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FOREWORD

In the past most of the arch dams have been designed
according to the cylinder formula, When this formuls is

used the stresses are figured in the same way as the stress

in s pipe is figured. S=PR/T where 5 denotes the stress

in pounds per square inch, P denotes the pressure in the

pire in pounds per square inch, & denotes the radius ir inches,
and T denotes the thickness in inches. It has been showm

that this formuls is entirely inadequate when applied to the

design of arch dams,
Fo Noetzli, A, Nadai, and others have devised methods

for computing the stresses in areh dams. These methods which
have been deviged either involve a great deal of lsbor, or
they are based on a trisl and error solution. The method of
analysis discussed in this thesis attempts to put the design
of arch dasms on a more scientific basis. <he methced is both
new and unique. Because the method is new, few men in the
world understand it at the present time.

The author claims little originality in the preparation
of this thesis, COredit is due mainly %o Ir, EBugenic Kalman,
visiting professor at the Californie Institute of Technology.
Dr; Kelman devised the method of esnalysis; the author has

merely made the computations under his guidance and direction.

&3



In making the computations the author has tried to attain
8CCUTECY s The work has been checked. Complicated terms
to be integrated have been checked by the proof of integration,
vize, differentiating the integrated result, and showing that
it is equivalent %o fhe expression under the integral sign.

The author wishes to express his thanks fo the
civil engineering members of the Califomrnia Institute

faculty for helpful criticism and advice.

rasadena, California, May 1931, Tedol,



A NEW METHOD OF STRESS ANALYSIS OF ARCH DAMS

The purpose of this thesis is to present the
mathenatical treatment of the salman method of stress analysis
of arch dams, Before presenting the computstions, the salient
points of the kKalman method will be discussed. For a more
comprehensive discussion of the method the reader is referred
to the "Proceedings of the American Society of Civil Engineers
for March 1931, pages 440 to 460."

When this method is applied to the analysis of arch
dans, the dam is divided into cantilever elements by vertical,
radisl plenesg, and it 1s divided into arch elements by horizontsal
planes, The intersections of these horizontal and vertieal |
planes form parallelepiped elements. We shall presently
consider the forces acting on these parallelepiped elements.,

The water pressure against a dam varies, of course,
with the depth of the water. The pressure at any given depth
is constant. oince all points of an arch element are at the
same depth, one might think that the arch elements are under
uniform losd. However, such is not the case. The arch elements
would be under uniform load if it were not for the action of
the cantilever elements and the shearing forces due to adjacent
erches, The cantilever elements put bending moments in the

arches, and complicate the loading considerably.

The question arises "At any given point, how much
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of the load is carried by the arch, and how much of the load

is carried by the cantilever?"
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Fig. 1.

Fig. 2. rig, 3.

All arch dam anealyses are concerned with this
problem of the division of load hetween the arches and cantilevers
Figure 1 shows an element formed by the intersection

of an arch and a cantilever, Figure 2 is an end view of



the element. Figure 3 shows a plan view of the element,
and ¥Figure 4 shows a side view,
Phere are four sets of forces that act on the

element, They are:

l. The forces (1), Figure 3. These are shearing forces
between the element and adjacent cantilevers.,

2. %The compressive forces (2), Figure 3, +hese forces
are caused by the adjacent cantilevers pushing
ageinst the element.

3. The forces (3), Figure 2. ohese are shearing forces
between the top and bottom of the element and the
ad jacent arches. The forces are also shown in Fig. 4.

