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Introduction and Summary.

In Part I of this paper we develop systematically
a general theory of linear functional equations, where
the unknowns are a function and n independent variables.
The Fredholm theory of integral equations , and the
classical theory of linear algebraic equations are
included if we specialize the equations. We nmay
regard the set of equations as a linear transformation
on the composite range consisting of the function and
the n variables. It is proved that the transformations
for which the bordered Fredholm determinant, which is
defined in$2, do not vanish form a group., A general-
igation of the transformation is brought in at the end
of Part I,

In Part II we apply the generalized transformation
to thé invariant theory of quadratic forms with con-

W The alge-

tinuous coefficients on the composite range.
braic theory, and the theories worked out by A. D. Michal
and T. S. Peterson (references on page 40), are special
cases of this, The theory of quadratic forms with con-
tinuity of order one is reduced to the case studied
earlier in Part II,

In Part III the theory worked out in Part I is
applied to projective transformations in function space.

In particular all the results given by L. L. Dines

(reference on page 7) are obtained somewhat simpler,

(DPart II includes some unpublished work of
Professor A, D, Michal,



It is proved for the first time that the one-parameter
family of finite transformations generated by an infin-
itesimal projective transformation in function space
forms a one-parameter continuous group.

I wish to put on record my indebtedness to
Professor A, D. Michal, who suggested the problem and

has kindly supervised and assisted me in carrying it

through,
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Part I

Linear Functional Equations in a Function and

n Independent Variables.



$1 Introduction: In the first part of this paper the

theory of the set of n + 1 linear 1ntegra1 equationa
S2(R) = Z I+ §, !<(?‘»S)/;z(5)ds+2 K,lr)/;f’

';‘ =zt +f K (J)/j(s)&(f +2 Kj ,;,;z ([=42,--5)
is developed from first principles, the results being

given in explicit form that will be suitable for
applications,

We assume once and for all that the functions
K(KO,KQO%I<QQ are bounded and integrable in the
Riemann sense on bothXandsSon (44)., For most of
the applications the assumption of continuity is also
made, A consideration of this is deferred to & 9,

We shall use the convention of writing the con-
tinuous arguments above as indices of position in the
alphabet after q, and shall imply Riemann integration
on (4,t)with respect to any such index which occurs as
both sub- and super-script in a single term. Indices
before q shall take on integral values 1 to n unless
otherwise stated, and the repetition of such an index
as sub- and super-script in any term shall imply sum-
mation from 1 to n. With this notation we may write

the above as
(1) LIRS ¥

gyl =7z +1<“5.+(<'~ 75‘
If x and @ pass over the comp031te range consisting

of the continuous interval(hﬁffollowed by the discrete

range (;ywe may write (1.1) as

(I.2) X T KeF ¢



The summation and integration conventions do
not apply to subscripts of indices.

Dineénhas indicated an explicit solution for
the case n=1, and has applied this. He gives the
relations (4.1 -.8) below for that case in éﬁfferent
notation. Hildebrandt? indicates that the existence
theorem for inversion, the product theorem and the
gioup property follow from the fact that the bor-
dered Fredholm determinants are actual Fredholm de-
terminant s,

" We shall prove these by direct methods analogous
to those of Fredholm's classic paper(”

§2 Definitions: We define the function &%

$~-~S as
follows:
. X
AP Koo K K- K
S - = . (! |
; L :
(2. (AT Bl 3P
(]
Ks, T ’<§%I+{('--"<L
v ! [
‘ ! ] )
Ko == KL a1

Also the following functions:

e X, %,
AX¥"% ig the cofactor of /<$L in Ag S s

(S ~~~San
Ad X---%..is the cofactor of k in Ax;::;
55--—§/w
x---%..is th factor of Ho=s Yo
Aig---g e cofactor o S +Kj 1nAS~“S

()L.L.Dines: "Projective Transformations in Function Space!
Trans. Am. Math. Soc. V. 20(1919) p. 45.
(Z)T,H,Hildebrandt: "On Bordered Fredholm Determinants!
Bull. Am, Math. Soc. ¥ 26(1920) p. 400.

(3) I.Fredholm: "Sur une Classe d'Equations Functionelles!
Acta Math. V. 27(1903) p. 365,



Let us define ==

E—-

A as the determinant[ﬁ}+K;] where S;is the usual

Kronecker delta,
Fe—furtier—"efire =S 56,

We notice that
; i x ¢ xX
(2.9 Ad=-kial A%z - KKIAL A= KID4KS A FKSA KA

Now define:

) - 2 =
[ x—- y"'v‘_— / YI"“ Xan
(QH-H) De AP Z oy ><~->t,‘, /mi()”“' X~

X _ A% X X, ~-- Ko A "3
(ﬁ.qz_) ‘Ds = A +/».:.—”’:’ As xi--x, = Bs x, BRRRCSN
X. smee (~ -~
(2.3 05=a %{AJ;,A;’;__ o gh-A’;;“_’;w
249 Dl=-nlD L Al 3 L ALK
(=— BT s X~ X
2.‘-‘9) t - LX,~~)‘%\ == (X ~~~Xa,,
( 0 Dg\ -A /»‘Z“'AM ;x“)( DS - j‘. Aty“\““?‘w

After Dines and Hildebrandt we call the bordered
: X AX t E .
Fredholm determinant of (1.1) and D%'D,L i 0/ its

first minors.

|§3 Convergence of the Series Defined: The general

m

term of each of the series in (2,4) is the repeated
integral of a determinant of order m ¢ n. Yow let M

X x 4
be such that [KS| [K/L [KS[, [8§+k}[ are a11 1ess than
M. This is possible since all the kernels are bounded,

and there are only a finite number of them. Then by



Hadamard's lemma the general term is less in absolute

(n4an) 557 MM\+M R Lt
A/V‘.’

value than
where p = 0 or 1 according to the series taken.

The dominating series thus obtained converges for
all values of M, for the ratio of the (m+l)st term to

the mth term is

M (4-a) [antm 41y mntm
DEeed (2 (rmemtr)
= M (4—a) Bt ] Vo {
v?"’"('l))’v. [(/+ ’;"ITVV\) ] (( * 4'::1}/1

W e [(1+ % )”"*"‘j/" ="

"L‘:‘ﬁ”o ((+m\+y

)}’1_

therefore the 1imit of the ratio is &/ (¢- “)«‘~>» 6:&/‘)—%. = 1
Hence these series converge absolutely and
uniformly in (44), and the definitions are justified.
§4  The Bight Relations: If we take A, .} and
expand by minors of the first row, we get
A KT AN ey KE AT I 4 3

Since the x;are variables of integration we

may rearrange them, giving

£ %, e Kmee £ KK
AXX. YM K A”(_\‘;"‘ K_?ASX “Y::‘l +(<7 A

If we multiply by,m, and sum from m=1 to m=09,
_ X pt 7_a?
we get D:‘Af“ /<;‘ (D-A) —KeDs + K;(DS As)
Using (2.3) and transposing, we get
(hp  pX-prr+KEDE+KEDF =0
If we expand similarly by cofactors of the first

column we get

(M)  DX-pKF+ DLkt FDFKE=o,

KO T SR



i Yoy

X XI
As above let us expand A e W by cofactors

of the first row, getting

X X =~~¥am vy At X -~~rM I 4x-
A ¢ Y,—-‘*w = l< A( )‘- Yar - ( ’<; AL x{‘““*f\«m

Taking 2 = of both sides, we have

= 3 _ 7
‘DZ-—A’E: KX 0’%*{(;(05 Ogcf-A{-)
Recalling (2.3) and tranSposing'
(43 Df-DKI+KX¥ot+ K; D7 =
Expanding A7 "':“* by the first column similarly,

“~ o
we have
(t.¢) DS-DK§+D'4 K5+D = 0,
Taking the sum of members of the (m + j)th row
by cofactors of the first row of A’;:( ::)r;, , we have
O= RELEES o K AT (sfekg) all T

Ta.kinglmia iy and chanplng sign, we have
(4.5 Ds-Dt<§+l<§;oj 1D5=0

Similarly multiplying the (m ¢+ i)th column by
cofactors of the first, we getl
(hy) DF— DK{+DEk{+0bK]=

For our final expansion of this kind sum the
elements of the (m + i)th row times the cofactors of

the (m ¢+ j)th row of Ak . -x ™ giving

)("\?(n—v\ === Fanq) ‘p x 5
g B i = ”“/(fA;;_-j«“ (8414 A7 T

Taking i =~ , We have

1

SL :~(<L 04-.(514-/(‘)(0 DS,;)

Cancelllng /)Sz’_ /ggpgj and changing sign, we get
(4.7) D~ D K+ Ke ot + Kiph <o,

Similarly by columns '

(rs) Df-DK§+ 0l Ky +0iKF =0,

We collect the results of this paragraph intoe

10
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Theorem I: Under the conditions in &1 and with

the definitions in §€2, we have the following relations:

($.0 DF-DKI+ KL s +K50f =0

(H.2) DX-DKX+ DEK}+ DfKy=0
43 Df-D Ky +1<to,+r<po’=o
(. % D?—DK + D% §+DI(<;—~0
) pL-D KL+ kiOf +Ks 0] =0
(4 ¢) DC—D/<V+D£K*+D£K’:O

(4.0 0‘~DK +I< D;+/</O
U.5) DF —DK ~+ Of Kk +0s g =

Since the odd and even numbered relations associate
naturally, we may refer to them later as (4. odd) and

(4. even) respectively,

&5 The Inversion of the Transformation (0# 0): We

May write (1.1) as3%(3)=4 , a transformation from % to% .

If S¢is the product SL(Se) =S,¢S , the kernels of S,

are as follows:

Cos= LI+ K+l ¢ K]
+ X P

GJ—- L; +I<; +Z_1-K + Ly

(5.1 G;‘L ¢ K +Ltl<‘"+L,(<

\ t ’.
Gl = [;+1<4~+ Lé S+ LAoK,

We will now consider the case D# 0.
Assuming that (1.1) has a solution (4), apply the

transformation S,E'to (1.1) where the kernels of S,;' are
= D}( -0% _ D;i D}
D '67 ) "—‘ ) 157 o
Thi ~
is gives us S 4= SI( SK

Applying (5.1) to the right side of (5.2) the

(5.
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kernels of the product S'K"-SK are-g times the left hand
sides of (4. even). Hence S¢'S.~Ss, the identity

transformation, and we have

Theorem II: If a bounded and integrable solution

(F) of (1.1) exists when D# 0, it is unique and is given
by

= x_ Df X 4
F'= 4" - Fo - Yo

) Fleyio Do % 44
Substituting (5.3) in (1.1), we get
(5.4) i £ S ST
Applying (5.1), the kernels of S,S.' are —3’ times
the left sides of (4. odd). Hence SioSe = So and (5.4) is

verified. This gives us

Theorem III: The equation (1.1) has a unigque
solution when 0#0, given by (5.3).

