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Abstract

Crystals with rare earth ions present an opportunity to explore a range of model
magnetic systems, allowing for an experimental realization of several important
physical concepts. For example, the compound LiHoF4 is a transparent, insulating
crystal which implements the transverse field Ising model (TFIM) with the Ho3+

spins. The TFIM is a well-known model which is one of the simplest systems to
display quantum behavior, such as quantum phase transitions (QPTs). This makes
LiHoF4 very useful for investigating these and other quantum effects. LiHoF4 also
has strong hyperfine coupling to the nuclear spins, which means the excitations must
be considered as composite of electronic and nuclear states (i.e., ‘electronuclear’).
This introduces a nuclear spin bath which modifies behavior near the QPT. In this
work, we investigate the behavior of this QPT by probing the electronuclear states
in LiHoF4 at microwave frequencies. To accomplish this, we develop the use of
loop-gap resonators which enable sensitive microwave measurements in LiHoF4.
We also extend the techniques to related systems, such as the 2-dimensional XY
antiferromagnet LiErF4. We then investigate ways to observe new phenomena in the
LiHoF4 system, namely improving superconducting resonators as one possible way
to observe the dynamics of quantum quenching through the QPT.
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Chapter 1

Experimental System and Theory

The lanthanide series is made up of several metallic elements with very similar
chemical properties. These are usually shown as a separate row shown below the
periodic table (above the radioactive actinide series), fitting in between groups II
and III. The neighboring elements yttrium and lutetium are generally considered
lanthanides/rare earths, as they share most chemical properties. While yttrium has a
much lighter atomic weight compared to the standard rare earth elements, it has very
similar chemical properties. This is evidenced by the fact that it occurs alongside
most of the other rare earth elements in natural ores, which themselves are notoriously
difficult to separate. Going across the lanthanide row, each sequential element gets
an additional 4f electron. Importantly, these are not the valence electrons, but rather
an inner shell. This is why these elements are chemically very similar. As additional
electrons are added to the 4f shell, these inner electrons poorly screen/block the
positive nucleus. This leads to the valence electrons having a strong attraction to
the nucleus and thus a smaller radius. This is called the lanthanide contraction and
causes the heavier atoms to unexpectedly have a smaller radius than the rare earth
elements with lower atomic numbers. This effect is another reason that the chemical
properties are similar across the lanthanides.

The f-shell electrons and the generally similar chemical properties make the rare
earths valuable ingredients in a wide range of materials. In particular, rare earth
ion-doped insulating crystals play host to a variety of interesting effects relevant
to many different fields. The parent compounds for these families of materials are
usually some kind of yttrium compound which form transparent insulating crystals,
with the optical, electronic, and magnetic properties tuned by replacing some or all
of the yttrium with various rare-earth species. They are used as the lasing medium
in several varieties of high-power lasers [EEA79], and in the context of quantum
information they have been studied as quantum memories [Pro+15b] and microwave
to optical transduction [Eve+19]. Beyond these devices, they also present unique
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model systems for exploring a range of physical concepts.

The systems studied in this dissertation are based on the LiYF4 system, which has
the CaWO4 Scheelite structure. The LiYF4 family of materials are commercially
grown as laser crystals using the Czochralski method, and hence fairly large and
high-quality single crystals are easily available. Typical laser crystals in this family
are predominantly yttrium, with 1-3% of the ions replaced with rare earths such
as holmium or neodymium. The work here considers the opposite end of the
compositional spectrum, focusing primarily on LiHoF4 and secondarily on LiErF4.
The optical properties of LiHoF4 are evident in an interesting behavior: the color
will change based on the illumination. The crystal appears between a translucent
yellow to pink depending on whether LED, incandescent, or fluorescent light is in
use.

The nuclear properties of the Ho and Er rare earth ions seen here are also relevant.
Holmium only has one stable isotope, 165Ho, which carries a 7/2+ nuclear spin.
There are two isotopes with half-lives in the thousands of years (163Ho and 166m1Ho)
but these do not occur naturally and can be ignored. Erbium on the other hand, has
six naturally occurring isotopes, with the most common 166Er at 33.5%. Most of
these natural isotopes have zero nuclear spin, except for 167Er (23% abundance).
Erbium 3+ is known as a Kramers’ ion [JM91; Pro16], where the ground state is
doubly degenerate.

1.1 Rare Earth ion Hamiltonian and models

One of the most well-known and fundamental models in quantum magnetism is
that of the transverse field Ising model (TFIM). In such a model we have spins that
can either be up or down (|↑⟩ , |↓⟩) along the so-called easy axis, with some kind
of interaction between them. Introducing a field transverse to the Ising axis allows
for quantum tunneling between these two states. The Hamiltonian can written as
[Dut+15; Sac11; McK23; Tab+08; MS18]:

H = −
∑︁
𝑖< 𝑗

𝑉𝑖 𝑗𝜏
𝑧
𝑖
𝜏𝑧
𝑗
− Δ0

∑︁
𝑖

𝜏𝑥𝑖 , (1.1)

where 𝑧 is the easy axis,𝑉𝑖 𝑗 is the interaction strength, andΔ0 represents the transverse
field strength. This Hamiltonian has a critical temperature 𝑇𝑐 above which the system
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is disordered. It is also one of the simplest models with a quantum phase transition
at a critical transverse field value Δ𝑐.

The materials that we will be discussing are notable as solid-state representations
of magnetic models. The base material LiYF4 is non-magnetic. However, as noted
above, yttrium is chemically very similar to the lanthanides and hence it is possible
to either partly or fully replace yttrium with another rare earth element. Depending
on the element and base crystal, we can access a variety of magnetic model systems.
In this work we look at crystals with 100% of the yttrium replaced with holmium
(LiHoF4) and one with 100% erbium (LiErF4). The rare earth ions of holmium and
erbium carry magnetic moments, while the rest of the lattice is not magnetic. Due
to the different crystal electric fields of Er and Ho, the respective compounds have
different magnetic symmetries. LiHoF4 is a dipolar-coupled Ising ferromagnet with
an easy axis, while LiErF4 is a dipolar-coupled XY antiferromagnet.

We can first write a generalized Hamiltonian for all the LiYF4-based crystals, then
see how each ion produces such different properties. Each ion site has an electronic
spin of 𝐽 = 8 and the only isotope 165Ho has a nuclear spin of 𝐼 = 7/2. The complete
Hamiltonian of the LiHoF4 system is given by [Cha+04]

H =
∑︁
𝑖

𝑉𝐶

(
®𝐽𝑖
)
− 𝑔𝐿𝜇𝐵

∑︁
𝑖

𝐵𝑥𝐽
𝑥
𝑖 +

1
2
(𝑔𝐿𝜇𝐵)2

∑︁
𝑖≠ 𝑗

L𝜇𝜈
𝑖 𝑗
𝐽
𝜇

𝑖
𝐽𝜈𝑗 (1.2)

+ 1
2
(𝑔𝐿𝜇𝐵)2

𝐽𝑒𝑥

𝑎3

∑︁
𝑖,𝑛𝑛

®𝐽𝑖 · ®𝐽𝑁𝑁 + 𝐴
∑︁
𝑖

(
®𝐼𝑖 · ®𝐽𝑖

)
, (1.3)

with 𝜇, 𝜈 ∈ 𝑥, 𝑦, 𝑧. The first term (with 𝑉𝐶) refers to the effect of the crystal fields,
as in the electric field which the magnetic ions experience from the other atoms in
the crystal. LiHoF4 has a tetragonal Scheelite structure with 4 nearest neighbors.
Using the Hund’s rules, a Ho3+ ion has a ground state of 5𝐼8, (𝑆 = 2, 𝐿 = 6, 𝐽 = 8)
[Cha+04]. An isolated Ho3+ ion will thus have a 2𝐽 + 1 degenerate ground state.
However, Coulomb interactions with nearby ions will create an electric field that
splits the ground state. The particular form of 𝑉𝑐 is given in terms of the Stevens
operators [Ste52; JM91]. The general form is given by

𝑉𝑐 (J) =
∑︁
𝑖

∑︁
𝑙𝑚

𝐵𝑚𝑙 𝑂
𝑚
𝑙 (J𝑖), (1.4)
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where 𝑂𝑚
𝑙
(J𝑖) are the crystal field operators consisting of various 𝐽 operators, and

𝐵𝑚
𝑙

are the crystal field parameters which depend on the relative locations of the
other ions. In general, these are quite difficult to calculate, as the charge density is
typically not distributed in a simple way, and because we are considering rare earth
ions, the 4f electrons are screened by the outer electrons [JM91]. Thus, using a point
charge model is not very accurate. However, the symmetry of the Scheelite structure
means that only certain terms are relevant [Cha+04]:

𝑉𝐶 ( ®𝐽) = 𝐵0
2𝑂

0
2 + 𝐵

0
4𝑂

0
4 + 𝐵

0
6𝑂

0
6 + 𝐵

4
4(𝐶)𝑂

4
4(𝐶) (1.5)

+ 𝐵4
6(𝐶)𝑂

4
6(𝐶) + 𝐵

4
4(𝑆)𝑂

4
4(𝑆) + 𝐵

4
6(𝑆)𝑂

4
6(𝑆).

where the 𝑂𝑚
𝑙
(J𝑖) operators are given by [Cha+04]:

𝑂0
2 = 3𝐽2

𝑧 − 𝐽 (𝐽 + 1),
𝑂0

4 = 35𝐽4
𝑧 − 30𝐽 (𝐽 + 1)𝐽2

𝑧 + 25𝐽2
𝑧 − 6𝐽 (𝐽 + 1) + 3𝐽2(𝐽 + 1)2,

𝑂4
4(𝐶) =

1
2
(𝐽4
+ + 𝐽4

−),

𝑂0
6 = 231𝐽6

𝑧 − 315𝐽 (𝐽 + 1)𝐽4
𝑧 + 735𝐽4

𝑧 + 105𝐽2(𝐽 + 1)2𝐽2
𝑧

− 525𝐽 (𝐽 + 1)𝐽2
𝑧 + 294𝐽2

𝑧 − 5𝐽3(𝐽 + 1)3 + 40𝐽2(𝐽 + 1)2

− 60𝐽 (𝐽 + 1),

𝑂4
6(𝐶) =

1
4
(𝐽4
+ + 𝐽4

−)
[
11𝐽2

𝑧 − 𝐽 (𝐽 + 1) − 38
]
+ H.c.

𝑂4
6(𝑆) =

1
4 𝑗
(𝐽4
+ − 𝐽4

−)
[
11𝐽2

𝑧 − 𝐽 (𝐽 + 1) − 38
]
+ H.c.,

where 𝐽+ = 𝐽𝑥 + 𝑗 𝐽𝑦 and 𝐽− = 𝐽𝑥 − 𝑗 𝐽𝑦, small 𝑗 is the imaginary unit, and H.c.
means hermitian conjugate [Cha+04]. These parameters 𝐵𝑚

𝑙
are usually determined

by experiment, after eliminating some due to symmetry considerations. In Table 1.1
are two examples of experimentally derived crystal field parameters. We have used
those of [Røn+07] for calculations here.

The next term is from the Zeeman effect of the applied transverse magnetic field 𝐵𝑥 .

The term with L𝜇𝜈
𝑖 𝑗

represents the dipole interactions, given by the following tensor:

L𝜇𝜈
𝑖 𝑗

=
𝛿𝜇𝜈 |®𝑟𝑖 𝑗 |2 − 3(®𝑟𝑖 𝑗 )𝜇 (®𝑟𝑖 𝑗 )𝜈

|®𝑟𝑖 𝑗 |5
. (1.6)
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Citation 𝐵0
2 103𝐵0

4 103𝐵4
4 105𝐵0

6 105𝐵4
6(𝑐) 105𝐵4

6(𝑠)
[HJN75] -0.065 0.426 4.53 0.01 8.55 ± 1.69
[Røn+07] -0.06 0.35 3.6 0.04 7.00 ± 0.98

Table 1.1: Crystal field parameters (i.e., coefficients for the Stevens operators) given
in meV for LiHoF4, as determined by the respective citations. In [HJN75], they
measured these with susceptibility, and for the latter [Røn+07] they used neutron
scattering.

This long-range interaction being the dominant coupling makes the LiHoF4 system
unique as a dipolar-coupled Ising magnet.

Next is the nearest-neighbor exchange coupling, with 𝑎 = 5.175 Å being the lattice
constant in the xy plane [Cha+04]. In theoretical treatments, 𝐽𝑒𝑥 is typically a free
parameter to make 𝑇𝑐 in the calculated phase diagram match experiment [DAS22].
Most calculations such as mean field predict 𝑇𝑐 ∼ 1.8 K without this term, so this
term is added to match experiment. Measurements [Røn+07] have found this to
be 𝐽12 = −0.1 µeV. They found that this value fits well with the data, except at
low-field and high-temperature near the classical phase transition where a value of
𝐽12 = −0.27 µeV aligns better with the data.

Finally, the last term is the hyperfine interaction between the electron and nuclear
spins on each site.

There is another interaction which has mostly been neglected in other work, but may
prove relevant for more accurately describing the system, especially in regards to
the spin waves and Walker modes we will discuss later. The Suhl-Nakamura effect
[Suh58; HGB63] is an effective nuclear spin-spin interaction in ferromagnets and
antiferromagnets. The Suhl-Nakamura interaction applies to systems with hyperfine
coupling and electron spins coupled ferro- or antiferro-magnetically [Suh58; Nak58].
Each nuclear spin sees the electronic spin on the same atom through hyperfine
coupling, and the electron spins are coupled with dipole and exchange interactions.
This means that one nuclear spin excitation would couple to its electron spin, which
creates a spin wave that couples to other electrons. Then, any electron affected by
the spin wave can couple to its own nucleus, creating an indirect coupling between
nuclei.
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Figure 1.1: Electronic energy levels, showing the ground state doublet splitting with
transverse field. At zero-field there is an approximate 11 K gap. This shows a much
larger energy scale than the plots showing hyperfine levels, noting that 1 K = 20.8
GHz. Adapted from [Cha+04].

1.2 Effective Hamiltonian

This Hamiltonian includes all the relevant factors, but it is quite difficult to solve
in this form. Thanks to the dipolar term, the state of spin 𝑖 depends on every other
spin, and each of those depends on the others... and so on. This Hamiltonian also
includes the higher energy levels which might be relevant to laser applications at
high temperatures. However, we are primarily interested in the low-energy modes
at low temperatures. In this case, we can focus on the levels that give us the Ising
behavior. Measurements have shown that the gap between the low-energy doublet
and the first excited state is about 11 K (as shown in Fig. 1.1). Therefore, if we
focus on the low-temperature and low-energy regime, we can consider a simpler
truncated Hamiltonian for the Ising doublet, with components for the electronic and
nuclear spins, i.e.,Heff = H𝑒 +HNS with terms for the electronic and nuclear spins,
respectively [Tab+08].

We can treat the electron spins as a set of spin-1
2 Ising spins {𝜏𝜇

𝑖
}. This leads to an

effective field-dependent longitudinal electronic spin operator 𝐽𝑧
𝑖
= 𝐶𝑥𝑥 (𝐵𝑥)𝜏𝑧𝑖 . The

electronic Hamiltonian is thus [MS18]:
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H𝑒 = −
∑︁
𝑖< 𝑗

𝑉𝑖 𝑗 (𝐵𝑥) 𝜏𝑧𝑖 𝜏
𝑧
𝑗
− Δ(𝐵𝑥)

∑︁
𝑖

𝜏𝑥𝑖 (1.7)

where 𝐵𝑥 is the transverse field, and 𝑉𝑖 𝑗 (𝐵𝑥) now includes the truncated dipolar and
exchange interactions between the Ising spins [McK+22]:

𝑉𝑖 𝑗 =
1
2

[
𝐽𝐷𝐷

𝑧𝑧
𝑖 𝑗
𝐶2
𝑧𝑧 (𝐵𝑥) − 𝐽𝑛𝑛𝛿𝑖 𝑗𝐶2

𝑧𝑧 (𝐵𝑥)
]
. (1.8)

Δ(𝐵𝑥) represents the effective transverse field on each Ising spin. As indicated, these
are both dependent on the applied transverse field 𝐵𝑥 . The truncated nuclear spin
bath Hamiltonian can be represented as

H𝑁𝑆 =
∑︁
𝑖

𝚫𝑛 · I𝑖 + A𝑧

∑︁
𝑖

𝜏𝑧
𝑖
𝐼 𝑧
𝑖

(1.9)

+
(
A⊥

∑︁
𝑖

𝜏+𝑖 𝐼
−
𝑖 + A++

∑︁
𝑖

𝜏+𝑖 𝐼
+
𝑖 + h.c.

)

where ®Δ𝑛 = (𝐴𝐶𝑥 , 𝐴𝐶𝑦, 0), 𝐴𝑧 = 0, and

𝐴⊥ = 𝐴
𝐶𝑥𝑥 + 𝐶𝑦𝑦 + 𝑗 (𝐶𝑦𝑥 − 𝐶𝑥𝑦)

4
(1.10)

𝐴++ = 𝐴
𝐶𝑥𝑥 − 𝐶𝑦𝑦 − 𝑗 (𝐶𝑦𝑥 + 𝐶𝑥𝑦)

4
. (1.11)

In this case the effective field ®Δ𝑛 comes from the hyperfine coupling and is anisotropic.
The dependence of the matrix elements 𝐶𝑖 𝑗 is shown in [MS18], in units of K and
dependence on the transverse field 𝐵𝑥 .