4, 4he load (4) due to the water pressure. This load
is proportional to the distance below the surface
of the water,

Since the element is in equilibrium, the resultant

of the sets of forces acting upon it must be zero. That is:
(1)+(2‘)+(5)+(4)=O 0 e e 29000 8000¢He e (a)

From the figures on the preceeding page we see
that the forces which act on the cantilever are the forces
(1), (2), and (4), Let us call f(x) the resultant

cantilever force, then:

f(x‘)=(l)+(2)+‘4) QOO PP O0006000Qe6 02000 (b)
or (1)+(2)=f(x.)’-—(4) $ 00 000098906020 0Pveered (c)

¥rom the figures on the preceeding page we also see

ik \!
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that the forces acting on the arch are the forces (3) and (4).
But from equation (a) we obtain:
(8)1(4) = —{1) = (2) osesevvsacccscseves (&)
Substituting the value of (1) +(2) from equation (c)
in equation (d), we obtain:
(4) = £(x) for the load on the arche
But (4) is the force due to the water pressure and
is equal to kx, where x is the distence below the surface
of the water, fherefore the load on the arch is:
kx— f(x),

We see that the load on the arch consists of two parts.

lec The load due to the water pressure, and,

2, The correction load f(x) due to the cantilever
action.

The correction load f(x) may be expressed by a Fourier

seriegs of the form:

f(x) = (a+bx+cx2')cosq—£¢ + (a+ Bx+ cxz)cosiﬂ—¢+ -
3o & do

where a,b,6, and A,B,C, are parameters to be determined.

p= angle measpred from center, @,z andgle From center to abutement
in evsluating the paramaters two things are considered:
1, The deformation in the bottom arch is zero, and
2. The parematers minimize the work of deformation.
PHE CHIEF DIFFERENCHx BETWEEN THE KALMAN mETHOD COF

ANALYSIS AND OTHER WETHODS i8 THAT THE CORRECTING LOAD IN

THE KAINMAN METHOD IS EXPRESSED BY A FOURLIER SERIES. Ino

other methods of analysis +the distribution of load between



the arches and cantilevers is determined by approximations'
involving the solution of simultaneous equations., At any
point in the dam, the deflection of the cantilever is equal
to the deflection of the arch, There is an equation for
each point that is taken. The more points that are taken,
the better the approximation.

By the halman method a correcting load is chosen
containing a few paremeters. The stresses in the arches and
éantilevers due to the load thus chosen are then computed.
The integral of work is expressed in terms of the stresses
acting on the arch and cantilever slices., The equations
for the parameters are derived from the condifiion that the
work of deformation is a minimum, and finally the linear
equations for the parameters are solved.

in presenting the computations for the Kalman
analysis, some trivial steps and transformations have been
omitted. However, the author has tried to make the computations
sufficiently complete so that they may be followed,

in order to codify the mass of computations the

euthor has arranged them in seven steps as follows:

S5TEr 1: ©The determination of the moment at any point in an
arch, Three conditions of loading are considered:
{a) pl ¢)=Constant.
; : v
(b) p(¢l:cosq0¢
. T
(ci p(¢)=cosi-gg¢

In each of these three cases the nalmen formulas



have been applied. (Proceedings A.S.C.E, march, 1931, p. 437}

STEr 2: Choice of an additional lozd on the arches f (x§¢ .

(The additional load on the arch is the load on the cantilever.)

S1Er 3: Elimination of deformaticrs in bottom arch since the
bottom arch undergoes no deformation,
STEY 4: Bvaluation of Step 3. Application of the moment

equations to the bottom arch.

STEP 5: Determination of the stresses in the arches and
cantilevers for the assumed sdditional load.

STEr 6: Integration of the expressions occuring in the
integral of work,

STEr 73 Determination of the parameters a,b,c, and A,B,0,

which minimize the work of deformation,

After the parameters have been obtained the analysis
may be applied to & particular dam by substituting numerical
values in the formulas, The author attempted to compare
results obtained by ﬁsing different central angles, and different
ratios of thickness to raddus of dam, The central angles of
120 degrees, 140 degrees and 180 degrees (¢ = 40% 705 §0° )
were chosen, and t/r ratios of 1/5, 1/10, and 1/20 were chosen,

Time did not permit the making of as many numerical
calculations as the author would like to have made, Lumericsl
calculations which have been made will be found in the appendix,
A discussion of the kalman mekthod will be found after the

computations, Jjust preceding the appendix,



STEPR 1. :
an this step the moment at any point in the arch is
determined. Zthree cases are considered:
{a) (¢ )=Constant
(b) =i ¢ i= Cos igv
(c) B(P) Cos ﬂ:a