§6 Continuity and Fréchet Differentiability of

Functionals of Several Functions:

A functional Fz""z””‘[c(’.)-nﬁ&] is said to be linear
and homogeneous in the n functions ¢, if

(é‘l) FZ‘“‘:&M [A| CP,‘!'M.\‘KI -y )m((,.\'('/um \Kuj :A,l,‘*' R,M’ === +/4M)“+ B;*H,“)
Ahere the ASand Biare functions of the

Now define "
2 = 2 ~~~Za~ V@ ___
(6'2) Fé ZM[QJ = | L 4 ’CF”“]) Gy=0(]#i

Theorem IV: A necessary and sufficient condition
2 --- oS
that F > (¢, --

~%.] be linear and homogeneous in the

n functions % is that

2 2an (- "
(6 3) 1) K [CPJ be linear and homogeneous in @«
E e o
2) F§|"~-2M[Ca, - C/M\T :%Ff.—- ZM[QL]‘




Suppose (6.1) to hold.
Then let Aj =My =0 (4 #9)
Ff"“zm [ 24, ] = AN + B Mo which proves 1)

Now let )\(:/, )]‘ = ) (j#(l)/,b(;,‘ =0 (all j)

Then Fiz'"'z"n[cfcjrﬂg

Now let A;=(, M, =0 (aUl 2\

F 20 2an [% = ‘(’Mj :éﬂﬁé Ff'w MLC@J which proves
2). Hence the condition is necessary.

Now if 1) and 2) hold, we have
FZ'-.. e [;‘| CP' +M(\K,' ) )xv\(ﬁm"' MM %] =

g FAT 2 [ tmet] = g A det M Be
Hence the condition is also sufficient.
Let Fz"~~“z”“[‘(gt ;-(, W} be a functional of the p
functions)fxotf two variables, of the q functions Y;'
of one variable, and of the r independent variables }?.
Give each of the YTS an incrementd!, such that h is
the largest of the set max|§Y.
Define AF as
xn FE'NZM[YZ“ﬂ“S sz; Y78t Yetsl /= Fzﬁ-?*[rff s, )Q’]
We say that F is a continuous functional of the
YiS at the point of peqe+r-fold function spa.ce,(Yz‘;t 7’;/ ??)
if for every € 20 there exists a § such that if »<¢&
|aFI < € , We say that £ is a continuous functional
in a region of the above space if it is continuous at
every point of the region.

t oy
The Frdchet differential §F z”[ Y’:j V;} Yel § Yiy/ SYJ‘) SGJ

of F is defined to have the properties:



)
1) It is linear and homogeneous in the $rs,

2) [‘i’i;'_sfl approaches zero with %,

The distinction should be noticed between F

as depending on the variables 7,{, and on the variable
B,y g, The }fe are to be regarded as independent

X
of the Ylyfand Y‘, while the 2% enter as a rule as

arguments of the Yiyfor f/y. ard_in-general—depend—en
the-latter, For this reason we regard F as a functional
of the Yy and e function of the 25, If we take the
differential of F defined in the differential calculus,
it is linear and homogenous in di‘,/—-)di‘m, and the Y7 ,
likewise the Ygda.nd \I’; are regarded as fixed., On the
other hand, the Fréchet differential of F will not
involve the A2’ , but will, as defined above, be
linear and homogeneous in ngf SY;‘; ) 7,/0 :

An example is furnished by the bordered Fredholm

X X,
first minor DX K3 K'?
S| Ke B 4K

which is a function of X and § , and a functional of
(. |

the 4 °
The above definitions and remarks readily extend
to the case of a functional of n functions, each of an

arbitrary number (including zero as above) of variables.

2, ~~ 2w X
Theorem V: Let F ' D'// ===, Y] be a func-

tional of the n functions YL‘J_ each of an arbitrary

number (including zero) of variables, and a function

of the m+l variables Z---Z., % . Let F possess a

‘“zl‘*'zfvh,x - ~e -
Fréchet differential, & LY, ol 8k 58],
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Then 4
gf“ pE 2. X [ ¥, =~ Yai] Sl

6.5)

o (%5 Pr e X[y, o T BT, - ST
a

Let us call
2, -~ Zam, - -
aF : X[YI,‘“)YMIOI““IO;SYCI 0-~--,0] S’F‘-B' Zom) X

Then by Theorem IV, we have

=y 1
Then ' PR A
[ Tt | AL L A P [Z,/ S g To¥

and this integral is linear and homogenfous in the SY..
bz . 2 4+
(77T Zam, X - = Zom s
AfF R Ay P e R A AT 2y P

bez-2., x L P
- [°F LY, ]or = [& pamem X 4
But ,
AFH T EmX S GERTEX Y o Y §1, ==y S ] + Oy (5K
where @0 with max (5K,

Hence
4~ 4~ 4
A FEEmNy v Yok = f SFR B XK § .,~~~;SY«]M*’”“”"“'J"°"
a

Since #> 0 with max (SY|, so does ffﬁdqf, and the
theorem is proved.

Now let pj:t““?”“ [K,“‘; YM] (1’2'/77 s ) be a set
of functionals as before,

2 ... P .
Detine G, 1] = ZFETINY, - K]

3("‘24«
1r L. S, exists, we call it 9 [V, Y] 1In
Paec “P

this case define R;‘mz‘"‘[\’,,-n,‘r’ﬂ as S~Sp .
P



(6.9)

We say that the seriesE'F:’;-“Z’T?,’,wnjconverges to
the value S 2= [V, --, KJ uniformly fer a region T of
n-fold function space and m-dimensional space if there
is an N such that whenever P>V, [R,/<€ for every point
(Y, ~Yal2---2,) in T.

Iheorem VIL .lf__F_Zﬁ“iw[Y'/-"’ %] (#=1%--) are a set
of functionals of the n functions ¥, each of an arbi-

trary number (including zero) of variables, also func=-

tions of the m variables 2,--- 2._, and if the Fréchet

differential SFﬁ“‘*“[K,--vY«ISY.,»Ls f.]exists for each

=)

and if the seriesg, Ev converges uniformly for a region

T, then if the series
1) s B . .
§ S TN N (51—, 0] = 2, 8FR T (6 8 8

converges uniformly for T and for $¥. bounded, this series

is the Fréchet differential of
% e o _%5 pa-afY, -
S (¥, --5Yx] 'g, Fe Y, - Vel
Proof: Define & fito be SF:'""’?‘“D,’,--;h/q~;o,5n,0,--)0]and
$Si to be &S TTEIN ¥l 0)-=5 0,8Yi, 6~ 0],
O
Then 55;'“.5}““[“‘ . [§ by = SY«J :% SF;
b i -
=3 2 §Ry= 2 Z26F =2 S5
-_— > =

Hence $S is linear and homogeneous in the § Y .

P e
S‘S:iSF,P‘F RP :SSP+/RP

b= 7 vhere Spis

/
defined as above and Rp, defined by this equation, has

the properties of the Rp defined above,
AS -85 = ASy +ARp, =S5S —"Re

Now by definition of $Sp for every €>0, there is a $,

such that [9_5%5352( < % for all finite P, whenever

16



max [8Yi[=2n<S§,
ARp= ReTTI[ Ves ity --) Yot 58] = RoL ¥y - ]

Since the convergence is uniform, there is an N,
such that ]Rp[?"*‘g}'ﬂ”and [Re [¥]] are each less than L

when P>N,, and similarly there is an V, such that

I/RP|<§£ if P>Nlo
Now taking £ greater than both NV and My , we

have
As—ssl</as —&5)

17
Hence the §SZ 7 2~[V .., vi[Sk,

both conditiens and is the Fre/chet differential of S

4| ReLY 5] 4 |Re L [+ e < €

-3k ]satisfies

Theorems V and VI are brought in to show that the
process of taking the Fréchet differential is com-

mutative with integration and summation to infinity,

under certain conditions,

§7  Ihe Fréchet Differential of the Bordered

Fredholm Determinant:
The Frdchet differential of D (5%

Theorem VII:

is given by :

(hp Sb= DSKi —DISKS —078k7 - 058K/ -Ds 5K7 +DEK;

is & function of the kernels in the

, ST S
Ag ST
Hence its Fréchet differential is

ordinary sense,
as follows:

given by the ordinary rule for determinants,
X =X ¥ (X)) ome X 4f X.--—D‘J x¢
SAS,---S: :E:Z’ As",u-(s‘)-“;“ SK? +tiz‘( 0" AS (5)---5 SK
rED)
M x X == Raea ' = =~ Ann 3 xr
+ 2 (- Aj - s(.t) : SK ‘422- -V A s---(sT- Sone SKS +AT ><~-~>< SK'

the f)irentheses here indicate omission of the index

contained,



Setting Si= xc.‘, integrating, and rearranging the

variables of integration, we have

%, -~ X %, == ¥anaey ki S Xi== ¥an-2 +
SA)‘:“*;:« = MA’(.“"YMqSkj (om I)Af X Kans2 8((5
4 XYt . ¢ S X~ Yansy 4 R JEOS '
+m A% e B o 516 +ro A ¥ e ¥ SkI+ATV TS (<;‘
@l
Now take > - of both sides, and it is easily
M=o :

seen that the convergence is uniform if the K5 are
all bounded, Hence by Theorem VI,
ol s 1 JciS_ N.Cr? i_ndysict
§D=DSKS - D% S5 = DFSK;- D5 §kZ 4 (psi-07)ol<
which is the same as (7.1).

