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l. Introductory.

The concept of integration has been extended to ab-
stract spaces by three distinct methods. Saks (1) considers
numerical-valued functions of an abstract variable and de-
fines a generalizatien of the Lebesgue integral for such
functionss. Kerner (<) considers abstract-valued functions
of a single real variable and defines a generalization of
the Riemann integral for such functions. Lastly, Bochner {3)
considers abstract-valued functions of n real variables and
defines a generalization of the Lebesgue integral for such
functions.

This paper, as shown in section 4, presents a4 unifi-
cation of these three theories by generalizing the Lebesgue
integral to the case of abstract-valued functions of an ab=-
stract variable . The essentially new contributions are con-
tained in Theorems 3.4 and 5.5, where the integral %s shown
to exist for a large class of functions and bounded contin-
uous functions in certain spacés are shown to be integrable.
It was found necessary to postulate the existence of a4 meus-
ure function, s none could be discovered for general vector
spaces. If such a function can be shown to exist, then we
shall have a true generalizatiocon of the theory of integration.

This paper wus written under the guidance of Professor

A. D. Michal.

(1). Saks, THEORIE DE L' INTEGRALE, Warsuw, 1933.
(2). Kerner, Przce Matematycznc Fizyczne, 40, Part 1, 1u33.

(5)+ Bochner, Fundamenta Mathematicae, <0, 1933



2. Spaces.
In the course of the paper we shall have occasion
to refer to the following types of spaces:
; & complete, normed, linear space, usually called a Ba-
nach space, whose elements will be denoted by small
Latin letters from the first part of the alphabet.
R; the real number system, whose elements will be denoted
by small Greek letters.
X; a space satisfying the following postulates:
(a)s X is a B,
(b). Corresponding to each set, A, of elements of X
there exists a non-negative real number, denoted
by |A), called the measure of 4, with the proper-
ties:
(1). If Azo‘z—_jA,\, then \A\sim“\; equality obtain-
ing if and only if the A, are non-overlapping.
(2). lAl=o if and only if there exists an infinite
sequence {4, such that 4.2 4,, for all n, and
gfich that A=iA“ and l&g‘;\ﬂ.\\mo. In such a case
A is said to be the outer limiting set of the
sequence {A}.
V; a metric space in which the triangular inequality may not
hold, but such that the distance between any two points
approaches zero as the distance between ecach of them and

an arbitrary third point approaches zero.



The elements of the space X will be denoted by small
Latin letters from the end of the alphabet. Hence, the na-
ture of a function will be completely determined by the let-
ters used in its expression; eg. f(x) denotes a function on
X to B, a(e) a function on B to R, etc. The letter A will be
used to denote a set of elements of the space X. The letters

i, j, m, n, will denote positive integers.
5. Integration. Definition and Properties.

Definition 3.1l. A function g(x) defined over A is said to be
elementary if and only if:.A:@A“:i¢j.D.A{AfO, where 0 is
the null set. xed, .D.g(x)=g,. g, constant for each n.
( Throughout, the letter J with no range indicated will
denote finite sums).

Definition 5.2. A function f£(x) defined over A is said to be
measurable if and only if: If A% A is the entire set
of points for which some sequence {f“(x)} of elementary
functions does not converge to f£(x), then \A*L=O. That
is, there exists a sequence {fh(x)§ which converges to f£(x)
almost everywhere in A.

Hence, every elementary function is measurable. If a
function is measurable over each of a finite number of sets,
it is measurable over their sum set. If a function is meas-
urable over a set A, it is measurable over every sub-set of A.
If £(x) is measurable, so is “f(x)u, because of the triangu-

lar property of the norm. Finally, the sum of any finite num-



ber of measurable functions is a measurable function, and the

product of a measurable function by a real-valued measurable

function is measurable.

From Egoroff's theorem (1), and its converse (2),
both of which are valid for functions of the type considercd
here... since the norm, by means of which convergence is de-
fined, and the measure-function both have the triangular
property, and because of postulate b (2) for the spaces X...
we have:

Theorem 3.1l. A function f(x) defined over A4 is measurable if
and only if there exists a sequence of elementary functions
which converges "asymptotically™... or "on the average”...
to £(x); that is, in every sub-set M, of finite measure,
of A, the sequence converges uniformly to f£(x) except in
a set of arbitrarily small measure. Symbolically: M<A.,
|11 finite. §>C 1AM S ML \u>\-6, £, (x)>2(x ) uniformly
in M.

