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ABSTRACT

Modern flow measurement technology enables studies of fluid motion that, half
a century ago, would have seemed unfathomable. However, despite staggering
capabilities, measuring many natural flows in the field remains challenging.
In particular, resolving coherent flow structures within physical scales ranging
from meters to kilometers is not readily achieved. This dissertation proposes
autonomous mobile flow field measurements (AMFM) as a paradigm for ex-
panding flow field measurement capabilities into this range of scales. In the
AMFM framework, a mobile platform such as a drone would identify criti-
cal flow structures and follow them autonomously as they evolve; the device
would be taught, in a sense, to chase after the wind for the sake of measur-
ing it. The greatest theoretical challenge to AMFM is that of flow structure
detection: what, after all, should be identified in the flow? How is it to be
measured? Answering these questions is the overarching motivation of this
dissertation. In response, two principal contributions are developed. The first
is a theoretical approach to gradient estimation labeled Lagrangian gradient
regression (LGR), which enables instantaneous and finite-time flow gradients
to be approximated from sparse flow observations. The second is a seman-
tic approach to flow measurement, which provides the ability to discern fluid
motion from complex natural images using arbitrarily defined flow tracers.
Together, these tools enable a range of studies which would be difficult to
conduct otherwise. To demonstrate their combined ability, two experiments
are performed. The first examines the motion of imperfect surface tracers
measured by the proposed methods relative to sub-surface flows measured
by conventional techniques. The second experiment analyzes flow features in
the Caltech turtle ponds using only tracers naturally occurring on its surface.
While it is demonstrated that the methods and results obtained in this work
are meritorious in their own right, they also provide a framework from which
future AMFM technologies can be built.
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C h a p t e r 1

INTRODUCTION

Measure what is measureable, and make measureable what is
not so.

— Galileo Galilei

From the earliest days of recorded thought, the dynamics of fluid motion
has captivated the human mind. The intricate beauty of its eddies and currents
has inspired poets and artists across centuries to compose masterpieces that
flow like the waters constructing their metaphors. Its mystery and perpetuity
have formed the basis of philosophies and systems of thought; indeed, three of
the four primeval elements—air, water, and fire—exist within the categories
of fluid mechanics. Even modern intellects marvel at the turbulent dance of
tongues of flame and the powerful cascades that form as waters flow to the
sea.

Understanding and harnessing fluids has been the task of scientists and
engineers for millennia. The fruit of their research has benefited humanity
greatly. Today, filling a glass of water at home seems mundane; yet, the
Romans achieved a miracle in their aqueducts, fountains, and bathhouses.
Commuters may grumble at the discomfort of cramped seats in economy class;
yet when Orville Wright’s feet left the ground at Kitty Hawk in 1903, all of
mankind took flight with him. One must not look far to find the benefits which
society has reaped from the study of fluids. Whether by engines and turbines,
air conditioning and plumbing, rockets and airplanes, or a freshly brewed cup
of coffee in the morning, humanity thrives on the fruit of fluid mechanics.

Unlocking the technological potential of fluid motion is driven by the ability
to measure it. Advances in measurement almost always bring about advances
in scientific understanding and engineering capability—the Wright brothers
would not have been able to fly without the force measurements made through
wind tunnel experiments. Today, many aspects of fluids, and fluid motion in
particular, can be measured. By measuring pressure differences on specifically
oriented sensors or the thermal cooling due to flow across a heated wire, veloc-
ities can be inferred with high accuracy at a point in space. In the latter part
of the twentieth century, advances in computing made it possible to extend
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flow measurements beyond a single point to an entire region of fluid, effec-
tively rendering the invisible quantifiable. The ability to measure flow fields
has since extended to encompass many physical scales important to science
and engineering through carefully designed laboratory experiments or through
expensive remote measurement technologies like satellite altimetry and radar.

There remains, however, a need to measure flows in circumstances in be-
tween the laboratory and satellite extremes. Applications including wind en-
ergy, pollution management, physical oceanography, and aerodynamics around
large vehicles would all benefit from the ability to measure flows in their real
context and with imperfect flow tracers. That challenge represents the guiding
motivation of this thesis. Its objective is to make progress in extending fluid
measurement technologies to scales and conditions where measurements are
presently limited.

1.1 Probing the Measurable Scales of Fluid Motion
Modern technology enables the measurement of resolved flow fields at both

small and large scales. Figure 1.1 illustrates these capabilities by displaying
flow fields measured in recent experiments alongside the physical dimensions
of the measured flow in meters. In Figure 1.1a, the flow field around a Ze-
brafish larva is displayed [5] and flow structures on the order of millimeters
are visible. Flows with features even smaller than this can now be measured.
An experimental technique known as micro-PIV images through a microscope
to capture structures on the order of 10−6m [6].

The largest scales of flow field measurements using techniques from exper-
imental fluid mechanics tend to be on the order of 100 to 101 meters. Figure
1.1b displays results of an aerodynamic study of the flow around a professional
cyclist [7]. Other large-scale aerodynamic studies include those performed on
applications such as a full-scale free flying helicopter in ground effect [8] and
vertical-axis wind turbines (VAWTs) [9]. However, imitations on facility size
and hardware capabilities make it challenging to perform experiments larger
than these.

By very different measurement modalities, it is also possible to observe flow
fields at geophysical length scales due to advances in flow sensing technologies
originating from physical oceanography and meteorology. Modern satellite
altimetry, for example, is able to measure ocean velocities with spatial res-
olution of 15-30 km [11], and techniques from data assimilation enable the
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Figure 1.1: Considering the length scales of measurable flow fields. (a) Results
from a study performed on a Zebrafish larva, where flow features are on the
order of millimeters (Müller et al. [5], reproduced with permission from The
Company of Biologists Publication Agreement through CCC.). (b) Results
from an aerodynamic study on a full-sized cyclist model , where measurements
are on the order of meters (Jux et al. [7], reproduced with permission under
CC–BY 4.0.). (c) Ocean surface velocities visualized by the NASA Scientific
Visualization Studio [10], where measurements are on the order of kilometers
and greater. Flow fields on intermediate scales ranging tens of meters to
kilometers currently face significant measurement challenges.

public distribution of global velocity fields at resolution finer than 10 km [12].
An example of this type of data is presented in Figure 1.1c, where a graphic
created by NASA Scientific Visualization Studio [10] displays currents in the
Atlantic Ocean. Other measurement platforms such as ocean drifters [13], La-
grangian weather balloons [14], weather doppler radar [15], and LiDAR [16],
[17] are able measure velocity fields at large physical scales, but become lim-
ited at scales smaller than a kilometer due to factors such as technological
limitations, measurement sparsity, and atmospheric conditions.

Making robust measurements of flow fields on the scale of 100−103 meters
using commonly available equipment remains a frontier in flow measurement
research. The ability to make such measurements would lend insight into crit-
ical applications such as wind energy generation, plastic pollution reduction
in global waterways, and remote sensing of rivers and streams, among many
others. This thesis aims to expand upon measurement techniques in the do-
main of experimental fluid mechanics using recent developments in computer
science and dynamical systems analysis. In particular, it seeks to enable flow
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structure detection schemes amenable to autonomous mobile flow field mea-
surements (AMFM), an experimental framework which shall be developed and
described shortly. Before discussing details of AMFM, however, it is first nec-
essary to briefly cover the basics of flow measurement approaches originating
from an experimental fluids perspective.

1.2 Conventional Flow Field Measurement Techniques
Consider, for a moment, that it is necessary to measure the flow around the

cylinder indicated in Figure 1.2. To fully examine the flow, it is desirable to
construct an experiment that allows for the flow field to be instantaneously ob-
served many diameters of the cylinder downstream and with sufficient breadth
in the cross-stream direction. In certain circumstances, it may be possible to
design such an experiment. For instance, if the cylinder is relatively small, it
could be configured in a laboratory facility and measured over a domain much
larger than the object itself.

Many flow measurement applications, however, do not permit observation
the flow field over the entire region of interest. In such instances, parts of the
flow might be observed in the lab-fixed Eulerian frame over a smaller region of
the flow, or in the particle-centric Lagrangian frame through passive tracers.

The Eulerian and Lagrangian Frames
The Eulerian description of flows considers fluid as it moves past a fixed

point or a fixed region in space. As time passes, fluid moves through the spec-
ified domain while the coordinate frame of reference stays the same. Eulerian
analyses are concerned with field variables defined over the entire region. For
example a flow in the Eulerian context may be described by the velocity field
v(x, t), where x are spatial coordinates that remain unmoved in time and t

is a parameterization for time. In Figure 1.2, both the ideal field-of-view and
the practical one represent Eulerian domains through which the fluid flows.
Clearly, the Eulerian frame is favorable for many laboratory flows since ex-
perimental apparatus are often bulky and immobile; the fluid runs through an
experimental domain carefully constructed by the researchers.

The alternative approach is to consider fluid motion from the frame of
reference of fluid parcels advecting with the flow. This is known as the La-
grangian frame, and is represented in Figure 1.2 by the trajectories of tracers
shown traveling downstream. Rather than describing the fluid’s behavior by
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Figure 1.2: Measuring a flow with a fixed field of view. The canonical flow
around a cylinder from left to right is depicted in orange as the characteristic
Von Karman vortex street. The large box encompassing the flow indicates
an ideal field-of-view for an experiment on the flow, while the smaller box
indicates what may be practically achievable. Black markers and their tails
indicate Lagrangian tracers which may also be used to study the flow.

field quantities, it is defined according to the position histories of the analyzed
parcels. Thus, in the Lagrangian frame, the flow is described by the trajectory
function x(t; t0,x0) which indicates a particle’s position at time t with respect
to initial position x0 and initial time t. Lagrangian measurements are common
in oceanographic applications, where ocean drifters are released and their po-
sitions monitored over time. Both the Lagrangian and Eulerian descriptions
of a flow are relevant to understanding the basics of experimental flow field
measurement techniques.

Velocimetry in Experimental Fluid Mechanics
The task of experimental fluid mechanics is to observe and quantify the

motion of matter which is, by common inspection, invisible. In almost all
instances, this is achieved by modifying the characteristics of the fluid in such
a way as to make it observable under certain circumstances. While various
modifications exist, by far the most common is to add numerous observable
particles to the fluid and illuminate them in the experimental region of interest.
If the response time of the particle is small relative to that of the flow, then
it is assumed that the observable tracers can be reliably used to estimate flow
velocities (This is usually characterized by the Stokes number, which is defined
as Stk = t0u0

l0
, where t0 represents the relaxation time of the particle, u0 is the
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Figure 1.3: Schematics illustrating flow-field estimation approaches commonly
employed in experimental fluid mechanics. Virtually all experimental flow field
measurements begin with particle images such as seen on the left. PIV in-
volves performing cross-correlation between subsequent frames inside of small
windows tesselated over the domain. LPT tracks particle trajectories and com-
putes velocities based on individual particle displacements.

free-stream fluid velocity of the fluid, and l0 is the the characteristic length-
scale of the flow, for example, the diameter of an obstacle. Particles trace the
flow well when Stk ≪ 1.). An example of the particle images which result
from this process is presented on the left-hand side of figure 1.3.

Flow visualization by particle images, however, is only the first step of
the velocimetry process. Various algorithms have been composed to quan-
tify the observed motion of tracers through an experiment. Particle image
velocimetry (PIV, [18]) has traditionally been the most commonly used ap-
proach, although, recently, computational and algorithmic advances have made
Lagrangian particle tracking (LPT, [19], also denoted Particle tracking ve-
locimetry (PTV)) an attractive alternative. These algorithms are here briefly
described.

Particle image velocimetry (or, more specifically, digital particle image
velocimetry) was developed at the end of the twentieth century as a com-
putationally efficient means of extracting velocity information from particle
images [20]. It is based on the principal of spatial signal correlation, which
can be used to find the location of strongest similarity between two images.
PIV utilizes correlation by separating the full-sized images into many small
windows within which correlations are performed between subsequent frames.
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The peak of the correlation within each window represents the position of
greatest similarity of the window contents at frame two to the contents at
frame one. It indicates the aggregate displacement of illuminated particles
over the time step between frames, and can thus be used to estimate the av-
erage velocity inside the window. A schematic of this process is presented in
Figure 1.3.

While PIV has evolved into a very effective and heavily used algorithm in
the fluids community [18], [21], its mode of operation limits the physical scales
of the flow which it is able to measure. The effectiveness of PIV depends on
being able to sense the motion of recorded particles. As the field-of-view is ex-
panded for a single camera, the motion of particles between frames may drop
below pixel-scale and less-brightly illuminated particles may become difficult
to distinguish. This leads to a tradeoff between measurable area and measure-
ment accuracy. To overcome this limitation, studies often stitch together the
field-of-view of multiple cameras, which is costly, and can be computationally
burdensome.

Lagrangian particle tracking also began development towards the end of
the twentieth century [22]–[24], but did not experience the same community
adoption as PIV due to algorithmic concerns. Where PIV estimates velocity
on a grid due to the aggregate motion of windowed particles, LPT seeks to
estimate velocity locally at particle positions by mapping their trajectories over
time. The algorithmic process involves detecting particle positions, stitching
together the trajectories that they form over subsequent frames, computing
trajectory-wise velocities, and interpolating to a uniform grid at each time
step. This process was limited to sparse distributions of particles until only
recently, when algorithmic advances enabled LPT to be performed on the
dense particle distributions commonly used with PIV [19], [25]. A simple
visualization of the LPT process is also presented in Figure 1.3.

LPT is often advantageous over PIV for 3D measurements and for mea-
surements made with low particle density. However, 2D flow measurements
can be challenging using LPT, as particles will often move out of the plane of
illumination thereby truncating its recorded trajectory. Another disadvantage
of LPT is the computational complexity of modern algorithms. Performing
analysis on LPT data can take far longer than for a similar PIV study due to
the multiple complex steps in the algorithm.

Both PIV and LPT are limited in their requirement of clean particle images
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to be effective. The addition of non-flow features in the images can quickly
reduce the quality of PIV and LPT measurements. As a result, experimen-
tal fluids studies often go to great lengths to ensure a dark background in
the experimental field-of-view, and multiple pre-processing steps are typically
applied to data to improve quality. As flow measurement technologies are
extended to larger scales, it will become necessary to engage with images con-
taining many features that are not relevant to the flow. This is a challenge
that will be addressed in this work.

Velocimetry in Computer Vision
Camera-based velocimetry has grown in global relevance in the second and

third decades of the twenty-first century due to the proliferation of computer
vision and autonomy applications. The ability to estimate the velocity of ob-
jects in a scene is crucial for any technology that involves the autonomous
navigation of an agent. Self-driving vehicles are a high-profile case in point,
where understanding the motion of surrounding objects, vehicles, and pedes-
trians is safety-critical.

Surprisingly, there has been little cross-talk between the experimental fluids
and computer vision communities regarding motion estimation. As a result,
the algorithms embraced by the machine perception community are largely
different from those commonly used in fluid mechanics. Typically, they fall
into the category of optical flow (OF).

Optical flow methods were effectively conceived in the 1940’s with the
work of psychologist James Gibson [26], who was interested in understanding
motion as a piece of a theory on neurological perception of the visual world.
Gibson’s research laid the groundwork for understanding pixel intensity as a
conservative quantity in the perception of motion. For example, one may watch
a video of a train moving across a screen and perceive its motion even though
the pixels on the screen remain stationary. These psychological concepts were
eventually codified algorithmically by researchers in the early 1980’s [27], [28].
Since then, many related algorithms based on the same principal have come
to be known as OF. In fact, PIV is sometimes considered to be a type of OF
algorithm. Practically speaking, however, OF is often viewed as distinct due
to the breadth of alternative methods and the widely varying applications.

One of the advantages of OF is its ability to compute dense velocity esti-
mation at each pixel in the image. As a result, fluids researchers have recently
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developed approaches which fine-tune coarse PIV flow estimation with OF [29].
OF, however, is not particularly well suited to analyze flow data by itself.
When applied directly to particle image data, the concentration of brightness
at the particle locations inhibits accurate full-field velocity estimation.

1.3 Autonomous Mobile Flow Field Measurements
All of the flow measurement techniques described in the previous section

are most naturally executed in the Eulerian frame. Whether in the field or
in the laboratory, cameras are almost always placed with a fixed field-of-view
relative to the flow, making it possible only to observe fluid behavior within a
stationary window. Even LPT studies, which assume a Lagrangian description
of the flow through the measurement of tracer trajectories, are limited to a
static domain and therefore often interpolate flow fields to a uniform Eulerian
grid before performing analyses.

Being constrained to a fixed field-of-view poses severe limitations on the
type of studies which can be conducted on advection-dominated flows. This is
especially true when observing larger-scale flows in the field. In particular, the
ability to analyze the behavior of flow structures as they evolve downstream
is limited by the capabilities of the imaging hardware and the capacity to
seed measurable tracers. In an attempt to address these challenges, this work
introduces the notion of autonomous mobile flow field measurements (AMFM).
In the AMFM paradigm, which is illustrated in Figure 1.4, flow structures of
interest are identified using available tracers, which may be artificially seeded
or natural, and followed autonomously by some mobile platform such as an
unmanned aerial vehicle (UAV). In this way, the evolution of flows can be
understood over larger spatio-temporal domains within a frame of reference
intrinsic to the flow itself.

Similar Flow Field Measurements in Experimental Literature
Measurement apparatuses with a dynamic field of view have been used to

measure fluid behavior in a variety of contexts. A common example fixes the
optical system to a body that is in motion within the fluid. Studies involving
cameras mounted to tow-tank carts (e.g., Beal et al. [30]) fit into this category,
as do studies where the field-of-view is affixed to a rotating body, which is often
considered in experiments on rotorcraft (e.g., Moaven et al. [31]). Even though
the field-of-view dynamically traverses the flow in these cases, it is assumed to
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Figure 1.4: An illustration of the autonomous flow field measurement concept.
A flow structure of interest (in the figure, a vortex) is identified and followed
by a dynamic observer.

be stationary with respect to an immersed body of interest. Other experiments
approximate a body-fixed frame of reference by sampling over a larger domain
in space and transforming the flow field measurements’ coordinates in post-
processing [32].

Some studies have been designed with observers that travel with flow fea-
tures without the point of reference of an immersed body. Examples of so-
called Flying-PIV have been implemented in various studies to examine flows
that evolve over spatial domains. The work by Zheng and Longmire [33] ex-
plores the streamwise development of turbulent vortex packets induced in a
boundary layer by cylindrical roughness elements by traversing the optical
setup downstream at a fixed rate. The study by Koehler et al. [34] examined
flow in an internal combustion cylinder at a fixed distance from the piston
over its cycle by traversing the laser sheet with the piston head. These stud-
ies are both examples of where the observer moves with nontrivial prescribed
dynamics relative to the flow.

Outside of the laboratory, researchers have begun utilizing unmanned sys-
tems for flow measurement. Unmanned aerial vehicles (UAVs) in particular
show promise for the measurement of mid-range scales of fluid motion in the
field. For example, the work by Tauro et al. [35] computes averaged flow
measurements on a small stream using a drone in hover. Measurements are
taken using natural and artificial flow tracers over multiple repetitions and
averaged to reproduce the flow field over a few meters. Other studies such
as that by Pinton et al. [36] have measured flow behavior by observing dye
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added to the water in natural flows. Unmanned systems have become relevant
in ocean applications as well, where underwater gliders have been developed
to autonomously study ocean characteristics beneath the sea surface [37], [38].
Gliders, however, are similar to ocean drifters [13] in that they do not neces-
sarily provide spatially resolved information about flow fields but rather ocean
data along a single trajectory.

Components of AMFM
Autonomous mobile flow field measurements differ from the above studies

in that they seek to use flow field information to autonomously navigate the
observer in response to the flow. In general, this involves three stages in a
cycle:

Detection: The first stage in the AMFM loop is to identify the flow features
of interest that are to be tracked and followed. These features could be
vortices, transport barriers, or coherent sets of tracers, among others—
the particular detection objective depends on the application. Critically,
it should be possible to identify the features regardless of the motion of
the observer.

Estimation: The estimation stage in the AMFM cycle involves predicting
the future state evolution of the detected feature. Using the observa-
tion history of the feature in cadence with the surrounding flow field
information, it is possible to predict subsequent positions in the feature
trajectory. Data assimilation methods such as Kalman Filters and Par-
ticle Filters are well suited for this task and already a highly developed
technology.

Control: The final stage in the AMFM process is to manipulate the tra-
jectory of the observer so that it follows that of the detected feature.
The exact nature of this stage depends on the form of the measurement
apparatus. For example, implementation will differ between an observer
mounted on a cyber-physical system in a laboratory to one mounted on
a drone flying above a river.

Of the three stages of AMFM, structure detection presents the greatest
research opportunity. Both state estimation and control in autonomous appli-
cations are relatively well understood and are more specific to the particular
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applications. Therefore, the focus of this thesis is to develop detection strate-
gies that are amenable with the AMFM concept.

1.4 Addressing Challenges in Structure Detection in AMFM
The overarching objective of this thesis is to address principal flow structure

detection challenges that arise during the AMFM process. In particular, three
prominent theoretical and technical challenges are considered:

The Challenge of Relative Motion: Normally, when optically measur-
ing a flow field, it is assumed that the observer is stationary and fixed
with respect to the flow. That assumption must be discarded in the
context of AMFM, where the observer’s frame of reference is expected
to change over time. This induces relative motion between the flow and
the observer which is not generally known and which influences the ob-
served flow field. In order to meaningfully detect flow structures with a
dynamic observer, the influence relative motion must be addressed.

The Challenge of Feature-Rich Images: Recorded images of flows
taken outside of the controlled laboratory environment will typically
contain various features which complicate flow field analysis. Rather
than working with carefully orchestrated particle images, real-world
features such as reflections, terrain, and non-flow areas will occupy
many parts of the images. Without careful pre- and post-processing
of the data, these features will inhibit the calculation of necessary
quantities such as gradients, thereby preventing their use for structure
detection purposes. Before AMFM applications in the field are possible,
an approach to dealing with such images needs to be developed.

The Challenge of Imperfect Tracers: When making field measure-
ments, the available tracers (whether natural or artificial) will not likely
be perfect indicators of the underlying flow. Rather, they will exhibit fi-
nite mass, buoyancy, and non-spherical geometry, which will make them
respond differently to the flow than an ideal tracer. Understanding the
relationship of the tracers to the flow is a challenge that must be consid-
ered when attempting AMFM applications.

This list of potential challenges is by no means exhaustive; AMFM presents
an audacious attempt to drive forward the state of flow measurement technol-
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ogy. Nevertheless, addressing these issues would pave the foundation for future
autonomous flow field measurements. Perhaps, as the technology is developed,
chasing after the wind will become more than a mere exercise in futility.

Structure of the Dissertation
The remainder of this thesis is devoted to addressing the three challenges

listed above. Chapter 2 provides the theoretical background necessary for
making objective analyses of flow data that are invariant to change of frame.
This theory is derived from the axioms of Lagrangian coherent structure (LCS)
analysis, and poses a new difficulty which must be addressed—namely, how
does one identify structures objectively using only limited observations of flow
tracers. In response to this new problem, Chapter 3 introduces Lagrangian
gradient regression (LGR) as the principal theoretical development of this
work. Chapter 4 is then devoted to validating LGR by testing it on sparse
analytical data sets. In Chapter 5, the difficulties posed by feature-rich images
are confronted. Tools from modern computer vision are implemented to enable
robust flow feature detection given semantic information embedded within
natural images of flows. Chapter 6 applies the tools developed in Chapter 5 to
examine the efficacy of naturally occurring flow tracers for structure detection.
Finally, the dissertation concludes in Chapther 7 by synthesizing the insights
and methods throughout to study flows measured in the field at Caltech’s
turtle ponds.
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C h a p t e r 2

BACKGROUND THEORY: OBJECTIVE FLOW
MEASUREMENTS

In the introduction to this dissertation, the framework of autonomous mobile
flow field measurements (AMFM) was proposed as a means for studying in-
creasingly large scale flows in natural contexts. Three challenges to structure
detection, it was suggested, must be overcome for AMFM systems to operate.
The first of these was the challenge of relative motion. Before further devel-
opment can ensue, this obstacle must be addressed. This chapter presents the
theoretical background required to gain traction towards a solution.

The context of AMFM demands that the relative motion of an observer to
a flow be considered in all calculations of flow field quantities. Consider the
example presented in Figure 2.1 where the observations of a stationary and a
dynamic observer are compared for a generic two-dimensional flow field. The
top row of the figure represents the flow as if viewed from a laboratory-fixed
point of view. In this case, the relative rotation rate q̇ between the observer
and the flow is set to 0 and the observer velocity vector ṗ = 0. The bottom row
depicts the flow as if viewed from a dynamic observer with non-zero rotation
rate and translation. Arbitrarily, the rotation rate is set to q̇ = 3 radians per
unit time and the translation rate is given as ṗ = [2, −1]⊤ units space per
unit time. As indicated in the figure, the first column displays the horizontal
velocity u, the second column displays the vertical velocity v, and the third
column displays the vorticity ωz = ∂v

∂x
− ∂u

∂y
.

The message of Figure 2.1 is that many common flow measurements are
dramatically affected by the relationship of the observer to the flow. In the
given example, the stationary velocity fields are drastically different than the
dynamic ones. Even the observed vorticity, which depends on spatial varia-
tions in the flow field, is modified due to the relative rotation. This can cause
a range of practical challenges as one attempts to measure and interact with
flows beyond the confines of a controlled laboratory. It is especially challenging
in the context of AMFM, where observer mobility is intrinsic to the applica-
tion. How might one address the issues posed by a dynamic observer? Three
potential solutions might be considered.
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Figure 2.1: Demonstration of the effects of observer motion on measured flow
field quantities. The top row presents an arbitrary flow field as if viewed from
a stationary observer fixed to the frame of reference of the flow such that q̇ = 0
and ṗ = 0. The bottom row represents the same flow as observed by a dynamic
observer with relative rotation q̇ = 3 radians/unit time and ṗ = [2, −1]⊤ units
space/unit time. In all frames, red indicates positive values and blue negative.
It is clear that the observer motion has a strong influence on how a flow is
understood.

1. Ignore relative motion effects. While certainly the most naive ap-
proach, ignoring the effects of relative motion is practically simple. Un-
der certain circumstances it may be appropriate to assume that the
relative motion is negligible or that it does not significantly influence
the quantities of interest, thus allowing the system to make measure-
ments in the traditional manner without correction. However, in the
context of AMFM, this is not generally the case. AMFM seeks to iden-
tify and follow specific flow features whose definition depends on the
relative motion between the observer and the flow. Following a vortex,
for instance, depends on the ability to consistently identify the vortex
core and boundaries. However, as was evident in the previous example,
while the material motion in the flow is unaffected by the observer, its
representation can be drastically influenced by relative motion. Thus, in
AMFM measurements, relative motion must not be ignored.

2. Incorporate a known observer trajectory. Perhaps the most intu-
itive approach to correcting for relative motion is to subtract the veloc-
ity of the observer from the velocities recorded prior to performing any
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analyses. As discussed in the previous chapter, this is already done in
practice when velocity fields are a-posteriori transformed to the motion
of a body in frame. It is also an attractive solution in the laboratory
context where the motion of a gantry or a robotic manipulator is pre-
cisely known for each experimental recording. However, access to reliable
observer trajectories is limited in field experiments. If, for example, a
drone were used to measure flow information, its trajectory would be
constructed from accelerometer and GPS sources which are notoriously
noisy. Therefore, correcting observed velocities using observer trajecto-
ries is not an acceptable solution.

3. Perform objective analyses. A third alternative is to compute quan-
tities that are invariant under frame of reference changes. While limiting
the available analyses that can be done online in the AMFM loop, com-
puting invariant quantities ensures that the flow is objectively considered
regardless of the relative motion of the system. This is the approach that
is pursued throughout this work. In the remainder of this chapter, the
theoretical underpinnings are discussed.

2.1 Lagrangian Coherent Structures
While experimental flows are typically measured in the fixed-frame Eule-

rian context, a Lagrangian perspective can be helpful when seeking objective
flow measurements. The theory of Lagrangian coherent structures (LCS. See
Haller [39], Hadjighasem et al. [40], and Allshouse and Peacock [41], for exam-
ple) provides methods which characterize a flow’s behavior according to the
collective motion of tracers embedded within it.

Many analyses have been developed since the inception of LCS as a field
of research, but almost all of them share two fundamental qualities: they are
finite-time and objective. Finite-time deals with the time interval of analy-
sis. Due to their Lagrangian foundations, LCS analyses are derived from the
trajectories of tracers in a flow. This implies that any LCS analysis accounts
for fluid motion over a finite duration rather than its instantaneous behavior.
Eulerian quantities such as vorticity, for example, provide instantaneous in-
formation about fluid behavior, but do not lend insight far into the future or
past in unsteady flows.
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Objectivity
The principle of objectivity is closely linked to the concept of the material-

frame invariance from continuum mechanics [42], [43]. The primary statement
of objectivity is that the position of an observer should not influence any
quantities of interest. An objective quantity is one that is intrinsic to the
observed system; its representation is not dependent on how it is measured.

Consider a time-varying vector x(t) ∈ Rd that is subjected to a Euclidean
transformation of the form

y = Q(t)x + p(t), (2.1)

where Q(t) ∈ Rd×d is a proper orthogonal rotation tensor and p(t) ∈ Rd is a
translation. Any objective scalar, vector, or tensor quantity must be invariant
under transformations of the form of equation 2.1.

Most common flow measurements are not objective. For instance, it is clear
by intuition and by Figure 2.1 that velocity is not objective. Mathematically
it can be shown by taking the time derivative of equation 2.1:

ṽ = ẏ = Q̇x + Qv̇ + ṗ,

where ·̃ represents the transformed frame and ·̇ indicates the time rate-of-
change. This transformation law for velocity expresses precisely how the
motion of an observer influences the measured velocity. Similar transforma-
tion laws can be found for many common flow metrics including vorticity,
Q-criterion [44], λ2-criterion [45], and the Okubo-Weiss parameter [46], [47].
None of these metrics are objective, and therefore would yield misleading infor-
mation from a dynamic observer. Appendix A contains more details regarding
the objectivity of various flow quantities.

Paradigms of LCS Detection
Until now, the notion of a Lagrangian coherent structure has been left

ambiguous. This is because a variety of paradigms exist for detecting LCS,
each of which admit a different mathematical formalism. Broadly speaking,
LCS are regions of a flow that drive material behavior over a specified obser-
vation interval. Depending on the approach, these regions may be defined as
material surfaces (curves in 2-D space, for example) or as material volumes
(some enclosed region in the flow space), and they could represent physical
flow characteristics or the probabilistic behavior of observed tracers. In their
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survey of LCS methods, Allshouse and Peackock categorize analyses as either
dense or sparse depending on the quantity of tracer data required to perform
the computations [41]. These paradigms are briefly considered below.

Dense Detection Approaches

Dense approaches require a large number of tracers relative to the spatial
extent of flow features in their analyses, and are often categorized as either
geometric (sometime referred to as gradient-based approaches [39], [48]) or
probabilistic [49], [50]. The geometric approach bases its analyses off of flow
gradients, and therefore detects features with specific dynamical interpreta-
tion. For instance, the finite-time Lyapunov exponent (FTLE, [48]) and the
Lagrangian-averaged vorticity deviation (LAVD, [51])—both common geomet-
ric LCS analyses—physically represent linear deformation rate and amount of
flow rotation over time, respectively. Alternatively, the probabilistic approach
to LCS is grounded on the Perron-Frobenius (or transfer) operator [52] and
defines structures as regions exhibiting coherent behavior with high probabil-
ity. While probabilistic measures will often highlight the same spatial domain
as corresponding geometric analyses (e.g., Finite-time entropy [50] is a prob-
abilistic proxy for FTLE and highlights the same material features), the field
values are probabilistic in nature and are therefore not physically interpretable
in the same way as geometric analyses. Both geometric and probabilistic meth-
ods are deterministic in the sense that they provide repeatable results when
applied to the same flow.

Sparse Detection Approaches

Dense approaches can be difficult to use with practical data sets since they re-
quire particle densities greater than what is typically achievable in the field or
in the lab. To overcome this limitation, many variations of sparse approaches
(i.e., requiring few particles) for LCS detection have been proposed. These
include methods based on spectral clustering [53], fuzzy C-means [54], graph
coloring [55], [56], finite-element approximation of the dynamic Laplacian [57],
[58], network analysis [59], and DBSCAN [60], among others. Sparse LCS tools
are able to provide meaningful results with far fewer particles than dense al-
ternatives, but they often lack determinism and do not typically provide quan-
tifiable information of the flow kinematics. Often, users of sparse clustering
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methods must specify the number of structures to identify a-priori, implying
prior understanding of the flow. So, while LCS may be identified with limited
trajectories via sparse methods, their interpretation requires knowledge of the
flow.

2.2 Gradient-Based LCS
Because of their direct relationship to flow dynamics, gradient-based (or

geometric) LCS are the focus of the methods developed in this work. Geomet-
ric LCS were introduced at the turn of the century [61], [62] and have been
consistently developed since. Based on principles from continuum mechan-
ics and dynamical systems theory, geometric LCS seek to identify material
surfaces of dynamical significance in a flow over some interval [63]. In the
decades since the field’s inception, many analyses have been introduced. For a
comprehensive treatment, interested readers should refer to the text book by
Haller [43] or to the seminal review by the same author [39].

Types of Gradient-Based LCS
All geometric LCS can be classified into one of three categories: hyperbolic

(defined as either attracting or repelling manifolds), parabolic (shear-driven
manifolds thought of as Lagrangian jet cores), or elliptic (thought of as La-
grangian vortices). The three categories of structures can be visualized in
Figure 2.2. While strict definitions of each type of structure are more techni-
cal than this work demands, brief, qualitative descriptions are provided below.

Hyperbolic structures represent material surfaces characterized by locally
normal flow motion. Repelling hyperbolic surfaces are ones in which parti-
cles with initial conditions near the feature rapidly separate from each other
over time. Attractive hyperbolic surfaces defined over the same time domain
are those which accumulate particles during the flow motion. Figure 2.2 in-
dicates repelling and attracting LCS as orange and blue curves, respectively.
Hyperbolic LCS are closely linked to material mixing. Because they represent
locally repelling surfaces, fluid will not cross a hyperbolic LCS over the pre-
scribed time interval [48]. The typical analysis used to highlight hyperbolic
features is the finite-time Lyapunov exponent (FTLE, [48], [62]), which will
be defined in greater detail in later sections.

Parabolic LCS represent Lagrangian jet-cores, or material surfaces domi-
nated by tangential stretching. In other words, they tend to emphasize regions
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Figure 2.2: Types of LCS as defined by the theory of Geometric LCS. (a)
Hyperbolic structures, which are characterized as material surfaces defined by
tracer movement normal to the surface. Particles are repulsed from repelling
structures and drawn towards attracting surfaces. (b) Parabolic structures,
which are defined by stretching due to shear. Can be thought of as Lagrangian
jet cores. (c) Elliptic structures, which enclose regions of coherent rotation.
Thought of as Lagrangian vortices.

of large shear in a flow, as indicated in figure 2.2. Because parabolic structures
and hyperbolic structures are both defined according to local material stretch-
ing, it is sometimes challenging to disambiguate the two in LCS an analyses.
For instance, ridges in the FTLE field of a flow can be associated with either
parabolic or hyperbolic features. However, work has been done to analytically
separate the two [39], [63].

Finally, elliptic LCS are defined as material surfaces that enclose regions
of coherent rotation [64]. While strictly defined as closed codimension-1 man-
ifolds in the space of the flow, it is convenient to think of elliptic LCS as
the entire volume enclosed by the bounding surfaces. As will be shown later,
the motion inside of the elliptic boundaries influences the detectability of the
boundaries themselves, making them useful targets for AMFM measurements.
Some metrics used to identify elliptic LCS include the polar rotation angle
(PRA, [65]) and the Lagrangian-averaged vorticity deviation (LAVD, [51]).

Applications of Gradient-Based LCS
Since the inception of the field, LCS analyses have been applied to a broad

array of technical problems. Perhaps the most common use of LCS analysis is
in the study of geophysical and atmospheric flow (e.g., [66]–[72], among oth-
ers). They have also been useful in characterizing structures in turbulent and
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Figure 2.3: Schematic of a material deformation. A continuous region of fluid
Bt0 is defined in a reference space and measured in the observed space as a
deformed region Bt. The smooth mapping from reference to observation Ft

t0 is
known as the the flow map, and has an inverse from observation to reference.
The mapping of individual particles x0 within Bt0 to the observed space form
trajectories x(t; t0,x0)

unsteady flows of aerodynamic interest [73]–[76] and in biomedical flows [77]–
[83]. LCS have even been applied to dynamical systems that are not fluids-
specific, such as in the work by Lekien and Marsden [60], [84], and by Husic
et al. [56].

2.3 Theoretical Foundations
Having understood the fundamental concepts of gradient-based LCS anal-

yses, it is necessary to define the mathematical framework from which the
theoretical contributions of this work are built. In the context of autonomous
mobile flow field measurements, both velocity gradients (instantaneous) and
flow-map Jacobians (finte-time) will be necessary. This section provides a
foundation for the algorithms and theory that will be developed in later chap-
ters.

The Flow Map
The theoretical foundations for making objective flow measurements stem

from the concept of the flow map. Consider the schematic presented in Figure
2.3. Here, the deformation over time of a region of flow material is depicted.
Specifically, an enclosed region of material Bt0 ⊆ D ⊆ Rd defined as a subset
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of the flow domain D in Euclidean space at an arbitrary reference time t0 ∈ R
is deformed by the flow to an enclosed spatial region Bt ⊆ D ⊆ Rd at some
other observed time t ∈ R. While the dimensionality of the flow d is general
in this formulation, for the fluid flows of interest it is restricted to d = {2, 3}.

The motion of all fluid elements governed by the analyzed flow are solutions
of the differential equation

d

dt
x = ẋ = v(x, t), (2.2)

where x = x(t) ∈ Rd is a vector valued function of time representing the
position of a material element and v(x, t) : D → D is a smooth vector field
describing the rate rate of change of elements in the domain D. The trajectory
of a material element, or tracer, is defined by its motion

x(t; t0,x0) = x0 +
∫ t

t0
v(x(τ ; t0,x0), τ)dτ, (2.3)

for all times t ∈ R from initial time t0 and position x0 = x(t0). The tuple
(x0, t0) is referred to as the initial conditions of the trajectory.

The mapping of a material element from the reference time t0 to the ob-
served time t is defined by the flow map

Ft
t0(x0) : D → D (2.4a)

x0 7→ Ft
t0(x0) = x(t; t0,x0), (2.4b)

which is also smooth in D. In other words, the position of a tracer at time t
is described through the flow map as x(t) = Ft

t0(x0). Then, since the motion
of the tracers are defined by the velocity field according to equation 2.3, the
flow map satisfies the relationship

d

dt

(
Ft

t0(x0)
)∣∣∣∣∣

t=τ

= v(Fτ
t0(x0), τ). (2.5)

Thus, the instantaneous rate of deformation of a material region Bt is governed
by the velocity field v(x, t) over the domain D.

Importantly, the flow map is a diffeomorphism, and therefore admits an
inverse [85]

x0 = (Ft
t0)−1(x(t)) = Ft0

t (x(t)). (2.6)

This ensures that no two reference points may occupy the same observed point
at a given time. Moreover, it makes the arrow of time arbitrary in the sense



23

that the flow map can be defined forwards in time or backwards in time without
encountering mathematical barriers. Other useful properties of the flow map
stem from the local existence and uniqueness of solutions for initial value
problems

Ft0
t0(x0) = x0 (2.7a)

Ft+s
t0 (x0) = Ft+s

s ◦ Fs
t0(x0) = Ft+s

t ◦ Ft
t0(x0) (2.7b)

[48]. The first of these properties states that the mapping of a tracer position
from one time to the same time is simply the same tracer position. The second
states that mappings over adjacent time intervals can be merged to represent
the mapping over the entire interval. Thus, the flow map over the full time
domain [t0, t] can be constructed as the composition of many intermediate
flow maps—a property that will become important later on.

The Flow Map Jacobian
The gradient of the flow map Ft

t0(x0) is known as the flow map Jacobian.
It represents the spatial variation of material deformations induced by the flow
over the observed time interval, and is defined

DFt
t0(x0) = ∇x0Ft

t0(x0), DFij(t; t0,x0) = ∂xi(t; t0,x0)
∂x0,j

, ∀i, j ∈ [1, ..., d].

(2.8)
In fact, the flow map Jacobian is also known as the deformation gradient tensor
in the field of continuum mechanics [42].

The flow map Jacobian describes the deformation of tracers within an ϵ-
neighborhood of the particle x0. Consider the perturbation y0 = x0 +∆x0, for
∆x0 very small. Performing a Taylor expansion of the perturbation centered
at x0 yields

∆x = Ft
t0(y0)− Ft

t0(x0) = DFt
t0(x0)∆x0 +O(∥∆x0∥2), (2.9)

with the norm being Euclidean. As will be seen in the next chapter, equation
2.9 bears significance when estimating flow gradients. Practically speaking it
states that, when the perturbation size ∥∆x0∥ becomes large, the nonlinearities
in the flow map dominate the deformation of local tracers at the future time.
Therefore, dense tracer distributions are typically required when computing
flow gradients. Overcoming this challenge is the subject of Chapter 3.
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For notational convenience, the argument of the tensors will be dropped
unless it is ambiguous to do so. Hence, DFt

t0 ≡ DFt
t0(x0), and so on. Through-

out this work, other tensors will be introduced, and it will be assumed that
the argument is the particle position at the time indicated in the subscript
unless otherwise stated.

