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ABSTRACT

This dissertation comprises three chapters related to the fields of psychology, com-
putational neuroscience, and experimental economics. Chapters 1 and 2 use ex-
perimental and computational methods to study the role of attention in simple,
value-based choices. Chapter 3 examines risky choices from experience and tests

some of the underlying assumptions of sequential sampling models.

A growing body of research has shown that simple choices involve the construction
and comparison of values at the time of decision. These processes are modulated
by attention in a way that leaves decision makers susceptible to attentional biases.
In Chapter 1, co-authored with Stephanie Dolbier and Antonio Rangel, we studied
the role of peripheral visual information on the choice process and on attentional
choice biases. We used an eye-tracking experiment in which participants (N =
50 adults) made binary choices between food items that were displayed in marked
screen “‘shelves” in two conditions: (a) where both items were displayed, and (b)
where items were displayed only when participants fixated within their shelves. We
found that removing the nonfixated option approximately doubled the size of the
attentional biases. The results show that peripheral visual information is crucial in
facilitating good decisions and suggest that individuals might be influenceable by

settings in which only one item is shown at a time, such as e-commerce.

In Chapter 2, co-authored with Stephen Gonzalez and Antonio Rangel, we studied
the role of attention in aversive risky choices where all outcomes were unpleasant.
We used two eye-tracking experiments in which participants made binary choices
between two lotteries in two conditions: (a) a gain condition where outcomes
for lotteries were weakly positive, and (b) a loss condition where outcomes were
weakly negative. Contrary to the predictions of the standard aDDM, we found that
attentional choice biases in the loss condition were identical to those found in the
gain condition, suggesting that attention nudges choices towards the attended option
even in losses. To explain these results, we propose a variation of the Attentional
Drift-Diffusion-Model (called the Hybrid aDDM) that incorporates (a) both a value-
dependent and a value-independent effect of attention on the choice process and (b)
reference-dependent value signals. We show that the observed attentional choice
biases and other behavioral signatures in the loss condition can only be explained
by the Hybrid aDDM with a reference-point rule that sets the reference-point at or

below the minimum possible outcome in a given context.
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In Chapter 3, co-authored with Antonio Rangel, we establish that sequential sam-
pling models apply to risky decisions from experience and test some of the underly-
ing assumptions of these models. We ran an online study in which participants chose
to Play or Skip a slot machine, based on a stream of samples drawn from its out-
come distribution. We found evidence for leakage, collapsing decision boundaries,
and a delay in sample integration. We also found evidence of non-linear sample
weighting depending on when the sample occurred during the trial. As a bonus, we
established a link between the fixed decision boundaries in a Drift-Diffusion-Model
and a Modified Probit model, allowing for estimation of decision boundaries in

cumulative sample space without the need to fit a computational model.
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INTRODUCTION

Nearly every aspect of human behavior is the result of some form of decision-
making. From the simple choices we make daily, like selecting what to eat for
breakfast, to the complex decisions involved in financial investments, understanding
how individuals evaluate options and make decisions is crucial. The traditional view
in economics assumes that decision-making is a rational process where individuals
weigh all available options and make choices that maximize their utility. However, a
growing body of research in behavioral economics and cognitive sciences challenges
this notion, showing that decision-making is often influenced by factors beyond pure
rationality, including attention, cognitive biases, and the context in which choices

are presented.

In recent years, the role of attention in decision-making has garnered significant
attention, particularly in economic choices where the decision-maker must evaluate
and compare the value of different options. Overt attention has been shown to
significantly influence the decision-making process, often leading to biases where
certain options are favored simply because they receive more attention. These
attentional biases can have profound implications, particularly in environments
where the presentation of options can be controlled, such as in online shopping

platforms or digital advertising.

Chapters 1 and 2 of this dissertation delve into the intricacies of attention and its
impact on decision-making. Chapter 1 investigates whether peripheral visual infor-
mation is processed and incorporated into the choice process, whether consciously
or subconsciously. Using a gaze-contingent eye-tracking experiment where partici-
pants make binary choices between food items, we explore how the removal of the
options in participants’ visual periphery influences attentional choice biases. We
find that attentional choice biases approximately double in size when peripheral
visual information is hidden, showing that peripheral visual information is crucial
in facilitating good choices. This study is particularly relevant in understanding how
visual environments, such as supermarket shelves or e-commerce websites, can be

optimized to guide consumer choices.

Chapter 2 shifts focus to aversive choices, where decision-makers are faced with
unpleasant outcomes. We run two experiments involving both appetitive and aver-

sive risky choices and find identical choice biases across the two conditions. These
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results suggest that, even in losses, attention is nudging choices towards the attended
option. This is surprising given the predictions of a canonical model that links at-
tention to choice. We propose another model that splits the effect of attention on the
choice process into two effects and incorporates reference-dependent value signals.
We show that the observed attentional choice biases and other behavioral signatures
in the loss condition can only be explained by our model with a reference-point rule
that sets the reference-point at or below the minimum possible outcome in a given

context.

Chapter 3 examines the applicability of sequential sampling models to risky deci-
sions from experience. Using an online study, we test key assumptions of these
models, uncovering phenomena such as leakage, collapsing decision boundaries,
and non-linear sample weighting depending on when information is accumulated.
This investigation not only validates the use of these models in understanding how
real-world decisions are made from experience, but also provides new insights into
the temporal dynamics of how individuals integrate information. As abonus, we also
establish a link between the decision boundaries of the canonical Drift-Diffusion-
Model and a Modified Probit model, allowing for computationally-inexpensive es-

timation of these decision boundaries in cumulative sample space.

