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SUM.l\~ARY 

This thesis is a revision and extension of a 

previous work on longitudinal dynamic stability(l). 

In the present work, an attem~t is made to simplify 

the classical stability theory which is f a r too 

complicated and cumbersome to be of practica l use in 

design. 

By employing a non-dimensional set of units, a:i.d 

by making use of a graphical method, the range of dyn­

amic stability for different values of fundamental 

parameters is defined graphically by means of diagrams, 

t he coordinates of which a re conveni ent l y chosen as the 

position of the center of gravity and the s ize of the 

tail of the airplane. The coordinates , combined with 

two characterl stic parameters, completely define t he 

reginns of dynamic longitudinal stabi lity; while the 

diagrams thems elves determine the period a nd the de,mp:ing 

f actor of t h 8 longitudinal oscilJ.ation,thus bringing the 

complicated theory into t he r a.nge of applicability to 

des i gn . 
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INTRODUCTION 

Because of the :tnherent complex.i ty of ih e classj_cal 

stabili.ty t'.heory, 1h e airplane designer has not found it 

practical to apply the theory to actual des ign. Instead, 

he provides for a small amount of static stability, de­

pendirg on the precedence of previous satisfactory designs 

from which certain empirical rules have been developed, for 

satisfactory dynamic characteristics. Such procedure, 

however, does not guarantee proper dynamic stability; in 

fact, undesirable properties in dynamic stability may 

develop in a plane which has the proper static stabilit~. 

Thus, we see that in the process of a new design, it is 

desirable to know the dynamic longi tud:ln al stability char­

acteristics of an al rplane in order to foresee and to avoid 

possible undesirable properties. Before this can be done, 

however, it is necessary to reduce as much as possible the 

complexity of the theory to the extent thct 1 t can be u sed 

practically. 

In this paper, following an idea presented by Mr. S.B. 

Gates (l), an attempt is made to simplify the theory by 

reducing the number of variables thEt appea r, and by applying 

a graphic a l method of representa tion of the stability char­

acteristj_cs. By reference to the ch arts that have been de­

veloped, it i s possible to determi ne immedia tely the dynamic 

stability cha.r acteristic s of an a.rpl ane, knO'.'ri ng its funda­

mental paramet er s . It i s ho:9ed that t he deve l opment of. these 

charts vri l l cont r i but e t o design procedure b_y determining 

the longitudin8. l dynamic stability of an airplane. 
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THEORETICAL ANALYSIS 

From classical aerodynamics< 2: we know that in the 

most general case, the longitudinal stability of an air­

plane is determined by the roots of the que,rtic, 

(1.0) ---

where: 

,,,\-Xt1 -Xw j?CO.Sf%-~ +A'% 

-z t.f ,t\-Zw !J'S/N~ -7;\ -~~ = 0 ' 

-1Y7 
'Cf 

X, Y, Z 

L,M,N 

-Mw AZ-~~ 

are the components of the resultant 
aerodyna..mic forces along the axes -;­
the mass of the al rple.ne 

are the moments of the external f orce s 
about the axes+ the corresponding 
moments of inertia, A,B,C, 

u 0 ,v0 ,w0 are the component s of the resultant 
velocj_t,y in the undisturbed motion. 

(v0 = O) 

::: the upwqrd incJ.ination of the 
longltudina l axis to the horizontal. 

For simplicity, wind axes are used in which the ste,bility 

derivatives Xq and Zq = 0, and u0 = U, w0 = O. 80 becomes 

the angle of climb in the undisturbed motion. 

