as summarized in the following theorem.

Theorem 3.16 Suppose that for the set of vector fields {fi}, there exists a polynomial

V (x) such that V (0) = 0 and

V (x) > 0 ∀x 6= 0, (3.57)

∂V

∂x
fi(x) < 0 ∀x 6= 0, i ∈ I, (3.58)

then the origin of the state space of the system (3.54) is globally asymptotically stable

under arbitrary switching.

The proof of this theorem is obvious and is omitted. If the vector fields are linear

and V (x) = xTPx, then the above conditions correspond to the LMIs for quadratic

stability [10]. For higher degree polynomial vector fields and Lyapunov functions, the

search for V (x) can also be performed using semidefinite programming by formulating
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Figure 3.6: Stability of a switching system under arbitrary switching by constructing
a common Lyapunov function.

the conditions as sum of squares conditions. The higher degree test is generally less

conservative than the quadratic test, as in many cases global higher degree Lyapunov

functions exist for systems that do not possess a global quadratic Lyapunov function.

Example 3.17 Consider the system ẋ = fi(x), x =
[

x1 x2

]T

, with

f1(x) =




−5x1 − 4x2

−x1 − 2x2



 , f2(x) =




−2x1 − 4x2

20x1 − 2x2



 .

It can be proven using a dual semidefinite program that no global quadratic Lyapunov

function exists for this system [32]. Nevertheless, a global sextic Lyapunov function

V (x) = 19.861x6
1 + 11.709x5

1x2 + 14.17x4
1x

2
2 + 4.2277x3

1x
3
2 + 8.3495x2

1x
4
2 − 1.2117x1x

5
2

+ 1.0421x6
2

exists, and therefore the system is asymptotically stable under arbitrary switching (see

Figure 3.6). In this figure, solid trajectories correspond to system f1, dashed ones

correspond to system f2. The dotted curves are level curves of the common Lyapunov

function.
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3.6.2 Piecewise Polynomial Lyapunov Functions

Proving stability of an equilibrium of a switching system by constructing a common

Lyapunov function may be conservative, in particular when the switching rule is

known and included in the system description. In this case, stability can be proven

by constructing piecewise polynomial Lyapunov functions, i.e., a concatenation of

several polynomial functions Vi(x) (also termed Lyapunov-like functions), typically

corresponding to the state space partition {Xi}. The Lyapunov-like function Vi(x)

and its time derivative along the trajectory of the i-th mode are required to be

positive and negative definite respectively, only within Xi. Such conditions can be

accommodated using the S-procedure by using the descriptions for the sets Xi given

in (3.55) and the switching surfaces (3.56). Note again that the multipliers used

to adjoin such conditions can be polynomials instead of just constants as it was

mentioned in Example 2.14. Moreover, to ensure continuity of the Lyapunov function

on the switching surface between modes i and j, we can impose the condition

Vi(x) + cij(x)hij(x) − Vj(x) = 0,

where cij(x) is a polynomial.

Summing up, we have the following Theorem:

Theorem 3.18 Consider the switched system (3.54)–(3.56). Assume that there exist

polynomials Vi(x), cij(x), with Vi(0) = 0 if 0 ∈ Xi, and vectors of polynomials ai(x) ≥
0, bi(x) ≥ 0, such that

Vi(x) − aTi (x)Gi(x) > 0 ∀x 6= 0, i ∈ I, (3.59)

∂Vi
∂x

fi(x) + bTi (x)Gi(x) < 0 ∀x 6= 0, i ∈ I, (3.60)

Vi(x) + cij(x)hij(x) − Vj(x) = 0 ∀i, j. (3.61)

Then the origin of the state space is globally asymptotically stable. A Lyapunov func-
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tion that proves this is the piecewise polynomial function V (x) defined by

V (x) = Vi(x), if x ∈ Xi. (3.62)

The proof of this theorem is based on the fact that the functions Vi are Lyapunov-like

functions for the corresponding subsystems in the regions in which they are defined.

Concatenation of these Lyapunov functions to form V (x), and the continuity of the

value of the Vi’s along the switching surface guarantees that along the trajectories of

the system, the value of V (x) does not increase.

Here we present an example that involves a switching system with nonlinear sub-

systems and a polynomial switching surface.

Example 3.19 Consider the system




ẋ1

ẋ2



 =




−2x3

1 − x2

x1 − 2x2x
2
1



 for x3
1 − x2 > 0




ẋ1

ẋ2



 =




−2x1x

2
2 − x2

x1 + px1x2 − x2



 for x3
1 − x2 ≤ 0

Setting p = 4, we can construct a sextic Lyapunov function that proves global stability;

the level curves are shown in Figure 3.7. In that figure the trajectories are shown in

solid thin lines, and the switching surface as a solid thick line for p = 4. Alternatively,

consider the case in which p is unknown. A quadratic Lyapunov function proves

stability of the zero equilibrium for p ∈ [−2.82, 2.8]. A sextic one gives stability for

p ∈ [−2.82, 7.6] and one of order 8 gives stability for p ∈ [−2.82, 15.9]. Note that for

p < 2.82, two other equilibria appear in the second system which make the stability of

the origin only local.

3.7 Performance Analysis

In this section, we are concerned with performance analysis of uncertain nonlinear

models, and how it can be performed using sum of squares techniques. Previous
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Figure 3.7: Stability of a switching system with predefined switching, using a
Lyapunov-like function.

attempts to analyze performance of such systems concentrated on LPV system repre-

sentations and the discretization of the resulting infinite-dimensional Parameterized

LMIs (PLMIs). Again, this approach does not guarantee that the original PLMI

problem is feasible, as no discretization is fine enough.

In this section, we wish to obtain upper bounds on the L2 induced norm of the

system from an external input to a performance output using SOS. The L2 induced

norm is a measure of the worst energy amplification between input and output as the

system trajectory and the uncertain parameters vary within their specified bounded

regions. For uncertain systems with state-space constraints, it is also important

to characterize the reachable set from a bounded energy input. This way, we can

associate the set of external inputs to a region in the state-space which is guaranteed

to contain the state trajectory for the given amount of uncertainty. Then, for that

set of external inputs, the L2 induced norm from input to output can be calculated.

In this section, we concentrate on the following class of systems:

ẋ = f(x, u; θ) (3.63)

y = h(x, u; θ) (3.64)
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where x ∈ R
n, y ∈ R

q, u ∈ R
m, θ ∈ Θ ⊂ R

p where Θ is given by:

Θ = {θ ∈ R
p |gi(θ) ≤ 0, i = 1, . . . , k1} (3.65)

The function f is locally Lipschitz in (x, u) and h is continuous in (x, u) for x ∈ D,

where D ⊂ R
n be a domain that contains the equilibrium state x = 0 that we define

by

D = {x ∈ R
n |gi(x) ≤ 0, i = k1 + 1, . . . , S} (3.66)

and for u ∈ D0 where D0 is a domain that contains u = 0.

First, consider the problem of calculating reachable sets for the system’s state

trajectory when it is driven with an input of energy ǫ. We follow the notation in [10],

and denote the set Ruǫ as the set of reachable states with inputs of energy ǫ for the

system (3.63–3.64):

Ruǫ ,

{

x(T )

∣
∣
∣
∣
(x, u) satisfy (3.63), x(0) = 0,

∫ T

0

uTu ≤ ǫ, T ≥ 0

}

. (3.67)

An estimate of the reachable set is the ǫ level set of an appropriate Lyapunov function

V (x), i.e., Ruǫ ⊂ {x ∈ R
n|V (x) ≤ ǫ}, which is contained in D:

Proposition 3.20 For the system given by (3.63), let there exist a polynomial func-

tion V (x) and a positive definite function φ(x) so that

1. V (x) − φ(x) ≥ 0

2. ∂V
∂x
f(x, u; θ) ≤ uTu for all x ∈ D and θ ∈ Θ

3. {V (x) ≤ ǫ} ⊂ D

Then the set V (x) ≤ ǫ contains the reachable set when the input satisfies ‖u‖2 < ǫ.

Proof. The first two conditions guarantee that V (x) is a Lyapunov function for the

unforced system. When u 6= 0, condition (2) becomes dV
dt

≤ uTu. Integrating this

from 0 to T , we get:

V (x(T )) − V (x(0)) ≤
∫ T

0

uTudt
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Since V (x(0)) = V (0) = 0, we have

V (x(T )) ≤
∫ T

0

uTudt ≤ ǫ

for every T ≥ 0 and every u such that
∫ T

0
uTudt ≤ ǫ. Condition (3) guarantees that

{x ∈ R
n|V (x) ≤ ǫ} is a subset of the set D, and therefore the set V (x) ≤ ǫ is an

estimate of the reachable set.

The conditions in Proposition 3.20 can be tested using the sum of squares de-

composition, by relaxing the non-negativity conditions to the existence of a sum of

squares decomposition. The third condition can be easily converted into a set empti-

ness argument which can be tested using positivstellensatz and the sum of squares

decomposition, as it was done in the case of obtaining estimates for the region of

attraction. This leads to the following Program:

Program 3.21 An algorithm to bound the reachable set with ǫ-energy inputs:

Maximize ǫ

and find a non-negative integer r, a polynomial V (x),

a positive definite function φ(x), sums of squares pi(x, θ), i = 1, . . . , S,

and sums of squares qi(x), i = k1, . . . , S

such that

V (x) − φ(x) is SOS

− ∂V

∂x
f(x, u) + uTu+

S∑

i=1

pi(x, θ)gi is SOS

‖x‖2r(V (x) − ǫ) +
S∑

i=k1

qi(x)gi is SOS

Then the reachable set is contained in the set V (x) ≤ ǫ.

Now that we can associate the energy of the external input to a region in the state-

space that is guaranteed to contain the state trajectory, we are ready to calculate the
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input to output gain (the L2 gain). This is the maximum ratio of output to input

energy, i.e.,

sup
‖u‖2 6=0

‖y‖2

‖u‖2

starting at x(0) = 0, where ‖u‖2
2 =

∫∞

0
uTudt. It can be estimated as follows:

Proposition 3.22 Consider the system given by (3.63–3.64). Let there exist a poly-

nomial V (x), a positive number γ and a positive definite function φ(x) such that

1. V (x) − φ(x) ≥ 0,

2. −∂V
∂x
f(x, u; θ) − yTy + γuTu ≥ 0

for x ∈ D and θ ∈ Θ. Then the L2 gain of the system given by (3.63–3.64) is less

than
√
γ.

Proof. Condition (2) above implies that

−dV
dt

− yTy + γuTu ≥ 0.

Integrating this from 0 to T , we get:

V (x(0)) − V (x(T )) ≥
∫ T

0

(yTy − γuTu)dt

From condition (1) and from the fact that x(0) = 0, we have that V (x(0)) = V (0) = 0

and V (x(T )) ≥ 0. Therefore,

∫ T

0

(yTy − γuTu)dt ≤ 0

and so ∫ T

0
yTydt

∫ T

0
uTudt

≤ γ. (3.68)

We conclude that
√
γ is an upper bound on the L2 gain.
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A similar sum of squares program can be formulated in this case, too. We will

demonstrate our results on a model of the short-period dynamics of an F/A-18 air-

craft, equipped with a nonlinear dynamic inversion control law.

Example 3.23 An uncertain model approximating the F/A-18 short-period dynamics

is derived in [64]:




q̇

∆α̇



 =




0 1

Iyy
Mα(α)unc

1 + cos (α)
mVo

Zq(α)unc
cos (α)
mVo

Zα(α)unc








q

∆α



+





1
Iyy
Mǫ(α)unc

cos (α)
mVo

Zǫ(α)unc



∆e.

(3.69)

The symbol q denotes the pitch rate, α the angle of attack, e the elevator deflection,

Iyy the moment of inertia and m the mass of the aircraft. The model is valid for an

equilibrium point characterized by the speed V0 and altitude h0 for a range of α. The

signals ∆α = α−αo and ∆e = e−eo represent deviations from the equilibrium values

αo and eo.

The terms Mα(α), . . . , Zǫ(α) are aerodynamic derivatives – polynomial functions

of α – obtained by data fitting of experimental data (usually obtained from wind tunnel

tests). Because of this, their value is, in general, uncertain. It is also dependent on

the flight conditions, etc. Therefore, we introduce weighted, additive uncertainty on

the aerodynamic coefficients for these moments and forces as shown below.

Mα(α)unc = Mα(α) + M̂αwMα
δMα

,

Mǫ(α)unc = Mǫ(α) + M̂ǫwMǫ
δMǫ

,

Zq(α)unc = Zq(α) + ẐqwZq
δZq

,

Zα(α)unc = Zα(α) + ẐαwZα
δZα

,

Zǫ(α)unc = Zǫ(α) + ẐǫwZǫ
δZǫ
.

The w’s are positive numbers and the constant terms M̂α, . . . , Ẑα, Ẑǫ are the average

moment or force over the specific range of α. The δ’s satisfy |δi| ≤ 1. Also, consider a

simple nonlinear dynamic inversion control law [21, 13] for the uncertain, short-period
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model of (3.69) in order to achieve pitch rate control:

∆e =

(
Mǫ(α)

Iyy

)−1(

v − Mα(α)

Iyy
∆α

)

. (3.70)

The external signal v is the commanded pitch acceleration which is provided according

to the proportional control law, v = 5(qcom − q). The resulting nonlinear controller

is valid for the whole of the flight envelope, thus avoiding the use of gain scheduling

techniques. Closing the loop, we have the following equation for the uncertain, closed-

loop system:




q̇

∆α̇



 = Acl(α, δ)




q

∆α



+Bcl(α, δ)qcom, (3.71)

where Acl(α, δ) =
(

Ainv(α, δ) − wq

[

Binv 02×1

])

, Bcl(α, δ) = wqBinv(α, δ), the vec-

tor δ is a collection of uncertain parameters, δ =
[

δmα
, δmǫ

, δzq
, δzα

, δzǫ

]T

, and:

Ainv(α, δ) =




0 A1,2

inv

A2,1
inv

A2,2
inv





A1,2
inv

=
M̂α

Iyy
wMα

δMα
− Mα(α)

Mǫ(α)

M̂ǫ

Iyy
wMǫ

δMǫ

A2,1
inv

= 1 + cs(α)

(

Zq(α)

mV0

+
Ẑq
mV0

wZq
δZq

)

A2,2
inv

= cs(α)

(

Zα(α)

mV0

+
Ẑα
mV0

wZα
δZα

)

− cs(α)
Mα(α)

Mǫ(α)

(

Zǫ(α)

mV0

+
Ẑǫ
mV0

wZǫ
δZǫ

)

Binv(α, δ) =




1 + M̂ǫ

Mǫ(α)
wMǫ

δMǫ

cs(α) Iyy

Mǫ(α)

(
Zǫ(α)
mV0

+ Ẑǫ

mV0
wZǫ

δZǫ

)





where cs(α) = (1 − 1
2
(∆α+ α0)

2) is an approximation to cos(α).

We wish to evaluate the input to state and input to output properties of this system.

The first task is to associate the L2 norm of the input qcom to a level set that contains

the state trajectory and it is contained in the region D, which in this case is given by
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Figure 3.8: Performance analysis of an F/A-18 aircraft model: input-to-state and
input-to-output gain estimates.

D = {∆α : −0.166 rad ≤ ∆α ≤ 0.166 rad}. This can be done using Program 3.21,

multiplying out the Lyapunov derivative criterion by the non-vanishing denominator

of the vector field to render the expression polynomial. The result, with different sizes

of uncertainty, is shown in Figure 3.8(a). For example, when w = 0.1 for any pitch

rate reference satisfying ||qcom||2 < 0.15, it is guaranteed that the angle of attack will

not deviate by more than 6 degrees from its value at the equilibrium.

After the reachable set is obtained, a bound on the input to output L2 gain can

be found using Proposition 3.22. The results, with different sizes of uncertainty are

shown in Figure 3.8(b). The results on the bound of the induced L2 norm must be

interpreted in conjunction with the previous results in Figure 3.8(a). The combination

of the results in Figures 3.8(a) and 3.8(b) (by ignoring the ∆α information) allows

us to plot the upper bound on the induced L2 norm as a function of the L2 norm of

the reference input and thus, verify the nonlinear behavior of the controller. This is

shown in Figure 3.9, where the degradation of performance with increasing uncertainty

is evident.
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Figure 3.9: Performance analysis of an F/A-18 aircraft model: input-to-output gain
estimates.

3.8 Conclusion

In this chapter, we have shown how the sum of squares decomposition and positivstel-

lensatz can be used to analyze systems described by Ordinary Differential Equations.

Generally speaking, this methodology is an extension of the well-studied Linear Ma-

trix Inequality techniques for the analysis of linear systems to nonlinear systems and

most of the results that we presented follow logically from this. We have seen how

robust stability analysis, obtaining estimates of the region of attraction, ensuring

the stability of switched systems and performance evaluation can be performed in a

unified manner.

In the next chapter we will investigate how the sum of squares decomposition

can be used to analyze a particular class of infinite dimensional systems: time-delay

systems.
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Chapter 4

Systems Described by Functional
Differential Equations >Arg�a m thr p�sh
 kak�a
Sìlwn

Delay is the mother of all evil
Solon

In this chapter, we concentrate on Functional Differential Equations, another class

of differential equations also known as time-delay systems. They are an important

modeling tool for systems that involve transport and propagation of data, such as

communication systems, but also for modeling maturation and growth in population

dynamics. The interest in time delay systems has been intensified recently [81], as they

provide the simplest adequate modeling framework for network congestion control for

the Internet, which is the topic of the next chapter. In general, the presence of delays

may induce undesirable effects such as instabilities and oscillations, so ignoring them

may lead to the wrong conclusions about the system’s properties.

In this chapter, we will develop algorithmic, Lyapunov-based methodologies for

analysis of time-delay systems, based on the sum of squares technique. We start

our investigation by considering the construction of Lyapunov-Krasovksii functionals

for linear systems, where the structure of the functional necessary and sufficient for

stability is known, but its construction is difficult, and we will show how the sum of

squares decomposition can be used to construct it. We will then turn to nonlinear

time delay systems and consider delay-independent and delay-dependent stability

analysis. Robust stability is also addressed, through the construction of parameterized
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Lyapunov functionals.

4.1 Introduction

Functional Differential Equations (FDEs) differ from Ordinary Differential Equations

(ODEs) in that the state belongs to an infinite dimensional space. Inevitably, initial

conditions for FDEs are functions on an interval; this is distinct from the initial

value problem for ODEs, where initial conditions are points in Euclidean space. The

stability question can still be answered through the construction of Lyapunov-type

certificates, i.e., functions of state that satisfy certain positivity conditions, as it

is done in the case of ODE systems. However, while for the case of ODEs these

certificates are functions, the natural certificate in the case of FDEs is a functional

owing to the fact that the state is a function itself. Let us begin our investigation

with some preliminaries.

