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ABSTRACT

Charge transport and dynamics in semiconductors determine the limits of contem-
porary high-performance electronic devices. Previously, in order to understand the
microscopic mechanisms underlying charge transport, and to efficiently find novel
materials for new applications, computational methods were limited to using param-
eterized scattering rates and simplistic band structure models as inputs. However,
with ab-initio methods, only the atomic identities and lattice vectors are needed as
inputs. These methods have the capability of providing insights not possible with
methods that rely on empirical data, and predicting properties for not-yet-synthesized
materials.

While ab-initio computation of low-field transport properties have become common
in recent years, these methods have not been extensively applied to non-equilibrium
phenomena. In addition, the ab-initio simulation of fluctuational properties (such
as the diffusion coefficient or power spectral density of current fluctuations) is an
area that has been minimally explored. In order to approach quantum-limited noise
levels in devices, a better understanding of the mechanisms that govern electronic
noise away from equilibrium is needed.

Thus, motivated by this, the overarching goal of this work is to develop and use
first-principles methods to gain insight into the scattering processes that govern
high-field electronic transport and noise in well-known semiconductors, and to use
the same approach to make predictions and identify promising device applications
for novel materials.

The warm electron tensor is a quantity that describes the quadratic change of conduc-
tivity with electric field, which provides a quantitative way to examine the heating
of the electron gas. However, this has not been examined from first-principles pre-
viously. In this work, we report the warm electron tensor of n-Si computed over a
large temperature range, and find that the most commonly used order of perturba-
tion theory only captures the qualitative change of the warm electron tensor with
angle. However, by including the next-to-leading order two-phonon scattering term
in our approach, we find near-quantitative agreement. This finding indicates that
two-phonon scattering has a non-negligible role to play in transport in nonpolar
semiconductors.

We continue our investigation of n-Si by examining the diffusion coefficient and its
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anisotropy by applying our Boltzmann transport framework to fluctuational vari-
ables. We find that the qualitative features of the anisotropy are correct, but its
magnitude is greatly underestimated in comparison to experimental data, while the
onset of the noise is overestimated. While this suggests an incorrect description
of f-type scattering in our work, by computing the frequency dependence of the
diffusion coefficient as well as the piezoresistivity (two observables sensitive to
the balance of f- and g-type scattering), we find that the qualitative agreement of
these two observables with experiment shows that such a discrepancy cannot be
due to an incorrect description. Instead, we suggest that the experiment contains
charge transport phenomena not accounted for by our electron-phonon scattering
framework.

Finally, we use the same approach to investigate the high-field transport and noise
in the novel ultra-wide-bandgap semiconductor cubic boron nitride (c-BN). While
c-BN is known for its excellent mechanical and thermal properties, its high predicted
saturation velocity and breakdown field make it a promising candidate in high-power
and high-frequency devices. However, very few experimental and theoretical studies
have probed its transport properties. Here, we show that c-BN exhibits a negative
differential resistance (NDR) region below 140 K, and show that the cause is due
to an abrupt valley repopulation effect with applied electric field. We also show
that the intervalley time in c-BN is extremely large, on the order of diamond, and
that this large intervalley time causes a distinct noise peak, most prominent at low
temperatures. We discuss how the NDR region and large intervalley time make
c-BN a potential candidate for transferred-electron devices and Gunn oscillators,
respectively.
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C h a p t e r 1

INTRODUCTION

Semiconductor devices are ubiquitous in every aspect of modern technology and
used in varied applications, such as solar cells [75], transistors, light-emitting diodes
[150], and photodetectors [69]. As device sizes continue to get smaller, and new
semiconducting materials are explored for their applications, understanding charge
transport in semiconductors is paramount in order to design next-generation devices
and identify new materials of interest for varied applications.

In order to accurately describe charge transport in semiconductors, the mechanisms
that cause charge carriers to scatter from one electronic state to another must be
captured accurately. For many decades, these processes were approximated by
analytic forms such as the Brooks-Herring model for ionized-impurity scattering
[131], or deformation potential scattering for acoustic phonons [13, 193]. Using
these approximations limits the insight we can gain from computations, and prevents
these methods from being truly predictive for new materials (as they rely heavily on
empirical data). First-principles methods, however, do not rely on empirical data
and instead start with a quantum-mechanical description of the system, based on
their atomic identities and positions.

In many semiconductors, the dominant scattering mechanism that limits the electric
mobility and other properties is scattering between electrons and phonons. Until
relatively recently, computing these properties from first-principles was not possible,
and these methods have still been rarely applied to problems where an applied
electric field drives the electron gas far out of equilibrium. This thesis concerns
first-principles computations of transport and noise properties of semiconductors
away from equilibrium conditions, and the microscopic insight that is gained from
these computations. In addition, this approach is used to investigate the ultrawide-
band-gap semiconductor cubic boron nitride, and shows how its properties make it a
promising candidate for novel applications. In this chapter, we introduce several key
concepts fundamental to the computational approach used in this work, and further
outline the central problem we aim to tackle in this work.
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1.1 Computing transport properties in semiconductors from first-principles
Electron-phonon interaction

In this work, we only consider scattering between electrons and phonons, ignor-
ing other sources of scattering such as electron-electron scattering, electron-defect
scattering, and ionized-impurity scattering. However, for a semiconductor at room
temperature that is defect-free (or has a low concentration of defects), it is well
known that electron-phonon scattering is the main scattering type that limits the
electron mobility [225]. In addition, the electron-phonon interaction is the only one
of these scattering types that has been explored to the extent that first-principles
predictive methods are widely used. Work on describing other types of scattering
from first-principles is a burgeoning area [132, 133], but for simplicity we attempt
to only examine systems in this work that are electron-phonon limited. Here, we
take a short overview of the electron-phonon interaction. We may start with the
Hamiltonian that describes a coupled electron-phonon system [136]:

�̂� =
∑︁
𝑛k
𝜖𝑛k𝑐

†
𝑛k𝑐𝑛k+

∑︁
q𝜈

ℏ𝜔q𝜈 (𝑎†q𝜈𝑎q𝜈+1/2)+𝑁−1/2
𝑝

∑︁
k,q
𝑚𝑛𝜈

𝑔𝑚𝑛𝜈 (k, q)𝑐†𝑚k+q𝑐𝑛k(𝑎q𝜈+𝑎†−q𝜈)

(1.1)

where 𝜖𝑛k is the single-particle eigenvalue of an electron with crystal momentum k
with band index 𝑛, and 𝑐†

𝑛k and 𝑐𝑛k are its associated creation/annihilation operators.
𝜔q𝜈 is the frequency of the lattice vibration with phonon branch index 𝜈 and crystal
momentum q, and 𝑎†q𝜈 and 𝑎q𝜈 its associated creation/annihilation operators. 𝑁𝑝 is
the number of cells in the Born-von Karman supercell, and 𝑔𝑚𝑛𝜈 (k, q) is the electron-
phonon matrix element that describes the strength of the coupling between the
electron and phonon subsystems [136]. In Eq. (1.1), the first two terms correspond
to the terms for the individual electron and phonon subsystems, while the last line
corresponds to the term describing coupling between the electrons and phonons,
taken to first order with respect to the atomic displacements [74].

While Eq. (1.1) may look seemingly simple, chief among its difficulties is that there
is no prescribed way of calculating the quantities of interest: 𝜖𝑛k,𝜔q𝜈, and 𝑔𝑚𝑛𝜈 (k, q)
[74]. For most of the early history of the electron-phonon coupling problem, various
approximations were used for these three quantities [91]. Basic approximations of
the first two were simple to obtain, for instance, by approximating the quasiparticle
energies with the free electron gas model 𝜖𝑛k = ℏ2k2/2𝑚𝑒 − 𝜖 𝑓 , where 𝜖 𝑓 is the
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Fermi energy, and by using the Debye model 𝜔q𝜈 = 𝑣𝑠 |q| for the lattice vibrations
(where 𝑣𝑠 is the speed of sound in the solid in question). However, obtaining a
realistic approximation for the electron-phonon matrix elements 𝑔𝑚𝑛𝜈 (k, q) proved
to be more challenging [74].

The first expression of the electron-phonon matrix element 𝑔 was done by Bloch,
describing scattering from an initial electronic state with wavevector k to a final
state with wavevector k + q, due to interaction with an acoustic phonon [23]. With
modern notation, we may write it as:

𝑔𝑚𝑛𝜈 (k, q) = −𝑖
( ℏ

2𝑁𝑝𝑀𝜅𝜔q𝜈

)1/2
q · e𝜅𝜈 (q)𝑉0 (1.2)

Here, 𝑚 and 𝑛 are the band indices of k and k + q respectively, 𝜔q𝜈 is the frequency
of the phonon with wavevector q and phonon branch index 𝜈, 𝑀𝜅 is the mass of the
𝜅th nucleus, and 𝑒𝜅𝜈 (q) is the polarization of the acoustic wave in question [74].

One of the first computational approaches to tackling the problem of transport in
semiconductors was the deformation potential, formalized by Bardeen and Shockley
for materials with isotropic bandstructures in 1950 [13, 193]. Due to the fact that
most carriers in semiconductors are close in energy to the conduction band mini-
mum, it was assumed that small-wavevector phonons were the dominant electron-
phonon scattering mechanism. They showed that the effective potential 𝑉0 needed
in Eq. (1.2) can be approximated by:

𝑉0 → 𝐸1,𝑛k = Ω𝜕𝜖𝑛k/𝜕Ω (1.3)

Here, Ω is the volume of the unit cell, and 𝜖𝑛k are the electron eigenvalues of the
conduction band minima or valence band maxima. Generally, these deformation
potentials were determined empirically, by fitting to quantities such as the mobility.
Later, Dumke improved on this by addressing the common case of anisotropic
bandstructures using the effects of shearing deformations [51]. While this method
has the obvious drawbacks of relying on empirical data, disqualifying it from being
predictive for novel materials or under conditions that materials do not have a wealth
of experimental data at, it nevertheless became the dominant way of calculating the
electron-phonon interaction for the next decades.

For a long period of time, mainly Monte Carlo methods were used for the com-
putation of transport properties in semiconductors, usually relying on deformation
potentials and parametrized band structures. This method was introduced for the
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simulation of hot holes in Ge by Kurosawa [118], and was quickly iterated upon
and improved [119], investigating hot electron transport in semiconductors such as
GaAs [24] and InAs [55]. Further developments were made to this method, such as
including a magnetic field in the computation [2, 25], and examining the response
to a time-dependent electric field [121, 168, 169].

An approach to solving for hot-electron transport properties that deals with the
distribution function 𝑓 directly has clear advantages over the Monte Carlo method,
such as including phenomena that are nonlinear in 𝑓 such as Fermi degeneracy
and electron-electron scattering, and phenomena that are dependent on the low-
population tails of 𝑓 . However, two main obstacles have existed for this approach:
the details of the band structure and scattering rates required to achieve computa-
tional accuracy may have not been feasible, and the amount of grid points required
to represent 𝑓 (both in grid density and energy window) may have additionally been
computationally infeasible [170]. Such an approach dealing directly with 𝑓 was
first developed by Rees, exploiting the stability of the steady state [174, 175], and
was used to compute high-field properties in GaAs [176]. However, at this time,
the inputs to such a method were still crude — these problems used parabolic bands
and deformation potentials as inputs.

With the development of density functional theory to accurately predict electronic
band structures, and later density functional perturbation theory to predict lat-
tice dynamics, an ab-initio description of the electron-phonon interaction was more
computationally realistic. Recent advances in the first-principles treatment of charge
transport in semiconductors have enabled the calculation of the low-field electri-
cal mobility without any adjustable parameters [19, 74]. The method, based on
Wannier interpolation of electron-phonon matrix elements [146, 162], allows the
Boltzmann equation to be solved on a sufficiently fine grid to ensure converged
transport properties. Calculations of low-field mobility have been reported for
various semiconductors, including Si [57, 126, 163], GaAs [123, 129, 222], and
others [122, 135, 201]. Methodological developments continue to be reported, in-
cluding an ab-initio treatment of two-phonon scattering [123] and the quadrupole
electron-phonon interaction [161]. A recent work has extended these methods to
magnetotransport [49], high-field transport [137], and transport and noise of warm
and hot electrons in GaAs [40, 43] and holes in Si [35]. We outline the general
theory behind the calculations needed in this approach in the following subsections.
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Density functional theory

The first step in the ab-initio approach mentioned previously is to compute the
electronic band structure (and the crystal structure, if a relaxed lattice constant is
used) using density functional theory (DFT). Hohenberg and Kohn in 1964 [92]
proposed a formulation that applies to any system of interacting particles (in this
case, electrons and fixed nuclei). We can write the Hamiltonian for this problem in
the following manner:

�̂� = − ℏ2

2𝑚𝑒

∑︁
𝑖

∇2
𝑖 +

∑︁
𝑖

𝑉ext(r𝑖) +
1
2

∑︁
𝑖≠ 𝑗

𝑒2

|r𝑖 − r 𝑗 |
(1.4)

Here, the first term represents the kinetic energy of the electrons, the second the
potential energy due to the field of the fixed nuclei, and the third the electron-electron
interaction. The two theorems of Hohenberg and Kohn are as follows. First, for any
system of interacting particles subject to an external potential 𝑉ext(r), the ground-
state particle density 𝑛0(r) determines uniquely (up to a constant) the potential
𝑉ext(r). It follows that all the properties of the system are determined solely by the
ground-state density. Second, a universal functional for the energy 𝐸 [𝑛] in terms
of the density 𝑛(r) can be defined that is valid for any external potential𝑉ext(r), and
the ground-state energy is the global minimum value of the functional. In addition,
the ground-state density minimizes the functional. As a consequence of this, the
functional 𝐸 [𝑛] is enough to determine both the ground-state energy and density.
However, these theorems do not give us any insight into a direct way of solving this
many-body problem [138].

In 1965, Kohn and Sham proposed to replace the original many-body problem of
Eq. (1.4) with an auxiliary independent-particle (non-interacting) system [112]. It is
assumed that the density of the original system is equal to the non-interacting system.
This leads to independent particle equations for this non-interacting system that are
solvable numerically, thus giving us a way to approach the many-body problem in
practice. Using a variational approach, it can be shown that the equations that must
be solved are of the form:

(𝐻𝜎
KS − 𝜖

𝜎
𝑖 )𝜓𝜎𝑖 = 0 (1.5)

Here, 𝐻𝜎
KS is the effective Hamiltonian, 𝜖𝑖 are the Kohn-Sham eigenvalues, 𝜓𝑖 are the

eigenfunctions, and 𝜎 is an index representing the spin. The Kohn-Sham effective
Hamiltonian is defined as follows (in Hartree atomic units):

𝐻𝜎
KS(r) = −1

2
∇2 +𝑉𝜎KS(r) (1.6)
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Here, the Kohn-Sham potential 𝑉𝜎KS(r) is defined as:

𝑉𝜎KS = 𝑉ext(r) +𝑉Hartree(r) +𝑉𝜎xc(r) (1.7)

where the three contributions correspond to the external potential of the nuclei,
the Hartree contribution, and the exchange-correlation potential. It is important
to note that the eigenvalues and eigenfunctions of the Kohn-Sham Hamiltonian do
not directly correspond to the energies or wavefunctions of the many-body system
[138]. However, the approach of interpreting these eigenvalues and eigenfunctions
as quasiparticle energies and orbitals has led to wide success in predicting the
properties of solids [102, 145].

Density functional perturbation theory

Once we have used DFT to solve for the quasiparticle energies and wavefunctions,
the next step is to use density functional perturbation theory (DFPT) in order to
solve for the phonon dispersion [16], and in particular for the perturbation potential
due to lattice vibrations that is needed for the computation of the electron-phonon
matrix elements [223].

Once we have completed the DFPT calculations, we can obtain the electron-phonon
matrix elements. They are given by [223] as:

𝑔𝑚𝑛𝜈 (k, q) =
√︄

ℏ

2𝜔𝜈q

∑︁
𝜅𝛼

e𝜅𝜈𝛼 (q)√
𝑀𝜅

⟨𝜓𝑚k+q | 𝜕q,𝜅𝛼𝑉 |𝜓𝑛k⟩ (1.8)

Here, |𝜓𝑚k+q⟩ and |𝜓𝑛k⟩ are the final and initial Bloch states obtained from the Kohn-
Sham orbitals, and 𝜕q,𝜅𝛼𝑉 is the perturbation potential due to lattice vibrations. In
this case, it is computed as the variation of the Kohn-Sham potential 𝑉 with respect
to the atomic displacement of atom 𝜅 with mass 𝑀𝜅 along the Cartesian axis 𝛼,
which is obtained with negligible computational cost after the DFPT calculations
are complete [223].

Wannier interpolation

Once the electronic structure is computed with DFT and the phonon dispersion
is computed with DFPT, in principle, this is all that is needed to calculate the
electron-phonon matrix elements and rates. However, in order to converge transport
calculations using the matrix elements as inputs, a dense grid on the order of
100 × 100 × 100 is usually needed. In particular, doing direct DFPT calculations
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on such a dense grid is computationally prohibitive. In order to avoid this, Wannier
interpolation is used to interpolate the electron-phonon matrix elements on a coarse
grid (on the order of 10 × 10 × 10) to a denser grid in a computationally tractable
manner [223]. Wannier functions are orthogonal, real-space functions 𝐹 (R) used
to represent a state in reciprocal space 𝑓 (q) (in this case, the Bloch states). They
can be constructed with a unitary transformation from the Bloch states, chosen such
that the real-space functions are maximally localized in real space. Due to this
localization, 𝐹 (R) decays rapidly with |𝑅 |, and starting from this representation we
can interpolate 𝑓 (q) on a much denser grid with computational ease [140].

Boltzmann transport equation

Once the electron-phonon matrix elements are obtained, we can calculate the
electron-phonon scattering rates. With these, we are able to solve for observables
of the bulk system such as the electron mobility and drift velocity, using the Boltz-
mann transport equation (BTE). The BTE describes the evolution of a distribution
function 𝑓 of particles, subject to external fields. A general form of the equation
can be written as:

𝜕 𝑓 (r, k, 𝑡)
𝜕𝑡

=

(𝜕 𝑓
𝜕𝑡

)
drift

+
(𝜕 𝑓
𝜕𝑡

)
coll

(1.9)

Here, the two terms on the right side of the equation represent the effect of applied
forces (e.g. an electric or magnetic field), and the effect of internal collision
processes (in our case, scattering between electrons and phonons). By considering
the drift of the distribution function from a small volume 𝑑k𝑑r to 𝑑k′𝑑r′ in a time
Δ𝑡, the drift term can be expanded and the BTE rewritten as:

𝜕 𝑓 (r, k, 𝑡)
𝜕𝑡

+ 𝜕 𝑓
𝜕r

· v + 𝜕 𝑓
𝜕k

· 1
ℏ

(
𝑒E + v × B

)
=

(𝜕 𝑓
𝜕𝑡

)
coll

(1.10)

Here, we assume the external field are coupled electric and magnetic fields. In this
work, we only consider steady-state distributions, so 𝜕 𝑓 /𝜕𝑡 on the left of Eq. (1.10)
is set to zero, and by only considering homogeneous systems with no real-space
dependence, we may ignore any dependence on r. The chief difficulty in solving the
BTE is the description of the collision term. In Section 2.3, we show how starting
with Fermi’s golden rule and the electron-phonon matrix elements, the collision
term can be explicitly obtained for our case of electronic transport.
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1.2 Noise in semiconductors
Computations using the ab-initio description of the electron-phonon interaction
have mostly been applied to equilibrium observables such as the low-field mobility,
and only recently to high-field properties such as drift velocity versus electric field
curves. However, these methods have not been applied to the simulation of electronic
noise until this work (and by others in the group [35, 40, 200]). Having a better
understanding of the microscopic processes that underlie noise in semiconductor
devices is crucial in order to progress to lower-noise devices. For instance, the
noise performance of high electron mobility transistors (HEMTs), used frequently
in radio astronomy and quantum computing applications at cryogenic temperatures,
will set the noise floor of the entire device. The noise performance of an amplifier
is characterized by its noise temperature, and the theoretical lower limit of such a
device is set by quantum mechanics [36]. For instance, this lower bound is 0.3 K at
a frequency of 6 GHz. Currently, state-of-the-art devices have a noise temperature
approximately 5 to 10 times the quantum limit in the GHz range.

To model noise response in semiconducting devices, the traditional method is to
use equivalent circuit models, such as the Pospieszalski model [166]. Here, the
behavior of the device at the connecting terminals is represented by circuits of
lumped two-terminal elements, representing inductance, capacitance, and resistance
[84]. However, this sort of simplistic representation is limiting due to the wide range
of complex phenomena that occur in both charge and heat transport in devices. Here,
we focus on ab-initio calculations that represent atomistically pure and homogeneous
semiconductors. This work will develop greater understanding of the fundamental
mechanisms that contribute to noise in these more simplified cases, and then that
knowledge can be applied to devices in the future.

We can divide the most important sources of electronic noise in semiconductors
into five types; thermal, shot [22], 1/ 𝑓 [94], generation-recombination [111], and
hot electron noise. The thermal noise is caused by the normal thermal motion of
the carriers, and is given at equilibrium by the Nyquist theorem. However, if an
electric field biases the distribution far from equilibrium, the electron temperature
can be much greater than the lattice temperature and the properties of the noise are
highly dependent on the nonequilibrium conditions. In this work, we focus on the
description of hot electron noise. In most past works on hot electron fluctuational
phenomena in semiconductors, the diffusion coefficient is what is computed or
measured. The idea of a diffusion coefficient in electronic transport that is not



9

necessarily at equilibrium but driven by an electric field was first proposed by
Wannier. Price derived that the diffusion coefficient and the power spectral density
(PSD) of current fluctuations are linked by a fluctuation-diffusion relation.

When the electric field is small, the diffusion coefficient 𝐷 is linearly proportional
to the electron mobility 𝜇, as given by the Einstein relation:

𝐷 =
𝜇𝑘𝐵𝑇

𝑞
(1.11)

where 𝑇 is the temperature and 𝑞 the electronic charge. However, away from low
fields this relation does not apply, as the distribution function is no longer near
equilibrium and is not described by the Boltzmann distribution. Instead, a more
generalized form for the diffusion coefficient can be derived [170]:

𝐷 =
1
2
𝑑

𝑑𝑡
⟨(𝑥(𝑡) − ⟨𝑥(𝑡)⟩)2⟩ (1.12)

where 𝑥(𝑡) is the position of the particle at time 𝑡, and the averages are over
an ensemble of histories. This result follows from Fick’s law [169]. However,
this result is for the zero-frequency diffusion coefficient. To obtain the frequency
dependence of the diffusion coefficient, one must utilize the following [84, 194]:

𝐷 (𝜔) =
∫ ∞

−∞
𝐶 (𝑡)𝑒−𝑖𝜔𝑡𝑑𝑡 (1.13)

Here, 𝐶 (𝑡) is the autocorrelation function, defined as [213]:

𝐶 (𝑡) = ⟨Δ𝑣(𝑡′)Δ𝑣(𝑡′ + 𝑡)⟩ (1.14)

where Δ𝑣(𝑡) = 𝑣(𝑡) − ⟨𝑣(𝑡)⟩. To remove the time-dependence of the autocorrelation
function, the velocity calculated must be in steady-state.

Similarly to how problems of hot electron transport in semiconductors were solved
with Monte Carlo methods chiefly starting in the 1960s, so too were computations of
electronic fluctuations in semiconductors. Most often, the diffusion coefficient was
the observable in question that was computed. As positional coordinates are easily
included in a Monte Carlo scheme, we can easily use Eq. (1.12) for calculations
of the diffusion coefficient, for instance. The variation of the diffusion coefficient
with electric field was computed in such a manner for many semiconductors, such
as GaAs [54, 216], CdTe [173], Si [29, 33, 117], InP [88], and Ge [34]. While
these methods used limiting assumptions such as deformation potential scattering
for acoustic phonons, dispersionless optical phonons, and simplified (spherical)
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band structures, nevertheless reasonable agreement with experiment was obtained
in many of these investigations [53, 88, 101, 117, 216].

Simultaneously in the 1960s, Lax’s general kinetic theory for fluctuations in a
Markovian system [120] was applied by Gantsevich and colleagues to dilute gases
whose one-particle distribution function is governed by the linear Boltzmann equa-
tion. They showed that for such a system, the spectral density of current fluctuations
could be obtained only using solutions of linear Boltzmann equations [66]. Using
this general approach, Stanton and Wilkins were able to demonstrate qualitative
agreement with experiment in GaAs for both one [197] and two [198] valley sys-
tems. However, these works too also relied on experimental parameters such as the
measured low-field mobility, valley separation energies, and effective masses.

The limitation of the above approaches lies in their reliance on empirical data and
parameterized band structures or scattering rates. By definition, the only materials
that can be investigated using such an approach are those that have a wealth of
empirical data about their scattering mechanisms. In this work, we use a method
to solve for the spectral density of current fluctuations with ab-initio inputs, by
solving a linear Boltzmann equation. By doing this, we are able to probe specific
phenomena such as intervalley scattering in established semiconductors, as well as
being able to examine the noise response of novel materials such as cubic boron
nitride. In addition, because fluctuational variables are more sensitive to the exact
description of the electronic band structure, phonon dispersion, and scattering rates
(for instance), the noise-related aspect of this work serves as a further, more rigorous
test of ab-initio methods in semiconductors.

In Fig. 1.1, the computational workflow for the approach that is used in this work
is shown. First, the atomic identities and lattice vectors are specified in Quantum
Espresso, which is then used to solve for the electronic structure via DFT. DFPT is
used to solve for the lattice dynamics, and Perturbo calculates the electron-phonon
matrix elements and interpolates them to a fine grid. Once the electron-phonon
matrix elements are obtained, we use these to solve the Boltzmann transport equation
for the distribution function (for transport observables), and for the fluctuation
autocorrelation function (for fluctuational observables).

1.3 Outline of thesis
In this thesis, we show how our first-principles calculations give us insight into both
low- and high-field transport phenomena, as well as fluctuational observables, in
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Figure 1.1: Computational workflow showing the approach used in this work. The
material is specified by a Quantum Espresso input file, which is then used to solve
for the electronic structure. After DFPT is used to solve for the lattice dynamics,
Perturbo is used to obtain the Wannier-interpolated electron-phonon matrix ele-
ments. Our code then solves the Boltzmann transport equation, for the distribution
function (for transport observables), and for the fluctuation autocorrelation function
(for fluctuational observables).

both well-researched and novel semiconductors.

In Chapter 2, we demonstrate how our approach is used to solve the Boltzmann
transport equation (BTE) for high-field transport properties, and use this approach to
solve for the warm electron tensor in n-Si. We show that while the usual one-phonon
(1ph) framework captures qualitative changes of the warm electron tensor with an-
gle, including one-electron-two-phonon scattering (2ph) yields near-quantitative
agreement. We find that the 2ph rates are comparable in size to the 1ph rates, con-
tradicting conventional wisdom that the 1ph level of theory is sufficient to describe
transport properties in nonpolar semiconductors.

Motivated by our results in Chapter 2, we further examine n-Si by focusing on the role
of intervalley noise. We show how our BTE solver can also solve for fluctuational
properties, and compute the dependence of the hot electron diffusion coefficient
on electric field across a wide range of temperatures. We then use the frequency
dependence of the diffusion coefficient and the piezoresistivity, two observables that
are sensitive to the amount of f-type scattering, to show that an incorrect description
of f-type scattering is not sufficient to explain the discrepancy between experiment
and computation. This suggests that factors such as space charge effects have a
large effect in experiment, indicating that caution must be taken when interpreting
measurements of fluctuational variables in terms of charge transport processes.

In Chapter 4, we examine the novel ultra-wide-bandgap semiconductor cubic boron
nitride (c-BN) and its high-field transport and noise properties, using the approach
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outlined in Chapter 2 and Chapter 3. We find that c-BN demonstrates a distinct
negative differential resistance region below 140 K, due to repopulation of inequiv-
alent valleys. This effect may be utilized in transferred-electron devices. We also
find that at low fields, the intervalley time in c-BN is on the order of microseconds,
indicating that it could be promising in valleytronic applications. We demonstrate
that these properties are the cause of the large intervalley noise peak in c-BN, a peak
that has not been observed in other materials using our method, and suggest that our
predictions may be tested by utilizing noise measurements.

Finally, in Chapter 5 we summarize the findings from the above work, and make
suggestions as to avenues for future investigation.
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C h a p t e r 2

TWO-PHONON SCATTERING IN NONPOLAR
SEMICONDUCTORS: A FIRST-PRINCIPLES STUDY OF WARM

ELECTRON TRANSPORT IN SI

This chapter has been adapted, in part, from:

Alexander Y. Choi, Peishi S. Cheng, Benjamin Hatanpää, and Austin J. Minnich.
Electronic noise of warm electrons in semiconductors from first principles. Phys.
Rev. Materials, 5:044603, Apr 2021. https://link.aps.org/doi/10.1103/
PhysRevMaterials.5.044603
B.H. co-wrote the code used in the manuscript.

Benjamin Hatanpää, Alexander Y. Choi, Peishi S. Cheng, and Austin J. Minnich.
Two-phonon scattering in nonpolar semiconductors: A first-principles study of
warm electron transport in si. Phys. Rev. B, 107:L041110, Jan 2023. https:
//link.aps.org/doi/10.1103/PhysRevB.107.L041110
B.H. co-designed the research, conducted the calculations, analyzed the data, and
wrote the manuscript.

We have discussed in Chapter 1 how in recent years, the first-principles description
of the electron-phonon interaction has become widespread. With this, the ability to
calculate macroscopic transport properties has also become common [57, 122, 126,
135, 163, 201, 222]. The accuracy of first-principles theory has been tested primarily
by computing the low-field mobility and comparing to the available experimental
data at various temperatures and doping concentrations. However, there exists the
possibility of cancellation of errors when comparing to drift velocity curves: if the
drift velocity is underestimated, but the decrease in drift velocity with field is also
underestimated, it can lead to apparent agreement with drift velocity versus field
curves. Thus, it is preferable to use a quantitative measure of the change of mobility
with field when comparing to experiment. To do this, we can examine the warm
electron regime.

The warm electron regime is defined as the regime in which the next-to-leading order
term of the expansion of current density with electric field is non-negligible. It is of
interest because it contains information on the band structure anisotropy [189] and

https://link.aps.org/doi/10.1103/PhysRevMaterials.5.044603
https://link.aps.org/doi/10.1103/PhysRevMaterials.5.044603
https://link.aps.org/doi/10.1103/PhysRevB.107.L041110
https://link.aps.org/doi/10.1103/PhysRevB.107.L041110
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energy relaxation [47] not evident in the low-field mobility. The non-Ohmic mobility
of Ge and Si beyond the low-field regime was first reported by Shockley [184] and
Ryder [183]. Subsequent investigation led to the prediction [192] and experimental
observation [73, 79, 104, 106, 187] of the anisotropy of the mobility at high electric
field in multi-valley semiconductors owing to the differential heating of transverse
and longitudinal valleys, known as the Sasaki-Shibuya effect. In 1963, Schmidt-
Tiedemann reported a theory of the warm electron tensor, showing that in cubic
crystals the fourth-rank warm electron tensor can be completely described by two
independent components owing to crystal symmetry [189]. The two independent
components are denoted 𝛽 and 𝛾, with 𝛽 describing the variation of conductivity with
electric field and 𝛾 the non-parallelism of the current and electric field. Substantial
experimental data versus temperature and crystallographic direction is available for
both 𝛽 and 𝛾 for electrons in Si [28, 73, 78, 106, 108].