Corollary: Dividing by D we have if D# 0

s J 3 : i :
() -S_DQ: § Ly D = 51— %Skj*%fSK;-%fSKf—%_L'(SK}-—I-SKLr



$8 The Product Theorem and the Group Property: If

Sﬁ is the product transformation Sg'Sk the kernels
of S3 are given by (5.1) as follows:
6.1 K3 = RO+ KY 4R cY +K)K¥

= ’

Gy [£X= R+ G+ REGHiRTIG

@1y RS = RU+kE+” KD +R !
s ’s ) % Ny S

+ K5 /<;~

4 <t -l Corbget
(B.av) | ;TR KGHREKT

If D and 5, the determinants of Scand Si are
both not zero, we can solve these for the kernels of

§K and S‘?o

(f.2) KF= (KJ-R)) - TDB;

)
) = s = = — L = =
(r2y K= (RS-KRy) — 2= R-F) — 22 (R)-r))

o
§ == ((E;‘ \4) B_-t ((7 i?;) Qi (K] K/)
Using Theorem XI below, which is 1ndependent of

§6v-8, we have from (8.11) and (8.,12) N

(F:3V) k= ( XKk ¢ (RE- -KE) (- D)-(—(Kﬂ K5)(- 5)

(§.32) [?; = (T(;-K/)+(I<tx~l(t](‘ TSZ) = (’b"@)(’%gj
From (8.13) and (8.14) we have

(6.33) /?f = (RE-(cf)+ (1RE-K Ly(- DJ)+(/<;;~'Q:)( D’)

RO = (&) ~b) + (Ri-1ch) (- 05)+ (Rb-1cf) (- £7)

7 >
Theorem VIII: The determinant D of the trans-

formation SK 9K SK equals D-D .

19



We shall prove this for the case when D and D
are both not zero. If either or both vanish, the
theorem will follow from the continuity of the
as functionals of the kernels,

We have by Corollary to Theorem XVI below
§B . DD8H- DOSD-DDIL
DD (D 5)2_
From (5.1) we have L,
SKY = SRE +51KS + K4 sk vk SRIHRG SkT + K] sR

K /?"5/(’+ k" FR)
SI?;-: SK;, +Sl< l<+5"; + K 5'%* Y

& =i _ gRri4sKd+ RL skt +1<;8/<f+f<pgf<5 v HLERS
SK, = '
/< +/< §K,
§R = SK +5!< + RS $/<*+f<f§< 158
/

Substituting from (8.4) and (7.1) we have
5.5) phs>- Dosb-5bsp =
DD LERS +5K +RisKE + K5 sR: + R sk? +/<551<J

i[gk,s +51< +/< SK +I< SK + /(,S/( H( SKJ
5 [8K5'+Sk4+ (<4 skt +KESRE +RESK? HKS S/(d
%[S’K’—LSK +|<tSK‘ {(‘bgKt_H(jsKi as S".@J
g

7.
[gk C+REsKy + I3 SK‘ +R}S/<f+l< SR

4
D[SK Sl(“+(< gt 4 kS SRE + Kp skl +kE SR

-7
[DSK ‘D§c$K ~b? 5/(-—1) SRZ _psic & +05K]
5‘D§S{<7~DJ-SK5—D‘;§/<J+DSI<:]2

D>
D
~0DDD?
+DD

~55[DS!<;- D% §
Sk [p5D-DoE) + §RS[bDD-DOLJ
+sKE [0D
£5Ks DD
4Sl<5~[~v“5?«
+§ k5 [-DD DS

"

ol
N

y
t
s

il <
o o
(o]
4n
(
o ©
3
4 &

s,\\‘ x
A x

£3
€
bY
t R

+o(7

ol o ol
o
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Ty 55/R5 ~DBDL K} -DDD kY +50 5]
1SKZ[-0D D +DDBRS -DD DL DOV K +5
+ST<3' [-/3613;-+ DBEK? -DBB; K% -Do“;/q? 4 505;
+3'<i[0573~51>6]+Srf[oBE—Egbj

: : - = = = = < =~{]
+5KS[-DD5# ~ DDDY Ki-pBD%K|+bDDd K{+D D3

y c
4%R;'[’Dﬁsszf(g~DBE?‘~DBE{K§+DESK§+50553]

In the coefficients of the variations of the
K's eliminate the K5 by (8.3). This gives for that
of gl(; , after removing D
D DKL =DK% = &3 D% + K4 DL ~K5 DL +Kfn£]
~Bi[oRY - DK~ Ry 0¥ + K o¥-Rio{ K 0f]
~B3 [oK?- DKZ-RY DY + K7 0y ~RF 0{+ 14 ]

+BIDE ~ 0K + (€ otﬂgabf]
4 UL B2 ~BRS, + BY ki 4Dy KY
] U + k¥ Q
—b [D—DKt-H [)t G 0
+ Z
+DE[B; - DK + DuKS om]
47 —
_B3L0f-0KE + KDY k§02] =

-

The coeff101ent of SK is D times
= 4 2
+o[ot< —DK“-K D! +I<’D‘4 Kjo,’mivs]

_og'[m;—bks ,<u5u+,<qbu %02 43 07)
—0Bi+D 07 =

T3[D?'—D!<5“+l<" [)“ +/<¢‘1>’]

'B‘{’E[D DKY +1¢4 nt + Ko D ]

~DI[0} - DKt +Kk bY + kg 0]

+0Y (37 -5 +D"l< +D£l<
+D€L5j~5)=<f B4 RS +34 k7]
‘0[53’5@'*5;1??4—0% Ri] =0



!

I

The coefficient of gkfis D times
BLORY— bxs -5 bk + Ko} ~Rp 07+ K07 ]
D; [0RT- DK; - Rl Dy + K Dy = zoo, +/<;o;j
5500 7% - 0~ R 0%+ KL o3 -4 05 of]
"Dzb? +BD;~ =
BLoS- Dk + K5 oY +h% 07]

SBALDY - DKE +KE 0% +IG 0]
-3 [0k - pic§ % D?‘*“ %1
o155 BF + BARY +BRY)
g [35- BR+ B+ DR

The coefficient of SK is D times

5 (R~ oed P4 ot + Kot <Rf of ¢ fof]
~BZ[oRi~ DK —RY 0% + K% 0t~k 07 + 15 00]
—6350 i{ DKi~RIDt + K% dE-Kp0% + Kb o#]
~pp?+ 0D =

5lod- pii + ki b, v k707

“D7T 03~ DKE+KEDE +IG 0?]

=1
In the coefficients of the variations of the K,

=t
eliminate the K5 by (8.2). The coefficient of 9K; is

D times

22



u T0¥
- b N \u b \!
s - o7 + 1 1 A
= =5 = =s T4
DI - DRA+ KuDithy 24

S5RY- 5K ~ b4 RE 4l @t iR +0] &)
~BY [5 k7 -DK] - BL T4+ DLRI~DFRL+D] /L)
3419k ?- DRE-D4 K #5415 -4 RS+ DR,
-55§'+553 =

B[53— DRi+DdI kS +03 k]
~DY[ 57— BRE+ DI RL+DS KL
5415/~ bR} +bi Ki+biks
~Bibi- 5K +K% DY+ KF 5L
+ D2 [BY- BRY +RE D5 7LD
$DIrH- FRIARLBS KD =0

The coefficient of §KZis D times
BLR-p RS- KE+ DiRY - By RS Dy Ry ] +



N - ) o .
"N[f)"i- 5RS - DLKk¢ + D ‘;~of/<£+bj(({
g o
= ~ ~ ~5 5t XS 0~
~E"[5F5-5r;~531$+oz/_‘z-ofu+o,f<;j
¢ 4
- =g ] _
‘007+DD;-~
NID 7, S & S o
BB} - B Ry+DLRy +DsK;
-DI[B;- DRI + DU « 05 k1)

< ==+ =4 =y \ B4
+D% (D - DKzt I O j+ b/
= ==/ SR iy =1 'b‘t':
*H);[o;.~ D/j” w0y +1 Loij o
The coefficient of 5/?;13 D times
D(BR? - DRY-DERI +DIRE D% R¥* 451k
- & b - = ~4 'b ‘_ — = .
~Di5k?~ DKi— D4 K; +DIRE -D% K4 +5% p4
= - = — — |§{~__~;‘ S4h | ~F =4
B! (5Ri~ b ~ b1 K3 +b4 RS ~BLRE 47 7E]

-Db¢+DD? =
- ; -l e t ,xd Tk
D[p?- DR{+D% K t i“t]
R T PR
-D3[57 - DRE + D% Ks +0% kel
~BArbi- kG +D% R + DR KA
=4 =34 rvd = Xl R4
_DLBY - DRA+KE B+ k5 Bi]
. = = = :5:4’
+D4[ i~ DK + RE Y +RE DY
A
-4 =0 =0 s =+ =~/ i,ﬁ
+04057- B! +RI DT +k, OF | =0,

Hence the right hand side of (8.§) vanishes,

and we hlave
D _
) 55 =©
Referring to Theorem XVIII below, we have

D=CDD where C is a constant.



If we make all the kernels of S and S zero,
those of S7 also are zero, and D=D=D=/.

Hence (C =1 and
(5.¢) D= D.D

Theorem IX: The set of all transformations of

type (1.1 whose bordered Fredholm determinants are

not zero form a groun,

The product of two such transformations (D un-
restricted) is a third, with kernels given by (5.1).
By Theorem VIII the product of two members of the set
with determinants not zero is also a member. This
shows the transitive property.

It is readily verified that such transformations
are associative,

The identity transformation$ S, exists, whose ker-
nels are all zero. Its determinant is unity.

The unique inverse for D#0exists, and is given

explicitly by Theorem III,

25



59 The Case of Continuous Functions: We see readily

from (1.1) that if A and A, are continuous functions
of X, then the transformation Sk upon (% 5! where 7 is
cont inuous, gives(#'s)where /4" is continuous, If in

addition /<5" is continuous, the adjoint transformation,
(4.1 2, =2 +K§ 2 +K‘§'§z
;=2 + KjZ, +k;%

= - ? o s .
applied to (2, 2,) where is continuous, will give (?;} 77)
where Zis continuous,

X 1
Theorem X: If the kernels G, K} K¢ are con-

tinuous in both X and S (a£XS< 4) . gng if D#o

then:

1) If é%’ff;‘)i Sg@ri}uhere 4#*is continuous in (4,4,

then-7”in the solution(F77=5(#¥4%is continuous in (4,4)s

2) If (ZS,EJJ;SK(%,%Mere Z is continuous in (4,4),

-— R M" , 3 ‘
then Z in the solution(Z,3,)=5< (% %)is continuous in (4.4l

The integrated algebraic determinants used in de-
fining the kernels of §,<-'will be continuous, as they are
the integrals of polynomials in the kernels of Sk . By
§ 3, the infinite series of these integrated determinants
converge uniformly in (4,4), so that their sums, which,
after dividing by the constant -0, are the kernels of 5,;’
are continuous in (@4 , Hence »'=4- %)’(#5- %5'77' is
continuous,

For 2) we see that by interchanging sub-and super-
scripts, which is a change in notation only, we have

a system of type (1.1) with same restrictions as in 1),
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P
so that 2) follows from 1), if D # O which is seen to
follow from D #0 by Theorem XI.

