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SUMMARY

My research work has consisted of a study of the design of single phase
and polyphase induction motors, and the determination of the end turn react-

ance of polyphase machines.

The work on the single phase condenser motor was reported in a thesis

for the degree of Master of Science.

The work on polyphase machines has consisted of the determination of the
slot area, wire area, stator conductivity, pullout torque, motor rating, and
stator losses as functions of the stator dimensions. The condition for maxi-
mum stator conductivity is obtained and the pullout torque is derived for any
value of stator conductivity as a function of its value for the condition of
maximum stator conductivity. Evidence is submitted why a motor should be
designed in the region of maximum stator conductivity. This work is reported

in the paper entitled "Correlation of Induction Motor Design Factors",

In the paper entitled "End Turn Reactance of Polyphase Machines", the
end turn reactance is considered as a problem in self and mutual inductance.
The reactance between any two line segments is derived and a method of calcu-

lating end turn reactance in terms of coefficients of this type is developed.



CORRELATION OF INDUCTION MOTOR DESIGN FACTORS




INTRODUCTION

An analysis of stator resistance, wire size, horsepower rating, and air
gap density as a function of the flux per pole per unit length of lamination
stacking, stator slot shape and slot insulation, rotor diameter and flux

densities in the stator teeth and core.

The usual method of design is to begin with the rotor radius, flux per
pole, and ampere conductors per inch of rotor circumference. The flux
density in the air gap is determined when the stator tooth density and the
ratio of slot pitch and tooth width are set. The depth of slot is deter-
mined by the ampere conductors per inch and the circular mills per ampere.
The depth of stator core and the stator radius are then determined by set-

ting the value of the flux density in the stator core.

The relations of, the rotor and stator radiuvs, the width of slot and
tooth, the depth of slot and core, the flux per pole and the flux densi-
ties, to each other and to the motor performance are quite vague. To de-
termine their best proportions is difficult unless a large amount of experi-

mental data are available,

In this paper an attempt is made to determine the relation of these

factors to each other and their proportions for the best design.

A brief outline of the analysis is as follows. The area of the stator
slot is developed as a function of the shape of the slot and the area
occupied by the slot insulation. The effect of the slot insulation on the

net area of the stator slot is taken into account by using a corrected valus



for the stator radius. The area of the wire used for the stator coils is
developed as a function of the flux per pole. The stator resistance is
expressed as a function of flux per pole and slot shape. The rotor radius
is determined by setting the ratio of the flux densities in the teeth and
core. A sample calculation is made using this method of design for motors
from two to twelve poles. The maximum torque as a function of the flux
densities and the flux per pole is discussed. The effect of stator resist-
ance on maximum torque is calculated and shows that the flux per pole used

should be very nearly that for minimum stator resistance.

In the equations which are developed factors not pertinent to the dis-
cussion are omitted in which case the equations are more in the form of

proportions. This procedure when followed will be evident from the text.



TABLE OF SYMBOLS

Number of stator 8lots ¢ « o o o o o o
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Minimum width of stator tooth. . . . .
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insulation.,
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Factor proportional to stator resistance .

Factor proportional to stator conductance.

Factor proportional to maximum torgue
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Factor proportional to stator copper loss.
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Ratio of flux density in the stator core to flux density in the stator
teeths « 4 o o s o # & % & 8§ 5 5 & & & % « &« & & & & & % & & ¢« & & & ¢ « B
Watts delivered per phase to the Totor ¢« ¢« o ¢ o ¢ ¢ ¢ o ¢ o o o 6 s o &« W
Ratio of stator resistance when (Z = 1/2) to motor reactance when

A - O
Ratio of maximum torque to maximum torque when (Z = 1/2) e s o o o e s o Ty
Greatest value of (T,) when Z is increased « « « « « « « ¢ ¢« « « ¢ o o o« To max.

Ko = Kz + K4

Kz = 0.556/Bg
Ky = 0.278 P/By
X = Ky/Kp



DIMENSIONS CORRECTED FOR SLOT INSULATION

Width of stator 8lot ¢ & ¢ ¢ ¢ ¢ ¢ o ¢ 6 ¢ o o o o &
Depth of stator slot « o« ¢ ¢ ¢ ¢ o ¢ o ¢ ¢« ¢ o o o @
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Maximum possible depth of stator slot. . « « . o &«
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Slot @Yot s & w o & ® % & & o & % & & & % © & & & @
Ratio of depth of slot to maximum depth possible . .
Maximum Slot are@e o« « o o o o o o ¢ o ¢ o o o o o o
Ratio of slot area to maximum slot area for constant
Ratio of slot area to maximum slot area possible . .

Ratlo of depth of slot to stator radius. . . « » . &

flux per pole



DETERMINATION OF PROPORTIONS FOR MAXTMUM AREA

OF A RECTANGULAR SLOT

If (N) is the number of stator slots then the slot pitch in radians
is (2m/N ). Let Kj be this angle, or K; = 2 7/N. (Fig. 1.)

Fig. 1 shows a portion of a stator with thé dimensions indicated by
the symbols which will be used in the discussion. Referring to Fig. l.:

Wy = Minimum width of stator tooth

Wg = Width of stator slot

Dg = Deﬁth of stator slot

Ry = Stator radius

Ry = Rotor radius

Ry = Minimum rotor radius possible

H = Maximum depth of stator slot possible

Ky = Slot piftch in radians

From the figure it is evident that the wedge shaped area of height (H)
available for the stator slot has the same vertex angle (Kj) as the total
area of height (Rg). Then for any depth of core (D;) and width of tooth
(Wg) the problem of finding the shape of slot for maximum slot area reduces
to that of finding the largest rectangle that can be constructed in a
triangle of height (H) and vertex angle (Kl).

(Fig. 2.)

In Fig. 2 the shaded areas represent slots of various shapes inclosed
by the available trianguler area. From Fig. 2 the following proportions
are derived:

Wg =K1 Hy

Dg=H=-1









Aa - (Ws) &Ds) As = Slot area.
4 = (K1) (Hy) (H - Hy)
Ag = (Ky) (H) H - 57)

(1)

To find the value of (Hy) for the maximum area possible differentiate
(Ag) with respect to (Hj) and equate to zero.

alhg) =K (H-2H)=0
a(m)

Hy = H/2 For maximum slot area (2)

Substitute (2) in (1)

As max., = 5H2 (3)

4

Where Ag pax. 1s the maximum value of the slot area.

Since we are not interested in actual values but rather in their pro-

portions, let (Y) be the ratio of the depth of slot to the maximum depth

possible.
Y=Dg = (H-H) (4)
H H
Let
A= Ag (5)
As max.
Then
A=K (HH - H?) . 4 (Hy) (H - Hy) (6)
Ky HR - H2
4
Substitute (4) in (6)
A=4(1-7)Y (7)

(Curve 1.)
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Equation (7) is plotted on Plate 1. The curve is symmetrical with
respect to (Y = 1/2). The curve shows that (A) is a meximum at (Y = 1/2)
and that it does not change rapidly for small changes in (Y) near this
value. Since for shallow slots the reactance is lower and the rotor dia-
meter is greater, it is evident that the depth of slot should be made as

small as possible without sacrificing too much slot area.

TABLE I.
Y = Dg/H A = Slot Area
Maximum slot area
0.50 1.00
0,45 0.99
0.40 0.96
0.35 0.91
0.30 0.84

Table I. shows that decreasing the slot depth 10% from that for maxi-
mum area decreases the slot area only 1%. A reduction in slot depth of 20%
of that for maximum area decreases the slot area only 4%. If the slot depth
is made 80 to 90% of that for maximum area, a material decrease in slot

reactance is obtained without producing any appreciable loss in slot area.