Connection to The Velocity Gradient Tensor
Where the flow map Jacobian represents the spatial variation of deforma-

tions over a finite time, the velocity gradient represents the spatial variation
of deformation rate at an instant. Naturally, the two are related. Consider
the temporal evolution of the flow map Jacobian:

d

dt
DFt

t0(x0) = d

dt

(
∂

∂x0
x(t; t0,x0)

)
. (2.10)

Exchanging derivatives and applying the chain rule yields

d

dt
DFt

t0(x0) = ∇v(x, t)DFt
t0(x0), (2.11)

where DFt0
t0(x0) = Id, ∇v(x(t), t) is the velocity gradient tensor located at

the particle position x at time t, and Id is the identity tensor in the space of
the flow. Thus, the velocity gradient acts as the evolution of the flow map
Jacobian along a trajectory [86].

Recognizing the intrinsic link between the velocity gradient and the flow
map Jacobian is essential to the methods that are developed in Chapter 3
and implemented in Chapters 4 and 5. It represents a connection between the
Lagrangian and the Eulerian frames through the relationship

∇v(x(t), t) = d

dt
DFt

t0(x0)DFt0
t (x(t)), (2.12)

of which the implementation using experimental data is addressed in Chapter
3.

2.4 Gradient-Based Flow Metrics
Gradients are the basis for a large proportion of prominent flow diagnostics.

Many of these will be implemented throughout this work and it is therefore
necessary to introduce them here. The relevant methods are categorized as
instantaneous (i.e., based on the velocity gradient tensor) and finite-time (i.e.,
based on the flow map Jacobian).
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Instantaneous Flow Metrics
The velocity gradient tensor can be split into a rotational component and

a dilatational component through the decomposition

∇v = W + D. (2.13)

The anti-symmetric spin tensor W = 1
2(∇v − ∇v⊤) represents the rate of

change of material rotation, and the symmetric rate of deformation tensor
D = 1

2(∇v +∇v⊤) represents the rate of stretching in a material element.
Many common flow diagnostics are linked to the stretch and spin tensors.

In three dimensions, for example, the rate of fluid rotation is characterized by
the vorticity ω, which is defined as the unique vector ω satisfying

We = −1
2ω × e, ∀e ∈ R3. (2.14)

Additionally, the principal strain rate may be computed as the maximum
eigenvalue of the strain rate tensor

ϵ1 = λmax(D), (2.15)

and represents the maximum rate of stretching for a fluid element. Using both
W and D, the Q-criterion is defined according to

Q = 1
2
(
∥W∥2

F − ∥D∥
2
F

)
, (2.16)

where ∥·∥F represents the Frobenius norm [44]. Values of Q larger than zero
indicate that fluid motion is dominated by rotation; if it is less than zero, it is
dominated by dilation.

Of the metrics listed above, only the principal strain rate ϵ1 is objective.
The vorticity and the Q-criterion both depend on the spin tensor W, whose
transformation law

W̃ = QWQ⊤ + Ω (2.17)

depends on the rigid-body angular velocity between observers Ω = Q̇Q⊤,
known as the frame spin, and is therefore not objective. However, Haller et
al. [51] demonstrate that the instantaneous vorticity deviation

IVD(x, t) = |ω(x, t)− ω(t)| (2.18)

is objective, where ω(t) is the instantaneous spatial mean of the vorticity at
time t over the flow domain.
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Finite-Time Flow Metrics
The finite-time metrics often employed in the study of geometric LCS are

typically derived from the tensors and decompositions of continuum mechanics.
Of particular importance is the right Cauchy-Green strain tensor, which is
defined from the flow map Jacobian as

Ct
t0 =

(
DFt

t0

)⊤
DFt

t0 . (2.19)

Ct
t0 is a Gramian matrix, and therefore has the useful properties of being

symmetric and positive semi-definite. Since the continuum assumption of
fluids enforces one-to-one behavior of the flow map, it is guaranteed that
det(DFt

t0) > 0, and therefore that Ct
t0 is, in fact, positive definite and has

d real eigenvalues.
Physically, the right Cauchy-Green strain tensor represents the squared

change in local distances due to the flow map Ft
t0 . Thus, the maximum mag-

nitude of the perturbation at time t is determined by the L2 norm on DFt
t0

max ∥∆x∥ =
∥∥∥DFt

t0

∥∥∥
2
∥∆x0∥ =

√
λmax(Ct

t0) ∥∆x0∥ , (2.20)

where λmax represents the largest eigenvalue of Ct
t0 . Additionally, due to the

properties of the L2 operator norm,
∥∥∥DFt

t0

∥∥∥
2

may be computed as the largest
singular value of DFt

t0 and represents the maximal gain induced by the ten-
sor [87].

The scalar value
√
λmax(Ct

t0) may be viewed as an exponential, such that√
λmax(Ct

t0) = eσt
t0

|∆t|, (2.21)

where t0 + ∆t = t. The exponent σt
t0 is the finite-time Lyapunov exponent

(FTLE), which represents the exponential growth rate of a linear deformation
over the observation time. Because σt

t0 assumes linearity, it can only be re-
liably evaluated for finite ∆t if ∆x is infinitesimal, or for finite ∆x if ∆t is
infinitesimal. Therefore, it is typically computed according to

σt
t0 = lim

∆x0→0

1
|∆t| ln

√
λmax(Ct

t0). (2.22)

The FTLE is one of the first and most consistently used analyses in the
study of LCS [39], [48]. Ridges in the FTLE field indicate hyperbolic LCS fea-
tures which act as barriers to fluid transport. If computations are performed
using tracer propagation forwards in time, the ridges represent repelling mani-
folds from which particles at time t0 will tend to separate. If the computations
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are performed backwards in time, the ridges represent attracting manifolds
upon which particles beginning their trajectories at time t0 will accumulate.

Continuum mechanical analysis of rotation often involves the polar decom-
position, which states that DFt

t0 has the unique decomposition

DFt
t0 = Rt

t0Ut
t0 , (2.23)

such that the rotation tensor Rt
t0 is proper orthogonal and the right stretch

tensor Ut
t0 is symmetric, positive definite [42]. Rt

t0 represents a solid body
rotation of a material element over the interval, and Ut

t0 represents its stretch-
ing.

The rotation tensor Rt
t0 admits a polar rotation angle θt

t0 , which has been
used for estimation of polar LCS [65]. As discussed by Haller et al. [51],
however, Rt

t0 and θt
t0 are not dynamically consistent. That is, in general,

Rt
t0 ̸= Rt

sRs
t0 (2.24a)

θt
t0 ̸= θt

s + θs
t0 . (2.24b)

for two connected intervals [t0, s] and [s, t] [88]. This is a result of the fact
that Rt

t0 represents the best fit rotation tensor in the Frobenius sense of the
deformation over the interval [t0, t]. The possible rotation histories which could
result in Rt

t0 are infinite, so it is not possible to sum the rotations of arbitrary
sub-intervals.

The dynamic polar decomposition (DPD) was developed by Haller [88]
to overcome these deficiencies of the PRA and others. The DPD splits any
tensor defined by a linear process (such as in equation 2.11) into a rotational
process with zero rate of strain and an irrotational process with no vorticity.
Specifically, the decomposition is defined

DFt
t0 = Ot

t0Mt
t0 , (2.25)

where Ot
t0 is the proper orthogonal dynamic rotation tensor and Mt

t0 is the
right dynamic stretch tensor. From this result, the dynamic rotation tensor
Ot

t0 can be similarly decomposed into a relative rotation tensor Φt
t0 and a mean

rotation tensor Θt
t0 such that

DFt
t0 = Φt

t0Θt
t0Mt

t0 . (2.26)

The authors show that both Ot
t0 and Φt

t0 are dynamically consistent and Φt
t0

is objective [88].
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The framework of the DPD provides a robust basis for computing elliptic
flow measures. The first metric considered is the intrinsic rotation angle (IRA)

ψt
t0(x0) = 1

2

∫ t

t0
|ω(x(τ ; t0,x0), τ)− ω(τ)|dτ = 1

2

∫ t

t0
IV D(x, τ)dτ, (2.27)

where ω(t) represents the spatial average of vorticity. Physically, ψt
t0 represents

the angle swept by the relative rotation tensor Φt
t0 over the interval. The

Lagrangian-averaged vorticity deviation is directly related to ψt
t0 as

LAVDt
t0 = 2ψt

t0 . (2.28)

The dynamic rotation angle (DRA) φt
t0 is defined as the angle generated

by the dynamic rotation tensor Ot
t0 . It represents the amount of rotation that

a fluid element experiences relative to the observer, and can be computed

φt
t0(x0; g) = −1

2

∫ t

t0
ω(x(τ), τ) · g(x(τ), τ)dτ, (2.29)

where g is an axis family related to the observer around which rotations are
measured.

Both ψt
t0 and φt

t0 are dynamically consistent and can therefore be summed
if computed on adjacent intervals. However, because of the dependence on the
observer, φt

t0 is not generally objective [88]. In 2-D, if φt
t0 is computed using

the spatial mean-subtracted vorticity, then it is also objective.

Summary of Flow Quantities
The metrics defined above play a prominent role in the analyses and demon-

strations to follow. To keep track of them all, it is convenient to collate them
in one place and briefly discuss their properties. Table 2.1 contains useful
information regarding the most significant of the quantities introduced above,
including mathematical properties, whether it is finite-time, and whether it is
objective.

Methods for computing gradients and gradient-based quantities will be
addressed in Chapter 3. Even so, it is helpful to visualize many of the metrics
summarized in Table 2.1 here to understand their use cases. To this effect,
the unsteady double gyre flow is introduced as a demonstration case which
will be examined frequently throughout this work. Defined analytically by the
velocities

u = −πA sin (πf(x, t)) cos(πy), (2.30a)

v = πA cos (πf(x, t)) sin(πy)∂f(x, t)
∂x

, (2.30b)
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where

f(x, t) = a(t)x2 + b(t)x, a(t) = ϵ sin(αt), b(t) = 1− 2ϵ sin(αt),

the unsteady double gyre was designed to study particle transport in Rayleigh-
Bénard convection [89], [90]. In later years, it has been used as a baseline
case in the study of LCS. Figure 2.4 indicates the behavior of the double
gyre flow. As can be seen by the contour lines indicating fixed values of
vorticity, the double gyre flow dictates the dynamics of two counter-rotating
vortices. The motion of the vortices is determined by the parameters A, ϵ,
and α. The parameter A defines the strength of the vortices—larger values
mean stronger rotation. The parameters ϵ and α define the oscillation of
the centerline between the vortices. Raising ϵ increases the amplitude of the
centerline oscillation, and raising α increases the rate of oscillations. Unless
otherwise stated, examples using the double gyre employ the parameter set
{A = 0.1, ϵ = 0.1, α = 2π/10}.

Figure 2.5 displays scalar metric fields for selected instantaneous metrics.

Table 2.1: Summary of important flow quantities that will be relevant to the
discussions of subsequent chapters. “FT” stands for finite time, and “Obj.”
stands for objective. If a tensor is said to be > 0, that means that it is positive-
definite. Tensors in SO(d) are orthogonal with +1 determinant. More details
on objectivity of quantities can be found in Appendix A.

Quantity Size, Properties FT Obj. Formula
v(x, t) Rd × × eq. 2.2
∇v(x, t) Rd×d × × eq. 2.12
W(x, t) Rd×d, W = −W⊤ × ✓ eq. 2.13
D(x, t) Rd×d, D = D⊤ × ✓ eq. 2.13
DFt

t0(x0) Rd×d ✓ × eq. 2.8
Ct

t0(x0) Rd×d, Ct
t0 > 0, Ct

t0 =
(
Ct

t0

)⊤
✓ ✓ eq. 2.19

Rt
t0(x0) Rd×d, Rt

t0 ∈ SO(d) ✓ × eq. 2.24a
Ut

t0(x0) Rd×d, Ut
t0 > 0, Ut

t0 =
(
Ut

t0

)⊤
✓ ✓ eq. 2.24a

ω(x, t) R(d
2) × × eq. 2.14

ϵ1(x, t) R × ✓ eq. 2.15
Q(x, t) R × × eq. 2.16

IVD(x, t) R, IVD >= 0 × ✓ eq. 2.18
σt

t0(x0) R ✓ ✓ eq. 2.22
LAVDt

t0(x0) R, LAVDt
t0 ≥ 0 ✓ ✓ eq. 2.28

ψt
t0(x0) R, ψt

t0 ≥ 0 ✓ ✓ eq. 2.27
φt

t0(x0; g) R ✓ × eq. 2.29
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Figure 2.4: Schematic of the unsteady double gyre flow. The flow involves two
counter-rotating vortices which fluctuate in size according to a time dependent
function. Typically, the interface between the vortices (black dashed line) is
defined to oscillate sinusoidally.

Figure 2.5(a) presents the out-of-plane vorticity; 2.5(b) presents the IVD,
which is defined in equation 2.18; 2.5(c) displays the principal strain rate
ϵ1 from equation 2.15; and 2.5(d) presents the Q-criterion of equation 2.16.
Considering these fields together helps gain intuition for their usage.

Vorticity is a very common metric used in flow-field analysis. As previ-
ously discussed, it represents the rate of rotation of a fluid element around an
orthogonal axis—in 2-D, as in this case, out of the page. As evinced by figure
2.5, it is the only of the considered instantaneous metrics which indicates the
sign of rotation of a flow element. The IVD, on the other hand, indicates the
magnitude of rotation, but not the sign. In this case, the magnitude of the
IVD is commensurate with that of the vorticity since the spatial average of
vorticity over the domain is very close to zero in the double gyre. Although
the IVD loses information about the direction of rotation, it has two primary
advantages over unaltered vorticity: first, it is objective, where vorticity is not.
Second, vorticity is only scalar-valued in two dimensions, whereas the IVD is
always a positive scalar. These attributes make it a convenient measurement
when analyzing flows in an unknown frame.

Unlike vorticity and IVD, the principal strain rate and the Q-criterion both
indicate the amount of stretching occurring in the flow. In fact, the principal
strain rate only indicates stretching without being influenced by the flow’s
rotation, and is therefore objective. The Q-criterion, on the other hand, pits
rotation against dilatation, and assigns rotation-dominated regions of the flow
a positive value. This is particularly valuable when seeking to identify vortices,
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Figure 2.5: Instantaneous flow metrics computed on the double gyre flow at
time t = 0. (a) Vorticity ωz. (b) Instantaneous vorticity deviation (IVD)
computed according to equation 2.18. (c) Principal strain rate ϵ1 computed
by equation 2.15. (d) Q-criterion computed using equation 2.16.

as any positive region over a threshold can be said to exist in a rotational part
of the flow. However, because it depends on the spin tensor, W, it is not
objective.

Figure 2.6 presents examples of important finite-time metrics computed
on the double gyre flow. Figures 2.6(a) and 2.6(b) display the FTLE field
computed forwards and backwards, respectively, over the interval t ∈ [0,±15]
by equation 2.22. Figure 2.6(c) represents the IRA field computed forwards
in time over the interval t ∈ [0, 15] by equation 2.27, and 2.6(d) indicates the
DRA field of equation 2.29 over the same duration. Both 2.6(c) and 2.6(d) have
been scaled to represent complete rotations of the tracer along its trajectory.
Since LAVD is defined as twice the IRA, the IRA will typically be preferred
for its convenient physical interpretation.

Forward and backward FTLE as displayed in Figures 2.6(a) and 2.6(b)
are possibly the most commonly used finite-time metric. Large values in the
FTLE fields represent fluid elements that experience significant stretching over
the time domain. Thus, the ridges that appear in the LCS fields are the
features of interest in FTLE analyses, as they indicate flow transport barriers.
Over the duration of the flow, very little fluid (though, not all: see the flux
analysis done by Shadden et al. [48]) will cross these ridges. When performed in
forward time, FTLE ridges represent repelling manifolds which drive particles
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Figure 2.6: Finite-time flow metrics computed on the double gyre flow at time
t0 = 0 with t = t0 + ∆t and |∆t| = 15. (a) Forward-time FTLE σt

t0 described
by equation 2.22. (b) Backward-time FTLE σ−t

t0 described by equation 2.22.
(c) Intrinsic rotation angle ψt

t0 defined by 2.27 scaled to represent complete
tracer revolutions. (d) φt

t0 defined by 2.29 with similar scaling.

away from themselves. In backwards time, however, they represent attracting
manifolds which, in forwards time, tend to accumulate particles from across
the domain. The intersections of attracting and repelling ridges represent
saddle points in the flow.

While useful for monitoring flow transport barriers, FTLE ridges do not
give information about finite-time flow rotation. For that, it is convenient to
compute the LAVD (or IRA) and the DRA fields, which are shown for the
double gyre in Figures 2.6(c) and 2.6(d), respectively. The LAVD is a scaled
sum of the IVD and the DRA is a scaled sum of the vorticity. Thus, they have
the same tradeoffs that were discussed regarding vorticity and IVD—namely,
that the DRA indicates the direction of rotation but is not, in general objective
while the LAVD field is objective but does not indicate rotation direction.
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C h a p t e r 3

LAGRANGIAN GRADIENT REGRESSION

In the previous chapter, a framework for making consistent and inter-
pretable flow field measurements under mobile observation conditions was con-
structed. Rather than ignoring or correcting for the relative velocity between
the observer and the flow, tools from dynamical systems theory and continuum
mechanics were introduced to define objective metrics which are unaffected by
the changing frame of reference. The suggested measurements were classified
as either instantaneous (i.e., based on the velocity gradient at a moment in
time) or finite-time (i.e., based on the gradient of the mapping from one time
to another).

While a variety of viable flow metrics were presented, the approach to com-
puting them has not yet been addressed. That is the objective of this chapter.
The following discussion begins with a presentation of the standard approaches
for computing velocity gradients and flow map Jacobians. Velocity gradients
are typically computed in the study of experimental fluid mechanics and of
physical oceanography, though by different means due to varied modality of
the collected data. Both paradigms will be introduced in the first section.
Next, standard approaches for approximating the flow map Jacobian will be
introduced from the theory of Lagrangian coherent structures. The conven-
tional gradient estimation methods, however, are severely limited when only
sparse tracer data is available and can be computationally expensive other-
wise. While a variety of sparse approaches have been developed, the results
are typically unsatisfactory.

All of this sets the scene for the first technical contribution of this work:
Lagrangian gradient regression, or LGR. LGR utilizes the data-driven machin-
ery of kernel-weighted regression to approximate the operator driving defor-
mations over short intervals. In the sparse conditions intrinsic to autonomous
mobile flow measurements (AMFM), it is critical that the analyzed interval

The contents of this chapter have been adapted from Harms, Brunton, and McKeon
(2024) [2], which has been accepted to be published by the Royal Society Journal of Open
Science under the title Lagrangian Gradient Regression for the Detection of Coherent Struc-
tures from Sparse Trajectory Data and is available as a preprint on arXiv.
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be very short relative to the fastest time-scales of the flow, since deformations
remain approximately linear in that regime. While this may seem a stringent
condition, it is, in fact, much more lenient than requiring a dense sampling of
tracers over the flow domain. Real data can typically be sampled quickly but
not with high spatial resolution. (This point is intuitive. In oceanographic
studies, retrieving data from ocean drifters can be done many times in a sin-
gle day, but placing many drifters in close proximity is not cost effective or
productive. LPT studies often sample at hundreds of Hertz, but achieving
high particle density is technically challenging in many studies.) In the final
sections of this chapter, the theoretical framework for LGR will be developed,
along with two additional metrics that are convenient to compute by it.

3.1 Methods for Approximating The Velocity Gradient
The velocity gradient is arguably one of the most important quantities in

fluid mechanics, and it is therefore one of the most commonly measured. How
the velocity gradient is approximated from data depends largely on the type of
data that is collected. Here, two paradigms are examined: particle image data
collected for use in experimental fluid mechanics, and drifter data collected
in physical oceanography. In the former, velocity gradients are universally
computed from gridded velocity fields using numerical differentiation. On the
other hand, methods from the domain of physical oceanography typically aim
to approximate gradient quantities from the Lagrangian motion of the tracers.
In the following discussion, prominent gradient approximation methods from
both fields are conceptually introduced.

Paradigms in Experimental Fluids

Velocity gradient estimation in the field of experimental fluid mechanics is
almost always accomplished through particle image velocimetry (PIV) or
through Lagrangian particle tracking (LPT). The pipeline for each of these
is sketched in Figure 3.1. The first step in both cases is to carefully acquire
particle images of the flow being examined. This is not a trivial step, and often
requires expensive equipment, fastidious setup, and somewhat of an artistic
touch. The quality of flow field measurements are largely dependent upon the
quality of the images collected.

The most common form of experimental flow field estimation is particle
image velocimetry (PIV, [18], [21]), which is a windowed, correlation-based
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Figure 3.1: Typical velocity gradient estimation pipeline in experimental fluid
mechanics. The top branch follows the PIV procedure and the bottom branch
follows LPT/PTV methodology.

approach that segments an image into cells and performs signal correlation
between frames inside them. The average velocity in each cell is estimated
as the location-off-center of the correlation peak divided by the time step be-
tween images. Typically, many passes of overlapping windows are performed to
increase the resolution of the resulting vector field. Because PIV is correlation-
based, it is sensitive to any image content unrelated to the flow. Additionally,
it typically does not perform well in regions of high shear due to various effects
such as large velocity gradients and out-of-plane motion. These considerations
lead to noise in the measured flow fields.

Higher-order methods have also been developed to improve velocimetry
results in paradigms similar to PIV. Some of these methods are discussed in a
review by Scarano [91]. One such method, named image correlation velocime-
try (ICV), was proposed by Tokumaru and Dimotakis (1995) [92]. Instead of
realizing displacements by cross-correlation, the Taylor expansion of the La-
grangian deformation of fluid elements was provided as the objective function
of a global minimization over image intensities. As a result, higher-order flow
properties such as deformation and velocity gradients can be directly com-
puted, albeit at the cost of exponentially increasing computational load with
series truncation order. Other methods like the direct measurement of vortic-
ity (DMV) approach of Ruan et al(̇2001) [93] employ other approaches directly



36

access aspects of velocity gradients and overcome some of the limitations of
traditional, cross-correlation-based PIV. Other methods are included in the
review by Scarano [91].

Lagrangian particle tracking (LPT, also known as particle tracking ve-
locimetry (PTV); [19], [22], [24]) has recently gained traction in the flow mea-
surement community. While traditional algorithms have struggled to identify
trajectories in dense particle images, recent advances have significantly im-
proved performance on dense data and on 3D data sets. Because LPT identi-
fies particle trajectories, it boasts efficient data storage compared to PIV [18]
which requires all computed quantities to be stored on a dense grid of pixels
or voxels. Additionally, because the velocities computed by LPT are defined
point-wise on a particle rather than as the spatial average of all particles in a
window they may be more representative of the flow along the particle trajec-
tory.

Prior to computing gradients, velocity information must be transferred
to a Cartesian grid. Since PIV is a windowed approach, this constraint is
automatically satisfied. LPT data, however, must be interpolated. While
standard interpolation is often used in practice, it increases computation time
and can incur additional error. As a result, recent studies have developed
data-assimilation methodologies which leverage physical principals to achieve
fine-scale resolution from LPT tracks. Such methods include FlowFit [94]
and VIC+ [95], and their variants. While these methods have been seen to be
effective at reconstructing flow fields and, ultimately, gradients, they are known
to require significant post-processing effort on top of trajectory identification.
They also generate large amounts of data, as all of the measured quantities
are stored at every grid cell.

From measured velocity fields, a variety of approaches might be used to
estimate velocity gradients. The most basic of these is to compute first-order
finite-differences over the field. This, however, amplifies noise in the flow field
and, since there are many sources of error in PIV [18] and LPT algorithms
[96], the result is often difficult to use for quantitative analyses. To overcome
such errors, higher order finite-difference schemes such as Richardson extrap-
olation might be used. If direct differentiation schemes are insufficient for
computing velocity gradients and related quantities, various flow field post-
processing techniques may be used. For instance, Gaussian smoothing is often
used on noisy velocity fields prior to differentiation and, in flows that exhibit



37

periodicity, phase-averaging can be used to improve gradient calculations. Ad-
ditionally, other non-derivative quantities such as the Γ1 and Γ2 of Graftieaux
et al. have been proposed as a proxy for vorticity [97]. All of these methods,
however, require Cartesian velocity fields as inputs.

Paradigms in Physical Oceanography

Unlike the convention in experimental fluids, where velocity fields are recorded
from image sequences, velocity data in physical oceanography is often recorded
via Lagrangian tracers such as ocean drifters (for example, Lumpkin and Cen-
turioni [13]). Thus, the oceanography community has developed a variety of
methods for approximating gradients, divergence, and vorticity, some of which
have recently been surveyed [98], [99]. In some instances, specific kinematic
properties are computed directly. Divergence, for example, is often computed
by the change in area of polygons formed by tracers (e.g., Saucier [100]), and
vorticity is estimated by evaluating the circulation around the centroid of a
polygon (e.g., Kawai [101]). Recent studies, however, have identified the lin-
ear least squares approach of Molinari and Kirwan [102] to be a more effective
means of estimating ocean velocity gradients [98], [99], [103]. This approach
solves separate least squares problems in the latitudinal and longitudinal (x
and y) directions using tracer velocities to approximate gradients along each
axis at the centroid of the particles used.

3.2 Methods for Approximating The Flow Map Jacobian
Flow map Jacobians are typically approximated by one of two methods:

finite-differences or regression. In both cases, tracer positions are required at
initial and final times, which implies that trajectories must be known over the
entire duration. In this section, a short description of prominent methods is
provided here along with illustrations in Figure 3.2.

The finite differences approach to computing DFt
t0 was the first technique

to be developed [48], [61] and begins by artificially seeding massless parti-
cles throughout the flow domain in a fine mesh. Velocity information for the
flow—in the form of an analytical expression or snapshots from simulation
or experiment—is then used to propagate the positions of the particles over
some interval [t0, t] to their deformed positions using a numerical integrator.
The gradient of the deformation (which is the flow map Jacobian at the initial
time) is then approximated at each particle with respect to the initial positions
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Figure 3.2: Diagrams of computation schemes for the flow map Jacobian in 2D.
(a) Finite-differences approach. (b) Regression approach. (c) Planet-satellite
approach, which can be accomplished using either (i) finite-differences or (ii)
regression.

using a finite-differencing scheme. This process is illustrated in Figure 3.2(a).

In some instances, the finite-differences algorithm for computing DFt
t0 is in-

efficient. If tracers are given on an unstructured mesh, for instance, additional
steps are required to compute the LCS. To address this, Lekien and Ross devel-
oped a method for computing DFt

t0 using Voronoi cell-weighted least-squares
regression on unstructured meshes [104]. This method was later adapted to
experimental particle flows by Raben et al. [105], where regression was used on
the observed particle trajectories themselves to compute LCS quantities. The
regression approach to LCS approximation is given as a schematic in Figure
3.2(b).

For this work, a third scheme was developed with the intention of directly
comparing various numerical approximation techniques. This method, referred
to as the planet-satellite approach and displayed in Figure 3.2(c), involves
specifying an array of test locations—perhaps on a uniform grid—then seeding
particles around around them to locally perform computations either by finite-
differences or by regression. The resulting evaluation of DFt

t0 is then provided
at the test locations on the initial grid. The primary advantage of this approach
is that it allows multiple strategies to be evaluated on a grid of test points and
compared directly.
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Figure 3.3: A demonstration of the nonlinear influence of the flow on accuracy
of the Jacobian for particles with large initial radius. (a) Particles organized
by initial radius. (b) Location of particles from (a) after 15 time units in the
unsteady double gyre flow. (c) FTLE field evaluated at the level of grid spacing
∆p0 (∆p0 = ∆x0 = 0.005: light blue particles). (d) FTLE field evaluated
with ∆x0 = 5∆p0 (∆x0 = 0.025: green particles). All of the computations are
performed using the planet-satellite approach with finite differences (Figure
3.2(c.i))

3.3 The Consequences of Sparsity
Computing accurate Jacobians strongly depends on the distribution of par-

ticles at the initial time t0. Specifically, equation 2.9 shows that accurate
computations require tracer spacing ∆x0 to be exceedingly small. If an LCS
analysis is performed when ∆x0 is large, the estimated Jacobian will likely
be a poor representation of the tracer deformation as the flow nonlinearities
compound.

To demonstrate the influence of initial tracer spacing on approximating
DFt

t0 , tracer neighborhoods with varying radii are used to compute FTLE
fields on the double gyre flow (equation 2.30). Figure 3.3(a) shows a cloud of
particles at time t0 centered at x0 with varying radii indicated by color. The
particles are advected to the final positions (which are displayed in Figure
3.3(b)), where it is clear that the deformation of particles with large initial
radii (green to red particles) cannot be reasonably approximated by a linear
transformation. However, as the initial radius decreases (blue particles), the
deformation of the particles approximates an ellipsoid and can therefore be
sufficiently described by a linear operator. It is important to note that, as the
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integration time increases, the radius that can be accurately approximated by
the flow map Jacobian decreases.

It is not clear simply by observing particle deformations how significantly
the initial radius influences quantities used in identifying LCS. Figures 3.3(c)
and (d) display the forward-time FTLE field computed using different initial
neighborhoods with varying radii. In both cases, the planet-satellite method
is used with finite differences (Figure 3.2(c.i)), where the set of evaluation
locations {p} is a uniform grid and is kept the same between computations.
In Figure 3.3(c), the FTLE computations are performed using satellite spacing
∆x0 = 0.005, which is equivalent to the grid spacing ∆p and the radius of the
light blue particles in (a). Here, the FTLE field displays the sharp ridges that
are consistent with the literature (see, for example, [41]). The computations
in Figure 3.3(d) use ∆x0 = 5∆p = 0.025, which is the outer radius of the
green particles in (a), and the graphical representation uses the same color
mapping as (c). By visual inspection, it is apparent that the FTLE ridges in
(d) are muted and distorted. The distortion is so drastic that the dominant
ridge that appears in the center of the domain in (c) is difficult to identify in
(d). As ∆x0 and ∆t increase, the quality of the FTLE field decreases.

Progress Towards Sparse Gradient-Based LCS Detection

It is well known that Jacobians are difficult to approximate from sparse trajec-
tories, which has led researchers to develop a variety of methods that demon-
strate improved performance under such conditions. To overcome the de-
pendency on a structured array of particles, Lekien and Ross implemented
least-squares regression to compute the Jacobian on an unstructured mesh of
particles [104]. Brunton and Rowley developed an algorithm utilizing flow
map composition to speed up the calculations of FTLE fields, which de-
creased FTLE computation time for successive frames by reusing prior com-
putations [106]. Raben et al. built upon on these advances by developing
strategies for computing FTLE directly from experimental particle trajecto-
ries [105]. Recently, Mowlavi et al. proposed a noise-robust method which
augmented the regression approach of Lekien and Ross [104] by increasing
the number of particle connections within the regression neighborhood and by
adding Tikhonov regularization [60].

A separate approach to the sparse identification of gradient-based LCS
exists in the recent work by Haller and collaborators (2021-2023) where the
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trajectory stretching exponent (TSE) and trajectory rotation angle (TRA)
have been developed as quasi-objective metrics that approximate traditional
metrics like FTLE and polar rotation angle (PRA) but can be computed from
single particle trajectories [107], [108]. The theoretical development of the
deformation velocity by Kaszas et al. has enabled the TSE and TRA to be
computed objectively when using reference velocity information [109], [110].
These methods were shown to be effective at visualizing LCS on sparse data
sets, but they remain only an approximate indicator of the actual FTLE,
PRA, and LAVD. Moreover, they do not provide the ability to approximate
the gradient itself.

3.4 Lagrangian Gradient Regression
Lagrangian gradient regression (LGR) is the principal theoretical develop-

ment of this work. It refers to a class of techniques used to estimate flow gradi-
ents—including velocity gradients and flow map Jacobians—using regression
as the backbone with emphasis on improved performance using sparse trajec-
tories. Instead of computing gradients based off of a local linearization in space
(as do conventional methods), LGR linearizes in time via temporal discretiza-
tion in the gradient estimation procedure. The Jacobian of many small de-
formations are independently calculated and synthesized through composition
of flow maps, an operation that is nicely suited for realistic data modalities,
which usually abound in temporal resolution while lacking in the ability to
densely sample in space. This section introduces the theory enabling LGR to
approximate both instantaneous velocity gradients and finite-time flow map
Jacobians.

The Linear Deformation Operator
Recall from equation 2.9 that fluid deformations over an arbitrary interval

can be described by a linear operator (the flow map Jacobian) if the neighbor-
hood of the deformation is infinitesimally small. However, if that neighborhood
is large, the material deformation is dominated by nonlinear flow effects and
cannot be represented linearly. This is illustrated in Figure 3.4 through the
gradual warping of a circular cloud of particles (shown in blue at the bottom
left) into an deformed, banana-shaped filament of tracers (depicted in red at
the top right). When a linear operator is fit to the complete deformation, the
result inherently misrepresents the true transformation.
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Figure 3.4: An illustration of the deformation of a circular cloud of particles
over time in a flow.

However, if the deformation is recorded over an interval relatively small to
the fastest time scales of the flow T , then the operator mapping the transfor-
mation can still be reasonably approximated as linear. In the figure above,
this is indicated by the region labeled Linear in Time. Over these very small
intervals, the flow map Jacobian accurately represents the deformation. This
can be shown mathematically by considering a small perturbation in time ∆t
at the location of a tracer:

Ft+∆t
t (x) = Ft

t(x) + d

dt

(
Ft

t(x)
)

∆t+O
(
∆t2

)
. (3.1)

As was stated in equation 2.7a, Ft
t(x) = x. Therefore,

d

dt

(
Ft

t(x)
)

= d

dt
(x) = v(x, t) (3.2)

is just the velocity, and the perturbation is, to first order,

Ft+∆t
t (x) = x + v(x, t)∆t, (3.3)

which also follows from equation 2.5. Taking the gradient of both sides, an
expression for the deformation operator is identified as the flow map Jacobian:

DFt+∆t
t (x) = Id +∇v(x, t)∆t. (3.4)

It is helpful to notice that equation 3.4 is the temporal discretization of the
linear process defined by equation 2.11 for t = t0.

This analysis sets the foundations for Lagrangian gradient regression,
whose fundamental building block is the instantaneous deformation opera-
tor (i.e., the flow map Jacobian defined over short times). Because it is always
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Figure 3.5: An illustration of the components used to form the regression
matrices Xt and Xτ . A particle x(t) is tracked from one time step to the next
along with all of its neighbors xi(t). At the first time step, the differences
between the neighbors to the center particle form the columns of Xt, and their
deformed differences Fτ

t (xi(t))− Fτ
t (x(t)) form the columns of Xτ .

linear, deformations at time τ = t+ ∆t (again, for small ∆t) can be described
by the transformation

Xτ = DFτ
t (Xt) , (3.5)

where Xt ⊆ D and Xτ ⊆ D represent a material region at times t and τ . If only
flow-embedded tracers are observable, then Xt and Xτ can be approximated
by matrices Xt ∈ Rd×n and Xτ ∈ Rd×n recording the distances from a central
particle to all n neighbors within some neighborhood

Xt =


| | |

∆x1(t) ∆x2(t) · · · ∆xn(t)
| | |

 ,

Xτ =


| | |

∆x1(τ) ∆x2(τ) · · · ∆xn(τ)
| | |

 , (3.6)

such that ∆xi(t) = xi(t) − x(t) and ∆xi(τ) = Fτ
t (xi(t))− Fτ

t (x(t)) represent
the distance from the ith neighbor particle to the center particle at times t and
τ , respectively. A schematic of this process is provided in Figure 3.5.

Now the deformation is cast as a linear matrix equation

Xτ = DFτ
t Xt. (3.7)
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The formulation is the same as that of dynamic mode decomposition
(DMD, [111], [112]), where the operator is solved through regression. Thus,
the regression that drives LGR is finally obtained:

DFτ
t = Xτ X†

t , (3.8)

where X† = X⊤
(
XX⊤

)−1
is the right Moore-Penrose pseudoinverse.

Kernel-Weighted Least Squares Regression of Deformations
The linear deformation operator DFτ

t can be directly approximated
through least-squares regression as stated in equation 3.8. This is the solution
to the mimization problem

DFτ
t = arg min

DFτ
t

(1
2 ∥Xτ −DFτ

t Xt∥2
F

)
(3.9)

[113]. It is similar to the approach developed by Lekien and Ross to compute
Jacobians on unstructured meshes [104], but differs principally in the duration
of the computation interval. Whereas Lekien and Ross perform their regression
over arbitrary durations, this work limits the regression of the Jacobian to only
short intervals so that the identified linear model is an accurate representation
of the observed deformation with sparse tracer density. The work of Mowlavi
et al. builds on that of Lekien and Ross by incorporating all connections within
some neighborhood to the data matrices rather than only the connections with
the center particle [60]. However, like Lekien and Ross, they do not restrict
computations to short durations, and therefore are still subject to the influence
of flow nonlinearity when operating on sparse data.

Aside from restricting regressions to short intervals, this work also proposes
to weight the regression problem with a kernel matrix K ∈ Rn×n. The kernel
matrix is designed by the user to prioritize the influence of certain tracers
within the neighborhood represented by the matrix Xt. In this framework,
the minimization problem is cast as

DFτ
t = arg min

DFτ
t

(1
2
∥∥∥K 1

2 (Xτ −DFτ
t Xt)

∥∥∥2

F
+ γ

2 ∥DFτ
t ∥

2
F

)
, (3.10)

where the second term in the minimization is a regularizer with regularization
constant γ. The solution of the optimization in equation 3.10 is then

DFτ
t = Xτ KX⊤

t

(
XtKX⊤

t + γnId

)−1
(3.11)
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Figure 3.6: An illustration of the radial Gaussian weighting kernel described
in equation 3.12. Particles are indicated as gray dots on the plane of the blue
circle, which is viewed at a 45◦ angle from above. The weighting function is
indicated as an orange surface over the particles. The weight of each particle
to the regression computation is indicated by its value on the orange surface.

[113].
While the addition of the regularizer may help to reduce the influence

of noise in the regression computation [60], it will also bias the regressed
deformation operator to smaller-than-real values. In this work, only very small
values of γ are used in computations in order to maintain numerical stability.

Designing a kernel matrix K can significantly influence the operator identi-
fied by equation 3.11. Many construction strategies exist. Kernels are valid as
long as K is symmetric and positive semi-definite [114]. Typically, one defines
a kernel matrix according to a kernel function k(∆x,∆x′) : Rd × Rd → R+,
which computes the distance between data in the regression.

In this work, K is either set to be the identity matrix In, which ascribes
equal weight to particles any distance from the center particle, or particles are
given weights according to a Gaussian function over the radius. In the latter
case, the kernel function is defined

kRG(∆xi(t),∆xj(t)) =

α
2 exp

(
− (∆xi(t))2

2l2

)
, if i = j

0, otherwise
, (3.12)

where the output scaling α2 and the input variance l2 are hyperparameters. An
illustration of this this weighting scheme is provided in Figure 3.6. In practice,
allowing K = In is preferable when the particle spacing is already dense relative
to the spatial scales of the flow or when the uncertainty of particle trajectories
is larger. By equally weighting over the entire radial domain, the influence of
errant trajectories is reduced.
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Approximating The Velocity Gradient
Now, with the ability to accurately compute short-time flow map Jaco-

bians via regression, it is a simple matter to then compute velocity gradients.
Rearranging equation 3.4 yields

∇v(x, t) = DFτ
t − Id

∆t , (3.13)

where the result applies at time t. As a side note, this result can also be
reached by allowing t→ t0 in equation 2.12 and discretizing.

Importantly, equation 3.13 implies that an approximation of the velocity
gradient is achievable using only trajectory information; it does not require
any velocity information or finite-differencing. Instead, the robust, data-driven
machinery of regression drives the operation. An algorithm to approximate
velocity gradients via LGR is provided in Appendix C.

Approximating The Flow Map Jacobian
So far, LGR has been developed to approximate short-time flow map Jaco-

bians and instantaneous velocity gradients. In order to extend the framework
of LGR to finite observation times, the theory of flow map composition must
be considered.

The use of flow map compositions for computing DFt
t0 was pioneered by

Brunton, Rowley, and Luchtenberg [106], [115], and has been applied in various
other studies (e.g., Raben et al. [105]). The theory stems from the process
property of the flow map

Ftn
t0 (x0) = Ftn

tn−1 ◦ · · · ◦ Ft2
t1 ◦ Ft1

t0(x0), (3.14)

which states that any flow map from time t0 to tn can be defined as the
composition of n intermediate flow maps, as long as there are no gaps between
intervals. Applying the chain rule to equation 3.14 yields

DFtn
t0 (x0) = D

(
Ftn

tn−1 ◦ · · · ◦ Ft2
t1 ◦ Ft1

t0(x0)
)
,

= D
(
Ftn

tn−1

(
Ftn−1

t0 (x0)
))
D
(
Ftn−1

tn−2

(
Ftn−2

t0 (x0)
))
. . . D

(
Ft1

t0(x0)
)
,

= DFtn
tn−1

(
Ftn−1

t0 (x0)
)
DFtn−1

tn−2

(
Ftn−2

t0 (x0)
)
. . . DFt1

t0 (x0) .
(3.15)

Then, recalling from equation 2.4 that x(ti) = Fti
t0(x0), the composition oper-

ation can be succinctly stated as

DFtn
t0 (x0) =

n−1∏
i=0

DFti+1
ti

(x(ti)) . (3.16)
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It is helpful to make some remarks regarding the composition framework:

1. Equation 3.16 applies to every tracer in the flow for all times along its
trajectory regardless of the method used to compute DFti+1

ti
. Addition-

ally, the important temporal constraint is that computational time do-
mains are consecutive. Any given interval may progress forward in time,
backward in time, or not at all, but all intervals must be connected.