Although scattering by the interaction of an electron with one phonon (1ph) has
typically been employed in theoretical and Monte Carlo studies at low field and in
the warm electron regime to interpret transport studies, [6, 45, 56, 78, 104] other
experiments suggest a non-negligible role for higher-order processes [50, 61, 199,
207]. In Si, two-phonon (2ph) deformation potentials were extracted from second-
order Raman spectra [177, 206], and calculations of charge transport properties
based on these values have indicated that 2ph scattering may make a non-negligible
contribution to scattering rates [3, 115, 153]. Recent ab-initio works have reported
that two-phonon scattering plays a role in both low-field and high-field transport
in the polar semiconductor GaAs [40, 123]. Despite these works, the accepted
conclusion from ab-initio studies is that 1ph scattering is sufficient to describe the
low-field mobility of non-polar semiconductors [135]. However, this conclusion has
not been extensively tested away from the low-field regime.

In this chapter, we report first-principles calculations of the warm electron tensor
in Si. At the 1ph level of theory, both the low-field mobility and 𝛽 are overesti-
mated, with a marked discrepancy of 𝛽 at 300 K of over a factor of two. To address
this discrepancy, we compute the scattering due to sequential 1ph processes, cor-
responding to one of the terms at second-order in the electron-phonon interaction.
The scattering rates are found to be comparable to those of 1ph scattering over a
range of energies, and their inclusion eliminates the discrepancy in 𝛽. The result-
ing ∼ 20% underestimate of mobility suggests that accounting for cancellations of
the two second-order terms of the electron-phonon interaction may be necessary to
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achieve quantitative agreement for both the mobility and 𝛽.

2.1 Crystal structure and band structure of Si
Silicon (Si) is an elemental semiconductor with the diamond cubic lattice structure.
The experimental lattice parameter of Si is 5.43 Å [141]. Once the initial atomic
positions and lattice vectors are specified, this is all that is needed for the first-
principles analysis contained herein. The band structure of Si is shown in Fig. 2.1.
Si is an indirect bandgap semiconductor, with its valence band maximum at Γ, but
with its conduction band minimum lying between Γ and 𝑋 , at approximately 0.85𝑋 .
Thus, Si has six equivalent minima in the conduction band. These bands have a
longitudinal effective mass of 0.98𝑚0, and a transverse effective mass of 0.19𝑚0 [7].
We focus on the conduction band here, as we only consider the transport properties
of electrons in this work.

One can see how these equivalent valleys with anisotropic effective masses can lead
to anisotropy in transport properties away from equilibrium. To illustrate this, we
have provided Fig. 2.2. Here, we have shown the valleys oriented along [100] and
[010] ([001] omitted for ease of understanding). First, on the left we show a case
where the field is oriented along a high-symmetry direction like the [111]. Here,
the valleys do not change in their population from equilibrium, and make equal
contributions to the drift velocity. However, on the right the field is now oriented
along the [100]. The [100] valleys, now parallel to the field direction, present their
heavier longitudinal effective mass along this direction, while the [010] valleys have
their light transverse effective mass along this direction. This causes the [010]
valleys to heat faster, and thus the probability for an electron in a hot (high energy,
in red) valley to scatter to a cold (low energy, in blue) valley is higher than than
the probability for an electron in a cold valley to scatter to a hot valley, causing a
repopulation to the cold valleys along the [100]. This phenomena leads to a drop in
the drift velocity in comparison to the case in which the field is applied along a high-
symmetry axis. This repopulation effect is key to the anisotropy that is observed in
the drift velocity [31], warm electron tensor [79], and diffusion coefficient [29] in
n-Si.

One sees in Fig. 2.1 that further up the conduction band, Si possesses six equivalent
minima directly at the 𝑋 point, separated from the conduction band minima by
an energy of approximately 135 meV. However, for the temperatures and fields
considered in this work, a vast majority of the carriers will remain below this energy,
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Figure 2.1: Wannier-interpolated band structure of silicon, showing the three highest
valence bands and two lowest conduction bands. The conduction band minimum
can be seen at 0.85X going from Γ-X, and the split-off bands are shown in the
valence band with their maximum at Γ.

and other bands besides the lowest-lying conduction band are not considered.

2.2 The warm electron tensor
The warm electron regime is defined by electric fields for which the cubic term of
the expansion of current density with electric field becomes non-negligible [189].
Mathematically, the current density vector j in the warm electron regime can be
expanded in powers of the electric field of magnitude 𝐸 as:

𝑗𝑖 = 𝐸𝜎0𝑒𝑖 + 𝐸3𝜎𝑖𝑘𝑙𝑚𝑒𝑘𝑒𝑙𝑒𝑚 + ... (2.1)

where 𝑒𝑖 are the components of the unit vector in the direction of the electric field
along the Cartesian axis 𝑖 and 𝜎𝑖𝑘𝑙𝑚 is the fourth-rank warm electron conductivity
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Figure 2.2: Schematic showing how anisotropy in drift velocity of n-Si at high fields
occurs due to repopulation from “hot” to “cold” valleys when the electric field is
applied along [100] (on the right), in comparison to the case where it is applied
along the [111] and valleys are equivalent (on the left).

tensor. As this tensor is invariant under the point group transformations of the crystal
lattice, this implies that a set of linear relations between the components of the
tensor exist [189]. For cubic crystals with class 23 symmetry, we find that only three
linearly independent components exist, by exploiting cyclic permutation properties
and that the tensor in this case is invariant under an arbitrary permutation of the
last three subscripts. These components are 𝜎1111, 𝜎1122, and 𝜎2211. Furthermore,
for the materials we consider in this work, the fourfold axis guarantees complete
equivalency of each coordinate axis, making the tensor invariant under arbitrary
permutations of all four subscripts. This reduces the number of linearly independent
components to just two: 𝜎1111 and 𝜎1122. We can define the two variables 𝛽 and
𝛾 in cubic crystals, to fully describe warm electron transport. Here, 𝜎1111 = 𝜎0𝛽

and 𝜎1122 = 1
3𝜎0(𝛽 − 𝛾). Here, 𝛽 describes the rate change of the conductivity,

and 𝛾 describes the non-parallelism of the electric field and current density vectors.
Equivalently, the warm electron tensor can be specified by the values of 𝛽 along
different crystallographic axes, and that is what is done in this work.

In Fig. 2.3, the experimental setup for measuring 𝛽 (as well as 𝛾, the non-parallelism)
is shown. Here, the electric field is applied to a sample and then rotated, starting
from the [001] direction through to the [110] direction. The angle 𝜃 measures the
angle of the electric field vector and the [001] direction (at 0 deg, the electric field is
oriented in the [001] and at 90 deg, the electric field is in the [110]), and the angle
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𝜓 can be used to calculate 𝛾, the non-parallelism of the field. In this work we do
not calculate the non-parallelism, but we calculate 𝛽 along this angle sweep.

Figure 2.3: Schematic of experimental setup to measure 𝛽 and 𝛾, used (for instance)
in Refs. [106, 189]. The electric field is rotated from the [001] to the [110] direction,
and the value of 𝛽 is recorded at intermediate angles, as well as the non-parallelism
𝛾.

In the same way that the normal low-field conductivity is controlled by the momen-
tum relaxation time 𝜏𝑚 (by “controlled” we mean that frequency dependence of the
quantity in question is observed when the frequency 𝜔 is comparable to the inverse
relaxation time that is relevant for the quantity), for warm electrons 𝛽 is controlled
by the energy relaxation time 𝜏𝑒 (due to the additional time that the electron energy
needs to reach a stationary state at a given electric field strength) [100]. This quantity
can be defined in a phenomenological way as follows:

𝑒𝑣𝑑𝐸 =
⟨𝜖⟩ − ⟨𝜖⟩0

𝜏𝑒
(2.2)

where 𝑣𝑑 is the drift velocity, ⟨𝜖⟩ is the mean energy in the presence of the applied
electric field, and ⟨𝜖⟩ is the mean energy with no field present [100]. Thus, calculat-
ing 𝛽 gives us additional insight into the relaxation times that govern semiconductor
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transport, as opposed to simply calculating the low-field mobility. The warm elec-
tron tensor has not been calculated previously by ab-initio methods, but provides
a more quantitative comparison between experiment and computation of how the
mobility changes with applied electric field. For instance, at a glance computed
mobility versus electric field results could closely resemble experimental data, but
if the mobility is slightly underestimated but 𝛽 is slightly underestimated as well,
this perceived agreement is misleading.

If the addition of the 2ph rates to the 1ph causes a uniform scaling of the scattering
rates by a factor 𝜖 , 𝛽 is scaled by 𝜖−2, rather than 𝜖−1, as is the case for the mobility.
However, the 2ph rates generally are not an exact scaling of the 1ph rates. Here, we
derive the dependence of the warm electron coefficient 𝛽 on the scattering rates at
different energies, in comparison to the low-field mobility 𝜇. We employ Boltzmann
transport theory for charge transport assuming an isotropic crystal and the relaxation
time approximation. An electric field is applied along some crystallographic axis,
denoted 𝑥. Under these assumptions, the Boltzmann transport equation (neglecting
real-space and time dependence) is:

𝑒E𝑣𝑥
𝜕 𝑓

𝜕𝐸
= − 𝑓 − 𝑓0

𝜏(𝐸) (2.3)

The solution of this equation at first order in electric field yields the standard
expression for the low-field solution of the Boltzmann equation under the relaxation
time approximation:

𝑓 = 𝑓0 − 𝜏𝑣𝑥𝑒E
𝜕 𝑓0
𝜕𝐸

(2.4)

from which the following expression for the low-field mobility is obtained [37]:

𝜇𝑒 =

𝑒
3

∫ ∞
0 𝑣(𝐸)2𝜏(𝐸) (−𝜕 𝑓0/𝜕𝐸)𝐷 (𝐸)𝑑𝐸∫ ∞

0 𝑓0𝐷 (𝐸)𝑑𝐸
(2.5)

where 𝑣(𝐸) is the magnitude of the group velocity, 𝜏(𝐸) is the electron relaxation
time, 𝑓0 is the equilibrium distribution function, and 𝐷 (𝐸) is the density of states.

To find an analytic expression for the field-dependent mobility in the form 𝜇(𝐸) =
𝜇0(1 + 𝛽E2) using Eq. 2.5, we replace the equilibrium distribution derivative term
(𝜕 𝑓0/𝜕𝐸) in Eq. 2.5 with the derivative of Eq. 2.4 repeatedly, retaining only terms
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of E2 (terms of order E are dropped as the final expression for electric current must
be odd in electric field). In more detail, if we take the derivative of Eq. 2.4 with
respect to 𝐸 , we get

𝜕 𝑓

𝜕𝐸
=
𝜕 𝑓0
𝜕𝐸

+ 𝑒E 𝜕

𝜕𝐸

(
𝜏𝑣𝑥

𝜕 𝑓0
𝜕𝐸

)
(2.6)

Plugging in the expansion in Eq. 2.4 again for the second derivative term, we obtain

𝜕 𝑓

𝜕𝐸
=
𝜕 𝑓0
𝜕𝐸

+ 𝑒E 𝜕

𝜕𝐸

(
𝜏𝑣𝑥

𝜕 𝑓0
𝜕𝐸

+ 𝑒E 𝜕

𝜕𝐸

(
𝜏𝑣𝑥

𝜕 𝑓0
𝜕𝐸

))
(2.7)

Discarding the terms of order E due to symmetry, Eq. 2.7 becomes

𝜕 𝑓

𝜕𝐸
=
𝜕 𝑓0
𝜕𝐸

+ (𝑒E)2 𝜕2

𝜕𝐸2

(
𝜏𝑣𝑥

𝜕 𝑓0
𝜕𝐸

)
(2.8)

To simplify this expression, we assume that 𝑓0 ∝ 𝑒−𝐸/𝑘𝑇 , 𝑣𝑥 ∝
√
𝐸 for a parabolic

band, and 𝜏 ∝ 𝐸 𝑠. The prefactors for these quantities are lumped into a constant,
𝑐0. Plugging these expressions into Eq. 2.8, we obtain

𝜕 𝑓

𝜕𝐸
=
𝜕 𝑓0
𝜕𝐸

−
( 𝑐0
𝑘𝑇

)
(𝑒E)2 𝜕2

𝜕𝐸2

(
𝐸 𝑠+0.5𝑒−𝐸/𝑘𝑇

)
(2.9)

Carrying out the second derivative with respect to energy 𝐸 in Eq. 2.9, we obtain

𝜕 𝑓

𝜕𝐸
=
𝜕 𝑓0
𝜕𝐸

−
(
𝑐0𝑒

−𝐸/𝑘𝑇

𝑘𝑇

)
× (𝑒E)2 ×(

(𝑠 + 0.5) (𝑠 − 0.5)𝐸 𝑠−1.5 −
(

2
𝑘𝑇

)
(𝑠 + 0.5)𝐸 𝑠−0.5 +

(
1
𝑘𝑇

)2
𝐸 𝑠+0.5

) (2.10)

We therefore identify an expression for 𝛽 up to a prefactor as

𝛽 ∝
∫ ∞

0
𝑣(𝐸)2𝜏(𝐸)𝑒−𝐸/𝑘𝑇×(

(𝑠 + 0.5) (𝑠 − 0.5)𝐸 𝑠−1.5 −
(

2
𝑘𝑇

)
(𝑠 + 0.5)𝐸 𝑠−0.5 +

(
1
𝑘𝑇

)2
𝐸 𝑠+0.5

)
𝐷 (𝐸)𝑑𝐸

(2.11)
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by the definition of mobility in Eq. 2.5 and gathering the terms at each order of
electric field.

This expression can be simplified by substituting the energy dependencies of 𝑣(𝐸)
and 𝐷 (𝐸) ∝

√
𝐸 for a parabolic band and the assumed power law form for 𝜏(𝐸).

For the mobility, we obtain

𝜇0 ∝
∫ ∞

0
𝐸 𝑠+1.5𝑒−𝐸/𝑘𝑇𝑑𝐸 (2.12)

For 𝛽, we find

𝛽 ∝
∫ ∞

0
𝑒−𝐸/𝑘𝑇×(

(𝑠 + 0.5) (𝑠 − 0.5)𝐸2𝑠 −
(

2
𝑘𝑇

)
(𝑠 + 0.5) 𝐸2𝑠+1 +

(
1
𝑘𝑇

)2
𝐸2𝑠+2

)
𝑑𝐸

(2.13)

Due to the terms with 𝐸2𝑠 and 𝐸2𝑠+1 in the expansion for 𝛽, the contribution to the
integral from low energies is increased compared to that for the low-field mobility.
For instance, for 𝑠 < 0 as occurs for most semiconductors, the leading term in the
integrand for 𝛽will have a negative exponent, causing 𝛽 to depend on the low-energy
scattering rates to a larger extent compared to the low-field mobility.

2.3 Solving the BTE for charge transport
Here, we will start with the BTE for a case with an applied electric field and no real-
space dependency or time dependence (only solving for the steady-state distribution),
and show how the BTE can be formulated in terms of a linear system and solved
for charge transport observables of interest. For a spatially homogeneous, non-
degenerate electron gas subject to an applied electric field, the Boltzmann equation
is given by

𝑞E
ℏ

· ∇k 𝑓k = I[ 𝑓k] (2.14)

Here, the electronic charge is 𝑞, the applied electric field is E, 𝑓k is the electron
occupation function at wavevector k, and I is the collision integral that represents
how electrons scatter from a state k to any other state k′. In this work, we do not
need to account for interband scattering, so the band index is neglected in the above
equation and hence on. In this case, the scattering in the collision integral is solely
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due to electron-phonon scattering, which is the dominant form of scattering at high
enough temperatures, and at non-degenerate carrier concentrations. Initially, we
consider only scattering for processes that involve one electron k and one phonon q,
causing scattering to a new electronic state k′. Later in this work in Chapter 3, we
also consider two-phonon scattering where one electron scatters with consecutive
one-phonon events.

First, we show how to reduce the collision integral to a linearizable form in terms of
the deviational occupation. In general, the collision integral is a nonlinear function
of the distribution function, obtained from Fermi’s Golden Rule [225]. We can
write the collision integral in the following form:

I[ 𝑓k] = − 2𝜋
𝑁ℏ

∑︁
q

��𝑔k,k+q
��2 (
𝛿(𝜖k−ℏ𝜔q−𝜖k+q)𝐻em+𝛿(𝜖k+ℏ𝜔q−𝜖k+q)𝐻abs

)
(2.15)

Here, 𝑁 is the total number of q-points, 𝑔k,k+q is the electron-phonon coupling matrix
element that couples an electron state k to another electron state k+ q (via emission
or absorption of a phonon with wavevector q), 𝜖k is the energy of the electron state
k, 𝜔q the frequency of phonon q, and 𝐻em and 𝐻abs weights that account for the
electron and phonon occupations for emission and absorption events, respectively.
𝐻em and 𝐻abs are nonlinear functions of the electron occupations, defined by

𝐻em = 𝑓k(1 − 𝑓k+q) (𝑁q + 1) − (1 − 𝑓k) 𝑓k+q𝑁q

𝐻abs = 𝑓k(1 − 𝑓k+q)𝑁q − (1 − 𝑓k) 𝑓k+q(𝑁q + 1)
(2.16)

Here, 𝑁q is the phonon distribution function, which we assume to be in equilibrium
and thus given by the Bose-Einstein distribution. In order to solve the BTE as a
linear system for the deviational occupation Δ 𝑓k, we define 𝑓k = 𝑓 0

k + Δ 𝑓k, where
𝑓 0
k is the Fermi-Dirac distribution and Δ 𝑓k is the deviational occupation. This

expansion assumes that the occupations do not change a significant degree from
their equilibrium values — valid at equilibrium and in the warm electron region,
but not at high electric fields. After substituting this expansion into Eq. (2.16), with
a bit of algebra (keeping in mind the definitions of 𝑁q and 𝑓 0

k ) we obtain:

𝐻em = Δ 𝑓k(𝑁q − 𝑓 0
k+q + 1 − Δ 𝑓k+q) − Δ 𝑓k+q( 𝑓 0

k + 𝑁q)

𝐻abs = Δ 𝑓k(𝑁q + 𝑓 0
k+q + Δ 𝑓k+q) − Δ 𝑓k+q(1 + 𝑁q − 𝑓 0

k )
(2.17)
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By retaining only terms linear in Δ 𝑓k (terms of the type Δ 𝑓kΔ 𝑓k+q can be assumed
negligible if the deviational occupations are small, as is true in the low-field regime),
this becomes

𝐻em = Δ 𝑓k(𝑁q − 𝑓 0
k+q + 1) − Δ 𝑓k+q( 𝑓 0

k + 𝑁q)

𝐻abs = Δ 𝑓k(𝑁q + 𝑓 0
k+q) − Δ 𝑓k+q(1 + 𝑁q − 𝑓 0

k )
(2.18)

This approach is used (and valid) for all computations in this section. However,
in Chapter 3, computations are extended to fields up to 10 kV cm−1. For those
sections, we note that all concentrations used are non-degenerate, and that the
electron occupations 𝑓k (and thus also the deviational occupations Δ 𝑓k) are much
less than the phonon occupations 𝑁q. Thus, we can take Eq. (2.17) and simplify it,
using 𝑓k ≪ 1 to obtain:

𝐻em = Δ 𝑓k(𝑁q + 1) − Δ 𝑓k+q(𝑁q)
𝐻abs = Δ 𝑓k(𝑁q) − Δ 𝑓k+q(1 + 𝑁q)

(2.19)

Using the linearization in Eq. (2.19), we can define a scattering matrix Θ, to take
the place of the collision integral:

I[ 𝑓k] =
∑︁
k′

Θk,k′Δ 𝑓k′ = − 2𝜋
𝑁ℏ

∑︁
q

��𝑔k,k+q
��2 ×(

(𝛿(𝜖k − ℏ𝜔q − 𝜖k+q) (𝑁q + 1) + 𝛿(𝜖k + ℏ𝜔q − 𝜖k+q)𝑁q)Δ 𝑓k−
((𝛿(𝜖k − ℏ𝜔q − 𝜖k+q)𝑁q + 𝛿(𝜖k + ℏ𝜔q − 𝜖k+q) (𝑁q + 1)) 𝑓k+q)

(2.20)

Now that the right hand side of Eq. (2.14) is reduced to matrix form, we tackle the
left side. The derivative of the equilibrium occupation function 𝑓 0

k with respect to
k can be analytically computed:

∇k 𝑓
0
k =

𝑑𝑓 0
k

𝑑𝜖k

𝑑𝜖k
𝑑k

= − ℏ

𝑘𝐵𝑇
vk 𝑓

0
k (1 − 𝑓 0

k ) (2.21)

However, we must still compute the derivative of the deviational occupationΔ 𝑓 0
k with

respect to k. We treat this term numerically with a finite difference approximation
using a nearest-neighbors central difference scheme [140, 146]. This reduces the
derivative to the form:
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∇kΔ 𝑓k =
∑︁

b
𝑤𝑏b(Δ 𝑓k+b − Δ 𝑓k) (2.22)

Here, b is the set of vectors that connect the point k in the Brillouin zone to all of its
nearest neighbors, and 𝑤𝑏 is a weighting constant for that set of nearest neighbors.
To determine the weights and number of nearest-neighbor “shells” that must be used
for the set of grid points, the following equation must be satisfied:

𝑁∑︁
𝑎

𝑤𝑎

𝑀∑︁
𝑖

𝑏𝑖,𝑎𝛼 𝑏
𝑖,𝑎

𝛽
= 𝛿𝛼𝛽 (2.23)

where 𝑁 is the number of shells required, 𝑀 is the number of nearest neighbors
in the 𝑎th shell, 𝑤𝑎 is the weight associated with the 𝑎th shell, and 𝛼 and 𝛽 are
Cartesian directions. For a body-centered cubic lattice (which all of the grids used
in this work are), one shell is sufficient to satisfy Eq. (2.23), and𝑤𝑏 is equal to 3/8𝑏2,
where 𝑏 = |b|. We can write Eq. (2.22) in matrix form, including all prefactors, as

𝑞E
ℏ

· ∇kΔ 𝑓k =
∑︁
𝛼

∑︁
b

𝑞𝐸𝛼

ℏ
𝑏𝛼𝑤𝑏 (Δ 𝑓k+b − Δ 𝑓k) =

∑︁
𝛼

∑︁
k′

𝑞𝐸𝛼

ℏ
𝐷𝛼

k,k′Δ 𝑓k′ (2.24)

Here, we define a finite-difference matrix 𝐷𝛼 corresponding to the component of the
electric field applied in the Cartesian direction 𝛼, where 𝐷𝛼

k,k′ is only nonzero when
k′ = k or when k′ is a nearest neighbor of k, linked by some nearest neighbor vector
b so that k′ = k+b. As the points in question represent electron states with an energy
below some specified energy level, there will be boundary points without a full set
of nearest neighbors. In order to account for this, we remove the contributions of
these points in the finite difference matrix, while ensuring the column sum of the
matrix remains zero (which ensures the sum of Δ 𝑓k over all k at any field remains
zero). This is a valid assumption, if the population of the boundary points remains
negligible.

A simple schematic of how this finite difference process works is shown below in
Fig. 2.4, for a case of five points 𝑥𝑖 each with a scalar function value 𝑓 (𝑥𝑖), where
𝑥𝑖+1 − 𝑥𝑖 = 1. The finite difference matrix is pictured on the left, and on the right is
the derivative vector. The contribution of the boundary points 𝑥1 and 𝑥5 in the finite
difference matrix is nil, ensuring zero column sum of the finite difference matrix.
This assumption is valid if 𝑓 (𝑥1), 𝑓 (𝑥5) ∼ 0.
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Figure 2.4: Schematic of how the finite-difference matrix acts on a 1D chain.
Boundary points are not considered in the finite-difference matrix.

Combining Eq. (2.20), Eq. (2.21), and Eq. (2.24), we can rewrite Eq. (2.14) as:

− 𝑞E
𝑘𝐵𝑇

vk 𝑓
0
k (1 − 𝑓 0

k ) +
∑︁
𝛼

∑︁
k′

𝑞𝐸𝛼

ℏ
𝐷𝛼

k,k′Δ 𝑓k′ =
∑︁
k′

Θk,k′Δ 𝑓k′ (2.25)

Rearranging to put the analytic expression by itself on the right side, we obtain:∑︁
k′

(∑︁
𝛼

𝑞𝐸𝛼

ℏ
𝐷𝛼

k,k′ − Θk,k′

)
Δ 𝑓k′ =

∑︁
k′

Λk,k′Δ 𝑓k′ =
𝑞E
𝑘𝐵𝑇

vk 𝑓
0
k (1 − 𝑓 0

k ) (2.26)

Here, we have defined Λk,k′ as a relaxation operator that combines the effects of the
scattering and finite difference matrices. As this is now written as a linear system,
we can solve for the deviational occupation Δ 𝑓k as:

Δ 𝑓k =
∑︁
k′

Λ−1
k,k′

( 𝑞E
𝑘𝐵𝑇

vk 𝑓
0
k (1 − 𝑓 0

k )
)

(2.27)

Once the deviational occupation is obtained, it is simple to calculate transport
observables of interest using it (or the new occupation at the field 𝑓k = 𝑓 0

k + Δ 𝑓k).
For instance, the drift velocity in the 𝛽 direction can be written as:

𝑉𝛽 =
1
𝑁

∑︁
k

vk,𝛽 𝑓k (2.28)
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where 𝑁 =
∑

k 𝑓k is the number of electrons in the Brillouin zone. Similarly, the
mobility can be written as:

𝜇𝛼𝛽 (E) =
2𝑒2

𝑘𝐵𝑇V0

∑︁
k

vk,𝛼
∑︁
k′

Λ−1
k,k′ (vk′,𝛽 𝑓

0
k′) (2.29)

where V0 is the supercell volume, 𝛼 is the direction along which the current is
measured, and 𝛽 is the direction of the applied electric field [126].

2.4 Two-phonon scattering
As we will show in Section 2.6, including two-phonon scattering in n-Si has a large
effect on both the low-field mobility and the warm electron tensor 𝛽. Here, we
outline our implementation of two-phonon scattering.

First, we examine how the electron-phonon interaction is obtained, by expanding
the (self-consistent) one-electron potential 𝑉 (r) in the phonon-induced displace-
ments u𝛼 of the ions from their equilibrium position R𝛼 [110]. We can separate
the perturbations that contribute to 2ph scattering into two types. The type that
we include in our work is not the bilinear term 𝐻 (2) (which represents an electron
interacting simultaneously with two phonons, resulting from the second derivative
of the perturbation potential), but instead the iterated 1ph-process of second order
through an intermediate state, written here as 𝐻 (1,1) = 𝐻 (1) (𝐸 − 𝐻)−1𝐻 (1) . In the
long-wavelength (small q) limit for acoustic phonons, due to translational invari-
ance, the contributions of the two types of 2ph scattering cancel out. It has been
hypothesized that this cancellation extends to acoustic phonons beyond this limit,
but has not been proven. Currently, the bilinear term cannot be computed ab-initio,
and is left to future work.

The 2ph scattering rate that we consider is derived in [123] as:

Γ
2ph
k =

2𝜋
ℏ𝑁2

Ω

∑︁
q

∑︁
p

[
Γ1e1a + Γ2e + Γ2a

]
(2.30)

where q and p are phonons that scatter an electron in a state k to a new state
k′ = k+q+p, and for normalization we divide by 𝑁2

Ω
, corresponding to the number

of (q, p) points sampled. As we consider only two-phonon scattering consisting of
consecutive one-phonon scattering events, we can split the types of scattering into
three types as seen in Fig. 2.5. There are scattering events where an electron first
absorbs and then emits a phonon (or vice versa) that we define as 1e1a, consecutive
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emission events (2e), and consecutive absorption events (2a). We note here that
even though any specific 2ph scattering event here will consist of two consecutive
1ph events, the 2ph scattering will couple states that are not coupled with only 1ph
scattering, and thus there is reason to believe that the transport properties from such
a system will differ from the 1ph case. We can define the individual scattering rate
for an electron to scatter from k to k′ for each type in the following form:

Figure 2.5: On the top row of the figure, schematics for one-phonon absorption
and emission processes are shown. On the bottom row, the three types of two-
phonon scattering included in this work are shown: two emission events (2e),
two absorption events (2a), and one emission/one absorption (1e1a). All of the
two-phonon processes are shown are on-shell, as the intermediate state’s energy is
identical to the band energy.

Γ𝑖k = 𝐴𝑖𝑊 𝑖𝛿(𝜖k − 𝜖k′ − 𝛼𝑖p𝜔p𝜇 − 𝛼𝑖q𝜔q𝜈) (2.31)

Here, 𝐴𝑖 is a prefactor dependent on the electron and phonon occupations,𝑊 𝑖 is the
sub-process amplitude, 𝜔p𝜇 is the phonon energy of the phonon with wavevector p
and phonon mode index 𝜇, and 𝛼𝑖 takes the values of either 1 or -1 depending on
the scattering type:
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𝛼1e1a
p = 1 𝛼2e

p = 1 𝛼2a
p = −1

𝛼1e1a
q = −1 𝛼2e

q = 1 𝛼2a
q = −1

(2.32)

The prefactors 𝐴𝑖 are defined in terms of the phonon occupation numbers 𝑁 (here
with mode index suppressed) and electron occupation numbers 𝑓 as:

𝐴1e1a = 𝑁q + 𝑁q𝑁p + 𝑁p 𝑓k′ − 𝑁q 𝑓k′

𝐴2e =
1
2
[
(1 + 𝑁q) (1 + 𝑁p − 𝑓k′) − 𝑁p 𝑓k′

]
𝐴2a =

1
2
[
𝑁q(𝑁p + 𝑓k′) + (1 + 𝑁p) 𝑓k′

] (2.33)

Due to only non-degenerate electron concentrations being considered in this work,
we make the assumption similar to Eq. (2.19) that 𝑓k′ ≪ 1 to obtain:

𝐴1e1a = 𝑁q + 𝑁q𝑁p

𝐴2e =
1
2
[
(1 + 𝑁q) (1 + 𝑁p)

]
𝐴2a =

1
2
[
𝑁q𝑁p

] (2.34)

The sub-process amplitude𝑊 𝑖 is given by the following:���( 𝑔𝜈 (k, q)𝑔𝜇 (k + q, p)
𝜖k′ − 𝜖k+q + 𝛼𝑖p𝜔p𝜇 + 𝑖𝜂 − Σk+q

+
𝑔𝜇 (k, p)𝑔𝜈 (k + p, q)

𝜖k′ − 𝜖k+p + 𝛼𝑖q𝜔q𝜈 + 𝑖𝜂 − Σk+p

)���2 (2.35)

Here, 𝑔𝜈 (k, q) is the one-phonon scattering matrix element that couples an electron
in state k to another electron in state k+q via scattering with a phonon of wavevector
q and phonon index 𝜈, 𝜖 represents the electron energies, 𝜂 is an infinitesimal term
preventing divergence when the rest of the denominator sums to zero, and Σk+p is
the self-energy of the intermediate electron state k + p. Here, the real part of Σ is
neglected, as it acts to correct the band structure and does not significantly change
the calculation results [123]. The self-energy can be used to obtain the intermediate
state lifetime, or its inverse, the scattering rate of the intermediate state, through the
relation:

Γ =
2
ℏ

ImΣ (2.36)

where Γ is the scattering rate of the intermediate state. Thus, we must solve for the
self-energy iteratively, as the intermediate state lifetime contains contributions from
both 1ph and 2ph scattering in the following manner:

|ImΣ | = ℏ

2
|Γ1ph + Γ2ph | (2.37)
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Thus, initially the two-phonon rates are set to zero in Eq. (2.37), and then we solve
for Eq. (2.30). This process is repeated until the two-phonon rates do not differ
significantly with an additional iteration. Further discussing the intermediate state,
we note that the intermediate state does not have to correspond with a band energy.
We note that we can categorize intermediate states by their off-shell extents, defined
as Δ𝐸 = 𝐸 − 𝜖k+p, where 𝐸 is the energy of the intermediate state reached after an
electron in a state k scatters with a phonon p. We note that by examining Eq. (2.35),
we see that the two-phonon scattering amplitude is inversely proportional to the off-
shell extent; thus, we expect processes with a large off-shell extent to be negligible in
terms of affecting the scattering rates. In this work, we consider two-phonon events
with an off-shell extent less than 25 meV; increasing this number in past works did
not see a significant change in transport observables [40].