EFFECT OF SLOT INSULATION ON SLOT SHAPE

In the preceding derivation the assumption was made that all of the slot

area be occupied by the windings. Teking account of the insulation for the

slot walls and the top wedge does not change the analysis. The area occupied



by all the slot insulation except that surrounding the individual conductors
can be accounted for by considering the depth of the stator core and the
width of the stator teeth increased by these amounts; the remaining area can
be treated in the manner described in the preceding paragraphs.

(Fige 3).

In Fig. 3 (D) and (DZ) are the net height of the stator coils and (Wg)
is the net width of the stator coils. (Wyg) and (Dyg) are the actual slot

dimensions. The net area of the coils in the slot is (Dy + Dg) (Wg).

Let
Dg =Dy + Dg Net height of stator coils (8)
Dy = Dgs = Dg Total height of insulation (9)
D, = Wos = Wg Total width of insulation (10)

If (Dy) is added to the depth of the stator core and (Dp) is added to the
width of the stator teeth, the remaining area having height (H) can be used
rather than the actual area of height (Hy). The values of (Dg) and (Wg) which
are then derived will be the net dimensions of the coils in the stator slot.
To obtain the actual slot dimensions (D;) is added to (Dg) end (Dh)is added
to (Wg).

H=H - (Dy + Dy/Ky) (11)

Tig. 4.)

The effect of slot insulation can be entirely eliminated from the cal-
culations if instead of using the actual stator radius (R,g) a stator radius

of (Rog = (Dy + Dy/Ky) is used.
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From Fig. 4 the following relations are obvious:
Rg = Ros - (Dy * Dp/K1) | (12)
R, = Rop - Dh/Kl (13)

In the discussion to follow the net stator dimensions will be used, the
actual values can be obtained from the preceding equations.
Let

Rr = Net rotor radius

o
i

Net stator radius

o2}
il

Stator core flux density

Maximum stator tooth density

jus)
ct
(]

(=)
]

Depth of stator core

Minimum width of stator teeth

My
G)p = Flux per pole
N

Number of stator slots

|l
[}

Gross length of lamination

P = Number of poles

Using the above symbols the common eguations for the flux densities in
the teeth and core are:

By = Q. P
L, N 2(0.9) Wy

Introdueing Kl we have

@, (& P (0.278)

B
t

LWy

B, = @, _ _®p (0.556)

Lg 2(0.8) D, Ly D



From the above equations (Dc) and (W;) are given by equations (14) and

(15).
D, = ®p (0.556) (14)
Ly B
W, = @, Ky P (0.278) (15)
Lg By

From Fig. 1.
H=Rg - (D, *+ W,/K,)

Substituting the values of (Dc) and (Wt) given by equations (14) and (15).

H =38, - @ ( (0.556) + _P (0.278) ) (16)
Lg B, By
Let

K, = 0.566 + _P (0.278) (17)
By By

Ky = (0.556) (18)
BC

K, =P (0.278) (19)
By

Substituting equations (17), (18), and (19) in (14), (15) and (16) the follow-

ing expressions are derived:

Dc = @, K3 (20)
Lg
Wy = @p K1 Ky (21)
Lg
H=Rg - @ Kp (22)
Lg



Equation (22) shows that (H) decreases linearly as (Q@.) increases,

D
g
When ((DpKz) = Rg , (H) becomes equal to zero. That is, at this value

L
of flux pir pole all of the available space is occupied by the stator core
and teeth. This then is the greatest value of flux per pole which is
theoretically possible.
From (3)

2
Ag max, = K3 H

From (7)

Lg=K B (1-1)Y
Substitute (22) in (7)

AS=K1(RS b K2 )% ( Y X (24)

Lg :

Equation (24) is the general equation for the slot area. But here
again the proportions are of greater interest than the actual values. The
slot area reduces to zero when (H) is equal to zero.

For (H =O)

D
I £ = RB/K2

Let

(0]

:

L g for any value of H.

P

Lg at (H = O)

(25)

N
I
m
=
[}
20



The variable (Z) is then equal to the ratio of the flux per pole to the
maximum flux per pole possible with the flux densities determined by (Kz).

Substitute (25) in (22) and (24)

H=Rg (1 - 2) (26)
Ag max. = KL (Rs)z Q- z)? (27)
4
2
A =K RS (1-220Q-1)7Y (28)

The greatest slot area would occur when the flux per pole is equal to
zero. This is equivalent to putting (Z) equal to zero in equation (27).
When (Z = 0)

As max. = Ky (Rs)a
4
Let

A = A
KiRg2/4
=41 -2)2 (1-7)Y (29)

The variable (Aj) is then the ratio of the slot area to the maximum slot
area possible when the flux per pole and the slot shape both are allowed to

vary. It is a meximum for (Z = 0) and (Y = 1/2).

Plate 2.)

Plate 2 shows values of (Y) and (Z) for which (Al) is constant.

DETERMINATION OF FLUX PER POLE FOR MAXIMUM WIRE SIZE

Let (Aw) be the area of the conductor and (n) the number of conductors

per slot.

Then
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by 7 By

n

The flux per pole varies inversely as the number of conductors, so (Aw)

varies directly as (AS)(G% ) « But (Z) is proportional to ((22) 50 we may
L
4 g

write the proportion.

Ay ™A %

The slot area (As) is proportional to (4;). The slot area is a maximum
for (Y = 1/2). Substituting this value of (Y) in equation (29) for (Al)
results in the proportion.

A, =01 -2%2  For (Y =1/2) (30)

To find the value of (Z) for maximum wire size differentiate (Aw) with
respect to (Z) and equate to zero.

A( 4y ) =1 -32=0
L

and
z=1/3
When (2 = 1/3), or when the flux per pole is one-third of that at which
all of the available space is occupied by the iron in the stator core and
teeth, the area available for each conductor is a maximum.
Z is equal to one when (CDP/Lg = Rs/Kz)’ so the wire size is a maximum for
©, = Rg

L, 3Kk

If (z = 1/5) is substituted in equation (30), the value of (A,) given
by this equation is 4/27. In order to make (Aw) the ratio of the wire size
to the maximum wire size, the value of (Aw) given by equation (30) must be

increased by 27/4. This results in the equation



A =27 (1 - 7)% 2 (31)
Z

Where (Aw) is the ratio of the wire area to the maximum wire area.
Equation (31) is plotted on Plate 3.

(Plate 3.)

Plate 3 shows that (Aw) is greater than 0.5 from (Z = 0.09) to (2 =
0.66). In larger machines two or more conductors are often used in parallel,
so that in the range (0.5 < Aw < 1), the actual copper area of the conduc-
tors may be consldered to be proportional to the area available for each

conductor.

DETERMINATION OF FLUX PER POLE FOR MINIMUM STATOR RESISTANCE

The resistance of the stator will vary directly as the number of con-
ductors in series per phase, and inversely as the area of the conductor.
R = n/Aw R is proportional to the stator resistance.
From (30)
AL = (1 - 2)2 2 When (Y = 1/2). (4, )is proportional to the wire
area.
The number of conductors varies inversely as the flux per pole.
n=1/7
The stator resistance is then expressed by the proportion

R= 1
(1 -2)2 22
and the conductance, (G), by the proportion
G =(1-2)° 2%
To find the maximum value of (G) differentiate with respect to (Z) and

egquate to zero.
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d (6) =1-22=0.
a (z)

and
7 =1/2 (54)
The maximum stator conductivity occurs at (Z = 1/2). When (Z) equals

one, (CDp/Lg - Rs/Kz), so for minimum stator resistance

Oy Rg

Lg 2 Ky

It (Z = 1/2) is substituted in the expression for (G), the resultent
value of (G) is 1/16. In order to make (G) the ratio of the stator conduct-
ivity to the maximum conductivity, the value of (G) given by this expression
must be increased by 16. This results in the equation

¢ =16 (1 - 2)® z° (33)

The ratio of the stator resistance to the minimum stator resistance is
given by the equation

R= 1 (32)
16 (1 - Z)® z%

(Plates 4 & 5.)
Equations (32) and (33) are plotted on Plates 4 and 5.