2. While previous methods involving flow map composition achieved their
respective goals by performing interpolation to a grid at each time step
(e.g., [105], [106]), it is not a requirement for using flow map composition.
As long as calculations are performed consecutively along the particle
trajectory, no interpolation is necessary.

3. There is no practical advantage to using composition for Jacobian esti-
mation if the same group of tracers is used to approximate each inter-
mediate Jacobian operator. Computing the flow map Jacobians DFti+1

ti

at each interval and synthesizing to DFtn
t0 through equation 3.16 yields

exactly the same results as if DFtn
t0 were computed using the initial and

final times of those particles alone. Thus, composition alone does not
solve the problem of sparse identification of LCS.

To overcome the problem posed in the third remark above, a computation
scheme which resamples tracers at each time step is proposed. The process
of composition with resampling is presented as a schematic in Figure 3.7. In
the resampling paradigm, tracers which have exceeded a threshold radius from
the analyzed trajectory are discarded at each time step and replaced by oth-
ers that are within closer proximity. As discussed in the previous section, if
the time increment is small enough (∆t/T ≪ 1), the material deformation is
approximately linear and the short-time Jacobian can be accurately approx-
imated. Then, by applying equation 3.16, the complete Jacobian over time
[t0, tn] can be accurately constructed. An algorithm which leverages LGR to
compute Jacobians is presented in Appendix C.

Practically, resampling is achieved by a variety of methods. If computa-
tions are performed using numerical tracers, then resampled tracers may be
placed randomly in a neighborhood, at specific azimuthal locations on a con-
stant radius, or by any other means that is convenient for the application.
When using pre-existing trajectories from observed tracers, resampling might
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Figure 3.7: Schematic of the resampling procedure. At each time step, particles
used in regression are resampled to ensure that each regression stays locally
linear in time.

be accomplished by selecting all tracers within a neighborhood around the
analyzed particle at each time step or by selecting its k-nearest neighbors.
Examples of resampling procedures are illustrated in Figure 3.8. Of course,
those discussed are not exhaustive.

Aside from enabling more accurate Jacobian estimation (as will be clearly
demonstrated in subsequent chapters), composition with resampling relaxes
a significant constraint endemic to Lagrangian methods—namely, it reduces
the need for tracer persistence in the frame. Because Lagrangian methods all
depend on observing tracer trajectories over time, most Lagrangian methods
require all analyzed particles to remain visible (and tracked) over the entire
duration of analysis. Resampling, however, reduces this need by only requiring
that the center particle—the one whose trajectory is the basis for computa-
tions—be tracked over the entire interval. The neighboring particles at any
given time step are only required to have defined trajectories from one incre-
ment to the next. This makes LGR much more sparsity robust than other
methods used to estimate the flow map Jacobian.

3.5 Integrated Flow Metrics Using LGR
Traditional Lagrangian analyses often limit the amount of information that

contributes to the computed quantity by only incorporating the initial and final
positions of tracers. FTLE, for example, represents the linear rate of defor-
mation between initial and final positions, but entirely ignores the behavior of
the flow in between. This is unlike LAVD, which integrates vorticity deviation
over the entire trajectory.

By computing and storing gradients at each time-step, the LGR algorithm
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Figure 3.8: Examples of tracer resampling approaches. Examples (a), (b),
and (c) represent approaches one might consider if numerically sampling trac-
ers. (a) corresponds to tracer arrangement typical of finite-differences, (b)
augments (a) with additional tracers with equal radial spacing, and (c) indi-
cates random sampling inside a neighborhood. Examples (d) and (e) represent
potential schemes to be used with observed tracer data. (d) depicts the identi-
fication of all tracers at a given time inside a specified radius, and (e) represents
the identification of k-nearest neighbors centered at a particle.

leverages the temporal resolution of modern data modalities to naturally en-
able the computation of quantities that depend on the temporal evolution of
gradients. In this section, two metrics are introduced.

Trajectory-Integrated Strain
Recall from equation 2.28 that the LAVD represents the trajectory-

integrated vorticity deviation. By the same logic, it possible to compute a
trajectory-integrated measure of strain using the template

Λt
t0 =

∫ t

t0
∥D(x(τ), τ)∥ dτ, (3.17)

where the type of norm used dictates the physical interpretation. If the spectral
norm ∥D∥2 = σmax(D) is used, where σmax is the maximum singular value, then
the metric represents the maximum strain experienced by the fluid element
over the time domain in any direction. On the other hand, if the Frobenius
norm ∥D∥F =

√∑
i σ

2
i (D) is used, where σi are the singular values of D,

the metric represents the total strain experienced by the fluid element over
the trajectory in the intrinsic frame of reference for of the particle. Using
this second formulation, the trajecory-integrated strain magnitude (TISM) is
defined as

TISMt
t0 =

∫ t

t0
∥D(x(τ), τ)∥F dτ. (3.18)
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In the context of autonomous mobile flow measurements (AMFM), replac-
ing D with the traceless deviatoric rate-of-strain tensor

Ddev = D−Dhyd, (3.19)

may be useful. The hydrodynamic rate-of-strain tensor

Dhyd = tr (D)
d

Id (3.20)

with d the dimension of the flow represents uniform strain experienced in all
directions. When observing planar flows with a mobile observer considering
removing the hydrodynamic strain may be useful since it could help account
for out-of-plane observer motion. If the observer moves away from the flow in
the out-of-plane direction it will appear that the tracers are contracting, and
if it moves towards the flow on the same axis it will appear that the tracers
are expanding. Removing Dhyd from D helps to mitigate this aberration. To
that effect, the trajecory-integrated deviatoric strain magnitude (TISMdt

t0) is

TISMdt
t0 =

∫ t

t0
∥Ddev(x(τ), τ)∥F dτ. (3.21)

A demonstration of the TISM on the double gyre flow is provided in Figure
3.9(a). The flow parameters are the same as was used in the demonstrations
of Chapter 2. Comparing the results with the forward-time FTLE field of
Figure 2.6(a), it is evident that the ridge of the TISM is the same as the ridge
in the FTLE field. However, the the gradient in the TISM field is less sharp
and more aptly highlights regions characterized by stretching rather than a
discrete separatrix.

Kinematic Action as an Objective Vortex Criteria
The ability to objectively identify vortices in messy data is one of the key

objectives of AMFM. While methods such as LAVD and DRA provide a notion
of rotation in a Lagrangian frame, identifying vortex boundaries using them
requires dense data [51]. The typical procedure involves finding closed contours
in level-sets of the LAVD field that satisfy a specified convexity threshold.
While this method has been shown to be effective at finding vortex boundaries
and cores in dense data sets, it is not a process that is easily implemented with
sparse data.

There are, however, a variety of Eulerian metrics which allow a user to
easily discern by a simple heuristic whether or not a portion of the flow is
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Figure 3.9: Integrated metrics that are conveniently computed using the
LGR framework computed on the double gyre flow. (a) Trajectory-integrated
stretching magnitude (TISM), as defined by equation 3.18. Brighter color
represent regions of greater integrated stretching. (b) Kinematic action Qt

t0

as defined by equation 3.22. Positive values represent regions of the flow
dominated by rotation, while negative values represent regions dominated by
stretching. The white contour is drawn where Qt

t0 = 0.

rotation dominated. One of the most common of these metrics is the Q-
criterion, which was introduced in equation 2.16 [44]. As discussed in that
section, the Q-criterion decomposes the velocity gradient tensor into rate-of-
strain and spin tensors, and measures their magnitude against each other.
Thus, positive values of Q-criterion represent rotationally dominated flow and
negative values represent stretch-dominated regions. However, as mentioned,
the Q-criterion is not objective.

While objective variants of the Q-criterion have been developed [116], [117]
as well as other objective measures of rotation (e.g., [118]), these have not been
extended to finite times. Making this extension, however, is straightforward
using LGR as a baseline. Here, the kinematic action Qt

t0(x0) it is proposed that
an objective, finite-time vortex-identification criterion be defined according to

Qt
t0(x0) =

∫ t

t0

(∥∥∥W(x(τ), τ)−W(τ)
∥∥∥

F
− ∥D(x(τ), τ)∥F

)
dτ, (3.22)

where D can be interchanged with Ddev to mitigate out-of-plane motion effects.
If Qt

t0 > 0, then the flow is rotation dominated over the interval at x0. By
removing the spatial mean of the spin, the metric is made objective. By
integrating, it is made finite-time.

The differences in the integrand of Qt
t0 with the traditional Q-criterion

are designed so that the result is more closely aligned with other finite-time
metrics being examined in this work. In particular, Qt

t0 as specified represents
a direct combination of LAVD and TISM

Qt
t0(x0) = 1√

2
LAVDt

t0 − TISMt
t0 . (3.23)
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To show this, consider the definition of the IVD from equation 2.18, reproduced
here:

IVD(x, t) = |ω(x, t)− ω(t)| =
√∑

i

(ωi − ωi)2. (3.24)

Furthermore, recall that the spin tensor W is anti-symmetric with off-diagonal
terms related to the vorticity |Wij| = 1

2 |
∂uj

∂xi
− ∂ui

∂xj
|. Therefore, the Frobenius

norm of the spin deviation is

∥∥∥W−W
∥∥∥

F
=
√√√√∑

i

∑
j

∣∣∣W −W ∣∣∣2
ij

=
√√√√2

∑
k

(1
2 |ω − ω|k

)2

= 1√
2
|ω − ω|

= 1√
2

IVD.

Integrating this result over time leads to the LAVD by equation 2.27. Adding
this to the results introduced above with TISM leads to the relation in equation
3.23.

The kinematic action is demonstrated on the double gyre flow in Figure
3.9(b) using the same parameters as usual. Here, the flow is partitioned into
rotational and dilatational domains by the value of Qt

t0 . If Qt
t0 < 0, the flow

is dominated by stretching over the time interval. If Qt
t0 > 0, it is dominated

by rotation. By this analysis, the location of the two vortices in the double
gyre are clearly evident and their boundaries over the t = [0, 15] interval are
easily defined as level sets of Qt

t0 ≥ 0. As will be discussed in more detail later,
this metric is convenient for dealing with sparse data, as it provides an easy
criteria for locating vortical regions without access to dense fields for convexity
computations.
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C h a p t e r 4

EVALUATION OF LAGRANGIAN GRADIENT
REGRESSION ON SPARSE DATA

In Chapter 2, background theory from the domain of Lagrangian coherent
structures (LCS) was introduced in response to the problem of measurement
objectivity faced by autonomous mobile flow field measurements (AMFM).
How does one make consistent measurements of a system when its relationship
to the observer is potentially unknown? One way, it was shown, is to compute
deformation gradients from the motion of observable tracers. However, in
Chapter 3, the difficulty of actually estimating such gradients from realistic
data was addressed. Typically, the density of tracers required by the numerics
for reliable approximation exceeds what is available in real-world observations.
In that chapter, Lagrangian gradient regression (LGR) was developed to enable
sparse gradient estimation, and thereby an objective means for identifying flow
features in the AMFM context.

The aim of the present chapter is to evaluate LGR as a tool for studying
flows characterized by sparse trajectories. As was discussed in Chapter 3, LGR
enables the approximation of velocity gradients instantaneously and deforma-
tion gradients (which have also been referred to as flow map Jacobians) over
a finite interval. Therefore, this chapter is organized to assess each of these
categories separately.

Section 4.1 addresses LGR’s ability to approximate the velocity gradient
from sparse, random data. This is first tested using perfect trajectories that
are numerically simulated, where LGR is observed to reproduce analytical
values of vorticity. This analysis is then extended to numerically simulated
particle images. LGR is compared with particle image velocimetry (PIV) and
Lagrangian particle tracking (LPT) in its ability to compute gradients. Using

The contents of this chapter have been adapted from Harms, Brunton, and McKeon
(2023) [1], which was published in the proceedings of the 15th International Symposium
on Particle Image Velocimetry under the title Direct Computation of Velocity Gradients
from Particle Trajectories, and from Harms, Brunton, and McKeon (2024) [2], which has
been accepted to be published by the Royal Society Journal of Open Science under the
title Lagrangian Gradient Regression for the Detection of Coherent Structures from Sparse
Trajectory Data and is available as a preprint on arXiv.
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vorticity as the gradient-based metric for comparison, LGR is seen to perform
comparably, and in some cases better, than PIV and LPT.

Section 4.2 attempts to address the notion of sparsity in the LGR pro-
cess. Specifically, it discusses LGR’s sensitivity to spatial scales. If tracers are
spread far across a flow’s domain, it is necessary to understand what is be-
ing resolved when LGR is applied to the data. Some theory is provided along
with a discussion based on pre-computed PIV data collected from experiments
completed at Caltech.

Finally, Section 4.3 tests LGR’s ability to estimate finite-time gradients
and their associated metrics. First, finite-time Lyapunov exponent (FTLE)
fields are computed by a variety of methods and it is observed that LGR
achieves better accuracy than the others for sparse data. Next, integrated
metrics are considered, including trajectory-integrated stretching magnitude
(TISM), Lagrangian-averaged vorticity deviation (LAVD), dynamic rotation
angle (DRA), and kinematic action (KA). These are seen to be especially
robust under sparse conditions, and may have useful attributes for structure
detection in AMFM.

A majority of the analyses in this chapter are computed on the simple
Double Gyre flow (see equation 2.30). While many more complex benchmark
cases exist, the Double Gyre is easily interpreted and commonly available in
the literature (e.g., see [41], [48]). In Chapter 5, more advanced examples
will be considered. For now, the testbed of the naive Double Gyre provides
an apt environment to consider the ability of LGR relative to other gradient
estimation schemes.

4.1 Estimating Velocity Gradients using LGR
LGR is first tested for its ability to approximate velocity gradients. As

discussed in Chapter 2, a variety of metrics are based on the velocity gradient,
including vorticity. Since vorticity is commonly sought from experimental flow
field data, it is used as the demonstration metric throughout this section. Prin-
cipal strain rate, Q-criterion, or a variety of other metrics could equivalently
have been chosen, and would yield similar results and conclusions.

Performance on Sparse, Simulated Data
To begin the suite of ∇v analyses performed on the Double Gyre, LGR is

computed on clean, numerically simulated trajectory data. To apply LGR to
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randomly distributed trajectories such as this, Algorithm 1, which is detailed
Appendix C, is implemented. Having thus computed ∇v at each particle
location and for each time step, vorticity ωz is calculated by the off-diagonal
terms of the velocity gradient tensor

ωz = ∂v

∂x
− ∂u

∂y
= ∇v[1, 0]−∇v[0, 1]. (4.1)

Figure 4.1 presents the results a numerical experiment performed using the
procedure delineated above for simulated trajectory distributions varying in
particle density. In each frame of the figure, the number shown on the lower
right-hand corner indicates the number of tracers simulated in the flow. The
locations of these tracers at the analyzed snapshot (t = 0) are represented as
gray dots. LGR is applied to the trajectories using the 15 nearest neighbors
of each tracer during regressions with kernel weighting defined by a Gaussian
function of radial distance from the test trajectory with standard deviation of
s = 0.125 (see equation 3.12). Regressions are performed over time increments
of ∆t = 0.1. The resulting vorticity is fully Lagrangian—it is defined only at
the particle positions along their trajectories—so it is interpolated to a uniform
grid for visualization purposes. Results in each frame are defined at time t = 0,
and the chosen color mapping is based on the analytically computed vorticity
(shown previously in Figure 2.5a) at that time.

Figure 4.1 demonstrates that vorticity—and more generally, the velocity
gradient—can be accurately computed directly from Lagrangian trajectories
recorded over short intervals. For the cases using 1000, 500, and 250 tracers,
the interpolated vorticity fields closely resemble the ground truth results pre-
sented in Figure 2.5a. When computations are performed with 100 tracers,
the shape of the two dominant vortices is still evident, although the inter-
polated fields begin to appear less clean. This trend continues as particle
density decreases. When computations are performed using 50 or 25 trac-
ers, the sign and location of the vorticity is evident, but its shape is altered
and peak magnitude dampened. These visual discrepancies over the field are
largely the result interpolation effects, though, as particle density is reduced,
the point-wise accuracy diminishes as well.

Comparing Gradients from PIV, LPT, and LGR
Continuing tests on the Double Gyre flow, vorticity computed by LGR is

compared with vorticity estimated by particle image velocimetry (PIV) and
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Figure 4.1: Computing vorticity ωz on sparse data using LGR. Computations
are performed at time t = 0 on the Double Gyre flow using the 15 nearest
neighbors of each tracer with radial-Gaussian weighting using a standard de-
viation of s = 0.125. The number of simulated particles is indicated in the
lower right hand of each frame, and the location of those particles at t = 0 are
indicated by gray dots. Sparse values are interpolated to a field using RBF
interpolation and colored for visualization purposes.

by Lagrangian particle tracking (LPT, often referred to as particle tracking ve-
locimetry (PTV)). To illustrate how all three of these approaches for gradient
estimation relate, Figure 3.1 is revisited in Figure 4.2 with the addition of the
LGR process. Computing gradients by LGR begins with the same trajectories
identified in the PTV process from recorded particle images. However, instead
of interpolating Lagrangian velocities to Eulerian fields, velocity gradients are
computed in a fully Lagrangian manner along each tracer trajectory. There-
fore, with LGR, no explicit differentiation is required, nor is any interpolation.
This affords a decrease in computational burden and storage demand while
simultaneously circumventing procedures that are known to induce error (for
example, see the works of Etebari and Vlachos and of Beresh et al., which
evaluate differentiation methods for spatial gradient estimation in experimen-
tal fluids data [119], [120]).
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Figure 4.2: Visualization of the processes commonly employed to compute
velocity gradients from particle images. The PIV pipeline follows the top
branch. The PTV (also commonly referred to as LPT) pipeline follows the
bottom branch. LGR begins with PTV, but does not interpolate to velocity
fields. Rather, it directly approximates velocity gradients from identified tra-
jectories.

Independent sets of trajectories were generated by integrating randomly
distributed particles using equation 2.30. The sets of trajectories were orga-
nized according to particle density where 25 particles throughout the domain
was the sparsest set generated and 5000 particles was the most dense. An
in-house designed synthetic particle image generator was used to create image
sequences from which PIV and LPT could be computed. The image genera-
tor allowed for particle size and illumination to vary within reasonable limits
and generated sequences of 1000 images with 1000 × 500 square pixels at a
framerate of 20Hz. Particle illumination profiles were modelled as Gaussian.
Samples from the synthetic image generator are displayed in Figure 4.3.

Particle image velocimetry was performed on the synthetic images using
the open-source python package OpenPIV [121]. While many variations of
parameters can be used when performing PIV, the intent of this study was
to process the data earnestly, without withholding steps often used during
processing. The sequences of images were treated as time-resolved, so every
adjacent pair was processed. Multiple PIV passes were performed for each
image pair—a first pass using 64× 64 pixel square windows with 50% overlap
and a second pass using 32× 32 square windows with 50% overlap. Subpixel
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Figure 4.3: Examples of synthetic PIV images generated on the Double Gyre
flow. Left: 200 particles in frame. Right: 5000 particles in frame.

interpolation was performed using a Gaussian method. Vectors were validated
on both passes, and all empty or rejected vectors were filled using a third or-
der interpolation scheme. Outliers were replaced using a local mean approach
with four iterations. No smoothing of the velocity fields was performed. Ve-
locity gradients, and therefore vorticity, were computed by first-order finite
differencing on the computed velocity fields as is commonly performed with
experimental data. Example snapshots of the PIV processing results for vari-
ous particle densities are displayed in the left-hand column of Figure 4.4.

Lagrangian particle tracking was also performed on the synthetic data sets
as a baseline. The particular implementation of particle tracking used for
this study is freely available online from Professor Nicholas Ouellette’s labo-
ratory web page [122], [123]. The LPT algorithm output particle trajectories
with associated velocities computed at each time step. Lagrangian velocities
were interpolated to Eulerian fields in both the x and y axes of the the flow
using radial basis function (RBF) interpolation if the number of simulated
tracers was less than 2000 and cubic interpolation otherwise. From the in-
terpolated velocity fields, velocity gradients were approximated by first-order
finite differencing. Vorticity was extracted from the result using the same
finite-differencing approach employed with PIV data. Processed LPT vortic-
ities are presented in the center column of Figure 4.4 for the same data and
conditions as are presented for PIV results.

The velocity gradients for each set of particle trajectories were also com-
puted directly from the trajectories using LGR. Regressions were performed on
deformations of the 15 nearest neighbors of each analyzed trajectory weighted
using the radial-Gaussian approach from equation 3.12 with a standard devi-
ation s = 0.125. Approximations of the flow map Jacobian DFt

t0 were made
over the short interval ∆t = 0.1 using equation 3.11. From this, velocity gra-
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dients were estimated by equation 3.13, and vorticity computed by equation
4.1. For visualization purposes, vorticities were interpolated to a field using
RBF interpolation if less than 2000 tracers were being simulated, or cubic in-
terpolation otherwise. No additional processing was performed on the LGR
data. Results from LGR are presented in the right-hand column of Figure 4.4.

It is necessary to note that many variations of PIV and LPT parameters
and algorithms may be applied to a given data set to varied effect. Practi-
tioners of these methods will often attempt to optimize the particle density
observed in their images to effect the best possible outcome. In this case,
however, it was deemed that varying parameters between particle densities
introduced unnecessary variability into the analysis at hand. This analysis
compares all tracer densities given a fixed set of processing parameters for
each chosen algorithm to prioritize the comparison over individual case per-
formance. It is recognized that improved accuracy against analytical results
could likely be achieved for each tracer density condition for each algorithm
(including LGR).

Additionally, a note is added here on the choice of interpolation functions.
As RBF interpolation tends to provide clean, smooth results and allows for
ease of extrapolation beyond the convex hull of the data, it was preferred in
the sparser cases. However, the computational complexity of RBF interpola-
tion scales O(n3) for the number of particles in frame, and therefore becomes
computationally burdensome when more tracers were present.

The visual comparison of LGR gradients to those of PIV and LPT is help-
ful but, as a former lab member used to say, “A pseudocolor plot can cover a
multitude of sins.” To supplement the plotted fields in Figure 4.4, a statistical
analysis of estimated velocity gradients was also performed. Instead of com-
paring vorticity fields, Lagrangian vorticities are computed at tracer positions
and compared. Since PIV and LPT do not naturally approximate vorticities
at particle locations, an additional interpolation step was required to transfer
vorticity field data from a regular grid to the scattered particle positions. Since
the vorticity fields are already densely defined from previous calculations, a
linear interpolation scheme was sufficient. Thus, PIV and LPT pointwise vor-
ticities are linearly interpolated to particle positions from the pre-computed
vorticity fields.

Since the Double Gyre flow is analytical, the ground truth velocity gradient
at every time and position is known exactly. Therefore, predicted vorticities
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Figure 4.4: Visual comparison of vorticity computed using LGR with vorticity
estimations from PIV and LPT. The column at left displays results from a
standard PIV gradient pipeline. The center column displays vorticity com-
puted using fields interpolated from LPT tracers. The right column displays
fully Lagrangian vorticity estimations made by LGR. Solid and dotted curves
indicate iso-contours of vorticity. The number of simulated particles is indi-
cated in the lower right-hand corner of each frame.
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ωz, pred(t) from PIV, LPT, and LGR are compared in terms of absolute error
from the true value ωz, true(t)

e = |ωz, pred(t)− ωz, true(t)| . (4.2)

Absolute errors are computed for each recorded particle in every frame of the
simulated videos for all three methods, ensuring that all samples occur on each
approach. From the compiled data, the mean absolute error is estimated

MAE(ω) = 1
n

n∑
i=1

ei, (4.3)

as are the standard deviation of the absolute error

S(e) =
(

1
n

n∑
i=1

(ei −MAE(ω))2
) 1

2

(4.4)

and the quartile values. All of this information is tabulated for various particle
densities in Table 4.1, and the MAE(ω) values are plotted in Figure 4.5.

The results of the comparative study on vorticity approximation admit a
few observations. First, it is evident that the present implementation PIV
performs best with many tracers, and that of LPT performs best with few.
This is consistent with the mechanics of the two algorithms: when there are
many tracers present, the correlation signal within a boxed PIV window is
strong. Correspondingly, it is weak when there are few tracers observed. As
a result, many spurious vectors are formed when PIV is performed on sparse
sample data. LPT, on the other hand, is primarily limited by its ability to
track independent trajectories. When there are many tracers observed in a
flow, distinguishing between particles is challenging. The spurious trajectories
that form from mis-associated tracer detections contain false velocities that
corrupt the interpolated fields. That is why, for LPT, the frames with many
simulated tracers are splotchy; the aberrations are the result of misidentified
tracers leading to bad velocities and differentiation error when finite differences
are used to compute vorticities. This is further supported by the large standard
deviation that LPT experiences at high tracer counts.

A second observation is that LGR does not seem to be afflicted by the
pock marks which plague the LPT results at high tracer counts, even though
its analysis is based off of the same flawed trajectory detections. Once again,
this is likely due to the mechanics of the algorithms. LPT involves two steps
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that amplify the error of bad trajectories through to velocity gradients: ve-
locity field interpolation and numerical differentiation. On the other hand,
the regression process which LGR relies on for gradients can serve to smooth
out errant trajectory data by incorporating many neighboring particles and
aggregating the effect of their motion. This is likely why LGR outperforms
LPT for the large tracer count tests.

A final observation from the comparative study is that, while LGR repre-

Table 4.1: Absolute error statistics of vorticity for PIV, LPT, and LGR. Error
analyses were computed using the Double Gyre flow with varying numbers
of observable tracers simulated as PIV particles. The number of collected
samples is displayed at left along with the mean and standard deviation of
absolute error in vorticity and quartile values.

Particles Samples Approach MAE(ω) S(e) 25% 50% 75%

25 8569
PIV 0.478 0.491 0.153 0.349 0.662
PTV 0.173 0.137 0.043 0.103 0.238
LGR 0.397 0.356 0.143 0.316 0.539

50 21868
PIV 0.359 0.365 0.115 0.259 0.487
PTV 0.107 0.141 0.020 0.050 0.131
LGR 0.255 0.212 0.106 0.207 0.350

100 43189
PIV 0.299 0.305 0.095 0.213 0.405
PTV 0.058 0.103 0.012 0.027 0.060
LGR 0.186 0.150 0.072 0.152 0.265

200 86905
PIV 0.298 0.316 0.094 0.209 0.394
PTV 0.044 0.143 0.009 0.021 0.041
LGR 0.162 0.129 0.065 0.137 0.226

500 206759
PIV 0.246 0.331 0.075 0.165 0.307
PTV 0.054 0.199 0.010 0.024 0.047
LGR 0.100 0.106 0.032 0.068 0.131

1000 401867
PIV 0.176 0.250 0.051 0.113 0.216
PTV 0.057 0.221 0.011 0.024 0.047
LGR 0.077 0.087 0.025 0.054 0.100

2000 732684
PIV 0.112 0.171 0.034 0.073 0.136
PTV 0.090 0.364 0.015 0.034 0.071
LGR 0.058 0.082 0.018 0.039 0.072

2500 732684
PIV 0.100 0.143 0.031 0.067 0.123
PTV 0.111 0.652 0.016 0.038 0.083
LGR 0.057 0.094 0.017 0.037 0.069

5000 732684
PIV 0.074 0.110 0.024 0.052 0.091
PTV 0.204 1.061 0.025 0.060 0.142
LGR 0.064 0.161 0.015 0.035 0.068



63

Figure 4.5: Absolute error statistics of vorticity approximated using PIV, LPT,
and LGR. The base-2 logarithm of the number of particles is displayed on the
abscissa and the mean absolute error (MAE) of vorticity is displayed on the
ordinate with standard deviations clipped at zero.

sents improved performance over PIV at all tracer densities, it under-performs
LPT for low tracer densities. This discrepancy may result from the specific
implementation of LGR in this study. Regressions on tracer neighborhood
deformations were performed using the 15 nearest neighbors for all particle
densities. This means that, for low tracer densities, the spatial extent of the
trajectory neighborhood is much larger than for higher tracer densities, possi-
bly even spanning both vortices at once. Applying the radial-Gaussian kernel
weighting helps alleviate this issue, but does not entirely mitigate it.

4.2 Spatial Scale Sensitivity of LGR
During the analysis of the previous section, the impact of the spatial distri-

bution of tracers included in LGR regressions was alluded to. Indeed, under-
standing which spatial scales of the flow contribute to the gradient approxima-
tion along a trajectory is important when working with sparse or natural data,
where dominant scales of motion may not be known a-priori. By examining
the relative positions of regression tracers to the analyzed trajectory, LGR
provides a mechanism for assessing the spatial scale sensitivity of computed
gradients.

Consider, for example, two tracers embedded in a flow separated by some
initial distance r(t) = ∥∆x(t)∥2. The approximated gradients are defined by
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the relative motion of the tracers to one another, which can only be observed
at a length scale proportional the initial separation of the two tracers. By the
Nyquist-Shannon sampling theorem, flow movements smaller than 2r(t) will
not be accurately sensed, and the lower-bound of physical scales that can be
sensed by LGR is 2rmin(t). In other words, at least two tracers need to exist
in a flow feature (e.g., a vortex) for it to be sensed by LGR. Movements at
scales smaller than this will not be sensed and may contribute to measurement
error.

Determining the mean contributing spatial scale of the tracer cloud motion
to the regressed gradient is possible with the present description. This is
most easily illustrated when the kernel-weighting matrix K = Id, as the mean
contributing scale is calculated as the mean distance to neighboring tracers

ravg(t) = 1
n

n∑
i=1

ri(t), (4.5)

where ri(t) = ∥∆xi(t)∥2.
In light of this, the kernel matrix K may be viewed as a filter for which flow

scales are sensed by the LGR operation. Weights can be tuned to highlight
specific scales of motion in the flow. The effective scale contribution of kernel-
weighted tracers can be calculated by considering the matrix of weighted tracer
positions Yt = XtK. Each column ∆yi(t) ∈ Rd in this new array represents
the kernel-weighted relative position of the tracer xi(t). The proportional
influence of each neighboring particle to the estimated gradient after weighting
is given by

pi(t) = ∥∆yi(t)∥2∑n
j=1 ∥∆yj(t)∥2

, (4.6)

such that 0 ≤ pi(t) ≤ 1 and ∑n
j=1 pi(t) = 1. Multiplying this with the true

physical distances ri(t) yields weighted distances, which can be averaged to
compute the mean scale contribution under weighting

ravg, weighted(t) =
n∑

i=1
pi(t)ri(t). (4.7)

As an example of the filtering effect of kernel weighting on effective scale sen-
sitivity, the radial implementation of the Gaussian kernel from equation 3.12
will always reduce the mean contributing scale of LGR to estimated gradients,
as it preferentially weights tracers near the central particle.
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Demonstration on PIV data
To explore the spatial sensitivity of LGR further, an analysis was per-

formed on experimental flow field data collected on an asymmetric wake stud-
ied in the NOAH laboratory at GALCIT. The flow was recorded at a large
enough Reynolds number to contain eddies at various scales of motion, making
it a favorable candidate for examining the spatial sensitivity of LGR. Com-
plete details regarding the experimental setup and parameters are contained
in Appendix B Section B.4. An abbreviated description of the experiment is
provided here.

The experimental flow is of a split-stream past a blunt trailing edge re-
sulting in an asymmetric wake which evolves into a shear layer. Upstream
blockage is placed to enforce a velocity ratio of U2/U1 ≈ 0.5 where U1 and U2

are the free-stream velocities on either side of the plate. The splitting plate
has thickness h = 0.0572 m and is centered in the NOAH water channel, which
is 0.457m wide. For the case studied, the Reynolds number defined by plate
thickness is Reh = Umeanh/ν = 15.02×103 where U1 = 0.325 ms−1, U2 = 0.189
ms−1, Umean = 0.257 ms−1, and U2/U1 = 0.58.

PIV image acquisition was performed at the midline between the floor
of the water channel and the free surface perpendicular to the plane of the
splitting plate. Time resolved images were taken at 190 Hz for a duration of
19.35 seconds using two Phantom Miro Lab 320 cameras with pixel resolution
of 1920× 1200 px and overlapping fields of view. Neutrally buoyant particles
were illuminated by a Photonics DM20-527(nm) YLF laser in single-pulse
mode expanded through a cylindrical lens into a sheet. PIV processing details
are provided in Appendix B.

The present analysis is performed on a single snapshot of the asymmetric
wake flow. The fields of streamwise (U) and spanwise velocities (V ) from the
analyzed snapshot are displayed in Figure 4.6a and 4.6b, respectively. The
axes of the flow are nondimensionalized by the thickness of the plate, h. The
trailing edge of the plate is flush with the left edge of the plot boundary. The
faster flow U1 is on top of the plate, as viewed in the orientation of Figure 4.6.
Hence, the characteristic shear layer vortices form with clockwise rotation.

Gradient computations were performed using finite-differences as a base-
line and using LGR with numerical tracers integrated by the pre-computed
velocity fields. Gradients are represented by vorticity as computed by equa-
tion 4.1. The result of the finite-difference vorticity field is presented in Figure
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Figure 4.6: A snapshot of PIV-computed velocities from the asymmetric wake
experiment discussed in Appendix B section B.4. (a) Streamwise U -velocity
from left to right. (b) Spanwise V -velocity from bottom to top.

4.7a. LGR was implemented using numerical particles seeded according to the
planet-satellite scheme which was previously discussed. Central particles were
seeded on uniform grid defined by the roots of the PIV velocity vectors so that
one-to-one comparisons could be made. For each central particle, four satellite
particles were seeded around it at constant radius and with equal azimuthal
spacing. All tracers were integrated forward in time over one snapshot with
duration ∆t = 1/190 s. To examine the influence of initial particle displace-
ment on the computed gradients, the radius from central particles to satellite
particles is varied such that |∆x0|/h = [0.01, 0.25, 0.75]. All of the regressions
use the identity kernel K = I2.

The vorticities computed by LGR with |∆x0|/h = 0.01 are presented in
Figure 4.7b, those with |∆x0|/h = 0.25 in Figure 4.7c, and those |∆x0|/h =
0.75 in Figure 4.7d. The schematics to the right of Figures 4.7b-d illustrate the
spacing of tracers involved in LGR regressions relative to the spacing of the
grid of sample locations. The circle displayed on each frame and associated
with the schematics represents the approximate to-scale spacing of tracers used
for LGR in that image. For Figure 4.7b, the particle spacing is smaller than
the length scale of any motion captured by the PIV, in Figure 4.7c, the spacing
is larger than some of the scales of motion, and in Figure 4.7d, the spacing is
larger than most scales of fluid motion.

The vorticity computed from the asymmetric wake experiment velocity



67

Figure 4.7: Vorticity computed from the experimental velocity fields presented
in Figure 4.6. (a) Vorticity computed directly using finite differences. (b-d)
Vorticity computed using LGR on deformations of numerical tracers varying
initial tracer separation. (b) Initial separation |∆x0|/h = 0.01. (c) Initial
separation |∆x0|/h = 0.25. (d) Initial separation |∆x0|/h = 0.75. Illustrations
at right approximately indicate initial tracer separation relative to sample grid
spacing.

fields highlight important properties of LGR. First, the gradients regressed
from a small neighborhood of particles in Figure 4.7b are indistinguishable
from those computed by finite-differences (Figure 4.7a). This is unsurprising,
since the particles used in the regression were advected on the same velocity
fields which were used for numerical differentiation; the result affirms what
was already discussed in section 4.1.

Vorticity results displayed in Figures 4.7c and 4.7d are obtained from fluid
deformations occurring at flow scales larger than the smallest scales in the
flow. Therefore, their results shed light on the spatial sensitivity of LGR. The
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vorticity features in frames 4.7c and 4.7d do not express the same sharp detail
present in frames 4.7a and 4.7b. In other words, the tracer spacing acts as
a kinematically defined low-pass filter on the recorded gradients, unable to
resolve scales of fluid deformation smaller than the separation of the tracers.

The results of this spatial sensitivity analysis demonstrate that velocity
gradients computed by LGR are dependent upon the distribution of neighbor-
ing particles and the weights that are associated with them in the kernel matrix
K. The initial distribution of particles in a regression neighborhood dictates
which scales can be resolved in the outcome. Roughly speaking, if the majority
of tracers in that neighborhood exist on a feature in the flow, then it will be
detected by LGR. The weights of the kernel matrix influence the outcome by
functionally assigning preference to regions of the tracer neighborhood.

4.3 Estimating Finite-Time Metrics using LGR
The evaluation of LGR thus far has focused on approximating velocity

gradients instantaneously in time. In this section, its ability to perform finite-
time analyses is evaluated. Such analyses come in two varieties: first, there
are those based on the flow map Jacobian (equation 2.8) expressed over finite
intervals. In the work at present, the only such analysis being considered is the
FTLE, which is common to Lagrangian coherent structure (LCS) literature.
The second variety of finite-time analysis are those which are integrated along
tracer trajectories. Four such metrics are considered here, the LAVD and
DRA, which were recently developed by Haller and collaborators [51], [88],
and the TISM and kinematic action (KA), which are novel contributions of
this thesis. All five of these analyses are available through the framework of
LGR, and will be evaluated in this section for use on randomly distributed,
sparse data.

A majority of the following examples (with the exception of Figure 4.8)
utilize a consistent implementation of LGR. Tracers of varying density are
propagated through the Double Gyre flow (equation 2.30 with the associated
parameters) on the spatial domain [0, 2] × [0, 1] from t = 0 to t = 15. This
allows for direct comparison to results presented earlier in the paper and ease
of method evaluation. Neighboring tracers are resampled every ∆t = 0.1. Re-
gression between snapshots is performed using k = 15 nearest neighbors with
the radial-Gaussian weighting function with standard deviation s = 0.125
(equation 3.12). The particle locations where values are computed are indi-
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cated in each figure as gray dots. Interpolation for the purpose of visualization
occurs in between the points. Radial basis function (RBF) interpolation with
a multiquadric kernel is used to compute field values on a 200 × 100 uniform
grid in x and y.

Baseline Comparison of FTLE Approximation Methods
Of the five metrics discussed in the introduction to this section, the finite-

time Lyapunov exponent (FTLE) is by far the most commonly used in LCS
applications. It was the first of the objective LCS detection strategies devel-
oped, and has therefore been cemented as a canonical analysis in the field [39],
[61]. As discussed at length in Section 3.2 of Chapter 3, the standard approach
for estimating FTLE fields requires the numerical integration of a dense, regu-
lar grid of tracers over the finite time interval. As the duration of the interval
increases, so must the density of the regular grid of tracers. With Figure 3.3,
it was shown how increasing tracer sparsity corrupts FTLE results as motiva-
tion for the necessity of sparse Jacobian estimation methods. Here, a similar
analysis is performed and compared with corresponding results using LGR.

To compare the FLTE results of LGR with traditional approximation meth-
ods, four estimation methods are applied to the same flow, sampling at the
same initial conditions in all cases. This is possible by interchanging the ap-
proximation mechanism into the planet-satellite approximation scheme devel-
oped in Section 3.2 of Chapter 3. The Double Gyre flow is used as the test case
in this example, where deformations are recorded over the interval t ∈ [0, 15].
Only forward FTLE is considered, therefore results are displayed for t = 0. A
fine 200× 100 particle sampling grid is defined in x and y, providing the test
locations for each method. The results of the analysis are presented in Figure
4.8.

The baseline FTLE field is constructed by estimating the flow map Jaco-
bian DF15

0 (x0) at each initial position using finite-differences with initial tracer
spacing |∆x| = 10−6 and no tracer resampling at intermediate intervals. For
this flow and duration, such spacing is sufficiently small to ensure that de-
formation over the 15 unit time interval remains linear regardless of where
particles are initially placed. Thus, the results are trustworthy as a baseline.
They are displayed in Figure 4.8a. Reviewing the data, all of the expected fea-
tures of the FTLE are present, including a dominant codimension-1 ridge that
traverses the domain. Because the tracer spacing is smaller than the spacing
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of sampling locations, the ridge appears to be aliased. This will be discussed
in greater detail in future sections.

To provide contrast with LGR, a finite-differencing case without interme-
diate tracer resampling is presented in Figure 4.8b. This analysis is essentially
identical to that shown Figure 4.8a, only, the initial spacing of the tracers is
made to be |∆x| = 0.1, which is exceedingly large for this flow. As a result,
significant features of the flow are lost, including the FTLE ridges which form
the LCS features.

The first example of FTLE computed using LGR is provided in Figure
4.8c. As before, computations represent the duration from t ∈ [0, 15], only
now, intermediate Jacobians are computed every ∆t = 0.25 units on tracers
that are resampled at each interval. For this case, four regression tracers are
resampled at each time step on the axes of the flow with spacing of |∆x| = 0.1.
Intermediate flow map Jacobians (i.e., those computed every 0.1 time units)
are computed by finite differences and synthesized by equation 3.16 to estimate
the Jacobian over the full t ∈ [0, 15] interval. To be clear, the initial position
of all tracers in this example are exactly the same as the initial positions
presented in Figure 4.8b.