Since it is very desirable from an analytic standpoint 

to have the stability criteria form airplane expressed 

in non-dimensional form, t he dimensionless system devised 

by Mr. Glauert( 3 ) is introduced. Thi s system is based on 

the fact that an aerodynamic force can be expressed in t he 

form X= -Gf- SC/.z ; from which the force 

derivat ive is of the form, 

or 

X = n?dX 
w C7t,/ 

- ?l~ 6pi7 - - A Xu . 
1177 
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Thus , in. t he ·1evr nota tion, the 9revious cla ssic a l 

deri va tj_ves Xu , Xq, Mu, r1c1 , etc., 9,re re ::7 l a ced by tbe 

dimensionle ss derivative s , ~,xq,mu,mq, etc., definea. 

by the equa tions, 

X q 

A 
M = - mt 1 , where A 

u 1 -
By subs tituting these non-dimensional deriva tives 

into the classical stability equation, j_t, is found thgt, 

al l the parameters which occur are dimensionles s . Apart 

fro m the derivA., tives themselves, the only parameter vrhj_ch 

affects the stability of the plane is 
V n? /4 

~ = ..-/A pS./ 13.08_/ ( For sea level). 

In the dimensionless - sy ci tem, t.h8 unit of time is ,,-J-= ~7 
and the unit of length j_s,,/, taken 8,s the distarne from t".1.e 

center of gravity of the plane to the tail post. From 

this, the unit of velocity becomes-/:!{;, where the 

q_ue,nti ty,,,,,,t/ may be called the " rel:iti ve densi ty 11 of th'.3 

airple.ne sinc e it is propor+,ione,l to the ma ss m d invers ely 

proporti.onal to the cube of t he linear dimensi.ons and the 

density. The quant ity ~ 11
~ exc e \Jtlng the deriva tive 

coeffic i ents, is the only :r,a.rameter which effects the 
d 

stabj_li ty ; and,, proves very useful in concisely summari.zing 

several important para1J1eters vrhich occur in the theory. It 

is the only q_uantity in the dimensionles 2. system i n whicb 

the linear sca19, tb.e 7ving l oading, and the d.enslty enter 

directly. Any v,g,riation in any one of these quantities 

is j_ncluded in the one va riable ,~. 
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I 1 t erms of t h e non-d.imensio ro,l system, neglecting 

the a.eri:atives Zq and xq and using wind. axes, the stabil­

i ty equation (1) can be expressed in the following manner: 

By making use of the equilibrium condition, 
I _z..C 

L = Wcos~ = Z\v Ls, -
from which r-sv C / J" • 0:5/IY 0, = pSiT c;_ {,/r~N(9a 

acos~-=;- -~ -3::: "'7 ~ c7 <) \ m .-e, ' 
J ~ ,2_ 

we have 

,A '-r:z# .X.-w _,,w~ 
..z 

(2.0) 
Zq- ~+Zw ~r~TRN0o-~] o. = 

177(,./ .n'lw ,,/'2+nyJ' 

Equati.on (2 .. 0) can be reduced. to the form, (3.0), i.e., 
• , 4- ,.!J J",2 I 

.;1 -/-~~ -/- c; /J + °✓ -1 +£; =O where the 
' 

(3 .0 ) 

coefficients E1,c1,D1, and E1 are functions of the stability 

derivatives; namely, 

Bl = 
C 1 ...,. 

D1 = 

El = 

cw -t-~ +x.,., 
,nf{.2:-w+Xu)~/77w +~~w -Xw~ 

n:,(Xw-2=\¥-Xvv¼)~n?w(Xq-~ ,A>N0 )~nz(~ +Xvv) 

c;_~.n7w {i=t.t-><;;, T'9N',.0)- ~~~(zvv-XwT-9N~ z . 
It is noted thatt, below the sta lling speed of the a rplane, 

all the non-dimensional derivatives except mw, m , and ~w u 
are :::iositive. Longitudinal stability can thus be described 

completely in terms of t hese derivatives and;,u", vrhich is 

aJways associated with either rnvr or ffiu• 

Bece,use the absolute values of two root s are large in 

comparison to the va lues of tbe ot,h8r tvro, we use Bairstow' s 

e,pproximate method m d express ( 3 .o) in t he form of a, bi-
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The fi rs t ouadratjc represents the so-called II short - •• I 

os cilla tior 11 whi ch has negligible i nfluence on long-

itudinal stability below t he s t a ll since it is heav ily 

damped ru~d invaria bly, stable . The second quadratic, 

however, repr esents t h e II Phugoid 11 mot ion, or a slight1y 

da mped periodic mode which direct l y determines t he 

dyna□ic stability of an a irplane. 