TABLE II.
From Plate 5.

TN

R
2.40
1.42
1.08
1.00
1.08
1.42
2.40

® © o © o o
[0l B2 IS I S €2 AV ]

QOO0 0O0O0O

Table II shows that a small change in (Z) near (Z = 1/2) does not ap-

prediably affect the stator resistance, but for values of (Z) less than 0.4
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or greater than 0.6, the resistance increases rapidly.

In deriving equations (32) and (33) the shape of slot was assumed to
be that for maximum slot area, that is (Y) was given the value 1/2. The

values of (G) and (R) for any value of (Y) are given by the following

equations.
R= 1 (35)
e (1-2)222 1-7) Y
G=6a(1-22221-7)%Y (36)
(Plate 6.)

Equation (36) is plotted on Plate 6.
In equation (36)
Y = Bg/H
From (26)
H= Rs (1 -2)
Then

Y=Ds
Let

X = Dg/Rg

Y =X
1-2

Substituting in equation (36)

G=6422 (L -2-X)X (37)
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(Plate 7.)

Equation (37) is plotted on Plate 7. Sinee (X) is the ratio of the
depth of slot to the stator radius, the depth of slot for any value of (Z)
and stator radius (Rs) can be taken from this curve. Plate 7 shows that
the stator conductivity is a maximum when the depth of the stator slot is
equal to one-fourth of the stator radius, and (Z = 1/2). Reducing the depth
of slot to 0.225 of the stator radius reduces the conductivity only one

percent.

In the derivation of these formulas no mention has been made of the
actual values of the flux densities in the teeth and core so that the shape
of the stator slot for maximum conductivity is independent of the values of

the flux densities.

DETERMINATION OF THE DEPTH OF STATOR CORE,

WIDTH OF STATOR TEETH AND ROTOR RADIUS

In order to determine the depth of the stator eore, the width of the
stator teeth and the rotor radius, the flux densities must be considered.
Referring again to equations (17) to (25).

(17) K, = 0.556_ + _P (0.278) = K, * K4

3
Bc Bt

(18) K3 = 0.556

Be

(19) X, = P_(0.278)
By
(20) Dc =@ Ky

oo - B 28

e

(25) Z =% Kz
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Substituting (25) in (20)
Dc/RS = Z Ky/Ko (28)
(26) E/R_ = (1 -2)

Rp =1- De + YH
Rg Rg Rg

Substituting equation (26) and (38)

Rp =1-2 XKz -Y (1 -2) (39)

Rg Ko

The equation for Rr/Rs may also be written as
Ry/Rg = Ry /Ry + (1 - Y) H/Rg
But R;/Rg = 2 K,/K,
and HR = (1 - 2)
So
R./R, = 2 K4/K2 +(1-Y)(1 - 2) (40)
Let

o= K4/K, = P (0.278) B,

0(: P BC
2 Et

Let

B = B,/By
Then

=P B/2

Kg =Kz +Kg =Kz (1L +X)
So

K4/K2 = . «:(“ (41)



Substitute (41) in (40)

R/Rg= 2 = + (1-Y)(1-2) (42)

(1 +e<)

Equation (42) shows that in order to determine the rotor radius for any
values of (Y) and (Z) it is only necessary to fix the ratio of the flux
densities in the core and teeth and not their actual values, A curve of
R,/Rg against (=t) is plotted on Plate 8. for (Z = 1/2) and (Y = 1/2), this
being the condition for minimum stator resistance. Any change in (Y) does
not alter the shepe of the curve it merely displaces all points on the curve
an equal distance. If (Y) is made 0.45 instead of 0.50 the slot area is
decreased only one percent, but (Rr/Rs) is increased by 0.025 for all values

of (X)) when (2 = 1/2).

The velue of (Be/By) will in general lie between 0.50 and 1.0 so that
(%) will assume values from 0.25 P to 0.50 P.
(Plate 92).

Plate 9 shows curves of (Rr/Rs) for values of (Bc/Bt) from 0.5 to 1.0
for (Z = 1/2) and (Y = 1/2). The values of (Y) and (Z) being those for
minimum stator resistance. The curves are plotted for motors having from

two to twelve poles.

For an open slot motor a core density of 70,000 line per square inch
and a tooth density of 90,000 may be taken as suitable values. This would
give a ratio of (Bc/Bt) near 0.8. The probable varietion from this value

would perhaps be from 0.7 to 0.9,
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TABLE IIT.

Ratio of Rotor Radius to Stator Radius
(v = 1/2), (z =1/2) (z =1/2), (Y = 0.45)
Be/Bt | 0.7 0.8 0.9 | 0.7 0.8 0.9
Poles

2 0.455 | 0.472 | 0.487 0.480 | 0.497 0.512
4 0.542 | 0.557 | 0.572 | 0.567 0.582 | 0.597
6 0.590 | 0.604 | 0.615 0.615 0.629 0.640
8 0.617 | 0.630 | 0.642 | 0.642 | 0.655 | 0.667
10 0.640 | 0.650 | 0.660 | 0.665 | 0.675 0.685
12 0.653 | 0.662 | 0.670 | 0.678 | 0.687 0,695

Tabte III gives values of Rr/Rs for motors from two to twelve poles for
ratios of Bc/Bt of 0.7, 0.8, 0.9. Two conditions are considered, one, that
for minimum stator resistance (Z = 1/2) and (Y = 1/2), the other having the
same flux per pole but a slightly shallower slot (Z = 1/2) and (Y = 0.45).
For a four pole motor with (Y = 0.45) and (By/By = 0.9), Rp/Rg is equal to
0.597. TFor a six pole motor with (Y = 1/2) and By/By = 0.7), Rr/Rs is equal
to 0.590. By slightly increasing the core density of the four pole motor
and decreasing its tooth density the same diameter rotor can be used for
both the four and six pole motors. For an eight pole motor with (Y = 0.45)
and (Bc/Bt = 0,8), the value of Rr/Rs is 0.655, while for a twelve pole
motor with (Y = 1/2) and (B /By = 0.7), Ry/R  takes the value 0.653. Here
by decreasing the depth of the slot for the eight pole motor and increasing
the tooth density of the twelve pole, the same diameter rotor can be used

for motors from eight to twelve poles.



In order to determine all of the mechanical dimensions of the stator as
a function of the stator resistance, it is only necessary to set the ratio
of the flux densities in the teeth and core. 1In the discussion to follow an
attempt will be made to prove that for economical design the motor should be

designed very near the point whers it has minimum stator resistance.

SAMPLE DESIGN

For a sample design let the following dimensions be assumed.
Stator radius = Rgg = 10 inches,
Vertical slot insulation = Dy = 0.3 inches,
Horizontal slot insulation = D, = 0.1 inches.
Number of stator slots for two pole motor = N = 54,
Number of stator slots for 4 and 6 pole motors = N = 72,
Number of stator slots for 8, 10, and 12 pole motors = N = 96,

Ratio of flux density in core to density in teeth = Bc/Bt = 7/9.

To correct for the area occupied by the slot insulation equations (9) to
(13) are used.
(9) Dg = Dos - Dy.
(10) Wg = Wos = Dn.
(12) Rg = Rog - (Dy + Dh/Kl)~
(13) Ry = Ror - Dn/Ki.

Ky = 21

N

Table IV. gives the values of Ry determined by equation (12):



TABLE IV,

Poles 2 4 & 6 8, 10, & 12,
N 54 72 96

K1 0.1l161 0.0871 0.0654

Dy/X1 0.860 1,16 1,53

Dy + Dn/Ky 1.16 1.45 1.83

Rg 8.84 8.55 8.17

Because of the space occupied by the slot insulation the actual stator
radius is reduced to the effective value (Rg) given by Table IV. Equation
(42) is used to find the rotor radius.