This theorem is essentially the same as that of S.
Bochner. The only properties of Rn that he uses are those of
the measure of sets, and these have been preserved by our pos-
tulates. (2). This property of measurable functions is a fun-
damental one, but we have taken the other as our definition
because it is more similar to the definition in the cacse of
functions of a real variable. ( See Saks).

). Titchmarsh., THE THEQRY OF FUNCTIONS. Page 339.

(L)
2). Hobson. FUNCTIONS OF A REAL VARIABLE. Vol. 2. Page 239,

(



Theorem 3.2. If £(x) is measurable in A and bounded almost
everywhere in A, then there exists an approximating sequence
{£.(x)} which is bounded uniformly in A for all n.

Proof.
Let (pzllf(x)” almost everywhere in A, and let@ > @ .
Let &g“(x)} be a sequence of elementary functions
converging to £(x) almost everywhere in A.

Definition £.(x) : £ (x)=gu.(x).= Mg (x)\<q,,
- (X)= -—0\\gv\( )\\3@.

Then, clearly \f.(x)l<pfor all x in A and for all n.
Next, Definition A4%: xe&*< A:=:{f . (x)} does not

converge to f£(x).
Definition AF: xeA™ < A*,:=:, Jan infinite sequence S
of n's : neS.>. £,(x)=0
Definition A% : xeAT<A®.:=:.3an m: n>md.f.(x)=gu(x).
Then, A% A%=0, A% A% A% | . |a¥=la%l4 %],
Now, xeAT .:=:.3an infinite sequence 8 of n's:
peso. [l£(x) = galxNz ezl = VeulxW30, - @
almost everywhere. .. ig“(x)ls does not converge to
£(x) anywhere in AT except possibly in a sub-set
of measure zero. .. |A¥=0.
Also, xeA® .:=:, Am: n>m.d.{gw(x)} does not con-
verge to f(x). s la*l=o0.

|a¥{=

oo {lf“(xﬂ converges to f£(x) almost everywhere in A,

Also, since |, (x)ll<¢for any ¢ >¢, £, (x)\=@ .



Definition .3 1If g(x) is an elementary function defined over
A, where |A| is finite, we define the symbol I[e(x), 4\
by the relation:

Ile(x), 4= L el
where g, and 4, satisfy Definition 3.1.

Definition d.4. If £(x) is measurable over 4 and bounded al-
most everywhere in A, and if for every sequence {f“(x)\
defined by Theorem 3.2 the sequence zl[f“(x), A& is con-
vergent, then f£(x) is said to be integrable over A4, and

we write

Jf(x)dx‘:’lim.l[fv\(x) , A] i

W o0

Theorem 3.5. If Jf(x)dx exists, it is unique; ie., independ-
ent of the pﬁrticular choice of the approximating se-
quence {7, (x)} .

Proof.
Let {gwlx)} and {h,(x)} be bounded approximating
sequences, and let{I[g“(x), A“ andil[h“(x), A]%
converge to g and h respectively. Consider the
sequence ik“(xf}, where k (x)=g,(x) and
k, (x)=n,(x). Then clearly {ka(x){ is a bound-
ed approximating sequence. Hence, by Definition
5.4 $I[ku(x), 2 converges. This can be true if
and only if g=h.

We aBre now in a position to prove the Existence of the in-

tegral for a large class of functions, namely:



Theorem 3.4 If £(x] is measurable over A and bounded al-
most everywhere in A, then ff Jax exists, if|A| is
finite. Proofs :

Let {£.(x)} be any sequence satisfying the
conditions of Theorem 3.2. Let (pz\lf(x)“almost
everywhere in A. Hence, ¢»|\£ (x)l| for all x and n.
By Theorem 4.1, given any £€>0, there exists a set

A <A, such that |A\>|A| -2 , and such that in 4,
ifn(x)} approaches f(x) uniformly; ie., there exizts
an n=n(¢) such that if m;n>n,, then|\ £, (x)-£ (x)l«e
for all X in A,. Write ¥ _=4-A_. Them, |F.l|<e.

