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The nonlinear triatomic molecule of the type X Y2 has 
been treated and the expression for the energy of vibration 
has been obtained when second, third and fourth powers of 
the coordinates are considered in the potential function. 
The higher powers of the coordinates have been introduced 
by the use of first and second order perturbation theory. A 
method has a lso been outlined for treating the more com-

I NTRODUCTION 

RECENTLY Adel and Dennison1 have pub­
lished a quite thorough treatment of the 

linear triatomic molecule of the CO2 type, and 
have obtained the energy expression when higher 
powers of the coordinates are considered in the 
potential function. In this paper it is proposed 
to discuss the nonlinear molecule of the H20 
type from a similar standpoint. Some of the 
results of this treatment have already been 
published. 2 In the present paper the method will 

1 A. Adel and D. M. Dennison, Phys. Rev. 43, 716 (1933) . 
2 L. Bonner, Phys. Rev. 45, 496 (1934) . 

plicated types of kinetic energy expressions by a perturba­
tion method. Using the results of this treatment there have 
been evaluated for the water molecule, from the known 
spectrum, the primary binding constants and vibration 
frequencies for infinitesimal amplitudes. Finally, a predic­
tion of the infrared vibration spectrum of the symmetrically 
substituted heavy water has been made. 

be more completely presented and further results 
will be discussed. 

The present case is somewhat complicated by 
the fact that the kinetic energy expression is of 
such a form that it cannot be treated rigorously. 
However, it is hoped that this difficulty has 
been successfully surmounted by using a per­
turbation method. 

It is desired in this article to find the form of 
the energy expression when the deviation of the 
potential field from that of a harmonic oscillator 
is considered. Third and fourth powers of the 
coordinates will be included in the potential 
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function. In addition, expressions will be found 
for tne true mechanical frequencies of the mole­
cule for infinitesimal amplitudes of vibration. 

A brief outline of the method employed may 
now be given. First, the classical normal co­
ordinates will be found, which, for infinitesimal 
amplitudes of vibration, reduce the kinetic and 
potential energies to sums of squares. The wave 
equation will then be written in terms of three 
coordinates -having a simple significance iu the 
molecule. The potential energy must, however, 
be expressed in terms of coordinates giving 
displacements from the equilibrium configura-

tion, and a transformation to these displacement 
coordinates must be made. The normal coordi­
nates will next be introduced and the Hamil­
tonian separated into three parts. The first of 
these will be solved rigorously, and the other 
two applied as perturbations. 

This leads to the desired energy expression 
and to expressions for the mechanical frequencies 
of the molecule. The known spectrum of water 
vapor will then be used to evaluate certain of 
the constants of this molecule. Finally, a pre­
diction will be made of the spectrum of the 
symmetrically substituted heavy water. 

CLASSICAL TREATMENT 

The kinetic energy expression for the nonlinear triatomic molecule has been given by Cross and 
Van Vleck; 3 and is, for the present case of a symmetric molecule, 

T = ½(µ1 -Aµlr22 sin2 a)r12+½(µ1 -Aµlr12 sin2 a)i'22 +½Ar12rl(µ12- µ22 cos2 a)a2 

+ ( - µ2 cos a+Aµ22r1r2 sin2 a)r1r2+Aµ2r1r2 sin a(µ1r1 - µ2r2 cos a)i'ia 

+ Aµ2r1r2 sin a(µ1r2- µ2r1 cos a)r2a, 

µ1 =m(M +m) / (M +2m), 

Here r1 and r2 represent the 0- H distances, a is the angle between these two bonds, and m and M 
are, respectively, the masses of H and of 0. For the present the potential energy expression may be 
taken to include all terms quadratic in the coordinates, and may be written 

V 0 = ½a ( (t.r1)2+ (M2)2) +½b(t.a)2+cM1Lir2+dt.a(Lir1 +M2). 

Displacement coordinates may now be substituted for the above r1, r2 and a, as follows 

r1=R+p, 

where R and {3 are the equilibrium values. 

3 P. C. Cross and J. H. Van Vleck, J. Chem. Phys. 1, 350 (1933). 
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If, in the coefficients of the dotted terms in T, the displacements 

in the coordinates may be considered neglibible compared with the equil­

ibrium values, T takes the following form: 

The coefficients B, C, D, and E are given by the following expressions: 

fl ~ J, ' l. 

B = /'1 - /1i R ~ 13 
C ~ 'll R~ (?, 1/'1. ~ /3) 

/) :; fl /I/ R. i j:y(fa } -/ u 1-~ fa 
£ - Yi R?'l~ P 

In these displacement coordinates, the potential energy takes the fonn 

The customary norme.l coordinate derivation of the .fumdamenta.l frequencies 

of a. vibrating system may now be carried out. The procedure is first 

to apply the Lagrangian differerential equation of moti on, 

cd 
cit 

to the above expressions for T and V. This gives three equations containing 

the coordinates and their second derivatives with respect to the time. 