For η ∈ [0,+∞), we denote C([−η, 0],Rn) the Banach space of continuous func-

tions mapping the interval [−η, 0] into R
n with the topology of uniform convergence.

For φ ∈ C([−η, 0],Rn), the norm of φ is defined as ‖φ‖ = maxθ∈[−η,0] |φ(θ)|, where

| · | is a norm in R
n. We denote Cγ the set defined by Cγ = {φ ∈ C|‖φ‖ < γ} with

γ > 0. For σ ∈ R, ρ ≥ 0, x ∈ C([σ− τ, σ+ρ],Rn), and t ∈ [σ, σ+ρ], we define xt ∈ C

as xt(θ) = x(t+ θ), θ ∈ [−τ, 0].

Assume Ω is a subset of R×C, f : Ω 7→ R
n is a given function, and ‘ ˙ ’ represents

the right-hand derivative. Then we call

ẋ(t) = f(t, xt) (4.1)

a retarded functional differential equation (RFDE) on Ω. For a given σ ∈ R, φ ∈ C,

we say x(σ, φ) is a solution to (4.1) with initial condition φ at σ, if there is a ρ > 0

such that x(σ, φ) is a solution of (4.1) on [σ − τ, σ + ρ) and xσ(σ, φ) = φ. Consider
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the class of autonomous delayed differential equations, i.e.,

ẋ(t) = f(xt). (4.2)

We say (4.2) is linear if f(xt) is linear in xt. In this chapter, we concentrate on au-

tonomous time-delay systems with discrete delays, so f(xt) = f(x(t), x(t−τ1), . . . , x(t−
τr)) where τi are the discrete delays in the system. Without loss of generality, we

assume that 0 is a steady-state for the system.

Just as in the case of ODEs, the existence and uniqueness of solutions of (4.2)

is guaranteed if f(φ) is continuous in φ in an open subset Ω of C. Continuous

dependence of the solution on initial conditions and parameters can also be proven

under certain assumptions. Here we concentrate on a few stability definitions of the

steady-state of (4.2), which we assume to be at 0.

Definition 4.1 The trivial solution of (4.2) is called

1. stable if for any ǫ > 0 there is a δ = δ(ǫ) such that |x(φ)| ≤ ǫ for any initial

condition φ ∈ Ω; otherwise it is termed unstable;

2. asymptotically stable if it is stable and there is a γ > 0 such that limt→∞ x(t;φ) =

0 for any initial condition φ ∈ Ωγ. The set of initial functions φ for which

limt→∞ x(t;φ) = 0 is called the domain of attraction of the trivial solution.

Establishing the stability of the steady-state is a rather difficult task if f is a

nonlinear function of (x(t), x(t−τ1), . . . , x(t−τr)). Even in the linear case, establishing

the stability boundary, i.e., the exact values of τi for which stability is retained is NP-

hard [26]. Just as in the case of nonlinear systems described by Ordinary Differential

Equations (ODEs), a Lyapunov argument can be formulated that proves useful when

many, incommensurate delays appear in the system.

Consider a continuous functional V : C → R and define:

V̇ (φ) = lim
h→0+

1

h
[V (xh(φ)) − V (φ)]
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the derivative of V along a solution of (4.2). Assume f : Ω → R
n is completely con-

tinuous and f(0) = 0. We then have the following Lyapunov-Krasovskii theorem [28]:

Theorem 4.2 For (4.2), assume f is completely continuous and f(0) = 0. Fur-

ther, assume there exist a(s) and b(s) nonnegative continuous, a(0) = b(0) = 0,

lims→∞ a(s) = +∞ and V : Ω → R continuous satisfying:

V (φ) ≥ a(|φ(0)|) in Ω

V̇ (φ) ≤ b(|φ(0)|) in Ω.

Then the solution x = 0 of (4.2) is stable, and every solution is bounded. If in

addition, b(s) > 0 for s > 0, then x = 0 is asymptotically stable.

We note that apart from the Lyapunov-Krasovskii theorem for stability analysis,

there is the Lyapunov-Razumikhin theorem which uses functions as the certificates

for stability instead of functionals. When using functionals, the Lyapunov-Krasovskii

theorem requires that the derivative along solutions decrease monotonically; such

a requirement makes finding a Lyapunov functional a rather difficult task, since the

space C is much more complicated than R
n, and one has no control of the relationship

of |x(t)| and |x(t+ θ)|, θ ∈ [−τ, 0]. Razumikhin’s theorem uses functions and studies

their rate of change along solutions.

Let V : R
n → R is a positive definite continuously differentiable function. Its

derivative along the solution of (4.2) takes the form:

V̇ (x(t)) =
∂V (x)

∂x
f(xt) (4.3)

Note that the right hand side is a functional, although V is a function. From the

definition of stability, we know that if xt is initially inside a ball of radius δ in C, then

for it to escape that ball, it has to reach the boundary at some time t∗. Therefore

|x(t∗)| = δ, and |x(t+ θ)| < δ for θ ∈ [−τ, 0), and d|x(t∗)|
dt

≥ 0. Razumikhin’s theorem

rules out this case.
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Theorem 4.3 Consider the functional differential equation given by (4.2), where f

maps bounded sets of C into bounded sets of R
n. Suppose u, v, w : R

+ 7→ R
+ are

continuous, nondecreasing functions, u(s), v(s) positive for s > 0, u(0) = 0, v(0) = 0

and v strictly increasing. If there is a continuous function V : R
n 7→ R such that:

1. u(‖x‖) ≤ V (x) ≤ v(‖x‖), x ∈ R
n

2. V̇ (x) ≤ −w(‖x‖) if V (x(t+ θ)) < p(V (x(t))), ∀ θ ∈ [−τ, 0]

Then the trivial solution of (4.2) is stable.

In this chapter, as in the previous one, we are interested in algorithmic method-

ologies for constructing Lyapunov-type certificates. The convexity in constructing

the Lyapunov functions in the previous chapter was important in this endeavor. Here

we have presented two Lyapunov theorems; it is easy to see that the conditions in

Theorem 4.2 are convex, whereas those in Theorem 4.3 are not because of the deriv-

ative condition and its connection to the Lyapunov certificate itself. The Lyapunov-

Krasovskii theorem can be used to construct simple Lyapunov functionals for linear

systems by solving a set of Linear Matrix Inequalities [37]. Under convexification

assumptions, the Lyapunov-Razuminkin criteria can also be tested by solving LMIs,

but are in general more conservative than the Lyapunov-Krasovskii ones [26].

LMIs were used for both delay-dependent and delay-independent stability analysis

of linear time-delay systems, a classification based on the persistence of stability as

the delay is increased. We say that a system is delay-independent stable, if, generally

speaking, the stability property is retained for all positive (finite) values of the delays

in the system, i.e., the system is robust with respect to the delay size. On the other

hand, we say that a system is delay-dependent stable if the stability is preserved

for some values of delays and is lost for some others. The existence of complete

quadratic Lyapunov-Krasovskii functionals necessary and sufficient for strong delay-

independent and delay-dependent stability of linear time-delay systems is well known

and so is their structure [78], but there is an inherent difficulty in constructing them.

They result in infinite-dimensional parameterized LMIs which are difficult to solve.
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In this chapter, we will use the sum of squares technique for the construction of

Lyapunov-Krasovskii functionals for linear and nonlinear time delay systems [58]. The

SOS decomposition will be used not only for solving the infinite dimensional LMIs

in the linear case, but also for constructing Lyapunov functionals with polynomial

kernels for nonlinear time delay systems.

4.2 Analysis of Linear Time-Delay Systems

A question that the reader may pose at this point, is why do we investigate the

stability analysis of linear time-delay systems when it is well known that the sum of

squares technique can answer similar questions about nonlinear systems in a unified

manner. The answer to this question is twofold. First, the conditions for stability

of linear time-delay systems are in the form of parameterized LMIs (PLMIs) which

are difficult to solve in general. We will take this opportunity to show how the sum

of squares technique can be used to solve PLMIs, and comment on how the sparsity

structure that appears naturally can be taken advantage of when solving the sum of

squares program. On the other hand, it is important to appreciate that we now seek

to construct functionals rather than functions, and the structure that one should

consider is not a polynomial parametrization, but a ‘function’ of polynomials; we

therefore need strong intuition in what structures we should choose. A lot is known

about ‘complete’ (i.e., necessary and sufficient for stability) Lyapunov structures for

linear time-delay systems, and therefore we investigate the stability of linear systems

first, which can help us choose structures for nonlinear systems later on.

Consider a linear instantiation of (4.2) with one discrete delay of the form:

ẋ(t) = A0x(t) + A1x(t− τ) = f(x(t), x(t− τ)) (4.4)

with an initial condition x0(θ) = φ(θ), θ ∈ [−τ, 0], φ ∈ C. The delay τ is assumed to

be constant, x(t) ∈ R
n and A0, A1 are known real constant matrices of appropriate

dimensions. The case in which the Ai are parameter-dependent can also be treated
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in a unified manner.

We have the following version of Theorem 4.2 for the asymptotic stability of the

above system.

Theorem 4.4 [26] The system described by Equation (4.4) is asymptotically stable

if there exists a bounded quadratic Lyapunov functional V (xt) such that for some

ǫ1 > 0, ǫ2 > 0 it satisfies:

V (xt) ≥ ǫ1‖x(t)‖2 (4.5)

and its derivative along the system trajectory satisfies

V̇ (xt) ≤ −ǫ2‖x(t)‖2. (4.6)

For the case of ODEs, it is well known that a Lyapunov function for the generic

linear ODE system of the form ẋ = Ax with A Hurwitz would be V = xTPx where

P is a positive definite matrix satisfying ATP +PA < 0. P can be found numerically

by solving this set of Linear Matrix Inequalities [10].

In the same spirit, the search for structures that are ‘complete’, i.e., produce

necessary and sufficient conditions for stability of linear time-delay systems has been

under research in the past. For example, for the case of what is called strong delay-

independent stability [7], the class of such Lyapunov functions has been completely

characterized:

Example 4.5 For system (4.4) a Lyapunov-Krasovskii candidate that would yield a

delay-independent condition is

V (xt) = x(t)TPx(t) +

∫ 0

−τ

x(t+ θ)TSx(t+ θ)dθ

Sufficient conditions on V (xt) to be positive definite are P > 0, S ≥ 0. For V̇ (xt) < 0

we require 


ATP + PA+ S PA1

AT1 P −S



 < 0,
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i.e., the conditions for stability (see Theorem 4.4) can be written as a Linear Matrix

Inequality (LMI) with P and S as the unknowns.

The Lyapunov functional used above may not suffice to prove stability for a gen-

eral delay-independent stable system, as the proposed structure is not adequate for the

stability proof. Instead, the Lyapunov structure in [6] has been proven to be ‘com-

plete’ for strong delay-independent stability in the case of linear time delay systems.

Denoting

zk(t) = [x(t), x(t− τ), . . . , x(t− (k − 1)τ)] (4.7)

the complete structure in the single delay case is

Vk(xt) = a1(zk(t)) +

∫ 0

−τ

b1(zk(t+ θ))dθ (4.8)

where a1 and b1 are quadratic polynomials in their arguments.

As far as delay-dependent stability is concerned, the structures of Lyapunov-

Krasovskii functionals that are necessary and sufficient for delay-dependent stability

are known, but difficult to construct. The complete Lyapunov functional [78, 26] has

the following form:

V (xt) = xT (t)Px(t) + xT (t)

∫ 0

−τ

P1(θ)x(t+ θ)dθ +

∫ 0

−τ

xT (t+ θ)P T
1 (θ)dθx(t)

+

∫ 0

−τ

∫ 0

−τ

xT (t+ θ)P2(θ, ξ)x(t+ ξ)dξdθ +

∫ 0

−τ

xT (t+ θ)Qx(t+ θ)dθ

(4.9)

with appropriate conditions on P, P1, P2, etc, to guarantee positivity of V . The con-

dition V̇ < 0 implies that the matrices P, P1, P2 have to satisfy a complicated system

of algebraic, ordinary and partial differential equations with appropriate boundary

conditions [78]. If one wanted to write the above conditions as LMI conditions, he

would get a set of infinite-dimensional LMIs for which there are not many known

algorithms for efficient computation. A rather complicated discretization scheme was

proposed in [26] to solve these PLMIs.
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In this chapter, we consider structures similar to the complete quadratic Lyapunov-

Krasovskii functional (4.9) for which we construct certificates in which the kernels

(matrices P1, P2, etc) are polynomials in the variables (θ, ξ). As we increase the order

of the polynomial kernels, the delay-dependent stability conditions obtained analyt-

ically (i.e., using frequency domain methods) can be approached. To proceed, we

use Theorem 4.4 and consider the following Lyapunov functional which resembles the

complete Lyapunov functional (4.9):

V (xt) = a0(x(t)) +

∫ 0

−τ

∫ 0

−τ

a1(θ, ξ, x(t), x(t+ θ), x(t+ ξ))dθdξ

+

∫ 0

−τ

∫ t

t+θ

a2(x(ζ))dζdθ +

∫ 0

−τ

∫ t

t+ξ

a3(x(ζ))dζdξ (4.10)

where by a1(θ, ξ, x(t), x(t + θ), x(t + ξ)), we mean a polynomial in θ, ξ, x(t), x(t + θ)

and x(t+ ξ) of bounded degree, which is quadratic with respect to x(t), x(t+ θ) and

x(t+ ξ) and allowed to be any order in θ and ξ. Such polynomials are called bipartite

and have a special structure [24]. The polynomials a0, a2 and a3 are quadratic in

their arguments. In other words,

a1(θ, ξ, x(t), x(t+ θ), x(t+ ξ)) =








x(t)

x(t+ θ)

x(t+ ξ)








T 






ã1(θ, ξ)















x(t)

x(t+ θ)

x(t+ ξ)








where ã1(θ, ξ) is a polynomial matrix in (θ, ξ). The time derivative of V (xt) along f

given by (4.4) is:

V̇ (xt) =
da0

dx(t)
f +

∫ 0

−τ
(a1(0, ξ, x(t), x(t), x(t + ξ)) − a1(−τ, ξ, x(t), x(t − τ), x(t + ξ))) dξ

+

∫ 0

−τ
(a1(θ, 0, x(t), x(t + θ), x(t)) − a1(θ,−τ, x(t), x(t + θ), x(t − τ))) dθ

+

∫ 0

−τ

∫ 0

−τ

(
∂a1

∂x(t)
f − ∂a1

∂θ
− ∂a1

∂ξ

)

dθdξ

+

∫ 0

−τ
(a2(x(t)) − a2(x(t + θ))) dθ +

∫ 0

−τ
(a3(x(t)) − a3(x(t + ξ))) dξ
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=
1

τ2

∫ 0

−τ











da0
dx(t)f + τ2 ∂a1

∂x(t)f − τ2 ∂a1
∂θ − τ2 ∂a1

∂ξ + τa2(x(t)) + τa3(x(t))

−τa3(x(t + ξ)) − τa1(−τ, ξ, x(t), x(t − τ), x(t + ξ))

+τa1(0, ξ, x(t), x(t), x(t + ξ)) + τa1(θ, 0, x(t), x(t + θ), x(t))

−τa2(x(t + θ)) − τa1(θ,−τ, x(t), x(t + θ), x(t − τ))











dθdξ

In order to ensure positive definiteness of V and negative definiteness of V̇ , we can

impose these conditions on the kernels of the integral expressions. Positivity of a

kernel of an integral is a conservative test for the positivity of the integral itself and

we will see later on how to relax this conservativeness.

By structuring the polynomial a1 and testing positivity of V as explained above,

it is easy to see that the resulting SOS conditions will be parameterized LMIs in

(θ, ξ). However, for notational simplicity, we will be working at the polynomial level

- This essentially means that PLMIs can be solved by turning them into polynomial

expressions and asking for the latter to be SOS.

Sufficient conditions for stability of the system can be found in the following

proposition:

Proposition 4.6 Consider the system given by Equation (4.4). Denote xτ = x(t−τ),
xθ = x(t+θ), xξ = x(t+ξ) and x = x(t) for brevity. Suppose we can find polynomials

a0(x) a1(θ, ξ, x, xθ, xξ), a2(x(ζ)) and a3(x(ζ)) and a positive constant ǫ such that the

following conditions hold:

1. a0(x) − ǫ‖x‖2 ≥ 0,

2. a1(θ, ξ, x, xθ, xξ) ≥ 0, ∀θ, ξ ∈ [−τ, 0],

3. a2(x(ζ)) ≥ 0, a3(x(ζ)) ≥ 0,

4. da0

dx
f+τ 2 ∂a1

∂x
f−τ 2 ∂a1

∂θ
−τ 2 ∂a1

∂ξ
+τa2(x)−τa2(xθ)+τa3(x)−τa3(xξ)+τa1(0, ξ, x, x, xξ)−

τa1(−τ, ξ, x, xτ , xξ) + τa1(θ, 0, x, xθ, x)− τa1(θ,−τ, x, xθ, xτ ) ≤ −ǫ‖x‖2, ∀θ, ξ ∈
[−τ, 0].

Then the system described by Equation (4.4) is asymptotically stable.
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Proof. The first three conditions impose that:

V (xt) ≥ ǫ‖x(t)‖2.

Similarly, the fourth condition, and the discussion before the statement of the propo-

sition imply that

V̇ (xt) ≤ −ǫ̃‖x(t)‖2

for some ǫ̃ > 0. Therefore, from the statement of Theorem 4.4, the system (4.4) is

asymptotically stable.

Condition (2) in the above proposition asks for a1 to be non-negative only for a

certain θ and ξ interval. To impose the conditions θ ∈ [−τ, 0], ξ ∈ [−τ, 0], we use a

process similar to the S-procedure, as it was discussed in Chapter 2. The polynomial

a1 is required to be non-negative only when g1 , θ(θ + τ) ≤ 0 and g2 , ξ(ξ + τ) ≤ 0

are satisfied, which can be tested as follows:

a1 + p1g1 + p2g2 ≥ 0 (4.11)

where p1 and p2 are sums of squares of degree 2 in x, xθ and xξ and of bounded degree

in θ and ξ. This will retain the bipartite structure of the whole expression, which will

be taken advantage of in the computation. The same can be done with Constraint

(4) in the above proposition.