This truncated Hamiltonian HH is made up of the electronic term Eq. 1.7 and the
nuclear term Eq. 1.9: Heff = H𝑒 +H𝑁𝑆. This form shows the Ising behavior at low
temperature.
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Mean-Field Approximation

It is difficult to solve the LiHoF4 Hamiltonian due to the interaction components.
Relevant are both the exchange term between nearest neighbors and the dipole term
which is especially difficult to handle because each ion is dependent on every other
ion. For this reason, in order to solve the Hamiltonian we need to make some degree
of approximation. The simplest of these is the mean-field approximation [Eis21].
The essence of this method is to ignore fluctuations of operators around the average
value. This is introduced to the with the J𝑖 · I𝑖 term with some algebra to the identity
[JM91]:

J𝑖 · I𝑖 = (J𝑖 − ⟨J𝑖⟩) · (J 𝑗 − ⟨J 𝑗 ⟩) + J𝑖 · ⟨J 𝑗 ⟩ + J 𝑗 · ⟨J𝑖⟩ + ⟨J𝑖⟩ · ⟨J 𝑗 ⟩. (1.12)

Or on a component basis, 𝐽𝜇𝐽𝜇 → 2𝐽𝜇⟨𝐽𝜇⟩ − ⟨𝐽𝜇⟩⟨𝐽𝜇⟩ where 𝜇 ∈ 𝑥, 𝑦, 𝑧. This allows
us to rewrite Eq. 1.3 at the mean-field level as [Eis21]:

HMF = −𝑛
2
𝐾

(
2J⟨J⟩ − ⟨J⟩2

)
︸                    ︷︷                    ︸

interaction

+𝑉CF(J) + 𝐴J · I − 𝜇𝐵B · (𝑔J + 𝑔𝑁I)︸                                         ︷︷                                         ︸
single-ion

. (1.13)

This Hamiltonian can then be solved for the eigenvalues and eigenstates, as E = HΨ.
With the electronic spin 𝐽 = 8 and nuclear spin 𝐼 = 7/2, each one has 2𝑁 + 1
states. The state is therefore defined by a vector of size 𝑁 = (2𝐽 + 1) × (2𝐼 + 1) =
(16 + 1) × (7 + 1) = 136. The Hamiltonian is an 𝑁 × 𝑁 = 136 × 136 matrix with
the 𝐼𝜇 and 𝐽𝜇 taking the appropriate matrix form. This is calculated numerically in
the mean-field form by guessing a ⟨J⟩ value and refining until a self-consistent result
is found [JM91; BD02; McK16; MS18].

We can also use the mean-field approach to calculate the phase diagram and
demonstrate the effect of hyperfine coupling to the phase transition. This was
calculated by Bitko et al. [BRA96] using the following equation:

H = 𝑉𝑐 − 𝑔⊥𝜇𝐵𝐻𝑡 ®𝐽𝑥 + 𝐴
(
𝐼 · 𝐽

)
− 2𝐽0⟨𝐽𝑧⟩𝐽𝑧 . (1.14)

There are some free parameters related to the coupling that are calculated using
their measurements. The solution to this is shown in Fig. 1.2, with the susceptibility
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measurements shown by circles. The dashed line is the result of omitting the hyperfine
term in Eq. 1.14. This phase boundary shape is in agreement with that which is
calculated for the basic toy TFIM, showing that LiHoF4 is a good implementation of
this model.

The solid line represents the calculation including the hyperfine term, which becomes
most relevant below 400 mK. In this case, the electronic and nuclear spins are coupled
to create a larger effective spin, increasing the transverse field scale needed to break
the ferromagnetic ordering.

0.0 0.4 0.8 1.2 1.6
T (K)

0

1

2

3

4

5

H
t (

T)

A = 0.039 K
A = 0
Measured

Figure 1.2: Phase diagram of LiHoF4 adapted from [BRA96]. The dashed line is
the mean-field solution of Eq. 1.14 without the hyperfine term (𝐴 = 0). The solid
line is from the mean-field solution including the hyperfine term (𝐴 = 0.039 K).
The dashed line is very similar to that expected in the simplest transverse field Ising
model. In LiHoF4 at low temperatures the hyperfine coupling to the nuclear spin
becomes important and increases the energy scale (and thus transverse magnetic
field) required to break ferromagnetic ordering. The circles represent susceptibility
measurements by Bitko et al.

While the mean-field approach can account for most of the electronuclear dynamics in
LiHoF4, it does not account for the behavior near the quantum phase transition (QPT),
where fluctuations become more important. For the next level of approximation, we
use the Random Phase Approximation (RPA), which uses the mean-field results and
allows a degree of fluctuations, assumed to be a gaussian distribution.

For the purposes of these experiments at low-temperatures and GHz frequencies, we
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are interested in transitions between and within the two lowest electronic states which
each have 2𝐼 + 1 = 2 × 7

2 + 1 = 8 states. Therefore this subspace has 2 × 8 = 16
states. The electron spin operator is then

𝜏𝑧 =

[
1 0
0 −1

] ⊗
I8 (1.15)

where I8 represents the 8 × 8 identity matrix corresponding to the 8 nuclear levels,
so this operator acts only on the electron spin.

The mean field susceptibility 𝜒0(𝜔) can be solved analytically, and the RPA suscep-
tibility follows as

𝜒(k, 𝜔) = 𝜒0(𝜔)
1 −𝑉k𝜒0(𝜔)

. (1.16)

The RPA modes are given by the poles of this function, and the residue of each
pole determines the spectral weight. The lowest energy mode is one of these poles
[McK16]:

𝜔𝑘 =

√︄
𝜒𝑧𝑧0
𝜒𝑧𝑧2

√︃
1 −𝑉𝑘 𝜒𝑧𝑧0 . (1.17)

This gives the soft mode, completely softening to zero at 𝑉𝑘 𝜒𝑧𝑧0 = 1. This can also
be written in a spectral representation [McK+22]:

𝜒(k, 𝑧) =
∑︁
𝑚

[
𝐴𝑚
𝑘

2𝐸𝑚
𝑘

(𝐸𝑚
𝑘
)2 − 𝑧2

]
+ 𝜒el

𝑘 𝛿𝑧,0, (1.18)

where

𝐷ret
𝑚𝑝 =

−𝜔𝑟
𝜔2 − 𝜔2

𝑚𝑝 + 𝑗𝜔Γ𝑚𝑝
(1.19)
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|𝑆21 |2 ∝ 𝐼𝑚 [𝐷𝑟𝑒𝑡𝑚𝑝] =
2𝜔𝜔𝑟Γ𝑚𝑝

(𝜔2 − 𝜔2
𝑚𝑝)2 + (𝜔Γ𝑚𝑝)2

(1.20)

𝐽𝑧 = 𝐽𝑧 − ⟨𝐽𝑧⟩ = 𝐶𝑧𝑧 (𝜏𝑧 − ⟨𝜏𝑧⟩). (1.21)

Susceptibility

Our focus is on the hybrid quantum system consisting of the resonator and the spin
system. With models for the resonator physics and the microscopic Hamiltonian of
LiHoF4, the key to understanding the data is the interaction between the two. When
there is strong coupling between the two systems, the excitations must be considered
together.

In deriving the circuit model, the spin system is introduced as a susceptibility 𝜒.
Most studies of LiHoF4 measure the low-frequency susceptibility 𝜒 [BRA96]. That
is to say, the excitation frequency is much lower than electronic or nuclear energy
levels.

Before proceeding, we should emphasize that in this context we are discussing
the dynamic susceptibility, which is complex-valued and dependent on frequency,
magnetic field, and temperature: 𝜒( 𝑓 , 𝐻, 𝑇). The real part of this quantity causes
a dispersive frequency shift shaped similarly to the phase diagram. The imaginary
part of 𝜒 has peaks corresponding to the transitions between electronic and nuclear
levels. Discussions of this can be found in [McK16; JM91].

This distinction should be kept in mind throughout the following chapters, as it is not
the same quantity measured in low-frequency experiments, although some behavior
is similar.

1.3 Structure

So far, we have discussed the theory that is relevant to the rest of this work. Here
is a short outline of the remainder of this work. Chapter 2 will describe the
practical techniques for the experimental portions. Chapter 3 describes the initial
experiments looking at the quantum phase transition in LiHoF4 using loop-gap
resonators (LGRs), which were published as [Lib+21a]. Further experiments with
LiHoF4 and descriptions of relevant theories, including magnon-polariton modes
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and magnetostatic/Walker modes are described in chapter 4. The later chapters focus
on other experimental systems. Chapter 5 discusses the material LiErF4, which is
similar to LiHoF4 but with the holmium ions replaced by erbium ions. This gives
us a XY (2-dimensional) layered antiferromagnet which can also be studied with
microwave spectroscopy. We then take a slight detour in chapter 6 looking at ways to
improve niobium superconducting resonators. Finally, in chapter 7 we look at future
experiments that might use LGRs or superconducting resonators to explore dynamics
in these systems. In particular, we discuss the possibility of saturating hyperfine
levels in LiHoF4 to move the QPT and allow a quantum quench to be observed. We
will also connect this to the big picture through the Kibble-Zurek mechanism which
describes after a quench—from galaxy clusters to microscopic Ising spins.
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Chapter 2

Techniques

2.1 Microwave techniques

Microwave resonators for S-Band Measurements

Now that we have a theoretical understanding of the states involved in LiHoF4, the
question becomes how to measure and manipulate these states. The majority of
relevant transitions are around 3 GHz, and mostly within the 2-4 GHz IEEE S-band.
For typical magnetic resonance (MR, including nuclear and ferromagnetic resonance)
and electron spin resonance experiments (ESR/EPR), there are a number of devices
to transmit and receive an RF/MW field. A major determining factor is the frequency,
and thus wavelength of the rf field. For lower frequencies (MHz) such as in most
NMR experiments, a balanced coil is typical. As frequency increases, the inductance
𝑗𝜔𝐿 term gets too high, making a coil ineffective in the GHz range.

The other option is a microwave cavity, which becomes effective around 8 GHz and
is often used in ESR. The simplest form of a MW cavity is a metal box with coupling
antenna(s). The dimensions of the box are selected to match a particular quarter
wavelength and thus frequency, from 𝜆 = 𝑐/ 𝑓 . This means that the dimensions of
the cavity are inversely proportional to the desired frequency. For an idea of the
size—a standard 12 oz soda can has a resonant frequency of 3.5 GHz. This brings
multiple issues related to the size. First and foremost, the overall diameter would be
too big for a superconducting magnet bore. The field profile also presents multiple
issues. Less significant for small samples is the variable field strength throughout
the sample. More importantly for these small samples is the resulting filling factor, a
very important parameter which generally describes the magnitude of the effect that
the sample has on the measured resonator properties. The filling factor for a material
in/affecting an RF magnetic field can be defined as:
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𝜂 =

∫
𝑠𝑎𝑚𝑝𝑙𝑒

𝑑𝑉𝐻2
1∫

𝑐𝑎𝑣𝑖𝑡𝑦
𝑑𝑉𝐻2

1
. (2.1)

This is essentially indicating how much of the overall magnetic field is occupied by
the sample, weighted by the field strength. Accordingly, if the sample has an effect
on the resonant frequency and/or quality factor, the filling factor corresponds to how
strong this effect will be [Che+04; ML08; CL82].

Another method that has been used to probe the LiHoF4system is a coplanar waveguide
(CPW) resonator, made with conventional conductors (copper) at a macroscopic
scale [Kov16]. This is to be distinguished from the topic discussed in chapter 6,
superconducting microresonators. Conventional CPW resonators have a fairly low
quality factor, and the field profile causes issues at this scale. The MW magnetic
field 𝐻mw curves around the center conductor, meaning that the direction of 𝐻mw

is variable within the sample. The susceptibility of the sample is dependent on
the direction of 𝐻mw relative to the crystallographic axes, so CPW resonators will
probe at many different angles throughout the sample. The measurements will
include contributions from these different directions, making the analysis difficult
and blurring out any features. This concept is called inhomogeneous broadening,
and here also applies to the magnitude of 𝐻mw. The effect of an inhomogeneous
microwave field is most significant when studying saturation effects. If each region
is experiencing a different field amplitude, only a fraction of the sample will be
saturated at a given time.

Besides the inhomogeneous broadening effects, these CPW resonators will also have
a much lower filling factor, as much of 𝐻mw is outside the sample, above and below
the substrate. This will make the coupling strength weaker and make it harder to see
features.

Loop-gap resonator: Overview

Having discussed the most common resonator structures and their shortcomings
for this measurement, we eventually came across a much more suitable design, the
loop-gap resonator (LGR). It has properties of both lumped element resonators
and cavity resonators, and it is practical for measurements of small samples at
S-band frequencies. The LGR concept actually has its roots in some of the first
microwave generators, starting from the development of microwave engineering
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during World War II. A typical design consists of a central circular hole surrounded
by flux return holes connected through thin gaps to the center hole [Bri85]. These
cavity magnetrons were key components of the first radar systems and thus seen as
critical to winning the war. A prototype being shared from Britain to Bell Labs “was
called the ‘most valuable cargo’ ever to be imported into the US" [Bri85].

In the most basic form, an LGR can be made of a copper tube with a lengthwise
slot [Col48; FH82]. In this case, the “loop," or inductive component, is around the
perimeter of the round tube. This creates an RF magnetic field in the axial direction,
along the tube. The small gap provides a capacitance with an electric field oriented
across the gap. Because the resonant frequency is defined by these parameters rather
than overall size, LGRs can be much smaller than the wavelength. This is in contrast
to cavity and CPW resonators, where the physical size determines the resonant
wavelength and thus frequency.

This most basic design of an LGR has some difficulties. First is the question of
mounting. The axial flux through the center loop needs a return flux path, and in
this case it is not confined and takes up the space around the resonator. This means
that any conducting material placed in the vicinity of the resonator perturbs this field
and changes the frequency. Therefore, the mounting materials in the vicinity of the
LGR must be insulating. This would normally be plastic, which causes issues with
thermal contraction relative to the metal and crystal sample.

Another consequence of this field profile is that it looks similar to a magnetic dipole.
This causes significant radiation loss by the resonator. This also means that the
resonator is very sensitive to the details of the enclosure farther away. When this
is placed in a large metal can, the radiation loss and frequency are affected. Also,
depending on the size of the enclosure and the exact geometry, the LGR may couple
to a cavity mode. This type of LGR proved difficult to get working, probably due to
these various factors.

While the most basic form of an LGR is impractical, with a slight variation we
have found a much more reliable and effective resonator. Many problems related
to the basic LGR design are due to the ill-defined flux return path. Fixing this
problem is the key to make these measurements possible. Rather than a single loop
and single gap, we can instead have multiple loops/gaps. An early example of this
concept [WFH84] uses three loops connected by two gaps to provide a controlled
return flux path and reduce the strong radiation loss associated with the single-loop
resonator’s dipole field pattern. Additionally, this approach allows applying uniform
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fields simultaneously at multiple frequencies, a key element for pump-probe and
other state-manipulation protocols. Due to the flexibility in design, field uniformity,
and optical access through the sample, resonators using this design are useful for a
wide range of experimental studies, such as transduction between microwave and
optical states in quantum computing applications [Bal+18].

Here, we describe an empirical design procedure using finite element method
calculations to design an asymmetric loop-gap resonator with uniform fields at two
frequencies in the same sample volume and analyze the field uniformity, frequency
tunability, and filling factors, providing comparison to a manufactured device.

Loop-gap resonator: Design Requirements

When a sample with complex susceptibility 𝜒 = 𝜒′− 𝑗 𝜒′′ is inserted into a resonator,
the reactive component 𝜒′ modifies the resonant frequency 𝑓0 and the dispersive
component 𝜒′′ modifies the quality factor Q:

Δ 𝑓0

𝑓0
=

𝜒′𝐻2Δ𝑣

2
∫
𝑟𝑒𝑠

𝐻2𝑑𝜏
(2.2)

Δ

(
1

2𝑄

)
=

𝜒′′𝐻2Δ𝑣

2
∫
𝑟𝑒𝑠

𝐻2𝑑𝜏
, (2.3)

where Δ𝑣 is the volume of the sample [Che+04]. In ESR experiments, this sus-
ceptibility has a characteristic peak at an ESR transition. Off-resonance with an
electronic level, this quantity probes the static susceptibility of the sample, providing
information about the bulk magnetic properties of a sample [Che+04]. By contrast,
studying the on-resonant response of a sample at multiple frequencies can provide
information on the spin Hamiltonian [Mis11].

While multifrequency studies are typically performed by retuning a resonator and
carrying out separate measurements, there are advantages to having a uniform field
at two distinct frequencies simultaneously. For instance, many ESR experiments
require temperatures of 0.1 K or below, and thus entailing the use of a 3He/4He
dilution refrigerator. Cycling a dilution refrigerator to room temperature to retune
a resonator can require hours or days, so the convenience of applying fields to a
sample at multiple frequencies is considerable. More importantly, pump-probe
spectroscopy with simultaneously-applied fields at two frequencies is a common
technique [6]. However, little work has been done to develop a microwave resonator
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that can produce uniform, resonantly enhanced, ac magnetic fields at frequencies
spaced by a few GHz.

Figure 2.1: Illustration of the resonator design used in this work.

The resonator design studied in this work is shown in Fig. 2.1. This design is a
variation of a typical four-loop three-gap resonator, with asymmetry introduced to
provide degrees of freedom to control the mode splitting. One loop is rectangular to
accommodate the rectangular single crystal samples often used in ESR and quantum
magnetism studies. The dimensions of the rectangular loop are fixed by the sample
size (here we use 4 mm x 2 mm), and we choose to fix the gap lengths ℓ𝑖 at 5 mm.
We also make the the gaps a uniform thickness 𝑡 = 330 µm, such that by introducing
a sapphire shim into variable fractions 𝑥𝑖 of the gaps it is possible to tune the gap
capacitance post-fabrication.

In a three-loop two-gap design the outer loops serve as the return flux path for the
center loop, so increasing the size of these loops enhances the flux density in the
central loop. A similar principle applies here, so the outer loops are set as large as is
practical. The size of the circular center loop plays a role in determining the relative
filling factors of the two modes, as will be examined later.

The goals of our design are to optimize the field uniformity and filling factor for the
rectangular loop while understanding the dependence of the mode spacing on these
parameters.

Loop-gap resonator: Computational Analysis

A 3D CAD model of the empty resonator was constructed using SOLIDWORKS.
The resonator body is made of copper with the loop and gap structure cut out and
surrounded by a few mm of air on either side. To compute the resonant frequencies
and corresponding field modes, a generalized eigenmode analysis is carried out



18

using an edge-based finite element formulation as implemented in EMWorks’ high
frequency simulator (HFWorks). This formulation ensures that no spurious modes
are found and allows the use of the imperfect conductor boundary condition at the
resonator’s copper walls. To ensure higher precision of the resonant field distribution
in the loop and gap regions, mesh refinement is used. Mode power normalization is
also employed to produce proper field level comparison plots.

Fig. 2.2 shows the magnetic and electric field distributions of the two desired modes.
While both modes have flux through the sample loop, a mode-splitting occurs because
the return flux paths for the two modes are different. In the low-frequency mode, the
magnetic fields in the two center loops oscillate in-phase, using the two loops on the
ends as return flux paths, whereas for the high-frequency mode the return flux path
is predominantly the second center loop.

The calculated electric field distribution is also qualitatively different between the
two modes, with only the high-frequency mode having a significant electric field in
the central gap. Fig. 2.3 shows the dependence of the mode frequencies on the three
gap widths, with the low and high modes largely independently tunable using the
right and left gaps, respectively.