Next there is assumed a periodic solution in which the dependence of 

each coordi•4te upon the time is given by an expression of the forrn 
iAt 

q = A e • When this substitution is made the following set of 
q 



equations is obtained: 

Rf(a- )1B)+fl~(<--).'-O) + fl<f(d-)'E) -= O 

A (c- ).,.D) -f A(j"Co.-).'8) + R<P(cl-)'-£):: o 
f 

A (d-) 1 E) +f!~(cJ- )'E)-1-fl<f)(iJ-AlC) == O 
,P 

4 

The condition that this set of linear homogeneous equations in the 

amplitudes, A , shall have a solution is , of course, that the deterrrd.nant • q 

of the coefficients shall vanish . The solution of this third order 
l 

determinant gives th.re.ft values of .A. . The ).. 's are related to the 

fundamental vibration frequencies of the system by the expression 

ll::L17T'- ,.. 1~ i A -r '-'V • The /\. 'sin terms of the fundamental constants of 

the molecule are given be l ow. 

A12 = 41r2wi2 = (µ1 - µ2 cos (3) (a -c) / (µi2- µ22), 

}..22, 3 =471'2w2
2, 3 =R-2(µ 1

2 -µl) - 1 {b(µ 1-µ 2 cos f3)+½R2(µ1+µ2 cos f3)(a+c)-2dRµ2 sin (3} 

±R- 2(µi2-µ 2
2) - 1[ { b(µ1 - µ2 cos (3) +½R2(µ 1 +µ2 cos f3)(a+c) -2dRµ2 sin (3} 2 

- 2R2(µi2-µ 2
2) { b(a+c) - 2d2) ] 4. 

}..2
2 is taken with the positive sign. 

The general solution for each coordinate of the above set of 

differential equations will be a linear combination of the three separate 

solutions , i . e. of the form 
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The amplitude ratios /lp, 
fief. 

, etc. can be calculated ffom the initial 

set of linear equations by substituting the values for ).. , , ).i ., )__ 
1 

• 

Using these ratios we geh 

P = fl, e, l ),t + R"l. ei)..1.t 

rs- = -R, e.i. A.l + fl2. e. i.)....,t 

We have here three equations involving the three f requencies., .A, , )"l. 

and AJ so we may eliminate them, two at a time., and find those 

combinations of the original c oordiaa.tes which involve just one frequency. 

These combinations a.re., by definition, the normal oo ordinates of the 

system and are those substitution that reduce T and V to sums of squares. 

f , o, and <[> in terms of the normal coordinates., Yp y2 ., y 3 

are as follows: 

P = ~(+di-. +<J3 a-=--~, +ta+ ~3 

1.. ' 

_ - J d + /\,_ /t.,JV:r¼ j3 ~ 
f /4 - Y2 A~ R. \v, 1/1 '-l<Jof) a 

;:;_ ' 

+ -Jot + ) 1 Rf!"l/),(Mp 

J- y.,;i_; R.."-(!, 1/4 ,_ /fl 13) V 3 
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6. 

The assumption made above of constant coefficients in T introduces a certain amount of error, 
and it is desired to show here how this uncertainty may be considerably reduced, and a closer ap­
proximation obtained. 

We may write the wave equation for the system under consideration in terms of the original 
coordinates, r1, r2 and a, following the method of Podolsky. 4 This gives: 

A af A af 
+ -(µ12rl- 2µ1µ2r1r2 cos a+ µ22r 12)-+-(µ12r12 - 2µ1µ2r1r2 cos a+ µlrl) -

r1 ar1 r2 ar2 

87!'2(µ12 _ µ22) 
+----(W- V)if;=0. 

h2 

If, as before, we substitute in this expression the equilibrium positions plus the displacement 
coordinates, we obtain expressions involving (R+ p)- 1, sin (~+ ip), etc. Although a rigorous treatment 
of this wave equation is impossible, a sufficiently close approximation to the true solution may 
probably be obtained by expanding these expressions in powers of the displacement coordinates, 
and neglecting all powers higher than the second. The justification of this procedure is that, at 
least for moderately small values of the vibrational quantum nurp.bers, these coordinates are small 
in comparison with the equilibrium distances. The expressions for the normal coordinates obtained 
above may now be substituted, and another transformation made to remove multiplying constants, 
after which the wave equation takes the form: 

af aif; aif; 871'2 

+c1x1-+c2x2-+c3X3-+-(W- V)if; = 0, 
ax1 ax2 ax3 h2 

where the a's, b's, and e's are constants involving the equilibrium positions, the binding constants, 
and thew's. Analytical expressions for these constants will not be given, since they are quite compli­
cated and their contribution to the energy in the present case, is small. All other powers of the x's 
are rejected in the coefficients, and those given are the only ones which have nonvanishing diagonals 
in the Hermitian matrix. The advantage of the normal coordinate substitution is that this reduces 
to second order magnitude the contributions of terms such as a2y;/ ax1ax2 which cannot be treated 
rigorously and must be applied as pertu.rbations. 

We will now assume that the Hamiltonian, I-I, may be expanded in a power series in 'Y, a parameter 
of smallness. 

I-I =I-I°+-yH' +-y2H" 
corresponding to the expansion 

W = W"+-y W' +-y2W''. 