Theorem XI: If D#0 for the system (1.1), then

the system (9.1) has the same bordered Fredholm

determinant and the unique solution is given by :

= _ -OX _ [4
@.2) EsT P T kT o
' s X ity
24_%:_%2’(-0( Z¢

This may be stated more concisely: The reciprocal
of the adjoint is the adjoint of the reciprocal,

By interchanging rows and columns in the deter-
minants which are used to define D, it readily follows
that D= D, Hence if D#0, a unique solution exists,
Applying ?Kto@s,?;) in (9.2) we have (?s,?j)=/5‘/'<'3":’(2%?;).
The kernels of the product transformation §iv§;’ are
given by ~é—times the left hand sides of (4. even).
Hence (9.2) is the solution,

§10 Transformations of the Third Kind: Consider a

transformation of the third kind on our composgite

range, as follows: .
K= K*G e g §S+/<§~ g7

(10.) 41 = kKigs+Kkigd

If K*~( and if /<§- is the old KK;(1.1) plus the
Kronecker delta S; , this reduces to (1.1), which
we shall refer to as a transformation of second kind.
If K20, this is a transformation of first kind, with
which we are not concerned, In fact we agsume for

what follows that KX does not vanish in (4, +4) ,

This is a generalization to the composite range



of the Fredholm transformation of third kind used in

an unpublished paper by A. D. Michal and T, &

S. Peterson.
The product of two such transfomnations,.if‘Sﬁ is

also a transformation of third kind 5[;, whose kernels

are given by

(16.21) GX = LFK"

(10.22) X = LkE+LERO+LE kE + LY K!

(0.23) GF = LRI+ LYKy +L5 k5

(lo.xv) c’.s" Lﬁ K4 L& I+ Ls I<5’

(10.2%) G; & /.1‘9 l<§- +L,‘; k;.

1

Letting k%"= &> in (10.1) we have
X ¥ K s X 57
(’0‘3) 7.‘ ?’+ Ksjes @+ Ky 4%
- ACUN 7 G 4 A .
which is a transformation of second kind from (¢7$ﬁ)to

(4¥4%). If the D’S are the bordered Frednolm deter-

Kse) K%
minant and first minors of( {K} 7) and if D# O |
we have the unique inverse of (10.3),

-~ X . .

?r= 7’(—_2055—%'?# o
% % Dl D, . Dl' < DS“"D" ﬁ‘

o L L -

7= by plyds BT Bipty

Dividing the upper equation by /¥, we have the

unique inverse of (10.1)

G SR _ DYkXyS _ DIx g
(1o.y) /jt & o ‘{K 7

-

= =05 Sy DE; D5 7
which is likewise a transformation of third kind.

Q)

The relations derived from §4 for this case are:
s
KEIDY =D K 4 Kt kX0t + (9Kl =
X
(ns2) DXK® —pki +DXKT + 05K/ =0

(10,5

() Reference on page 40,



(0.5D DY +icy (0§ =D5]) + &£ 07 =o
(10.5¢) =DKy +0Y K} +Dj K7 =0

(n.s38) plg® . 1%:‘) $ 0} + KK pf <o
(10.56) Ds kY + (0f—D83) K] +oj ¥t =8
(057 K5(0]=D87) +igpt =~ 05
(10.58) (0§ ~05S)KE+ D4 Ky- =-ps}

€11 The Product Theorem and Group Property for

Transformations of Third Kind:

Theorem XII: The determinant of the transformation

Sedetermined by (10.2) is the product of the deter-

minants of Sk_and S, .

That is:

i 5 Gf 6 5 e L] 5 K K ;,‘('
' G 64 | T T L Ll L Ks/k® K

From (10.2) we have

5 LY K Y s
<’l 20 Gl = K§js) 705 /L("+ /e //5) /5+ ? Mofe /

Cl)22) G\; = /( L™+ Lt/,_t/(j/.f%-[_p/(

(23 Gsp= Lo+ Lyf Y s +L ’/((s; Js

(12 G,; = Lgf /<;1f+Lp/<§-

which may be written

G o) (0 ) (it KL
a%@“) &; - L?&B)L; K%&v%s K;
Hence by Theorem VIII, we have

1 ¢ [’( X .y X

(113) b e pfivi Ly, i s K5 L
. &; 6‘(5) G;. LS/L(S) Ll;' kst//(m%s K;
Referring to§.2, we have, with an obvious exten-

sion of notation



g

X (KX +
Yo Xan b KEk® s Ky a
L¥ ) Xem
~———— ?(| == y/l—vs ,(SY/‘<($) /(;.
LX|_ - wa X,-~~ Xan

3 g//<“’ <7

Cancelling the lxé, multiplying‘by:&j and summing

we have
X k) x
K/ Hs G

on m

-~

: ¢ :
Kk Ys 1< o K

D

Theorem XIII:

K;@ﬁu I<;'

and hence (11.1)

The transformations of third kind

(10.1) where deoes not vanish in (4,4), and where D {

does not vanish, form a group, of which the group of

transformations of second kind (1.1) with 0#0, is a

sub=-group.

Firstly, all the transformations of second kind

D# 0 form a group and they belong to this set, so if

this set is a group the group of second kind is a

sub=group.

The transitive property is given above; by Theorem

XII the determinant of the product is not zero,

(10.21) " #0 in (4 4.

The identity transformation K% | , \<Y:l<;':/<5(:0, K}“: S;-)

and by

The unique inverse is given above,

is a member of the set and the associative property is

readily verified,

< 5/KkC)

X
e Ky
ki) K



$12 Symmetric Transformations of Third Kind: In ap-

plications, we chall have occasion to use transformations
of type (10.1) where the kernels are continuous and the

following equations hold: ‘
- : (

(12.1) oK, K= ki Kis K,
If (12,1) hold, the transformation will be called

symmetric. The inverse (10.4) is not in symmetric no-
tation, and it may be an advantage to have it so.
¥p < = x
Tn (10.1) let ¥'&{crg” Wl 97 and divide

the upper equation by k¥, giving

(2.2)

- B ¥ "y
Vik = P Ko €+ Ko 77
Lt = Ksffes %5+ I; 57
If K¥is negative, imaginaries enter.
The unique solution of (12.2) is
X _ ¢y Y x - D% 1S5 ¢S — 0% ., 7
L Aer = 2 T ¢

& ~ D¥/KS ys 4 DsE=DY 4 7 x
T MR e T RN L
where ) and its minors refer to D) ;<;

(12.3)

This is a symmetric matrix if (10.1) is symmetric.
Expressing (12,3) in terms of #"and 4%, and di-

viding the upper equation by y K*, we have

—

¥ = A% _ DY Jfme o° — DEARx 7
= ¢, 2 (- pt X

By interchanging rows and columns in the deter-

(204

in
minants used in de@éng the bordered Fredholm minors

it is easily seen that (12,4) is symmetric if (10.1) is.



Since (10.4) and (12.4) are both unique inverses
of (10.1) they must be the same. Hence (12.4) is a
real solution, even if K" is negative, in spite of the
fact that it is apparently imaginary in this case. We
shall show that the determinant of each is the same;
.

this will follow from the fact that Ay,--.}rffor each is

the same,

K¥s) K5
For the matrix ( ?/K( 7, we have

Ky/is) g
£
X, --=-X . ¥ (< X x
AN T s A )KL K ke
K=" Faee = "a (<X K o
1 |
\
N \ \
. | \
K X KK Y- X,
D e D¥a K
K _ _ Ky kb
<X 1< K 7
X
i K wen el 1<%
- X | I
—f) '<)'.__~ l(\’m : ‘! X : &
a ,<’|;7~.~- (3% ;<?.%
K,t;——- L !<;~
For the matrix % X
K‘/Jk"«“) K¢ e
t 1
%X =~ X 4+ X X %
Ay qm=faxe [ K o K KT
- a

ViKH ¥ VI ek

| |
( \

X Y
— N e [(7(: ’<f

Vg VK¥

- I<;~“ [(i.
Vies To-




=
-—

* A X: K3 ==~ K K5
4 V- [KFm VR o ! ;

Ko~ I K
K; = Ké“ K;.

ST T s
Hence & x ..y and likewise D are the same for

both.
The notation in this paragraph, while retaining
symmetry, has the disadvantage of bringing in an

apparent irrationality,
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§13  Appendix to Part I: In order to make the work

of §6, 7, 8 rigorous we must prove the following
theorems. All the functionals referred to are func-
tionals of n functions each of an arbitrary number

of variables. The notation of §6 15 retained through-
out.

Theorem XIV: The Frdchet differential of the

sum of two functionals ha@lgg,Fréchet differentials

is the sum qi,thngrédhet differentials of the func-

tionals,
More briefly:
(2.0 S(FeG) = SF+SG
Requirement 1) for the Fréchet differential is
seen to be satisfied immediately.

For 2), we have, where }=max /ch}

IA(F%)-(@_@)/ Z ,ég_._;f)ﬂgf_:é_“[
" N ™ b

which approaches zero with %,

Corollary: The Frédchet differential of the sum

of a finite number of functionals having Fréﬁhet dif-

ferentials is the sum of the Frdchet differentials of

the functionals.

Theorem XV: The Frechet differential of the

product of two functionals having Fréchet differentials

is the sum of each times the Fréchet differential of

the other,

More briefly:

3. §(Fe) = FSG+ G &F



Requirement 1) is easily seen to be satisfied.