The filling factor, defined as

𝜂 =

∫
𝑠𝑎𝑚𝑝𝑙𝑒

𝐻2𝑑𝜏∫
𝑎𝑙𝑙
𝐻2𝑑𝜏

, (2.4)

is also an important parameter for sensitivity in spectroscopy and entering the
regime of strong coupling between the resonator and a spin ensemble [Ang+16]. As
mentioned previously, cavity and transmission line resonators have mode volumes
tied intrinsically to the resonant wavelength, and thus have quite low filling factors
for typical mm-size samples in the regime of a few GHz, making them impractical
for spectroscopy in this range.

The filling factor is calculated here by numerically evaluating the integrals over a
grid, with results shown in Fig. 2.4 for different sizes of the non-sample (circular)
center loop.

A tradeoff in the filling factors of the two modes is apparent, due to the different
return flux patterns. The low mode essentially sees each central loop acting as the
return path for flux through each adjacent outer loop, while for the high mode the
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Figure 2.2: Calculated magnetic and electric fields of the low- (a,b) and high-
frequency (c,d) modes.

sample loop predominantly serves as the return flux path for both the far-left loop
and secondary center loop. This leads to a simple interpretation of these modes in
terms of the three-loop two-gap structure discussed previously; in the lower mode,
both center loops have the magnetic fields oscillate in phase and act as the single
center loop in the three-loop two-gap geometry, while the higher mode corresponds
to such a structure excluding one side loop.

The field uniformity within the sample volume is also important for uniform saturation
of a spin ensemble [Ang+16]. In Fig. 2.5 cuts through the midplane of the sample
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Figure 2.3: Calculated variation of the mode frequencies by tuning of the left,
center, and right gap thicknesses. The low-frequency mode is largely insensitive
to variation of the left gap while the high-frequency mode is independent of the
right gap, allowing each mode to be tuned independently with dielectric loading
post-fabrication.

volume are shown. The maximum variation of the magnetic field component
perpendicular to this plane is approximately 3% for each mode, which is comparable
to single-mode 3D lumped-element resonators [Ang+16].

Loop-gap resonator: construction and characterization

This style of loop-gap resonator presents manufacturing challenges. Using an endmill
to cut the gaps is impractical given that the gaps need to be quite narrow compared
to the material thickness. Slitting saws can cut narrow gaps, but they are fragile.
There is another challenge in the shape of the central sample volume. For a nearly
rectangular sample, the sample chamber should correspond to the shape to prevent
magnetic torque. Interior rectangular pockets are difficult, with the squareness
determined by the endmill diameter.
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Figure 2.4: Variation of the filling factors of the two modes as the size of the circular
center loop is varied, as a function of the ratio between the area of the sample loop
and the circular loop. A tradeoff is apparent due to the different return flux patterns
of the two modes.

One way to avoid these problems is to mill each half of the LGR at a time, with
each half on its side. This makes the rectangular pockets easy to attain with a square
endmill. The squareness will be determined by the kerf of the endmill which is small
compared to the sample. Additionally, the gap can be formed by taking off extra
material between the mating surfaces. The downside is that this approach introduces
additional loss at the seam, by interrupting the loop current paths.

There is however a manufacturing process that solve these problems. Wire electrical
discharge machining (wire EDM) allows for extreme precision cuts of conductive
materials using high-voltage spark erosion. The workpiece serves as one electrode
and a wire is the other. When there is a high voltage difference between the two, there
is a spark which removes a small amount of material. The voltage is pulsed as the
wire is moved, and the wire is unspooled during this process so it is not significantly
eroded. A typical wire diameter is around 12 mils (0.3 mm), though they can be
larger or smaller. This is effective for these LGRs, with a rectangular pocket and
narrow gap.

A photograph of a resonator fabricated out of a single piece of oxygen-free copper
using wire EDM is shown in Fig. 2.6. Coupling to both modes is via the electric and
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Figure 2.5: Contour plots of 𝐻𝑧 within the sample volume for the low- (a) and
high-frequency (b) modes.

magnetic fields of a pin extending from an MMCX connector, also shown in Fig. 2.6.

Experimental S-parameters are measured using a vector network analyzer connected
to the two coupling pins. In practice, ultra-low temperature experiments must use
lossy cables to reduce thermal conductivity to the cold stage, and cold attenuators
between the source and resonator are necessary to reduce thermal excitation of
microwave photons for experiments [Hue+13]. Attenuation from these make the
reflected signal from the resonator weak and difficult to pick out from impedance
mismatches in the cabling. Therefore, we only consider the transmission 𝑠21,
shown in Fig. 2.7 at a temperature of 80 K. The calculated and experimental data
qualitatively agree, with quality factors of 800 and 300 measured for the low- and
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Figure 2.6: CAD model (top) of the resonator assembly including coupling pins and
enclosure, and photograph (bottom) of the resonator manufactured using wire EDM.

high-frequency modes, respectively, at 80 K, with coupling pins approximately lined
up with the sample volume. This device has been tested down to 30 mK and in a
field above 5 Tesla. The quality factors increase slightly from room temperature
to low temperature, but otherwise the performance of the resonator is not strongly
dependent on temperature, and it remains mechanically robust and stable in strong
magnetic fields as is needed for spectroscopy applications.

Elsewhere, analysis of a five-loop four-gap resonator mentioned the presence of
multiple modes within the same volume [Eis18], indicating that variations of this
basic design could be modified to support more modes with uniform fields.

Material measurements

A benefit of LGRs is that the MW electric and magnetic fields are mostly spatially
separate: the magnetic field is confined to the loop/bore(s) and the and the electric
field in the gap(s). This provides a significant benefit for measurements with crystals
like LiHoF4, where we only care about the MW magnetic field applied to the sample.
Exposing such a crystal to the MW electric field would cause heating without
relevance to this measurement. However, the property of LGRs that makes them
useful is how the measurable resonator properties shift when the LGR is loaded with
a sample. In this section, we will discuss how material properties are measured with
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Figure 2.7: Calculated (top) and experimental (bottom) transmission of this resonator
design.

LGRs.

While numerical modeling accurately predicts the intrinsic behavior of these 3-loop
2-gap resonators (3L2G), for physics applications it is helpful to develop an analytic
approximation by considering an equivalent circuit model.

In this example we will consider the most basic type of LGR, the aforementioned
tube with a slot cut along the axis (one loop, one gap, or 1L1G). The case for the
M-loop N-gap we actually used is very similar (see Fig. 2.8), but the 1L1G has more
simple analytic solutions for quantities such as the resonant frequency and the quality
factor. A simple model is discussed in [FH82; Bob15], where we can derive the
following for a 1L1G resonator. Modeling the empty resonator as an RLC circuit,
the geometry causes the following capacitance and inductance, respectively:

𝐶0 =
𝜖0𝑤ℓ

𝑡
, 𝐿0 =

𝜇0𝜋𝑟
2
0

ℓ
. (2.5)

We can now calculate the empty resonance frequency:
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Figure 2.8: Circuit model of the 3-loop 2-gap resonator.

𝜔0 = 2𝜋𝜈0 =
1

√
𝐿0𝐶0

≈
√︄

ℓ𝑡

𝜖0𝜇0𝜋𝑤𝑟
2
0
=
𝑐

𝑟0

√︂
𝑡

𝜋𝑤
, (2.6)

where 𝑐 = 1/√𝜇0𝜖0 is the speed of light in vacuum.

For an LGR with an enclosure and design that suppresses radiation loss, the quality
factor 𝑄0 of the unloaded resonator depends on the metal surface. High-frequency
electromagnetic waves only penetrate a skin depth 𝛿 =

√︁
2𝜌/(𝜇0𝜔), where 𝜌 is the

LGR material’s resistivity, and the depth becomes thinner at higher frequency. The
unloaded quality factor is thus calculated as

𝑄0 =
1
𝑅0

√︂
𝐿0

𝐶0
≈ 𝑥

2𝛿
, (2.7)
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where 𝑥 corresponds to the side length of an approximately square inner loop [Bob18;
HW81].

We can now look at how loop-gap resonators are used to measure material properties.
The key is to look at how the electric and magnetic fields interact with the permittivity
and permeability, respectively, of a sample. For LiHoF4 we mainly care about the
magnetic effects, as we can place the sample in one of the loops where the magnetic
field is concentrated. If we have a material with susceptibility 𝜒 = 𝜒′ − 𝑗 𝜒′′ inside
the resonator, this will cause a shift in the quality factor𝑄 and the resonant frequency
𝑓0. Because the sample does not fill the entirety of the LGR magnetic field, we must
introduce a filling factor 𝜂 which describes how much of the given field is occupied
by the sample [Su+23]:

𝜂 =

∫
𝑠𝑎𝑚𝑝𝑙𝑒

𝐻2𝑑𝜏∫
𝑎𝑙𝑙
𝐻2𝑑𝜏

. (2.8)

The filling factor indicates how much the material modifies the effective inductance
of the resonator, making the effective shifts [AT55; DB19; Kov16]:

1
𝑄

=
1
𝑄0
+ 𝜂𝜒′′ (2.9)

𝜔 ≈ 1√︁
𝐿0(1 + 𝜂𝜒′)

≈ 𝜔0

(
1 − 𝜂𝜒

′

2

)
. (2.10)

Vector network analyzer

To more quantitatively connect the measured behavior with the underlying response
of the actual samples, we start by considering the transmission coefficient 𝑆21. To
define this parameter, we can look at a generic two-port network with port 1 and port
2. There are many ways to describe the scattering behavior of such a system, but the
most relevant are the S-parameters. We start by defining waves going in and out of
each port. The incident wave going in to port 𝑖 is given by 𝑉+

𝑖
and the wave coming

out of port 𝑖 is 𝑉−
𝑖

[Poz11; CC07]. The definition of an S-parameter is thus:

𝑆𝑖 𝑗 =
𝑉−
𝑖

𝑉+
𝑗

�����
𝑉+
𝑘≠ 𝑗

=0

. (2.11)
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For the case of a two-port network, we can write the parameters in a matrix:

[
𝑉−1
𝑉−2

]
=

[
𝑆11 𝑆12

𝑆21 𝑆22

] [
𝑉+1
𝑉+2

]
. (2.12)

When dealing with microwave circuits measurements are typically made in terms of
power, as voltage and current are spatially inhomogeneous. However, the definition
of S-parameters is in terms of voltage, so it is typical to convert power measurements
as 𝑃 = 𝑉2/𝑍0 where 𝑍0 is the characteristic impedance, typically 𝑍0 = 50Ω. We
can also write this as 𝑉 =

√
𝑃𝑍0, so

𝑆21 =
𝑉−2
𝑉+1

����
𝑉+2 =0

=

√︁
𝑃−2 𝑍0√︁
𝑃+1 𝑍0

�����
𝑃+2=0

=

√︄
𝑃−2
𝑃+1

�����
𝑃+2=0

. (2.13)

This means that the power ratio is equal to 𝑆2
21. This relation is also important

because it is typical to describe S-parameters in decibels. The ratio between two
voltages 𝑉1 and 𝑉2 is [Poz11]

20 log
𝑉1

𝑉2
dB (2.14)

while the power ratio between 𝑃1 and 𝑃2 is

10 log
𝑃1

𝑃2
dB. (2.15)

I will also use this relation to specify absolute power levels. We can do this by
specifying a reference power level for 𝑃2, and the variable as 𝑃1. This is most
common using 𝑃2 = 1 mW to give a value in decibel-milliwatts, or dBm:

10 log
𝑃1

1 mW
dBm. (2.16)

In order to model the LGR spectrum, we can use other ways to model a two-port
network which can then be converted to usual S-parameters [Poz11]. We shall
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model an LGR with a sample in the loop with filling factor 𝜂 and susceptibility
𝜒 = 𝜒′− 𝑗 𝜒′′. In these experiments, we use coupling pins which should lead to some
degree of both electric and magnetic field, so they can be modeled as an inductance
and capacitance coupled to the LGR.

We can model the LGR as a standard T-circuit, with the coupling components in series
with each port signal pin, connecting to the LGR to ground as seen in Fig. 2.8. The
impedances of the three components give the Z-parameters, which can be converted
into S-parameters with the appropriate formulae [Poz11].

We make the assumption that the coupling impedances 𝑍1, 𝑍2 are equal. The coupling
strength is determined by the physical placement of the pins which is nominally
symmetric, varying slightly with how exactly each is soldered. Regardless, we are
mainly concerned with transmission 𝑆21, and this is a reciprocal system. Therefore,
it doesn’t matter which direction the measurement is made, i.e., 𝑆21 = 𝑆12. It turns
out that the coupling coefficients 𝜅1 and 𝜅2 will only appear in a sum together 𝜅1 + 𝜅2

in the final transmission function 𝑆21 which verifies this.

The coupling impedance is the series combination of inductance 𝐿𝑐 and capacitance
𝐶𝑐, so

𝑍𝑐 = 𝑗𝜔𝐿𝑐 +
1

𝑗𝜔𝐶𝑐
. (2.17)

Next, the impedance 𝑍3 is that of the resonator. We can treat it as a parallel RLC
circuit. The resistance represents the internal loss of the resonator, given by 𝑍𝑅 = 𝑅res.
The capacitance of the gaps is denoted 𝑍𝑐 = 1/( 𝑗𝜔𝐶𝑟). We can modify this term
by introducing material in the gaps, such as sapphire. In analogy with the magnetic
perturbation, 𝜖𝑟 = 𝜖/𝜖0 [Che+04]

𝐶 = 𝐶0(1 + 𝜂𝜖𝑟) = 𝐶0(1 + 𝜂𝜖 ′𝑟 (1 − 𝑗 tan 𝛿𝑒)), (2.18)

in terms of the real part of relative permittivity 𝜖′𝑟 and the dielectric loss tangent
tan 𝛿𝑒 = 𝜖′′/𝜖′, which are how materials are usually specified. For our purposes,
the gap capacitance is adjusted before cooling down and is fixed throughout an
experiment, so it can be treated as a constant. Finally, we have the inductor which is
partially filled with magnetic material. 𝐿0 is the empty inductance, and 𝜒 = 𝜒′− 𝑗 𝜒′′
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is the frequency dependent susceptibility. Substituting this in, we see the effective
inductance and resistance terms,

𝑍𝐿 = 𝑗𝜔𝐿 = 𝑗𝜔𝐿0(1 + 𝜂(𝜒′ − 𝑗 𝜒′′)) (2.19)

= 𝑗𝜔𝐿0(1 + 𝜂𝜒′ − 𝑗𝜂𝜒′′) = 𝑗𝜔𝐿0(1 + 𝜂𝜒′) + 𝜔𝐿0𝜂𝜒
′′.

The real part 𝜒′ will modify the inductive component, and the imaginary part 𝜒′′

gives a resistive loss due to the sample. Now, 𝑍3 is the parallel combination of 𝑍𝑅,
𝑍𝐿 , and 𝑍𝐶 :

𝑍3 =

(
1
𝑍𝑅
+ 1
𝑍𝐿
+ 1
𝑍𝐶

)−1
(2.20)

=

(
1
𝑅int
+ 1
𝑗𝜔𝐿0(1 + 𝜂𝜒′) + 𝜔𝐿0𝜂𝜒′′

+ 𝑗𝜔𝐶
)−1

. (2.21)

Pozar shows how to convert between network topologies and parameters [Poz12]. In
this case we have a tee-network and want to find the S-parameters. As an intermediate
step, we use the ABCD parameters, simplifying with 𝑍1 = 𝑍2 = 𝑍𝑐:

𝐴 = 1 + 𝑍1

𝑍3
= 1 + 𝑍𝑐

𝑍3
(2.22)

𝐵 = 𝑍1 + 𝑍2 +
𝑍1𝑍2

𝑍3
= 2𝑍𝑐 +

𝑍2
𝑐

𝑍3
(2.23)

𝐶 =
1
𝑍3

(2.24)

𝐷 = 1 + 𝑍2

𝑍3
= 1 + 𝑍𝑐

𝑍3
. (2.25)

Then we can convert these ABCD parameters into 𝑆21:
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𝑆21 =
2

𝐴 + 𝐵/𝑍0 + 𝐶𝑍0 + 𝐷
(2.26)

=
2

1 + 𝑍𝑐
𝑍3
+

(
2𝑍𝑐 + 𝑍2

𝑐

𝑍3

)
/𝑍0 + 𝑍0/𝑍3 + 1 + 𝑍𝑐

𝑍3

(2.27)

=
2

2 + 2𝑍𝑐
𝑍3
+

(
2𝑍𝑐 + 𝑍2

𝑐

𝑍3

)
/𝑍0 + 𝑍0/𝑍3

(2.28)

=
2

2 + 2𝑍𝑐
𝑍3
+ 2𝑍𝑐

𝑍0
+ 𝑍2

𝑐

𝑍0𝑍3
+ 𝑍0

𝑍3

(2.29)

=
2𝑍0𝑍3

2 + 2𝑍𝑐𝑍0 + 2𝑍𝑐𝑍3 + 𝑍2
𝑐 + 𝑍2

0
, (2.30)

(2.31)

where 𝑍0 = 50Ω is the characteristic impedance, 𝑍𝑐 the coupling impedance and 𝑍3

the resonator impedance given by Eq. 2.21.

Time-resolved measurement setup

This project benefitted from contributions by Hayward Melton during
his SURF project, including Figure 2.9.

Most of these measurements throughout here have been taken using vector network
analyzers (VNAs) (TTR506A, E5071C). These are very precise and well-suited to
these measurements, automating the process of measuring S-parameters. However,
being an integrated system means doing things differently is difficult. In particular,
in discussing nonlinear spin-pumping experiments, we need to probe the material
on a much faster time scale. Getting enough points for a reliable fit of resonant
frequency and quality factor usually takes between say 100 ms and 3 s. Of course,
this also precludes any other time-resolved measurement as well, such as spin echo
among others.

When a resonator rings down after a pulse [Gyü+15], the power and voltage waveforms
take the respective forms
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𝑝(𝑡) = 𝑝0 exp
(
− 𝑡𝜔0

𝑄

)
(2.32)

𝑉 (𝑡) =
√︁
𝑝0𝑍0 exp

(
− 𝑡𝜔0

2𝑄

)
exp( 𝑗𝜔𝑡), (2.33)

where 𝑝0 is the source power during the pulse, 𝜔0 = 2𝜋 𝑓0, where 𝑓0 is the resonant
frequency, 𝑄 is the quality factor, and 𝑍0 is the characteristic impedance (usually
50Ω ). These are related through the equation 𝑃 = 𝑉2/𝑅 modified for a complex
signal: 𝑝(𝑡) = 𝑉∗(𝑡)𝑉 (𝑡)/𝑍0. When taking the Fourier transform of this voltage
signal, we get the same spectrum as we see on the VNA in the frequency domain. So,
if we apply a pulse to the resonator and watch the ringdown, the Fourier transform
of the ringdown signal contains the same information as the VNA acquires over a
longer timescale, namely resonant frequency and quality factor.