In each of the three cases, the Kalmen formulas are applied,

{ pee rroceedings 0f 45,04, for karch 1931 p. 457)
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STEP 1 (Coyth)
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STEP /| (conTp) &
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sTep 4 (centd) :
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STEP 4 (contd) b
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STEp 2:

Ghoice of additional load on arches, £(¥ 4).
(ihe additional load on the arch is the 1sad on the cantilever;.
We may let a Fourier series represent the additional load on

an arch. Thus:

—F(x,MJis (load on :)qnﬂlﬁ,g% w 3_4)095

a; by, ¢, and A, B, U are parameters that are to be determined

later,

oTEr 3: #limination of deformation in the bottom arch(since
the bottom arch undergoes no deformation.)

if i denotes the vertical moment in the bottom arch,
then there exists a horizontal moment of magnitude /CZ%%”
where /M/is Poisson’s ratioj Eis modulus of e /QST/'CI'fj.

and M+ 2#M_, _ - - - - - (e)
E

Mis the Moment which acts on the arch
and /_"f’.ﬁ the moment that acts on T he
E

Cantilever

STEr 4: iIn this step we evaluate step 3. <he moment equations
for kj, My and Mg which we derived in gstep 1 are applied to
the bottom arch and the results are substituted in equation (e}

of step 3,

13

The Cantilever mioment is’

H z
Mi=n = jf(%) 8) (HeX) A ':—ME boH(att+H et
x=0 '

- al_ oW H*, 4 BT He BHT. c H
T 3 T m T IJ;W@ Ly



. STEP 4(coNTD)
—AH §_H _ch?

4—
A My =(a b1 e A M 1t
e e s e et

The load on the arch s
/°(¢)"a"wH*(m—AH%—CHﬂza:%@-/A+5H+CH) )
b [}

SiEr b3
in this step we shall compute the stresses in the arches
and cantilevers for the assumed additional arch load.
vetermination of 0"7‘) Q} Ty r), 4 C@ r).
{Notation is the same as in the article by Kalman in kroceedings
of A,B.G.Be for karch 1931, p. 446. <he notation is used

by a number of authors.)
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. STEP & (C‘}NTDJ'
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STEPE 5 (cont] | 19
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STEP 5 (cCownTh) 4D
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STEP 5 (conTD)
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STeP 5 (contd.)
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STEP & (conT'D) 43
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STEP & (conNTD)
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STE? 63 in this step we integrate the quantities occuring
in the equation for the work of deformation.

W=///[a~"+o~_-m(o”+r)+a(txr +Tw)j—-a\
JI)5> = ///___2 /fM; “Adxrd .

_CPO

ffo" —-w—///’u Ay rdé

JJJ5 5= 2e 2. Mo 2= L [, My,
J 6 =& //V rdgdi

SHEAR CALCULATIONS,

Var = rx =" nx
X K +_,,a- +,fz&

(Var) "= K*x ¢ E | pxs FER A RE X
4 2 = 3
+ n7x¢

JIge= ?/(K%ﬂﬁx FE r 3R xr

+crg)<~5+ n zb) rd 649

9,
[Tty 0
+-n H Jﬂm

3~ 1 &
=y
O fi’( H 0{4’ ](a m”T?flqA m’;@mﬁap

+A ™ a77' Jp/gp



STEP 6 (contd)

= H> [@h(—@-& 450/4«:7 ¢) + A2 A ( w Ly
‘ - X =&
+/4”(—§%+ @owég_g e

- H3¢0(4 .}.Atj

B fKo“H"_ f@ém“’ o + (BA1aBlGd T
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» 29 b, aA+BA)
T A
L fo ¢\b%&m7’-/;5 4 fléﬁff'ﬁsjﬂ/(?/(a;r(f
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STEP 6 (Confb().