(42) RpfRg= _Z ok + (1 -Y) (1 -2)
1 +

Where ( = P Bg
2 Bg

Let two designs be considered; one for minimum stator resistance, (Y = 1/2),
(z = 1/2), and the other having the flux per pole for minimum resistance but

a slot a little shallower than that for maximum slot area, (Z = 1/2), (Y = 0.45).

The results of equation (42) and (13) are given by Table V.

TABLE V.
Rp/Rg Ry Actual rotor radius,
Ror
Poles | (Y = 1/2) (Y = 0.45) [ (¥ =1/2) | (Y = 0.45) (Y = 1/2)| (Y = 0.45)

2 0.468 0.493 4,13 4,36 4,99 5.22
42 0.554 0.579 4,73 4,95 5.88 6.10

6 0.601 0.626 5.14 5.35 6.29 6.50

8 0.627 0.652 5.12 5.32 6.65 6.85
10 0.648 0.673 5,29 5,50 6.82 7.03
12 0.661 0.686 5.40 5,61 6.93 | 7.14

it




The values of the actual rotor radius given by Table V agree with those

found in general practice. For (Y = 0.45) the conductivity is 98% of the

maximum, but the rotor radius is greater, so this design would be preferable

to that for which (Y = 1/2).

To find the remaining dimensions the following equations are used.

Dg =YH

By (26)
H=Rg (1 - 2)

So Dg =R, Y(1-2z)
Wg =K H

Combining this with equations (4) and (26)
Ws =Rg K1 (1 - Y)(1 = 2)

Let Aand A be the slot pitch

A= Ky Rp

Y
of

5 X1 Ror
Then Wy = A" WS

or Wy =Ae- Wos

The results of these equations for the two designs (Y = 1/2), (Z = 1/2),

and (Y = 0.45), (2 = 1/2) are given by Table VI.
TARLE VI,

For (Y = l/z) and (Z = 1/2)

Poles Dg ¥ Wg A Dg Dos Wos Ao
2 2.21 0.257 0.480 2.51 2,51  0.357 0,580

4 2.14 0.187 0.412  1.68  2.44  0.287 0.512

6 2.14 0.187  0.447  1.27  2.44  0.287 0.547

8 2.04 0.133 0.335 1.0l  2.34  0.233 0.435
10 2.04 0.133 0.346  0.84  2.34  0.233 0.446
12 204 0.133 0.355 _ 0.73  2.34  0.283  0.453

Wy
0.223
0.225
0.260
0.202
0.213
0.220

Ao/t
2.60
2.27
2.10
2.15
2,09
2.06




(Y=0.45), (Z=1/28)

Poles Dg Wg A De Dos Wos Aoy Wy  Ao/Wy
2 1.99 0.283 0.506 2.49 2.29 0.382 0.606 0.224 2.71

4 1.92 0.205 0.430 1.68 2.22 0.305 0.530 0.225 2,37

6 1.92 0.205 0.465 1.28 2.82 0.305 0.565 0.260 2.17

8 1.84 0.147 0.349 1.01 2,14  0.247 0.449 0.202 2.82
10 1.84 0.147 0.360 0.83 2.14  0.247 0.460 0,213 2.6
12 1.84 0.147 0.267 _0.72 2.14  0.247 0.467 _ 0.220 2.12

The values of Dg and Wg are the net dimensions of the stator coils in
each slot. Dgg and W,g are the actual slot dimensions. The ratio of slot
piteh to tooth width is a function of the slot insulation as well as the flux
densities, so it is difficult to meke comparisons. However, the results of

this calculation fall in the range found in practice.

By setting the ratio of the flux densities in the stator core and teeth
it has been possible to determine all of the mechanical dimensions of the

stator.

In order to determine the flux per pole and the flux density in the air
gap, the actual values of the flux densities must be considered. The value
of By/B, was taken as 7/9.

Let Be = 70,000 lines per square inch.

Bt = 90,000 lines per square inch.

By (25)
(OF) = Z
L Rs K,
By (17)
Kg = Bg * %
(18) K5 = 0,956
Be

(19) K4 = _P (0.278)

By



By = @ P
Lg 27 Rop

The air gap density is given by the usual equation shown above.

TAELE VII.
Poles Ky Ko Dy Dp B
Lg Rg Ly (Y = 1/2)%Y = 0.45)
2 6.18 (10-9) 1.4L (10°°) 3.54 (10%) .12 (10°) 19,900 19,000
4 12,36 2.05 2.46 2.11 22,800 22,000
6  18.54 2.65 1.89 1.62 24,600 23,800
8  24.72 5,27 1.3% 1.25 23,900 23,200
10  30.90 3.89 1.29 1.05 24,600 23,900
12 37.08 4,50 1.13 0.908 25,000 24,200

Table VII gives the air gap density in lines per square inch. The values
given here agree very closely with those found in practice.

If higher values had been taken for the flux densities, the resulting

air gap density would have been proportionately higher.

From the results of this calculation it is evident that the general prac-
tice is to design the motor near the point where the stator resistance is a
minimum. In the discussion to follow reasons will be given why this should

be so.

RELATION OF THE PULLOUT TORQUE TO THE FLUX PER POLE

AND THE FLUX DENSITIES

For a constant stator radius the flux per pole is determined by the two
variables (Z) and (K,).

(25)




A change in the variable (Kz) represents a change in the value of the
flux densities. The value of (Z) depends on the depth of core and width of
teeth. Thus the flux per pole can be increased either by increasing the
flux densities or by increasing the area of the stator core and teeth. The
motor performance and pullout torque will depend not only on the flux per
pole but also on the way in which that flux per pole is obtained. That is,

they are functions of the variables (Z) and (K2)°

From equation (25) it is evident that the flux per pole varies as (l/KZ)
for constant values of stator radius and (Z).

(17) K2 = 0,556 (1 + P )

Let (T) be proportional to the maximum torque.
(1) varies as ( @p)%.
( Op) varies as (1/Kg)

So T= (1/K2)2.

If curves for constant values of (K;) are plotted against (l/Bc) and
(p/z Bt) the result is a series of straight lines. The curves for constant
vaelues of (l/Ka) and (l/Kz)2 will also be straight lines., Curves for con-
stant values of (l/Kz)z from 1(109) to 15(109) are plotted against (1/Bg)
and (P/2 B,) on Plate 10. Ourves for these same values of (l/K2)3 are plot-
ted against (B,) and (2 Bt/P) on Plate 1l. These curves will be curves for
constant values of maximum torque. Then for any value of torgue the values
of the flux densities can be changed along the curve to the point where the

total iron loss and magnetizing current are a minimum.
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DETERMINATION OF THE GRADIENT OF THE MAXIMUM TORQUE

; 2 i
The torque varies as (l/Kz) so if the gradient of this funetion is
determined, it will be the gradient of the torque.
(17) K, = 0.556 (1/B, + P/2 B)

(K5)® = (0.556)2 ( 2 By/P + 7c )2
(Bg) (2 By/P

T = (L/E,)®

T = (1.8)2 ( (Bo) (2 By/P ¥
Be + 2 By/P/

Taking the partial of (T) with respect to (2 B./P)

J = (1.8)% 2(Be)(2 By/P)(Be)?

T (2 By/P + By)o

Similarly
4T = (1.8)% 2(Be)(2 By/P)(2 By/P)®
= (B¢) (2 Bg/P + Be)®

The direction of the gradient will be given by the ratio of the two

partial derivatives.

4T
J(2 Bt/P) = (Bn)®
JT (2 By/P)%
d (Be)

d (B = (2 By/p)?
a (2 Bg/P) (Bc)
Integrating "

B, = [(2By/P)° + 4 (43)




Equation (43) is the equation of the line which everywhere has the
direction of the gradient of (l/Kz)z. In the equation (A) is a constant which
may assume any value. A few of these lines are plotted on Plate 1l. For any
value of (Bc) and (2 Bt/P) the pullout torque can be increased most rapidly

by increasing (By) and (2 Bt/P) along the gradient lines.