Together, these essays contribute to the growing understanding of the cognitive
processes underlying decision-making. By examining the role of attention across
different contexts—ranging from everyday food choices to unpleasant decisions
under uncertainty—we offer new insights on how attention can both facilitate and
bias the decision-making process. As the world increasingly shifts towards digital
and visual environments, the insights gained from this research are poised to inform
the design of systems and interventions that can improve decision-making quality

and outcomes.



Chapter 1

PERIPHERAL VISUAL INFORMATION HALVES
ATTENTIONAL CHOICE BIASES

1.1 Introduction

Everyday we face two different types of choice situations. Sometimes we are
presented with all of the available options at once, as when we face a supermarket
shelf or a buffet table. In other cases, such as many shopping websites, we are
presented with one option at a time, which changes sequentially at our own pace.
In both cases our overt visual attention is deployed to one option at a time. But the
two situations differ on the availability of peripheral visual information about the

nonfixated options, which in principle could be used to guide the choice process.

A growing number of experiments have studied the role of visual attention in simple
choice and have found that increases in the relative attention received by a desirable
option are associated with an increase in the frequency with which it is chosen, all
else being equal (Krajbich, Armel, and Rangel, 2010; Krajbich and Rangel, 2011;
Krajbich, Lu, et al., 2012; S. M. Smith and Krajbich, 2018; S. M. Smith and Kra-
jbich, 2019; J. F. Cavanagh et al., 2014; S. E. Cavanagh et al., 2019; Sepulveda
et al., 2020; Thomas et al., 2019; Gluth, Spektor, and Rieskamp, 2018; Gluth,
Kern, et al., 2020; Fisher, 2017; Towal, Mormann, and Koch, 2013). Although the
exact mechanism behind the attentional bias remains unknown, foveation seems to
facilitate the process of value computation and integration in a way that is consistent
with overweighting fixated items relative to nonfixated ones. This is formalized in
the Attentional Drift-Diffusion-Model (aDDM), which is able to provide a quan-
titative account of the relationship between fixations, choices, and reaction times
(Krajbich, Armel, and Rangel, 2010; Krajbich and Rangel, 2011; Krajbich, Lu,
et al.,, 2012; S. M. Smith and Krajbich, 2018; S. M. Smith and Krajbich, 2019).
The aDDM predicts that choices can be biased through exogenous manipulations
of relative fixation time, consistent with the findings of multiple studies (Armel,
Beaumel, and Rangel, 2008; Tavares, Perona, and Rangel, 2017; Hare, Malmaud,
and Rangel, 2011; Parnamets et al., 2015; Ghaffari and Fiedler, 2018; Kunar et al.,
2017; Peschel, Orquin, and Mueller Loose, 2019; Shimojo et al., 2003).

Our goal is to study the role of peripheral visual information on the choice process
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and on attentional choice biases. In particular, do we use the same choice algorithm
when all options are presented simultaneously, as when we shop at the market, and
when they are presented sequentially, as when we shop online? If not, does the
absence of peripheral information change the fixation process and the magnitude of

the attentional biases?

We study these questions using an eye-tracking experiment in which subjects make
binary choices between foods that are displayed in marked screen “shelves” in two
different conditions: (1) a simultaneous condition in which both items are displayed
on the screen at the time of choice, and (2) a gaze contingent condition in which
items are only displayed when subjects fixate within their shelves. Most previous
studies have used choice tasks in which all options are displayed simultaneously,
although a handful have used gaze-contingent presentation of stimuli (Simion and
Shimojo, 2006; Folke et al., 2016; Sepulveda et al., 2020; Franco-Watkins and J. G.
Johnson, 2011). However, none have compared the two situations directly, which
is necessary to understand the effect of peripheral visual information on the choice

process.

Based on what is known about choice in the simultaneous case, and the seemingly
minor change involved in removing the nonfixated options from peripheral vision, it
is natural to hypothesize that similar algorithms are at work in both conditions, albeit
with some differences. In particular, the aDDM suggests two non-mutually exclusive
mechanisms through which removing the nonfixated options from the visual field
might affect choices. First, it might increase the overweighting of fixated relative
to nonfixated items, which would result in an increased attentional bias. Second, it
might change the fixation process in a way that exacerbates the attentional biases,

for example by increasing the asymmetry on fixation time across options.

Understanding the role of peripheral visual information in simple choice is important
for multiple reasons. First, despite the robustness of the attentional biases identified
in previous work, we do not know what are the channels through which covert
and overt visual attention influence decisions, nor their relative contribution to
choice. Decades of work in visual attention have shown that a substantial amount
of information is processed through peripheral visual attention (Carrasco, 2011;
Perkovic et al., 2022; Wistlund, Shams, and Otterbring, 2018), which raises the
puzzle of why and how fixations matter so much in economic choices, even when
making decisions among familiar items. Second, the transition to e-commerce has

increased the frequency with which our decisions are made in sequential presentation
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settings. We need to understand the impact that this has on the choice algorithms
and their associated biases in order to design interfaces and nudges that enhance

choice quality.