In order to reduce conservativeness of the test – in that the positivity of the kernel

is too strong a condition for the positivity of the integral – we can introduce terms

with polynomial kernels that integrate to zero and add them to these expressions.
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Such terms would be, in condition (1):

∫ 0

−τ

∫ 0

−τ

b(θ, ξ, x(t), x(t+ θ), x(t+ ξ))dθdξ

,

∫ 0

−τ

∫ 0

−τ








x(t)

x(t+ θ)

x(t+ ξ)








T 






b11(θ, ξ) b12(ξ) b13(θ)

b12(ξ) b22(ξ) 0

b13(θ) 0 b33(θ)















x(t)

x(t+ θ)

x(t+ ξ)







dθdξ = 0 (4.12)

and similarly for the derivative condition, we have:

∫ 0

−τ

∫ 0

−τ

c(θ, ξ, x(t), x(t− τ), x(t+ θ), x(t+ ξ))dθdξ

,

∫ 0

−τ

∫ 0

−τ











x(t)

x(t− τ)

x(t+ θ)

x(t+ ξ)











T 









c11(θ, ξ) c12(θ, ξ) c13(ξ) c14(θ)

c12(θ, ξ) c22(θ, ξ) c23(ξ) c24(θ)

c13(ξ) c23(ξ) c33(ξ) 0

c14(θ) c24(θ) 0 c44(θ)





















x(t)

x(t− τ)

x(t+ θ)

x(t+ ξ)











dθdξ = 0

(4.13)

The computational complexity of this method increases as the order of the poly-

nomials a1 with respect to ξ and θ are increased. However, for reducing the size and

better conditioning of the SDP, one should take advantage of the bipartite structure

of a1 (i.e., the fact that even though a1 might be of degree n > 2, it is always of

degree 2 in all variables, but possibly ξ and θ). For more details on how sparsity

can be exploited, see [66] and the references therein. SOSTOOLS has routines that

exploit the sparse bipartite structure to reduce the size of the resulting LMIs.

The system with delay τ can therefore be tested for stability by solving the fol-
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lowing SOS program:

Find polynomials a0(x), a1(θ, ξ, x, xθ, xξ), a2(x(ζ)), a3(x(ζ)), ǫ > 0

and Sums of Squares qi,j(θ, ξ, x, xθ, xξ) for i, j = 1, 2

and polynomials b(θ, ξ, x, xθ, xξ) and c(θ, ξ, x, xτ , xθ, xξ) of the form (4.12) and (4.13)

such that

a0(x) − ǫ‖x‖2 is SOS,

a1(θ, ξ, x, xθ, xξ) +
2∑

j=1

q1,jgi(θ, ξ) + b(θ, ξ, x, xθ, xξ) is SOS,

a2(x(ζ)) is SOS, (4.14)

a3(x(ζ)) is SOS,







−da0

dx
f(xt) − τ 2 ∂a1

∂x
f(xt) + τ 2 ∂a1

∂θ
+ τ 2 ∂a1

∂ξ
− τa1(0, ξ, x, x, xξ)

+τa1(−τ, ξ, x, xτ , xξ) − τa1(θ, 0, x, xθ, x(t))

+τa1(θ,−τ, x(t), xθ, xτ ) − τa2(x) − τa3(x) + τa2(xθ) + τa3(xξ)

−ǫ‖x‖2 +
∑2

j=1 q2,jgi(θ, ξ) + c(θ, ξ, x, xτ , xθ, xξ)







is SOS.

∫ 0

−τ

∫ 0

−τ

b(θ, ξ, x(t), x(t+ θ), x(t+ ξ))dθdξ = 0

∫ 0

−τ

∫ 0

−τ

c(θ, ξ, x(t), x(t− τ), x(t+ θ), x(t+ ξ))dθdξ = 0

Note that the above procedure can be extended to handle systems with more than

one delay. A different Lyapunov structure may then be required.

We now present an example to investigate stability of a linear time delay system.

Example 4.7 The following two dimensional system that has been analyzed exten-

sively in the past, and the various LMI tests that were developed by researchers were



77

Order of a1 in θ and ξ 0 1 2 3 4 5 6
max τ 4.472 5.17 5.75 6.02 6.09 6.15 6.16

Table 4.1: Constructing a Lyapunov-Krasovksii functional of a linear time-delay sys-
tem.

tested against this example.

ẋ1(t) = −2x1(t) − x1(t− τ) , f1

ẋ2(t) = −0.9x2(t) − x1(t− τ) − x2(t− τ) , f2

The system is asymptotically stable for τ ∈ [0, 6.17]. The best bound on τ that can

be obtained without using the discretization method in [26] was τmax = 4.3588 in

[65]. Using V (xt) given by (4.1), we can test the maximum delays given in Table 4.1.

In this table, the values of τmax for different degree polynomials a1 in θ and ξ are

tabulated. We see that as the order of a1 with respect to θ and ξ is increased, better

delay sizes can be tested that approach the analytical one. We see that as the order

of the polynomials is increased, the LMI conditions we can obtain are better, but this

is at the expense of computational complexity.

Robust stability of linear time delay systems with respect to parametric uncer-

tainty can also be treated by constructing parameterized Lyapunov-Krasovskii func-

tionals. We will show how to do this for the case of nonlinear time-delay systems.

4.3 Nonlinear Time Delay Systems

In this section, we concentrate on delay-independent and delay-dependent stability

analysis of nonlinear time delay systems with or without parametric uncertainty.

These quite complex system descriptions can be treated using the sum of squares

technique in a unified way.

Previous attempts to analyze stability of nonlinear time delay systems centered on

manual constructions of Lyapunov-Razumikhin functions [38] and sometimes Lyapunov-

Krasovskii functionals. The main examples in this area were coming from population
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dynamics, but as we will see in the next chapter, a renewed interest was shown in

nonlinear functional differential equations because of research in network congestion

control.

4.3.1 Delay-Independent Stability

Delay-independent stability for nonlinear systems has been investigated deeply un-

der Lyapunov-Razumikhin conditions [45]. In [92], connections between appropriate

Lyapunov-Razumikhin conditions and Input-to-State Stability small-gain are made,

and relaxed Razumikhin-type conditions guaranteeing global asymptotic stability

are derived. In [7], a relationship between a criterion obtained using a Lyapunov-

Krasovskii functional and the delay-independent small gain theorem is established

for a special class of nonlinear time-delay systems. The delay-independent stabil-

ity property is conservative, in the sense that the system may still be stable in a

delay-dependent fashion if the condition of stability is violated, but it is used a lot in

controller synthesis for delay systems where the size of the delay is uncertain.

In general, finding the proper structure for a Lyapunov functional involves some

guessing, especially in the case of nonlinear systems. Building on our work from the

linear case, we consider the construction of polynomial (i.e., of any order instead of

just quadratic) kernel Lyapunov-Krasovskii functionals, by formulating relevant sum

of squares conditions. For delay-independent stability we will be using the following

two structures of Lyapunov functionals,

V1,k(xt) = a1(zk(t)) +

∫ 0

−τ

b1(zk(t+ θ))dθ (4.15)

V2(xt) = a2(x(t)) +

∫ 0

−τ

b2(x(t+ θ))dθ (4.16)

where zk is defined by (4.7) for a system with one discrete delay given by

ẋ(t) = f(x(t), x(t− τ)), (4.17)
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We assume that f is a nonlinear, polynomial function of its arguments, although

this is not a significant restriction as argued in the previous chapter. It is assumed

without any loss of generality that 0 is a steady-state of the system.

The functional V1,k is the functional given by Equation (4.8), but we will be using

it to analyze stability of nonlinear systems. In functional V2, we allow a2 and b2

to be polynomials of bounded degree instead of just quadratics. Related to V1,k we

introduce the following notation for delayed versions of f :

fjτ = f(xt−jτ )

where f0 = f . Stability tests for the two cases can be derived, and are summarized

in the following proposition:

Proposition 4.8 Consider a time-delay system described by Equation (4.17). The

steady-state x = 0 is globally delay-independent stable if

1. Case 1: There exist polynomial functions a1(zk(t)) and b1(zk(t)) and a positive

definite function ϕ1(zk(t)) such that:

(a) a1(zk(t)) − ϕ1(zk(t)) ≥ 0,

(b) b1(zk(t+ θ)) ≥ 0,

(c)
dV1,k

dt
=
∑k−1

j=0
∂a1

∂x(t−jτ)
fjτ + b1(zk(t)) − b1(zk(t− τ)) ≤ 0.

2. Case 2: There exist polynomial functions a2(x(t)) and b2(x(t+θ)) and a positive

definite function ϕ2(x(t)) such that

(a) a2(x(t)) − ϕ2(x(t)) ≥ 0,

(b) b2(x(t+ θ)) ≥ 0,

(c) dV2

dt
= ∂a2

∂x(t)
f + b2(x(t)) − b2(x(t− τ)) ≤ 0.

Proof. Consider first V1,k, and Case 1 above. The fist two constraints impose that

V1,k ≥ ϕ1(zk(t)) > 0, so the first Lyapunov-Krasovskii condition is satisfied. The
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derivative of V1,k along the trajectories of system (4.17) is:

V̇1,k =
k−1∑

j=0

∂a1

∂x(t− jτ)
fjτ + b1(zk(t)) − b1(zk(t− τ))

Under the third condition in Case 1, the above derivative is non-positive. Therefore, if

all three conditions are satisfied, the system given by (4.17) is stable; since the delay

size does not appear explicitly in the above conditions, then the system is stable,

independent of delay.

The proof for Case 2 is similar.

The conditions in the above proposition can be tested using the sum of squares

decomposition, by relaxing the ‘≥’ conditions to the existence of a sum of squares

decomposition, as it was done in the previous chapter.

Example 4.9 Consider the system:

ẋ1 = −x1(t) + x2
2(t− τ), ẋ2 = −x2(t)

This system is delay-independent stable, and we prove this by constructing a Lyapunov

functional of the form V2 (given by Equation (4.16)) with a2 and b2 polynomials of

bounded degree. Note that now x(t) = [x1(t), x2(t)]
T . When a2 and b2 are second

order polynomials, no certificate is found. However, when their order is increased, a

certificate of stability is obtained. In fact, the two conditions become

V (xt) = x2
2(t) +

3

4
x2

1(t) + (0.5x1(t) + x2
2(t))

2 +

∫ 0

−τ

x4
2(t+ θ)dθ.

−V̇ (xt) = (x1(t) + x2
2(t) − x2

2(t− τ))2 + 2x2
2(t) +

+x2
2(t)x

2
2(t− τ) + 2(x2

2(t) +
1

4
x1(t))

2 +
14

16
x1(t)

2.

To get this certificate, only a few SOSTOOLS commands are required.

Nonlinear systems may have more than one equilibria. In this case, we have to
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use the region Ω in Theorem 4.2. For this, we define the set:

Ω = {xt ∈ C : ‖xt‖ = sup
−τ≤θ≤0

|x(t+ θ)| ≤ γ}.

In particular, this means that |x(t + θ)| ≤ γ, ∀ θ ∈ [−τ, 0], where | · | is the ∞-

norm. This is a set of inequalities which can be adjoined using the extension to the

S-procedure that was introduced in Chapter 2. Suppose for concreteness that one

wants to use the Lyapunov functional V2(xt) given by (4.16) to prove stability for a

system described by (4.17) locally, i.e., under the additional constraint that

|x(t+ θ)| ≤ γ, ∀ θ. (4.18)

In particular this gives rise to the following conditions:

h1i := (xi(t) − γ)(xi(t) + γ) ≤ 0,

h2i := (xi(t− τ) − γ)(xi(t− τ) + γ) ≤ 0.

Then we have the following result, when we consider the Lyapunov functional (4.16):

Proposition 4.10 Let 0 be a steady state of system (4.17), and let there exist poly-

nomial functions a2(x(t)) and b2(x(t)), a positive definite function φ(x(t)) and non-

negative multipliers pi(x(t)), q1i(x(t), x(t− τ)) and q2i(x(t), x(t− τ)) such that:

1. a2(x(t)) − ϕ(x(t)) +
∑

i pih1i ≥ 0,

2. b2(x(t+ θ)) ≥ 0,

3. −dV
dt

+
∑

i(q1ih1i + q2ih2i) ≥ 0.

Then the steady state is delay-independent stable.

Proof. While x(t) satisfies h1i ≤ 0 and pi(x(t)) is a SOS, we have:

V (xt) = V0(x(t)) +

∫ 0

−τ

V1(x(t+ θ))dθ ≥ ϕ(x(t)) −
∑

i

pih1i > 0,
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and so the first Lyapunov condition is satisfied. The same is true for the derivative

condition, so the steady state (4.17) is delay-independent stable.

A similar proposition can be written using the structure (4.15). A sum of squares

program can be constructed, based on the above proposition. We will now look at

delay-dependent stability for these systems.

4.3.2 Delay-Dependent Stability

In this case the stability of the system changes as the delay, seen as a parameter,

varies. Therefore a different type of Lyapunov functionals has to be used to allow

for the delay size to appear explicitly in the stability conditions. For nonlinear time

delay systems analysis we can use functionals with structures resembling the complete

Lyapunov structure for delay-dependent stability (4.9) for linear systems. Consider

the following functional:

V (xt) = a0(x(t)) +

∫ 0

−τ

a1(θ, x(t), x(t+ θ))dθ +

∫ 0

−τ

∫ t

t+θ

a2(x(ζ))dζdθ (4.19)

for the system of the form (4.17). The first term is added to impose positive defi-

niteness of V and the last term is added for convenience, as it will be used in the

derivative condition to ‘complete the squares’. Sufficient conditions for the (global)

stability of the zero steady state can then be formulated as follows:

Proposition 4.11 Let 0 be a steady state for the system given by (4.17). Denote

x = x(t), xτ = x(t− τ), xθ = x(t+ θ). Let there exist polynomials a0(x), a1(θ, x, xθ)

and a2(x(ζ)) and a positive definite polynomial ϕ(x) such that:

1. a0(x) − ϕ(x) ≥ 0,

2. a1(θ, x, xθ) ≥ 0 for θ ∈ [−τ, 0],

3. a2(x(ζ)) ≥ 0,

4. τ ∂a1

∂x
f + da0

dx
f − τ ∂a1

∂θ
+ τa2(x) − τa2(xθ) + a1(0, x, x) − a1(−τ, x, xτ ) ≤ 0 for

θ ∈ [−τ, 0].
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Then the steady state 0 of the system given by (4.17) is globally stable.

Proof. Integrating the second and third conditions and adding the first condition,

we get that V (xt) ≥ ϕ(x(t)), where V (xt) is given by (4.19): the first Lyapunov

condition is satisfied. The time derivative of V (xt) is:

V̇ (xt) =
da0

dx(t)
f + a1(0, x(t), x(t)) − a1(−τ, x(t), x(t− τ))

+

∫ 0

−τ

(
∂a1

∂x(t)
f − ∂a1

∂θ
+ a2(x(t)) − a2(x(t+ θ))

)

dθ

=
1

τ

∫ 0

−τ







da0

dx(t)
f + τ ∂a1

∂x(t)
f − τ ∂a1

∂θ
+

+a1(0, x(t), x(t)) − a1(−τ, x(t), x(t− τ))+

+τa2(x(t)) − τa2(x(t+ θ))







dθ.

Condition (4) above states that the kernel of the above integral is nonpositive for

θ ∈ [−τ, 0]. Therefore (4.19) is a Lyapunov functional for the system (4.17) and the

zero steady state is stable. Since there is no constraint on the state-space, the result

holds globally.

This proposition can be used in a similar way as in the delay-independent and

linear delay-dependent cases. The condition θ ∈ [−τ, 0] is adjoined using sum of

squares multipliers of bounded degree in all variables. Similarly, we construct terms

(4.12) and (4.13) that can be used to reduce the conservativeness of relaxing the

positivity of the functional to the positivity of its kernel.

These steps result in four SOS conditions in a relevant sum of squares programme

which can be solved using SOSTOOLS [75]. Different Lyapunov-Krasovskii structures

can also be used which may have better properties.

Remark 4.12 As remarked earlier, when dealing with nonlinear systems with mul-

tiple equilibria or with natural constraints on their state-space, it is useful to use a

restricted region for which stability is to be proven, in the same way that it was done

in the delay-independent case. We will still need to specify Ω = {xt ∈ C : ‖xt‖ ≤ γ},
and adjoin the relevant conditions on x(t), x(t− τ) and x(t+ θ) ∀ θ ∈ [−τ, 0] to the

relevant kernels of the Lyapunov functionals using the extended S-procedure, in much
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the same way that the conditions θ ∈ [−τ, 0] can be adjoined in Conditions (2) and

(4) of Proposition 4.11.

4.3.3 Robust Stability Analysis Under Parametric Uncer-

tainty

Robust stability under parametric uncertainty can be treated in a unified way. Con-

sider a time-delay system of the form (4.2) with an uncertain parameter p:

ż(t) = f(zt, p), (4.20)

where p ∈ P , where P is given by

P = {p ∈ R
m |qi(p) ≥ 0, i = 1, . . . , N} , (4.21)

i.e., the uncertainty set is captured by certain inequalities. Let x(t) = z(t)−z0. Then

we have:

ẋ(t) = f(xt + z0, p) (4.22)

0 = f(z0, p) (4.23)

which has the steady state x∗ at the origin. The stability of this system (which

has a DAE form) can be handled by constructing a Parameter Dependent Lyapunov

functional. Consider the functional (modified from (4.19)):

V (xt, p) = a0(x(t), p) +

∫ 0

−τ

a1(θ, x(t), x(t+ θ), p)dθ +

∫ 0

−τ

∫ t

t+θ

a2(x(ζ), p)dζdθ.

(4.24)

Then we have the following proposition:

Proposition 4.13 Consider the system given by (4.22), where p ∈ P as defined

by (4.21). Denote x = x(t), xτ = x(t − τ), xθ = x(t + θ). Suppose that there exist
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polynomials a0(x, p), a1(θ, x, xθ, p) and a2(x(ζ), p) and a positive definite function ϕ(x)

such that the following conditions hold for p ∈ P :

1. a0(x, p) − ϕ(x) ≥ 0,

2. a1(θ, x, xθ, p) ≥ 0 ∀ θ ∈ [−τ, 0],

3. a2(x(ζ), p) ≥ 0,

4. a1(0, x, x, p)−a1(−τ, x, xτ , p)+ da0

dx(t)
f+τa2(x, p)−τa2(xθ, p)+τ

∂a1

∂x
f−τ ∂a1

∂θ
≤ 0,

∀ θ ∈ [−τ, 0] and when (4.23) is satisfied.