In J-J0 we will include V0 and those terms from the wave equation which have constant coefficients. 
I-I' contains all possible terms of V cubic in the coordinates, and I-I" contains, in addition to the 

• B. Podolsky, Phys. Rev. 32, 812 (1928). 
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quartic terms of V, the terms from the wave equation containing the coordinates explicitly. If 
we assume the potential function to possess the same symmetry as the molecule it follows that X1, 
being an odd function of the r's, may appear in V only to even powers. The terms in the expansion 
of H may now be written: 

The zeroth order equation separates, and may be solved at once, leading to the energy expression 

in which the V's are the vibration quantum numbers. The y;'s are then the regular Hermite functions 
of argument x;. If W' is the first order perturbation energy, we have the expression 

Since the method of obtaini'ng the necessary matrix elements of the Hermite functions is well known, 
it need not be gone into here and only the results will be given. 

For the total energy of the system we obtain an expression of the form 

where the coefficients X;; are given by the following equations: 

h { w1 a12 w1 a13 w2 a21 w2 a23 w3 a31 w3 a32 a22 a33 • 
Xo=½(w1+w2+w 3)+-- - - + --+--+--+--+--- - --

. l67r2 w2 2 W3 2 w1 2 W 3 2 w1 2 w2 2 4 4 

llf2+i2+J2+6Ji+6jj+2ij g2 i2 j2 k2 

8w3 4(2w1+w2) 4(2w1+w3) 4(2w2+w3) 4(2w3+w2)' 

I, 
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Jg2 g2 Ji2 i2 

8(2wt+w2) 8(2wt-w2) 8(2wt+wa) 8(2wt-wa)' 

h {wt w2 w2 wa } 15e2+6eg+6ek j2+3fj+ij 
X2=w2+-- -a12+-a2t+-a2a + -aa2 +a22 +½(3m+p+s)-------

16-1r2 W2 Wt W3 W2 4w2 2w3 

g2 g2 3j2 j2 k2 k2 

4(2wt+w2) 4(2wt-w2) 8(2w2+ws) 8(2w2-wa) 4(2wa+w2) 4(2wa-w2)' 

h { Wt w2 wa w3 } 15f2+6Ji+6J j k2+3ek+gk 
X a= wa+-- -ata+-a23+-aat +-aa2+aaa +½(3n+q+s) -------

1671"2 
W3 W3 Wt W2 4wa 2w2 

i2 i2 j2 

4(2wt - wa) 4(2w2+wa) 

3 g2 ~ t 
Xn=-l---------+ 

2 2w2 2wa 8(2wt+w2) 

h 3 15e2 j2 

g2 

8(2wt - w2) 

j2 

i2 

8(2wt +wa) 

j2 
X22 =--a22+---m-----

1671"2 2 4w2 2wa 
----+----, 
8(2w2+wa) 8(2w2-w3) 

h 3 15j2 k2 k2 k2 
Xaa=--aaa+-n----------+----, 

1671"2 2 4wa 2w2 8(2wa+w2) 8(2wa-w2) 

g2 

i2 

+ 

g2 

i2 

j2 

4(2w2-wa) 

i2 

' 8(2wt - wa) 

2(2wt - wa) 

3k2 

8(2wa+w2) 

j2 k2 k2 

k2 

8(2wa-w2) 

2(2w2-wa) 2(2wa+w2) 2(2wa-w2) 

, 

In spite of the app1.rent complexity of these expressions, they are readily solved for the w's, 
leading to the result 

These equations for the w's in terms of experimentally determinable quantities are perhaps the most 
important result of this analysis, since it is from these that the zeroth order binding constants in 
the potential energy expression are evaluated, and it is about these constants that the greatest 
interest centers. 

APPLICATION TO THE SPECTRUM OF 

WATER VAPOR 

We have now obtained an expression which 
should fit the known vibrational energy levels 
of triatomic molecules to a fair degree of accu-

racy. We have also obtained expressions giving 
the true mechanical frequencies of the molecule 
in terms of the coefficients in this energy ex­
pression. It is desirable to check the validity of 
the energy formula over as wide a range as 
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possible in order to determine its general useful­
ness and the degree of reliability to be attached 
to the results. For this purpose the spectrum 
of water vapor is at present most favorable. In 
the case of water seventeen infrared and visible 
vibration-rotation bands are known, and have 
been measured with great care. In addition the 
recent work of R. Mecke, 5 Baumann and Mecke, 6 

and Freudenberg and Mecke7 on the rotational 
analysis of these bands should give the positions 
of the band centers with considerable accuracy. 

The figures for the band centers have been 
taken from Mecke's paper, and nine of the best 
known bands, distributed throughout the spec­
trum, have been selected to determine the 
coefficients X;;. Xo cannot, of course, be deter­
mined in this way, since the given band positions 
are differences between the given energy level 
and the ground level. 

In Table I are given the positions of the bands, 

TABLE I. Positions of vibrational bands. 

Desig- Desig-
Position (c rn- 1) nation Position (crn- 1) nation 

V, V2 Va obs. calc. Vi V2 V, obs. calc. 

0 0 1 1595.5 1595.5* 1 2 1 12151.22 12149.8 
0 0 2 3152.0 3152.0* 3 0 1 12565.01 12565.0* 
0 1 0 (3600) 3604.6 1 3 0 13830.92 13830.8* 
1 0 0 3756.5 3756.5 * 3 1 0 14318.77 14318.8* 
1 0 1 5332.3 5331.0 1 3 1 15347.91 15348.6 
1 1 0 7253.0 7255.0 3 1 1 15832.47 15832.4* 
1 1 1 8807.05 8810.6 1 3 2 16821.61 16827.4 
1 2 0 10613.12 10613.1* 1 4 0 16899.01 16908.1 
3 0 0 11032.36 11032.5* 3 2 0 17495.48 17464.7 

* Indicates the band centers used in evaluating the constants. 

observed and calculated, together with the 
designation of each in terms of the vibrational 
quantum numbers. 