To preview the results, we find that removing the nonfixated options has little impact
on the average quality of choices. However, we also find that it approximately
doubles the magnitude of attentional choice biases, which make decision makers
more susceptible to marketing interventions (e.g., packaging) that affect attention
independently of the value of products. We also find that the removal of the
nonfixated options slows down the fixation and decision process considerably, but
that the impact on attentional biases is driven mostly by an increase in the tendency

to overweight the value of fixated options.

All data and code are available for download at the Rangel Neuroeconomics Lab
website (www.rnl.caltech.edu). The design and analysis plans for this study

were not preregistered.

1.2 Methods

Task

We investigated the role of peripheral information about nonfixated stimuli using the
task depicted in Fig. 1.1. Subjects made decisions in two conditions: (1) a visible
condition in which both items were displayed on the screen at the time of choice,
and (2) a hidden condition in which items were displayed only when subjects fixated
within the location associated with the stimulus. Subjects were asked to refrain
from eating for 2 h before the start of the experiment, and to refrain from eating any
foods afterwards during a 1 h waiting period, except for the snack that they chose in

a randomly selected trial, which was given to them at the end of the experiment.

Subjects participated in two tasks. First, they were asked to provide liking ratings
for 60 snack foods available at local stores (“How much would you LIKE to eat this
food?”, 1 = “don’tlike” to 5 = “like a lot”, 0.25 intervals). Each item was rated twice,
in random order, using a slider bar controlled by the arrow keys, and initialized to a
random location to reduce anchoring effects. We use the average of the two ratings

as a measure of each item’s value.

Second, subjects made choices between two food items, shown on the left and right
sides of the screen, in two separate conditions: (1) a visible condition where both
items were shown simultaneously, and (2) a hidden condition where items were

shown only when subjects fixated within their region of interest (ROI). The ROIs
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were indicated in both treatments with a white box (Fig. 1.1). Trials started with
an enforced 500 ms central fixation. Subjects indicated their choices with the left
and right arrow keys, and responded at their own pace. The selected option was
highlighted for 1 s and trials were separated by a 1 s blank screen. Subjects made
360 choices in the exploratory sample and 400 in the confirmatory sample, half on
each experimental condition. The task was divided into four equal-sized blocks,

two with the hidden condition and two with the visible condition, in random order.

The choice pairs in the exploratory data set were randomly selected from all 60 food
items. In the confirmatory sample, they were constructed as follows. We used each
subject’s ratings to prune the stimulus set down to the 40 food items that resulted in
the most uniform distribution of ratings, in order to maximize the spread of rating
differences across choice pairs. Stimuli for each trial were then randomly selected,
subject to the constraint that they be used four times per block in the exploratory
data set, and five times per block in the confirmatory data set. All 60 foods were
shown once every 30 trials in the exploratory data set, and all 40 foods were shown

once every 20 trials in the confirmatory data set.

- . . . Allowed to eat food
Liking-Rating  Binary Choice chosen in random trial

2 hr fast Task Task (& nothing else for 1 hr)

Hidden

+

500 ms
(enforced)

1000 ms

1000 ms
Visible

Free RT

Figure 1.1: Task. Subjects had to fixate on a center fixation cross for 500 ms for the
trial to start. In the visible condition subjects were presented with two snack food
items simultaneously, each located within a white box on the left and right sides of
the screen. In the hidden condition subjects had to fixate within the white boxes in
order to reveal the snack food item inside. Subjects indicated their response at their
own pace with a keyboard press. Once a choice was made, a blue box highlighted
the selection for 1 s, followed by a 1 s inter-trial interval.

Participants
50 subjects (mean age = 30.8, 34 female) were recruited from Caltech and the

surrounding community using flyers. We pre-screened subjects for a self-reported
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liking for snack foods (e.g. candy and potato chips) and against requiring glasses
for vision correction that might interfere with eye-tracking. Subjects were paid a

$35 participation fee. The experiment was approved by Caltech’s IRB.

In order to obtain high quality data, we implemented a subject filter at the data
collection stage. Immediately after data collection we deleted subjects who failed
any of the following criteria: (1) correlation between the two liking ratings of at
least 70%, (2) mean RT in choice trials between 0.7 and 6 s, (3) probability of
choosing the best item significantly different from chance (based on a binomial
test), and (4) at most 10% missing fixation data. Data collection continued until 50
subjects passed the data quality criteria. The first 25 subjects were allocated to the
exploratory sample, the other 25 to the confirmatory sample. The number of trials
per subject, and the number of subjects, were chosen based on related studies which
have shown that this sample size provides reliable estimates of the parameters and

effects of interest.

Eye-Tracking

Subjects’ fixation patterns were recorded using an EyeLink 100 desk eye-tracker
at 500 Hz. Subjects sat approximately 60 cm from a 19201080 pixel monitor.
Food image sizes were 403x302 pixels. Fixations within the ROI for the left food
were classified as “left”, those within the right food’s ROI were classified as “right”,
and those outside the two ROIs were classified as “blank”. If a sequence of blank
fixations was recorded between two fixations of the same type (e.g. left-blank-blank-
left), they were re-coded as a fixation of the same type (e.g., left-left-left-left), since
blank fixations of this type are typically due to eye-tracking noise and tend to be
quite short. Blank fixations recorded between two fixations of different types (e.g.
left-blank-right) were coded as a saccade period between fixations. Trials in which
any eye-tracking information is missing are dropped from further analysis (with a
mean of 6 and 4 trials per subject in the exploratory and confirmatory datasets,

respectively).

