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Introduction and Summary. 

In Part I of this paper we develop systematically 

a general theory of linear functional equations, where 

the unknowns are a function and n independent variables. 

'rhe Fredh olm theory of integral equations , and the 

classical theory of linear algebraic equations are 

included if we specialize the equations. We may 

regard the set ·of equations as a linear trans:formation 

on the composite range consisting of t h e function and 

then variabl es. I t is proved that the transformations 

for which the bordered Fredholm determinant, which is 

defined in § 2, do not vanish form a group. A general

ization of the transformation is brought in at the end 

of Part I. 

In Part II we apply the generalized transformation 

to the invariant theory of quadratic forms with con

tinuous coefficients on the composite range. {•! The alge

braic theory, and the theories worked out by A. D. Michal 

and T. s. Peterson (references on page 40 ) , are special 

cases of this. The theory of quadratic forms with con

tinuity of order one is reduced to the case studied 

earlier in Part II. 

In Part III the theory worked out in Pa.rt I is 

applied to projective transformations in fun ct ion space. 

In particular all the results given by L. L. Dines 

( reference on page ? ) are obta,ined somewhat simpler. 

U> Part II includes some unpublished work of 
Professor A. D. Michal. 



It is proved for the first time that the one-parameter 

family of finite transformations generated by an infin

itesimal projective transformation in function space 

forms a one-para.meter continuous group. 

I wish to put on record my indebtedness to 

Professor A. D. Michal, who suggested the problem and 

has kindly supervised and assisted me in carrying it 

through. 
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Part I 

Linear Functional Equations in a Function and 

n Independent Variables. 



Introduction: In the firet part of this paper the 

theory of the eet of n ~ 1 linear integral equations: 
~ - \ 

~(J'I) ==- ,;J(J<)+ l l<{J<.,s)~ <~)dst-.,if, K/t1J3; 
. .+ . ...... . . 

~ l .:: ~ i. + ( /(l(s) ,3rs)ds t>fi 1<)- ;;}1 (C= t,21 -- 1 ,,.,..J 

ie developed from first principles, the results being 

given in explicit form that will be suitable for 

applications. 

We assume ance and for all that the functions 

J(lX-,~)1 K/Cx), t<''{sJ are bounded and integrable in the 

Riemann sense on both X arid 5 on (q1 k-) . F0r most of 

the applications t he assumption of c0ntinuity ie also 

made. A consideration of thie is deferred to § 9. 

We shall use the convention of writing the con

tinuous arguments above as indices of position in the 

alphabet after q, and shall imply Riemann integration 

on {t:4
1

.t.-) with respect to any such index which occurs aa 

both sub- and super-script in a single term. Indices 

before q shall take on integral Taluea 1 ton unless 

otherwise stated, and the repetition of such an index 

as sub- and super-script in any term shall imply sum

mation from 1 ton. With this notation we may write 

the above as 

( I, 1) ~ ~ =: ~ ~+ Kst:"Js + l<J -9_< 
~ l ::- ~ l + (( ~ j S -+ (< j ~ '& 

If tX. and ~ pass oTer the composite range consisting 

of the continuous interval ({,/1 '-) fellowed by the discrete 

range (1,"1 we may write ( 1. 1) as 

(I. "2) ~ c,( ::- ~fX_+ t<~ l' 



The surmnation and integration conventions do 

not apply to subscripts of indices. 

DineJ'1has indicated an explicit solution for 

the case n=1 , and has applied this. He gives the 

relat i ons (4.1 -. 8 ) below for that case in different 

notation. Hildebrandi
2J indicates that the existence 

theorem for inversion, the product theorem and the 

group property follow from the fact that the bor

dered Fredholm determinants are actual Fredholm de

terminants. 

• We shall prove these by direct methods analogous 

to those of Fredholm's classic paperfJ/ 

Definitions: 

follows: 

Also the 

>.'X- X--->' . 
~ • I .._ 18 

(. s; - --s-
~) )(, - - - Y""' i B 

:s s, - - - s-.,,..,. 
.c::, ~ .-:, - - - )<,,._,, i a 

I, s; -- - $',.,,_ 

We define the function d,--->'-.. as s1 ---S...._ 

U)L.L.Dines: "Projective Transformations in Function Space!' 
Trans. Am. :Ms.th. Soc. V. 20(1919) p. 45. 

(i)T.H.Kildebrandt: 11 0n Bordered Fredholm Determinants!' 
Bull. Am .• Math. Soc. V. 26(1920) p. 400. 

(3) I. Fredholm: "Sur une Classe d 'Eaua.t ions Functionelles!' 
Acta Math. V. 2?(1903) p. 365. -

? 



Let us define 

a:e $be , 11 f.:rn t o r Qi' 

as the cofactor o~ -m-
i9cA the egf ,,, t.o 1 ,cf 

A as the determinant ls} +t<J f where ~j is the usual 

Kroneck.er delta. 

w. ftn l.he1 define 

We not ice that 

Now define: 

first minore. 

Convergence of the, SeriE!s Defin~d_: The general 

term of each of the series in (2.4) is the repeated 

integral of a determinant of order mt n. Now let M 
be such that lf<t/J /f<i/1 /!<Jl /bJ+r<f / are a.11 less than 

N. Thie is possible since all the kernels are bounded, 

and there are only a finite number of them. Then by 
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Hadamard's lemma the general term is less in ab solute 
I'. - ... -value than ~-+-) -r- M ..,,.,_+"" { -f- -~r""'-1" 

~/ 
where p = O or l according to the series ta.ken. 

The dominating series thus obtained converges for 

all value3 Gf !'-f , fer t h e ratio of the (m•+l)st term to 

the mth term is 

M ( -f -") ( /1,r,_ T"/V\. + I) ,i,,.. ~""' ( /vh t-,'V\ + I\ Y:z_ 
/\1'\. +t ,.,,.,.. +- ) 

l'-1 ( 4-oJ [(I+ ..L. , ,,.,,....+"" 7 Jr,_ ( I + ~), 1/-z 
fn-+I)}', %;-~ J ,..,,_+ti 

Nd \A/ L q, + ....L. J-"t-t--, v"'L _ e v,_ ,,.,,_,.➔ ,,o li ..,.,_+..... J -

L (lf-_l:h_ )X = / 
~~ "° /Yr- t-, _J__ 

therefore t h e l imit of the ratio ie eY-i../'1(-t-- aJ !:;"°~+1)½ - O, 

Hence these series converge absolutely and 

uniformly in (o.,4) , and the def in it ione are justified. 
/\ )( 'I, - •• ')('1,,,-

The Eight Relations: If we take .L..l s- 1<, ---,c......,..._ and 

expand by minors of the first row, we get 

9 

/2 x I(, ---r ........ - I<>< L x; -- - ?<,.,,,,._ - t< J< A~ "12 --- ~- --- ,,,.,,. f(X /j,1' -- - Y:-. /( 'K_ 1::. -I I<, - -- 'f-""' 
SXr·•-r--- s ){,---)t'_. x, 6)'l··-)<"""-i- +(-,} 1,_ sr:,---Y,,.__I+ 1 s Y,---r--. 

Since the ,c~ are variables of integration we 

ma.y rearrange them, giTing 

_,6 x- ><, ---r,.,..,.._ ~ I<.%' 6..x,--- Y:...,,.._ _ t< .x Ll tr, --- r,___, + l < l\ ~ 1 1<, -- -)I'..._ 

$'~, ---X-,,... s Y
1
---r ........ ""'"' T s )C , ---Y,.,._, 1 1 ~ x,---x,...__ 

If we multiply by-9 , a.nd sum frGm m = 1 ta m=="° , 

we get D; -1:!; =- J<; (D-L:.) -I<-~ D} + f< JDj-A1) 
Using ( 2. 3) and tranepo sing, we get 

(4,V 0 x - D I< ~ + I<! .o -t -t- I< ~ 0 1 = o 
5 5 < 5 1 5' 

If we expand similarly by cofactors 0f the first 

column we get 



x r. --- }('\¥' 
As above let ue expand A 1 "'• __ , y.,,_ by cofactore 

of the first row, getting 
~ )( x. --,r--. _ I< Y ~-t: Y., - -,y,,_,__, _ I<~ L:,.~ x, - -- x'½--

c Y,---Y- - _,...,,..,_. -r t >:,-··Y,,_. 1 J ~ ),:,-- · ')(.-i-. 

Ta.king 1_ ~' ef both sidee, we have ,,.,_, ' 

- DI - .6.-~ :: I<! C> 1 + /( j ( D f - 0 <; t f-~ {) 

Recalling (2.3) and transpoeing: 

( 4. 3J o ! - D 1< r +- 1<.: o 1 + 1<; D t ==- o. 
Expanding L:Y,1 v. , - - -'le. ........ by the first column eimilarly, s )(, -- - ?'...,,.... 

we have . . 1 J f 
(4-. 0 D f - DI< j + @i t<s + D -R !<5 = o, 

Taking the eum of members ~f the (m • j)th row 

by 
A~ 1'- -- - Y 

cefactere of the first rew of ,L.)s ><: ___ ;: , we have 

0 = [<.1£:;.'f.r=:-~-- -,,__,,__ /(1' ,6-iY,---Y.__, +('i,-i+l,,-iJ.LS~,,---r....,_ 
.5 , """ t"" S Y, --· Y,..,.,,_., -' "'p ~ y1 - - - )(_._ 

Ta.king ~ ~ ' and changing sign, we have 
..,.._:a ' 

l lf, rJ D ~ - 0 I< 1 + I< 4 D t + f< j D: = D 

Similarly multiplying the (m + i)th column by 

cofactors of the first, we get 

(11-,tJ) Df- DK[+otr<}+o; 1<f=-o 
For our final expansion of this kind sum the 

elements of the (m + i)th row timee the cofactors ef 

the (m + j )th row ef Ll;,:~~;::_giTing 

("~ A'f-,--- r:.....__ _ /<i ,...-t-_ )( ,---1-.., ( C l f<i) ~~ ~.- - -Y"-
"bd ?<, ---'/',.,_- ~ -t;-~j)(,---Y:,,,._,, + C fl+ Ji I )(,---'y...,...,_ 

Ta.king 2- ~ 1 , we ha Te 

f j· D = ~;~ D ~- - ( ~} + t< j) ( D j - D ~ i) 
Cancelling /) ~J.:: /) ~; ~j and changing sign, we get 

( 4. 1) D ~ - 0 I<~ + /( i D} -t f< j D ~- ==- e) . 

Similarly by columns 

it.L ~) 0 ( - D l< ( + O i I< i. + 0 ~ l<-'1• -== o l' i 1 -t: 1 I • 
We collect the results ef this paragraph int0 

10 



Theorem I: Unde:;: the conditions in § 1 and wi tl!, 

t h e de~initio n ~ in f 2, we h~~e the following :t~ions: 

(4-, f) D:- D 1<; + 1<: D1 + t<J D{ ::: D 

(Lf, 2) 

(4.J) 

(Lf, If-) 

(lf, rJ 

(4, 1,) 

(lf. 7) 

(4,g) 

Since the odd and even numbe r ed relations aesociate 

naturall y , we may refer to them later as (4. odd) a.nd 

(4. even ) respectivel y, 

The Invereion of the Traneform~t io11 .( 0# O l.:. We 

May write (1 .1) as SK(~}:::"; , a. transformation f r om J to i . 
If S'ei i e the product SL (51,) ~SL, S ,, , the kernel e of S <i-f 

are as follawe: 

t" '1( - L >< + (< X + L 'f (< -t t l 1 l< -P 
\rt S - s 5 -t 5 S 

X X' I )( + L X K i: + L X (< p' Gi·==-Li+<j t- -j ~ 1 
j ' ' ' " 

r i - L i + Ks 4- L t: I<;+ L 1' f <; 
1.T15- 5 

' t i .f 
Gt~- :::: L j- + I<}+ Li t<J -+- L .R I< -i 

We will now con eider t h e case D#= o. 

Aesuming that (1.1) has a eolution (j ), apply the 

transformat ion 5;1 to ( 1. 1 ) where the kernel s of s,<-r are 

(S-,t) 

..:. T) r 
oJ 

Thie gives us 

- oJ 0 
◊)-/JI" 

Applying (5 .1 ) to the right side of (5.2) the 

11 



kernels of the product s,tsl< are - ~ times the left hand 

eides of (4. even). Hence s/sK~s0, the identity 

transformation, and we have 

Theorem II: If a bounded an~ integrable .so~utio~ 

(j) ef ( 1. 1) e;i st s when D_f: o, it i e UJli_g__u.~~~!14....i s given 

-v 'f. D'/ DX r 

~ r-::: ~ - / 115 71·~-;1 

i. • Di Di , 
~ =- ,;i L _ _s 11- 5 - ~· ,:;, ti 

D D 
Substituting (5.3) in (1.1), we get 

(s, 4) 
) _, -

,,:; :=: S k. • <;K -"J 

Applying (5.1), the kernele of 5k·S,;' are - 6 timee 

the left eides of (4. odd). Hence S'k.-s,t==-So and (5.4) is 

verified. This gives ue 

Thesrem III: The eguation (1.11 has a unique 

solution when D#O,. given by (5.3). 