Now clearly, for any n, IL(f.(x), A= I[f“ ,AJ»:I[fh ,FC]
since 4:F=0 and 4= ArF . Since the f,(x) are ele-
mentary functions, we have that for each n,

A= A , Wwhere A ‘A =0 if i+j, and f£,(x)=2  if x

£ 0t £ ns

is in A4,,.5imilarly, F. =L F F.-F.=0 if i+j, and

mE Mm?ETM €y
f“(X):-f“w
Definition I,.: I, =\1I[e.(x), 41- 1l (x), all.
Hence I, \II[:L’ (x), 40 -Ilg£.(x), i\

+“I £.(x), F.| - I[f\m(X), FA\\-

if x is in B, .

By Definition 9.3

“Zf“vc w Z ‘f"\s\t “u\“ “Zf‘“\a Fui \EF‘“J“ *

Let us consuier the second term of the right mem-

ber. By Theorem 3.2 we have that \E’-,\(x)né @ .



Izz)m) -2 T e gl +l 2z
=X Z\F‘. "77\"‘ ws\):zqz\Fg\ .
(1. wlzednl-Te, \m\\\ <29t
Now consider the :f‘lrst term of the right member.
Write A, EAM E A « Then eAu A IS ’AWJ A Amiéé'm A A - A,

=0 if i+k or if Jj#¥l1 .

Furthermore, (A = 7: A oo \EA“;\zz.\iAw\for any n,m and
by

|4, Z\A "| for any n,m. Now, £ WAZL, 1f xe A
RA f“(x) if xe AJfor any m,Je

.'.l\i_}f“;\iA“\ -T2, \A \\\\\me\i il Zlf,.,i T \“

Now since A & .= A .-A. 5 we ha.ve EA“ EAji.

£ ulg mJ (4 w‘\gu.’

s the right member becomes: if wwm=wnqey,
(2) \Ziew - eqfailimhen - e &Gl lalel adedal .
Thus fr‘om (1) anad (25& we have that ’

I<e(20 + 14)).

Since @ and \i| are finite, we have that the sequence

e, txl, Alg converges. But the choice of {f A=)} was

arbitrary. Hence every such sequence %I[fh(x), Al)g

converges, and by Theorem 3.3 to the same limit,
Hence, .the expression I[g(x), A|, where g(x) is an elementary

function can be written Jg(x)ax.
A

Before proceeding with the properties of tlhe integral,
we wish to prove a theorem on the measurability of continucus
functions. For this purpose we need a theorem proved by Fré-

chét in an article in the Bull., de la Soc. Math. de France (45),



The statement of the theorem which we need is the following:
If A is compact and closed, and if Q& is a family of sets I
such that every element of A is an interior element of some
I, then there exists a finite sub-familyc¥\of(§ having the
same property. A weoy e tw any space V.
From this we have
Theorem 3.5. If A is compact and closed and if f(x) is con-
tinuous over A, then f(x) is measurable over A.
Proof.
A%= S(x,e):.x,Xed. Wx-X\<Sbk>: £ (x)-£(E)\<€. . the
function $(x,e) determines a family \.as in the pre-
vious theorem. ..1%,, & finite sub-family with the
same property. That isiiixgkﬁ , range of n finite,
such that =xeA:2: Ix,.|lx-xM<S. £ (x)-2(x)\<E.
Definition g(x): Ix-xl<§ .=. géx)=f(g). Hence géx)
is an elementary function, which approaches f£(x)
everywhere in A as ¢ approaches zero. Hence, any de-

numerable sequence from the set igéx)z is an approx-

imating sequence for f£(x).

Henceforth we shall consider only bounded, measurable fune-
tions in a set A of finite measure, unless the contrary is
explicitly stated.

Theorem %.6. If f£(x) and g(x) are elementary functions, then

!kf(x):g(x))dx=={f(x)dx + {é(x)dx.



Proofs
A:Z“;(A‘M), where £4=0 if min, and £(x)=f, .=. xed,
Similarly, 4= A, , where A:4=0 if m#n, and
glx)=g,.=. €A, Definition 4 : A= 4 A,
As in the proof of Theorem 3.4, AAA".‘}TO if m#n, or
if itj. A'W:ZA,“ , A’:;Aw AT A,
Hence, /f )ax = zjf\a =7 £ \4,.).
gg(x ax =ZggAw=z g \a.\.