GRAPHICAL RE?R~SENTATIOH OF STABILITY 

From t h e c lassical t heory, i t is known tha t a 

system r epresented by 

~~+ ~,;J3+ c;~:z.+ 4~+ El= 0 

i s s t able if the foll ov,r ing co nditi.m .s a r e satisfied: 

1. The coeffic ient s B1, c1, D1, & E1 mu s t be 9os i tive; 
2 Z 

2. Routh ' s discriminant, R1 = 13;c;q-D-L3'E> o. 

If B1, Cl' or D1 goe s through zer o, then the discriminant, R1, 

reaches zero f irst. However, if E1 goes through zer o, R1 

i ncreases . Hence, for s tability, vre must cons ider espe c i a lly 

R1 and :13::1 . If R1 = O, t he condition of s t a biJ.i ty changes 

from a damper . osci l l ation to a dive r gent one . If E1 = O, 

a subsidence change s into a divergence. Hence we see that 

the regions of stability m d i nstability can be sepa r a ted 

fro m one another by worki ng with the equations, E1 = R1 = O. 

For a graphica l repr esentation, it is possible, by usi ng the 

two e c1u a tions E1 = o, R1 = 0, to es t abl·.sh botmdaries for the 

regions of stability . 

Or /"'">if077t:7-'½ ~£~=:- (B°_} 
p~c / .:JS. 
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If the variabl.es 11X11 and "Y" are chosen as the coord.ine.tes, 

where 11 X11 involves the C.G. postion and "Y11 involves the 

size of the tail of the airplane, it is possible to 

establish on the "XY" plane boundaries separating the 

regions of instability from those of stability. Two fund-

amental parameters are varied, t he other parameters re- -~ 

maining constant, thus giving a family of boundaries for 

stability. 

It has been found convenient to take as the variables 

11 x" and "Y", the following: 

where: 

__/z -
x = ~ h 
Y= 1:/z ~ 

z k; .S 

length from the C.G. to the tm. 1 post 

k8 = radius of gyration about the Y axis 

Sc = area of horizonta. l tail surfaces 

S = area of wing 

d~ = slope of lift curve of tail surface (horiz.) 
dclt: 
h = dista,nce of C .G. from the aerodynamic center ,, 

of the wing section, exPRESsEo Rs ,q ~R,;cr✓oN or=- t-. 

The "XY" plane is filled with two families of curves;namely, 

2. Z1t -- -p 

Cl ~E, 
~ -z c; c; 

£, - 1(4 - B,EUZ - 4 - -C, C, c;z 
which define the ve,lues of t h e roots of the quadra tic, 

t( ana_ f? in the non- d. :i.mens i onal s ys t em r1ay be con­

vertea. into the damping factor and t he period, pc,vr7d 

ft .... sec. system, · by use of the appropriate factors: 
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-~ 
Since W= ~ SC"'-

. ., D.F. = 

from which 

~ 

R 
zr 

CL 7'~ 4 »ff 
0.3 0.247 2.023 

0.5 0.319 1.568 

1.0 0.451 1.108 

1.2 0.494 1.012 

To get the damping factor and the period, we note 

the following relations: 

O.F = . X-(},r~)fF 

~) = (rff)ff P 

To get the time to damp to one-half amplitude, we 

have the relation: 

77 -= 
z 

o.e;93 • . 

D.F. 