b 4 v Po
Y nq—_ﬁ_ :._ﬂ__ e A7 E 3
® f (AN r /(»C Lo i%ocb Fac C/(aa.g%‘t’[&t;goz)

¢ 3 |
tC%nsT4)dt = £ [, (c*+ )]
63 :

COrnb‘m:'nj egs, O, @ - --@® we get.
f/Vx: - ¢D[ﬂ§ (a”f'A“:) - -’3‘2;. (abtA B)+§{(b"+5‘j
& L H7 @ 2
P per AC)H B perBEl 5 (< CT ]
:Z%g E‘OH3{&1+A‘_’)+/5H‘*W+ AB) 34 (b*+ 137)
g act AC) + 3,330 er B 9823 (c )]
z_éf [[rrdédr =L [aon>(ar+ A%) 15 ih(a6rAB)
PRt ) + B (4 +A ) r3.33H44(6cr BC
+. 93538 (c+ C Z)
Moment Calcuvlations:
T 3 #
M= Koty (xR 40 () 5 = 2
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T L (e e e x T T  0
=6 Al

4 2 (72 Y
x Addx= [ KR+t KM rkn 4= \p7
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%0 L 20 3L 34 P“;J_z‘)

= Fo
——= B +=NT 4T de
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STEFP 6 (Com‘ﬂ.) &4
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~ §TEP 7: in this step we determine the paramaters in the 30
rourier series which minimize the work of deformation.

We may find the moments in the bottom arch by
substituting x=H' in the formulas for iy, My, and Mg in
Step 1.

Ml, the moment in the bottom arch due to constant
load,may be written:

Mo~ r=(R+Jd, <= 4¢)

dip, the moment in the bottom arch due to the cos gﬁﬁ'
load, may be written:

My = 1(Ratdy s g + T 4o, 8)

iz, the moment in the bottom arch due to the cos =— 37T ¢
load, may be written:

My= re(Rot dy g+ s =35 4,

The load really applied to the bottom arch is:

P3)= 4, H-lasbH+cH)eaTy ~ (A+BH+CH?) ox 2L 4,

o

The total vertical moment in the bottom arch is:
Mestal = KH- 1R 44y o §)- (aroH (5 t0ed
+ Tyt Dy 0o (A+BHE CHY) (R34S con g
+ Wa Aon 3T 4 ) P

240
The Horizental moment [s'@ LX M

Where M 1S poisson's ratio

The combined horizontal and vertical

moments 1S

M+ /_fﬂ{ = KHR, - [4-!».5/'} +CHLJ ﬁ,,"‘é‘}'l’@/‘/ f"CH’aﬂJ

" /<M at bHt CH)S. —(A+BH+CH™) S5 Low
- (m AH+CH1jTL/'(’(za f?“" O‘HB/HCHZJWaéﬂ 74
(&H +.b/+”’ gﬁ—_}‘) +£(Aﬁ1-3/‘fj CH?&:&_Z%



STEP 7 (contd,) 2l
T F! 4+K/C0=~¢4-J’/(oa ¢f64ﬂj¢z
| Then /{: sz‘:,g =0,

From This pelation we obtain!

KHR,= (a+bH+cHY) Ru~@+BH+cH™) Rs=0 —~ —(I]

KHS,— (a+bH ,.cH’}'(sL ~A+B H+cHYS3=0 — - -3

- (Af—AH-;—cH‘L)Tz_ /a.f/ éH‘}.,.cH?)—o - - - =(3)
¢ ™

(/r+5/++CH7W T /w oz (A4 B eltl]-o -
T+ P=.‘£—— and ¢ = 2 then|

r ET. FEE W,
a (BH=1) pp (B2 )b c (BB p=) =0 — -~ (57)
and A[2E1) +8 (Qé—H—J-H) + C(%—’fi—y—ﬁﬂ o~~~ (49