Data Analysis Strategy

In order to be able to explore the data in detail, while avoiding the type of statistical
problems that have raised questions about the validity of some published research,
we collected two separate datasets with 25 subjects each. We used the first one
to carry out exploratory analyses until we understood the data generating process

in sufficient detail. Based on this, we pinned down a set of analyses and tests
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that were carried out in a second confirmatory dataset of equal size. Thus, the
confirmatory dataset serves as a replication of our findings, and provides unbiased
statistics for hypothesis testing. Given the similarity of the estimates and findings
in both samples, and in the spirit of meta-analysis, we also provide results on the

pooled sample and describe summary statistics in terms of the pooled estimates.

Computational Model

As illustrated in Fig. 1.2, the Attentional Drift-Diffusion-Model (aDDM) is a version
of the Drift-Diffusion-Model of binary choice (Ratcliff and McKoon, 2008; Gold
and Shadlen, 2007; Ratcliff, P. L. Smith, et al., 2016) in which value sampling is
affected by fixation location. Subjects integrate noisy values signals into an evolving
evidence process. Evidence starts every trial at an initial location b, which may
include some bias towards one of the options if » # 0. A choice is made the first time
evidence crosses one of two pre-specified barriers, which are fixed at 1 for the left
item, and -1 for the right item. The identity of the barrier crossed determines which

option is chosen. Critically, evidence evolves as the following diffusion process:

Evidence; = Evidence;_1 + u; + e; (1.1)

where ¢; is i.i.d. white Gaussian noise with variance -2, and the slope of the process
depends on the fixation location. In particular, when the left item is fixated, the
slope of integration is u; = d(Vi.; — 6V;ign:), and when the right item is fixated is
My = d(OViess — Vyight), where d is a parameter controlling the speed of integration
and 6 is a parameter controlling the attentional bias. When 6 = 1, the fixations do not
affect choices, there are no attentional biases, and the process reduces to a standard
DDM. In contrast, when 6 < 1, the value of the fixated item is overweighted relative
to the nonfixated value, which results in an attentional bias that increases as 6 gets

smaller.

Importantly, the aDDM assumes that the fixation process is orthogonal to the state of
evidence in any given trial. Thus, when simulating the model, we sample fixations

from the observed fixation distributions, separately for first and middle fixations.

aDDM Fitting
We fit the aDDM using a hierarchical Bayesian model, separately for the visible and
hidden conditions, using the methods and associated toolbox developed by Lombardi

and Hare (Lombardi and Hare, 2021). We estimate the model separately for the
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Figure 1.2: aDDM Example. An illustration of how the aDDM makes decisions in
a sample trial. Colored vertical bands denote fixation locations.

exploratory, confirmatory, and pooled datasets. In every case, the model is fit using
only the odd trials, as the even trials are reserved for out-of-sample predictions. As
described in Fig. A.1, the model has the following free parameters, both at the group
and individual levels: the evidence accumulation drift rate (), the standard deviation
of the Gaussian noise for the drift process (o), the attentional bias parameter (6),
and the initial bias of the drift process (b). Posterior distributions were estimated
using Markov Chain Monte Carlo methods with 3 chains for a total of 55,000 burn-in
samples and 30,000 samples from each of the posteriors. Gelman-Rubin statistics

for all estimates are at or below 1.1, indicating convergence.

The model that we estimate and report in the paper specifies priors without any
correlation of parameters across the hidden and visible conditions. We do this
to maximize the extent to which our posterior estimates are driven by the data.
However, in order to investigate the role of the uncorrelated priors on our model fits,
we also estimated a version of the model in which the priors for the same parameter
in the visible and hidden conditions are correlated. In particular, each parameter
(x) consists of two parts: a baseline (X) and a hidden-condition deviation (Ax). See
Fig. A.2 for details. As discussed further below, both models generated very similar

parameter estimates.

Out-of-Sample Simulations

Even-numbered trials were set aside as out-of-sample data, in order to compare
them to the predictions of aDDM model fitted on the odd trials. We simulate 10
datasets for each subject and condition, using the same rating pairs encountered in

the experiment. For each simulated data set we sample a set of parameters from
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the joint posterior distribution for that subject and condition. Then we simulate
each trial as follows. We sample all fixation duration statistics from their observed
empirical distributions in the even trials, conditional on the hidden or visible condi-
tion. For example, when simulating a hidden condition trial, evidence for the trial is
initialized at the bias parameter and a trial-specific drift rate parameter is sampled.
Evidence evolves based only on the noise up to the duration of the sampled latency
to first fixation. Afterwards, a maximum first fixation duration is sampled from the
distribution of first fixations in the hidden condition, and evidence evolves according
to the drift rate, noise, and attentional bias parameters depending on the fixation
location, as described in the Computational Model section. If a barrier is crossed
before the maximum fixation duration is reached, the process is terminated and the
choice and RT are recorded. Otherwise, a new saccadic duration and maximum fix-
ation duration are sampled from the distributions of saccades and middle fixations
in the hidden condition, respectively. The process is repeated until a choice is made.
Note that this assumes that the value of the nonfixated item is known during the first

fixation, which is unrealistic and interferes with the quality of our fits.

Hierarchical regressions

All the logistic and linear regressions reported in the paper are based on standard
hierarchical models with random coefficients for all parameters. The regressions
are implemented using the brms R-package (Biirkner, 2017; Biirkner, 2018) and
used the default weakly informative priors, occasionally scaled depending on the
units of the independent variable. Posterior distributions were estimated using
3 chains for a total of 9,000 burn-in samples and 9,000 samples from each of
the posteriors. See the companion data and code package for details (https:
//www.rnl.caltech.edu/publications/).

