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ABSTRACT

This dissertation comprises three chapters related to the fields of psychology, com-
putational neuroscience, and experimental economics. Chapters 1 and 2 use ex-
perimental and computational methods to study the role of attention in simple,
value-based choices. Chapter 3 examines risky choices from experience and tests
some of the underlying assumptions of sequential sampling models.

A growing body of research has shown that simple choices involve the construction
and comparison of values at the time of decision. These processes are modulated
by attention in a way that leaves decision makers susceptible to attentional biases.
In Chapter 1, co-authored with Stephanie Dolbier and Antonio Rangel, we studied
the role of peripheral visual information on the choice process and on attentional
choice biases. We used an eye-tracking experiment in which participants (N =
50 adults) made binary choices between food items that were displayed in marked
screen “shelves” in two conditions: (a) where both items were displayed, and (b)
where items were displayed only when participants fixated within their shelves. We
found that removing the nonfixated option approximately doubled the size of the
attentional biases. The results show that peripheral visual information is crucial in
facilitating good decisions and suggest that individuals might be influenceable by
settings in which only one item is shown at a time, such as e-commerce.

In Chapter 2, co-authored with Stephen Gonzalez and Antonio Rangel, we studied
the role of attention in aversive risky choices where all outcomes were unpleasant.
We used two eye-tracking experiments in which participants made binary choices
between two lotteries in two conditions: (a) a gain condition where outcomes
for lotteries were weakly positive, and (b) a loss condition where outcomes were
weakly negative. Contrary to the predictions of the standard aDDM, we found that
attentional choice biases in the loss condition were identical to those found in the
gain condition, suggesting that attention nudges choices towards the attended option
even in losses. To explain these results, we propose a variation of the Attentional
Drift-Diffusion-Model (called the Hybrid aDDM) that incorporates (a) both a value-
dependent and a value-independent effect of attention on the choice process and (b)
reference-dependent value signals. We show that the observed attentional choice
biases and other behavioral signatures in the loss condition can only be explained
by the Hybrid aDDM with a reference-point rule that sets the reference-point at or
below the minimum possible outcome in a given context.
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In Chapter 3, co-authored with Antonio Rangel, we establish that sequential sam-
pling models apply to risky decisions from experience and test some of the underly-
ing assumptions of these models. We ran an online study in which participants chose
to Play or Skip a slot machine, based on a stream of samples drawn from its out-
come distribution. We found evidence for leakage, collapsing decision boundaries,
and a delay in sample integration. We also found evidence of non-linear sample
weighting depending on when the sample occurred during the trial. As a bonus, we
established a link between the fixed decision boundaries in a Drift-Diffusion-Model
and a Modified Probit model, allowing for estimation of decision boundaries in
cumulative sample space without the need to fit a computational model.
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INTRODUCTION

Nearly every aspect of human behavior is the result of some form of decision-
making. From the simple choices we make daily, like selecting what to eat for
breakfast, to the complex decisions involved in financial investments, understanding
how individuals evaluate options and make decisions is crucial. The traditional view
in economics assumes that decision-making is a rational process where individuals
weigh all available options and make choices that maximize their utility. However, a
growing body of research in behavioral economics and cognitive sciences challenges
this notion, showing that decision-making is often influenced by factors beyond pure
rationality, including attention, cognitive biases, and the context in which choices
are presented.

In recent years, the role of attention in decision-making has garnered significant
attention, particularly in economic choices where the decision-maker must evaluate
and compare the value of different options. Overt attention has been shown to
significantly influence the decision-making process, often leading to biases where
certain options are favored simply because they receive more attention. These
attentional biases can have profound implications, particularly in environments
where the presentation of options can be controlled, such as in online shopping
platforms or digital advertising.

Chapters 1 and 2 of this dissertation delve into the intricacies of attention and its
impact on decision-making. Chapter 1 investigates whether peripheral visual infor-
mation is processed and incorporated into the choice process, whether consciously
or subconsciously. Using a gaze-contingent eye-tracking experiment where partici-
pants make binary choices between food items, we explore how the removal of the
options in participants’ visual periphery influences attentional choice biases. We
find that attentional choice biases approximately double in size when peripheral
visual information is hidden, showing that peripheral visual information is crucial
in facilitating good choices. This study is particularly relevant in understanding how
visual environments, such as supermarket shelves or e-commerce websites, can be
optimized to guide consumer choices.

Chapter 2 shifts focus to aversive choices, where decision-makers are faced with
unpleasant outcomes. We run two experiments involving both appetitive and aver-
sive risky choices and find identical choice biases across the two conditions. These
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results suggest that, even in losses, attention is nudging choices towards the attended
option. This is surprising given the predictions of a canonical model that links at-
tention to choice. We propose another model that splits the effect of attention on the
choice process into two effects and incorporates reference-dependent value signals.
We show that the observed attentional choice biases and other behavioral signatures
in the loss condition can only be explained by our model with a reference-point rule
that sets the reference-point at or below the minimum possible outcome in a given
context.

Chapter 3 examines the applicability of sequential sampling models to risky deci-
sions from experience. Using an online study, we test key assumptions of these
models, uncovering phenomena such as leakage, collapsing decision boundaries,
and non-linear sample weighting depending on when information is accumulated.
This investigation not only validates the use of these models in understanding how
real-world decisions are made from experience, but also provides new insights into
the temporal dynamics of how individuals integrate information. As a bonus, we also
establish a link between the decision boundaries of the canonical Drift-Diffusion-
Model and a Modified Probit model, allowing for computationally-inexpensive es-
timation of these decision boundaries in cumulative sample space.

Together, these essays contribute to the growing understanding of the cognitive
processes underlying decision-making. By examining the role of attention across
different contexts—ranging from everyday food choices to unpleasant decisions
under uncertainty—we offer new insights on how attention can both facilitate and
bias the decision-making process. As the world increasingly shifts towards digital
and visual environments, the insights gained from this research are poised to inform
the design of systems and interventions that can improve decision-making quality
and outcomes.
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C h a p t e r 1

PERIPHERAL VISUAL INFORMATION HALVES
ATTENTIONAL CHOICE BIASES

1.1 Introduction
Everyday we face two different types of choice situations. Sometimes we are
presented with all of the available options at once, as when we face a supermarket
shelf or a buffet table. In other cases, such as many shopping websites, we are
presented with one option at a time, which changes sequentially at our own pace.
In both cases our overt visual attention is deployed to one option at a time. But the
two situations differ on the availability of peripheral visual information about the
nonfixated options, which in principle could be used to guide the choice process.

A growing number of experiments have studied the role of visual attention in simple
choice and have found that increases in the relative attention received by a desirable
option are associated with an increase in the frequency with which it is chosen, all
else being equal (Krajbich, Armel, and Rangel, 2010; Krajbich and Rangel, 2011;
Krajbich, Lu, et al., 2012; S. M. Smith and Krajbich, 2018; S. M. Smith and Kra-
jbich, 2019; J. F. Cavanagh et al., 2014; S. E. Cavanagh et al., 2019; Sepulveda
et al., 2020; Thomas et al., 2019; Gluth, Spektor, and Rieskamp, 2018; Gluth,
Kern, et al., 2020; Fisher, 2017; Towal, Mormann, and Koch, 2013). Although the
exact mechanism behind the attentional bias remains unknown, foveation seems to
facilitate the process of value computation and integration in a way that is consistent
with overweighting fixated items relative to nonfixated ones. This is formalized in
the Attentional Drift-Diffusion-Model (aDDM), which is able to provide a quan-
titative account of the relationship between fixations, choices, and reaction times
(Krajbich, Armel, and Rangel, 2010; Krajbich and Rangel, 2011; Krajbich, Lu,
et al., 2012; S. M. Smith and Krajbich, 2018; S. M. Smith and Krajbich, 2019).
The aDDM predicts that choices can be biased through exogenous manipulations
of relative fixation time, consistent with the findings of multiple studies (Armel,
Beaumel, and Rangel, 2008; Tavares, Perona, and Rangel, 2017; Hare, Malmaud,
and Rangel, 2011; Pärnamets et al., 2015; Ghaffari and Fiedler, 2018; Kunar et al.,
2017; Peschel, Orquin, and Mueller Loose, 2019; Shimojo et al., 2003).

Our goal is to study the role of peripheral visual information on the choice process
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and on attentional choice biases. In particular, do we use the same choice algorithm
when all options are presented simultaneously, as when we shop at the market, and
when they are presented sequentially, as when we shop online? If not, does the
absence of peripheral information change the fixation process and the magnitude of
the attentional biases?

We study these questions using an eye-tracking experiment in which subjects make
binary choices between foods that are displayed in marked screen “shelves” in two
different conditions: (1) a simultaneous condition in which both items are displayed
on the screen at the time of choice, and (2) a gaze contingent condition in which
items are only displayed when subjects fixate within their shelves. Most previous
studies have used choice tasks in which all options are displayed simultaneously,
although a handful have used gaze-contingent presentation of stimuli (Simion and
Shimojo, 2006; Folke et al., 2016; Sepulveda et al., 2020; Franco-Watkins and J. G.
Johnson, 2011). However, none have compared the two situations directly, which
is necessary to understand the effect of peripheral visual information on the choice
process.

Based on what is known about choice in the simultaneous case, and the seemingly
minor change involved in removing the nonfixated options from peripheral vision, it
is natural to hypothesize that similar algorithms are at work in both conditions, albeit
with some differences. In particular, the aDDM suggests two non-mutually exclusive
mechanisms through which removing the nonfixated options from the visual field
might affect choices. First, it might increase the overweighting of fixated relative
to nonfixated items, which would result in an increased attentional bias. Second, it
might change the fixation process in a way that exacerbates the attentional biases,
for example by increasing the asymmetry on fixation time across options.

Understanding the role of peripheral visual information in simple choice is important
for multiple reasons. First, despite the robustness of the attentional biases identified
in previous work, we do not know what are the channels through which covert
and overt visual attention influence decisions, nor their relative contribution to
choice. Decades of work in visual attention have shown that a substantial amount
of information is processed through peripheral visual attention (Carrasco, 2011;
Perkovic et al., 2022; Wästlund, Shams, and Otterbring, 2018), which raises the
puzzle of why and how fixations matter so much in economic choices, even when
making decisions among familiar items. Second, the transition to e-commerce has
increased the frequency with which our decisions are made in sequential presentation
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settings. We need to understand the impact that this has on the choice algorithms
and their associated biases in order to design interfaces and nudges that enhance
choice quality.

To preview the results, we find that removing the nonfixated options has little impact
on the average quality of choices. However, we also find that it approximately
doubles the magnitude of attentional choice biases, which make decision makers
more susceptible to marketing interventions (e.g., packaging) that affect attention
independently of the value of products. We also find that the removal of the
nonfixated options slows down the fixation and decision process considerably, but
that the impact on attentional biases is driven mostly by an increase in the tendency
to overweight the value of fixated options.

All data and code are available for download at the Rangel Neuroeconomics Lab
website (www.rnl.caltech.edu). The design and analysis plans for this study
were not preregistered.

1.2 Methods
Task
We investigated the role of peripheral information about nonfixated stimuli using the
task depicted in Fig. 1.1. Subjects made decisions in two conditions: (1) a visible
condition in which both items were displayed on the screen at the time of choice,
and (2) a hidden condition in which items were displayed only when subjects fixated
within the location associated with the stimulus. Subjects were asked to refrain
from eating for 2 h before the start of the experiment, and to refrain from eating any
foods afterwards during a 1 h waiting period, except for the snack that they chose in
a randomly selected trial, which was given to them at the end of the experiment.

Subjects participated in two tasks. First, they were asked to provide liking ratings
for 60 snack foods available at local stores (“How much would you LIKE to eat this
food?”, 1 = “don’t like” to 5 = “like a lot”, 0.25 intervals). Each item was rated twice,
in random order, using a slider bar controlled by the arrow keys, and initialized to a
random location to reduce anchoring effects. We use the average of the two ratings
as a measure of each item’s value.

Second, subjects made choices between two food items, shown on the left and right
sides of the screen, in two separate conditions: (1) a visible condition where both
items were shown simultaneously, and (2) a hidden condition where items were
shown only when subjects fixated within their region of interest (ROI). The ROIs
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were indicated in both treatments with a white box (Fig. 1.1). Trials started with
an enforced 500 ms central fixation. Subjects indicated their choices with the left
and right arrow keys, and responded at their own pace. The selected option was
highlighted for 1 s and trials were separated by a 1 s blank screen. Subjects made
360 choices in the exploratory sample and 400 in the confirmatory sample, half on
each experimental condition. The task was divided into four equal-sized blocks,
two with the hidden condition and two with the visible condition, in random order.

The choice pairs in the exploratory data set were randomly selected from all 60 food
items. In the confirmatory sample, they were constructed as follows. We used each
subject’s ratings to prune the stimulus set down to the 40 food items that resulted in
the most uniform distribution of ratings, in order to maximize the spread of rating
differences across choice pairs. Stimuli for each trial were then randomly selected,
subject to the constraint that they be used four times per block in the exploratory
data set, and five times per block in the confirmatory data set. All 60 foods were
shown once every 30 trials in the exploratory data set, and all 40 foods were shown
once every 20 trials in the confirmatory data set.

2 hr fast
Liking-Rating 

Task
Binary Choice 

Task

Allowed to eat food 
chosen in random trial 
(& nothing else for 1 hr)

500 ms
(enforced)

Hidden

Visible

Free RT

Free RT

1000 ms
1000 ms

Figure 1.1: Task. Subjects had to fixate on a center fixation cross for 500 ms for the
trial to start. In the visible condition subjects were presented with two snack food
items simultaneously, each located within a white box on the left and right sides of
the screen. In the hidden condition subjects had to fixate within the white boxes in
order to reveal the snack food item inside. Subjects indicated their response at their
own pace with a keyboard press. Once a choice was made, a blue box highlighted
the selection for 1 s, followed by a 1 s inter-trial interval.

Participants
50 subjects (mean age = 30.8, 34 female) were recruited from Caltech and the
surrounding community using flyers. We pre-screened subjects for a self-reported
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liking for snack foods (e.g. candy and potato chips) and against requiring glasses
for vision correction that might interfere with eye-tracking. Subjects were paid a
$35 participation fee. The experiment was approved by Caltech’s IRB.

In order to obtain high quality data, we implemented a subject filter at the data
collection stage. Immediately after data collection we deleted subjects who failed
any of the following criteria: (1) correlation between the two liking ratings of at
least 70%, (2) mean RT in choice trials between 0.7 and 6 s, (3) probability of
choosing the best item significantly different from chance (based on a binomial
test), and (4) at most 10% missing fixation data. Data collection continued until 50
subjects passed the data quality criteria. The first 25 subjects were allocated to the
exploratory sample, the other 25 to the confirmatory sample. The number of trials
per subject, and the number of subjects, were chosen based on related studies which
have shown that this sample size provides reliable estimates of the parameters and
effects of interest.

Eye-Tracking
Subjects’ fixation patterns were recorded using an EyeLink 100 desk eye-tracker
at 500 Hz. Subjects sat approximately 60 cm from a 1920×1080 pixel monitor.
Food image sizes were 403×302 pixels. Fixations within the ROI for the left food
were classified as “left”, those within the right food’s ROI were classified as “right”,
and those outside the two ROIs were classified as “blank”. If a sequence of blank
fixations was recorded between two fixations of the same type (e.g. left-blank-blank-
left), they were re-coded as a fixation of the same type (e.g., left-left-left-left), since
blank fixations of this type are typically due to eye-tracking noise and tend to be
quite short. Blank fixations recorded between two fixations of different types (e.g.
left-blank-right) were coded as a saccade period between fixations. Trials in which
any eye-tracking information is missing are dropped from further analysis (with a
mean of 6 and 4 trials per subject in the exploratory and confirmatory datasets,
respectively).

Data Analysis Strategy
In order to be able to explore the data in detail, while avoiding the type of statistical
problems that have raised questions about the validity of some published research,
we collected two separate datasets with 25 subjects each. We used the first one
to carry out exploratory analyses until we understood the data generating process
in sufficient detail. Based on this, we pinned down a set of analyses and tests
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that were carried out in a second confirmatory dataset of equal size. Thus, the
confirmatory dataset serves as a replication of our findings, and provides unbiased
statistics for hypothesis testing. Given the similarity of the estimates and findings
in both samples, and in the spirit of meta-analysis, we also provide results on the
pooled sample and describe summary statistics in terms of the pooled estimates.

Computational Model
As illustrated in Fig. 1.2, the Attentional Drift-Diffusion-Model (aDDM) is a version
of the Drift-Diffusion-Model of binary choice (Ratcliff and McKoon, 2008; Gold
and Shadlen, 2007; Ratcliff, P. L. Smith, et al., 2016) in which value sampling is
affected by fixation location. Subjects integrate noisy values signals into an evolving
evidence process. Evidence starts every trial at an initial location 𝑏, which may
include some bias towards one of the options if 𝑏 ≠ 0. A choice is made the first time
evidence crosses one of two pre-specified barriers, which are fixed at 1 for the left
item, and -1 for the right item. The identity of the barrier crossed determines which
option is chosen. Critically, evidence evolves as the following diffusion process:

𝐸𝑣𝑖𝑑𝑒𝑛𝑐𝑒𝑡 = 𝐸𝑣𝑖𝑑𝑒𝑛𝑐𝑒𝑡−1 + 𝜇𝑡 + 𝑒𝑡 (1.1)

where 𝑒𝑡 is i.i.d. white Gaussian noise with variance 𝜎2, and the slope of the process
depends on the fixation location. In particular, when the left item is fixated, the
slope of integration is 𝜇𝑡 = 𝑑 (𝑉𝑙𝑒 𝑓 𝑡 − 𝜃𝑉𝑟𝑖𝑔ℎ𝑡), and when the right item is fixated is
𝜇𝑡 = 𝑑 (𝜃𝑉𝑙𝑒 𝑓 𝑡 − 𝑉𝑟𝑖𝑔ℎ𝑡), where 𝑑 is a parameter controlling the speed of integration
and 𝜃 is a parameter controlling the attentional bias. When 𝜃 = 1, the fixations do not
affect choices, there are no attentional biases, and the process reduces to a standard
DDM. In contrast, when 𝜃 < 1, the value of the fixated item is overweighted relative
to the nonfixated value, which results in an attentional bias that increases as 𝜃 gets
smaller.

Importantly, the aDDM assumes that the fixation process is orthogonal to the state of
evidence in any given trial. Thus, when simulating the model, we sample fixations
from the observed fixation distributions, separately for first and middle fixations.

aDDM Fitting
We fit the aDDM using a hierarchical Bayesian model, separately for the visible and
hidden conditions, using the methods and associated toolbox developed by Lombardi
and Hare (Lombardi and Hare, 2021). We estimate the model separately for the
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Figure 1.2: aDDM Example. An illustration of how the aDDM makes decisions in
a sample trial. Colored vertical bands denote fixation locations.

exploratory, confirmatory, and pooled datasets. In every case, the model is fit using
only the odd trials, as the even trials are reserved for out-of-sample predictions. As
described in Fig. A.1, the model has the following free parameters, both at the group
and individual levels: the evidence accumulation drift rate (𝑑), the standard deviation
of the Gaussian noise for the drift process (𝜎), the attentional bias parameter (𝜃),
and the initial bias of the drift process (𝑏). Posterior distributions were estimated
using Markov Chain Monte Carlo methods with 3 chains for a total of 55,000 burn-in
samples and 30,000 samples from each of the posteriors. Gelman-Rubin statistics
for all estimates are at or below 1.1, indicating convergence.

The model that we estimate and report in the paper specifies priors without any
correlation of parameters across the hidden and visible conditions. We do this
to maximize the extent to which our posterior estimates are driven by the data.
However, in order to investigate the role of the uncorrelated priors on our model fits,
we also estimated a version of the model in which the priors for the same parameter
in the visible and hidden conditions are correlated. In particular, each parameter
(𝑥) consists of two parts: a baseline (𝑥) and a hidden-condition deviation (Δ𝑥). See
Fig. A.2 for details. As discussed further below, both models generated very similar
parameter estimates.

Out-of-Sample Simulations
Even-numbered trials were set aside as out-of-sample data, in order to compare
them to the predictions of aDDM model fitted on the odd trials. We simulate 10
datasets for each subject and condition, using the same rating pairs encountered in
the experiment. For each simulated data set we sample a set of parameters from
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the joint posterior distribution for that subject and condition. Then we simulate
each trial as follows. We sample all fixation duration statistics from their observed
empirical distributions in the even trials, conditional on the hidden or visible condi-
tion. For example, when simulating a hidden condition trial, evidence for the trial is
initialized at the bias parameter and a trial-specific drift rate parameter is sampled.
Evidence evolves based only on the noise up to the duration of the sampled latency
to first fixation. Afterwards, a maximum first fixation duration is sampled from the
distribution of first fixations in the hidden condition, and evidence evolves according
to the drift rate, noise, and attentional bias parameters depending on the fixation
location, as described in the Computational Model section. If a barrier is crossed
before the maximum fixation duration is reached, the process is terminated and the
choice and RT are recorded. Otherwise, a new saccadic duration and maximum fix-
ation duration are sampled from the distributions of saccades and middle fixations
in the hidden condition, respectively. The process is repeated until a choice is made.
Note that this assumes that the value of the nonfixated item is known during the first
fixation, which is unrealistic and interferes with the quality of our fits.

Hierarchical regressions
All the logistic and linear regressions reported in the paper are based on standard
hierarchical models with random coefficients for all parameters. The regressions
are implemented using the brms R-package (Bürkner, 2017; Bürkner, 2018) and
used the default weakly informative priors, occasionally scaled depending on the
units of the independent variable. Posterior distributions were estimated using
3 chains for a total of 9,000 burn-in samples and 9,000 samples from each of
the posteriors. See the companion data and code package for details (https:
//www.rnl.caltech.edu/publications/).