The family of period curves in the form, 
2ff = //£, _ _!_(4 _ 8✓E,)Z 
P r -c, 4 ~ c;:z. 

are very difficult to use for plotting. It has been 

found sufficienty accurate, eY.cept when E1 becomes very 
• _L(g_ - a,4)Z 

sma.11, to neglect the term, 4 ( c, c;Z) in comp-

arison with the term £, . Thus, the c; 
period curves are reduced to the simpler form, 
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Of the damping curves, I:(= 0 , is approximatel:r 

the boundary defining the transition of the phugoid 

into an increasing oscilJation. We note that 

R
1 

= 8,CO, - qz- B, 
2 £; = 0. 

z 
~ is usually small-in comparison to the other terms, 

hence we h9.ve as an approximation .to R,= o, the two 

curves, B, = O, and c;q-B,,s = 0, which is identically. 

K = 0 since w = o,c; - ~£, ~- , ~ C, 

As the above appr•oximation breaks down only where B1 

and c, are s rm.11, K = 0 is a very good approximation to 

the R, = 0 boundary curve for all practica1 pnrposes 

since B1 is large for any actual C 8.Se. 

DISCUSSION OF PARAit ETERS 

In keeping with the purpose of this work, it 

was found necessa ry to include two sets of parameters; 
' 

those which correspond to the more modern type of air-

plane, and those wh:i..ch refer to the older type still 

being built. Thus, two groups of curves have been plotted; 

one group ( Oas e I) using c:IC:.. =48 and G= = o. OZ , clol ~ 

the other group ( Ca s e II) using ~= 4.0 and ~ = 0.05. 

In order t o represent conveniently the t wo families 

of curves, period and damping factor, it is necessary to 

J.irni t the number of variables occuning, ana. to give constant 

values to those parameters which do not vary greatly or 

are not of great importance in stability. In order to 
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a rrive at satisfactory average parameters, it was necessary 

to collec t flight test data, calculate the various para­

meters, <-md aveN.9e those which seemea. t o lend themselves 
·-

to such treatment. 

were mad e as f o llows: 

As a result., various s:i.mplificati ons 
c1 

1. Lift 

Case I Case II 

c:1c;__ = 4.8 
de;_ 

== 4.0 
a'oC. c/Ol. 

( These values are a s SUJ.med to hold up t o CL= 1. 2) 

As i s customary, the tota. drag , 1 s a,ssumed to be 
.z:. 

f t "' f C - ..,C + C"- The values for o E e orm, v - S edR? • _ 

Cn are: 

Case L Ca s e II 

CD== 0.02 + 0.065 cL
2 

3. Pitching Moment 

Due to wi ngs: 

The pitch ir1g moment abru t the C.G. is given a s; 
C-41 = CM0 + (f. -ho) Q. _

1 

J • 

vrhere h
0 

is the aer odynamic cente~. ( 0.22.-::::.ho .-:::::.o . 25), 
rlt#l'/j!o,/V TRL-

and " a 11 is the,,di s t ance from the leading edg e of 

the wing to the C . G. 

Due to tail : 

The pi tch lng moment due t o the t 8,i ili is assumed 
-; 

to be , C -= --/~c 
Mc t:- s z_-t;-

. 

Due to fuselage : 

I f there 8,re wind tunnel tests on the planet _ 
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then the effects of the f uselage can be Recounted for. 

If tests are no t ~vailab1e, then the f ollowing cor r ections 

may be a9plied to account f or ih e fuselage effect on the 
➔~ 

moment curve : 

Small, l ow- wing monoplanes 
(.w 1,Torthr op XFT- 1) 

Large, low- wing mo noplanes 
(v.>Dougl,g,s DC - 1) 

Change in /~SM) 
( U'--LJW✓IVG 

+ 0-0.25 

-r- 0.035 

The above correction can be absorbed by using an 

" effective " a/t in t he expression for the pitching moment 

for the wing alone . In the sar.1.e manner, the vertical 

displacement of the C.G. must be corrected for; i.e., 

;,.. C7 ~ - 1 b ' ' b ' 1· s t'11,..,_. rt · c 7 di star1ce from the c.n-. ~ t 10 t- , vmere c;; ve , J. a~ -~ .,,_J ~ , _ 

to the chord line. Thus, the fina l 11 effecti ve a/t 11 vrill 

be ft)erF 
and h 1:i 1.11 equal 

Dovn1wash 

a t th e tall j_sfa,aken as 

Ta il _1ength-

A gooa. average for 4 , or the ratlo of the length 

f rom the C. G. to the t ai 1 post to the chord of the wing, 

wa.s found to be 3 .. 00. 