Once the 2ph scattering matrix is computed, it is added to the 1ph scattering matrix,
and the same process used in Section 2.3 is used to compute the transport observables
of interest.

2.5 Computational details
The electronic structure and electron-phonon matrix elements are computed on a
coarse 8 × 8 × 8 grid using DFT and DFPT with Quantum Espresso [72]. We
employ a plane wave cutoff of 40 Ryd and a relaxed lattice parameter of 5.431 Å.
Once the electronic structure and electron-phonon matrix elements on a coarse grid
were computed, they were interpolated on a finer grid of 1003 using Perturbo.
We set the Fermi level 203 meV below the conduction band minimum (CBM)
corresponding to a non-degenerate electron gas of concentration of 1016 cm−3 at
300 K. The energy window of the Brillouin zone was set to 287 meV above the
CBM. Increasing the energy window to 447 meV changed the mobility by 0.1% and
𝛽 by 0.8%, while increasing the grid density to 1403 resulted in mobility changes
on the order of 1%. The final system of linear equations was solved by a Python
implementation of the Generalized Minimal Residual (GMRES) method [63].

As in prior work, spin-orbit coupling is neglected as it has a weak effect on electron
transport properties in Si [135, 163]. Quadrupole electron-phonon interactions were
neglected as they provide only a small correction to the low-field mobility of silicon
at room temperature [161].



30

2.6 Results
Mobility and warm electron tensor
Figure 2.6 shows the computed low-field mobility versus temperature for electrons
in Si at the 1ph level of theory. The low-field value at 300 K is 1737 cm2V−1s−1,
approximately 20% higher than experimental drift mobility values, which range
between 1300 and 1450 cm2V−1s−1 [32, 134, 142, 171]. The calculated value at
300 K is generally consistent with prior ab-initio studies, which report values of
1915 cm2V−1s−1 [135], 1860 cm2V−1s−1 [126], and 1750 cm2V−1s−1 [57]. The
use of the experimental lattice constant and GW quasiparticle corrections leads to
lower mobility values [163]. The general overestimate of low-field mobility in past
ab-initio studies occurs across a wide range of temperatures, as Refs. [126] and
[135] show an overestimated mobility from 100 to 300 K.

At higher fields, the mobility decreases below the low-field value owing to electron
heating as described by 𝛽. Because 𝛽 depends on the direction of the applied field,
we denote 𝛽 without subscripts to indicate the electric field is applied along the
[100] crystallographic axis. In Figure 2.7a, we show the mobility versus electric
field in the 1ph framework with the electric field applied in the [100] and [111]
crystallographic axes along with the quadratic fit. The quadratic fit is observed to
agree well with the calculated values. The coefficient of the quadratic fit yields
𝛽. The [100] mobility decreases more rapidly with field than the [111] case, thus
yielding a larger value for 𝛽100 than 𝛽111.

In Figure 2.7b we compare the computed 𝛽 versus temperature with experimental
data. The prediction from the 1ph level of theory is clearly larger than the experimen-
tal values by around 150% across all temperatures. This discrepancy is markedly
larger than that of the low-field mobility. Figures 2.8a and 2.8b show 𝛽 versus angle
between current direction and electric field at 300 and 194 K, respectively. Here, the
mobility is presented as the field is rotated from the [001] direction (corresponding
to 0◦) to the [110] direction (corresponding to 90◦). While the qualitative trend
in 𝛽 with field orientation seen in experiment is captured by the 1ph theory, the
computed values again are greater than the experimental data by over 100% at both
temperatures.

Role of higher-order phonon scattering
Figures 2.7b and 2.8 indicate that 𝛽 is markedly overestimated at the 1ph level of
theory. The magnitude of discrepancy cannot be easily explained by inaccuracies in
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Figure 2.6: Low-field mobility versus temperature for the 1ph (dashed black line)
and 1+2ph (solid orange line) frameworks. The mobility is overestimated with the
1ph level of theory, but underestimated when including on-shell 2ph scattering.
Experimental data: Figure 11, Ref. [32] (green triangles), Figure 1, Ref. [157]
(purple circles), Figure 2, Ref. [130] (blue squares).

band structure, as the discrepancies of the effective mass are ∼ 7%. Therefore, we
considered whether higher-order phonon scattering processes could account for the
poor agreement. The 1ph level of theory accounts for the leading-order electron-
phonon scattering process for which electrons scatter with one phonon. We imple-
mented a treatment of the next-to-leading order scattering processes where electrons
scatter with two phonons using the ab-initio approach described in Ref. [123]. As in
Ref. [40], beyond the low-field regime the full 2ph calculation is presently computa-
tionally intractable, and so we included only on-shell 2ph processes that are within
25 meV of a band energy. Despite the neglect of off-shell processes, Ref. [40]



32

indicates that most of the relevant processes are included with the approximation
used here. The 2ph rates were iterated five times.

The computed one and two-phonon scattering rates are shown in Fig. 2.9a. Near
the CBM, the 2ph rates are comparable to the 1ph rates. At 100 meV, the maximum
energy relevant for transport properties at 300 K, the 2ph rate is approximately
50% of the 1ph rate owing to the weaker energy dependence of 2ph scattering. A
disaggregation of the rates into specific emission and absorption processes is shown
in Fig. 2.9b. For energies less than 100 meV, the 1e1a (one-phonon emission plus
one-phonon absorption) rates are the largest and thus have the largest effect on
transport properties, while the 2e (two-phonon emission) rates rise once electrons
are able to emit two optical phonons. The 2a (two-phonon absorption) rates are
relatively negligible at all energies and are only weakly dependent on energy. These
characteristics are qualitatively similar to those reported for GaAs in Refs. [40, 123].

We now examine the impact of the on-shell 2ph rates on the low-field mobility
and 𝛽. In Figure 2.6, the computed mobility versus temperature including on-shell
2ph scattering is shown. The computed 1+2ph curve underestimates experimental
results by about 20%. At 300 K, the low-field mobility is 1089 cm2V−1s−1. In
Figure 2.7b, 𝛽 including on-shell 2ph scattering versus temperature is shown. With
the inclusion of on-shell 2ph scattering, good agreement is observed with two
independent experimental reports [78, 104]. Similarly, in Figure 2.8a, the agreement
with experiment [79] of the dependence of 𝛽 on orientation angle at 300 K is greatly
improved by including on-shell 2ph. The qualitative trend of a decrease in 𝛽 from
0◦ until ∼ 55◦ (corresponding to the electric field in the [111] direction), followed
by an increase until 90◦ is unchanged, but it is uniformly decreased in magnitude.
The computed 𝛽 dependence on orientation angle at 194 K shown in Figure 2.8b
lies between two data sets [108] of different resistivities.

We now consider the origin of the the improved agreement with 𝛽 when including
on-shell 2ph processes. The first mechanism is the increase in scattering rates,
which have a relatively larger effect on 𝛽 compared to mobility. Specifically, it can
be shown that for a uniform scaling of the scattering rates by a factor 𝜖 , 𝛽 is scaled
by 𝜖−2 rather than 𝜖−1 as for the mobility. Therefore, the increased scattering rates
contributed by on-shell 2ph processes can account for part of the relatively larger
decrease in 𝛽. To examine how much of the decrease in 𝛽 was due to the increased
scattering rates, we scaled the 1ph scattering rates by a multiplicative factor so that
the resulting low-field mobility was equal to the low-field mobility in the 1+2ph
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case. The DC mobility versus electric field and 𝛽 were then calculated. The scaled
1ph results can be seen in Figure 2.8. At both 300 and 194 K, the majority (94%) of
the decrease in 𝛽 occurs due to the higher scattering rates. However, the calculated
values of 𝛽 with the actual on-shell 2ph scattering rates are still lower than those
predicted from the scaled 1ph rates. This further decrease is due to the larger
sensitivity of 𝛽 to the scattering rate at low energies near the CBM compared to that
of the mobility (see Section 2.2). At these energies, 2ph processes make a relatively
larger contribution to the scattering rates than at higher energies, leading to a larger
reduction in 𝛽 than expected based on a uniform increase in scattering rates.

Figure 2.7: a) Mobility versus electric field applied along both the [100] (red
diamonds) and [111] (purple circles) crystallographic axes at 300 K using 1ph
scattering along with the quadratic fits (solid lines). (b) 𝛽 versus temperature for
the 1ph (dashed black line) and on-shell 2ph (solid orange line) frameworks. 𝛽 is
overestimated by ≳ 100% at the 1ph level of theory across all temperatures. When
including on-shell 2ph, the discrepancy is eliminated. Experimental data from
Figure 11, Ref. [78] (blue squares) and Figures 3 and 4, Ref. [108] (purple circles).

2.7 Discussion
We now discuss the finding that multi-phonon processes are relevant to transport
in non-polar semiconductors. Previous experiment and modeling works have sug-
gested that 2ph processes could account for deviations in the predicted temperature
dependence of the mobility from the 1ph deformation potential theory. In partic-
ular, two-phonon deformation potentials were extracted from second-order Raman
scattering measurements [177, 206], and using these values in transport calculations
improved the agreement of both the variation of the low-field mobility and 𝛽 with
temperature [115]. However, these conclusions were subject to uncertainty owing
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Figure 2.8: (a) 𝛽 versus electric field orientation angle between the [001] and [110]
crystallographic axes at 300 K for the 1ph (dashed black line), scaled 1ph (dotted
blue line), and 1+2ph (solid orange line) frameworks. The 1ph theory captures the
qualitative dependence of 𝛽 on angle, but the value is overestimated by ∼ 200%.
The discrepancy is reduced to ∼ 15% with inclusion of on-shell 2ph scattering.
Experimental data from Figure 7, Ref. [79] (upward green triangles). (b) Same
as (a) at 194 K. Data from Figures 3 and 4, Ref. [108] (purple circles and green
triangles).

to the semi-empirical nature of the scattering rates employed in the modeling. The
present work overcomes this limitation using the ab-initio scattering rates that are
free of adjustable parameters, thereby providing firm evidence that multi-phonon
scattering processes are of importance to low-field and warm electron transport in
Si.

We additionally consider the role of other multi-phonon processes that have been
neglected in the present study and their potential impact on the transport properties.
First, the addition of the neglected off-shell 2ph processes will further increase
the scattering rates and decrease both the mobility and 𝛽; however, Figure 2a
of Ref. [40] indicates this difference is negligible in GaAs. A more involved
complication is the role of the direct 2ph interaction arising from simultaneous
interactions with two phonons, in contrast to that arising from two sequential 1ph
scattering events considered here. Due to translational invariance, a cancellation
occurs for interactions involving long-wavelength acoustic phonons [93], and it has
been posited that this cancellation may extend to acoustic phonons beyond this
limit [110]. To estimate the magnitude of this cancellation, we removed all two-
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Figure 2.9: (a) Computed 1ph (blue), on-shell 2ph (green), and 1+2ph (orange)
scattering rates versus energy at 300 K. The on-shell 2ph rates are approximately 50%
of the 1ph rates, indicating a non-negligible contribution to transport properties. (b)
Computed on-shell 2ph (green), 2e (brown), 2a (purple), and 1e1a (gray) scattering
rates versus energy at 300 K. For energies less than 100 meV, the range relevant to
transport properties at 300 K, the 1e1a rates are largest and have the dominant effect
on transport properties.

phonon processes that involve acoustic phonons of energy less than 5 meV and
recalculated the low-field mobility. The result is 1261 cm2V−1s−1, which is in
near-quantitative agreement with experiment. This result indicates that taking into
account the cancellation between the two 2ph vertices may be needed for predictive
accuracy. Further tests of the role of multi-phonon processes may be obtained by
calculating the free carrier absorption spectrum using the methods of Ref. [155]
and the power spectral density of current fluctuations as in Refs. [40, 43].

2.8 Summary
We have presented a first-principles framework for calculating transport properties
in semiconductors, starting from the electron-phonon matrix elements, and then us-
ing them in the Boltzmann transport equation to solve for the deviational occupation.
Using this approach, we obtained the warm electron transport properties of Si. At the
1ph level of theory that is typically regarded as adequate for nonpolar semiconduc-
tors, the low-field mobility is overestimated by around 20% while 𝛽 is overestimated
by over 100% across a wide range of temperatures and crystallographic axes. The
discrepancy in 𝛽 is reconciled by inclusion of 2ph scattering, which is found to
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exhibit a scattering rate that is comparable to that from 1ph processes. The underes-
timate of the mobility at this level of theory provides evidence for the occurrence of
a non-trivial cancellation of second-order terms in the electron-phonon interaction.

While the importance of multi-phonon processes have been explored in nonpolar
semiconductors for phenomena such as magnetophonon resonance [77], the second-
order Raman spectrum [177, 206], and the infrared optical absorption [17, 116],
very little information exists on their role in transport properties. Our work will
stimulate future investigations into the role of multi-phonon processes in transport
properties, even in materials in which these processes may have been overlooked in
the past.
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C h a p t e r 3

HOT ELECTRON DIFFUSION, MICROWAVE NOISE, AND
PIEZORESISTIVITY IN SI FROM FIRST PRINCIPLES

This chapter has been adapted, in part, from:

Alexander Y. Choi, Peishi S. Cheng, Benjamin Hatanpää, and Austin J. Minnich.
Electronic noise of warm electrons in semiconductors from first principles. Phys.
Rev. Materials, 5:044603, Apr 2021. https://link.aps.org/doi/10.1103/
PhysRevMaterials.5.044603
B.H. co-wrote the code used in the manuscript.

Benjamin Hatanpää and Austin J. Minnich. Hot electron diffusion, microwave
noise, and piezoresistivity in si from first principles. Phys. Rev. B, 109:235201,
Jun 2024. https://link.aps.org/doi/10.1103/PhysRevB.109.235201
B.H. co-designed the research, conducted the calculations, analyzed the data, and
wrote the manuscript.

In Chapter 2, we showed how the ab-initio methods that are used to routinely
calculate linear transport coefficients such as the electrical mobility of materials
[57, 126, 129, 163, 222] can be used to calculate the warm electron tensor, a quantity
that characterizes the energy relaxation of the system. High-field transport properties
are experimentally accessible as well, but have not been extensively explored with
ab-initio methods. One example of such a property are noise properties away
from equilibrium, such as the power spectral density (PSD) of current fluctuations
[45, 84]. In order to decrease noise in modern electronic devices, a sophisticated
understanding of the microscopic transport phenomena and the noise associated
with them is required.

One example of a noise phenomena that is present in n-Si is intervalley noise. Inter-
valley noise, in which carrier number fluctuations between valleys are observable as
current fluctuations, can only be observed in a multi-valley semiconductor such as
n-Si [84, 167]. The PSD of hot electrons in Si has been experimentally investigated
at a range of frequencies, temperature, and electric field strengths. Measurements
of the electron diffusion coefficient (proportional to low-frequency PSD) at room

https://link.aps.org/doi/10.1103/PhysRevMaterials.5.044603
https://link.aps.org/doi/10.1103/PhysRevMaterials.5.044603
https://link.aps.org/doi/10.1103/PhysRevB.109.235201
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temperature along the [111] direction indicated a pronounced decrease with increas-
ing electric field [33]. A subsequent study at lower temperatures showed an initial
increase of the diffusion coefficient with increasing field, followed by the decrease
seen at higher temperatures [29]. A clear anisotropy in the diffusion coefficient was
observed between the [100] and [111] directions for high electric fields (≳ 2 kV
cm−1) across 77 – 300 K [29], despite the cubic symmetry of Si, and was attributed
to intervalley noise. The frequency-dependence of the PSD at low temperatures
∼ 80 K was also examined, showing how thermal, convective, and intervalley noise
contribute at different frequencies for these two directions [15].

Despite extensive experimental investigation, transport and noise properties beyond
the low-field regime have historically been evaluated using semi-empirical Monte
Carlo methods [29, 99, 101, 165]. These models utilized various approximations,
such as dispersionless optical phonons, Debye acoustic phonons, and model band-
structures. More recently, the Monte Carlo method in n-Si has been extended to
device simulation [1] and full-band studies [58–60, 154]. Computations of high-
field transport properties using ab-initio methods have only recently been reported
[35, 40, 43, 137, 200]. In GaAs, the drift velocity characteristics up to several kV
cm−1 have been computed and have provided evidence for the role of two-phonon
scattering [40, 200]. The warm electron tensor of n-Si, including two-phonon
scattering, has also been computed and directly compared to experiment [86]. An
ab-initio formalism to calculate fluctuational properties like PSD has also been de-
veloped recently [43]. Previous studies have used the formalism to compute the
electric field dependence of the PSD in p-Si [35] and n-GaAs, in the latter case
including two-phonon scattering [40, 200]. However, whether ab-initio methods
can accurately account for hot electron transport and noise properties in n-Si has not
yet been determined.

In this chapter, we report first-principles calculations of the hot electron diffusion
coefficient and frequency-dependent PSD in n-Si, including two-phonon scatter-
ing. We find that although some qualitative features of the diffusion coefficient
are correctly predicted, such as an anisotropy at high electric fields, quantitative
agreement is in general poor. To identify the origin of the discrepancies, we com-
puted the microwave-frequency PSD and piezoresistivity. The computed properties
are in reasonable qualitative agreement, constraining the magnitude of inaccuracy
in the computed intervalley scattering rate. Together, these observations indicate
that the diffusion coefficient discrepancies may be attributed to factors which are
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not included in the ab-initio formulation of charge transport, for instance real-space
gradients and space charge effects. This finding has relevance to the interpreta-
tion of diffusion coefficient measurements in terms of microscopic charge transport
processes.

3.1 Intervalley noise
To start, we examine the typical anisotropy of the hot-electron diffusion coefficient
in n-Si. In Fig. 3.1, experimental data from Ref. [29] for the diffusion coefficient
and its dependence on electric field is shown at 200 K, with the electric field applied
both in the [111] and [100] directions. We notice that the value of the diffusion
coefficient is significantly higher away from equilibrium for the case where the field
is applied in the [100] direction, than the [111] case. At a first glance, this might
seem surprising — if we examine Eq. (1.11), the equilibrium diffusion coefficient
is directly proportional to the mobility. At high fields, it is well-established that the
mobility when the field is applied in the [100] is less than when it is in the [111]
[31]. However, the diffusion coefficient in the [100] direction is higher than in the
[111]. What is the cause of this extra contribution to the diffusion coefficient?

In a multi-valley semiconductor like n-Si, the differential mobility is not equal to the
sum of the differential mobilities in each valley weighted by the relative population
in each valley. An applied electric field changes the intervalley rates, and thus the
relative number of carriers in each valley [84], as seen in Fig. 2.2. Similarly, in
a many-valley semiconductor the noise is not equal to the sum of the noise from
each individual valley. Due to intervalley transitions causing fluctuations of valley
populations, this population fluctuation causes a current fluctuation in the case in
which the drift velocities (in the direction of interest) differ. To understand this
mechanism, consider the general expression for the intervalley diffusion coefficient
𝐷int, given by [29, 167]

𝐷int = 𝑛1𝑛2(𝑣1 − 𝑣2)2𝜏int (3.1)

Here, 𝑛1 and 𝑛2 are the fractions of electrons in valleys of type 1 and 2, 𝑣1 and 𝑣2 are
the drift velocities in valleys of type 1 and 2, and 𝜏𝑖 is the characteristic intervalley
relaxation time. In n-Si, when the field is applied along the high-symmetry [111]
direction, all six valleys are oriented equivalently with respect to the electric field
direction, and no intervalley diffusion will take place. However, when the field
is oriented in the [100] direction, repopulation will occur as shown previously in
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Figure 3.1: Experimental data from Ref. [29] showing the dependence of the diffu-
sion coefficient on electric field in n-Si at 300 K. The electric field is applied in the
[111] direction (purple squares) and the [100] direction (red circles).

Fig. 2.2, and the average drift velocities between hot and cold valleys will differ,
leading to an additional source of noise. It can be shown that a rough estimate for
the ratio of the intensity of intervalley noise to intravalley noise is on the order of

Δ𝑉2𝜏inter/𝑣2𝜏intra (3.2)

where 𝜏inter and 𝜏intra are the intervalley and intravalley relaxation times, respectively,
Δ𝑉 is the difference between the drift velocity in a valley compared to the average
drift velocity, and 𝑣 the average drift velocity of the entire system [84]. Thus, if Δ𝑉
is large, intervalley noise can be comparable to the “thermal” noise, especially as the
intervalley time is already greater than the intravalley time. One can intuit that this
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is true if we assume that if an electron is in a state k1 in valley 1 and then is scattered
to a state k2 into valley 2 via a phonon q, the absolute value of the difference
|k1 − k2 | is on the order of 𝑎−1

0 , where 𝑎0 is the lattice parameter of the crystal. The
energy of the intervalley phonon ℏ𝜔q is thus on the order of 𝑘𝐵Θ𝐷 , where Θ𝐷 is
the Debye temperature. In general, and especially at temperatures less than Θ𝐷 , the
energies of phonons that are emitted or absorbed are on average much less 𝑘𝐵Θ𝐷 ;
that is to say, before an electron scatters to another valley, it changes its energy
and momentum multiple times through intravalley scattering events [111]. Thus,
𝜏inter ≫ 𝜏intra holds. Intervalley noise has been observed not only experimentally
in many different bulk semiconductors [29, 64], but it has been posited to be a
contributor to the drain noise in GaAs FETs [10, 64] and Si MOSFETs [87]. Thus,
gaining a quantitative understanding of intervalley noise and being able to predict it
accurately in semiconductors is vital.

3.2 E- and 𝜔-noise spectroscopy
Two of the most common experimental techniques to investigate hot-electron noise
in semiconductors are E− and 𝜔-spectroscopy (the electric field and frequency
dependence of the noise). In this work, all data of the electric field versus the noise
is taken at low frequencies. By measuring the electric field dependence of the noise,
we can probe intervalley noise by measuring the noise in different directions, and
investigate the balance between increasing scattering rates and increasing energy as
the electric field is applied. To illustrate this, we can investigate a version of the
Einstein relation in Eq. (1.11), modified for high fields:

𝐷 (𝐸) = 2
3
𝜇(𝐸) ⟨𝜖⟩

𝑒
(3.3)

Here, 𝐷 (𝐸) is the field-dependent diffusion coefficient, 𝜇(𝐸) is the electric field-
dependent mobility and ⟨𝜖⟩ the average electron energy [29, 100]. As an electric
field is applied, this increases the average electron energy. High-energy states tend
to contribute more to the diffusion coefficient, and thus raise its value. However, the
effect of the electric field also tends to increase the average scattering rate, which
damps out fluctuations (and lowers the mobility). Thus, the balance of these two
behaviors will determine the energy dependence of the noise. This relation is not
exact, but illustrative of the main mechanisms that cause changes in the noise.

A schematic is shown in Fig. 3.2 that illustrates the frequency dependence of the
noise for a multi-valley semiconductor. We note that other noise sources such as
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1/ 𝑓 noise and generation-recombination noise are not considered in this work, and
thus their effects are not pictured in Fig. 3.2. At equilibrium, it is expected that the
noise follows the Nyquist-Johnson equation, and the frequency dependence is given
by a Lorentzian characterized by the momentum relaxation time.

However, away from equilibrium in a current-carrying state, other types of fluctua-
tions taking place in the system can reveal themselves. One example is the convective
noise contribution, that is characterized by the exchange of energy between electrons
and the lattice rather than momentum. When an electric field is applied, there is an
energy gain from the field acting upon existing current fluctuations: 𝛿𝜖E ∼ 𝛿j ·E. In
a semiconductor with a sublinear current-voltage characteristic, due to the decrease
in mobility with increasing energy, the fluctuations will tend to reduce the intensity
of current fluctuations. When the PSD approaches the inverse energy relaxation
time, an increase in the noise will be seen as this contribution rolls off [84].

In addition, as shown in Eq. (3.1), when the electric field is oriented in a manner
that creates valleys with inequivalent average drift velocities, an intervalley term is
present. The intervalley relaxation time is generally assumed to be large compared
to both the energy and momentum relaxation times, and thus the intervalley contri-
bution rolls off at lower frequencies. This contribution is always positive. Thus, in
Fig. 3.2, the blue curve is shifted up significantly at lower frequencies with respect to
the red curve, and the intervalley contribution rolls off at the lowest frequencies. As
the source of any particular noise contribution characterized by a relaxation process
with time 𝜏 will be cut off at the frequency 𝜔𝜏 ∼ 1, the relaxation times can be
estimated from the frequency dependence.

3.3 F-type scattering, noise and piezoresistivity
We can separate intervalley scattering into two types: g-type (between valleys on
the same Cartesian axis), and f-type (between valleys not on the same axis). The
difference between the two types is visually depicted in Fig. 3.3. While most
transport properties such as mobility are insensitive to the balance between f- and
g-type scattering, 𝜏int, and thus 𝐷int, is inversely proportional to the square of the
f-type coupling constant [29].

This can be understood intuitively through the following argument. If we consider
a group of electrons at 𝑥, 𝑦, 𝑧 = (0, 0, 0), 𝑡 = 0, as 𝑡 increases due to intervalley
scattering, electrons will scatter from one type of valley to the other, and thus at one
time they will have drift velocity 𝑣1 and then after scattering into another valley 𝑣2.
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Figure 3.2: Schematic frequency dependence of the PSD in a typical semiconductor
at (a) equilibrium, (b) away from equilibrium, where the electric field is oriented
along a high-symmetry axis, and (c) away from equilibrium, where valleys are
inequivalent.

The stronger f-type scattering is, the more electrons will scatter from one valley to
another, so on the aggregate each electron will not differ greatly to others in terms of
average drift velocity. Thus, the electron cloud will be less spread (smaller diffusion
coefficient). However if f-type scattering is completely eliminated, electrons in two
valleys will indefinitely separate from each other, with a mean-squared displacement
proportional to 𝑡2. If this is the case, we then lose the linear relation between 𝑀 and
𝑡 necessary for the definition of 𝐷 in Eq. (1.12) [29].

Historically, electron transport in Si initially was evaluated with Monte Carlo models,
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Figure 3.3: Schematic showing the difference between f- and g-type scattering in
n-Si. g-type scattering is shown in red, between valleys oriented on the same axis.
f-type is shown in orange, between valleys aligned along two different Cartesian
axes.

where f- and g-type coupling constants were widely reported [7]. However, due to
the fact that the experimentally available data (drift velocity) was insensitive to the
exact balance of the two intervalley types, no definitive conclusions were reached
and reported deformation potential values varied [8, 46, 107, 157]. In fact, Ref. [29]
is a fitting example to show the disadvantage of using the Monte Carlo approach
to interpret a quantity like the intervalley noise. When using the fitting parameters
from previous results [99, 105], an underestimate of the anisotropy was shown. To
fit the experimental data, the two f-type phonons of highest energy were reduced in
coupling strength, while the highest-energy g-type phonon was increased in coupling
strength. Once suitable agreement with experiment was reached, it was concluded
that the coupling strengths must be correct. However, with our ab-initio approach,
we are able to accurately probe the amount of f-type scattering, without worrying
about adjustable parameters.

Another transport property that is sensitive specifically to the amount of f-type
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scattering is the piezoresistivity. Piezoresistivity provides insight into the magnitude
of f-type scattering in n-Si due to the following considerations. When a compressive
stress is applied along a crystallographic direction, valleys parallel to the stress axis
decrease in energy compared to the other valleys. The effect of applying compressive
stress in the [100] and [111] directions compared to the unstrained case can be seen
in Fig. 3.4.

If the stress is applied in the [001] direction, in the limit of high stress all electrons
will be in the [001] valleys. Similarly, if stress is applied in the [011] direction,
electrons will be in the [010] and [001] valleys. In the first case ([001] stress), all
f-type scattering will be eliminated. However, in the second case ([011] stress),
f-type intervalley scattering between [010] and [001] valleys remains. Therefore,
if f-type scattering is negligible, the transverse resistivity (for instance resistivity
measured along [100]) at high stress in both cases is expected to be identical [105].
If f-type scattering is present, the case with the stress oriented along the [001] will
have a lower resistivity due to the lack of f-type scattering. Other observables
that may yield insight into ratios of f- and g-type scattering include examining the
galvanomagnetic properties of hot electrons [7].

Figure 3.4: Schematic showing how applied compressive stress changes the valley
structure in n-Si. On the left, the unstrained case is shown, where the six valleys
are equivalent in energy and population. In the middle, the case where compressive
stress is applied in the [100] direction is shown, where the valleys along the [100]
are shifted lower in energy and have a greater population. On the right, the case
where compressive stress is applied in the [110] direction is shown, where valleys
along the [100] and [010] directions are shifted lower in energy and have a greater
population. In all cases, the valleys shifted downwards in energy are shown in red.

3.4 Solving the BTE for noise
Section 2.3 showed how the BTE can be used to solve for the steady-state occupation
function 𝑓 𝑠k of a semiconductor subjected to an electric field E, and thus giving us
transport quantities like the drift velocity, mobility, and 𝛽. Similarly, we can solve
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a different BTE to investigate the fluctuations around this steady-state. Fluctuations
still occur in steady-state, due to the Poissonian nature of every scattering event.
Thus, we examine the fluctuations 𝛿 𝑓k around 𝑓 𝑠k , where 𝛿 𝑓k(𝑡) = 𝑓k(𝑡) − 𝑓 𝑠k .