Centinuity and Fr6chet Differentiability o~ 

Functionals of Several Fun!l,ti9ne: 

A fun ct iona.l F :2t,--, 2-_[ Cf, 
1 

- - - 1 cf ,,,.,_] ie said to be 1 in ear 

and homogeneous in the n functions c.f,· , if 

12 

( 6, I) F z-, -- -~,,...,[A , Cf, t /\-<, ~ J - --J ').~ Cf--... -+ rt(,... i.r-,.,.] :: A, ;l, 4 J?,µ, -+ -- - +A-,">-..... t i3~,L(,,,J 

...tihere the A'.s and B;are fun ct ions of the . 

Now define 
F' il,---~,,,_,_ [ Cf(] ::: F z, --- 2~ [Cf,)---, cf/\,\]) 1" _ . 

( '1'"f =D(j :/:-i) 
Theorem IV: A necessary and sufficient conditian 

that F ~.---c-[ff.,
1 
-- ~1 a, __ ] b i d h . the •-~ e 1 near an omogeneous 1n 

n functions %is that 

(6. 3) 
1) F/·,--·-'t-.ue.:J be linear ,and homogeneou s in IPL' 

2) f •,--· ?-[Cf,, --j ct~]* = Ir Ff·---~--- [ Cf J. 



Suppose (6.1) to hold. 

Then let ~ j = fU.-;1 =O ( i Fl) 

pr, --- z"""' [;\Cf.: +;tt .: '-l"J ==Ai.\•+ U.: µ~• which proves 1) 

Now let >.l::/J '>-/ :::0 (jf:.L) 1 /v{j ==o {all / j 

Then F i.r:, --~r,_ [ cfc] =Ai 

Ne W let ~ l :: f 
1 

/l,,(. ~ - -:::. o { a. 11 i) 
""- "" 

F1 ,---i'-,_ [rf)•· ---cf,.,..]=: ? r1,= _?. F~,--x,_L<(] which proves 1 7 / F- 1 L.-f l 

2). Hence the condition is neceesary. 

Now if 1) and 2) h old, we have 

F 21 - -· ~-- [ r1, 'Pi + µ, 'P., - - -1 ;\,_cf""+ µ_ ~] ::: 
,,,.._ ""-
2 F.r,---~--[>-,'f~·tftAi'h]==-? Ai~.:+,t,t,Gi: 

[::.1 &. l :1 

Hence t h e condi tion is alee eufficient. 

F Zr ---1,,.,.,.,__ [ y-rtvX vJ Let ' C r l 1 ,; be a functional of the p 
I 

xt:-
funct ions '( of two Tariablee, of t h e q functions Y ;-

of 0ne Tariable, and of the r i ndependent variab les f'f. 
Give each of the Y~ an increment ~ Y, such that >, is 

the largest of the set max I ~YI. 

Define AF- as 

(b,4) r~,---?,..._[Y;-t.+sY;)-t Y/+~r,: 'ypt-b11]-Fi,---'i-[r~: r~ Y.?] 
We say that P is a continuous functional of the 

Y~ a.t the point of p+-q+r-fold function space, (Yc:t- Yt Y;,) 

if for every € ::> o there exists a &' such that if >; ~ f; 

JAFI < t . We eay that F 1 B a continuous fun ct ion al 

in a region of the above space if it is continuous at 

every point ef t h e region. 

The Fr,chet differential f F i!,---E,,_ [ Y~: Yt )} / i Y C S '(h ~ rJ 
of F is defined t o h ave the properties: 

13 



S Ys' 1) It is linear a~d homoge_r'!,§.@Us in the 

2) / 6,=:. ~$Ff approaches zera with '2 , 

The distinction should be noticed between F 

ae depending on the variablee }_p , and on the variable 

~, - -- :ie • 
J J """ 

The }; are to be regarded as independent 

of the Y{'t and Y/, while the 2~ enter as a rule as 

rt y1: arguments of the Y- or 1- a,pd i:r;;i e;e~eral depel!Hl ~ 
L • 

the latte~. For this reason we regard F as a functional 

of the Y; and as a funct iou of the i'-.5 • If we take the 

differential of F defined in the differential calculus, 

it ie linear and h omogenous in dz1;--ir,U,._, and the 'rf , 

vrt v )( 
likewise the 1 [ and 1 i are regarded as fixed. On the 

other hand, the Fr~chet d i fferential of I= will not 

involve the c?fi's , but \Vill, as defined above, be 

linear and homogeneoue in b Yr~ ~ Yi ~ YY. 

bordered Fredholm 

first minor 

which is a fun ct ion of )< and .S , and a functional of 

the Ki. 
-J • 

The above definitions and remarks readily extend 

to the caae of a functional of n functions, each of an 

arbitrary number (including zero as above ) ef variables. 
i? -- ,-z, "[ ] 

Theorem V; Let F 1 
""' 'r;, -- -.1 Y..,.... be a func-

tional af then functions Yt· ~ each of._ an arbitrary 

number (including zertl of V¥:iables,__and a function 

of the m~l variables i1..!J,; --,-i- 1 ::>:. . Le.t F posse~ 

Fr,chet differential, ~ F 2: , - -- z:,,,,., " [ Yi, H 'J Y ..... / ~ Y., ---, ~ J-J. 

14 
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Then 
- 4-sl F ~. --- z,..., "?< LY., - -} Y .. ,,.-J ol-;x-

a. 

.t-= f S' F ~, --- ?. -, 'K [ Y,1 ---1 y,"'._J SY., - - -, ?J Y,.,..] o<.--,c 
~ 

Let . us call 

Then by Theorem IV, we h ave 

~ Fz,----z-,x [r;1--1Y,...fb'r;1· - -, S'Y,,.] =%. $, r:/,---z-.1 X 

Then · rl'\. 1r 

_(-t.S F'i,---z,....,><[Y,,---,Y-f~'r.,---,SY-] == li [ ar::, ·-· 2-,)' 
"- -( "'-

an d thie i ntegral is linear an d h omogeniu e in t h e bY~ . 

S ,tr- i? - - - ~ X 1.(,.. r X A a.fT' ~, [Y.,---1 Y,...]ot-r::: 
4 

F~,--· ..-, [Y,t-~'r; ,---) Y ..... +n" .... ]c-0"' 

_ J-'F~.--· 2-," [Y. --- Y""]dvt-:::;, [f F~,---~--,7<- ,,1 ,./' 
(), ) } «. V'-"/' 

But 

4 F~.--, e,,._, )( = 5' F~,--- 2
""' 11 [ ~ - --) Y- I$ Yi, ---1 f Y-] +&~I it/ 

where (} ➔o with max ( S ~/. 

Hence 

.4 ( t ?, -· -r,..., x [ Y., ---
1 

y_ J ~ :.-J ff~.--- 2-_,, x [ V., ---1 Y- / ~ 'r\ - - -., SY'>'-] h -t ~,n~if ir-4 -k ~ 
Since B-) 0 with max {SY., I , l!IO does i ,e,B ~ , and the 

Ct 

t h eorem is pr0ved. 

N0w J.et F ;,-·· ~,,,,.._ [ Y., ---, Y""J (p=. 1, 21 -- - ) b e a set 

of f uncti onals as b efore. 

~---~ [ t ~ "" Define S 1 
-. Y, - J Y.J = L. F ~--- ~- [ 'r', - --1 Y"" J 

p I p= I I I 

If ~Sp exists, we call it sil,---'i-['r,, --·; t]. I n 

this case define Ri,;-l,_['(,,---,Y,.,_7 as S-Sp • 



(6,1,J 

(jQ 
c::; F"~ ••• i',_ 

We eay that the series ~ ~ L~ ··i t;,,7converges to 
1"=-1 r ~ 

the value 5 ?,---?..._ ['r;, --i ~] uniformly for a region T of 

n-fold function space and m-dimensional space if there 

is an N such that whenever P>N , /R.p/ <(. for every point 

( Yi>-i "- (~,---~ in T. 

Theorem VI! 

of functionals of the n functione )1 , each of an arbi

trary number (including zero) of variables, also func-
:_ 

tione of the m va:;:,!._ables ~,--- ~--- , and if the Fre'chet 

different~al brA~--i!---(r.>•1Y-"'/H>-·c ~ ~]exists far each -f' 
cP_ 

and if the eeries f;, ~f converges uniformly for a regio,!! 

T, then if the seriee 

~ s ~;---~""' [ r., --
1 

Y~ r r ½ ---, r ~1 =-l & F,!1 
• •• i',.,,_ ( ~ - --J Y- I ~ r,I ---; s y,._ J 

converges un iformly for T ~nd for ~~ boundedL th~s. eerie~ 

is the Frtchet differential Gf 

Sr---~-[Y. vJ-~ pil,- --r--[Y. ___ y:] 
I I - - -1 I - - L to I J "" 

I 1"=1 

Proof: Define c&'~i to be f>F;,---i-.[r,,--jr,,,./1-;o,,'r(A··;O] and 

~ S'~ t$ be 6' 5 ~. --- ~,...,,.. [ Y,
1 
-- · 1 Y"" I 01 - -) 0

1 
b Ye: 1 0

1 
- - · , o], 
~ 

Then &'S~,---~--[Y., ---1 Y-. ($;Y,,--1fY-] = ~ &"'~ 
oD ""- ~ o6 ,...._ f-

=- 2.. ?- SF"-,.,. i. =.? L ~ F-,,,,: == ~ S Si: 
P=I (::: J I t=I p=t f=1 

Hence ~ .S is linear and homogeneous in the $;' Yt' • 

l I s--s = L-s r,, + Rr =Ssp + 1Rp 
f,=' where \, ie 

. 'R defined ae above and p , defined by this equation, has 

the properties of the Rp defined above • 

..65 - SS ::::: ASP + A R p - $ 5p - 1
Rp 

Now by definition of ~~~for every e~o , there is a S , 

such that / ASp ~~.Sp( "- ~ for all finite P , whenever 

16 



max {&Yt./=>-,<( 
~ Rp =- R/·- -·z,,..,.[ Y,+~ r,>---; Y-+fY ..... ]- RP[r:,-- ·1 Y-] 
Since the c0nvergence is uniform, there is an M 

euch that / R p[ Yc 1- ~Yi.]/ and / Rp [ Yi] I are each le se than ~ 

when P> N;, and similarly there is an /t/2.. such that 

/ 1Rpl c::: ~ if p > Ni. • 

Now taking P greater than both IV, and 1\/2.. , we 

have 

I 4 s ..:. & 5 / .( / 4 s e -s S" e ) + / f< e [ ~ f- ~ ~J / + / RP 1 '<c:) / + I 1!!f / < ~ 
1? - ~ 1 7 ., 

Hence the 6 S i-,--•i,_ [½-··1 Y,.../ ~r,, --1 fYo..]eat i sf ies 

both conditions and is the Frtchet differential of S . 

Theorems V and VI are brought in to show that the 

procese of taking the Frichet differential is com

mutative with integration and summation to infinity, 

under certain conditions. 

The Frtchet Differential of the Bordered 

Fredholm Determinant: 

Theorem VII: The Frichet differential of D (§2.) 

is given by : 

( 7. () S I) =- Db I<~ - DJ ~ I<; - 0 ; -~ k j - D;, 6 t< ( - D j· b K f + D & I<} 

b.,'1, - ·~ ):",.,,,,.... is a function of the kernels in the 
~, - - - s ------

ordinary sense,. Hence its Frtchet differential is 

~ the P,f&ntheses here indicate omission of the index 

contained. 
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Setting S'i: )(._: , integrating, and rearranging the 

variables of integration, we have 

("' JI. ,C, -" ,C...._ - A ~' --- ,c-__ , <' 1t _,,,,,,__ ,,..,,.,._- 1) 1:/ X, - ·- '?( ,,_ .7.. <' {( i-5 
() ~ ')(, --- ?\'....,, - /')N\ .4-1 ><, -- · Y..-., 01'5 ( t- Y, - - - }(......._.2_ 0 

+ ,6/. 'IC, --- Y---... ., (' 1($'· -1--/vV'.. t:/ · ')(, - -· ')(,,,...' b l<l -1- l:~:J )( I - •• x._ ~ (( l. 
~ s ¥,--- Y~-, o J I>;--· r,...,..., s L >;- -· Y ....... u 71 

-'=' 
Now take 2. ;;_-, of both eides, and it is eaeily 

~.::o • 

eeen that the convergence is uniform if the !<'3 are 

all bounded. Hence by Theorem VI, 

h D -::: D S 1,f - D ~ ~ I<; - D f & I<~-- D ~-SI, _l -+ ( D ~ f - D {) S I< j • 

which is the same as (?.1). 