1.3 Results

Basic Psychometrics

The top row of Fig. 1.3 depicts the psychometric choice curve, with each experi-
mental condition and dataset separated. See Table A.1 for the associated regression
estimates and test statistics. We find a small but significant increase in the respon-
sivity of choices to value differences in the hidden condition. The middle row of
Fig. 1.3 depicts reaction times (RTs) as a function of choice difficulty. We find
that RT increases with choice difficulty, that average RTs are about 32% (520 ms)

slower in the hidden condition, and that this slowdown does not vary significantly
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with choice difficulty. The bottom row of Fig. 1.3 depicts the number of fixations
as a function of choice difficulty. We find that the number of fixations increases
with choice difficulty, and are approximately similar in both conditions, except for a

small flattening in the slope of the fixation curve in the hidden condition.

Together, these results show that removing the nonfixated items slows down the
choice process, but has a negligible effect on the quality of average choices (proba-
bility best chosen visible = 0.865 + 0.007 (+SEs), probability best chosen hidden =
0.876 £ 0.007,d = 0.19, t(49) = 1.81, p = 0.08).
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Figure 1.3: Basic Psychometrics. (Top) The probability of choosing the left item
as a function of its relative value. (Middle) Response time as a function of trial
difficulty, as measured by the rating difference between the best and worse items.
(Bottom) The number of fixations as a function of trial difficulty. Columns indicate
which dataset generated the figures. Error bars show standard errors of the mean
across participants.

Fixation Process
Fig. 1.4 and Table A.2 explore the fixation process in more detail. The goal here is
to understand the impact that removing nonfixated items has on the fixation process,

which is essential to understand how it affects attentional biases.

The first row of Fig. 1.4 depicts the probability that the first fixation is to the best
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item, as a function of choice difficulty. The first fixation location is at chance in both
conditions. Fig. A.3 (top row) shows that there is no difference between conditions
on the probability of first fixating left (probability first fix. left visible = 0.759 +
0.042, probability first fix. left hidden = 0.803 + 0.048, d = 0.14, t(49) = 1.64, p
=0.11). Fig. A.3 (bottom row) and Table A.3 show that there is also no difference
between conditions on the latency to the start of the first fixation.

The second row of Fig. 1.4 depicts the mean duration of first, middle, and last
fixations, separately for the two conditions. We find that the three types of fixa-
tions are longer in the hidden condition by about 40% on average (Afirst=160ms,
d=1.43, t(49)=11.3, p=3e—15; Amiddle=145ms, d=0.82, t(49)=8.51, p=3e-11;
Alast=191ms, d=1.86, t(49)=17.02, p=0). Note that this is consistent with the
RT results above: an average trial has 3 fixations, and each fixation is on average
165 ms longer in the hidden condition, which implies that decisions should take 495

ms longer, just shy of the observed RT difference.

The third row of Fig. 1.4 depicts middle fixation durations as a function of choice
difficulty. We find that middle fixation durations increase with choice difficulty.
Fig. A.4 and Table A.4 show that this difference is driven by the value of the fixated
item: in the hidden condition middle fixation durations increase with the value of
the fixated item, whereas the opposite occurs in the visible condition. Interestingly,
Fig. A.4 also shows that middle fixation durations decrease with the value of the

nonfixated item even in the hidden condition.

The fourth row of Fig. 1.4 depicts the first fixation duration as a function of choice
difficulty. We find that duration is independent of value in both conditions, and
about 46% (160 ms) longer in the hidden condition. See Fig. A.4 and Table A.4 for

additional results.

The bottom row of Fig. 1.4 shows the relationship between relative value and relative
fixation time. In both conditions, the relationship exhibits an S-shape. Both items
are fixated the same amount when they have equal value, but otherwise the better
item is fixated longer, with the asymmetry on fixation time increasing in the value
advantage. In addition, the effect is stronger in the hidden condition, and as a result
the distribution of net fixation times is more asymmetric in favor of the better item
in this condition. Note that, since the fixated item is overweighted in the aDDM,

this asymmetry in relative fixation time facilitates choosing the better option.
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Figure 1.4: Fixation Properties. (Row 1) The probability that the first fixation is
to the best item as a function of choice difficulty. (Row 2) Fixation durations by
fixation type. (Row 3) Middle fixation duration as a function of choice difficulty.
(Row 4) First fixation duration as a function of choice difficulty. (Row 5) Net fixation
duration to the left item as a function of its relative value. Columns indicate which
dataset generated the figures. Error bars show standard errors of the mean across
participants.

Choice Biases

Fig. 1.5 and Table A.5 depict the attentional bias in both conditions. The goal here
is to provide a model-free test of the extent to which removing nonfixated items
affects attentional biases.
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The top row depicts the probability of choosing the left item as a function of its
relative rating and the location of the last fixation. In the absence of an attentional
bias, the location of the last fixation should not matter and the choice curves should
lie on top of each other. In contrast, and consistent with previous studies (Krajbich,
Armel, and Rangel, 2010; Krajbich and Rangel, 2011; Krajbich, Lu, et al., 2012;
S. M. Smith and Krajbich, 2018; S. M. Smith and Krajbich, 2019; Fisher, 2017;
Tavares, Perona, and Rangel, 2017), we find a substantial attentional bias in the
visible condition: on average, when the left and right items are equally valued, the
left item is 2.5 times more likely to be chosen when the last fixation is to the left
than when it is to the right. The bias is substantially larger in the hidden condition,
where the left item is 5 times more likely to be chosen when the last fixation is to
the left than when it is to the right.