The spectral intensity (or density) 𝑆𝑋 (𝜔) of a stationary random variable 𝑋 (𝑡) is
defined as the squared sum of the Fourier components of 𝑋 (𝑡) lying in a frequency
interval of infinitesimal length, averaged and then divided by the frequency interval.
The Wiener-Khintchine Theorem relates 𝑆𝑋 (𝜔) and the Fourier transform of the
time-displaced correlation function of 𝑋 (𝑡):

𝑆𝑋 (𝜔) = 2
∫ ∞

−∞
𝑋 (𝑡)𝑋𝑒−𝑖𝜔𝑡𝑑𝑡 (3.4)

We can use this to relate the power spectral density (PSD) of current fluctuations
(the quantity of chief interest in this manuscript) 𝑆 𝑗𝛼 𝑗𝛽 to the Fourier transform of
the autocorrelation of the current density fluctuations:

𝑆 𝑗𝛼 𝑗𝛽 (𝜔) ≡ (𝛿 𝑗𝛼𝛿 𝑗𝛽)𝜔 = 2
∫ ∞

−∞
𝛿 𝑗𝛼 (𝑡)𝛿 𝑗𝛽𝑒−𝑖𝜔𝑡𝑑𝑡 (3.5)

Here, 𝛿 𝑗𝛼 and 𝛿 𝑗𝛽 are the current fluctuations along axes 𝛼 and 𝛽. In order to put
this in the form of occupancy fluctuations instead of current fluctuations, we first
relate the two via the appropriate prefactors and the drift velocity to weight them:

𝛿 𝑗𝛼 =
2𝑒
𝑉0

∑︁
k
𝑣k,𝛼𝛿 𝑓k (3.6)

Using this definition, we get

𝛿 𝑗𝛼 (𝑡)𝛿 𝑗𝛽 =
(2𝑒
𝑉0

)2 ∑︁
k

∑︁
k′
𝑣k,𝛼𝑣k′,𝛽𝛿 𝑓k(𝑡)𝛿 𝑓k′ (3.7)

Eq. (3.7) shows that to compute the PSD of current fluctuations, we must compute
the correlation of occupation fluctuations at k and k′: 𝛿 𝑓k(𝑡)𝛿 𝑓k′ . This quantity is
known as the time-displaced, two-particle correlation function [67]. It was shown by
Gantsevich and coauthors that the time-displaced, two-particle correlation function
obeys the same Boltzmann equation as the fluctuation itself:

𝜕

𝜕𝑡
𝛿 𝑓k(𝑡)𝛿 𝑓k′ +

∑︁
k1

Λk,k1𝛿 𝑓k1 (𝑡)𝛿 𝑓k′ = 0 (3.8)

Here, Λk,k1 is the same relaxation operator of Eq. (2.26), that now acts on the
correlation function instead of the deviational occupations. The significance of
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Eq. (3.8) is that with only the information needed to describe relaxation of the
system to a steady state, we can solve for the fluctuation properties of the system
[120]. To solve Eq. (3.8), an initial condition 𝛿 𝑓k(𝑡)𝛿 𝑓k′ |𝑡=0 must be specified, known
as the one-time, two-particle correlation function. This condition was derived by
Fowler [62] and Lax [120] (for a non-degenerate system of 𝑁 particles) as:

𝛿 𝑓k(𝑡)𝛿 𝑓k′ |𝑡=0 = 𝑓 𝑠k𝛿kk′ −
𝑓 𝑠k 𝑓

𝑠
k1

𝑁
(3.9)

We can combine Eq. (3.5) and Eq. (3.7) to get an expression for the PSD of current
fluctuations in terms of the PSD of occupancy fluctuations:

(𝛿 𝑗𝛼𝛿 𝑗𝛽)𝜔 =

(2𝑒
𝑉0

)2 ∑︁
k

∑︁
k′
𝑣k,𝛼𝑣k′,𝛽 (𝛿 𝑓k𝛿 𝑓k′)𝜔 (3.10)

Here,
(𝛿 𝑓k𝛿 𝑓k′)𝜔 =

∫ ∞

−∞
𝛿 𝑓k(𝑡)𝛿 𝑓k′𝑒−𝑖𝜔𝑡𝑑𝑡 (3.11)

As we are interested in the PSD at a certain frequency, we can solve the Fourier-
transformed version of Eq. (3.8). Utilizing the stationary properties of the auto-
correlation function, we can write the Fourier-transformed correlation function as
[67]:

(𝛿 𝑓k𝛿 𝑓k′)𝜔 = 2ℜ
[∑︁

k1

(𝑖𝜔I + Λ)−1
kk1
𝛿 𝑓k1 (𝑡)𝛿 𝑓k′ |𝑡=0

]
(3.12)

Combining Eq. (3.9), Eq. (3.10), and Eq. (3.12), we obtain:

𝑆 𝑗𝛼 𝑗𝛽 (𝜔) = 2
(2𝑒
𝑉0

)2
ℜ

[∑︁
k
𝑣k,𝛼

∑︁
k1

(𝑖𝜔I + Λ)−1
kk1

∑︁
k′
𝑣k′,𝛽

(
𝑓 𝑠k1
𝛿k1,k′ −

𝑓 𝑠k1
𝑓 𝑠k′

𝑁

)]
(3.13)

Explicitly evaluating the last sum over k′ by using Eq. (2.28) for the definition of
the drift velocity, we obtain:

𝑆 𝑗𝛼 𝑗𝛽 (𝜔) = 2
(2𝑒
𝑉0

)2
ℜ

[∑︁
k
𝑣k,𝛼

∑︁
k1

(𝑖𝜔I + Λ)−1
kk1

( 𝑓 𝑠k1
(𝑣k1,𝛽 −𝑉𝛽))

]
(3.14)

Thus, we see from Eq. (3.14) that in order to obtain the spectral density of the current
fluctuations, we must first solve for the steady occupation function in Eq. (2.27).
Once this is solved, we solve another Boltzmann equation, with the different inho-
mogeneous term ( 𝑓 𝑠k (𝑣k,𝛽 − 𝑉𝛽)). Once the second Boltzmann equation is solved,
we can obtain the spectral density of the current fluctuations by the Brillouin zone
integration in Eq. (3.14).
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3.5 Computational details
For all calculations, the electronic structure and electron-phonon matrix elements
are computed on a coarse 14 × 14 × 14 grid using DFT and DFPT with Quantum
Espresso [72]. This finer coarse grid was used, in comparison to the 8×8×8 that was
found to be sufficient to converge the unstressed mobility in Section 2.5. A wave-
function energy cutoff of 40 Ryd was used for all calculations, and a relaxed lattice
parameter of 5.431 Å was used for the unstrained properties. The electronic structure
and electron-phonon matrix elements were interpolated onto the fine grid using
Perturbo [223]. For every combination of applied stress value and direction, the
electronic structure and electron-phonon matrix elements were re-computed. The
piezoresistivity was then computed by calculating the transverse mobility (mobility
in the [001] direction) using Eq. (2.29) (from which the resistivity may be obtained
by taking the inverse), and then normalizing by the calculated unstrained resistivity
value. For the calculations with compressive stress in the [001] direction, a small
uniaxial compressive strain was applied in the [001] direction by fixing one axis
artificially in Quantum Espresso using the ‘fixc’ option, and the other two lattice
vectors were then relaxed using the ‘vc-relax’ cell relaxation method. For the
calculations with compressive stress in the [011] direction, the lattice vectors were
changed manually until the desired stress state was reached.

For temperatures of 160 – 300 K, a grid density of 100 × 100 × 100 for the electron
states was used, while a grid density of 50 × 50 × 50 was used for the phonons. We
report convergence tests on the PSD values, as they are more sensitive to the details
of the band structure and electron-phonon interaction than the mobility. Using a
phonon grid with the same density as the electron grid resulted in a PSD change of
17% at 10 kV cm-1, and using a grid density of 120 × 120 × 120 for the electron
states and 60× 60× 60 for the phonon states resulted in a PSD change of 20% at 10
kV cm-1. The quantity of relevance to our findings is the anisotropy between [111]
and [100], defined as (PSD[111] − PSD[100])/PSD[111]. This quantity only changed
by 0.5% when changing the grid density, indicating that the PSD anisotropy was
well-converged. From 160-300 K we used an energy window of 284 meV above
the conduction band minimum with a Gaussian smearing parameter of 5 meV, and
increasing this energy window to 342 eV resulted in a PSD change at 10 kV cm-1 of
1%.

For the grid density at 77 K, a grid density of 140× 140× 140 for the electron states
and 70×70×70 for the phonon states was used, with an energy window of 145 meV
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and a Gaussian smearing parameter of 2.5 meV. For 77 K, increasing the energy
window to 284 meV resulted in a PSD change of 7% at 1 kV cm-1. Using a phonon
grid with the same density as the electron grid resulted in a change of 12% in the
PSD at 1 kV cm-1, the largest field used. Using a grid density of 160 × 160 × 160
for the electron states and 80 × 80 × 80 for the phonon states resulted in a PSD
change of 18% at 1 kV cm-1. However, as before, our findings are not affected
by these changes, as the qualitative trend of the PSD compared to experiment is
unchanged, and the sign of the anisotropy is unchanged. Therefore, the calculations
are converged adequately at 77 K for the PSD.

For the piezoresistivity calculations (all performed in the low-field limit), a grid
density of 400× 400× 400 (200× 200× 200) for electrons (phonons) was required.
Increasing the electron grid density to 500 × 500 × 500 and the phonon grid was
250 × 250 × 250 resulted in mobility changes of 15%. As the relevant quantity
for our conclusions is the piezoresistivity, which is normalized by the zero-stress
resistivity value, the normalized trend changed only on the order of 5%. In this
case, an energy window of 20 meV was employed for computational tractability.
Increasing the energy window from 20 meV to 25 meV resulted in mobility changes
of 4%. The final linear system of equations used to obtain the mobility and the
PSD was then solved by a Python implementation of the GMRES method [63]. For
all calculations and temperatures, the Fermi level was adjusted to yield a carrier
density of 4× 1013 cm−3. Spin-orbit coupling was neglected, as it has a weak effect
on electron transport properties in Si [135, 163]. Similarly, quadrupole electron-
phonon interactions were neglected [161]. For all calculations of the diffusion
coefficient, a frequency of 1 GHz was used, selected so to ensure that 𝜔𝜏−1 ≪ 1,
where 𝜏 is a characteristic relaxation time, while avoiding too low frequencies which
result in numerical instabilities.

In our past work [86], it has been shown that two-phonon scattering (2ph) is non-
negligible in n-Si. Thus, for all PSD calculations, two-phonon scattering was
included. For the piezoresistivity calculations, 2ph scattering could not be included
due to the computational cost. However, we do not expect the absence of 2ph
scattering for piezoresistivity to affect our conclusions, as it was shown in Ref. [86]
that the energy dependence of 2ph scattering rates exhibited the same qualitative
trends as those of one-phonon rates, and further that most of the effect of 2ph
scattering can be accounted for by scaling the 1ph scattering rates. As this scaling
would be present at all applied stresses, we therefore do not expect that neglecting
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2ph would affect the piezoresistivity values and our conclusions.

3.6 Results
Electric-field dependence of hot electron diffusion coefficient
We begin by examining the dependence of the diffusion coefficient on electric field
at various temperatures. We first compare the experimental low-field values of
the diffusion coefficient to the computed ones. We considered four temperatures
(300, 200, 160, and 77 K), corresponding to those for which experimental data is
available. At these temperatures, the computed (experimental) diffusion coefficients
were 29.7 (37) cm2s−1, 59.3 (62) cm2s−1, 58.8 (71) cm2s−1, and 1120 (141) cm2s−1.
For all temperatures besides 77 K, the computation underestimates the experimental
data. The magnitude of the underestimate for 𝑇 > 77 K is consistent with a prior
calculation of the electron mobility of Si when two-phonon scattering is included
[86]. However, at 77 K, the computed value is ∼ 8× larger than experiment.
This overestimate is possibly attributable to ionized impurity scattering which is
neglected in the present calculations.

To facilitate the comparison of trends with electric field in the subsequent plots, the
computed data has been normalized to the calculated low-field diffusion coefficient,
while the experimental data has been normalized to the value at the lowest electric
field reported. We note that due to the requirement that the transit time in the time-
of-flight experiment be less than the dielectric relaxation time, no data was reported
below a minimum field at each temperature [29]. The electric field dependence of the
diffusion coefficient at 300 K is shown in Fig. 3.5a. In experiment, it is observed that
at low fields, the diffusion coefficient along the [100] and [111] directions are equal.
Starting at less than 2 kV cm−1, the diffusion coefficient along the [111] direction is
less than in the [100], an anisotropy that has been attributed to intervalley diffusion
[29]. The magnitude of this anisotropy continues to increase with field, reaches a
maximum, and then decreases with field. The same qualitative trend with field is
seen at 200 K in Fig. 3.5b, with the main difference being the anisotropy manifesting
at lower fields than at higher temperatures. At 160 K, shown in Fig. 3.5c, there is a
slight peak of the diffusion coefficient in the [100] direction at low fields and then a
monotonic decrease for higher fields. At 77 K, shown in Fig. 3.5d, initial increases
of the diffusion coefficient with field are seen for both directions.

The calculated results generally predict these trends qualitatively. At 300 K and 200
K, the correct trend of the anisotropy is reproduced, as the [111] diffusion coefficient
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Figure 3.5: Diffusion coefficient (normalized by the zero-field value) versus electric
field for n-Si at (a) 300 K, (b) 200 K, (c) 160 K, and (d) 77 K with field applied
along the [100] direction (red solid line) and [111] direction (purple dotted line).
Experimental data along the [100] direction (red circles) and [111] direction (purple
squares) from Figures 3 and 4, Ref. [29]. In (d), noise conductivity (NC) measure-
ments (purple triangles) included for comparison at low electric fields.

is less than the [100] value once field values exceed 5 kV cm−1 and 2 kV cm−1,
respectively. While the initial increase seen in experiment at 160 K with field applied
in the [100] direction is not captured by computation, the qualitative anisotropy at
high fields is reproduced. Similarly, at 77 K, the [111] diffusion coefficient is less
than in the [100] once the electric field exceeds 0.2 kV cm−1.

However, a number of quantitative discrepancies can be seen. At 160, 200, and 300
K, the computed anisotropy starts to manifest at higher fields than in experiment. In
experiment, at 300 K the anisotropy is observed once the electric field exceeds 2 kV
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cm−1, while at 200 K and 160 K the anisotropy manifests even below 1 kV cm−1.
Similarly, the magnitude of the anisotropy is underestimated, particularly for 160 K
and 200 K, where the agreement with the [111] data is excellent, but the [100] data
lies much above the computed values.

At 77 K, the qualitative behavior of the diffusion coefficient with field changes
greatly. We note that the electric field range used in this calculation is smaller
than in the other cases due to lack of convergence at high fields. In Fig. 3.5d, for
both directions measured an initial increase in the experimental PSD is seen. This
increase is observed in computation, but at lower fields than in experiment. Given
the relative importance of ionized impurity scattering at 77 K compared to higher
temperatures, we examined whether the omission of this scattering mechanism in
the calculation could play a role in the discrepancy. We implemented a simple
model of ionized impurity scattering [131] with a density of 1014 cm−3. The non-
monotonic features were observed to shift to higher electric fields, suggesting that
ionized impurity scattering could be partly responsible for this discrepancy.

The anisotropy in the diffusion coefficient seen in experiment has been attributed
to a mechanism known as intervalley diffusion. [29]. As 𝜏int is inversely propor-
tional to the square of the f-type coupling constant [29], a possible origin of the
underpredicted anisotropy in the diffusion coefficient is computed f-type scattering
rates which are too large compared to experiment. To test this hypothesis, we com-
pute other transport and noise properties which are sensitive to the distinct types of
intervalley scattering.

Microwave-frequency PSD
We first compute the microwave-frequency (∼0.1-100 GHz) PSD at 77 K and 200
V cm−1, for which experimental data is available for comparison [15]. Here, the
frequency ranges computed are much higher than those in which sources of noise
such as 1/ 𝑓 noise or generation-recombination noise would be relevant.

Figure 3.6 shows the calculated spectral density of current fluctuations versus fre-
quency, at 77 K and 200 V cm−1 and with electric fields applied along the [111] and
[100] directions, along with experimental data. At frequencies below 3 GHz, the
[100] PSD is greater than the [111], due to the presence of intervalley diffusion. As
intervalley scattering is characterized by a significantly smaller relaxation rate than
either the energy or momentum relaxation rates, a rolloff in the [100] direction is
observed around the relatively low frequency of 1 GHz. The presence of the “con-
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vective" mechanism away from equilibrium rolls off at a frequency corresponding
to the energy relaxation rate. Here, the convective peak occurs around 25 GHz.
For semiconductors with a sublinear current-voltage characteristic, this convective
contribution is negative [84]. This mechanism is present in both the [100] and [111]
cases, but is more obviously present in the [111] due to the lack of intervalley noise.
Finally, as the frequency exceeds the momentum relaxation rate, the PSD rolls off to
zero as the electronic system is not able to redistribute in response to the oscillating
external field.

Figure 3.6: Microwave PSD versus frequency for n-Si at 77 K and 200 V cm−1

applied electric field, with field applied along the [100] direction (red solid line)
and [111] direction (purple solid line). Experimental data along the [100] direction
(red circles) and [111] direction (purple squares) from Figure 1, Ref. [15]. In both
cases, the data is normalized to the value of the PSD at the lowest frequency data
point (computation, 0.19 GHz; experiment, 0.1 GHz) in the [111] direction.
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Over the entire calculated frequency range, the computed results qualitatively capture
the trends seen in experiment. The anisotropy seen at low frequencies due to
intervalley noise, the rolloff in the [100] direction starting around 1 GHz due to
frequency exceeding the characteristic intervalley scattering rate, and the convective
noise peaks are all reproduced. At frequencies above 100 GHz, the PSD is higher in
the [111] direction, simply due to the greater mobility in this direction at 200 V cm−1.
Relaxation times for the various noise sources (thermal, convective, and intervalley)
can be obtained by fitting the computed curves to Lorentzians parameterized by the
various relaxation times, as given in Eq. 9.5 in Ref. [84]. For the [111] direction,
an energy relaxation time of 15 ps was calculated using Monte Carlo simulation, as
well as a momentum relaxation time of 2 ps, while our computation yields an energy
relaxation time of 9 ps, and a momentum relaxation time of 4 ps [84]. For the [100]
direction, Monte Carlo simulation reported an energy relaxation time of 5 ps [84],
and an intervalley relaxation time of 50 ps [15], while our computation yields an
energy relaxation time of 10 ps, and an intervalley relaxation time of 79 ps. The
magnitudes of the relaxation times and relative difference between the momentum
and energy relaxation times are thus in qualitative agreement with prior works.
However, data only exists up to intermediate frequencies (around 10 GHz), so it is
difficult to draw quantitative conclusions, especially for the momentum relaxation
time.

As the difference in the PSD at low frequency is due to intervalley noise, and the
magnitude of this difference is captured accurately by our computation, the results of
Fig. 3.6 suggest that the f-type scattering rates in computation are compatible with
their actual values. In addition, the frequency of the intervalley roll-off and con-
vective mechanism being well-captured imply that both the intervalley and energy
relaxation rates are qualitatively consistent with experimental values.

Piezoresistivity
We next compute the piezoresistivity at 300 K and 77 K, for which experimental
data is available [80]. In Fig. 3.7a, the computed transverse resistivity versus stress
in the [001] and [011] directions at 300 K is presented. The computed anisotropy
exhibits qualitative agreement with experiment, as in both cases the resistivity is
less when the stress is applied along the [001] compared to the [011] case. Due
to the non-negligible contribution of f-type scattering at 300 K, applying pressure
along the [001] eliminates f-type scattering in the high-stress limit and thereby
decreases the resistivity by a greater amount than in the [011] case. However, the
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computation underpredicts the transverse resistivity at all pressures for both applied
stress directions.

In Fig. 3.7b, the computed transverse resistivity versus stress at 77 K is shown along
with experimental data. Here, it is observed in experiment that at high stresses,
the resistivity along both directions saturates to closer to the same value than at
300 K. The computed resistivity saturates with pressure to a slightly lower value
than in experiment, but the difference between the two directions is considerably
smaller than at 300 K (69% at 300 K versus 8% at 77 K). The relatively small
difference in the high-pressure 77 K resistivity between the two directions indicates
that f-type scattering is negligible at this temperature, while at 300 K the computed
difference between the two directions is comparable with experimental results. The
agreement at both temperatures indicates that the magnitude of f-type scattering at
these temperatures is being qualitatively captured.

Figure 3.7: Computed normalized transverse resistivity versus stress in n-Si at (a)
300 K and (b) 77 K, with stress applied along the [001] direction (red triangles) and
[011] direction (purple crosses). Experimental data along the [001] direction (red
circles) and [011] direction (purple squares) from Figures 3 and 4, Ref. [80].

3.7 Discussion
Figure 3.5 indicates that the anisotropy of the diffusion coefficient in n-Si is qualita-
tively captured in the calculation, with the diffusion coefficient in the [111] direction
being less than in the [100] in the high-field limit for all temperatures measured.
The primary discrepancies between experiment and computation between 160 and
300 K are the anisotropy in the computed results being smaller and not manifesting
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until higher fields compared to experiment. The smaller anisotropy in the computed
results suggests that the computation underestimates the amount of intervalley noise,
and thus overestimates the amount of f-type scattering. However, Fig. 3.6 indicates
that the computed intervalley scattering rates and intervalley noise magnitude are
qualitatively compatible with experiment, and Fig. 3.7 shows that the variation of
f-type scattering with temperature is qualitatively captured as well. The amount of
error in the computed f-type scattering rate is therefore constrained to values that
are insufficient to explain the discrepancies in the diffusion coefficient.

One additional way to confirm this assertion is to examine the diffusion coefficient
in n-Si with a modified version of the scattering matrix. If indeed the f-type
scattering is described incorrectly, we may approximate the effects of having lower
f-type scattering by manually changing the electron-phonon scattering rates (only
for those corresponding to an f-type scattering process). For illustration, in Fig. 3.8,
the diffusion coefficient results for a case in which the f-type scattering rates have
been halved is shown, along with the original results and experimental data. While
halving the f-type scattering rates does cause a larger anisotropy in the diffusion
coefficient, as well as causing this anisotropy to start significantly manifesting at
lower electric field values (the [100] diffusion coefficient is clearly higher in the
scaled f-type case at an electric field value of 3.1 kV cm−1, as opposed to 4.1 kV
cm−1 in the original computation), this effect is not nearly enough to resemble the
large anisotropy shown in experiment. Thus, this indicates that if this discrepancy
is caused by an incorrect description of f-type scattering, the f-type rates must be
several times smaller than what is computed.

Given these observations, and that we have used the highest level of ab-initio the-
ory presently available which include two-phonon scattering, our findings suggest
an external mechanism not contained in the computation is responsible for the
discrepancy. We suggest that this mechanism could be the neglect of spatial inho-
mogeneities present in experiment. The ab-initio method used here does not include
real-space effects such as concentration gradients or space charge effects. Although
the time-of-flight experiment was carefully implemented to avoid dielectric relax-
ation in the sample, it is conceivable that fluctuations in drift velocity associated with
intervalley scattering within the generated electron pulse could lead to space charge
effects which would spatially broaden the pulse and hence increase the measured
diffusion coefficient. This effect would be present only in the [100] direction due
to the absence of intervalley scattering in the [111] direction. Further, these effects
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Figure 3.8: Diffusion coefficient versus electric field at 300 K in n-Si. The circles
represent experimental data taken from Ref. [29], the solid lines represent the results
of our original computation (also contained in Fig. 3.5a, and the dotted lines represent
a computation in which the f-type scattering rates have been artificially halved. Data
in red represents the electric field applied in the [100] direction, while data in purple
represents the electric field applied in the [111] direction. This shows that even
an overestimate of ∼ 2x would not be nearly enough to make up the experimental
discrepancy.

would not appear in the microwave PSD as these frequencies are much higher than
those associated with any dielectric relaxation phenomena. Additional study will
be required to determine the origin of the diffusion coefficient discrepancies.

3.8 Summary
In this chapter, we introduced how our first-principles approach could be applied to
fluctuational variables. With this approach, we focused on intervalley noise in n-Si,
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and computed the hot-electron diffusion coefficient, microwave PSD, and piezore-
sistivity from 77 – 300 K. We find that while qualitative features of the diffusion
coefficient such as the anisotropy at high electric fields are generally predicted,
several trends of the calculated values differ from experiment. We computed the
piezoresistivity and microwave PSD to investigate whether an inaccurate description
of f-type intervalley scattering could explain the discrepancies (as these variables
are sensitive to the precise amount of f-type scattering, unlike most observables).

However, the good qualitative agreement of these properties with experiment ex-
cluded this possibility, leading to the hypothesis that the measured diffusion coeffi-
cient is influenced by factors not included in ab-initio calculations such as real-space
gradients and space charge effects. This finding indicates that care must be taken
when interpreting diffusion coefficient measurements in terms of microscopic charge
transport processes.
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C h a p t e r 4

VALLEYTRONICS AND NEGATIVE DIFFERENTIAL
RESISTANCE IN CUBIC BORON NITRIDE: A

FIRST-PRINCIPLES STUDY

This chapter has been adapted, in part, from:

Benjamin Hatanpää and Austin J. Minnich. Valleytronics and negative differential
resistance in cubic boron nitride: a first-principles study, 2024. https://arxiv.
org/abs/2408.08458
B.H. co-designed the research, conducted the calculations, analyzed the data, and
wrote the manuscript.

Si, Ge, and “conventional” III-V materials were dominant in semiconductor technol-
ogy for the first 40 years of the field’s development. Wide-bandgap materials were
not widely used until the early 1990s [4, 149, 151, 152], after breakthroughs were
made that made InGaN widely used due to its optoelectronic properties. Other wide-
bandgap technologies based off of materials such as SiC [160] and GaN [182, 219]
are maturing rapidly, mostly due to their electronic properties. In electronic ap-
plications, as opposed to optoelectronics, indirect bandgap materials can be used
and light emission efficiency is unimportant, relaxing the constraints on material
selection [210]. However, there are another class of materials that have not been
extensively explored for device applications, which have bandgaps much larger than
the 3.4 eV of GaN.

Ultrawide-bandgap (UWBG) semiconductors are the subject of intense recent study
owing to their utility in power electronics and related device applications [210, 217].
Cubic boron nitride (c-BN), with a wide bandgap of 6.4 eV [44], has long been
of interest for electron devices and other applications owing to its competitive
mechanical, thermal, and electrical properties. c-BN has a high hardness of 30-43
GPa [83], thermal conductivity which is second only to diamond [39], excellent
oxidation resistance, and high chemical and thermal stability. In addition, c-BN
also has a high electric breakdown field of 4 MV cm−1, comparable to those of
diamond and GaN; [41] and a high predicted saturation drift velocity of 4.3 × 107

cm s−1, which is the highest of any semiconductor. These properties lead to the

https://arxiv.org/abs/2408.08458
https://arxiv.org/abs/2408.08458
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prediction of among the highest figure-of-merits (such as Johnson, Baliga, and Keyes
figures-of-merit) for high-frequency and high-power applications [41, 82, 210].

In addition to transistor-based devices using UWBGs, other device types such as
transferred-electron and valleytronic devices are of interest. For instance, diamond
exhibits a region of negative differential resistance (NDR) below room temperature
[96], enabling the realization of Gunn oscillators. [202] Further, the large intervalley
time of 300 ns [97] allows for manipulation of electrons by their valley degree of
freedom, for instance in a valleytronic transistor [203]. However, diamond has long-
standing challenges, including the difficulty to realize n-type doping [26, 71, 190]
and synthesis of high-quality thin films.

c-BN has potential to overcome some of these difficulties. c-BN can be doped both n-
and p-type [128, 204, 205, 212], has a higher oxidation temperature than diamond,
and is more thermally and chemically stable [98]. c-BN also may be useful in
conjunction with diamond in devices, as due to the small degree of lattice mismatch
between c-BN and diamond of 1.4%, heteroepitaxy can be attained between the two
[27, 113, 212, 220]. In addition, several theoretical studies have been done that point
to the possibility of creating a two-dimensional hole gas (2DHG) [148, 215], and
NV-based quantum sensors using diamond and c-BN [191] . However, c-BN films
face various challenges in synthesis, including formation of nanocrystalline films,
growth of the hexagonal crystal structure rather than the desired cubic structure
[185], and high compressive stresses. [218] As a result, devices based on c-BN are
still rare. Most devices are limited to 𝑝 − 𝑛 junctions [158] fabricated from doped
or intrinsic c-BN thin films [221]. Diodes [143] and ultraviolet emitters [144] have
been realized in c-BN. In addition, deep-ultraviolet photodetectors based on c-BN
have been fabricated [18, 127, 196], which are of interest for extreme-environment
applications.

Considering that diamond thin films have been found to be promising for Gunn
oscillators and valleytronic transistors [202, 203], it is natural to consider c-BN as
well given the similarities in electronic band structure. However, experimental data
regarding the transport properties of c-BN, especially at high electric fields, are
scarce. The low-field mobility has been reported experimentally [81, 90, 156, 212],
with values varying by several orders of magnitude. The low-field mobility of c-
BN has been computed with ab-initio methods [95, 164, 186], but investigations
at higher fields are limited to Monte Carlo methods with semi-empirical inputs
[42, 195, 224]. The properties relevant for transferred-electron and valleytronic
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devices, namely the occurrence of negative differential resistance and a sufficiently
long intervalley scattering time, have not yet been assessed in c-BN.

In this chapter, we report first-principles calculations of the high-field electron
transport properties and noise characteristics of c-BN. We find a pronounced region
of negative differential resistance below 140 K. This feature occurs due to the
strong dependence of the electron scattering rates associated with optical phonon
emission. The high optical phonon energy in c-BN also leads to intervalley scattering
times rivaling those of diamond. We identify how these predictions could be
experimentally tested via a non-monotonic trend in the spectral noise current density
versus electric field. These properties suggest that c-BN is a promising contender
in novel electronics applications such as valleytronics or Gunn oscillators.

4.1 Band structure and phonon dispersion of c-BN
Cubic boron nitride (c-BN) is a ultra-wide-bandgap semiconductor (UWBG), of
recent scientific interest. The cubic form of BN has been known of since 1957
[214], and is used most commonly as an industrial abrasive due to its mechanical
properties [156]. However, as mentioned previously, the electronic properties of
c-BN are also of scientific interest, but have not been extensively probed. To start,
we investigate the band structure and phonon dispersion.

The calculated bandstructure of c-BN is shown in Fig. 4.1. The conduction band
minima are at the X points, giving three equivalent valleys in reciprocal space, while
the valence band minima is at Γ. We note here that the next-lowest conduction band
minimum is calculated to be 4.32 eV higher in energy than the conduction band
minimum, far higher than the electronic states occupied at the highest fields used
in this work. Thus, the assumption of only using one band is valid. In addition,
we note that the next-lowest-energy satellite valley at 𝐾 is 2.44 eV higher than the
conduction band minimum as well.

We next discuss the calculated phonon dispersion of c-BN, shown in Fig. 4.2. We
first note that the longitudinal optical phonon energy at the Γ point is 157 meV and
the transverse optical phonon energy is 128 meV, which are 1822 K and 1485 K
in temperature units, respectively. The calculated LO-TO split is similar to other
computed values [147, 186]. The high Debye temperature here limits scattering
events between electrons and emission of optical phonons, as the average electron
at 300 K or below does not have enough energy to emit an optical phonon.

As the masses of boron and nitrogen are not very dissimilar, the phonon bandgap
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Figure 4.1: Computed electronic band structure of c-BN, showing the two highest
lying valence bands, and two lowest lying conduction bands. The valence band
minimum is at Γ, while the conduction band minimum is at 𝑋 , making c-BN an
indirect gap semiconductor.

is minimal. Acoustic phonons also are high energy (> 50 meV), except for small
wavevector acoustic phonons. Thus, low energy scattering is almost all intravalley,
due to the small wavevector.