From O, @/ (3’f) and@® we vbtain the

/}nporfamf' gguations +or The paramaters,



STEP 7 (Cont'd.) - 2 -

LUFORTANT EQUATICNS

R\ R.S
_ S, Al= fw H_Bég:.&_S_L K.
arbres & HTR? Ry RwS3 = RsS>
S, Sy
Rm. Rl
- -R, S
ABrCen S Sl =g H RaSTRSes Ko )
! R'g R\Si R.‘,S_; - R;s Sy
So 5.3

o= KHY(PH™13)-a{ PH 136 PH} 13}
PHY—|aH™2 PH+ 2 H,

= - PH:24 ——“KH“’H"J yL. PH=C  PHY-WHZ4PH™+ 13 &
H> PH*/A  PHZH APH’HlH H PHEIR ool H 2 PREHIAR

B- KHY(gH:1A-AfoH =126 ¥+ 12}
GH?*— 1A =2 pH>+12 H,

C==6.QH*2 ,_aKH(9H 6] 2 GH™¢ QHY3H2CqH 412y
H* GH™12  GHY aH X gH IaH F H ohia QH 102 9K} 1aH
pr =2 7 by~ L2y
- ,LETQ_ /w’ ' w - ]

Q‘r:m
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DISCUSSION

A first glance at the computations of the xalman
method of analysis may give one the impression that the
method is considerably involved. & great deal of time and
patience is required for one to follow through the
computations and thoroughly understand each step.

However, the method is nct nesarly as complicated
as 1t appears to be at first sight. most of the computations,

while long, are guite simple, Uther methods of analysis

also involve a great deal of labor, Some methods require
for good approximations the solving of sixty to a hundred
gimultaneous equations. Solving this many simultaneous
equations, even if trial and error methods are adapted, is
no small task, |

When the salman method is used, and the general
equations for the parameters are derived, the parameters
for any particular dam may be obtained by merely substituting
numérical values in the formulas on page 32, The general
equations do not have to be derived for each dam,

The author believes that the Kalman method has

real merit, The Kalman method expresses in one equation

the cantilever losding at any point in the dame  The
equation for the centilever load is:
f(x,? )=(a+Ddx +cx2)cosg¢(f’ + (A + Bx + ¢x®) cos 5 3” 4)+ -
Any point in the dam is located by its coordlnates

x and . "x" is the distance of the point below the surface



of the water, and ¢ is the angle to the point from the
center, When these two quantities are known the
cantilever loading may be obtained from the above equation.
The losad on the arch element is simply the load due to
the water pressure minus this correction load f(x,¢ | 9

Just how accurate the method is, the author does
not know, but he believes that the method will give good

results. it would be interesting to analyze a particular

dem by several methods, and compare the results. Such a
regearch would involve a great deal of labor, but the
results would be valuable.

The problem of determining the stress distribution
in arch dems is an interesting one, and one which offers

congiderable opportunity for future research,



APPENDIX

Resul%s of numerical calculations.
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TABLE OF CONSTANTS
| /Cog ava p0°=9, 4375306
Ay am 70°=4,9729858 12,
Arg wom §0°= 9.4933515 —/ 0
Aog M= 04971479 Aleg T =950 2852/
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NUMERICAL CALCULATIONS
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T () s ) £ (- 55 o
+ 0% | 1,0/333| 50666 | 49667 | 00667
fos o/ L06333|.50166 | . 499/ | -00/607
to pors | Lovod3 | .5004/| 4,997 | L0004/g,
log |0g |09 log.
t i R
X = L t =
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EL'— 0,005 75709 | 17047166 16960679 | 1.8229087
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<
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RESULTS OF NUMERICAL SUBSTITUTIONS--STEP 1.

TERM 0, ® ® ® ® @ @

7 60° .:‘.z- 82699 | 50000 =, 2090 | (4160 | 50930 |,po00 Loty

o =70° .% 76916 |.5798 | - 2974 | WITTE |, 97483 | 1.53134n0,
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| ® | © |6 | &6 | 6 o

i AG |
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RESULTS OF NUMERICAL SUBSTLITUTIONS —= STEP 7.
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Zo| 13732 = 09158 Y