1.3 Results
Basic Psychometrics
The top row of Fig. 1.3 depicts the psychometric choice curve, with each experi-
mental condition and dataset separated. See Table A.1 for the associated regression
estimates and test statistics. We find a small but significant increase in the respon-
sivity of choices to value differences in the hidden condition. The middle row of
Fig. 1.3 depicts reaction times (RTs) as a function of choice difficulty. We find
that RT increases with choice difficulty, that average RTs are about 32% (520 ms)
slower in the hidden condition, and that this slowdown does not vary significantly
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with choice difficulty. The bottom row of Fig. 1.3 depicts the number of fixations
as a function of choice difficulty. We find that the number of fixations increases
with choice difficulty, and are approximately similar in both conditions, except for a
small flattening in the slope of the fixation curve in the hidden condition.

Together, these results show that removing the nonfixated items slows down the
choice process, but has a negligible effect on the quality of average choices (proba-
bility best chosen visible = 0.865 ± 0.007 (±SEs), probability best chosen hidden =
0.876 ± 0.007, d = 0.19, t(49) = 1.81, p = 0.08).
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Figure 1.3: Basic Psychometrics. (Top) The probability of choosing the left item
as a function of its relative value. (Middle) Response time as a function of trial
difficulty, as measured by the rating difference between the best and worse items.
(Bottom) The number of fixations as a function of trial difficulty. Columns indicate
which dataset generated the figures. Error bars show standard errors of the mean
across participants.

Fixation Process
Fig. 1.4 and Table A.2 explore the fixation process in more detail. The goal here is
to understand the impact that removing nonfixated items has on the fixation process,
which is essential to understand how it affects attentional biases.

The first row of Fig. 1.4 depicts the probability that the first fixation is to the best
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item, as a function of choice difficulty. The first fixation location is at chance in both
conditions. Fig. A.3 (top row) shows that there is no difference between conditions
on the probability of first fixating left (probability first fix. left visible = 0.759 ±
0.042, probability first fix. left hidden = 0.803 ± 0.048, d = 0.14, t(49) = 1.64, p
= 0.11). Fig. A.3 (bottom row) and Table A.3 show that there is also no difference
between conditions on the latency to the start of the first fixation.

The second row of Fig. 1.4 depicts the mean duration of first, middle, and last
fixations, separately for the two conditions. We find that the three types of fixa-
tions are longer in the hidden condition by about 40% on average (Δfirst=160ms,
d=1.43, t(49)=11.3, p=3e−15; Δmiddle=145ms, d=0.82, t(49)=8.51, p=3e−11;
Δlast=191ms, d=1.86, t(49)=17.02, p=0). Note that this is consistent with the
RT results above: an average trial has 3 fixations, and each fixation is on average
165 ms longer in the hidden condition, which implies that decisions should take 495
ms longer, just shy of the observed RT difference.

The third row of Fig. 1.4 depicts middle fixation durations as a function of choice
difficulty. We find that middle fixation durations increase with choice difficulty.
Fig. A.4 and Table A.4 show that this difference is driven by the value of the fixated
item: in the hidden condition middle fixation durations increase with the value of
the fixated item, whereas the opposite occurs in the visible condition. Interestingly,
Fig. A.4 also shows that middle fixation durations decrease with the value of the
nonfixated item even in the hidden condition.

The fourth row of Fig. 1.4 depicts the first fixation duration as a function of choice
difficulty. We find that duration is independent of value in both conditions, and
about 46% (160 ms) longer in the hidden condition. See Fig. A.4 and Table A.4 for
additional results.

The bottom row of Fig. 1.4 shows the relationship between relative value and relative
fixation time. In both conditions, the relationship exhibits an S-shape. Both items
are fixated the same amount when they have equal value, but otherwise the better
item is fixated longer, with the asymmetry on fixation time increasing in the value
advantage. In addition, the effect is stronger in the hidden condition, and as a result
the distribution of net fixation times is more asymmetric in favor of the better item
in this condition. Note that, since the fixated item is overweighted in the aDDM,
this asymmetry in relative fixation time facilitates choosing the better option.
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Figure 1.4: Fixation Properties. (Row 1) The probability that the first fixation is
to the best item as a function of choice difficulty. (Row 2) Fixation durations by
fixation type. (Row 3) Middle fixation duration as a function of choice difficulty.
(Row 4) First fixation duration as a function of choice difficulty. (Row 5) Net fixation
duration to the left item as a function of its relative value. Columns indicate which
dataset generated the figures. Error bars show standard errors of the mean across
participants.

Choice Biases
Fig. 1.5 and Table A.5 depict the attentional bias in both conditions. The goal here
is to provide a model-free test of the extent to which removing nonfixated items
affects attentional biases.
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The top row depicts the probability of choosing the left item as a function of its
relative rating and the location of the last fixation. In the absence of an attentional
bias, the location of the last fixation should not matter and the choice curves should
lie on top of each other. In contrast, and consistent with previous studies (Krajbich,
Armel, and Rangel, 2010; Krajbich and Rangel, 2011; Krajbich, Lu, et al., 2012;
S. M. Smith and Krajbich, 2018; S. M. Smith and Krajbich, 2019; Fisher, 2017;
Tavares, Perona, and Rangel, 2017), we find a substantial attentional bias in the
visible condition: on average, when the left and right items are equally valued, the
left item is 2.5 times more likely to be chosen when the last fixation is to the left
than when it is to the right. The bias is substantially larger in the hidden condition,
where the left item is 5 times more likely to be chosen when the last fixation is to
the left than when it is to the right.

The middle row depicts the relationship between net fixation time and the corrected
probability of choice. The choice measure is corrected by subtracting from each
choice observation (coded as 1 if left chosen, and 0 otherwise) the proportion with
which left is chosen at each relative value. As a result, in the absence of an attentional
bias, the corrected probability of choice should be 0, independent of net fixation
time. In contrast, we find that shifting net fixation time towards the left item by 1
second increases its choice probability by 24% in both conditions.

The bottom row depicts the relationship between excess first fixation durations and
the corrected choice probability of the first seen item, using the same correction
described above. Excess first fixation duration is defined as first fixation duration
minus mean first fixation duration (computed for each subject). In the absence of
an attentional bias, the corrected probability should be 0 regardless of excess first
fixation duration. In contrast, we find that an increase in the excess first fixation
duration by 1 second increases the choice probability by about 22% in the visible
condition, but that there is no such effect in the hidden condition.

aDDM
Given that the aDDM has been shown to provide good quantitative accounts of the
relationship between fixations, choices, and RTs, we fit a hierarchical approximation
of this model to our data, separately for the visible and hidden conditions. The goal
is to investigate the impact of removing the nonfixated items on the parameters of
the aDDM and the attentional biases that they predict.

Table 1.1 summarizes the maximum a posteriori (MAP) estimates for group-level



15

0.00

0.25

0.50

0.75

1.00

-4 -2 0 2 4
Left Rating – Right Rating

P
(L

ef
t C

ho
se

n)
Last Fix. R
Last Fix. L

Visible
Hidden

-0.4

-0.2

0.0

0.2

0.4

-1.0 -0.5 0.0 0.5 1.0
Final Time Advantage Left (s)

C
or

r.
 P

(L
ef

t C
ho

se
n)

-1.0

-0.5

0.0

0.5

1.0

-0.5 0.0 0.5 1.0 1.5
First Fix. Dur. – Avg. First Fix. Dur. (s)

C
or

r.
 P

(F
irs

t S
ee

n 
C

ho
se

n)

Exploratory

0.00

0.25

0.50

0.75

1.00

-4 -2 0 2 4
Left Rating – Right Rating

-0.4

-0.2

0.0

0.2

0.4

-1.0 -0.5 0.0 0.5 1.0
Final Time Advantage Left (s)

-1.0

-0.5

0.0

0.5

1.0

-0.5 0.0 0.5 1.0 1.5
First Fix. Dur. – Avg. First Fix. Dur. (s)

Confirmatory

0.00

0.25

0.50

0.75

1.00

-4 -2 0 2 4
Left Rating – Right Rating

-0.4

-0.2

0.0

0.2

0.4

-1.0 -0.5 0.0 0.5 1.0
Final Time Advantage Left (s)

-1.0

-0.5

0.0

0.5

1.0

-0.5 0.0 0.5 1.0 1.5
First Fix. Dur. – Avg. First Fix. Dur. (s)

Joint

Figure 1.5: Choice Biases. (Top) Probability of choosing the left item as a function
of its relative value, conditional on last fixation location. (Middle) Corrected prob-
ability of choosing the left item as a function of the net fixation time to the left item.
The corrected probability is computed by subtracting from each choice observation
(coded as 1 if left chosen, and 0 otherwise) the proportion with which left is chosen
at each relative value. (Bottom) Corrected probability that the first seen item is
chosen as a function of the excess first fixation duration, defined as first fixation
duration minus mean first fixation duration (computed for each subject). Columns
indicate which dataset generated the figures. Error bars show standard errors of the
mean across participants.

mean parameters. We find that 𝜃𝑉𝑔𝑟𝑜𝑢𝑝 = 0.52 and 𝜃𝐻𝑔𝑟𝑜𝑢𝑝 = 0.29 (𝜃𝑉𝑔𝑟𝑜𝑢𝑝 −
𝜃𝐻𝑔𝑟𝑜𝑢𝑝 95% 𝐶𝐼 = [0.12, 0.35]) which means that the attentional bias parameter in
the hidden condition worsens by a factor of two, consistent with the results described
above. We also find differences in the estimated parameters for the slope (𝑑𝑉𝑔𝑟𝑜𝑢𝑝 =

0.003 vs. 𝑑𝐻𝑔𝑟𝑜𝑢𝑝 = 0.002, 𝑑𝑉𝑔𝑟𝑜𝑢𝑝 − 𝑑𝐻𝑔𝑟𝑜𝑢𝑝 95% 𝐶𝐼 = [0.0004, 0.0009]), and noise
(𝜎𝑉

𝑔𝑟𝑜𝑢𝑝 = 0.022 vs. 𝜎𝐻
𝑔𝑟𝑜𝑢𝑝 = 0.017, 𝜎𝑉

𝑔𝑟𝑜𝑢𝑝 − 𝜎𝐻
𝑔𝑟𝑜𝑢𝑝 95% 𝐶𝐼 = [0.003, 0.006]).

As shown in Table A.6, the estimates using the model with correlated priors led to
very similar conclusions.
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Exploratory Confirmatory Joint
H V H V H V

𝑑 0.002 0.003 0.002 0.003 0.002 0.003
[0.002, 0.002] [0.002, 0.003] [0.002, 0.002] [0.002, 0.003] [0.002, 0.002] [0.002, 0.003]

𝜎 0.018 0.023 0.016 0.021 0.017 0.022
[0.016, 0.020] [0.021, 0.025] [0.015, 0.018] [0.019, 0.023] [0.016, 0.018] [0.021, 0.023]

𝜃 0.38 0.54 0.20 0.51 0.29 0.52
[0.19, 0.54] [0.41, 0.67] [0.02, 0.35] [0.37, 0.63] [0.17, 0.39] [0.44, 0.61]

𝑏 0.02 0.03 0.02 0.00 0.02 0.02
[-0.07, 0.10] [-0.05, 0.12] [-0.07, 0.10] [-0.08, 0.09] [-0.03, 0.07] [-0.03, 0.07]

MAP estimate and 95% HDI of group-level mean.

Table 1.1: Group-level MAP Parameter Estimates for Model with Uncorrelated
Priors across Datasets and Conditions.

The hierarchical model also provides individual parameter estimates for each subject,
which are shown in Fig. 1.6. Except for bias, the parameters in the visible condition
are larger for most subjects. We estimate 𝜃 without the typical bounds at 0 and 1.
In the visible condition, 0 out of 50 subject-level MAP estimates for 𝜃 fall below
zero and 1 falls above one. In the hidden condition, 7 out of 50 fall below zero and
0 fall above one. However, in each of these cases, the 95% highest density intervals
(HDIs) include the traditional boundaries. See Figs. A.5 and A.6 for a comparison
of the out-of-sample predictions of the fitted model and the data in the even trials.
See Figs. A.7 and A.8 for a comparison of the fixations and choice biases for subjects
with estimated 𝜃𝐻 below and above zero. As shown in Fig. A.9, the model with
correlated priors leads to very similar individual parameter estimates.

Mechanisms of Choice Bias
Our results show that attentional biases are approximately twice as large in the hidden
condition, and that this is accompanied by a change in fixation durations, a change
in the key attentional bias parameter 𝜃, and changes in other aDDM parameters.
In this section, we use out-of-sample simulations to investigate the extent to which
the attentional biases are driven by changes in the fixation process, changes in 𝜃, or
changes in non-attentional model parameters.

The simulations are shown in Fig. 1.7. We start the analysis by comparing the
observed and simulated attentional bias in the visible condition. To do this, we
simulate 10 datasets for every subject in the out-of-sample even trials, using the
empirical fixation patterns from the even trials and the aDDM parameters fitted in
the odd trials of the visible condition (see Methods for details). As shown in the top
panel, we find a good quantitative match between the observed and simulated data.

In row 2, we repeat the exercise by changing one component of the simulations at a
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Figure 1.6: Comparison of aDDM Parameter Estimates from Model with Uncor-
related Priors. Subject-level aDDM MAP parameter estimates in the visible and
hidden conditions, for both the exploratory and confirmatory datasets. Colored lines
denote 95% HDIs.

time. Panel b depicts data simulated using the fixations from the visible condition,
but using the values of 𝜃 fitted in the hidden trials. The panel shows that this change
by itself generates a good qualitative account of the increased attentional bias in
hidden trials.

Panel c depicts data simulated using the parameters fitted in the visible condition but
using the fixation process from the hidden condition (ΔFix.). To clarify, when we
use the fixation process from the hidden condition, we mean that we are sampling
properties of the fixation process (probability of first fixation to the left, latency to
first fixation, first fixation duration, middle fixation duration, saccadic duration) from
their empirical distributions across the hidden trials, separately for each subject. All
properties of the fixation process are independently sampled once per trial, except for
middle fixation durations and saccade durations, which are independently sampled
until the drift diffusion process terminates. We find that this change, by itself, has a
negligible impact on the attentional bias, and thus cannot account for observed data
in the hidden condition.
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Panel d depicts data simulated using the fixations from the visible condition, but
using the values of (𝑑, 𝜎, 𝑏) fitted in the hidden trials. Again, this change, by itself,
is unable to provide a good qualitative account of the increased attentional bias in
hidden trials.

Row 3 depicts simulations in which two of the components are changed at a time. In
panel e we use the 𝜃 parameters and the fixation process from the hidden condition,
but the value of the other parameters are taken from the visible condition. In panel
f we use the value of the other parameters (𝑑, 𝜎, 𝑏) and the fixation process from
the hidden condition, but the value of 𝜃 is taken from the visible condition.

Finally, the bottom row depicts a simulation in which all parameters as well as
fixations are taken from the hidden condition.

A comparison of these plots shows that the model can account for the large differ-
ences in attentional choice biases as long as the change in the 𝜃 parameter is taken
into account, but not otherwise. This shows that the impact on attentional biases
is driven mostly by an increase in the tendency to overweight the value of fixated
options.

One natural concern with this simulation analysis is that changes in the 𝜃 parameter
might be correlated with changes in fixation durations, across subjects. Fig. A.10
shows that this is not the case.

For completeness, Fig. A.11 and Table A.7 show that the estimated model parameters
are able to qualitatively account for the observed choice biases associated with net
fixation time and excess first fixation duration (in the visible condition) in the bottom
rows of Fig. 1.5. However, they are unable to account for the observed disappearance
of excess first fixation bias in the hidden condition.

1.4 Discussion
Our experiment was designed to study the impact of peripheral visual information
on the decision algorithm and its performance. Removing the nonfixated option has
little impact on the quality of average choices, although it slows down the choice
process by about 32% (or 520 ms). More importantly, we find that attentional choice
biases are approximately twice as large when the nonfixated option is not shown.

The conclusion about the relative magnitude of the attentional biases in the two
conditions is based on two different sets of analyses. A model free way of measuring
the size of the attentional bias, that does not depend on the assumption that the aDDM
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Figure 1.7: Mechanisms of Choice Bias. Probability of choosing the left item,
as a function of its relative value and last fixation location, in observed (blue,
red) and simulated (black) data. Each panel differs on the assumptions that were
used to simulate the data. (a) Simulated data for out-of-sample even trials use the
empirical fixation patterns and MAP parameters fitted in the visible condition. (b)
Simulated data now uses the 𝜃 MAP parameter fitted out-of-sample in the hidden
condition. (c) Simulated data uses the empirical fixation patterns from the hidden
condition (ΔFix.). (d) Simulated data uses the (𝑑, 𝜎, 𝑏) MAP parameters fitted from
the hidden condition. (e) Simulated data now uses the empirical fixation patterns
and the 𝜃 MAP parameter from the hidden condition. (f) Simulated data uses the
empirical fixation patterns and the (𝑑, 𝜎, 𝑏) MAP parameters fitted from the hidden
condition. (g) Simulated data now uses fixations and all parameters from the hidden
condition. The figures show that the simulations provide a good qualitative match
for the difference between the visible and hidden conditions when the attentional bias
parameter is modified, but not otherwise. The simulations include 10 observations
per trial, per subject.

is a good description of the data generating process (Mormann and Russo, 2021),
is to ask what is the probability of choosing the last fixated item when decisions
have equal value (Fig. 1.5, top row). In the absence of an attentional bias, both
items should be chosen with equal probability. In contrast, the last seen item is
2.5 times more likely than the other item to be chosen when all items are shown
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simultaneously, and 5 times more likely when nonfixated items are hidden. Another
way of measuring the attentional bias is based on the aDDM. In this model, the
value of nonfixated options at any given time is downweighted by a parameter 𝜃.
When 𝜃 = 1, there is no attentional bias. When 𝜃 < 1, there is an attentional bias in
favor of the fixated item, which is stronger for lower values of 𝜃. Our mean estimates
are 𝜃 = 0.52 when all items are shown and 𝜃 = 0.29 when nonfixated options are
hidden. In both cases, the results show that removing peripheral visual information
doubles the size of the attentional biases.

We find that middle fixations slow down by about 23% and first fixations slow down
about 46% in the hidden condition, independently of the stimuli’s value. There are
two natural hypotheses for this change. One hypothesis, based on bottom-up control
of the fixation process, is that the removal of peripheral stimuli changes the priority
map that controls fixation durations and locations (Itti and Koch, 2000; Towal,
Mormann, and Koch, 2013). This is consistent with findings from the visual search
literature, which have found that a decrease in the saliency of peripheral stimuli, of
which removal is an extreme case, increases fixation durations (Machner, Lencer,
et al., 2020), as well as with the finding that fixation durations increase in patients
with hemispatial neglect (Machner, Dorr, et al., 2012). An alternative hypothesis,
based on top-down control of the fixation process, is that fixations slow down to
accommodate the increased difficulty of generating value samples for the nonfixated
stimuli in the absence of peripheral visual information.

Beyond showing that attentional choice biases increase substantially when only
one item is shown at a time, our findings also provide some novel clues about the
mechanisms at work in simple choice.

First, we find that in the absence of peripheral stimuli the attentional bias parameter
(𝜃) is greater than zero on average, which means that the values of nonfixated items
are still being processed by some, even if they are underweighted. This suggests
that foveation facilitates the extraction of value samples, but that it is not necessary,
at least after the second fixation when the identity of both stimuli becomes known.
This also implies that covert attention is paid to the nonfixated item, at least after
the second fixation. In fact, one interpretation of our results is that removing the
nonfixated item reduces the amount of covert attention that it receives (see Carrasco
(2011) for an outstanding review of the role of covert visual attention).

Second, the estimated parameters in the visible condition, and specifically the atten-
tional bias parameter, are consistent with related literature. When fitting the aDDM
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to individuals in their dataset, Krajbich, Armel, and Rangel (2010) found that the
average value of attentional bias among subjects was 𝜃 = 0.52 ± 0.3, although their
best-fitting model had 𝜃 = 0.3. Our estimates of attentional bias in both condi-
tions are similar to the estimated influences of gaze on choice in Weilbächer and
co-authors’ study (Weilbächer et al., 2021) where all options were hidden and had
to be recalled from memory at the time of decision-making (attentional discounting
parameter: hidden mean = 0.12, visible mean = 0.42). Interestingly, our estimate
of 𝜃 in the hidden condition is larger than the one in the Weilbächer study, which
suggests that the attentional bias is stronger when all information about the choice
stimuli has to be recalled from memory (in their study) than when it is available
conditional on foveation (as in the hidden condition in this study).

Third, Bayesian models of information sampling in simple choice have proposed
that fixations matter because they control which value samples are obtained, and that
samples matter because they shift the value estimates from a common initial prior
to posteriors that are closer to the true value of each stimulus. As a result, the value
estimates of better-than-average items tend to increase with additional fixation time,
and the opposite is true for worse-than-average items (Armel, Beaumel, and Rangel,
2008; Callaway, Rangel, and Griffiths, 2021; Jang, Sharma, and Drugowitsch,
2021; Li and Ma, 2021). This Bayesian perspective could account for the increased
attentional bias when nonfixated items are hidden. Value samples must be taken in
parallel from both choice options, and either the rate of sampling must be slower, or
the sampled information must be noisier for the nonfixated item. These variations
should be even more exaggerated when nonfixated items are not present in peripheral
vision. Existing Bayesian models do not account for the former, though they do
account for the latter (Jang, Sharma, and Drugowitsch, 2021).