Then the steady state 0 of the system given by (4.22–4.23) is robustly globally uni-

formly stable for all p ∈ P .

The proof is similar to the one given earlier. It is based on functional (4.24) and is

omitted. The equality constraints given by (4.23) that may arise during the transfor-

mation process can be adjoined using appropriate polynomial multipliers, as explained

in Chapter 3. State-space constraints for local stability analysis can also be adjoined

in a unified manner.

4.4 Stability Analysis of a Predator-Prey Model

A simple model of predator-prey interactions is

ẋ = bx− k1xy, ẏ = k2xy − σy,

where x and y are the prey and predator populations, b is the rate of increase of

prey, k1 and k2 are the coefficients of the effect of predation on x and y and σ is

the death rate of y. The cause of death of the prey is due to predation alone, and

the growth of the predator population has as the only limitation the number of prey.

These equations give rise to Lotka-Volterra predator-prey cycles, but the model is

not biologically meaningful because it is conservative, giving rise to a family of closed

trajectories rather than a single limit cycle [48].
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The above equations describe ideal populations that can react instantaneously

to any change in the environment. In real populations, this change comes with a

delay that represents maturation of the predator population. A more realistic set of

equations is [101]:

ẋ(t) = x(t)[b− ax(t) − k1y(t)],

ẏ(t) = −σy(t) + k2x(t− τ)y(t− τ),

where −ax(t)2 limits the growth of the prey, and τ ≥ 0 is a constant capturing the

average period between death of prey and birth of a subsequent number of predators.

Assumption 4.14 a, b, k1, k2 and σ are positive.

The equilibria (x∗, y∗) of the above system are:

(x∗, y∗) = (0, 0), (x∗, y∗) = (b/a, 0),

(x∗, y∗) =

(
σ

k2

,
bk2 − aσ

k1k2

)

. (4.25)

We are only interested in the steady state given by (4.25).

Assumption 4.15 (bk2 − aσ) > 0.

Assumption 4.15 ensures that the steady state (4.25) is in the first quadrant. We now

shift the coordinates to (x1, x2) = (x− σ
k2
, y − bk2−aσ

k1k2
) to get:

ẋ1(t) =

[

x1(t) +
σ

k2

]

[−ax1(t) − k1x2(t)] (4.26)

ẋ2(t) = −σx2(t) + σx2(t− τ) +
bk2 − aσ

k1

x1(t− τ) + k2x1(t− τ)x2(t− τ) (4.27)

We can linearize the above system about (0, 0) to get:

ẋ1(t) =
σ

k2

[−ax1(t) − k1x2(t)] (4.28)

ẋ2(t) = −σx2(t) + σx2(t− τ) +
bk2 − aσ

k1

x1(t− τ) (4.29)
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For the linearised system, we have the following result:

Proposition 4.16 Consider the system (4.28–4.29) under the assumptions (4.14,4.15).

Then if (bk2 − 3aσ) < 0, the zero steady state is stable independent of the delay. If

(bk2 − 3aσ) > 0, the zero steady state is stable if the delay satisfies τ < τ ∗ and is

unstable otherwise, where τ ∗ is given by:

τ ∗ =
1

ω
atan

[

ω
(aσ2 − ωk2)k2 − σ(2aσ + bk2)(k2 + a)

k2σω2(k2 + a) + (2aσ − bk2)(aσ2 − ωk2)

]

and ω solves

ω4 +
a2σ2

k2
2

ω2 +
σ2

k2
2

(bk2 − aσ)(3aσ − bk2) = 0.

Proof. In the absence of delay, and under the two assumptions, the system is as-

ymptotically stable. Substituting s = jω in the characteristic equation and separating

real and imaginary parts we get:

−ω2 +
aσ2

k2

= σω sin(ωτ) + σ

(
2aσ

k2

− b

)

cos(ωτ)

σ

[

1 +
a

k2

]

ω = σω cos(ωτ) − σ

(
2aσ

k2

− b

)

sin(ωτ)

Squaring the two equations and adding we get:

ω4 +
a2σ2

k2
2

ω2 +
σ2

k2
2

(bk2 − aσ)(3aσ − bk2) = 0. (4.30)

Denoting p1 = a2σ2

k2
2

and p2 = σ2

k2
2
(bk2 − aσ)(3aσ − bk2), the roots of this equation are:

ω2 = −p1

2
±
√

p2
1 − 4p2

2
. (4.31)

Under assumption 4.15, if (bk2−3aσ) < 0 (i.e p2 > 0), then there are no real solutions

to (4.30). Since the steady state is stable when the delay is zero, and there is no ω

for which poles cross to the RHP, we conclude that (4.28–4.29) is delay-independent

stable.

Under assumption 4.15 and (bk2 − 3aσ) > 0, then p2 < 0 and one of the two
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roots of (4.31) is positive and the other one is negative. Therefore, the poles cross

the imaginary axis at only one ω. There is no possibility for stability reversal. If ω

is the solution to the above equation, then at τ = τ ∗ given in the statement of the

Proposition a Hopf bifurcation occurs; the system is stable for τ < τ ∗ and unstable

for τ > τ ∗.

We now analyze the nonlinear description of the system (4.26–4.27) using the

methodology that was developed in the previous sections. We choose as nominal

values for the parameters σ = 10, a = 1, k1 = 1, and k2 = 3.

4.4.1 Delay-Independent Stability Analysis

The system (4.26–4.27) has many equilibria, and so we need to define a region around

the zero steady state to obtain a stability condition (this is the region Ω in Theorem

4.2). We let

|x1t
| ≤ γ1x

∗, |x2t
| ≤ γ2y

∗, (4.32)

where the steady state (x∗, y∗) is given by (4.25). We consider b to be a parameter

in the problem. From Proposition 4.16, the linear version of this system is delay-

independent stable when aσ
k2

< b < 3aσ
k2

. For the given values of a, σ and k2, the

system is delay-independent stable for 10/3 < b < 10. For the purpose of calculating

(x∗, y∗), we use a value of b = 20/3. The steady state (0, 0) of system (4.26–4.27)

does not move as b changes; however, the other two equilibria cross through the region

defined by (4.32). If we choose γ1 = γ2 = 0.1, then no other steady state enters this

region for 11/3 < b < 10.

We consider the following Lyapunov structure:

V (xt) = a0(x1(t), x2(t), b) +

∫ 0

−τ

a1(x1(t+ θ), x2(t+ θ), b)dθ.

We use a variant of Proposition 4.13 to obtain parameter regions for which robust

delay-independent stability of the origin can be proven. When the order of a0 is second

order and a1 is 4th order, we can construct V (xt) for 4.56 ≤ b ≤ 7.11. When they
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are 4th order and 6th order respectively, then this region becomes 3.67 ≤ b ≤ 9.95,

which is essentially the full interval.

4.4.2 Delay-Dependent Stability Analysis

Now we will analyze the system in the delay-dependent parameter regime for b = 15.

Given these parameters, τ ∗ = 0.0541. The system has several equilibria and so

we use the same constraints on x1 and x2 on the state-space given by (4.32) with

γ1 = γ2 = 0.1.

We can construct the Lyapunov functional V (xt) given by (4.19) with a1 0th order

with respect to θ, and 2nd order with respect to the rest of the variables for τ = 0.04.

When a1 is quartic with respect to all variables but θ (which is kept at 0 order), then

we can construct this V (xt) for τ = 0.053. The corresponding SDP is bigger as the

functional is more complicated, but we see that stability for a delay size close to the

stability boundary can be tested.

4.5 Conclusion

In this chapter, we presented a methodology to construct Lyapunov-Krasovskii func-

tionals for time delay systems based on the sum of squares decomposition. As far as

linear systems are concerned, this is tantamount to solving PLMIs using SOS. For

nonlinear systems, the construction is entirely algorithmic and is done using the same

tools.

The above methods can be easily extended to systems with many delays, either

commensurate or not. Still a judicious choice for the structure of the Lyapunov

functional would be required. Functional differential equations of neutral type can

also be treated in a unified way.

In the next chapter, we will consider the global stability of an arbitrary intercon-

nection of systems described by FDEs in the framework of network congestion control

for the Internet.
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This chapter comes to complete the right hand side of the picture shown in Fig-

ure 1.1. We illustrate how scalable stability of ODE and FDE system interconnections

can be guaranteed for the case of network congestion control for the Internet.

The need for congestion control emerged in the mid-1980s, when a phenomenon

known as ‘congestion collapse’ resulted in unreliable file transfer. In 1988, Jacob-

son [31] proposed a congestion control scheme for the Internet, an admittedly inge-

nious design. The shortcomings of this scheme and its successors such as TCP Reno

and Vegas have only recently become apparent: they are not scalable to arbitrary

networks with very large capacities and time-delays. The technological advances –

reflected in the introduction of high bandwidth-delay product links – have revealed

that the thus far functional scheme unfortunately results in under-utilization of the

network’s resources, and theoretical analyses have shown the appearance of instabil-

ities in the transmission rates.

The need for designing new network congestion control schemes for the Internet

has steered the development of a mathematically rigorous methodological framework
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in which the rather complicated design requirements can be accounted for to facilitate

design. In this chapter, we review briefly the methodological framework that was

developed, as well as how decentralized network congestion control schemes could

be designed to be functional, irrespective of the size of the network and the links’

capacities. The design is performed at two levels: first, the problem of sharing the

available bandwidth in a fair and efficient way is formulated as a resource allocation

program, the optimal solution of which is then the desired equilibrium point of the

overall system; thereafter, the task is to choose the dynamics of the sources and links

in the network so as to drive the system’s trajectories to that equilibrium (hence to

the optimum) in a scalably stable way.

This design recipe yielded several congestion control schemes, one of which is Fast

AQM Scalable TCP (FAST). The desired scalability properties, including scalability

with respect to the size of the delays in the network were proven for the delayed but

linearized system. This chapter is devoted to the solution of one of the most intriguing

problems: that of proving scalable nonlinear stability in the presence of heterogeneous

delays. The way we provide a proof of this property is through the construction of

a Lyapunov-Krasovskii functional, a tool that was presented in the previous chapter.

The proof is constructive and can be extended to other network congestion control

schemes such as primal schemes, as we will see in the sequel. This construction would

not be possible if the structure of the system was not taken into account.

5.1 Introduction

Internet congestion control [89] is a distributed algorithm to allocate available re-

sources to competing sources so as to avoid congestion collapse by ensuring that link

capacities are not exceeded. This problem can be formulated as a fully centralized

resource allocation program which however can be decomposed into a primal and a

dual problem by introducing duality-based price signals [34]. In this manner, conges-

tion signals seen as dual variables are generated at the Active Queue Management

(AQM) part of the algorithm implemented at the links; the congestion measure is
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usually based on either delay or packet loss. On the other hand, the source rates can

be thought of as the primal variables which are adapted at the Transmission Control

Protocol (TCP) part of the algorithm, according to the size of the price signals. The

AQM and TCP algorithms have dynamics that aim to drive the congestion signals

and the source rates exactly at, or approximately close to, the optimum point of the

distributed resource allocation optimization problem [41].

The structure of the dynamics that are chosen for TCP and AQM are usually

based on a gradient algorithm to guarantee convergence [34]; when the delays that

are ubiquitously present in the system are ignored, a Lyapunov function argument can

be used to verify the global attractivity of the optimal point for arbitrary network

sizes. It is nonetheless appreciated that the simplest adequate model for network

congestion control is in the form of nonlinear deterministic delay-differential equa-

tions [85, 44, 54]: delays cannot be ignored as in general, their presence results in

degradation of performance or even instabilities. Indeed, stability is an important

measure of the functionality of the system. Without stability, transmission rates os-

cillate, which could result in a reduction in the link utilization; ‘mice’ packets, i.e.,

short-lived small packets on which congestion control is difficult get dropped; and

predictability of the behavior of the system is lost. On the other hand, the introduc-

tion of increasing bandwidth-delay product links in the network calls for protocols

whose performance properties scale with the network size, the Round Trip Time and

the link capacities [56].

It is unfortunate that the tools for analysis of the system behavior at the nonlinear

model level with heterogeneous delays do not scale well with the problem size. In

fact, most scalable analysis procedures in network congestion control center on the

investigation of the stability properties of the linearizations of the nonlinear equations,

using for example, the generalized Nyquist criterion developed in [97] the result in [56],

and [33].

There are significant results on the stability analysis of nonlinear Functional Dif-

ferential Equations (FDEs), also known as Time Delay Systems (TDSs) [28, 36]. The

motivating examples have predominantly come from population dynamics – an area
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in which the effect of delay cannot be neglected [38]. This and other research areas

have motivated the development of hand-crafted methodologies for specific classes of

time delay systems at the nonlinear level. Lyapunov-based constructions have been

used in Internet Congestion Control [99, 100, 17, 46], but also, new tools have been

introduced such as passivity theory formulations [102]. The analysis procedure that

is usually followed is centered on simple network topologies. The difficulty lies in the

construction of the Lyapunov certificates, and the conservativeness of the results is

usually due to their type: Lyapunov-Razumikhin functions or Lyapunov-Krasovskii

functionals.

In order to obtain a scalable proof methodology for network congestion control

schemes, one has to take advantage of the structure of the system and construct

Lyapunov type certificates manually. In this chapter, we will describe a methodology

based on Lyapunov-Krasovskii functionals to prove stability of so-called ‘primal’ and

‘dual’ nonlinear congestion control schemes with delays, making particular reference

to Fast AQM Scalable TCP (FAST), a network congestion control scheme that was

developed in [56]. We will build up the methodology starting from the linear case

with delays and generalizing to the full nonlinear system with/without delays. The

stability result we obtain holds for arbitrary network topologies [59]. It is, however,

restricted to the structure of the Lyapunov functional constructed and is therefore

conservative compared to the result from the linearization.

We then turn to a general framework of primal network congestion control schemes,

and show that our result extends to that case in a unified way. However, when specific,

simple topologies and non-structured congestion control schemes are investigated, the

stability result can be obtained by resorting to the methodology presented in the pre-

vious chapter, using the sum of squares decomposition and SOSTOOLS. We present

an example at the end of this chapter that illustrates how this can be done.
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5.2 Problem Formulation

Consider a network of L communication links shared by S sources. For this network,

we define a routing matrix R by:

Rli =







1 if source i uses link l

0 otherwise
. (5.1)

Each source i has an associated transmission rate xi. All sources whose flow passes

through resource l contribute to the aggregate rate yl for resource l, the rates being

added with some forward time delay τ fi,l. Hence, we have:

yl(t) =
S∑

i=1

Rlixi(t− τ fi,l) , rf (xi, τ
f
i,l) (5.2)

The resources l react to the aggregate rate yl by setting congestion information pl,

the price at resource l. This is the Active Queue Management part of the picture

that is to be designed. The prices of all the links that source i uses are aggregated to

form qi, the aggregate price for source i, again through a delay τ bi,l:

qi(t) =
L∑

l=1

Rlipl(t− τ bi,l) , rb(pl, τ
b
i,l) (5.3)

The prices qi can then be used to set the rate of source i, xi, which completes the

picture shown in Figure 5.1. The forward and backward delays can be combined to

yield the Round Trip Time (RTT):

τi = τ fi,l + τ bi,l, ∀ l (5.4)

The capacity of link l is given by cl. The functions f and g shown in Figure 5.1 are

the source law and the link law, respectively. This setting is universal, and the only

information missing is the structure of the two control laws that describe how the ith
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ṗl = gl(yl, pl, cl)

Figure 5.1: The Internet as an interconnection of sources and links through delays.

source reacts to the price signal qi that it sees

ẋi = fi(xi, qi, τi), (5.5)

and how the lth router reacts to the aggregate rate yl it observes

ṗl = gl(yl, pl, cl). (5.6)

Here fi models TCP algorithms (e.g., Reno or Vegas) and gl models AQM algorithms

(e.g., RED, REM).

In order to understand the meaning of the variables pl, let us consider the prop-

erties of the equilibrium of this system, which we assume is given by the vector

quantities x∗, y∗, p∗, q∗. We have the following relationships from (5.2) and (5.3):

y∗ = Rx∗, q∗ = RTp∗.

We now assume that as the aggregate price signal at equilibrium q∗i increases, then

the demanded transmission rate at the source should decrease, i.e., the two are related

by

x∗i = Fi(q
∗
i ),

where Fi is a positive, strictly monotone decreasing function, which is the solution of

fi(x
∗
i , q

∗
i ) = 0 where fi is given by Equation (5.5). Alternatively, one can think that
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the sources have a certain utility if allowed a certain transmission rate, the utility

satisfying:

U ′
i(xi) = F−1

i (xi).

This relationship implies that Ui(xi) is a monotonically increasing strictly concave

function. Under these assumptions, the equilibrium rate x∗i for each source solves

max
xi≥0

Ui(xi) − xiq
∗
i , (5.7)

which means that the sources are trying to maximize their profit: maximize their

utility, and at the same time, minimize the cost of having high rates; q∗i can be

thought of as the price per unit flow that the sources have to pay. Different protocols

correspond to different Utility functions Ui, and to different dynamic laws (5.5–5.6)

that attempt in a decentralized way to reach the appropriate equilibrium. For this

reason this framework allows comparability of different designs.

The role of prices is to coordinate the actions of individual sources so as to align

individual optimality with social optimality, i.e., to ensure that the solution of (5.7)

also solves the network resource allocation problem

max
xi≥0

S∑

i=1

Ui(xi)

s.t.
S∑

i=1

Rlixi ≤ cl, ∀ l = 1, . . . , L, (5.8)

where the inequality constraint is the natural limitation that the sum of all transmis-

sion rates through link l has to be less than or equal to its capacity. The uniqueness

of the optimal solution to the above problem is guaranteed since the Ui are strictly

concave functions and the program is convex. The above optimization problem can-

not be solved in a decentralized way, as the source rates are coupled in the shared

links through the inequality constraints and solving for x∗ would require cooperation

among possibly all sources. To solve it in a distributed manner over a large network,

we can decompose it into a primal problem that the sources are trying to solve and
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a dual that the links are trying to solve, regarding the source rates xi as primal vari-

ables and the prices set by the links pl as the dual variables. Specifically, consider

the Lagrangian for program (5.8):

L(x, p) =
∑

i

Ui(xi) −
∑

l

pl(yl − cl)

=
∑

i

(

Ui(xi) − xi
∑

l

Rlipl

)

+
∑

l

plcl,

where pl ≥ 0. The dual problem can then be written as

min
pl≥0

max
xi≥0

∑

i

(

Ui(xi) − xi
∑

l

Rlipl

)

+
∑

l

plcl.