Finally, FTLE computed using the regression variant of LGR is presented
in Figure 4.8d. This experiment only varies from the results of Figure 4.8c
in the means of resampling and regression. At each time step, ten resampled
particles are placed uniformly at random inside a radius r = 0.1 of the center
tracer. Regression is then used to compute the Jacobian with kernel weighting
defined by a Gaussian function on the radial distance from the central tracer
location (equation 3.12) using standard deviation s = 0.125.

The results of this experiment demonstrate the effectiveness of LGR for
accurately reconstructing the flow map Jacobian from sparsely distributed
particles. Where the traditional computational strategy of Figure 4.8b does
not capture the fine details or the expected ridges seen in the baseline, both
approaches using LGR closely match the true values. The FTLE ridges that
are typically used for identifying LCS are clearly present and identifiable, and
all of the values in the field are commensurate with the baseline. When tra-
ditional methods are applied to sparse tracer patterns, as in Figure 4.8b, it is
not evident that any FTLE ridges exist and the higher values in the field are
significantly diminished.
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Figure 4.8: Performance comparison of FTLE computation schemes on the
unsteady double gyre flow over the interval t ∈ [0, 15]: (a) Baseline: FTLE
computed using finite-differences with no particle replacement for |∆x| = 10−6

by the planet-satellite method (Figure 3.2(c.i)). (b) Same as (a), but with large
|∆x| = 0.1. (c) FTLE computed using LGR with neighboring particle replace-
ment every ∆t = 0.25 with spacing |∆x| = 0.1. Sampled tracers are placed
on the axes of the flow, and intermediate Jacobian regressions are achieved by
finite-differences. The full-time Jacobian is computed using equation 3.16 over
all intermediate computations. (d) Same as (c), only estimating gradients are
estimated using regression over 10 tracers randomly sampled within a radius
of r = 0.1 from the trajectory (Figure 3.2(c.ii)). Regression uses Gaussian
weighting based on the radial distance from the trajectory.

Evaluating Spatial and Temporal Sampling Parameters
Now, the analysis from the previous section is extended to consider the

impact of varying resampling radius (sparsity) and frequency on Jacobian es-
timation and FTLE results. A numerical experiment was devised to sweep
through many resampling radii and resampling rates and compare their re-
sults to a baseline test. Once again, all data is collected on the Double Gyre
flow over the interval t ∈ [0, T ], where T = 15. Baseline FTLE results are
computed using the planet-satellite method with r0 = ∥∆x∥ = 1×10−6, which
was the same approach taken in Figure 4.8a. Initial tracer positions are situ-
ated on a 50× 25 element uniform grid so that all regions of the flow may be
sampled.

Spatial sampling is designed to vary such that r = r010p where p varies
at increments of p = 0.5 over p ∈ [1, 5.5]. This equates to varying over r ⊂
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[10−6, 0.316] in the units of the flow. Temporal resampling satisfies ∆t = T/2q

for q ∈ [0, 10] integers. In this way, the number of times tracers are resampled
doubles for each increment in q. In flow units, this equates to ∆t ⊂ [0.014, 15].
Using these resampling conditions, flow map Jacobians are computed using
LGR for the same duration and initial conditions as the baseline data.

To compare results with the baseline, the mean absolute error (MAE)
between LGR computed FTLE and the baseline is computed

MAE(σT
t0(x0)) =

∣∣∣σT
t0, LGR(x0)− σT

t0, true(x0)
∣∣∣ . (4.8)

Absolute error is chosen over relative error since the numerical error is not
likely proportional to the true value of the FTLE. Moreover, FTLE is chosen
as the comparison metric since it is based on the maximum singular value of
the flow map Jacobian

∥∥∥DFT
t0

∥∥∥
2
, and is therefore representative of the accuracy

of the Jacobian as a whole. Results showing the MAE for all resampling
conditions are provided in Figure 4.9a. To determine for which conditions
resampling is more accurate than not resampling, the MAE of FTLE values
computed with resampling is subtracted from the MAE computed without
resampling for the same sparsity level (i.e., values of r). These results are
presented in Figure 4.9b.

Some general observations are made from the results presented in Figure
4.9. First, when sampled sufficiently quickly, FTLE results produced by re-
sampling yield comparable results to the baseline. The conditions highlighted
inside the black rectangle exhibit relatively low absolute error, even when the
sampling radius for calculations is large relative to the baseline. As sampling
radius decreases and the number of intervals increases, the accuracy of the
results improves.

Second, it is evident that computing Jacobians through LGR with resam-
pling yields increased accuracy over the conventional method. This is indicated
in Figure 4.9b by the cases colored blue in the upper right-hand corner of the
frame. These display FTLE values nearer to the true values than when com-
putations are performed on the same initial tracers without resampling (the
far left column in Figure 4.9a). As context, the results observed in Figure
4.8c,d were recorded for p = 5 and q = 5.91.

Another observation is that resampling does not improve accuracy if the
rate of resampling is not sufficiently faster than the unsteady time-scales of the
flow. For LGR to be effective, the deformations observed between time steps
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Figure 4.9: Evaluation of spatial and temporal sampling frequency on FTLE
accuracy. All results are computed on the Double Gyre flow over the total
interval t ∈ [0, T ] where T = 15. Baseline results (represented in the lower left
corner of (a)) are equivalent to those presented in Figure 4.8a where sampling
radius r0 = 10−6. Sampling radius varies in increments of ∆p = 0.5 for
p ∈ [1, 5.5] such that r = r010p. Resampling frequency is varied such that
the time between resampling for regression varies with intervals of ∆n = 1 for
q ∈ [0, 10] such that ∆t = T/2q. (a) Mean absolute error (MAE) of FTLE
computations with the baseline. (b) MAE of FTLE computed by resampling
subtracted from MAE of FTLE computed without resampling (first column
of (a)) for the same value of r. The region inside black rectangles represents
conditions where relatively accurate results are obtained from sparse data.

must be approximately linear. In the examined case, for q < 5, the deforma-
tions over the intermediate intervals were dominated by nonlinearity, and thus
yielded low FTLE accuracy even for small sampling radii. Thus, one should
not consider using LGR to compute Jacobians if data cannot be recorded at
sufficiently high rates. However, the nature of data collection in many practi-
cal flows examined in experimental fluids and physical oceanography suggests
that this limitation will not often be of concern.

There are, of course, some caveats to this analysis. First, the tests in
this study use a very controlled form of resampling. When operations are
performed using nearest-neighbor detection rather than numerical sampling,
the changing shape of regression polygons will likely impact the outcome.
Second, the Double Gyre is a periodic flow that recycles many tracers back to
proximity with their initial positions regularly. This, too, will likely shape the
nature of errors observed in the FTLE field. Finally, this statistical analysis
does not condition results based on the true value of FTLE. That is, errors
computed near to FTLE ridges are weighted equally to those in FTLE basins.
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It is therefore important also to consider the fields themselves as in Figure 4.8
to determine if ridges can, indeed be identified from sparse data.

FTLE Evaluation on Sparse Data
In the next demonstration, FTLE fields are computed directly from ran-

domly distributed tracers using Algorithm 2, which is described in Appendix C.
The results are compared with a baseline and with the approach of Mowlavi et
al. [60] which was designed specifically for sparse and noisy data. The baseline
approach computes Jacobians by regressing directly between initial and final
states with no resampling and using only differences between the examined
particle and its neighbors in the regression. The work of Mowlavi et al. [60]
expands on the baseline by augmenting the regression matrices with additional
inter-particle connections. Rather than just incorporating the differences to
the central tracer, the differences between all particles within a neighborhood
are included in the regression. Aside from that change, the algorithm remains
the same: regression still seeks to fit a linear deformation between initial and
final times only. All three implementations identify the same k = 15 nearest
neighbors at time t = 0 and perform analyses on the deformation up to t = 15.
For the conventional approach and that of Mowlavi et al. [60], the Jacobian is
computed using unweighted ordinary least-squares regression (K = Id, γ = 0
in equation 3.11).

Results of the comparative FTLE analysis are presented in Figure 4.10.
The first column of frames displays results obtained using LGR, the second
column provides the baseline results acquired by standard FTLE methods, and
the third column contains FTLE fields resulting from the method of Mowlavi
et al.. Particle distributions are introduced from top to bottom of Figure 4.10
by decreasing tracer density, where the exact number of tracers in the frame
is indicated in the lower right-hand corner. The densest data contains 2500
complete trajectories, followed by 1000, 500, 250, and finally, 100 trajectories.
As a point of context, FTLE computations on this flow often use over 106

tracers [41]. Thus, these representations can be considered sparse relative to
typical computations. The coloring of the FTLE fields is consistent between
frames and was chosen to reflect the true values computed in Figure 4.8a.

The performance improvement of LGR over other gradient approximation
methods on sparse data is evident in Figure 4.8. In all degrees of sparsity
considered, FTLE via LGR displays evidence of the principal FTLE ridge
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Figure 4.10: FTLE computed sparsely and randomly placed particles using
LGR (left column), using only the initial and final positions of particles in the
conventional approach (center column), and augmenting the data matrices
according to Mowlavi et al. [60] (right column). Particles are advected over
t ∈ [0, 15] with resampling at ∆t = 0.1. Jacobian computations use radial
Gaussian weighting on the k = 15 nearest neighbor particles with standard
deviation of 0.125. The number in the lower right-hand corner of the frames
indicates the number of tracers used in computations, and the gray markers
indicate their evaluation position at t = 0.

down the center of the domain. Moreover, the FTLE values that it identifies
are commensurate with the values of the true field shown in Figure 4.8a. In
contrast, only shadows of the FTLE ridges appear when other approaches are
used, and those only when the field is more densely seeded. In the sparsest
cases considered (500, 250, and 100 tracers), there is no evidence of dominant
ridges anywhere in the field. It is thus concluded that LGR outperforms other
available tools for sparse FTLE estimation, and can be effectively used as a
tool for identifying hyperbolic LCS in sparsely observed flows.
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Finite-Time Strain Metrics
The FTLE value of a trajectory represents the exponential growth rate of

a linear deformation over the observation interval of the trajectory. Essen-
tially, it discounts all deformations that occur during the time-history of the
trajectory and only relates its initial and final states. In Section 3.5 of Chap-
ter 3, the trajectory-integrated strain magnitude (TISM, see equation 3.18)
was introduced as a quantity which measures the total strain experienced by
a fluid element along a trajectory. In this section, FTLE and TISM fields are
computed using LGR from the same set of trajectories and compared.

Figure 4.11 contains visualizations of FTLE and TISM results computed
from trajectory data generated using the Double Gyre flow. The left column
contains FTLE data, and the right column contains TISM data. Computations
are performed over the interval t ∈ [0, 15] with the common flow parameters
used throughout this document (See equation 2.30 and the associated discus-
sion.).

Based on the results of Figure 4.11, some observations on the nature and
practicality of FTLE and TISM can be made. First, one must recognize the
difference in the scaling of the two metrics. FTLE represents an exponential
rate of growth, and is relatively small compared to the TISM values, which rep-
resent integrated strain magnitude. As a result the nature of the fields—while
both directly related to strain—are slightly different. For instance, FTLE can
accommodate negative values, whereas TISM cannot. If a trajectory is embed-
ded in a heavily contracting flow, its exponential growth rate, and therefore
its FTLE, will be negative. TISM, on the other hand, will represent both
contraction and dilation as positive values. Thus, in flows that demonstrate
compressibility effects (or, as shall be seen in the next chapter, those which
are observed by imperfect tracers), FTLE and TISM values may not share the
same sign.

Compressibility effects like dilation and contraction are not a concern with
the Double Gyre, however. In this particular example, the flow is incompress-
ible, which means that FTLE values must remain positive over any finite-time
interval. Therefore, if a ridge exists in the FTLE field of an incompressible
flow, then it will correspond to a ridge in the associated TISM field. How-
ever, the relationship does not go the other direction. Large values of TISM
do not necessarily indicate large values of FTLE. A simple example would be
any flow that stretches in one direction along a ridge, and then reverses to its
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Figure 4.11: Comparison of flow stretching metrics FTLE and TISM as com-
puted by LGR. Computations are performed over the interval t = [0., 15] with
increment ∆t = 0.1 on the Double Gyre flow. Regressions of deformations
include the 15 nearest neighbors of each tracer weighted by radius using a
Gaussian function with standard deviation of s = 0.125. The number of sim-
ulated particles is indicated in the lower right hand of each frame, and the
location of those particles at t = 0 are indicated by gray dots. Sparse values
are interpolated to a field using RBF interpolation and colored for visualiza-
tion purposes.
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original state. TISM would accumulate strain over the entire history of the
flow, whereas FTLE would mark as zero since no net deformation occurred.
Therefore, while FTLE ridges will be represented in the TISM field, TISM
ridges may not exist in the FTLE field.

Using sparse data, TISM may be a useful indicator of hyperbolic regions in
a flow. As evinced by Figure 4.11, the high-strain regions of the flow are more
diffusely represented by TISM than by the sharp FTLE ridges. With sparse
data, sharp FTLE ridges are difficult to identify. With 100 and 50 tracers,
for example, the ridges of the FTLE field are difficult, if not impossible, to
discern. However, the TISM results for those densities indicate regions of high
strain where the FTLE ridges ought to exist. Therefore, for more sparse data,
TISM may prove usable where FTLE is not.

Finite-Time Rotation Metrics
While metrics quantifying particle dispersion such as FTLE are commonly

computed in LCS analyses, they may be less practical for the purposes of
AMFM measurements. One of the most prominent limitations of all La-
grangian methods is the ability to observe tracers over finite durations. Since
FTLE ridges—the LCS feature pursued by FTLE and other like studies—are
defined by rapid separation of tracers, they naturally exist in regions of the flow
that are difficult to measure over long periods of time. In other words, they
represent the most chaotic parts of the flow. For the purposes of autonomous
feature tracking, seeking elliptic LCS (i.e., those defined by coherent material
rotation) may be more practical.

Lagrangian vortices occur in between the ridges defined by hyperbolic LCS.
They exist in the most stable portions of the flow. Tracers caught inside a
vortex are likely to stay with that vortex over long intervals, making it a
convenient tracking objective. Of course, the specific definition of a vortex is
contested in the fluid mechanics community. For the purposes of this work, any
material volume that exhibits coherent rotation over a finite interval is loosely
referred to as a vortex. Such features can be efficiently identified by the metrics
which have been introduced in Chapters 2 and 3. The purpose of the following
analysis is to assess the merits of computing Lagrangian-averaged vorticity de-
viation (LAVD), dynamic rotation angle (DRA), and kinematic action (KA)
from sparsely distributed random trajectories using LGR. LAVD and DRA
were both developed by Haller and collaborators precisely as a means for iden-
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tifying elliptic LCS in complex flows [51], [88]. KA was introduced in Chapter
3 as an extension to LAVD which simplifies the vortex identification crite-
ria. LGR provides a convenient mechanism for computing all three quantities,
which is codified in Algorithm 3 in Appendix C.

Figure 4.12 displays LAVD, DRA, and KA as computed by LGR for vari-
ous tracer densities. As indicated, the left column presents LAVD, the center
column DRA, and the right column KA. Particle densities ranging from 2000
tracers down to 25 tracers are presented in the figure. The exact number of
tracers used in a simulation is indicated in the lower right-hand corner of each
frame. As with prior examples, LGR is computed using 15 nearest neighbors
along each trajectory with radial-Gaussian weighting using a standard devia-
tion of 0.125. Fields are interpolated using RBF interpolation from scattered
values recorded at particle positions. Coloring is based off of the ground truth
values presented in Chapters 2 and 3. In frames depicting DRA, a solid black
curve is plotted at the DRA = 0 contour. White curves are plotted in KA
frames at the KA = 0 contour.

The results presented in Figure 4.12 demonstrate that it is possible to ac-
curately evaluate elliptic Lagrangian metrics from tracer data with no velocity
or velocity gradient information explicitly known a-priori. Moreover, elliptic
LCS features are seen to be more robust to sparsity over hyperbolic ones. For
the higher densities of tracers, LAVD, DRA, and KA closely resemble their
dense counterparts from Chapters 2 and 3. As the tracer density decreases,
the form of the structures in the field remains consistent so that, even with as
few as 50 tracers in the frame the peaks and boundaries of the two vortices
are still approximately observed.

In general, the LAVD and DRA have a convenient physical interpretation—
they quantify the amount of rotation that a particle experiences over the inte-
gration interval. In Figure 4.12, the units of LAVD and DRA are presented in
radians. As can be seen in the high particle density data, the absolute values
of the two fields are nearly identical.

Though they both convey similar information, LAVD and DRA each have
unique benefits relative to the other. As discussed in their introduction in
Chapter 2, LAVD is always objective, whereas DRA is only objective under
certain circumstances. Therefore, LAVD may be preferred when the relation-
ship of the observer to the flow is not known. However, because DRA is
signed, it enables convenient classification of distinct vortices in a flow. The
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Figure 4.12: Comparison of integrated flow rotation metrics LAVD, DRA, and
kinematic action (KA) as computed by LGR. Computations are performed
over the interval t = [0., 15] with increment ∆t = 0.1 on the Double Gyre
flow. Regressions of deformations include the 15 nearest neighbors of each
tracer weighted by radius using a Gaussian function with standard deviation
of s = 0.125. The number of simulated particles is indicated in the lower right
hand of each frame, and the location of those particles at t = 0 are indicated by
gray dots. Sparse values are interpolated to a field using RBF interpolation
and colored for visualization purposes. For DRA fields, the zero-contour is
indicated by a black line, and for KA fields, the zero-contour is indicated by a
white line.

zero-contour of the interpolated DRA field acts as an approximate and easily
identified hyperbolic LCS, continuously dividing any observed vortices. Thus,
since DRA records the direction of rotation while LAVD and KA do not, it is
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best able to capture the true nature of the underlying field from the sparsest
data (25 tracers) presented in Figure 4.12.

While DRA and LAVD are both useful for identifying the vortical regions
in a flow, neither provides a convenient approach for approximating vortex
boundaries from sparse data. The typical approach for vortex boundary de-
tection in LAVD fields is to identify closed level-set contours which satisfy
certain convexity constraints. This process requires data to be interpolated
to a field and that the results preserve the contours of the true field. From
the results displayed in Figure 4.12, it is clear that, the sparser data (n < 750
particles) does not satisfy these criteria. Thus, identifying vortex boundaries
from sparse, Lagrangian LAVD and DRA data is challenging and subjective.

However, by juxtaposing LAVD with TISM (see equation 3.23), KA pro-
vides a cheap and convenient heuristic for determining tracer membership in
a vortex. If, for a tracer, KA is computed to be KA > 0, then it its motion
is dominated by rotation and it can be considered to be inside some vor-
tex boundary. Otherwise, it is in a region of the flow that is dominated by
strain. The cutoff threshold can be easily adjusted to accommodate stronger
or weaker. Because it does not require additional constraints or interpolation,
KA may be favorable to LAVD and DRA for identifying certain Lagrangian
flow features.

4.4 Discussion of Results
Throughout this chapter, LGR has been applied in various scenarios to

evaluate its capacity for estimating flow gradients. In this section, highlighted
points from the results are discussed.

LGR Yields Reliable Flow Gradients from Sparse Trajectories
The first discussion point is the most straightforward: LGR is a viable

tool for estimating both instantaneous velocity gradients and finite-time flow
map Jacobians. This has been demonstrated through a variety of examples
where common flow metrics are accurately represented using the equations
and algorithms of Chapter 3. Section 4.1 demonstrates that LGR can reliably
approximate velocity gradients by showing that estimated results match the
analytical ground truth closely, even for relatively few observed trajectories.
In Section 4.3, FTLE, LAVD, and other integrated metrics computed by LGR
are seen to closely match with their baseline estimates. Importantly, when
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trajectories are sparse, LGR provides a significant improvement to flow map
Jacobians and FTLE results over other methods used in the field.

LGR is a Capable Tool For Particle Image Experiments
The comparison of LGR with PIV and LPT, which featured prominently in

Section 4.1, indicates that LGR is a viable tool which could be applied directly
to experiments in fluids. Given the particular flow and the specific processing
parameters used, LGR provides results that are as accurate or better than the
corresponding results from PIV, LPT, or both for all tracer densities tested.

A significant implication of these results is that LGR could be used to
dramatically decrease the storage burden of modern LPT studies while still
retaining the ability to compute gradients. Modern LPT studies may track
tracers over large domains that need to be interpolated onto a fine Eulerian
grid in order to compute gradients. If the study is performed on a large, 3D
domain, then all components of velocity, position, and any computed quantities
like gradients, must be stored at all Nx×Ny×Nz×Nt grid locations in space
and time, which can easily become unwieldy. LGR allows for gradients to be
computed in a purely Lagrangian fashion, meaning that data need only be
stored at only Np × Nt positions. For context, in a 3-D domain that is 100
cells cubed, an Eulerian grid must save at one million locations, even if far
fewer tracers are observed in that space.

LGR may also exhibit reduced computation times over methods like LPT.
Assuming that trajectories are already known, the computational complexity
of LGR is limited by the K-nearest neighbors operation, which is O(n log n)
using efficient data structures, where n is the number of particles. On the
other hand, LPT is limited by the approach used for scattered interpolation.
Efficiently implemented linear scattered interpolation isO(m log n), wherem is
the number of query points (grid locations). More sophisticated interpolation
schemes like the RBF interpolation approach used in the examples of Section
4.1 are more computationally expensive. For example, the RBF interpolation
is O(n3). Therefore, in circumstances where the number of interpolation grid
points is larger than the number of particles, LGR has the potential to outpace
LPT gradient approximations even for simple interpolation schemes.

A final advantage of LGR in the context of particle image experiments is
that it naturally provides an extension to Lagrangian analyses where PIV and
LPT do not. For both PIV and LPT, additional interpolations are required at



83

each time step to compute relevant values for integration along each trajectory.
Because LGR is fully Lagrangian and stores all computed quantities with the
particle, these additional operations are unnecessary. It provides a much more
efficient means of moving between instantaneous and finite-time measurements
than other paradigms in experimental fluids.

Despite the promise of the study performed in Figures 4.4 and 4.5, the
results cannot be viewed as entirely conclusive. Many untested factors—
including the flow being tested, specific PIV and LPT algorithms implemented,
and parameters used in PIV, LPT, or LGR—may influence the outcome. For
instance, the particle tracking scheme applied is over a decade old, and will
not perform as well as modern implementations like Shake-the-Box [25]. More
work should be done to continue evaluating the potential of LGR for particle
image experiments.

LGR Provides an Interpretable Approach to Scale Sensitivity
When developing methods to operate on practical data sets, estimating the

sparsity of the trajectory data is typically a concern. Many authors approach
this by counting the number of tracers used in an experiment on a benchmark
flow like the Double Gyre (for example, [41], [55], [60]). Some authors will
quantify sparsity according to some heuristic. For instance, Aksamit et al. [110]
quantify sparsity by counting the number of tracers inside a square volume
defined by a pre-selected length scale. While insightful and necessary, both of
these approaches are subjective—the former to the number of tracers which
are “typically used,” and the latter to the selected length scale.

Codifying scale sensitivity to an objective relationship between tracer dis-
tribution and resolvable spatial and temporal scales is challenging, but the
results of this chapter suggest qualitative guidelines. Generally, with a uni-
formly random distribution of tracers, spatial gradient fluctuations 5–10 times
larger than the average radial distance to neighboring tracers will be captured
(in the double gyre, this corresponds to 50–200 simulated tracers). Similarly,
the results of Figure 4.9 suggest that resampling of regression tracers should
occur with a frequency at least 10 times faster than the fastest time scale in
the flow T . In modern flow measurement applications, this is a reasonable
constraint, as data is typically collected at a frequency much faster than the
rate of evolution of the flow.

The surest guideline to evaluate whether a given regression will produce
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reliable results is to check the linearity of the regressed operators over short
intervals. Given matrices of tracer separation at the initial time Xt and the
deformed time Xτ and the regressed deformation gradient DFτ

t , the relative
error in the approximated deformation is defined as

e = ∥DFτ
t Xt −Xτ∥F

∥Xτ∥F

. (4.9)

If e ≪ 1, then the operator DFτ
t is approximately linear and the estimated

gradients are trustworthy.

LGR Improves Jacobian Approximation from Sparse Data
Section 4.3 began by applying LGR to compute flow map Jacobians and

FTLE fields from sparse data. In these analyses it was found that, by fre-
quently resampling local tracers performing regression over the intermediate
intervals, LGR is able to achieve significantly improved results on sparse data
over other methods used in the literature.

As discussed in Chapter 3, resampling improves Jacobian results because
it ensures that the nonlinear influence of the flow remains minimal. The flow
map Jacobian is the first order approximation of the deformation experienced
by the tracers. For large clouds of tracers, that means that only small time
intervals can serve as a linear approximation of the deformation. The analysis
presented in Figure 4.9 illustrates this by showing the error incurred in FTLE
calculations using varied sparsity and resampling rate relative to a trusted
baseline. When the sampling rate was not sufficiently fast, error became large
due to compounding nonlinearities.

Real, observable tracer data is usually relatively sparse in space but highly
resolved in time. Since conventional approaches to Jacobian estimation only
use the initial and final states of the tracers in their estimation, they ignore a
significant quantity of information available for analysis. LGR incorporates all
of the data at the intermediate time steps and therefore can achieve improved
performance.

Finally, in Lagrangian analyses, a severe limitation is the persistance of
tracers over the observation interval. By the conventional approach, all trac-
ers involved in the initial cloud of particles must remain visible from t0 to
t. Therefore, when tracers disappear from view for any amount of time (for
example, missed GPS readings on a drifter, or LPT tracers move out of illumi-
nation), they become entirely unusable over the whole duration of observation.
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Figure 4.13: Illustration of particles interacting with elliptic and hyperbolic
LCS features. The elliptic features enclose volumes of the flow whereas the
hyperbolic ridge is an infinitesimally thin material surface. As a result, more
tracers engage with the elliptic features and render them more detectable from
sparse data.

LGR relaxes this limitation by resampling local tracers at each time step. If a
tracer disappears for a moment from the flow, it cannot be used in the sets of
regressions where it is missing. However it can be used in all other regressions
performed on neighboring particles over the observation interval. Therefore,
LGR allows for more trajectory data to be incorporated to approximations,
not only temporally, but also spatially.

Elliptic LCS Metrics Appear to be More Robust to Sparsity
When comparing the LCS results from sparse trajectories to the those in

previous chapters where computations were performed on dense, structured
data, it is apparent that the elliptic metrics and velocity gradients are more
robust to sparsity than the hyperbolic/parabolic LCS as revealed by the FTLE
fields. In Figure 4.10, for example, drawing precise ridges would be a challeng-
ing task to implement algorithmically for even the relatively dense field with
2000 random particles. On the other hand, the salient features of the elliptic
LCS (Figure 4.12) and velocity gradients (Figure 4.1) are clearly visible with
only 100 particles in the domain. This discrepancy results from the topology
of the computed structures and their sensitivity to interpolation errors; where
elliptic LCS and velocity gradients are essentially measuring volumetric quan-
tities, hyperbolic LCS identify codimension-1 manifolds (material surface) of
infinitesimal thickness that are more difficult to sense.
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To illustrate this further, consider the schematic in figure 4.13. Tracers
and their trajectories are indicated alongside a repulsive hyperbolic LCS ridge
(in orange) and two elliptic LCS (in blue) which hold tracers in Lagrangian
vortices. Because the hyperbolic ridge is infinitesimally thin, it is exceedingly
unlikely that any tracers exist immediately on top of the feature. Moreover,
because the ridge is repulsive, the trajectories that begin near it diverge over
time, allowing the nonlinear influence of the flow to further skew the results.
The elliptic LCS, however, entrap particles within their boundaries for the
observed duration. Since these particles exhibit similar rotational behavior
and are spread over finite volume, the feature is more likely to be sensed
by identification algorithms. An implication of this is that elliptic LCS are
more amenable to interpolation than hyperbolic LCS. Because a larger region
of tracers is affected by an elliptic LCS than a hyperbolic LCS, it is much
simpler to define a field from it over sparse data. These factors account for
the improved robustness of elliptic LCS over hyperbolic and parabolic ones
seen throughout this work, and supports the findings of other studies on LCS
robustness such as that by [124].

Kinematic Action Provides a Useful AMFM Tracking Objective
Autonomous mobile flow field measurements require that flow structures be

easily and quickly identified from sparse and noisy data. Based on the results
presented with Figure 4.12, kinematic action (KA) seems to offer a promis-
ing step in that direction. As has been discussed throughout this chapter,
elliptic metrics indicating rotation appear to be more identifiable and robust
when computed from sparse data. However, typical elliptic metrics like LAVD
and DRA do not provide a simple heuristic for determining whether or not a
particle is part of a vortical motion. Kinematic action, on the other hand, ac-
complishes this as a simple threshold, distinguishing tracer behavior as either
rotational or dilatational. Tracers with KA values larger than the threshold
can be reasonably considered as part of a coherent rotational movement in the
flow.

However, there are still challenges associated with using KA as an objective
for AMFM. The largest of these is that KA is currently defined as a forward-
time metric, meaning that to know the KA values at an instant in time requires
integration of behavior at unknown future times. Theoretical progress should
be made towards understanding and connecting forward- and backward-time
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KA and the vortices that they define. If elliptic structures could be reason-
ably detected using backward-time KA, it may provide a convenient tracking
objective.

4.5 Related Directions for Future Work
The results and discussion provided in the chapter suggest that LGR may

be a viable tool for analyzing numerical and experimental fluids, and that it
may factor into future implementations of AMFM-type measurements. How-
ever, there remain many avenues of further inquiry into the technique. Here,
a few prominent future directions are listed:

1. LGR should be applied to a diverse array of flows across applications.
In this chapter, nearly all of the results were provided on an exceedingly
simple flow—the Double Gyre—in order to maintain clarity and avoid
superfluous details. However, future studies should apply LGR to more
practical flows such as assimilated ocean velocities, Lagrangian drifters,
3-D LPT studies around aerodynamic bodies and more.

2. LGR should continue to be validated as a tool for computing velocity
gradients and flow map Jacobians from sequences particle images. the
studies performed here present a baseline justification for the use of LGR
in fluids research, but much more is required before LGR can be confi-
dently added to the arsenal of experimental fluids analyses.

3. By performing computations along a trajectory, LGR lowers the barrier
to calculating Lagrangian metrics such as LAVD, TISM, and KA, which
have been shown to produce useful, finite-time information. There is
potential to develop additional integrated metrics based on different dif-
ferential quantities. One example might be to use elements of the Schur
decomposition of the velocity gradient as the differential quantities of
integration. Such methods should be developed and tested.

4. With AMFM applications, it is necessary to distinguish between distinct
flow features simultaneously identified in scene. Since the data provided
by LGR analyses is Lagrangian, it will be necessary to develop an ap-
proach for bounding features without first converting to Eulerian fields.
Graph-based algorithms could be an effective approach to consider.
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5. If LGR is ever to be used for in-situ AMFM measurements, algorithms
will need to be optimized to operate in real time. The results of this
chapter demonstrate a proof-of-concept, but the computations are too
slow to be implemented for most real flows. However, there are many
opportunities to optimize software and hardware for real-time perfor-
mance.
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C h a p t e r 5

DETECTING FLOW STRUCTURES WITH NATURAL
TRACERS

The examples provided thus far have utilized nicely defined analytical flows
or pre-computed velocity fields. Autonomous mobile flow field measurements
(AMFM), however, must be able to operate on sub-optimal data sets. In
that paradigm, it will not be possible to quickly compute velocity fields, seed
and integrate trajectories, and compute gradients due to computational con-
straints and the lack of clean image data. Rather, modern technology must be
leveraged to identify and track meaningful trajectories of tracers so that flow
structures may be detected. This chapter attempts to accomplish that goal by
addressing the second challenge posed in the introduction: that of interpreting
fluid motion from feature-rich images.

The remainder of this chapter proceeds as follows: First, additional back-
ground is provided regarding motion analysis techniques in computer vision
and their applications to dynamical systems. Following this, a modular detec-
tion and tracking pipeline is proposed as a solution to the problem of feature-
rich images. Deep detection models are trained to identify debris and track
their trajectories on the surface of a recorded flow. These trajectories are
provided as inputs to Lagrangian gradient regression, which is employed to es-
timate flow gradients and identify flow structures. Once defined, the method
is applied to a laboratory experiment where unconventional tracers are used
to visualize flow structures. The chapter concludes with a discussion of the
results and the implications of the proposed method.

5.1 Motion Estimation Techniques from Computer Vision
As has been discussed at length in previous chapters, estimating flow fields

and analyzing dynamical behavior from sequences of images is commonly per-
formed within the field of fluid mechanics, where carefully controlled labo-
ratory experiments provide the appropriate conditions for accurate measure-

The contents of this chapter have been adapted from a manuscript by Harms, Brunton, and
McKeon recently submitted under the title Estimating Dynamic Flow Features in Groups
of Tracked Objects.
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ments to be made. However, technological barriers have inhibited the gen-
eralization of such analyses to arbitrary systems of dynamical objects. The
algorithms that are effective with carefully structured fluids experiments are
not, for instance, effective when applied to videos of naturally occurring trac-
ers or to the motion of more semantic objects such as pedestrians, vehicles,
or swarming creatures. Now, however, it is no longer difficult to identify ar-
bitrary or semantic objects in images. Technologies such as deep detection
and tracking enable broader classes of dynamical systems to be studied in the
same manner as fluidic ones.

In the vision community, estimation of dynamical behavior is often pursued
through one of two primary approaches. The first of these is optical flow
(OF), which identifies the apparent motion from one image to the next in a
sequence. As was briefly discussed in the introduction, PIV may be considered
a sub-category of OF tailored for specific application to fluids. A variety of
surveys have been published to categorize the optical flow algorithms that have
proliferated in recent years (for instance, [125], [126]). Traditional approaches
such as Lucas-Kanade [127] and Horn-Schunk [28] are knowledge-driven in the
sense that they do not need to be trained on data to be implemented. In
recent years, deep, or data-driven, OF models such as FlowNet [128], [129],
PWC-net [130], and RAFT [131] have seen significant improvement in accuracy
and computation time over their knowledge-driven counterparts [126]. Scene
flow—the extension of optical flow to three dimensions using either disparity
(depth) estimation in frame or 3D point clouds obtained via LiDAR—has also
been heavily researched in recent years due to breadth of applications [126].
Though OF methods have become adept at estimating motion in scene, they
are not well equipped to estimate the dynamic behavior of specific groups. OF
does not discriminate objects in a scene, so any analysis of the motion is done
on all motion within the scene, regardless of its relation to system dynamics.
Moreover, OF analyses are not intrinsically objective and are limited to only
finite-time measurements.

Rather than broadly estimating the motion of an entire scene, multiple ob-
ject tracking (MOT), examines the movement of particular objects over time.
In a sense, it is the generalization of LPT. MOT can be used to estimate the
velocity of specific subjects along their trajectories rather than the velocity
field over the entire scene. Many reviews have been written on the subject (for
instance, [132], [133]). In its most basic form, MOT consists of an object detec-
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tion step and a target association step. Object detection may be accomplished
through the use of large vision models [134], and association achieved by state
estimation techniques like Kalman filters, particle filters, the Hungarian algo-
rithm, or one of many other approaches [133]. Recent years have seen tracking
frameworks built around vision transformers [135], [136], graph models [137],
[138], and attention [139], [140], to name a few alternative approaches.

Traditional MOT methods are also limited as a tool for identifying dy-
namical patterns in crowd behavior. MOT analyses are designed to give in-
formation about the behavior of individual entities, rather than interpret the
underlying systems driving their motion. A field of work related to this is
crowd analysis [141], [142], which seeks to understand people’s behavior in
crowds. MOT is sometimes used for such studies [143], which has seen re-
cent interest as a result of social distancing protocols during the COVID-19
pandemic [144], [145]. Crowd analyses, however, are typically not directed
towards understanding the dynamic flow patterns espoused by the studied ob-
jects, but rather towards identifying anomalies or perceiving the intent of the
crowd [142]. Understanding flow patterns in crowds is still largely unaddressed.

While PIV and LPT provide robust and highly capable methods for an-
alyzing flow fields in highly controlled experiments, there remains a need for
measurement technologies that leverage naturally occurring and imperfect (in
the sense that they may be sampled from a broad distribution or that they
do not ideally follow the true flow) tracers and for methods which can be
successful using non-specialist imaging equipment. The current state-of-the-
art methods in flow measurement require expensive instrumentation and the
addition of artificial tracers in order to be viable.

The methods in this chapter leverage modern capabilities of computer vi-
sion in tandem with LGR to provide a framework for extracting dynamical
information beyond velocity from groups of tracked objects. Specifically, large
vision models are used to identify objects of interest and record their motion
as a series of trajectories. These are provided as inputs to the Lagrangian
gradient regression (LGR) algorithm which enables reliable gradient estima-
tion from sparse trajectories such as are characteristic of MOT studies. Using
the flow gradients, quantitative information of the flow including rotation and
deformation rates for instantaneous and finite times can be computed. While
such gradient-based analyses have been useful in fluidic applications [39], [41],
this work aims to extend their use to real-world scenarios where dynamical ob-
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Figure 5.1: Illustration of the modular flow structure identification process
developed in this chapter. The first step detects tracers through deep vision
models, the second maps out their trajectories through algorithms from com-
puter vision or LPT, and the final step estimates gradient-based flow structures
using LGR.

ject classes and the scenes they inhabit can be visually complex and difficult
to analyze by standard approaches.

5.2 Identifying Flow Structures with Natural Tracers
Here, a 3-step modular approach (illustrated in Figure 5.1) is proposed for

combining MOT with dynamical systems analyses. The first stage of analysis
is object detection, the second is object tracking given the detections, and
the final stage uses LGR to estimate flow gradients from tracked trajectories
and identify underlying features. The stages of the analysis are defined in a
modular way to allow for various implementations of detection and tracking
to be easily interchanged. This enables the rapidly evolving detection and
tracking technologies to seamlessly integrate into the flow structure identifica-
tion process. Moreover, it may be that some models perform better on certain
data types than others, so it is desirable to be able to quickly switch one for
another. More information on each stage is here provided.

Tracer Detection
Acquiring trajectories for flow structure computation is achieved through

modern object detection and tracking techniques. Using image sequences, tra-
jectories may be observed in either d = 2 or d = 3 dimensions. In the first
scenario, a single camera is assumed to record motion on a plane that is ap-
proximately parallel to the sensor plane or where a homography can reasonably
orient the camera as perpendicular to the plane of motion (See Appendix B,
Section B.2). For 3-dimensional motion, multiple cameras are required and an
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additional triangulation step is necessary between detection and tracking. In
this chapter, only planar flows observed with a single camera are considered.

Deep vision models provide the framework for robust and general object
detection. Many models, including RCNN architectures [146], [147], YOLO
architectures [148], [149], transformer architectures [150], and more are suf-
ficient. It is necessary to represent each detection as a single point in the
flow space. In this work, the centroid of an identified mask is used as the
tracer location, although other approaches can be considered based on the
problem parameters. Large vision models such as those previously mentioned
also allow for flexible application. If unconventional objects must be detected,
then transfer learning techniques [151] can be applied to fine-tune the network
while preserving the features represented in the pre-trained weights. Many
cases may also involve dense crowds of objects or relatively small objects. In
such instances, it may be helpful to incorporate a sliding window approach
to detections, which will be discussed in more depth with the case study in
section 5.3.

Tracer Tracking
Using whatever detection model is preferred, object tracking algorithms

are used to stitch independent detections into trajectories. Many such al-
gorithms exist in the computer vision literature, including filters and deep
implementations [152], [153] as well as in the fluids literature from the La-
grangian particle tracking community [19], [25]. Whatever tracking algorithm
is used, the quality of the trajectories in frame should be emphasized. Trajec-
tory lengths should be made as long as possible while in the frame. As will
be seen later, truncated trajectories are the most significant failure point of
the LGR algorithm. However, while many computer vision applications are
concerned with re-identification of objects that leave the frame, that is not
an issue here. Any objects that exit and re-enter the scene can be viewed as
entirely new entities without loss of performance.

Structure Identification
The quality of LGR analysis depends the characteristics of the observer

and the properties of the flow. In planar flows, optimal measurements will be
made when the camera sensor is aligned parallel to the flow and lens distortion
is minimized. As has been discussed in previous chapters, LGR will identify
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Figure 5.2: Dye Flow Visualization of the asymetric wake flow past a blunt
trailing edge. Immediately beyond the trailing edge, the flow is characterized
by bluff body vortex shedding. Further downstream, the flow transitions to a
shear layer. The flow is visualized using fluorescent dye added just upstream
of the trailing edge of the plate.

a greater range of spatial flow scales if the spacing between them is relatively
small. Small and crowded objects, however, are known to be more difficult to
detect. Therefore, there is a tradeoff between flow structure resolution (which
improves with higher density and smaller objects) and detection quality (which
improves with larger and distinct objects).

5.3 The Asymetric Wake Past a Blunt Trailing Edge Experiment
In this section, an experiment is performed to demonstrate features of

the proposed method and its ability to perform with complex images. The
emphasis of the designed experiment is to simulate debris on the surface of a
flow using unconventional tracers and use their motion to identify structures.
Once again, the asymmetric wake flow is used as the testbed of methods being
developed. Fluid flows around the blunt trailing edge of a long plate such that
the flow velocity differs across the plate. The result is characterized by bluff-
body vortex shedding immediately downstream of the plate, which transitions
to a shear layer further downstream. To better conceptualize the flow, dye
visualization taken during the experiment is provided in Figure 5.2. Because
it is used multiple time throughout this dissertation, extensive details and
schematics of the experiment are provided in Appendix B Section B.4. A brief
description is provided here.