Finally, our results also have implications for the growing field of choice archi-
tecture, which seeks to understand how seemingly minor changes in the choice
environment affect decisions, and how to apply this information to help individuals
make better decisions (E. J. Johnson et al., 2012). We find substantially larger at-
tentional biases in settings where only one option is shown at a time—as is done on
many shopping websites—than in settings where all options are presented simulta-
neously, such as supermarket shelves. This suggests that individuals might be more
susceptible to marketing influences that attract attention (e.g., salient packaging or
point-of-sale ads) in the growing domain of e-commerce than in traditional retail
settings. Although our experiments only measure the effect of removing peripheral
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stimuli, similar issues could arise in contexts where choice options are described
sequentially using other sensory modalities (e.g., when a waiter describes the menu
specials). Extrapolating from our results, we also hypothesize that similar increases
in attentional biases could be induced simply by increasing the spatial separation
between stimuli, so that it becomes difficult to process nonfixated options using
peripheral vision. Consistent with this hypothesis, others have found that subjects
with a narrower spatial attention tend to exhibit larger attentional choice biases than
those with broader spatial attention (S. M. Smith and Krajbich, 2018).

Several aspects of our study might limit the generalizability of the findings. First,
our results are limited to the context of binary choice, whereas in many decision
contexts more than two options are available for selection. The impact of periph-
eral visual information on the choice process might depend on the complexity of
the environment. Second, based on previous work, we use food stimuli as a basis
for understanding attentional effects on value-based choices (Krajbich, Armel, and
Rangel, 2010; Krajbich and Rangel, 2011). However, it is possible that the quanti-
tative influence of peripheral information might depend on the nature of the stimuli
(e.g. lotteries, toys, concert tickets), especially if it differs on how easily it can be
processed in peripheral vision. Third, in the real-world, it may be more costly and
slower for consumers to switch between different options than it is in our simple
gaze-contingent paradigm. For instance, consumers may have to walk between two
different shelves at a super market or click through a list online, whereas in our
paradigm they simply need to fixate between two regions of interest. The impact of
such variables in choices needs further study.
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C h a p t e r 2

ATTENTION IN AVERSIVE CHOICE: EVIDENCE FOR
REFERENCE-DEPENDENT SEQUENTIAL SAMPLING

2.1 Introduction
Literature
Everyday, we make decisions about things that we want to consume or experience.
What do I want to eat for dinner? What product do I want to buy? What show do I
want to watch? Previous studies have established the existence of robust attentional
choice biases that nudge choices towards the attended option during these types of
decisions (S. M. Smith and Krajbich, 2018; Krajbich, Armel, and Rangel, 2010;
Krajbich and Rangel, 2011; Tavares, Perona, and Rangel, 2017).

Among these daily decisions, we also frequently encounter choices that we have
to make, but where the outcomes are not pleasant. Which bill should I pay off
first? Do I really need to repair my shaky car? Must I vote for one of these
candidates? In these aversive scenarios, it’s not clear whether attention still nudges
choices in the direction of the attended option. A goal of this paper is to establish a
clear relationship between choices, response times, and fixation patterns in aversive
choices.

Previous work has demonstrated that manipulating attention in favor of an option
biases choices towards that option (Tavares, Perona, and Rangel, 2017), and that
this effect reverses in aversive choices with forced fixations and fixed response times
(Armel, Beaumel, and Rangel, 2008). However, by forcing decision-makers into a
forced sequential presentation format, it’s possible that the authors altered the choice
process in a manner that encourages these attentional bias reversals. For instance,
it encourages separate evaluations of the options and discourages their comparison,
which is more likely to induce attentional choice bias reversals than an environment
with free response time (Eum, Dolbier, and Rangel, 2023; Basu and Savani, 2017;
Basu and Savani, 2019).

In this paper, we develop a variation of the Attentional Drift-Diffusion-Model (Kra-
jbich, Armel, and Rangel, 2010) called the Hybrid Attentional Drift-Diffusion-
Model to quantitatively explain the role of attention in aversive choice. The aDDM
and its variations provide a framework to investigate the role of attention during the
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decision-making process, while taking into consideration other factors like noise and
response caution (Krajbich, Armel, and Rangel, 2010; S. M. Smith and Krajbich,
2018). The attentional parameter in the aDDM yields a quantitative measurement
of the effect of attention on the decision process.

Previous estimates of the attentional parameter in the aDDM have shown that in-
dividuals discount the value of the nonfixated option during the value comparison
process (Krajbich, Armel, and Rangel, 2010; Krajbich and Rangel, 2011; Krajbich,
Lu, et al., 2012; S. M. Smith and Krajbich, 2018; S. M. Smith and Krajbich, 2019;
Tavares, Perona, and Rangel, 2017; Eum, Dolbier, and Rangel, 2023). Based on
these estimates (and assuming that participants are sampling the expected values of
the lotteries), we hypothesized that in simple aversive choices, attention to an option
would push choices towards the unattended option. This is because a discounted
negative value is actually larger than its original value, and therefore discounting
the nonfixated option would make it seem better than it actually is. See Fig. 2.1 for
an example. Behaviorally, this would imply that decision-makers should be (a) less
likely to choose the option they attended to longer and (b) less likely to choose the
option that they last fixated on.

We test these hypotheses in two studies involving simple, risky choices. In both
studies, participants made a series of binary choices between two lotteries, separated
into blocks based on 2 conditions: (a) a gain condition in which all lotteries had
weakly positive outcomes and (b) a loss condition in which all lotteries had weakly
negative outcomes. Study 1 represented lotteries with 100 colored dots in a circle
to represent probabilities over fixed outcomes, and study 2 presented information
about the lotteries numerically.

Previous studies have investigated the role of attention in risky choices. Most of
them only involved positive outcomes and have found that the lottery that received
more attention is more often selected (Fiedler and Glöckner, 2012; S. M. Smith and
Krajbich, 2018; Stewart, Hermens, and Matthews, 2016; Alsharawy et al., 2021),
echoing the predictions of the aDDM in choices between gains. However, contrary to
the predictions of the aDDM in losses, Brandstätter and Körner (2014) found a bias
towards the last fixated lottery, even if the last fixated outcome was negative. Pachur
et al. (2018) document a causal relationship between attention to loss outcomes and
loss aversion estimates from cumulative prospect theory (Tversky and Kahneman,
1992). Lejarraga et al. (2019) document increased attention to loss outcomes,
relative to gain outcomes, even in the absence of loss aversion. Taken together
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with the results from Pachur et al. (2018), this shows that increased attention to loss
outcomes is a necessary, but not sufficient, condition for exhibiting loss aversion in
risky choice.
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Figure 2.1: aDDM Examples. (Gain) With positive value signals and an attentional
parameter between (0, 1), the accumulator should be biased towards the fixated
option. (Loss) With negative value signals, the accumulator should be biased
towards the nonfixated option. Colored vertical bands illustrate fixation locations.

2.2 Methods
Participants
As a pre-commitment to high quality data, we filtered out participants at the data
collection stage if they were missing more than 10% of fixation data. Eye-tracking
data may fail to record if participants are squinting or excessively moving or blinking.
In study 2, we also filtered out participants who failed more than 25% of our sanity
check trials (see Tasks below).

A total of 160 participants were recruited from Caltech and the surrounding commu-
nity using flyers. We pre-screened participants against requiring glasses for vision
correction that might interfere with eye tracking. Ninety-one participants were
recruited to study 1, of which 19 were excluded for failing our participant filter,
leaving 72 participants (age: mean = 25 years, range = 18-41; gender: 26 male, 45
female, 1 non-binary; ethnicity: 27 Asian, 3 Black, 10 Hispanic, 3 Middle Eastern,
0 Native American, 28 White, 1 Abstain). The first 36 participants were allocated to
the exploratory sample, and the other 36 to the confirmatory sample (see Inference
Strategy below).

Sixty-nine participants were recruited to study 2, but 6 were excluded due to a
change in the instructions and 13 were excluded for failing the participant filter,
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leaving 50 participants (age: mean = 27.68 years, range = 18-55; gender: 13 male,
34 female, 3 non-binary; ethnicity: 17 Asian, 5 Black, 10 Hispanic, 1 Middle
Eastern, 1 Native American, 16 White, 0 Abstain). Participants were equally split
between the exploratory and confirmatory sample.

The number of participants and trials per participant were chosen based on related
studies that have shown that this sample size provides reliable estimates of the
parameters and effects of interest. All participants gave informed consent, and all
experiments were approved by Caltech’s Institutional Review Board.

Tasks
To investigate the role of attention in the aversive choice process, we ran two studies
involving binary risky choices (see Fig. 2.2). Both studies were split equally into
gain or loss conditions where participants either chose from positive- or negative-
outcome lotteries.

In study 1, participants began the trial with a forced fixation cross in the center of the
screen for 1 s. In the gain condition, participants were presented with two grey circles
on the left and right sides of the screen. Inside each circle were 100 green or white
dots. The number of white dots represented the probability of receiving nothing; the
number of green dots represented the probability of gaining $10. Participants were
given free response time to select the lottery they prefer with the arrow keys. After
selecting, they were given feedback about their choice for 1 s. In the loss condition,
trials were similar, except the green dots were replaced with red dots representing
the probability of losing $10. In all trials, the probability of winning or losing was
drawn from a uniform distribution over integers between 45 and 55.

Participants completed 400 trials, split into 2 blocks of 200 trials each. 1 block
was in the gain condition, the other in the loss condition, order counterbalanced.
After the experiment was over, participants drew a number between 1 and 200 out
of an urn. The lottery associated with this number in blocks 1 and 2 was played
out. Participants were paid a $40 show-up fee, and gains (losses) earned from the
experiment were added (deducted) to this amount.

One potential issue with presenting lotteries as perceptual stimuli is that participants
can easily switch between accumulating different types of evidence. For instance,
participants might compare the ratio of green to white dots in the gain condition,
but then switch to comparing the count of white dots in the loss condition. Both
strategies can arrive at the optimal solution, but would have different implications
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for the role of attention in the choice process. To check that this evidence switching
was not happening, we ran a second study with numerical representations of the
lotteries.

In study 2, participants began the trial by fixating for 1 s on a fixation cross that
can appear on the left, middle, or right side of the screen. In the gain condition,
participants were presented with two lotteries in green. Lotteries comprised a
positive outcome and probability 𝑝 of earning that outcome, with an implicit $0
outcome with probability 1 − 𝑝. Absolute outcomes were bounded between [$6,
$12], and absolute differences in expected value of the lotteries were bounded
between $0 and $4. Lottery outcomes and probabilities were designed in a way to
prevent stochastic dominance of a choice. For instance, if lottery A had a better
outcome than lottery B, then its probability was strictly bounded above by the
probability in lottery B. Thus, choices were always between a higher amount with
lower probability and a lower amount with higher probability. Participants indicated
their choices using the arrow keys and were free to respond at their own pace. Upon
selecting an option, feedback about the selected option was presented for 1 s.

Participants completed 340 trials, split into 4 blocks of 85 trials each. Two blocks
were in the gain condition, and the others in the loss condition, with order counter-
balanced. After the experiment was over, participants drew two numbers between
1 and 170 out of an urn, the first for a lottery in block 1 and the second for a lottery
in block 2. The lotteries were played out, and participants were paid a $40 show-up
fee, plus (or minus) the gains (losses) earned from the experiment.

Four random trials per block were sanity check trials where there was clearly an
option with higher expected value. In the gain condition, the options were (a) $10
with 𝑝 = 1 or (b) $0 with 𝑝 = 1. In the loss condition, (a) $0 with 𝑝 = 1 or (b) -$10
with 𝑝 = 1. If participants chose (b) on one of these trials, we counted it as one
failed sanity check.

The 81 remaining trials that were not sanity checks were equally split into 3 atten-
tional manipulation conditions, where the fixation cross was positioned on the left,
center, or right side of the screen to manipulate where participants first fixated.

Eye-Tracking
Eye-tracking data was collected using an Eyelink 1000 sampling at 500 Hz. partici-
pants were instructed to sit approximately 60 cm from a 1920 × 1080 pixel monitor.
Study 1 was coded in Psychtoolbox (Kleiner et al., 2007) and used lottery stimuli
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Figure 2.2: Tasks. Trials begin with a forced fixation cross for 1 s. In study 1, the
fixation cross is fixed in the center; but in study 2, it varies evenly between the left,
center, and right side of the screen. Participants then make a binary choice between
two lotteries on the left and right. In the gain condition, the lotteries have weakly
positive outcomes. In the loss condition, they have weakly negative outcomes.
During this phase, participants have free response time as we record the location
of their gaze. After the choice, feedback about the chosen option is presented for
1 s. In study 1, each lottery is presented as 100 dots in a grey circle. Green dots
represent the probability of gaining $10, white dots represent the probability of $0,
and red dots represent the probability of -$10. The number of green or red dots is
drawn uniformly from 𝑝 ∈ {45, ..., 55}, and the number of white dots is 100 − 𝑝.
In study 2, information about each lottery is presented in numerical format, with
differences in expected value (Δ𝐸 [𝑉𝑖]) bounded between [−$4, $4].

and ROIs that were 300 × 300 pixels. Study 2 was coded in PsychoPy (Peirce et al.,
2019) with text height set to 108 pixels and ROIs set to 384 × 432 pixels. For study
2, we had to use recorded response times to make a slight correction to last fixations
(typically around 5 ms) due to a short lag in “stop recording” communication from
PsychoPy to Eyelink. Fixations to the left ROI (lottery stimulus) were classified as
“left”, those to the right as “right”, and outside the two ROIs as “blank”. Sometimes,
a sequence of blank fixations would occur between two fixations of the same type
(e.g. right-blank-blank-right). These were re-coded as fixations of the same type
(e.g. right-right-right-right) since these types of fixation sequences are typically due
to eye-tracker noise or blinking and tend to be short. If a sequence of blank fixations
was recorded between different types of fixations (e.g. left-blank-blank-right), then
they were coded as a saccade period between fixations.

Inference Strategy
As an alternative to pre-registration, we instead collect two separate datasets. The
first (exploratory) dataset is used to explore the data and pin down our analyses. We
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then attempt to replicate the results from our exploratory dataset in the second (con-
firmatory) dataset. In the spirit of meta-analysis, if the results from the exploratory
and confirmatory datasets are similar, we also provide results on the pooled sample
and describe summary statistics in terms of the pooled estimates.

Computational Model
We develop a variation of the Attentional Drift-Diffusion-Model (“aDDM”) by
Krajbich, Armel, and Rangel (2010), which we call the Hybrid aDDM. Like the
aDDM, value sampling is still affected by the location of one’s gaze. However, the
role of attention in the hybrid model is split into two parts.

In the Hybrid aDDM, decision-makers integrate noisy value signals into an accu-
mulator that evolves over time, 𝑅𝐷𝑉 𝑡 . The accumulator initializes at 0, 𝑅𝐷𝑉0 = 0,
ignoring any biases towards choosing options presented on the left or right sides of
the screen. Once 𝑅𝐷𝑉 𝑡 crosses one of two pre-specified boundaries (±1), a choice
is made based on the identity of the boundary. Hitting the upper boundary indicates
a choice for the left option. Hitting the lower boundary indicates a choice for right.
The evolution of this accumulator looks like the following diffusion process:

𝑅𝐷𝑉 𝑡 = 𝑅𝐷𝑉 𝑡−1 + 𝜇𝑡 + 𝜖𝑡 (2.1)

where 𝜖𝑡 is i.i.d. white Gaussian noise with variance 𝜎2. At every point in time, the
evidence in the diffusion process depends on the location of the decision-maker’s
gaze and is given by:

𝜇𝑡 :=


𝑑 [ 𝑓 (𝑉𝐿) − 𝜃 𝑓 (𝑉𝑅)] + 𝜂 if looking left at time 𝑡

𝑑 [𝜃 𝑓 (𝑉𝐿) − 𝑓 (𝑉𝑅)] − 𝜂 if looking right at time 𝑡

0 otherwise

(2.2)

where 𝑑 is the drift rate parameter controlling the speed of integration, and 𝑓 (𝑉𝑖) is
a function of the value of option 𝑖 ∈ {𝐿, 𝑅}. 𝜃 ∈ [0, 1] is an attentional discounting
parameter that discounts the value of the nonfixated option. It captures the value-
dependent role of attention in the choice process, and its effect on the choice process
scales with the magnitude of the values. 𝜂 ≥ 0 is an attentional parameter that
introduces a value-independent effect of attention. It nudges the accumulator at a
constant rate towards the attended option, regardless of that option’s value.
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Importantly, the Hybrid aDDM takes fixations as exogenous to the model and is
therefore agnostic to modeling the fixation process, though variations of the aDDM
with endogenous fixations do exist (Gluth et al., 2020; Towal, Mormann, and Koch,
2013).

In addition to combining an additive and multiplicative effect of attention, the
Hybrid aDDM also focuses on the functional form of the value signals. The value
of a lottery option is the expected value over its reference-dependent outcomes:

𝑓 (𝑉𝑖) = 𝐸 [𝑉𝑖 |𝑟] = 𝑝𝑖 (𝑢𝑖 − 𝑟) (2.3)

where 𝑖 ∈ {𝐿, 𝑅}, 𝑝𝑖 is the probability of non-zero outcome 𝑢𝑖, and 𝑟 is a reference-
point selected according to a reference-point rule.

Due to its flexibility with value encoding and the role of attention, the Hybrid aDDM
nests multiple variations of the Drift-Diffusion-Model (“DDM”). First, we consider
the case when the reference-point rule is Status Quo, 𝑟 = 0. If 𝜃 = 1 and 𝜂 = 0,
the model reduces to the standard DDM (Gold and Shadlen, 2007; Ratcliff and
McKoon, 2008). If 𝜃 < 1 and 𝜂 = 0, the model reduces to the standard aDDM
(Krajbich, Armel, and Rangel, 2010; Krajbich, Lu, et al., 2012). And if 𝜃 = 1 and
𝜂 > 0, the model reduces to the additive model of attention (Cavanagh et al., 2014;
S. M. Smith and Krajbich, 2019).

Next, we consider cases when the reference-point rule differs from Status Quo. If
𝜃 ≤ 1, 𝜂 = 0, and the reference-point rule is 𝑟 = 2𝑢𝑖 − max(𝑢), then the model
reduces to the goal-relevant aDDM when selecting the most disliked item from
a set (Sepulveda et al., 2020). The model is also capable of incorporating other
reference-point rules (see Baillon, Bleichrodt, and Spinu (2020) and O’Donoghue
and Sprenger (2018)).

For the purposes of this paper, we would like to highlight two nested models in
the Hybrid aDDM. The first, which we’ve already discussed above, is the additive
model of attention (“AddDDM”). Note that if 𝜃 = 1, any translation of the value
function will result in the same value difference. Therefore the AddDDM is agnostic
to any reference-point rule that applies the same translation to the outcomes of
the lotteries. The second nested model we’d like to highlight is one we call the
Reference-Dependent aDDM (“RaDDM”). This is the case when 𝜃 ≤ 1, 𝜂 = 0, and
a non-Status-Quo reference-point rule is applied. To hint at our results, the reference-
point rule we select sets the reference-point equal to the minimum possible outcome
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in a block, 𝑟 = min(𝑢 |block). Note that participants do not know this value at the
start of a block, which affects the quality of our model fitting. See Results for details.

Hybrid aDDM Fitting
We split our data into training and out-of-sample data. If the trial number was
a multiple of 10, then it was allocated to the out-of-sample data. All remaining
trails were allocated to the training data. We fit the aDDM to the training sample
using the ADDM Toolbox in Julia (Enkavi et al., 2024). The toolbox utilizes the
same forward Euler estimation process as the aDDM Toolbox in Python (Tavares,
Perona, and Rangel, 2017), but introduces very useful features like custom likelihood
functions, discrete marginal posterior distributions for parameters, and Bayesian
model comparison. It also significantly reduces computation time compared to
the toolbox in Python. More details can be found at https://addm-toolbox.
github.io/dev/.

Because evidence in the model varies moment-to-moment, the likelihood function
does not have a closed-form solution, and instead needs to be numerically approx-
imated. The algorithm used in this paper discretizes both the time space (𝑑𝑡 = 10
ms) and the accumulator state space (𝑑𝑥 = 0.01), allowing it to efficiently calculate
the probability of crossing a decision boundary at every time-step. While the algo-
rithm allows for gradient approaches to estimation, it is best suited for grid search
in order to properly use the model comparison features. In this paper, we utilize
grid search for parameter estimation. A set of estimates is pulled from a space of
all parameter combinations and a likelihood is numerically approximated for that
set using the algorithm described above. The grid covers the space of all reasonable
parameter values with fine step sizes (see Fig. B.1). Boundaries were fixed to ±1
and non-decision time was fixed to 100 ms. The algorithm yields point-estimates for
parameters of the aDDM in a fraction of the time previously required, without rely-
ing on approximations of the accumulation process (Thomas et al., 2019; Lombardi
and Hare, 2021; S. M. Smith, Krajbich, and Webb, 2019).

Out-of-Sample Simulations
We compare out-of-sample data with simulated behavior from the aDDM, fit to the
training data. We simulated 10 datasets for every participant and condition, using
the same lotteries encountered during the experiment. Each trial was simulated as
follows. Fixation durations statistics were sampled from their empirical distributions
in the out-of-sample data, conditional on the gain or loss condition. For example,
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in a loss condition trial, 𝑅𝐷𝑉 was initialized at 0, then evolved only according to
the noise up to the duration of the sampled latency to first fixation. Afterwards, a
maximum first fixation duration and location was sampled from the loss condition,
and 𝑅𝐷𝑉 evolved according to the drift, noise, and attentional bias estimates. If a
decision boundary was crossed before the maximum duration was reached, then the
process was terminated and the choice and RT were recorded. Otherwise, a saccade
and middle fixation duration were sampled from their empirical distributions, and
the process would repeat until a decision boundary was crossed. We assume the
value of the nonfixated option is known during the first fixation, which is unrealistic
and reduces the quality of our model fits.