By the properties of the dual solution and the fact that the programs are convex,

at the optimum p∗ the xi that maximizes the individual profit (5.7) is the same as

the unique solution to the network problem (5.8). If the equilibrium prices p∗ are

made to align with the Lagrange multipliers, the individual optima – computed in a

decentralized fashion by the sources – will align with the global optima of (5.8).

The dynamical system defined by (5.5–5.6) with delays ignored aims to drive the

system close to or exactly at the optimal point (x∗, p∗), using well-known gradient

algorithms. For example, from the Karush-Kuhn-Tucker conditions, the solution of

the dual problem satisfies:

xi − U
′−1
i (qi) = 0

pl(yl − cl) = 0

and pl ≥ 0, as the dual variables are non-negative. To obtain the pl and xi, one can

use the following algorithm at each link, which is a gradient algorithm:

ṗl(t) =

[
yl − cl
cl

]+

pl

, [gl]
+
pl
, (5.9)

xi = U ′−1
i (qi), (5.10)
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where [f(x)]+x means

[f(x)]+x =







f(x) x > 0

max{(f(x), 0)}, x = 0
.

After [34], it is customary to call ‘dual’ the congestion control scheme with dynamics

at the links and a static source law - such as the one shown above; and ‘primal’ the

congestion control scheme with dynamics at the sources and a static link law. If both

source and link laws have dynamics, the scheme is termed ‘primal-dual’.

For both the dual and the primal algorithms, the stability properties of the un-

delayed systems can be obtained by constructing Lyapunov functions that scale with

the system size based on the barrier functions of the optimization strategies. Put

another way, the gradient algorithm results in a weighted gradient system, i.e., for

the primal case, there is a potential function V so that ẋi = −κi ∂V∂xi
[89]. Taking

advantage of this structure, a scalable stability proof can be obtained.

When delays are introduced, the analysis becomes more complicated, and a scal-

able proof methodology for analysis of such congestion control schemes is difficult in

the nonlinear case. The generalized Nyquist criterion can be used for the lineariza-

tion of these systems, as it is scalable in the case of congestion control as explained

in [97]. Here we will show how the analysis of congestion control schemes captured by

nonlinear delay-differential equations can be performed in a scalable manner, treating

both the presence of heterogeneous delays in the system and the nonlinearities explic-

itly. The tools we will be using are Lyapunov-Krasovski functionals [36], which are

the relevant Lyapunov-based tools for functional differential equations as Lyapunov

functions are for ordinary differential equations. We will set them equal to the Lya-

punov functions used in the undelayed systems, plus some simple integral terms. We

will illustrate how the special structure of the system helps in the scalability of the

Lyapunov certificate for the linear case, and then concentrate in the nonlinear case

for which sufficient conditions for arbitrary topologies will be derived. The analy-

sis is performed for a dual algorithm and a primal algorithm, and scalable stability
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conditions are obtained.

The routing matrix R is assumed fixed and full row rank. This means that there

are no algebraic constraints between link flows, i.e., they can vary independently by

choice of source flows xi. As a consequence, equilibrium prices are uniquely deter-

mined.

5.3 Dual Congestion Control Schemes

Combining (5.1–5.4) and (5.9–5.10), the system has the following closed loop dynam-

ics:

ṗl(t) =

[
S∑

i=1

Rli

cl
U ′−1
i

(
L∑

m=1

Rmipm(t− τ fi,l − τ bi,m)

)

− 1

]+

pl

(5.11)

We also denote h = max{i,l,m:Rmi=Rli=1}{τ fi,l + τ bi,m}, and Cn = C([−h, 0],Rn) the

Banach space of continuous functions mapping [−h, 0] into R
n with the topology of

uniform convergence. We assume that the initial condition is non-negative, i.e.,

p(θ) = φ(θ) ≥ 0, θ ∈ [−h, 0], φ ∈ CL.

This guarantees that the solutions to (5.11) satisfy pl(t) ≥ 0 for all time as a result

of the projection nonlinearity.

A particular congestion control scheme that we will be investigating is FAST, in

which the sources are assumed to have the following Utility function:

Ui(xi) =
τiMi

αi
xi

(

1 − log
xi
xi

)

, (5.12)

where Mi =
∑L

l=1Rli, αi are (positive) source gains and xi are source constants. Since

xi = U
′−1
i (qi), we have:

xi = xie
−

αiqi
Miτi

which implies that xi ≤ xi, since qi ≥ 0.

To investigate the linearization of (5.11), we assume that R refers to bottleneck
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links only, and for non-bottleneck links pl = 0. This gives the system

ṗl(t) =
S∑

i=1

L∑

m=1

RliRmi

U ′′
i (x∗i )c̃l

pm(t− τ fi,l − τ bi,m), (5.13)

where c̃l is a target capacity set just below the true capacity cl of link l and ∗ denotes

equilibrium quantities. For this system, the following result is known:

Theorem 5.1 [56] Let the matrix R that denotes the routing matrix in relation to

the bottleneck links be full row rank. Then the system given by (5.13) is asymptotically

stable if

1

c̃l

S∑

i=1

RliMiτi
|U ′′

i (x∗i )|
<
π

2
. (5.14)

In particular, for the Utility function given by (5.12), the above condition reduces to

αi ≤ π/2, which is a decentralized condition on the sources’ gains.

In the case of FAST, there are a number of undetermined parameters, xi. We can

choose

xi = x∗i e
αiq∗i
Miτi = x∗i e

αi
L
m=1 Rmip∗m

Miτi (5.15)

so that y∗l =
∑S

i=1Rlix
∗
i . Also at the equilibrium y∗l = cl (or p∗l = 0 and y∗l < cl), we

therefore have
S∑

i=1

Rlix
∗
i ≤ cl. (5.16)

If we wanted to impose fairness so that the sources would have the same rates around

some nominal price value q∗i , then the x∗i would be equal to each other.

5.3.1 Stability of the Linearization

In this section, we aim to obtain a Lyapunov-based construction to prove a result

similar to Theorem 5.1. It is true that frequency domain methodologies many times

result in more accurate descriptions of the stability boundaries and are scalable for

the special case of Internet Congestion Control [56]. Lyapunov-based arguments are

more difficult to make, and many times are more conservative, but prove useful when

considering the stability of nonlinear time-delay systems. In order to construct a
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scalable Lyapunov-Krasovskii functional, we take advantage of the structure of the

system, as will be evident in the proof of the theorem which is constructive. Important

in this quest is the following undelayed version of (5.13):

ṗl(t) =
S∑

i=1

L∑

m=1

RliRmi

U ′′
i (x∗i )c̃l

pm(t) (5.17)

Theorem 5.2 Let the matrix R that denotes the routing matrix in relation to the

bottleneck links be full row rank. Then the system given by (5.13) is asymptotically

stable if

1

c̃l

S∑

i=1

RliMiτi
|U ′′

i (x∗i )|
< 1. (5.18)

Proof. Consider the function

V1(p) =
1

2

S∑

i=1

Ai
τi

(
L∑

l=1

Rlipl

)2

(5.19)

First, note that V1 > 0 since R is full rank. The derivative of (5.19) along the

trajectories of system (5.13) can be computed to be:

V̇1(p) = −
L∑

l=1

c̃lṗlṗl,u = −
L∑

l=1

c̃lṗ
2
l −

L∑

l=1

c̃lṗl(ṗl,u − ṗl),

where ṗl,u is the undelayed version of (5.13) given by (5.17). To proceed, we use the

Leibniz rule to distribute the delay over an interval. For example, we have:

pl(t− τ) = pl(t) −
d

dt

∫ 0

−τ

pl(t+ θ)dθ.

This gives

ṗl =
S∑

i=1

L∑

m=1

RliRmi

U ′′
i (x∗i )c̃l

pm(t− τ fi,l − τ bi,m) = ṗl,u −
S∑

i=1

L∑

m=1

RliRmi

U ′′
i (x∗i )c̃l

∫ 0

−τf
i,l
−τb

i,m

ṗm(t+ θ)dθ.
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Putting everything together, we have:

V̇1(p) = −
L∑

l=1

c̃lṗ
2
l −

L∑

l=1

S∑

i=1

L∑

m=1

RliRmi

U ′′
i (x∗i )

∫ 0

−τf
i,l
−τb

i,m

ṗlṗm(t+ θ)dθ.

Now let us concentrate on the second term:

−
L∑

l=1

S∑

i=1

L∑

m=1

RliRmi

U ′′
i (x∗i )

∫ 0

−τf
i,l
−τb

i,m

ṗlṗm(t+ θ)dθ

≤ 1

2

L∑

l=1

S∑

i=1

L∑

m=1

RmiRli(τ
f
i,l + τ bi,m)

|U ′′
i (x∗i )|

ṗ2
l +

1

2

L∑

l=1

S∑

i=1

L∑

m=1

RmiRli

|U ′′
i (x∗i )|

∫ 0

−τf
i,l
−τb

i,m

ṗ2
m(t+ θ)dθ,

where the inequality 2ab ≤ a2 + b2 was used. Now consider the following functional

term:

V2 =
1

2

L∑

l=1

S∑

i=1

L∑

m=1

RmiRli

|U ′′
i (x∗i )|

∫ 0

−τf
i,l
−τb

i,m

∫ t

t+θ

ṗ2
m(ζ)dζdθ. (5.20)

Then

V̇2 =
1

2

L∑

l=1

S∑

i=1

L∑

m=1

RmiRli(τ
f
i,l + τ bi,m)

|U ′′
i (x∗i )|

ṗ2
l −

1

2

L∑

l=1

S∑

i=1

L∑

m=1

RmiRli

|U ′′
i (x∗i )|

∫ 0

−τf
i,l
−τb

i,m

ṗ2
m(t+ θ)dθ

Let V = V1 + V2. Then we get

V̇ ≤ −
L∑

l=1

c̃lṗ
2
l +

L∑

l=1

S∑

i=1

L∑

m=1

RmiRli(τ
f
i,l + τ bi,m)

|U ′′
i (x∗i )|

ṗ2
l .

The coefficient of each term ṗ2
l is

− c̃l +
S∑

i=1

RliMiτi
|U ′′

i (x∗i )|

Therefore if
1

c̃l

S∑

i=1

RliMiτi
|U ′′

i (x∗i )|
< 1 (5.21)
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for all l then V̇ ≤ 0, V is a Lyapunov-Krasovksii functional and the conditions of

stability [28] are satisfied. The set S = {φ ∈ CL : V̇ (φ) = 0} is the set

S =

{

φ :
S∑

i=1

L∑

m=1

RliRmi

U ′′
i (x∗i )c̃l

φm(−τ fi,l − τ bi,m) = 0, l = 1, . . . , L

}

.

The largest set in S that is invariant with respect to the system satisfies ṗl = 0

∀l = 1, . . . , L, i.e. pl = K, a constant. But the only constant φ that is in S is the

zero equilibrium. Therefore, the equilibrium of the system is asymptotically stable

by an extension of LaSalle’s theorem (Theorem 5.3.1 in [28]) for arbitrary networks

and delays, provided condition (5.18) is satisfied and R is full rank.

The Lyapunov-Krasovskii functional that we have constructed introduced some

conservativeness with respect to the result in Theorem 5.1, but is scalable to the size

of the system. In particular, the right hand side of the inequality in Theorem 5.1 is

π/2 and was obtained using frequency domain arguments. The bound that we obtain

is 1, and is a result of the structure of the Lyapunov functional that is used. More

complicated, ‘richer’ structures may yield stronger bounds.

In the case of FAST, for which the Utility function is given by (5.12), we have the

following corollary:

Corollary 5.3 Let the matrix R that denotes the routing matrix in relation to the

bottleneck links be full row rank. Then FAST linearized about the equilibrium is as-

ymptotically stable if

αi < 1.

Proof. The Utility function for FAST is given by (5.12). This gives:

|U ′′
i (x∗i )| =

Miτi
αix∗i
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Condition (5.18) then becomes:

1

c̃l

S∑

i=1

RliMiτi
|U ′′

i (x∗i )|
< 1

⇒ 1

c̃l

S∑

i=1

Rliαix
∗
i < 1

which is guaranteed if αi < 1 since
∑S

i=1Rlix
∗
i ≤ c̃l.

5.3.2 Nonlinear Stability Analysis

The nonlinear system is given by Equation (5.11). Now R denotes the full routing

matrix with non-bottleneck links (rows) included but is still full row rank so that

equilibrium prices are uniquely determined. The existence and uniqueness of solutions

of (5.11) is assumed.

5.3.2.1 Nonlinear Undelayed Model

The closed loop system with delays equal to zero is:

ṗl(t) =

[
S∑

i=1

Rli

cl
U ′−1
i

(
L∑

m=1

Rmipm(t)

)

− 1

]+

pl

= [gl(p)]
+
pl

(5.22)

We have the following theorem:

Theorem 5.4 For fixed full rank R, the (unique) equilibrium of (5.22) is asymptot-

ically stable for all non-negative initial conditions.

Proof. Consider the following function:

V (p) =
L∑

l=1

(cl − y∗l )pl +
S∑

i=1

∫ qi

q∗i

(x∗i − U ′−1
i (Q))dQ, (5.23)
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This function is positive definite for p ≥ 0, with a minimum at the equilibrium [89].

Differentiating V (p) with respect to time, we get

V̇ (p) = −
L∑

m=1

cmgm(p)[gm(p)]+pm
≤ 0.

Now V̇ (p) = 0 only when gm(p) = 0 or gm(p) < 0 and pm = 0. This can only happen

at the equilibrium of interest. Therefore, we obtain asymptotic stability. Moreover,

V is radially unbounded; the equilibrium is globally (i.e., for pl ≥ 0) asymptotically

stable.

The above result is the basic building block that ensures the scalability of the

results. In the next subsection, we will build on the construction of scalable Lyapunov-

Krasovskii functionals for the linear case, to construct similar certificates for the

nonlinear case.

5.3.2.2 Nonlinear Delayed Model

In order to ensure stability for arbitrary topologies with delays, we will use a Lya-

punov argument using our result on the linearization. Most handcrafted attempts

center on Lyapunov-Razumikhin functions for analysis of simple network topolo-

gies [17, 99], or the extraction of delay-independent stability conditions for arbi-

trary networks [105]. Lyapunov-Razumikhin functions, although an attractive tool

for handcrafted stability analysis for nonlinear time delay systems because of their

simplicity to construct manually, are known to yield conservative results compared

to the ones that Lyapunov-Krasovskii functionals produce [28]. The intuition be-

hind this is that Lyapunov-Krasovskii functionals respect the fact that the system

is evolving on a function space, and so the Lyapunov certificate should be a func-

tional; Lyapunov-Razumikhin functions attempt to assess the stability of an infinite

dimensional system using finite dimensional arguments – an attempt that is inher-

ently conservative. Here we construct a Lyapunov-Krasovskii functional that scales

with the system size.

Recall that the Utility function is a continuously differentiable, non-decreasing,
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strictly concave function. Therefore, U ′′
i (xi) < 0 everywhere. Let γi be the lower

bound for |U ′′
i (xi)|, so that

|U ′′
i (xi)| ≥ γi > 0, ∀ i (5.24)

γi here serves as a global (i.e., for xi ≥ 0) Lipschitz constant for U
′−1
i as:

∣
∣
∣
∣

(

U
′−1
i (q)

)′
∣
∣
∣
∣
=

∣
∣
∣
∣

1

U
′′

i (x)

∣
∣
∣
∣
≤ 1

γi
(5.25)

This means that:
∣
∣
∣U

′−1
i (q2) − U

′−1
i (q1)

∣
∣
∣ ≤ 1

γi
|q2 − q1| (5.26)

We then have the following result:

Theorem 5.5 The equilibrium of the system described by (5.11) is globally (for pl ≥
0) asymptotically stable for arbitrary delays, provided that

1

cl

S∑

i=1

RliMiτi
γi

< 1 (5.27)

and the matrix R is an arbitrary full rank, fixed routing matrix.

Proof. Consider V1 = V given by (5.23). From the argument in the proof of Theorem

5.4, V1 > 0 apart at the equilibrium, and is radially unbounded. Now

V̇1(p) = −
L∑

l=1

clgl,u[gl]
+
pl

= −
L∑

l=1

clgl[gl]
+
pl
−

L∑

l=1

cl[gl]
+
pl
(gl,u − gl),

where gl,u(p) corresponds to the undelayed version of unprojected (5.11), the unpro-
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jected Equation (5.22). The second term is equal to:

−
L∑

l=1

cl[gl]
+
pl
(gl,u − gl)

≤
L∑

l=1

S∑

i=1

Rli|[gl]+pl
|
∣
∣
∣
∣
∣
U ′−1
i

(
L∑

m=1

Rmipm(t)

)

− U ′−1
i

(
L∑

m=1

Rmipm(t− τ fi,l − τ bi,m)

)∣
∣
∣
∣
∣

≤
L∑

l=1

S∑

i=1

L∑

m=1

RmiRli

γi
|[gl]+pl

|
∣
∣
∣pm(t) − pm(t− τ fi,l − τ bi,m)

∣
∣
∣

≤
L∑

l=1

S∑

i=1

L∑

m=1

RmiRli

γi

∫ 0

−τf
i,l
−τb

i,m

|[gl]+pl
||ṗm(t+ θ)|dθ,

where global Lipschitz continuity and the Leibniz rule were used (note that p ≥ 0).

The rest of the proof is similar to the proof of Theorem 5.2. The candidate Lyapunov-

Krasovskii functional is given by V = V1 + V2 where

V2(p) =
L∑

l=1

S∑

i=1

L∑

m=1

RliRmi

2γi

∫ 0

−τf
i,l
−τb

i,m

∫ t

t+θ

ṗ2
m(ζ)dθdζ.

Then we have:

V̇ =
L∑

l=1

[

−clgl[gl]+pl
+

S∑

i=1

RliMiτi
γi

{
[gl]

+
pl

}2

]

Now V̇ ≤ 0 under the condition:

−cl +
S∑

i=1

RliMiτi
γi

< 0

This implies that V̇ ≤ 0, and stability of the equilibrium follows for pl ≥ 0 ∀ l =

1, . . . , L. The set S = {φ ∈ CL : V̇ = 0} is the set for which [gl]
+
pl

= 0, i.e., for

l = 1, . . . , L we have either

S∑

i=1

Rli

cl
U ′−1
i

(
L∑

m=1

Rmiφm(−τ fi,l − τ bi,m)

)

= 1
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or







∑S
i=1

Rli

cl
U ′−1
i

(
∑L

m=1Rmiφm(−τ fi,l − τ bi,m)
)

< 1,

φl(−τ fi,l − τ bi,m) = 0

for l = 1, . . . , L. The largest invariant set in S satisfies ṗl = 0, i.e. pl = K, a constant.