The obvious solution would be to directly generate the GHz signal and monitor it on
an oscilloscope. However, at these frequencies that becomes untenable. The relevant
equipment would be very expensive, and the data would be difficult to manage and
analyze. To solve this we have developed a system to transform the low-frequency
signals to and from the gigahertz signals. This is fairly similar to what VNAs do
internally, but instead we can control the signals directly.

The basic principle is to use frequency mixers which effectively multiply two signals.
A fixed microwave source is used as the local oscillator (LO) for each mixer [Poz11],
and an intermediate-frequency (IF) port is a low frequency signal that the mixer can
use as an input or output to modulate or demodulate the combined signal denoted
RF. In this case, we use mixers to demodulate the resonator signal. Suppose the LO
signal is given by

𝑣𝐿𝑂 (𝑡) = cos (2𝜋 𝑓𝐿𝑂𝑡) (2.34)

and the

𝑣𝑅𝐹 (𝑡) = cos (2𝜋 𝑓𝑅𝐹 𝑡). (2.35)

Thus, when we multiply the LO with the RF signal from the resonator the trigono-
metric identity cos 𝜃 cos 𝜙 = [cos(𝜃 − 𝜙) + cos(𝜃 + 𝜙)] /2



32

𝑣 𝐼𝐹 (𝑡) = 𝑣𝐿𝑂 (𝑡)𝑣𝑅𝐹 (𝑡) = 𝐾 cos 2𝜋 𝑓𝐿𝑂𝑡 cos 2𝜋 𝑓𝑅𝐹 𝑡 (2.36)

=
𝐾

2
[cos 2𝜋( 𝑓𝑅𝐹 − 𝑓𝐿𝑂)𝑡 + cos 2𝜋( 𝑓𝑅𝐹 + 𝑓𝐿𝑂)𝑡] . (2.37)

In order to test this measurement setup we could use LiHoF4, but in order to get a
sharp signal we need to cool it near 100 mK. For a simplified test of these electronics,
we can use an EPR reference standard which is useful at higher temperatures. A very
common EPR reference standard is 2,2-diphenyl-1-picrylhydrazyl, more commonly
known as DPPH [LD ].

ℎ𝜈 = Δ𝐸 = 𝑔𝐽𝜇𝐵𝐵0 (2.38)

We purchased DPPH from Alfa Aesar, supplied as a black (slightly purple, especially
in solution) powder. We mixed a small amount of the powder with Apiezon N grease
and placed it in an LGR. We used a piece of sapphire that went through the sample
loop, and put the grease where the sapphire is in the sample loop. This helps it stay
in place where the MW magnetic field is strongest. A traditional EPR spectrometer
would likely put the material in an aqueous solution in a glass tube, but that is not
practical with this design.

2.2 Cryogenic techniques

PPMS Microwave insert

The experiments discussed here require operation at cryogenic temperatures, with
LiHoF4ferromagnetic state requiring 1.5K for magnetic ordering and 100 mK or
below to study the hybridized electronuclear modes, while the superconducting
resonators need temperatures of order 2 K to function. As helium dilution refrigerators
for accessing the sub-Kelvin regime require a fair amount of time and money to
operate, it is useful to have a system that allows measurements to be taken much
faster/cheaper at the expense of base temperature. For example, for mechanical
testing, most thermal contraction/expansion effects are finished by 77 K.

The Quantum Design DynaCool PPMS provides these functions—with temperature
control from roughly 1.6 K to 400 K and a magnetic field up to 9 T or 14 T for the two
instruments available. The cryostat is self-contained and automated, requiring little
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Figure 2.9: Transmission spectrum of DPPH in a loop-gap resonator, using the
time-resolved ringdown technique.

more from the user than setting the temperature/magnetic field. The most basic way
to load a sample is with the gold-plated copper puck with several pin connections.
The operation involves a closed loop of helium liquid/gas which is cooled by a pulse
tube refrigerator. This approach works down to around 10 K, at which point it pumps
on the helium as in a 1K pot, allowing temperatures near 1.6 K. The primary method
of heat transfer is through contact with the puck. Before use the chamber is purged
with helium gas (a separate supply from the cooling loop). During use, the chamber
retains a few mbar of helium for exchange gas.

In the stock configuration, measurements are made with the 12 pins on the bottom
of the puck. However, these pins are only capable of DC measurements, without
controlled impedance. Any experiment requiring different connections will need a
way to get signals from the cold section at the bottom to a hermetic feedthrough at
room temperature.

One important consideration is whether to measure in reflection or transmission,
corresponding to one or two cables, respectively. Reflection corresponds to using one
antenna on one side of the LGR and measuring 𝑆11 with a vector network analyzer
(VNA) or utilizing a circulator and measuring 𝑆21. In transmission, we simply add
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Figure 2.10: Insert used for high frequency measurements in the PPMS, here
configured for a chip sample. The gold-plated copper and fiberglass part on the
left is known as the puck, which plugs in to the bottom of the machine for thermal
contact. Here the blue coaxial cables use SMP connectors to plug into the box, and
go up to the stainless steel SMA cable. The copper backing plate seen here can
be reconfigured for different sample holders. Note that the assembly must be quite
compact to fit in the PPMS bore which has a diameter 1.06".

another pin antenna to the other side of the LGR and measure 𝑆21 with one antenna
connected to the source and the other to the detector/receiver.

In the ideal case, either of these will work. However, we must also consider the
properties of the cable materials, as they will be connecting cryogenic temperatures
at the bottom to room temperature at the top feedthrough. While the cross-sectional
area of the cables is small, materials with high thermal conductivity nonetheless
have a strong effect on the base temperature of the sample at the bottom. Normal
copper cable (RG-316) and aluminum semi-rigid cable were tried, but they failed to
reach low temperatures.

Due to the Wiedemann-Franz law, a material with a low thermal conductivity will also
have a low electrical conductivity, in this case causing more dB of loss. One exception
to this is the case of superconductors, which have low thermal conductivity but
when cooled below the critical temperature 𝑇𝑐 they have high electrical conductivity.
However, in this case the temperature of the cable between the ends is poorly defined
and likely to fluctuate, making this unstable. Instead, we use semi-rigid coaxial
cables with stainless steel inner and outer conductors (Micro-Coax UT-085-SS-SS).
Using these, the PPMS is able to achieve temperatures below 1.7 K, similar to its
capability without such cables mounted.
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Dilution refrigerator

To study the low-energy dynamics in LiHoF4, we need to access millikelvin temper-
atures. This is set by two considerations: thermal photons and the phase diagram.
The thermal occupation of energy levels is proportional to the Boltzmann coefficient,
𝑝𝑖 = exp(−𝐸𝑖/𝑘𝐵𝑇) = exp(−ℎ 𝑓𝑖/𝑘𝐵𝑇), where ℎ is Planck’s constant, and 𝑘𝐵 is
Boltzmann’s constant. To get a rough idea of the temperature required to not swamp
the system with thermal photons, we can solve for the exponent equaling -1, i.e.,
𝑝𝑖 = 1/𝑒:

−ℎ 𝑓𝑖
𝑘𝐵𝑇

= −1 (2.39)

ℎ 𝑓𝑖 = 𝑘𝐵𝑇 (2.40)

𝑓𝑖 =
𝑘𝐵𝑇

ℎ
= 𝑇 × (20.8 GHz) (2.41)

𝑇 = 𝑓𝑖/(20.8 GHz). (2.42)

This means that for a 20.8 GHz transition, the system needs to be below 1 K in
order to see a reasonable absorption (i.e., high spectral weight). The energy
levels we are interested for LiHoF4 are of the order 3 GHz, giving an estimate of
𝑇 = 3 GHz/(20.8 GHzK−1) = 144 mK. Additionally, the regime of the LiHoF4

phase diagram where the hyperfine coupling causes the upturn is around 400 mK.

Considering these factors, we need to reach temperatures below 100 mK. These
measurements on LiHoF4 and LiErF4 systems were taken in a KelvinoxMX250
helium dilution refrigerator (Oxford Instruments, UK). This system uses a closed
cycle of helium-4 and helium-3 isotopes. The sample resonator is mounted on a long
cold finger to the magnet center, surrounded by the inner vacuum can (IVC) which is
sealed with indium wire holding the sample volume in vacuum at base temperature
and a radiation shield (to block 4 K thermal radiation from the IVC). The IVC is
placed inside the dewar of liquid helium, which also cools the superconducting
magnets.

The cooling is started by pumping on a small volume of liquid helium from the
dewar which causes it to cool to around 1.2 K, thus giving it the name 1K pot. Then
the 3He-4He mixture is injected through the 1K pot and a flow-limiting impedance,
where it cools down enough to condense. Once it condenses, the mixture undergoes
a phase separation between 3He-rich and 3He-poor states. The physical construction
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is such that the liquid surface sits within the still, and the phase boundary is in
the mixing chamber. The mixing chamber is the coldest point, where samples are
mounted. 3He is unique in having a non-zero vapor pressure at very low temperature,
and by pumping the 3He gas off the still (similar to distillation, hence the name), 3He
moves through the mixing chamber phase boundary and removes heat through the
entropy of mixing.

DR mounts

LiHoF4 presents several challenges for measuring at cryogenic temperatures in a
magnetic field. It is quite brittle and lacking in mechanical strength. Cooling
to cryogenic temperatures introduces the issue of differential thermal contraction.
LiHoF4 has a coefficient of thermal expansion that is much lower than that of the
copper LGR. Magnetic field experiments below the critical temperature exacerbate
this with magnetic forces, especially as the strongest fields will be applied transverse
to the Ising axis.

These two effects present contradictory requirements: free space around the sample
for clearance from thermal contraction, but a tight fit to prevent motion in the
magnetic field. Additionally, the sample should have good contact with the copper to
allow heat transfer. The vast majority of the thermal contraction occurs between 300
K and 77 K; the contraction from 77 K to mK is usually negligible [GBG80; Eki06].

Making the copper hole big enough to leave an air gap around the sample would
make it loose at room temperature. Loading the fridge involves attaching it to a
gantry hoist, raising it up and moving it along the gantry track before lowering it
into the dewar. All the while, the fridge will inevitably have some pendulum motion,
with the LGR/sample at the bottom. So, the sample must be securely fixed at room
temperature. There is a way to take advantage of different coefficients of thermal
expansion (contraction) so that from room temperature to base temperature there is
enough pressure to hold the sample in place, but not enough to crack it. This is to
insert the sample with a small amount of Apiezon N grease to the square loop, and
then add layers of Teflon shim stock to one side in each dimension, until the sample
stays in place when tilted, but can be pushed out with light force. As Teflon has a
large coefficient of thermal expansion, a suitable thickness of shim stock plus the
sample has a total coefficient of expansion comparable to that of copper, allowing
the assembly to be stable throughout the entire loading and cooling process.
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Split coil

In order to make accurate measurements of a magnetic material like LiHoF4, we
must precisely control the field along the longitudinal and transverse (c) axis. The
system already had a large solenoid magnet that can provide a sufficient transverse
field, so the Ising axis of the sample must be perpendicular to the solenoid axis. This
means that in order to apply a longitudinal field along the Ising axis, a solenoid is not
possible and instead we must use a split pair of coils in a Helmholtz configuration.
The pair could either go inside or outside the solenoid. Coils inside the solenoid
would be closer to the sample and this have a higher field-to-current ratio, but the
space is quite limited and it could be quenched by the solenoid, perhaps limiting the
useful field range.

Instead, putting the split coil outside the solenoid turns out to be more practical. I
had two bobbins made out of aluminum, with central mounting holes and mandrel.
A notch is cut deep radially, leaving walls on either side. To wind the coil, we use
superconducting wire, which has 35 strands of niobium-titanium (NbTi) in a copper
matrix for mechanical reliability and thermal conductivity. The wire is supplied
by Supercon, Inc., with a Copper:Superconductor ratio of 1.3:1. The bare wire is
0.40 mm diameter, and 0.430 mm diameter with insulation1.

This is wound around the mandrel with a coil winding machine, with one wire end
sticking out. The coil winding machine moves side to side to evenly fill the bobbin.
In principle this axial motion can be adjusted so that the wire is laid side to side with
minimal gaps, which puts each wire in even layers offset by a wire radius in order to
use the space above and in-between the previous layer’s wires. This allows fitting the
most wires possible, filling about 90.7% of available space [MWS]. However, this
quickly becomes impractical after a few layers, so instead we use “jumble winding"
which results filling around 73-80% of the space [MWS].

A very important factor while winding is putting sufficient tension on the wire. For
this purpose I used a magnetic tensioner which uses an eddy current brake to prevent
the wire from having slack and becoming loose in the coil. While spinning the
mandrel, the winder moves the wire outlet left and right. I applied epoxy during
winding in order to keep the wires in place under tension. I made a Teflon “spreader"
to apply the epoxy evenly, making sure that there are no gaps between wires which
might move at high current.

1Part number SC-54S43-0.4mm
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Figure 2.11: Model of the split coil assembly clamped around the solenoid magnet
(blue). Superconducting wire is wound in the bobbins on each side attached to plates.
Internally threaded standoffs go between the plates and to the upper mounting plate
to keep the assembly attached securely.

Each coil was finished at a nominal 3181 turns. I used a program called “loopfield”
[Yap23] which calculates the magnetic field of the coil as the superposition of 3181
turns distributed in the bobbin space. The essential parameter we must know about
the magnet is the field to current ratio, as the magnetic field is linearly dependent on
current. This was both calculated in loopfield and measured using a 3-axis MEMS
magnetometer. These both agreed well at

𝐵/𝐼 = 8.56 mT/A. (2.43)

While the jumble winding means the turns are not distributed uniformly, this
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calculation matched the measured value quite well.

This wire is fairly thick and thus is rated for very high current (and thus field). On its
own, the split coil could in principle run with 210 A, for about 1.8 T. This would be
quite extreme, but there are limiting factors come from other sources. One is the
copper wiring to room temperature, and the feedthrough that connects to it. Also,
since these coils surround the solenoid, it is important to make sure the total field
applied to the solenoid is not beyond its limit. We have used a practical limit of
around 0.5 T, or about 58 A.

The coils are mounted with screws through the mandrel on an aluminum plate. This
is then attached to other aluminum spacers and rods which suspend it from the
magnet support plate.
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Chapter 3

Quantum Phase Transitions in a Model Magnet

This chapter is predominantly adapted from [Lib+21b].

3.1 Introduction

Quantum phase transitions (QPTs) are zero temperature transitions whose critical
behavior and fluctuation spectra reveal fundamental properties of technologically
useful electronic, magnetic, and optical materials. Canonical examples [Her76]
include the ferromagnet-paramagnet transition in metals, and the quantum Ising
model, which describes a set of mutually interacting spin-1/2 systems in an ‘easy
axis’ crystal field, with quantum fluctuations controlled by an effective field Γ

perpendicular to the easy axis. Many systems in physics and elsewhere can be
mapped to the Ising model in transverse field [Jur+17; NN96; McA+20; SIC13];
recent interest has focused on quantum computing applications [AL18; Boh+16;
Ber+17; Kin+21]. The model is predicted [Her76] to have a single spin wave
collective mode, whose energy softens to zero exactly at the quantum critical point
(QCP).

Although theory predicts that the soft mode must exist, it has never actually been
seen near the QCP in any real Ising spin system. One reason for this is defects and
paramagnetic impurities, which have a profound effect on QPTs [Ji+21]. Nuclear
spins have a more subtle effect. Many experiments on crystals of transition metal-
based magnetic molecules, both in the quantum relaxation regime [GSV06], and
the high field, low-𝑇 regime where spin waves can propagate [Tak+11], show that
the nuclear spins act as a slowly fluctuating random field [PS98; PS00], which
destructively scatters any soft electronic collective mode.

Rare earth quantum Ising systems have much stronger hyperfine fields, with obvious
effects in, e.g., LiHo𝑥Y1−𝑥F4 [Røn+07; Gir+01; Cha+04]. Theory then suggests
[SS05; MS18] that the pure LiHoF4 system actually should have 15 coherent
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Figure 3.1: Random Phase Approximation (RPA) calculation of the electronuclear
collective mode spectrum at momentum k = 0 and temperature 𝑇 = 0, as a function
of transverse field 𝐻𝑥 , for a long cylinder of LiHoF4. The quantum critical field
𝐻𝐶 ∼ 5.3 T in the calculation. The modes divide into upper and lower groups; at
high fields a mode splits off from the upper group. Inset: close-up of the region
around the QCP, showing the effect on the soft mode of a small uniform longitudinal
field 𝐻𝑧.

electronuclear modes. Instead of scattering the electronic mode, the spin-7/2 Ho
nuclear spins hybridize with it to create these modes; similar hybridization has been
observed in transition-metal antiferromagnets such as CsMnI3 [Pro+97]. Nonetheless,
previous neutron experiments looking for collective modes in this system [Røn+05]
(where there is clear evidence for quantum critical scaling near the QCP [BRA96])
found only a gapped electronic mode, and no soft mode.

The previous theory [SS05; MS18] is easily generalized to include the effects of finite
𝑇 and a small applied longitudinal field 𝐻𝑧 [Lib+21c]. Salient features, illustrated
in Fig. 3.1, include (i) the splitting into upper and lower groups; (ii) the softening
of the lowest mode to zero energy when 𝐻𝑥 = 𝐻𝑐, the transverse field at the QCP;
and (iii) the extreme sensitivity of this soft mode to any longitudinal field 𝐻𝑧, which
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immediately gaps the soft mode around the QCP (Fig. 3.1). This last feature has not
been discussed previously, and will be of key importance.