EFFECT OF INCREASING THE FLUX PER POLE

ON THE HORSE POWER RATING

If the value of (Y) and (Z) are kept constant, but the flux per pole is
increased by increasing the flux densities, there will be no change in the
shape or size of the stator slots. The stator resistance will then vary as
the number of conductors in series per slot squared or as (l/(Dp)Z. The
rotor resistance will also vary in the same manner. If we consider the ratio
of current and torque to horse power constant, then all of these will increase
as ((Dp)z. Thus the horse power rating of the motor could be increased in- .
definitely, as far as these factors are concerned, by increasing the flux
densities, There are, however, two limiting factors, one, the saturation of
the iron, the other, heating. For the iron commonly used for induetion motors
the iron losses vary almost as the square of the flux densities. But the
horse power rating would also increase as ((Dp)z. The ratio of iron loss to
rating would then remain constant. Tor normal values of flux densities the
noload current increases as (CDp)z, s0 here again the ratio of noload to full-
load current remains fixed. For high values of flux densities the magnetiz-
ing current increases very rapidly, lowering the power factor and materially

increasing the full load current and losses.



The conductivity of the stator and rotor, and the full load current
all increase as (d)p)z, so the full load copper loss would also increase as
(GDP)B. The total losses will then vary in the same manner. The amount of
heat whiech the motor can dissipate, however, will not increase. The losses

and consequently the horse power rating of the machine will be thus limited.

If the rating of the machine is kept constant but the flux per pole is
increased the motor resistance is decreased. But the no-load current, full
load current, locked rotor current, and iron losses are all increased.
There is no object then in increasing the flux per pole above that required
by the pullout torque, unless the rating of the machine can be increased or

its losses decreased.

The locked rotor current increases as ((Dp)z. For line start motors
the starting current is limited. If a low reactance rotor is used the flux
per pole must be low to limit the starting current. Sinece the motor re-
sistance varies inversely as (d)p)z, this will cause the motor resistance
to be high and the efficiency at full load consequently low. However, if
a high reactance rotor is used the flux per pole for the same starting
current can be increased. The resistance will be decreased and the effiec-
iency inereased. The increase in no-load current and iron losses will bs

limiting factors.

EFFECT OF INCREASING THE FLUX PER POLE

FOR CONSTANT FLUX DENSITIES

To change the flux per pole without changing the flux densities cor-

responds to a change in the variable (z). If the effect of stator resist-



ance on the pullout torque is neglected, then the torque, rating and current
will increase as ((Dp)z. The rotor conductance will be given by egquation
(36).
(56) G=64(1-2)2 22 (1-Y)Y
For (Y = 1/2)
G =16 (1 -2)% 22
For constant flux densities and stator radius ((Dp) varies as (Z).
Let (W) be proportional to the stator copper loss and (I) be the full
load current,
Then W = I2/G
(I) is proportional to (z)?

W= 74
16 (1 - 2)2 22

If the value of (W) is made equal to one when (Z = 1/2), then (W) will
be the ratio of the stator copper loss to that for (Z = 1/2).
This relation is expressed by equation (44).

w= z°

T =3 (44)

Equation (44) is plotted on Plate 12.

TABLE VIII.
z i
0.3 0.183
0.4 0.444
0.5 1.000
0.6 2,250
0.7 5.450

Since the torque varies as (Zz) an increase in (Z) from 0.5 to 0.6

represents an increase in torque of &4% but at the seme time the stator
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copper loss is increased 125%. Increasing (Z) from 0.5 to 0.7 increases

the torque 96% and the stator copper loss 445%. On Plate 13 (W) is plotted
against (Z2), this gives a better idea of how the loss varies with the
torque. For values of (Z) greater than 0.5 both the current and the resist-
ance are increasing so the stator copper loss increases very rapidly. Since
the total heat which the motor can dissipate is limited it is not practical

to use values of (Z) much greater than 0.5.

If it is desired to limit the stator copper loss to a certain percent,
then the conductivity mnst_increase as the rating or as (Za).
Let (G') be the required conductivity,
Then

Gr = x 22

Where (k) is a constant dependent on the percent stator copper loss.

The conductivity which it is possible to have is again given by equatim
(36).
Letting (Y = 1/2) in this equation

G =16 (1 - z)2 22

In order to show how the conduetivity varies with the torque, (G) is
plotted against (Zz) on Plate 14. The equation (G' = k Z2), for the required
conductivity, is also plotted on the same plate for values of (k) from 1 to
10. These curves interseet with the curve for (G) at the points 4, B, ---- M,
For values of (Zg) less than 1/4, (z) less than 1/2, the horse power rating
would not be limited to the values of (Zz) corresponding to the points E,F,H,
K,L,M, but rather by the values of (Zz) determined by the points E',F' H' XK'

L',M', at which (G*' = 1), since by increasing (Z2) to 1/4 the conducti-






vity can be raised to 1. Then for values of (k) greater than four in the
equation (G' = k 22), the actual value of (Z) used in the motor would be
1/2, but the horse power rating of the machine would be determihed by the

value of (Z2) for whiech (G' = 1).

For the points 4,B,C, for which (Zz) is greater than 1/4, the horse
power rating would be definitely limited to the values of (Z2) correspond-
ing to the points A,B,C, since any further increase in (Z) would lower the

conductivity still more.

It then appears that from the standpoint of losses it is not economical

to use values of (Z) either much greater or lower than 1/2.

EFFECT OF STATOR RESISTANCE ON

THE PULLOUT TORQUE

So far in the treatment of the pullout torque the effect of stator re-
sistance has been neglected. When the flux per pole is inereased by increas-
ing the flux densities, the ratio of stator resistance to motor reactance
remains constant, so the torgue developed is still proportional to (CDp)z.
However, when the flux densities are kept constant and the flux per pole is
inereased by inereasing the value of (Z), the stator resistance plays an

important part.

If the magnetizing current is neglected, the watts per phase delivered
to the rotor will be,

W = o ry/s

{ v/e + %, )2 + x8
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E = Volts per phase

s = Slip

r, = Rotor resistance per phase
r, = Stator resistance per phase
x = Motor reactance per phase

(W,) will be a maximum when

re/s = \/;;:é—:_;5

Let (T) be proportional to the maximum torque. Then (T) will vary
directly as the maximum value of (W.).

T = rsz +x2

a = L (45)

o W
rs +, "X + rs

The stator resistance will be proportional to (R) in equation (35).

Letting (Y = 1/2) in this equation.

R = rg = K
(1 - 2)2 z% 16

The motor reactance (x) varies as (l/Z)z.
X = c/Z2

Where (c¢) is a constant.

Equation (45) may be written in the following forms:

T = 1 (46)
rg ( /A + (x/rg) e+ 1)

T = 1 (47)

x (/ (rs/i*ﬁ3'+ 1 + rs/x )

X = 16 ¢ (1 - Z)2 7.2
T 72




Simplifying

x = 16c (1-2)? (48)
Ts

Substituting equation (48) in (46): ‘
T=16 (1 - 2)2 28 (49)
J1+@6ec(l-2)23)2+1

Substituting equation (48) in (47):

T = ZZ
: (50)
c ( i g+l ¢ . )
6;/ \ ¢c (1 - 2)216 ) 16 ¢ (1 - Z)z

Let () be the ratio of (r.) to (x) when (z = 1/2).