The middle row depicts the relationship between net fixation time and the corrected
probability of choice. The choice measure is corrected by subtracting from each
choice observation (coded as 1 if left chosen, and O otherwise) the proportion with
which left is chosen at each relative value. As aresult, in the absence of an attentional
bias, the corrected probability of choice should be 0, independent of net fixation
time. In contrast, we find that shifting net fixation time towards the left item by 1

second increases its choice probability by 24% in both conditions.

The bottom row depicts the relationship between excess first fixation durations and
the corrected choice probability of the first seen item, using the same correction
described above. Excess first fixation duration is defined as first fixation duration
minus mean first fixation duration (computed for each subject). In the absence of
an attentional bias, the corrected probability should be 0 regardless of excess first
fixation duration. In contrast, we find that an increase in the excess first fixation
duration by 1 second increases the choice probability by about 22% in the visible

condition, but that there is no such effect in the hidden condition.

aDDM

Given that the aDDM has been shown to provide good quantitative accounts of the
relationship between fixations, choices, and RTs, we fit a hierarchical approximation
of this model to our data, separately for the visible and hidden conditions. The goal
is to investigate the impact of removing the nonfixated items on the parameters of
the aDDM and the attentional biases that they predict.

Table 1.1 summarizes the maximum a posteriori (MAP) estimates for group-level
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Figure 1.5: Choice Biases. (Top) Probability of choosing the left item as a function
of its relative value, conditional on last fixation location. (Middle) Corrected prob-
ability of choosing the left item as a function of the net fixation time to the left item.
The corrected probability is computed by subtracting from each choice observation
(coded as 1 if left chosen, and 0 otherwise) the proportion with which left is chosen
at each relative value. (Bottom) Corrected probability that the first seen item is
chosen as a function of the excess first fixation duration, defined as first fixation
duration minus mean first fixation duration (computed for each subject). Columns
indicate which dataset generated the figures. Error bars show standard errors of the
mean across participants.

mean parameters. We find that Hgmup = 0.52 and Hgnup = 0.29 (Ggmup -

anu p 95% CI = [0.12,0.35]) which means that the attentional bias parameter in

the hidden condition worsens by a factor of two, consistent with the results described

above. We also find differences in the estimated parameters for the slope (d}g/mu p =

0.003 vs. d,,, =0.002, d¥,,,, — d,., 95% CI = [0.0004,0.0009]), and noise

(Ogroup = 0.022vs. oll |~ =0.017, 0., — 0k, 95% CI = [0.003,0.006]).

As shown in Table A.6, the estimates using the model with correlated priors led to

very similar conclusions.



16

Exploratory Confirmatory Joint
H v H v H \Y%
d 0.002 0.003 0.002 0.003 0.002 0.003
[0.002,0.002] [0.002,0.003] | [0.002,0.002] [0.002,0.003] | [0.002,0.002] [0.002,0.003]
o 0.018 0.023 0.016 0.021 0.017 0.022
[0.016, 0.020] [0.021, 0.025] | [0.015,0.018] [0.019,0.023] | [0.016,0.018] [0.021,0.023]
0 0.38 0.54 0.20 0.51 0.29 0.52
[0.19, 0.54] [0.41,0.67] [0.02, 0.35] [0.37, 0.63] [0.17,0.39] [0.44, 0.61]
b 0.02 0.03 0.02 0.00 0.02 0.02
[-0.07, 0.10] [-0.05, 0.12] [-0.07, 0.10] [-0.08, 0.09] [-0.03, 0.07] [-0.03, 0.07]

MAP estimate and 95% HDI of group-level mean.

Table 1.1: Group-level MAP Parameter Estimates for Model with Uncorrelated
Priors across Datasets and Conditions.

The hierarchical model also provides individual parameter estimates for each subject,
which are shown in Fig. 1.6. Except for bias, the parameters in the visible condition
are larger for most subjects. We estimate ¢ without the typical bounds at 0 and 1.
In the visible condition, 0 out of 50 subject-level MAP estimates for 6 fall below
zero and 1 falls above one. In the hidden condition, 7 out of 50 fall below zero and
0 fall above one. However, in each of these cases, the 95% highest density intervals
(HDIs) include the traditional boundaries. See Figs. A.5 and A.6 for a comparison
of the out-of-sample predictions of the fitted model and the data in the even trials.
See Figs. A.7 and A.8 for a comparison of the fixations and choice biases for subjects
with estimated 8" below and above zero. As shown in Fig. A.9, the model with

correlated priors leads to very similar individual parameter estimates.

Mechanisms of Choice Bias

Our results show that attentional biases are approximately twice as large in the hidden
condition, and that this is accompanied by a change in fixation durations, a change
in the key attentional bias parameter 6, and changes in other aDDM parameters.
In this section, we use out-of-sample simulations to investigate the extent to which
the attentional biases are driven by changes in the fixation process, changes in 6, or

changes in non-attentional model parameters.