4.2 Negative differential resistance
Negative differential resistance (NDR), or a decreasing drift velocity with an increase
in electric field, in semiconductors was first theoretically predicted in 1961, where
Hilsum predicted that such behavior could be observed in GaSb and GaAs [89],
and Riley and Watkins posited that Ge/Si alloys and III-V semiconductors would be
promising candidates for NDR materials [180]. When Gunn oscillations were first
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Figure 4.2: Computed phonon dispersion of c-BN. The large optical phonon energy
that limits optical phonon emission can be observed, as well as the small phonon
bandgap.

observed in GaAs and InP [76], it was then shown that NDR was the cause [114].

The most common types of materials that exhibit NDR are semiconductors with a
direct bandgap, and non-equivalent local minima with an energy separation. When
an electric field is applied, more population is scattered into higher energy satellite
valleys that have a negligible population at low fields. If these satellite valleys
have a higher effective mass (and thus lower mobility), NDR can be seen. A good
example of this phenomenon is shown in n-GaAs. At low fields, the vast majority
of electrons are in the lowest-energy Γ valley. However, there are eight satellite L
valleys, approximately 0.3 eV higher in energy than the CBM. These valleys have a
significantly larger effective mass than the Γ valley, and thus a lower mobility. Thus,
when the field is significant enough, the electrons have a high enough energy to be
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transferred from the Γ valley to the L valleys, resulting in a decrease of the total
drift velocity in the material.

However, it is possible for a material to exhibit NDR even without non-equivalent
local minima. For instance, it was posited that NDR would be seen in n-Si (which
has six equivalent valleys) below 50 K, and it was later confirmed experimentally [9,
30, 107]. Later, NDR was observed in diamond below 140 K when the electric field
was oriented along the [100]. This was shown to be due to the strong repopulation
effect caused by hot electrons reaching the energy threshold for LA phonon emission
[96].

It can be shown via thermodynamic arguments ([178, 179]), that if a material is
biased in a NDR region, the system becomes unstable and a high-field region forms
at the cathode, necessitating a decrease in field elsewhere along the sample. Once
the high-field region reaches the anode, it disappears but the instability of the system
causes it to appear again at the cathode [172]. These oscillations in current are known
as Gunn oscillations, and Gunn diodes are mainly used to provide microwave power
in the GHz to THz range from a DC bias [76, 180], used in radio astronomy receivers
[20], and sensors and measuring instruments such as radar detectors [139]. Thus,
identifying materials with a pronounced NDR region may lead to new Gunn diode
devices.

4.3 Valleytronics
In the 1980s, it was observed that certain transport phenomena in solid-state devices
were spin-dependent [11, 103]. This observation led to the idea of spintronics:
using the intrinsic spin degree of freedom of the electron in devices [48]. Spintronic
devices have been used for applications such as information storage and processing
[21]. However, the electron spin is not the only degree of freedom that can possibly
be exploited in devices. Any local minima in the conduction band is referred to as a
valley [188]. Valleytronics is the idea of manipulating the valley degree of freedom
in a material, in order to perform operations. An ideal valleytronic material is one
with several energy-degenerate valleys [188]. In a sense, manipulating the valley
degree of freedom in order to change a material’s properties is not a new idea. For
instance, as seen in Section 3.3, applying stress to a multi-valley semiconductor
will shift the valley energies, leading to increased (or decreased) mobility along
certain directions. This phenomena has been used to increase mobility in devices
[124, 208]. However, the ability to use this degree of freedom has not been exploited
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nearly to the extent as it is in spintronic devices.

Most valleytronic devices fabricated have been two-dimensional, using materials
such as graphene or group VI transition metal dichalcogenides monolayers [188].
Frequently, these devices exploit the +K and -K points in the Brillouin zone to store
binary information. Some three-dimensional materials exhibit significant valley
polarization under an applied field (usually at cryogenic temperatures), such as dia-
mond [97] and silicon [32]. However, three-dimensional valleytronic devices have
not been studied in much depth, due to the lack of strong coupling between the
valley index and the external field (making initialization, readout, and information
manipulation more difficult) [211]. However, a three-dimensional valleytronic tran-
sistor has recently been created using diamond [203], and even a room-temperature
valleytronic transistor has been created using the Weyl semiconductor tellurium,
due to its band topology [38]. Thus, the area of three-dimensional valleytronics
is emerging, and finding materials suited for these applications is key. The most
important quantity to examine when searching for these materials is the intervalley
time, as in order for a valleytronic application to be useful, the carriers must stay in
the valley they are in for enough time for manipulation and readout to occur [211].
Computing the intervalley time and its variation with quantities such as electric field,
magnetic field, and strain enables intelligent material and application selection.

4.4 Computational details
The numerical details are as follows. A similar approach is used as in Chapter 2 and
Chapter 3, but new quantities are computed and we outline how they are computed
here. The total intervalley scattering rate Ξk of a state k can be expressed as:

Ξk =
∑︁
k′

Θk′k(1 − 𝛿k′k) (4.1)

Here, 𝛿k′k = 1 if k′ and k are in the same valley, and 𝛿k′k = 0 if they are in different
valleys. We do not make any distinction between valleys on the same axis as the
minima in c-BN are at 𝑋 , meaning such valleys are connected across the Brillouin
zone edges. There thus exist three distinct valley types: (100), (010), and (001). We
then define the average intervalley scattering time 𝜏int as

𝜏int =
1
𝑁

∑︁
k

Ξk 𝑓k (4.2)
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As in Chapter 3, we can compute the diffusion coefficient from Eq. (3.14), and
for simplicity here we refer to the quantity defined in Eq. (3.14) as the diffusion
coefficient.

For all calculations, the electron-phonon matrix elements and electronic structure
are computed on a coarse 12 × 12 × 12 grid using DFPT and DFT in Quantum
Espresso [72]. The PBE functional was used for the DFT calculations. A wave-
function energy cutoff of 80 Ryd was used for all calculations. A relaxed lattice
parameter of 3.623 Å was used, which overestimates the experimental value by only
0.22% [109]. The electronic structure and electron-phonon matrix elements were
then interpolated to a fine grid using Perturbo [223]. For all temperatures, a fine
grid of 160 × 160 × 160 was used, with a 5 meV Gaussian smearing parameter.
Increasing the grid size to 180 × 180 × 180 led to a maximum change of 3.3% in
the mobility and maximum change of 8.0% in the diffusion coefficient. An energy
window of 383 meV was used. Increasing this energy window to 437 meV led to
a maximum change of 0.16% in the mobility and maximum change of 4.0% in the
diffusion coefficient. The linear system of equations used to compute the high-field
transport properties was then solved by a Python implementation of the GMRES
method [63]. For all calculations and temperatures, the Fermi level was adjusted
to yield a carrier density of 4 × 1013 cm−3. For all calculations of the diffusion
coefficient, a frequency of 1 GHz was used, selected so to ensure that 𝜔𝜏−1 ≪ 1
(where 𝜏 is a characteristic relaxation time), while avoiding too low frequencies
which result in numerical instabilities.

4.5 Results
Low-field mobility and electric-field dependence of drift velocity
We begin by examining the dependence of the electron drift velocity and mobility
on electric field at various temperatures. We first compare our computed low-field
mobility with other reported values. At 300 K, we compute a low-field mobility
of 1860 cm2V−1s−1. When including two-phonon scattering in the framework
described in Refs. [40, 86], the value decreases to 1136 cm2V−1s−1. c-BN has
an experimentally reported Hall mobility value of 825 cm2V−1s−1 [212] (although
much lower values have been reported [81, 90, 156]), and previously computed
ab-initio values range from 1230 cm2V−1s−1 (Ref. [95]) to 1610 cm2V−1s−1 (Ref.
[186]). Our mobility values are thus in reasonable agreement with prior computed
and experimental values.
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We note that for the rest of this work, only one-phonon scattering is considered. We
find that adding two-phonon scattering decreases the mobility at all temperatures by
roughly 40%, and the qualitative features of the mobility and diffusion coefficient
versus electric field are generally retained. These findings are similar to those in
Refs. [40, 86]. Therefore, to reduce computational cost, we consider only one-
phonon scattering as is typically assumed.

Next, we examine the drift velocity versus electric field at 300 K in Fig. 4.3a. At
sufficiently high electric fields, we observe an anisotropy in the drift velocity despite
the cubic symmetry of the crystal, with the drift velocity in the [100] direction being
less than that in the [111] by around 4% at 3 kV cm−1. This anisotropy is present
with greater magnitude at 200 K, as seen in Fig. 4.3b. We also note that as the
temperature decreases, the onset of a discernible difference in drift velocity between
the two directions occurs at a lower field. The anisotropy arises due to differences
in the average energy of the electron distribution function between the longitudinal
and transverse valleys [32, 45], as discussed in more detail below.

At 130 K, a qualitative change in the [100] drift velocity characteristics is seen in
Fig. 4.3c as an abrupt decrease in drift velocity above ≈ 500 V cm−1. The effect is
even more pronounced at 77 K, with the drift velocity dropping 25% within only 20
V cm−1. This NDR effect is well-known in semiconductors such as GaAs, forming
the basis for Gunn diodes, as outlined in Section 4.2. For these materials, NDR is
caused by intervalley scattering of electrons from the primary, high-mobility valley
at Γ to a satellite valley with higher effective mass such as the 𝐿 valley in GaAs.
However, this explanation is not applicable in c-BN as we calculate that the next-
lowest-energy satellite valley is 2.44 eV higher than the conduction band minimum,
as seen in Fig. 4.1. This energy is sufficiently large that it plays a negligible role in
the transport in the electric field range used in this work.

Valley repopulation and intervalley time
In diamond, NDR has been experimentally observed when the electric field is
oriented along the [100] direction, despite lacking the two-valley band structure re-
quired for the conventional NDR mechanism [96]. In this case, NDR was attributed
to the sudden onset of intervalley scattering associated with zone-edge longitudinal
acoustic phonon emission, which causes an abrupt repopulation from valleys trans-
verse to the electric field to those parallel to it [96]. This repopulation occurs only
at a high enough electric field value where the threshold for longitudinal acous-
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Figure 4.3: Computed drift velocity versus electric field at (a) 300 K, (b) 200 K, (c)
130 K, and (d) 77 K, with field applied along the [100] direction (orange line) and
[111] direction (blue line).

tic intervalley phonon emission is reached. As c-BN has a similar band structure
to diamond with six equivalent conduction band minima, we hypothesize that a
similar explanation is applicable. To test the hypothesis, we computed the energy
dependence of the electron-phonon scattering rates. The result at 77 K is shown in
Fig. 4.4. Indeed, we observe that below the optical phonon energy of ∼150 meV, the
scattering rates have a relatively weak dependence on energy, while the scattering
rates abruptly increase above the optical phonon energy.

The strong energy-dependence of the scattering rates has consequences for the
relative occupation in the various valleys and ultimately the transport properties.
Below the threshold field, few electrons have sufficient energy to scatter to an
inequivalent valley, and the [100], [010], and [001] valleys react to the electric
field largely independently. In addition, owing to the lower effective mass of the
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Figure 4.4: Electron scattering rate versus energy for c-BN at 77 K. The large optical
phonon threshold can be seen at ∼150 meV.

transverse valleys relative to longitudinal ones (0.36𝑚0 versus 0.95𝑚0 for transverse
and longitudinal, respectively), transverse valleys have a higher effective carrier
temperature than the longitudinal valleys at a given field, as shown in Fig. 4.5. The
effective valley temperatures are defined by computing the average energies of the
steady distributions at the given field and identifying the temperature of a Boltzmann
distribution with the same average energy. The valley temperature is a measure of
the average energy of the distribution rather than a thermodynamic temperature. As
the field increases, the transverse valleys achieve a higher steady-state temperature
owing to their lower effective mass. The higher electron temperature of the transverse
valleys also leads to the drift velocity anisotropy between [100] and [111] directions
shown in Fig. 4.3. This phenomenon is similar to what is shown schematically
in Fig. 2.2 in n-Si, but exaggerated as the mechanisms to equilibrate the valley
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populations do not exist at low electric field values.

Figure 4.5: Valley temperature versus electric field for c-BN at 77 K with the electric
field applied in the [100] direction. The [100] type valleys are shown in blue, and
[010]+[001] type valleys are shown in orange.

At the threshold field, electrons in the transverse valleys gain enough energy to emit
optical phonons and undergo an intervalley transition to the longitudinal valleys.
This repopulation effect is shown in Fig. 4.6 at 77 K, which plots the population
of the [100] type valleys in comparison to the sum of the [010] and [001] type
valleys versus electric field, with the field applied in the [100] direction. At zero
field, all valleys have the same population. As the field increases from zero, there
is little population redistribution due to the absence of a significant intervalley
scattering by phonon emission and the weak absorption-mediated scattering at 77
K. Even at 500 V cm−1, the [100] type valleys have less than 40% of the population.
However, once the threshold field is reached (≈ 560 V cm−1), a redistribution to
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the [100] longitudinal valleys occurs. Because the longitudinal mass is higher than
the transverse mass, the drift velocity abruptly decreases. This repopulation effect
occurs at all temperatures when the field is applied in any cubic axis, but NDR only
manifests in the transport properties when phonon-absorption intervalley scattering
is negligible compared to emission-mediated scattering, in this case at temperatures
below around 140 K.

Figure 4.6: Population fraction versus electric field for c-BN at 77 K with the electric
field applied in the [100] direction, for [100] type valleys (blue) and the sum of the
[010] and [001] type valleys (orange).

The high optical phonon energy in c-BN has consequences for intervalley scattering,
which must be mediated by zone-edge modes due to momentum conservation. For
sufficiently low fields, most electrons do not have sufficient energy to scatter via
an intervalley phonon emission process. Further, the high optical phonon energy
of c-BN leads to low thermal occupation even at 300 K, relative to conventional
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semiconductors like GaAs. As a result, both absorption and emission-mediated
intervalley scattering are weak in c-BN, and so the corresponding average intervalley
relaxation time is expected to be long in comparison to other semiconductors with
lower phonon energies.

In Fig. 4.7, we show the intervalley time versus electric field along the [100] direction
at 77 K. At low field (≈1 V cm−1), the intervalley relaxation time is calculated to
be 5.3 𝜇s. For comparison, we also computed the intervalley relaxation time in
diamond, obtaining a value of 2.4 𝜇s. c-BN thus has an intervalley relaxation
time at low fields nearly 100% larger than that of diamond. We note that the
value decreases with increasing electric field as electrons are able to emit zone-edge
phonons and scatter to other valleys. However, the relatively long intervalley time
suggests that c-BN may be promising in valleytronic applications.

Electric-field dependence of hot-electron diffusion coefficient
Experimental tests of these predictions are challenging owing to the difficulties
in preparing high-quality thin films of c-BN. We suggest an approach to mitigate
this challenge based on measurement of the current noise power spectral density
(PSD), or equivalently in the low-frequency limit, the diffusion coefficient. Due
to the long intervalley scattering time in c-BN, we expect a clear intervalley noise
contribution arising from electrons scattering between valleys with distinct effective
masses when the electric field is applied in the [100] direction. Intervalley noise
manifests in experiment as an anisotropy in the diffusion coefficient, with the value
being larger along the direction with inequivalent valleys relative to the case in which
all valleys are equivalent [84, 167]([100] valleys versus [111] valleys, respectively,
for c-BN).

More precisely, the general expression for the intervalley diffusion coefficient is
given by Eq. (3.1), and in the present case, the valley types 1 and 2 refer to longi-
tudinal and transverse valleys defined by the field direction. Thus, intervalley noise
will manifest as an increase in the [100] diffusion coefficient over the [111] diffusion
coefficient, with the precise amount depending on the quantities in Eq. (3.1) at each
field.

In Fig. 4.8, we show the electric field dependence of the diffusion coefficient for
300 K and 77 K. At 300 K in Fig. 4.8a, we observe that the diffusion coefficient
monotonically decreases with increasing field along the [111]. This behavior is
similar to what is seen in n-Si [85], and it occurs when the scattering rates increase
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Figure 4.7: Average intervalley relaxation time versus electric field for c-BN at 77
K, with the electric field applied in the [100] direction. The intervalley time is on
the order of microseconds at low fields, rivaling that of diamond.

sufficiently strongly with increasing energy [5, 29, 43]. For the [100] direction,
however, a higher diffusion coefficient value and a non-monotonic trend with electric
field are seen. At 300 K in Fig. 4.8a, we observe that the diffusion coefficient peak
when the electric field is applied in the [100] direction leads to a non-monotonic
trend, with a peak around 2% higher than the equilibrium value. We attribute this
peak to the contribution of intervalley noise, although the magnitude of the peak
may be difficult to detect experimentally.

Figure 4.8b shows the corresponding results at 77 K. Along the [111], a non-
monotonic trend is observed despite the expected absence of intervalley noise. This
feature can be partially explained using the generalization of the Einstein relation
applied to high fields in Eq. (3.3). Figure 4.9a shows the average energy versus



74

Figure 4.8: Computed electron diffusion coefficient versus electric field at (a) 300
K and (b) 77 K, with field applied along the [100] direction (orange line) and
[111] direction (blue line). A pronounced peak in the [100] diffusion coefficient is
observed at 77 K, which is attributed to intervalley diffusion.

electric field when the field is oriented in the [111], and Fig. 4.9b shows the mobility
versus electric field. With these two quantities, we can calculate an approximation for
the high-field diffusion coefficient. This approximation versus the original computed
result is shown in Fig. 4.10. While the magnitude of the increase is greater in the
modified Einstein approximation result, and a decrease in the diffusion coefficient
is observed at ∼ 700 V cm−1 in the approximation, the approximation confirms an
initial increase in the diffusion coefficient. Due to a weak dependence of scattering
rates on energy below the optical phonon energy as seen in Fig. 4.4, the average
electron energy exhibits a stronger dependence on electric field than the mobility.
As a result, the diffusion coefficient initially increases with increasing field.

In the [100] direction, the peak is markedly larger compared to the [111] case,
with the peak value of the [100] diffusion coefficient at ≈700 V cm−1 being
nearly 300% larger than the equilibrium value. The effect is much larger at 77
K compared to at 300 K. Such large peaks in the diffusion coefficient have been
observed experimentally for other materials such as GaAs [14, 70, 181] but have not
been seen in first-principles calculations [40] until now. Monte Carlo calculations
of the diffusion coefficient in diamond at 300 K have found a slight increase of the
diffusion coefficient with electric field [159], similar to what is observed here in
c-BN at 300 K. The magnitude of the peak at low temperatures is sufficiently large
that it could easily be discerned in experiment, and its detection would support the
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Figure 4.9: (a) Average electron energy versus electric field and (b) mobility versus
field for c-BN at 77 K. For both cases, the electric field is applied in the [111].

prediction of the long intervalley time in c-BN.

4.6 Discussion
Our first-principles calculations have predicted that c-BN exhibits a region of NDR
and a long intervalley lifetime rivaling that of diamond. These properties may find
useful device applications. In materials with a pronounced NDR region, instabilities
in electric current will lead to the formation of charged domains [76], which can
be utilized in Gunn oscillators for various microwave applications. As a Gunn
oscillator has been constructed with diamond thin films [202] it is possible that such
devices could be realized in c-BN. We note that in both cases, the devices would
need to operate below room temperature.

Experimental characterization of the NDR region can also provide insight into the
role of 2ph scattering in c-BN. While in this work we have employed the 1ph level of
theory, 2ph scattering was found to reduce the predicted mobility by ≈ 40%, in line
with the reduction reported for other semiconductors [52, 86, 123]. 2ph scattering
also shifts the electron distribution to lower energies at a given field, which in turn
would cause the threshold field for NDR to occur at ≈ 1120 V cm−1 than the 560
V cm−1 at the 1ph level of theory. If sufficiently pure samples were available, the
difference in threshold field should be discernible.

For valleytronics, it is essential that electrons within a valley remain there long
enough to perform the desired function [211]. For c-BN, at equilibrium, our calcu-
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Figure 4.10: (a) Average electron energy versus electric field and (b) mobility versus
field for c-BN at 77 K. For both cases, the electric field is applied in the [111].

lated intervalley time of 5.3 𝜇s at 77 K is significantly greater than the 300 ns value
for diamond, calculated from Monte Carlo simulation [97] and the value of 2.4 𝜇s
we computed. It also greatly exceeds the intervalley time of typical semiconduc-
tors; for instance, we compute the intervalley time of n-Si to only be 149 ps at the
same temperature. However, due to the strong decrease of the intervalley time with
increasing field seen in Fig. 4.7, some optimization may be required to use c-BN
in valleytronic applications. A potential route to increase the intervalley relaxation
time further is by leveraging the compressive strain present in most c-BN thin films.
Strain would break the degeneracy of the six equivalent valleys, further inhibiting
intervalley scattering and leading to an increase in intervalley relaxation time.
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4.7 Summary
Cubic boron nitride (c-BN) is a novel ultra-wide-bandgap semiconductor with tech-
nological promise due to its predicted high breakdown field and saturation drift
velocity, but has not been investigated in depth away from equilibrium with ab-initio
methods or in experiments. We have computed the high-field transport properties
and diffusion coefficient of c-BN from first-principles from 77 – 300 K. We find
that below 140 K, c-BN exhibits a region of negative differential resistance arising
from the strong energy dependence of the scattering rates around the optical phonon
energy, indicating the potential of c-BN in transferred-electron devices. The high
optical phonon energy in conjunction with c-BN’s anisotropic band structure also
leads to a calculated intervalley time comparable to that of diamond, suggesting that
c-BN could be a promising material for valleytronic applications.

We also show that our predictions can be tested by identifying a non-monotonic
trend of the diffusion coefficient versus electric field. Our work highlights the po-
tential electron device applications of c-BN beyond conventional power electronics,
and stimulates further experimental investigation into the synthesis and electrical
transport properties of c-BN thin films by suggesting techniques to confirm our
computations and to ameliorate the potential obstacles in using c-BN in devices.
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C h a p t e r 5

CONCLUSION AND OUTLOOK

This thesis has focused on using first-principles methods to investigate high-field
transport and noise properties in semiconductors. In Chapter 1, we introduced
the theoretical background of the problem of the electron-phonon interaction, and
outlined the computational approach we use to obtain the electron-phonon matrix
elements utilized in our BTE solver. In addition, we gave a short summary of
hot-electron noise, and the advantages of an ab-initio approach to solve for both
transport and fluctuational observables.

In Chapter 2, we introduced the widely utilized semiconductor n-Si, and its band
structure and phonon dispersion. We then went in depth of how, starting with
the Boltzmann transport equation for a spatially homogeneous and nondegenerate
electron gas, we can solve a linear system in order to obtain high-field transport
properties like the drift velocity. In order to provide an intermediate observable
to characterize the heating of the electron gas, between the linear response of the
low-field mobility and the high-field drift velocity, we introduce the warm electron
tensor or 𝛽. We found that the qualitative features of the dependence of 𝛽 on electric
field orientation are described correctly at the normal one-phonon level of theory,
but that the magnitude of 𝛽 is overestimated by over 100% over a wide range of
temperatures. To address this, we investigated the effect of including the next-
to-leading order term in the electron-phonon perturbative expansion, by including
one-electron-two-phonon (2ph) scattering. We find that including 2ph scattering
causes near-quantitative agreement with experimental values of 𝛽, showing that 2ph
is important even in nonpolar semiconductors.

In Chapter 3, we continued our study of n-Si, by investigating the hot-electron
diffusion coefficient. To do this, we showed how we are able to solve for fluctuational
observables using the BTE, in a similar manner to how we solved for transport
properties. We found that while we correctly predicted the qualitative features of
the diffusion coefficient anisotropy, such as the sign of the anisotropy at high fields,
we predicted a much smaller intervalley noise contribution than in experiments, and
this contribution also manifested at much larger fields than in experiments. The most
obvious explanation for this discrepancy between computation and experiment is an



79

incorrect description of 𝑓 -type scattering. However, by investigating the frequency
dependence of the diffusion coefficient and the piezoresistivity, we showed that the
good qualitative agreement of these quantities with experiment excluded the idea of
𝑓 -type scattering being overestimated in our computation. Instead, we suggested
that the measured diffusion coefficient may be influenced by real-space gradients
and space charge effects, not included in our electron-phonon scattering description.
Our work shows the care that must be taken when attempting to explain experimental
diffusion measurements with microscopic charge transport processes.

In Chapter 4, we applied the approach to solve for high-field transport properties
outlined in Chapter 2 and the approach to calculate high-field diffusion coefficients
outlined in Chapter 3 to the novel ultra-wide bandgap semiconductor, cubic boron
nitride (c-BN). While c-BN is known for its excellent mechanical and thermal
properties, past studies have indicated it has excellent electronic properties such as an
extremely high breakdown field and saturation drift velocity. While these properties
in theory make c-BN an excellent candidate for usage in high-power and high-
frequency devices, very few experimental or theoretical studies have been conducted
on the electronic properties of c-BN away from low field. We found that c-BN
exhibits a distinct NDR region below 140 K, through an unusual mechanism where
when electrons reach the high optical phonon energy threshold, they repopulate from
high- to low-energy valleys. A second consequence of this high optical phonon
energy is the extremely high intervalley time at low electric fields, comparable
to diamond. The NDR region and large intervalley time indicate that c-BN is a
promising candidate for transferred-electron and valleytronic devices, respectively.
Our work shows the potential of c-BN beyond the usually suggested high-power
and high-frequency applications, stimulating further theoretical and experimental
investigation into this novel semiconductor.

Future Work
Here, we discuss some possible new avenues of investigation that are motivated by
our findings.

Inclusion of full electron-two-phonon interaction

We noted in Section 2.4 that we only included two-phonon events consisting of
consecutive one-phonon events, mediated by an intermediate state, and not the two-
phonon scattering corresponding to an electron simultaneously interacting with two
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phonons. The first type of two-phonon scattering corresponds to the first derivative
with respect to the interatomic potential, taken to second order in perturbation theory,
while the second corresponds to the second-order derivative of the interatomic
potential. While these two types of 2ph scattering have been shown to cancel in the
limit of long-wavelength acoustic phonons, it is unclear about the full extent of this
cancellation and the effect of it on transport properties. A further investigation of
the full electron-two-phonon interaction would aid understanding of this.

Investigating transport properties and noise in 2D materials

A similar approach to what is outlined in Section 2.3 has been used to calculate the
transport properties away from equilibrium [137] and the ultrafast dynamics [209] of
graphene, as well as the low-field transport properties of large-angle twisted bilayer
graphene [68]. However, the electronic properties of very few two-dimensional
materials have been investigated using first-principles, and the noise properties
have not been reported for any material using a fully ab-initio method. However,
in principle there are very few impediments to using the approach outlined in
Section 2.3 and Section 3.4 for two-dimensional materials, and our group has begun
to compute high-field noise properties in MoS2. As most valleytronic materials
are two-dimensional [188], using this computational approach would help identify
promising materials for this type of application, as the intervalley time can be
directly predicted. In addition, more understanding of the noise properties for two-
dimensional materials could be gained by computing fluctuational observables from
first-principles.

Inclusion of length-dependence in the BTE framework

In this work, length-dependence was neglected, and the BTE was solved solely in
momentum space — in principle, for an infinite sample bar. However, in order to
work towards using computational tools to be predictive of phenomena in devices,
it is imperative to take into account length-dependence, as we expect important
length-dependent changes in the noise at frequencies 𝜔𝜏𝑚 < 1, where 𝜏𝑚 is the
relaxation time corresponding to the process responsible for the noise source [84].
For instance, it has been found that intervalley noise can be suppressed by changing
the length of the sample [14]. Incorporating some degree of length dependence
from first-principles (for instance, confinement in one dimension) would give a
more mechanistic understanding of noise processes in devices.
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Incorporating ab-initio ionized-impurity scattering

In this work, only scattering between electrons and phonons were considered, and
when ionized-impurity scattering was briefly introduced in Section 3.6, it was
only the simple Brooks-Herring formula due to ease of implementation [131]. It
has been shown that in multivalley semiconductors with anisotropic bands, the
Brooks-Herring treatment of impurity scattering is insufficient and leads to an
order-of-magnitude discrepancy in ionized-impurity-limited mobility values [65].
However, approaches to include ionized-impurity scattering [125] and electron-
defect scattering [133] first-principles have been reported recently, and the low-field
mobility for basic semiconductors have been computed. A significant amount
of ionized-impurity scattering would cause valley depolarization in valleytronic
materials [96], and an accurate description of ionized-impurity scatering is crucial
at low temperatures to compute high-field transport properties. An improvement
on our work would be to be the first to include both electron-phonon and ionized-
impurity scattering away from low fields, and to accurately predict the effect of
impurity concentration on quantities such as the intervalley time.

Investigating transferred-electron devices and intervalley time using c-BN

In Chapter 4, we showed how our computations predicted a NDR region and large
intervalley time in c-BN, which are indicators of good suitability in transferred-
electron devices and valleytronic applications, respectively. However, very few
experimental measurements have been made of the electronic properties of c-BN
away from equilibrium, limited to voltage versus current at small voltage values [12].
With recent improvements in synthesis of thin films of c-BN, more measurements at
different temperatures can be recorded. Importantly, it should be straightforward to
test the hypothesis in Chapter 4 of the NDR region below 140 degrees. While directly
observing the intervalley time is more complicated, using the noise characteristics at
low temperature as a proxy for this as suggested in Section 4.5 should be attainable,
using (for instance) the time-of-flight method. In order to progress to novel devices
using c-BN, these properties must be confirmed first.



82

Bibliography

[1] Zlatan Aksamĳa and Umberto Ravaioli. Joule heating and phonon transport
in silicon mosfets. Journal of Computational Electronics, 5(4):431–434,
2006. doi: 10.1007/s10825-006-0045-2. URL https://doi.org/10.
1007/s10825-006-0045-2.

[2] Ya.I. Al’ber, A.A. Andronov, V.A. Valov, V.A. Kozlov, and I.R. Ryazant-
seva. Hot electron population inversion and cyclotron resonance negative
differential conductivity in semiconductors. Solid State Communications, 19
(10):955–959, 1976. ISSN 0038-1098. doi: https://doi.org/10.1016/0038-
1098(76)90629-3. URL https://www.sciencedirect.com/science/
article/pii/0038109876906293.

[3] Gerald P. Alldredge and F. J. Blatt. On the role of two-phonon processes in
the energy relaxation of a heated-electron distribution. Annals of Physics, 45
(2):191–231, November 1967. doi: 10.1016/0003-4916(67)90123-6.

[4] Hiroshi Amano, Masahiro Kito, Kazumasa Hiramatsu, and Isamu Akasaki.
P-type conduction in mg-doped gan treated with low-energy electron beam
irradiation (leebi). Japanese journal of applied physics, 28(12A):L2112,
1989.

[5] V. Aninkevičius, V. Bareikis, J. Liberis, A. Matulionis, and
P. Sakalas. Comparative analysis of microwave noise in gaas and
algaas/gaas channels. Solid-State Electronics, 36(9):1339 – 1343,
1993. ISSN 0038-1101. doi: https://doi.org/10.1016/0038-1101(93)
90174-O. URL http://www.sciencedirect.com/science/article/
pii/003811019390174. "http://www.sciencedirect.com/science/
article/pii/003811019390174O".