Rotary Dertvative 

..":.s in Gates .' work, m0 for the total :plane was t aken 
k 

as 5/4 of that due to the tail. 
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Ta il Ef ficieric y 

1?t , t he r a tio of the forc e on the horizontal. 

surf aces vrhen a ttached t o t he airple,ne to the force 

on the surface s when a t the same eff ec tive angle of 

a ttack in the fre e a ir stream, was f ound to be 

= 0.72 ( Ave r a ge "tJalue.) 

LONGITUDINAL DYNA:•.HC STABILITY OF GLIDING 

FLIGHT 

The dimenfilonless derivatives in the case of gliding 

fli ght become: 

Case I 

z. 
Xq = O.OZ-f- • 065C~ 

~ = - o . 37,zsCL.., 

~vv = Z . 41-

= 

rn. = -0-8X+0,5.36Y 
/,V 

~~ y mg= ~ -

= 

Ca se II 

- O.GG7X -/-0.3Z7Y 

'2:'Y 
~ 

The coefficients for the sta bility Qua r tic become: 

Cr1sE .Z 
~ - ~ -t-i!::w -t-X,:,, =-::. y -i- o.o6.5c;_:z. +Z.4Z (/N=-=wo=Nr =~) _ 

C: = rnj(cw +X,,)~1?7w +- X,.,,. .c.,,,,-XwZ:q =(ao.2 y r, 08/,zc;_z:.y + . 5 3 ~ y-o.~X 
_ -,..o. s-.z9C.._ z + o . 048) 



~ =°](Xt{~W- Xw2=q) ~n?,,,,.(Xq-t-Cj:) = • 

V(o.CA:6 r 0.66/ c;__Z +O.os~c:._~ +0.0/~ )-x/:;.oz~~o~c;_ 

E, ~ .-,/44 ,n,,,. ? ( 2;,.,,. X, tJ ':/4'(<>2€8 y - 0.4 5!)/ c;_'--ro,oz+ o a;;s c..'Jj , 

Case II 

B = 5 y +0-06SC~ +:Z.a5 
I 4 ~ 

~ = (ZSG +.08/ZC:.,zr• 3,:i::z,0y--662,q'X +.3S7Sc;_ z.. + 0-/0 

i7✓ = (o.1zs-ro.#66c;__ 2.-/-0.o3l~c;_ Z-1-;024-y,J Y-(a.o~rc}.o;;~c;_,jx 

E, ~ ( 6Jt-=>".?;;v y - o. 6G7 X "Jf c;_ "- r(o.os r o. 06.Sc;__ "-_) j 
The family of non-dimensional damplng curves can be 

written q- 8,£✓ - z as K= O,R KC = co-BE; cz I 7 I / 

c; I 

/ 

Letting B, = aY + b 

c, -- cY + dX + e 

D, = fY + gX 

E, = hY + j X j 

Then: 

· K( czy z+c/z.xz..+zcdXY +zceY -t- .zale X +e2j 
~ z.. 

-- ( cf -ah) Y + dgX + ( cg +df-a~,) XY -i·(ef- bh)Y 

+ ( eg - jb)X , 

or, z 

K (.,,c;vz..-1- Bx~+CXY -1-Dy +EX+ r=J_= (~ 
~ +(3X2.+oxy+f,'Y+ex./ 

·where: 
%. ~ = cc~-oh) A= C 

B= c1~ f3 = dg 

C = Zee/ y = (Cy'+d,C-cy) 