Experimental Setup
The experiment was performed in the NOAH water channel at the Gradu-

ate Aerospace Laboratories at California Institute of Technology (GALCIT).
A 0.057 meter thick plate was placed into the channel so that the trailing edge
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was situated near the streamwise midpoint of the 0.45 × 0.45 × 1.22 meter
test section. A velocity ratio of U2/U1 < 1 was enforced by adding various
blockage implements upstream.

This experiment was performed with generally accessible optics. A ma-
chine vision camera was implemented in this case, but the study could have
easily been conducted with cell phone cameras. Specifically, video recording
was performed using a FLIR Blackfly S BFS-U3-23S3C-C USB3 color camera
with an Edmund Optics 4mm C-mount lens. The optical setup was mounted
directly above the water surface just downstream of the plate trailing edge
and 1920 × 1200 pixel images were recorded at 60Hz during the tests. Cam-
era calibration was accomplished using the ChArUco approach described in
Appendix B Section B.2.

Flow motion was visualized using atypical tracers which were added on ei-
ther side of the splitting plate upstream of the trailing edge. Three categories
of tracers were considered: 1. 9.53mm diameter birch spheres, 2. 19.05mm
diameter birch spheres, and 3. 6.35mm diameter birch rods cut roughly be-
tween 12.7 and 50.8mm in length. The following results will discuss two test
cases: In the first, only small birch spheres are used as flow indicators. The
second uses all of the particle types simultaneously.

5.4 Gradient Estimation via Existing Methods
To emphasize the need for a new approach, flow gradients were estimated

on the experimental images using conventional velocimetry approaches from
fluid mechanics and computer vision. The two algorithms considered are multi-
pass particle image velocimetry (PIV) [18] computed using the open-source
package OpenPIV [121], and RAFT for optical flow [131] using pre-trained
weights available at the associated software repository. The results are dis-
played in Figure 5.3, where out-of-plane vorticity ωz = ∂v/∂x − ∂u/∂y is
displayed as an indicator of the gradient.

This analysis shows that conventional motion estimation techniques are
not well suited to approximate velocity gradients in feature-rich images. For
both tested techniques, false gradients are apparent at the top and bottom
edges of the debris cluster (a red line near the top of the image and a blue line
near the bottom). These appear since PIV and optical flow are agnostic to
its semantic information. They attempt to identify motion in all parts of the
image based on correlation or pixel intensity conservation and thus perceive a
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Figure 5.3: Computing flow gradients from an image sequence using stan-
dard procedures from experimental fluid mechanics (bottom left) and from
computer vision (bottom right). The algorithm used on the left is multi-pass
PIV [18], and the algorithm used on the right is RAFT [131]. The results
display vorticity (∂v/∂x− ∂u/∂y). From them it is clear that existing meth-
ods are not suited for spatial flow gradient estimation. In both cases, there is
significant noise and the existence of many spurious features.

strong false gradient between the cluster of debris (where motion is evident)
to the surrounding flow without tracers (where motion exists, but is invisible
to the camera). There is also a significant amount of noise present in both
analyses, which stems from the complexity of the images being analyzed and
the presence of non-flow features such as reflections. Furthermore, due to the
poor quality of estimated velocity gradients, computing finite-time metrics
like FTLE or LAVD using PIV or optical flow is challenging and would likely
perform poorly.

5.5 LGR Processing Appraoch
The methods discussed in the previous sections allow for flow gradients to

be reliably estimated. In this case study, the Mask-RCNN architecture [147]
is employed for object detection and an in-house developed template matching
algorithm is used for object tracking. More details on the implementation of
detection and tracking are provided below.

Stage 1: Detection The Mask-RCNN model architecture was selected for
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the case study because it allows for full masks, and therefore accurate
centroids, to be computed. The model was implemented using PyTorch,
where a pre-trained ResNet50 [154] backbone was incorporated. While
three classes of particles existed in the flow, a custom head was built
to identify all three as a single debris class. Identifying a single class,
however, is not necessary and may not be desirable in some cases. The
generality of large detection models enables studies to be performed on
multiple classes of tracers at once.

Training data was collected using a custom app built around the Segment
Anything Model (SAM) [155], which allowed for many precise masks to
be identified quickly in training images. In total, 165 training images
were used with > 3000 identified masks. The custom model was trained
for 100 epochs using a 120-to-45 training-to-testing split. Stochastic
gradient descent was used as the optimizer with initial learning rate of
0.0005, momentum of 0.9, and L2 regularization of 0.0005. A scheduler
reduced the learning rate by a factor of 10 every 10 epochs. For more
details on the training data collection procedure, see Appendix B Section
B.3.

Because the tracer particles were localized in crowds and were relatively
small compared to the frame size, a windowing scheme was used to
achieve improved detection results in each snapshot. For the results
discussed below, a 400 × 400 pixel window with 10% overlap was used
for detections. Any overlapping masks were consolidated into single par-
ticle masks, which were then used to identify the tracer centroids. Figure
5.4 shows an example of the windowing procedure applied to a sample
image from the debris flow.

Stage 2: Tracking Object tracking was executed using a straightforward
template matching scheme involving a forward search for the tracers
identified in the first image of each image pair in the sequence. A window
around the identified tracer was specified as a template whose greatest
correlation was found within a larger window in the subsequent frame.
If the peak of the correlation was found to be near a detection in the
second frame, the detection was appended to the trajectory. Velocity
and acceleration constraints were employed to ensure that non-physical
trajectories could not be created. Finally, to improve trajectory statis-



98

tics, identified trajectories were stitched together by fitting a polynomial
to an existing trajectory and searching future time steps for possible
matching trajectories. Once trajectories were determined, the camera
calibration and fitted homography were applied to the trajectory data.
The details of the tracking algorithm and its implementation can be
found in Appendix C.

Stage 3: Structure Identification Gradient estimation and structure
identification was performed using LGR according to the procedure out-
lined Chapter 3. Equation 3.11 was employed between each time step
using the k = 15 nearest neighbors of each tracer to populate the Xt0

and Xt matrices. The kernel matrix K was populated on the diagonal
by

Kii = e− ∆xi(t0)2

2s2 , (5.1)

with s = 0.03 meters and set to zero otherwise. A small regularization
constant γ = 10−6 was applied to ensure numerical stability.

Visualization Approach
To visualize the data, each tracer centroid was provided as a query point

to SAM [155], which identified its semantic mask. Each mask was overlaid
on the original image with partial transparency and colored according to the
value of the chosen metric. For example, in Figure 5.7.

5.6 Detection and Tracking Results
Results from the asymmetric wake demonstration of the proposed method

are presented in two stages. First, results from detection and tracking are
addressed independently. The algorithmic performance in these tasks is critical
to the success of gradient estimation. Therefore, this section is devoted to
guaranteeing that the detection and tracking algorithms perform satisfactorily.
Section 5.7 examines the results of the gradient-based metrics computed on
the flow using LGR.

Detection Results
Once the detection model had been trained, it was applied to each image

in a recorded video. It was necessary to separate each frame into overlapping
tiles upon which the detector was applied independently to achieve satisfactory
results. The need for this is highlighted in Figure 5.4, where 5.4a displays
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Figure 5.4: Tracer detections with and without windowing. (a) All detected
debris when the detection model is applied directly to the entire image (1200×
1920 pixels). (b) Detected debris when the detection model is applied to
smaller, overlapping windows (300× 300 pixels with 10% overlap) tessellated
over the original image.

all masks identified in the image when the detector is applied to the entire
1200 × 1920 pixel frame at once and 5.4b displays all masks identified when
the image is first tiled into 300×300 pixel windows with 10% overlap. Clearly,
windowing is necessary given this particular model.

Poor detector performance is often expected when seeking to detect objects
that are small relative to the size of the frame and are in crowds. This may
be due to the functionality of detector models that are readily available for
fine-tuning. The Mask-RCNN model [147] is a convolutional neural network
(CNN) which must infer from uniformly sized images. Thus, when an oversized
image is provided to the network, it must first be downsampled and scaled to
match the acceptable dimensions of the network. An undersized image will be
upsampled and scaled appropriately. Upsampling, however, does not eliminate
features from the image, whereas downsampling will. Therefore, when a full-
sized image of tracers is provided to the detector, the fine features of the small
and crowded tracers may be lost to image pre-processing. Other backbone
architectures such as visual transformers (ViT) [150] may provide an avenue
to overcoming this obstacle. The state-of-the-art in detection is a rapidly
advancing frontier, where breakthroughs frequently occur. For this reason,
the proposed methods were designed to be modular.

When windowing was applied, the detection architecture was able to con-
sistently identify a majority of the particles in each frame. Evidently, the
spheres were better detected than the rods. This may be due to a variety
of factors, including simpler geometry, rotational symmetry, and proportional
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representation in training data. Additionally, the rods demonstrated a ten-
dency to align lengthwise into groups, which were commonly undetected or
misidentified.

Tracking Results
The ability to detect flow structures from gradients largely hinges upon

the quality of identified trajectories in a flow. While LGR significantly relaxes
trajectory requirements by resampling tracers at each time step, the flow map
Jacobian DFt

t0 along a given trajectory can only be computed if the analyzed
tracer is observable at all time steps in the interval [t0, t]. (Note that the relax-
ation afforded by LGR is a result of the non-necessity to observe neighboring
tracers over the entire observation interval. These tracers may only exist for a
single time step, but can still be used in the incremental gradient calculations
that feed into DFt

t0 via equation 3.16.). Thus, to the degree that trajectories
are accurately and fully mapped, flow structures can be reliably identified.

A significant hindrance to complete trajectory mapping is the occurrence
of missed detections in the previous stage. Even a sufficiently trained detector
applied to tessellated windows across the images occasionally misses detec-
tions, which splits a given trajectory into two pieces reducing the ability to
perform finite-time analyses. These missed detections, however, often only
occur once or twice in a row at random along a trajectory. Therefore, to
overcome this challenge, the polynomial-based trajectory merging algorithm
detailed in Appendix C was designed to restore trajectories broken by random
and sparse missed detections.

The improvement to trajectory statistics as a result of merging is presented
in Figure 5.5, where empirical complementary cumulative density functions
(ECCDF) are presented for merged and unmerged processing of the all debris
and the small spheres videos. Large markers indicate the median trajectory
length and dashed vertical lines indicate the mean trajectory length.

A few observations can be made from the data. First, all of the cases exhibit
near-subexponential distributions of trajectory length—they are all essentially
heavy-tailed. As a result, instantaneous metrics, which only require trajectory
length of 2, will have many more sample points at each snapshot in time
than their finite-time counterparts. As the length of integration extends, the
number of available trajectories decreases.

As a second observation, the small spheres data seems to slightly outper-
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Figure 5.5: Trajectory length statistics for the split plate LGR experiment.
Empirical complementary cumulative density functions are provided for the
trajectory merged and unmerged processing of both the small spheres data
and the all debris data. Large circles indicate the median trajectory length of
each data set, while dashed vertical lines indicate the mean trajectory length.
From the data, it is observed that trajectory merging successfully improves
trajectory quality prior to LGR implementation.

form the all debris data given the same processing parameters. This may be
due to a number of factors, including the added complexity of additional types
of debris, the ability of the detector to generalize from spheres to rods, and
clustering and crowding when more debris is present. However, the differences
are relatively small, and do not significantly impact the results on LGR.

Finally, the trajectory merging algorithm is observed to yield a dramatic
improvement to tracking capability. This is most readily perceived by the
median and mean trajectory lengths, which both increase significantly after
application of merging. This allows for many more viable samples of finite-
time metrics at each snapshot, thereby improving the interpretability of the
outcome. Nevertheless, it is noted that, even with trajectory merging, the
tracking implementation is relatively naive, and can be improved by applying
more advanced algorithms. Strategies for such improvements are discussed in
Appendix C.

Though the presented approach to object tracking is simple, it was able
to construct a sufficient number of tracks for trustworthy gradient estimation.
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Figure 5.6: Sample trajectories from the split flow experimental case study. A
subset of trajectories length 50 or longer from the small birch spheres dataset.
All trajectories start in x/t ∈ [−1, 1.25]. Color is determined by y/t. If the
first instance in a trajectory is in y/t ∈ [−0.5, 0.5] it is colored black. In this
display, t represents the thickness of the splitting plate.

Figure 5.6 displays a selection of the recorded tracks from the small spheres
data with 50 or more associated detections in world coordinates normalized
by the thickness of the plate t. Trajectories are colored based on their starting
location in the flow. Trajectories whose first detection is above the splitting
plate are colored in red, while those that are first detected beneath are colored
in blue. Those trajectories which began behind the plate are colored in black.
By observing the color of the trajectories based on their initial position, the
mixing effect of the shear layer begins to become evident.

5.7 Results for Gradient-Based Metrics
Having thus demonstrated the quality of estimated detections and trajec-

tories, LGR is now applied on the experimental data. Standard metrics based
on the velocity gradient tensor and the flow map Jacobian are displayed in
Figure 5.7 and discussed.

Flow Feature Identification
The performance of LGR is first demonstrated through the computation

of vorticity. Figure 5.7a presents the vorticity for data containing only small
birch spheres as tracers. Here, the vortex shedding that occurs at the trailing
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Figure 5.7: Results of the proposed analysis on the debris flow data. Top:
Small birch spheres as tracers. Bottom: All birch debris as tracers. Vorticity
is computed in (a) and (d), where red indicates positive value (counterclockwise
rotation) and blue indicates negative value. Finite-time stretching (FTLE) is
presented in (b) and (e), where yellow indicates large value and white is zero,
and finite-time rotation (LAVD) is given in (c) and (f), where bright blue
indicates large values.

edge of the plate is clearly visible in the computed vorticity values. In the given
frame, there are three clockwise vortices (blue clusters) which alternate with
counterclockwise vortices (red clusters). The vorticity in the data set using
all debris is presented in Figure 5.7d, where the inclusion of large spheres and
rods increases the density of tracers on the water surface and thereby impedes
some tracer motion through particle interactions. This is clearly seen in the
vorticity data, where there are fewer vortices (clusters of either red or blue)
visible.
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Finite time metrics can also be used to identify patterns in the flow of
detected tracers. Measurements of maximal stretching (FTLE) are presented
in Figures 5.7b and 5.7e for the spherical tracers and for all tracer classes, re-
spectively. A large value of FTLE (red to yellow masks on the image) indicates
that surrounding tracers will separate over the duration for which the com-
putation is performed. The theory of LCS suggests that ridges in the FTLE
field are codimension-1 material surfaces that act as barriers of flow transport
[48]. Because they are infinitesimally thin, FTLE ridges are difficult to iden-
tify from sparse data such as what is represented in Figure 5.7. Additionally,
inertial tracers, such as those used in the experiment, will diverge in vortices
as a result of centrifugal force due to rotation. This effect is evident in frames
e and f of Figure 5.7, where tracers are seen to have large FTLE and large
LAVD simultaneously. Despite these confounding effects, identifying regions
of trajectory divergence remains useful even when sharp ridges may be difficult
to discern.

LGR also enables measurements of cumulative rotation through computa-
tion of LAVD. The LAVD results for the case study are displayed in Figures
5.7c and 5.7f for the spherical tracers and for all tracer classes, respectively. If
a tracer exhibits a large value of LAVD (bright blue masks), then surrounding
tracers will rotate around the examined trajectory. Unlike FTLE fields, LAVD
reveals volumetric regions of the material that experience significant rotation.
Therefore, clusters of tracers with large LAVD values can be instructive for
identifying coherent structures in the dynamical system. Such clusters are
clearly visible in both Figures 5.7c and 5.7f.

5.8 Discussion of Results
In this chapter, a modular procedure has been developed to enable kine-

matic measurements in flows that are characterized by the motion of naturally
existing observable tracers. The results for the proposed method have been
presented on a laboratory flow emulating a debris flows which may be observed
elsewhere. Here the method and the results are discussed with implications.
The method shows promise for expanding flow measurement capabilities, but
also exhibits limitations that encourage further development.
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Figure 5.8: Application of the methods proposed by this chapter
to aerial footage of herding sheep. Sheep are colored by their
“vorticity.” The displayed image is taken from a YouTube video
(https://www.youtube.com/watch?v=MSjbOlQVN58) originally produced by
the Idaho Rangeland Resources Commission and posted by SWNS [156]. Re-
produced with permission.

A Semantic Approach to Measurement of Flow Kinematics
Typical approaches to flow measurement are syntactic, in the sense that

they focus on the structure and form of the data rather than its meaning.
Optical flow and PIV are both examples of syntactic analyses of motion, which
quantify observed movement based on the structural change of pixel intensities
between frames. The effect that this has on natural data was evident in Figure
5.3, where large spurious gradients were observed at the interface of the cloud
of tracers where tracer motion was visible but flow motion was not.

The approach developed in this section is, to the author’s knowledge, the
first semantic approach to measuring flow kinematics. It measures the flow
based on the meaning and context of the underlying images rather than on
their structure. By selectively identifying the immersed observable tracers,
the motion of the flow is factored into the analysis without including other
details from the scene. This was shown to effectively detect flow features in
the analysis centered on Figure 5.7 by a variety of metrics.

That the proposed method is semantic implies that it is extensible to use
cases not often considered for kinematic analysis. Two examples come to

https://www.youtube.com/watch?v=MSjbOlQVN58


106

mind: First, it could be directly applied to assessing the kinematic behavior
of groups of tracers of other categories than passive flow tracers. For instance,
the method could be applied to the motion of pedestrians, traffic, or herds and
swarms if the correct training data is supplied. In fact, out of interest, these
approaches have already been applied to aerial footage of sheep being herded;
an example image displaying vorticity (if such a thing exists in sheep flows) is
presented in Figure 5.8.

The second example of a use case enabled by the proposed method is that
of analysis of multiple object categories simultaneously. For example, while
not pursued in this work, it would have been possible to consider the motion of
rods separately from the motion of spheres in the simulated debris flow. Other
useful examples may include the simultaneous analysis of bubbles, sediment,
and neutral tracers simultaneously in a flow.

Reliable Gradients from Difficult Data
The methods introduced in this work were designed with the intent of

enabling the computation of flow gradients and related metrics in dynamical
systems which are typically intractable to gradient-based analyses. As illus-
trated in Figure 5.3, the experimental case study of section 5.3 represents
data where flow gradient estimation is extremely difficult when applying tra-
ditional analyses. By implementing the methods developed in this chapter,
reliable gradients and associated metrics are directly computed with little ad-
ditional processing. The principal requirement for success is the availability of
training data on the classes of tracers to be tracked.

Incorporating Single-Particle Kinematics
Though it is not explored in examples contained in this dissertation, the

semantic tracking approach to flow kinematics may naturally be extended
to consider the rotation and deformation (if a deformable body) of tracked
tracers. One application of this might be to incorporate the observed rotation
of a tracer into estimates of underlying flow gradients. Because the mask
of the object is computed through the detection step, all of the information
required to calculate particle rotation is readily available. Alternatively, one
could identify features on each object and track their motion between frames.
Similar approaches could be employed to measure deformation of an identified
body.



107

Modular Framework for Continuous Improvement
The framework developed in this work has been modularly constructed to

accommodate the rapid advancement of object detection and tracking capa-
bilities. The detection and tracking schemes used in the examples above are
relatively naive given the current state of the field, and therefore serve as an
apt demonstration of the framework as a whole; if gradients can be successfully
computed using simple detection and tracking schemes, then more advanced
methods will be able to improve upon the results. As computational analy-
ses become increasingly general, they will serve to enhance this approach to
kinematic analysis rather than supersede it.

Lenient Hardware Requirements
The methods introduced in this work can be easily implemented using

affordable, readily available hardware. All of the data presented in the experi-
ments were collected using measurement systems costing less than 1000 USD.
The cost of laboratory experiments, by contrast, can easily exceed orders of
magnitude greater than this. Moreover, due to the availability of large pre-
trained computer vision models, detector training costs are modest and do not
require more computational power than a desktop computer. Therefore, the
methods developed here are relatively democratic in the sense that they allow
hobbyists and other enthusiasts to begin making measurements without access
to specialized equipment.

Present Limitations
Missed detections resulting in truncated trajectories represent the primary

barrier to estimated gradient accuracy. This is especially true when comput-
ing finite-time metrics like the FTLE and LAVD, which require the existence
of trajectories over extended intervals. With the simulated debris flow, while
there were missed detections for both the small spheres and all debris cases,
they were more frequent when using all of the debris. Rods, and especially
groups of aligned rods, were less likely to be detected than the spheres. This
suggests that improvements can be made by training on more data. Addition-
ally, as the algorithm is currently implemented, the detections are indepen-
dent in each frame. However, significant improvement could be made to the
LGR outcome if tracking techniques that incorporate detections from previous
frames such as SORT [152] or deepSORT [153] are implemented for trajectory
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construction. Thus, it seems that there are many algorithmic modifications
which can quickly improve performance.

Moreover, while real-time implementation of the LGR pipeline is a long-
term goal of this work, it is not yet achievable. With the current implemen-
tation and modest hardware, processing one of the debris flow videos requires
on the order of hours of computation. The bottleneck in computation time is
the detection step, which uses a large model to fully mask tracers and store
the mask information. However, for the gradient analyses, the masks are not
needed—only the centroids. Other models might be able to efficiently identify
tracer centroids without all of the overhead incurred by large detector models
like Mask-RCNN.

Aside from changing models, computation time could be greatly reduced
if one were to optimize the code for better performance on a GPU. This work
represents a proof-of-concept and a demonstration of a new technology, and
is yet far from practical, consumer implementation. If engineering effort were
devoted to the task, it seems likely that many more cases could be analyzed
online in real-time.

5.9 Related Directions for Future Work
The semantic kinematic measurement approach developed in this chapter

offers many avenues of potential development and expanded research.

1. The proposed method should be applied to a variety of different flows,
especially those outside of the laboratory. This extension is explored
later in the thesis with Chapter 7, but should be pursued in other con-
texts as well. For instance, the method could be extended 3D and the
analysis of deformable bodies like jellyfish. Such studies would progress
the state of the method and would benefit the research community.

2. This dissertation is satisfied to implement only the Mask-RCNN for de-
tection and template-matching for tracking. However, other algorithms
should be tested in their place and considered for their benefits. As real-
time analysis is desired, for instance, it may be useful to test lighter-
weight centroid detection algorithms and apply target association algo-
rithms that do not require image content. Such advances would be a
step closer to AMFM systems.

3. In the same vein as the previous point, the existing algorithms should
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be optimized to perform quickly and to perform on GPUs. The current
implementation is designed for research purposes, and is not yet suitable
for deployment.

4. Finally, from a fluid mechanics perspective, analysis of surface tracer
motion relative to sub-surface motion should be examined. This is the
subject of Chapter 6, which performs a preliminary investigation of the
matter.



110

C h a p t e r 6

SYNCHRONOUS EXAMINATION OF SURFACE TRACER
AND SUB-SURFACE FLOW DYNAMICS

Common approaches to experimental flow field measurement require that very
specific flow tracers be added to the studied fluid and that they are carefully
illuminated in the region of interest. In the last chapter, however, a measure-
ment approach was proposed which could estimate kinematic behavior from
arbitrary classes of tracers in arbitrary scenes. A principal advantage of this
approach is that it can be used to perform experiments in locations and cir-
cumstances where there is limited control over the flow. Rather than seeding
and illuminating tracers, those that are naturally available can be used for the
measurements.

However, measuring a flow by the motion of arbitrary tracers raises ques-
tions as to the authenticity of the approximated kinematic features that they
elicit. The tracers used for common flow field measurement techniques such
as particle image velocimetry (PIV) are assumed to be neutrally buoyant and
essentially massless. In other words, they are assumed to perfectly follow the
flow without deviation from the pathlines of fluid elements. These assump-
tions, however, do not hold in general. Surface tracers have mass, non-trivial
geometry, buoyancy, roughness, and other features which cause their trajecto-
ries to deviate from the trajectories of fluid parcels.

This chapter is written in response to the problem posed by imperfect trac-
ers. Can kinematic measurements approximated from the motion of arbitrary
tracers—and particularly observable surface tracers—be considered trustwor-
thy?

To address this question, an experiment was performed which pits tradi-
tional flow field measurements against the methods developed in Chapter 5.
PIV is recorded simultaneously with semantic tracer tracking, and the results
are compared directly. A preliminary analysis is performed on the data, and
the results are considered and discussed. It is found that, while surface tracers
do not perfectly represent the motion of sub-surface flow (to a degree depen-
dent on tracer properties), their motion can still generally be used to identify
features like vortices with reasonable accuracy.
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The remainder of this chapter is structured as follows. First, a brief discus-
sion of relevant background work is provided in Section 6.1. This is followed
by details regarding the performed experiment in Section 6.2 and processing
parameters in Section 6.3. Various aspects of results are discussed in Sections
6.4, 6.5, and 6.6. Finally, discussion and implications are provided in Section
6.7 and avenues for future work are provided in Section 6.8.

6.1 Additional Background
There is a great breadth of literature examining the effectiveness of im-

perfect tracers for measuring fluid flows. It is not possible, in the scope of
this chapter, to adequately probe its depths. Nevertheless, this section pro-
vides a cursory discussion of some important topics related to imperfect tracer
dynamics in complex flows.

Due to the prevalence of optical flow field measurements involving tracers
such as PIV and LPT, much research has been done to determine measurement
accuracy from very small immersed tracers. Typically, the Stokes number
is used to quantify a particle’s response to the flow. The Stokes number
represents the ratio of the characteristic response time of a tracer τp to the
characteristic timescale of the flow τf [18], [21]

Stk = τp

τf

. (6.1)

In PIV experiments, the force of drag on the tracers is typically approximated
by Stokes’ drag law

Fd = 6πµRv, (6.2)

where Fd is the force of drag on a spherical body, µ is dynamic viscosity, R is
the sphere radius, and v is the flow velocity relative to the object. For Stokes’
drag law to be valid, it must be assumed that the tracers are smooth, spherical,
of homogeneous material, surrounded by locally laminar flow on the scale of the
particle, with no inertial effects or interactions with other particles. In other
words, the tracers must be sufficiently small that they mimic the accelerations
in the flow. If these assumptions hold, then

τp = d2
p

ρp

18µ, (6.3)

where dp is the tracer diameter and ρp is the the density of the tracer [18]. The
characteristic time scale of the flow τf is dependent on the specific flow. It is
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typically represented as the ratio between a length scale and a characteristic
velocity. It is often recommended that tracers should have Stokes number
Stk < 10−1 for them to be considered accurate flow tracers. Practically,
this means that PIV tracers seeded in water are often in the range of 10-100
microns.

While appropriate for PIV tracers, the Stokes’ drag assumptions are strin-
gent. When such conditions are not satisfied, mathematical models incorpo-
rating inertia and flow unsteadiness are often used to study tracer behavior.
The Maxey-Riley equation [157]–[160] is a commonly used model which de-
scribes the motion of a small rigid sphere in non-uniform flow. The form of
these equations is complex, involving spatial and temporal derivatives along
with a time-integrated memory term. Since they are not being solved here,
the equation is not reproduced.

The Maxey-Riley equation has been widely applied in studies examin-
ing tracer motion. For instance, it has been applied to the formation of
rain droplets [161], the dispersion of aerosolized particles with applications
to COVID 19 [162], and to the motion of ocean drifters [163], among others.
It has also been applied to understanding the influence of tracer inertia on co-
herent structure formation [82], [164]. For instance, the study by Sudharsan,
Brunton, and Riley [164] apply the Maxey-Riley equation to tracers embedded
in the Double Gyre flow. This study showed that heavy tracers (relative to
the fluid) accumulate near the FTLE ridges, whereas lighter tracers accumu-
late near the vortex centers. This result is relevant to the present study, since
surface tracers will, by nature, be less dense than the fluid they are in.

The Maxey-Riley equation, however, is only suitable for modeling suffi-
ciently small, spherical particles. The dynamics of larger tracers or those with
aspherical geometries do not have a general, accepted model. That is not
to suggest that such tracers are not significant in modern applications. Two
prominent examples include the motion of ice floes in at Earth’s poles (for
example, see the work by Wilhelmus and collaborators [165], [166]), and the
transport and settling of plastic particles and garbage in global waterways
(e.g., the work of van Sebille et al. [167], [168] and of DiBenedetto et al. [169],
[170]). From a slightly different vantage, the visual anemometry approach of
Goldschmid et al. [171] utilizes imperfect tracers for flow measurement by in-
ferring wind velocities from the recorded motion of vegetation. Due to the
complexity imperfect tracer dynamics, these applications tend to be analyzed
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experimentally, as constructing a general numerical model in such cases is not
tractable.

Aside from evaluating the degree to which surface tracers can be useful for
flow measurement, this work provides a novel experimental approach to study-
ing the motion of arbitrary tracers. Currently, a popular approach employed
to study aspherical particles is to examine tracer shadows cast by a collimated
light source [169], [172]. Part of the reason why shadowgraphy is required in
these instances is the inherent difficulty of identifying tracers in natural im-
ages. The semantic flow measurement approach of Chapter 5, however, may
enable such measurements without the need for shadowgraphy.

6.2 Impulsively Stopped Airfoil Experiment
In order to compare surface tracer motion with sub-surface fluid motion,

it was necessary to test a flow which was highly repeatable and approximately
2-dimensional. Given the available experimental equipment at GALCIT in the
NOAH laboratory, the flow of an impulsively stopped backwards-facing airfoil
at high angle of attack was selected. The details surrounding the design and
implementation of that experiment are provided in this section.

Experimental Setup
The impulsively stopped airfoil experiment was conducted in the NOAH

free surface water channel facility described in Appendix B. Though typically
run as a flowing water channel, the fluid in the test section was kept still for the
present experiments. Instead, fluid motion was generated using NOAH’s cap-
tive trajectory system (CTS), which is described in Section B.1 of Appendix B.
A 2-dimensional NACA 0018 airfoil section with 10 cm chord was affixed to the
head of the CTS manipulator and traversed through a pre-programmed trajec-
tory. Image recording was synchronized to the CTS movement, guaranteeing
repeatability between experimental runs. A schematic of the experimental
setup in the NOAH facility is provided in Figure 6.1.

While preparing and testing the experiment, it was found that the most
effective way to study surface and sub-surface flow simultaneously was to calcu-
late surface tracer motion and PIV from the same image sequence. Therefore,
PIV images were recorded from beneath the water channel with various trac-
ers present on the water surface during records. Although the scattered light
of the laser was sufficient to illuminate the underside of the surface tracers,
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Figure 6.1: Illustrations of the experimental setup used for the surface tracer
characterization experiment. Left indicates a 3D view of the test section and
right indicates a 2D side view including the imaging equipment.

additional illumination was provided by an LED lamp to improve tracking
performance. The plane of the laser used for PIV measurements was situated
approximately 3.8 cm (1.5 inches) beneath the surface of the water so that
surface movement could be better correlated with sub-surface measurements.
If the distance between the PIV plane and the water surface were closer, sur-
face deformations due to the induced flow would have struck the laser sheet
and caused aberrations in PIV measurements.

Flow imaging was performed using a single Phantom Miro Lab 320 high-
speed camera through a Nikon Nikkor 35mm f/1.8 lens. All data was collected
with a 200 Hz sampling rate to ensure the quality of PIV image processing.
Because the deep object tracking methods are sensitive to missed detections,
the finite-time measurements benefit from a slower sampling rate. Therefore all
videos were down sampled to 100Hz prior to tracer tracking. It is noted that
the PIV plane was observed directly through the floor of the water channel and
was not observed through the free surface. Therefore, the sub-surface flow was
not obscured by surface tracers, nor was it distorted by surface deformations.

Flow Configuration
The flow selected for analysis is that of an impulsively stopped backwards-

facing airfoil at high angle of attack. The chosen airfoil was a 2-dimensional
wing section of NACA 0018 geometry with 0.1 m chord length and 0.45 m
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Figure 6.2: Graphical representation of the prescribed airfoil trajectory and
subsequent image collection.

submerged span. The airfoil extended vertically from the CTS mount into the
water to a position near the floor of the water channel. Other experiments
with a similar configuration in the NOAH channel include those performed by
Hooper et al. [173], [174].

Fluid motion was generated by traversing the submerged airfoil through
a prescribed trajectory with the CTS. After performing a variety of tests, an
impulsively started and stopped motion of the backwards-facing airfoil at high
angle of attack was chosen for the experimental flow. The airfoil was initially
placed outside of the camera’s field of view and given a 135◦ angle of attack
to the direction of prescribed motion. Thus, the airfoil was faced backwards
at 45◦ towards the incoming flow. This was designed to encourage repeatable
flow separation at the trailing edge of the airfoil.

At the start of each run, the airfoil was impulsively started to a prescribed
velocity va and translated in a straight line over a fixed distance da. The airfoil
was then impulsively stopped at a position xstop such that the trailing edge
of the airfoil protruded into the bottom of the experimental field of view. For
the cases considered in this chapter, the airfoil velocity was set to va = 0.1
m/s and the translation distance was fixed to da = 0.2 m = 2c, where c = 0.1
is the airfoil chord length. Figure 6.2 illustrates the prescribed trajectory.

The command to stop the airfoil translation was synchronized with the
command to begin recording images. Therefore, the experiment examined the
vortex dynamics immediately following the airfoil motion. Records of 2500
frames were recorded at 200 Hz, equating to t = 12.5 seconds of recorded mo-
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tion or t∗ = tva

c
= 12.5 in units nondimensionalized by the airfoil velocity and

chord length. To ensure repeatability between runs, the airfoil was returned
to its original position and left still for approximately 10 minutes between
records.

Surface Tracer Conditions
Since the intent of this experiment was to evaluate the legitimacy of sur-

face tracers as flow indicators, a variety of tracer configurations were tested.
These included birch spheres (9.53 mm and 19.05 mm diameters), cylindri-
cal birch rods (6.53 mm diameter cut between 12.7 and 50.8 mm lengths),
and beeswax pellets (approximately spherical with 3.17 mm diameter). Tests
were performed using various configurations of the tracers discussed above.
The particular configurations along with the number of runs collected for each
configuration are recorded in Table 6.1.

Given the studied flow and the tracers selected, the assumptions of Stokes’
drag law almost certainly do not hold. Nevertheless, an estimate of the Stokes
number is provided for all four of the tracer types implemented. To approx-
imate the characteristic timescale of the flow, the chord length of the airfoil
c = 0.1 m and its translation velocity va = 0.1 m/s are used. Thus, the char-
acteristic timescale of the flow τf = c

va
= 1. Even though the tracers are not

fully submerged in the water, the dynamic viscosity µ = 89× 10−5 kg/(m · s)
is assumed for water at 25◦ C. The density of the birch spheres and rods is
assumed to be ρp = 640 kg/m3, and the density of beeswax is assumed to be
ρp = 964 kg/m3. Thus, by applying equation 6.1, the estimated Stokes number
of the small spheres is StkSS ≈ 3.6, of the large spheres is StkLS ≈ 14.5, of the
rods is StkR ≈ 6.4− 103.1 (Using the length of the rod. It is recognized that
Stokes’ drag is designed to apply only to spherical particles. This value is only
computed for consideration.), and of the beeswax StkBW = 0.6. All of these
values are far above the recommended Stokes number threshold of Stk = 0.1.

Aside from the factors accounted for by Stokes number, the particles ex-
amined in this experiment also differ from idealized tracers in other regards.
Factors such as surface roughness, hydrophobicity, aspherical geometry, and
surface tension will also cause the tracers’ trajectories do deviate from ideal
trajectories with similar initial conditions.

Surface tension and hyrdrophobicity influenced the experimental seeding
procedure for the surface tracers by generating capillary forces which caused
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tracers form clusters [175]. Before each experimental run was conducted, the
tracers were manually positioned within the frame of view and dispersed from
clusters which had formed. This reduced the number of clusters formed at the
start of each run. However, it is worth noting that the clusters themselves
may be useful tracers in some regards.

Surface tension has also been seen to influence the interactions of vor-
tices with a free surface. For instance, the work by Gharib, Willert, and
Weigand [176], [177] explores the modes in which vortex rings and vortex
tubes parallel to the free surface disconnect from themselves and connect to
the free surface. It was found that modifying the water surface tension through
the application of a surfactant altered vortex connection behavior. Since the
vortices examined in this experiment are normal to the free surface and the
wood and beeswax tracers do not alter the surface tension of the water, surface
tension measurements were not collected during experimentation.

6.3 Data Processing Approach
Defining the appropriate data-processing pipeline was critical to the success

of this experiment. On one hand, obtaining accurate PIV measurements was
contingent upon removing the visible surface tracers from the images prior to
velocimetry. On the other hand, semantic kinematic measurements required
the ability to clearly distinguish the same tracers that were removed from PIV

Table 6.1: Surface tracer configurations with the number of datasets recorded
per configuration.

Configuration 3.17 mm
Pellets

9.53 mm
Spheres

19.05 mm
Spheres

6.53 mm
Rods

Runs

Approx. Stk 0.6 3.6 14.5 6.4–103.1
Control 10
Beeswax ✓ 5

Small Spheres ✓ 3
Large Spheres ✓ 3

All Spheres ✓ ✓ 3
Rods ✓ 3

Spheres and Rods ✓ ✓ ✓ 3
All Debris ✓ ✓ ✓ ✓ 3
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Figure 6.3: Pre-processing steps applied to raw images prior to PIV veloc-
ity estimation. First, a mask is applied to remove physical obstructions from
calculations. Then, background content including visible surface tracers are
removed by the subtraction of a polynomial locally fitted to image intensities.
Finally, additional evidence of surface tracers are removed by subtracting val-
ues under a threshold. The result contains only PIV particles to be used in
the computations.

processing. This section outlines the process used to satisfy these contradictory
objectives.

PIV Processing
Surface tracer removal from PIV images was accomplished through a multi-

step process illustrated in Figure 6.3. First, the permanent obstruction of the
airfoil protruding into the frame was removed by geometric masking. This
step involved identifying within an image which pixels were not relevant to the
flow and removing them by hand. Since the airfoil did not move during the
recordings, only one mask was needed for all frames. The odd mask geometry
observed in Figure 6.3 results from the fact that the 2D airfoil protrudes out of
the measurement plane towards the camera. Moreover, there is a small elastic
oscillation of the blade that occured as a result of the impulsive stop which
was also covered by the mask.
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Once the mask had been applied, visible surface tracers were eliminated
from the image via subtracting a local polynomial fit of image intensities from
within a surrounding 7 × 7 pixel window at each pixel location. This is ef-
fectively an advanced form of median subtraction, as PIV particles—which
are characterized by spikes in pixel intensity—are not captured by the smooth
polynomial fit of the underlying scene. A variety of window sizes were tested
while establishing a processing pipeline, but it was found that larger windows
did not effectively remove surface tracer edges, and smaller windows removed
too many particles. Once the polynomial fit was removed, all pixels with val-
ues under a threshold were set to zero to eliminate any remaining evidence of
surface tracers.

Once the raw images had been pre-processed to remove evidence of surface
tracers, 2-dimension, 2-component (2D2C) PIV was computed on the image
sequence. Four passes of the PIV algorithm were applied to the images. The
first pass used a 64 × 64 circular pixel window with 50% overlap, and the
following three passes used a 24× 24 circular pixel window with 75% overlap.
Vector validation was performed on the resulting vector fields. Any vectors
with velocity larger than 0.4 m/s were removed outright, and a universal outlier
detection scheme based on median filtering was applied to eliminate spurious
velocities. All removed vectors were filled via interpolation.

All of the runs listed in Table 6.1 were processed using the described ap-
proach. A control set of data containing ten runs without any surface tracers
and processed without image pre-processing were collected to ensure that de-
viations in PIV velocity fields due to surface tracers were minimal. Two sets
of ensemble averaged velocity fields were computed from the recorded data.
The first set averaged only the clean data, and the second averaged over all
runs. Comparing these results yielded little difference, so the average of all
data was henceforth used as a baseline for flow behavior.

Surface Tracer Analysis
The motion of surface tracers was examined using the semantic detection

and tracking approach developed in Chapter 5. Tracer detection was achieved
using the Mask-RCNN detection model [147] with a pre-trained ResNet50
Backbone [154]. The Mask-RCNN model was fine-tuned to identify surface
tracers using training data collected from the videos recorded by the process
outlined in Section B.3 of Appendix B. These training images were added to the
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set collected and utilized in Chapter 5 in order to develop an improved semantic
understanding of debris particles. During inference, 256 × 256 pixel windows
with 25% overlap were supplied to the detection model for all configurations
except for the Large Spheres case, which used 1024× 1024 pixel windows with
25% and the Rods case, which used 512 × 512 pixel windows with 25%. The
centroids of tracer masks were recorded and considered as the tracer locations
on the flow surface.

Tracer trajectories were constructed using the template-matching scheme
applied in the asymmetric wake experiment of Chapter 5 and thoroughly de-
tailed in Appendix C. Trajectories with fewer than three detections were auto-
matically discarded. Initial trajectories were merged by the merging protocol
described in Appendix C. Results were filtered and smoothed by the applica-
tion of a median filter with a kernel length of 5 and a Gaussian filter with a
kernel length of 10.