[6] M. Asche and O. G. Sarbei. Electric conductivity of hot carriers in si
and ge. physica status solidi (b), 33(1):9–57, 1969. doi: https://doi.org/
10.1002/pssb.19690330102. URLhttps://onlinelibrary.wiley.com/
doi/abs/10.1002/pssb.19690330102.

[7] M. Asche and O. G. Sarbei. Electron–phonon interaction in n-si. physica
status solidi (b), 103(1):11–50, 1981. doi: https://doi.org/10.1002/pssb.
2221030102. URL https://onlinelibrary.wiley.com/doi/abs/10.
1002/pssb.2221030102.

[8] M. Asche, V.M. Vasetskii, A.G Maksimchuk, and O.G. Sarbei. Electron scat-
tering in n-silicon. Ukrainskii fizicheskii zhurnal / Akademiia nauk Ukrainskoi
SSR, Otdelenie fiziki, 15:1692–1700, 1970.

[9] M. Asche, B. L. Boichenko, V. M. Bondar, and O. G. Sarbei. Influence of
electron-electron scattering on the anisotropic conductivity at high electric

https://doi.org/10.1007/s10825-006-0045-2
https://doi.org/10.1007/s10825-006-0045-2
https://www.sciencedirect.com/science/article/pii/0038109876906293
https://www.sciencedirect.com/science/article/pii/0038109876906293
http://www.sciencedirect.com/science/article/pii/003811019390174
http://www.sciencedirect.com/science/article/pii/003811019390174
"http://www.sciencedirect.com/science/article/pii/003811019390174O"
"http://www.sciencedirect.com/science/article/pii/003811019390174O"
https://onlinelibrary.wiley.com/doi/abs/10.1002/pssb.19690330102
https://onlinelibrary.wiley.com/doi/abs/10.1002/pssb.19690330102
https://onlinelibrary.wiley.com/doi/abs/10.1002/pssb.2221030102
https://onlinelibrary.wiley.com/doi/abs/10.1002/pssb.2221030102


83

fields in si. physica status solidi (b), 44(1):173–182, 1971. doi: https://doi.
org/10.1002/pssb.2220440117. URL https://onlinelibrary.wiley.
com/doi/abs/10.1002/pssb.2220440117.

[10] W. Baechtold. Noise behavior of gaas field-effect transistors with short gate
lengths. IEEE Transactions on Electron Devices, 19(5):674–680, 1972. doi:
10.1109/T-ED.1972.17473.

[11] M. N. Baibich, J. M. Broto, A. Fert, F. Nguyen Van Dau, F. Petroff, P. Etienne,
G. Creuzet, A. Friederich, and J. Chazelas. Giant magnetoresistance of
(001)fe/(001)cr magnetic superlattices. Phys. Rev. Lett., 61:2472–2475, Nov
1988. doi: 10.1103/PhysRevLett.61.2472. URL https://link.aps.org/
doi/10.1103/PhysRevLett.61.2472.

[12] I.S. Bam, V.M. Davidenko, V.G. Sidorov, L.I. Fel’dgun, M.D. Shagalov, and
Yu.K. Shalabutov. Electrical properties of cubic boron nitride. Fizika i
Tekhnika Poluprovodnikov, 10:554–556, 1976.

[13] J. Bardeen and W. Shockley. Deformation potentials and mobilities in non-
polar crystals. Phys. Rev., 80:72–80, Oct 1950. doi: 10.1103/PhysRev.80.72.
URL https://link.aps.org/doi/10.1103/PhysRev.80.72.

[14] V. Bareikis, V. Viktoravicius, A. Galdikas, and R. Miliusyte. Microwave
Noise and Constant of the Coupling Between the Valleys Gamma and l in a
Three-Valley Model of GaAs. Sov. Phys. Semicond., 14(7):847–849, 1980.

[15] V. Bareikis, V. Viktoravichyus, and A. Galdikas. Frequency dependence of
noise in n-type si in high electric fields. Soviet Physics Semiconductors, 16:
1202–1203, 1982.

[16] Stefano Baroni, Stefano de Gironcoli, Andrea Dal Corso, and Paolo Gi-
annozzi. Phonons and related crystal properties from density-functional
perturbation theory. Rev. Mod. Phys., 73:515–562, Jul 2001. doi:
10.1103/RevModPhys.73.515. URL https://link.aps.org/doi/10.
1103/RevModPhys.73.515.

[17] P. K. Basu and B. R. Nag. Infrared free-carrier absorption in n-type sili-
con. physica status solidi (b), 53(1):K61–K64, 1972. doi: https://doi.org/
10.1002/pssb.2220530158. URL https://onlinelibrary.wiley.com/
doi/abs/10.1002/pssb.2220530158.

[18] A. BenMoussa, A. Soltani, U. Schühle, K. Haenen, Y.M. Chong, W.J. Zhang,
R. Dahal, J.Y. Lin, H.X. Jiang, H.A. Barkad, B. BenMoussa, D. Bolsee,
C. Hermans, U. Kroth, C. Laubis, V. Mortet, J.C. De Jaeger, B. Giorda-
nengo, M. Richter, F. Scholze, and J.F. Hochedez. Recent developments
of wide-bandgap semiconductor based uv sensors. Diamond and Related
Materials, 18(5):860–864, 2009. ISSN 0925-9635. doi: https://doi.org/10.
1016/j.diamond.2008.11.013. URL https://www.sciencedirect.com/

https://onlinelibrary.wiley.com/doi/abs/10.1002/pssb.2220440117
https://onlinelibrary.wiley.com/doi/abs/10.1002/pssb.2220440117
https://link.aps.org/doi/10.1103/PhysRevLett.61.2472
https://link.aps.org/doi/10.1103/PhysRevLett.61.2472
https://link.aps.org/doi/10.1103/PhysRev.80.72
https://link.aps.org/doi/10.1103/RevModPhys.73.515
https://link.aps.org/doi/10.1103/RevModPhys.73.515
https://onlinelibrary.wiley.com/doi/abs/10.1002/pssb.2220530158
https://onlinelibrary.wiley.com/doi/abs/10.1002/pssb.2220530158
https://www.sciencedirect.com/science/article/pii/S0925963508005669
https://www.sciencedirect.com/science/article/pii/S0925963508005669


84

science/article/pii/S0925963508005669. Proceedings of Diamond
2008, the 19th European Conference on Diamond, Diamond-Like Materials,
Carbon Nanotubes, Nitrides and Silicon Carbide.

[19] Marco Bernardi. First-principles dynamics of electrons and phonons. The
European Physical Journal B, 89(11):239, 2016. doi: 10.1140/epjb/e2016-
70399-4. URL https://doi.org/10.1140/epjb/e2016-70399-4.

[20] M. Bester. Phaselock system for millimeter-wave Gunn oscillators used
in radio astronomy and laboratory spectroscopy. International Journal of
Infrared and Millimeter Waves, 7(1):43–63, January 1986. doi: 10.1007/
BF01011061.

[21] Sabpreet Bhatti, Rachid Sbiaa, Atsufumi Hirohata, Hideo Ohno, Shunsuke
Fukami, and S.N. Piramanayagam. Spintronics based random access mem-
ory: a review. Materials Today, 20(9):530–548, 2017. ISSN 1369-7021.
doi: https://doi.org/10.1016/j.mattod.2017.07.007. URL https://www.
sciencedirect.com/science/article/pii/S1369702117304285.

[22] Ya.M. Blanter and M. Büttiker. Shot noise in mesoscopic conductors.
Physics Reports, 336(1–2):1–166, September 2000. ISSN 0370-1573. doi:
10.1016/s0370-1573(99)00123-4. URL http://dx.doi.org/10.1016/
S0370-1573(99)00123-4.

[23] Felix Bloch. Über die quantenmechanik der elektronen in kristallgittern.
Zeitschrift für Physik, 52(7):555–600, 1929. doi: 10.1007/BF01339455.
URL https://doi.org/10.1007/BF01339455.

[24] A. D. Boardman, W. Fawcett, and H. D. Rees. Monte Carlo calculation of the
velocity-field relationship for gallium arsenide. Solid State Communications,
6(5):305–307, May 1968. doi: 10.1016/0038-1098(68)90110-5.

[25] A. D. Boardman, W. Fawcett, and J. G. Ruch. Monte carlo determina-
tion of hot electron galvanomagnetic effects in gallium arsenide. physica
status solidi (a), 4(1):133–141, 1971. doi: https://doi.org/10.1002/pssa.
2210040114. URL https://onlinelibrary.wiley.com/doi/abs/10.
1002/pssa.2210040114.

[26] T.H. Borst and O. Weis. Electrical characterization of homoepitaxial diamond
films doped with b, p, li and na during crystal growth. Diamond and Related
Materials, 4(7):948–953, 1995. ISSN 0925-9635. doi: https://doi.org/10.
1016/0925-9635(94)00263-0. URL https://www.sciencedirect.com/
science/article/pii/0925963594002630.

[27] Jesse M. Brown, Saurabh Vishwakarma, David J. Smith, and Robert J. Ne-
manich. Nucleation of cubic boron nitride on boron-doped diamond via
plasma enhanced chemical vapor deposition. Journal of Applied Physics,
133(21):215303, 06 2023. ISSN 0021-8979. doi: 10.1063/5.0145771. URL
https://doi.org/10.1063/5.0145771.

https://www.sciencedirect.com/science/article/pii/S0925963508005669
https://www.sciencedirect.com/science/article/pii/S0925963508005669
https://www.sciencedirect.com/science/article/pii/S0925963508005669
https://doi.org/10.1140/epjb/e2016-70399-4
https://www.sciencedirect.com/science/article/pii/S1369702117304285
https://www.sciencedirect.com/science/article/pii/S1369702117304285
http://dx.doi.org/10.1016/S0370-1573(99)00123-4
http://dx.doi.org/10.1016/S0370-1573(99)00123-4
https://doi.org/10.1007/BF01339455
https://onlinelibrary.wiley.com/doi/abs/10.1002/pssa.2210040114
https://onlinelibrary.wiley.com/doi/abs/10.1002/pssa.2210040114
https://www.sciencedirect.com/science/article/pii/0925963594002630
https://www.sciencedirect.com/science/article/pii/0925963594002630
https://doi.org/10.1063/5.0145771


85

[28] M.A.C.S. Brown. Deviations from ohm’s law in germanium and sil-
icon. Journal of Physics and Chemistry of Solids, 19(3):218–227,
1961. ISSN 0022-3697. doi: https://doi.org/10.1016/0022-3697(61)90030-
0. URL https://www.sciencedirect.com/science/article/pii/
0022369761900300.

[29] R. Brunetti, C. Jacoboni, F. Nava, L. Reggiani, G. Bosman, and R. J. J.
Zĳlstra. Diffusion coefficient of electrons in silicon. Journal of Applied
Physics, 52(11):6713–6722, 1981. doi: 10.1063/1.328622. URL https:
//doi.org/10.1063/1.328622.

[30] C. Canali, A. Loria, F. Nava, and G. Ottaviani. Negative differential mobility
for electrons in silicon at temperatures below 77°k. Solid State Communi-
cations, 12(10):1017–1021, 1973. ISSN 0038-1098. doi: https://doi.org/10.
1016/0038-1098(73)90027-6. URL https://www.sciencedirect.com/
science/article/pii/0038109873900276.

[31] C. Canali, C. Jacoboni, F. Nava, G. Ottaviani, and A. Alberigi-Quaranta.
Electron drift velocity in silicon. Phys. Rev. B, 12:2265–2284, Sep 1975.
doi: 10.1103/PhysRevB.12.2265. URL https://link.aps.org/doi/10.
1103/PhysRevB.12.2265.

[32] C. Canali, C. Jacoboni, G. Ottaviani, and A. Alberigi-Quaranta. High-field
diffusion of electrons in silicon. Applied Physics Letters, 27(5):278–280,
1975. doi: 10.1063/1.88465. URL https://doi.org/10.1063/1.88465.

[33] C. Canali, C. Jacoboni, G. Ottaviani, and A. Alberigi-Quaranta. High-field
diffusion of electrons in silicon. Applied Physics Letters, 27(5):278–280,
1975. doi: 10.1063/1.88465. URL https://doi.org/10.1063/1.88465.

[34] C. Canali, G. Gavioli, A. Losi, and G. Ottaviani. Hot-hole diffusivity in ge
at 77 k. Solid State Communications, 20(1):57–60, 1976. ISSN 0038-1098.
doi: https://doi.org/10.1016/0038-1098(76)91698-7. URL https://www.
sciencedirect.com/science/article/pii/0038109876916987.

[35] David S. Catherall and Austin J. Minnich. High-field charge transport and
noise in p-si from first principles. Phys. Rev. B, 107:035201, Jan 2023. doi:
10.1103/PhysRevB.107.035201. URL https://link.aps.org/doi/10.
1103/PhysRevB.107.035201.

[36] Carlton M. Caves. Quantum limits on noise in linear amplifiers. Phys.
Rev. D, 26:1817–1839, Oct 1982. doi: 10.1103/PhysRevD.26.1817. URL
https://link.aps.org/doi/10.1103/PhysRevD.26.1817.

[37] Gang Chen. Nanoscale energy transport and conversion: a parallel treatment
of electrons, molecules, phonons, and photons. Oxford, New York: Oxford
University Press, 2005., 2005.

https://www.sciencedirect.com/science/article/pii/0022369761900300
https://www.sciencedirect.com/science/article/pii/0022369761900300
https://doi.org/10.1063/1.328622
https://doi.org/10.1063/1.328622
https://www.sciencedirect.com/science/article/pii/0038109873900276
https://www.sciencedirect.com/science/article/pii/0038109873900276
https://link.aps.org/doi/10.1103/PhysRevB.12.2265
https://link.aps.org/doi/10.1103/PhysRevB.12.2265
https://doi.org/10.1063/1.88465
https://doi.org/10.1063/1.88465
https://www.sciencedirect.com/science/article/pii/0038109876916987
https://www.sciencedirect.com/science/article/pii/0038109876916987
https://link.aps.org/doi/10.1103/PhysRevB.107.035201
https://link.aps.org/doi/10.1103/PhysRevB.107.035201
https://link.aps.org/doi/10.1103/PhysRevD.26.1817


86

[38] Jiewei Chen, Yue Zhou, Jianmin Yan, Jidong Liu, Lin Xu, Jingli Wang, Tian-
qing Wan, Yuhui He, Wenjing Zhang, and Yang Chai. Room-temperature
valley transistors for low-power neuromorphic computing. Nature Com-
munications, 13(1):7758, 2022. doi: 10.1038/s41467-022-35396-x. URL
https://doi.org/10.1038/s41467-022-35396-x.

[39] Ke Chen, Bai Song, Navaneetha K. Ravichandran, Qiye Zheng, Xi Chen,
Hwĳong Lee, Haoran Sun, Sheng Li, Geethal Amila Gamage Udalamatta
Gamage, Fei Tian, Zhiwei Ding, Qichen Song, Akash Rai, Hanlin Wu, Pawan
Koirala, Aaron J. Schmidt, Kenji Watanabe, Bing Lv, Zhifeng Ren, Li Shi,
David G. Cahill, Takashi Taniguchi, David Broido, and Gang Chen. Ultrahigh
thermal conductivity in isotope-enriched cubic boron nitride. Science, 367
(6477):555–559, 2020. doi: 10.1126/science.aaz6149. URL https://www.
science.org/doi/abs/10.1126/science.aaz6149.

[40] Peishi S. Cheng, Jiace Sun, Shi-Ning Sun, Alexander Y. Choi, and Austin J.
Minnich. High-field transport and hot-electron noise in gaas from first-
principles calculations: Role of two-phonon scattering. Phys. Rev. B, 106:
245201, Dec 2022. doi: 10.1103/PhysRevB.106.245201. URL https:
//link.aps.org/doi/10.1103/PhysRevB.106.245201.

[41] John Chilleri, Poppy Siddiqua, Michael S. Shur, and Stephen K. O’Leary.
Cubic boron nitride as a material for future electron device applications: A
comparative analysis. Applied Physics Letters, 120(12):122105, 03 2022.
ISSN 0003-6951. doi: 10.1063/5.0084360. URL https://doi.org/10.
1063/5.0084360.

[42] John Chilleri, Yana Wang, Michael S. Shur, and Stephen K. O’Leary. A low-
field electron mobility analysis of cubic boron nitride. Solid State Communi-
cations, 352:114776, 2022. ISSN 0038-1098. doi: https://doi.org/10.1016/
j.ssc.2022.114776. URL https://www.sciencedirect.com/science/
article/pii/S0038109822001156.

[43] Alexander Y. Choi, Peishi S. Cheng, Benjamin Hatanpää, and Austin J.
Minnich. Electronic noise of warm electrons in semiconductors from
first principles. Phys. Rev. Materials, 5:044603, Apr 2021. doi: 10.
1103/PhysRevMaterials.5.044603. URL https://link.aps.org/doi/
10.1103/PhysRevMaterials.5.044603.

[44] R.M. Chrenko. Ultraviolet and infrared spectra of cubic boron nitride.
Solid State Communications, 14(6):511–515, 1974. ISSN 0038-1098.
doi: https://doi.org/10.1016/0038-1098(74)90978-8. URL https://www.
sciencedirect.com/science/article/pii/0038109874909788.

[45] Esther Conwell. High Field Transport in Semiconductors. Aca-
demic Press, 1967. https://www.google.com/books/edition/{High_
Field_Transport_in_Semiconductors}/{9teaxQEACAAJ}?hl=en.

https://doi.org/10.1038/s41467-022-35396-x
https://www.science.org/doi/abs/10.1126/science.aaz6149
https://www.science.org/doi/abs/10.1126/science.aaz6149
https://link.aps.org/doi/10.1103/PhysRevB.106.245201
https://link.aps.org/doi/10.1103/PhysRevB.106.245201
https://doi.org/10.1063/5.0084360
https://doi.org/10.1063/5.0084360
https://www.sciencedirect.com/science/article/pii/S0038109822001156
https://www.sciencedirect.com/science/article/pii/S0038109822001156
https://link.aps.org/doi/10.1103/PhysRevMaterials.5.044603
https://link.aps.org/doi/10.1103/PhysRevMaterials.5.044603
https://www.sciencedirect.com/science/article/pii/0038109874909788
https://www.sciencedirect.com/science/article/pii/0038109874909788
https://www.google.com/books/edition/{High_Field_Transport_in_Semiconductors}/{9teaxQEACAAJ}?hl=en
https://www.google.com/books/edition/{High_Field_Transport_in_Semiconductors}/{9teaxQEACAAJ}?hl=en


87

[46] M Costato and Lino Reggiani. Electron drift velocity and related phenomena
in si. physica status solidi (b), 42(2):591–602, 1970.

[47] M. Costato, S. Fontanesi, and L. Reggiani. Electron energy relaxation time
in si and ge. Journal of Physics and Chemistry of Solids, 34(3):547–564,
1973. ISSN 0022-3697. doi: https://doi.org/10.1016/0022-3697(73)90050-
4. URL https://www.sciencedirect.com/science/article/pii/
0022369773900504.

[48] Supriyo Datta and Biswajit Das. Electronic analog of the electro-optic mod-
ulator. Applied Physics Letters, 56(7):665–667, 02 1990. ISSN 0003-6951.
doi: 10.1063/1.102730. URL https://doi.org/10.1063/1.102730.

[49] Dhruv C. Desai, Bahdan Zviazhynski, Jin-Jian Zhou, and Marco Bernardi.
Magnetotransport in semiconductors and two-dimensional materials from
first principles. Phys. Rev. B, 103:L161103, Apr 2021. doi: 10.1103/
PhysRevB.103.L161103. URL https://link.aps.org/doi/10.1103/
PhysRevB.103.L161103.

[50] W. P. Dumke. Two-phonon indirect transitions and lattice scattering in si.
Phys. Rev., 118:938–939, May 1960. doi: 10.1103/PhysRev.118.938. URL
https://link.aps.org/doi/10.1103/PhysRev.118.938.

[51] William P. Dumke. Deformation potential theory for 𝑛-type ge. Phys. Rev.,
101:531–536, Jan 1956. doi: 10.1103/PhysRev.101.531. URL https://
link.aps.org/doi/10.1103/PhysRev.101.531.

[52] Iretomiwa Esho and Austin J. Minnich. Charge transport in bas and the
role of two-phonon scattering. Phys. Rev. B, 108:165202, Oct 2023. doi:
10.1103/PhysRevB.108.165202. URL https://link.aps.org/doi/10.
1103/PhysRevB.108.165202.

[53] R. Fauquembergue, J. Zimmermann, A. Kaszynski, E. Constant, and Greco
Microondes. Diffusion and the power spectral density and correlation function
of velocity fluctuation for electrons in Si and GaAs by Monte Carlo methods.
Journal of Applied Physics, 51(2):1065–1071, 02 1980. ISSN 0021-8979.
doi: 10.1063/1.327713. URL https://doi.org/10.1063/1.327713.

[54] W. Fawcett and H.D. Rees. Calculation of the hot electron diffusion rate
for gaas. Physics Letters A, 29(10):578–579, 1969. ISSN 0375-9601.
doi: https://doi.org/10.1016/0375-9601(69)91103-7. URL https://www.
sciencedirect.com/science/article/pii/0375960169911037.

[55] W. Fawcett, C. Hilsum, and H.D. Rees. Effects of non-parabolicity on non-
ohmic transport in inas. Solid State Communications, 7(17):1257–1259,
1969. ISSN 0038-1098. doi: https://doi.org/10.1016/0038-1098(69)90189-
6. URL https://www.sciencedirect.com/science/article/pii/
0038109869901896.

https://www.sciencedirect.com/science/article/pii/0022369773900504
https://www.sciencedirect.com/science/article/pii/0022369773900504
https://doi.org/10.1063/1.102730
https://link.aps.org/doi/10.1103/PhysRevB.103.L161103
https://link.aps.org/doi/10.1103/PhysRevB.103.L161103
https://link.aps.org/doi/10.1103/PhysRev.118.938
https://link.aps.org/doi/10.1103/PhysRev.101.531
https://link.aps.org/doi/10.1103/PhysRev.101.531
https://link.aps.org/doi/10.1103/PhysRevB.108.165202
https://link.aps.org/doi/10.1103/PhysRevB.108.165202
https://doi.org/10.1063/1.327713
https://www.sciencedirect.com/science/article/pii/0375960169911037
https://www.sciencedirect.com/science/article/pii/0375960169911037
https://www.sciencedirect.com/science/article/pii/0038109869901896
https://www.sciencedirect.com/science/article/pii/0038109869901896


88

[56] W. Fawcett, A.D. Boardman, and S. Swain. Monte carlo determination
of electron transport properties in gallium arsenide. Journal of Physics
and Chemistry of Solids, 31(9):1963–1990, 1970. ISSN 0022-3697.
doi: https://doi.org/10.1016/0022-3697(70)90001-6. URL https://www.
sciencedirect.com/science/article/pii/0022369770900016.

[57] Mattia Fiorentini and Nicola Bonini. Thermoelectric coefficients of 𝑛-doped
silicon from first principles via the solution of the boltzmann transport equa-
tion. Phys. Rev. B, 94:085204, Aug 2016. doi: 10.1103/PhysRevB.94.085204.
URL https://link.aps.org/doi/10.1103/PhysRevB.94.085204.

[58] Björn Fischer and Karl R. Hofmann. A full-band Monte Carlo model for the
temperature dependence of electron and hole transport in silicon. Applied
Physics Letters, 76(5):583–585, 01 2000. ISSN 0003-6951. doi: 10.1063/1.
125824. URL https://doi.org/10.1063/1.125824.

[59] M. V. Fischetti, P. D. Yoder, M. M. Khatami, G. Gaddemane, and M. L.
Van de Put. “Hot electrons in Si lose energy mostly to optical phonons”:
Truth or myth? Applied Physics Letters, 114(22), 06 2019. ISSN 0003-6951.
doi: 10.1063/1.5099914. URL https://doi.org/10.1063/1.5099914.
222104.

[60] M.V. Fischetti. Monte carlo simulation of transport in technologically sig-
nificant semiconductors of the diamond and zinc-blende structures. i. homo-
geneous transport. IEEE Transactions on Electron Devices, 38(3):634–649,
1991. doi: 10.1109/16.75176.

[61] N. O. Folland. Shapes of two-phonon recombination peaks in silicon. Phys.
Rev. B, 1:1648–1654, Feb 1970. doi: 10.1103/PhysRevB.1.1648. URL
https://link.aps.org/doi/10.1103/PhysRevB.1.1648.

[62] R.H. Fowler. Statistical Mechanics. Cambridge University Press, London,
1936.

[63] Valérie Frayssé, Luc Giraud, Serge Gratton, and Julien Langou. Algorithm
842: A set of gmres routines for real and complex arithmetics on high
performance computers. ACM Trans. Math. Softw., 31(2):228–238, jun 2005.
ISSN 0098-3500. doi: 10.1145/1067967.1067970. URL https://doi.
org/10.1145/1067967.1067970.

[64] J. Frey. Effects of intervalley scattering on noise in gaas and inp field-
effect transistors. IEEE Transactions on Electron Devices, 23(12):1298–
1303, 1976. doi: 10.1109/T-ED.1976.18653.

[65] Alex M. Ganose, Junsoo Park, Alireza Faghaninia, Rachel Woods-Robinson,
Kristin A. Persson, and Anubhav Jain. Efficient calculation of carrier scat-
tering rates from first principles. Nature Communications, 12(1):2222, 2021.
doi: 10.1038/s41467-021-22440-5. URL https://doi.org/10.1038/
s41467-021-22440-5.

https://www.sciencedirect.com/science/article/pii/0022369770900016
https://www.sciencedirect.com/science/article/pii/0022369770900016
https://link.aps.org/doi/10.1103/PhysRevB.94.085204
https://doi.org/10.1063/1.125824
https://doi.org/10.1063/1.5099914
https://link.aps.org/doi/10.1103/PhysRevB.1.1648
https://doi.org/10.1145/1067967.1067970
https://doi.org/10.1145/1067967.1067970
https://doi.org/10.1038/s41467-021-22440-5
https://doi.org/10.1038/s41467-021-22440-5


89

[66] SV Gantsevich, VL Gurevich, and R Katilius. Fluctuations in semiconductors
in a strong electric field and the scattering of light by” hot” electrons. Soviet
Physics JETP, 22(4), 1970.

[67] S.V. Gantsevich, V.L. Gurevich, and R. Katilius. Theory of fluctuations in
nonequilibrium electron gas. Rivista Del Nuovo Cimento, 2(5), 1979.

[68] Shiyuan Gao, Jin-Jian Zhou, Yao Luo, and Marco Bernardi. First-
principles electron-phonon interactions and electronic transport in large-
angle twisted bilayer graphene. Phys. Rev. Mater., 8:L051001, May 2024.
doi: 10.1103/PhysRevMaterials.8.L051001. URL https://link.aps.
org/doi/10.1103/PhysRevMaterials.8.L051001.

[69] F Pelayo García de Arquer, Ardalan Armin, Paul Meredith, and Edward H
Sargent. Solution-processed semiconductors for next-generation photodetec-
tors. Nature Reviews Materials, 2(3):1–17, 2017.

[70] D. Gasquet, M. de Murcia, J.P. Nougier, and C. Gontrand. Transport pa-
rameters of hot electrons in gaas at 300 k. Physica B+C, 134(1):264–268,
1985. ISSN 0378-4363. doi: https://doi.org/10.1016/0378-4363(85)90353-
5. URL https://www.sciencedirect.com/science/article/pii/
0378436385903535.

[71] E. Gheeraert, N. Casanova, A. Tajani, A. Deneuville, E. Bustarret, J.A.
Garrido, C.E. Nebel, and M. Stutzmann. n-type doping of diamond by
sulfur and phosphorus. Diamond and Related Materials, 11(3):289–295,
2002. ISSN 0925-9635. doi: https://doi.org/10.1016/S0925-9635(01)00683-
5. URL https://www.sciencedirect.com/science/article/pii/
S0925963501006835. 12th European Conference on Diamond, Diamond-
Like Materials, Carbon Nanotubes, Nitrides & Silicon Carbide.

[72] Paolo Giannozzi, Stefano Baroni, Nicola Bonini, Matteo Calandra, Roberto
Car, Carlo Cavazzoni, Davide Ceresoli, Guido L. Chiarotti, Matteo Co-
coccioni, Ismaila Dabo, Andrea Dal Corso, Stefano De Gironcoli, Stefano
Fabris, Guido Fratesi, Ralph Gebauer, Uwe Gerstmann, Christos Gougous-
sis, Anton Kokalj, Michele Lazzeri, Layla Martin-Samos, Nicola Marzari,
Francesco Mauri, Riccardo Mazzarello, Stefano Paolini, Alfredo Pasquarello,
Lorenzo Paulatto, Carlo Sbraccia, Sandro Scandolo, Gabriele Sclauzero, Ari
P. Seitsonen, Alexander Smogunov, Paolo Umari, and Renata M. Wentz-
covitch. Quantum espresso: A modular and open-source software project
for quantum simulations of materials. Journal of physics. Condensed mat-
ter : an Institute of Physics journal, 21(39), 2009. ISSN 0953-8984. doi:
10.1088/0953-8984/21/39/395502.

[73] W.E.K. Gibbs. Conductivity anisotropy and hot electron temperature in
silicon. Journal of Physics and Chemistry of Solids, 25(2):247–251,
1964. ISSN 0022-3697. doi: https://doi.org/10.1016/0022-3697(64)90085-

https://link.aps.org/doi/10.1103/PhysRevMaterials.8.L051001
https://link.aps.org/doi/10.1103/PhysRevMaterials.8.L051001
https://www.sciencedirect.com/science/article/pii/0378436385903535
https://www.sciencedirect.com/science/article/pii/0378436385903535
https://www.sciencedirect.com/science/article/pii/S0925963501006835
https://www.sciencedirect.com/science/article/pii/S0925963501006835


90

X. URL https://www.sciencedirect.com/science/article/pii/
002236976490085X.

[74] Feliciano Giustino. Electron-phonon interactions from first principles. Rev.
Mod. Phys., 89:015003, Feb 2017. doi: 10.1103/RevModPhys.89.015003.
URL https://link.aps.org/doi/10.1103/RevModPhys.89.015003.

[75] Martin A. Green, Anita Ho-Baillie, and Henry J. Snaith. The emergence
of perovskite solar cells. Nature Photonics, 8(7):506–514, 2014. doi:
10.1038/nphoton.2014.134. URL https://doi.org/10.1038/nphoton.
2014.134.

[76] J.B. Gunn. Microwave oscillations of current in iii–v semiconduc-
tors. Solid State Communications, 1(4):88–91, 1963. ISSN 0038-1098.
doi: https://doi.org/10.1016/0038-1098(63)90041-3. URL https://www.
sciencedirect.com/science/article/pii/0038109863900413.

[77] C. Hamaguchi and N. Mori. Magnetophonon resonance in semiconduc-
tors. Physica B: Condensed Matter, 164(1):85–96, 1990. ISSN 0921-4526.
doi: https://doi.org/10.1016/0921-4526(90)90065-3. URL https://www.
sciencedirect.com/science/article/pii/0921452690900653.

[78] Chihiro Hamaguchi and Yoshio Inuishi. Temperature dependence of mobility
of warm carriers in germanium and silicon. Journal of the Physical Society of
Japan, 18(12):1755–1762, 1963. doi: 10.1143/JPSJ.18.1755. URL https:
//doi.org/10.1143/JPSJ.18.1755.