The fundamental (0, 1, 0) is not observed due 
to heavy overlying of that region by neighboring 
stronger bands, but is predicted at about 3600 
cm- 1 from combination relations. The value 
given above of 3604.6 cm- 1 confirms this, and 
gives a more reliable figure for the actual 
frequency. 

The check here is satisfactory, within experi­
mental error for all cases but the last two. 
There is considerable doubt as to the complete 

• R . Mecke, Zeits. f. Physik 81, 313 (1933). 
6 Baurnann and Mecke, Zeits. f. Physik 81, 445 (1933). 
7 Freudenberg and Mecke, Zeits. f. Physik 81,465 (1933). 

correctness of the rotational analysis of these 
two bands, which appear very weakly in the 
solar spectrum. This agreement between the 
observed and calculated values of the band 
centers justifies the use of the coefficients X;; in 
further calculation. The values of the X's which 
have been calculated are: 

X1=3796.0 cm-1, X 11 = -39.S cm-1, 
X2=3674.8 cm-1, X22= -70.2 cm- 1, 
Xa=1615.0 cm- 1, Xa3 = -19.S cm-1, 

X12= -106.1 cm- 1, 
Xrn= -21.0 cm-1, 
X2a = -18.9 cm-1. 

If these quantities are substituted in the 
formulae of the previous section, we obtain for 
thew's 

w1 =3899.0 cm- 1, w2=3807.S cm-1, 
wa = 1654.S cm- 1. 

We are now in a position to calculate the 
zeroth order force constants in the potential 
function, from the normal coordinate expressions 
given earlier. However, we have only three 
relations from which to calculate the four 
constants therein assumed. The reasonable as­
sumption may therefore be made that the con­
stant d is small in comparison with a, b and c, 
and has, in this case, been taken equal to zero. 
The values for the equilibrium positions of the 
molecule have been obtained from Freudenberg 
and Mecke's7 extrapolation to the vibrationless 
state, and were 

/3=104° 36' and R=0.9558A. 

The equations may now be solved and we obtain 

a=8.233Xl05 dynes/ cm, 
b/ 2R2 = 0.376 X 105 dynes/ cm, 

c= -0.0757 X l05 dynes/ cm. 

bis divided by 2R2 to give dimensional similarity. 
The above values of the force constants are 

in fair agreement with those obtained by Van 
Vleck and Cross8 by an entirely different, and 
somewhat less accurate method. It is also of 
interest to note that the constants a and b may 
be obtained with fair accuracy from the relation 

8 ] . H. Van Vleck and P. C. Cross, J. Chem. Phys, 1,357 
(1933). 
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proposed by Badger9 between force constant and 
internuclear distance. 

Three of the nine relations given by the X's 
have now been used, and it should be possible 
to calculate six higher order constants in the 
potential expression. However, it seems scarcely 
worth while to do this, since the additional 
information concerning the nature of the function 
would be small. It seems desirable to leave this 
until the nature of the interaction between 
rotation and vibration has been studied. 

PREDICTION OF THE SPECTRUM OF HEAVY WATER 

It may be assumed for the present that the 
equilibrium positions and force constants of the 
water molecule are unchanged by the introduc­
tion of the hydrogen · isotope of mass two. If 
this assumption be made we may calculate the 
mechanical frequencies and convergence factors 
of the symmetrical heavy water. Putting the 
changed masses in the normal coordinate ex­
pressions for the w's given above, we find the 
following values 

w1=2865.4 cm-1, w2=2764.7 cm-1, 

ws = 1209. 7 cm-1. 

be noticed that due to the substitutions previ­
ously made the coefficients e-k of H' must be 
multiplied by terms of the order of wl before 
the real force constants are obtained. These 
assumptions, then, make the factors X11, .X22, etc., 
but not Xi, X2, Xs, homogeneous functions of the 
order w2. Using the average value of the ratio of 
w's given above, we see that we may expect 
these X's for ordinary water to be approximately 
(1.37)2 or 1. 78 times the same constants for 
heavy water. From these six values, and the 
values of the w's, X1, X2 and Xs may be readily 
calculated. This gives 

X1 = 2810 cm-1, Xu= - 21.2 cm-1, 

X2=2694 "cm-1, X22= -37.7 cm-1, 
Xs= 1188 cm-1, X 3s= -10.5 cm-1, 

X12= -56.9 cm-1, 

Xis= -11.3 cm-1, 

X2a= -10.1 cm-1. 

The positions of the three fundamentals so 
calculated are 2790, 2655 and 1180 cm-1, re­
spectively. These figures fit the band observed 
by Casselman10 at 4.2µ very closely as being the 
first overtone of va. 