D = Zee ~ = (e~-bh) 
1;' -..... - Zde e - (eg7/'b) 

z 
F= e 
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Let 

The f amily of period curves become: 
~ 

(Z77')z= £°J OR E;= 4P~ c:;. 
p ½ 

4-if~ = J J and substitute for E
1 

an:1 C: p~ I 

Then (h-c!)Y -r-(J·-ad')x-Je ==o 

or, -= bJ-JJx -1-(Je _7 . 
y f h-cJi Lh-cJj 

It is now pos sible to represent these two familie s 

of curves on the" XY" plane by assignj_ng various values 

to the parameters,__,,u and ~ , at the same time varying :~ 

the constant values assigned to Kand .E· This has been 

done for the t wo groups of curves; i.e., for Cases I & II. 

There are sixteen curves for each case, con~isting of 

fct..'!r' grou::,s, each gY'oup for a constant value of ~". 

The E, = O end K = 0 curves on each diagram represent the 

boundaries separating the stable from the unstable regions. 

Each diagram is covered with a series of curves of constant 

period and of constant damping factor. ( 1? ani _!) 
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DTITAMIC STABILITY DIAGRI-\.MS 

CASE I 
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DYNAMIC STABILITY DIAGRAMS 

C_"i.SE II 
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CONCLUSIONS FROM STUDY OF DIAGR11.MB 

From study of the dynamic stabi lity diagrams, t h e 

foliliowing conclusions have been derived: 

( 1) The a.am!") i ng factor and the period, K and p, should 

be a s larg'3 as possible in order to avoid the region of 

increasing oscillation. 

(2) The damping factor decreases and t he !)eriod increases 

with an incre9,se in a1titude ar.rl wing loading, other quantities 

remaining constant. 

( 3) The period is increased by a backvrard movement of 

t :r.e center of gravity of the airplane and by -:tn increa se 

j n the hori z.ontal tail su rface area, if the C .G. is 

behind the :aerodynamic center. 

(4) Instabil i ty may arise through an increasing oscill­

at ion or 3, divergence. A. s the speed is dec r ea,sed, i.e., 

CL increa sed, the da.nger of instability due to increasing 

oscillation i ncreases . 

( 5) A large moment of inert iq, about t he lateral axis of 

tbe .gj_1.r:9la.ne i ncreases the danger of instability; hence the 

dist r ibution of t :r.e weight glong the longlt1.1dinal axis should 

be as compact as possible. 

(6) When CL is small, t he damping is roughly independent 

of the coordinates , i.e . , the C.G . position and the tail area. 
,?.:,..._ - -increases, the dependence of _!$ on X and Y ir!crea ses . 

The diagrams show that it is desirable to arrive at 

s tatic stability by means of a fairly l a rge horizontal tail 

surf ace ra,ther t han by having the C . G. f a r forvrard ar}d using 

a smalle r t a il surface. 
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(8) Reas onable stat ic stability with a relatively 

large hor i zonta l tail s urface i nsures dynamic gliding 

s t 13,bil i ty. , Large s t atic stability, however, :-cake s tr.e 

:Jeriod ;:.;hort and the dampi ne: f ac to r small. ( X large 

negatively and Y small.) 

(9) An increase in the slope of the lift curve j_ncreases 

the region of dynamic stability. ( Comy ,'3.:re Cases I & I I.) 

Conclusj__ons Important for Design 

(1 ) The plane should have a slight static stabi.lity ob­

tained with a relatively large horizont al tail surface, 

C.G. to the rear. 

(2) The moment of inertia about the lateral ax is should 

bA as small as possible. 

(3) For assurance that the plane wi 11 be stable with 

:9ower-on, the boundaries of gliding stability should not 

be approached too closely. 
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PROCEDURE FOR t:SE OF CHlR TS IN DESIGN 

For practical use of the stability diagrams, the 

follm1j_ng properties of the airplane must be known: 

(1) 

to 

If 

If 

(2) 

"X" 

W = weight of plane 

S = wing area ( From this and the span, find AR) .., 

St -·· area of horizontal tail a1 rface 

a = distance,horizontally,from C.G. to leading edge 
of wing. 

b = vertical distance of C.G. from chord 1:i,ne 

t = mean aerodynamic chord 

ho = aerodynamic center of. wing 

Fi = [ft)erF-hj 

(a/t)eff. = [tD r fl i)P<'5C ±=(lo t-)/ 
1 = length from the C.G. to the tail post. 

kB = radius of gyration abaut the lateral axis. 