The simulations are shown in Fig. 1.7. We start the analysis by comparing the
observed and simulated attentional bias in the visible condition. To do this, we
simulate 10 datasets for every subject in the out-of-sample even trials, using the
empirical fixation patterns from the even trials and the aDDM parameters fitted in
the odd trials of the visible condition (see Methods for details). As shown in the top

panel, we find a good quantitative match between the observed and simulated data.

In row 2, we repeat the exercise by changing one component of the simulations at a
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Figure 1.6: Comparison of aDDM Parameter Estimates from Model with Uncor-
related Priors. Subject-level aDDM MAP parameter estimates in the visible and
hidden conditions, for both the exploratory and confirmatory datasets. Colored lines
denote 95% HDIs.

time. Panel b depicts data simulated using the fixations from the visible condition,
but using the values of ¢ fitted in the hidden trials. The panel shows that this change
by itself generates a good qualitative account of the increased attentional bias in
hidden trials.

Panel ¢ depicts data simulated using the parameters fitted in the visible condition but
using the fixation process from the hidden condition (AFix.). To clarify, when we
use the fixation process from the hidden condition, we mean that we are sampling
properties of the fixation process (probability of first fixation to the left, latency to
first fixation, first fixation duration, middle fixation duration, saccadic duration) from
their empirical distributions across the hidden trials, separately for each subject. All
properties of the fixation process are independently sampled once per trial, except for
middle fixation durations and saccade durations, which are independently sampled
until the drift diffusion process terminates. We find that this change, by itself, has a
negligible impact on the attentional bias, and thus cannot account for observed data

in the hidden condition.
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Panel d depicts data simulated using the fixations from the visible condition, but
using the values of (d, o, b) fitted in the hidden trials. Again, this change, by itself,
is unable to provide a good qualitative account of the increased attentional bias in
hidden trials.

Row 3 depicts simulations in which two of the components are changed at a time. In
panel e we use the 6 parameters and the fixation process from the hidden condition,
but the value of the other parameters are taken from the visible condition. In panel
f we use the value of the other parameters (d, o, b) and the fixation process from

the hidden condition, but the value of 8 is taken from the visible condition.

Finally, the bottom row depicts a simulation in which all parameters as well as

fixations are taken from the hidden condition.

A comparison of these plots shows that the model can account for the large differ-
ences in attentional choice biases as long as the change in the 6 parameter is taken
into account, but not otherwise. This shows that the impact on attentional biases
is driven mostly by an increase in the tendency to overweight the value of fixated

options.

One natural concern with this simulation analysis is that changes in the 6 parameter
might be correlated with changes in fixation durations, across subjects. Fig. A.10

shows that this is not the case.

For completeness, Fig. A.11 and Table A.7 show that the estimated model parameters
are able to qualitatively account for the observed choice biases associated with net
fixation time and excess first fixation duration (in the visible condition) in the bottom
rows of Fig. 1.5. However, they are unable to account for the observed disappearance

of excess first fixation bias in the hidden condition.

1.4 Discussion

Our experiment was designed to study the impact of peripheral visual information
on the decision algorithm and its performance. Removing the nonfixated option has
little impact on the quality of average choices, although it slows down the choice
process by about 32% (or 520 ms). More importantly, we find that attentional choice

biases are approximately twice as large when the nonfixated option is not shown.

The conclusion about the relative magnitude of the attentional biases in the two
conditions is based on two different sets of analyses. A model free way of measuring

the size of the attentional bias, that does not depend on the assumption that the aDDM
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Figure 1.7: Mechanisms of Choice Bias. Probability of choosing the left item,
as a function of its relative value and last fixation location, in observed (blue,
red) and simulated (black) data. Each panel differs on the assumptions that were
used to simulate the data. (a) Simulated data for out-of-sample even trials use the
empirical fixation patterns and MAP parameters fitted in the visible condition. (b)
Simulated data now uses the 6 MAP parameter fitted out-of-sample in the hidden
condition. (c) Simulated data uses the empirical fixation patterns from the hidden
condition (AFix.). (d) Simulated data uses the (d, o, b) MAP parameters fitted from
the hidden condition. (e) Simulated data now uses the empirical fixation patterns
and the 8 MAP parameter from the hidden condition. (f) Simulated data uses the
empirical fixation patterns and the (d, o, b) MAP parameters fitted from the hidden
condition. (g) Simulated data now uses fixations and all parameters from the hidden
condition. The figures show that the simulations provide a good qualitative match
for the difference between the visible and hidden conditions when the attentional bias
parameter is modified, but not otherwise. The simulations include 10 observations
per trial, per subject.

is a good description of the data generating process (Mormann and Russo, 2021),
is to ask what is the probability of choosing the last fixated item when decisions
have equal value (Fig. 1.5, top row). In the absence of an attentional bias, both
items should be chosen with equal probability. In contrast, the last seen item is

2.5 times more likely than the other item to be chosen when all items are shown
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simultaneously, and 5 times more likely when nonfixated items are hidden. Another
way of measuring the attentional bias is based on the aDDM. In this model, the
value of nonfixated options at any given time is downweighted by a parameter 6.
When 6 = 1, there is no attentional bias. When 6 < 1, there is an attentional bias in
favor of the fixated item, which is stronger for lower values of 8. Our mean estimates
are § = 0.52 when all items are shown and 6 = 0.29 when nonfixated options are
hidden. In both cases, the results show that removing peripheral visual information

doubles the size of the attentional biases.