Here we describe an experiment on a crystalline sample of LiHoF4, of rectangular
prism shape (dimension 1.8×2.5×2.0 mm3), at temperature 𝑇 ∼ 50 mK, well below
the splitting ∼ 220 mK between adjacent Ho hyperfine levels. Instead of neutrons,
microwave spectroscopy was used, in the frequency range 0.9 < 𝜔 < 5.0 GHz, to
measure AC absorption as a function of 𝜔, 𝑇 , and applied transverse field 𝐻𝑥 . A
resonator structure is required to amplify the applied ac signal. In order to obtain a
high quality factor𝑄 and field homogeneity, we adopted a tunable loop-gap resonator
(LGR) design [WFH84; LSK19b; Lib+21c]. The resonant frequencies are tuned by
varying the gap capacitance, via partial or complete filling with pieces of sapphire
wafer. The incident power level was restricted to ∼ 1 𝜇W (-30 dBm) at the resonator.
At this level, sample heating was negligible and the sample was well into the linear
response regime.

The spectral weight of the soft mode is predicted to be strongest in the 𝜒𝑧𝑧 configuration
[SS05; MS18]. This counter-intuitive result is a crystal field effect, and is one reason
why the mode was not seen in previous experiments [Kov+16]. In our setup the
resonator and sample are oriented with the AC probe field along the Ising 𝑧-axis,
a solenoid along the transverse 𝑥-axis, and a split coil along the 𝑧-axis. In this
geometry, crystal fields reduce the AC soft mode absorption along 𝑦 to zero at the
QCP.

Results and Analysis

Figs. 3.2 and 3.3 show the measured transmission of single-crystal LiHoF4 in LGRs
tuned to different resonant frequencies at T= 55 mK. When the resonant frequency
Ω coincides with the soft mode frequency 𝜔, absorption is enhanced, giving a peak
in the resonator inverse quality factor 1/𝑄 (insets). In Fig. 3.2 the resonator is
tuned to the lowest accessible Ω = 930 MHz. In this regime, the field-dependent
evolution of the cavity resonant frequency is driven primarily by the change in the
static susceptibility of the LiHoF4 crystal. By varying Ω we track the soft mode
close to the QCP. In Fig. 3.2 we probe this mode at higher Ω and find two peaks
bracketing the 4.8 T QCP, demonstrating that the mode does persist as expected into
the paramagnetic phase.

When Ω > 2.8 GHz, the collective mode-cavity mode coupling is strong enough
for detection well away from the cavity resonant frequencies (Fig. 3.3 (a,b)). We
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Figure 3.2: Resonant absorption probing a low-energy excitation mode: Transmission
magnitude |𝑠21 |2 vs. frequency 𝑓 and transverse magnetic field 𝐻𝑥 for a single-mode
LGR with zero-field tuning of 1.0 GHz. As the static susceptibility of the LiHoF4
sample increases with 𝐻𝑥 , the effective inductance of the resonator + sample circuit
increases, resulting in a decreasing resonant frequency, with a cusp at the QPT at
𝐻𝐶 = 4.8 T. Lower inset: individual frequency spectrum (blue) and Lorentzian fit
(orange). Bar indicates the full-width half-maximum point used to determine the
quality factor 𝑄. Upper inset: 1/𝑄 vs. 𝐻𝑥 , showing enhanced dissipation when the
energy of the soft mode matches the 0.93 GHz circuit resonant frequency.

ought to then observe transitions between all the collective modes, at frequencies
equal to their energy differences. We use a linear combination of absorptive and
dispersive Lorentzian lineshapes, to extract the frequencies and linewidths of these
transitions. Near the cavity resonance at 4.2 GHz, the spectra were fit to a coupled
oscillator model [Sch+10; Hue+13]; the apparent avoided level crossing at 3.6 GHz
is an anti-resonance in the LGR response.

We plot in Fig. 3.4 the measured (top) and theoretically expected (bottom) transition
energies. The blue points are derived from on-resonance measurements such as
those shown in Figs. 3.2 and 3.3(c,d); the orange curve comes from the broadband
measurement shown in Fig. 3.3(b). We note that it is essential to do a finite-𝑇 RPA
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(a) (b)

(c) (d)

Figure 3.3: Resonant and broadband evolution of higher-energy excitation modes. (a)
Transmission magnitude |𝑠21 |2 vs. frequency and 𝐻𝑥 , with bimodal resonator tuned
to 2.6 and 4.2 GHz. (b) Expanded view of the broadband transmission response. The
field evolution of the first excited state response appears as a well-defined continuous
curve well away from resonant modes of the LGR. Near the cavity tuning of 4.2
GHz and near an extraneous cavity mode at 3.9 GHz, avoided level crossings can
be ascribed to hybridization between cavity photons and magnons. For enhanced
contrast, the transmission between 2.7 and 3.8 GHz is plotted relative to a zero-field
frequency dependent background −70 dB. Inset: Magnified view of transmission in
the low-field region where the soft mode and excited states are expected to coincide. A
few closely spaced modes are resolved; the non-monotonic shape is reproduced well
by the RPA calculations. (c) Expanded view of the resonant response between 2.58
and 2.63 GHz (region between horizontal dashed lines in panel (a)). (d) Transverse
field dependence of 1/𝑄 for the resonant response shown in (c). At 2.6 GHz, peaks
in 1/𝑄 are observed above and below the 4.8 T QCP (red lines), indicating that at
higher frequencies, the soft mode is visible on both sides of the phase transition.

calculation since both the transition energies and their spectral weights differ from
their 𝑇 = 0 values. At 𝑇 = 55 mK, which corresponds to 1.15 GHz, one expects
multiple transitions between thermally excited electronuclear states [Lib+21c].

At low transverse field, the three lowest excitation modes are essentially degenerate,
resulting in a single curve. The insets to Fig. 3.4 show this behavior; the non-
monotonic field dependence of the measured mode is accurately predicted by the
model. The RPA calculations overestimate the critical field, primarily due to the
absence of mode-mode couplings in the RPA (which, although individually small,
have a cumulative effect on the critical field [MS18] ).
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Figure 3.4: Measured and calculated excitation spectra. Top: Measured field
dependence of soft mode (𝐸21) and excited state (𝐸32) spectra, at 𝑇 = 55 mK, as
determined by on-resonance (blue points, derived from Fig. 3.2 and Fig. 3.3(d)) and
off-resonance (orange curve, derived from Fig. 3.3(b)) responses, respectively. The
dashed-line curve through the 𝐸21 points is a guide to the eye. The horizontal dashed
line is the frequency conversion of 𝑇 = 55 mK. Bottom: Three lowest transition
energies, calculated using a finite-𝑇 RPA. The field scale for the QPT differs by
∼ 8%. Insets: Measured and calculated frequency evolution at low field, where the
three lowest modes are effectively degenerate. The energy scale for the measurement
and model differ by ∼ 4%.
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3.2 Longitudinal field

Another degree of freedom we can explore is a longitudinal field applied to the
sample. The effect on the Hamiltonian is analogous to that of the transverse field
Zeeman effect term:

H𝑙𝑜𝑛𝑔 = 𝑔𝐿𝜇𝐵
∑︁
𝑖

𝐵𝑧𝐽
𝑧
𝑖
, (3.1)

where 𝑧 (longitudinal) is along the Ising axis. We can do this using the split coil
mentioned in Chapter 2. One effect of a longitudinal field is to reduce the transverse
field value required to break the quantum ferromagnet state due to domain pinning
and tunneling. The longitudinal field response allows us to distinguish between the
different underlying causes of modes.

The theoretical result that any applied longitudinal field 𝐻𝑧 will gap the soft mode
means the domain structure and demagnetization field will play defining roles. In
LiHoF4 the electronic spin dipolar interaction is much larger than the superexchange
interaction. One then expects many Ising domains, with thin low-energy domain
walls and an almost uniform demagnetization field except very near the boundaries.
This theoretical expectation is confirmed by the observation of micron-sized domains
in optical Kerr and Faraday rotation experiments [Bat+75; Pom+88; MPF89]. The
precise structure of the domains [KE60; GG85] is then not crucial: what matters is
the relation between the mean magnetization density and the demagnetization field.
If we model the system as a thick plate, then at zero wavevector, the soft mode is
only affected by the average demagnetization field, which we incorporate into the
RPA via an effective demagnetizing factor [Lib+21c].

The first step of these measurements is to establish a baseline ratio between the two
magnets, to determine the tilt that compensates for slight mechanical misalignments.
The sample and magnet are attached through many mechanical connections which
cannot be perfectly aligned to each other, especially when considering thermal
contraction when cooling down.

Another degree of freedom we can explore is a longitudinal field applied to the
sample. The effect on the Hamiltonian is analogous to that of the transverse field
Zeeman effect term:
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H𝑙𝑜𝑛𝑔 = 𝑔𝐿𝜇𝐵
∑︁
𝑖

𝐵𝑧𝐽
𝑧
𝑖
, (3.2)

where 𝑧 (longitudinal) is along the Ising axis. We can do this using the split coil
mentioned in Chapter 2. One effect of a longitudinal field is to reduce the transverse
field value required to break the quantum ferromagnet state due to domain pinning
and tunneling. The split coil response allows us to distinguish between the cause of
modes based on how they are affected by the longitudinal field.

Due to the potentially hysteretic nature of the ferromagnet, two distinct field ramping
protocols were investigated. First, as depicted in the right column of Fig. 3.5, the
direction of the field vector is fixed and the amplitude ramped continuously from 0
to 6 T. Multiple overlapping peaks in the dissipation are observed (dashed curves in
Fig. 3.5(c)). In order to classify these peaks, we plot their dependence on field angle
in Fig. 3.5(e). The response of the low-energy soft mode is qualitatively different to
that of the quantum phase transition, allowing the two features to be separated. As
expected, the QPT (identified by the minimum in 𝑓0, corresponding to the peak in
the static susceptibility) depends only weakly on the longitudinal field, whereas the
enhanced dissipation associated with the soft mode has a strong and approximately
quadratic dependence on applied field (Fig. 3.5(e)). This dependence is seen for the
mode both above and below the quantum critical point.

A second field-sweeping protocol was followed (right column of Fig. 3.5) to control
for ferromagnetic domain effects. In this protocol, we start at high transverse field,
sufficient to place the sample well inside the quantum paramagnetic phase. A
longitudinal pinning field of 70 mT is applied, the transverse field is ramped down to
the desired value immediately below the critical field, thereby driving the sample
into the ferromagnetic state. The response of the LiHoF4 sample is then measured as
a function of longitudinal field as that field is ramped through zero to the maximum
accessible negative field for our coil set. This process is repeated for a series of
transverse fields, defining a grid in (𝐻𝑙 , 𝐻𝑡) parameter space. Cutting through the
grid at a series of constant longitudinal fields yields the curves shown in Fig. 3.5(d),
where we now see the phase transition and the soft-mode feature in the ferromagnetic
state, but the initial pinning field has suppressed the soft-mode feature previously
visible in the paramagnetic phase. As shown in Fig. 3.5(e), the features defining
the phase transition and the soft mode respond to longitudinal field in qualitatively
different fashions. The transverse-field location of the phase transition only depends
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Figure 3.5: Effects of longitudinal dc field. (a) Fixed-angle protocol: fields along
the transverse and longitudinal directions are ramped together ratiometrically. (b)
Field-cool protocol: starting in the paramagnet, a longitudinal pinning field is applied,
the transverse field is decreased to the measurement field, and data taken as a function
of longitudinal field. (c) Response to the fixed-angle protocol. The center frequency
(top) shows the shift in the quantum phase transition cusp as the field angle is changed.
The absorption (1/Q) (bottom) of the low-energy mode absorption diminishes for
larger field angles. Zero degrees denotes a field purely in the transverse direction with
respect to the crystal. Dashed lines show the three fitted peaks for the 0.17 deg trace.
(d) Response to the field-cooling protocol, showing a large peak in the dissipation at
the quantum phase transition and a smaller satellite peak due to the low-energy mode
crossing the 1.9 GHz measurement frequency. (e) Field-angle dependence of the
low-energy mode for transverse fields above and below the quantum phase transition,
along with the angle dependence of the phase transition itself. Curves are guides to
the eye. (f) Loci of the phase transition and low-energy mode in (𝐻𝑙 , 𝐻𝑇 ) space. For
both field protocols, the low-energy mode exhibits qualitatively different behavior
than the phase transition, revealing the influence of a dc longitudinal field and the
onset of history dependence due to ferromagnetic domain formation.

weakly on the longitudinal field. However, the presence of a longitudinal field does
suppress the magnitude of the peak in the dissipation. By contrast, the location of
the soft-mode dissipative peak moves significantly as a function of longitudinal field.
It is asymmetric about zero, indicating that hysteresis due to ferromagnetic domains
plays a significant role in setting the field scale for the mode.
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Figure 3.6: Location of the soft-mode peak for small 𝐻𝑧. RPA calculations are for
mode locations for two different scalings of internal demagnetization fields. The
two theoretical curves are plotted for (i) an internal demagnetization field equal and
opposite to the applied field, and (ii) a demagnetization field 30% larger than the
applied field, taking into account a finite domain wall energy.

Fig. 3.6 compares theory and experiment for the transverse field location of the
soft mode minimum at 1.9 GHz. Two theoretical curves are shown. In the first, the
average demagnetization field 𝐻𝑑𝑚 is assumed equal and opposite to 𝐻𝑧 (appropriate
to zero energy domain walls). This soft mode minimum has a sharper dependence on
𝐻𝑧 than seen in experiment. In the second, a finite domain wall energy is assumed.
This increases 𝐻𝑑𝑚 [KE60]. Micron-sized stripe domains in thin samples of LiHoF4

indicate a domain wall energy ∼ 10−2 𝐽𝑚−2 (which will vary with 𝐻𝑧, 𝐻𝑥 , and
𝑇). The actual domain structure will be more complicated (e.g., branching in thick
samples [Pom+88; GG85]), but still will increase 𝐻𝑑𝑚. Assuming 𝐻𝑑𝑚 ∼ 1.3𝐻𝑧
(second theoretical curve) yields a good match to the data.

This protocol is repeated for a series of transverse fields 𝐻𝑥 and the resultant mesh
of absorptions 1/𝑄(𝐻𝑥 , 𝐻𝑧) is plotted in Fig. 3.6(a). We see strong absorption
at a critical value of the transverse field for which the lowest energy excitation
has a minimum (similar to critical opalescence). The softening is cut off by 𝐻𝑧,
substantially suppressing the peak amplitude. Below the critical value 𝐻𝑐 of 𝐻𝑥 , we
also see resonant absorption where the soft mode is degenerate with the cavity mode.
The minimum in the soft mode is then lifted by 𝐻𝑧, suppressing its absorption, and
reducing the cavity 1/𝑄.
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3.3 Discussion

The close agreement of theory with experiment indicates that weakly-coupled RPA
electronuclear modes represent the true collective degrees of freedom unusually
well. Special conditions are required to observe the soft mode: the net longitudinal
field 𝐵𝑧 in the sample must be homogeneous and zero; we need to measure 𝜒𝑧𝑧;
and we need to go to low 𝜔,𝑇 . If the RPA is correct, disorder will scatter all the
electronuclear modes, and any net 𝐵𝑧 will gap the soft mode.

We now can identify the gapped mode seen in previous neutron scattering experiments
on LiHoF4 [Røn+05] as the single electronuclear state that splits off from the upper
group of modes shown in Fig. 3.1. RPA calculations correctly predict the measured
energy of this mode as a function of 𝐻𝑥 , and also predict it to be the only mode with
significant spectral weight at these energies.

There are many systems in which quantum Ising spins couple to both static and
dynamic “defect" modes (spin impurities, two-level systems, nuclear spins, etc.).
One example of current interest is in quantum computation. In adiabatic quantum
computation the system moves slowly through a QCP [AL18] such that two-level
systems (TLS) are predicted to strongly affect the behavior [WAW09]. Our results,
taken together with previous results on molecular magnet crystals, suggest the
following general picture:

(i) When the coupling to these defect modes is weak (as for nuclear spins in transition
metal-based molecular magnetic systems like Fe8, Mn12, V15, etc.), for nuclear spins
acting on spin qubits in semiconductors [YML16], or TLS defects weakly coupled to
superconductors [Coo+04]), then hybridization will be disrupted unless one can go
to extremely low 𝑇 . Experiments will then see quantum relaxation of the Ising spins,
and no coherent collective modes. To suppress strong decoherence in the Ising spin
(qubit) dynamics one must then raise the characteristic qubit operating frequency of
these qubits (using, for example, a strong magnetic field [Tak+11]).

(ii) When the coupling is strong (as for nuclear spins in LiHoF4 and other rare earth
systems, or for some junction TLS defects in superconductors [Coo+04]), Ising
spin/defect hybridization can occur. If the system is translationally invariant (as in
LiHoF4) we then expect coherent hybridized collective modes, one of which will go
soft at the QCP. The defects no longer cause decoherence for the Ising spins (qubits),
but instead act in concert with them.

Until now there has been no experimental evidence for these coherent modes around a
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QPT1. It remains of considerable interest to investigate and experimentally manipulate
them in a variety of magnetic quantum Ising systems. We see that field sweeps
through a QPT in adiabatic quantum computing can no longer be regarded as a
simple 2 level-avoidance process—one must consider all of the collective modes.
Since many such materials are promising candidates for solid-state qubit realizations
[Ber+07; Mor+13; Ped+16], these collective modes must be characterized fully.

1Note that propagating electronuclear modes of the Suhl-Nakamura type [cf. [Suh58]; [Nak58]]
have been studied for many years in ordered magnetic systems. The key difference here comes from
the QPT, where one of these modes softens and is extremely sensitive to any longitudinal field.
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Chapter 4

Additional LiHoF4 Measurements

4.1 Introduction

The preceding chapter mostly reflects measurements that were published [Lib+21a]
focusing on the electronuclear soft mode. In this chapter we shall explore an
assortment of other measurements of LiHoF4 that bear on the fundamental behavior
of the spectrum of electronuclear modes and higher lying crystal field states.

4.2 Thermal effects

Another factor to consider is the effect of temperature on the spectra and energy levels
of LiHoF4. The occupation probability of a level 𝐸𝑖 is given as 𝑝(𝐸𝑖) = exp−𝐸𝑖/𝑘𝐵𝑇 ,
or in terms of frequency 𝑝( 𝑓𝑖) = exp−ℎ 𝑓𝑖/𝑘𝐵𝑇 = exp 𝑎. For one LGR configuration,
I took field scans at several temperatures

In addition to the quantum phase transition seen when ramping magnetic field at
a fixed temperature, we can also explore the classical phase transition by ramping
temperature at fixed field. The Curie temperature 𝑇𝑐 is quite difficult to predict with
theory. Often, the exchange coupling parameter 𝐽𝑒𝑥 is tuned empirically to match
experiment. Recent work has also predicted that the classical phase boundary might
not decrease monotonically when the magnetic field is raised slightly above zero
[DAS22].