Corollary:_ Di vidi~g 12,y D we have if DI: o ,., 

(1 . 1) 
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§ 8 The Product Theorem and t he Group Pr operty: If 

5i(" is t h e :product tran sformat ion Si< •S," the kernels 

of St are given by ( 5.1) as follows: 

('6, 11) 

(<?, 12 ) /( i = Ki -t I<# -t K; I< ; • i- /( j / < ;-

('{, I 3) /( 5 l = ,~ ~ + !< i + 1<.: I<; + R ~ I ( ] 

('75.I'+) J(l_ = i<l + kl·~(<(l<i: +R L /(.() · 
1 1 J -t i ..R 1 

If D and /) ' t h e determinants of SK and s,~ are 

both not zero, we can solve these for the kernels of 

5'1< and S k • 

From (8.11) and (8.13) we have 

/< { = ( (< :- /( ; ) - QJ ( (( 5~ - t<J) - ¥ { I< J- R;J 

I< Ls, ::: ( f<; - k ~ ) - -~n~- ( R;- i< ~ - B j C K P - R f\ 
0 

s s.J 

From (8.12) and (8.14) we have 

(r,L1-) kx. ~ (1<;--1<-;)- ot ci<) -i<}) - ~J U</-R1) 
1 0 

k~- = (1<}- i<}) - ~~ (f<;~-R; )- ~~ {R}-i<;) 

Using Theorem XI below, which i s i ndependent of 

we have from (8 .11 ) and (8.12) 

R;= CK;- 1<[) +(k.:-Rt )f--g)+Ci<J-t<))(- ~f) 

k; ~ (KJ-~1)-f (t<t-K{)(- ~) + (!<:- !<{)(- g~ 
From (8 .13) and (8.14) we have 

(q, 33) i</ =: (/<} -/<
5
t)+ (t<}-t<~)(- ~~)+(t<j - i<))(- ~ 

R;- -= ( t<}- t<J) + (K~ - I< iJ (- ~)+ < RJ-1<)°) c- ~) 
Theorem VIII: The determinant D of the trans-

fonnation S'l<=-S,cs,< equals D·D . 
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We shall prove this for the case when D and 75 

a r e b ot h not ze r I f "th o. e1 er or b oth van i sh, the 

theorem will f ol l ow f rom the cont inuity of t h e 

a s f un ct ional s of t he k e rnels. 

We have by Corol lar y to Th eorem XVI b elow 

S :5.__ D 15 5 D - DDS 75- DD£" D 

DD -

From ( 5.1) we have 

Si<;~ Si<~ +St({+ R ~ 6 t<; +- k}~ s Rt+ RJ ~t({ + t<1 sr?J 

s K ; - ::: s /(; + s I< i + (
-< y: 6 I< -r: + I< -t: • c ft'1 + 7<. " 5 f(.f. + k f. <' R x -r ; ,o -t- .P ;J ,o .f 

I<~ S I<; t- I< i ~ k i + I<} SI< f + I</ ~ Rj ~ I< l :::- '6 I< j + S (< l + 
s 

~ Ki ~ b RJ + s /(} -+ R~ b 1<) + 1<) &>i<4. + 1<5 skj + 1</ fir<_,' 

Substitu t i ng from (8.4) and (7.1 ) we have 

(<B', 5"J D i5 b D - DD SD - fj D~ D 

Do! [Ci<; +s~ +f{s-1<} + r<}&"t<} -t- R~skJ +r<f si<J] 

- DDE! [tr;+ ~1<1 +i<!SI<~ + t<;sRi +- R;~t<] +t<; rR[j 

- DD D~ [ S t?j +S kj + 1<t St<; ·HK} & 1<! + Rj bl(j + Kf ~ 'Rj_] 
-1)00~· [Si<~ -4-$1<7-t i<l61<} + t<}St<f-+R~ &,<1· +1<}~1"<J] 

1 , , .P 
- OD 75 f' [SR t. -+St<~- + t<! rr<} + I<}&' I<~ -t-f<y Sf< j · + I< i $1<)] 

-[ 1 ' -i. 
4- D 15 D ~ R i + s {( i + R t 8 I< 1 -t (< ~ ~ R ~ + I< 2 s I< f + kt bi?; J 
-D D [ 75 8 i<1 - D ~ 8 i< 1 ._ D ~\ s /( ;- - 75 i s- I< f - i5 { ~ /( ;: + D 8 {< u 
- DD [ D S-1<: - D~ S' t< 1 - Di' s l<j - D5j· ~/( {- Di' S'(, ;- -+ D st<[);:::_ 

+ s- r<! r D 15 ~ R~ - Do ot -o o !~ R~ - no _D~- Ri +Jo D+J 

+ f R'J [ o o o 1< ~ - o o ni - D ti ;s~ K:. - o o Et K;• +Do "~J 
-+ s,,s. [- DD DJ -DDDii<;-DPD{i</+DI5DR{+DDD1] 
•Hf<~ [-DO OJ - DD if i<i' - DD 01 I< t +0 D 0{+-0 D fJ K{J 
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+ ~ ,< t [-Do E; + Do B"R! - o Bot R; -o o i~ x ;-+ i 5 Ds;J 
+ sRj [- D no;-+ D o o l<J - OD =s-; /{~ -DooJ /(j -+ o D o;J 

+ & I< i[ D 6)) - D D i5] + ~ Rf [DD D- D 5 DJ 

+ s I<~ (- D 15 DI - 0 i5 0 i /< f - D OD"~ R i-+- l) lY O I< t + D DD V 
J L 

-+ ~ R} [ - D n o: I< { - D i5 o { -D o D { I< f + D O O 1< ( 1- DD T5 [] 

In the coefficients of t h e variations of the 

K's -, eliminate the !< s by (8 . 3). This gi ve.s for that 

of S' !<} , after removing D 

() l t) 1< ~ .c. D \( : - I< ~ D: + I< ~ D: - K ~ 0 ~ + J<: t) ~J 
-o:[oK1-oi<~ - 1< ~Di+ t<~ D~-1<;0{+1<1 ot] 
-Dj [O ~!'- D 1<{-Kl Di + !<~ D~-!<j D{ -t t<J D{] 

== 5 ::- S 
- D.D t t D Dt = 

- D [ C ! - D ~~ + D~ I<~ t-D; K {] 
tD[Df - 01<t + 1<5

v< Dt -\-I<~ D!] 
-i- D~(O~ -OKS((.-+ D; I<~ 1 D~· 1<i] 

- b_) [D4 - n1<i: + 1<~ D{ + K} o{] 
~ t ' 

+D!C6:-~t<-;+ot1<1 -+o:-~iJ 
- !) _; [ 0: - 1) I<: + K ~ D ~ + /<'. ; - l) ;' ] =: 0 

_ Th e, ~oeffi~ i e ::_t, of bl<} i s D times 

+ 5 r D I<; - D /( i - R ~ D: + I< t o 1 - l< j of +-Kio: J 
=-,ic =::- t ct: ===-t- ~ i- u ""i:: J 1: RJ - D t D !\ s - 1) Ks - I< u D s +- I( I,( D s - 1<51 D 5 -+- I<, D s 

-D ic D 1<}- D1<1-~~ Dj-+ 1<~Dt-i<1D~ +r,; of] 
-() c;· 1--0 01 = s 

0 [ D 1- DI< j + I< l [) i + /(j bf] 
"' ,11' [ vi v.. lA i. + I< IA D p J -0 ·(1" D - Dk + I< t I) 5 y 5 

IA s S 

_ D ~ [ D ~ - DI<} + 1<~ b~ -+ 1<j of] 
L ' ' 

+ o~ [Dt - D ~-1~ + o! P-t +Bl,<~ 
-+ D! L~j - o i<i + f>{ R; + i{ k}] 
-D [Df- o Ki+ Of fr; +"6{ RiJ == o 
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The coefficient of ~1<f is D times 

15[ DK;-- bki - 1<_: oJ + t<i o} -r<J o;-+ t<1o1) 
- - + t - t t..\ "t- D'-1 ::, t ..I "t RJ -D~[Di<.1.- D/Kj-ku D/+ f<.v.. f-/<,1D-; +-f<~Dj 

- 0; [ O I< j - D k i - I< ~ 0} -+ I<~ D 'J - t< 1 0 j· -+ I< f o)] 

_ . The coefficient of S l<j is D times 

D L D I( t - D K { - (< { 0 ~ + /( { 01 ... I< j D 1 + I<$' D { J 
-n;[or< f- DI<~ -i<~ o1 + t<~o1 -~j o{ + 1<10~] 

- o 1 c ~ P-1- D 1< : - 1< ~ D ~ + I< { Dr - Ki f) t + 1< i o tJ 

-1 

In the coefficients of the variations of the K\ 

eliminate the k1 by (8.2). The coefficient of SR} is 

D times 
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-~s :c-s 
- D D t + D Dt ~ 

=[ -S D-J<- 5 +El i<lA + D5 ,"<t] D D-1: - -t: v. -t ~ 

- D~ [Bt - l5 R~ +155
1 Rt-+ D; i<l] 

-s -{.,\ riS: 1-
1 J - Bt [i5~- - D i<i -+ D ~ !< 1 4- v.f < i 

-15 [ Ds - Di'<=~ -t- 1<~ o~ +t<; D~] 
-t-

+ o: [ o ~ -D ~~ +f<~n;+t<l rs{] 

The coefficient of S' /<\a Dtimes ___ . ' ,- ; 
D [ D I<: - D R i - f5 ~ I<; + 15 t t<~t: - D j' K: + o J R;] 

- 5 ~ [ i5 1< i - 15 i< t - r5 { 1< ~ -+- D t i<: - D 1 t: -+ 75 j r7 ~ J 
-o 1 co K :· - o K 1- o? K 1 + D { R 1 - o l 1<i + n{ RJJ 
-Bo{ +551. == 

D[ Bi- 15 Rf+ I>J' i<; t-r5) i<;J 
-n ~ [ 5 ~ - o R t + D { Rt+ 5 i· R ~] 

- D { ( o j - r, R ~ + i5{ RJ + D f° i< j J 
-BLoi- o 1<{ +Kt i~ + Rj o{J 
+ l5 i [ D ~ - o i< ~ + r<; o; ~ t< 1 o { J 

+ TS j r O: - o ~ i + f< t i ~ -+ T<1 o; J = o 



- D-t.[D 1~~- 75 K~ - 5~ t<~ + B; K~ -5; t<!-+ B;t<t] 
j -· ' 

~ D ~ [ i5 i<~ _ 15 ,<~ - B~ K~ + ot t<'J - l5i i<J + 75 ~ i<1J 
J 

-:::::s ::- 5 
-DO ·+OD-=-; J 

o r o1 - ;s 1<;-+ i5t R} + 01 R:J 
-c,1[o~ - o i<~ ~ o~ K~ + BJ «{J 

n -s -s -,_, -s f<l] _DJ° [ 5; _ D /( 1 + D IA t< ..R + D i • .t 

-D [Dj - t> R1 + t<~ 'bi + t<J oJJ 
+o~EB;- oi<}+ l< : o}-t1<1 o;J 
i D~[D/- ol<j +t<t i ;. 1-1<1 o}J := 

0 

Hence the right hand side of (8 .§") vanishes, 

and we have 

Referring to Theorem XVIII below, we h ave 

D=CDD where C is a constant. 
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If we make all the kernels of SK and .SR zero, 

those of 5; also are zero, and D:::. D= ~=I . 

Hence C = I and 

(i.b) D== D,D 

Theorem IX: The set of all transformations of 

tyge (1.1), whose bordere d Fredholm deterrni~9At.A. ar~ 

not zero fonn a grouR• 

The product of two such tra.nsfonnations ( D)s un

restricted) is a third, with kernels given by (5.1). 

By Theorem VIII the product of two members of the set 

with determinants not zero is also a member. This 

shows the transitive property. 

It is readily verified t hat such transformations 

are associative. 

The identity transformation$ S:, exists, whose ker

nels are all zero. Its determinant is unity. 

The unique inverse for Dloexists, and is given 

explicitly by Theorem III. 
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The Case of Continuous Functions;_ We see readily 

from (1.1) that if I<; and l<J are continuous functions 

of 'X, then the tran sfo rmat ion Sk upon (-j~ ") 1) where j" is 

continuous, gives(~fl)where 1/r: is continuous, If in 

addition 1<1 is continuous, the adjoint transformation, 

'Zs:::: ~s + l<;~x +KJ z!-L• 

zj ~ ~ + k j ?x + f(} il 
Fs 

applied . to (~.s, ~,) vi.here--1is continuous, will give (::z..,
1 

:Y.j) 

where Z5 is continuous. 

Theorem X: 
X X ' 

If the kernels l<s, I< t,', !<~ are con-

tinuous in both x an_d 5 {a..~ xis~+) and if D f:o 

then: 

1) If b j 110:=- 5t> (fj:71.rmere ;Z" i s_ co.nt inuq_y_s in (C1c4-J. 

then ::i" in the solution (j;,jL).= S;' { ~~_., l)is cont.inuous in C'1,"-la. 