The ratios of these three frequencies to the / 0. 
corresponding frequencies for ordinary water are 
rather close to 1.37. Making use of this fact, it is 
possible to calculate approximate values for the 

RL. ~' 

P~ R.w-. ~, ;;.;;.1 (lr11) 

Xii. It will be assumed that the force constants 
l-s appearing in H" are small compared with the 
higher order constants, and that the contribu-
tions of the terms from the kinetic energy 
perturbation are negligible. Further, it should 

9 R. M. Badger, J. Chem. Phys. 2, 128 (1934). 



Bartholom; and Clusius
11 

have investigated the infrared spectrum of 

D2 0 vapor in the region 2 - 10 ).A and found the two. fundamentals ~ 

and ~ to lie at 2775 and 1185 cm-1 with a probable error of 5 cm-l 

Rank, Larsen, and Bordner12 found one line in the Raman spectrum of 

D2 0 vapor at 2666 which is almost undoubtedly~ . Considering the 

crudeness of the above prediction the agreement betvreen t he theoretical 

and observed fre quencies is quite satisfactory . 

In conclusion a few remar ks should be made concerning the Raman 

13 spectrum of H2 0. This spectrum has been carefully studied by Bender , 

12 by Rank., Larsen, and Bordner , and by others. It seems quite certain 

-1 that H2 0 vapor possesses just one line at about 3655 cm , although 

all three frequencies are permitted in the Raman effect. It vrould 

seem most likely that this were the fre quency ~ , but it has been shovm 

above from the combination relations of i nfrared bands that 1 lies e.t 

1 -1 3604.6 cm-. Furthermore, a frequency of 3655 cm cannot be made to 

fit in with the infrared vibrat ion, analysis. As yet no satisfactory 

explanation of this state of a.ffairs has been found although the fact 

that the fundamental fre quency of the OH molecule lies a.t 3652 cm-l 

may be significant. Some support of the 3605 cm-l interpretation is 

given by the good agreement between the value of ~ for D2 0 calculated 

from this fre quency and the observed Ra.man lines of this molecule. 

11. Bartholome and Clusius, Naturwiss. 22, 420 (19~4) 
12. Rank, Larsen, and Bordner, J.Chem. Pli'ys. 2, 464 (19)4) 
13. Bender, D., Phys. Rev. fl, 252 (19,5) - • 

II. 



II .An .Analysis of the Vibrational Spectrum of Ethylene 



The first investigation of the infrared absorption spectrum 

1 of ethylene gas was made by Coblentz in 1905. Using a prism spec-

13. 

trometer he was able to locate a number of absorption maxima but did not 

2 resolve any of the fine structure. In 1928, Levin and Meyer reinves-

tigated the spectrum of this molecule, using higher dispersion instru­

ments and ta.lcing greater care to obtain pure gas and to exclude atmos­

pheric effects. In the region 2 - 15 ~ they found a total of ten 

absorption bands, most of which were at least indicated on Coblentz
1 

prism curve. 

The spectrum of ethylene in the photographic region of the 

3 infrared has been investigated by Badger and Binder, who found only 

one band, at 8720 A. 

The most recent work on the Raman spectrum of this molecule 

was carried out by Dickinson, Dillon, and Rassetti4. They used the gas 

at high pressure and mercury resonance excitation and found a total of 

six lines. 

Any attempt to obtain a complete vibrational analysis of 

ethylene, for force conste.nt evaluation, showed, however, that there 

were a good many gaps and inconsistencies in the experimental data. 

There has been made, then, in the present work, a complete reinvesti­

gation of the photographic infrared and Raman spectra. The results of 

this work lead to a complete and quite satisfactory determination of 

all the fundamente.l frequencies of vibration of the ethylene molecule. 



Ten new absorption bands have been found in the photographic 

infrared. Experiments using liquid ethylene have shown the presence of 

three new Raman lines., and have failed to show two of those reported by 

Dickinson, Dillon, and Rassetti4. 

EXPERIMENTAL 

All infrared absorption experiments were done with the stain­

less stee l absorption tube and twenty-one foot grating spectrograph re­

cently constructed in this laboratory. The tube is approximately seven­

eighths inches in diameter and has a maximwn length of seventy feet. 

The full length was used in investigations of all regions of the spectrum 

except that beyond 10,000 A. For this region, due to the low sensitivity 

of a.11 available plates, it was necessary to reduce the pa.th length to 

twenty-eight feet. Pressures of gas used in the tube ranged from one to 

seven atmospheres and the entire spectral region investigated lay between 

6,000 A and 12,000 A. Eastman spectroscopic plates were used for wave 

lengths below 10,300 A, but for longer wave lengths their sensitivity 

was too low, even with the reduced tube length. The Eastman plates were 

always hypersensitized before using by treating for one mi nute with a 

4o anunonia. solution at 10 °C. One series of measurements was ma.de in the 

region 10,000 A - 12,000 A using special Agfa infra.red plates very 

kindly supplied by Dr. T.J. Dunham, Jr. of the Mt. Wilson Observatory. 

The ethylene used in these experiments was a commercial product, 

supplied for anaesthetic purposes , and guaranteed by the manufacturers 

to be better than 99% pure. 



Raman scattering experiments were made on gaseous ethylene 

using ). = 2537 A excitation, but under these conditions only the 

three strong lines reported by Dickinson, Dillon, and Rassetti were 

found. Experiments were then made with the liquid in the hope of obtaining 

a larger number of shifts. 'l'wo types of experiment were ma.de, one using 

glass apparatus and ).. = 4358 A excit ation, and the other with quartz 

and ,A.. = 2537A. In each case liquid ethylene wa.s confined in a tube 

about 15 mm. in diameter and 20 cm. long. '!'his was then immersed in a 

Dewar flask filled with a mixture of alcohol and solid carbon dioxide. 