ARt= aspect ratio of horizontal tat 1 surfaces. 

From this 

outline of Procedure 

Determine which set of curves to use by referring 

wind tunnel test or by calculatir1g ~~ and c;p• 

dCZ . 
4.8 

. 
Case I. 

~ = and. CDp = 0.02 
' 

use 

clC.. L 

4.0 ' Case = ani CD 0.05 
' 

use II. 
~ p 

From the given properties of the plane, calculate 

and "Y", where 

X h;11__ _j_ 
= 

/z., 
·- ' 7i k; 

. 
1-L& k ani y = 
z 77 8 Ir- k.,4rAft-

(3) Determine A", the II relative density 11 of the plane , 
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_,q = pS/ 
n7 

= 

where~= w/s = 

13.08 f 
wing loading. 

( For sea level) 

(4) Find f and .E ( non-dimensional units) for the 

series of lift coefficients, o .3,0. 5,1.0,1 .2, using the 
,, " 

factor~ calculateo. in step ( 3). Interpolate for 

the proper_.,.U if necessary. 

( 5) By the use of the factors appearing on each diagram, 

calculate the Damping Factor and the Period in the proper 

units e The time to damp to half amplitude is given by 

the formula, 
7j 

z 
= 0.693 

O.F. 
seconds. 

The shaded lines on each curve sheet represent 

the b(llundaries of dynamic longitudinal stability in 

gliding flight. The plane is dynamically stable if the 

point (X,Y) f a lls within the boundaries for all the 

lift coefficients. Any inherent instability should 

appear immediately by reference t o t he diagrams. 

POSSIBLE Ri'.\.NGE OF PAFU\.:•HETER VALUES 

guantity Rana:e 

✓:1/k~ ____ . .,._.,.. _ _ ..., -- 5 - 25 

S'c/s _________ , _ 0. 10 - 0.20 

ho __ __ ...... __ ___ 0.20 - 0.25 

ii -- -----.-r -- -0 .. 05 - 0.20 

de;, 2.00 - )1 • • 00 -"t: -- ___ . .,. -----
c7c;;f-t; 

X ---------- -1 .00 - 1: .• 0 0 

y ---------- 0.50 - 8. 00 

.,./4/ ---------- 5.0 - 20.0 
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ACCURACY OF DI AGRAMS 

It has been found that the theoretical and measured 

longitudinal stability characteristics for gliding flight 

agree reasonably well if neutral stability is not approach-

ed too closely. A reasonably stable plane in gliding 

flight will~be stable with power on; but if gliding flight 

characteristics approach the boundaries of instability 

too closely, then dynamic stability with power-on is not 

assured. As far as the accuracy of the charts ) themselves 

a.re concerned, two practical examples of their use will 

serve to illustrate. 

EXAMPLES OF THE USE OF THE DIAGAAB/1'3 

( 1) Fo r t he first example illus t r et ing the use of the 
ch a r ts, consj_der t he Doyle 0-2 biplane. Its properties 
are as follows: (4) 

W = 1315 # 

S = 159.5 sq. ft. 

b = 30.0 ft. 

st= 18.7 sq. ft. 

a/t = .34 

b/t = .-. 36 

h0 = .25 ( Estimated) 

E = (.34 - .036) - ( .25) = 0.054 ( Effect of 

1 = 11.8' 

kB=~ 

ARt = 4.33 

fusel~ge neglecta 
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Pr ocedure : 

2. 

c0 = ~04 -- G05 ( Estima t ed ) 
p 

Us e Charts for Ca se II. 