-----2) If (;?,.,',!.,t1.=.S",J¥sliJNhere Zs is continl.!o.us in r~,4). 
- --,( ) then r 5 in the _§,olution(~,?J)=: s,< 'Es, 23it is continuous in (g,i-J, 

The integrated algebraic determinants used in de-
<'_, 

fining the kernels of ~k will be continuous, as they are 

the integrals of polynomial a in the kernels of s,< . By 

9 3, the infinite series of these integrated determinants 

converge uniformly in {~,k). so that their sums, w.hich, 
-, 

after di vi ding by the constant -0, are the kernels of SK 

are continuous in {41 4 1 . Hence /jy.="1~ oJ,s_~•-1i is 
D 0 

continuous. 

For 2) we see that by interchanging sub-and super

scripts, which is a change in notation only, we have 

a system of type (1.1) with same restrictions as in 1), 
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""'" so tha.t 2) follows from l), if Di: O which is seen to 

follow from D :/: D by Theorem XI. 

!fl~.2£~1.n..XI: 1._±: Di:o for the system (1.1}. 1 then 

the system (9.1) ha.s the same bordered Freill~olm 

determinant and the unique solution is giv~n by 

- D')( oi 
"es :::- 'i!-c - ~ ~ .... - - 5 % i 

~ 0 ,- 0 

- DJ( ::7 t 
~_.,l ~ ~ - .:::.i. z: )( - ~:f }!! i. 
er o o 

This may be stated more concisely: The reciprocal 

of the adjoint is the adjoint of the reciprocal. 

By interchanging rows and columns in the deter

minants which are used to define (), it readily follows 
-"\. 

that D= D. Hence if D=to, a unique solution exists . 
.-v /\... ?--I( 

Applying 51<to(is,~.1) in (9.2) we have (rj
1
rj)=S!(.J'< r~i";) . 

----- "':.1 The kernels of the product transformation ~(' s,< are 

given by -6 times the left ha.nd sides of (4. even). 

Hence (9.2) is the solution. 

§ 10 Transformations of the Third Kind: Consider a 

transformation of the third kind on our composite 

range, as follows: 
1J ~ =- K l< ~ f +- 1<. f j" s t- /( ;- -j ;: 

(Io• 1J -1 i ~ K ~ 9 5 + f( j' 7 ii 
If /< 1

-==- I and if I<} is the old 
(' 

I< l ( 1 • 1 ) p 1 u s the 
l'. 

Kronecker delta Si , this reduces to (1.1), which 

we shall refer to as a transformation of second kind. 

If !<)(= o, this is a transformation of first kind, with 

which we are not concerned. In fact we assume for 

what follows that ,,x does not vanish in (C111r) • 

This is a generalization to the composite range 
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of the Fredholm transfonnation of t h ird kind used in 

an unpublished paper by A. D. Michal and T. s. Pe terson.<•) 

The product of two such transformations, s/. s; is 
] 

also a transformation of third kind SGt , whose kernels 

a re g i ven by 

(Io. l 1 ) G/ = L 'f t< .X 

(t O. l 't) ,,.. X - L 'f. (( x + L x t/S) + L x I< t + L f I< I 
v1s- s s -t s _, s 

(I u. l 3) Ct j = L"' I< i + L { k} + L ~ K f· 
(,b . l'f) e,f;: Li k(si+ L~ (<; + L~ t<J 

c, i. Lt l Lt'/..P (10.2s--) i::: -t (( i + ,P (i 

Letting /<Y;; 'f ==- Cf~ in (1 0.1 ) we have 

(10 . 1) ~ x-= ~ Y+ l<V,<"s ?j>s + k i j / 

-1, _ ,<i;,<s z-,s + t< j -i l 
which is a transformati on of second kind from (if~i9 to 

r1r~/) . If the D)S are the bordere d Fr edholm deter-

(

/(} t'.1,_(s J /( ! ) 
minant and fir s t minors of ~,, ~ and if Di= O , 

I< l t 
Y,ffJ I< f 

we have t he un i que inve rse of (10.3), 

Cf 'f = ~ ~- Pl .M5 - D ;- ,.,, i 
0 ff D "' r t' D t' • 

' i' ,..i O i .,.; Ost ~ f? i) f ; '.i ..,,,, 1-
i'l = ,-, - ~ ~5 - 75i-:} <J = - 0 ,:J + ff 

Dividing the upper equation by /(~ , we have the 

unique inverse of (10.1) 

~ "f== 11¾~ - D~/1< x?5 - o,f,c~- 'di 
(I0.4) -i o( D D,-l ot ' 

~ ~ - 71 ~ 5 + 0 £; i -7 -; 
whicb is likewise a transfonnation of t hi rd kind. 

The relations derived from § 4 for this case are: 

(1u,>IJ l<(s10; - 0 IC,t: -+ l<~-t I< Jo} + 1<1-s1 t<J D{ = o 

(llJ.S- 2) o: k(S) -DI<; + D.:{ t<1 + D; I<{::- 0 
-; 

(IJ Reference on page 40. 
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( ( (), 5" 3) 

(to, 5 Lf) 

(10 , s-!i) 

({O,!i1) 

D i + (, J ( D 1· - D ~:) f- ff D} == o 

- D 1< 1r _ + 0 Y t< t, + D,., /, -P_ = o 
1 -t 1 ; 1 

D i I< { 5) + /< (S) /< t' D i + /( (s) /( t D f =- {) 
s t<t- t s J ..5 

oi KcsJ + c o}-DS)J1<: +DJ K1 == o 

I< j C 0 ~ - D S ~j + I c i D i:_ = - O ~ 1
-

>' 1 t • -J ; 

{ oj - 0 &)) I<:-+ oi k; ::: - D b ;°-

§ 11 The Pro duct Theorem an d Gr oup P r,ope,r,ty f or 

Trans:f'.ormatioE~ of Third Kin d : 

Th eorem XII: The determinant of t he transformation 

SG, dete,rpiined by (10.2) is the pro duct of the de,ter

minanta of SK. an.._d ~L- • 

That is: 

[
(k/Gt<~) c;.,~J [L~(LCsJ L ;] [l<!/,l5J K:·l 

(/1./) D c;\; ,;/"J 6,; = D L VL('I L fa • D 1<,i/!(l'J i<:J 

From (1 0. 2) we have i 't ..,. /<f? l 
LX L ¥ {< L 1/, + L r s!i, (SJ){ S 

(11,2.I) cr;ds-J = /< 1/(, CSJ L½_s t ½_{s) + ~ t- ~s) L
5 

P < L 

{ 11 ,2_ 1 J Cft j' =: !< ;- L >< + L ~/2. t- I< j Lt + L ) K : • 
l ' l 't i ' I< () I 

(11' L 3) (,.,s lcPJ = l kc.o + L Yt-t- I< 3/f<lSJ L 1. 5 + L ~ 71<<s} ½. ~ 

(1 1.2.lf\ Gi( - L~/ /<~ Lt+Lit<f, 
r.,, 1 / Lt: 1 I 

Hence by Theorem VIII, we have L'f/. k~. L] 

0 , t -D • , D l r t 
[

~~/c,U> ~j] - [L~/ L (s) L 1J, [ K1/~(sJ IL
5 

, 

c..;( c,(~J G/ 1=.~/ L(S) L~' l<s/f< Csl )1_s I< l 
Referring to § 2, we have, with an obvious exten-

sion of notation 
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Cancelling the L "/Ci, multiplying by ±-! and sum.ming 

and hence (11.1) 

Theorem XIII: The transformations of third kind 

(10.1) where l< xdoes not vanish il1..,{:!d·J ..1_and whe~ D L
I< f,l1<(f) /( 1,J 
I< ~/l<f,J t< /° 

does no.t vanish 2 form a group, __ of whj,_9.h_ the group of 

transformations of sEt£_ond kind (l.Jj~t_th D.f D, is, a 

sub-group, 

Firstly, all the transformations of second kind 

D# D form a group and they belong to this set, so if 

this set is a group the group of second kind is a 

sub-group. 

The transitive property is given above; by Theorem 

XII the determinant of the product is not zero, and by 

(10.21) C/40 in (t:t1 +-) . The unique inverse is given above. 

The identity transformation 

is a me~ber of the set and the associative property is 

r e adily verifi~d. 



§;pnmetric Transforma_ttons of. Third JU.nd: In ap-

plications, we shall have occasion to use transformations 

of type (10.1) where the kernels are continuous and the 

following equations hold: 

(12i1) K~ =- 1(5\ t<f = !<( • I<(~ I< r 
If (12.1) hold, the transformation will be called 

symmetric. The inverse (10.4) is not in symmetric no-

tation, and it may be an advantage to have it so. 

the 

In (10.1) let 'f¼ Vt<x;;~ f~[0-.Jj¥ and divide 

upper equat i on by #x , giving 

~ )1'< ,,.- - Cf r< + 1<1/U 1<r1<s- f s + f( i/U/C/< -j i 

1 L _ /< }Jv'i<~ 4' s + !< ;- ~ -;' 

If kY is negative, imaginaries enter. 

The unique solution of (12.2) is 

l V 'f _ 't' J',(>' - OV1<> 'f'J - Q1• ,._,, ·/ 
( /2, ?) .., -- 0 D <7 , 

-1 c = - D1lt<S -rs + D&}-o;- ~ ~ 
D D ( 1<;/~ 

where D and its minors refer to ,<i /vi<r.s> 

This is a symmetric matrix if (10.1) is symmetric. 

~ -){ Expressing ( 12. 3) in terms of /'J and ~ , and di-

viding the upper equation by J /<J< , we have 

~"::: ~71<>' _ D~/ifi<,;~'ds _ D1/ .Ji<lf1'/ ---,,,.:._ -----,y-
- t O ' • 

_;;l = - DJ/@,:;S + .Q&~-Di" -"'1~ 
D 0 

By interchanging rows and columns in the deter-
i.n 

minants used in de~ing the bordered Fredholm minors 

it is easily seen t h at (12.4) is symmetric if (10.1) is. 
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Since (10.4) and (12.4) are both unique inverses 

of (10.1) they must be the same. Hence (12.4) is a 
)( 

real s olution, even if K is n egative, in spite of the 

f act that it is apparently imaginary in this case. We 

shall show that the determinant of each is the same; 

A Y. --- V--
thi s will follow from the fact that .t..i ;,---~- for each is 

the same. 

For the matrix 
(

I< y[~s) /( ; ·) 

.k !l,<<s J I< j 
we h ave 

I<"", 
~ ---

1< JC f 

I<!--_, --
k )', 

k}, - - -1<1t, 

I )( l<'K,_ __ _ 
I 

kc. - - -
)( I 

• 
/( Y..,_ 

)('..,_ -I<)( ........ 

I< l --"---
/( )I,........ 

For t h e matrix 

A..,._' --- r""" l .(,.. ~ , t< ~, I< ~, 
'I(. --- 7(1')... ::;::_ ~ 4. )r' - - "--I G( 

Vl<Y, /(~' /,< f, I< Y--

I 

I 

I< 
)(..,_ 

/( Y:,.,.,,._ 
'k I 

'- - ,:,,,.,.._ 

/(t-1<):' ' v!Z1-,t'f-

I< L ' 
l 

-!.!. l<ic,.,... 
~f<", - - -

l[Rr~ 

I< x:w-
1 

t< l. 
1 

t< ~, 
l ~. 

,( Y-:-
~ 

w--

I< t. 
~ 
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both. 

t< ",c, - - - I< ~, , ,._ 
I 

' 
I( ~-;--.- -

t 

I< " - --~. 

' 

A J', --- ')(,__ 
Hence ~ x __ _ "' and likewise D are the same for 

I r- ,.,,,_ 

The notation in this paragraph, while retaining 

symmetry, has the disadvantage of bringing in an 

apparent irrationality. 
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§ 13 Appendix to Part I: In order to make the work 

of § 6, ? , 8 rigorous we must :prove the following 

theorems. All the functionals referred to are func

tionals of n functions each of an arbitrary number 

of variables. The notation of § 6 is retained through

out. 

Theorem XIV: The Frlchet differential of the 

sum of two functionals having Fr~chet different~als 

is the sum of the Fri ch et differentials of the func-

t ional s. 

More briefly: 

'o(F+G,) = SF+ S 01 

Requirement 1) for the Frlchet differential is 

seen to be satisfied immediately. 

For 2), we have, where 1: max t,Yc} 

/ 4( F +1r> -;,m +i;.0J I != j AF-:,,; F I + I AG-~< .., I 
which approaehes zero with ~ . 

Corollary: ~he Frlchet differential ~f the sum 
/ 

of a finite number of functionals having Frech,et dif-

ferentials is the sum of the Frichet differentials of 

the functionals. 

Theorem XV: The Fre'chet differential of the 

product of two functiona~s having Fr6chet differentials 

is the sum of each times the Fr6chet differential of 

the other. 

More briefly: 

(I J, 2) 
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Requirement 1) is easily see n to be satisfied. 

For 2), we have 

'6. { /:' e,) -=- t b. G t-- Cr L F- -+AF·~ G, 

For /~/. f4Gi( we may write AF= ==~i::+-61 where €: ➔ o 
'1 . 

wi th '} , ( ~ / ::- / 4{/ + I GI, 

If we can show t h at I ~ / is bo unded, then / C),.,.,,F/ is 

bounded and s ince 01 i s continuous, ftF'f,fAGif approaches 

zero and 2) is satisfi e d. 