In order to investigate this regime, we continuously scan temperature at zero magnetic
field while monitoring 𝑆21. This is shown in Fig. 4.1. A notable feature is that the
absorption drops significantly as the temperature drops below 12 K. This temperature
is much too high for any magnetic transition in LiHoF4. However, we can return
to Fig. 1.1, where we see that above the ground state doublet is an excited state
comparable to this temperature scale. The temperature determines which manifold of
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Figure 4.1: Zero-field spectra of LiHoF4 through a wide temperature range. The
absorption changes significantly at the phase transition near 1.6K as expected, but
we can also see a change around 10-12 K which maps to the next crystal field state as
shown in Fig. 1.1.

states is occupied, and the microwave photons can excite photons between hyperfine
states within this manifold.

We examine in Fig. 4.2 the temperature dependence of the microwave absorption
to further characterize the behavior of the higher-energy transitions. Due to the
relatively weak intensity of the off-resonance response, the data in this figure is
shown normalized by the 𝐻𝑡 = 0 behavior. The two features dominant at low
temperature—the cusp in the vicinity of the QPT and the avoided level crossing
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Figure 4.2: Dispersive temperature dependence of spectra in LiHoF4. The transverse
field scale decreases as expected with increased temperature due to the shape of the
ferromagnetic to paramagnetic phase boundary. Coupling to the modes also weakens
at high temperature, especially at low frequencies. Note the conversion 1 K ∼ 20.8
GHz, meaning that the population distribution at higher temperatures is such that the
absorption is weakened.

where the electronuclear mode energy approaches the 3.6 GHz upper resonance
of the LGR—both diminish in intensity and move to lower transverse field as the
temperature is increased. The cusp associated with the paramagnetic transition is
visible at 250 mK, but it is thermally washed out at higher 𝑇 , while the avoided level
crossing remains observable (albeit with lessened strength) to 𝑇 ∼ 1 K, reflecting a
separation of energy scales between single ion and collective behavior.
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Figure 4.3: Low field dispersive spectrum of LiHoF4 showing the behavior near
zero-field. Notice the faint modes below the central hyperfine mode cluster. These
are most likely associated with Walker modes.

4.3 Dispersive spectra

In some loop-gap resonator configurations, the field off-resonance is sensitive to the
energy levels themselves away from the cavity resonance. This is most likely due
to overcoupling to the resonator allowing for off-resonance transmission directly
between the antenna pins. These data are very detailed and provide much insight
into the system. In this section, I will discuss these results and what they can tell us
about the linewidths, excited hyperfine states, and the Walker modes.

At low-field, we see that the hyperfine states are clustered together around 4.3 GHz.
At zero field, it is apparent that we are seeing a cluster of transitions as expected in
the calculation seen in Figure 3.41. Beyond the main hyperfine modes, we also see a
few weak modes in the background, shown in Fig. 4.3 in the phase of 𝑆21 with an
adjusted color scale.

1The inset only shows the lowest energy transition at zero field; the clustering behavior is also
shown in [Kov+16] Fig. 3b.
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Figure 4.4: Detailed dispersive spectrum of LiHoF4, away from the main resonator
mode (with the anti-resonance at 3.6 GHz). The top spectrum displays 𝑆21 magnitude
and the bottom phase, both with a low-field background subtracted. The two Walker
modes are visible on the left, and above the central hyperfine mode we can see the
higher order modes, visible as a blue line shaded in the phase plot.

4.4 Walker modes

In most of these spectra, we can see a distinct pair of modes that shadow the strong
hyperfine mode cluster at lower frequency, seen clearly in Figure 4.4. They are
visible on both sides of the phase transition in Figure 4.4, in both the ferromagnetic
and paramagnetic states. Additionally, the low-field dispersive spectrum shown in
Figure 4.4 has extra modes which seem to be connected to the others. There is one
at higher frequency that at zero field starts above and then merges with the central
mode. The two at lower frequency and field from the central mode appear to start at
slightly lower frequency than the main mode. The one that is closer to the central
mode is less distinct from it, but is visible as an asymmetric shoulder. There are no
modes like this in the mean field or RPA calculations [MS18].

The first description of Walker modes was by their namesake L.R. Walker [Wal57], in
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ferromagnetic resonance (FMR) in ferrites, where that satellite peaks were observed
beside the central FMR mode. These arise from spatially inhomogeneous RF fields,
which excite modes that vary in phase depending on the location in the material. The
variation is on the scale of the sample dimensions, thus setting the smallest wavelength
possible. Walker noted that this means for samples larger than micron-size (ours
are mm-size) exchange forces are negligible. This theory is also developed under
the condition that the material is small enough that these waves do not propagate,
leading to size-independence between these two conditions. We can find the behavior
of these modes by solving the equation of motion, which can be linearized under
the assumption that the spins only make small deviations from the DC field. These
solutions must satisfy the usual magnetostatic conditions, hence the other name
[Blo67; de +63; TK66].

Walker modes are usually discussed in the context of spheroidal samples which
have a uniform demagnetization field. In this case, Walker modes are excited by
non-uniform RF fields. For practical reasons (see Chapter 2) we are using cuboidal
samples, which have spatially inhomogeneous demagnetization fields [McK23]. The
non-uniform demagnetization fields can also excite Walker-like modes.

In order to analyze the Walker modes, we can use the equation of motion (EOM)
approach, which is also connected to a method used with RPA [McK23]. The
basic equation determining the spin/magnetization dynamics is the Landau-Lifshitz
equation:

𝑑M
𝑑𝑡

= 𝛾𝜇0 [M(𝑡) ×H𝑙𝑜𝑐 (𝑡)] , (4.1)

where H𝑙𝑜𝑐 is the local field; a sum of an applied field H𝑎 and the dipolar field Hdip.

In this material we have many interactions to account for. The transitions here are
between nuclear states, but they are measured through the electron spins. Furthermore,
the electronic spins can be ferromagnetically ordered. These magnetostatic modes
are therefore the result of many interactions that must be accounted for to understand
magnetic quantum phase transitions in an arbitrarily-shaped material [Chi+23; CJ73;
Mak+24].

In order to gain qualitative insight into the magnetostatic modes in LiHoF4, we
can follow the work of Blocker for a ferromagnetic sphere [Blo67], which like our
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LiHoF4 is monoisotopic so 100% of the atoms have the same nuclear spin. Using an
isotropic hyperfine interaction like LiHoF4:

Hhf = −𝛼m ·M (4.2)

where M is the electronic magnetization and m is the nuclear spin. 𝛼 = 𝐴/ℏ2𝛾𝑒𝛾𝑁

is ratio of the hyperfine coupling strength 𝐴 to the electronic (𝛾𝑒) and nuclear
(𝑔𝑁 ) gyromagnetic ratios. We can find the Walker modes by solving the linearized
Landau-Lifshitz equation:

dM
d𝑡

= −𝛾𝑒 (M ×H𝑒) ,
dm
d𝑡

= −𝛾𝑁 (m ×H𝑁 ) . (4.3)

Blocker notes that the solutions for this equation can be written as:

4𝜋𝑀𝑥 = 𝛼ℎ𝑥 − 𝑗 𝛽ℎ𝑦, (4.4)

4𝜋𝑀𝑦 = 𝑗 𝛽ℎ𝑥 + 𝛼ℎ𝑦, (4.5)

4𝜋𝑚𝑥 = 𝛾ℎ𝑥 − 𝑗𝛿ℎ𝑦, (4.6)

4𝜋𝑚𝑦 = 𝑗𝛿ℎ𝑥 + 𝛾ℎ𝑦 . (4.7)

The solutions must also satisfy the magnetostatic equations:

∇ × h = 0, (4.8)

∇ · [h + 4𝜋(M +m)] = 0. (4.9)

Equations 4.7 and 4.9 are the differential equations that define the Walker modes.
The solutions are difficult for a cuboid shaped sample, but this should be practical
with finite element software.

We look at the temperature dependence of the two types of modes to further separate
out the domain dynamics manifesting as Walker modes from the soft mode and other
excitations driven by the single-ion energy hierarchy of the sample. As shown in
Fig. 4.5, the avoided level crossings associated with the Walker modes are clearly
visible at 55 mK, but have essentially vanished by 500 mK. Conversely, transitions
to the higher electronuclear modes persist to 1 K and above (Fig. 4.5).
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Figure 4.5: Temperature evolution of Walker modes, measured with a resonator tuned
to 3.2 GHz at zero magnetic field. (a-c) As the temperature increases from 55 to
500 mK, the avoided level crossings characteristic of the Walker modes weaken and
vanish, while the behavior driven by the electronuclear mode structure remains robust.
(d) constant-frequency cuts (shown by the dashed lines in the upper three panels)
exhibit the temperature evolution. The cuts evolve from a clear multi-peak structure
to a single peak due to the net magnetization of the sample with no additional features.
(e) 1/𝑄 vs 𝐻𝑇 for three temperatures, showing the thermal suppression of the Walker
mode features.

4.5 Magnon-polaritons

The theory discussed in this chapter was developed by Ryan McKenzie
(Ames National Laboratory, previously University of British Columbia),
published in [McK+22]. I am including the essential results and
comparison to my data.

Having discussed the mean-field (MF) and random phase approximation (RPA)
theories and the experimental data, we can look at the various models and determine
what most accurately describes the system. We mentioned one of these earlier with
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the circuit model. Another useful simple analogy is to that of coupled harmonic
oscillators. We can start with a model of classical harmonic oscillators, which
provide a useful and intuitive description with close correspondence to the full
quantum system. The cavity, or loop-gap resonator, is oscillator #1, and the spin
system is oscillator #2. The VNA probing signal is connected through a spring with
a spring constant 𝜅1 to this oscillator, which corresponds to the coupling antenna.
The spin-cavity coupling is representing by another spring with constant 𝜅. For our
VNA transmission measurement, the other coupling antenna is connected to the
cavity oscillator through a similar spring 𝜅2 like the other antenna.

We can also analyze this system using the methods of quantum optics. This will
allow use of the microscopic Hamiltonian and allow us to make connections to hybrid
quantum systems [Flo+19].

The magnon-polariton propagator of the resonator photons (𝑥 = 𝑎† + 𝑎) is found to
be

𝐷𝑚𝑝 (𝑧) = −
2𝜔𝑟
𝛽

[
1

𝑧2 − 𝜔2
𝑟 + 𝛼22𝜔𝑟 𝜒(𝑧)

]
. (4.10)

This propagator is a central result of the magnon-polariton theory. It provides
a primary connection between theoretical work and the experimentally-measured
resonator transmission function. It includes the effects of counter-rotating terms
which become important in the ultra-strong, or deep strong, coupling regimes.

Assuming ohmic (frequency independent) damping of the magnon modes, the damped
retarded magnon-polariton propagator may be written (𝐷𝑟𝑒𝑡𝑚𝑝 (𝜔) = 𝛽𝐷𝑚𝑝 (𝑧 →
𝜔 + 𝑖0+))

𝐷𝑟𝑒𝑡𝑚𝑝 (𝜔) =
−2𝜔𝑟

𝜔2 − 𝜔2
𝑚𝑝 + 𝑖𝜔Γ𝑚𝑝

, (4.11)

where from equation (4.10)

𝜔2
𝑚𝑝 = 𝜔

2
𝑟 + (Γ𝑟/2)2 − 2𝛼2𝜔𝑟 𝜒

′(𝜔), (4.12)

and

𝜔Γ𝑚𝑝 = 𝜔Γ𝑟 + 2𝛼2𝜔𝑟 𝜒
′′(𝜔). (4.13)

A factor of Γ𝑟 has been included to account for any intrinsic damping of the resonator
mode.
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It follows from equation (4.11) that

|𝑆21 |2 ∝ Im[𝐷𝑟𝑒𝑡𝑚𝑝] =
2𝜔𝜔𝑟Γ𝑚𝑝

(𝜔2 − 𝜔2
𝑚𝑝)2 + (𝜔Γ𝑚𝑝)2

. (4.14)

Without knowledge of the proportionality constant, one cannot obtain Γ𝑚𝑝 from the
amplitude and phase of the transmission function; however, one may still obtain the
magnon-polariton modes, and compare qualitative features of their linewidths with
theoretical results.

In Fig. 4.6, we consider resonator frequencies of 𝜔𝑟/(2𝜋) = 3.2 𝐺𝐻𝑧 and 3.7 GHz,
and compare the calculated transmission function to experimental data for a bimodal
loop gap resonator. At these frequencies, the resonator modes are degenerate with
the lowest single ion excitation in the system. We see strong avoided level crossings
when the lowest single ion excitation is degenerate with the resonator modes. The
increased spectral weight of the single ion excitation at 3.2 GHz leads to a stronger
avoided level crossing than at 3.7 GHz, despite the reduction in frequency. This is
consistent with the avoided level crossings seen in the experimental data.

The experimental data is for a bimodal resonator. In the theoretical calculation we
assume the two resonator modes are independent and sum their response. This fails
to capture interactions between the resonator modes, which lead to the antiresonance
seen in the experimental data near 3.6 GHz, and mixing of the calculated polariton
modes. Nevertheless, we find good agreement between the calculated resonator
transmission and the experimental data. The lowest polariton mode exhibits a series
of weak avoided level crossings in the ferromagnetic phase of the quantum Ising
material. These avoided level crossings are due to the soft mode, and Walker modes
present in the material (as discussed in Section 5.4).
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Figure 4.6: Mixed single ion and collective mode transmission of LiHoF4 in a 3.2
GHz and 3.7 GHz resonator at zero temperature. The filling factor is set to 𝜂 = 0.25,
and the damping parameters are chosen to be in line with what one expects for spin
vacancies in diamond. The decoherence factor is set to 𝛾𝑑𝑒𝑐 = 100 GHz, a value
for which, although faint, the soft mode is visible in the transmission spectrum.
Comparing the avoided level crossing in the 3.2 GHz resonator to the 3.7 GHz
resonator in the upper pair of figures, we see a larger avoided level crossing at the
lower frequency. This is due to the increase of the spectral weight of the magnon
mode at 3.2 GHz, which supersedes the reduction in coupling strength due to the
lower resonator frequency. In the lower pair of figures, we sum the calculated
transmission from the 3.2 GHz and the 3.7 GHz resonators, and compare the results
to transmission through a bimodal loop gap resonator. In the experimental data,
interactions between the resonator modes lead to an antiresonance near 3.6 GHz and
hybridization of the polariton modes not accounted for in the theoretical calculation.
The lowest polariton mode in the experimental data exhibits weak avoided level
crossings consistent with the presence of the collective soft mode, and Walker modes,
in the material (see text for details).
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Chapter 5

Microwave Measurements in the Dipolar Antiferromagnet LiErF4

5.1 Introduction

The LiYF4 (or YLF) system presents a unique opportunity to study several examples
of quantum magnetism. As discussed in Chapter 1, the various rare earth elements
are similar chemically which allows the yttrium to be substituted during crystal
growth with little structural variation. Here, we will examine LiErF4, where each
rare earth site is occupied by erbium.

Erbium (68 Er) has one more proton than holmium (67 Ho), and it has six stable
isotopes [RBD24]. Of these, only 167

68 Ho (23% abundance) has a non-zero nuclear
spin (𝐼 = 7/2+). Hund’s rules give the ground state of an Er3+ ion as the 4 𝑓 11 shell
with 𝑆 = 3/2, 𝐿 = 6, 𝐽 = 𝐿 + 𝑆 = 15/2, which can be written as 4𝐼15/2 [Bab+15].

Another notable difference with erbium is that it is a Kramers ion because it has an
even atomic number. Along with the other lanthanide elements with even atomic
numbers, this means that the Er3+ ion has a doubly degenerate ground state, with
half-integer spin [Pro16; AB12]. This degeneracy can be split by a magnetic
field, breaking time reversal symmetry, which defines an electron paramagnetic
resonance (EPR) mode at fairly low field and frequency. The Kramers ions have
many other useful properties, such as very long relaxation times and sharp resonances
[AB12]. Erbium in particular has seen further recent interest in microwave-to-optical
conversion because it has an optical transition in standard telecommunication bands
[Pro16].

To analyze this system we can start with the same general Hamiltonian discussed for
LiHoF4 (Eq. 1.3):
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Citation 𝐵0
2 103𝐵0

4 103𝐵4
4 105𝐵0

6 105𝐵4
6(𝑐) 105𝐵4

6(𝑠)
[HJN75] 0.0678 -0.678 -6.83 -0.0080 -13.3 ± 1.69
[Bab+15] 0.0581 -0.536 -5.53 -0.000625 -10.6 ± 2.38

Table 5.1: Crystal field parameters (i.e., coefficients for the Stevens operators) in meV
for LiErF4, given by the respective citations (collected by [Bab+15]). In [HJN75],
they measured these with susceptibility, and for the latter they used neutron scattering.
Note that I am using the same powers of ten I used for the LiHoF4 Table 1.1 (consistent
with [Røn+07]); Babkevich uses slightly different powers of ten in the prefactors.
Compared to the LiHoF4 values, many of these parameters for LiErF4 have opposite
signs. These factors explain the different magnetic ordering; Ising ferromagnet for
LiHoF4, and bilayer XY antiferromagnetism in LiErF4.

H =
∑︁
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. (5.1)

As before, the first term with 𝑉𝑐 represents the crystal electric field, which depends
on the relative positions of neighboring ions. The relevant Stevens operators 𝑂𝑚

𝑙
(J𝑖)

determined by symmetry are the same as in LiHoF4, but the coefficients differ due to
the different 4f electron configuration. These values are shown in Table 5.1.

The dipole coupling takes the same form:

L𝜇𝜈
𝑖 𝑗

=
𝛿𝜇𝜈 |®𝑟𝑖 𝑗 |2 − 3(®𝑟𝑖 𝑗 )𝜇 (®𝑟𝑖 𝑗 )𝜈

|®𝑟𝑖 𝑗 |5
. (5.2)

These slightly different parameters give a significant difference in the magnetic
ordering of LiErF4. The crystal field leads to antiferromagnetic ordering. Whereas
LiHoF4 has ferromagnetic ordering with spins aligned to the Ising axis, in LiErF4 the
spins are aligned within a bilayer, which are antiferromagnetically coupled to each
other. Two stacked layers have spins pointing in one direction in plane (→), and
two layers stacked on top have the opposite spin in plane (←) [Kra+12]. Within the
plane, the spins are oriented along either the crystalline a or b axes, giving an XY/4
symmetry.