Substituting (2 = 1/2) in equation (48):

F= 1

4 ¢ ‘ (51)

Substituting (51) in (50):
T= 1622 (1 -2)2 P
V¥2+16 (1oz)%s VW
When (2 = 1/2)
T = Y
/;?ro'if" + P

Let (T,) be the ratio of the pullout torque to that when (Z = 1/2)

T, = T
(T ) for (Z = 1/2)

T o= (162 (1-2)¥)/[PET _+P)
([PFIETT =D +¥)( P)

T, = 1622 (1 -2)% (A1 +¥)

[FFB -+ Y

(52)
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In equation (52), ("¥) is the ratio of the stator resistance to the
motor reactance at (Z = 1/2), (To) is the ratio of the pullout torque to
that for (2 = 1/2). Equation (52) is plotted on Plate 15 for values of (V)
from zero to infinity. For (f’= 0) the maximum value of (To) is four, the
maximum occurring for (Z = 1). 1In all practical cases (P) is greater than
zero. From Plate 15 it is evident that for all values of (1b) greater than
zero (T, = 0) at (Z = 1) and the maximum value of (TO) occurs at some point
between (Z = 1/2) and (2 = 1). For (W= 0.1) the maximum value of (T,) is
1.68 at (Z = 0.737). TFor high values of stator resistance the maximum value

of (T,) occurs for values of (Z) only slightly greater than 1/2.

The maximum velue of (T,) for any velue of (V) can be obtained by diff-
erentiating (T,) with respect to (Z) and equating to zero. This gives the
value of (Z) at which the maximum occurs. By substituting this value of (Z)
in equation (52) the maximum value of (To) can be expressed as a function of
(¥}

(52)
T, = 16 2% (1 -2)° (/LT _+ V) (52)

et

A+le 1-2) + V¥

a(To) = 16 (AT + ¥)(22 (1-2)(1-22)(¥? + 16 (1-2)% + V¥ A To (ia)?)
a(Z) ig+ 16 (1-2)2 + P2 ( [y2+16 (1-2)%)

+ 16 (/FF+ 1 +¥)( 3222 (1 -2)°
([*+ 16 (1 - 2)% + )2 ([PB+ 16 (1 -2)% )

a(Tg) = 0
a(z)

So

(1 - 22) (Pp2+ 16 (1 -2)% +P/y2+ 16 (1 -2)4) +162(1 -2)¢=0

Y= 20 -2)73
/22 -1 (53)
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The value of (Z) determined by equation (53) is that at which (To) is a
maximum. Let the maximum vel ue of (To) be written (To max.). Then (Ty max.)
is determined by substituting equation (53) in (52). Perhaps the easiest method
of solving equation (53) is to plot it. This is done on Plate 1€. These
values of (Z) are substituted in (52) and the resultant values of (T, mpax.)

are plotted against (V) on Plate 17.

From Plate 17 it is evident that (To maex.) drops very rapidly as () in-
creases. In an actual motor the value of (¥) would perhaps be about 1/10.
For (%= 1/10), (z = 0.737) and (To max.= 1.68). If the rating is raised in
proportion to the torque, the current will be 1.68 times that at (Z = 1/2). For
(z = 0,737) the conduetivity is 0.6. The stator copper loss would then be
(1.682/0.6 = 4,70) times greater than thet at (2 = 1/2). For an inerease in
rating of 68% the stator copper loss has been increased 370%. If the effect of
stator resistance on the torque is neglected, the value of (Z) for a 68% increase

in torque is 0.647 and the increasé in stator copper loss is 240%.

The effect of the no-load current on the torque and losses has been neg-
lected. The no-load current increases as (Zz). Since the torque and rating
do not increase this rapidly, the percent no-load current will increase. Tie
increased no-load current will reduce the maximum torque, power factor, and
rating, and increase the full load current. Thus the stator losses will increase

much more rapidly than the rating.

Then from the standpoint of efficiency, power factor, torque, and heating,

the flux per pole used should be such that (Z) is very nearly equal to 1/2.



That is the motor should be designed near the point where the stator resist-
ance is a minimum. If the ratio of stator resistance to motor reactance is
low then values of (Z) slightly greater than 1/2 may be used, while for high

stator resistance it may be economical to use (Z) slightly less than 1/2.

The sample design checks closely with general practice, showing thay

the calculated results are experimentally sound.

Briefly the procedure in this method of design is to calculate the slot
dimensions from the stator radius. The rest of the mechanical dimensions can be
determined when the ratio of the flux densities in the teeth and core are set.
After choosing the flux densities the flux per pole can be calculated. With

the torque, efficiency, and heating as limiting factors the rating is determined.



DETERMINATION OF THE END TURN REACTANCE

OF POLYPHASE MACHINES







END TURN REACTANCE OF POLYPHASE MACHINES

A stator coil may be considered to consist of F¥FLigdy/
six straigth line eeémente. The reactance of the part of the coil
which is in the stator slots can be calculated ffom the slot and
air gap deminsions. This Fddd¥ddé reactance is a funtion of the
self inductance of the conductors in a single stator slot. It
fes not materially affected by the conductors in the neighbooring
slote. ¥4 The reactance of that portion of the stator coil which
does not lie in the slot is not only a funtion of its seXf
inductance but also of its mutual inductance with every other
stator coil., This part of the coil, which is called/ the end
connection , projects from a surface of iron of high permeability
in comparison to the sorounding air. The iron may then bﬁconsidered
an equipotebtial €urface for the flux. Each conductor will £Héd
have its image in the iron. This image will be similar to the
actual end connections at the other énd of the stator. The problem
is{ reduced to findipg the reactance of a coil in air which has £
the shape of the two end connecgpne moved together until they
touch.

Inorder to set up the problémjconsider a three phase
machine with ( p ) poles. If ( L ) is the self inductance of the

gnd connections of the group of coile per pole per phase , and

( Lzl ) is written to mean the self inductance of phase$ 23) group

for pole ( 1 ). Then the self inductance of the phase (2) group
for pole( 3) will be writtem ( Lpz ). Let ( Mgyzz ) be the
mutual inductance of the phase () grbup pole(l) with the phase
(3) group pole (2).



The total self inductance of the end connectione of phasef*2)
cap then be written

La

et
-t

Lg1 ¥ Mgygg & M2123 ¥ M3124

Mogay ¥ Loz & Mpppz & Mpopy
Mozg1 & M2z223 & Lgz ¥ M2324

EER EEFL B T

The mutuval inductance between

(2) and phase (1) will be

Mgy = Mgyjy ¥ Mzyig ¥ Mg113 ¥ Mpyig

Mgg11 & M2212 ¥ Moo13 ¥ Ma214

M2311 & Mgzy1g ¥ M3318 ¥ M3z314
& & - 4

Mzgp11 ¥ Mgpy3 ¥ Mpp13 ¥ Mapig

The mutual inductance between

¢2) and phase (3) will be

Mog =

M2131 ¥ M3z ¥ Ma133 & M3z

M2231 ¥ M2232 & Mppzz & Moz,

M2331 ¥ Mgzzo ¥ M2333 ¥ M33z34
z - z

Mops1 ¥ Mapsa ¥ Mo,z ¥ Mppzy

Phase (2) has the same mutual

T IE Mgy,

e ool 0 oo ek ook e ok ekl o R R K R e KR R R K

& & & Lgp

()

the end connections of phase

¥
&

¥ Ma11p
¥ Mz21p

T EE

K 2

£ Map1p (2)

the end connections of phase

3
T EE Moy
B EE Mggg,
ITE

s

¥ Ma13p

E Mgz, (3)

inductance with phase$l)

as with phase ( 3). The current in Bhase(l) and phase (3) is

60° out of phase with the current in phase (2). The: sum of the

reactance voltages generated by phases (1) and (§) in phase (2)
iz in phase with the voltage dme to the self inductance of

phase (2).



The magnitude of the reactance voltage in phase$2) due to currenss
in phases (1) and (3) is 1/3 of the value it would have if current
of phase(2) were flowing in all of the conductors. The total

reactance of the end connections of phase (2) may then be written
xg=zwf(na:-%(nalauzs)) (4)

To find the end turn reactance it is then necessary to
solve for the values of these coefficients of mutual and self
inductance . A single coil consiste of six straight line segments.
A three phase :8ix pole machine may have 108 stator elots, giving
six slots per pole per phase. To find the: self inductance for the
group of coils for one phase foe a gingle pole will involve the self
and mutual inductance of thirty six line segments with each ather.
For the whole motor each line segment will have § 6x 108 = 648 )
inductance coefficients . From the above example it is evident
that it is better to work with current sheets rather than with
individual coils.