LeIIJ}lla: With F and S°F defined as in f 6, f 5.{l is 

bounde d. 

From Theorem IV this will follow if we can show 

that t&;c/is bounded, where SFi is C&F)'o'r',i==o, lii 

In SF~ l et ~ Yi: be 6 l~ where Li. is a fixed function 

of the variables that Yi depends on, such that max /J.../ == 11 

and ~ is an independent variable greater than zero. 

Then $ Fi [ Yj / ~ Y.] == G S Fi[~ IL], since the differential 

is linear and homogeneous. 

~:::. ~ (t;;'t;· / "?- 6- ~lL( =:G 

Hen ce / ~~/£/ff Fi[Yj l LJ which is independent of >-J, 

Corollary: The Fr{chet differential of the -
product of a finite number of functionals having 

Fr6chet differentials ~s thE:_ sum of the Fre'chet. 

differential of each , times the product of all the 

oth ers. 
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Frichet differential of a rat ion al fun ct ion of a 

finite number of functionals is simply isomorphic to 

the process of calculating the ordinary differential 

of a rational function of a finite number of ifl&9i!i!:.. 

'1.pt. variables. 

Theorem XVII: The Fr{chet differential of the 

logarithm of a functional having a.Fr~chet differential, 

taken at a po int where the functional does not vanish, 

is the Frichet differential of the functional divided 

by the functional. 

(IJ. 4-) 

More briefly 

S½F = €F 
I-

Requirement 1) is seen to be satisfied. 

For 2) we have 

1:. ½ F = ~ ( F+~f=)-~ F = ½ ( t+o/°1 
Now assume /~Ff ~ (P:(. Since f # o this is legitimate 

as above. 
I}~ .6 p-J _ .6 F (-6 FJ'-
~ (I+ p: - T - '2.F1- t- terms of higher order, 

Also 4-~= SF+0 '>J where ~ ➔ o with 1. 

Hence 

,6 ~J F = S F- t ~ _ (4 PP- [ l _ Ll f t __ -J 
~ ~ f= F1. i '3F 

The series in brackets converges for /4/ll I , 

hence is bounded, say less than M . 

1A0~~v1 ~ ltlt/¥1 1 LIF./•M 
As above /~/~/VI+ 10 / and this is bounded. 

Then since rt 
1 
_and , ;:1 approach zero with ~ the 
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Theorem is proved. 

Theorem XVIII: If the Fr6chet diff erential 

of a functional exists an d is zero identically in the 

arguments and the variations of the arguments, then the 

fun ctional is a con stant funct i onal. 

Let 

Gateaux' s (r) formula gives us 

d_ C,_ [ Y~, ✓']) = S' F [Yd~ YJ 
d) rr ~=o 

Hence 1 has a derivative with respect to ;:l at ).=-0, 

Now d_ t r Yi + ~ r h] = ,,A F [ Yi- +) H'c: r µ ~ Yc J ' = ~ r [ K· + >. f; r, t s Yt] 
o() 7P 1/). "CQ 

Hence ~ J ['(.,)] exists for all ,) and is given by 

$' F [ Yt· + ~ ~ re f S r;:J 
Since the derivative exists, we may apply the 

Theorem of the Mean of the differential cal culus giv

ing 

But 

i [ re: 1 , J - J [ Yd OJ = F [ ~- -+- ~ rl] - F r Yl] = 21 F 

Hence under the hypo thesis J 6-F=D , and r- is a 

constant functional. 

Paul Levy: "Analyse Jo net ionnelle!' ( 1922) p. 100. 
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Part II 

~uadratic Functional Forms on a Composite 

Rangef' J 

(/) Part II includes some unpublished work of 

Professor A. D. Michal. 



Introduction: Q,µadratic functional forms of the 

type L-1-,r~--, (x,s)-:; (x)~(~J c,0<ds + .[, (~} [;7r~il~ 
(/J • 

have been considered. Us ing the convention of letting 

a repeated sub- and super-script in the same tenn stand 

for Riemann integration with respect to that index, we 

may write this as: r s 1, x)"2.. 
# Y:5 ~ ~ + 7 Y lr,,y 

In this work we shall consider forms quadratic on 

the range {~f--,iJ where ~)' is a function continuous in (4_,J-J . 
and. f; l is a set of n independent variables. We may 

write such a form as 2 ,, 1 i. 1 • 
U(-:::: ~x-s 1JY:~S -f?-,:{:;Y) + ,.._/.,:t· ~ 1 +;Jt'J ~ ;:;1 

The indices >:, ~. t- etc. stand for continuous 

variabl es in ('1,4) while l,i J etc. a.re discrete, run

ning from 1 ton as in ~ l, Part I, and are to be 

summed from 1 ton when repeated once as a subscript 

and once as a superscript in the same term. 

A parenthesis about any index suspends the sum

mation or integration convention with respect to that 

index. 

We assume that the i~ are continuous, and that ? / /: o 

in {<-f, 4) • Hence j,,_ is of one sign in {1-1-J • 

(U A. D.Michal: "Affineiy Connected Function Space 
Manifo1:6~ Am. Jour. Math. V. 50(1928) p. 473. 

T. S.Peterson: "A CJ. ass of Invariant Functionals of 
Q.uadratic Functional Fonns~ Arn. Jour Math . V. 51(1929) 
p. 417. 

A.D.Michal and T.S.Peterson: "The Invariant Theory 
of Functional Forms under the Group of Linear Trans
formations of Third Kind~ To be published soon. 
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§ 2 ~tio!l between Forms of this Type. an_§ Symmetric 

Transformations of Third Kind • . C.onsider a transformation 

of third kind as follows: 

-z'.x = Jex; 1J r -t- ;'Ks 1f1 5-+ 7 x j '-;1 i 
5 • 

:J~i ~ +/c'/71 
in fo,., m c1.I) 

We may assume without loss of generalityAthat ~xs 

and :Jc'/ are symmetric. Then transformation (2.1) is 

a symmetric transformation. In terms of the ~ 1
5 and 

) 

~ S we may write (1.1) as 

Hence we see a one-to-one reciprocal corres

pondence between such transformations of the third 

kind and quadratic forms of this type. 

Now consider what happens to Q when the ~~ under

go a bordered Fredholm transformation of third kind 

with continuous kernels. . 
-;J J< = I<~~ Y + I< t /J 5 + f< -i ~ -;;, 

/( j 3 .5 + /<;: -j -;J 

We have 

(} :::- ~ r: "P-x +-~ t'z i. 

:::- l<y:-,j"r-" + z'{ t<;.j5+ l-.,,. Ki7i+2t' /<~ j 5+ Ez l<) i;J;; 

where the :i's are given in tenns of the --;;'s by the pro

duct transformation of ( 2.1) and ( 2. 3). 

Rearranging, we have 

(2,LfJ {r ~ j 5
( /< 5 -zs + l<sy=z:x + t</~i) +-1 -i( I<} 7 x + t<}=z"c) 
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If we now call (ft i;J t he transform of the :zls by 

the adjoint of ( 2. 3) i. e. 

~5 /({SJ E5 
)( 

+ I<} =zl 
(:2 I 5) 

= + I< .s -rx 

-- )( + !-, t' z· 'i?j =- I< I 27< 1 L } 

We have 

(~' J,) f{::: - 5-
,-:J. ;Is + 7-; ~i 

But this is a form of type (2.2) wh ere the trans-

formation of third kind representing it, is the pro

duct of three transformations of third kind, and may 

be written symbolically 

( ~ . 1) ff ::: I<- CJ • I< 
the tilda den oting the adj oint transformation. 

The Tran sformation Induced on the Coefficien}s: 

In order that Q , wh ich is defined to be 

}Ks-17i 5 +:JxC3YP-- + 1;:t~i~Y"9L+ ;/L'~ ~t;y;i 

shall equal q , t hat is, in order that Q. be an absolute 

quadratic form under (2.3) we must have 

(], I) 0 = 1Y:}JS(fKs- ;l<s) +(jx/2 (7)(-~s ) +2-JJ~i (}~i -fxJ +- jcj1(Jtj- j tj) 

wh ere the f are t h e coefficients we get by expanding 

t h e ~>s in (2.6) and collecting t erms. 

Theorem I: The necessary and sufficient condition 

42 

X , , • 
(s . 2.) Jxs./';J -"J 5f,,f~(~Y)L+.,,,f~<.1J)("#l .. L,(l·i~ 11'J'if; ~°' ) =,ls) f,' j .:-jt 

vanish id,ent i cally for all continuous ,;x ard all ~l· , 

when the J~ are continuous, i s that the -1s all vanish 

identically. 

The sufficiency of the condition is obvious. To 



show the necessity, that is, that if the form vanishes 

for all c~r~9as stated, the Pl are all zero, we will 

show that the }~ are all zero if the form vanish for 

a11 fJr1Y as stated such that ~
4

:: ~
1=-o. 

In this case first set all th e ~t::: o . Then by 

Lemma 2 (r) of 11'. ichal a n d Peterson's paper ( 1. c. ) , ,/ ><-.s 

and f~ are identically zero. Hence the fonn becomes 

(/Yi~x +Rif";J)~C=o 

Since the ~ i a re independent, we have 

.1 )( ,· ~ y: .+ Jt'l 7 ·i = o 

Now set ~ X= O , and by the i ndependence of the -:;, ' 

the Jt.j are zero, 1 eav i ng only __Ry:t· ~)(' to which we apply 

the fundamental lemma of the Calculus of Variations. 
¥ 

Applying Theorem I to ( 3.1) and writing the ~ 

out in ful l , we have: 

Theorem II: The necessary and sufficient con-• 

dition tha~_the form (11 1) be an absolute fo;rni under 

(2. 3) is -~pat ~c?efficients transfonn as f ollows: 

(l) A complete statement o-f this is as follows: 
"Lem.ma 2. A necessary and sufficient condition 

that 
yol-/J ~o( 1 IJ ~ ~ { 1J°') 2 :::: {> }' "r'(l(/.J ;:: 'f;;tX. J 

be true for all continuous functions ~ t' , for which 
1- A=-~"'- ::-o is that 

'tt1==- 0 > ~ = 0 !' 
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(3.31) :J-x;:::: f!x:s f<WK{s)+-jyu.l<{)')t<1+Jisl<(S)f<1 +-,;lt:u t<IkstA 

-f-JJI l<(Yfkf +;Is {<(Sit<~+ 1-4 t<} t<; +:;x.,fl(rx;l<Jf-,js-Rf((sJ t<t 

+ <Jt:1 K\ 1<; +-j-tP I<: l<t +J.~-- l<f /(;: 
(3. 3 l) 9-K 2... = :Jx ( (( (,:!) i- (,xJ 1 t: 
(J, nJ J ~.: - ir-t t<f.KI 1<1 + /-t1,1. I< x- t<'!_ f- J>< K I< { + ;4 I< YI< l 

-4- l-t .R t<;, /( f -f J-1;, I<} I<: + J-t p tcO<I f< { +-j('~ !(; !< i 

(s . ~4J j,,j =: #-tv. 1<1 t<} t J-t /<;t<) t J-tJ ((; f<i +J-u l<i kf +J(J-. l<f k'J' 

It is readily verified that the transform.at ion 

of third kind represented by the matrlx 

( 
, x 1-,;s ~:><j) 

~SL :}L' j) 

is symmetric, and that its kernels are continuous if 
I I 

the j5 and I< 5 are. 

An Invariant of the Coefficients: The bordered 

Fredholm determinant of the transformation of third 

kind (2.3) is the bordered Fredholm determinant of 

the transformation of of second kind with matrix: 

(
/< ~Kx,~sJ (< ~ tfk,..-) 

t<y{K[s) (( ~/ 

Hence applying Theorem XII, Part I twice, we have: 

(1-t.1) D [J(5/~ ~,;l~l = D[k:~s I<~ •D (J~~Y~5 11//jj ,J) r~l~!(~f/ 

~st/Jj; ~ c j J k i//l(~ I<, J 1~tVv7.s ~t'j J L'<mcz, 
Theorem III: The bordered Fredholm determinant 

(4,2-J 

is an invarJ.ap~ of w,eight two unde,L the ;r.ansformat..1.9..!l 



_, 
and the same holds true for the j 5 • 

is an invariant of weight two. 

?rj] 
J Cj 

determinant 

If we let 1 x-5 :::: J- l< t = O , then the determinant 

(4.2) is independent ofJx. Let t ing this be zero 

al so, Q becomes the ordinary algebraic quadratic 

form. If we let I<~,, I<:= (<},= t</ = o , then ( 2. 3) 

becomes a linear algebraic transformation on the 

In this case Theorem III reduces to the correspond

ing theorem in th'i theory of algebraic forms. 