Calibration Alignment
Although both sub-surface and surface flow measurements were recorded

from the same set of images, a separate calibration was required for each
measurement plane. Calibration in the plane of PIV was performed using a
LaVision Type 11 calibration target. The target was translated to various
positions in the field of view, and a pinhole calibration model with radial
and tangential distortion correction was fit to the collection of calibration
images. Calibration on the surface of the water channel was achieved using
the ChArUco method outlined in Section B.2 of Appendix B. A large ChArUco
calibration target was floated on the water surface such that it filled the entire
field of view of the camera.

Both of these calibration procedures successfully mapped sensor values to
the world coordinates with the appropriate scale, but they were not naturally
aligned. The datum in each frame was not aligned, and there was slight
difference in rotation angles in x, y, and z axes. To align the calibration
planes so that one-to-one measurements could be made, masks of the airfoil
were used as landmarks to be aligned. Comparing the transformed positions
of the masked airfoil between calibrations, a 3× 3 rotation matrix and a 2-D
translation in x and y were found by iterated inspection and applied to the
homography matrix used in the LGR calibration. The results are displayed in
Figure 6.7, which is discussed in a later section.
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Procedure for Interpolation to Fields
In this chapter, the results between the surface tracking and the sub-surface

PIV are compared, in part, by interpolating the scattered data observed by
the surface tracers to the field positions where PIV is estimated. Converting
the data from Lagrangian velocities to Eulerian velocity fields can be sensitive
to the particular scheme used for interpolation, especially when there is some
measure of uncertainty in the scattered data. Performing a direct linear or
even polynomial interpolation typically yields poor results, as it ensures the
interpolated field passes through all of the scattered data points.

Other interpolation schemes handle noise and uncertainty gracefully by
providing the option for interpolated fields to deviate from the scattered data
values to some degree. One such interpolation scheme is radial basis function
(RBF) interpolation, which is employed in this chapter for approximating ve-
locity fields from Lagrangian surface tracer measurements. RBF interpolation
is a method which constructs a function that is a linear combination of radial
basis functions, which depend only on the distance between the point of eval-
uation and the scattered data points. The function is constructed such that
it interpolates the scattered data points and minimizes the difference between
the interpolated field and the scattered data. A smoothing parameter can be
adjusted to control the degree to which the interpolated field deviates from the
scattered data. The implementation of RBF interpolation used in this chapter
is the scipy.interpolate.RBFInterpolator function provided by the SciPy
Python package [178]. A linear kernel with a smoothing parameter of λ = 0.01
was applied in most cases presented. More details about the mechanics of the
method can be found in the SciPy documentation and the references therein.

6.4 Character of the Flow
In this section, the qualitative behavior of the flow is briefly examined

purely through the lens of PIV. Considering the dynamics of the flow in isola-
tion helps to provide context for the comparisons to be made in later sections.

Figure 6.4 displays sample frames from the progression of the flow immedi-
ately following the impulsive stop of the airfoil. Vorticity computed from PIV
(heavily smoothed with a 15 × 15 Gaussian smoothing kernel) is displayed
atop the image from which it is computed. The flow is shown at different
instances throughout its progression from top to bottom, left to right, indi-
cated by the nondimensional timestamp in the lower right hand corner of each
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Figure 6.4: Smoothed vorticity computed by PIV for the impulsively stopped
airfoil flow. Positive vorticity is indicated by hot colors, and negative vorticity
by cold colors. Underlying images represent the data from which PIV is taken.
These exhibit different surface tracer configurations which, from top to bottom,
left to right are: small spheres, beeswax, all spheres, all debris, large spheres,
and rods.

frame. Positive vorticity is colored in warm colors, while negative vorticity is
given cool coloring. The colormap is kept constant throughout the progression
to illustrate how vorticity dissipates over time.

Frames are taken from computations performed on different surface tracer
configurations, which are displayed underneath the vorticity. The images of
tracers are included in the display in order to give context for the appearance of
various tracers in the images and to visualize qualitatively how tracers respond
to the underlying flow over time. In the same order as the timestamps, the
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tracer configurations displayed are: small spheres, beeswax, all spheres, all
debris, large spheres, and rods.

Flow measurement begins as the airfoil ceases movement. Already, the
sharp point of the trailing edge and the large angle of attack have generated
a strong counterclockwise vortex as the airfoil was moved to its final position.
This vortex is visualized in frame t∗ = 0 as the large yellow cloud of vorticity.
As the flow develops, the momentum induced by the motion forces fluid around
the trailing edge of the airfoil creating a clockwise rotating vortex indicated
in blue at time t∗ = 1. These vortices are directed upwards by the fixed
geometry of the airfoil and the velocities induced by the vortices. They are
observed moving together towards the top of the frame by t∗ = 2. At this point,
the vortices begin to break down and dissipate into broader, less concentrated
regions of vorticity. As time continues, energy dissipates further, and vorticity
begins to neutralize throughout the domain. The last fluid motions observed
over the interval are vortices shed off of the leading edge of the airfoil just off
screen of the bottom edge of the frame.

An important feature to notice in the surface tracer motion is that a void
develops in their spatial distribution in the region of the observed vortices as
they begin to break down. Multiple contributors may be responsible for this
phenomenon which was observed in most of the experimental cases. First,
the momentum of the tracers themselves may lead to the opening of surface
tracer voids. As tracers are entrained into the vortices they begin to rotate
with them. Near the center of these vortices, the rotation can be relatively
high—peak vorticity in this flow is over 10 radians per second. Because the
surface tracers have mass, this rotational motion will generate a centripetal
force pulling them away from the center of the vortex. If this force becomes
large enough, it may pull the tracers away from the core of the vortex, opening
up the gaps which are observed.

Three-dimensionality of the flow may also be a contributor to surface tracer
dispersion. The gap seems to grow as the two coherent vortices break down
into a more chaotic tangle of smaller vortices. While only planar velocities are
observed in this experiment, the underlying flow field at times t∗ ≥ 3 surely
exhibits three-dimensional motion. These three-dimensional motions likely im-
pact the flow at the surface, but buoyant surface tracers will move primarily
in-plane due to their buoyancy. Thus, the increasing three-dimensionality of
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the flow may contribute to the opening of voids in the surface tracer distribu-
tion.

Regardless of the mechanism exposing the gaps in the surface tracers, their
existence affects what is measurable on the surface of the water. Where the
gaps are opened, interpolated field quantities will be less reliable.

Tracer clustering due to capillary forces [175] is visible in the frames of
Figure 6.4. The clusters are most prominently observed in the small spheres
(t∗ = 0), the beeswax (t∗ = 1), and in the rods (t∗ = 6) which cluster in
parallel, but the phenomenon was prevalent across all surface tracer conditions.
When the underlying gradients were small, the clusters tended to move as a
single unit, but when the flow gradients beneath the clusters were strong, the
dynamic forces on the tracers overcame the capillary adhesion, causing them
to disperse from the clusters.

In an attempt to characterize the reliability of the PIV data by measure-
ment time, an analysis of the PIV error from the mean was conducted. An
ensemble average of all of the PIV flow fields listed in Table 6.1 was calcu-
lated and the root-mean-square error (RMSE) from the mean was computed
for each individual run according to

RMSE(|v|) =
√√√√ 1
n

n∑
i=0

(
|vi| − |v|

)2
, (6.4)

where |vi| represents velocity magnitude of a PIV vector and |v| represents the
ensemble average of the velocity magnitude of that vector from all samples.
These errors were then averaged over all runs to obtain the average RMSE at
each vector location and time in the recordings. The change in RMSE over
time is considered in absolute terms by the mean RMSE per frame of PIV
data, and in relative terms by the norm of the RMSE in a frame divided by
the norm of velocity magnitude in a frame. The results of these computations
are presented in Figure 6.5.

The spatial mean of the RMSE of velocity indicates that the total measure-
ment error in the flow is relatively low at all times, but is lowest at the start
of the recording. The error magnitude increases to a peak at approximately
t∗ = 4 and then decreases to a steady state by t∗ = 0.8. These results are con-
sistent with what might be expected from Figure 6.4, where the flow field at
t∗ = 4 appears disordered, but still exhibits higher energy levels. Prior to this,
the flow motions are high energy, but more structured. Beyond it, the energy
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Figure 6.5: Examination of PIV uncertainty over time. Top: Spatial mean
root-mean-square deviation from the ensemble average of all velocity fields.
Bottom: Relative deviation of velocity magnitude as measured by the norm
of each RMSE field over the norm of the corresponding averaged velocity
magnitude field at each instant in time.

decreases, but the disorder increases. The spatial mean of RMSE is tied to
the amount of energy in the flow, so even though the structure of the flow is
chaotic beyond t∗ = 4, values still decrease since the energy is dissipating.

The relative deviation of velocity magnitude shows a different trend. This
metric accounts for the amount of energy in the flow by normalizing the error
by the norm of the ensemble averaged velocity magnitudes. Thus, this is more
strictly a measure of the repeatability of the experiment at a given instant in
time. By this analysis, it is evident that flow variability continues to grow in
throughout the interval. The most reliable times for performing comparisons
are when t∗ ≤ 2. This is also consistent with what was observed in Figure 6.4,
as the strong vortices which characterize the initial fluid motion have not yet
begun to break down into smaller vortices and dissipate their energy.

This analysis suggests that, when judging between cases, the fairest com-
parisons will made early in the recording where the absolute and relative error
are the lowest. This is taken into consideration in the following sections as
results are discussed.
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6.5 Quality of Surface Tracer Detection and Tracking
In the previous section, the character of the flow and the trustworthiness

of PIV measurements were considered. The quality of tracer detections and
associated trajectories must also be examined. A sufficient number of reliable
trajectories must be found for any conclusions relating surface tracer motion
to sub-surface dynamics to be considered reliable. Here, the effectiveness of
semantic object detection and tracking is examined for the various categories
of surface tracers tested.

Detection Results
Figure 6.6 displays sample frames from each surface tracer configuration

with detected tracer segmentation masks overlaid with a unique color. Each
detection was assigned a single color, therefore, adjacent tracers with the same
color represent a single detection. By the results, the detection procedure ap-
pears to be effective at identifying a majority of the tracers in all configurations
to varying degrees of success. The model performs best on for the configura-
tions containing small or large spheres only. In these cases, almost every tracer
is identified in the sample frame and the masks generally cover all of the tracer
they represent. There are some aberrations in the “all spheres” configuration
where the masks of many large spheres appear to be incomplete (i.e., the mask
exists on the tracer, but not over the entire tracer). This is likely due to the
fact that 256 × 256 windows were used for detection, which was occasionally
too small to fully detect the large spheres.

Somewhat surprisingly, beeswax pellets were also detected with relatively
high accuracy. This is especially true in regions of the flow where the pellets
are broken apart from the clusters that they naturally form. This is useful in
flow measurement applications, as fluid movements like vortices tend to break
apart the groups of pellets, making them more effective flow tracers. The
detections of beeswax pellets are the least accurate when they are gathered in
groups. In this case, the detector seems to often identify a group of tracers as
a single tracer. This is not a critical failure mode, as the group of tracers can
act as a single tracer, but it complicates trajectory formation as the clusters
can morph or break up, causing ambiguity.

Rods were the least accurately detected of all tracers considered in this
experiment. This is consistent with what was found in Chapter 5. Rods tend
to gather together lengthwise, presumably due to surface tension effects. When
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Figure 6.6: Sample frames (some cropped) from each surface tracer configura-
tion demonstrating the quality of surface tracer detections. Detected tracers
are indicated by randomly colored segmentation masks. Each detected tracer
is marked with a single color. Thus, any adjacent tracers that are indicated
by a single color were detected as a single tracer (as was the case with many
groups of rods).

such grouping occurs, the detector often identifies neighboring rods which have
aligned in parallel as a single tracer. In the example image from Figure 6.6,
this phenomenon is frequently observed. Interestingly, the rods tend to be
better detected in the “spheres and rods” and “all debris” cases than when
they are alone, possibly as a result other tracers separating them from one
another.

The “all debris” condition performed fairly well, but demonstrated the
same issues that were apparent with the other data sets. Namely, the larger
spheres and rods were occasionally missed due to the small window size re-
quired for the beeswax, and tracer clumps were often identified as single trac-
ers. However, despite missed detections and mis-identifications, the “all de-
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bris” case contained many tracers, which was beneficial for flow field estima-
tion.

Tracking Results
Tracking effectiveness was briefly considered through the computation of

basic statistics on trajectory lengths. Table 6.2 contains selected quantities.
For each configuration, the number of total identified trajectories N over the
duration of the recording is recorded along with the mean length lmean, the
standard deviation of length lstd, the median length lmed, and the percentages
of tracers over 10 detections, 50 detections, and 100 detections long. In gen-
eral, larger numbers represent better tracking performance since they indicate
tracers which follow the flow better for longer.

Considering the statistical quantities presented in Table 6.2 suggests that
the cases tracking beeswax and small spheres outperform the the other tracer
configurations. These exhibit relatively long mean and median trajectories,
and contain a greater percentage of long trajectories. The worst performing
tracers are the rods, which display the smallest values across all categories.
The large spheres perform well, but are limited in the number of trajectories
available. Additionally, they seem to exhibit weaker performance over longer
intervals.

The trajectory length data also illuminates some inefficiencies of the cho-
sen tracking approach. As in the experiment from Chapter 5, the distribution
of trajectory length for all conditions appears to be heavy-tailed. In all exam-

Table 6.2: Surface tracer configurations with the number of datasets recorded
per configuration. Number of recorded trajectories is reported along with
mean, median, and standard deviation of trajectory lengths and the percentage
of trajectories longer than 10 (t∗ = 0.1), 50 (t∗ = 0.5), and 100 (t∗ = 1.0)
associated detections.

Configuration N lmean lstd lmed %(10+) %(50+) %(100+)
Beeswax 140636 15.53 30.23 6.0 34.2 6.2 2.1

Small Spheres 30225 15.77 26.52 7.0 37.9 5.9 1.8
Large Spheres 9303 14.25 19.74 7.0 40.3 4.6 1.0

All Spheres 44797 14.28 25.04 6.0 32.9 5.3 1.6
Rods 17725 10.95 18.49 5.0 27.6 2.8 0.7

Spheres & Rods 38084 12.37 21.67 6.0 31.1 3.5 1.0
All Debris 169711 11.95 21.97 5.0 28.5 3.7 1.1
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Figure 6.7: Sample trajectories identified from a recording containing beeswax
pellets as the surface tracers of interest. Tracers displayed are all those with
at least 100 associated detections (t∗ = 1.0). The red outline indicates the
calibrated frame within which PIV data was collected, and the black outline
indicates the calibrated frame where object detection and tracking occurred.
Trajectories do not extend to the edge of the frame due to the present imple-
mentation of object tracking.

ples, more than 50 percent of the recorded trajectories contain fewer than 10
detections. Additionally, the number of trajectories identified for each config-
uration seems to be bloated. This is certainly due to the heavy-tailed nature
of the data, but may also indicate that the implemented algorithm assigns de-
tections to multiple trajectories. These observations encourage improvement
to the tracking algorithms chosen for these analyses.

Finally, Figure 6.7 displays trajectories of a subset of tracers from the
beeswax configuration. The trajectories shown represent all those with more
than 100 associated detections. Coloring indicates the time at which a sample
was recorded. The black frame and outline indicate the field of view at the
surface of the water and the mask of the airfoil in that frame. The red frame
represents the field of view of PIV images underneath the surface of the water.
Trajectories do not extend to the boundary of the outline due to the present
implementation template-matching tracking algorithm.
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6.6 Results
The results of the impulsively stopped airfoil experiment are provided in

two parts. In both instances, velocity fields are interpolated from the measured
velocities of surface tracers and compared with the results computed by PIV.
Figures 6.8 and 6.9 examine estimated velocity magnitude fields over time
via the beeswax tracer configuration. Then, Figures 6.11 and 6.10 consider
the behavior of the different tracer conditions at a single instant in the time
through field estimates of velocity magnitude and vorticity.

To estimate velocity fields from the motion of surface tracers, individual
tracer velocities are computed from trajectories and interpolated to the same
grid points utilized in the PIV data. At each time step, some of the tracks
exhibit erroneous velocity vectors. Thus, a proximity-based velocity filtering
algorithm was developed to ensure fields were cleanly computed. The velocities
of nearest-neighbors to a given tracer were recorded, and if the Mahalonobis
distance of the tracer’s velocity to neighboring velocities—defined by

dM =
√

(v− v)⊤ Sv (v− v), (6.5)

where Sv is the covariance of the local velocity data—was outside some thresh-
old, it was removed. For the data presented in this section and the next,
filtering was performed with k = 15 nearest-neighbors and a dM threshold
of 2. Once tracer velocities had been filtered, Eulerian velocity fields were
approximated by the RBF interpolation procedure described in Section 6.3.

Surface and Sub-Surface Motion Over Time
Surface tracer motion is compared to sub-surface motion by examining

velocity fields interpolated from beeswax pellet trajectories. Two figures are
presented to illustrate key features.

First, Figure 6.8 assesses the beeswax pellet motion over the duration of
the flow for single test run by overlaying tracer position atop interpolated
fields of velocity magnitude. Fields are computed at nondimensionalized times
t∗ = [0.0, 1.0, 2.0, 3.0, 4.0, 6.0, 8.0, 10.0]. If pellets are not approximately
stationary, then an arrow indicating the velocity vector is plotted with its root
at the tracer position. Color mapping is kept constant for all times.

Figure 6.9 then compares fields interpolated from surface tracer motion to
those approximated by the ensemble average of PIV recordings. Once again,
fields are presented by the color mapping displayed within each frame. The
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Figure 6.8: Fields of velocity magnitude interpolated from the Lagrangian
velocities of beeswax surface tracers observed over time. Fields are interpolated
at the time indicated in each frame. Tracers are represented by gray dots.
Velocity vectors are indicated if the tracers are not approximately stationary.

left column colors the fields using the same dataset presented in Figure 6.8,
while the right column colors the field by the all-run ensemble average of PIV
measurements. The color mapping values are consistent within all frames.
Black contour lines overlaid on the pseudo-color plots in both columns repre-
sent isocontours of velocity magnitude from the ensemble averaged PIV data
at the indicated time. These are provided for ease of reference. The flow is
measured at t∗ = [1.0, 2.0, 4.0, 6.0]. As discussed in section 6.4, the correla-
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tion of structures between the PIV ensemble mean and the individual runs is
expected to decrease as time increases.

Before considering the method comparisons made in Figure 6.9, a few ob-
servations from the progression of frames displayed in Figure 6.8 are discussed.
First, interpolation effects play a relatively large role in what is observed. This
is especially obvious at t∗ = 0.0, where the large velocities from the leading
edge vortex extend to the entire area around the airfoil in a way that is not
expected for the flow. This is because there are no other surface tracer mea-
surements in those regions near the bottom edge of the frame. These errors are
also evident in the data presented at t∗ ≥ 3.0 as space opens between surface
tracers. That regions in the flow are often unrepresented by surface tracers
represents a notable limitation of their use for flow measurement purposes.

Figure 6.8 also highlights the opening of surface tracer voids over the course
of the flow. At times t∗ ≤ 2.0, tracers are observed to be entrained in the strong
leading edge vortex. Beyond this point, it appears that the momentum of the
tracers carries them outward away from where the vortex core may be. This
void stays open in the surface of the flow for the remainder of the interval, even
as tracers begin to cease movement by t∗ = 10.0. Thus, the results observed
in Figure 6.8 align with the similar discussion on Figure 6.4.

Having considered the motion of beeswax tracers in isolation, a comparison
with PIV data is now made. The results presented in Figure 6.9 indicate
that the surface tracers, while not perfectly representing the dynamics of the
flow immediately beneath the surface, largely capture the principal features
observed by PIV. This will be examined chronologically in flow time.

The first frame, recorded at t∗ = 1.0, best resembles the ensemble PIV
average. The highest velocities occur near the trailing edge of the airfoil, as
the fluid entrained by the leading edge vortex generated by the airfoil motion
is ejected around the obstacle. The high velocities found in this region of the
flow closely correspond to the overlaid contours from the PIV data.

The frame recorded at t∗ = 2.0 begins to show greater deviations from the
PIV ensemble average. The largest deviations appear in the location of the
fluid ejection from the trailing edge, where the region of large interpolated
velocity magnitudes appear to curve upward from the largest values observed
in the PIV. This is observed across tracer classes, and will be discussed further
with the next analysis. Additionally, the velocity magnitudes recorded from
surface tracers are smaller than those observed in the PIV data.
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Figure 6.9: Comparison of interpolated fields of velocity magnitude computed
from beeswax surface tracers compared with the ensemble average of velocity
magnitude fields computed by PIV. Left column displays velocity magnitude
fields interpolated from the surface tracer velocities. Right column displays
the PIV fields. In both columns, isocontours of the PIV ensemble average are
overlaid.

In the next frame, at t∗ = 4.0, the position of greatest surface velocities
seem to have re-aligned with the PIV data. The dominant motion observed in
the frame is a diagonal stream between the two counter-rotating vortices that
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formed by the airfoil motion. The surface tracers and the PIV both seem to
capture this effect, although, the tracers represent it with smaller magnitudes
and reduced spatial extent. In both frames, the measurements exhibit small
values of velocity magnitude.

In the final frame displayed, at t∗ = 6.0, there appears to be some correla-
tion between observed surface and sub-surface flows in the upper right-hand
corner of the velocity field and just behind the airfoil. These regions appear
to exist where the strongest vortices in the flow were identified at this time
in Figure 6.4. The large values in the upper right corner are the result of
the clockwise vortex which was shed from the trailing edge of the airfoil and
the one behind the airfoil is induced by vortex shedding around the blade.
However, the PIV field indicates a diagonal swath of relatively large velocity
magnitude, which seems to be less well represented by the surface tracers.
Moreover, the surface tracers seem to exhibit larger velocities towards the left-
hand side of the frame. Comparing this with the velocity vectors shown in
Figure 6.8 seems to indicate that these velocities are the result of a large-scale
counterclockwise rotation which is not as apparent in the PIV data.

Briefly, it is noted that analyzing the flow in an instantaneous sense (i.e.,
using velocity fields, vorticity, or some other metric defined at a moment in
time) provides flexibility when working with imperfect tracers. The velocity
magnitude was distorted by the surface tracer observations at time t∗ = 2.0,
but resembled the flow more closely before at t∗ = 1.0 and after at t∗ = 4.0.
In that sense, the analysis is able to “recover” from deviations if instanta-
neous metrics are being considered. Alternatively, trajectory-based metrics
like FTLE or LAVD would compound errors over time due to imperfections in
tracers.

Surface Motion Observed Varying Tracer Type
The next analysis considers the structure detection capability of the various

types of tested tracer configurations at the fixed point in time. The nondi-
mensional time t∗ = 2.0 was selected as the case under consideration since it
contains strong vortical features that have not yet begun to dissipate. The
results of this study are presented in Figures 6.10 and 6.11, which should be
considered together.

The left-hand column of Figures 6.10 and 6.11 displays velocity magnitude
fields as in the previous analysis. The right-hand column displays out-of-plane
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Figure 6.10: Comparison of flow fields estimated from various surface tracer
cases with ensemble averaged PIV data at time t∗ = 2.0. Left column displays
velocity magnitude. Right column displays out-of-plane vorticity. Isocontours
in all frames are taken from PIV fields in the top row.
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vorticity computed by finite-differences over the given velocity fields. Indicated
in each vorticity plot are the measurement conditions used to generate that
data. The top row is generated from the ensemble average of PIV data. The
PIV vorticity was lightly smoothed using a 5 × 5 Gaussian filter. Figure
6.10 facilitates comparison between PIV and surface flow approximations by
overlaying isocontours of the PIV ensemble data on all frames. Because the
location of tracers determines the structure of interpolated fields, Figure 6.11
indicates the centroid location of each tracer as a gray dot. The same data is
used between figures.

It is clear in Figures 6.10 and 6.11 that the type of surface tracer used to
analyze a flow has significant bearing on the quality of resolved flow struc-
tures. From the configurations considered, those containing smaller particles
(i.e., “beeswax” and “small spheres”) tended to provide better representations
of immediately sub-surface flow than the larger tracers. This is, of course,
unsurprising, as the smaller tracers have lower Stokes number (if considered
ideal particles) and will therefore respond more quickly to fluid motion.

Interestingly, the presence of small surface tracers in a flow can produce
better results even if large surface tracers are present. This is observed in
the combined configurations (i.e., “all spheres”, “spheres and rods”, and “all
debris”), which appear to represent the flow relatively well despite also tracking
large tracers.

Those flows containing only large tracers, however, represent the sub-
surface PIV data less well than the rest of the cases. The “large spheres”
case and the “rods” case both correspond less well to the ensemble averages
than the rest of the configurations. This, too, is expected, since the larger
tracers have more inertia, integrate flow motion over larger areas, and are
more susceptible to inter-particle interactions. These factors are especially
prominent for the case with only rods, as a rod’s motion is affected by all of
the flow along its length and because they have the tendency to align parallel
to other rods. Moreover, the rods were less well identified by the detector,
making their results less reliable in general.

Now, considering the vorticity fields together yields a useful observation:
the vortical features observed on the surface appear to be aligned with sub-
surface vorticity for all surface tracer configurations. As discussed above, the
representation is best for the smallest tracers—the vorticity magnitude is more
similar and the features are sharper. However, even for the cases with large
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Figure 6.11: The same data as in Figure 6.10, only instead of overlaying
isocontours from PIV data, tracer centroids used to interpolate the field are
indicated as gray dots.

spheres and rods, the dominant vortical features are evident and appropri-
ately situated. There are some caveats to this. For instance, in the “small
spheres” and “large spheres” configurations, there are insufficient tracers in
the field near the clockwise vortex shed off the trailing edge of the airfoil, and
it is therefore not adequately sensed. Additionally, the magnitude of vorticity
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in the “rods” configuration is small across the field, and may be difficult to
interpret without additional knowledge the flow.

Vorticity seemed to be robustly detectable by surface tracers, but the ve-
locity magnitude was observed to be less reliable. Specifically, particle motion
appears to be curved towards the leading edge vortex generated by the airfoil
motion. While the largest velocity magnitude values in the PIV data appear
aligned with the airfoil angle of attack, those in the tracer data seem to form a
ring around the right-hand side of the vortex core. The “large spheres” and, es-
pecially, the “rods” configurations do not adequately approximate sub-surface
velocity magnitudes.

A few factors may contribute to the deviations observed in the velocity
magnitude fields. First, because the tracers are lighter than the fluid, they
will be drawn towards the low pressure region at the center of the vortex (for
example, see the results of [164], [179]). This will likely cause their path to
deviate from the trajectories expected by PIV velocity data. Moreover, the
reduced pressure causes an depression in the topology of the water surface,
which may also deflect tracers. Additionally, surface tension effects will cause
deviations in flow behavior. Tracers of all configurations were observed to
gather into clusters if left in quiescent fluid. Both the existence of clusters and
the tendency to gather will influence flow measurement ability. Moreover, the
tracers are finite-sized with mass and momentum, and frequently collide with
one another during the tests. Such collisions certainly affect the measurements
recorded by their motion.

These considerations may also provide a rudimentary explanation for the
surface tracer voids which develop later in the flow. At t∗ = 2.0, the leading
edge vortex remains coherent and strong, pulling tracers towards its center.
Though the tracers have mass and momentum, the attractive force of the vor-
tex is strong enough to overcome the centripetal force experienced by curving
tracers. However, once the vortex begins to dissipate, the inertia of the par-
ticles overcomes the attraction of the vortex, forcing the surface tracers to
disperse and leaving a void near the weakened core of the vortex.

It should be noted that these explanations are based on limited observa-
tions and a preliminary analysis.
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6.7 Discussion of Results
This chapter set out to address whether or not kinematic behavior observed

through surface tracer motion is representative of true flow patterns near the
free surface. Can flow structures be reliably identified from imperfect trac-
ers? The results displayed throughout this chapter indicate that the answer is
yes. . . sometimes.

Detecting Flow Features from Imperfect Tracer Motion
It is well understood that mass, buoyancy, geometry, and other physical

tracer attributes cause their motion to deviate from the pathlines traced by
ideal tracers. The analysis performed in this study has little to add to the
breadth of literature surrounding the subject. What is observed here affirms
much of what is known about imperfect tracer motion.

In the broader context of AMFM and the identification of flow features in
situ, the critical observation obtained from this experiment is that immedi-
ately sub-surface vorticity can be reasonably approximated by the motion of
surface tracers. In a sense, this is surprising, since the velocities of the surface
tracers seem to differ notably from the subsurface movement. For the example
considered, it seems that the low pressure and surface depressions caused by
the vortices draws particles near to their core. Thus, while the trajectory de-
viates from its ideal path, the vortices are still highlighted. Therefore, if one
seeks to identify flow features from imperfect tracers (which will often be the
case in AMFM field studies), then vortices, and metrics derived of vorticity
may be more reliable than stretch-based alternatives like the FTLE.

Discerning Tracer Relevance to Flow Dynamics
While the results obtained in the analyses of this chapter indicate that

imperfect tracers can be useful for structure identification, it was also appar-
ent that certain tracer categories were more effective at elucidating structures
than others. If these methods are applied to an unknown flow where little
information is known about the tracer characteristics, some means of assess-
ing tracer relevance to the measured flow must be obtained. This is briefly
discussed here.

Perhaps the most direct approach to ensuring that only relevant tracers
are included in analyses is to allow an informed practictioner to train the de-
tector on curated training data which omits irrelevant tracers. This is the
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approach which was undertaken for all of the examples discussed in this dis-
sertation, and can be relatively easily implemented. The training data may be
collected directly from frames of the videos which are being analyzed, thereby
guaranteeing that tracers relevant to the flow are identified. This approach,
however, still requires some user input, and therefore makes it impractical for
fully autonomous application.

If, instead, it is assumed that a general detector capable of identifying all
tracers and distinguishing between their categories (e.g., from this experiment,
between rods, small and large spheres, and beeswax) is implemented, then it
may be possible to employ an iterative process to winnow out misleading trac-
ers. One approach for such a procedure may be to compute gradients from
the tracers varying the tracer class and processing parameters such as regres-
sion neighborhood radius. A cost metric would be defined to evaluate the
legitimacy of each processing iteration. For example, if the flow is expected
to be incompressible, one could seek to minimize the observed tracer diver-
gence, although other cost functions could also be conceived. The results of
such an iterative scheme would identify the most relevant tracers and optimal
processing parameters given the flow.

Alternatively, if properties of the tracers are known, it may be possible to
use their motion and the flow fields they espouse to regress the true flow at the
free surface. An extension of this work might be to fit such operators given
various tracer distributions.

Finally, when taking measurements in the field (as will be done in the next
chapter), the size of surface tracers relative to the flow features of interest will
likely be relatively small—one can imagine leaves or bubbles on the surface of
a river, where the scale of eddies is generally much larger than the geometric
scales of the tracer. In those instances, tracers may be considered closer to ideal
particles, and the structures they expose more trustworthy. This assumption
is supported by the results of this experiment, where the small beeswax pellets
better represented the flow than other, larger tracers.

Enabling Complex Experiments by Semantic Tracking
This experiment was enabled by the semantic flow measurement approach

developed in Chapter 5. Without the ability to track arbitrary tracers in
PIV images, this study could not have been adequately performed. This type
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of analysis opens the door to a range of other experiments examining the
interactions of physical bodies with complex flows.

Studying the motion of imperfect tracers in turbulent flows, for example, is
an important research topic in modern times due to the prevalence of plastics
and other anthropogenic debris in global waterways [168], [170], [180]. Typical
studies of aspherical particle dynamics involve complex experimental setups
due to the technological inability to ascertain tracer positions from common
images [169], [172]. The methods employed here demonstrate that it is in-
deed possible to accurately track the motion of tracers without any special
implementations.

Another extension of this experiment may be to comparatively examine
the dynamics of tracers with identical geometry while varying other properties
like density and surface roughness. One way to distinguish between particles
would be to simply apply different colors to different tracers. Performing
experiments such as this would build on the literature containing studies such
as [82], [164].

The methods employed in this chapter are general to dynamical systems
and therefore do not specifically apply to fluid flows. Thus, novel studies could
be performed which examine the motion of active agents like fish, jellyfish, or
brine shrimp as they navigate various flows. Moreover, the methods could be
applied to complex deformable bodies such as bubbles or flags, among other
possible studies of immersed objects.

Lastly, the detection and tracking methods employed in this study may also
be useful for the removal of unwanted features from images of experimental
flows. For example, in PIV studies, dynamic masking of complex bodies is a
common challenge. Already, researchers have begun to employ segmentation
models like SAM to this problem [181]. As models develop, opportunities for
generalization abound.

6.8 Related Future Work
A large body of literature surrounds the motion of imperfect flow tracers in

complex flows. The experiment performed in this chapter considers only one
narrow aspect of the field, and even that incompletely. There is much work
that can be done to expand upon this experiment and the insights gained from
it. Potential avenues are presented below:

1. The results presented here principally compare the Eulerian fields es-
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timated by PIV and by interpolation of Lagrangian velocities. An ex-
tension of this study would use the measured PIV fields to simulate
Lagrangian tracers and compare them to what was recorded on the sur-
face. Various tracer motion models could be incorporated. For instance,
ideal tracers and Maxey-Riley tracers could both be compared with the
motion observed on the surface. Information learned from such an ex-
periment could potentially be useful in modeling efforts for surface tracer
behavior.

2. This analysis consisted only in measuring instantaneous flow quantities.
Extending the study to finite-time analyses including coherent structure
determination may be of interest.

3. The ability to semantically measure tracers and estimate flow motion
opens the door to a variety of experiments in the realm of imperfect
tracer motion. An interesting follow up could be to study the motion of
bubbles and sediment in complex flows and in 3 dimensions.

4. The methods in this experiment allow for localized tracer motion to be
compared directly with the underlying flow. It may be interesting to
measure the rotation of aspherical tracers directly in relation to the flow
that they are in.

5. Finally, this experiment was designed to assess the viability of various
surface tracers for estimating flow immediately sub-surface. One ap-
plication where this may be advantageous is the study of polar ocean
dynamics via ice floe trajectories. A valuable extension of this experi-
ment would seek to solve the inverse problem from ice floe trajectories
to sub-surface ocean dynamics.
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C h a p t e r 7

FIELD MEASUREMENTS IN CALTECH’S TURTLE PONDS

This dissertation has developed and tested an approach for calculating
flow gradients from sparsely distributed tracers observed in complex images
and representing the flow imperfectly. Chapters 2, 3, and 4 introduced and
evaluated the Lagrangian gradient regression (LGR) algorithm, which enables
trustworthy gradient approximation from sparse trajectories. To obtain these
trajectories from complex images, Chapter 5 proposed a semantic object track-
ing scheme to identify and trace arbitrary objects in arbitrary scenes using the
machinery of deep computer vision. These methods are joined together and
tested experimentally on simulated debris flows in Chapters 5 and 6. Chapter
6 considered the relationship of surface tracers in the flow to the underlying
currents and established that, although surface tracers do not perfectly repre-
sent sub-surface flows, the connection is strong enough to use surface tracers
for flow analysis when other information is not available. This chapter syn-
thesizes all of these results to explore fluid motion observed in the field based
solely off of naturally occurring tracers and using affordable hardware.

In this particular instance, the field is not far from the lab. The experi-
ment under consideration was performed at the Caltech turtle ponds fifty feet
from the entrance to the GALCIT laboratory facility. The turtle ponds are a
familiar and beloved landscaping feature where visitors and members of the
caltech community alike can frequently be found enjoying the natural seren-
ity. Indeed, many afternoons during the production of this work were spent
reflecting in the surrounding garden. Small streams and waterfalls drive the
motion of the fluid, which is visible by the trajectories of leaves, bubbles, and
other debris that are often found upon its surface. The experiment performed
in this chapter films these debris and uses the methods developed through-
out this dissertation to compute flow quantities from the videos. No artificial
seeding was supplied—only those tracers present on the water surface at the
moment of recording were required.

The contents of this chapter have been adapted from a manuscript by Harms, Brunton, and
McKeon recently submitted under the title Estimating Dynamic Flow Features in Groups
of Tracked Objects.
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Figure 7.1: An example image from the Caltech turtle ponds. Image features
which complicate normal motion and gradient estimates are highlighted.

Images recorded in the turtle ponds were exceedingly complex beyond what
has been considered so far in this dissertation. They contain many features
that are not relevant to the flow and garner the potential to confound kinematic
measurements. As an example, consider the image taken from the Caltech
turtle ponds which is presented in Figure 7.1 and annotated to emphasize the
feature-rich complexity of the natural flow images. The scene being considered
includes shadows and variations in lighting, multiple forms of legitimate tracers
(bubbles, leaves, and other debris), illegitimate tracers (including turtles and
fish), feature rich reflections from the surrounding flora which ripple in the
motion of the water, and regions of the image which are not part of the flow.
All of these attributes severely complicate the estimation of velocities and,
especially, of spatial flow gradients. Therefore, the tools developed and tested
throughout this work are necessary to compute useful approximations of the
flow motion.

This chapter is organized as follows. Section 7.1 describes the experimental
setup and data collection process. Section 7.2 discusses the processing pipeline
used to analyze the data collected from the turtle ponds. Section 7.3 presents
the results of the analysis, which includes both the detection and tracking
of tracers and the computation of flow gradients from different locations in
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Figure 7.2: Overhead view of the Caltech turtle ponds with locations of flow
recordings indicated.

the ponds. The chapter concludes with a discussion of the results and their
implications for the future of flow field measurement.

7.1 Experimental Setup
Data was collected in the Caltech turtle ponds on two days and in three

separate locations. The specific locations of the tests are indicated by the
numbered orange boxes shown in Figure 7.2.

Tests at locations 1 and 2 were conducted together on the first day of data
collection. In these tests, imaging was performed using the Teledyne/FLIR
Blackfly machine vision camera described in Section B.1 of Appendix B. An
Edumund Optics 4mm UC series wide angle lens was affixed to the Blackfly
camera for data collected at location 1. At location 2, a 15mm Edumund
Optics lens was implemented in order to better resolve the small particles in
the flow. Multiple runs were collected at each experimental location, all of
which were recorded at a frame rate of 100 Hz with 1920 × 1200 resolution.
Because LGR tends to perform better with lower sampling rate, these videos
were downsampled to 30 Hz prior to tracer tracking and LGR analysis.
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Tests performed at location 3 from Figure 7.2 were unplanned, but have
proven to be productive. This data was collected on a day when an abundance
of natural debris had fallen into the turtle ponds, exposing the flow structures
by their motion. Other responsibilities were temporarily abandoned, and the
Nikon D800 and calibration boards were quickly gathered for the impromptu
experiment. Data was collected through two lenses during this recording: a
Nikon AF Nikkor 35mm f/2D lens and a Nikon AF Nikkor 50mm f/1.8D lens.
The results displayed in this chapter were taken using the 35mm lens. In all
recordings, images were sampled at the device maximum framerate of 30 FPS
with 1920× 1080 pixel resolution.

Once again, cameras were calibrated using the ChArUco method described
in Appendix B Section B.2. Since the camera could not be placed directly
above the flow, the homography served to orient the camera to a perpendicular
position as well as to dimensionalize the frames.

Training data for the Mask-RCNN detector was collected from frames ran-
domly sampled from all videos recorded during the experiments. Tracers iden-
tified in these images involved leaves, bubbles, bugs, and other passive debris,
but omitted active tracers like turtles and fish, which were sometimes visible.
Samples of these training images have been displayed in Figure B.4.

7.2 Implementation of Detection, Tracking, and LGR
The same algorithmic pipeline was applied to the turtle pond data as was

implemented in the laboratory experiments of Chapters 5 and 6. For detec-
tion, the Mask-RCNN [147] detector architecture provided segmentations of
legitimate tracers, from which centroids were identified. Given the training
data, the detection model was trained for 150 epochs using an ADAM opti-
mization scheme with a decreasing learning rate. Windowing was again used
to improve the quality of detections. In the turtle pond images, detections
were made inside 400× 400 pixel tiles with 25% overlap.

Trajectories were tracked using the template-matching approach detailed
in Appendix C. A few modifications were added to improve overall quality.
First, to reduce the number of stored trajectories and to improve the average
quality of tracks, only trajectories with length 5 or greater were kept. Temporal
signal filtering was applied to the identified trajectories to mitigate noise that
occurred as a result of the detection process. This filtering included a median
filter with a 5 sample kernel length to remove outliers, followed by a Gaussian
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smoothing filter with a 10 sample kernel length. Following initial construction
of trajectories, trajectory merging was implemented to increase the average
length of trajectories and improve LGR results.

7.3 Results
Results from the turtle ponds experiments are presented in two parts: the

data collected in the lower pool is first analyzed, followed by the data collected
in the upper pool.

Results from the Lower Pool
The first set of flow data collected in the Caltech turtle ponds was recorded

in the lower pool as indicated by the box labeled with the number 3 in Figure
7.2 of Appendix B. The analyzed image sequence was captured using the Nikon
D800 on a day when the leaves and other debris were plentiful on the surface
of the water.

Figure 7.3 provides examples of the tracer detections and trajectories iden-
tified in the flow measurement process. Visualizations of all tracers detected
in a sample frame of the analyzed video are displayed in Figure 7.3a, where
detected tracers are indicated in color. Considering the visualized detections,
it is evident that the trained model identifies few false negatives (very few of
the masks shown in Figure 7.3a are not actually tracers), but more commonly
makes false positives (a number of tracers are not detected). Since a particle
may be captured in one frame and lost in the next, the problem of false posi-
tives significantly limits finite-time analyses (e.g., FTLE or LAVD) by causing
premature truncation of trajectories.