Mixed Effects Regressions
All regressions reported in the paper are based on mixed effects regressions. Re-
gressions were implemented in R version 4.3.1 (R Core Team, 2023) using the lme4
package (Bates et al., 2015) with a quadratic approximation optimizer (“BOBYQA”)
and maximum iterations set to 2𝑒5 where necessary.

The code package and data for this paper can be found at rnl.caltech.edu.

2.3 Results
Basic Psychometrics
The top row of Fig. 2.3 depicts a psychometric curve, separately for each experi-
mental condition (color), study (line type), and dataset (column). Table B.1 contains
associated statistical analysis. Choices were more sensitive to relative expected value
(Δ𝐸 [𝑉]) in study 2 than in study 1. This is likely due to the narrow range of 𝐸 [𝑉]
differences in study 1 (Δ𝐸 [𝑉] ∈ [−1, 1]) compared to study 2 (Δ𝐸 [𝑉] ∈ [−4, 4]).
We found a small but significant increase in choice sensitivity to Δ𝐸 [𝑉] in the loss
condition in study 1, but this disappears in study 2.

The middle row of Fig. 2.3 depicts response time (“RT”) as a function of normalized
choice difficulty. In both studies, as in previous literature, we replicated increasing
RTs in choice difficulty. In study 1, RTs were not significantly different in the loss
condition, regardless of choice difficulty. In study 2, RTs were on average 0.7 s
slower in the loss condition. This difference shrinks at a small but significant rate
as choices become easier. We believe the slower RTs in the study 2 loss condition
were partially driven by the difficulty of considering an implicit $0 outcome with a
loss lottery, which many participants self-reported after the experiment concluded.
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The bottom row of Fig. 2.3 depicts the number of fixations as a function of choice
difficulty. As with RTs, the number of fixations did not significantly differ by
condition in study 1, while they increased by roughly 0.6 on average in the loss
condition in study 2.

Overall, there was a negligible difference in the quality of choices between conditions
in both studies. RTs did not significantly differ between conditions in study 1, but
they were significantly slower in the loss condition in study 2.

For results regarding the attentional manipulation in study 2, please refer to Appendix
II.
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Figure 2.3: Basic Psychometrics. The top row depicts the probability of choosing
the left item as a function of the normalized expected value difference between
the left and right lotteries (“relative value”). Differences in expected values were
normalized by dividing by the maximum magnitude of the difference. The middle
row depicts response time as a function of normalized choice difficulty, measured
by the expected value difference between the best and worst lottery then divided by
the maximum magnitude of the difference. The bottom row depicts the number of
fixations as a function of normalized choice difficulty. Columns indicate which data
set generated the figures. Error bars show the standard error of the mean across
participants.
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Fixation Process
Fig. 2.4 and Table B.2 explore how the fixation process differs between the gain and
loss condition in studies 1 and 2.

The first row of Fig. 2.4 depicts the probability of first fixating on the best lottery as
a function of choice difficulty. In both conditions in both studies, this probability re-
mained at chance regardless of choice difficulty, suggesting proper counterbalancing
of the location of stimuli.

The second row of Fig. 2.4 depicts mean fixation durations in the gain and loss
conditions in both studies, separately for first, middle, and last fixations. In study
1, there were no significant differences across conditions in mean fixation duration
for any fixation type (First, Gain-Loss: 𝑝 = 0.29; Middle, Gain-Loss: 𝑝 = 0.75;
Last, Gain-Loss: 𝑝 = 0.66). But across all fixation types in study 2, fixations in the
loss condition were slightly longer (First, Gain-Loss: 𝑝 = 0.02; Middle, Gain-Loss:
𝑝 = .01; Last, Gain-Loss: 𝑝 < 0.001), though only by 30 to 50 ms on average (i.e.
less than half a typical blink).

The third row of Fig. 2.4 depicts mean middle fixation duration as a function of
choice difficulty. In both studies, middle fixation durations were not significantly
sensitive to condition and slightly increased in choice difficulty.

The fourth row of Fig. 2.4 depicts mean first fixation duration as a function of the
normalized expected value of the first option. In both studies, first fixation durations
were not sensitive to the expected value of the first fixated lottery.

The fifth row of Fig. 2.4 depicts net fixation duration to the left lottery as a function of
Δ𝐸 [𝑉]. In both studies, the relationship exhibits a significant positive relationship.
In study 1, participants tended to look right a bit more in the loss condition compared
to the gain condition, but this pattern did not persist in study 2. When lotteries had
equal expected value, they were fixated about the same amount in study 1, but the
right-side lottery received significantly more attention in study 2.

This right-side attentional favoritism occurred because participants most frequently
utilized 2 fixations when the fixation cross started left, whereas they most frequently
utilized 3 fixations when the fixation cross started right (see Fig. B.2 and its associ-
ated Table B.3). This phenomenon is not explained by Bayesian models of attention
allocation.

Overall, there are small (but still significant) differences in fixation patterns between
the gain and loss conditions in both studies. While there is significant attentional
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favoritism towards the right side option in study 2, we do not see this reflected as
a choice bias in the first row of Fig. 2.3, hinting that attention might be playing
a smaller role in our risky choices compared to previously studied choices (S. M.
Smith and Krajbich, 2018; Tavares, Perona, and Rangel, 2017).

Attentional Choice Biases
Fig. 2.5 and Table B.4 present attentional choice biases across conditions and studies.
The goal here is to characterize how attention affects our choices in the loss domain
by comparing these attentional biases across gains and losses.

The top row of Fig. 2.5 and Table B.4 depicts the corrected probability of choosing
the left lottery as a function of the net fixation to the left lottery (“net fixation
bias”). We corrected the probability by subtracting from each choice observation
(1=left, 0=right) the proportion with which left was chosen at each Δ𝐸 [𝑉]. Note
that in the absence of an attentional bias, this relationship should be flat. Instead,
we find evidence of net fixation bias in the gain condition, consistent with previous
literature. However, we predicted a reversal of this bias in the loss condition based
on predictions of the aDDM (see Fig. B.3 row 1). Surprisingly, in both studies, we
found no evidence of a reversal! In fact, the magnitude and direction of net fixation
bias was identical across conditions.

In the bottom row of Fig. 2.5, we plot the probability of choosing the last fixated
lottery as a function of the relative expected value of the last fixated lottery (“last
fixation bias”). Note that in the absence of an attentional bias, the probability of
choosing the last fixated lottery should cross 50% when the relative value of the last
fixated lottery is 0. Replicating previous studies, we find evidence of last fixation
bias in the gain condition. But once again, we do not observe a reversal of this bias
in the loss condition as hypothesized.

Overall, we found identical patterns of net fixation and last fixation bias in the gain
and loss conditions. This was surprising for us, given the results of previous studies
and the fact that the aDDM predicts attentional choice bias reversals in the loss
condition.

Model Selection
We have two goals in this section. The first is to determine what variations of the
aDDM are capable of predicting the lack of attentional choice bias reversals seen in
Fig. 2.5. The second is to determine if there is a reference-point rule that allows the
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Figure 2.4: Fixation Process. The first row depicts the probability of first fixating
on the best lottery as a function of normalized choice difficulty. The best lottery is
determined by expected value, ignoring risk preferences. The second row depicts
fixation durations as a function of fixation type. The third row depicts middle
fixation durations as a function of normalized choice difficulty. The fourth row
depicts first fixation durations as a function of normalized expected value of the
first fixated option. The fifth row depicts net fixation duration to the left lottery as
a function of its normalized relative expected value. Columns indicate which data
set generated the figures. Error bars show the standard error of the mean across
participants.
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Figure 2.5: Attentional Choice Biases. The top row depicts the corrected probability
of choosing the left lottery as a function of the net fixation to the left lottery. The
corrected probability is computed by subtracting from each choice observation
(1=left, 0=right) the proportion of which left is chosen at each relative value. The
bottom row depicts the probability of choosing the last fixated lottery as a function of
the normalized relative expected value of the last fixated lottery. Columns indicate
which data set generated the figures. Error bars show the standard error of the mean
across participants.

Hybrid aDDM or RaDDM to also make these predictions.

Having identical attentional choice biases in the gain and loss condition suggests that
attention is pulling choices towards the attended option, regardless of the sign of its
value. This immediately hints at a value-independent role of attention in the choice
process that favors the attended option, like in the AddDDM. In row 4 of Fig. B.3,
we simulate behavior using the AddDDM and find that it is capable of predicting
identical attentional choice biases across our conditions. Other explanations, like
(a) selecting the opposite of the predicted choice or (b) accumulating over absolute
values and selecting the opposite of the predicted choice, are incapable of this (see
Fig. B.3 rows 2 and 3).

An alternative explanation is that participants are range normalizing values before
integrating them to make a decision (Rangel and Clithero, 2012; Frydman and Jin,
2021). This would transform negative value signals to positive signals. However,
the DDM and its variations are not identifiable with range normalized value signals.
Since the range in the denominators of the value signals can be factored into the drift
rate, a DDM with range normalized value signals will generate the same likelihood
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as a DDM with reference-dependent value signals, where the reference-point is
equal to the minimum value. For our purposes, we limit our estimation to the
latter case, where the reference-point rule sets the reference-point to the minimum
possible outcome in a given block of trials (“Minimum-Outcome Rule”). With this
reference-point rule, both the Hybrid aDDM and its nested RaDDM can predict our
observed attentional choice biases (see Fig. B.3 rows 5 and 6).

This leaves us with three potential explanations of our data: (1. AddDDM) attention
nudges choices towards the attended option, regardless of value; (2. RaDDM)
attention reweights the reference-dependent value signals during the comparison
process; (3. Hybrid) or both. Before fitting the models and doing model comparison,
there is one more test we can run to distinguish explanation (1. AddDDM) from (2.
RaDDM) and (3. Hybrid).

Previous studies have recorded a negative relationship between overall value (𝑉𝐿 +
𝑉𝑅) and RTs (S. M. Smith and Krajbich, 2019; Shevlin et al., 2022). In choices
between gains, this relationship is consistent with the aDDM because of the value-
dependent role of attentional discounting. For example, without loss of generality,
suppose 𝑑 = 1. Then the AddDDM would predict the same RT distribution for
𝑉𝐿 = 𝑉𝑅 = 1 as it would for𝑉𝐿 = 𝑉𝑅 = 10, since RT is only dependent on the size of
𝜂 and (𝑉𝐿 − 𝑉𝑅). However, with attentional discounting, evidence will accumulate
faster when 𝑉𝐿 = 𝑉𝑅 = 10 compared to when 𝑉𝐿 = 𝑉𝑅 = 1, since the value of the
non-fixated option is multiplied by 𝜃 ∈ (0, 1) during the value comparison process.

We can apply this same logic to choices between losses. If attentional effects are
value-independent like in the AddDDM, then RTs and overall value should not
show any correlation. If attentional effects are value-dependent and participants
are using the Status Quo reference-point rule like in the aDDM, then RTs will be
decreasing as values move further away from 0 (i.e. RTs should be increasing in
overall value). However, if attentional effects are value-dependent and participants
are using a reference-point rule that sets the reference-point to less than or equal
to the minimum value in a condition (like in the Hybrid aDDM and RaDDM),
then RTs in aversive choices will be decreasing in overall value. Therefore, in
aversive choices, the sign of the relationship between RTs and overall value serves
as a distinguishing test between (a) the AddDDM and (b) the Hybrid aDDM and
RaDDM. In order to look for a negative relationship between RT and overall value,
we run the following regression with mixed effects, separately for gains and losses:
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𝑙𝑜𝑔(𝑅𝑇) ∼ 𝛽0 + 𝛽1

���� 𝑉𝐿 −𝑉𝑅

max( |𝑉𝐿 −𝑉𝑅 |)

���� + 𝛽2

(
𝑉𝐿 +𝑉𝑅

max( |𝑉𝐿 +𝑉𝑅 |)

)
(2.4)

and test if 𝛽2 < 0. This is the same test used by S. M. Smith and Krajbich (2019),
except with normalized value difference and overall value.

In Table B.5, we simulate data using the AddDDM, RaDDM, and Hybrid aDDM,
then run the regression test from Eq. 2.4. Just like in gains, the AddDDM does not
predict a relationship between RT and overall value in losses. However, both the
Hybrid aDDM and RaDDM with the Minimum-Outcome Rule predict a negative
relationship in both gains and losses.

Table 2.1 repeats this regression test in our data, separately for each study and
condition. For both studies, we find a significant, negative relationship between
RT and overall value in the loss condition. This evidence suggests that participants
are integrating over reference-dependent value signals during the value comparison
process. We also replicate the negative relationship between RTs and overall value
in the study 1 gain condition, but this relationship is not significant in the study 2
gain condition. This suggests that participants may be using a reference point set
to $0 for outcomes in the gain condition, which is also the minimum possible value
in those blocks. For a visual representation of the RT-overall value relationship in
our data, see Fig. B.4. For replications of additional tests from S. M. Smith and
Krajbich (2019), see Fig. B.5.

Loss Condition
Exploratory Confirmatory Joint

Dept. Var. Indept. Var. Est. SE Est. SE Est. SE
Study 1 𝛽0 Intercept 0.36 0.16 * 0.62 0.15 * 0.50 0.11 *
𝑙𝑜𝑔(𝑅𝑇) 𝛽1 N. Abs. Net Value -0.21 0.03 * -0.29 0.04 * -0.24 0.02 *
(Linear) 𝛽2 N. Overall Value -0.41 0.14 * -0.37 0.17 * -0.39 0.11 *
Study 2 𝛽0 Intercept 0.78 0.10 * 0.94 0.10 * 0.86 0.07 *
𝑙𝑜𝑔(𝑅𝑇) 𝛽1 N. Abs. Net Value -0.55 0.04 * -0.56 0.05 * -0.59 0.04 *
(Linear) 𝛽2 N. Overall Value -0.37 0.06 * -0.25 0.08 * -0.32 0.05 *

Gain Condition
Study 1 𝛽0 Intercept 1.24 0.17 * 1.09 0.19 * 1.17 0.12 *
𝑙𝑜𝑔(𝑅𝑇) 𝛽1 N. Abs. Net Value -0.24 0.03 * -0.34 0.05 * -0.29 0.03 *
(Linear) 𝛽2 N. Overall Value -0.53 0.16 * -0.18 0.15 -0.36 0.11 *
Study 2 𝛽0 Intercept 0.85 0.06 * 0.89 0.10 * 0.87 0.06 *
𝑙𝑜𝑔(𝑅𝑇) 𝛽1 N. Abs. Net Value -0.46 0.05 * -0.48 0.05 * -0.49 0.04 *
(Linear) 𝛽2 N. Overall Value -0.06 0.05 -0.02 0.05 -0.04 0.04
* indicates significance in all data sets at the 95% confidence level.
* indicates a significant effect that was not present in all three data sets.
“N.”: Normalized. “Abs.”: Absolute.

Table 2.1: Model Comparison Regression Test
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We then fit the Hybrid aDDM separately for each participant in a study-condition,
using the parameter grid specified in Fig. B.1. This allows us to calculate the pos-
terior model probabilities (“PMP”) of the Hybrid aDDM, RaDDM, and AddDDM,
where the PMPs sum to 1 for each participant in a study-condition. In Fig. 2.6,
we compare the PMPs of all three models across individuals using a probability
simplex. We plot the PMP of the RaDDM as a function of the PMP of the Hybrid
aDDM. Note that the PMP of the AddDDM is equivalent to 1 minus the sum of the
PMPs of the other models. This means that points close to the upper left corner of
the triangle favor the RaDDM, points close to the lower right corner favor the Hybrid
aDDM, and points close to the lower left corner favor the AddDDM. Consistent with
our regression test results, we find that most participants are best-fit by the Hybrid
aDDM in study 1, and that most participants are best-fit by either the Hybrid aDDM
or RaDDM in study 2. The Hybrid aDDM is the most favored in the study 2 gain
condition. Fig. B.6 shows these plots for the exploratory and confirmatory datasets.

Based on the results from our regression test and posterior model probability com-
parison, we posit that the risky choice process in gains and losses is best explained
by the Hybrid aDDM. In the next section, we discuss model-based results using this
model.

Hybrid aDDM
Fig. 2.7 presents the maximum a posteriori (MAP) estimates from the Hybrid aDDM.
For each participant, we plot their estimate of (𝑑, 𝜎, 𝜃, 𝜂) in the loss condition as
a function of their respective estimate in the gain condition. On average, in study
1, 𝜂1,𝐺 = 𝜂1,𝐿 = 0.003, and in study 2, 𝜂2,𝐺 = 𝜂2,𝐿 = 0.002. This suggests that
attention has a value-independent role in the choice process. We also find that
in study 1, 𝜃1,𝐺 = 𝜃1,𝐿 = 0.90, and in study 2, 𝜃2,𝐺 = 0.86 and 𝜃2,𝐿 = 0.91.
Taken all together, these results suggest that attention plays two roles in the choice
process, split between a value-dependent effect and a value-independent effect.
Because of the Minimum-Outcome reference-point rule, both of these effects nudge
choices towards the attended option. These effects did not significantly differ
across conditions in either study (𝜃1,𝐺 − 𝜃1,𝐿 = −0.001, Cohen’s d = −0.006,
𝑡 (71) = −0.04, 𝑝 = 0.97; 𝜃2,𝐺 − 𝜃2,𝐿 = −0.053, Cohen’s d = −0.38, 𝑡 (49) = −1.84,
𝑝 = 0.07; 𝜂1,𝐺 − 𝜂1,𝐿 = −8𝑒 − 5, Cohen’s d = −0.03, 𝑡 (71) = −0.26, 𝑝 = 0.79;
𝜂2,𝐺 − 𝜂2,𝐿 = −0.0001, Cohen’s d = −0.07, 𝑡 (49) = −0.39, 𝑝 = 0.70).

Figs. B.7 and B.8 present the MAP estimates across participants for the RaDDM
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Figure 2.6: Model Comparison Between RaDDM, HybridaDDM, and AddDDM,
Plotted as a Probability Simplex. For each participant, the posterior model probabil-
ity of the RaDDM is plotted as a function of the posterior model probability of the
HybridaDDM. The posterior model probability of the AddDDM for each individual
is equal to 1 minus the sum of their posterior model probabilities for the RaDDM
and HybridaDDM. Points closer to the origin indicate participants that were best-fit
by the AddDDM, points closer to the top-left indicate participants that were best-fit
by the RaDDM, and points closer to the bottom-right indicate participants that were
best-fit by the HybridaDDM. Blue lines connect participants across conditions to
visualize consistency of each participant’s best-fitting model.

and AddDDM. Compared to estimates from the RaDDM and AddDDM, the Hybrid
aDDM estimates 𝜃 closer to 1 and 𝜂 closer to 0, suggesting lower levels of attentional
bias from each of these sources (𝜃𝐻𝑦𝑏𝑟𝑖𝑑

1,𝐺 − 𝜃𝑅𝑎𝐷𝐷𝑀
1,𝐺 = 0.09, Cohen’s d = 0.72,

𝑡 (71) = 9.29, 𝑝 = 7𝑒 − 14; 𝜃𝐻𝑦𝑏𝑟𝑖𝑑

1,𝐿 − 𝜃𝑅𝑎𝐷𝐷𝑀
1,𝐿 = 0.09, Cohen’s d = 0.73, 𝑡 (71) =

9.04, 𝑝 = 2𝑒 − 13; 𝜃
𝐻𝑦𝑏𝑟𝑖𝑑

2,𝐺 − 𝜃𝑅𝑎𝐷𝐷𝑀
2,𝐺 = 0.14, Cohen’s d = 0.94, 𝑡 (49) = 7.54,

𝑝 = 1𝑒 − 9; 𝜃𝐻𝑦𝑏𝑟𝑖𝑑

2,𝐿 − 𝜃𝑅𝑎𝐷𝐷𝑀
2,𝐿 = 0.08, Cohen’s d = 0.46, 𝑡 (49) = 5.86, 𝑝 = 4𝑒 − 7;

𝜂
𝐻𝑦𝑏𝑟𝑖𝑑

1,𝐺 − 𝜂𝐴𝑑𝑑𝐷𝐷𝑀
1,𝐺 = −0.003, Cohen’s d = −0.85, 𝑡 (71) = −9.07, 𝑝 = 2𝑒 − 13;

𝜂
𝐻𝑦𝑏𝑟𝑖𝑑

1,𝐿 − 𝜂𝐴𝑑𝑑𝐷𝐷𝑀
1,𝐿 = −0.002, Cohen’s d = −0.85, 𝑡 (71) = −11.08, 𝑝 < 2𝑒 − 16;

𝜂
𝐻𝑦𝑏𝑟𝑖𝑑

2,𝐺 − 𝜂𝐴𝑑𝑑𝐷𝐷𝑀
2,𝐺 = −0.001, Cohen’s d = −0.67, 𝑡 (71) = −5.32, 𝑝 = 3𝑒 − 6;

𝜂
𝐻𝑦𝑏𝑟𝑖𝑑

2,𝐿 − 𝜂𝐴𝑑𝑑𝐷𝐷𝑀
2,𝐿 = −0.0009, Cohen’s d = −0.40, 𝑡 (71) = −5.03, 𝑝 = 7𝑒 − 6).

This makes sense because the role of attention in the Hybrid aDDM is split, and
both effects are nudging choices towards the attended option. In the RaDDM and
AddDDM, these split effects are captured by a single attentional parameter, either
𝜃 or 𝜂, and therefore must be overestimated to account for both effects. In Fig.
B.9, we show that estimates of 𝜃 from the RaDDM and 𝜂 from the AddDDM are
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significantly correlated across participants.