We find that middle fixations slow down by about 23% and first fixations slow down
about 46% in the hidden condition, independently of the stimuli’s value. There are
two natural hypotheses for this change. One hypothesis, based on bottom-up control
of the fixation process, is that the removal of peripheral stimuli changes the priority
map that controls fixation durations and locations (Itti and Koch, 2000; Towal,
Mormann, and Koch, 2013). This is consistent with findings from the visual search
literature, which have found that a decrease in the saliency of peripheral stimuli, of
which removal is an extreme case, increases fixation durations (Machner, Lencer,
et al., 2020), as well as with the finding that fixation durations increase in patients
with hemispatial neglect (Machner, Dorr, et al., 2012). An alternative hypothesis,
based on top-down control of the fixation process, is that fixations slow down to
accommodate the increased difficulty of generating value samples for the nonfixated

stimuli in the absence of peripheral visual information.

Beyond showing that attentional choice biases increase substantially when only
one item is shown at a time, our findings also provide some novel clues about the

mechanisms at work in simple choice.

First, we find that in the absence of peripheral stimuli the attentional bias parameter
(0) is greater than zero on average, which means that the values of nonfixated items
are still being processed by some, even if they are underweighted. This suggests
that foveation facilitates the extraction of value samples, but that it is not necessary,
at least after the second fixation when the identity of both stimuli becomes known.
This also implies that covert attention is paid to the nonfixated item, at least after
the second fixation. In fact, one interpretation of our results is that removing the
nonfixated item reduces the amount of covert attention that it receives (see Carrasco

(2011) for an outstanding review of the role of covert visual attention).

Second, the estimated parameters in the visible condition, and specifically the atten-

tional bias parameter, are consistent with related literature. When fitting the aDDM
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to individuals in their dataset, Krajbich, Armel, and Rangel (2010) found that the

average value of attentional bias among subjects was 8 = 0.52 + 0.3, although their
best-fitting model had & = 0.3. Our estimates of attentional bias in both condi-
tions are similar to the estimated influences of gaze on choice in Weilbdcher and
co-authors’ study (Weilbécher et al., 2021) where all options were hidden and had
to be recalled from memory at the time of decision-making (attentional discounting
parameter: hidden mean = 0.12, visible mean = 0.42). Interestingly, our estimate
of @ in the hidden condition is larger than the one in the Weilbédcher study, which
suggests that the attentional bias is stronger when all information about the choice
stimuli has to be recalled from memory (in their study) than when it is available

conditional on foveation (as in the hidden condition in this study).

Third, Bayesian models of information sampling in simple choice have proposed
that fixations matter because they control which value samples are obtained, and that
samples matter because they shift the value estimates from a common initial prior
to posteriors that are closer to the true value of each stimulus. As a result, the value
estimates of better-than-average items tend to increase with additional fixation time,
and the opposite is true for worse-than-average items (Armel, Beaumel, and Rangel,
2008; Callaway, Rangel, and Griffiths, 2021; Jang, Sharma, and Drugowitsch,
2021; Li and Ma, 2021). This Bayesian perspective could account for the increased
attentional bias when nonfixated items are hidden. Value samples must be taken in
parallel from both choice options, and either the rate of sampling must be slower, or
the sampled information must be noisier for the nonfixated item. These variations
should be even more exaggerated when nonfixated items are not present in peripheral
vision. Existing Bayesian models do not account for the former, though they do

account for the latter (Jang, Sharma, and Drugowitsch, 2021).

Finally, our results also have implications for the growing field of choice archi-
tecture, which seeks to understand how seemingly minor changes in the choice
environment affect decisions, and how to apply this information to help individuals
make better decisions (E. J. Johnson et al., 2012). We find substantially larger at-
tentional biases in settings where only one option is shown at a time—as is done on
many shopping websites—than in settings where all options are presented simulta-
neously, such as supermarket shelves. This suggests that individuals might be more
susceptible to marketing influences that attract attention (e.g., salient packaging or
point-of-sale ads) in the growing domain of e-commerce than in traditional retail

settings. Although our experiments only measure the effect of removing peripheral
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stimuli, similar issues could arise in contexts where choice options are described
sequentially using other sensory modalities (e.g., when a waiter describes the menu
specials). Extrapolating from our results, we also hypothesize that similar increases
in attentional biases could be induced simply by increasing the spatial separation
between stimuli, so that it becomes difficult to process nonfixated options using
peripheral vision. Consistent with this hypothesis, others have found that subjects
with a narrower spatial attention tend to exhibit larger attentional choice biases than
those with broader spatial attention (S. M. Smith and Krajbich, 2018).

Several aspects of our study might limit the generalizability of the findings. First,
our results are limited to the context of binary choice, whereas in many decision
contexts more than two options are available for selection. The impact of periph-
eral visual information on the choice process might depend on the complexity of
the environment. Second, based on previous work, we use food stimuli as a basis
for understanding attentional effects on value-based choices (Krajbich, Armel, and
Rangel, 2010; Krajbich and Rangel, 2011). However, it is possible that the quanti-
tative influence of peripheral information might depend on the nature of the stimuli
(e.g. lotteries, toys, concert tickets), especially if it differs on how easily it can be
processed in peripheral vision. Third, in the real-world, it may be more costly and
slower for consumers to switch between different options than it is in our simple
gaze-contingent paradigm. For instance, consumers may have to walk between two
different shelves at a super market or click through a list online, whereas in our
paradigm they simply need to fixate between two regions of interest. The impact of

such variables in choices needs further study.
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