Figure 7.3b displays the subset of identified trajectories with length of
200 or more snapshots (6 and 2/3 seconds or longer). The coloring scheme
indicates the relative position in time of the trajectory instance within the
recording using a nondimensional time defined as t∗ = t−t0

tmax−t0
, where t0 is the

time at the first frame and tmax is the time at the last frame. The shaded gray
regions represent a mask applied to the images for plotting purposes and the
flow domain outside the field of view of the camera.

By observing the plotted trajectories, the character of the flow begins to
appear. Tracers enter the field of view at the bottom left hand side of the
stream as driven by a small stream entering the lower pond off screen. The
bulk motion of the flow gradually rotates counterclockwise with a large radius
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(a) A sample image from the data set with all detected surface tracer segmentations
provided with randomly generated colors.

(b) All identified trajectories with at least 200 samples (6 and 2/3 seconds) calibrated
to world coordinates and colored by nondimensional time t∗ within the recording.
The gray shaded regions indicate parts of the flow that are either masked out for
visualization purposes or external to the field of view.

Figure 7.3: Tracer detection and tracking results from data collected in the
lower pool of the Caltech turtle ponds.
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of curvature. However, the geometry of the pond causes eddies to be formed
in the gulf between the bulk fluid rotation and the pond shore at right. The
largest of these eddies occurs in the upper right hand portion of the image,
with smaller ones closer to the bottom of the image. As the coloring indi-
cates, these eddies remain largely stationary throughout the approximately 64
second duration of the flow. The trajectories alone, however, do not provide
quantitative information regarding the flow behavior; to achieve this, LGR is
now implemented and relevant metrics are computed.

Flow gradients were estimated using LGR with radial Gaussian kernel
weighting. For each tracer at each time step, the 25 nearest neighbors that
persisted from the current frame to the next were used to regress the deforma-
tion operator by equation 3.11. The weighting was defined using equation 3.12,
where the standard deviation was set to s = 0.6 meters. Velocity gradients
were estimated according to equation 3.13. Finite-time analyses were com-
puted over an 8 second interval by computing the 8-second flow map Jacobian
by composition through equation 3.16.

Using the approximated gradients, the metrics discussed throughout this
work are computed for the flow in the lower pool of the turtle ponds. Figure
7.4 displays the results of eight metrics that have been introduced earlier in
this thesis. Figures 7.4a and 7.4b display the vorticity and vorticity deviation,
which are both instantaneous metrics for rotation. Figures 7.4c and 7.4d, re-
spectively, display the finite-time stretching metrics FTLE and TISM. Figures
7.4e and 7.4f display LAVD and DRA as time-integrated measures of rotation.
Finally, Figures 7.4g and 7.4h display the Q-criterion and the kinematic action
as metrics that segment the flow into domains of stretching and domains of
rotation for instantaneous and finite-time analyses, respectively. All instanta-
neous metrics are computed at the nondimensionalized time t∗ = 0.29 and the
finite-time metrics are computed over the interval t∗ = [0.29, 0.41].

The instantaneous metrics presented in Figures 7.4a, 7.4b, and 7.4g are first
discussed. Examining the vorticity presented in Figure 7.4a, the four vortices
identified from the visualized trajectories begin to materialize. It seems that
there are approximately two counter-clockwise vortices (one in the bulk flow at
the upper left-hand side of the figure and one on the bottom right hand side by
the edge of the pool) and two clockwise vortices (on the lower left and upper
right hand portions of the flow). While analyzing the vorticity is useful with a
stationary observer, it is not an objective metric (see Chapter 2 and Appendix
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Figure 7.4: Gradient-based metrics computed via LGR from the flow tracers
observed in the lower pool of the Caltech turtle ponds.

A). Vorticity deviation, indicated in Figure 7.4b, is objective, however. Its
values highlight the same vortical features present in the vorticity data, albeit
without sign information. Finally, the Q-criterion in Figure 7.4g is considered.
The dark red regions represent portions of the flow that are dominated by
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tracer separation and the blue regions represent rotation dominated regions.
As new particles enter into the observed domain on the lower left hand side
of the frame, they are either carried off by the bulk rotation into the upper
portions of the field of view or they are caught in the eddies close to the pond
shore. This causes particles to separate rapidly and leads to large negative
values of Q. On the other hand, tracers caught inside the vortices do not
separate as much, and therefore exhibit large positive values of Q, displayed
in blue.

The finite-time analyses indicated in Figures 7.4c–7.4f and 7.4h help to
complete the picture of the flow measured in the lower pool of the turtle
ponds. The FTLE and TISM results of Figures 7.4c and 7.4d highlight a
ridge that runs from the bottom left of the frame to the upper right along
the perimeter of the rotation observed by the vorticity in the bulk flow of the
pond. This ridge is slightly more evident in the TISM than in the FTLE, and
represents a material surface that separates tracers which continue in the bulk
of the flow from those that are drawn off into the eddies by the shore. The
LAVD and DRA from Figures 7.4e and 7.4f, respectively, support this notion
by highlighting two strong counterclockwise vortices adjacent to the separatrix
indicated by FTLE and TISM. From LAVD and DRA, the clockwise bulk flow
and a smaller clockwise vortex near the shore are also evident. The kinematic
action plotted in Figure 7.4h highlights all four vortices and the separatrices
between them at once. In this figure, the red tracers indicate regions of the flow
which are dominated by stretching over the 8 second integration time, and the
blue tracers indicate regions dominated by rotation. Intuitively, there should
be a region of stretching in between every vortex, which is clearly observed in
the kinematic action data.

Considering together all eight metrics presented in Figure 7.4 paints a clear
picture of the behavior of the observed flow field. The flow in this section of
the lower pool of the turtle ponds is driven by a large, slow rotation in the
body of the pool, which is the vortex observed in the upper left of each frame.
This rotation, however, is hindered by the geometry of the shore of the pond,
and therefore generates a shear layer between the water in the gulf of the
pond and the water in the body of it. This shear layer is highlighted by
the dominant FTLE/TISM ridge that moves diagonally across the flow and
the diagonal swath of negative vorticity. Vortices form along the shear layer
and accumulate into the stronger rotations observed by the LAVD and the
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negative DRA data. To maintain conservation of mass and momentum, the
smaller counter-clockwise vortex in the bottom right hand corner of the frame
is formed.

Critically, the synthesis of all of the observed metrics contributed to this
analysis. The instantaneous metrics are able to highlight the fast motions of
the flow and give a picture for their broader spatial influence, but the finite-
time metrics elucidate which structures in the flow persist over time. Some of
the smaller vortical features observed in the vorticity and vorticity deviation
are not apparent in the LAVD or DRA, suggesting that they merge with other
flow features over the 8 second integration window. By considering all of these
metrics together, a more complete understanding of the flow is attained.

Results from the Upper Pool
The second data set reported upon form the Caltech turtle ponds was

recorded in the upper pool where an underwater jet aerates the water and
drives fluid motion at the surface. The location where the footage was captured
is indicated in Figure 7.2 of Appendix B by the box labeled with the number
1. Where the tracers available in the example shown from the lower pool
were largely solid debris like leaves and sticks, the observable debris in the
upper pool almost exclusively consisted of clusters of bubbles that gradually
disappeared and often joined together or separated.

Images in the upper pool were collected using the Blackfly machine vision
camera with a 4mm wide angle lens for a duration of 49 seconds. Due to the
wide angle, significant radial distortion was present in the images and corrected
through calibration. Detection in the upper pool was performed using the
same detection model as the previous example on 400 × 400 pixel windows
tiled throughout the image with 25% overlap. Tracking was implemented
using the template matching approach discussed above. Calibration to world
coordinates was applied to the mapped trajectories prior to LGR computation.

Sample results from the detection and tracking process in the upper pool
are displayed in Figure 7.5. Sample tracers, which are mostly located centrally
in the image frame, are indicated by colored masks overlaid on top of the
original image in Figure 7.5a. A variety of complicating features are present in
the scene of the upper pool data. For instance, the reeds which have fallen into
the water do not respond as quickly to the currents, and can act as artificial
barriers to the bubbles in the flow. Moreover, bubbles tend to accumulate
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(a) A sample image from the data set with all detected surface tracer segmentations
provided with randomly generated colors.

(b) All identified trajectories with at least 200 samples (6 and 2/3 seconds) calibrated
to world coordinates and colored by nondimensional time t∗ within the recording.
The gray shaded regions indicate parts of the flow that are either masked out for
visualization purposes or external to the field of view.

Figure 7.5: Tracer detection and tracking results from data collected in the
upper pool of the Caltech turtle ponds.
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onto the reeds or onto the patch of ground where reeds are growing. These
bubbles are sometimes identified as tracers and can cause spurious results.
Finally, based on the model parameters used, some of the legitimate tracers
in the flow are not identified by the detector. However, as with the previous
example, there seem to be many more false negatives than false positives,
which is favorable.

All identified trajectories longer than 200 samples (again, 6 and 2/3 sec-
onds) are displayed in Figure 7.5b with coloring representative of nondimen-
sional time t∗. From the trajectories, a general counterclockwise rotation seems
to be evident in the center of the frame. It also appears that smaller vortical
features exist in the flow near the reeds towards the right hand side of the
image. The trajectories in this example, however, are less illustrative than in
the previous case. This flow evolves more rapidly, with features developing
and dissipating within the 49 seconds of observation. The structure of the
flow is more evident when considering the results of LGR.

Lagrangian gradient regression was performed along each trajectory using
the 30 nearest neighbors of each detected particle. A radial Gaussian kernel
was applied according to equation 3.12 with a standard deviation of s = 0.15
meters to ensure that the particles nearest to the trajectory were preferentially
weighted in the computations. A small regularization constant of γ = 10−6 was
applied for numerical stability. Velocity gradients were estimated by equation
3.13 and flow map Jacobians by equation 3.16 over a 1.5 second interval.

As before, the character of the flow becomes more apparent when con-
sidering the various gradient based metrics together. Figure 7.6 displays in-
stantaneous metrics based off of the velocity gradient at nondimensional time
t∗ = 0.42 and finite-time metrics at the same time computed over the interval
t∗ = [0.42, 0.47].

This flow differs from that in the lower pool in that the spatial mean
vorticity is not close to zero during a large duration of the recording. As seen
in the vorticity of Figure 7.6a, The tracers exhibit a collective counterclockwise
rotation on average over the observed tracers. When this mean is subtracted
from the vorticity of each individual tracer and plotted in Figure 7.6b, some
of the evidence of rotation is lost—for example, the counterclockwise rotation
in the flow near the bottom right-hand corner of the displayed region.

Aside from considering the mean rotation, there seem to be three vortices
expressed in the flow which dominate the motion at the observed snapshot.
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Figure 7.6: Gradient-based metrics computed via LGR from the flow tracers
observed in the upper pool of the Caltech turtle ponds.

These are clearly visible in the data presented with the vorticity, vorticity de-
viation, LAVD, DRA, Q-criterion, and kinematic action of Figures 7.6a, 7.6b,
7.6e, 7.6f, 7.6g, and 7.6h, respectively. Two large, counterclockwise vortices
seem to dominate the dynamics of the flow, but a third, clockwise vortex is
formed in between them, which seems to persist over the finite time integration
interval.

The FTLE, TISM, Q-criterion and kinematic action of Figures 7.6c, 7.6d,
7.6g, and 7.6h indicate which regions of the flow are dominated by stretching.
As before, there is some evidence of lines of stretching in between the vortices
observed in the flow. The counter rotation of the vortices forces tracers to
separate as they are drawn into their respective vortices. At the present snap-
shot, there is also evidence that tracers on the periphery of the flow (i.e., those
at left of the main cluster of tracers on both the top and the bottom of the
image) are moved by the flow away from the rest of the tracers into the body
of the pond. The evidence for this lies in the FTLE and TISM representations
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of the data where a ridge is apparent at the bottom left and a region of large
values at the top center.

7.4 Discussion of Results
In this chapter, the flow tracer tracking and detection was applied in con-

cert with LGR to analyze fluid motion in the Caltech turtle ponds using only
the tracers naturally available on the pond surface. Results have been pre-
sented for two representative cases of the collected data. Here, the implications
of the results are discussed.

Affordable Kinematic Flow Analysis Using Only Natural Tracers
The results presented in this chapter were all obtained using affordable,

readily available hardware and modest computational resources. Recordings
from the lower pond were taken using a hobbyist DSLR camera which, at the
time of this writing, can be purchased with a lens for less than $2000 USD.
The recordings from the upper pool were captured with an optical setup that
cost less than $1000 USD. If someone desired to do so, they could capture
videos with their cell phone and a tripod and achieve similar results. In terms
of processing, Python and freely available packages were used for all of the
analysis in this experiment. The detection models were trained on a desktop
computer with single mid-grade GPU, and all other algorithms could be run
on a standard CPU.

The accessibility of the materials required for these experiments marks a
step towards the democratization of scientific analysis of fluid dynamics. Any-
one who is interested in examining some fluid flow can choose to do so using
only equipment that they likely already own. Hobbyists could perform experi-
ments in their own back yards; researchers at institutions with fewer resources
could expand their experimental capacity; practitioners in remote areas could
examine difficult-to-access flows and leverage their gained understanding to
engineer around them.

Additionally, since no additional tracers were added to the flow, these
methods can be applied in an environmentally friendly manner. No dyes or
other artificial additives need to be added to the flow if the conditions permit.
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Semantic Flow Measurements Require Little Additional Processing
Measuring flow fields—especially when using natural images—typically re-

quires significant pre- and post-processing. The data needs to be molded
into an acceptable format prior to velocimetry and heavily cleaned afterwards.
However, using the methods developed by this thesis and implemented in this
chapter, less additional processing is required for the analysis to be success-
ful. With semantic flow measurements, pre-processing is unnecessary and can
even be a detriment to the analysis; if the typical features of a tracer are re-
moved, then it may not be accurately detected. Post processing can still be
used to clean up trajectories and computed metrics, but these are not strictly
necessary to acquire functional results.

Flow Understanding is Enhanced by Considering Many Metrics
In the results presented in this chapter, all eight gradient-based metrics

discussed and analyzed in this dissertation were applied to the flows. While
each metric did, independently, provide information about the character of the
flows, it was their synthesis—the consideration of all of them together—which
yielded the most insight. The understanding gained by considering the instan-
taneous metrics (vorticity, vorticity deviation, and Q-criterion) was unique to
that gained from the finite-time metrics (FTLE, LAVD, DRA, and KA). The
metrics highlighting rotation complemented those highlighting stretch. Multi-
ple analyses should be performed on the same flows to optimally understand
their behavior. LGR provides the means to perform all of these analyses and
more using the same set of trajectories with minimal additional effort.

Limitations
There are, of course, limitations when analyzing natural flows using only

natural tracers. One significant limitation is the availability of natural tracers
in the flow being studied. On many occasions in the turtle ponds, there are
no tracers on the surface of the water, so no measurements can be made.
Artificial tracers could be added to enable or enhance measurements, but this
adds complexity and can become ethically questionable depending on what
the added tracers consist of.

Even if some tracers are visible on the surface of the flow, the flow struc-
tures that they reveal are limited by the spacing of the tracers on the surface
of the flow. If the tracers are spread far apart, then only large flow features
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will be discernable. Moreover, if tracers are gathered into clusters, only local
features to the clusters will be identifiable.

Finally, processing speed remains a limitation of this approach. Ultimately,
the desire is to embed these algorithms onto mobile measurement platforms
such as drones so that autonomous mobile measurements of the flow fields can
be collected. However, the processing speed still prevents this. Data must
still be offloaded to a separate device for processing. As has been mentioned
in previous chapters, improved models and algorithmic optimization must be
sought before AMFM is possible by these methods.

7.5 Related Directions for Future Work
The continued development of the methods employed in this chapter could

take a variety of forms.

1. While the turtle ponds technically constitute the field, they are literally
as close to the laboratory as possible while still being in the field. Bring-
ing these tools to other flows beyond Caltech’s campus is of interest to
the author, and would be beneficial from the standpoint of methodolog-
ical development.

2. Though it has already been mentioned in previous chapters, it bears
repeating that these algorithms need to be optimized and faster models
need to be architected or selected. Without achieving these goals AMFM
measurements remain grounded.

3. Even if the measurements cannot be made autonomous in the near fu-
ture, recording data from an aerial drone perspective would still be an
interesting and valuable scientific contribution. The drone mounted mea-
surement scenario marks one of the primary use-cases of this technology
since adding tracers or carefully modifying measurement parameters is
not possible with remote measurements. In line with this avenue for
future work, the ability to calibrate remotely would also represent a
valuable contribution to the technology.

4. Finally, if the improvements discussed above are implemented, it may
one day be possible to begin making measurements of flow fields au-
tonomously. For example, the methods demonstrated in this Chapter
are relevant to studying the transport and behavior of debris caught in
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flash floods, tsunamis, and other environmental flows that are currently
difficult to measure with existing technologies.
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C h a p t e r 8

CONCLUSIONS

There is no end to the writing of books

— Qoheleth, Ecclesiastes

The motivating thrust of this dissertation has been to expand the range of
measurable flows beyond current experimental capabilities. This objective has
been largely pursued under the overarching premise of developing strategies for
autonomous mobile flow field measurements (AMFM), which aims to observe
large-scale flows by autonomously following critical flow structures as they
evolve. If fully developed, it could enable enhanced examination of numerous
flows relevant to modern applications including monitoring and mitigation of
pollution in waterways, optimization of large-scale wind farm installments,
and remote measurement of environmental flows. While AMFM remains a
technology of the future, this work has progressed towards its realization by
developing algorithms and strategies for detecting flow structures under the
similar technological constraints. Lagrangian gradient regression was devel-
oped to approximate gradients from sparse observations, semantic measure-
ments of flow kinematics were conceived as a means for dealing with natural
images and tracers, and these methods were applied to novel experiments and
complex field measurements. Below, a summary of the dissertation is provided,
followed by principal contributions and opportunities for continued inquiry.

8.1 Summary of the Dissertation
Three challenges facing AMFM measurements were outlined in the intro-

duction to this dissertation. The first of these was the challenge of relative
motion, which requires that detection methods be able to identify the same
features regardless of observer dynamics. The second was the challenge of
feature-rich images, which requires that methods handle real images with all
of their natural complexity. The final challenge was that of imperfect tracers,
which recognizes that observed tracer motion may not resemble the true mo-
tion of the fluid. The chapters of this work attempted to hurdle these three
obstacles.

In Chapter 2, the theory of Lagrangian coherent structures (LCS) was in-
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troduced as a means for dealing with observer motion relative to the flow.
Flow analysis metrics from the field of LCS are typically designed to be ob-
jective, in that they are invariant to Euclidean frame transformations. They
accomplish this by approximating spatial flow gradients from measurements
of tracer trajectories. As clouds of tracers evolve in the flow, their defor-
mation can be leveraged to reveal features like vortices, boundaries to fluid
transport, and more. If deformations are considered over extended intervals,
finite-time analyses can be constructed from the flow map Jacobian (such as
the finite-time Lyapunov exponent (FTLE)) or through integration (such as
Lagrangian-averaged vorticity deviation (LAVD)). Over infinitesimal deforma-
tions, the velocity gradient might be computed and analyzed through vorticity,
principal strain rate, or Q-criterion.

A severe limitation of conventional gradient-based LCS analyses is the
demand for high tracer density in calculations. Over extended intervals, dif-
ferential deformations of finite-sized tracer clouds accumulate, transforming
the fluid into complex geometries that are not well represented by the linear
mapping described by the flow map Jacobian. As a result, the typical process
for identifying objective gradient-based LCS features involves numerically in-
tegrating a large number of numerical tracers defined on a uniform grid over
the analysis interval and computing deformation gradients by finite differences.
This process can quickly become computationally expensive, and is therefore
not viable for applications like AMFM.

Chapter 3 proposes a solution to the demand of dense numerical tracers in
the form of Lagrangian gradient regression (LGR). LGR leverages the nature of
real, measurable tracer data to overcome the need for spatial proximity. Real
trajectory data can almost always be sampled rapidly in time, but sparsely in
space. To accommodate this, LGR uses the data-driven machinery of regres-
sion to compute deformation gradients over short intervals (shorter than the
fastest movements of the flow) and synthesizes them to arbitrary finite inter-
vals by asserting the smoothness trajectories. In this way, sparse trajectory
data sampled quickly in time can provide finite-time flow gradients that are
as accurate as those which are sampled with high spatial density. This format
of estimation is often preferred for practical measurements, as most data col-
lection modalities allow for high resolution collection of data in time but not
in space.

By regressing deformation gradients over short intervals, LGR also pro-
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vides a framework for estimating instantaneous velocity gradients from the
same sparse data to acquire flow map Jacobians. The details of this process
are provided in Chapter 3. Because the velocity gradients are computed at the
position of the tracers in the flow, they can be conveniently integrated over
time to compute other finite-time metrics like LAVD. Chapter 3 concludes
by introducing two new integrated metrics: the trajectory-integrated stretch-
ing magnitude (TISM) and the kinematic action (KA), both of which relate
theoretically to LAVD and highlight different aspects of the flow’s kinematic
behavior.

Having introduced a novel approach to gradient estimation and structure
determination in Chapter 3, Chapter 4 sets out to evaluate their efficacy rela-
tive to other similar approaches. First, LGR’s capacity for gradient estimation
is considered. After demonstrating that it replicates baseline gradients on nu-
merically simulated data, LGR is tested against typical gradient estimation
schemes from experimental fluids. LGR-estimated gradients are computed
against those using particle image velocimetry (PIV) and Lagrangian particle
tracking (LPT), and are seen to achieve comparable, and even improved, ac-
curacy. This analysis is followed by a discussion of LGR’s sensitivity to scales
of motion, where it is observed that particle spacing acts as a low-pass filter
removing scales of motion smaller than the distance between particles.

Chapter 4 also evaluates LGR’s performance on the finite-time metrics
introduced in earlier chapters. Here, it is observed that LGR yields signif-
icantly improved accuracy when computing flow map Jacobians and FTLE
fields on sparse data over other methods from the literature. LGR’s perfor-
mance on sparse data is also explored through the use of integrated metrics.
In these analyses, measures of rotation (i.e., elliptic LCS) are seen to exhibit
increased robustness to sparsity over measures of dispersion (i.e., hyperbolic
LCS). The KA was observed to show promise towards AMFM feature detec-
tion objectives, since it provides a clear threshold for assigning membership to
finite-time vortices.

Chapters 2, 3, and 4 all serve to address the challenge of relative motion.
Chapters 5 and 6 builds upon these results to attack the remaining challenges:
those of feature-rich images and of imperfect tracers.

LGR is only useful for flow feature identification if trajectories can be
identified in recorded image sequences. In LPT studies, this is achieved by
carefully controlling experimental conditions and artificially seeding and il-
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luminating passive tracers. In the field, however, it is unlikely that tracer
visibility and scene complexity can be controlled. Therefore, dealing with
feature-rich images means tracking the trajectories of arbitrary tracers in se-
quences of arbitrary images.

To overcome this challenge, a semantic approach to kinematic flow mea-
surements was developed in Chapter 5 using modern advances in object de-
tection and tracking. A modular algorithmic approach was proposed which
involved detecting tracers using a deep detection model fine-tuned on train-
ing samples, tracking motion between frames using methods from LPT and
multiple object tracking (MOT), and estimating flow kinematics using LGR.
These methods were tested in the NOAH laboratory at GALCIT using wooden
debris and affordable imaging hardware.

Even though the methods of Chapter 5 effectively compute flow structures
from unconventional surface tracers, the relationship of the tracers to the flow
is not necessarily clear. The particles contain many complicating attributes
such as buoyancy, mass, and aspherical geometry which bring into question
the relevance of estimated flow kinematics to underlying fluid behavior. Chap-
ter 6 approaches this question experimentally. Using a simple test flow, the
semantic flow measurement approach developed in Chapter 5 is applied to sur-
face tracers simultaneously with PIV measurements made beneath the surface.
The motion observed from both modalities are compared with one another,
and it is concluded that, under many reasonable circumstances, surface tracers
can legitimately be considered flow tracers.

Finally, Chapter 7 combines the results obtained in the previous chapters
to analyze field data collected in the Caltech turtle ponds using only naturally
available tracers. The motion of leaves and bubbles were examined to iden-
tify flow structures through the synthesis of the tools developed and tested
throughout the preceding chapters. Such videos represent the kinds of data
which may one day feed into AMFM algorithms.

8.2 Principal Contributions
The principal contributions of this work fall into three categories: La-

grangian gradient regression, semantic measurement of flow kinematics, and
novel applications of the developed technologies. Here these contributions are
discussed.
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Lagrangian Gradient Regression
The principal theoretical contribution of this work comes in the form of

Lagrangian gradient regression (LGR). which was developed as an engine for
gradient-based analysis of sparsely populated flows. Typically, estimating de-
formation gradients (flow map Jacobians, equivalently) requires observing the
deformation of infinitesimally proximal tracers over extended durations. Ap-
proximating the gradient amounts to fitting the deformation operator to first
order accuracy—a linearization of the deformation in space. As a result, if
the initial separation of tracers is not very small, then the nonlinear influence
of the flow on their deformation over time becomes large. Thus, deformation
gradients are typically approximated from gridded numerical tracers seeded
on top of pre-computed Eulerian flow fields.

LGR shifts the paradigm for approximating deformations by linearizing in
time rather than in space. Tracer deformations over very short intervals can
reasonably be approximated as linear even if the initial spacing of the tracers
is relatively large. This is due to the continuity and smoothness of trajectories.
Therefore, deformation gradients computed from sparse trajectories over short
times faithfully represent the true deformation experienced by the flow in that
time. LGR leverages this attribute by approximating deformation gradients
over short intervals and resampling tracers within a neighborhood in between.
It accommodates real data by estimating gradients via regression rather than
by finite-differences. A kernel weighting function is applied to the regression
to tune the results based on the flow, and arbitrary intervals are analyzed by
compositing gradients approximated from adjacent intervals.

Furthermore, by exploiting the connection between the flow maps and flow
velocity fields, LGR provides a natural extension to computing velocity gra-
dients. In experimental fluids, velocity gradients are almost exclusively com-
puted from interpolated velocity fields. The framework of LGR, however, is
entirely trajectory based. There is no need to ever explicitly compute veloc-
ities or perform numerical differentiation. Access to velocity gradients along
a trajectory also enables many finite-time integrated metrics such as LAVD,
DRA, and the trajectory-integrated stretching magnitude (TISM) and kine-
matic action (KA) developed in Chapter 3.

The nature of LGR as discussed above affords a variety of advantages over
other approaches. These advantages, which have been justified in the body of
the dissertation, are highlighted below:
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Unified Approach to Velocity and Deformation Gradients: Using
LGR, estimating velocity gradients and deformation gradients naturally
occurs in the same set of operations using the same set of trajectory
data. One need not integrate numerical tracers on Eulerian velocity
fields to compute deformations, nor must one interpolate to a field from
Lagrangian tracers to estimate velocity gradients. All of the calculations
are naturally strung together along the course of naturally observed
trajectories.

Velocity- and Derivative-Free Velocity Gradients: Because of the
need for interpolation (if LPT) and subsequent differentiation, esti-
mating velocity gradients from experimental fluids data can be time
consuming and may amplify experimental error, depending on the qual-
ity of the data. By relying on regression of deformations as its numerical
engine, LGR avoids computing velocity—either on a trajectory or in a
field—and differentiation. It is a fully Lagrangian approach to gradient
approximation.

Superior Performance on Sparse Data: When computing deformation-
based quantities like the FTLE on sparse data, LGR vastly out-performs
other gradient estimation approaches from the literature. When applied
to velocity gradients, LGR performs at least comparably well, and in
many cases with improved accuracy.

Computationally Affordable Alternative to PIV/LPT: Because
LGR is fully Lagrangian, many steps in the gradient estimation pipeline
can be skipped in its application. For instance, there is no need to
separately interpolate or differentiate when using LGR as opposed to
LPT. Moreover, the required data storage can be much smaller than
for studies where Eulerian fields are required, as the number of tracers
(where all of the data is stored in LGR) is often much smaller than the
number of grid locations (where data is stored for Eulerian fields). This
can be especially beneficial for large 3D experiments.

Semantic Measurement of Flow Kinematics
The principal algorithmic contribution of this work has been the develop-

ment and implementation of a semantic formulation for kinematic flow mea-
surements. Virtually all analyses of flow kinematics are syntactic, in the sense
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that they base their computations on the structure of data (images, in this
case) rather than on the meaning (semantics) of features in the data. Oper-
ations such as PIV and optical flow (OF) are examples of syntactic analyses
that can be very effective if experimental conditions are favorable. Thus, in
controlled laboratory flows, PIV, LPT, and OF can be efficient and effective
means of measuring flow kinematics.

However, syntactic analysis of flow kinematics is easily performed in gen-
eral. Natural images containing natural tracers are wrought with complexity of
many forms. Reflections, non-flow regions, varied lighting, multifarious legit-
imate tracers, and flow-independent tracers are all examples of complicating
features that may be present in natural images. The developed solution to
overcoming this challenge is to train a powerful detector to semantically iden-
tify only the objects in an image which represent a part of the flow. Such tools
have been developed and deployed to great success in general across disciplines;
this work incorporates them into kinematic flow measurements. Since power-
ful open-source models have been and are being trained for general detection
purposes, fine-tuning them for effect in a specific flow requires relatively little
effort.

If tracers can be semantically identified with confidence, then object track-
ing algorithms from the world of LPT or multiple object tracking (MOT) can
be implemented to string detections together into trajectories. These trajec-
tories form the basis for kinematic analysis which is now possible due to the
sparsity robustness of LGR. Thus, the semantic flow tracer detections integrate
smoothly with LGR and the results discussed earlier in the dissertation.

This semantic approach to flow kinematics is enabling for a variety of
reasons which are outlined below:

Selectively Identifies Tracers of Interest: Modern semantic detectors
can be made to identify over 1000 classes simultaneously within images.
Extending this capability to the realm of flow measurement suggests
that studies could be conducted which simultaneously and independently
measure flows espoused by various classes of objects. Extending the ex-
ample of Chapters 5 and 6, this might mean tracking rods and spheres
separately. It might also mean simultaneously measuring the kinematics
of blood cells with bacteria or predators with prey. Many opportunities
for novel experiments exist under this framework.



167

Analyzes Complex Scenes with Minimal Additional Processing:
When measuring a flow in this manner, little additional processing of
images is required. For instance, PIV experiments often involve heavy
pre-processing to put images into a convenient format for velocimetry.
Such pre-processing removes the generality of the algorithm, meaning
that it must be carefully tuned to a given experimental flow. The
semantic approach, however, thrives on the complex features which need
to be eliminated in typical laboratory studies. This is why, in Chapter
7, the same processing parameters could be applied in both pools, even
though the tracers and scene varied significantly between both data
sets.

Enables Affordable Experimentation in Fluids: This semantic ap-
proach to kinematic measurements may also provide an opportunity for
the democratization and popular adoption of flow field measurements.
The experiments performed in Chapter 7 were conducted with hardware
costing less than $1000 USD. Videos could easily have been captured
on a personal mobile device. No special equipment was required in the
experimental setup or in the processing of the data. It is not unrea-
sonable to imagine that a self-contained mobile app which calculates
real kinematic flow quantities could be made available to general users
in the near future. The accessibility of this technology may provide
admittance into the beauties of fluid mechanics for many who may
never have had an opportunity to experience them otherwise.

Applications to Laboratory and Field Measurements
The developments made in the early portion of this dissertation enabled

experiments which could not have otherwise been performed. The first ex-
periment, reported on in Chapter 6, systematically compared measurements
of surface tracer dynamics to fluid motions just beneath the surface. Using
the same set of images, both PIV and semantic flow tracing were computed.
While the results of the experiment were useful for validating surface tracer
tracking for flow measurements, the experiment itself is one that would be very
difficult to perform using conventional techniques. The ability to perform se-
mantic tracer tracking allows for direct comparison of arbitrary surface tracer
motion to experimentally measured flow motion.

The second experiment, conducted in the Caltech turtle ponds and dis-
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cussed in Chapter 7, computed instantaneous and finite-time flow gradients
solely from naturally occurring surface tracers. The measured medium con-
sisted of leaves, twigs, bubbles, and other miscellaneous debris scattered across
the surface of the ponds. While the observed flows are relatively simple to com-
prehend, quantifying gradients and gradient-based properties in them is, by
other means than those employed here, a complex and flow-specific task. Se-
mantic flow tracing and LGR provide general access to many field experiments
by eliminating the need for highly controlled experimental environments, spe-
cialized equipment, and bespoke data processing routines.

These two experiments represent examples of the type of problems that
can be addressed using the tools developed in this dissertation. Semantic flow
measurements and the ability to compute gradients from sparse data provide
easy access to a wide range of studies that currently require complex apparatus
and processing. Moreover, they provide a platform from which AMFM systems
can be further established.

8.3 Reflections and Recommendations Regarding AMFM
Three or four years ago, when the notion of AMFM began to form as the

subject of this thesis, the technological obstacles to be surmounted seemed
formidable. In many regards, they still do; real world implementation of
AMFM may still be years off. Nevertheless, the progress made in this disser-
tation provides insight and direction as the technology continues to develop.
In this final section, reflections and recommendations pertaining to further
development in AMFM are provided. Future work relative to the specific con-
tributions of this thesis have been supplied in their respective chapters, and
are therefore left unaddressed here.

Consider Vortices as Tracking Objectives
Early on in this work it was established that AMFM requires objective

flow measurements in order to reliably follow structures through the flow. The
quintessential objective measurement may be the FTLE, which is notoriously
difficult to compute with accuracy on sparse data. Even with the improved
performance of LGR, FTLE information would likely prove to be a difficult
tracking objective to implement in AMFM.

Vorticity, and vorticity-related metrics like LAVD and KA, seem to present
a much more favorable metric for autonomous tracking purposes for a variety
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of reasons. First, the domain of a vortex is compact in space—its boundaries
are enclosed, and it is characterized by a single vortex core at the center.
Thus, tracking a vortex is likely far less ambiguous than tracking a hyperbolic
(FTLE) ridge over time.

Additionally, in Chapter 4 vortices were found to be more robust to sparsity
than hyperbolic features. Using KA in the Double Gyre flow, vortex bound-
aries were still reasonably identified with one fifth of the tracers required to
resolve a semblance of FTLE ridges. Moreover, the KA provided an easily
implemented binary criteria for vortex membership.

Finally, in Chapters 6 and 7, vorticity and vorticity-related quantities were
more identifiable and interpretable when computed from the motion of im-
perfect and natural tracers than were the stretch-based metrics. Indeed, the
buoyant surface tracers considered in Chapter 6 seemed to be drawn into
strong vortices, which highlighted the vortical motion while altering stretch-
ing behavior.

Together, these observations suggest that future implementations of
AMFM may find greater success by following vortices or by using vortices
as landmarks in their flow tracking algorithms than by seeking other objective
features like hyperbolic LCS.

Build Backwards-Time Intuition for Integrated Quantities
Integrated gradient-based quantities like LAVD, DRA, and KA seem to

be promising in their ability to discern flow structures from sparse, natural
data. However, they require that flow quantities be integrated into future
times. Thus, in their forward-time formulation, they would be inconvenient
for AMFM structure tracking. These methods, however, could also be for-
mulated in the backwards-time context, where integrations would occur over
past times which have already been recorded. It is still not certain, however,
whether backward-time integrated measures of rotation are useful for forward-
time tracking of coherent structure dynamics. Understanding this behavior
might be critical to the success of future AMFM systems.

Optimize, Optimize, Optimize
The greatest inhibitor to embedded implementations of AMFM is the com-

putational burden required for tracking structures. AMFM systems must be
able to process images in real time while also managing the rest of the overhead
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required for operation. With the implementations considered throughout this
work, that is still unobtainable in most flows.

There are, however, many opportunities for algorithmic optimization that
could dramatically improve computation speed. Perhaps the greatest gains
may come from optimizing the specific detection procedure, which is currently
the bottleneck. Using heavyweight models like Mask-RCNN on a ResNet50
backbone will inevitably be slow. Moreover, the windowing required to im-
prove detection quality, and the masking necessary to identify centroids sig-
nificantly slows the image processing. Deep detection models have been devel-
oped, however, to only identify object centroids. Perhaps if such a model were
be applied for tracer detection, processing time would see large speedups.

Performance gains may also be achieved by improving the approach to
tracer tracking. The current template-matching scheme requires significant
memory and a large number of computations. Point-based algorithms which
operate only on tracer positions and do not incorporate image information
may be much more efficient.

Many other algorithmic improvements could be made to the current struc-
ture detection implementation employed in this dissertation. All of the soft-
ware built for this project was developed by a single person who is not an
experienced software engineer to demonstrate a proof-of-concept. Certainly,
trained and talented software designers could affect significant speedups if
given to the task.

Chase After the Wind
The outlook for developing AMFM systems seems optimistic. This work

has sought to provide a theoretical and algorithmic foundation for the de-
tection of flow structures upon which the remaining pieces of AMFM can be
assembled. As AMFM technology and other technologies related to this disser-
tation develop, it is my hope that they will undergird engineers and scientists
globally as they seek to foster universal human flourishing. In their endeavors,
may they chase after the wind, measure it, and find it beautiful.
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A p p e n d i x A

OBJECTIVITY OF FLOW FIELD MEASUREMENTS

A hallmark of the theory of Lagrangian coherent structures is the property of
objectivity, which ensures that the computed quantities remain consistent re-
gardless of the motion of the observer. While it has been briefly touched on in
the body of the paper, objectivity has not yet been thoroughly discussed in this
work, but rather assumed. In this appendix, various discussions of objectivity
from relevant works are synthesized to provide an overview of the objectiv-
ity of Lagrangian quantities. With the exception of the discussion regarding
the objectivity of the composition operation, all of the results can be found
throughout the literature. The purpose of this appendix is to summarize the
objectivity of some relevant Lagrangian quantities and operations in one loca-
tion so that the reader does not need to sift the literature for them. Readers
interested in greater depth should refer to the helpful chapter on objectivity
from Haller’s recent textbook on LCS [43] and to many articles touching the
subject [42], [65], [86], [88], [118], among others.

We say that a quantity is objective if it exhibits invariance under Euclidean
transformations of the form

x̃(t) = Q(t)x(t) + p(t), (A.1)

where Q(t) is a proper orthogonal rotation tensor and p(t) is a translation. The
objectivity of a scalar, vector, or tensor quantity is examined by considering
the influence of changes of frame in the form of equation A.1 on the resulting
value. To aid the discussion, some definitions from continuum mechanics are
useful [42].

Definition 1 (Objectivity or Frame Indifference) A scalar field g is
frame-indifferent if it is unchanged by frame rotation and translation

g̃ = g, (A.2)

where ·̃ represents the transformed quantity. Moreover, a vector field g is
frame-indifferent if it simply rotates with the frame rotation

g̃ = Qg, (A.3)
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and a tensor field G is frame-indifferent if, given frame-indifferent vector fields
g and h,

h = Gg =⇒ h̃ = G̃g̃. (A.4)

Then, the transformation law for a frame-indifferent tensor field is

G̃ = QGQ⊤. (A.5)

In other words, a frame indifferent vector is one such that its magnitude re-
mains unchanged by the change of frame, and a frame indifferent tensor is one
that maps indifferent vectors into indifferent vectors [86]. Quantities that are
frame-indifferent are objective in the sense discussed throughout this paper.

The concept of invariance is stronger than that of frame-indifference.

Definition 2 (Invariance) A vector field or tensor field is invariant if it
remains unchanged under transformations of the form presented in equation
A.1. Therefore, any invariant quantity H obeys the transformation law

H̃ = H. (A.6)

Furthermore, any scalar valued function of a tensor f(G) is invariant if and
only if

f(QGQ⊤) = f(G) ∀| det Q| = 1. (A.7)

Invariance implies objectivity.

Using these definitions, the objectivity of DFt
t0 , Ct

t0 , and σt
t0 is readily

assessed [42], [48]. Using the definition of the flow map from equation 2.4, the
transformed flow map is given

x̃(t) = Q(t)x(t) + p(t) = Q(t)Ft
t0 (x0) + p(t). (A.8)

Computing the gradient with respect to x0 yields

DF̃t
t0 = Q(t)DFt

t0 . (A.9)

Hence, DFt
t0 is not objective. This result can be used to see that Ct

t0 is
invariant:

C̃t
t0 =

(
Q(t)DFt

t0

)⊤
Q(t)DFt

t0

= (DFt
t0)⊤Q⊤(t)Q(t)DFt

t0

= (DFt
t0)⊤DFt

t0

= Ct
t0 .

(A.10)

Then, since Ct
t0 is invariant, σt

t0 is also invariant.
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Objectivity of the Composition Operation
Computing the FTLE using initial and final times alone is objective be-

cause the analysis is based on the right Cauchy-Green tensor which, as has
been shown, is invariant. However, computing the FTLE via composition ac-
cording to equation 3.16 depends on many instances of the relative deformation
gradient, which is not objective. For a single instance of composition,

DFt
t0 = DFt

sDFs
t0 , (A.11)

from which an expression for the relative Jacobian is obtained

DFt
s = DFt

t0

(
DFs

t0

)−1
. (A.12)

Under a change of reference, this is expressed as

DF̃t
s = DF̃t

t0

(
DF̃s

t0

)−1

= Q(t)DFt
t0

(
Q(s)DFs

t0

)−1

= Q(t)DFt
t0DFt0

s Q⊤(s)

= Q(t)DFt
sQ⊤(s).