We did not observe differences in drift rates or noise across conditions, except
for a small difference in drift rate in study 2 (𝑑1,𝐺 = 0.006 vs. 𝑑1,𝐿 = 0.006,
𝑑1,𝐺 − 𝑑1,𝐿 = 0.0001, Cohen’s d = 0.04, 𝑡 (71) = 0.34, 𝑝 = 0.74; 𝑑2,𝐺 = 0.003 vs.
𝑑2,𝐿 = 0.002, 𝑑2,𝐺 − 𝑑2,𝐿 = 0.0006, Cohen’s d = 0.52, 𝑡 (49) = 3.78, 𝑝 = 4𝑒 − 4;
𝜎1,𝐺 = 0.06 vs. 𝜎1,𝐿 = 0.06, 𝜎1,𝐺 − 𝜎1,𝐿 = 0.002, Cohen’s d = 0.13, 𝑡 (71) = 1.73,
𝑝 = 0.09; 𝜎2,𝐺 = 0.05 vs. 𝜎2,𝐿 = 0.05, 𝜎2,𝐺 − 𝜎2,𝐿 = 0.002, Cohen’s d = 0.16,
𝑡 (49) = 1.50, 𝑝 = 0.14). This is consistent with slower RTs found in study 2’s loss
condition compared to the gain condition.

Parameter recovery exercises for the Hybrid aDDM are presented in Fig. B.10 and
suggest that it is capable of successfully recovering (𝑑, 𝜎, 𝜃), while maintaining a
positive correlation between estimated and true 𝜂.
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Figure 2.7: Participant-Level Hybrid aDDM Estimates in the Joint Dataset. Esti-
mates of the drift rate (𝑑), noise (𝜎), multiplicative attentional bias (𝜃), and additive
attentional bias (𝜂) in the loss condition as a function of their counterpart in the gain
condition. Grey lines mark equality across the two conditions.

Out-of-Sample Simulations
To verify that the Hybrid aDDM is fitting our participants properly, we simu-
late behavior out-of-sample using the best-fitting parameters for each participant,
separately for each condition. In Fig. 2.8, we compare simulated with observed out-
of-sample behavior with a series of four plots: (a) the psychometric choice curve,
as in Fig. 2.3 row 1; (b) the RT curve, as in Fig. 2.3 row 2; (c) the net fixation bias
curve, as in Fig. 2.5 row 1; and (d) the last fixation bias curve, as in Fig. 2.5 row
2. Our simulations show that the Hybrid aDDM is able to qualitatively match the
average quality of choices and the degree of net and last fixation bias exhibited in our
out-of-sample data. It predicts RTs well in study 1, however it struggles to predict
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RTs when value differences are small in study 2. This is typically remedied in the
DDM by imposing a collapsing decision boundary (Hawkins et al., 2015; Glickman
and Usher, 2019; Malhotra et al., 2017; Tajima, Drugowitsch, and Pouget, 2016;
P. L. Smith and Ratcliff, 2022). Unfortunately, the current version of the ADDM
Toolbox in Julia does not accurately recover the rate of collapsing bounds, so we
have opted to exclude this feature from our model and leave the RT predictions as
is.

Figs. B.11 and B.12 show that the RaDDM and AddDDM are also capable of
qualitatively matching out-of-sample behavior.

2.4 Discussion
To investigate the role of attention in the aversive choice process, we ran two binary
risky choice experiments with choices in gains and in losses. We found that the
average quality of choices did not differ across conditions in either study, and that
fixations were slower in losses than in gains in study 2, but not in study 1. This result
is consistent with the “attention-aversion gap”, where people invest more attentional
resources in evaluating choices between losses than between gains, regardless of
their preferences (Lejarraga et al., 2019). Attentional choice biases (net fixation
bias and last fixation bias) were identical in the two conditions. This was surprising
given that the standard aDDM predicts attentional choice biases would undergo a
reversal when switching from the gain condition to the loss condition. The identical
biases across conditions suggest that regardless of whether the choice is appetitive or
aversive, attention is pulling choices in the direction of the attended item. In order to
explain these findings, we propose the Hybrid aDDM with the Minimum-Outcome
reference-point rule. This model transforms the outcomes of the lotteries using a
reference-point set to the minimum possible value in a condition, then uses these
reference-dependent outcomes to compute expected values for the value comparison
process. It also splits the role of attention in the choice process into two parts: (a)
a value-dependent role via an attentional discounting parameter, and (b) a value-
independent role via an additive attentional parameter. Behavioral signatures (i.e.
the relationship between RT and overall value) and model comparison indicate that
the Hybrid aDDM is best suited to explain our data. This suggests that sequential
integration is occurring over reference-dependent (e.g. range-normalized) values,
and that attention may play multiple roles in the choice process.

These results have important implications for any decision involving aversive out-
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Figure 2.8: Hybrid aDDM Out-of-Sample Predictions. (Top Left) The probability
of choosing left as a function of the normalized relative expected value of the left
option, as in Row 1 of Fig. 2.3. (Top Right) Response time as a function of the
normalized best minus worst expected value, as in Row 2 of Fig. 2.3. (Bottom
Left) Corrected probability of choosing the left option as a function of the net
fixation time to the left option, as in Row 1 of Fig. 2.5. The corrected probability
is computed by subtracting from each choice observation (coded as 1 if left chosen,
and 0 otherwise) the proportion with which left is chosen at each relative expected
value. (Bottom Right) The probability of choosing the last fixated option as a
function of the normalized net expected value of the left option, as in Row 2 of Fig.
2.5. Rows separate the data by condition, and columns separate by study. Out-of-
sample data consists of all trials divisible by 10 from all participants in joint dataset.
10 simulated datasets per participant. Error bars represent the standard error of the
mean across all simulations for all participants.

comes. Lejarraga et al. (2019) posit an evolutionary explanation for why individuals
might pay more attention to losses. In an uncertain environment, the next loss could
be deadly, whereas the next gain does not have an equivalent critical threshold. In
other words, we pay more attention to losses because historically, choices between
losses have had more severe consequences. Understanding how attention plays a
role in these important, but aversive, decisions might suggest interventions that
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choice architects can employ to help individuals make better decisions (Johnson
et al., 2012).

Previous work has looked at choices between aversive food options and found that
attention biased choices away from the fixated option (Armel, Beaumel, and Rangel,
2008). Related work has also found that attention to negative attributes biased
choices away from the fixated option (Krajbich, Lu, et al., 2012; Fisher, 2021).
Our results contradict these findings, though we are not the first to find evidence of
last fixation bias in aversive risky choices. Brandstätter and Körner (2014) found
that the last fixated option and choice coincided in nearly 78% of trials in their
loss condition, but that this had nothing to do with the last fixated attribute. Taken
together, these results suggest that the role of attention in aversive choices might be
more nuanced than in gains, and that the role may change depending on the choice
domain (e.g. food vs. product vs. intertemporal vs. risky) or the decision-maker’s
goals. Our proposed Hybrid aDDM is well suited to explore these nuances, but that
is outside the scope of this paper.

Interpreting our modeling results, we believe that attention affects choices through
both a value-dependent and a value-independent channel, and that value signals are
transformed into reference-dependent value signals prior to comparison. This is
consistent with previous computational and neural studies. By including the mini-
mum possible value in a context as a potential reference-point, the Hybrid aDDM
nests the hypothesis that attention aids in the accumulation of goal-relevant evi-
dence that is transformed according to the goal at-hand (Sepulveda et al., 2020).
There is also neural evidence that suggests avoiding aversive outcomes are en-
coded as rewards in the orbitofrontal cortex, a region of the human brain that has
been previously implicated in encoding stimulus reward values (Kim, Shimojo, and
O’Doherty, 2006). In other words, avoiding a bad outcome is encoded as a pos-
itive value in the brain. In behavioral economics, these results fall into the vast
literature on reference-dependence (O’Donoghue and Sprenger, 2018; Tversky and
Kahneman, 1992), though they deviate from popular models of expectations-based
reference-points (Kőszegi and Rabin, 2009; Kőszegi and Rabin, 2006; Kőszegi and
Rabin, 2007). Instead, they suggest a reference-point rule that takes into consid-
eration the range of values in a context and selects the reference-point to be the
minimum. Related reference-point rules have been proposed in the past (Soltani,
De Martino, and Camerer, 2012). Operationally, this behaves a lot like the MaxMin
reference-point rule, which Baillon, Bleichrodt, and Spinu (2020) found to be the
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most common reference-point used in risky choices. In the DDM, the Minimum-
Outcome reference-point rule is mathematically equivalent to range normalization
of the outcomes of the lotteries, since the range in the denominators are factored
into the drift rate parameter. For a review of range normalization, its biological
foundations, and neural evidence, see Rangel and Clithero (2012).

There are other variations of the Hybrid aDDM that we did not consider in this paper.
One of the most apparent modifications to consider would be to introduce collapsing
decision boundaries in order to improve the predictions of the RT distribution in
study 2. Our current model predictions indicate that the Hybrid aDDM is struggling
to make difficult decisions, but does not account for any “impatience” or “urgency”
that humans may exhibit when faced with the same choices (Churchland, Kiani, and
Shadlen, 2008; Hawkins et al., 2015; Malhotra et al., 2017; Glickman and Usher,
2019; P. L. Smith and Ratcliff, 2022). Unfortunately, collapsing decision boundaries
are not accurately recoverable in the current version of the ADDM Toolbox in Julia;
therefore we opted not to include it in our model. Second, we chose not to model
non-decision time (NDT) as a free parameter. This is because we manipulated the
location of the fixation cross in study 2 to overlap with one of the lottery locations
in two-thirds of the trials. We could allow NDT to vary trial-by-trial according to
the location of the fixation cross, however it is not clear how this relationship should
be modeled. Instead, we opted to fix NDT and allow for latency to first fixation to
account for differences in NDT across trials. Note that in study 2, the latency to first
fixation is 0 when the fixation cross overlaps with one of the lottery locations. Lastly,
we opted to exclude the bias parameter from the model since our basic psychometric
results did not suggest any leftward or rightward bias in participants’ choices, and
each additional parameter exponentially increases the size of the parameter grid and
computation time.

There are other limitations to the generalizability of our findings. First, while our
study is limited to binary choice, many decisions require one or more selections
from 3 or more options. Second, the role of attention in the choice process may vary
depending on the complexity of the environment in which a decision is made (Oprea,
2023; Gonçalves, 2024). For instance, attentional discounting of the non-fixated
option might be much more severe if lottery options contained multiple outcomes
instead of just two options. Third, we chose to focus on risky choices, but aversive
choice extends to any form of stimulus (e.g. food, social decisions, experiences,
voting). Further work is needed to ensure that these results extend to choices with
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more options, more complex options, and with different stimuli.

In summary, our results describe the role of attention in the aversive choice process.
Contrary to our initial hypothesis, attention to an aversive option nudges choices
towards that option, despite its negative value. This is consistent with the hy-
pothesis that individuals accumulate evidence over range-normalized (or reference-
dependent) value signals during our choice process. Our computational results also
suggest that attention is contributing both a value-dependent and a value-independent
effect in the choice process.
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C h a p t e r 3

SEQUENTIAL INTEGRATION IN RISKY CHOICES FROM
EXPERIENCE RESULTS IN MEAN-VARIANCE PREFERENCES

3.1 Introduction
There is evidence that sequential integration models, like the Drift-Diffusion-Model
(“DDM”), provide a reasonable explanation of the psychometrics of choices and re-
sponse times (“RTs”) in a wide variety of economic decision-making tasks (Ratcliff,
P. L. Smith, et al., 2016; Forstmann, Ratcliff, and Wagenmakers, 2016), and can even
account for the role of fixations (Krajbich, Armel, and Rangel, 2010; Krajbich and
Rangel, 2011; Krajbich, Lu, et al., 2012). There has even been some preliminary
evidence linking these algorithms to neural activity in dmPFC and parietal cortex
(Hare et al., 2011; Basten et al., 2010).

However, a limitation of these studies is that while the computational models assume
that choices are made by integrating noisy samples, the experimenters do not have
a measure of the instantaneous samples processed by the participants, which limits
the ability to pin down the underlying algorithms at work.

A key goal of this study is to carry out some deeper tests of the assumptions un-
derlying sequential-sampling algorithms, like the DDM, in canonical simple choice
tasks.

Overall, our experimental design is inspired by and builds on previous experiments
designed to test how individuals make risky choices from experience. In a typical
experiment, participants have to choose between one of two slot-machines and get
a payoff equal to a random draw from the selected machine. Before making the
decision, participants are shown two parallel streams of samples taken from both
machines to inform the decision, with the number of samples either fixed by the
experimenter, or like here, controlled by the participant (Glickman and Usher, 2019;
Tsetsos, Moran, et al., 2016; Tsetsos, Chater, and Usher, 2012).

This type of experimental paradigm has also been used extensively in behavioral
economics to study the differences between risky decisions from description and
risky decisions from experienced samples (Hertwig, Barron, et al., 2004; Hertwig
and Erev, 2009; Wulff, Mergenthaler-Canseco, and Hertwig, 2018; Hau, Pleskac,
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and Hertwig, 2010). Although the experimental paradigms have much in common,
there are two important distinctions. First, in this other literature, the focus has been
on lotteries with a small number of outcomes, often taken from the canonical work
of Kahneman and Tversky (Kahneman and Tversky, 1979; Tversky and Kahneman,
1992). Second, the goal in this literature has been to characterize the systematic
differences in choices between decisions from experience and description, and there
has been less emphasis in characterizing the underlying algorithms at work at the
time of decisions.

This type of task is also related to experiments in perceptual decision-making and
numerical comparisons, in which participants are shown samples of numbers or dot
fields and have to decide which one is larger or whether they are above or below a
threshold (Irwin, W. A. S. Smith, and Mayfield, 1956; Irwin and W. A. S. Smith,
1957; Katzin, Rosenbaum, and Usher, 2021; Prat-Carrabin and Woodford, 2022a;
Clarmann von Clarenau et al., 2024).

A number of previous studies have used sequential integration frameworks, including
the DDM, to investigate the extent to which they can account for psychometric data
(Glickman and Usher, 2019; Zeigenfuse, Pleskac, and Liu, 2014; Turkakin et al.,
2023; Busemeyer, 1985).

A key aspect of our experimental design is the ability to control the value of each
sample received by the participant. This allows for deeper tests of the algorithm
used to make decisions, like the presence of leakage in the sequential integration
process, or the use of collapsing barriers (Glickman and Usher, 2019; Malhotra
et al., 2017; Trueblood et al., 2021; P. L. Smith and Ratcliff, 2022).

It also allows us to look for evidence of non-linear sample weighting. Several
studies have investigated the extent to which evidence is sampled linearly, or is over-
or under-weighted depending on its distance to its most likely outcome. Spitzer,
Waschke, and Summerfield (2017), Clarmann von Clarenau et al. (2024), and Tickle
et al. (2023) all find evidence that extreme samples are differentially weighted.
Tsetsos, Moran, et al. (2016) provide some conditions in which this type of non-
linear weighting of samples can improve the quality of decisions. For related results
in perceptual decision-making, see Cheadle et al. (2014). For a review, see Usher,
Tsetsos, et al. (2019).

To preview the results, we found that sequential sampling models can provide
reasonable explanation of the psychometrics of choices and number of samples
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seen in experience-based risky choices. We find evidence of either leakage or late
collapsing boundaries, as well as evidence for a delay in sample integration roughly
between 300 and 900 ms. We also find evidence of value compression (or inflation)
that changes over the course of a trial. Finally, we establish a link between the DDM
and a Modified Probit model that yields estimates for fixed decision boundaries in
the space of cumulative samples.

3.2 Methods
Task
To test the assumptions of how sequential information is integrated to make risky
choice, we ran an online study involving a series of slot machines (see Fig. 3.1). On
each trial, one out of five slot machines was selected, and participants had to decide
whether to play or skip the machine based on samples drawn from its outcome
distribution. These samples did not directly affect earnings. Instead, participants
had to integrate this information over time until they felt they had enough information
to make a choice.

Each trial began with a 500 ms fixation cross, followed by a series of samples, each
displayed one-at-a-time as a colored dot in the center of the screen for 300 ms each.
Participants were free to choose play or skip using the arrow keys at any time within
12 s. If they failed to decide within this time limit, a screen would appear displaying
“Faster!” for 1.5 s and no response would be recorded. If participants chose to
Skip, then the reward for the trial was recorded as 0. If they chose to Play, then
the reward for the trial was recorded as a random draw from the machine’s outcome
distribution.

Each of the five slot machines had a censored Gaussian outcome distribution with
a standard deviation of 2. Their means were {-2, -1, 0, 1, 2}. Censoring occurred
at ±2.875. Once a sample was drawn from the outcome distribution, two things
occurred in the background before it was shown on the screen. First, its sign was
used to determine the color of the dot (positive → green, negative → red). Second,
its absolute value was used to determine the size of the dot. We binned absolute
values to ensure dot sizes were discriminable. During piloting, we converged on 12
bins which corresponded to step sizes of 0.25 between [0.125, 2.875].

Participants completed 300 trials, split into 6 blocks of 50 trials each. Each slot
machine was shown exactly 60 times during the experiment, in random order. It was
possible for the same slot machine to be shown in two subsequent trials. Participants
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were guaranteed a show-up fee of $10. Bonus earnings were determined based on
the outcomes of two randomly selected trials from each block (totalling 12 trials)
and could not drop below $0. For a participant that chooses optimally, expected
bonus earnings is $6.
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Figure 3.1: Task. Participants choose to either play or skip a slot machine based
on a series of draws, representing outcomes from that machine. These draws do
not affect their payoff and merely serve as examples. At the start of each trial, the
computer randomly selects a machine and a fixation cross is shown for 500 ms. The
participant does not know which machine was selected. Then, each draw is shown
for 300 ms. The participant has free response time up to 12 seconds, after which a
“Faster” screen will be shown and no response will be recorded for that trial. There
are 5 machines with normally distributed values, each with a standard deviation of
2 and means in {-2, -1, . . . , 2}. Sample value distributions are censored at ±2.875.
Samples are represented as green or red dots of various sizes. Color represents
positive (green) or negative (red) value, and size represents magnitude (binned into
12 discrete magnitudes).

Participants
25 participants from Prolific participated in this study. We required participants to
(a) be between ages 18 and 65, (b) live outside the EU or China, (c) be proficient in
English, (d) have full color vision, (e) have normal or corrected-to-normal vision,
and (f) have no history of epilepsy or seizures.
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As a pre-commitment to high quality data, we ran participants through a quality filter
immediately after the experiment finished. If a participant’s data did not pass the
filter, it was excluded from the final dataset. The components of our filter were: (1)
participants must have responded on at least 95% of trials, (2) participants must have
performed significantly better than chance, and (3) a participant’s average response
time must be longer than the average non-decision time under time pressure, 350
ms (estimated from Milosavljevic et al. (2010)).

In order to minimize error in stimulus display time, we required participants to
complete the experiment on a laptop (i.e. no mobile devices or tablets). The typical
laptop has a minimum screen refresh rate of 60 hz, which translates to 16.67 ms and
represents the maximum possible error in stimulus display time. Expected error is
8.34 ms.

We selected the number of participants and trials based on previous studies that
have shown that this sample size is sufficient for reliable estimation of parameters
and effects of interest. Participants provided digital consent through Prolific and
Gorilla.sc, and experiments were approved by the Caltech IRB.

Model
We reference the Drift-Diffusion-Model (“DDM”) with moment-to-moment evi-
dence, which is a sequential sampling model that has previously been successful
in characterizing the relationship between choices and response times (Ratcliff and
McKoon, 2008; Gold and Shadlen, 2007; Ratcliff, P. L. Smith, et al., 2016). Samples
are integrated into an accumulator, 𝑅𝐷𝑉𝑡 , that evolves over time until a decision
boundary is hit, initiating a choice. Boundary heights are symmetric about the
origin and are determined by parameter 𝑎. Hitting the upper boundary indicates a
decision to Play, and hitting the lower boundary indicates a decision to Skip. The
accumulator initiates at 𝑅𝐷𝑉0 = 𝑏, incorporating a bias towards one of the choices
if 𝑏 ≠ 0. The evolution of the accumulator follows the diffusion process:

𝑅𝐷𝑉 (𝑡) = 𝑅𝐷𝑉 (𝑡 − 1) + 𝜇(𝑡) + 𝜖 (𝑡) (3.1)

where 𝜖 (𝑡) is i.i.d. Gaussian white noise with variance fixed to 1. Evidence in the
process is equal to the sample value at time 𝑡,𝑉 (𝑡), scaled by the drift rate parameter
which controls the speed of integration:
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𝜇(𝑡) = 𝑑𝑉 (𝑡) (3.2)

where 𝑑 is the drift rate parameter. In the standard DDM, 𝜇 is not a function of
time since evidence is typically time-homogenous. In our experiment, evidence
is rapidly changing moment-to-moment (“time-heterogenous”), therefore 𝜇 must
change with the evidence. Other studies investigating the choice process with time-
heterogenous evidence have also made similar assumptions (Glickman and Usher,
2019; Tsetsos, Chater, and Usher, 2012; Tsetsos, Moran, et al., 2016; Tsetsos, Usher,
and McClelland, 2011; Holmes, Trueblood, and Heathcote, 2016; P. L. Smith and
Ratcliff, 2022).

Hierarchical Regressions
Regressions were implemented as hierarchical regressions in R version 4.3.1 (R
Core Team, 2023) using the rstan package version 2.32.5 (Stan Development Team,
2024). Posterior distributions were estimated using 4 chains with 4000 warm-up
iterations and 4000 sampling iterations, for a total of 16,000 samples from each of
the posteriors. Priors for coefficients were normally distributed, centered at 0, with
a standard deviation scaled depending on the units of the data. Priors for errors
in linear regressions were Cauchy-distributed, with location = 0 and scale = 1, and
strictly bounded below by 0.

Code and data for this paper can be found at rnl.caltech.edu.

3.3 Results
Psychometrics
Our goal in this section is to establish whether sequential sampling models are
applicable to risky choices from evidence.