The only constant solution in S is the (unique) equilibrium (either p∗l = 0 and y∗l < cl

or pl = p∗l ). Therefore, the asymptotic stability of the equilibrium can be proven

using an extension to LaSalle’s theorem (Theorem 5.3.1 in [28]). Since V is radially

unbounded, the equilibrium of the system is globally (i.e., for pl ≥ 0) asymptotically

stable for arbitrary networks and delays, provided that condition (5.27) is satisfied

and R is full rank.

For the special case of FAST, we have the following corollary:

Corollary 5.6 The equilibrium of FAST is globally (for pl ≥ 0) asymptotically stable

for arbitrary delays and network topologies, provided that

αi <
xi
xi

(5.28)

and the matrix R is an arbitrary full rank, fixed routing matrix.

Proof. For FAST, the Utility function is given by (5.12); this gives the following

value for γi:

γi =
τiMi

αixi

since xi ≤ xi. Therefore, condition (5.27) of Theorem 5.5 becomes:

1

cl

S∑

i=1

Rliαixi < 1

Therefore, a sufficient condition for stability is

αi <
x∗i
xi
.
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for R full rank.

Remark 5.7 Another approach would be to get a local result, i.e., valid for all initial

conditions in some level set of the Lyapunov functional V . In the case of FAST, one

can bound the term (gl,u − gl) using a local Lipschitz constant:

|gl,u − gl| =

∣
∣
∣
∣
∣

S∑

i=1

Rlix
∗
i

cl

(

e
−αi

L
m=1 Rmi[pm(t)−p∗]

Miτi − e
−αi

L
m=1 Rmi[pm(t−τi)−p∗]

Miτi

)
∣
∣
∣
∣
∣

≤
S∑

i=1

Rliαix
∗
i ki

Miτicl

∣
∣
∣
∣
∣

L∑

m=1

Rmi[pm(t) − pm(t− τi)]

∣
∣
∣
∣
∣
,

where ki > 1 is a constant resulting from the Lipschitz approximation. If f(x) =

e
−

αi
Miτi

x
, then

|f ′(x)| =
αi
Miτi

∣
∣
∣e

−
αi

Miτi
x
∣
∣
∣ ≤ αiki

Miτi
.

The bigger ki is, the larger the region x around x = 0 it can ‘cover’, which can reflect

on the level set of V in which initial conditions will tend to the equilibrium. If the proof

methodology that was presented here is used, the bound αi <
1
ki

is obtained; this means

that the bigger ki is, the smaller the value of αi for which stability can be proven. The

maximal level set of the Lyapunov functional (giving a region of attraction) will be a

function of the ki.

Remark 5.8 For single-link single-source we get

ṗ =

[
x

c
e−

α
τ
p(t−τ) − 1

]+

p

.

A simple change of variables z(t) = x
c
e−

α
τ
p(t)−1, ignoring the projection and rescaling

of time results in the system gives:

ż = −α[z(t) + 1]z(t− 1) (5.29)

Equation (5.29) is Hutchinson’s Equation, a well-known population dynamics model

that models a single species striving for a common food. The delay represents the
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maturation of the population. The linearization of this system about the zero equilib-

rium is stable for α < π/2 ≃ 1.57. In [103], E. M. Wright managed to prove global

stability of the equilibrium of the nonlinear system for α < 37/24 = 1.54 if the initial

condition satisfies z(t + θ) ≥ −1, θ ∈ [−1, 0) with z(0) > −1 (which corresponds to

a non-negative price p) by looking at the properties of the solution of (5.29). How-

ever, this result is difficult to scale for arbitrary population interactions – a similar

problem to the arbitrary network topology case. Existence and uniqueness of solutions

of (5.11) can be established in a similar way [38, 55].

The above treatment may seem to have come from intuition, but in fact, it can be

generalized to other congestion control algorithms. In the next section we consider the

stability analysis of primal congestion control schemes in a delay-dependent fashion,

complimentary to the delay-independent result obtained in [105].

5.4 Primal Congestion Control Schemes

In the case of primal congestion control schemes, the sources have dynamics, whereas

the pricing function at the links is static. The optimization framework is used in

this case too, to provide a means for designing the control laws. The condition for

optimality from the resource allocation problem formulation is given by:

U ′
i(x

∗
i ) − q∗i = 0.

For the primal case, we consider a gradient control algorithm to drive the source

dynamics to achieve this optimality condition. We therefore have the following link

and source laws [34, 89]:

pl = fl(yl)

ẋi = κi(xi)(U
′
i(xi) − qi)
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where fl is a strictly increasing function, such that fl > 0, f ′
l > 0. In particular, the

following law has been proposed in [98]:

pl(t) = fl(yl(t))

ẋi = κixi(t− τi)

[

1 − qi
U ′
i(xi)

]

The closed loop dynamics for the whole network then become:

ẋi = κixi(t− τi)



1 −
∑L

l=1Rlifl

(
∑S

j=1Rljxj(t− τ bi,l − τ fj,l)
)

U ′
i(xi)



 (5.30)

The initial conditions for (5.30) are non-negative functions defined on C([−h, 0],RS),

where h = maxhi and

hi = max
{j,l:Rli=Rlj=1}

{τ bi,l + τ fj,l}. (5.31)

5.4.1 Stability of the Linearization

The linearization of (5.30) about the equilibrium x∗i is:

ẋi =
κix

∗
i

q∗i
U

′′

i (x∗i )xi −
κix

∗
i

q∗i

L∑

l=1

Rlip
′∗
l

S∑

j=1

Rljxj(t− τ bi,l − τ fj,l) (5.32)

where q∗i = U
′−1
i (x∗i ), y

∗
l =

∑L
l=1Rlix

∗
i and p

′∗
l = f ′

l (y
∗
l ).

We have the following result, similar to the one in Theorem 5.2:

Theorem 5.9 System (5.32) is asymptotically stable if R is full rank and

κiτi
q∗i

L∑

l=1

Rliy
∗
l p

′∗
l < 1, ∀ i.

We note that the result in [98] has π/2 in the RHS, and is obtained using frequency

domain methods.
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Proof. Consider the following function:

V1 = −1

2

S∑

i=1

U
′′

i (x∗i )x
2
i +

1

2

L∑

l=1

p
′∗
l

(
S∑

j=1

Rljxj(t)

)2

This is positive definite, as R is full rank. The undelayed version of (5.32) is

ẋi = κi
x∗i
q∗i

[

U
′′

i (x∗i )xi −
L∑

l=1

Rlip
′∗
l

S∑

j=1

Rljxj

]

.

We have:

V̇1 = −
S∑

i=1

q∗i
κix∗i

ẋiẋi,u = −
S∑

i=1

q∗i
κix∗i

ẋ2
i −

S∑

i=1

q∗i
κix∗i

ẋi(ẋi,u − ẋi)

where ẋi,u denotes the undelayed version. We now manipulate the second term as in

the proof of Theorem 5.2 to get:

−
S∑

i=1

q∗i
κix∗i

ẋi(ẋi,u − ẋi) =
S∑

i=1

L∑

l=1

Rlip
′∗
l

S∑

j=1

Rlj

∫ 0

−τb
i,l
−τf

j,l

ẋiẋj(t+ θ)dθ

where the Leibniz rule was used to distribute the delay over an interval. Using the

inequality ab ≤ k
2
a2 + 1

2k
b2 for k > 0, we have:

−
S∑

i=1

q∗i
κix∗i

ẋi(ẋi,u − ẋi)

≤
S∑

i=1

L∑

l=1

S∑

j=1

RljRli

2
p
′∗
l (τ bi,l + τ fj,l)kijẋ

2
i +

S∑

i=1

L∑

l=1

S∑

j=1

RljRli

2kij
p
′∗
l

∫ 0

−τb
i,l
−τf

j,l

ẋ2
j(t+ θ)dθ

where kij are constants. Introduce now the following functional:

V2 =
S∑

i=1

L∑

l=1

S∑

j=1

RljRli

2kij
p
′∗
l

∫ 0

−τb
i,l
−τf

j,l

∫ t

t+θ

ẋ2
j(ζ)dζdθ
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This then satisfies:

V̇2 =
S∑

i=1

L∑

l=1

S∑

j=1

RljRli(τ
b
i,l + τ fj,l)

2kij
p
′∗
l ẋ

2
j −

S∑

i=1

L∑

l=1

S∑

j=1

RljRli

2kij
p
′∗
l

∫ 0

−τb
i,l
−τf

j,l

ẋ2
j(t+ θ)dθ

Now let V = V1 + V2, and kij =
x∗j
x∗i

√
τi
τj

. Then:

V̇ ≤ −
S∑

i=1

q∗i
κix∗i

ẋ2
i +

L∑

l=1

S∑

j=1

RljRli

2
p
′∗
l (τi + τj)

√
τi
τj

x∗j
x∗i
ẋ2
i

Stability is guaranteed if V̇ ≤ 0, i.e., if each i satisfies:

κi
q∗i

L∑

l=1

S∑

j=1

RljRlix
∗
jp

′∗
l

(τi + τj)

2

√
τi
τj
< 1

Since (τi + τj) ≥ 2
√
τiτj, stability is also guaranteed by

κiτi
q∗i

L∑

l=1

S∑

j=1

RljRlix
∗
jp

′∗
l < 1. (5.33)

In order to prove asymptotic stability, we use a LaSalle argument in the same way as

it was done in the proof of Theorem 5.2. The set S = {φ ∈ CS : V̇ (φ) = 0} is the set

S =

{

φ :
L∑

l=1

Rlip
′∗
l

S∑

j=1

Rljφj(−τ bi,l − τ fj,l) = U
′′

i (x∗i )φi, i = 1, . . . , S

}

.

The largest set in S that is invariant with respect to the system satisfies ẋi = 0

∀i = 1, . . . , S, i.e. xi = K, a constant. But the only constant φ that is in S is the

zero equilibrium. Therefore, the equilibrium of the system is asymptotically stable

by an extension of LaSalle’s theorem (Theorem 5.3.1 in [28]) provided (5.33) holds

and R is full rank.

We remark that the proof is very similar to the one for Theorem (5.2), apart

from two steps: the way the quadratic inequality a2 + b2 ≥ 2ab is used, and the last

step where, in order to treat the delays τi and τj, one has to use another inequality
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argument.

5.4.2 Nonlinear Stability Analysis

The nonlinear system is given by Equation (5.30), and the existence and uniqueness

of solutions is assumed. To ensure stability for arbitrary topologies in the nonlinear

case with delays, we have to use a Lyapunov based argument similar to the one we

used in the linearization. The system to be analyzed is described by Equation (5.30).

Further, consider the undelayed version of (5.30):

ẋi = κixi(t− τi)



1 −
∑L

l=1Rlifl

(
∑S

j=1Rljxj(t)
)

U ′
i(xi)



 (5.34)

Before we proceed, recall that Ui(xi) are strictly concave, non-decreasing functions

and fl(yl) are strictly increasing functions, such that fl > 0, f ′
l > 0. This inevitably

means that xi are upper bounded, as shown in the following proposition:

Proposition 5.10 Let xi(t) be a solution of (5.30). Then there is a T > 0 such

that, for t ≥ T , xi(t) < U
′−1
i

(
∑L

l=1Rlifl(0)
)

= xi.

Proof. First, note that

U
′−1
i

(
L∑

l=1

Rlifl(0)

)

> U
′−1
i

(
L∑

l=1

Rlifl(y
∗
l )

)

= U
′−1
i (q∗i ) = x∗i .

If xi(t) ≥ x∗i ∀i for all large t, say t ≥ T , then ẋi ≤ 0 for t ≥ T and hence

limt→∞ xi(t) = x∗i . Thus, we may assume xi(t) are oscillatory about x∗i . Let t > 2hi,

where hi is defined by (5.31) be such that xi(t) > x∗i and ẋi(t) = 0, i.e., a maximum

of the trajectory. Then we have:

U ′
i(xi(t)) =

L∑

l=1

Rlifl

(
S∑

j=1

Rljxj(t− τ bi,l − τ fj,l)

)
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Therefore,

xi(t) = U
′−1
i

(
L∑

l=1

Rlifl

(
S∑

j=1

Rljxj(t− τ bi,l − τ fj,l)

))

< U
′−1
i

(
L∑

l=1

Rlifl(0)

)

.

This completes the proof.

Let xi(t) ≤ xi where xi is defined in the above proposition. Similarly, define

yl =
∑S

i=1Rlixi so that yl(t) ≤ yl. Then we have:

Theorem 5.11 The non-zero equilibrium of (5.30) is globally (i.e., for xi > 0) as-

ymptotically stable, provided R is full rank and

κiτi
U ′
i(xi)

S∑

j=1

Rliylf
′
l (yl) < 1. (5.35)

Proof. Consider a function of the form:

V1 = −
S∑

i=1

[Ui(xi) − Ui(x
∗
i )] +

L∑

l=1

∫ PS
j=1Rljxj

y∗
l

fl(Y )dY

This function is positive definite and radially unbounded. Then we have:

V̇1 = −
S∑

i=1

[

U ′
i(xi) −

L∑

l=1

Rlifl

(
S∑

i=1

Rljxj

)]

ẋi

= −
S∑

i=1

U ′
i(xi)

κixi(t− τ)
ẋi,uẋi = −

S∑

i=1

U ′
i(xi)

κixi(t− τ)

(
ẋ2
i + ẋi(ẋi,u − ẋi)

)

where (5.34) is the undelayed version of Equation (5.30). Now

−
S∑

i=1

U ′
i(xi)

κixi(t− τ)
ẋi(ẋi,u − ẋi) =

S∑

i=1

L∑

l=1

Rlifl

(
S∑

j=1

Rljxj(t)

)

ẋi

−
S∑

i=1

L∑

l=1

Rlifl

(
S∑

j=1

Rljxj(t− τ bi,l − τ fj,l)

)

ẋi

≤
S∑

i=1

S∑

j=1

L∑

l=1

RliRljf
′
l (yl)

∫ 0

−τb
i,l
−τf

j,l

|ẋi||ẋj(t+ θ)|dθ
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as fl is globally Lipschitz continuous and strictly increasing. The rest of the proof is

the same as in the linear case. Since xi < xi, we have:

U ′
i(xi) > U ′

i(xi)

from the strict concavity of Ui and therefore V̇ can be written as follows:

V̇ ≤ −
S∑

i=1

U ′
i(xi)

κixi(t− τ)
ẋ2
i +

S∑

i=1

L∑

l=1

S∑

j=1

RljRli

2
f ′
l (yl)(τi + τj)

√
τi
τj

xj
xi
ẋ2
i

≤ −
S∑

i=1

U ′
i(xi)

κixi
ẋ2
i +

L∑

l=1

S∑

j=1

RljRli

2
f ′
l (yl)(τi + τj)

√
τi
τj

xj
xi
ẋ2
i

Therefore, stability is retained if

κiτi
U ′
i(xi)

S∑

j=1

Rliylf
′
l (yl) < 1.

Asymptotic stability follows from LaSalle’s argument in a similar way as in the proof

of Theorem 5.5. Hence, the system is globally asymptotically stable for arbitrary

networks and delays provided (5.35) is satisfied and R is full rank.

5.5 A Primal-Dual Congestion Control Scheme

The above ‘manual’ constructions of scalable proofs for arbitrary networks have taken

advantage of the structure of the dynamics to guide the choice of the Lyapunov

certificate. In some cases, this is not possible because the dynamics are designed in

an ad-hoc way.

The two congestion control schemes that we analyzed in this chapter have dis-

advantages. The main drawback of the dual control law is that it puts a restriction

on the sources’ demand curves, as the source law is static. Moreover, a pure primal

congestion control scheme has no control over the pricing functions that can be used.

A congestion control scheme that has dynamics, both at the sources and links
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could alleviate this problem. Such a scheme is called primal-dual, and was developed

in [57]. Apart from qi, yl and pl given by Equations (5.3), (5.2) and (5.9) respectively,

we have:

xi(t) = xm,ie
ξie

−αiqi(t)

Miτi (5.36)

ξ̇i(t) =
βi
τi

[U ′
i(xi(t)) − qi(t)] (5.37)

where Ui(xi) is the utility function of source i and βi is a parameter. The following

result on the stability of the linearized system is known:

Theorem 5.12 [57] Assume that for every source i, τi ≤ τ . Then the system

described by Equations (5.1–5.4), (5.9) and (5.36–5.37), with αi < π/2 and z =

βiMi

αi
= η

τ
for η ∈ (0, 1) small enough depending on α ≥ αi, the closed loop system is

linearly stable.

A Lyapunov argument that will scale with the system size may be difficult in this

case, as the parameters βi are tuned so as to provide for slow adaptation of the source

to its own utility function characteristic. It is fortunate that the tools that we have

developed in the previous chapter that use the sum of squares decomposition can be

used instead, but only for small network topologies [60]. We note that the system

equations are not polynomial in the variables, but if we write the system dynamics

in other system variables, we obtain the following description:

ẋi(t) = xi

(
βi
τi

[U ′
i(xi(t)) − qi(t)] −

αi
Miτi

q̇i(t)

)

q̇i(t) =
∑

l

Rli

cl

(
∑

j

Rljxj(t− τ fj,l − τ bi,l) − cl

)

where we have ignored the projection nonlinearity.

This formulation is suitable if the one-way delay is available, although in many

special cases, the RTT appears naturally in the delay combinations. We also put a

bound on the delay size so that the RTT delay is equal to τ , and we assume the

overbound on the one-way delay to be half of the overbound on the RTT. We choose
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i = 1 i = 2

i = 3

l = 1 l = 2

Figure 5.2: A simple network.

Ui(xi(t)) = K log(xi(t)), and we analyze a specific topology network that is shown in

Figure 5.2. In this case, R is given by

R =




1 0 1

0 1 1



 .

We assume τij ≤ τ/2, where τ is the overbound on the RTT. We let β1 = β2 =

β3/2 = β, all the cl = c and αi = α. Denote K̃1 = K1+K2

K1+K2+K3
and K̃2 = K3

K1+K2+K3
.