At this temperature, -78°c, the vapor pressure of ethylene is a.bout 

3. 5 atmospheres. The De,var was silvered on one side only, and the light 

from a mercury arc lamp was passed through the clear side. The scattered 

light was then focussed by means of a prism and lens on the slit of a 

prism spectrograph. For the glass apparatus, the dispersion of the 

spectrograph was about 50 A per mm., and for the quartz, 10 A per mm. 

Also, in the case of the visible excitation, an aqueous solution of 

quinine and CoS04 was placed between the lamp and the Dewar to serve as 

a filter, thereby restricting the exciting light as closely as possible 

to the line 4358 A. A total of seven lines was observed. Three quite 

strong ones were measured with frequency shifts of 3009, 1619, and 1341 cm-1 . 

Dickinson, Dillon, and Rassetti measured these same lines in the gas at 

3019 3 1623 3 and 1342.4 cm-1, so it may be seen that. for the low . , . , ~ 

frequency lines particularly, the shift in passing from the gas to the 

liquid is not large. iiowever, gas values will be used where~er possible. 

In addition to the three strong lines there were four weak ones measured 



at 3069, 2880, 1654, and 950 cm-1. The last one in particular was 

extremely weak and diffuse, and in consequence the measurement may be 

in error by as much as 10 cm-1• The line at 2880 cm-1 was observed by 

the previous investigators and was given by them as somewhat weaker than 

a pair, also observed by them, at 3240 and 3272 cm-1 . Since in these 

experiments the line at 2880 showed up quite definitely but no trace was 

obtained of the other two, they may probably be disregarded. 

ASSIGNMENT OF FREQUENCJES 

In Fig. I are shovm diagrams of the twelve fundamental modes 

5 of vibration of ethylene as given by R. Mecke • The fir3t pair of letters 

following each mode gives its symmetry to rotations of 1i about the 

axes of greatest and least moment of inertia respectively. Thus mode 4 

is antisymmetrica.l to a rotation of 180° about the axis of greatest 

moment of inertia (the axis perpendicular to the plane of the figure), 

but symmetrical to the same rotation about the axis of lea.st moment of' 

inertia (the figure axis). Of the letters in brackets, R indicates that 

the fundamental is active in the Raman spectrum, I that it is active in 

the infrared, and In that it is completely inactive. Since the molecule 

possesses a center of symmetry, no modes may be active in both Raman and 

infrared spectra. Linear combinations must be made of the bracketed modes 

to obtain the true vibration forms. 

From the figure it may be seen that, on the basis of symmetry, 

there are three types of fundamental active in the infrared, and each 

of these is typified by its distinctive band envelope. The type AS is 
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Figure I 

The Funde.mental Modes of Vibration of Ethylene 

Y, SS (R) SA (R) 

SS (R) SA (R) 

SS (R) AA (I) 

AA (I) 

+ 
AS (I) 

+ 

+ 
AA (R) 

SS (In) 



recognized by its sharp central maximum, or Q branch. The type AA. 

has no central maximum and appears., under low resolution., as a widely 

spaced doublet. The Type SA can have no real Q branch., but may appear to 

have a small one due to piling up of lines near the center of the band. 

These two last types are distinguished., under low resolution, by a series 

of widely spaced maxima.. 

The three modes ~ , ~ , ~ a.re of the completely symmetrical 

type., and should appear very strongly in the Raman effect, so to these 

may be assigned at once the three strong observed Raman lines. The 

assi gnment of frequencies to the remainder of the modes is not at all 

such a clear cut case. Table I shows what seems a.t pre sent to be the 

most reasonable assignment of frequencies to the fundamental modes and 

to the combinations and overtones appearing in the infrared a.nd Rarnan 

spectra. 

In assigning the infrared frequencies the following principles 

have been used. First, if two or more modes are excited simultaneously 

the syrnmetry of the combination level is the product of the symmetries 

of the individual modes. The multiplication of symmetries obeys the 

s~~e law as the multiplication of signs: S x S = S., Ax A = S., 

s x A = A. The type of the band resulting from a transition to this 

combination level is that associated with the symmetry of the level. 

Thus., if a mode of symmetry M combines with one of symmetry SA the re­

sultant level is of symmetry AS and the band resulting from a combination 

of this with the ground level is of the Q branch type. It follows from 

this that any combination leading to the symmetry SS cannot appear in 



the infrared. The second principle is that no two inactive fundamentals 

can combine to give an infrared active band. 

In Table I the columns headed v1 , V2 , etc. give the quantum 

numbers of the upper level. The lower level is in all cases the ground 

level. 1'he column headed "Type" tells whether the band possesses a Q 

branch (Q) or has a doublet structure (D). 

The infra.red band at 949.7 cm-1 is almost without a doubt not 

a single band but a superposition of two fundamentals. In fact, from the 

,- 2 
absorption curve published by Levin and meyer, the maxima belonging to 

I 'i. 

-1 each may be picked out, and from this the spacing seems to be abcmt. 10 cm . 