The top two rows of Fig. 3.2 plot the psychometric curve as a function of the machine
mean and the average sample seen, respectively. Table C.1 contains associated
regressions. Choices were sensitive to both the machine mean and the average
sample seen. In fact, when average sample seen was not equal to 0, participants made
the risk-neutral correct choice roughly 89% of the time, suggesting that participants’
performance was remarkably good given the information available to them. In row 1,
the psychometric curve falls below 0.5 when the machine mean is 0, which initially
led us to believe that participants exhibited some form of risk aversion. However,
upon closer look at row 2, the psychometric curve is not significantly away from 0.5



62

when average sample seen equals 0, suggesting that participants’ risk attitudes were
actually risk neutral.

The bottom two rows of Fig. 3.2 plot the number of samples seen in a trial as
a function of the absolute machine mean and the absolute average sample seen,
respectively. In row 3, the number of samples seen is decreasing in the absolute
machine mean. This is mirrored in row 4 as the number of samples seen decreases
in the absolute average of the sample seen. Response times can be approximated
by multiplying the number of samples by 300 ms. These results are consistent
with previous findings that response times (and number of fixations) increase with
the difficulty of a choice (Krajbich, Armel, and Rangel, 2010; Eum, Dolbier, and
Rangel, 2023).

Overall, our participants’ behavior exhibits patterns that are consistent with sequen-
tial sampling models, suggesting that they are applicable to risky choices from
experience.

Evidence Weighting: Temporal Dynamics
Now that we know sequential sampling models are applicable to experience-based
risky choices, our next goal is to test the temporal dynamics of evidence weighting.
In a DDM with fixed decision boundaries, evidence at every time point is weighted
equally by the drift rate parameter. With either collapsing decision boundaries or
leakage, we should see a recency effect, where later evidence is weighted more than
early evidence. Opposite to this, the Bayesian observer model would predict that
early samples shift posterior beliefs by much more than later samples. This would
induce a primacy bias, where early evidence is weighted more than later evidence.
Note that this is true despite the exchangeability property in Bayesian updating.

To test the temporal dynamics of evidence weighting, we first run the following
logistic regression:

choice ∼ 𝛼0 +
16∑︁
𝑖=0

𝛽𝑖𝑉𝑆−𝑖 (3.3)

where choice is encoded as (1=Play, 0=Skip), and 𝑆 is the total samples seen in a
trial, making𝑉𝑆 the last sample in a trial. If the trial did not have at least 17 samples,
then 𝑉𝑆−𝑖 was set to 0 for all samples that did not exist.
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Figure 3.2: Psychometrics. Row 1 depicts the probability of choosing play as a
function of the machine mean. Row 2 repeats this, except with the average sample
instead of machine mean. Row 3 depicts the average number of samples seen in a
trial as a function of the absolute machine mean. Row 4 repeats this, except with
the absolute average sample instead of absolute machine mean. Error ribbons show
the standard error of the mean across participants.

In Panel A of Fig. 3.3, we plot the posterior distributions for 𝛼0 and all 𝛽𝑖 from
Eq. 3.3. There are a few things to take away from this plot. First, the evidence
weight for the Last Sample is 0. This suggests that either (a) evidence takes time to
process before being integrated into the accumulator, (b) that actions take time to
be carried out even after the accumulation process has crossed a decision boundary,
or (c) both. These peripheral processes are typically modeled with a non-decision
time parameter in the DDM. Since our samples are only displayed for 300 ms at
a time and the evidence weight for the last sample is 0, it seems that non-decision
time must be bounded below by at least 300 ms.
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Second, late samples (Last Sample - 3 through Last Sample - 1) have significantly
higher evidence weights than samples that came before them. This violates the
assumptions of static evidence weights over time in the standard DDM, but is
achievable with either of two mechanisms: (1) collapsing decision boundaries or (2)
leakage. With decision bounds that collapse over time, each additional sample has
an increasing impact on the state of the accumulator, since non-zero evidence will
shift the accumulator closer to the bounds the later it is integrated. With leakage,
evidence is hyperbolic discounted according to the amount of time that has elapsed
since it was integrated. This means that new samples have an exponentially larger
impact on the state of the accumulator compared to older samples.

Third, the evidence weight for Last Sample - 1 is smaller than for Last Sample - 2.
While at first this might seem inconsistent with collapsing bounds or leakage, this
result is possible under the assumption of a delay in sample integration (as mentioned
above). In Panel B of Fig. 3.3, we plot a noise-less example of the accumulation
process with various amounts of delay in sample integration. Black, “Sample On”
lines indicate when the last samples are displayed on the screen. Red, “Small Delay”
lines indicate when each sample would enter the integration process with a small
delay. Blue, “Large Delay” lines indicate the same thing, except with a larger delay.
Notice that if a decision is reached during the last sample (marked by the dark grey
dashed line), it is possible that this was the result of integrating Last Sample - 1 or
Last Sample - 2, depending on the size of the delay. A previous study estimated
this delay to be roughly 500 ms (Holmes, Trueblood, and Heathcote, 2016), which
would look approximately like the large delay in Panel B. This means that some
proportion of the choices are the result of integrating Last Sample - 2 (exemplified
by the dark grey dashed line), and the remaining choices are the result of integrating
Last Sample - 1 (exemplified by the light grey dashed line). The relative evidence
weight of Last Sample - 2 compared to Last Sample - 1 will therefore depend on the
proportion of choices made as a result of integrating Last Sample - 2 compared to
Last Sample - 1. The longer the delay in sample integration, the larger the evidence
weight for Last Sample - 2 compared to Last Sample - 1, up to a theoretical limit
of 900 ms. This places limits on the duration of the delay in sample integration
between 300 and 900 ms.

In Panel C of Fig. 3.3, we plot evidence weights for the sum of the first 3 samples,
the sum of the last 3 samples, and the sum of remaining middle samples. In order
to calculate these weights, we first subsetted our dataset to trials containing at least
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7 samples. Then, we calculated these sums and weighted them by their proportion
of the total number of samples seen in their respective trial. Lastly, we regressed
choice on these variables, along with a constant.

Once again, we find that the last 3 samples before the last have the largest evidence
weight compared to all other samples. However, we also find that the first 3 samples
have a larger evidence weight compared to middle samples. This suggests a primacy
effect also exists in the sampling process, although it is weaker than the recency
effect. Fig. C.1 repeats the same regression as Eq. 3.3, except using the first 16
samples in a trial instead of the last, and including Last Sample - 3 through Last
Sample - 1. It replicates that early samples have a slightly larger evidence weight
compared to middle samples, but that late samples have the largest evidence weights.

Overall, these results suggest that both primacy and recency effects occur during
evidence-based risky choice, but the strength of recency is larger than of primacy.
They also suggest that there is a delay in sample integration between 300 and 900
ms.

Evidence Weighting: Transformations
In this section, our goal is to test if sample values are undergoing transformations
during integration (Clarmann von Clarenau et al., 2024). In order to determine this,
we run a series of three logistic regressions to estimate the weight of each level of
sample value.

For the first regression, we round sample values to {-2.5, -1.5, -0.5, 0.5, 1.5, 2.5},
corresponding to (negative, positive) × (small, medium, large) values. Next, we
generate indicator variables for each rounded value (“value”) and interact these with
indicator variables for early, middle, and late samples (“time”):

choice ∼
∑︁
value

∑︁
time

𝛽value, time1{sample value = value}1{sample time = time} (3.4)

Note that we exclude the constant to avoid the “dummy variable trap”. The coefficient
for each term estimates the sample weight during integration when it is integrated at
that time. For instance, 𝛽-2.5, early is the effect that a sample of -2.5 had on the final
choice when it occurred within the first three samples in a trial.

In row 1 of Fig. 3.4, we plot every 𝛽value, time from Eq. 3.4. The slope for late
samples is steeper than the slope for early or middle samples, suggesting either that
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Figure 3.3: Evidence Weighting: Temporal Dynamics. (Panel A) Evidence weights
for the last 17 samples. (Panel B) Visualization of how delay in sample processing
can affect evidence weights. Assume all samples have the same value. “Sample
On” plots when the sample is displayed on the screen. “Small Delay” plots when
each sample is integrated into the accumulator, with a small delay < 300 ms. “Large
Delay” plots when each sample is integrated with a large delay between 300 to
600 ms. Red accumulator line shows how noise-less accumulator would evolve
according to small delay. Blue accumulator line shows how noise-less accumulator
would evolve according to large delay. Dark grey dashed line indicates the time of
the choice in the accumulator example. Light grey dashed line indicates the time
of an example choice made as the result of integrating Last Sample - 1 under Large
Delay. (Panel C) Evidence weights for the sum of the first 3 samples, the sum of
the middle samples, and the sum of the last 3 samples. Sums are scaled by their
proportion of the total number samples in a trial.

(a) early and middle samples undergo value compression, (b) late samples undergo
value inflation, or (c) both.

For the second regression, we calculate the distance from the machine mean to the
sample and round these distances to {-2.5, -1.5, -0.5, 0.5, 1.5, 2.5}, corresponding to
(negative, positive)× (small, medium, large) distances. Similar to the first regression
in this section, we generate indicator variables for each distance (“distance”) and
interact these with indicator variables for Machines 1, 2, 4, and 5 (“machine”):

correct ∼
∑︁

distance

∑︁
machine

𝛽distance, machine1{distance}1{machine} (3.5)

We excluded data from trials with Machine 3 (mean = 0), since ex-ante, there was no
objectively correct decision in these trials. The coefficient for each term measures
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how the rarity of a sample impacts correct choices.

In row 2 of Fig. 3.4, we plot each coefficient from Eq. 3.5 as a function of the sample
distance from the machine mean. There is a cluster of sample weights that do not
significantly differ from 1 towards the center of the plot. This cluster suggests that
as long as the sample maintained the same sign as the machine mean, it had the same
positive impact on the probability of making the correct choice, regardless of its
value or the machine. Sample weights below 0 towards the sides of the plot indicate
the opposite. Once a sample took on the opposite sign as the machine mean, it had
a negative impact on the probability of making the correct choice. Despite mean
estimates of this impact scaling in the magnitude of the distance, the scaling is not
significant.

Lastly, for the third regression, we repeat most of the steps from the second regres-
sion. We subset the data to just trials with Machine 3 (mean = 0) and change the
dependent variable to choice (1=Play, 0=Skip). Coefficients from this regression
measure the impact of each sample distance from the machine mean (= 0) on the
decision to Play.

In row 3 of Fig. 3.4, we plot the coefficients from this regression as a function of the
sample distance from machine mean. The slope remains relatively constant across
negative and positive distances, suggesting that any transformation to sample value
is symmetric across the origin.

Overall, these results suggest that some form of value compression or inflation is
occurring, separately at different times during a trial, and is symmetric about the
origin. Regardless, the impact of these transformed values on making the correct
decision is the same as long as the sample shares the same sign as the machine mean.

Termination Rules and Policies
The goal in this section is to determine the shape of the decision boundaries. As a
bonus, we also establish a connection between the Probit model and fixed boundaries
in the DDM.

To start, for every sample in a participant’s trial, we rounded cumulative sample to
the nearest fifth, generating roughly 25 bins. Then, for each participant, we looked
at whether a choice was made once cumulative sample reached one of these bins
on a given sample number. In other words, (cumulative sample, sample number)
defines a state, and we ask: “Of the times that the participant has reached this state,
what is the proportion with which the participant made a choice to Play or Skip in
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Figure 3.4: Evidence Weighting: Transformations. (Row 1) Sample weight as a
function of sample value, separately for early, middle, and late samples. (Row 2)
Sample weight as a function of the distance between the sample and the machine
mean, for Machines 1, 2, 4, and 5. (Row 3) Sample weight as a function of the
distance between the sample and the machine mean, for Machine 3 only. Error bars
denote the standard error of the mean across participant means.

this state?” In Panel A of Fig. 3.5, we plot these proportions over states for four
randomly sampled participants, excluding states with less than five trials. In Panel
B, we repeat this exercise, except we ask: “Of the times that the participant has
made a choice in this state, what is the proportion with which the participant made
a choice to Play?” This time, we only exclude states with 0 trials. Panels C and D
repeat these exercises from Panels A and B, respectively, except they use the average
sample seen instead of cumulative sample.

In Panel A, we see that participants needed less cumulative evidence to reach a
decision as sample number grew larger. This hints that participants may have grown
impatient or felt some urgency during their choice process. This can be modeled in
the DDM with a collapsing decision boundary.

In Panel C, we find evidence that more samples were required to make a choice
when average sample was closer to 0, consistent with the results in row 4 of Fig. 3.2.

In Panels B and D, we see that participants were very accurate in their decisions,
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regardless of the cumulative sample, average sample, or number of samples seen.

See Figs. C.2, C.3, C.4, and C.5 for these plots across all participants.

In each plot of Fig. 3.5, we also include estimates of the decision boundaries for the
DDM, calculated using a Modified Probit regression. We’re able to do this because
the 𝑅𝐷𝑉 from the DDM operates in the same (cumulative sample, sample number)
space shown in the plots. In fact, if the DDM was noiseless, the diffusion clouds
in Panel A would mimic the accumulators of the DDM across trials. Because they
operate in the same space, it is possible to define an approximated fixed decision
boundary using probabilistic choice models (Luce, 1959; McFadden, 1974). Below,
we show a direct link between a Modified Probit model and fixed decision bounds
in the DDM.

Theorem 1. Fixed decision boundaries, 𝑎, in a DDM with i.i.d. white Gaussian
noise, 𝜖𝑡 ∼ 𝑁 (0, 𝜎2), can be estimated via the following Modified Probit model with
a dependent variable 𝑌𝑡 that is encoded as 1 if the participant chooses to Play or
Skip at sample 𝑡 and 0 if the participant chooses to Continue Sampling at sample 𝑡:

Pr(𝑌𝑡 = 1|𝑥1, 𝑥2, . . . , 𝑥𝑡 , 𝑡) = 1 −Φ

(
𝑎

𝜎
√
𝑡
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√
𝑡

𝜎

)
+Φ

(
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𝑡

𝜎

)
Proof. Suppose a choice is made using the DDM on cumulative signals,

∑
𝑡 𝑥𝑡 , with

a fixed decision boundary, 𝑎, and i.i.d. white Gaussian noise, 𝜖𝑡 ∼ 𝑁 (0, 𝜎2). Then,
the decision-maker (“DM”) will choose to sample another piece of evidence if:

−𝑎 <
∑︁
𝑡

𝑥𝑡 +
∑︁
𝑡

𝜖𝑡 < 𝑎

In other words, the probability that the decision maker will choose to Play or Skip
at time 𝑡 is given by:

Pr(𝑌𝑡 = 1|𝑥1, . . . , 𝑥𝑡 , 𝑡) = Pr
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We assumed that 𝜖𝑡 ∼ 𝑁 (0, 𝜎2). Then,
∑

𝑡 𝜖𝑡 ∼ 𝑁 (0, 𝑡𝜎2) ⇒
∑

𝑡 𝜖𝑡

𝜎
√
𝑡
∼ 𝑁 (0, 1).

Applying this transformation to both sides of the inequalities yields

Pr(𝑌𝑡 = 1|𝑥1, . . . , 𝑥𝑡 , 𝑡) = Pr
(∑

𝑡 𝜖𝑡

𝜎
√
𝑡
≥ 𝑎

𝜎
√
𝑡
− 𝑥𝑡

√
𝑡

𝜎

)
+ Pr

(∑
𝑡 𝜖𝑡

𝜎
√
𝑡
≤ − 𝑎

𝜎
√
𝑡
− 𝑥𝑡

√
𝑡

𝜎

)
= 1 −Φ

(
𝑎

𝜎
√
𝑡
− 𝑥𝑡

√
𝑡

𝜎

)
+Φ

(
− 𝑎

𝜎
√
𝑡
− 𝑥𝑡

√
𝑡

𝜎

)
□

Running the regression in Theorem 1 produces two estimated coefficients: 𝛾̂1 = 𝑎/𝜎
and 𝛾̂2 = 1/𝜎. In order to calculate the estimate for the fixed decision bounds, we
need to multiply 𝜎 out: 𝑎̂ = 𝛾̂1𝛾̂

−1
2 = 𝑎.

We generate estimates of fixed decision boundaries for each participant, 𝑎̂ 𝑗 ∈ (0, 60).
In Panels A and B of Fig. 3.5, we plot 𝑎̂ 𝑗 as horizontal red lines. The estimated
boundaries for each participant approximately contain the set of all cumulative
samples at which a decision was made for each participant.

Note that when we switch to (average sample, sample number) space in Panels
C and D, the fixed boundary parameter, 𝑎, must be divided by sample number.
Therefore, we observe exponential collapsing bounds when states are in terms of
average sample.

3.4 Discussion
To establish if sequential sampling models apply to risky decisions from experience
and to test some of the underlying assumptions of these models, we ran an online
study in which participants chose to Play or Skip a slot machine, based on a stream
of samples drawn from its outcome distribution.

First, we found that choices were very sensitive to the average of the samples seen
and that the number of samples increased the closer machine mean was to 0. Our
psychometric results are consistent with sequential sampling models, which suggest
that they are applicable to risky choices from experience.

Second, we ran a series of logistic regressions to generate evidence weights for each
sample in a trial. We found that the first three samples were weighted more than
middle samples, but that the last three samples before the last sample were weighted
the most. This is consistent with evidence for both primacy and recency effects in
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Figure 3.5: Termination Rules and Policies for Participants 7, 8 ,11, and 18. (Panel
A) Define a state by the combination of cumulative sample and sample number. For
every state, we plot the proportion of trials in which a choice was made in this state,
conditional on having reached this state. If less than 5 trials reached a state, that state
was excluded. (Panel B) Define a state by the combination of cumulative sample
and sample number. For every state, we plot the proportion of trials in which Play
was selected, conditional on a choice being made in this state. (Panel C) Define a
state by the combination of average sample and sample number. Repeat the same
calculation as in Panel A. (Panel D) Define a state by the combination of average
sample and sample number. Repeat the same calculation as in Panel C. Red lines
plot the estimated decision boundaries from Theorem 1.

sequential sampling (see Ratcliff, P. L. Smith, et al. (2016) for a discussion). Last
samples did not exhibit any effect on the choice. Taken altogether, these results
provide evidence for leaky integration, collapsing boundaries, and a delay in sample
integration.

Third, we ran another series of logistic regressions to generate sample weights for
the size of each sample in a trial. We found evidence of value (anti-)compression
that occurs at different times during a trial. Regardless, the impact of these transfor-
mations on making the correct decision is the same as long as the sign of the sample
and the machine mean match.

Lastly, we establish a link between the DDM with fixed decision boundaries and a
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Modified Probit model which allows for estimation of the decision boundary in the
space of cumulative samples without any computational modeling.

These results are important for many reasons. They establish that risky choices
from experience fall under a class of decisions that can be described as a trade-off
between accuracy and speed (Forstmann, Ratcliff, and Wagenmakers, 2016). They
also identify non-linear sample weighting in the integration process. Although these
are not modeled by the standard DDM, various sequential sampling models have
incorporated parts. For example: the leaky competing accumulator incorporates
leakage (Usher and McClelland, 2001); variations of the DDM with collapsing
bounds exist (Hawkins et al., 2015; Glickman and Usher, 2019); and the piecewise
linear ballistic accumulator incorporates a delay in sample integration (Holmes,
Trueblood, and Heathcote, 2016).

Our evidence for collapsing boundaries is consistent with Bayesian models of opti-
mal value-based decision-making (Tajima, Drugowitsch, and Pouget, 2016), though
our experiment design was not set up to induce a sense of urgency in making the
choice (Glickman and Usher, 2019). We also found that late samples were weighted
more than early and middle samples, which follows the pattern of early under-
reaction and late over-reaction documented by Prat-Carrabin and Woodford (2022b)
in their probabilistic inference task.

Webb (2018) establishes a link between the choice probabilities implied by the DDM
and the logit model. Rather than model which choice was made, we look at whether
a choice was made at time 𝑡. This allows us to prove a link between the DDM
and a Modified Probit, and use this to estimate fixed decision bounds in cumulative
sample space.
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Figure A.1: Directed Acyclic Graph of Hierarchical aDDM with Uncorrelated
Priors. The hierarchical model estimates group and individual parameters for the
aDDM with uncorrelated priors. The 10 group parameters are depicted in the top
row of yellow circles. The four individual parameters estimated for each subject
are depicted in orange in the middle row. The distribution of individual parameters
as a function of the group parameters is specified using a transformation of some
of the parameters, denoted by the dashed lines. The choice and RT outcome 𝑦𝑖 of
trial 𝑖 for a subject 𝑝 is modeled as a Drift-Diffusion-Model with bounds at ±1,
non-decision time NDT𝑖, bias 𝑏𝑝, trial specific slope 𝜔𝑖, and noise 𝜎𝑝. The trial
specific slope 𝜔𝑖 depends on the subject’s drift rate parameter 𝑑𝑝, attentional bias
parameter 𝜃𝑝, gaze data for the trial 𝑔𝑎𝑧𝑒𝐿𝑖, and item liking ratings for the foods
used in the trial (𝑣𝐿𝑖,𝑣𝑅𝑖). 𝑔𝑎𝑧𝑒𝐿𝑖 denotes the proportion of time spent fixating on
the left item during the trial. The hyperpriors for the group parameters are described
at the top of the graph. “∈ (𝑋,𝑌 )” indicates truncation to bounds. 𝑁𝑠𝑢𝑏 𝑗𝑒𝑐𝑡𝑠 = 25 in
the exploratory and confirmatory datasets, and 50 in the joint dataset.
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Figure A.2: Directed Acyclic Graph of Hierarchical aDDM with Correlated Priors.
The hierarchical model estimates group and individual parameters for the aDDM
with correlated priors. The 18 group parameters are depicted in the top row of
yellow circles. The 8 individual parameters estimated for each subject are depicted
in orange in the middle row. The distribution of individual parameters as a function
of the group parameters is specified using a transformation of some of the parameters,
denoted by the dashed lines. The choice and RT outcome 𝑦𝑖 of trial 𝑖 for a subject 𝑝
is modeled as a Drift-Diffusion-Model with bounds at ±1, non-decision time NDT𝑖,
bias 𝑏𝑝, conditional difference in bias Δ𝑏𝑝, trial specific slope 𝜔𝑖, noise 𝜎𝑝, and
conditional difference in noise Δ𝜎𝑝. The trial specific slope 𝜔𝑖 depends on the
subject’s drift rate parameter 𝑑𝑝, conditional difference in drift rate parameter Δ𝑑𝑝,
attentional bias parameter 𝜃𝑝, conditional difference in attentional bias parameter
Δ𝜃𝑝, gaze data for the trial 𝑔𝑎𝑧𝑒𝐿𝑖, and item liking ratings for the foods used in
the trial (𝑣𝐿𝑖,𝑣𝑅𝑖). 𝑔𝑎𝑧𝑒𝐿𝑖 denotes the proportion of time spent fixating on the left
item during the trial. The hyperpriors for the group parameters are described at the
top of the graph. “∈ (𝑋,𝑌 )” indicates truncation to bounds. 𝑁𝑠𝑢𝑏 𝑗𝑒𝑐𝑡𝑠 = 25 in the
exploratory and confirmatory datasets, and 50 in the joint dataset.
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Figure A.3: Additional Fixation Properties. (Top) Probability of first fixation to the
left item in the two conditions. (Bottom) Latency to first fixation as a function of
the relative rating of the fixated item. Columns indicate which dataset generated
the figures. Black error bars show standard errors of the mean across participants.
Color error bars show standard deviation across participants.
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Figure A.4: Fixation Durations. (Row 1) Middle fixation duration as a function
of the fixated item rating. (Row 2) Middle fixation duration as a function of the
nonfixated item rating. (Row 3) First fixation duration as a function of the fixated
item rating. (Row 4) First fixation duration as a function the nonfixated item rating.
Columns indicate which dataset generated the figures. Error bars show standard
errors of the mean across participants.