For 2), we have

Hence SEj AGSG] AF~SFI /AF AG/
Iélf_f“_)_“_(_ﬁgﬁif‘-——-—[élr-‘l{ SEofsial[A 18R]

"‘-,
Now le&:ﬂsiﬂl dnd Iéf-;:jf‘ each approach zero,

For [4F[.14¢|we may write AF =§F+€) vhere €0
' F
with 9 N (%5}51-5,7"“14"
If we can show that ’S‘_"E{ is bounded, then /%F/ is
bounded and since (7 is cont inuous,/‘—;F/-/Aalapproaches

zero and 2) is satisfied.,

- 5
Lemma: With F and §F defined as in§6, 5] is

bounded.,

From Theorem IV this will follow if we can show
that l-‘s—;f/is bounded, where 8F is (& F)S byz0, 4 #0

In§F1let oV be éL: where L¢ is a fixed function
of the variables that T¢ depends on, such that max [L[=,
and € is an independent variable greater than zero.

Then SE[Y// Shl= &3 5[‘}1‘-}, since the differential
is linear and homogeneous.

N2 pmay (§V;] 2 € Amax L =€
Hence I%F‘Ié [ Fi[¥jlL] which is independent of J,

Corollary: The Fréchet differential of the

product of a finite number of functionals having

Fréchet differentials &s the sum of the Frdchet

differential of each times the product of all the

others.,



Fre’chet differential of a rational function of a

finite number of functionals is simply isomorphic to

the process of calculating the ordinary differential

of a rational function of a finite number of iwndepen

dent variables.
Theorem XVII: The Fréchet differential of the

logarithm of a functional having a Fréchet differential,

taken at a point where the functional does not vanish,

is the Fréchet differential of the functional divided

by the functional.

More briefly
(2.4) §dey F = 2F
Requirement 1) is seen to be satisfied.
For 2) we have
A Loy F = /Za; (F+aF) Loy F = Loy (1+4F)
Now assume JAFI<(F[, SinceF#othis is legitimate
as above.
,@7 (l+AF)-é—““ (f;z)l'f' terms of higher order,

Also AF= §F+0 h vhere f>0 with ¥,

Hence
_ $F oy _ /_\F) \,AF .
A&;F FF+? [ t J

The series in brackets converges for!%ﬁé |,

hence is bounded, say less than M.
Aley B~ 8F AF| | AF),
{_Z,_ﬁ < [+ 5 145=IM

As above /%E}é]%fh [6] and this is bounded.

Then since lﬁ_,}and,%f[approach Zero with” the
f—



Theorem is proved,

Theorem XVIII: If the Fréchet differential

of a functional exists and is zero identically in the

arguments and the variations of the arguments, then the

functional is a constant functional.

Let
F LY +xst] =2lv;, ]

Gateaux's!) formula gives us

4 oglv,2), = sFIvlsK]
Hence 4 has a derivative with respect to A at A <0,
Now ggp[n+zgﬁ]=%}F[nﬂmnfM€KQ“;5F[h+Aﬂd8ﬁ]
Hence %gﬂf,)} exists for all X and is given by

SFEIYo+asr| st

Since the derivative exists, we may apply the

Theorem of the Mean of the differential calculus giv-

ing
IAnEIAD,
But

g[vi)J-glvele]

Hence under the hypothesis)lsFro, and F is a

A g [vela] osx<l

]

H

Flr+sh]~FIn] =AF

constant functional,

Paul Levy: "Analyse Fonctionnelle! (1922) p. 100.
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Part 1II

Quadratic Functional Forms on a Composite

Range!”

(/) Part II includes some unpublished work of

Professor A, D. Michal,
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$1 Antroduction: Quadratic functional forms of the

+ %
type L*fa;(x,s)/; (x)4(3) Aox A s +L;(x)[?("27i‘/y
(1)

have been considered. ” Using the convention of letting
a repeated sub- and super-script in the same term stand
for Riemann integration with respect to that index, we

may write this as: "
I+ ax ™)

In this work we shall consider forms quadratic on
the range (%’f‘}‘\) where #” is a function continuous in (4 4/
and{yc is a set of n independent variables. We may
write sugxtagfrc;n; )‘255*(';’7(@)(}2_" ljn"}&ﬂq—y@;‘/ﬁ‘\g 4

The indices X,$ € etc. stand for continuous
variables in (4, 4)while (,jLetc., are discrete, run-
ning from 1 to n as in §1, Part I, and are to be
summed from 1 to n when repeated once as a subscript
and once as a superscript in the same term.

A parenthesis about any index suspends the sum-
mation or integration convention with respect to that
index.

We assume that the g/’s are continuous, and that 7,;%0

in (4,4) . Hence Ixis of one sign in (4,4 .

()A,D.Michal: "Affinely Connected Function Space
Manifolfi Am. Jour. Math. V. 50(1928) p. 473.
T.S.Peterson: "A Class of Invariant Functionals of
Quadratic Functional Forms! Am, Jour Math., V. 51(1929)
P. 417,
A.D.,Michal and T,.S.Peterson: "The Invariant Theory
of Functional Forms under the Group of Linear Trans-
formations of Third Kind! To be published soon,



§2 Relation between Forms of this Type and Symmetric

Transformations of Third Kind, Consider a transformation

of third kind as follows:
= s ;
(2 ) 2= Tt G+ Ix;j 97
Z; = Isc 25+ 90547
L 77 in form (L)
We may assume without loss of generalityAthat - g

and j{j are symmetric, Then transformation (2.1) is
a symmetric transformation, In terms of the 7’5 and
2’S we may write (1.1) as
(2.2) Q= 9%, +4 2

Hence we see a one-to-one reciprocal corres-
pondence betweén such transformations of the third
kind and quadratic forms of this type.

Now consider what happens to ¢ when the 7'; under-
go a bordered Fredholm transformation of third kind

with continuous kernels,
- X -
g¥= KgAK G+ K2

i . ‘ ¢ =
( ) 7t: /(5‘55-#/(7"74

We have
Y 1
0= 2273 +4'2;
— kY oX =5 ~4 ¢« =5 (=7
SRRt I K g R K G2 K G 2K T
where the Z5 are given in terms of the +’s by the pro-

duct transformation of (2.1) and (2.3).

Rearranging, we have

(2w Q= F(5z, + K2 1163 w57 (K] 2+ K7 7)
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If we now call (%, ‘E;} the transform of the Zs by

the adjoint of (2.3) i. e.
2, = K9, + kE=e + K7

é. ) - R (,
2;: /(/ ?X +/(/ Zl:)
We have
@. b §= 2°2, +5372;
But this is a form of type (2.2) where the trans-

formation of third kind representing it, is the pro-

duct of three transformations of third kind, and may

be written symbolically
(2.7 Y= Kg K

the tilda denoting the adjoint transformation,

§3 The Transformation Induced on the Coefficients:
In order that 5 , Which is defined to be
—_— — X g _ o = i — . \L\\ :
Ixs GG+ TG+ 22w 775+ Zog 757
shall equal @, that is, in order that Q be an absolute
quadratic form under (2.3) we must have
o x - _ W X _L\§\___-¥\~
BV 0257 G 9) 5V (Fx-2) +25°5 (Gri -2+ 75T ej 1)
where the ﬁ‘are the coefficients we get by expanding

the 2% in (2,6) and collecting terms.

Theorem I: The necessary and sufficient condition

that
(?' 2) jxs/V {yS_’ Ry (%) + Ax( 9”7 ¢ +/((‘g'/;1(/,75;/’ Aye ':/(55 VNP :fﬂ-

vanish identically for all continuous q" and all ~¢ ,

when the {5 are continuous, is that the £% 211 vanish

identically,

The sufficiency of the condition is obvious., To



show the necessity, that is, that if the form vanishes
for all (¢)4Yas stated, the Fsare all zero, we will
show that the /s are all zero if the form vanish for
all ¢#54) as stated such that »% v*%=0,

In this case first set all the‘ytt 0 . Then by

()

Lemma 2l of ¥ichal and Peterson's paper (l.c.), Oxs

and,ﬂ(are identically zero. Hence the form becomes
ri "+ 4ej 59t =0
Since the.75 are independent, we have
Ay 4heg gt =0
Now set 1yx5 0O, and by the indevendence of thezyé
the,ﬂﬁ are zero, leaving only.!nwy*/to which we apply
the fundamental lemma of the Calculus of Variations,
Applying Theorem I to (3.1) and writing the g;
out in full, we have:

Theorem II: The necessary and sufficient cone

dition that the form (l.1) be an absolute form under

(2,3) is that_the coefficients transform as follows:

()A complete statement of this is as follows:
"Lemma 2, A necessary and sufficient condition
2
Vg w e Y (g =0 ) Yy=Vax,
be true for all continuous functionslylf, for which
7«:,74:0 is that

\*:%-_;0)%50 "

that



(330 Txs = Ze KPK94 gyu k@Kl + 45 KIKy + Ttu XK
+ 7, ! (KK X ¢ 95 (K515 + g,‘ KEkE 900 10 (] 50 7 1]
+3‘U /(15 Kﬁ{—j.w l( /( +.7 b /( /(

(3.32) 3y = I ((c4)™

3.3 Fy; = Gt (S ¥ Iea K Y £ 2 KW X +4, 1S e

4 94, /(’f [(’ Y44 K /( + Ho I((X/K f‘jp,m/f,(/(”’

39 G, - ¥t
(3.39) 70j = Jau ki K+ J0 GG 740 KE 15 4940 G KL o /(ff;"

It is readily verified that the transformation

of third kind represented by the matrix
ZX Ixs ?"fr’)
Isi Ty
is symmetric, and that its kernels are continuous if

the g'; and K’; are,

§4~ An Invariant of the Coefficients: The bordered

Fredholm determinant of the transformation of third

kind (2,3) is the bordered Fredholm determinant of

the transformation of of second kind with matrix:

<f<§/m,, K3 Jiex )
I<§/'[’?(_5') K ;
Hence applying Theorem XII, Part I twice, we have:
1y p| 253 7*’/@7] - D[ ki "sﬂ s 1) oMo i
Y G < 115 9 | e K

Theorem III: The bordered Frednolm determinant

(4 ) ﬁxs/ﬁj g‘;]
2 : :
Ivos  Jij
is an invariant of weight two under the transformation
gs.sl.

Referring to §12, Part I we see that

D[ﬁx i ,7,5/@j - Iy Iy
e, 2i Fifgg I



(4

and the same holds true for the 5/5 "
By Theorem XI, Part I
(K ! K Ky
p | A i p| e e
X, ! = k! ¢
K/ e Iy 7k A
and by §12, Part I these are equal to

K;/K(S) ;<;~
Kyl K5

Hence (4.1) becomes X
D0 Ixs/7 ﬁx;]_ K5 /K©) Ky D Fxs/9s  Ixj

Py Tzl > Ky K, P95 Dy
which is what we mean by saying that the determinant
is an invariant of weight two.