Since xed .=. f£(x):=f and g(x)=g,. ,then
XA 2. £(x)eglx)= £ +g,.
{f(X)dx + j{g(x)dx 27 L, % gm)\AM\{(f(x) £ glx))ax.

Theorem 3.7. If f(x) and g(x) are measurable and bounded
over A, so is their sum, and

:{(f(X)t g(X))dX:{f(X)dx + {g(x)dx_

Proof:
f(x)::l%p. £ .(x) and g(x)::&ig: g .(x) almost

everywhere in A, where f£,(x) and g,(x) are elementary

functions as in Theorem 3.2. J. £(x)+g(x)= 1i£{£4x)

g(x]]
almost everywhere in A.
s /f (x)dx + /é(x Jdx= 1lim, /f(x )ax ~Qﬁg(x
Wy R A n _,‘A n
= 1im. /f e folx)ax ).
w0 A "

By the preceéding theorem,
{f(x)dx /g(x)dx lim. /(f_‘(x + g Jdx = /\((xngmldm-

w00



By mathematical induction the preceding theorem can

be extended to the case of the sum of any finite number of
functions.

Theorem 3.8, If £(x) is measurable and bounded, so is W (x)\

ana || [e(x)ax\ < /he(x)]| ax.
A A

Froofs
Let{f, (x)} be an approximating sequence.
A=ZA, , A-A ;0 if msl for any n.
fdxhqda.xﬂww

o {f(x)dxll=\\3:\i_§:; [2, (x)ax = 1im, | [‘fh(x)dx\\ .

1

umdz £ 2 < 1inZlle v,

W o0

lim /NE(x)\dx= /\\f(x \ ax.

W00 A

IN

Theorem 3.9. /xf(x)dx=a</~f(x)d.x
A A

Proof:
a(/f( Jdx =« 1lim, /i’ Jdx = llm. /f“(x)dx
A nw—el i A
= lime? £ A \= 11310739(4‘: AL
= lim. [uf, (x)dx= [}xf x)dx.
wu-sx A A

Theorem %.10. If £ is a particular element of B, then
[eax= 4l
A

Corollary. If « is any real number, then

/&dx =« Al
A

Proof obvious.



Theorem 3.11. If \f(x)l\<ot, then \|Jf(x)ax| <4\ .
A
Proof:

By Theorem 5.8., ]lj{f(x)dx“s £\\f(x)\\ dx
lll{f(x)dx\\ﬁl“igl; /ﬂf,\(x)\\dx=lim.§llfk§‘~l.-@m§ .
b A

Now, by Theorem 3.2, ||l£,.N<ds
)[{f(x)dxll <lim Z«lA, \=dal. .

Theorem 3.12. If @(x) is an integrable function on A to R,

ther and if ¢(x)zo, then /@(x)dxlaodA\.
A

Proof:
f{(p(x)dx =lin, éq)“(x)dx <lim. 79, \ 4,

21lime 7 “\A,\M\ :ot\A\ .

N300 w

4, Important Special Instances.(1l).
a. Saks.

Saks defines a completely additive family of point-
sets in a vector-space , and the measure of such sets by
means of a group of postulates identical with our set (b).
With him an elementary function is one whose set of values
is denumerable at most, so that a function which is element-
ary according to our definition is also elementary accord-
ing to his. He defines measurability as does Titchmarsh, but
proves the theorem that every non-negative measurable func-
tion is the limit of a monotonic, non-decreasing sequence

(1). For references, see section 1.



of measurable, non-negative finite functions each of which

has only a finite number of values. This is obviously a
special instance of our class of measurable functicins. He then
proceeds to cvefine an integral exactly as we have done. Thus
Theorem 4.1. If B is R, then the integral of Definition 3.4

is an integral as defined by Saks, and conversely.

b. Bochner.

Bochner considers abstract valued functions of n
real variables. lMeasure has already been defined for such
spaces (cf. Hobson), and satisfies our postulates. Bochner
defines an elementary function, a measurable function and
an integral precisely as we do.

Theorem 4.,2. If X is Rn, an n-dimensional real space, the
integral of Definition 3.4 is an integral as defined by

Bochner, and conversely.

¢. Kerner,
If £ is R, we have inmediately from Theorem 6.5
Theorem 4.5. If f(x) is continuous throughout a closed inter-
val, its "Riemann" integral is equal to its "Lebesgue"

integral.