[79] Chihiro Hamaguchi and Yoshio Inuishi. Conductivity anisotropy of hot
electrons in n-type silicon heated by microwave fields. Journal of Physics
and Chemistry of Solids, 27:1511–1518, 1966.

[80] K.V. Hansen. Some investigations of the intervalley scattering in N-type
silicon. Phd thesis, Technical University of Denmark, 1974.

[81] Ariful Haque and Jagdish Narayan. Tunable n-type conductivity and transport
properties of cubic boron nitride via carbon doping. ACS Applied Electronic
Materials, 3(3):1359–1367, 03 2021. doi: 10.1021/acsaelm.0c01130. URL
https://doi.org/10.1021/acsaelm.0c01130.

[82] Ariful Haque, Saif Taqy, and Jagdish Narayan. Recent progress in cu-
bic boron nitride (c-bn) fabrication by pulsed laser annealing for optoelec-
tronic applications. Journal of Electronic Materials, 53(8):4308–4340, 2024.
doi: 10.1007/s11664-024-11171-0. URL https://doi.org/10.1007/
s11664-024-11171-0.

[83] T.K. Harris, E.J. Brookes, and C.J. Taylor. The effect of temperature on
the hardness of polycrystalline cubic boron nitride cutting tool materials.

https://www.sciencedirect.com/science/article/pii/002236976490085X
https://www.sciencedirect.com/science/article/pii/002236976490085X
https://link.aps.org/doi/10.1103/RevModPhys.89.015003
https://doi.org/10.1038/nphoton.2014.134
https://doi.org/10.1038/nphoton.2014.134
https://www.sciencedirect.com/science/article/pii/0038109863900413
https://www.sciencedirect.com/science/article/pii/0038109863900413
https://www.sciencedirect.com/science/article/pii/0921452690900653
https://www.sciencedirect.com/science/article/pii/0921452690900653
https://doi.org/10.1143/JPSJ.18.1755
https://doi.org/10.1143/JPSJ.18.1755
https://doi.org/10.1021/acsaelm.0c01130
https://doi.org/10.1007/s11664-024-11171-0
https://doi.org/10.1007/s11664-024-11171-0


91

International Journal of Refractory Metals and Hard Materials, 22(2):105–
110, 2004. ISSN 0263-4368. doi: https://doi.org/10.1016/j.ĳrmhm.2004.01.
004. URL https://www.sciencedirect.com/science/article/pii/
S0263436804000058.

[84] H.L. Hartnagel, R. Katilius, and A. Matulionis. Microwave Noise in Semi-
conductor Devices. John Wiley & Sons, New York, 2001.

[85] Benjamin Hatanpää and Austin J. Minnich. Hot electron diffusion, microwave
noise, and piezoresistivity in si from first principles. Phys. Rev. B, 109:
235201, Jun 2024. doi: 10.1103/PhysRevB.109.235201. URL https://
link.aps.org/doi/10.1103/PhysRevB.109.235201.

[86] Benjamin Hatanpää, Alexander Y. Choi, Peishi S. Cheng, and Austin J.
Minnich. Two-phonon scattering in nonpolar semiconductors: A first-
principles study of warm electron transport in si. Phys. Rev. B, 107:
L041110, Jan 2023. doi: 10.1103/PhysRevB.107.L041110. URL https:
//link.aps.org/doi/10.1103/PhysRevB.107.L041110.

[87] E.A. Hendriks and R.J.J. Zĳlstra. Diffusion and inter-valley noise in (100)
n-channel si-mosfets from t = 4.2 to 295 k. Solid-State Electronics, 31
(2):171–180, 1988. ISSN 0038-1101. doi: https://doi.org/10.1016/0038-
1101(88)90126-8. URL https://www.sciencedirect.com/science/
article/pii/0038110188901268.

[88] G. Hill, P. N. Robson, and W. Fawcett. Diffusion and the power spectral
density of velocity fluctuations for electrons in InP by Monte Carlo methods.
Journal of Applied Physics, 50(1):356–360, 01 1979. ISSN 0021-8979. doi:
10.1063/1.325670. URL https://doi.org/10.1063/1.325670.

[89] C. Hilsum. Transferred electron amplifiers and oscillators. Proceedings of
the IRE, 50(2):185–189, 1962. doi: 10.1109/JRPROC.1962.288025.

[90] Kazuyuki Hirama, Yoshitaka Taniyasu, Hideki Yamamoto, and Kazuhide
Kumakura. Control of n-type electrical conductivity for cubic boron nitride
(c-BN) epitaxial layers by Si doping. Applied Physics Letters, 116(16):
162104, 04 2020. ISSN 0003-6951. doi: 10.1063/1.5143791. URL https:
//doi.org/10.1063/1.5143791.

[91] Lillian H. Hoddeson, G. Baym, and Nevill Francis Mott. The development
of the quantum mechanical electron theory of metals: 1900-28. Proceed-
ings of the Royal Society of London. A. Mathematical and Physical Sci-
ences, 371(1744):8–23, 1980. doi: 10.1098/rspa.1980.0051. URL https://
royalsocietypublishing.org/doi/abs/10.1098/rspa.1980.0051.

[92] P. Hohenberg and W. Kohn. Inhomogeneous electron gas. Phys. Rev., 136:
B864–B871, Nov 1964. doi: 10.1103/PhysRev.136.B864. URL https:
//link.aps.org/doi/10.1103/PhysRev.136.B864.

https://www.sciencedirect.com/science/article/pii/S0263436804000058
https://www.sciencedirect.com/science/article/pii/S0263436804000058
https://link.aps.org/doi/10.1103/PhysRevB.109.235201
https://link.aps.org/doi/10.1103/PhysRevB.109.235201
https://link.aps.org/doi/10.1103/PhysRevB.107.L041110
https://link.aps.org/doi/10.1103/PhysRevB.107.L041110
https://www.sciencedirect.com/science/article/pii/0038110188901268
https://www.sciencedirect.com/science/article/pii/0038110188901268
https://doi.org/10.1063/1.325670
https://doi.org/10.1063/1.5143791
https://doi.org/10.1063/1.5143791
https://royalsocietypublishing.org/doi/abs/10.1098/rspa.1980.0051
https://royalsocietypublishing.org/doi/abs/10.1098/rspa.1980.0051
https://link.aps.org/doi/10.1103/PhysRev.136.B864
https://link.aps.org/doi/10.1103/PhysRev.136.B864


92

[93] T. Holstein. Theory of ultrasonic absorption in metals: the collision-drag
effect. Phys. Rev., 113:479–496, Jan 1959. doi: 10.1103/PhysRev.113.479.
URL https://link.aps.org/doi/10.1103/PhysRev.113.479.

[94] F.N. Hooge. 1/f noise sources. IEEE Transactions on Electron Devices, 41
(11):1926–1935, 1994. doi: 10.1109/16.333808.

[95] Safdar Iqbal, Tao Cheng, Xinlei Duan, Linhua Liu, and Jia-Yue Yang.
Phonon-assisted carrier transport and indirect optical absorption of cu-
bic boron nitride from first-principles. Journal of Applied Physics, 135
(5):055102, 02 2024. ISSN 0021-8979. doi: 10.1063/5.0180628. URL
https://doi.org/10.1063/5.0180628.

[96] J. Isberg, M. Gabrysch, S. Majdi, and D. J. Twitchen. Negative electron
mobility in diamond. Applied Physics Letters, 100(17):172103, 04 2012.
ISSN 0003-6951. doi: 10.1063/1.4705434. URL https://doi.org/10.
1063/1.4705434.

[97] Jan Isberg, Markus Gabrysch, Johan Hammersberg, Saman Majdi, Kiran Ku-
mar Kovi, and Daniel J. Twitchen. Generation, transport and detection
of valley-polarized electrons in diamond. Nature Materials, 12(8):760–
764, 2013. doi: 10.1038/nmat3694. URL https://doi.org/10.1038/
nmat3694.

[98] Natalia Izyumskaya, Denis O. Demchenko, Saikat Das, Ümit Özgür, Vi-
taliy Avrutin, and Hadis Morkoç. Recent development of boron nitride
towards electronic applications. Advanced Electronic Materials, 3(5):
1600485, 2017. doi: https://doi.org/10.1002/aelm.201600485. URL https:
//onlinelibrary.wiley.com/doi/abs/10.1002/aelm.201600485.

[99] C. Jacoboni, R. Minder, and G. Majni. Effects of band non-parabolicity
on electron drift velocity in silicon above room temperature. Journal of
Physics and Chemistry of Solids, 36(10):1129–1133, 1975. ISSN 0022-3697.
doi: https://doi.org/10.1016/0022-3697(75)90055-4. URL https://www.
sciencedirect.com/science/article/pii/0022369775900554.

[100] Carlo Jacoboni. Theory of electron transport in semiconductors. A pathway
from elementary physics to nonequilibrium Green functions. Springer Berlin,
Heidelberg, Jul 2010. doi: 10.1007/978-3-642-10586-9.

[101] Carlo Jacoboni and Lino Reggiani. The monte carlo method for the solution
of charge transport in semiconductors with applications to covalent materials.
Rev. Mod. Phys., 55:645–705, Jul 1983. doi: 10.1103/RevModPhys.55.645.
URL https://link.aps.org/doi/10.1103/RevModPhys.55.645.

[102] J. F. Janak, V. L. Moruzzi, and A. R. Williams. Ground-state thermomechan-
ical properties of some cubic elements in the local-density formalism. Phys.
Rev. B, 12:1257–1261, Aug 1975. doi: 10.1103/PhysRevB.12.1257. URL
https://link.aps.org/doi/10.1103/PhysRevB.12.1257.

https://link.aps.org/doi/10.1103/PhysRev.113.479
https://doi.org/10.1063/5.0180628
https://doi.org/10.1063/1.4705434
https://doi.org/10.1063/1.4705434
https://doi.org/10.1038/nmat3694
https://doi.org/10.1038/nmat3694
https://onlinelibrary.wiley.com/doi/abs/10.1002/aelm.201600485
https://onlinelibrary.wiley.com/doi/abs/10.1002/aelm.201600485
https://www.sciencedirect.com/science/article/pii/0022369775900554
https://www.sciencedirect.com/science/article/pii/0022369775900554
https://link.aps.org/doi/10.1103/RevModPhys.55.645
https://link.aps.org/doi/10.1103/PhysRevB.12.1257


93

[103] Mark Johnson and R. H. Silsbee. Interfacial charge-spin coupling: Injection
and detection of spin magnetization in metals. Phys. Rev. Lett., 55:1790–
1793, Oct 1985. doi: 10.1103/PhysRevLett.55.1790. URL https://link.
aps.org/doi/10.1103/PhysRevLett.55.1790.

[104] M. H. Jørgensen. Warm-electron effects in 𝑛-type silicon and germanium.
Phys. Rev., 156:834–843, Apr 1967. doi: 10.1103/PhysRev.156.834. URL
https://link.aps.org/doi/10.1103/PhysRev.156.834.

[105] M. H. Jørgensen. Electron-phonon scattering and high-field transport in 𝑛-
type si. Phys. Rev. B, 18:5657–5666, Nov 1978. doi: 10.1103/PhysRevB.
18.5657. URL https://link.aps.org/doi/10.1103/PhysRevB.18.
5657.

[106] M.H. Jørgensen, N.I. Meyer, and K.J. Schmidt-Tiedemann. Conductivity
anisotropy of warm and hot electrons in silicon and germanium. Solid State
Communications, 1(7):226–233, 1963. ISSN 0038-1098. doi: https://doi.org/
10.1016/0038-1098(63)90014-0. URL https://www.sciencedirect.
com/science/article/pii/0038109863900140.

[107] M.H. Jørgensen, N.O. Gram, and N.I. Meyer. Negative differential conductiv-
ity and current oscillations in lightly doped n-type silicon. Solid State Com-
munications, 10(4):337–340, 1972. ISSN 0038-1098. doi: https://doi.org/10.
1016/0038-1098(72)90437-1. URL https://www.sciencedirect.com/
science/article/pii/0038109872904371.

[108] Peter Kästner, Ernst-Peter Röth, and Karlheinz Seeger. Conductivity
anisotropy of n-type silicon in the range of warm and hot carriers. Zeitschrift
für Physik, 187(4):359–368, 1965. doi: 10.1007/BF01328720. URL
https://doi.org/10.1007/BF01328720.

[109] Elise Knittle, Renata M. Wentzcovitch, Raymond Jeanloz, and Marvin L.
Cohen. Experimental and theoretical equation of state of cubic boron nitride.
Nature, 337(6205):349–352, 1989. doi: 10.1038/337349a0. URL https:
//doi.org/10.1038/337349a0.

[110] P. Kocevar. Multiphonon Scattering, pages 167–174. Springer, Boston, MA,
01 1980. ISBN 978-1-4684-3640-2. doi: 10.1007/978-1-4684-3638-9_7.

[111] Sh. Kogan. Electronic Noise and Fluctuations in Solids. Cambridge Univer-
sity Press, 1996.

[112] W. Kohn and L. J. Sham. Self-consistent equations including exchange and
correlation effects. Phys. Rev., 140:A1133–A1138, Nov 1965. doi: 10.
1103/PhysRev.140.A1133. URL https://link.aps.org/doi/10.1103/
PhysRev.140.A1133.

https://link.aps.org/doi/10.1103/PhysRevLett.55.1790
https://link.aps.org/doi/10.1103/PhysRevLett.55.1790
https://link.aps.org/doi/10.1103/PhysRev.156.834
https://link.aps.org/doi/10.1103/PhysRevB.18.5657
https://link.aps.org/doi/10.1103/PhysRevB.18.5657
https://www.sciencedirect.com/science/article/pii/0038109863900140
https://www.sciencedirect.com/science/article/pii/0038109863900140
https://www.sciencedirect.com/science/article/pii/0038109872904371
https://www.sciencedirect.com/science/article/pii/0038109872904371
https://doi.org/10.1007/BF01328720
https://doi.org/10.1038/337349a0
https://doi.org/10.1038/337349a0
https://link.aps.org/doi/10.1103/PhysRev.140.A1133
https://link.aps.org/doi/10.1103/PhysRev.140.A1133


94

[113] Satoshi Koizumi. Heteroepitaxy of diamond on cubic boron nitride. Israel
Journal of Chemistry, 38(1-2):33–40, 1998. doi: https://doi.org/10.1002/
ĳch.199800004. URL https://onlinelibrary.wiley.com/doi/abs/
10.1002/ijch.199800004.

[114] H. Kroemer. Theory of the gunn effect. Proceedings of the IEEE, 52(12):
1736–1736, 1964. doi: 10.1109/PROC.1964.3476.

[115] Shrishail S Kubakaddi and B. S. Krishnamurthy. The electron-two short-
wavelength phonon scattering in non-polar semiconductors. Physica Status
Solidi B-basic Solid State Physics, 80:603–609, 1977.

[116] SS Kubakaddi and BS Krishnamurthy. Infrared free-carrier absorption in non-
polar semiconductors; scattering by two short wavelength phonons. Indian
Journal of Physics A, 53(1):127–135, 1979.

[117] Tilmann Kuhn, Lino Reggiani, Luca Varani, and Vladimir Mitin. Monte
carlo method for the simulation of electronic noise in semiconductors. Phys.
Rev. B, 42:5702–5713, Sep 1990. doi: 10.1103/PhysRevB.42.5702. URL
https://link.aps.org/doi/10.1103/PhysRevB.42.5702.

[118] Tatsumi Kurosawa. Monte carlo calculation of hot electron problems. In
Proc. Intl. Conf. on Physics of Semiconductors, pages 424–426, 1966.

[119] Tatsumi Kurosawa and Hajime Maeda. Monte carlo calculation of hot electron
phenomena. i. streaming in the absence of a magnetic field. Journal of the
Physical Society of Japan, 31(3):668–678, 1971. doi: 10.1143/JPSJ.31.668.
URL https://doi.org/10.1143/JPSJ.31.668.

[120] Melvin Lax. Fluctuations from the nonequilibrium steady state. Rev. Mod.
Phys., 32:25–64, Jan 1960. doi: 10.1103/RevModPhys.32.25. URL https:
//link.aps.org/doi/10.1103/RevModPhys.32.25.

[121] Paul A. Lebwohl. Monte Carlo simulation of response of a semiconductor
to periodic perturbations. Journal of Applied Physics, 44(4):1744–1752, 04
1973. ISSN 0021-8979. doi: 10.1063/1.1662441. URL https://doi.org/
10.1063/1.1662441.

[122] Nien-En Lee, Jin-Jian Zhou, Luis A. Agapito, and Marco Bernardi. Charge
transport in organic molecular semiconductors from first principles: The
bandlike hole mobility in a naphthalene crystal. Phys. Rev. B, 97:115203,
Mar 2018. doi: 10.1103/PhysRevB.97.115203. URL https://link.aps.
org/doi/10.1103/PhysRevB.97.115203.

[123] Nien-En Lee, Jin-Jian Zhou, Hsiao-Yi Chen, and Marco Bernardi. Ab initio
electron-two-phonon scattering in gaas from next-to-leading order pertur-
bation theory. Nature Communications, 11(1):1607, 2020. doi: 10.1038/
s41467-020-15339-0. URL https://doi.org/10.1038/s41467-020-
15339-0.

https://onlinelibrary.wiley.com/doi/abs/10.1002/ijch.199800004
https://onlinelibrary.wiley.com/doi/abs/10.1002/ijch.199800004
https://link.aps.org/doi/10.1103/PhysRevB.42.5702
https://doi.org/10.1143/JPSJ.31.668
https://link.aps.org/doi/10.1103/RevModPhys.32.25
https://link.aps.org/doi/10.1103/RevModPhys.32.25
https://doi.org/10.1063/1.1662441
https://doi.org/10.1063/1.1662441
https://link.aps.org/doi/10.1103/PhysRevB.97.115203
https://link.aps.org/doi/10.1103/PhysRevB.97.115203
https://doi.org/10.1038/s41467-020-15339-0
https://doi.org/10.1038/s41467-020-15339-0


95

[124] Wonho Lee, Yun Hwangbo, Jae-Hyun Kim, and Jong-Hyun Ahn. Mobility
enhancement of strained si transistors by transfer printing on plastic sub-
strates. NPG Asia Materials, 8(3):e256–e256, 2016. doi: 10.1038/am.2016.
31. URL https://doi.org/10.1038/am.2016.31.

[125] Joshua Leveillee, Xiao Zhang, Emmanouil Kioupakis, and Feliciano
Giustino. Ab initio calculation of carrier mobility in semiconductors in-
cluding ionized-impurity scattering. Phys. Rev. B, 107:125207, Mar 2023.
doi: 10.1103/PhysRevB.107.125207. URL https://link.aps.org/doi/
10.1103/PhysRevB.107.125207.

[126] Wu Li. Electrical transport limited by electron-phonon coupling from boltz-
mann transport equation: An ab initio study of si, al, and mos2. Phys.
Rev. B, 92:075405, Aug 2015. doi: 10.1103/PhysRevB.92.075405. URL
https://link.aps.org/doi/10.1103/PhysRevB.92.075405.

[127] K. J. LIAO, W. L. WANG, C. Z. CAI, X. S. WANG, and C. Y. KONG.
Uv photodetectors of c-bn films. International Journal of Modern Physics
B, 16(06n07):1115–1119, 2002. doi: 10.1142/S0217979202010968. URL
https://doi.org/10.1142/S0217979202010968.

[128] Dmitri Litvinov, Charles A. Taylor, and Roy Clarke. Semiconducting
cubic boron nitride. Diamond and Related Materials, 7(2):360–364,
1998. ISSN 0925-9635. doi: https://doi.org/10.1016/S0925-9635(97)00216-
1. URL https://www.sciencedirect.com/science/article/pii/
S0925963597002161.

[129] Te-Huan Liu, Jiawei Zhou, Bolin Liao, David J. Singh, and Gang Chen. First-
principles mode-by-mode analysis for electron-phonon scattering channels
and mean free path spectra in gaas. Phys. Rev. B, 95:075206, Feb 2017.
doi: 10.1103/PhysRevB.95.075206. URL https://link.aps.org/doi/
10.1103/PhysRevB.95.075206.

[130] R. A. Logan and A. J. Peters. Impurity effects upon mobility in silicon.
Journal of Applied Physics, 31(1):122–124, 1960. doi: 10.1063/1.1735385.
URL https://doi.org/10.1063/1.1735385.

[131] Donald Long and John Myers. Ionized-impurity scattering mobility of elec-
trons in silicon. Phys. Rev., 115:1107–1118, Sep 1959. doi: 10.1103/PhysRev.
115.1107. URL https://link.aps.org/doi/10.1103/PhysRev.115.
1107.

[132] I-Te Lu, Jin-Jian Zhou, and Marco Bernardi. Efficient ab initio cal-
culations of electron-defect scattering and defect-limited carrier mo-
bility. Phys. Rev. Mater., 3:033804, Mar 2019. doi: 10.1103/
PhysRevMaterials.3.033804. URL https://link.aps.org/doi/10.
1103/PhysRevMaterials.3.033804.

https://doi.org/10.1038/am.2016.31
https://link.aps.org/doi/10.1103/PhysRevB.107.125207
https://link.aps.org/doi/10.1103/PhysRevB.107.125207
https://link.aps.org/doi/10.1103/PhysRevB.92.075405
https://doi.org/10.1142/S0217979202010968
https://www.sciencedirect.com/science/article/pii/S0925963597002161
https://www.sciencedirect.com/science/article/pii/S0925963597002161
https://link.aps.org/doi/10.1103/PhysRevB.95.075206
https://link.aps.org/doi/10.1103/PhysRevB.95.075206
https://doi.org/10.1063/1.1735385
https://link.aps.org/doi/10.1103/PhysRev.115.1107
https://link.aps.org/doi/10.1103/PhysRev.115.1107
https://link.aps.org/doi/10.1103/PhysRevMaterials.3.033804
https://link.aps.org/doi/10.1103/PhysRevMaterials.3.033804


96

[133] I-Te Lu, Jin-Jian Zhou, Jinsoo Park, and Marco Bernardi. First-
principles ionized-impurity scattering and charge transport in doped ma-
terials. Phys. Rev. Mater., 6:L010801, Jan 2022. doi: 10.1103/
PhysRevMaterials.6.L010801. URL https://link.aps.org/doi/10.
1103/PhysRevMaterials.6.L010801.

[134] G. W. Ludwig and R. L. Watters. Drift and conductivity mobility in silicon.
Phys. Rev., 101:1699–1701, Mar 1956. doi: 10.1103/PhysRev.101.1699.
URL https://link.aps.org/doi/10.1103/PhysRev.101.1699.

[135] Jinlong Ma, Arun S. Nissimagoudar, and Wu Li. First-principles study of
electron and hole mobilities of si and gaas. Phys. Rev. B, 97:045201, Jan
2018. doi: 10.1103/PhysRevB.97.045201. URL https://link.aps.org/
doi/10.1103/PhysRevB.97.045201.

[136] Gerald D Mahan. Many-particle physics. Springer Science & Business
Media, 2013.

[137] Ivan Maliyov, Jinsoo Park, and Marco Bernardi. Ab initio electron dynamics
in high electric fields: Accurate prediction of velocity-field curves. Phys.
Rev. B, 104:L100303, Sep 2021. doi: 10.1103/PhysRevB.104.L100303.
URL https://link.aps.org/doi/10.1103/PhysRevB.104.L100303.

[138] Richard M Martin. Electronic structure: basic theory and practical methods.
Cambridge university press, 2020.

[139] Glen D Martinson and Mark M Burin. Radar detector technology. Applied
Microwave, 2:68–85, 1990.

[140] Nicola Marzari, Arash A. Mostofi, Jonathan R. Yates, Ivo Souza, and David
Vanderbilt. Maximally localized wannier functions: Theory and applications.
Rev. Mod. Phys., 84:1419–1475, Oct 2012. doi: 10.1103/RevModPhys.84.
1419. URL https://link.aps.org/doi/10.1103/RevModPhys.84.
1419.

[141] E. Massa, G. Mana, U. Kuetgens, and L. Ferroglio. Measurement of the
lattice parameter of a silicon crystal. New Journal of Physics, 11, 2009.
doi: 10.1088/1367-2630/11/5/053013. URL https://doi.org/10.1088/
1367-2630/11/5/053013.

[142] Jean Messier and Jorge Merlo Flores. Temperature dependence of hall mo-
bility and 𝜇h/𝜇d for si. Journal of Physics and Chemistry of Solids, 24(12):
1539–1542, 1963.

[143] Osamu Mishima, Junzo Tanaka, Shinobu Yamaoka, and Osamu Fukunaga.
High-temperature cubic boron nitride p-n junction diode made at high pres-
sure. Science, 238(4824):181–183, 1987. doi: 10.1126/science.238.4824.
181. URL https://www.science.org/doi/abs/10.1126/science.
238.4824.181.

https://link.aps.org/doi/10.1103/PhysRevMaterials.6.L010801
https://link.aps.org/doi/10.1103/PhysRevMaterials.6.L010801
https://link.aps.org/doi/10.1103/PhysRev.101.1699
https://link.aps.org/doi/10.1103/PhysRevB.97.045201
https://link.aps.org/doi/10.1103/PhysRevB.97.045201
https://link.aps.org/doi/10.1103/PhysRevB.104.L100303
https://link.aps.org/doi/10.1103/RevModPhys.84.1419
https://link.aps.org/doi/10.1103/RevModPhys.84.1419
https://doi.org/10.1088/1367-2630/11/5/053013
https://doi.org/10.1088/1367-2630/11/5/053013
https://www.science.org/doi/abs/10.1126/science.238.4824.181
https://www.science.org/doi/abs/10.1126/science.238.4824.181


97

[144] Osamu Mishima, Koh Era, Junzo Tanaka, and Shinobu Yamaoka. Ultraviolet
light-emitting diode of a cubic boron nitride pn junction made at high pressure.
Applied Physics Letters, 53(11):962–964, 09 1988. ISSN 0003-6951. doi:
10.1063/1.100082. URL https://doi.org/10.1063/1.100082.

[145] V. L. Moruzzi, A. R. Williams, and J. F. Janak. Local density theory
of metallic cohesion. Phys. Rev. B, 15:2854–2857, Mar 1977. doi: 10.
1103/PhysRevB.15.2854. URL https://link.aps.org/doi/10.1103/
PhysRevB.15.2854.

[146] Arash A. Mostofi, Jonathan R. Yates, Young-Su Lee, Ivo Souza, David
Vanderbilt, and Nicola Marzari. wannier90: A tool for obtaining
maximally-localised wannier functions. Computer Physics Communica-
tions, 178(9):685 – 699, 2008. ISSN 0010-4655. doi: https://doi.org/10.
1016/j.cpc.2007.11.016. http://www.sciencedirect.com/science/
article/pii/S0010465507004936.

[147] Saikat Mukhopadhyay and Derek Stewart. Polar effects on the thermal con-
ductivity of cubic boron nitride under pressure. Physical Review Letters, 113:
025901, 07 2014. doi: 10.1103/PhysRevLett.113.025901.

[148] Jeffrey T. Mullen, James A. Boulton, Minghao Pan, and Ki Wook Kim.
Electronic properties of c-bn/diamond heterostructures for high-frequency
high-power applications. Diamond and Related Materials, 143:110920,
2024. ISSN 0925-9635. doi: https://doi.org/10.1016/j.diamond.2024.
110920. URL https://www.sciencedirect.com/science/article/
pii/S092596352400133X.

[149] S Nakamura, T Mukai, and M Senoh. In situ monitoring and hall measure-
ments of gan grown with gan buffer layers. Journal of applied physics, 71
(11):5543–5549, 1992.

[150] Shuji Nakamura and Gerhard Fasol. The blue laser diode: GaN based light
emitters and lasers. Springer Science & Business Media, 2013.

[151] Shuji Nakamura, Takashi Mukai, Masayuki Senoh Masayuki Senoh, and
Naruhito Iwasa Naruhito Iwasa. Thermal annealing effects on p-type mg-
doped gan films. Japanese Journal of Applied Physics, 31(2B):L139, 1992.

[152] Shuji Nakamura Shuji Nakamura. Gan growth using gan buffer layer.
Japanese Journal of Applied Physics, 30(10A):L1705, 1991.

[153] K. L. Ngai. Carrier-two phonon interaction in semiconductors. In Man-
fred H. Pilkuhn, editor, Proceedings of the Twelfth International Confer-
ence on the Physics of Semiconductors, pages 489–498, Wiesbaden, 1974.
Vieweg+Teubner Verlag. ISBN 978-3-322-94774-1.

https://doi.org/10.1063/1.100082
https://link.aps.org/doi/10.1103/PhysRevB.15.2854
https://link.aps.org/doi/10.1103/PhysRevB.15.2854
http://www.sciencedirect.com/science/article/pii/S0010465507004936
http://www.sciencedirect.com/science/article/pii/S0010465507004936
https://www.sciencedirect.com/science/article/pii/S092596352400133X
https://www.sciencedirect.com/science/article/pii/S092596352400133X


98

[154] Phuong Hoa Nguyen, Karl R. Hofmann, and Gernot Paasch. Comparative
full-band Monte Carlo study of Si and Ge with screened pseudopotential-
based phonon scattering rates. Journal of Applied Physics, 94(1):375–386,
06 2003. ISSN 0021-8979. doi: 10.1063/1.1579860. URL https://doi.
org/10.1063/1.1579860.

[155] Jesse Noffsinger, Emmanouil Kioupakis, Chris G. Van de Walle, Steven G.
Louie, and Marvin L. Cohen. Phonon-assisted optical absorption in silicon
from first principles. Phys. Rev. Lett., 108:167402, Apr 2012. doi: 10.1103/
PhysRevLett.108.167402. URL https://link.aps.org/doi/10.1103/
PhysRevLett.108.167402.

[156] S. Noor Mohammad. Electrical characteristics of thin film cubic boron
nitride. Solid-State Electronics, 46(2):203–222, 2002. ISSN 0038-1101.
doi: https://doi.org/10.1016/S0038-1101(01)00160-5. URL https://www.
sciencedirect.com/science/article/pii/S0038110101001605.

[157] P. Norton, T. Braggins, and H. Levinstein. Impurity and lattice scattering
parameters as determined from hall and mobility analysis in 𝑛-type silicon.
Phys. Rev. B, 8:5632–5653, Dec 1973. doi: 10.1103/PhysRevB.8.5632. URL
https://link.aps.org/doi/10.1103/PhysRevB.8.5632.

[158] K. Nose, H.S. Yang, and T. Yoshida. Electrical characterization of p-type cu-
bic boron nitride/n-type silicon heterojunction diodes. Diamond and Related
Materials, 14(8):1297–1301, 2005. ISSN 0925-9635. doi: https://doi.org/10.
1016/j.diamond.2004.11.044. URL https://www.sciencedirect.com/
science/article/pii/S0925963505000178. SMAC ’04 Conference
Proceeding S.I.

[159] M.A. Osman, M. Imam, and N. Nintunze. Diffusion coefficient of elec-
trons in diamond. In Y. Tzeng, M. Yoshikawa, M. Murakawa, and
A. Feldman, editors, Applications of Diamond Films and Related Mate-
rials, volume 73 of Materials Science Monographs, pages 611–614. El-
sevier, 1991. doi: https://doi.org/10.1016/B978-0-444-89162-4.50099-
3. URL https://www.sciencedirect.com/science/article/pii/
B9780444891624500993.