81

0.00

0.25

0.50

0.75

1.00

-4 -3 -2 -1 0 1 2 3 4
Value Difference (L–R)

P
(C

ho
os

e 
Le

ft)

Subject Pool

0

2000

4000

6000

8000

-4 -3 -2 -1 0 1 2 3 4
Value Difference (L–R)

R
es

po
ns

e 
T

im
e 

(m
s)

0.00

0.25

0.50

0.75

1.00

-4 -3 -2 -1 0 1 2 3 4
Last Seen – Other Item Rating

P
(L

as
t F

ix
at

io
n 

to
 C

ho
se

n)

0.00

0.25

0.50

0.75

1.00

-4 -3 -2 -1 0 1 2 3 4
Value Difference (L–R)

P
(C

ho
os

e 
Le

ft)

0

2000

4000

6000

8000

-4 -3 -2 -1 0 1 2 3 4
Value Difference (L–R)

R
es

po
ns

e 
T

im
e 

(m
s)

Visible

Hidden

Simulated

0.00

0.25

0.50

0.75

1.00

-4 -3 -2 -1 0 1 2 3 4
Last Seen – Other Item Rating

P
(L

as
t F

ix
at

io
n 

to
 C

ho
se

n)

Figure A.5: Group-level Predictions in the Joint Dataset. We use the estimates of
the hierarchical aDDM in the odd trials to make predictions out-of-sample, in the
even trials, separately for each subject and condition. For each subject, we simulate
10 observations per trial, and compare the simulated and observed data. Blue lines:
Behavior in the visible condition. Red lines: Behavior in the hidden condition.
Black dashed lines and grey areas: Simulated behavior for the respective condition
(dash = mean, grey = SD). Error bars show standard deviations across subjects.
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Figure A.6: Subject-level Predictions. Out-of-sample predictions versus data for
four randomly selected subjects. See Figure A.5 and Supplementary Methods for
details. Blue lines: Behavior in the visible condition. Red lines: Behavior in the
hidden condition. Black dashed lines and grey areas: Simulated behavior for the
respective condition (dash = mean, grey = SD). Error bars show standard deviations
across subjects.
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Figure A.7: Fixation Process by Attentional Discounting Group. (Row 1) The
probability that the first fixation is to the best item as a function of choice difficulty.
(Row 2) Fixation durations by fixation type. (Row 3) Middle fixation duration as
a function of choice difficulty. (Row 4) First fixation duration as a function of
choice difficulty. (Row 5) Net fixation duration to the left item as a function of its
relative value. Columns indicate which dataset generated the figures: “𝜃𝐻𝑖𝑑𝑑𝑒𝑛 ≤ 0”
indicates subjects with full attentional discounting (𝑁 = 7), “𝜃𝐻𝑖𝑑𝑑𝑒𝑛 > 0” indicates
subjects with partial attentional discounting (𝑁 = 43). Data is from the joint dataset.
Error bars show standard errors of the mean across participants.
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Figure A.8: Choice Biases by Attentional Discounting Group. (Top) The probability
of choosing the left item as a function of its relative value, conditional on last fixation
location. (Middle) The corrected probability of choosing the left item as a function
of the net fixation time to the left item. (Bottom) Corrected probability that the first
seen item is chosen as a function of the excess first fixation duration, defined as first
fixation duration minus mean first fixation duration (computed for each subject).
Columns indicate which dataset generated the figures: “𝜃𝐻𝑖𝑑𝑑𝑒𝑛 ≤ 0” indicates
subjects with full attentional discounting (𝑁 = 7), “𝜃𝐻𝑖𝑑𝑑𝑒𝑛 > 0” indicates subjects
with partial attentional discounting (𝑁 = 43). Data is from the joint dataset. Error
bars show standard errors of the mean across participants.
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Figure A.9: Comparison of Subject-level aDDM MAP Parameter Estimates Be-
tween Models with Uncorrelated and Correlated Priors. Parameter estimate from
the model with correlated priors as a function of its respective estimate from the
model with uncorrelated priors. Rows separate by condition, columns separate by
parameter. Data from joint data set. Black lines denote 95% HDIs. “cor” denotes
Pearson correlation coefficient.
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Figure A.10: Linking Fixation Patterns with aDDM Estimates. Each point repre-
sents a subject (blue = exploratory, red = confirmatory). ΔFirst is the mean first
fixation duration in the visible condition minus the mean in the hidden condition.
ΔMiddle, ΔLast, and ΔAll are the same, except for middle, last, and all fixations,
respectively. Δ𝑑 is the MAP estimate of drift rate in the visible condition minus the
MAP estimate in the hidden condition. Δ𝜎, Δ𝜃, and Δ𝑏 are the same, except for
the noise, attentional discounting, and bias parameters, respectively. Δparameters
have been Z-scored. Data is from the joint dataset. Grey lines are univariate linear
regression predictions. Black text presents the 95% HDI for the slope of the regres-
sion line.
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Figure A.11: Other Choice Bias Simulations. (Left) Corrected probability of
choosing the left item as a function of net fixation time to the left item, in observed
(solid) and simulated (dashed) out-of-sample data. The corrected probability is
computed by subtracting from each choice observation (coded as 1 if left chosen,
and 0 otherwise) the proportion with which left is chosen at each relative value.
(Right) Corrected probability that the first seen item is chosen as a function of
the excess first fixation duration, defined as first fixation duration minus mean first
fixation duration (computed for each subject), in observed and simulated out-of-
sample data. Blue lines indicate data in the visible condition. Red lines indicate
data in the hidden condition. Data is from the joint dataset. Error bars show standard
errors of the mean across participants.
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A.2 Tables

Exploratory Confirmatory Joint
Dept. Var. Indept. Var. Est. SE Est. SE Est. SE
Left chosen Intercept 0.11 0.07 0.03 0.04 0.07 0.04
(Logistic) L - R rating 1.58 0.13 * 1.69 0.15 * 1.64 0.10 *
(Top) Hidden -0.03 0.09 0.09 0.06 0.03 0.06

Interaction 0.19 0.10 0.08 0.08 0.12 0.06 *
RT Intercept 1491.27 99.61 * 1759.54 121.52 * 1635.85 80.61 *
(Linear) B - W rat. -172.28 25.95 * -213.22 26.02 * -194.33 18.05 *
(Middle) Hidden 542.61 76.61 * 497.94 96.90 * 520.08 61.05 *

Interaction -13.62 18.93 -33.38 30.68 -22.47 17.17
# of fix. Intercept 2.83 0.09 * 3.19 0.10 * 3.01 0.07 *
(Linear) B - W rat. -0.20 0.02 * -0.27 0.02 * -0.23 0.02 *
(Bottom) Hidden -0.02 0.07 -0.21 0.10 * -0.11 0.06

Interaction 0.05 0.02 * 0.09 0.03 * 0.07 0.02 *
* indicates significance in all data sets at the 95% confidence level.
* indicates a significant effect that was not present in all three data sets.
“B - W rat.” Best - Worst Rating.

Table A.1: Regressions associated with the basic psychometric results in Fig. 1.3.
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Exploratory Confirmatory Joint
Dept. Var. Indept. Var. Est. SE Est. SE Est. SE
1st fix. best Intercept 0.14 0.06 * -0.10 0.05 0.01 0.04
(Logistic) Best - worst rat. -0.04 0.03 0.04 0.03 0.00 0.02
(Row 1) Hidden -0.16 0.09 0.13 0.08 0.00 0.06

Interaction 0.05 0.05 -0.06 0.04 -0.02 0.03
Mid. fix. dur. Intercept 618.35 36.49 * 595.78 36.27 * 612.92 23.59 *
(Linear) Best - worst rat. -55.23 8.09 * -47.48 8.37 * -51.20 5.84 *
(Row 3) Hidden 103.82 27.53 * 129.57 33.42 * 141.50 22.48 *

Interaction -7.04 11.68 -7.87 15.14 -13.19 9.65
1st fix. dur. Intercept 341.64 21.31 * 353.30 16.29 * 348.37 13.23 *
(Linear) Best - worst rat. -0.83 2.43 1.50 2.38 0.32 1.66
(Row 4) Hidden 159.51 25.57 * 152.78 20.04 * 158.73 15.57 *

Interaction 0.50 3.84 -4.78 3.39 -2.18 2.44
Net fix. dur. Intercept 14.45 20.80 -12.18 30.78 4.44 17.81
(Linear) Net. Val. > 0 (A) -56.13 59.87 -38.46 69.75 -54.50 44.02
(Row 5) Net. Val. < 0 (B) 50.64 59.66 14.11 67.26 24.83 42.89

A : Net. Val. (C) 9.78 20.15 16.86 21.88 14.55 14.77
B : Net. Val. (D) 63.20 20.40 * 47.00 21.64 * 54.48 14.66 *
Hidden (E) -22.05 39.01 -21.88 42.16 -23.83 27.89
A:E 68.83 41.34 81.30 43.28 77.78 29.09 *
B:E -108.67 39.16 * -40.40 43.83 -70.26 28.91 *
C:E 3.08 12.73 8.90 14.65 5.49 9.84
D:E -35.43 13.05 * -6.01 13.85 -20.20 9.35 *

* indicates significance in all data sets at the 95% confidence level.
* indicates a significant effect that was not present in all three data sets.

Table A.2: Regressions associated with the fixation results in Fig. 1.4.
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Exploratory Confirmatory Joint
Dept. Var. Indept. Var. Est. SE Est. SE Est. SE
Lat. to 1st fix. Intercept 167.16 8.89 * 157.22 6.89 * 162.48 162.48 *
(Linear) Fix. - nonfix. rat. -0.97 3.26 1.45 4.38 0.30 0.30

Hidden 3.74 4.42 5.06 4.75 8.20 8.20
Interaction 1.12 3.97 0.81 4.59 2.17 2.17

* indicates significance in all data sets at the 95% confidence level.
* indicates a significant effect that was not present in all three data sets.
“Lat.” Latency. “rat.” rating.

Table A.3: Regressions associated with additional fixation results in Fig. A.3.
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Exploratory Confirmatory Joint
Dept. Var. Indept. Var. Est. SE Est. SE Est. SE
Mid. fix. dur. Intercept 587.88 36.06 * 567.63 27.92 * 576.42 21.60 *
(Linear) Fix. rating -11.83 7.66 1.43 8.44 -3.96 5.66
(Row 1) Hidden 61.91 28.76 * 85.31 29.15 * 78.08 20.22 *

Interaction 24.21 10.49 * 29.37 11.11 * 26.19 7.51 *
Mid. fix. dur. Intercept 672.53 38.31 * 654.00 28.25 * 661.13 23.87 *
(Linear) Nonfix. rating -42.07 6.73 * -29.98 8.84 * -34.24 5.74 *
(Row 2) Hidden 143.89 30.69 * 218.65 38.68 * 193.83 25.95 *

Interaction -8.57 9.43 -21.26 9.77 * -16.84 6.62 *
1st fix. dur. Intercept 329.36 21.44 * 340.71 20.31 * 334.77 14.75 *
(Linear) Fix. rating 4.17 2.23 5.71 3.47 5.19 2.00 *
(Row 3) Hidden 189.71 30.63 * 156.43 23.03 * 176.84 19.61 *

Interaction -10.27 4.56 * -3.45 3.56 -7.31 3.07 *
1st fix. dur. Intercept 357.71 21.32 * 374.03 17.20 * 367.47 13.59 *
(Linear) Nonfix. rating -6.73 2.15 * -6.63 2.01 * -6.52 1.46 *
(Row 4) Hidden 129.55 24.69 * 122.36 19.34 * 130.51 15.53 *

Interaction 10.20 3.18 * 7.81 2.94 * 8.80 2.12 *
* indicates significance in all data sets at the 95% confidence level.
* indicates a significant effect that was not present in all three data sets.

Table A.4: Regressions associated with the fixation duration results in Fig. A.4.
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Exploratory Confirmatory Joint
Dept. Var. Indept. Var. Est. SE Est. SE Est. SE
Left chosen Intercept -0.68 0.16 * -1.59 0.26 * -1.11 0.16 *
(Logistic) Left - right rating (A) 1.54 0.14 * 1.75 0.18 * 1.64 0.11 *
(Top) Last fix. loc. (B) 1.83 0.31 * 3.20 0.47 * 2.46 0.30 *

Hidden (C) -1.20 0.30 * -1.46 0.36 * -1.32 0.23 *
A:B 0.15 0.12 -0.14 0.13 -0.01 0.08
A:C 0.28 0.15 * -0.18 0.18 0.08 0.09
B:C 3.74 0.63 * 3.82 0.63 * 3.69 0.43 *
A:B:C -0.59 0.23 * 0.14 0.25 -0.26 0.15

Corr. left chosen Intercept 0.00 0.01 0.00 0.00 0.00 0.00
(Linear) Net fixation left (s) 0.25 0.04 * 0.24 0.04 * 0.24 0.03 *
(Middle) Hidden 0.00 0.01 0.01 0.01 0.01 0.01

Interaction 0.04 0.04 0.04 0.03 0.04 0.02
Corr. 1st seen Intercept -0.01 0.01 -0.02 0.01 * -0.01 0.00 *
chosen Excess first fix. dur. (s) 0.21 0.07 * 0.21 0.08 * 0.22 0.05 *
(Linear) Hidden -0.01 0.01 0.00 0.01 0.00 0.01
(Bottom) Interaction -0.21 0.07 * -0.13 0.06 * -0.18 0.05 *
* indicates significance in all data sets at the 95% confidence level.
* indicates a significant effect that was not present in all three data sets.
Last fixation location coded as (1=L, 0=R).

Table A.5: Regressions associated with choice bias results in Fig. 1.5.
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Exploratory Confirmatory Joint
H V H V H V

𝑑 0.002 0.003 0.002 0.003 0.002 0.003
[0.002, 0.002] [0.002, 0.003] [0.002, 0.002] [0.002, 0.003] [0.002, 0.002] [0.002, 0.003]

𝜎 0.018 0.023 0.016 0.021 0.017 0.022
[0.015, 0.020] [0.021, 0.025] [0.014, 0.019] [0.019, 0.023] [0.016, 0.019] [0.021, 0.023]

𝜃 0.38 0.54 0.20 0.49 0.28 0.52
[0.22, 0.54] [0.42, 0.66] [0.06, 0.35] [0.37, 0.62] [0.18, 0.39] [0.44, 0.61]

𝑏 0.02 0.03 0.01 0.00 0.02 0.02
[-0.10, 0.14] [-0.06, 0.11] [-0.10, 0.14] [-0.09, 0.09] [-0.04, 0.08] [-0.03, 0.06]

MAP estimate and 95% HDI of group-level mean.

Table A.6: Group-level MAP Parameter Estimates for Model with Correlated Priors
across Datasets and Conditions.
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Dept. Var. Indept. Var. Est. SE
Corr. left chosen Intercept -0.02 0.00 *
(Linear) Net fixation left (s) 0.13 0.02 *
(Left) Hidden 0.00 0.00

Interaction 0.08 0.02 *
Corr. 1st seen chosen Intercept -0.01 0.00 *
(Linear) Excess first fix. dur. (s) 0.06 0.02 *
(Right) Hidden 0.03 0.00 *

Interaction 0.06 0.02 *
* indicates significance in all data sets at the 95% confidence level.

Table A.7: Regressions associated with choice bias simulations in Fig. A.11.
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A p p e n d i x B

SUPPLEMENTARY MATERIALS FOR CHAPTER II

B.1 Figures

𝑑 = 0.001 
𝜎 = 0.03 
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𝜎 = 0.02 
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RaDDM

HybridaDDM

𝑑 = 0.001 
𝜎 = 0.01 

Figure B.1: Parameter Grid for Model Fitting. Grey grids represent every pos-
sible combination of (𝜂, 𝜃), given a combination of (𝑑, 𝜎). The Hybrid aDDM
is defined on every possible combination of 𝜂 ∈ {0.001, 0.002, . . . , 0.010} and
𝜃 ∈ {0.00, 0.05, . . . , 0.95}, implying some level of both additive and multi-
plicative attentional bias. The AddDDM fixes 𝜃 = 1 and lets 𝜂 vary along
{0.001, 0.002, . . . , 0.010}. The RaDDM fixes 𝜂 = 0 and lets 𝜃 vary along
{0.00, 0.05, . . . , 1.00}. Note that the RaDDM nests the standard DDM when 𝜃 = 1.
𝑑 ∈ {0.001, 0.002, . . . , 0.015} and 𝜎 ∈ {0.01, 0.02, . . . , 0.09} for all models.
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Figure B.2: Additional Fixation Properties. The first row depicts the probability
of first fixating left as a function of choice difficulty. The second row pools over
all subjects in Study 2 and depicts histograms of the number of fixations in a trial,
separately by condition and the location of first fixation. The third row depicts the
second fixation duration as a function of the normalized relative value. The fourth
row depicts the third fixation duration as a function of the normalized relative value.
Error bars denote standard error of the mean across participants.
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Figure B.3: Simulations of Attentional Choice Biases. For each model and condi-
tion, we generated a simulated dataset of 200 trials for each of 25 simulated subjects,
using the best-fitting estimates from the exploratory dataset. (Column 1) the psy-
chometric choice curve, (Column 2) the RT curve, (Column 3) the net fixation bias
curve, and (Column 4) the last fixation bias curve. For details, see Figs. 2.3 and 2.5.
(Row 1) Data simulated using the aDDM with 𝜃 ∈ (0, 1). (Row 2) Data simulated
using aDDM with final choice = opposite of barrier hit. (Row 3) Data simulated
using aDDM with absolute value signals and final choice = opposite of barrier hit.
(Row 4) Data simulated using AddDDM with 𝜂 ∈ [0.001, 0.010]. (Row 5) Data
simulated using RaDDM with 𝜃 ∈ (0, 1). (Row 6) Data simulated using Hybrid
aDDM with 𝜃 ∈ (0, 1) and 𝜂 ∈ [0.001, 0.010]. Error bars denote the standard error
of the mean across simulated subjects.
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right expected values. Then, we plot the residuals as a function of overall value of
the choice, separately for study 1 and 2. Error bars denote the standard error of the
mean across participant means. Data from the joint dataset.
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Figure B.5: The Effects of the Interaction of Between Attention and
Value on Choice. To measure the effect of the value-attention inter-
action on choice, Smith and Krajbich (2019) regress choice ∼ 𝛼0 +
𝛼1(𝑉𝐿 − 𝑉𝑅) + 𝛼2(𝑉𝐿 + 𝑉𝑅) + 𝛽𝐿𝑜𝑤 (Left Dwell Proportion|𝑉𝐿 < median(𝑉𝐿)) +
𝛽𝐻𝑖𝑔ℎ (Left Dwell Proportion|𝑉𝐿 ≥ median(𝑉𝐿). Here, we repeat this analysis, sep-
arately by study and condition, and plot 𝛽𝐿𝑜𝑤 and 𝛽𝐻𝑖𝑔ℎ for comparison. Bars denote
95% confidence intervals.
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Figure B.6: Model Comparison Between RaDDM, HybridaDDM, and AddDDM,
Plotted as a Probability Simplex, Separately by Dataset. For each participant, the
posterior model probability of the RaDDM is plotted as a function of the posterior
model probability of the HybridaDDM. The posterior model probability of the
AddDDM for each individual is therefore 1 minus the sum of their posterior model
probabilities for the RaDDM and HybridaDDM. Points closer to the origin indicate
participants that were best-fit by the AddDDM, points closer to the top indicate
participants that were best-fit by the RaDDM, and points closer to the right indicate
participants that were best-fit by the HybridaDDM. Blue lines connect participants
across conditions.
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Figure B.7: Participant-Level RaDDM Estimates, Split by Dataset. Estimates of the
drift rate (𝑑), noise (𝜎), and attentional bias (𝜃) in the loss condition as a function
of their counterpart in the gain condition. Grey lines mark equality across the two
conditions.
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Figure B.8: Participant-Level AddDDM Estimates, Split by Dataset. Estimates of
the drift rate (𝑑), noise (𝜎), and additive attentional bias (𝜂) in the loss condition
as a function of their counterpart in the gain condition. Grey lines mark equality
across the two conditions.
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Figure B.9: Comparing Attentional Biases Across Models. Plots depict fitted 𝜃 from
the RaDDM as a function of the fitted 𝜂 from the AddDDM, separately by study
(columns) and condition (rows). Note that smaller 𝜃’s and larger 𝜂’s correspond
to more attentional bias. Blue lines indicate OLS regression line, with grey 95%
confidence intervals. 𝜂’s are slightly jittered for visual clarity.
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Figure B.10: Hybrid aDDM Parameter Recovery. Estimated parameter estimates as
a function of the true data-generating parameters in a parameter recovery exercise
for the Hybrid aDDM. Data was simulated using the Hybrid aDDM with parameters
from every combination of: 𝑑 ∈ {0.002, 0.005, 0.008}, 𝜎 ∈ {0.02, 0.05, 0.08},
𝜃 ∈ {0.1, 0.5, 0.9}, 𝜂 ∈ {0.001, 0.005, 0.009}. Dots represent the mean of the
posterior. Lines represent the ≥95% HDI: Posteriors are discrete distributions;
therefore, we include the discrete values just outside of the mass containing 95% of
the density in order to achieve a minimum of 95% confidence.
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Figure B.11: RaDDM Out-of-Sample Predictions. (Top Left) The probability of
choosing left as a function of the normalized relative expected value of the left
option, as in Row 1 of Fig. 2.3. (Top Right) Response time as a function of the
normalized best minus worst expected value, as in Row 2 of Fig. 2.3. (Bottom Left)
Corrected probability of choosing the left option as a function of the net fixation
time to the left option, as in Row 1 of Fig. 2.5. The corrected probability is
computed by subtracting from each choice observation (coded as 1 if left chosen,
and 0 otherwise) the proportion with which left is chosen at each relative expected
value. (Bottom Right) The probability of choosing the last fixated option as a
function of the normalized net expected value of the left option, as in Row 2 of
Fig. 2.5. Rows separate the data by condition, and columns separate by study.
Out-of-sample data consists of all trials divisible by 10 from all participants in joint
dataset. 10 simulated datasets per participant. Error bars represent the standard
error of the mean across all simulations for all participants.
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Figure B.12: AddDDM Out-of-Sample Predictions. (Top Left) The probability of
choosing left as a function of the normalized relative expected value of the left
option, as in Row 1 of Fig. 2.3. (Top Right) Response time as a function of the
normalized best minus worst expected value, as in Row 2 of Fig. 2.3. (Bottom Left)
Corrected probability of choosing the left option as a function of the net fixation
time to the left option, as in Row 1 of Fig. 2.5. The corrected probability is
computed by subtracting from each choice observation (coded as 1 if left chosen,
and 0 otherwise) the proportion with which left is chosen at each relative expected
value. (Bottom Right) The probability of choosing the last fixated option as a
function of the normalized net expected value of the left option, as in Row 2 of
Fig. 2.5. Rows separate the data by condition, and columns separate by study.
Out-of-sample data consists of all trials divisible by 10 from all participants in joint
dataset. 10 simulated datasets per participant. Error bars represent the standard
error of the mean across all simulations for all participants.
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B.2 Tables