Here, we are interested in the microwave spectra of LiErF4 and how it relates to its
antiferromagnetic ordering. The most relevant and detailed treatment of LiErF4 in the
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literature can be found in the work of C. Kraemer, with an overview in Kraemer et al.
[Kra+12] and more detail in his thesis [Kra09]. These papers are mostly concerned
with neutron scattering, but have some relevance here for microwave measurements.
As discussed previously, microwave measurements with an LGR can overcome
limitations for neutron scattering experiments. The neutron flux can significantly
increase the sample temperature, making measurements below 𝑇 ∼ 200 mK difficult.
Additionally, because erbium has a number of stable isotopes, neutron activation
could affect the sample by changing the isotopic composition, thus changing the effect
of hyperfine coupling to nuclear spins. There have been susceptibility experiments
using isotopically pure Li 168ErF4, eliminating the hyperfine term [Gha12]. The
effect was most pronounced at 35 mK, where the pure 168Er sample had a lower 𝐻𝑐.
This became less and less prominent at higher temperatures, until the two samples
behaved the same around 260 mK. Measuring with an LGR also allows us to access
a much lower energy scale. For comparison, 1 GHz = 4 meV.

5.2 Data

The techniques for measurements with LiErF4 were similar to those of LiHoF4. A
single crystal sample of LiErF4 was mounted in an LGR in the dilution refrigerator
(Kelvinox MX250), using the solenoid transverse field magnet along with the split
coil from section 2.2.

As with LiHoF4, we can measure the dynamic susceptibility through the resonator
properties. Away from crossings with specific energy levels, the change in resonant
frequency 𝛿 𝑓0 corresponds to the real part 𝜒′ and the change in inverse quality factor
𝛿(1/𝑄) corresponds to the imaginary part 𝜒′′. The overall features and shape of the
dynamic susceptibility are fairly similar to the low-frequency/static susceptibility,
allowing for comparison to other experiments. The neutron scattering intensity also
has a similar qualitative connection to the susceptibility, allowing some comparisons
[Kra09].

We start by examining the zero-field temperature dependence, as shown in Fig. 5.1.
We see the antiiferromagnetic phase transition around 360 mK as expected from Ref.
[Kra+12]. The resonance is fairly broad above 𝑇𝑁 and sharpens below, denoting a
decrease in dissipation.

The LGR also allows us to directly measure the hyperfine mode. This is seen in the
avoided level crossing in Fig. 5.2 at low temperatures. Around 0.03 T and 3.04 GHz
we see where the hyperfine mode intersects the resonator frequency.
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Figure 5.1: LGR measurement of LiErF4 at zero field while cooling from 600 to 150
mK.

A key result is that the susceptibility sharpens as the temperature decreases from
∼ 360 mK to ∼ 100 mK. Below this, we see that the susceptibility behavior at the
quantum phase transition (QPT) actually becomes broader. This can be seen more
quantitatively in Fig. 5.3, which fits the individual microwave spectra to a simple
circuit model to obtain the real component of the magnetic susceptibility. This is
counterintuitive, as we generally expect continuous sharpening as thermal fluctuations
decrease. I tested to make sure it is not the result of hysteresis, magnetic field ramp
rate, or microwave power. All of these spurious causes were ruled out. Other people
in the research group have continued this work using low-frequency susceptibility,
which reproduced this result, combined with heat capacity to directly measure the
electronuclear energy scales. The fundamental similarity between the low and high
frequency measurements shows that this behavior is an intrinsic effect. Instead, a
more detailed analysis conducted by other members of the group demonstrated that
it arises from isotopic disorder of erbium, leading to random moment disorder once
the temperature cools below 150 mK and the hyperfine coupling becomes relevant.

Returning to the work of Kraemer et al., they do not see this effect in neutron scattering
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Figure 5.2: LGR measurement of LiErF4 at various temperatures, ramping the
magnetic field along the c-axis. At low temperatures, notice the hyperfine level
crossing around 0.02 T. The linewidth (corresponding to the imaginary part of the
susceptibility 𝜒′′) is mostly constant throughout the range at the lowest temperatures.
Around 100 mK there is a sharp cusp and dramatic change in loss near 3700 Oe.

measurements [Kra+12]. Their measured intensity diagrams mostly level out below
150 mK, so heating from the neutrons most likely prevented them from reaching
sufficiently low temperatures to see this effect. Further microwave measurements
should be made with isotopically-pure LiErF4to see what effect it has on the low-field
level crossing and the susceptibility behavior.
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Figure 5.3: Susceptibility of LiErF4 as a function of magnetic field along 𝑐 at a series
of temperatures. These curves are derived from the spectra shown in Fig. 5.2.



69

Chapter 6

Superconducting Microwave Resonators

6.1 Introduction

Superconducting resonators have many useful properties that have led to a range of
applications and study through the years. These range from particle accelerators,
sensitive radiation detectors (MKIDs) [Day+03], narrowband filters, and more
recently qubits in quantum information science [For10; Pre+21]. Particle accelerators
typically use 3-dimensional cavities, but the others use superconducting coplanar
waveguide (CPW) resonators which we will focus on in this chapter. Although these
are usually made with aluminum, our goal is investigate the use of niobium (and
tantalum, which is very similar) to improve the quality of these resonators.

In this chapter we will focus on techniques for making higher-quality superconducting
resonators with niobium and tantalum, and then look at how they might be interfaced
with rare earth ion crystals for magnetic resonance and hybrid quantum systems.

6.2 Theory

Material

In this section we are primarily looking at elemental niobium films grown on sapphire.
Later in this chapter we discuss using tantalum, which is just below niobium in
the periodic table’s group 5. Niobium is a metallic type II superconductor with a
transition temperature of 𝑇𝑐 = 9.2 K in bulk [RBD24], though 𝑇𝑐 decreases in thin
films. This is the highest 𝑇𝑐 for an elemental superconductor. The type II designation
indicates that in a magnetic field, it allows penetration of flux vortices which allows
the superconductivity to persist at higher fields than type I superconductors, which
completely exclude magnetic flux but break down at smaller fields.

These factors make niobium a common, workhorse superconductor. Most practical
applications use an alloy of niobium and titanium (NbTi), which can handle higher
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temperatures and fields than the pure metal [RBD24]. This is what I used to build
the split coil magnet in section 2.2. Niobium-titanium actually sees more use
than higher-temperature and/or -field capable materials, because NbTi has excellent
mechanical properties that are important for using it as a practical wire. The wire for
the split coil was no more difficult to handle than a copper wire.

In this case, we are concerned with thin films of elemental niobium. While the
most commonly used superconducting circuits and qubits are made with aluminum,
niobium has some advantages [Pre+21]. Of course, niobium has a much higher
𝑇𝑐 = 9.2 K compared to aluminum’s 𝑇𝑐 = 1.175 K. It is also far more resilient to
magnetic fields as a type II superconductor, with 𝐵0 = 206 mT for Nb compared to
𝐵0 = 10.49 mT for Al [RBD24].

Another important characteristic is that niobium forms many different oxides. This
will relevant later when discussing loss sources. The most common of these is
niobium pentoxide (Nb2O5) [NMG16]. For Josephson junctions (i.e., for qubits) it
is most common to use aluminum oxide as the barrier. For niobium junctions, it is
possible to use either Nb or Al oxide [THK89].

Molecular-beam epitaxy

The most significant method that we are using to improve the quality of supercon-
ducting films and resonators is by using molecular-beam epitaxy (MBE). In most
cases, people make these films using techniques like sputtering and electron-beam
evaporation. While these techniques are fast and widely available, they have some
drawbacks. In sputtering for example, these include substrate interface damage
from ions, and issues with contamination [Jia+23]. MBE also introduces several
capabilities that these other techniques do not. For example, MBE allows control of
growth on the layer-by-layer scale, with in-situ monitoring [AH19]. It also allows for
the growth of films made up of elements from multiple sources. These capabilities
are very important to improving superconducting resonators, as many of the loss
sources are due to interfaces and contamination. Growing niobium films with MBE
has been explored before (e.g., [ZF99]), but there are many opportunities to improve
the processes and minimize loss.

Fundamentally, an MBE system source consists of an ultra-high vacuum (UHV)
environment which houses a holder for the substrate, a mechanism to heat the
substrate, and several material sources. Heating the substrate can improve the surface
quality and crystallinity due to thermodynamic and kinetic effects [HS89]. The
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design of the sources depends on which element is being used. For materials that
evaporate at relatively low temperature, Knudsen cells are used. Also known as
effusion cells, Knudsen cells use a filament to heat the source material so it evaporates.
A shutter system controls the vapor flux [AH19]. For refractory metals, like niobium
in our case, Knudsen cells would melt before the source. Therefore, when working
with niobium, we use an electron beam to evaporate the Nb source.

A key characteristic of MBE is that the deposition rate is fairly slow. This allows
more control of the growth, such as crystalline layers. It is possible to monitor this
growth using reflection high-energy electron diffraction (RHEED) [AH19]. Growing
slowly also has the consequence that contamination is more likely to be incorporated
in the film. This is why a very clean UHV environment is required, often with a
mass spectrometer to monitor the chamber.

Loss

Superconductors are well known for the absence of resistance to DC current. It is thus
counter-intuitive that they are subject to other sources of loss at RF frequencies. These
sources can be categorized by several properties, such as the location in the circuit
(usually in bulk or an interface). This means that different designs of resonators
can change the contribution of loss sources, as well as the fabrication process
determining the quality of these areas. They can also have very different dependence
on measurement parameters, particularly incident power (also corresponding to
photon number and AC current), the temperature, a DC magnetic field, or a DC
current.

One significant source of dissipation is two-level systems. The behavior has been
known for a long time, first in amorphous materials [MCL19; HA76]. Even when
using a metal film on a crystalline substrate, they are still prolific, such as on
passivated surfaces [Zmu12; Phi87; Nie+20]. The microscopic origin of TLS is not
well understood. TLS typically occur when the potential energy associated with an
atom’s position in a disordered system has minima can be tunneled between. The
energies involved are usually quite low, so they only become important at very low
temperatures.

One of our main goals is to reduce loss in these resonators, and TLS is dominant
at low temperature and when approaching the single-photon limit. Our goal is to
improve the material quality in order to reduce the number of defects correlated with
TLS. Usually, other experiments grow the superconducting films using techniques
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like sputtering or electron-beam evaporation, which form an amorphous film with
a fair amount of defects creating TLS, especially at material interfaces. Another
benefit of MBE is that when a substrate with similar lattice constant is used, the
epitaxial layers can form a well-aligned interface. This should provide a benefit
because TLS are known to be relevant at interfaces.

Additionally, polycrystalline films have TLS loss localized to the grain boundaries
[Pre+21]. A key quality of MBE is that we can grow crystals layer by layer, we should
be able to significantly reduce the contribution of TLS loss at grain boundaries.

Nonlinearity

A useful property of superconducting resonators is the nonlinearity [Tho+20] which
can be driven by incident radiation, temperature, or AC current level. This leads
to many applications such as detectors, temperature measurements, and amplifiers
[KS23; YB06]. We can look at how our resonators respond different power levels
(corresponding to current levels) to learn more about the film quality and suitability
for such applications.

6.3 Design

For the initial experiments, we are using a design with an array of 𝜆/4 resonators
with a section of transmission line close to the central line. These are considered
hanger resonators, and are usually measured in transmission (𝑆21). When an incident
signal frequency is off resonance with all of the resonators, the signal is passed
through with minimal loss as the hangers reflect most of any coupled energy back to
the main transmission line. When the signal is on resonance with a resonator it will
absorb some energy away from the main transmission line. Therefore, the 𝑆21 trace
of such a device is normally close to 1 (less normal cable/transmission loss), with
sharp notches, i.e., decreases in transmission, when on resonance with any of these
resonators. Notably with these superconducting resonators, the quality factors are on
the order of 𝑄 ∼ 105 − 106 or higher. This means that they are easy to miss if the
frequency resolution of the VNA is not fine enough to see the notches.

There are multiple ways to conceptualize an electromagnetic resonator. We discussed
loop-gap resonators (LGRs) previously, as a three-dimensional resonator which to
some extent can be thought of as a lumped-element (LE) resonator with spatially
distict inductance and capacitance (and thus electric and magnetic fields). LGRs and
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Figure 6.1: HFSS simulation of the primary resonator design discussed here,
developed by JPL collaborators. The electric field is plotted with the middle
resonator in resonance. The electric field is concentrated in plane across the gaps.

cavity resonators are the main types of 3D resonators, but we can also consider 2D
resonators. It is possible to make a 2D LE resonator with capacitive and inductive
structures separated in analogy to LGRs, but here we will consider an analogy to 3D
cavities in 2D transmission line resonators.

When electromagnetic waves encounter an electrically conductive material the
magnitude decreases exponentially with the depth in the material. The field magnitude
is proportional to exp (−𝛾𝑧) where 𝑧 is the position inside the conductor, and 𝛾 is
the propagation constant [Poz11]:

𝛾 = 𝛼 + 𝑗 𝛽 ≈ 𝑗𝜔√𝜇𝜖
√︂

𝜎

𝑗𝜔𝜖
= (1 + 𝑗)

√︂
𝜔𝜇𝜎

2
. (6.1)

This is complex in general, with a phase constant 𝛽 and an attenuation constant 𝛼. It
is useful to define a skin depth where the fields have decayed by 1/𝑒 = 36.8%. This
depth is given by

𝛿𝑠 =
1
𝛼
=

√︄
2

𝜔𝜇𝜎
. (6.2)

For a typical good conductor (gold, silver, copper, ...) this is on the order of 1 µm.



74

6.4 Microfabrication

Substrate

As discussed previously, a key factor in growing epitaxial films is the compatibility
between the lattices of the substrate and film. In order to minimize defects, the
crystal lattices should be able to fit together neatly. For niobium, it turns out that
crystals of sapphire (crystalline Al2O3) are remarkably well-matched to niobium
[WMT01]. Additionally, as discussed in the context of LGR tuning, sapphire has
excellent properties at microwave frequencies. This means that niobium on sapphire
is an excellent combination for high-quality microwave CPW resonators [WGP03].

To grow these superconducting films, we start with a sapphire substrate. This is
mainly chosen because its lattice constant is comparable to that of the niobium
that will grow on top. Niobium forms crystals with a body-centered cubic (BCC)
structure, with a lattice constant of 0.3307 nm. Sapphire (Al2O3) is a hexagonal
close packed (HCP) structure with 𝑎 = 0.4759 nm and 1.2991 nm [Du+16]. The
lattice mismatch between these two is given by

𝛿1 = 2
𝑑 𝑓 − 𝑑𝑠
𝑑 𝑓 + 𝑑𝑠

(6.3)

where 𝑑 𝑓 is the plane spacing of the Nb film lattice, and 𝑑𝑠 is the substrate plane
spacing [Du+16; BSW02]. The following crystal alignments are well-matched. We
have used the first one:

Al2O3 [1 1 2 0] ∥ Nb[1 1 0] (6.4)

Al2O3 [0 0 0 1] ∥ Nb[1 1 1] (6.5)

Al2O3 [1 1 0 0] ∥ Nb[1 1 2] . (6.6)

The films were grown by Sandra Glotzer with MBE, taking care to clean the surface
before deposition. Due to how the substrates are held by the corners, metal film is
missing in small notches at the corners, which had to be accounted for in the design.

I made an assortment of chip patterns that were ordered on a mask, shown in Fig. 6.2.
However, the measured data shown here are using a design made by collaborators at
JPL, shown in Fig. 6.1.
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Figure 6.2: Original layout with various CPW resonators that I used to ordered a
mask. Each small square is a chip pattern that can be used, with varying parameters
including coupling method and length.

Wet processing

The first process we attempted was using wet chemicals for the steps. First, I ordered
a mask with an array of many resonator variations, with the layout pictured in
Figure 6.2. This mask consists of a glass substrate with the pattern in chrome. This
is a negative mask, so the mask has metal where the end product will not have metal.
The samples with Nb film are usually 10x10 mm. The following is an overview of the
process. We prebake the sample and then spin-coat the sample with the PKP-308PI
(Purified Kodak Photoresist) photoresist. After another bake, we use an MJB3 mask
aligner to align, contact, and expose the chip. After this, we develop the chip in the
specified developer for PKP. At this point we have hardened/insoluble photoresist
covering the parts that should end up with metal.

We then etch the niobium film in a solution of 10% hydrofluoric acid (HF), which
is the only known effective wet etchant for niobium. The need to use HF is what
necessitated the PKP resist, as it is said to be resistant to HF. However, our attempts
with wet processing had issues with adhesion, nonuniform photoresist application,
and unknown sources of contamination. The likely issue is poor adhesion of the
photoresist which then could make it more prone to degradation by HF. This resulted
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in rough edges seen in Figure 6.3.

Figure 6.3: Microscope photograph of a niobium CPW made using the wet process
with HF described in the text. The edges became rough, likely due to HF attacking
the photoresist and over-etching.

Dry processing

Rather than trying further wet processing methods, we had an opportunity to
manufacture resonators using a dry process at the Jet Propulsion Laboratory (JPL).
This process is similar to the wet process, but using a dry etching process instead of
HF. This process is similar to the wet process, but with some critical differences. The
sample is coated with an anti-reflective layer (BARC) and Oir620 photoresist. This
is a positive photoresist, meaning the pattern must be inverted. The combination of
these chemicals worked well, with better adhesion.

For this process we could use the same mask aligner with a positive mask. However,
these were done in the JPL cleanroom which has a Heidelberg laser writer which
exposes the pattern directly on to the resist instead of with a mask. The laser writer
itself accomplishes the same result that we could get with a photomask and aligner,
but eliminates the step of ordering a mask. Instead it takes a layout file and exposes it
like a laser printer for paper. This is very useful for making and changing prototypes.

After developing and exposing the chip, the other step that changed by using the JPL
cleanroom is that a dry etch process is available. This allows us to use inductively
coupled plasma (ICP) reactive-ion etching (RIE) to remove the BARC and niobium
film according to the pattern. After the pattern is written, the unexposed resist and
remaining BARC are etched in the dry process as well.
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This process gave us very good films, by replacing the problematic factors of the wet
process. The difficulties of the wet process mainly arise from the fact that HF is the
only known effective wet etchant for niobium, but it is also very harsh. This created
problems with the resist peeling. The dry etch does have a drawback of damaging the
metal film by the ion bombardment. The relevance of this is not yet known, but may
incentivize finding an effective wet process that does not use plasma etching. This
would require finding a photoresist with good adhesion that is not damaged by HF.