If we let J it'::: Ii;-=- O, Ji=- 1
1 

Q. becomes a form 

of type previously studied'' · Letting t<;-=r)) !<} ::-!</=-~ 

f( '{-=: ,, the transformation reduces to the ordinary 

Fredholm type, and Theorems 2. I and 2. II of Michal's 

paper are special cases of Theorems II and III of this 

part respectively. If we do not restrict j 1 and I< x t o 

be unity, but merely to not vanishing in (0i,k) , we have 

another case considered{2l Here i t is the symmetri c 

(fJ A.D.:Micha.l: (1.c.) p. 4?8. 
(2.) A.D.Michal and T. S. Peterson (1. c. ). 
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form of the determinant involving square roots that is 

obtained as the invariant rather than the rational 

fore (4.2). 

( 3. 3) 

(S', I I) 

(5', I 2.J 

( S-, 13) 

Special Case of the Pre~ious: If n•l, equations 

become 

?, 'J(5 ::: i 1(5 /((x} !((SJ+ J '/<IA. ((~) f( 5lA + J-ts !((SJ((;, -f JI t-CA. /<;; K/ 

+ J 1-- /<Cx) I<; t- J-s l<s;(<; + J-t t<; I< J + ;l x t 1/x/ f<.s' 

4-Js, !<cs;/( ~ +Jt I J<t Kj + J--1. 1 K; I<~ 1- J,, /( !, t<l 
<) X ..:: J ,_(f<r.xJ)'-

?J.., I = '1 ,J.AJ I< 1 t q-' ((-t I< ti.. + t7 /(if) I< x + q I< "i I( 1: 
(/ " ,1 )(-f f / 1: IA. )( , (/- J( I / -£ f ( 

f 'J 'f I f((x) f( : + J-t I !<; k : f- J-t I f(; k ~ T J l 1 /< ~ I< : 

:J ,, :: /i:tJ.. I<~ K~ tJ-t ((<~ )'+ 1- :J-1 , K; I<: t- J11 ( !<:}"-

Forms Quadratic in a Function a.r1;d its D~rivative: 

Let ..<..<.l' be a function with a continuous derivative and 

1 t )(' b d'}{' faJ)( 
e ~ e ~ 

The quadratic fonn with continuous coefficients 

(6. o t} ~ A?(, ,MJ~ + 2. a "s ./4,l!r/( 11
5 + c~~ -"i- x-7s +- A)(., NI/"" 1 '2.. 

+2 f.?,x µr-Y-1)(+ Cx(-1-,:/-- ~ AKs-=-A n- , c)(5.:::: CSX 

is not an invariantive form. That is 6l may be zero 

for all d wi thout having al l the coefficients vanish. 

For example, if ( Y::S ==A/< =:BX ~c ~={JI A'Ks::,,f'ft;, 2 B xs:: l 1-1s, where 

i 5 is a fun ct ion such that -t4.::: ,,/,_--&- ~ 0 , we have 

() =-- 1 'f. ,j,_ ~ ,{,v 'I-,,v.r s + I X ,I., 5 /l.AJf? 5 

=- {-')( .MJ >' ( _/.. ~ MJ- S .f- ,I,._ i A•/ s_) =. {-x _,wl<( /,_,(,.A.Ar(.__,/._,:,, µr q_j ::::: {) 

We may make Ar.s symmetric here by letting -{-,==~~ . 
X 

Now Ml'" )( ::::- .AH•~+ J. -"I 5 d. s , and if we write Y f o r A,,., IA.. , 
'4 

and define the step-functions 
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we may write 
(, . 2.J .A,,<J-i<-:::- G ~y +-f t --:;z s-

substituting (6. 2) in (6.1) we have 

0::: A 1<5 ( G,.,: y + E" .f -1i:) ( c/ y -4-- c~ -;,v-. J +2 Bxs ( c;./ .,.,+ E: -70~5 +- C><s ~Y~s 

+A ,d&1-r:Y+ E J,ft)(Gt',:Y-t- E: -:;1+ 2 By{ e,-Y:r + E.{ ~~ >:+ C,d~x J?.. 

Collecting terms, we have 
(6.J) Q = (A-t~ F! F: +2 f31:s E! +Cys +A-t F: E; + 2 &)( F; )-:; -,:'ii 5 

+C-,: ("'; 'fJ-i.. + (A-ft.A-c;'=_F~ t- A-lc... ~ 11
F"°; +2 &-i.x~++2A--l~tIJ 

+2 'sx G,."')"'J -y: Y + ( A-tu. crt~« f A-i ( &--r°""P) Y L 

Without loss of generality we may take Axs and Cx5 

to be symmetric. If we no t ice that 

1 ( ls-ts E ! + B., E {) 7 ., 1J s 

-=- ( (Jt:s E ! + il-t ,r Cj + &,r E: t B-5 E()~ YJS 
and that 

1 i<{ A-t £A c;-t f :; -t- A-t- u. e, ~Et ) ~ 2-A-tlA c;; ({ E ; ~ j 
we may rewrite (6.3) as a form of type (1.1) with n:l 

and coefficients as follows: 

(,.41) 1 XS = A -il\ E:~ E J + B-fs E! t '3t-,x F} + Cxs + A-4: E; f; t- Bx E' ~!+ 8s f<f 

(l,, LI 2) 

r, I If 3) 

(6 , 'f 4) 

Jr= C;x 

tj '/ I = A i (-( C 4 E t + fs-t y Gt -t- -f- A-t ~ i 8 t + {J x- &t V!J 

~ 11 =- A-tu. c/ Ct lA +-11-t C Gt ~J 1. 

These coefficients are continuous if those of (6.1) 

are; for example: 

1
)' 4 

i3 t 5 E ~ :: o ' '31 5 uU t- i B-t-s d t-
r:= (A_ ;x 

which is continuous in X and in 5 • Similarly all 

others which have r:;tntegrated are continuous, with 

the possible exception of the term A-tF~E1 . This term 

is equal to f~-t~t where 'i-- is the greater of the pair 
r 



(~s ) , and is continuous, since ~ is a continuous 

function of the two variables x and S • 

'rhis accounts for all the terms except B~E~' and 

Bs E ~ , which are both di scant inuous. However their 

sum is continuous and is equal to B.;. where i is defined 

above. 

By us~ng i , and by using the convention of a 

bracket about an index to denote integration over 

with respect to that index, we may get rid of the 

and rewrite (6.4) as follows: 

(C.s-J) #xs= A+u_ c; E1+-B+;,,:E";+-T3-tsf! +-Cx-5-f-A-tE: + g~ 
(, ' 5" 2) 7 K ::: Cy 
( 0 ,S-3) d'ft = A[-fJ~E ~ + 15[-t] X +At:-£ ; + Gx 
(~.slfJ ii( .:: A[-Ofl,(J + flr1:J 
§ ? Application of Earlier Work to §6; .. By Theorem I, 

we have: 

Theorem IV: The necessary and suf~~cient con-

di t ion,_that the form L6.1) vani ah for all .Mr.xwi th con-

tinuous derivatives is that the foll~wing relations 

hold among its coefficients: 

A-il,(E : EJu + 13-t.><E ; +-&-ts E!+C,:s+A-i E"%, +b'z-::=- O 

( 7, I) C.,: = O 

Ar-tJlA g ~ +- Br+J;,c + A-c E; + isx ::: o 

A c+:i[lAJ + 11 [ -{J =- o 
It might be interesting to show that the co-

efficients of the example given above satisfy (7.1). 

Substituting J~,.,{~ for A><s , ½t~ t 5 for 8'¥:s , and zero for 

the other coefficients, we have: 
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J I r-, 1 I £A I I ,-...1 I /I -l 
/f\.-£ r X .trA B s +- 2 "-+ t: y-1.5 +2 "'-t £5 -1.y ~ O 

0 ::::- 0 

-t~-fJ /4: E ~ + { /4 ~-tJ *J< == o 

* /Ci:] -i_ /[u] =- 0 

Now 
--1_ <t E J = ;:_ -; ~ c?L t = ~ ( 4) - -t.. ( ~) = - ~ y 

-;I( 
1
[-f) ==- i: .-1... + e,{t .:::- -A1r - --1... 4 ~ 0 

The first of these equations becomes 

[ -f;,c] [- i s] + i [--i_,-:]4-5 + t [-~ s] 4._ 7 = D 

which is true, and the others reduce to zero, so that 

( 7. 1 ) is s atisfied. 

Now if we apply a transformation 

~ ><= !<;;~ ~ + !<{ ,35 + K,Y y 

y =- I< I ;::; S + {( I y 5 ,, , 

we se e that the ~.5 defined by ( 6. 5) transform according 

to (5.1). Sin ce t h e set (6.5) is not in general 

uniquely solvable for the original coefficients, 

t h is does not give us a definition for A-:s , etc., so 

t h at we cannot consider a law of transfo rmation for 

the original coeff i cient, without further restrictions . 

If C>-io in(Cf,4}we may write the invariant (4.2) 

in terms of the original coefficients, In terms of 

these it is 

A-l « E'; E j + ~is E; + &,u E; + Cx:s +-At_ f ! + Cz-

Cs 

A i::-u i 
L+JuC:5 i-G[i:]S +fl-! f's+(] )< 

C .s 
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§8 Special i~~t}.on of Transformation (7, 2): We 

assumed that the transformation (7.2) was general. In 

various particular cases the k'.s may be related. 

It may turn out naturally that the 1;~ and Y trans

fonn independently, that is 

In this case the determinant of our transformation 

becomes D trK
1
'

1 

::] :: I<: D [ l<Y/<1'] 

If in particular we consider functions;W~that all have 

the same value at tJ.. 1 /(: ::: f • and ouJ' determinant is 

D [ t<: lt<(s)] 

Perhaps the most interesting specialization of 

(7.2) is when it is derived from an ordinary Fredholm 

transformation of second kind on .{Ar>:,' 

(<t. 2.J ,,A,<.,J< == ,,,(Ar Y + K: .zv-s 

If D[k;] -:f: o then to each,,w><, corresponds a 

unique ,A.Al",., so that to each {"5fY)corresponda a unique 

(1 ~ Y), and we expect the determinant of ( 7. 2) de-

rived from (8.2) to be different from zero, when O[k:J 

is. We shall prove the following theorem: 

Theorem V: The bordered Fredholm determinant of 

the transformation (7.2) detenni:u,ed b_y ls._gj, where 

the kernel has a continuous derivative in ~,~)with 

resRe~t to~, equals t~e ordinary Fredholm detennin1¥1t 

of (8.2). 

We must first show that (8.2) does determine a 
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transformation of type (?.2). To do this, set )(= ~, 

giving: 
Y = Y + I<; Mrs = Y t- f< 5~ ( c,5 Y + E f j j 

Differentiate (8. 2) with respect to X . If we 

denote by a prime before a function of a superscript 

and a sub script, partial differentiation with respect 

to the superscrint, we have: 

type 

,,.c;, ')( _ -~ \ k~ -.s 
(I - ~ + J /1.N' 

= 1 ,.: + , I<; c;:;5 f + ' (< I E J -J-! 
Collecting these, we have the transformation of 

(?.2 ) determined by (8.2) as follows: 

~ )( = 3 7 + ['t<{ t/J ~5 + [ '((&]] y 
'r' = ft<! & J J ~ s + [ Ii t ( c~D P 

'rhe :ord[~:e/:r~:~ dJetenninant of this is 

!< f Ei ; I t- I, f.t J 

Referring to the definition of D , we have with 

notation of Part I ~ 2: 

Ll. _., __ , x~ -
s,-, -s,,..__ -

I 

,e.. l 
J ' r< 1".,,,.,, vH 1 - - -

-ti C: SI -t 1 

I 

'I< I(_, 
(t:J 
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We may split this into two determinants as 

follows: 

we have · 
A S1 -, -S~ 

'Ps. - - - s ::: 
I /h-\ 

J~( --
&(_ 

and integrating, we have 

i, ~ 
1<-t - l<-t 

t I 
I 
t 

\ 

/< 
·t-...,,,,.__ q 
t:- - K - -t t', 

formula 

, !<(51 _ _ _ ,·,<s. '{<S, 
ti. , i r,..,... , ~ 
I l ) 

'!<~-- - '(,~:. 'f<~~ 

l<i,~-- I<~""' /<i 

t<i ' - (< ~ 
t -1,, "t:,,,,_,._ 

+ 
I t /1,v- a. - < t: ,,,,_ - I< -t 
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'

(t, _ _ _ I< i, r< 1:, 
i i ,,__ i 

I I I 
I I I 

I 1 

t<-t-..._ l<-t._ 
c,,,,._,_ t 

I< i-. l<t 

The first determinant may be split up into 2.. ~ 

detenninants, of which all but m + 1 have two pro

portional columns. Omitting these, which vanish, 

and rearranging the variables of 
A s, - -- s ,___ . _ 1.,-

s, ---5' ,__ - J o{ t z 
c:( 

4--
+ /2-v-J--»l-1) f d ii~ t< ~ 

(-1_ 

I< ll 
t"'½--f 

kt,. 
t;,,,,,_ _ f 

I 

' f 
I< tA1-_, 

t-.,,,..._, 
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where A;,=~~~~ refer to the kernel I</. 
Multiplying by ~! and summing from m:l to o0 , 

C, .Y. 
-¥ [ 4(4 ~ ~ ] 

[) =: 0 + D NJ - D (< r!J -t- I< i D ~ 1 
Taking the first of Fredholm's relations between 

D and its first minor, setting X=="'- , and integrating 

with respect to 5 on (o,, -1,..) we have 
:J(- ~ --¥ 

(~I 5) D~] - D t< i] + I< 1 0 [t] 0 

Hence D= '5 and our theorem is proved. 
I( 

It may be useful to note that the kernel - Ds of 
D 

the reciprocal . transformation to (8.2) has a continuous 

partial derivative with respect to X under the as-
) /< X- K 

sumption that ~ / =- 'l<s is continuous in {o,, -<,-) • 

't< s,c 'I<;, - - - ' l< ~ ........ 