To find the mutual inductance of two coils it is suffickent
tw find the flux produce 4 in one coil by current in the other. For
calculating the flux density at any point the surface of a coil
carrying current may be conwidered a magnetic sheet . The: magnetic
potential due to a megnetic sheet ie proportional to the solid angle
subtended by the sheet. The flux density may then be found by
taking the gradient of the magnetic potential. The fiux density pro-
duce d by current in one coil can then be integrated ower the surface
of the other coil and the coefficient of mutual inductance caliculated.
However the expressions for the solid angle and its derivatives,

and the integration of the flux over the area of the second coil

offer difficulties.



A more direct method of procedure is to find the mutual
inductance between line elements of the two .,coils and then integre

at@mkg this differential mutual inductance over the contours of
the two coills.

MUTUAL INDUCTANCE OF TWO LINE ELEMENTS

Let (E) be the angle and (r) the distance between the
two Xime elements (dly) and (dlg). Let (d1,) bave the coordinates
(X=X), (Y=0) and the direction of the (X) axis. Let the
coordinates of (dlg) be (X =€ ), (Y=Y ).

B ], e e evr e SO EEBRE

Then r = / X 2 Ya
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The flux density ( B ) due to a current (on one ampere in (dl;)
ie given by,

B = dly sin &
" (5)
0 z

The flux which will sweep across(dlg) when the current ies changed

in (d13) is contained in the area ( A )
o~

A= J4,d12 cos E Ay



The problem of finding the mutual inductance: of the twoc line
elements is that od finding the integral over this area of the
flux produce d by unit current in (dlj). Let (d@) be FFEJ/fAv#
the value of thieazntegrale

) dll dlg coe E ein &
dm T o e e oo o o e o e ot - o dY

10 r
Y
gin @ = weve—
/XREYR
and T =/ xg‘“; YZ
: o~ oy
[ dl; dl, cos E Y
d@ : G e W e ey SO e D AL s oo s s p— dY
10 ( X2 % YZ )372 «
dl; dlg cos E
A = e et e e e e o
10 (XEI-Y‘?' )Ejz Y

db -~ dlj dlpg cos E
10 v

(6)

( @ ) ie the flux cutting element (dlg) due to a unit
change in current in (dlj). Let (de) be the voltage induced in
(dlz) and let (dM) be the mutual inductance of the two elements.

de = %%_;gfa

de = d4M 41
dt—

a = da 10”8
dar

Substituting the value of (a@) given by equation ( 6 )

aM = dlj dlg cos E 1079
e o - (7)
’
Equation ( 7 ) gives the mutual &€nductance between two line elem-
ents of lengthe (dl;) and (dlg) , where (r) is the distance and(E)

the angdle between them.



To find the mutual inductance of any two conductors it is only

necessary to integrate the increment of mutual inductance.(dM),

over the lengths of the two conductors.

Mig = IO-QJ{:éf dll_dlg cos E (8)

DETERMINATION OF THE MUTUAL INDUCTANCE OF ANY
TWO STRAIGHT LINE SEGMENTS

The end connections may be considered to consist of a
combinaticn of straight line segments. To find the inductance of
the end connections it is necessary to find the mutual inductance
of any two straight line segmente.

Using the cylinderical system of coordinates, let the
common normal to the two lines be taken as the (Z) axis. Then each

line will 1lie in a plane for which (Z) is constant.

&

v

A £ 3
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Let the coordinates of line (1) be (2 = 0),(e = C), and
let the segment extend from (P31) to (Pz) o Let the coordinates of

line (a) be (2 =2), (©=E ), and let the seggnt of this 1lie
extend from (By) to (Py).



PRE/dLdLddd [ (£) [V é¥viddd /dhY /Evd /L idé/ Let (Py) be the variable
along lige (1) and let (P,) be the variable along line (a).

The distance (r) between any two line elements will be

-
-

r = / p®sp, 2 -2p; P, Cos E T 23 (9)
The mutual inductance of line (a) with line (1) is then
expresse d by the integral

- o P4 Py dP, dP1
Myjg = 10 = cos E vl g gt (10 )
Fi/p 2
P1

& P °~2P P,cos E ¥ 2°
To integrate equation (10) with respect to (P3)

2
P11 P,°-2P, Pcos EE2°= (P; =P, Cos E )" &
( 2% ¢ Pazsian )

Let |

Py =Py cos E =/ 2% zp.* sin? Tan B (11 )
Then

I et N 3
ap, = /2°2p,°6einfE sec®B aB (13 )

Substituting equatione (11) and (12) in (10)

dPq daB
- : = coe B
/'p1® 1 Py%-2pPP, Cos E & 2°
- 1 Log 2 l1&einB ) (13 )
Z 1 - ein B )

But

gin B = — g FP1 = Pa co8 E

.t

) 2 - P
Substituting thie value for sin B in eqguation (13)

/ = :
/"p1% 2 p,°- 2P,P, cos E I Z°

= o € ST v G GO s TN o — e G W O GG W S vy G

P1° % P,°- 2P;P, 608 E & 2°  ¥(P,~ Py cos E)

; Logi - s
§ / p1® 2 p,% 2P1P, cos E ¥ 28  =(P1- P, cos E)

=Log ( /py2 2 3;2; 2P1P, cos E & 2° £ P} ~ P, cos E )
#®

- 1 tog 7° 1 p,° sin® T ) (14 )



But Log( z? % P,® sin® E ) is notia function of (P1) so it will
vanish when the limits of the integral are put im. The result:
of the integration over line (1) then is

P

S v
/P2 2 P2~ 2P, P, cos E % 2
P1
Log _pg®zp P-2P3P, con k3 22 £ Py P, cos B ) (15)
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The mutual inductance of line (1) and line (a) is now

expressed by the integral

N S, )
s 52 P, -nggacos Ezz°1 Po=P.cos E%Jp(ls)

Ml == 10—9008 E Log ~~~~~~~~~~~~~~~~~~~~~~

a

a
This integral can be integrated by parts

“//log é Po° = Paz - 3P3 Py cos E X 22 & Py - Pcos E? dP

- PaLOgé/ Po® I P,° - 2 Py P, cos E £ Z° T Py

Pgcos E)  (17)

-:/g; d gbogé/ro £ Pa2~ 2PgP.cos E ¥ Z§ * Py ~ P cos Er dP,
dpy
(18)
To integrate expression (18) let

u = / Pzg kS Pa - 3 P3 P, cos E 1z° 1 Py - P4 cos E (19 )

Then

3
é U -( P3 = Py cos E ); = P32 £P,® ~3P3P, cos E & 23

2
P," 8in® § - 3U P  cos EZ223UP, 228 -U% = 0

Solving for § P,)

D D D A it D WD D D D R IS T ) T G B N o) N T D

P, = Ucos EZ/U® ~3gin® E (2 U Py % 2%) (20 )

sin E



and

S ] < Sl St T ] o D o e e D o e D G g Sy

dP, = cos E / U? -(sin®F)(2UPp T 7%) T U -Pgsin®E_ U (21)

v.-.c-.-.a.--.