Exploratory Confirmatory Joint
Dept. Var. Indept. Var. Est. SE Est. SE Est. SE

Study 1
Left Chosen Intercept -0.17 0.11 -0.40 0.08 * -0.28 0.07 *
(Logistic) N. L - R E[V] 2.64 0.13 * 3.05 0.18 * 2.85 0.11 *
(Top) Loss Condition -0.16 0.11 0.07 0.12 -0.05 0.08

Interaction 0.34 0.17 * 0.14 0.13 0.24 0.10 *
RT (s) Intercept 2.85 0.31 * 3.56 0.49 * 3.20 0.29 *
(Linear) N. B - W E[V] -0.62 0.16 * -1.26 0.36 * -0.94 0.20 *
(Middle) Loss Condition -0.23 0.24 -0.14 0.37 -0.18 0.22

Interaction 0.14 0.15 0.42 0.28 0.28 0.16
# of Fix. Intercept 4.16 0.29 * 4.43 0.32 * 4.30 0.21 *
(Linear) N. B - W E[V] -0.65 0.14 * -0.97 0.19 * -0.81 0.12 *
(Bottom) Loss Condition -0.16 0.17 -0.07 0.17 -0.12 0.12

Interaction 0.16 0.14 0.12 0.14 0.14 0.09
Study 2

Left Chosen Intercept 0.12 0.06 0.14 0.06 * 0.11 0.04 *
(Logistic) N. L - R E[V] 7.00 0.50 * 6.26 0.48 * 6.62 0.35 *
(Top) Loss Condition 0.10 0.09 -0.07 0.09 0.03 0.07

Interaction -0.49 0.79 0.19 0.66 -0.10 0.52
RT (s) Intercept 2.56 0.16 * 2.90 0.29 * 2.73 0.16 *
(Linear) N. B - W E[V] -1.02 0.12 * -1.03 0.15 * -1.03 0.10 *
(Middle) Loss Condition 0.70 0.16 * 0.64 0.18 * 0.67 0.12 *

Interaction -0.39 0.11 * -0.25 0.11 * -0.32 0.08 *
# of Fix. Intercept 4.21 0.19 * 4.37 0.26 * 4.29 0.16 *
(Linear) N. B - W E[V] -1.39 0.16 * -1.42 0.16 * -1.41 0.11 *
(Bottom) Loss Condition 0.57 0.16 * 0.32 0.21 0.44 0.13 *

Interaction -0.39 0.12 * -0.13 0.14 -0.26 0.09 *
* indicates significance in all data sets at the 95% confidence level.
* indicates a significant effect that was not present in all three data sets.
“N.”: Normalized. “B - W rat.”: Best - Worst Rating.

Table B.1: Regressions associated with the basic psychometric results in Fig. 2.3.
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Exploratory Confirmatory Joint
Dept. Var. Indept. Var. Est. SE Est. SE Est. SE

Study 1
1st Fix. Best Intercept -0.10 0.06 0.05 0.06 -0.02 0.05
(Logistic) N. B - W E[V] 0.22 0.12 -0.07 0.12 0.08 0.09
(Row 1) Loss Condition 0.11 0.10 0.02 0.09 0.07 0.07

Interaction -0.32 0.18 -0.06 0.17 -0.19 0.12
Mid. Fix. Dur. Intercept 0.71 0.04 * 0.81 0.05 * 0.76 0.03 *
(Linear) N. B - W E[V] -0.04 0.02 * -0.10 0.03 * -0.07 0.02 *
(Row 3) Loss Condition -0.01 0.04 0.00 0.04 0.00 0.03

Interaction 0.00 0.02 0.05 0.04 0.02 0.03
1st Fix. Dur. Intercept 0.55 0.06 * 0.64 0.06 * 0.59 0.04 *
(Linear) N. First E[V] 0.02 0.03 -0.01 0.04 0.01 0.02
(Row 4) Loss Condition 0.01 0.05 0.01 0.06 0.02 0.04

Interaction -0.01 0.04 -0.01 0.06 -0.02 0.03
Net Fix. Dur. Intercept 0.04 0.03 0.03 0.04 0.03 0.02
(Linear) N. L - R E[V] 0.18 0.02 * 0.14 0.03 * 0.16 0.02 *
(Row 5) Loss Condition -0.06 0.03 * 0.05 0.04 -0.01 0.03

Interaction 0.02 0.03 0.15 0.07 * 0.08 0.04 *
Study 2

1st Fix. Best Intercept -0.02 0.08 0.03 0.08 0.00 0.06
(Logistic) N. B - W E[V] 0.04 0.12 -0.03 0.12 0.01 0.08
(Row 1) Loss Condition 0.05 0.12 -0.05 0.11 0.00 0.08

Interaction -0.07 0.17 0.08 0.17 0.00 0.12
Mid. Fix. Dur. Intercept 0.52 0.02 * 0.54 0.03 * 0.53 0.02 *
(Linear) N. B - W E[V] -0.07 0.02 * 0.00 0.02 -0.03 0.01 *
(Row 3) Loss Condition 0.04 0.02 0.08 0.02 * 0.06 0.01 *

Interaction 0.03 0.02 -0.03 0.02 0.00 0.02
1st Fix. Dur. Intercept 0.43 0.02 * 0.47 0.03 * 0.45 0.02 *
(Linear) N. First E[V] 0.02 0.01 0.03 0.02 0.02 0.01
(Row 4) Loss Condition 0.07 0.02 * 0.12 0.03 * 0.09 0.02 *

Interaction 0.00 0.02 0.00 0.03 0.00 0.01
Net Fix. Dur. Intercept -0.16 0.04 * -0.20 0.04 * -0.18 0.02 *
(Linear) N. L - R E[V] 0.14 0.02 * 0.14 0.03 * 0.14 0.02 *
(Row 5) Loss Condition -0.05 0.03 -0.09 0.04 * -0.07 0.03 *

Interaction 0.02 0.03 0.01 0.03 0.01 0.02
* indicates significance in all data sets at the 95% confidence level.
* indicates a significant effect that was not present in all three data sets.
“N.”: Normalized. “B - W rat.”: Best - Worst Rating.

Table B.2: Regressions associated with the fixation process results in Fig. 2.4.
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Exploratory Confirmatory Joint
Dept. Var. Indept. Var. Est. SE Est. SE Est. SE

Study 1
1st Fix. L Intercept -1.23 0.28 * 1.29 0.35 * 1.26 0.22 *
(Logistic) N. L - R E[V] -0.07 0.10 0.05 0.08 0.07 0.06
(Top) Loss Condition -0.32 0.14 * 0.01 0.16 0.17 0.11

Interaction 0.16 0.12 0.05 0.11 -0.05 0.08
2nd Fix. Dur. Intercept 0.66 0.05 * 0.73 0.05 * 0.69 0.04 *
(Linear) N. B - W E[V] -0.05 0.01 * -0.08 0.02 * -0.07 0.01 *
(Middle) Loss Condition -0.02 0.04 0.01 0.03 -0.01 0.02

Interaction 0.02 0.02 0.06 0.03 0.04 0.02 *
3rd Fix. Dur. Intercept 0.58 0.05 * 0.66 0.05 * 0.62 0.03 *
(Linear) N. B - W E[V] -0.08 0.02 * -0.10 0.03 * -0.09 0.02 *
(Bottom) Loss Condition -0.01 0.04 0.06 0.04 0.03 0.03

Interaction 0.01 0.03 -0.01 0.04 0.00 0.03
Study 2

1st Fix. L Intercept 0.22 0.07 * 0.24 0.06 * 0.24 0.04 *
(Logistic) N. L - R E[V] 0.01 0.05 0.01 0.05 0.01 0.04
(Top) Loss Condition -0.03 0.05 0.00 0.05 -0.01 0.04

Interaction -0.01 0.07 0.01 0.07 0.00 0.05
2nd Fix. Dur. Intercept 0.52 0.03 * 0.62 0.07 * 0.57 0.04 *
(Linear) N. B - W E[V] -0.04 0.02 * -0.08 0.04 * -0.06 0.02 *
(Middle) Loss Condition 0.05 0.02 * 0.12 0.04 * 0.09 0.02 *

Interaction 0.01 0.03 -0.04 0.03 -0.02 0.02
3rd Fix. Dur. Intercept 0.51 0.02 * 0.49 0.03 * 0.50 0.02 *
(Linear) N. B - W E[V] -0.15 0.03 * -0.06 0.03 * -0.11 0.02 *
(Bottom) Loss Condition 0.04 0.02 0.10 0.04 * 0.07 0.02 *

Interaction 0.03 0.03 -0.01 0.04 0.01 0.02
* indicates significance in all data sets at the 95% confidence level.
* indicates a significant effect that was not present in all three data sets.
“N.” : Normalized. “B - W rat.”: Best - Worst Rating.

Table B.3: Regressions associated with the additional fixation properties results in
Fig. B.2.
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Exploratory Confirmatory Joint
Dept. Var. Indept. Var. Est. SE Est. SE Est. SE

Study 1
Corr. L Chosen Intercept 0.01 0.01 0.00 0.01 0.00 0.00
(Linear) Net Fix. Left 0.37 0.05 * 0.25 0.04 * 0.31 0.04 *
(Top) Loss Condition 0.00 0.01 0.00 0.01 0.00 0.00

Interaction 0.02 0.04 -0.02 0.03 0.00 0.03
Last Fix. Chosen Intercept 1.27 0.17 * 1.54 0.17 * 1.40 0.12 *
(Logistic) N. Last - Other E[V] 2.55 0.14 * 2.83 0.17 * 2.69 0.11 *
(Middle) Loss Condition 0.05 0.08 -0.03 0.08 0.01 0.06

Interaction 0.25 0.19 0.21 0.16 0.23 0.13
1st Fix. Chosen Intercept 0.18 0.10 -0.09 0.08 0.04 0.06
(Logistic) N. 1st - Other E[V] 2.61 0.12 * 2.94 0.17 * 2.77 0.11 *
(Bottom) Loss Condition -0.39 0.11 * -0.14 0.08 -0.26 0.07 *

Interaction 0.36 0.10 * 0.14 0.13 0.26 0.10 *
Study 2

Corr. L Chosen Intercept 0.01 0.00 * 0.01 0.00 0.01 0.00 *
(Linear) Net Fix. Left 0.09 0.02 * 0.06 0.01 * 0.07 0.01 *
(Top) Loss Condition 0.00 0.01 0.00 0.01 0.00 0.00

Interaction -0.02 0.02 -0.02 0.01 -0.02 0.01
Last Fix. Chosen Intercept 0.59 0.13 * 0.74 0.10 * 0.67 0.08 *
(Logistic) N. Last - Other E[V] 7.04 0.52 * 6.23 0.50 * 6.62 0.36 *
(Middle) Loss Condition 0.10 0.13 -0.03 0.10 0.03 0.08

Interaction -0.73 0.75 0.20 0.65 -0.23 0.50
1st Fix. Chosen Intercept -0.03 0.06 -0.02 0.05 -0.03 0.04
(Logistic) N. 1st - Other E[V] 6.95 0.48 * 6.24 0.48 * 6.60 0.35 *
(Bottom) Loss Condition 0.08 0.09 -0.12 0.08 -0.03 0.06

Interaction -0.52 0.79 0.08 0.62 -0.20 0.51
* indicates significance in all data sets at the 95% confidence level.
* indicates a significant effect that was not present in all three data sets.
“N.”: Normalized. “B - W rat.”: Best - Worst Rating.

Table B.4: Regressions associated with the attentional choice biases results in Fig.
2.5.
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Loss Condition
RaDDM AddDDM HybridaDDM

Dept. Var. Indept. Var. Est. SE Est. SE Est. SE
Study 1 𝛽0 Intercept 0.56 0.11 * 0.73 0.10 * 0.63 0.10 *
𝑙𝑜𝑔(𝑅𝑇) 𝛽1 N. Abs. Net Value -0.79 0.06 * -0.81 0.07 * -0.74 0.07 *
(Linear) 𝛽2 N. Overall Value -0.20 0.08 * -0.02 0.08 -0.12 0.07
Study 2 𝛽0 Intercept 1.10 0.10 * 1.14 0.10 * 1.10 0.09 *
𝑙𝑜𝑔(𝑅𝑇) 𝛽1 N. Abs. Net Value -0.76 0.07 * -0.76 0.07 * -0.76 0.07 *
(Linear) 𝛽2 N. Overall Value -0.13 0.02 * -0.02 0.02 -0.10 0.03 *

Gain Condition
Study 1 𝛽0 Intercept 1.05 0.10 * 0.86 0.11 * 0.89 0.12 *
𝑙𝑜𝑔(𝑅𝑇) 𝛽1 N. Abs. Net Value -0.70 0.07 * -0.70 0.07 * -0.68 0.07 *
(Linear) 𝛽2 N. Overall Value -0.35 0.08 * -0.13 0.07 -0.18 0.08 *
Study 2 𝛽0 Intercept 1.21 0.09 * 1.15 0.09 * 1.18 0.08 *
𝑙𝑜𝑔(𝑅𝑇) 𝛽1 N. Abs. Net Value -0.95 0.06 * -0.97 0.06 * -0.95 0.05 *
(Linear) 𝛽2 N. Overall Value -0.08 0.03 * 0.02 0.03 -0.04 0.03
* indicates significance in all data sets at the 95% confidence level.
“N.”: Normalized. “Abs.”: Absolute.

Table B.5: Model Comparison Regression Test in Simulated Data Using RaDDM,
AddDDM, and Hybrid aDDM
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B.3 Additional Text
Attentional Manipulation in Study 2
Using the forced fixation cross to manipulate the location of the first fixation in study
2, we nudged choices away from the target option by a small but significant amount
in the loss condition, but not in the gain condition (Fig. B.13 top row). RTs did
not significantly change in response to attentional manipulations (Fig. B.13 bottom
row).
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Figure B.13: Basic Psychometrics with Attentional Manipulations. The top row
depicts the probability of choosing the left lottery as a function of the normalized
expected value difference between the left and right lottery. Value differences are
normalized by the maximum possible value difference. The bottom row depicts
response times as a function of the normalized choice difficulty. Choice difficulty
is measured by the difference between the best and worst expected value and is
normalized by the maximum possible choice difficulty. Columns denote the location
of the fixation cross. Error bars denote standard error of the mean across participants.

In study 2, we used counterbalancing to ensure that altering the location of the forced
fixation cross did not affect the probability of first fixating on the best option (Fig.
B.14 top row). This attentional manipulation increased first fixation durations by
roughly 100 ms on average without altering middle fixation durations (Fig. SB.14
middle and bottom row). This biased net fixation durations in the direction of the
manipulation (Fig. B.14 fourth row), partially explaining the right-side attentional
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favoritism seen in the bottom row of Fig. 2.4.
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Figure B.14: Fixation Process with Attentional Manipulations. The first row depicts
the probability of first fixating on the best lottery as a function of normalized choice
difficulty. The second row depicts the first fixation durations as a function of
normalized expected value of the first seen lottery. The third row depicts average
middle fixation durations as a function of normalized choice difficulty. The fourth
row depicts the net fixation duration to the left lottery as a function of the normalized
expected value difference. Columns denote the location of the fixation cross which
manipulates the location of first fixation. Error bars denote standard error of the
mean across participants. Data from the joint dataset.

Manipulating the location of the first fixation using a forced fixation cross at the
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start of each trial did not affect the magnitude of net fixation bias (Fig. B.15 first
row). Non-centered fixation crosses reduced the accuracy with which the first and
last fixated item was chosen when relative values were close to 0 (Fig. B.15 second
row). In aversive choices, when the relative value of the first fixated item was equal
to 0, the attentional manipulation biased induced a first fixation bias in the direction
of the forced fixation cross (Fig. B.15 third row). In choices between gains, this is
true for left fixation crosses, but not for right.
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Figure B.15: Attentional Choice Biases with Attentional Manipulations. The top
row depicts the corrected probability of choosing the left lottery as a function of the
net fixation time to the left lottery. Corrected probabilities are calculated by taking
the choice observation (1=left, 0=right) and subtracting the proportion of times left
was chosen at each value difference. The bottom row depicts the probability of
choosing the last fixated option as a function of the normalized relative expected
value of the last fixated lottery. Columns denote the location of the fixation cross
which manipulates the location of first fixation. Error bars denote standard error of
the mean across participants. Data from joint dataset.
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A p p e n d i x C

SUPPLEMENTARY MATERIALS FOR CHAPTER III

C.1 Figures
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Figure C.1: Evidence Weights for Early vs. Late. Evidence weights for the first 16
samples in a trial and Last Sample - 3 through Last Sample - 1. Evidence weights
were calculated in the same manner as shown in Eq. 3.3 and plotted in Fig. 3.3.
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Figure C.2: Termination Rule over Cumulative Sample for Every Participant. We
efine a state by the combination of cumulative sample and sample number. For
every state, we plot the proportion of trials in which a choice was made in this state,
conditional on having reached this state. If less than 5 trials reached a state, that
state was excluded. Red lines plot the estimated decision boundaries from Theorem
1.
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Figure C.3: Policy over Cumulative Sample for Every Participant. We define a state
by the combination of cumulative sample and sample number. For every state, we
plot the proportion of trials in which Play was selected, conditional on a choice
being made in this state. Red lines plot the estimated decision boundaries from
Theorem 1.
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Figure C.4: Termination Rule over Average Sample for Every Participant. Define a
state by the combination of average sample and sample number. For every state, we
plot the proportion of trials in which a choice was made in this state, conditional on
having reached this state. If less than 5 trials reached a state, that state was excluded.
Red lines plot the estimated decision boundaries from Theorem 1.
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Figure C.5: Policy over Average Sample for Every Participant. Define a state by
the combination of average sample and sample number. For every state, we plot the
proportion of trials in which Play was selected, conditional on a choice being made
in this state. Red lines plot the estimated decision boundaries from Theorem 1.
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C.2 Tables

Row Dept. Var. Indept. Var. Estimate Standard Error
1 Play Intercept -0.43 0.21 *

(Logistic) Machine Mean 1.96 0.19 *
2 Play Intercept -0.52 0.27

(Logistic) Avg. Sample 3.43 0.38 *
3 # Samples Intercept 6.90 1.59 *

(Linear) Abs. Machine Mean -1.22 0.23 *
4 # Samples Intercept 7.08 1.77 *

(Linear) Abs. Avg. Sample -2.11 0.33 *
* indicates significance at the 95% confidence level.
“Avg.”: Average.
“Abs.”: Absolute.

Table C.1: Regressions associated with the psychometrics results in Fig. 3.2.