6.5 Measurement

In order to measure the resonator properties, we need a way to mount them
in a cryogenic environment and connect them to coaxial cables. The nominal
superconducting transition temperature 𝑇𝑐 of niobium is 9.25 K [RBD24], so we can
use the PPMS insert from section 2.2. In place of the LGR box I made a box to hold
the 10x10mm chip and a printed circuit board (PCB) made with a high-frequency-
compatible substrate1. The sapphire sample itself rests on the aluminum box, though
this only works for PPMS measurements which stay above aluminum’s 𝑇𝑐, below
which it is a poor thermal conductor.

The large pads on the perimeter of the chip (including ground) are connected to
the gold-plated PCB transmission line by wire bonds. It was found that aluminum
bonding wire was effective for bonding to niobium; gold did not stick.

The PCB has a larger coplanar waveguide line between two SMP connectors, with
an open middle space where the superconducting device is connected in series. The
SMP connectors take the place of the MMCX connectors used with the LGRs. The
SMP connectors are soldered to a board cutout, and we found that it is important to
prevent the solder migrating near the wire bonding site. This is most effective using
solder paste melted on a hot plate to connect the very small SMP connector without
affecting the wire bond pad.

Similar to the LGR PPMS measurements, with this setup we can reach temperatures
near what the PPMS reaches without the insert, around 1.65 K.

We initially had trouble finding the resonances on the VNA. The problem was that
the resonances are so sharp that they are invisible unless the VNA has resolution
down to the kHz scale FWHM. The Keysight E5071C only allows 1601 points per
measurement, so recording a broad spectrum requires connecting several narrowband

1Rogers Corporation RO4350B
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Figure 6.4: Photograph of the first chip design fabricated with a niobium film on
sapphire, mounted in the PPMS box.

measurements. The first designs probably would work with the improved fabrication
and narrowband measurement, but for the dry process we started with the JPL design.

Figure 6.5: Broadband spectrum of a niobium resonator at 1.8 K using the PPMS
insert. The modes marked with arrows are sharp superconductor modes, while the
others are parasitic modes likely arising from the box or wire bonds.

6.6 Analysis

In order to analyze the superconducting resonators we need a model for the 𝑆21 data.
In the case of the designs used here, we have a CPW transmission line connecting
the two ports in series, with several “hanger" transmission line resonators coupled
through adjacent transmission lines. At most frequencies, the signal passes through
with a fairly constant amount of attenuation. When the VNA frequency matches the
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resonant frequency of one of the resonators (or multiple, if the lengths of some are
identical) that particular resonator absorbs some of the energy so that less passes
through. That is to say, this is called a notch configuration, where 𝑆21 is normally
high at most frequencies, and lower at specific resonances. This is in contrast to my
LGRs where 𝑆21 is normally low and the only way to transmit between the two pins is
to excite particular resonant modes. The lineshape is mostly the same, it is primarily
a matter of X vs. 1-X. In principle, the superconducting resonators are analyzed the
same way as those made from normal metals. The lineshape functions are mostly
the same, but with a much larger 𝑄. The copper LGRs are mostly on the order of
𝑄 ∼ 102 − 103 while our Nb CPW resonators have achieved up to 𝑄𝑖 = 1.87 × 106

at 1 K.

The narrow bandwidth of these resonators makes it easier to work with complex
𝑆21 data, either as real/imaginary, or magnitude/phase. The reason for this is that
when measuring phase with a VNA, there is usually a sawtooth pattern when looking
at phase as a function of frequency 𝜙 = arg(𝑆21( 𝑓 )). This is caused by the delay
experienced by signals propagating through transmission lines, mostly from coaxial
cables. For the phase measurements shown previously, it is necessary to compensate

for this. The delay time can be determined by the group delay 𝑡𝑔, given by 𝑡𝑔 = −
d𝜙
d𝜔

[Key]. Away from the resonance, this is a constant determined by the slope of the
sawtooth curve. This gives the delay time caused by the transmission lines. This
can be subtracted from the phase for a clean measurement. However, because the
superconducting resonators have a very small bandwidth, the sawtooth effectively
becomes a constant phase offset.

With the complex 𝑆21 being easier to use here, we can apply other methods to analyze
the data. In particular, when we make an XY plot of (ℜ(𝑆21),ℑ(𝑆21)) we get a
circle in the complex plane. This fact was used in [Pro+15a] to create an algorithm
and software [seb24] to apply this fitting method to resonator measurements. For a
notch type resonator like our niobium CPWs, they use the complex 𝑆21 transmission
function in the form:

𝑆notch
21 ( 𝑓 ) = 𝑎𝑒 𝑗𝛼𝑒−2𝜋 𝑗 𝑓 𝜏

[
1 − (𝑄𝑙/|𝑄𝑐 |)𝑒 𝑗𝜙

1 + 2 𝑗𝑄𝑙 ( 𝑓 / 𝑓𝑟 − 1)

]
. (6.7)

The component before the brackets represents the effects of the environment outside
the resonator: cables, connectors, amplifiers, etc. 𝑎 represents an overall scaling
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factor from external factors, and 𝛼 is a fixed phase shift from them. 𝑒−2𝜋 𝑗 𝑓 𝜏 represents
the delay from cables and such. The bracketed term represents the resonator itself.
𝑄𝑙 is the loaded quality factor and |𝑄𝑐 | is the absolute value of the coupling quality
factor. The 𝑒 𝑗𝜙 term represents asymmetry which can arise from standing waves in
the transmission lines connected to the resonator (perhaps at the wire bonds) or the
input and output impedance seen by the resonator being slightly different on each
side [Pro+15a]. The resonant frequency is given by 𝑓𝑟 with 𝑓 being the independent
variable, frequency.

In regards to the first term, VNA measurements will often use a calibration kit
which replaces the sample or device under test (DUT) and allows for a calibration
of all effects that are not due to the DUT. However, this quite impractical for these
cryogenic measurements, because there are several connectors and long cables that
are not accessible when cold. However, as discussed previously, the superconducting
resonators have such narrow bandwidths that the cable delay represented by 𝑒−2𝜋 𝑗 𝑓 𝜏

is effectively constant. The same is true for things like connectors, cables, and
amplifiers which can also have frequency dependent loss; these become part of a
constant factor through the resonator bandwidth [Pro+15a].

The internal quality factor represents the intrinsic behavior of the resonator and is
thus the most meaningful. It is calculated in the usual way for combining quality
factors [Pro+15a]:

1
𝑄𝑖

=
1
𝑄𝑙
+ℜ

(
1
𝑄𝑖

)
. (6.8)

6.7 SC resonator for LHF

As discussed previously, LGRs are good for microwave spectroscopy because the
microwave magnetic field is fairly uniform over the sample volume, in terms of both
magnitude and direction. This is beneficial in reducing inhomogeneous broadening.
Additionally, the filling factor can be high. However, if we want to saturate an energy
level with many MW photons, this can be difficult in LGRs. This is particularly true
for case of stoichiometric rare earth crystals 2, where the concentration and number

2Meaning the composition is given by a normal chemical formula with integer coefficients, rather
than a percentage or ppm doping. For example in our case, this refers to LiYF4 with 100% of the
yttrium replaced by the magnetic ion.
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Figure 6.6: Niobium resonator spectrum at 1.8K in the PPMS, with the results of the
circle fit described in [Pro+15a].

of ion spins is very high. The LGR will couple the input MW power to the entire
sample, thus usually making it difficult to saturate a transition without excessive
power and heating.

A CPW resonator made with a regular conductor would not provide a substantial
improvement in this regard. However, a superconducting CPW resonator gives
benefits in two factors: a smaller mode volume, and higher Q. The combination of a
high Q and small mode volume allows us to focus many photons on a small number
of spins, increasing prospects of saturation.

Conclusion

We have started work to produce improved superconducting resonators through the
use of MBE to create cleaner films. Results have been promising so far, and further
study will identify the benefits of these techniques. Measuring at single photon
level and sufficiently low temperature will allow us to identify the benefits of these
efforts in reducing TLS loss for superconducting circuits. Applying these insights to
superconductors with magnetic field tolerance will show their use in nonlinear spin
resonance experiments.
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Chapter 7

Future Work

In this chapter, we will discuss possible future work based on these results and
techniques.

7.1 Nonlinear pumping

A key feature of the LiHoF4 phase diagram as shown in Fig. 1.2 is the upturn in the
critical transverse field at low temperatures. The origin of this effect is seen when we
calculate the phase diagram with and without the hyperfine term 𝐴. In this case the
upturn disappears, and the phase diagram is as expected for the basic transverse field
Ising system. This property raises an interesting prospect: is it possible to control
this hyperfine coupling, and thus the magnetic ordering phase diagram? In particular,
is it possible to drive the magnetic phase transition at rates faster than what can be
realistically managed by directly ramping the magnetic field.

Understanding what happens when a system is driven through a phase transition at
different rates is a universal topic in physics. For millennia blacksmiths have known
how to quench steel to change its properties [Jin11]. The concept of quenching, or
forcing a system through a phase transition, emerges in fields as distinct as galaxy
formation in the early universe within cosmology and superfluid helium vortices
[Zur85] and metallurgy in condensed matter. A universal concept that connects these
systems is given by the Kibble-Zurek mechanism [Du+23], first developed by Kibble
[Kib76] to describe how galaxies formed after the big bang along defects like cosmic
strings, and it was applied to laboratory experiments by Zurek [Zur85].

The key result of the KZ theory can be used to describe the behavior of a system
that is quenched through a phase transition. This can be applied to both classical
(CPT) and quantum phase transitions (QPTs). The important distinction here is
that classical phase transitions are driven by temperature, while QPTs can happen
at zero temperature when a different parameter is varied, such as magnetic field.
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Of course, in practice QPTs are studied at finite temperature, but to be precise the
quantum critical point (QCP) is at absolute zero. Nonetheless, as long as the quantum
fluctuations are much stronger than the thermal fluctuations, it is possible to discern
the zero-temperature behavior. Either way, consider a system with an independent
parameter 𝑔 with a quantum critical point at 𝑔 = 𝑔𝑐. For a driven quantum two-level
system, the characteristic relaxation time is the inverse of the minimum gap and
diverges at the QCP [Dut+15].

Following Dutta et al., we can consider a linear quench, where the parameter
approaches 𝑔𝑐 as 𝑡/𝜏, i.e., 𝜆 = 𝑡/𝜏 = 𝑔 − 𝑔𝑐, with the critical point at 𝑡 = 0, as
shown in Fig. 7.1. The adiabatic theorem says that if the system’s relaxation time is
smaller than the time where 𝑔 is varied, then the system stays in the ground state.
When the variations happen faster than the relaxation time, we have non-adiabatic
excitations. With the relaxation time given by 𝜉𝜏, the crossover between adiabatic
and non-adiabatic behavior can be given as [Dut+15]:

����𝜆¤𝜆
���� = 𝑡 = 𝜉𝜏 (𝑡 = 𝑡). (7.1)

Universality gives that the correlation time diverges as 𝜉𝜏 ≈ |𝑔 − 𝑔𝑐 |−𝜈𝑧, so we can
rewrite this transition as

𝑡 ≈ (𝑔 − 𝑔𝑐)−𝜂𝑧 |𝑡 ≈
(
𝑡

𝜏

)
(7.2)

which means 𝑡 ≈ 𝜏𝜈𝑧/(𝜈𝑧+1) . As seen in Fig. 7.1, at ±𝑡 we see three regions where the
behavior goes from adiabatic on the outside to the so-called critical slowing down in
the center region. Returning to the context of a quantum ferromagnet, Kibble-Zurek
theory gives us another critical concept. Using Eq. 7.1 and noting that the domain
size is related to the healing length 𝜉 ≈ 𝜉1/𝑧

𝜏 and assuming one defect per domain,
we can write the number density 𝑛 of defects as

𝑛 ∼ 1
𝜉𝑑
∼ 𝜏− 𝑑𝜈

𝜈𝑧+1 , (7.3)

where 𝑑 is the dimensionality of the system, and 𝑧 and 𝜈 are the critical exponents.
In summary, in an experiment where we can quench a quantum system at rates above
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Figure 7.1: Illustration of the Kibble-Zurek mechanism in a linear quench. For
|𝑡 | < 𝜏 the Hamiltonian is changing faster than the diverging relaxation time, making
this the critical slowing down regime. Outside the center regime, the Hamiltonian
is changing slower than the relaxation time so the change takes effect adiabatically
[Dut+15].

and below the critical rate, we can look for universal behavior in the resulting defect
density. In a magnetic spin system, the defect density will roughly correspond to the
magnetization or susceptibility.

Quench in LiHoF4

Having described the general formulation of quantum quenches, we can now discuss
how it might work in LiHoF4. For a transverse field Ising model system, the obvious
quench method would be to adjust the transverse magnetic field. However, the
superconducting magnets required to produce fields of several Tesla have very high
inductance. The driving current 𝑖(𝑡) that produces the field cannot be changed too
fast due to the back-action voltage:
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𝑉 = −𝐿 d𝑖
d𝑡
. (7.4)

Changing the current (thus field) too quickly creates arcing and can cause the super-
conductor itself to thermally quench when a portion becomes non-superconducting.
This is not to be confused with a quantum quench in the TFIM sample, but rather
a magnet quench which results in a dramatic boiling of liquid helium and loss of
the magnetic field. A quickly changing magnetic field also generates eddy currents
in the sample holder/resonator which would most likely lead to excessive heating
which would make a controlled quantum quench difficult.

However, another property of the LiHoF4 system might provide an opportunity for
a quantum quench. As discussed previously, the LiHoF4 phase diagram differs
from that of a basic quantum transverse field Ising model by the upturn in critical
field at low temperature. This happens because of the hyperfine coupling to 165Ho
nuclei, which couples the nuclear and electronic spin states together. This creates
an effective composite spin I + J which requires a higher transverse field in order
to break ferromagnetic ordering [BRA96]. This leads to a possibility to explore–if
we saturate the nuclear states, that degree of freedom is eliminated as the spins can
go between the electronic states without needing to change nuclear energy levels.
This would in turn reduce the magnetic field scale needed to break ferromagnetic
ordering.

Measurements

In order to make these dynamic measurements possible, there are several factors
that we must consider. First, we need a way to apply a short, high-power microwave
pulse, and probe the microwave response (𝑆21) before, during, and after such a
pulse. As mentioned previously, VNAs are not intended for measurements where
timing is critical; measurements are taken on the scale of tenths of a second up
to several seconds. Additionally, the measurement sequence is not well-defined,
making it difficult to control the details of when power at each frequency is applied
for measurement. There are also variable delays during the measurement sequence.
In section 2.1 we developed the time-resolved measurement technique which will be
important for any dynamic experiment working with short time scales.

The The timescale possible by this technique is 𝜏 = 𝑄/(𝜋 𝑓0), in terms of the quality
factor 𝑄 and resonant frequency 𝑓0 [Gyü+15].
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Measuring any kind of nonlinear effect requires care in order to avoid thermal effects,
which usually occur on a fairly long timescale. For these measurements I took
care to ensure that the average power remains the same. For example, if the goal
is to maintain an average output power of 𝑃avg, we must track how long 𝑡on a high
power level 𝑃on is active, and then turn off the power for an appropriate time 𝑡off in
order to maintain the average power level 𝑃avg. For example, if an average power
of 𝑃avg = −20 dBm = 0.01 mW is desired, and 𝑃on = −10 dBm = 0.1 mW is active
for 𝑡on = 1 s, then the power should be off for 𝑡off = 9 s. This can also be considered
in terms of the duty cycle 𝑑, which is the fraction of the time that the power is on:

𝑑 =
𝑡on

𝑡on + 𝑡off
. (7.5)

The average power can also be written in terms of the duty cycle:

𝑃avg =
𝑡on

𝑡on + 𝑡off
𝑃on = 𝑑𝑃on. (7.6)

With special attention to thermal effects, we have surveyed various regimes looking
for power dependence in LiHoF4. We did not find any obvious change in the phase
diagram up to a few milliwatts VNA source power. However, some measurements
reveal power dependence at a lower field within the ferromagnetic state, as shown in
Fig. 7.2.

The cause of this behavior at intermediate fields is not clear. One possibility is
domain wall motion, which requires additional theoretical investigation. It could
also be a different kind of Walker mode, though it is distinct from the well-defined
Walker modes at higher frequency.

Another possible method to modulate the phase diagram and drive a quench was
described by Gómez-León and Stamp [GS17]. This describes a dynamical quantum
phase transition, occurring when a high frequency and power AC field is applied to
the LiHo𝑥Y1−𝑥F4system (as well as similar systems). The AC field is assumed to be
at frequencies much higher than the dipolar and hyperfine coupling strengths, but
lower than the gap to the next crystal field level, thus ≈ 30 − 200 GHz.

While this analysis leads to interesting results, the microwave field amplitude needed
for a significant effect would require immense power input to the resonator and cause
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Figure 7.2: Measurements of power dependence of LiHoF4 in a loop-gap resonator.
(a) Power dependence of 𝑆21 for a 2 GHz resonator taken at 30 kOe, taken with
appropriate delays to avoid heating. The results of taking this measurement at a wide
field range and fitting for 1/𝑄 are shown in (b). The phase transition does not shift
appreciably, but there is a power dependent effect around 30 kOe. The cause of this
absorption and its power dependence is unclear, as it does not correlate with any
RPA electronuclear modes. Domain wall motion is a possible cause.
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extreme heating. The magnitude of the effect is given as a function of 𝛼 = Γ𝑥/𝜔,
where Γ ≈ 1 leads to a moderate effect. Γ is the AC field magnitude and 𝜔 is its
frequency; thus the energy scale corresponding to Γ and 𝜔 are similar. The units
here are strange, due to some constants being defined as equal to 1. The frequency
corresponds to an energy of ℎ𝜈 ≈ 2 × 10−23J = for 𝜂 = 30 GHz. The AC field
magnitude of a typical LGR is 𝐵0 ≈ (3.8 × 10−4𝑃0) T [WFH84]. Converting to
energy,

𝐸Γ ≈ 𝑔𝐿𝜇𝐵𝐵0 ≈ 7 × 10−27 × 𝑃0 (7.7)

Thus, the input power 𝑃0 is on the order of a few kilowatts! A typical microwave
oven is around 1 kW, so this is clearly not compatible with a dilution refrigerator.
Further study of the dynamical phase transition theory is needed. As mentioned
in chapter 6, superconducting resonators have the advantage of much higher Q’s
and allow for very small mode volume. While they have a drawback of increased
inhomogeneity in microwave field magnitude and direction compared to LGRs, the
combination of high Q and small mode volume increases photon density should
make saturation more accessible.
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