A28 i e s o R < TR el i Sl e <y G Sk Ve

sin® & /0° ~(s1n® E)( 23U P53 T z3)
Substituting (20) and (21) in integral (18)

—ij/f‘Pa d Log (/ sz Py 2. 2 Py Pa cos E I 72 I P~ P,cos E))dP,

8 Ucos EZ /UR -~ ( 3UP,Z2Z3) gin® & au ( 22 )
U 8in® E

J//.U cos EE /US = (BUP, £25) gin® E AU

U sin E
-://,égﬁ,g_ du ( 23 )
sinz B
J//./ UP - 2 UPs 8in® E - 28 gin® E QU ( 24 )
U sin E

Expression ( 23 ) can be integrated directly

—-/.qge__@,. BU = — UcosE I
& 25
einz B ein3 E

To integrate ( 24 ) multiply top and bottom by

Sl P ] s D i DT AW . D T - - e - - s - e w——

U° - 2 U Py 8in® E - 2% gin? E

- - a8 o . - - D B D O -

— [ /UR =2 UP; 8in® E - 2°% gin® E_dU ==

U sin®

2 2
- / 02 -3UPye1a38 -2l et E @ =

E =22 gin® B U ein° E

/ U2 -~ 8 U Py sin

J//h - P, 8in® E au ( 26 )
8in® E /U - 23 U Pa Slnz E - 28in” E




z P,  dU (27)
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/U2 - 2 U Py 8in? E - Z° sin® E

;;/(. z° QU B ( 28 )
e

U/ U° -2UP; 8in® E - 2° sin? g

Expression § 26 ) can be integrated directly

Py

U =Py 8in® E AU s

D Gl i S AR 3D > T T O R D s T T Sl s > D e VD e S Y D D e D

8in? E / U = 2 U P sin® E = 23 8in® E

et ke I ——“-m‘—-_-~‘_—~-—

— /U -2UPésin2E % gin® § ( 29)
sinz E

Integral ( 27 ) can be integrated by the same method that was
used on integral (14 )

P dU =z
P2 o
— e = -
- - e —?"--—-.----u.~— R Ve SR B T SEER g G A W e om R TN

/ U® = 20U Ps 8in® B - 2° 8ind E

T8 S et Y 8 e 8 L W T o 2 o T 8 n e a4 o e

PyLog ( /U° =2 UP;8in®E~2°6in®E I U-PgsinfE) (30)

Integral ( 38 ) results in the inverse trigonometric function

2 -y
d -
S
P e S e 2 s S e

U/ U -20P,8in3 E - 23 8122 E

73 sinnl§il—a U Py 8in® E = 3 2° 8in® E ) % ==
/ 2°8in”® E U/ 4P;sin?E T 42°6in®E
Z 8in"l ( —m gin E ( U Py % 2Z°
‘ e A ) | (3N
sin E / Po° sin® E T 2° u



Integral ( 22 ) gives rise to the following terms

“1//f Ucos E E / Uz - 2 U Py sin” E - g sin3 E ag. ==
U sin® E

D B s D P D D D vy oD e D ST ) D S D D R D By o D D WD O S D ST B2 D D

- UcosEL /UR w3UP,8in®E <22 8in®E (25) & (29)

D ol s D s D ol S D D R D T D s S el SN D T T D ED S ey D

I P, Log ( Jud -z P, 8in® E - 22 8in® E I U - Py sin® E) (so)

: _ g eini((sin®E) (UP;E23) ) (1)
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sin E ( U /P, e1n® E 2 2°

Substituting the value of (U) given by equation € 19 )
and collecting terms expressgions (25),(29), (30) and (31) become

w= Py
b 23 Pz Log ( 1 - cos E)(/ sz ;Pa§~2 PoPy cos E T 72 1 P4= Pgcos E)
-2 8in~}(_sin E) )2 Py & g3

8in E / p3 33102 E : Zz;( / Pg ; '3 2—°P2P cos E ¥ ZgiPz-PacoE

Collecting terms and substituting the limits
Pp

My, = 10~° cos %}//;og(/ szi Paz— 2 PQPG cos E % Z2 £ Py - P,co8 Eggg
P, (/ P1°% Pa°~ 2 P1P, cos E E 2° I Py = P,cos E)

(

el

— 109

cos E

Py, Log {Pg I-szm.'?.lszhcoeEJ:‘Z2 !Pz_-PbcosE)
............................ )
(/ Pl ¥ Pbg - 2P Pycos E ¥ Zz Py -P,cosE )

— P Logi/- TP 2P ?_ 2Py P cos EE 25 %Py -P, cos )

i e D D T Y Y A T D G 19 D S S D D D D ey D D D D oD U oy D W <

(/ P;? £ P3® - 2 P] Py cos EE 2% EP; - PycosE)
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P, Log (/P 2P 2-2PP cos B ¥2° 2P, -PycoskE

GO < D ey D D D cors I 0 T R o D T D oy D WD e D D VD e G

(/P32 2P® ~2P3P, cos EE2° TP, -PycosE )

D s D D e D D D D e I S S D D A S Y T D s D T D D 2k D 0 T g N

-P; Log (/P E Py ~2P) Ppcos E%32° 2Py -P; cosE )

........................... )
(/P1° % P,° -2P, P, cos E%2° IP, -P) cos E )

..-— D e o O T D ety WD

—--o—--o———_ . D D I > T s S L D S R N D S D O O 0

g P, (/ PoE Poo= 8 PaPpoos B & - & Pg= P oos E) E 2° )
/ Po® 2 P,° = 8P3 Pp cos E & Z° I Py - Py, cos E )

I 2 sin % é sin E
sin E

/ sz 8in® E £ Z2 )

éPa(/PaI-Pz-szPcosEi-zz ;Pa-Pacer)I-Zz)
/ sz P e 2 P2 P,cos E*Z" ¥Py=-P,coskE

E Py —p,cos E) & 2° ;
(/P38 sz - 3Py Pycos EE2Z° EP; - P cos E

& 7 sin~l | ein E )
sin E é /—;; 8in® E T 2° g

. S 0 e g D R TED e - R e e TS D s D W D s D T D

g Py (/P1°% Paz— 2 PqP5 cos E & 72 % Pj- Pjcos E ) T A g

D g S B D s A o D T S D T D D iy D D G —-——.——2

3
/ P° 2P;" - 2P1L P, cos EEZ° IP; ~-P cosE )

(33)
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Equation { 33 ) expresses the mutual inductance between
any two line segments, in cylinderical coordinates. Line 41)
has the coordinates, ( 2 =0 ), ( @ = C ), and the segment
extends from € Py) to ( P2). Line ( A ) has the coordinates
(z=2), (9 =E) and the segment extends from ( Py) to ( Py )

In equation ( 323) an expression of the form
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/ Pg" 2 Pp® = 2Py Pyocos EEZY is the distance
between the points $2) and (b). ( Pg = Py cos E ) is the
projection on line fwd (2) of the distance from point (3) to point
(), Zr§;§“;;;§~§"i“2§~~ ie the perpendicular distance of point
(2) from line (a). (E) is the angle between the two lines., ( Z) is
the length of the cOmmon normal of the two lines . (P,), (Pb),
(P1), and (P;) are the distance of the points (a), (b), (1), and
(2) from the common normal.

The expression for the mutual inductance can be given a W{¥{
better geometric interpretation if the dietance from point (1) to
pIhIL point (b) is written (r1,) » and the length of line (1) which
is ( P3 -~ Py ) is written &y,

(46)




Consider the point (b) at § X =0 ), ( Y = Y ), the point
(1) at (X =X; ),( Y=0 ) and point ( 2) at ( X & X ), (Y =60).
Then

An expression in equation ( 33 ) ofi the form

o o e G T e e e e s 2 B e W R s e € e e e S W e o o

Log ( / Po® % Pp® = 2 Py Py cos E ¥ Z°% T P, ~ P cos E §
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can then be written

Logg rop I Xp g | ( 33 )
( r1p ¥ X3 )

Reffering to figure (3)

Xo = Ag1 ¥ X3

e S e G @i G D @ G

= Tyt =3 ( 34)

Substitute (34) in (33)

Log ( rop ¥ X5 ) = Log (_rgy ¥ r1p 115 ) ( 356 )

The mutual inductance can thus be expressed as a Iunction

of the lengths of the conductors and the distance between the ends

of the twe conductors.