It is interesting that three fundamentals seem to fall in the re gion of 

950 cm-1 , and this fact leads to some ambiguity in the assignments. It 

is in some cases impossible to tell whether a given band is an harmonic 

containing ~ , ){ or ~
0 

• The frequency )1r has not yet appeared 

in the spectrum although it should be active in the Ra.man effect. How-

ever, the ini'rared band at 2047 cm-1 is abnost without a doubt a com­

bination of this with one of the 950 cm-1 frequencies, thus fixing ~ 

-1 at about 1100 cm . ))j'~ cannot appear alone in either the infrared 

= 6 or Raman spectra, but ~ucken and Parts, from specific heat data, have 

estimated it to lie in the region 750 - 800 cm-1. If the weak absorption 

1 reported by Coblentz at 1724 cm-l is real, it could be a combination 

~r -l 1 t· of r,~ vrith one of the 950 cm fundamentals, thereby oca ing 

at about 775 cm-1 , in good agreement with Eucken and Parts. other pos­

sibilities are, however, that the weak Raman line observed in the present 

work at 1654 cm-l is either the first overtone of this frequency, which 



rJO. 

TABLE I 

Assignment of Transition Frequencies 

Frequency( cm-1 ) Type Vl v2 v3 v4 v5 V v7 v8 v9 vlO vll vl2 6 

Infra.red: 

950 D 0 0 0 0 0 0 0 0 1 0 0 0 
940 D 0 0 0 0 0 0 0 0 0 1 0 0 

1443 .9 Q 0 0 0 0 1 0 0 0 0 0 0 0 
1724 ? 0 0 0 0 0 0 0 0 0 1 0 1 
1889.7 Q 0 0 0 0 0 0 0 0 1 1 0 0 
2047.0 Q 0 0 0 0 0 0 0 0 0 1 1 0 
2988. 2 Q 0 0 0 1 0 0 0 0 0 0 0 0 
3107.4 D 0 0 0 0 0 0 0 1 0 0 0 0 
4207.9 D 0 0 1 0 0 0 0 0 3 0 0 0 
4324.3 D 0 0 0 0 1 0 1 0 2 0 0 0 
4515.5 D 0 0 0 0 1 1 0 0 0 0 0 0 
4729.0 D 1 0 0 0 0 0 0 1 0 0 0 0 
8758 * Q 0 0 0 3 0 0 0 0 0 0 0 0 
8982 * Q, 0 0 0 1 0 0 0 2 0 0 0 0 
9134 * D 0 0 0 0 0 0 0 3 0 0 0 0 
9776 * Q, 0 0 0 2 0 0 1 1 0 0 0 0 

10119 * D 0 0 0 1 0 0 0 2 0 0 1 0 
10286 * Q 0 0 1 1 0 0 0 2 0 0 0 0 
10366 * Q 1 0 0 3 0 0 0 0 0 0 0 0 
11465 D 1 0 0 3 0 0 0 0 1 0 0 0 
11724 * Q, 0 1 0 3 0 0 0 0 0 0 0 0 
11780 * D 0 0 0 3 0 1 0 0 0 0 0 0 
14100 * ? 0 0 0 5 0 0 0 0 0 0 0 0 

Ra.man: 

950 * 0 0 0 0 0 0 1 0 0 0 0 0 
1342.4 0 0 1 0 0 0 0 0 0 0 0 0 
1623.3 1 0 0 0 0 0 0 0 0 0 0 0 
1654 * 0 0 0 0 0 0 0 0 0 0 0 2 
2880;1 0 0 0 0 0 0 1 0 2 0 0 0 
3019.3 0 1 0 0 0 0 0 0 0 0 0 0 
3069 * 0 0 0 0 0 1 0 0 0 0 0 0 

Frequencies marked* are reported for the first time in this pa.per. 
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would be permitted, or a combination of it with a 950 cm-1 band. This 

would give to Y,~ the values 825 or 700 cm-1 • Considering the nature of 

the specific heat estimation either one of these would be in about as 

good agreement with experiment as the above value of 775 cm-1 . It is 

at present impossible to make a unique choice and to state definitely 

the value of the ~ fundamental. However, the Ra.man line is certainly 

real, and there is considerable doubt as to the infrared band. Also the 

overtone would, in this case, be more likely to appear than the combination, 

thus giving some wei ght to the 825 cm-l value. 

In concluding this section, it might be to the point to give 

a table showing the frequencies at present assigned to all the fundrunental 

vibrational modes of the ethylene molecule. 

Table II 

vibration frequency vibration frequency 

Y, 1623.3 Yi 950 

Yi 3019.3 ~ 3107.4 

Yj 1342.4 ~ 950 

--;-., 2988 . 2 "'Vi'o 940 

Y's- 1443.9 "Yi, HOO 

~ 3069 °Yicl 825 



EVALUATION OF THE FORCE CONSTANTS 

The most important results to be obtained from such an evalu­

ation of the fundamental vibration frequencies of a molecule as has been 

made in the previous section, are the values of the force constants of 

the bonds holding the atoms together. These force constants, together 

with such constants for the interaction forces between bonds as may be 

obtained are of interest for the deeper insight they give in to the 

nature of intra-molecular forces. For a really accurate evaluation of 

bond force constants the mechanical frequencies for infinitessimal am­

plitudes of vibration should be used, but for most molecules, particu­

larly the more complicated ones, the data are insufficient to bbtain 

these, so the observed frequencies must be used. It is probable, though, 

that for most types of vibration the deviations will not be so large 

as to affect the calculated force constants greatly. 