I< x-, I< ~, 
s 1 ,.. , 

K x-, 
I ,C-....._ 

which is continuous under the assumptions. 

Since 'f<; is continuous in ( C!1 -tr) i t is bounded. 

Now if M be the greater of the bounds of / /({/and I 'I<{/ , 

we have by Hadamard's lemma the dominating series 
2. (,,,.,__+,)¥ /'1 %-f- f(-e.-c<.) ,._ 

~==o /'V1-\ I 

X" £ • ...l..... 0 )( "'· ---1'-........ 
,;___, d D5 = z_ ~, ~ ..6. s x, __ , )(--w-. ·r - 0 J< ,_ =- () , r 

As in Part I § 3, this converges uniformly in (t.1,-<.) 

for all M , so that &-(-.!g) exists and is continuous 

in (ci,k)• 
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Part 'III 

Projective Transformations in Function Space. 



Intro duct ion: . . In t h e paper of Dines ( 1. c. ) , h e 

considers the function-space analogue of the general 

projective transformation in n- space. 
:p- -a - + -Ir - xi + ~ ct' j Yi Xl ::. ~ t -1-, 

d.. t-?~: ~ i 'i-j-

If we consider the Fredholm transformation as 

the fun ction-space analogue of the transformation 

¥( == Xc: + I --e,{' Y/ 
6' =t 

we have that the above analogue is 

·{{} fx)-::: rx f x) + 4> ( 'IC) cp fr) + ['Yr~, f) Cf rsJdS 
(I, I) -

0-+- £'Gcs) (fr,JdS 

In this paper we shall reduce the consideration 

of this transformation to that of a bordered Fredholm 

transformation of the type considered above with m•l. 

This reduction is suggested by Hildebrandt (1. c. ). 

We shall get Dines' results somewhat simpler, and 

shall show that the one-parameter family of tran sfor

mations generated by the infin i tesimal transformation 

is a group in the Lie sense. 

Reduction of Dines' Form to Tne Studied Earlier. 

Let us write ( 1.1) in a form more convenient for 

our use, and introduce t h e convention, used earlier, of 

letting a repeated sub- and super-script indicate 

Riemann integration on ~,4) . Then (1.1) becomes 
'f (<)(qr+ I<: cf's + I< i 

('J.., 1) (.f -=:- I<~ Zf5-+ c</ 

The retention of the / ~ as indices will later 

emphasize the connect ion with bordered Fredholm trans-

format ions of third kind. 
JVtY ~y 

L t r1' 'f. - d - Y _ 
e 'f'::~,c.f- ~ , where the pairs ( 1;; ~) (-j{ ~) 
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are homogeneous. Sub st i tut ing in ( 2.1), J~impl ifying 

and equating numerators and denominators, we have: 

AJ r; ==- /( r --9 y + 1<: ~ s +- Ki~ 
~ ::: 

This is a bordered Fredholm transformation of 

third kind, which has been already studied and is 

entirely equivalent to (2.1). Referring to Part I 

§ 10 we have the definition of the determinant of 

this transformation as 

[

I< f/1(CSJ I(? 1 
(1, 3) D I< }/((CS J {( ~-J 

As before, a parenthesis about any inde ;x sus-

pends the integration convention with respect to that 

index. 

Expression (2.3) is the same as the B defined by 

Dines to be the determinant of the transformation. 

The following theorems given by Dines follow from 

Part I § 11. 

Theorem I: The deter~in~nt o~ product of 

two proiective transformations is equal to the 

product of their determiJ_1ants, 

Theorem II: If the determin~.!11. of the transfor

mation Jbl} is different from. zer.Q...s. th~n.JJ..J..) h~!? 

~igue solu~ion for p in terms.of '!1, namely 

(f' y =-- c(.
1
( ~J + ;.3'{ -,:J cp1,r) + J: 1 

y 1
( 11 r) ({) 1cs)d5 

~ + i f h; q 1{5JcA5 
where cx;/3~ y: ~j f' are given in terms of tX,/1, r:; ~ €-

We shall restate the latter as follows: 

Theorem II! If the determin..§.p.t P !2t3J . .i.s not 
- :x 

zero th~r1-.Jl, 1) has a_uniqy~ 139lution ;fo~ :f io :terms. 
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first minors of (2.3). 

Dines gives two corollaries to Theorem II, the 

first, that the product of the determinants of a 

transformation and of its inverse is unity, following 

from the fact that the determinant of the identity 

transformation is unity. In our notation, the second 

becomes: 

(2.f) 

I 
Corollar_y 2 : 

[ Di - 01 cps], [ tc,' + r<; Cf s] -= D 
For 

D'- D~ q>~ = DI- D~ l<Scf + D~ I<~ ztS-4-D~ 1<1 
1< / + t<l Q5 

so that [t</ -f l(l ZfSJ[ o'- I)~ <fj = 

D't<:-+ D1
t<l {f 5

- D~t< 5 "Zf5 - D~ f<_ju q 5 -D~ I<;:: 

D1
1<: -D 1t-if<(-Cf

5 [D~l< 5 -D
1

t<;-t D~f(t] 
Referring to (2.6t) and (2.66) below, we get (2.5). 

The eight relations that Dines gives between Band 

its first minors, are in our notation: 

c1 ., , > k{,$1 o; - o 1<; + ,<~-+ 1< r o 1 +- (( (SJ Kr o} ~ a 

(1. . t.2) 

(1, '13) 

('2. , i, 4) 

(1 ,' r;J 

(1 , b " ) 

(-J., ~ l) 

(1 , h~) 

f))( ,~sJ - D l<r -+ D! K; + t); /(s ·=-o 
5 5 

D; + K ~ D
1 

+ 1<1/f<-t D t ::- 0 

- D f< 1 + D+y I<~ + D ( I<: = 0 
I I 

- D K; + Ki~ l < ~ D; + /( <s J k: D ~ =- O 

D~ t<(5J - D't<J +D~ t<] ~ o 

- I<: D1 + 1< D 7 = - 1) 

- D' I< : -+ Di I<~ ::. - D 
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These are ~erived from (10.5) Part I by letting n:1. 

Dines proves, without stating it as a t h eorem that 

t he set of transformations (1.1) whose determinants are 

not zero form a group. . This follows readily from Part I. 

The Infin itesill!al Projective T~ansformation: 

For the identity transfonnati on, 
/< 1 =- I< : ~ f I t< : = I< f -::::. I<~ -:::. o 

Hence for an infinitesimal transformation we can give 

each of these a small increment. Following Dines we take 

I</:: I for the infinitesimal transformation, which on 

account of the f ractional character is not less general. 

Hence our infinitesimal transformation will have 

kernels as follows: 

( 3' I) I<,= I + L )< b t I t< 1 ::: L ~ ~ t) r<l<.::: L~St I<' =L' ,t_ , , , s so; 

and our infinitesimal transformation is 

(s. i.J 
I+ Ll cp 5 St-

expanding the denominator and dropping powers of ~ t-

higher than the first, we have: 

Cf~= Cf Y + Si [ L XCfJ< + l; Cfs -J- L ~- C(J Y L l 2'5_] 
A family of transformations generated by con-

tinuous application of (3.3), 

0.'-f) Cf'J{i)::: f(x(+)'fx + /C[ {-f) cpSt- (<; {{-J 

I<~ (--t) q>.S + I</ f-{;) 
-)( 

will then transform q,, into c('ftJWhere Cf (:tJ satisfies 

the integro-differential eQuation, 

(s.5) 0
t ~-f.,! =- Ly cf><l+J+Li cjJ 5

(i:} +- L ;ft) -Cf7 -tJ L1 if(~) 

with the initial condition cp't(o) = cpx 

The term "regular infinitesimal projective trans
"'-' formation" has been given to (3. 3) by Kowalen5ki. 



The Finite Transformations Generated by an In

finitesim_§i,l Tr,ansf,o_rmation (3.3) . . The question now to 

be solved is; given the L~ (3.3), can we find a set of 

/()S depending on t- , such that Cf 7+) defined by ( 3. 4) 

will satisfy (3.5) a,nd the initial condition Z()'1to)-::: Cf}~ 

If we follow Dines and differentiate (3.4) with 
)< -~ 

respect to -t , express Cf in terms of <f(i-/ by ( 2. 4), 

eliminate the denominator by (2.5) and equate correspond

ing terms of the result to those of (3.5) we have four 

9 t<' C-tJ\ - o 
equations. Adding a fifth to show that ¾ ~~: , we 

have five integro-differential equations in the five I<~ 
I 

Solving these for the derivatives of the t<s , we get: 

(4,tl) '/(; ~ L 'ff<}+ L; f<(sJ +L)(I,( !<~ +L~I<; 
14, I 2.J 'k y - L Y I ( " -' L ll:. f( l.f + L >< I< 1 
\.• ( ~ I 1 "' I I I 

{L.1-,11) 'I<~::- L! l<(S/-4-- L'v. I<~ 

(4. ' " J ' I< ,1 
:: L ~ K ~ 

(4.•~J 't<JC ='--,: Kx 
where the primes, now and henceforth, indicate dif-

ferentiation with respect to -t • 

Barnett(') derives these equations much easier by 

using homogeneous co6rdinates as in (2.2). In our 

notation this is as follows. 

(4-, l.) 

l( - jy.~-
Writing CfY::: ~/ct- J. CfY(t ) = ~(t), (3.4) becomes 

/< r C fJ ,;;x + I<: ~ 5 + I<,"~ 

{(; (-t) ,s + 1<: (t:) ~ 

(l) I. A. Barnett: "The T; ansforma.tions Generated by an 
Infinitesimal Projective Transformation in Function 
Space." Bull •. ~. Math. Soc. XXXVI (1930) p 273. 
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and (3.5) may be written 

~ ( +J '~ "{-l) - ,;;. ''/-1:J '.AJ (-f) f x 3 :i<r+> ~ 1+) fLf JJS(-t-}j u) t-L rrJj<tili._ ~ ~t) Ll 1t~J 
~ (tJ] "Z_ ~ {t-J] 1 

Cancelling both denominators, letting ~ (+) = o we 

have, cancelling .JJY(-t} , 

(If. 31.J ~ ( +) = L ~ _;;Yi) 

adding-1'"c+J times (4.32) to the previous we have, 

cancelling ;,J (+) 

(4:31) ~~{-t) =: L 11' ~K(t) +- L 1-7J 5
N) + L~ 3 (-t) 

From (4. 2) and (4. 3) we can get ½"XjfJ, 'q(t-J in terms 

of(~rJ)• Differentiating (4.2) and replacing the 

left hand sides by this expression, we have 

(4-. 4 !) L X K x(l) 7" + L 1 1< t (-£-),:/; +L" I< ( f-t) -{j +L} /,s(tJ-15 + L: t<s"1t+i,;y s 

-+ L l l<f(-tJ-1- + L ~ I<~ (-fJ ~s- + L-; !<,' (-t-J ,:;- = 
'l(,:(f)1JX+ 't<I l+J15 + 'l<;(-i)--:J--

(lf, 4-2) Li 1<5(t-J "d5 + L ~ (<5

11 
(iJ ~, + l ~ t<," {+J ~ -

'1<1 (-f:J,:J
5 
+ 'I<,' {i) -:J 

Equat ing coefficient s(IJ of 1J ~ ~sand ~ in ( 4. 4) gives 

us (4.1). The initial conditions are 

t<K(o)-== !1 t<.{(o)=OJ /(((()) =OJ /()(o}= OJ !<,'to)=I, 
, . 

Now let us assume that the l<sare expressible as 

power series in+ as follows: 

I 
0( oto -t ,,,___ 

(4-.S) ( 13 (+) =~a ~.' t<:[-.J 
) 

where c/
1
;3 may be any set of indices for which the /< s are 

defined. 