} 

= 13.08 /4 
✓. 

= 

4. I t wi ll be suff ic iently accura te t o use the charts 

for fl = 10 .. 00. Referr i ng to the charts, we have: 

-
CL K :p 

0.3 0 .043 32 . 3 

Oo5 0.036 25.6 

l~O 0.,035 18.7 

1.2 0.039 16.9 

where K a.nd lJ a re in English uni ts~ 

Di scussion 

The above values for K a nd :pare plotted in Fi g ~ lo 
(4_) 

The a3r e ement with experiment a l da ta on the Doyle 0-2 is 

very good for the damping f actors. For the :neriod, 

the agreement is good for h i gh speed, i. e., lov, CL 1 s ; but 

gives a high value a t the higher lift coefficients. In 

the respect that the designer i s interested fundamentally 
/N THE ,q,-R/00 ,,,.9NO 
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(20.0 ) 

damping factor in the range of high speed, the charts 
give good results fo r thi s particular case. 

As a second problem for illustration, consider 
the new Dougla s Transport, the properties for which 
are the following: 

w = 17,500 # 

s = 939 sq. ft. 

st= 145.6 sq/ ft. 

a./t = .25 

b/t = + .13 

h0 = .23 

h = ( .25 + .013 +.925) ~~ .23 ~ -0~058 

1·= 36.62 ;==,.-

kB= /4-500 

A¾= 4.75 

c:ICZ = 4.7 ( From wind tunne l t est) 
d::t, 

Procedure: 

1. 

2. 

4. 

= 4.70 

= 0.02 

Use cha rts for Ca se I. 

,, 
1/ 

X = _b._ =- • oseJ(3G,GZ) = /. 74-
?l 4S 

/45:G = 

939.o 

171.08 _/4 = /3.0eJ (?a.1o5 } = 6.GS 
~ _/ 36.6~ 

Referri ng to the charts for Case • I, us'iing the 
cooro.inates X and Y from (2), we see that the pla.ne 
is well within the stable range . Thj_ s is due to 
the fact tha t Y i s very lar ge , ioe., the. tail area 
is l a rge. The va lues for K and pare : 
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~ = 5 ~= 10 ~ = 6.65 

C L K p K p K p 
-

0 .3 ; OB,¢- 47,o .033~ 39-5 ,03¢- 44' 5 -;• .. 

0.5 .05Z Zl!l.o .047 24-0 .050 ZG,7 

1.0 I '. 
1·:·'.30 

1c . 3 
/4,3 .1,,ZO /Z.o , 1/E6 lsk5 

1.2 • /t!}O IZO ·/GO /0.0 .y·'y53 //. ,:3 

Final Values 

-
CL K p 

0.3 ,0/6 48-0 

0.5 .0/8 37,.~ 

1.0 . '.03,3 Z6.3 

1. 2 ,,(5)c70 ,z4.o 

Discussion : 

in Figure 2. 

The above values of K ani p are plotted 

From actual flight tests, the Douglas Transport 

proved to be dynam-ically stable. ·.The · r• data • f rom t he Charts 

indicate a similar resu lt. From an observation at high 

speed, gliding flight, t he period of the phugoid was found 

to be about fifty(50) seconds. For a CL= 0.3, corresponding 

t o the high speed range, the value for the period i s 46-0 .5.t:e. 

which agrees very well with the observed va lue. 
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SUGGESTIONS FOR FUTURE. RESEARCH 

The same type of analysis as that appearing in 

this thesis should be attempted for power-on flight, thus 

completely covering the r ange which should be trrvestigated 

f or stability characteristics. Before any degree of success 

in this further application can be attained~ however, there 

must be more research done on the subject of the effect of 

the propeller slipstream. An analysis for power-on flight 
( 1) 

ha s been made by Gates , but for the same reason tha t the 

present work was done on gliding fli ght, that of making 

available modern data, his analysis is a lit tle obsolete 

for use in modern design. 
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