[160] Mikael Östling, Reza Ghandi, and Carl-Mikael Zetterling. Sic power de-
vices—present status, applications and future perspective. In 2011 IEEE
23rd International Symposium on Power Semiconductor Devices and ICs,
pages 10–15. IEEE, 2011.

[161] Jinsoo Park, Jin-Jian Zhou, Vatsal A. Jhalani, Cyrus E. Dreyer, and Marco
Bernardi. Long-range quadrupole electron-phonon interaction from first prin-
ciples. Phys. Rev. B, 102:125203, Sep 2020. doi: 10.1103/PhysRevB.102.
125203. URL https://link.aps.org/doi/10.1103/PhysRevB.102.
125203.

https://doi.org/10.1063/1.1579860
https://doi.org/10.1063/1.1579860
https://link.aps.org/doi/10.1103/PhysRevLett.108.167402
https://link.aps.org/doi/10.1103/PhysRevLett.108.167402
https://www.sciencedirect.com/science/article/pii/S0038110101001605
https://www.sciencedirect.com/science/article/pii/S0038110101001605
https://link.aps.org/doi/10.1103/PhysRevB.8.5632
https://www.sciencedirect.com/science/article/pii/S0925963505000178
https://www.sciencedirect.com/science/article/pii/S0925963505000178
https://www.sciencedirect.com/science/article/pii/B9780444891624500993
https://www.sciencedirect.com/science/article/pii/B9780444891624500993
https://link.aps.org/doi/10.1103/PhysRevB.102.125203
https://link.aps.org/doi/10.1103/PhysRevB.102.125203


99

[162] Giovanni Pizzi, Valerio Vitale, Ryotaro Arita, Stefan Blügel, Frank Freimuth,
Guillaume Géranton, Marco Gibertini, Dominik Gresch, Charles Johnson,
Takashi Koretsune, Julen Ibañez-Azpiroz, Hyungjun Lee, Jae-Mo Lihm,
Daniel Marchand, Antimo Marrazzo, Yuriy Mokrousov, Jamal I Mustafa,
Yoshiro Nohara, Yusuke Nomura, Lorenzo Paulatto, Samuel Poncé, Thomas
Ponweiser, Junfeng Qiao, Florian Thöle, Stepan S Tsirkin, Małgorzata
Wierzbowska, Nicola Marzari, David Vanderbilt, Ivo Souza, Arash A
Mostofi, and Jonathan R Yates. Wannier90 as a community code: new
features and applications. Journal of Physics: Condensed Matter, 32(16):
165902, jan 2020. doi: 10.1088/1361-648x/ab51ff. https://doi.org/
10.1088/1361-648x/ab51ff.

[163] Samuel Poncé, Elena R. Margine, and Feliciano Giustino. Towards predictive
many-body calculations of phonon-limited carrier mobilities in semiconduc-
tors. Phys. Rev. B, 97:121201, Mar 2018. doi: 10.1103/PhysRevB.97.121201.
URL https://link.aps.org/doi/10.1103/PhysRevB.97.121201.

[164] Samuel Poncé, Francesco Macheda, Elena Roxana Margine, Nicola Marzari,
Nicola Bonini, and Feliciano Giustino. First-principles predictions of hall
and drift mobilities in semiconductors. Phys. Rev. Res., 3:043022, Oct 2021.
doi: 10.1103/PhysRevResearch.3.043022. URL https://link.aps.org/
doi/10.1103/PhysRevResearch.3.043022.

[165] Eric Pop, Robert W. Dutton, and Kenneth E. Goodson. Analytic band Monte
Carlo model for electron transport in Si including acoustic and optical phonon
dispersion. Journal of Applied Physics, 96(9):4998–5005, 10 2004. ISSN
0021-8979. doi: 10.1063/1.1788838. URL https://doi.org/10.1063/
1.1788838.

[166] M.W. Pospieszalski. Modeling of noise parameters of mesfets and modfets
and their frequency and temperature dependence. IEEE Transactions on
Microwave Theory and Techniques, 37(9):1340–1350, 1989. doi: 10.1109/
22.32217.

[167] P. J. Price. Intervalley noise. Journal of Applied Physics, 31(6):949–953,
1960. doi: 10.1063/1.1735782. URL https://doi.org/10.1063/1.
1735782.

[168] P. J. Price. Transport properties of the semiconductor superlattice. IBM
Journal of Research and Development, 17(1):39–46, 1973. doi: 10.1147/rd.
171.0039.

[169] Peter J. Price. Chapter 4 monte carlo calculation of electron transport
in solids. In R.K. Willardson and Albert C. Beer, editors, Lasers, Junc-
tions, Transport, volume 14 of Semiconductors and Semimetals, pages 249–
308. Elsevier, 1979. doi: https://doi.org/10.1016/S0080-8784(08)60267-
7. URL https://www.sciencedirect.com/science/article/pii/
S0080878408602677.

https://doi.org/10.1088/1361-648x/ab51ff
https://doi.org/10.1088/1361-648x/ab51ff
https://link.aps.org/doi/10.1103/PhysRevB.97.121201
https://link.aps.org/doi/10.1103/PhysRevResearch.3.043022
https://link.aps.org/doi/10.1103/PhysRevResearch.3.043022
https://doi.org/10.1063/1.1788838
https://doi.org/10.1063/1.1788838
https://doi.org/10.1063/1.1735782
https://doi.org/10.1063/1.1735782
https://www.sciencedirect.com/science/article/pii/S0080878408602677
https://www.sciencedirect.com/science/article/pii/S0080878408602677


100

[170] P.J. Price. Calculation of hot electron phenomena. Solid-State Electronics,
21(1):9–16, 1978. ISSN 0038-1101. doi: https://doi.org/10.1016/0038-
1101(78)90109-0. URL https://www.sciencedirect.com/science/
article/pii/0038110178901090.

[171] M. B. Prince. Drift mobilities in semiconductors. ii. silicon. Phys. Rev.,
93:1204–1206, Mar 1954. doi: 10.1103/PhysRev.93.1204. URL https:
//link.aps.org/doi/10.1103/PhysRev.93.1204.

[172] A. Alberigi Quaranta, C. Jacoboni, and G. Ottaviani. Negative differential
mobility in iii–v and ii–vi semiconducting compounds. La Rivista Del Nuovo
Cimento, 1(4):445–495, 1971. doi: 10.1007/BF02747246. URL https:
//doi.org/10.1007/BF02747246.

[173] A. Alberigi Quaranta, V. Borsari, C. Jacoboni, and G. Zanarini. Electron
diffusion in CdTe. Applied Physics Letters, 22(3):103–105, 02 1973. ISSN
0003-6951. doi: 10.1063/1.1654567. URL https://doi.org/10.1063/
1.1654567.

[174] H D Rees. Numerical solution of electron motion in solids. Journal of Physics
C: Solid State Physics, 5(6):641, mar 1972. doi: 10.1088/0022-3719/5/6/006.
URL https://dx.doi.org/10.1088/0022-3719/5/6/006.

[175] H.D. Rees. Calculation of distribution functions by exploiting the stability
of the steady state. Journal of Physics and Chemistry of Solids, 30(3):643–
655, 1969. ISSN 0022-3697. doi: https://doi.org/10.1016/0022-3697(69)
90018-3. URL https://www.sciencedirect.com/science/article/
pii/0022369769900183.

[176] H.D. Rees. Hot electron effects at microwave frequencies in gaas. Solid State
Communications, 7(2):267–269, 1969. ISSN 0038-1098. doi: https://doi.org/
10.1016/0038-1098(69)90396-2. URL https://www.sciencedirect.
com/science/article/pii/0038109869903962.

[177] J. B. Renucci, R. N. Tyte, and M. Cardona. Resonant raman scattering in sil-
icon. Phys. Rev. B, 11:3885–3895, May 1975. doi: 10.1103/PhysRevB.
11.3885. URL https://link.aps.org/doi/10.1103/PhysRevB.11.
3885.

[178] B K Ridley. Specific negative resistance in solids. Proceedings of the Physical
Society, 82(6):954, dec 1963. doi: 10.1088/0370-1328/82/6/315. URL
https://dx.doi.org/10.1088/0370-1328/82/6/315.

[179] B K Ridley. Propagation of space-charge waves in a conductor exhibiting a
differential negative resistance. Proceedings of the Physical Society, 86(3):
637, sep 1965. doi: 10.1088/0370-1328/86/3/323. URL https://dx.doi.
org/10.1088/0370-1328/86/3/323.

https://www.sciencedirect.com/science/article/pii/0038110178901090
https://www.sciencedirect.com/science/article/pii/0038110178901090
https://link.aps.org/doi/10.1103/PhysRev.93.1204
https://link.aps.org/doi/10.1103/PhysRev.93.1204
https://doi.org/10.1007/BF02747246
https://doi.org/10.1007/BF02747246
https://doi.org/10.1063/1.1654567
https://doi.org/10.1063/1.1654567
https://dx.doi.org/10.1088/0022-3719/5/6/006
https://www.sciencedirect.com/science/article/pii/0022369769900183
https://www.sciencedirect.com/science/article/pii/0022369769900183
https://www.sciencedirect.com/science/article/pii/0038109869903962
https://www.sciencedirect.com/science/article/pii/0038109869903962
https://link.aps.org/doi/10.1103/PhysRevB.11.3885
https://link.aps.org/doi/10.1103/PhysRevB.11.3885
https://dx.doi.org/10.1088/0370-1328/82/6/315
https://dx.doi.org/10.1088/0370-1328/86/3/323
https://dx.doi.org/10.1088/0370-1328/86/3/323


101

[180] B K Ridley and T B Watkins. The possibility of negative resistance effects in
semiconductors. Proceedings of the Physical Society, 78(2):293, aug 1961.
doi: 10.1088/0370-1328/78/2/315. URL https://dx.doi.org/10.1088/
0370-1328/78/2/315.

[181] J. G. Ruch and G. S. Kino. Transport Properties of GaAs. Phys. Rev.,
174:921–931, Oct 1968. doi: 10.1103/PhysRev.174.921. URL https:
//link.aps.org/doi/10.1103/PhysRev.174.921.

[182] David W Runton, Brian Trabert, Jeffrey B Shealy, and Ramakrishna Vetury.
History of gan: High-power rf gallium nitride (gan) from infancy to man-
ufacturable process and beyond. IEEE Microwave Magazine, 14(3):82–93,
2013.

[183] E. J. Ryder. Mobility of holes and electrons in high electric fields. Phys.
Rev., 90:766–769, Jun 1953. doi: 10.1103/PhysRev.90.766. URL https:
//link.aps.org/doi/10.1103/PhysRev.90.766.

[184] E. J. Ryder and W. Shockley. Mobilities of electrons in high electric fields.
Phys. Rev., 81:139–140, Jan 1951. doi: 10.1103/PhysRev.81.139.2. URL
https://link.aps.org/doi/10.1103/PhysRev.81.139.2.

[185] C. B. Samantaray and R. N. Singh. Review of synthesis and properties of
cubic boron nitride (c-bn) thin films. International Materials Reviews, 50
(6):313–344, 2005. doi: 10.1179/174328005X67160. URL https://doi.
org/10.1179/174328005X67160.

[186] Nocona Sanders and Emmanouil Kioupakis. Phonon- and defect-limited
electron and hole mobility of diamond and cubic boron nitride: A critical
comparison. Applied Physics Letters, 119(6):062101, 08 2021. ISSN 0003-
6951. doi: 10.1063/5.0056543. URL https://doi.org/10.1063/5.
0056543.

[187] Wataru Sasaki, Motoichi Shibuya, and Kanji Mizuguchi. Anisotropy of Hot
Electrons in n-type Germanium. Journal of the Physical Society of Japan,
13(5):456–460, May 1958. doi: 10.1143/JPSJ.13.456.

[188] John R. Schaibley, Hongyi Yu, Genevieve Clark, Pasqual Rivera, Jason S.
Ross, Kyle L. Seyler, Wang Yao, and Xiaodong Xu. Valleytronics in 2d materi-
als. Nature Reviews Materials, 1(11):16055, 2016. doi: 10.1038/natrevmats.
2016.55. URL https://doi.org/10.1038/natrevmats.2016.55.

[189] K.J. Schmidt-Tiedemann. Conductivity anisotropy of hot electrons in n-type
silicon heated by microwave fields. Philips Research Reports, 18:338–360,
1963.

https://dx.doi.org/10.1088/0370-1328/78/2/315
https://dx.doi.org/10.1088/0370-1328/78/2/315
https://link.aps.org/doi/10.1103/PhysRev.174.921
https://link.aps.org/doi/10.1103/PhysRev.174.921
https://link.aps.org/doi/10.1103/PhysRev.90.766
https://link.aps.org/doi/10.1103/PhysRev.90.766
https://link.aps.org/doi/10.1103/PhysRev.81.139.2
https://doi.org/10.1179/174328005X67160
https://doi.org/10.1179/174328005X67160
https://doi.org/10.1063/5.0056543
https://doi.org/10.1063/5.0056543
https://doi.org/10.1038/natrevmats.2016.55


102

[190] Zoya Mehmood Shah and Alison Mainwood. A theoretical study of the
effect of nitrogen, boron and phosphorus impurities on the growth and mor-
phology of diamond surfaces. Diamond and Related Materials, 17(7):1307–
1310, 2008. ISSN 0925-9635. doi: https://doi.org/10.1016/j.diamond.2008.
03.028. URL https://www.sciencedirect.com/science/article/
pii/S0925963508002604. Proceedings of Diamond 2007, the 18th Euro-
pean Conference on Diamond, Diamond-Like Materials, Carbon Nanotubes,
Nitrides and Silicon Carbide.

[191] Wei Shen, Shengnan Shen, Sheng Liu, Hui Li, Zhiyin Gan, and Qiaoxuan
Zhang. Monolayer cubic boron nitride terminated diamond (111) surfaces for
quantum sensing and electron emission applications. ACS Applied Materials
& Interfaces, 12(29):33336–33345, 07 2020. doi: 10.1021/acsami.0c05268.
URL https://doi.org/10.1021/acsami.0c05268.

[192] Motoichi Shibuya. Hot electron problem in semiconductors with spheroidal
energy surfaces. Phys. Rev., 99:1189–1191, Aug 1955. doi: 10.
1103/PhysRev.99.1189. URL https://link.aps.org/doi/10.1103/
PhysRev.99.1189.

[193] W. Shockley and J. Bardeen. Energy bands and mobilities in monatomic
semiconductors. Phys. Rev., 77:407–408, Feb 1950. doi: 10.1103/PhysRev.
77.407. URL https://link.aps.org/doi/10.1103/PhysRev.77.407.

[194] W Shockley, John A Copeland, and RP James. Quantum theory of atoms,
molecules and the solid state. New York: Academic, 537, 1966.

[195] Poppy Siddiqua, Michael S. Shur, and Stephen K. O’Leary. Electron transport
within bulk cubic boron nitride: A Monte Carlo simulation analysis. Journal
of Applied Physics, 128(18):185704, 11 2020. ISSN 0021-8979. doi: 10.
1063/5.0013183. URL https://doi.org/10.1063/5.0013183.

[196] A. Soltani, H. A. Barkad, M. Mattalah, B. Benbakhti, J.-C. De Jaeger, Y. M.
Chong, Y. S. Zou, W. J. Zhang, S. T. Lee, A. BenMoussa, B. Giordanengo,
and J.-F. Hochedez. 193nm deep-ultraviolet solar-blind cubic boron nitride
based photodetectors. Applied Physics Letters, 92(5):053501, 02 2008. ISSN
0003-6951. doi: 10.1063/1.2840178. URL https://doi.org/10.1063/
1.2840178.

[197] Christopher J. Stanton and John W. Wilkins. Nonequilibrium current fluctu-
ations in semiconductors: A boltzmann-equation–green-function approach.
Phys. Rev. B, 35:9722–9734, Jun 1987. doi: 10.1103/PhysRevB.35.9722.
URL https://link.aps.org/doi/10.1103/PhysRevB.35.9722.

[198] Christopher J. Stanton and John W. Wilkins. Hot-electron noise in two-valley
semiconductors: An analytic model. Phys. Rev. B, 36:1686–1695, Jul 1987.
doi: 10.1103/PhysRevB.36.1686. URL https://link.aps.org/doi/10.
1103/PhysRevB.36.1686.

https://www.sciencedirect.com/science/article/pii/S0925963508002604
https://www.sciencedirect.com/science/article/pii/S0925963508002604
https://doi.org/10.1021/acsami.0c05268
https://link.aps.org/doi/10.1103/PhysRev.99.1189
https://link.aps.org/doi/10.1103/PhysRev.99.1189
https://link.aps.org/doi/10.1103/PhysRev.77.407
https://doi.org/10.1063/5.0013183
https://doi.org/10.1063/1.2840178
https://doi.org/10.1063/1.2840178
https://link.aps.org/doi/10.1103/PhysRevB.35.9722
https://link.aps.org/doi/10.1103/PhysRevB.36.1686
https://link.aps.org/doi/10.1103/PhysRevB.36.1686


103

[199] R A Stradling and R A Wood. The magnetophonon effect in III-v semi-
conducting compounds. Journal of Physics C: Solid State Physics, 1(6):
1711–1733, dec 1968. doi: 10.1088/0022-3719/1/6/330. URL https:
//doi.org/10.1088/0022-3719/1/6/330.

[200] Jiace Sun and Austin J. Minnich. Transport and noise of hot electrons in gaas
using a semianalytical model of two-phonon polar optical phonon scattering.
Phys. Rev. B, 107:205201, May 2023. doi: 10.1103/PhysRevB.107.205201.
URL https://link.aps.org/doi/10.1103/PhysRevB.107.205201.

[201] Jifeng Sun, Hongliang Shi, Theo Siegrist, and David J. Singh. Electronic,
transport, and optical properties of bulk and mono-layer pdse2. Applied
Physics Letters, 107(15):153902, 2015. doi: 10.1063/1.4933302. URL
https://doi.org/10.1063/1.4933302.

[202] N. Suntornwipat, S. Majdi, M. Gabrysch, and J. Isberg. Investigation of
transferred-electron oscillations in diamond. Applied Physics Letters, 108
(21):212104, 05 2016. ISSN 0003-6951. doi: 10.1063/1.4952766. URL
https://doi.org/10.1063/1.4952766.

[203] Nattakarn Suntornwipat, Saman Majdi, Markus Gabrysch, Kiran Kumar
Kovi, Viktor Djurberg, Ian Friel, Daniel J. Twitchen, and Jan Isberg. A
valleytronic diamond transistor: Electrostatic control of valley currents and
charge-state manipulation of nv centers. Nano Letters, 21(1):868–874, 01
2021. doi: 10.1021/acs.nanolett.0c04712. URL https://doi.org/10.
1021/acs.nanolett.0c04712.

[204] Takashi Taniguchi, Tokuyuki Teraji, Satoshi Koizumi, Kenji Watanabe, and
Shinobu Yamaoka. Appearance of n-type semiconducting properties of cbn
single crystals grown at high pressure. Japanese Journal of Applied Physics,
41(2A):L109, feb 2002. doi: 10.1143/JJAP.41.L109. URL https://dx.
doi.org/10.1143/JJAP.41.L109.

[205] Takashi Taniguchi, Satoshi Koizumi, Kenji Watanabe, Isao Sakaguchi,
Takashi Sekiguchi, and Shinobu Yamaoka. High pressure synthesis of uv-
light emitting cubic boron nitride single crystals. Diamond and Related
Materials, 12(3):1098–1102, 2003. ISSN 0925-9635. doi: https://doi.org/
10.1016/S0925-9635(02)00330-8. URL https://www.sciencedirect.
com/science/article/pii/S0925963502003308. 13th European Con-
ference on Diamond, Diamond-Like Materials, Carbon Nanotubes, Nitrides
and Silicon Carbide.

[206] Paul A. Temple and C. E. Hathaway. Multiphonon raman spectrum of silicon.
Phys. Rev. B, 7:3685–3697, Apr 1973. doi: 10.1103/PhysRevB.7.3685. URL
https://link.aps.org/doi/10.1103/PhysRevB.7.3685.

[207] P. Thomas and H. J. Queisser. Electron-phonon coupling in the barri-
ers of gaas schottky diodes. Phys. Rev., 175:983–984, Nov 1968. doi:

https://doi.org/10.1088/0022-3719/1/6/330
https://doi.org/10.1088/0022-3719/1/6/330
https://link.aps.org/doi/10.1103/PhysRevB.107.205201
https://doi.org/10.1063/1.4933302
https://doi.org/10.1063/1.4952766
https://doi.org/10.1021/acs.nanolett.0c04712
https://doi.org/10.1021/acs.nanolett.0c04712
https://dx.doi.org/10.1143/JJAP.41.L109
https://dx.doi.org/10.1143/JJAP.41.L109
https://www.sciencedirect.com/science/article/pii/S0925963502003308
https://www.sciencedirect.com/science/article/pii/S0925963502003308
https://link.aps.org/doi/10.1103/PhysRevB.7.3685


104

10.1103/PhysRev.175.983. URL https://link.aps.org/doi/10.1103/
PhysRev.175.983.

[208] S.E. Thompson, M. Armstrong, C. Auth, M. Alavi, M. Buehler, R. Chau,
S. Cea, T. Ghani, G. Glass, T. Hoffman, C.-H. Jan, C. Kenyon, J. Klaus,
K. Kuhn, Zhiyong Ma, B. Mcintyre, K. Mistry, A. Murthy, B. Obradovic,
R. Nagisetty, Phi Nguyen, S. Sivakumar, R. Shaheed, L. Shifren, B. Tufts,
S. Tyagi, M. Bohr, and Y. El-Mansy. A 90-nm logic technology featuring
strained-silicon. IEEE Transactions on Electron Devices, 51(11):1790–1797,
2004. doi: 10.1109/TED.2004.836648.

[209] Xiao Tong and Marco Bernardi. Toward precise simulations of the coupled
ultrafast dynamics of electrons and atomic vibrations in materials. Phys. Rev.
Res., 3:023072, Apr 2021. doi: 10.1103/PhysRevResearch.3.023072. URL
https://link.aps.org/doi/10.1103/PhysRevResearch.3.023072.

[210] J. Y. Tsao, S. Chowdhury, M. A. Hollis, D. Jena, N. M. Johnson, K. A.
Jones, R. J. Kaplar, S. Rajan, C. G. Van de Walle, E. Bellotti, C. L. Chua,
R. Collazo, M. E. Coltrin, J. A. Cooper, K. R. Evans, S. Graham, T. A.
Grotjohn, E. R. Heller, M. Higashiwaki, M. S. Islam, P. W. Juodawlkis,
M. A. Khan, A. D. Koehler, J. H. Leach, U. K. Mishra, R. J. Nemanich,
R. C. N. Pilawa-Podgurski, J. B. Shealy, Z. Sitar, M. J. Tadjer, A. F. Witulski,
M. Wraback, and J. A. Simmons. Ultrawide-bandgap semiconductors: Re-
search opportunities and challenges. Advanced Electronic Materials, 4(1):
1600501, 2018. doi: https://doi.org/10.1002/aelm.201600501. URL https:
//onlinelibrary.wiley.com/doi/abs/10.1002/aelm.201600501.

[211] Steven A. Vitale, Daniel Nezich, Joseph O. Varghese, Philip Kim, Nuh
Gedik, Pablo Jarillo-Herrero, Di Xiao, and Mordechai Rothschild. Val-
leytronics: Opportunities, challenges, and paths forward. Small, 14(38):
1801483, 2018. doi: https://doi.org/10.1002/smll.201801483. URL https:
//onlinelibrary.wiley.com/doi/abs/10.1002/smll.201801483.

[212] Cheng-Xin Wang, Guo-Wei Yang, Tie-Chen Zhang, Hong-Wu Liu, Yong-
Hao Han, Ji-Feng Luo, Chun-Xiao Gao, and Guang-Tian Zou. High-quality
heterojunction between p-type diamond single-crystal film and n-type cubic
boron nitride bulk single crystal. Applied Physics Letters, 83(23):4854–
4856, 12 2003. ISSN 0003-6951. doi: 10.1063/1.1631059. URL https:
//doi.org/10.1063/1.1631059.

[213] Shulong Wang, Hongxia Liu, Bo Gao, and Huimin Cai. Monte Carlo cal-
culation of electron diffusion coefficient in wurtzite indium nitride. Ap-
plied Physics Letters, 100(14):142105, 04 2012. ISSN 0003-6951. doi:
10.1063/1.3700720. URL https://doi.org/10.1063/1.3700720.

[214] Jr. Wentorf, R. H. Cubic Form of Boron Nitride. The Journal of Chemical
Physics, 26(4):956–956, 04 1957. ISSN 0021-9606. doi: 10.1063/1.1745964.
URL https://doi.org/10.1063/1.1745964.

https://link.aps.org/doi/10.1103/PhysRev.175.983
https://link.aps.org/doi/10.1103/PhysRev.175.983
https://link.aps.org/doi/10.1103/PhysRevResearch.3.023072
https://onlinelibrary.wiley.com/doi/abs/10.1002/aelm.201600501
https://onlinelibrary.wiley.com/doi/abs/10.1002/aelm.201600501
https://onlinelibrary.wiley.com/doi/abs/10.1002/smll.201801483
https://onlinelibrary.wiley.com/doi/abs/10.1002/smll.201801483
https://doi.org/10.1063/1.1631059
https://doi.org/10.1063/1.1631059
https://doi.org/10.1063/1.3700720
https://doi.org/10.1063/1.1745964


105

[215] Kongping Wu, Liyong Gan, Leng Zhang, Pengzhan Zhang, Fei Liu, Jing Fan,
Liwen Sang, and Meiyong Liao. Generating robust two-dimensional hole
gas at the interface between boron nitride and diamond. Japanese Journal of
Applied Physics, 59(9):090910, sep 2020. doi: 10.35848/1347-4065/abb20c.
URL https://dx.doi.org/10.35848/1347-4065/abb20c.

[216] D. Y. Xing, M. Liu, and C. S. Ting. Analytical approach to diffusion of
hot carriers in n-type gaas with Γ-l-x band structure. Phys. Rev. B, 37:
10283–10294, Jun 1988. doi: 10.1103/PhysRevB.37.10283. URL https:
//link.aps.org/doi/10.1103/PhysRevB.37.10283.

[217] Mingfei Xu, Dawei Wang, Kai Fu, Dinusha Herath Mudiyanselage, Houqiang
Fu, and Yuji Zhao. A review of ultrawide bandgap materials: properties,
synthesis and devices. Oxford Open Materials Science, 2(1):itac004, 05
2022. ISSN 2633-6979. doi: 10.1093/oxfmat/itac004. URL https://doi.
org/10.1093/oxfmat/itac004.

[218] Hangsheng Yang, Aili Chen, and Famin Qiu. Cubic boron nitride film resid-
ual compressive stress relaxation by post annealing. Diamond and Related
Materials, 20(8):1179–1182, 2011. ISSN 0925-9635. doi: https://doi.org/10.
1016/j.diamond.2011.07.003. URL https://www.sciencedirect.com/
science/article/pii/S0925963511002226.

[219] Max N Yoder. Wide bandgap semiconductor materials and devices. IEEE
Transactions on Electron Devices, 43(10):1633–1636, 1996.

[220] W. J. Zhang, X. M. Meng, C. Y. Chan, K. M. Chan, Y. Wu, I. Bello, and S. T.
Lee. Interfacial study of cubic boron nitride films deposited on diamond.
The Journal of Physical Chemistry B, 109(33):16005–16010, 08 2005. doi:
10.1021/jp0517908. URL https://doi.org/10.1021/jp0517908.

[221] X.W. Zhang. Doping and electrical properties of cubic boron ni-
tride thin films: A critical review. Thin Solid Films, 544:2–12,
2013. ISSN 0040-6090. doi: https://doi.org/10.1016/j.tsf.2013.07.
001. URL https://www.sciencedirect.com/science/article/pii/
S0040609013011681. The 6th International Conference on Technological
Advances of Thin Films & Surface Coatings.

[222] Jin-Jian Zhou and Marco Bernardi. Ab initio electron mobility and po-
lar phonon scattering in gaas. Phys. Rev. B, 94:201201, Nov 2016. doi:
10.1103/PhysRevB.94.201201. URL https://link.aps.org/doi/10.
1103/PhysRevB.94.201201.

[223] Jin-Jian Zhou, Jinsoo Park, I-Te Lu, Ivan Maliyov, Xiao Tong, and Marco
Bernardi. Perturbo: A software package for ab initio electron–phonon inter-
actions, charge transport and ultrafast dynamics. Computer Physics Commu-
nications, 264:107970, 2021. ISSN 0010-4655. doi: https://doi.org/10.1016/

https://dx.doi.org/10.35848/1347-4065/abb20c
https://link.aps.org/doi/10.1103/PhysRevB.37.10283
https://link.aps.org/doi/10.1103/PhysRevB.37.10283
https://doi.org/10.1093/oxfmat/itac004
https://doi.org/10.1093/oxfmat/itac004
https://www.sciencedirect.com/science/article/pii/S0925963511002226
https://www.sciencedirect.com/science/article/pii/S0925963511002226
https://doi.org/10.1021/jp0517908
https://www.sciencedirect.com/science/article/pii/S0040609013011681
https://www.sciencedirect.com/science/article/pii/S0040609013011681
https://link.aps.org/doi/10.1103/PhysRevB.94.201201
https://link.aps.org/doi/10.1103/PhysRevB.94.201201


106

j.cpc.2021.107970. URL https://www.sciencedirect.com/science/
article/pii/S0010465521000837.

[224] M. Zhu, M. Matsubara, and E. Bellotti. Carrier transport in cubic boron
nitride: First-principles and semiempirical models. Phys. Rev. Appl., 20:
034055, Sep 2023. doi: 10.1103/PhysRevApplied.20.034055. URL https:
//link.aps.org/doi/10.1103/PhysRevApplied.20.034055.

[225] J.W. Ziman. Electrons and Phonons: The Theory of Transport Phenomena
in Solids. Oxford University Press, Oxford, 1960.

https://www.sciencedirect.com/science/article/pii/S0010465521000837
https://www.sciencedirect.com/science/article/pii/S0010465521000837
https://link.aps.org/doi/10.1103/PhysRevApplied.20.034055
https://link.aps.org/doi/10.1103/PhysRevApplied.20.034055

	Acknowledgements
	Abstract
	Published Content and Contributions
	Table of Contents
	List of Illustrations
	Introduction
	Computing transport properties in semiconductors from first-principles
	Noise in semiconductors
	Outline of thesis

	Two-phonon scattering in nonpolar semiconductors: A first-principles study of warm electron transport in Si
	Crystal structure and band structure of Si
	The warm electron tensor
	Solving the BTE for charge transport
	Two-phonon scattering
	Computational details
	Results
	Discussion
	Summary

	Hot electron diffusion, microwave noise, and piezoresistivity in Si from first principles
	Intervalley noise
	E- and -noise spectroscopy
	F-type scattering, noise and piezoresistivity
	Solving the BTE for noise
	Computational details
	Results
	Discussion
	Summary

	Valleytronics and negative differential resistance in cubic boron nitride: a first-principles study
	Band structure and phonon dispersion of c-BN
	Negative differential resistance
	Valleytronics
	Computational details
	Results
	Discussion
	Summary

	Conclusion and Outlook
	Bibliography