If we let Zxs= Jxi = 0O , then the determinant
(4.2) is independent of 7, . Letting this be zero
also, @ becomes the ordinary algebraic quadratic
form. If we letKZ! l(?:((’f,_— ks‘:o , then (2.3)
becomes a linear algebraic transformation on the
In this case Theorem III reduces to the correspond-
ing theorem in th’é theory of algebraic forms.

If we let jﬁ:?i{-‘: 0) =1, & becomes a form
of type previously studied”, Letting l(}: ;) /<j’~(:/(f=0/
K{: P) the transformation reduces to the ordinary
Fredholm type, and Theorems 2.1 and 2,11 of Michal's
paper are special cases of Theorems II and III of this
part respectively, If we do not restrictj, and K to

be unity, but merely to not vanishing in(a4), we have

another case consideredlz). Here it is the symmetric

(A, D.Michal: (l.c.) p. 478.
()A.D.Michal and T.S. Peterson (l.c.).



form of the determinant involving square roots that is

obtained as the invariant rather than the rational

form (4.2).

55 Special Case of the Previous: If n=1, equations

(3.3) beconme

(5,10 Zxs = Zus K k4 g KEK4 245 KIS + ZealKx K]
2 K% /<; fgs/(‘s/Ki + 74 Iy /(; + T, K(X/Ag'
951 KK, 424 KYKS + 9K Koow 2, Ky K4

G 9y = g, (ke

G Fxiz e KT+ 20 AT NGRS AN
9y KK+ Je K5 KL g0 T Ky + 90 K )

- < .
(510 i = Jru KK 2 ()% Z 24 KV I+ Gy [K:)l
<§6 Forms Quadratic in a Function and its Derivative:

Let«” be a function with a continuous derivative and
let ;¥ve £ ar”
The quadratic form with continuous coefficients
(6‘,) Q: A s T 42 Bys """K#j-(— st/yx¢/5+ Ax("’"x)z
+2 EX M)(g)(+ CX('?X/L ) AKS:ASY; Cx; = Ly
is not an invariantive form. That is @ may be zero
for all 47 without having all the coefficients vanish,
For example, if C,(S:A)(:BX:C,=0,74xs’fx‘;,23x,:f,4, where
'(5 is a function such that 4, =44 = O, we have
W = {xhs o’ fxhs artys

¢ -
= frews™ (Lssa3t K po') = firs?(hoir™ L) =0
We may ma.keff,ssymmetric here by letting {,zﬁﬁ, .

X
Now ,w":,w“.;.f/y%(s , and if we write F for a2,
a

and define the step-functions



D
™

Ex_{OM 4 25 2x
STVl 4 x2524

we may write
(6-2) K= GXY+E:%$
Substituting (6.2) in (6.1) we have
K= Ax(6Fr+ EXqe)(&y + ELp*)+2 ij(cn’thyf)g’,, Cs %55

FARCT T+ EL )G Y+ EX 542 BAGCT Y +Ef 585% Crly)®
Collecting terms, we have
(63) 62 = (’4{'“ E-é Eju +2 Bs E;‘( +Cys +A-t F:E;‘ +2 Bx Esx)?x/yj

+Cx (97 + (Agu G ED # Ay GUEYL +2 BexGt4 2 AL GTF

+2 B, (N ¥V + (Aew QEGUH A () ¥ 5
Without loss of generality we may take Axs and Cxs

to be symmetric. If we notice that
2(R¢sEY + Be E) gy %ys

=(Bes EL 4 Bex EY 4B, EX + B, FL)7"%°
and that

7)((/4%0«&*5;’ .3 A-{-uc'uEf): 2 A Gq5£77;
we may rewrite (6.3) as a form of type (1l.1) with n=1

and coefficients as follows: :
vy Zxs = AwFx e +BesEL 4 Bx Bl 4Cxs + AEYE e B,E%% 5 BY
(6.42) Ix= Cx
(6.43) Gy = AruGUEY +Bf,(61*+/4{6‘1*5f+0x@6}
Cyqw Gu = Atu GG Y +4¢ (64

These coefficients are continuous if those of (6,1)
are; for example:
. B% f’og de By e
£ x = - t £
ts X = S x S
which is continuous in X and in S ., Similarly all
others which have E:,‘integra.ted are continuous, with

the possible exception of the temm A*E;‘(Ej . This term

s
is equal to fA_éa(f where 2 is the greater of the pair
2



(ns) , and is continuous, since 2 is a continuous

function of the two variables x and S ,
This accounts for all the terms except BxE?g’and

& which are both discontinuous. However their

BsEx’

sum is continuous and is equal to BQWMere 2 is defined

above,
By using Z , and by using the convention of a

bracket about an index to denote integration over

with respect to that index, we may get rid of the

and rewrite (6.4) as follows:
(é‘S\D ?xs: /4f(,\ E;‘; E;I'O—B'l‘XE.:-‘—B'GSEﬁ +Coes 7“74.6 E; + Ez"’
.52 g,= C,
(6‘93) jX(: AHJWE:—FB[{J)(-{'AtE:*‘BX

(6.5 20 = Arglag +Arg

7 Application of Earlier Work to §6: By Theorem I,

we have:

Theorem IV: The necessary and sufficient con-

dition that the form (6.1) vanish for all s with con-

tinuous derivatives is that the following relations

hold among its coefficients: -
= O
A{uE.:EJu+B-t;<Ef + Bes E;"’Crs'/—’(’-é Es +B;

(7") CX: (o]
AmuE‘,@ Bragx + A Ef+@x:o

Aratwgy +Ag =0
It might be interesting to show that the co-

efficients of the example given above satisfy (7.1).
Substituting AxL, forAy, ,i4,4s for Bvs, and zero for

the other coefficients, we have:



(7.2

which is true,

the original coefficient,

/
At By KLBS+ AL Erdy +3 KBS 4y

O=0O
/ =
LA B +4 Ay Ax =0

/ / -
Ky Ay =0
Now

i
AGEY = [Zidt=L (W)~ 4(x) == £,

£ =£ﬂ441:‘44«<4:0
The first of these equations becomes

[”%?J[‘/As] + -?E [“/(x]’@ + % ["457/()( =0

(7.1) is satisfied,

Now if we apply a transformation

P KGR T KT

= /(;/95'(-[(,, P

and the others reduce to zero, so that

we see that the jgdefined by (6.5) transform according
to (5.1). Since the set (6.5) is not in general

uniquely solvable for the original coefficients,

_

this does not give us a definition for,/us, etc., so
that we cannot consider a law of transformation for

without further restrictions.

If C;¢0 in(a 4)we may write the invariant (4.2)

in terms of the original coefficients,

these it is

G.3)

me;‘ E;/ +B+5E:+ &tXE:"’CKSf'AtE;-rB%

Cg

A€1u B +Bras + 4, B « 6,

Cs

In terms of

A[ﬂuE: tBreyx tA¢ E:* By

Ararag + A
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$8 Specialization of Transformation (7.2): We

assumed that the transformation (7,2) was general, In
various particular cases the ksmay be related.
It may turn out naturally that the 4" and Y trans-
form independently, that is
(8.1 4% K5 + ,(Sx/;s , Y= K v

In this case the determinant of our transformation

S /el
becomes D[KS/K” 0] - f<|‘ D[K;{/K(s)j

0 K!

If in particular we consider functions «*that all have
the same value at a4, K = |, and ou¥ determinant is
D [K:/K(S)]

Perhaps the most interesting specialization of
(7.2) is when it is derived from an ordinary Fredholm
transformation of second kind on .w-X;

(%2 = 4 K S

1 DIK{]#0 then to each &’ corresponds a
unique ~v% so that to each (3)¥)corresponds a unique
(g’,‘{), and we expect the determinant of (7.2) de-
rived from (8.,2) to be different from zero, when D[K;]
is, We shall prove the following theorem:

Theorem V: The bordered Fredholm determinant of

the transformation (7.2) determined by (8,2), where

the kernel has a continuous derivative in (44) with

respect to X , equals the ordinary Fredholm determinant

of §8.2}.

We must first show that (8.2) does determine a




transformation of type (7.2). To do this, set X=4Q,

giving: — - — _
Y=Y +ki{ ==Y +kI(GTV+ELFY)

Differentiate (8.2) with respect to X, If we
denote by a prime before a function of a superscript
and a subscript, partial differentiation with respect

to the superscript, we have:
i
= % GBS
Collecting these, we have the transformation of
type (7.2) determined by (8.2) as follows:
(3.3) 2= EelEE] G D)

- f - e
Y = [k e5]5% [1twg] ¥
The bordered Fredholm determinant of this is
+
K E) \k[){i]

KIEY [t K7y
Referring to the definition of D , we have with

notation of Part I§2;

Koe X,
$|““ S:\ -
\, % 1t Nl Tan \p X
}<“£‘ E S" e {< -t,w. ES,-.,‘\ ’< !

t, Bs, S [e7
t
e o Ko Eom 1+ K
= | St - - - f{} W At (kg
.é|:S} _b' ‘ .ém‘:sfm " H
( ‘ '
‘ ; :
( (- :
& N KFun £
V(g — — = Ktwﬂ(t/w« N
J:s,{ «d™ gﬁrfw £ Rt
R 4 q A
[ dt [ARE At (4 [y ar
-6|:S‘ ' ~f’l/l'l:'gl‘”A A
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We may split this into two determinants as

follows:

i‘l— 5(, ! 3 3
[<‘ﬁ B & \’<7‘4~\ fL:(L \‘ x “* :
T Kt%‘ _ ‘\K-t:h \K Yoo
« ;
< ~~-”’<§% <3
Setting and integrating, we have

l-\ ”"V\ \)<! \/\ L [<$¢ N\ \y. S
tan ’<1 ’( (

]d5fa{f [Asfdffdf |

gl J ‘

S \ $nnn

\l< t' PE—— [\t ’<t Y ,<
K% - -- KtM K4

Applying Dirichlet's formula

fdsjw( )~/dtf0(5()

~4 =5,

we have

i = S
As -5 fj;( Z(;(S ‘(<§‘ - ‘/(

“K,é - \(< o
ke b i \ ¢St A 50 Y
'{— fdtifg(‘tfdsc K‘t,*‘ B K! o \[ie(
A & 73 \ | )
\K L \Ki'v/: \K{L‘%

K‘t‘ -~~~ Kim\ [<Z

4 g ¢

= Jﬁ%fl ’T@"<q S = o Kg;—
A ; +

:

g - g
Kt—Ki~* - Key K



| \
{ \

4 t t, t
j4dfifo{f K -é" -=" ((1,% A
a A v ! '

‘.t " f

K, -~~~ K& k?