Substituting in (4.1) and equating powers of~, we 

O)That this is legitimate is proved in the unpublished 
paper by Michal and Peterson already referred to. 



have the following recurrence formulas for the!<%[~ 

(4.6,) k;[~+D:: L,<l<{[--J +LJ !<(51{-J-+ Lt /(5u[--J + L{ t(; [--] 

(~.h-zJ I<; [----+tJ ~ L1 l<t[""'J + L~ t<,4[""']-t L~ !<,1[-,,,,..J 

(4, b3) J<j [~ti] ::- L! /<fS)C--J + L ~ /< ~u [--] 

(Lf.~V t<!C~+O :::L~l<~D-mJ 

(lf-, 65) ,<x [,.,,._-ti] =Ly:/( Xe~] 
with the initial conditions 

/( "'f o] =: K! [a]=- I J I<:[~]= !<,Y[o] =- l(j [o'J ~ O, 

It readily follows that the !<~are defined uniquely 
) 

as functions of t, and that these /(5 formally satisfy 

the original condition,' namely that ifiJdefined by (3.4) 

satisfy (3.5) and the initial conditions cffo>=cf~ It 

remains to show that the infinite series (4.5) converge. 

Let L j Lt L~J Li all be less in absolute value 

than MJ then we will show by mathematical induction 

that/t<;c~/<(L/-h)"""(-t-o.)/W'-. By (4.6) this j_s true for ~==-D, 

Then if it be true fori1t1~At\ by (4.6) /k~['»-+Of<' LfM U-a.Jll<Ir-.J/ 

C::::(LfMI-U-aJ-♦+-' Hence series (4. 5) are each dominated by 

2_ (4kf1u-"(.,...which converges for all H and -t-. This 
41(-::::o .,i,..,, 

means that the formal solution (4.5) is an actual 

solution. 

It follows from either (4.14) or (4.65) and the 
I/~ L )(t-

initial conditions that" {+)=e :/: 0 in (0.14. Further-

more the determinant of the infinitesimal transfor

mation (3.2) is 
D {H) ~ I-+ y, L1:5'-t J_ '{~t( o½< + ~ ol A-ML4/t ~;,,.... ~t: 

r.t 1 L1 ~t I - I - ;r 

::: I + L { ~ t + ~ rrt ~~ ~ _;_._ ~ t I 

Now D{-t+bt)=Dl-t), D (6-t) by the product theorem. 

Hence D{t+Si)-D{tJ = Dl+)[t+L~St+ ---] - D(f} 

= D (i) L~ St 



have 

Dividing by 5t and passing to the limit as 'f;'t-,o we 

dDli) - D(t:J l~ 
d_ t 

Hence, since D(o)==- I 

DC-t-J::;:. elrtl o 
Hence we have, with Dines, 

Theorem III: The finite transformations generated 

by a r egular infinitesimal projective transformat,ion 

b Cf' J< = [ L Xcp,X + L: er+ Lr - Cf><L j cps] f;t-

consutute a one-par8:W.,eter family of non-si neylar pro-

.j ective transformations. For an;y: value of the parameter 

t , the kem,_els are given •by (4.5), (4.6) and (4.?), and 

the determinant by (4.8). 

The Family Generated Fonns a Lie Group: We shall 

next need a set of formulas concerning the /d which we 

proceed to prove by mathematical indu ction. They are: 
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(9,11) !<}' [ p J =- /<'t--J !<; [p-,..,,..] + l<fT~l/~
5
Jff-'-,,,,..;J +f<if-Jl<J [p-.-J+t<r[-..-J t<;Ip-~J 

~-;12) K; [t,] ::- /( X[,.,.,._] /(~ [f----]-t- K;[,,,.,.._] {(,lf[f-~ t I<?'[,,,,.,_](<,' [1'-~ 

(;-,13) /<; [to] = I<~ r~J l<'11£ f ---J + /<~ [,,,,,_) !<~ [ f -"""] + t<: f,i,,-_J I<~ f £P ----J 

(~, l't) /<: [ P] =- /( ~ [""'] I<~ [ p---J + l<,1 
[--] f<,1 f p-,.,.. J 

(r. (S) /(K[ p] = l( l'[""'-] l<"[-p-~ 

For -f:::::: o 1 /V"'- ==- o , these become 
o-o o-o 0 -o 1::.1 l=-1 

- ' - J - 1 J ) -respectively, 

For P=', ,,.,,_::- o 

1<: [ I] = f< ; c 0 
1< ; [ iJ = I< ; [ ,J 
I<~ [ ,] = I<~ [ t] 

t< : [ ,] ~ l< ,' [ 1] 

f< x [ 0 ~ I< x- C tJ 

-r=', ,,,,,,._=( 

1<{ [t] = 1<;[1] 

J< ~ [ 1J ~ I</'" [ 0 
1<l [ t] ; I<~ [ ,] 

I< , [ 1] ::- I< 1
1 L !] 

I 

1<''[ 0 == (< y 1] 



provided we remember the initial conditions (4.7). 

Now assume that the recurrence formulas are true 

for all values of -p , less than p. Then 
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k ~[~ t<: fr----J + l<s'°'"f--.,,,,J l<lsJ[f?-"""J-+ t<~ r"""J /<' 5u[,p -,,,.J+t<(f,.,,,..Jt<; f/R-~J 

== L x t<l<r,,.,,,-o k{ [f7-"-) + L): t<J[,,.,,._-D r51rr-"""J +L; J<sJc,.,,,,..-iJ l<csJrfP-~ 

+ L: !<~ c'Yh-o 1<(stp-"""J +L; t<1 r~-D t<c5
Jcr-,,-.,.J + ttK:r---o,<J cp-~ 

-+L: t< 4c~-o /,; tt>-,,._J + L~ t<~ t~-ut<:[p-,.,,..J +Lr l<fv.-l,,,,.._-Vl<;[f,,P---J 

+ L 'Ii l<f [ Nr- - t] k; [ ,p-,,,,.,,._ J + L: 1<1 [~ -iJ l<i [,p-~ + L ~I<: r---u /<; f 1'7- ,,,,.,,_J 

~L''{ /(~,.,,,._-i] f<f[p-~1 t-1<{[---D ~Ip-~) t- 1<tc---D l(sl{ [f--]+f<~[,.,...-!]t<;[p-,,,;JJ 

-+ L} [ t<<sr ~- iJ //5'C1LM1J} + L ~ {I<; f ~- D 1<
151[ P _,,,,.,, J +t<""l,,,,,,.. -i] f(1 Cf-~7 -r 1<tr,,,._-!Jf</°£{/--] 

f 1< 1c -w- - 1J /, l c r-""" J} t-L; f 1<~ f M- - O 1/5J[ r-~ + /<~ r,,,,., -u t<J'ft-""J +1<:c--0 ,~ rr~ 
::: L ~ 1<; [1-D + Lj 1<<51[p-j] + L: I<~ ((P-t] + Lf 1<; [f-1 -iJ-=:: /<./[p_J -½ flu,o 

Similarly 

t<t'CN>\J /<; cr----'J + t<! r~ 1<~ C-14 -,v,..) + t<~ r---J r</ Ct-,,..,,.__J = 

L 1 t< I([""" -O I< ;fr-""" J + L., I< t [""' -u J< ~ [f-""'J + L~ l<'-l c--,,.,..-_D /(,; [ ~-,,.,,:;J 

+ L ~ 1<;c ~ ,I] l<'(Cp-,_,,,_J + L: I< 'v- [~-D /<~ f p---. J +['><I<~[~ -G t<.' [p-""'J 

-+ 1-. ~ /<~ [~ -[] l<.1 [ y-,,,,__ J + Lr!</ r~-iJ I(! [/e1_,,,,__] ::: 

L ~ { 1< x-C '1M - 0 I< .X [ r' -~ 'J -+ I< t C ~ - D I< ,11 r r4- ~ J t I< f [ ~ - D I<: C P- """'J] 

-t L~f'<~f"""-D I<; Cti-,w,.J-4- t<~ [,.,...-D t<;" [p-~:J +I<~ c-.-!J I<,' ft1---JJ 

-+Lt( l<~[-w--D l<;C-y-----J + l<,1 C~-i) k: Cf'-""Y'J] 

=- L ~ I< 7 r 10-o + L ~ t< ,LI [ f/1- D -+ L ~ I<: c p- o = 1< r c 1, J ½ ( 4-, "2. J 

Also 
I<] [~J Kl-S)f p--J + I<~ [--.J 1<Jrr---,,.J + I<; C"-"'J t<] [p-,,.,,,_J == 

L; /.(lS[ ~ -,] !< (St jP-~ J + L ~ 1< ~[,n_ -t] 1<1 [p-~ + L ~ l<.:;IA [ #- -[] 1<(5)[ f-~J 

4 L ~ I< ~[~-D k[[10-"""'J + L ~I<~~ -D 1<~ [p----J ::: 
( . w 

L ~ ( I< st* -a l<rsJ f p-~J} + L ~ [ I< t-1c,,,.. -D /<; [;----. J + f< .str r--o K C f?-.--v--J 

il<~[~-D l<;"[fP-,,,,_,_J t- I<~ t~-,) l<iCta----]= L~f<151
Cp-i]-tL~l<s1,1Lp-i] 

::: /<l [p] ½ ( lf. bJ) 



65 

Also 1<: f--aj 1<: fr-~ +l<~ r~J l<i1 (r-/Vh] = 

L~ K~ [,v,,--,J l<{fp-,,,.,.) -t- L~ l<uf-»--1J !<~ f,-,-"""J+ L~ t<~[-,t] l<,"fto-,,,..;J 

:- L ~ {I<~[,,,,,,, - Q I<,' [ r-"""' J -t I< ~c 'Vh - I] l<; Cp-""" J + I<'!,. [~ -t] t,~Cp-,.,,...JJ 

::- LL._ l<~[p-i] == !<,' [pJ 17(4. bit) 

Hence the formulas (5.1) are true. Let us 

write these as 

where the Greek letters indicate such and only such 

indices as appear explicitly in (5.1). 

The product of two transformations of type (3.4) 

with parameters ~ and t:i... is a projective transformation 

with kernels as follows: 

(5.31) P;u,,tiJ-= t< 1c-t,J 1<1 (tlJ + 1<{1t,;t<cstt,.J -t-k~et-,)l<ir1:iJ +t<,Yr1:,J 1<.5't~2J 

(s.J2J P; lt,1-t 2) K"{t,J !</fi.J + l<~lt,) t,;{ti) +t<t'ctrJ t<.'(-t:1-) 

(5. 3J) p ~ {t,) ti.) 1<1 (&,) !<(51U2) + I<~ (t-,J 1<~ {t) + 1<,' (-t,) t<; (tt) 

(5".3't) P/(i,1tL) - /<~(t,)!<Y(t)+t<!Lt-,)l<)(ti.) 

6~3 t) P x (-t,/tz.} - /< ~( +,J I< ~lt
2 
J .:::. e (t, tiz.) L 1< 

These formulas (5.3) may be written 

{}, 4 J p~ ( t-,1 ti J =- K ~ N,) /(} ltz.} 
where it is important to notice that the Greek 

indices have exactly the same range as in (5.2). 



= 11 r (ci ) Pi ( t-'/ ti.) :::: P~ if ~ 
0 

c, __ +, "H1t1 --- I< y [/W'J k J ff'~~ 

Making use of the fact mentioned above that t~e 

range of the Greek indices in (5.4) is that in (5.2), 

we may apply the latter, giving 
.,o IX £_ c6 

p« {t11 -+-J -=- .Z I<~ ~1--1 z._ cp,v,,, --t,~i/4-,.__:::. L tf,ttJP Kjc,J 
/3 fl:::t> fJ, "'11:::o ,t=o /7! 

Hence the product transformation is a member of 

the family, with parameter t-, ~ti_, and we may add to 

Theorem III of Dines, the following: 

Theorem III 1: !he one-parametE}.l_ family; of 

TheoreILllI_!.§.__a one-parameter continuous group in 

the_ sense of Lie, and is in canonical form, 

The last phrase means that the parameter for the 

id.entity transformation is zero, and that that of the 

product is the sum of those of the factor of the 

product. 

Conversely, if we have a one-parameter continuous 

group of projective transformations, it may be reduced 

to canonical form. If it be so reduced to 

( r, ') f<"/-t)cfx+ J(~(f) +-{</<(-f)<f 5 
J lb (f}.,..(f) ~ 

1<;£-tJ t- l<;t-tJ cps 
where tis the canonical parameter, then replace t by 

'bt and expand the l<>s, neglecting powers of bf-higher 

than the first. Since c'p?6) = Cf~ , we have 

cp, + K/,«J C{lx~--t t- 1<; c,J s + + 1<: r. I_] q:r5rt {f ~(6-f)=: 
o; l-+K/r,JSt-4-t<~UJCf'.s~t- , 

where l<,e, [ ,] is the coefficient of ~-t in the above 

expansion. 

Expanding the denominator and neglecting higher 

powers of St-: 
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Cf yf t-=- cpx -t- St [c (((,] -1<:c,J) Cf)(+ 1<~ [,]_-ti<~ (,J <p5
- Cf' )(KiW <P~ 

which is an infinitesimal transformation of type (3.3). 

This transformation generates a one-para.meter continuous 

group which may be (5.6). Hence, it seems likely that 

any one-para.meter continuous group of projective trans

fonnations in canonical form is one generated by con

tinuous application of an infinitesimal projective trans

f o nn at ion o f type ( 3. 3 ) • 