(A.13)

Therefore, in general,

DF̃ti+1
ti

= Q(ti+1)Fti+1
ti

Q⊤(ti). (A.14)

Applying this to equation 3.16, an expression for the composite flow map
Jacobian under a change of reference is

DF̃tn
t0 (x0) =

n−1∏
i=0

DF̃ti+1
ti

(x(ti))

=
n−1∏
i=0

Q(ti+1)DFti+1
ti

(x(ti)) Q⊤(ti),

= Q(tn)DFtn
tn−1(x(tn−1))Q⊤(tn−1)

Q(tn−1)DFtn−1
tn−2(x(tn−2))Q⊤(tn−2) · · ·

Q(t1)⊤Q(t1)DFt0
t1(x(t0))Q⊤(t0)

= Q(tn)
n−1∏
i=0

DFti+1
ti

(x(ti))

= Q(tn)DFtn
t0 (x0),

(A.15)

which is identical to DF̃tn
t0 computed from the only the first and last time

instances. Thus, the operation of composition does not affect the objectivity
of the flow map Jacobian or associated quantities.
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Objectivity of the polar decomposition
As discussed in Chapter 2, the polar decomposition separates the flow map

Jacobian into a proper orthogonal rotation tensor Rt
t0 and a symmetric positive

definite right stretch tensor Ut
t0 or left stretch tensor Vt

t0 such that

DFt
t0 = Rt

t0Ut
t0 = Vt

t0Rt
t0 .

A property of the right stretch tensor Ut
t0 is that (Ut

t0)2 = C. As a result, the
right stretch tensor is objective. Then, if we consider the transformation of
the flow map Jacobian,

DF̃t
t0 = QDFt

t0 = QRt
t0Ut

t0 , (A.16)

and R̃t
t0 = QRt

t0 . Moreover, it follows that

Ṽt
t0 = QDFt

t0(Rt
t0)−1Q⊤ = QVt

t0Q⊤. (A.17)

Therefore, the right stretch tensor is invariant, the left stretch tensor is objec-
tive, but not objective, and the rotation tensor is not objective.

Since the tensor components of the dynamic polar decomposition have not
factored significantly into this work, their objectivity characteristics are not
developed here. They are thoroughly documented by [88], where the decom-
position is developed.

Objectivity of ∇v, W, and D
The objectivity of the velocity gradient and its spin and dilatation (often

called stretch or stretching) components begins by considering the objectivity
of the rate of change of the flow map Jacobian [86]. Using the chain rule and
abbreviating Q(t) as Q,

d

dt
DF̃t

t0 = Q
(
d

dt
DFt

t0

)
+
(
d

dt
Q
)
DFt

t0 . (A.18)

Now, by equation 2.11, d
dt
DFt

t0 = ∇v(DFt
t0). Inserting this into the above and

applying equation A.9 yields

∇̃v
(
DF̃t

t0

)
= Q∇v

(
Q⊤DF̃t

t0

)
+ d

dt
Q
(
Q⊤DF̃t

t0

)
. (A.19)

Since DF̃t
t0 is invertible, it can be removed from the equation

∇ṽ = Q(∇v)Q⊤ + Ω, (A.20)
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where the the frame spin is defined as

Ω = d

dt
QQ⊤, (A.21)

and is a skew tensor defining the rate of rotation of the observer. Here, equa-
tion A.20 represents the transformation equation for the velocity gradient.
Therefore, the velocity gradient is neither objective nor frame-indifferent.

Splitting this into its components,

D̃ + W̃ = Q(D + W)Q⊤ + Ω. (A.22)

Since both W and Ω are skew, and D is symmetric, the transformation equa-
tions for D and W are given as

D̃ = QDQ⊤, (A.23)

W̃ = QWQ⊤ + Ω. (A.24)

Therefore, the dilatation tensor D is objective but not invariant, and the spin
tensor W is not objective. As a consequence, the principal strain as defined
in equation 2.15 is objective and the vorticity is not.

Objectivity of metrics for material rotation
Using the transformation laws for the dilatation and spin tensors allows for

transformation laws of scalar rotation metrics to be derived. As discussed with
equation 2.14, the vorticity at the location of a particle along its trajectory
may be computed according to

We = −1
2ω × e, ∀e ∈ Rd.

Applying the transformation, one obtains

W̃e = (QWQ⊤ + Ω)e

−1
2 ω̃ × e = Q(−1

2ω × e)− 1
2 q̇ × e

ω̃ × e = Qω × e + q̇ × e

ω̃ = Qω + q̇, (A.25)
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where q̇ is a vector representation of rate of frame rotation. Furthermore, the
transformation law for Q from the Q-criterion (equation 2.16) can be assessed:

2Q̃ = ˜∥W∥2
F − ˜∥D∥2

F

= tr(W̃⊤W̃)− tr(D̃⊤D̃)

= tr((QWQ⊤ + Ω)⊤(QWQ⊤ + Ω))− tr((QDQ⊤)⊤(QDQ⊤))

= tr(QW⊤WQ⊤)− tr(QD⊤DQ⊤) + 2 tr(QWQ⊤Ω) + tr(Ω⊤Ω)

= 2Q+ 2 tr(QWQ⊤ d

dt
QQ⊤) + ∥Ω∥2

F

= 2Q− 2 tr(W⊤Ω) + ∥Ω∥2
F

Q̃ = Q− ⟨W,Ω⟩F + 1
2 ∥Ω∥

2
F , (A.26)

where ⟨·⟩F represents the Frobenius inner product. Here, the term ∥Ω∥2
F

represents the magnitude of the frame rotation irrespective of the flow and
the term ⟨W,Ω⟩F represents the magnitude of the relative rotation between
the flow and the observer. Because the transformation laws of both vorticity
and Q-criterion indicate that the observed value varies as a function of frame
rotation, they are not objective. This is intuitive, as one would expect that the
observed rotation of a flow would appear different if observed from a rotating
vantage.

The objectivity of the LAVD (also the IRA) and the DRA are thoroughly
discussed in [88] and [51] where they are developed. The LAVD and the IRA
ψt

t0 are both objective and dynamically consistent in two and three dimensions.
On the other hand, the dynamic rotation angle φt

t0 is not objective. In [65],
the authors remark that closed level sets of the polar rotation angle are objec-
tive, though it is not in general. For more information about the usage and
objectivity of these quantities, refer to the sources listed above.
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Table A.1: Summary of objectivity and transformation laws for quantities of
importance in the study of geometric LCS

Quantity Objective Transformation Law
Flow map Jacobian ✗ DF̃t

t0 = QDFt
t0

Flow map Jacobian (by
composition) ✗

DF̃t
t0 =

Q
∏n−1

i=0 DFti+1
ti

(x(ti))
Cauchy-Green tensor ✓ C̃t

t0 = Ct
t0

Rotation tensor ✗ R̃t
t0 = QRt

t0

Right stretch tensor ✓ Ũt
t0 = Ut

t0

Left stretch tensor ✓ Ṽt
t0 = QVt

t0Q⊤

Velocity gradient ✗ ∇ṽ = Q∇vQ⊤ + Ω
Spin tensor ✗ W̃ = QWQ⊤ + Ω

Dilatation tensor ✓ D̃ = QDQ⊤

FTLE ✓ σ̃t
t0 = σt

t0

Vorticity ✗ ω̃ = Qω + q̇
Q-Criterion ✗ Q̃ = Q−⟨W,Ω⟩F + 1

2 ∥Ω∥
2
F

Intrinsic rotation angle
(LAVD) ✓ ψ̃t

t0 = ψt
t0

Polar rotation angle ✗ —
Dynamic rotation angle ✗ —
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A p p e n d i x B

ADDITIONAL EXPERIMENTAL DETAILS

A variety of experiments were conducted throughout the duration of this
project. While the most pertinent details are included in the body of the
thesis text, many details are left out for the purpose of flow and brevity. This
appendix aims to provide all necessary details for the laboratory and field
experiments which factored into the presented work.

B.1 Experimental Facilities
Three main experiments are presented in this work: a split flow over a blunt

trailing edge, an evaluation of imperfect particle surface trajectories to near-
surface flow fields, and field experiments of flows on the surface of the Caltech
turtle ponds. Since both of the laboratory experiments were conducted using
the NOAH water channel at the Graduate Aerospace Laboratories at Caltech
(GALCIT), the experimental facilities are discussed here separately from the
particular details of each experiment.

NOAH Water Channel
The NOAH water channel is a recirculating free surface flow measurement

facility shown in figure B.1. The test section of the channel is 46 cm wide
by 150 cm long, with a wall height of 61 cm. In the presented experiments,
the channel is filled to a depth of approximately 46 cm. Prior to entering
the test section, flow passes through a settling chamber with a series of flow
conditioning elements including 7.6 cm thick honeycomb panels, perforated
stainless steel plates, fine wire meshes, and a 4:1 contraction perpendicular to
the flow and water depth. All of these elements serve to reduce the turbulence
intensity of the flow entering into the test section. During operation, the VFD-
powered pump is capable of moving water at speeds up to approximately 1 m/s.
The speeds achieved in these experiments, however, are kept much lower. The
side panels and floor of the test section are built from transparent Plexiglass
to allow for optical access to flow phenomena on all sides. Recent studies
conducted in the NOAH water channel include the work of Hooper [173],
Shamai [182], Huynh [183], and Hufstedler [184].
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Figure B.1: Top-down schematic of the NOAH water channel facility.

Optical Hardware
Various optical diagnostics were implemented throughout the duration of

this work. In the laboratory, the primary mode of flow field measurement
was 2-dimension, 2-component particle image velocimetry (2D2C PIV), and
therefore required illumination and imaging of flow tracers in a planar sheet.
The flow tracers used during the experiments were approximately 10 microns
in diameter, and were therefore assumed to be ideal tracers.

Tracer illumination in early experiments was achieved using a Photonics
DM20-527(nm) YLF dual-head laser operated in single-pulse mode. This laser
is capable of achieving pulses with as short as 100 ns width and up to 200 mJ
while operating at frequencies up to 10 kHz. In later experiments this laser be-
came inoperable and a 10 W 445 nm continuous diode laser was implemented.
Since the flow speed during all experiments was relatively low speed, the need
for high-speed pulsing was not necessary, and the continuous diode laser was
suitable. For both lasers, the beam was spread using a cylindrical lens and
reflected into the test section by a mirror.

Three camera types were used during the experiments performed in the
experiments. PIV studies were performed using high-speed Phantom Miro Lab
320 cameras capable of sampling at 1380 Hz with 1920× 1200 pixel resolution
with 10-bit depth on a single channel. The cameras have 6GB of memory
and 12GB of high-speed internal RAM, meaning that the camera was capable
of sampling 3767 images in a single run before requiring data to be sent to
an external storage device. The Phantom Miro cameras are equipped with
Nikon F-mount lens connectors, and a variety of lenses were available in the
laboratory.

A large portion of this work involved sampling flows using cheaply available
or hobbyist imaging equipment. For such studies, two cameras were used. For
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both laboratory and field work, a Teledyne/FLIR Blackfly model BFS-U3-
23S3C-C machine vision camera was often selected. This camera is inexpensive
(< $500 USD), fits a small form factor (roughly 2.5 cm3), and is capable of
sampling color images with 1920 × 1200 pixel resolution at 163 Hz with a
global shutter. Because of its small size, the on-board memory of the camera is
limited. Therefore, experiments involving its use were tethered to a computer
by a high-bitrate USB 3.1 cable. The transmission rate of the cable and the
RAM capacity on the local device were the limiting factors for the achievable
frame-rate and image quality. In most instances during these experiments,
full-size images were recorded at 100 Hz or less. The Blackfly uses a C-mount,
so additional lenses were required for this device.

The final camera that was occasionally used throughout this work is a
Nikon D800 DSLR Camera. The D800 is a full frame (35.9 × 24 mm sensor)
single-lens reflex (SLR) camera with a medium-sized body that is commonly
used by hobbyist and professional photographers. The maximum resolution
of the camera is 7360 × 4912 pixels, making it an excellent device for dye
visualization photography and other single-frame diagnostics. In video mode,
however, the camera is only capable of achieving 1920× 1020 pixel resolution
at 30 Hz. Like the Phantom Miro cameras, the D800 uses a Nikon F-mount.

Captive Trajectory System
A prominent feature of the NOAH facility is the captive trajectory system

(CTS) which is fixed to the top of the water channel test section. The CTS is a
robotic flow manipulation device capable of motions in the three translational
axes and in pitch.

The CTS enables flow manipulation elements to be moved along prescribed
and captive trajectories through the flow. A prescribed trajectory is one which
is pre-defined prior to execution of the test, while a captive trajectory is one
that is programmed to respond to the flow given some means of flow sensing.
Both forms of actuation have been implemented in recent studies in the lab.

Work by Shamai and collaborators defines oscillatory cylinder motion
through prescribed CTS trajectories [32], [182], and the studies by Hooper and
collaborators incorporate both prescribed and captive trajectories to study the
dynamics of an airfoil in the wake of a cylinder [173], [174]. The CTS motions
are rate-limited to 200 Hz by hardware constraints, which limits the experi-
mental range of the device. However, given the nature of flows in the NOAH
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water channel, this limitation does not pose a serious constraint. In this work,
only simple prescribed trajectories are implemented on the CTS device.

B.2 Camera Calibration
The experiments performed in this work required camera calibration to

ground the results in physical reality. As will be discussed in more depth with
each relevant experiment, calibration for PIV images was performed in the
PIV image processing software DaVis by LaVision. The methods developed
for LGR, however, required that an alternative approach to calibration be
implemented. For this, the ChArUco calibration approach was selected for its
versatility.

Calibration Background
Camera calibration defines a relationship from world coordinates [X, Y, Z]⊤

to camera coordinates [Xc, Yc, Zc]⊤ to pixel coordinates [xp, yp]⊤. The standard
calibration procedure, and the one that was selected for this work, involves
three steps: 1. rectilinear distortion coefficient estimation, 2. intrinsic matrix
calibration, and 3. homography to dimensional units. While calibration basics
are provided in the following discussion, a more thorough explanation can be
found in any computer vision text book (e.g., the text by Szeliski [185]).

The recticlinear lens distortion model assumes that light reaching the sen-
sor through the lens is subjected to both radial and tangential distortions. In
this model, the distorted position of viewed images on the camera sensor is
defined by the equationxd

yd

 =
[
1 + k1r

2 + k2r
4 + k3r

6
] xn

yn

+
2p1xnyn + p2 (r2 + 2x2

n)
p2 (r2 + 2y2

n) + 2p2xnyn

 , (B.1)

where r =
√
x2

n + y2
n, ki are the radial distortion parameters, pi are the tan-

gential distortion parameters, andxn

yn

 =
Xc/Zc

Yc/Zc


are the normalized coordinates in the frame of the camera.

Given distorted pixel positions, the intrinsics matrix Mi ∈ R3×3 relates to
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the actual pixel coordinates by
xp

yp

1

 =


fx s cx

0 fy cy

0 0 s



xd

yd

1

 ,
where fx and fy are focal lengths in x and y, cx and cy are the pixel coordinates
of the center of perspective, and s is a shear parameter that is often set to 0
in practical calculations.

Fitting the parameters in these equations is sufficient to calibrate the re-
lationship between the 3D camera coordinates and the 2D image coordinates.
It is constant for a fixed optical setup regardless of the orientation of the ob-
server. Calibration with respect to some object or plane in the physical world
requires fitting an extrinsic matrix comprised of a rotation matrix R ∈ R3×3

and a translation vector t ∈ R3 such that Me ∈ R3×4 = [R t]. Then, the fully
defined camera matrix is computed P = MiMe.

Knowing extrinsic parameters are not always necessary when calibrating
a camera, but they are required for flow measurement. This is because they
effectively situate the camera in 3D space with respect to the flow. In the cali-
bration procedure implemented in this work, the extrinsic matrix is implicitly
calibrated in the form of a homography H which maps one planar projection
of an image to another by a linear transformation:

x′
p

y′
p

1

 = H


xp

yp

1

 , (B.2)

where x′
p and y′

p are the image coordinates from another perspective. In the
flow measurement context, the homography accounts for misalignment of the
camera to the flow and dimensionalization according to the calibration target.

ChArUco Board Calibration
ChArUco calibration extends standard checkerboard calibration techniques

to allow for circumstances where only incomplete checkerboards are visible.
ArUco fiducial markers—a type of ARTag which was devised for the purpose
of 3D registration and pose tracking in augmented reality applications—are
placed inside the white spaces on the checkerboard pattern to enable unique
determination of the board location even if portions of it are off screen. Each
ArUco marker consists of a black border with an n×n binary matrix of pixels
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Figure B.2: A computer generated image of the large ChArUco board used for
calibration in LGR experiments conducted for this work. The board is 28×19
squares with 5× 5 ArUco markers inside the white spaces.

inscribed that determines a unique identifier. Therefore, by finding any of the
markers, the position of the entire checkerboard is known. An example of a
ChArUco board is provided in Figure B.2.

The specific process of calibrating a camera for flow measurement using a
ChArUco board is provided below:

1. Prepare the camera to take images of the flow. This involves focusing
on the correct measurement plane, fixing the aperture, and setting the
camera sensitivity and shutterspeed. While sensitivity and shutterspeed
can be adjusted after calibration, everything else should remain fixed.

2. Calibrate the intrinsic matrix. Without making any adjustments to the
lens, take many images O(50 − 100) of the ChArUco board. Vary the
angle and distance from the lens between images for better results.

3. Fit the homography between the camera’s true position and the dimen-
sional position directly normal to the ChArUco board. This step only
requires a single image of the ChArUco board placed in the plane of the
flow.
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Figure B.3: Using Segment Anything Model (SAM, [155]) to identify and mask
semantic objects within an image. Top: An image of Beckman Auditorium at
Caltech. Bottom: A sample image from the experimental data presented in
Chapter 5. Left: Original images. Right: SAM used to identify all semantic
masks in an image based on the online demo implementation provided at
https://segment-anything.com/

A python script built on the OpenCV library was written to enable ChArUco
calibration for the experiments done in this thesis.

B.3 Training Data Collection
In Chapter 5, a process was described for identifying flow features using

the imperfect which may be observed in field studies. The method relied upon
the success of deep detection models to be able to identify flow tracers in the
natural setting, and therefore required high-quality training data to fine-tune
the models. In particular, the training procedure required images with masks
delineated around all tracers contained. For the data considered, there may be
hundreds or even thousands of particles contained in a frame; drawing masks
on individual tracers would be far too time-consuming to be practical (even
for a graduate student!).

In order to facilitate the mask generation procedure, the Segment Anything
Model (SAM) developed by Facebook AI Research (FAIR) was utilized [155].

https://segment-anything.com/
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The SAM model is a model based on visual transformers (ViT, [186]) and,
after encoding an image, is able to identify all semantic segmentations that it
contains without need for labels (see Figure B.3). In other words, it identifies
all sets of pixels in an image that, with high probability, represent an object
in physical reality. While very effective at segmentation, the SAM model is
not well suited for object detection (at least, at the time of this writing).
Initialization of images can take 10 or more seconds, and the structure of the
network is not designed to idenfity class instances.

In order to leverage the capabilities of SAM, an in-house GUI app was built
to collect the necessary training data. Directly applying SAM to raw images of
particles was ineffectual, since SAM does not automatically output mask data
to a trainable format and it often misses or incorrectly segments tracers with-
out additional supervision (see Figure B.3). The GUI app was built to allow
the user to load images or videos containing objects to be masked and click
them independently to generate masks. Clicking the object generates a mask
around it and prepares the mask data in a JSON file in COCO format [187]
with the addition of the mask centroid. Using the app, sets of training images
sufficient for fine-tuning detection models can be quickly generated with little
effort.

Two sets of training images were collected for the experiments conducted
during this work. In the laboratory experiments, training data was collected
to identify the spheres, rods, and bees wax pellets used as surface tracers in
NOAH. For the field data taken at the Caltech turtle ponds, bubbles, leaves,
and other surface debris were highlighted as the tracers to detect. Example
training images from both of these data sets are provided in Figure B.4.

B.4 Asymetric Wake Past a Blunt Trailing Edge
Since the asymetric wake experiment is featured in multiple places

througout the body of this work and in different capacities, its details are
included here rather than inline with the narrative of the dissertation. Specif-
ically, the experiment features in Chapter 4, where particles are numerically
seeded and propagated on PIV velocity fields and in Chapter 5 where deep
detection and tracking methods are demonstrated with miscellaneous wooden
debris. The background and details of this experiment are provided below.
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Figure B.4: Sample training images used to train the detector models employed
in Chapter 5. The images on the top half of the figure were used to train the
model used in the laboratory and include small and large spheres, rods, and
bees wax pellets. The images on the bottom half were used to train the turtle
pond detector and include masks of floating debris and bubbles.

Background
The original iteration of the asymmetric wake experiment was conducted

by Tian et al. in 2012 [188] at Caltech to study stability characteristics of
geometries associated with injectors to combustion chambers. The experiment
studies the behavior of a split flow as it passes a blunt trailing edge with a finite
thickness. A schematic of the flow is provided in Figure B.5. The experiment
was designed to allow for various velocity ratios U2

U1
of the flow on either side

of the wall to be studied. In all cases, the flow immediately downstream of the
trailing edge is characterized by bluff-body vortex shedding. For velocity ratios
U2
U1

< 1, however, a shear layer develops as the flow progresses downstream.
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Figure B.5: Top-down schematic of the asymmetric wake to shear layer exper-
iment.

The dual nature of this flow is significant in its hydrodynamic stability profile—
the bluff body shedding is an absolutely unstable phenomenon whereas the the
shear layer is convectively unstable [189]. Which mode dominates is a function
of the flow parameters and the downstream location from the trailing edge.
Understanding these stability characteristics was the emphasis of work done
by Quintanilha and Alves [190], where preliminary validation was performed
using the 2012 experiment. This experiment was designed primarily to support
that work using modern instrumentation. The results of the experiment and
stability analysis are currently under preparation, but the data and setup has
also served as a convenient case study for LGR, which was being developed in
parallel. Photographs of the experimental configuration are provided in Figure
B.6.

Experimental Setup
All experiments conducted on the asymmetric wake were performed in the

NOAH water channel at GALCIT described in section B.1. Since the NOAH
facility was not designed to handle split flow conditions, a removable plate
was designed to sit inside the channel extending from the flow conditioning,
through the contraction, into the test section. The plate was constructed in
segments from aluminum plates and spacers, with the final segment made
from acryllic panels to allow the laser sheet to pass through. The assembled
plate was 0.0572 m thick and 3.66 m long. The plate was placed in the water
channel so that it was centered horizontally throughout the test section and
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Figure B.6: Labeled photographs of the asymmetric wake to shear layer ex-
periment setup.

contraction. Photographs of the plate inside the water channel are provided
in Figure B.6.

Velocity ratios U2
U1

were enforced through the addition of various blockage
materials just upstream of the leading edge of the plate. Blockage material
included honeycomb panels (2.54 cm and 5.08 cm thicknesses), perforated
aluminum plates (51% open area), wire meshes, and Organza fabric (similar
to toole). Once a blockage configuration was assembled, a few short runs of
PIV were performed just upstream of the trailing edge where the free stream on
either side of the plate could be sampled. The PIV data sets were temporally
averaged and used to assess the velocity ratio. The conditions desired for the
stability analysis required that U2

U1
≈ 0.5, which is where most of the data was

collected.
PIV images were captured using two Phantom Miro Lab 320 cameras

placed beneath the test section near the trailing edge of the plate. Vari-
ous fields of view were examined during the experiments. The wake behind
the trailing edge was imaged through Nikon AF Nikkor 50mm f/1.8D lenses
where the fields-of-view were stitched together lengthwise and oriented so that
the trailing edge of the plate was situated at the upstream edge of the collec-
tive field of view. The stability experiments also required that the momentum
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thickness of the boundary layer on either side of the plate be measured. There-
fore, additional PIV images were taken just upstream of the trailing edge of
the plate through Nikon AF Micro-Nikkor 200mm f/4D IF-ED lenses. While
these were used to study the momentum thickness and velocity ratio during
the experiment, the results are not presented in this thesis.

As previously mentioned, the asymmetric wake example served as a testbed
for surface tracer tracking algorithms and LGR structure determination. To
this effect, an assortment of various buoyant debris was obtained and placed
upstream of the trailing edge of the splitting plate and allowed to flow into
the vortices shed behind the blunt body. Debris acquired for this purpose
included Birch spheres with diameters of 0.9525 cm (3/8 in) and 1.905 cm
(3/4 in), birch rods with 0.645 cm (1/4 in) diameter and length ranging from
1.27 cm to 5.08 cm (1/2 to 2 in), and beeswax pellets with approximately
0.3175 cm (1/8 in) diameter. The density of Birch ranges from approximately
510 to 770 kg/m3 and the density of beeswax is 961 kg/m3.

Images of the buoyant flow tracers were recorded with the Teledyne/FLIR
Blackfly USB3 color machine vision camera, which was affixed to the CTS
mount above the free surface of the flow. A 4mm Edmund Optics UC series
wide angle lens was used to image the entire wake of the flow at once.

Tested Conditions
Multiple experimental campaigns were completed using the asymmetric

wake setup. The first campaign involved an exploratory sweep over a wider
range of flow parameters and served to pinpoint conditions to be reconsidered
in later iterations. During the first campaign, three Reynolds nubmers (based
on the plate thickness) were targeted. These were Ret ∈ {6000, 14000, 22000}.
For each Reynolds number, multiple tests were conducted with varying block-
age conditions. Ultimately, the goal was to achieve a velocity ratio as close
to U2/U1 = 0.5 as possible. Six independent runs were collected per set of
conditions. Averaged values from sample cases are provided in Table B.1.

One of the principal objectives of revisiting this experiment from the work
of Tian et al. [188] was to sample lower frequencies of the flow. In particular,
sampling needed to be performed such that the minimum nondimensionalized
frequency was min (ω0) < 0.1 such that ω0

2πft
Umean

and f is measured frequency
and t is the plate thickness. This meant sampling over longer durations. Since
the Phantom cameras were limited to recording 3676 images, sampling rates
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FS were selected to be as slow as possible and yet still provide decent PIV
results. These values are also provided in Table B.1.

During the first campaign of experiments, the aluminum plate placed in the
water channel to split the flow frequently corroded and needed to be cleaned.
After the first round of data was collected, the plate was removed and treated
with corrosion resistant paints in order to preserve its finish during further
testing.

Once the plate was placed back in the NOAH water channel, additional
data were collected. Thickness Reynolds nubmers of Ret ∈ {15000, 24000}
were tested with blockage conditions attempting to enforce U2/U1 = 0.5. Six
runs were recorded at each set of condtions. The average recorded conditions
are provided in Table B.1. Conditions of the data presented in Section 4.2 of
Chapter 4 are emphasized by bold font.

Since the flow-splitting plate was installed in the NOAH water channel
for a large portion of the development of LGR, it was used to generate the
laboratory test data presented in Section 5.3 of Chapter 5. These tests were
performed with no upstream blockage, although the velocity ratio was visually
observed to be U2/U1 < 1. The water channel was run at the same speed as
those that generated Ret ≈ 15000. However, because the optical setup was
separate from that used for PIV, exact values of velocity ratio and Ret are
not known. If necessary, those quantities could be estimated from the tracked
tracer trajectories.

A variety of simulated surface debris was tested on the asymmetric wake
flow. In particular, debris included two diameters of birch spheres (9.53 mm
and 19.05 mm), 6.35 mm diameter birch rods cut between 12.7 and 50.8 mm,
and beeswax pellets which were approximately spherical with diameter 3.175

Table B.1: Summary of flow conditions for the first and second experimental
campaigns in the asymmetric wake flow experiment. The data presented in
Chapter 4 was sampled from the records made with the bold conditions.

Campaign Ret Umean m/s U2
U1

actual FS Hz

1
6000 0.10 0.39 95
14000 0.24 0.44 220
22000 0.38 0.42 350

2 15000 0.26 0.582 195
24000 0.40 0.570 280
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mm. All combinations of the birch tracers were tested on the asymmetric
wake flow, and the beeswax were tested separately. At least three runs of data
were collected per surface tracer condition. In Section 5.3 of Chapter 5 two
conditions were considered: a set of data using only the 9.53 mm spheres, and
a set using all wooden debris.

Image Processing
PIV image processing was performed using LaVision DaVis, version 10.2.0.

Pre-processing involved background subtraction followed by time resolved
2D2C PIV with a single pass of a 96 × 96 pixel circular window with 50%
overlap and three passes of a 24×24 pixel adaptive window with 75% overlap.
Vector post-processing was used to remove spurious vectors and the resulting
empty cells were filled by interpolation.

Surface tracer images did not require additional processing prior to trajec-
tory identification and computation of LGR.
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A p p e n d i x C

ALGORITHMS

The success of the work contained in this thesis was contingent upon the
development and software implementation of a variety of algorithms. In this
appendix, details of those algorithms are provided. In the first section, the
Lagrangian gradient regression (LGR) algorithms are discussed. The second
section addresses the template matching approach taken for object tracking.
While other algorithms were implemented throughout this work, these are the
primary ones which were developed and implemented by the author.

C.1 The LGR Algorithm
LGR is implemented using the procedure outlined in Algorithm 1. In most

practical applications, tracer trajectory information is provided as a list of
indexed tracers with position histories recorded. The algorithm first re-orients
the data to be indexed in time rather than by particle, so that nearest neighbors
can be easily identified for the regression operation. The neighbors are then
identified at each time step and for every particle, and their relative positions
at time ti and ti+1 are recorded. If neighbors do not exist at ti+1, they are
removed from the operation and the next viable neighbor is identified. Their

Algorithm 1 Lagrangian Gradient Regression (LGR) on Sparse Trajectory
Data
Input: Indexed particle trajectories; number of neighbors n; kernel function
k(∆x,∆x); regularization parameter γ.
Output: Velocity gradients recorded along particle trajectories.

1: N ← number of snapshots recorded.
2: for each ti, ∀i ∈ {0, 1, . . . , N − 1} do
3: for each tracer x(ti) ∈ P at ti do
4: Find nearest neighbors xj(ti) of x(ti), ∀j ∈ {0, 1, . . . , n}.
5: Compute kernel matrix K using k(∆x,∆x) with ∆xj = xj(ti) −

x(ti).
6: Compute DFti+1

ti
using equation 3.11.

7: Compute ∇v using equation 3.13.
8: end for
9: end for
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Algorithm 2 FTLE from Sparse Trajectory Data
Input: Indexed particle trajectories with DFti+1

ti
available at each time step;

observation time ∆t.
Output: FTLE σti+∆t

ti
along each trajectory.

1: N ← number of snapshots recorded.
2: for each ti, ∀i ∈ {0, 1, . . . , N − 1} do ▷ At each time step,
3: for each tracer x(ti) ∈ P at ti do ▷ along each trajectory,
4: s← i; tn ← ti; DFts

ti
(x(ti))← Id.

5: while tn < ti + ∆t do ▷ perform Jacobian composition.
6: DFts

ti
(x(ti))← DFts+1

ts
(x(ts))DFts

ti
(x(ti))

7: s← s+ 1; tn ← ts
8: end while
9: ∆ttrue ← tn − ti; DFti+∆ttrue

ti
(x(ti))← DFts

ti
(x(ti))

10: Compute σti+∆ttrue
ti

(x(ti)) using equation 2.22.
11: end for
12: end for

deviations from the analyzed particle are then stored in matrices for both
times.

With the difference matrices in place, equation 3.11 is applied to compute
the flow map Jacobian over the short interval, and equation 3.13 computes the
velocity gradient. The result is stored with the tracer at time ti.

Having computed the velocity gradient at each time step, instantaneous
metrics can be computed along each trajectory. This is simply accomplished
by following the appropriate formulae from Chapters 2 and 3. Computing
finite-time gradients and the FTLE requires composition of gradients along a
tracers trajectory, which is achieved using Algorithm 2.

Algorithm 2 receives indexed particle trajectories with position, time, and
short-time flow map Jacobians stored at each temporal snapshot. The algo-
rithm begins by iterating through each time step. At every instant, all trajec-
tories existing at that time are entered into a second loop, where pre-calculated
short-time Jacobians are left-multiplied until the desired time interval has been
reached. Completing both loops will provide finite-time Jacobians for all avail-
able data. FTLE values are computed at each time step by applying equation
2.22.

Of the metrics discussed throughout this work, the only one which relies
upon the finite-time flow map Jacobian DFtn

ti
is the FTLE. The rest of the

finite-time metrics depend on integrated components of the velocity gradient.
To approximate these other useful metrics, an approach typified in Algorithm
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Algorithm 3 LAVD and DRA from Sparse Trajectory Data
Input: Indexed particle trajectories with ∇v available at each time step;
observation time ∆t.
Output: LAVD LAVDti+∆t

ti
and DRA φti+∆t

ti
along each trajectory.

1: N ← number of snapshots recorded.
2: for each ti, ∀i ∈ {0, 1, . . . , N − 1} do ▷ At each time step,
3: for each tracer x(ti) ∈ P at ti do ▷ along each trajectory,
4: s← i; tn ← ti; ψts

ti
(x(ti))← 0; φts

ti
(x(ti))← 0.

5: while tn < ti + ∆t do ▷ accumulate rotation angles.
6: Compute vorticity ω(xs, ts) by equation 2.14.
7: Compute spatial averaged vorticity ω(ts).
8: ψts

ti
(x(ti))← ψts

ti
(x(ti)) + 1

2 |ω(xs, ts)− ω(ts)| (ts − ti)
9: φts

ti
(x(ti))← φts

ti
(x(ti))− 1

2ω(xs, ts) · g(x(ts), ts)(ts − ti)
10: s← s+ 1; tn ← ts
11: end while
12: ∆ttrue ← tn − ti; LAVDti+∆ttrue

ti
(x(ti)) ← 2ψts

ti
(x(ti));

φti+∆ttrue
ti

(x(ti))← φts
ti

(x(ti))
13: end for
14: end for

3 might be applied. Here, LAVD and DRA are provided as examples for
computing integrated quantities on sparse trajectory data. For each time step,
identify all tracers which exist at that time step. Then, iterating through each
of these trajectories, sum the necessary quantity until the desired time interval
is reached and store the result at the initial time. While LAVD (ψtn

t0 ) and DRA
(ψtn

t0 ) are presented in Algorithm 3, other integrated quantities like TISM and
kinematic action are similarly computed.

C.2 Object Tracking by Template Matching
Object tracking factors heavily into the results and discussion of Chapter 5.

Achieving high-quality gradients is contingent upon the ability to identify the
trajectories of objects observed in the experimental data. Many algorithms
have been developed to accomplish tracking tasks—some extremely simple,
and others more complex. As the results discussed in this thesis are largely
proof-of-concept, the chosen algorithm is on the simpler side of the spectrum.

Tracking by Template Matching
A template matching approach for tracer tracking is implemented in all

experimental cases considered in this study, the basic mechanics of which are
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Figure C.1: Illustration of the template matching approach to object tracking.
The template is defined as a window encompassing the observed object and
a small neighborhood of its surroundings. This template is then correlated
with a larger window in the subsequent frame. If the peak of the correlation
corresponds to a detection, then the centroid of the new detection may be
added to the examined trajectory.

illustrated in Figure C.1. First, the specific implementation of the algorithm
assumes that detections have been made in all frames prior to the target
association step. The centroids of these detections are provided as an input to
the algorithm along with the images that contain them and various algorithmic
parameters.

Algorithmic implementation begins by initializing an empty list of trajec-
tories. In the first frame Fi, where i = 0, all centroids ci,j of detected tracers
are initialized as new trajectories Tk. For all trajectories ending at frame i a
square window called a template is defined around the identified centroid ci,j

of the last detection in the trajectory with edges containing w0 pixels. In the
subsequent frame Fi+1, a larger search window with edge length w1 = w0 +∆w
centered at ci,j is defined. Because the time step between images is assumed
to be small, it is expected that, if the tracer continues to be visible in frame
Fi+1, then it will not have moved far and should be contained within the
search window. Additionally, as a result of the smoothness of trajectories, it
is assumed that surrounding tracers and image features do not significantly
change between snapshots. Thus, the expected centroid position in the subse-
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quent frame c′
i+1,j is defined by the peak of the cross-correlation between the

template and the search window.
Given the expected particle position in frame Fi+1, target association is

achieved by identifying the centroid of the nearest-neighbor detection of the
expected centroid position c′

i+1,j. In certain cases, such as if the detector is
known to have sufficiently high accuracy, it may be acceptable now to ap-
pend the centroid of the nearest neighbor to the trajectory Tk. However, in
circumstances where missed detections are expected, the position of the near-
est neighbor should be within some nearness threshold θnear of the expected
position c′

i+1,j. Additionally, the resulting trajectory should satisfy velocity
θvel and acceleration θacc constraints defined by the user. Assuming these
thresholds are met, the centroid of the nearest neighbor is appended to the
trajectory. If it is not, then the analyzed trajectory is truncated and left alone
for the remainder of this stage of the algorithm. New detections that do not
receive association with existing trajectories are defined as the initial instance
of a new trajectory and are similarly analyzed in subsequent frames. The
algorithm concludes once all detections in all frames have been processed.

Post-Processing
The above algorithm is sufficient to track trajectories for use with LGR, but

can be improved via post-processing. The need for enhancement arises from
the nature of trajectories identified from mask centroids. In many instances,
the mask generated by the detector is not perfectly consistent between frames.
This creates artificial low-amplitude noise that can cause spurious results when
additional analysis is performed. To overcome trajectory noise, median fil-
tering is typically performed, followed by Gaussian smoothing. By replacing
every entry with the median value from inside a local window, median filtering
eliminates outliers from the trajectory. Gaussian smoothing further smooths
the trajectory by softening normally distributed variations. For both filters,
trajectory edges are padded with duplicates of the edge value when they are
applied at trajectory boundaries.

Trajectory Merging
Trajectory merging was implemented to improve average trajectory qual-

ity and thereby LGR performance. The premise of merging hinges on the
notion that many trajectories are shorted by the existence of a relatively small
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Figure C.2: Schematic depicting the trajectory merging algorithm. A polyno-
mial is fit to a sample trajectory and extrapolated n time steps into the future.
If, at any point, another trajectory begins within some nearness threshold of
the extrapolated polynomial, then the missed detections are filled in by in-
terpolation. If the resulting trajectory satisfies an acceleration threshold, it is
kept.

number of missed detections randomly distributed over the duration of a true
trajectory. Each missed detection splits a parent trajectory into two smaller
trajectories with no overlap. To merge trajectories that are potentially split
by this mechanism, each recorded trajectory is treated as a sample trajectory
for which a polynomial of degree k is fit. The polynomial is extrapolated to
all future time steps in tj ∈ [ti+1, ti+2, . . . , ti+n] for some integer n and for ti
the time instant of the last recorded snapshot in the sample trajectory. If, at
any point, a test trajectory begins at time tj within some specified distance
threshold, then the potentially missed detections at times between ti and tj

are interpolated by a user specified interpolation scheme. If the new additions
satisfy an acceleration threshold, then the merged trajectory is accepted. This
process is repeated for all trajectories until there are no more potential merges
to be made. An illustration of the process undertaken for a single trajectory
is presented in Figure C.2.

Avenues for Improvement
Improving tracking capability is, perhaps, the efficient means to increasing

LGR accuracy and efficiency. As discussed, the algorithms highlighted above
are relatively simple, and could be greatly improved for accuracy and compu-



213

tational cost. Here selected shortcomings of the above approach are briefly dis-
cussed along with possible improvements which could improve tracking quality
with relatively low effort.

The first deficiency of the implemented tracking algorithm is that it re-
quires all detections to be made in each frame prior to operation. If LGR
is to be used as a structure detection strategy for autonomous mobile flow
field measurement (AMFM) technologies, tracking must be possible in a real-
time single-pass fashion. The above algorithms could be cast in that frame-
work, where tracks are extended before detections are made in the new frame.
However, all post-processing and trajectory merging would be unavailable in
single-pass operation.

Tracking procedures may also be improved by causally linking detections
and tracking. As it stands, detections and trajectories are formed independent
of one another. However, many state of the art approaches in object detection
and tracking inform where detections are made by the trajectories formed from
their motion (see, for example, SORT [152] and DeepSORT [153]). Implement-
ing a Kalman filter or a particle filter for state estimation of the trajectory
centroid to inform where detections should be sought in future images would
be a relatively straightforward algorithmic addition that could greatly improve
trajectory quality and decrease computational cost.

A third improvement to the tracking strategy would be to eliminate the
need for image content in target association. As defined above, windows of
the original images are required so that cross-correlations can be performed
to find the tracer in the next image. However, association could be done in
such a way that does not require correlation data. Indeed, this is how most
LPT algorithms work [19]. In fact, it is likely possible that tracking can be
implemented in such a way that deformation gradients (short-time flow map
Jacobians) are naturally produced as a byproduct. This algorithm would work
by minimizing the regression of deformations between spatially proximal clouds
of particles between subsequent frames. All that would be required from the
detection stage would be the locations of centroids. In this case, detection,
tracking, and gradient estimation could all be achieved in a single pass of the
data, with great potential for reducing computational burden.

Of course, many other improvements may be made to the tracking ap-
proaches applied throughout this thesis. Those listed here represent those
which seem to offer the greatest benefit for the least amount of innovation.
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