The first determinant may be split up into 2™

determinants, of which all but m + 1 have two pro-

portional columns, Omitting these, which vanish,

and rearranging the variables of integration, we have
A - T, a ot ——-KY
AT = Kb kb KE, K A
B f Ati |7+ o jzﬁﬁ % \'L \ -
\ \ - N
1 ; % NP ot
A f \ LN Am
K- —- Reo iK% l<t1 s
q a q
R T L LS Rl
+ | At + + t
A a KT' K-e: =i=i= /<'4='-»..
)

'
| | :
'

ta
/( e R

L T X g 4---1 4 qlects
-_ [} MA | n Y BN
A t("“"tw +-A[+] f""fM—- M\fakqdﬁ lkt}

+ /<” KY _ v

-~~~ K
+/w\(/m—«f o K9 4 Ke, .
, A~ |

Y 3 1

‘ \

6"‘\ t’”_\ t/vp-
K b'/}<f1'__~ Kt%—

¥ bt | X g oot

] ek A *’—b .__,‘t e
el Y +t - ~~ta, = o AE‘E:{ T e ’<[.gj A+‘ __~tM“‘ + an(mm~ ')K Aé}}i - (;""Z
( | AR=D.

[\



%
R
where A _'

S, ~~~S,4

refer to the kernel K, .
Multiplying by <L, and summing from m=1 to °©,

i oY H

we have 3 x P a it
D-[(-f/([”ﬂ]:' D -1+ D[ZJ- Klgt] ‘K[ﬂ D + s D[-é]/

C. 2 * ¥, X 3
- - a a Nu
(8.4 D =D +[Dng - D iy + Ki D,
Taking the first of Fredholm's relations between
D and its first minor, setting X=a, and integrating
with respect to § on(4,4)we have
> ¥ X
9. _ q 9 -
(599 Dfy=0Kf; +K2 0fy =0
Hence )= 5 and our theorem is proved.
X
It may be useful to note that the kernel *_D_Di of
the reciprocal transformation to (8.2) has a continuous

partial derivative with respect to X under the as-

x
sumption that %%‘;‘/(fis continuous in (4, ¢) ,

¥ & sieX ARE - YK
or X Koo Fomn _ j X (<5 ‘KX, :w
XAS X~~~ fwn X X f
e ‘ “ '<5| ’<‘7‘1 '\<x"~\

which is continuous under the assumptions.
Since \Kiis continuous in (a,4)it is bounded.
Now if M be the greater of the bounds of [/ [|ana ('K,

we have by Hadamard's lemma the dominating series

B om0 ™ Mgy
Mo o

nl
X e (9 X ¥y—=~Eans
fr 30 = 2 A S AT

As in Part I §3, this converges uniformly in (4,4)
2(- D5
for all M, so thatZ(- ‘Dé) exists and is continuous

in (4,,4.).



Part III

Projective Transformations in Function Space.
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$1 Introduction: In the paper of Dines (l.c.), he
considers the function-gspace analogue of the general

projective transformation in n-space.
& = =
ﬂ(-f-;% -27‘ Y?
If we consider the Fredholm transformation as

the function-space analogue of the transformation

]
~

we have that the above analogue is

7.0~ @ f}f): zx(x)+A(x)‘P(X)—r’—le(X,S)CP(SIdS

§ + fd,'é (s) Prs)dS
In this paper we shall reduce the consideration

of this transformation to that of a bordered Fredholm
transformation of the type considered above with m=1,
This reduction is suggested by Hildebrandt (l.c.).

We shall get Dines' results somewhat simpler, and
shall show that the one-parameter family of transfor-
mations generated by the infinitesimal transformation
is a group in the Lie sense.

§2 Reduction of Dines' Form to Type Studied Earlier.

Let us write (1.1) in a form more convenient for
our use, and introduce the convention, used earlier, of
letting a repeated sub- and super-script indicate

Riemann integration on (44)., Then (1.1) becomes

(Cpre KX+ KKF
y, S@EF B u 4 K}
(2.0 ¥"= T K

The retention of the /s as indices will later
emphasize the connection with bordered Fredholm trans-
formations of third kind.

Let % -

A

, where the pairs (¥ %) (5)43)



are homogeneous, Substituting in (2.1), simplifying
and equating numerators and denominators, we have:
G ¥X= KGX¥+ KT GS+ KEG
(Q‘l) 4 = K g5+ <! g

This is a bordered Fredholm transformation of
third kind, which has been already studied and is
entirely equivalent to (2.1). Referring to Part I
§10 we have the definition of the determinant of
this transformation as

K5/ K;'
(2‘3) 0 [l{ﬁ/,(s) /c;-]

As before, a parenthesis about any index sus-
pends the integration convention with respect to that
index.

Expression (2.3) is the same as the B defined by
Dines to be the determinant of the transformatiocon,.
The following theorems given by Dines follow from
Part I §11.

Theorem I: The determinant of the product of

two _projective transformations is egual to the

product of their determinants,

Theorem II: If the determinant_ of the transfor-

mation (1.1) is different from zero, then (1,1) has

a_unique solution for @ in terms_of ¥ , namely
¢x: () 4810 Plx) +fa'y’¢x,s) @csras
§ '+ §, €tsr@’cs)ds

where 0()(/3: y/§! ¢/ are given in terms of XAy S €

We shall restate the latter as follows:

Theorem II./ If the determinant D (2,3) is_net
, . X,
zero then (1,1) has a unique solution for & in terms

57



X
of CpALAnamqu

X S Y
Gy @ = LT Do’ = O ¥
, D/__ D‘s (_PS
where D’=p-p) and DY DY, 0% D! are the bordered Frednolm

first minors of (2.3).

Dines gives two corollaries to Theorem II, the
first, that the product of the determinants of a
transformation and of its inverse is unity, following
from the fact that the determinant of the identity
transformation is unity. In our notation, the second
becomes:

/
Corollary 2 :

(2.5) [o/-0! @) [ +1;2°] = D
For
D™ Dy 5 = '~ D5 K F+ DL 1<} @y ol K
I+ K s

8o that [/ ! @s:)[ol_ 0y =
/ i
D1+ 01 @5 D ksepS— DU Y Z5 0l I =

D'k! <Dk —@ [ DYKks- 0"t + Diley]
Referring to (2.6%) and (2.66) below, we get (2.5).

The eight relations that Dines gives between B and

its first minors, are in our notation:

2.61) KDY ~D KX+ K%t KE ot +&TKI D) =0

(2.42) DEK® -DIX +DYKG+ DI Ks=o

(2.63) DI +K¥D + ¥ pY =0

@.cy - DK 4+ DY I + DK =0

(2.¢5) ~DK5'+‘<2+ [<q 0%+ k!'p;=0

@o6e) DI - DI +D{ KE <o

(241 1D + Ky by = =D

(2.65) - p'K) 4DyK;=-0



These are derived from (10.5) Part I by letting n=1.
Dines proves, without stating it as a theorem that
the set of transformations (1.1) whose determinants are

not zero form a group, This follows readily from Part I,

é 3 The Infinitesimal Projective Transformation:

For the identity transformation,
K= kl=1, K} =K%= Kk, =0

Hence for an infinitesimal transformation we can give

each of these a small increment, Following Dines we take
Kl=1 for the infinitesimal transformation, which on
account of the fractional character is not less general,

Hence our infinitesimal transformation will have

kernels as follows:

(B K*=(+ L¥st, KE= LSSt Ki= L7t i)=List I<)=1

(3.2 prs

Ty
and our infinitesimal transformation is
Pre LXQXSt+LLp 8t +LI§¢
I+ LipSSt
expanding the denominator and dropping powers of §t

higher than the first, we have:
x A — -~ v ~
(3.2 C= Pr e stLF 1 3 1) ’Lécri]
A family of transformations generated by con-

tinuous application of (3.3),

~ & X X Sy KX
Q. 4) (F,H): KNP + K5 (€ @+ K7 (¢)

'd(f)¢5+ld(q
will then transform @ into %X« where & (¢ satisfies

the integro-differential equation,

- O P Xe _ _ - -
52 %2 = LX) +LF @ ¢ LY -PloL! Frey

with the initial condition (p%g) = @~

!

The term “"regular infinitesimal projective trans-

formation"™ has been given to (3.3) by Kowalé%ki.



§4 The Finite Transformations Generated by an In-

finitesimal Transformation (3.3). The question now to
be solved is; given the L’ (3.3), can we find a set of
K’S depending on T, such that @)defined by (3.4)
will satisfy (3.5) and the initial condition @X{o):cp’(,

If we follow Dines and differentiate (3.4) with
respect to T, express ¢"in terms of 4_’%*/ by (2.4),
eliminate the denominator by (2.5) and equate correspond-
ing terms of the result to those of (3.,5) we have four

{

equations, Adding a fifth to show that 9%;‘2562 we
have five integro-differential equations in the five [¢’s
Solving these for the derivatives of the K , we get:
Uiy VRS =X+ L5 KO % k! + L5k
@ K= K 4 LAY+ LY !
(1) K= LK 4 L

W) ‘K = LuKY
(M5 MK =L KX

where the primes, now and henceforth, indicate dif-
ferentiation with respect to € .,

Barnett(') derives these equations much easier by
uging homogeneous colrdinates as in (2.2}, In our
notation this is as follows.