The expressions relating the fundamental frequencies with the 

bond force conta.nts and other constants of the etpylene molecule have 

been derived by Dr. E.B. Wilson, Jr. 

Figure II shows the assumed structure of the ethylene molecule. 

1 • = carbon 

• = hydrogen 
C 

_J_ __ _ 

-----d---



A somewhat simplified potential function containing eight ccmstants 

may now be written down as follows: 

l V ~ K (D. R)"° + q/Uio. sif +Ha._ 2. ( c,,oc,f + J, a~ 2-?/-
+ J_ L [ 6S, .LIS~+ 6S, LIS~ 1 + )__ e ct-[ L,oc, LloC.,_ +f'ioc; bx:~ l 
+ J.11 ad. [ 6 a,£le(3 +.6oc~_LlCC't} + l n 0-d-{f\µ3 +)Ai /'If] 

Here b. R refers to stretch of the C-C bond, 6Si to stretch of the 

C-H. bond, 
l. 

.6 oCi to bending of the C-Hi bond in the plane, and ~L 

to bending of the C-Hi bond out of the plane. 

The secular determinant in terms of the constants and of the 

frequency parameter A factors into sub-determinants corresponding t o 

the bracketed modes of Fig. I. These factors may now be written down 

for each of the sets of modes. The following abbreviations have been 

adopted: 

m = mass of hydrogen 

(:s = cos _oc 

m ~ 
N = 1 + 2 My 

F = I + i*(a.~111f-
Q:: I + d---~ f3~ 

Y,J~J~ 

K -t-f '\ <{ + L) + Y-__ ( H +0-t/}.. )- ½ fl\)_ 

-p(1+L) 

y{H48-1f\) 

M - mass of carbon 

Y = sin OC. 

E = 2 !!!, a + b(? y 
M b I 

j (i+L) Y( H-1 0 -ti\) 

(q+L)-n,1,A_ 0 

0 ( H-10-1-/1 )-Wt), 

=0 



~ ){ 

I = ~~ [ Qq/ +N /1'-r KQl+!V!I')~ ~f ll
1

(NQ-p•t] 

I I 

Cf; == <iJ + L H -= H 1 0 -ll 

~,}? 

f ==-:}_; [ Nf +Ff/''+ ~ri11+Fll"t-11 11fl 11
{NF-["l] 

~II~ 1;-L f-/
11

= H-0-11 

~ Yq 
I 

)__ = -/ m [ N({ + Q H'"± g N{'i Q ll"f- tt q//l'"(NQ-P)t] 

q/':: 1J- L H Ill::: H- (J + A 

'Yto 



by Badger 7 

If we assume the dimensions of the ethylene molecule obtained 
;H 

to be correct, viz: C-H = 1.04 A, C-C = 1.37 A, and c 
\H 

angle - 126°, we a.re in a position to compute values for these constants. 

It is to be noted that the five constants q, L, H, 0 and 11 occur in 

all the expressions for the first nine frequencies so there will be 

ample opportunity for checks on their values. 

Due to approximations in choosing the potential function, the 

cubic factor Yi,){,~ has no real solutions for the force constants. 

However, by a. variation method, it has been possible to find the values 

of the force constants which give frequency values fitting most closely 

to the observed values. These a.re probably quite close to the true 

values. In Table III there a.re given the values of the force constants 

or force constant combinations occurring in the expressions for each 

frequency set. 

TABLE III 

5 
,~ --1- 1:, K = 8. 2 x 10 dynes/cm ,,,,#.., 3 

H+0+L1 = 1.18 X 10
5 11 

5 
q + L = 5.09 x 10 dynes/cm 

ii,/; q + L = 5.08 X 105 11 H+0-11 = 1.09 X 105 11 

10
5 11 H-&-A 

5 
11 ){,/; q - L = 4.88 X 0 0 34 X 10 

Yi, Yq q - L = 5.02 X 10
5 11 H-0tA = 0.52 X 10 

5 11 

Yio J..-f fl. 5 
11 0 0 45 X 10 

I,; )i-il 5 
= 0 0 37 X 10 11 



It can be seen that the values of q +Land of q - L calculated from 

two different frequency sets check satisfactorily. Also, if the values 

of fl, 0, a~d i\. be determined from the second., third., and fourth 

sets, the value of H+0+i\. so obtained is 1.26 x 106 as compared 

with 1.18 obtained above., which is satisfactory when the nature of the 

solution obtained for the cubic factor is considered. 

It is now possible to give a table of the values of all the 

individual force constants used in this work. 

TABLE IV 

K = 8.2 X 10
5 e= 0.38 X 10

5 

q 5.02 A = 0.09 

L 0.01 h 0.41 

H = o.so .n = 0.04 

The interaction constants are all quite small except for the constant 0 . 

The size of this, comparable with the primary constant H., is a result 

of the definition in the potential function. The half angle in the CH2 

bond was used as the coordinate., and hence interactions between the two 

half angles of the same bond appear quite large. A different choice of 

coordinates., one in which the entire angle was used., would lead to a 

much smaller value of the apparent interaction. 
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