The equilibrium for this system is

(x1,0, x2,0, x3,0, q1,0, q2,0) =

(

cK̃1, cK̃1, cK̃2,
K1

cK̃1

,
K2

cK̃1

)

(5.38)

In order to avoid numerical ill-conditioning, we rename variables as follows:

z1 =
1

cK̃1

x1 − 1, z2 =
1

cK̃1

x2 − 1

z3 =
1

cK̃2

x3 − 1, z4 =
cK̃1

K1

q1 − 1

z5 =
cK̃1

K2

q2 − 1
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This change of variables gives the equations:

ż1(t) = −K1β1

K̃1cτ
[z1(t) + z4(t) + z1(t)z4(t)] −

α

τ
[z1(t) + 1][K̃2z3(t− τ) + K̃1z1(t− τ)]

ż2(t) = −K2β2

K̃1cτ
[z2(t) + z5(t) + z2(t)z5(t)] −

α

τ
[z2(t) + 1][K̃2z3(t− τ) + K̃1z2(t− τ)]

ż3(t) = − β3

K̃1cτ
[(z3z4 + z3 + z4)K1 + (z3z5 + z3 + z5)K2]

− α

2τ
[z3(t) + 1][z1(t− τ)K̃1 + z2(t− τ)K̃1 + 2z3(t− τ)K̃2]

ż4(t) =
K̃1c

K1

(K̃1z1(t− τ) + K̃2z3(t− τ))

ż5(t) =
K̃1c

K2

((K1 +K2)z2(t− τ) +K3z3(t− τ))

We use c = 40, α = 1, τ = 0.2, and we calculate β = 0.64α
τMi

and we let K1 = 15,

K2 = 20, K3 = 25. Using the technique developed in Chapter 4 based on the sum of

squares decomposition, we can construct a Lyapunov functional of the form

V1(zt) = a0(z1(t), z2(t), z3(t), z4(t))

+

∫ 0

−τ

a1(z1(t), z1(t+ θ), z2(t), z2(t+ θ), z3(t), z3(t+ θ), z4(t), z5(t))dθ

+

∫ 0

−τ

∫ t

t+θ

a2(z1(ζ), z2(ζ), z3(ζ))dζdθ,

with polynomials a0, a1 of second order and a2 of order four for

0 < x1t
≤ 2.3x1,0, 0 < x2t

≤ 2.3x2,0,

0 < x3t
≤ 2.3x3,0, q1 > 0, q2 > 0.

This proves that the network shown in Figure 5.2 with the aforementioned congestion

control algorithm is stable for τ = 0.2.
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5.6 Conclusion

In this chapter, we have presented a methodology to construct Lyapunov certificates

for different congestion control algorithms to verify their stability properties for ar-

bitrary network topologies. The nonlinear conditions are delay dependent and of the

same form as the ones for the linearized system.

The structure of the system has helped greatly in obtaining simple scalable stabil-

ity conditions. More complicated functional structures can be less conservative, at the

expense of being more complicated; this has been observed when constructing these

functionals algorithmically using LMIs in the linear case, but also in the nonlinear

case using SOSTOOLS for simple network topologies.
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Chapter 6

Systems Described by Partial
Differential Equations

T� p�nta reØ kaÈ oudèn mènei<Hr�kleito

Everything flows, nothing abides

Heracletus

In the previous two chapters, we were primarily concerned with the stability analy-

sis of small-scale and large-scale infinite dimensional systems described by Functional

Differential Equations. A natural question to ask is whether the proposed algorith-

mic methodology, which is based on the sum of squares decomposition, can be used

for the algorithmic analysis of systems described by Partial Differential Equations

(PDEs). Such system descriptions come about naturally in e.g. fluid dynamics and

heat transfer, areas in which the spatial dimension of the problem cannot be ignored.

We begin this chapter with a brief presentation of some background material on

the stability analysis of systems described by PDEs. We then consider a problem of

particular interest from fluid mechanics, that of stability of shear flows. In particular,

we prove that the Navier-Stokes equations in cylindrical coordinates subject to axi-

ally constant initial conditions and perturbations are globally stable for all Reynolds

numbers R. We note, however, that the transient energy growth of the system scales

as R3. Therefore even though streamlined flows can be made stable for arbitrary

Reynolds numbers, the system becomes susceptible to the effect of disturbances and
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uncertainties.

We then describe briefly how the analysis of parabolic PDE systems can be per-

formed algorithmically using the sum of squares decomposition of multivariate poly-

nomials.

6.1 Introduction

The analysis of systems described by Partial Differential Equations has been con-

sidered to be a very difficult task, not only because of their infinite dimensional

nature [71, 30, 2], but also because of the complicated and sometimes mystifying

underlying theory. A comprehensive discussion on the methods for analysis of linear

PDEs can be found in [15]. There are also some results, mostly on a case-by-case

basis, on nonlinear PDE systems.

In this section we will present background material on the stability properties

of distributed parameter systems, and in the later sections we will investigate the

stability of systems arising in fluid mechanics and heat transfer.

First, we define the notion of a dynamical system (nonlinear semigroup) on a

complete metric space C with metric ‘dist’, as the family of maps {S(t) : C → C, t ≥
0} such that:

• For each t ≥ 0, S(t) is continuous from C to C,

• For each x ∈ C, t→ S(t)x is continuous,

• S(0) = I on C,

• S(t)(S(τ)x) = S(t+ τ)x for all x ∈ C and τ, t ≥ 0.

Such a semigroup defines a dynamical system on C. For any x ∈ C, let γ(x) =

{S(t)x, t ≥ 0} denote the orbit (or positive semi-orbit) through x. We say x is an

equilibrium point if γ(x) = {x}. γ(x) is a periodic orbit if there exists a p > 0

such that γ(x) = {S(t)x, 0 ≤ t ≤ p} 6= {x}. An orbit γ(x) (or sometimes, the

point x) is stable if for any ǫ > 0 there exists δ(ǫ) > 0 such that for all t ≥ 0,
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dist(S(t)x, S(t)y) < ǫ whenever dist(x, y) ≤ δ(ǫ), y ∈ C. An orbit γ(x) is unstable

if it is not stable. An orbit γ(x) is uniformly asymptotically stable if it is stable and

also there is a neighbourhood B = {y ∈ C : dist(x, y) < r} such that

dist(S(t)y, S(t)x) → 0 as t→ ∞

uniformly for y ∈ B.

Similarly to the case of ODEs and FDEs, a Lyapunov function can be used to

verify stability:

Definition 6.1 Let {S(t), t ≥ 0} be a dynamical system on C. A Lyapunov function

is a continuous real-valued function V on C such that

V̇ (x) , limt→0+

1

t
{V (S(t)x) − V (x)} ≤ 0

for all x ∈ C, not excluding the possibility V̇ (x) = −∞. Henceforth we use the

notation ‖x− y‖ = dist{x, y}, as we will be use the induced topology of some Banach

space.

Having defined what a Lyapunov function is, we now state Lyapunov’s theorem

for this type of systems:

Theorem 6.2 Let {S(t), t ≥ 0} be a dynamical system on C, and let 0 be an equi-

librium point in C. Suppose V is a Lyapunov function which satisfies V (0) = 0,

V (x) ≥ c(‖x‖) for x ∈ C, ‖x‖ = dist{x, 0}, where c(·) is a continuous strictly

increasing function, c(0) = 0 and c(r) > 0 for r > 0. Then 0 is stable. If in ad-

dition V̇ (x) ≤ −c1(‖x‖) where c1(·) is also continuous, increasing and positive with

c1(0) = 0, then 0 is uniformly asymptotically stable.

Also, in the same way as for ODEs and FDEs, we can define invariant sets, ω-limit

sets and state a LaSalle-type theorem. Although there is a converse theorem, finding

a Lyapunov function in any particular case is usually a difficult task.

With these definitions in place, we now turn our attention to examples from fluid

mechanics and heat transfer. In the next section, we consider a Hagen-Poiseuille pipe
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flow with axially constant perturbations and initial conditions, for which we show

that the laminar flow is globally stable independent of the Reynolds number. We

demonstrate nonetheless, that the transient energy amplification of the background

disturbances scales as R3. This means that for this model there are no bifurcations

to instability, however the large amplification of the background disturbances which

was also observed in the linearization is still present. Therefore streamlining the flow

has as a consequence an increase in fragility to disturbances and uncertainties.

6.2 Global Stability of Axially Constant Perturba-

tions in Hagen-Poiseuille Flow

Hydrodynamic stability is an old research area and came about when the famous

pipe experiments performed by Reynolds [79] and his observations on the transition

of viscous fluid flow from laminar to turbulent were later on investigated theoretically

by Orr [52] and Sommerfeld [88]. More than a century later, these observations still

pose one of the most intriguing problems in fluid mechanics: what is the mechanism

for transition? In his original paper, Reynolds made an important observation: there

is no single ‘critical’ value below which flow is laminar and above which it becomes

turbulent. In his own words:

...the critical velocity was very sensitive to disturbance in the water before

entering the tubes. This at once suggested the idea that the condition

might be one of instability for disturbances of a certain magnitude and

stability for smaller disturbances.

In fact, by making sure that the disturbances were minimized, Reynolds was able

to keep the flow laminar up to values of Reynolds number R approaching 13000.

Subsequently, even more refined experiments have pushed this figure to R > 105, and

all theoretical evidence [83] suggests that fully developed flow down the pipe is stable

to disturbances at any finite value of R, no matter how large. If no great care is taken

to minimize disturbances, transition typically occurs at R ∼ 2000.



125

The experimental observation comes to contradict the theoretical explanation for

Hagen-Poiseuille flow in a pipe, something that is not experienced for the Rayleigh-

Benard convection and Taylor-Couette flow. Classical stability and bifurcation theory

could not explain the same phenomenon in plane Couette flow either, i.e. flow between

two parallel plates: the solution of the Orr-Sommerfeld equation predicts stability for

all Reynolds numbers, which disagrees strongly with the experimental observation.

The disagreement between the experiment and linearized theory is usually attributed

to nonlinear effects, but recently a new explanation has been asserted.

In a series of papers [95, 1, 22] and in [84] it has been shown that for shear flows,

the operator of the linearized Navier-Stokes is non-normal. This means that even

for a stable flow, transient disturbances can achieve very large values before even-

tually decaying, suggesting a mechanism for transition at Reynolds numbers signifi-

cantly smaller than those predicted by the stability of the Orr-Sommerfeld equation.

The large background energy amplification is due to the non-normality of the Orr-

Sommerfeld operator, and the corresponding non-orthogonality of its eigenfunctions.

In the case of pipe flow, the mathematical analysis has revealed that the Hagen-

Poiseuille laminar flow profile is linearly stable with respect to disturbances for all

Reynolds numbers [83]. In particular, it has been demonstrated that maximum back-

ground energy amplification is obtained for axially-constant perturbations with an

azimuthal wave number of m = 1. The initial form of the perturbations is that of

streamwise rolls. After a short time, the streamwise velocity component becomes

dominant. The perturbations take the form of spanwise modulation of the basic flow

leading to the formation of streaks which were observed in other shear flows.

In this section, we concentrate on Hagen-Poiseuille flow in a pipe with axially

constant 3-D perturbations. The flow is driven by a constant pressure gradient. The

fact that the perturbations are axially constant restricts the model to 2-D with 3

velocity components, which we will call a 2D/3C model. This is in line with the

observations that the most energy amplifying disturbances are axially constant and

produce axial structures. We show that the laminar solution of the 2D/3C model

is globally stable for all Reynolds numbers R by exhibiting a Lyapunov function.
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The transient energy growth scales as R3, which agrees with the result from the

linearization. A similar result has been obtained for Couette flow [8].

6.2.1 The Equations of Motion

We begin our investigation by reformulating the Navier-Stokes equations in cylindrical

coordinates into the 2D/3C system of interest. Denote the radial, azimuthal and axial

coordinates by (r, θ, z) and the corresponding velocity components of v by (vr, vθ, vz).

In these coordinates the convective time derivative is:

v · ∇ = vr
∂

∂r
+
vθ
r

∂

∂θ
+ vz

∂

∂z
,

and the Laplacian operator is

∆ = ∇2 =
1

r

∂

∂r

(

r
∂

∂r

)

+
1

r2

∂2

∂θ2
+

∂2

∂z2
.

The Navier-Stokes equations of motion in these coordinates become:

∂vr
∂t

+ vr
∂vr
∂r

+
vθ
r

∂vr
∂θ

+ vz
∂vr
∂z

− v2
θ

r
= −∂p

∂r
+

1

R

(

∆vr −
vr
r2

− 2

r2

∂vθ
∂θ

)

∂vθ
∂t

+ vr
∂vθ
∂r

+
vθ
r

∂vθ
∂θ

+ vz
∂vθ
∂z

+
vθvr
r

= −1

r

∂p

∂θ
+

1

R

(

∆vθ +
2

r2

∂vr
∂θ

− vθ
r2

)

∂vz
∂t

+ vr
∂vz
∂r

+
vθ
r

∂vz
∂θ

+ vz
∂vz
∂z

= −∂p
∂z

+
1

R
∆vz

1

r

∂(rvr)

∂r
+

1

r

∂vθ
∂θ

+
∂vz
∂z

= 0,

along with boundary conditions for a pipe of radius r = 1 and infinite length:

uz(1, θ, z, t) = 0, uz(0, θ, z, t) =
−dp/dz
R

,

ur(1, θ, z, t) = 0, ur(0, θ, z, t) = 0,

uθ(1, θ, z, t) = 0, uθ(0, θ, z, t) = 0.
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In this section we are interested in axially-constant solutions to the above equations;

this is ensured if the initial conditions are constant in z, ∂u
∂z

= 0, and ∂p
∂z

= dp
dz

= c, a

constant:

∂vr
∂t

+ vr
∂vr
∂r

+
vθ
r

∂vr
∂θ

− v2
θ

r
= −∂p

∂r
+

1

R

(

∆vr −
vr
r2

− 2

r2

∂vθ
∂θ

)

(6.1)

∂vθ
∂t

+ vr
∂vθ
∂r

+
vθ
r

∂vθ
∂θ

+
vθvr
r

= −1

r

∂p

∂θ
+

1

R

(

∆vθ +
2

r2

∂vr
∂θ

− vθ
r2

)

(6.2)

∂vz
∂t

+ vr
∂vz
∂r

+
vθ
r

∂vz
∂θ

= −dp
dz

+
1

R
∆vz (6.3)

1

r

∂(rvr)

∂r
+

1

r

∂vθ
∂θ

= 0. (6.4)

The above system represents the system evolution in 2D (i.e. r and θ) with three

flow components vr, vθ, vz. In order to restrict the evolution of the system on the

divergence-free field, we use a streamfunction formulation. In cylindrical coordinates,

the streamfunction ψ satisfies:

vr =
1

r

∂ψ

∂θ
, vθ = −∂ψ

∂r

After some calculations we can rewrite the system equations in ψ and vz:

∂∆ψ

∂t
+

1

r

∂ψ

∂θ

∂∆ψ

∂r
− 1

r

∂ψ

∂r

∂∆ψ

∂θ
=

1

R
∆2ψ (6.5)

∂vz
∂t

+
1

r

∂ψ

∂θ

∂vz
∂r

− 1

r

∂ψ

∂r

∂vz
∂θ

= −dp
dz

+
1

R
∆vz (6.6)

Note that the system is in triangular form, and Equations (6.5–6.6) completely char-

acterize the system evolution. The boundary conditions are:

uz(1, θ, t) = 0, uz(0, θ, t) =
−dp/dz
R

,

∂ψ

∂r
(1, θ, t) = 0,

∂ψ

∂θ
(1, θ, t) = 0,

∂ψ

∂r
(0, θ, t) = 0,

∂ψ

∂θ
(0, θ, t) = 0
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where dp/dz is the pressure drop driving the flow which is constant along the axial

direction, as otherwise vz would be a function of z. We further denote τ = t/R,

Ψ(τ) = Rψ(τR) and

V (τ) =
Rvz(τR)

−dp/dz .

Multiplying (6.5) by R2 and (6.6) by R, and scaling time by 1
R

we get:

∆Ψτ = −1

r
Ψθ∆Ψr +

1

r
Ψr(∆Ψ)θ + ∆2Ψ (6.7)

Vτ = −1

r
ΨθVr +

1

r
ΨrVθ + ∆V + 1 (6.8)

where from now on we denote Ψτ , ∂Ψ
∂τ

, etc. The new boundary conditions are

V (1, θ, τR) = 0, V (0, θ, τR) = 1,

Ψr(1, θ, τR) = 0, Ψθ(1, θ, τR) = 0,

Ψr(0, θ, τR) = 0, Ψθ(0, θ, τR) = 0

Note that these equations are independent of R, and therefore the stability properties

of the system, which will be of interest later on, are independent of the Reynolds

number.

Before moving on, we present a solution to the above equations that corresponds

to vr = vθ = 0. We have, from the definition of the Ψ equations, that Ψ(r, θ) = c̃, a

constant. Therefore the stationary solution for V becomes:

∆V = −1. (6.9)

Of course V = V (r, θ) and is not a function of z, a result following from the continuity

equation. For the fully developed flow, we have, from the momentum equations:

0 = −dp
dr

= −dp
dθ

0 = −dp
dz

+
1

R

(
1

r

∂

∂r

(

r
∂V

∂r

)

+
1

r2

∂2V

∂θ2

)
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Since V does not vary with z, it follows that dp
dz

must be constant, as mentioned

earlier. Taking symmetry into consideration, we have also that ∂V
∂θ

= 0. Solving

the resulting elliptic equation and applying the boundary condition we get as the

steady-state solution:

V =
1

4
(1 − r2)

Therefore the steady state of the fully developed laminar flow is a paraboloid.

6.2.2 Global Stability Analysis

The energy of the 2-D system describing the Ψ evolution is:

EΨ =
1

2
π

∫ 1

0

∫ π

−π

(
v2
r + v2

θ

)
rdrdθ =

1

2
π

∫ 1

0

∫ π

−π

(
1

r2
Ψ2
θ + Ψ2

r

)

rdrdθ

= −1

2
〈Ψ,∆Ψ〉,

where ∆ is the Laplacian operator in cylindrical coordinates and the inner product

is given by:

〈f, g〉 , π

∫ 1

0

∫ π

−π

f(r, θ)g(r, θ)rdrdθ (6.10)

Now taking the derivative with respect to τ we have:

dEΨ

dτ
= −1

2

d

dτ
〈Ψ,∆Ψ〉 = −1

2
〈Ψτ ,∆Ψ〉 − 1

2
〈Ψ,∆Ψτ 〉 = −〈Ψ,∆Ψτ 〉

= −
〈

Ψ,−1

r
Ψθ(∆Ψ)r +

1

r
Ψr(∆Ψ)θ

〉

−
〈
Ψ,∆2Ψ

〉

= −
〈
Ψ,∆2Ψ

〉
= −〈∆Ψ,∆Ψ〉 < 0

where the last equality follows from a careful integration by parts. The term <

Ψ,−1
r
Ψθ(∆Ψ)r + 1

r
Ψr(∆Ψ)θ > is identically zero:

〈

Ψ,
1

r
Ψθ(∆Ψ)r −

1

r
Ψr(∆Ψ)θ

〉

= π

∫ 1

0

∫ π

−π

Ψ (Ψθ(∆Ψ)r − Ψr(∆Ψ)θ) drdθ

= π

∫ 1

0

∫ π

−π

(
d

dr
(ΨΨθ∆Ψ) − d

dθ
(ΨΨr∆Ψ)

)

drdθ

= 0
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which follows by integration by parts and considering the boundary conditions for Ψ.