X GY(+)
Writing @< "‘4/9, ) = 7 /17(*) , (3.4) vecomes

§X‘f = < ) 4% [(: 5+{(')(
(4'7_) ATE) = KO 4 K5y &
F(t) = K@y + Ky

()I. A, Barnett: "The Transformations Generated by an
Infinitesimal Projective Transformaticn in Function
Space." Bull, Am. Math., Soc. XXX¥I (1930) p 273.
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and (3.5) may be written
G\Gw) -G ) G ) X R G ) HLEG G+ L5l 3% L] Gy
il il AN AT i S
fee)g® E:(t)]

Cancelling both denominators, letting 4 (¥)=0 we

have, cancelling /ﬁy(f) .
(4. 2y \J (¥) = L} 5+

adding 5%« times (4.32) to the previous we have,

cancelling 4 (¥)
(43p Gr) = LN5) +LXF%¢) 4L F¢)
From (4 2) and (4.5) we can get ,ng) g[ﬂln terms

of (yY4). Differentiating (4.2) and replacing the
left hand sides by this expression, we have
(up LX) 9"+ LRS ) A +LT I ) g +LK K ® + LY Ky
+L Ky + LYK 45+ L7 K () 4 =
N A AR O
(4' L) l} K’(f),35+ L('A /<5”/u 7‘4— L'uk,"(-ely =
KIS+ YK ()4
Equating coefficients®of 4% »*and 4 in (4.4) gives
us (4.1), The initial conditions are
Ko < 1, Ko)=0, KlXeoy=0, Kl(d=0, Klts)=1,
Now let us assume that the Ksare expressible as

power series in ’f'a.s follows:

(.5 K% (+) = 2 ET KA

3
where o(,/; may be any set of indices for which the K's are
defined,

Substituting in (4.1) and equating powers of £, we

(0)That this is legitimate is proved in the unpublished
paper by Michal and Peterson already referred to.



have the following recurrence formulas for the [<alm]
(e KElmed = LRI + L5 K g+ LY I [y + L) K LT
Uor) I [t J = LR¥Lod + L5 K] 4 LY K [ o]
Uen) K] [ontQ L) KEod 4 Lukd =
Uow) [ Cant] = Lk Do)
(e KLt = LX< Cm
with the initial conditions
(hy  KTa= Krd=1(, Kilds=KXe]=KId =0
It readily follows that the Ksare defined uniquely
as functions of ¥, and that these Kg formally satisfy
the original condition, namely that ‘?({‘-)defined by (3.4)
satisfy (3.5) and the initial conditions Plo:=¢" 1t
remains to show that the infinite series (4.5) converge.
Let L’)(L?} L)f) L‘s all be less in absolute value
than /‘1/; then we will show by mathematical induction
that [Kgl-1) < (M) H4-4)™ | By (4.6) this is true for an=o,
Then if it be true forms=m by (4.6) |K4[m+J[< UM U-a) | K) [
<(‘IM’M(*4'~4)"'Z“ Hence series (4.5) are each dominated by
é%n-a)MWhiCh converges for all M and €, This
meoans that the formal solution (4.5) is an actual
solution,
It follows from either (4.14) or (4.65) and the
initial conditions that Kx({’):fu%# O in@ts Further-
more the determinant of the infinitesimal transfor-
mation (3.2) is
D (s¢t) = Hf’ :Z‘g L?”{M t M 7] Aighan frrvoinim S

= |+ L’,{gt + Aenamo ﬁ%w%gt
Now D(t+5t)=D(+) D(st) by the product theorem.

Hence D(f+8f)~blf) = D(f)[/-H.’,ESt‘F "'"_] = D({‘)
= D) Lx 8t
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Dividing by Stand passing to the limit as 20 we

have A D ~ D) L;

At
Hence, since D(o)=|
(45 D)= et o

Hence we have, with Dines,

Theorem ITI: The finite transformations generated

by a regular infinitesimal projective transformation
S@¥= [LX@re LE+LY —7L] @5 ]st
constitute a one-parameter family of non-singular pro-

jective trangformations. For any value of the parameter

1, the kernels are given by (4.5), (4.6) and (4.7), and

the determinant by (4.8).

§5 The Family Generated Forms a Lie Group: We shall

next need a set of formulas concerning the K5 which we
proceed to prove by mathematical induction, They are:
Gy  KXiwd
Gy kY L8] = KOT1 K T+ K Can] (F L) 4+ 10T [ Cppmrm]
G13) K5 L] = K] KO gl + KL LI KE Lo 4 K [on] K] Lo~
Gy K Lp] = KhImI K Cp-md + K ) K Lponn]
G KTy = K= Kp-]

For =0, m =0 , these become
6=0, 00, p=0, =1, [=1

))

[T [ L] + KETTE L o] 4 KEETKE Lo 4 K g KL L]

’ / / respectively,
For 10:!, m= 0 -
k¥ (g = KSLQ KL = KT
K*(Q = |KXCd ,<‘x‘[.]=,<‘:r[g
KD (D = Ks (4d k1[0 = )(5'[«]
K'[g < k'[9 kK'td = (L]

)KX() =K LA K*CQ = 'T1



provided we remember the initial conditions (4.7 )
Now assume that the recurrence formulas are true

for all values of # , less thanp . Then
K T KE Lo + K5 T3 KE L=~y + Ky [and K Lpon] +<) TS TP)

o LN Ko ) KE L] + LXK Lm0 K pons) 4 L5 K =1 K p-m]

+ LXK Con- KL ponn] 4 L) K3 Lm0 KOrp oo 4 B KECom=DICY Cpoonny

L% (Mg (T + LT KG [~ KYLp-+3 +LY /<1r£%~01'<!fw~w3

£ LXK Do KL D] + L [ LD s [P +LT K Lm0 1S f/ﬁ—mj‘

= LX) KD~ KELpr-n) + KX Dm0 KO+ K LomD K5 LA K me G )
L X K KOl 4+ 1Y D= K ] 1M =0 IS L] # K Fon DKy
+ K- (T ) By +L X 1 T =T KL 4 K, Do K] 1m0 T -
= LXK D0+ LS KEp-) 4 L K-+ LTI [p-T = KTwl 44 (41)

Similarly
K] KXCprm] 4 KE (oI (Y TR T + KT (<! Cp-nn] =

LX l("[W~D(<‘r{V”W‘j+ LX/(Z E%‘UK,VE/”"‘“J +LZ Kqﬁ"""‘ﬂ Kl:ff'-/"g
HLX K8~ KYCpemd 4 LY Kl Cam=D K VL] 4 LXIC Lo ~0 6 L)
o+ 1% KY Lm0 K ] 4 LY K] Dm0 K] =

L¥L ICTm =0 K Tp=and + KE =g k[ Lo~ + KX DD [ L=~}

! ~an

b LXK Iom- (8 Cornd & 1Y Do (Y7 L] 1Y G 1<) ]
L0 K LD T ] (< Eom=D) K L)

=LK p-D L)L KU Te-D) + LS KT = KYL#) Ly (h62)

Also | | )

KY L K L) + KL T3 K Ty 4 K O2Ks Lpp-an] =

L; [(Gz”*‘ﬁj /<(5)[V—M~] + Lt '(“[%~(] l<g[lﬂ—~§] & Lial(su[’”“g/((g[/d-m:]
LY Ko b KY Lo+ LU < T =D 15 L] =
L;(l<(5’tw~al<‘”£f—w} L KV =D K L] 4 (S [m-0K

FICY [~ KY L] + KU Lo~ K LT = L K-+ LU 1S Lr-1]

B 4o

= K] ey (#63)



65

Also K| Dand KiLp-am] +KLCwT KYLp-mm) =
L(’A K.u [M"—IJ /(/ffd—wv\j -+ L:,( l(u[%—lj [({M [?_M\J.’__ Llu '<3—f"4~~a ’<,vf¢0—/w\j
s L,b\{/(:* [’U«~IJ /<" [V—zvv\j + KUL‘%~U l(‘:{fjp-wj -+ I<l\4r [/er-[j [(th)—ﬂv\]}

= Ll KYLp-D = K'TRTD 4y (6w

I a3 [l = L5 (Dm0 K Tpemnd = LK Tp-0 = KT8] g (650
Hence the formulas (5.1) are true. Let us

write these as _
(52 KA Lp]= Ky L3 KETp-am
where the Greek letters indicate such and only such
indices as appear explicitly in (5.1).
The product of two transformations of type (3.4)

with parameterst and t, is a projective transformation

with kernels as follows:
)
(5.31)  Plee,t,) = K¥6) KY (6) 4 Kt ) KU, +KE)KE ) + K1) Ks (%)

(532 Pl t) = K't) K1) + KL(+) Ki(t) +KF@) K] ()
6.3 Pt t) = Ks(t) K¥e) + Kl (4)KY () +K! ) K (1)

G39 Pl (1, t) = KL(h) K8 + K] (£)K] (%)

(5\35) Dx(f’/fl) — /< X({:’) Kx[t)_) 5 e(fyf‘fr_) R

These formulas (5.3) may be written

G4 | At t) = KV (k) KE(4)

where it is important to notice that the Greek
indices have exactly the same range as in (5.2).

B h
y (4.5) we have "
m=

PX () = Z /< [»«]ZL KY (]

m'.
Setting Aq ,¢- . h
g} V
PS (¢, t,) = %Zoi‘;«" KX o] Z -(,;%,, s L]

Inverting the order of summatlon, we have



(5.5)
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oo o R
Piltt) = 25 3 2, et T (K e K ten)

- Making use of the fact mentioned above that the
range of the Greek indices in (5.4) is that in (5.2),

we may apply the latter, giving
@5

b
« K;Uﬂgc 2y P (ff‘t)‘p «

Hence the product transformation is a member of
the family, with parameter %,+t,, and we may add to
Theorem III of Dines, the following:

Theorem 1117 The one-parameter family of

Theorem III is a one-parameter continuous group in

the senge of lLie, and is in canonical form,

The last phrase means that the parameter for the
identity transformation is zero, and that that of the
product is the sum of those of the factor of the
product,

Conversely, if we have a one-parameter continuous
group of projective transformations, it may be reduced

to canonical form., If it be so reduced to

3.0 Frrey = [CRLL ) i ¢

Ki(#) + lG5(8) @5
where + is the canonical parameter, then replace t by

ot and expand the K%, neglecting powers of 5thigher

than the first. Since @l =", we have
P+ KM @t 1< XLilgt + KL g'st
—_—

P (5¢)= . Lok
o I+ KICJSt + 155 @° 8¢
where K,[J is the coefficient of §+ in the above

expansion,
Expanding the denominator and neglecting higher

powers of &t



P st= P+ gt[([(’f.]-p("[q)cr"—i- KY LO+KSLQ @8~ GPXKQEUCPSJ
which is an infinitesimal transformation of type (3.3).
This transformation generates a one-parameter continuous
group which may be (5.6). Hence, it seems likely that
any one-parameter continuous group of projective trans-
formations in canonical form is one generated by con-
tinuous application of an infinitesimal projective trans-

formation of type (3.3).