This asserts that V is a Lyapunov function, and so global L2 stability of the Ψ = 0

solution is proven.

To investigate the stability of the overall system, consider (6.8) with the steady-

state V removed. Abusing notation, we denote this by V :

Vτ = −1

r
ΨθVr +

1

r
ΨrVθ + ∆V − 1

r
V rΨθ

with zero boundary conditions. Consider now the kinetic energy:

EV =
1

2
π

∫ 1

0

∫ π

−π

V 2rdrdθ =
1

2
〈V, V 〉 =

1

2
‖V ‖2

with the same inner product as before. The rate of change of EV with time is:

dEV
dτ

= 〈Vτ , V 〉 =

〈

−1

r
ΨθVr +

1

r
ΨrVθ, V

〉

+

〈

∆V − 1

r
V rΨθ, V

〉

=

〈

∆V − 1

r
V rΨθ, V

〉

≤ λ(∆)‖V ‖2 +

∥
∥
∥
∥

1

r
V rΨθ

∥
∥
∥
∥
‖V ‖ =

(

λ(∆)‖V ‖ +

∥
∥
∥
∥

1

r
V rΨθ

∥
∥
∥
∥

)

‖V ‖

≤
(

λ(∆)‖V ‖ +

∥
∥
∥
∥

1

r
V r

∥
∥
∥
∥
∞

‖Ψθ‖
)

‖V ‖

where λ(∆) is the maximum eigenvalue of ∆, which is a negative definite operator,

i.e. λ(∆) < 0. Here we have used that
〈
−1
r
ΨθVr + 1

r
ΨrVθ

〉
is zero identically:

〈

−1

r
ΨθVr +

1

r
ΨrVθ

〉

= π

∫ 1

0

∫ π

−π

V

(

−1

r

∂Ψ

∂θ

∂V

∂r
+

1

r

∂Ψ

∂r

∂V

∂θ

)

rdrdθ

= π

∫ 1

0

∫ π

−π

(

−V ∂Ψ

∂θ

∂V

∂r
+ V

∂Ψ

∂r

∂V

∂θ

)

drdθ

= π

∫ 1

0

∫ π

−π

(

− d

dθ
(V VrΨ) +

d

dr
(V VθΨ)

)

drdθ

= 0

This follows by integration by parts and considering the boundary conditions for Ψ
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and V . Therefore whenever ‖V ‖ is such that:

‖V ‖ ≥ −
∥
∥1
r
V r

∥
∥
∞
‖Ψθ‖

λ(∆)
= k‖Ψθ‖

where k is a constant, then EV is non-increasing. We see that dEV

dτ
does not decrease

monotonically to zero, but it may increase before eventually decreasing. However

‖Ψθ‖ → 0 as time evolves as shown earlier, and therefore ‖V ‖ → 0 eventually. In

order to make this argument more concrete, we now show using a Lyapunov argument

that a modified energy-based function can be used as a Lyapunov function for the

whole system. For this purpose, consider the following functional:

Wα(Ψ, V ) = α2EΨ + EV

Then from our earlier calculations we have:

d

dτ
Wα = −α2

〈
∆2Ψ,Ψ

〉
+ 〈∆V, V 〉 −

〈
1

r
V rΨθ, V

〉

≤ α2λ(∆)(‖Ψθ‖2 + ‖Ψr‖2) + λ(∆)‖V ‖2 +

∥
∥
∥
∥

1

r
V r

∥
∥
∥
∥
∞

‖Ψθ‖‖V ‖

Now −∆ is a strictly coercive operator, and therefore λ(∆) = −β2 < 0. We now

write

d

dτ
Wα ≤ −α2β2‖Ψr‖2 − β2 (α‖Ψθ‖ − ‖V ‖)2 − 2β2α‖Ψθ‖‖V ‖ +

∥
∥
∥
∥

1

r
V r

∥
∥
∥
∥
∞

‖Ψθ‖‖V ‖

Which is guaranteed to be negative definite if 2β2α−
∥
∥1
r
V r

∥
∥
∞
> 0, i.e.

α > −
∥
∥1
r
V r

∥
∥
∞

2λ(∆)
.

This guarantees that Wα is a Lyapunov function and the equilibrium of the system,

i.e. the laminar flow profile V is globally asymptotically stable.
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6.2.3 Energy Scaling

Consider now the total transient energy growth E :

E , Eψ + Ev =

∫ ∞

0

Eψ + Evdt

where v = vz − v, and v denotes the laminar flow profile. From the nondimension-

alization we see that Eψ(0) = 1
R2EΨ(0), and

∫∞

0
Eψ(t)dt = 1

R

∫∞

0
EΨ(τ)dτ . Similarly,

EV (0) = Ev(0), and
∫∞

0
Ev(t)dt = R

∫∞

0
EV (τ)dτ .

Consider the case in which V (0) = 0. The ratio of output to input energy is:

g(Ψ) ,

∫∞

0
EV (τ)dτ

∫∞

0
EΨ(τ)dτ

This has a finite upper bound as the numerator is bounded, for Ψ 6= 0. Because of the

triangular structure of the equations of motion, g(Ψ) is only a function of the initial

condition in Ψ, i.e. Ψ(0). It also satisfies g(Ψ(0)) = g(ψ(0)). Therefore we have:

Ev = R

∫ ∞

0

EV (τ)dτ = Rg(Ψ(0))

∫ ∞

0

EΨ(τ)dτ = Rg(ψ(0))

∫ ∞

0

EΨ(τ)dτ

Moreover we have:

Eψ
Eψ(0)

=
1
R

∫∞

0
EΨ(τ)dτ

1
R2EΨ(0)

= R

∫∞

0
EΨ(τ)dτ

EΨ(0)

Similarly:

Ev
Eψ(0)

=
Rg(Ψ(0))

∫∞

0
Eψ(τ)dτ

1
R2EΨ(0)

= R3g(ψ(0))

∫∞

0
EΨ(τ)dτ

EΨ(0)

Therefore in total:

E
Eψ(0)

=
(
R +R3g(ψ(0))

)
∫∞

0
EΨ(τ)dτ

EΨ(0)

This shows that the total energy growth scales with R3, as the last fraction is inde-
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pendent of R.

We summarize our findings in the following theorem:

Theorem 6.3 Consider the 2D/3C model (6.5–6.6). Then the following are true:

1. The Hagen-Poiseuille flow V = 1
4
(1− r2) is globally asymptotically stable for all

Reynolds numbers R.

2. For initial conditions (v(0) = 0, ψ(0) 6= 0) the total transient energy growth is

given by:
E

Eψ(0)
= k

(
R +R3g(ψ(0))

)
(6.11)

for some k independent of R.

The above analysis means that streamlining can evade bifurcations to instability,

and produce a flow that is stable irrespective of the Reynolds number. At the same

time, nonetheless, the amplification of disturbances and background noise scales like

R3, i.e. the robustness properties of the system deteriorate significantly. This ‘robust

yet fragile’ principle is observed in many other systems in engineering and biology.

6.3 An Algorithmic Analysis Methodology for PDE

systems

In this section we will consider the algorithmic construction of Lyapunov functions

for systems described by PDEs. The methodology we use is based on the sum of

squares decomposition, just as in the case of ODEs and FDEs.

The procedure we consider is as follows. First, we propose a Lyapunov functional

structure V , and we impose positive definiteness by ensuring non-negativity of its

kernel, just as in the case of FDEs. The system dynamics come into play when V̇

is considered. The boundary conditions appear naturally when the resulting expres-

sion is integrated by parts, which, as seen in the previous section, helps greatly in

‘completing’ the squares and simplifying terms.
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The above methodology is illustrated through an example. Consider the system

ut = uxx + λu3 + αu (6.12)

u(±1, t) = 0

with λ ≤ 0. This is the heat equation with forcing. From the linearization of this

system about the zero steady state, stability is guaranteed for α < π2/4.

Here we are interested in constructing a Lyapunov function of the form

V (u) =

∫ 1

−1

a(u(η, t), η)dη (6.13)

where a is a polynomial in its arguments, at least quadratic in u. We would expect

that as the order of a with respect to η and u is increased, better bounds on α can

be obtained, and this is the case, as we will see in the sequel.

Consider now dV (u)
dt

:

dV (u)

dt
=

∫ 1

−1

∂a

∂u
ut(η, t)dη =

∫ 1

−1

∂a

∂u

(
uηη + λu3 + αu

)
dη (6.14)

We mentioned earlier that integration by parts of the derivative condition is important

in ensuring its non-negativity, as in this way the boundary conditions are taken into

consideration. For example, in our case, the following expression is true:

∫ 1

−1

{
∂a

∂u
uηη + u2

η

∂2a

∂u2
− u

[
∂3a

∂u2∂η
uη +

∂3a

∂uη∂η2

]}

dη = 0

This is a result of integration by parts of the term
∫ 1

−1
∂a
∂u
uηηdη, where we have used

the fact that u ∂2a
∂u∂η

∣
∣
∣

1

−1
= 0 and uη

∂a
∂u

∣
∣
1

−1
= 0 since a is a polynomial at least quadratic

in u. Therefore the first term in (6.14) will be replaced by the rest of the terms in

the above expression, as in itself, it cannot contribute to the negative definiteness of

(6.14).
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Notice that the following is also true:

∫ 1

−1

ηnu2dη = −
∫ 1

−1

nηnu2dη − 2

∫ 1

−1

ηn+1uuηdη

i.e.,

∫ 1

−1

[
(1 + n)ηnu2 + 2ηn+1uuη

]
dη = 0

We then have the following proposition:

Proposition 6.4 Let there be polynomials a(u, η) and a positive definite function ϕ

such that the following hold:

1. a(u, η) − ϕ(u) ≥ 0 when η ∈ [−1, 1],

2. λ ∂a
∂u
u3 + α ∂a

∂u
u − u2

η
∂2a
∂u2 + u

[
∂3a
∂u2∂η

uη + ∂3a
∂uη∂η2

]

≤ 0 when η ∈ [−1, 1] and (1 +

n)ηnu2 + 2ηn+1uuη = 0 is satisfied.

Then the steady-state of system (6.12) is stable.

The two conditions guarantee the existence of a Lyapunov functional, given by (6.13),

that is positive definite and whose derivative is negative definite, guaranteeing stabil-

ity in L2. The criteria (1) and (2) in the proposition can be tested by adjoining the

conditions η ∈ [−1, 1] and the equality constraint in (2) using a technique similar to

the S-procedure, as it was done earlier in this thesis.

Recall that the stability condition from the linearization is α < π2/4. We introduce

a parameter measuring conservativeness, ρ as follows:

ρ(degree of a wrt η) = 1 −
(

4α

π2
for which a V can be constructed

)

(6.15)

Then for the functional shown in Equation (6.13), ρ varies as shown in Table 6.1.

We see that as the order of the polynomial a(u, η) is increased with respect to η, the

conservativeness is reduced, and the construction is entirely algorithmic.
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Order of a wrt η 0 2 4 6 8 10 12 14 16
ρ 1 0.5 0.32 0.20 0.15 0.11 0.08 0.07 0.06

Table 6.1: Stability analysis of a parabolic PDE system.

The above example shows how stability can be tested for systems described by

parabolic PDEs. The boundary conditions come into play through integration by

parts, a procedure that can be automated algorithmically. A problem that we face

is that many times, certain structures are better than others, and we need to choose

these judiciously, which is also the case for nonlinear FDEs.

6.4 Conclusion

In this chapter, we considered the problem of investigating the stability properties

of systems described by Partial Differential Equations. We have introduced some

stability notions, as well as a Lyapunov theorem for testing the stability properties

of a system.

We then showed how the axially constant solutions of the Navier Stokes equations

in cylindrical shear flow are globally stable, while they still retain an R3 growth on

the background noise, giving a ‘robust, yet fragile’ interpretation to the transition

from laminar to turbulent pipe flow.

We also demonstrated how the construction of Lyapunov functionals for PDEs

can be done algorithmically, using the sum of squares of multivariate polynomials

and semidefinite programming.
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Chapter 7

Conclusions>Edìkei d� meØzìn ti eÒnai tÀ Xenof¸nti...KaÈ t�qa d� �koÔousi bo¸ntwn tÀnstratiwtÀn J�latta j�latta kaÈ pareggu°ntwn...>EpeÈ dà �f�konto p�nte
 âpÈ tä �kron,ântaÜja d� perièballon �ll lou
 dakrÔnonte
.Xenof¸nto
, K�jodo
 twn mur�wn
It seemed to Xenophon that there was something very important... Soon they heard
the soldiers shouting: The Sea! The Sea! and passing it along... And when they

came to the peak, then they embraced one another, weeping.
Xenophon, Exodus

In this thesis, we have shown how the sum of squares technique can be used

to analyze nonlinear systems algorithmically, for system descriptions ranging from

simple Ordinary Differential Equations to simple Functional and Partial Differential

Equations. Then, we investigated the scalable analysis of large-scale interconnections

of subsystems described by Ordinary and Functional Differential Equations in relation

to congestion control for the Internet.

Before closing, we will give a summary of the main results presented and discuss

briefly future research directions.

7.1 Summary

In this thesis, we have seen the following results:

• In Chapter 3, we investigated how the algorithmic analysis of nonlinear systems
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described by Ordinary Differential Equations can be performed using sum of

squares techniques. We considered a general class of systems evolving over in-

equality, equality and integral constraints. As particular cases, we have shown

how the region of attraction of an equilibrium can be estimated, how robust

stability analysis can be performed and how non-polynomial systems can be

treated. Moreover, we have shown how to analyze stability of switching sys-

tems and have presented how performance analysis of nonlinear systems can be

performed. Illustrative examples from biology and aerospace were used to show

the effectiveness of the methodology.

• In Chapter 4, we moved to another class of differential equations, that of Func-

tional Differential Equations. In this case, even the algorithmic analysis of

linear system descriptions poses a challenge, and we have shown how the sum

of squares technique can be used to construct algorithmically the relevant Lya-

punov functionals. We then considered the stability and robust stability of

nonlinear time delay systems, which can be performed in a unified way. Finally,

an illustrative example from ecology was considered.

• In Chapter 5, we considered network congestion control for the Internet, which is

a large-scale interconnection of subsystems described by Functional Differential

Equations to form a network. We produced a Lyapunov argument for the

analysis of the linearization, as well as the full global stability for arbitrary

topologies, delays and link capacities for FAST, a network congestion control

scheme. A more general class of TCP/AQM schemes was also considered. The

structure of the system and the judicious choice of dynamics have guided the

choice of the Lyapunov certificate.

• In Chapter 6, we considered the stability analysis of systems described by Par-

tial Differential Equations. We have introduced some stability notions, as well

as a Lyapunov theorem for testing the stability properties of such systems.

We then showed how the axially constant solutions of the Navier-Stokes equa-

tions in cylindrical shear flow are globally stable, while they still retain an R3
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growth on the background noise. This shows how streamlined flows can be made

nonlinearly stable for arbitrary Reynolds numbers, at the expense of fragility

to disturbances. The chapter concluded with an algorithmic methodology for

constructing Lyapunov functionals for PDEs using the sum of squares decom-

position.

7.2 Future Research Directions

We would now like to mention a few pointers for future research. The work done so

far has swept horizontally various system descriptions and has presented algorithmic

solutions to analysis type questions. It would be interesting to investigate techniques

for algorithmic synthesis of control laws with or without guaranteed cost. The prob-

lem of synthesis is, in general, more complex than the problem of systems analysis.

In this case, both Lyapunov [76] and density function formulations [77] have been

considered, but alternative methodologies should be sought.

In the area of systems described by Ordinary Differential Equations, important

remains the concept of stiffness in ODEs and how this can be alleviated when seeking

algorithmic constructions using sum of squares. Singular perturbation methods can

provide some insight on how the Lyapunov function can be structured so that the

resulting semidefinite programming conditions are numerically well-conditioned [35].

In the area of infinite dimensional systems, and in particular systems described

by Partial Differential Equations, certain problems from fluid mechanics should be

investigated. In particular, for high shear flows [84], still unexplained is the effect of

drag reduction due to additives [43]. It is remarkable that a small amount of polymer

additives can have a significant effect on the drag reduction [4, 5]. This effect is

not entirely due to the change in the viscocity of the polymer/solvent solution – the

viscoelastic properties of the continuum are believed to play an important role.

We have seen in the previous chapter how the sum of squares technique opens new

possibilities for the analysis of systems described by PDEs, and we expect that these

methodologies will have a broader application to systems of infinite dimension in the
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future. The tools that are currently used for analysis of PDE systems mostly center

on discretization, which can never answer questions about the system exactly, and

sometimes is computationally expensive. At least conceptually, the PDE description

of a system is simpler and richer at the same time. The sum of squares technique is

a methodology that opens new, unexplored possibilities and a unique perspective for

future research in Partial Differential Equations.

Beyond stability analysis of steady-states for parabolic PDEs, other analysis ques-

tions can be answered, such as obtaining functional output estimates for PDEs. This

information is important for determining acceptable mesh sizes in computational

methods [70]. These and other areas are particularly important, such as obtaining

bounds on functional outputs of the Fokker-Planck equation for stochastic systems

analysis.

It is appreciated that large scale networks and distributed parameter systems

provide the same modeling framework for systems with arbitrarily sized topologies.

A way to see this intuitively is as follows. Most analysis procedures for parabolic

PDE systems are related to discretization. This results in large-scale systems, each

node in the mesh having certain dynamics depending on its neighbors and the dis-

cretization scheme. We are definitely more comfortable working with the large-scale

system resulting from discretization — at least computers are, since they can simu-

late finite dimensional descriptions. But most of our questions cannot be answered

by discretization alone, and in any case the PDE system description is simpler, at

least conceptually. It is perhaps time that we put more effort in understanding the

properties of PDE systems directly, producing reliable analysis algorithms that do

not use discretization, so that invaluable information about infinitely large systems

can be obtained at a low computational cost.
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