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ABSTRACT

Various quantum mechanics effects have been found and widely studied in different
microscopic systems, such as quantum nuclear effects and electron correlation in
molecular systems, electron-phonon coupling in crystal systems, and quantum Zeno
effects in open quantum systems. However, exact numerical simulations require
exponentially scaled classical resources. In this thesis, we study these quantum
systems by a series of classical or quantum methods, which include semiclassical,
ab initio, machine learning, and quantum computing approaches.

In Chapter 2, we develop the molecular-orbital-based machine learning (MOB-ML)
method as a general-purpose method to learn molecular electronic structure prop-
erties. By preserving physical constraints, including invariance conditions and size
consistency, MOB-ML is shown to be able to capture both weak and strong in-
teractions. Furthermore, the Gaussian Process framework is extended for learning
both scalar properties such as energies, and linear-response properties like dipole
moments with the rotationally equivariant derivative kernel. With these improve-
ments, MOB-ML shows not only significantly higher learning rates for organic
molecules, non-covalent interactions, and transition states but also excellent trans-
ferability from small systems to large systems.

In Chapter 3, we develop a generalized class of integrators in the thermostatted
ring-polymer molecular dynamics (T-RPMD) method, which is a semi-classical
quantum dynamics method to capture various types of molecular nuclear quan-
tum effects, including zero point energy, quantum tunneling, and kinetic isotopic
effects. Such generalized integrators are carefully designed to be strong stable and
dimension-free, which are essential for robust numerical computations. In particu-
lar, a so-called "BCOCB" integrator is proved to be superior in terms of accuracy
and efficiency in the harmonic limit. Such superiority is further verified in strongly
anharmonic systems featured by liquid water.

In Chapter 4, we develop an ab initio-based semi-analytical model of electron-
phonon scattering to describe the transport and noise behavior in GaAs, which is
a widely-used semiconductor. Such a semi-analytical model lifts a few approxi-
mations in the standard ab initio calculation of intervalley scatterings, which were
believed to be the origin of the failure to capture the nonmonotonic noise phenom-
ena. We find qualitatively unchanged transport and noise properties and agreements



v

on the scattering rates between the photoluminescence experiments. These results
indicate the most probable origin of the nonmonotonic noise behavior is the forma-
tion of space-charge domains rather than the intervalley scattering.

In Chapter 5, we simulate the challenging measurement-induced phase transitions
(MIPT) behavior in quantum many-body systems on a superconducting quantum
processor. Due to the intrinsic exponential scaling of the quantum state tomogra-
phy and post-selection process, traditional simulations of MIPT were limited to a
few qubits. With the recently introduced linear cross-entropy benchmarking, such
exponential overhead is eliminated, and the correct critical behavior of MIPT is
observed on a 22-qubit system. Our work paves the way for the studies of open
quantum systems on large-scale near-term quantum devices.
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C h a p t e r 1

INTRODUCTION
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Understanding the behavior of physical or chemical systems is vital to various real-
world and scientific applications, such as discovering materials [1, 2], drugs [3, 4],
and new physics mechanisms [5]. At the atomic length scale, such systems are
governed by quantum mechanics, which exhibits unique characteristics of superpo-
sition, entanglement, and wave-particle duality that are absent in classical mechan-
ics. Such quantum systems can be simulated by diagonalizing the time-independent
Hamiltonian for static behavior or solving the time-dependent Schrodinger equation
for dynamical behavior [6]. However, exact solutions are not available except for
systems involving one or two degrees of freedom, and numerical solutions gener-
ally suffer from the exponential growth of the many-body Hilbert space with respect
to the system size [7, 8]. Despite these difficulties, various methods have been de-
veloped in the last a few decades to simulate different types of quantum systems.
In this thesis, we consider three types of quantum systems, i.e. molecular systems,
periodic crystal systems, and non-equilibrium many-body quantum systems. We
review the previous efforts to simulate these systems by semi-classical, ab initio,
machine learning, and quantum computing methods, and introduce our contribu-
tion to the simulation methods.

Molecular systems: Molecular systems are decomposed of nuclei and electrons,
thus the Hamiltonian includes the nuclear kinetic energy, electronic kinetic energy,
nuclear-nuclear repulsion, electron-electron repulsion, and nuclear-electron attrac-
tions. Since nuclei have much larger mass than electrons (mH ≈ 1836me), electrons
are relaxing much faster than nuclei. The so-called adiabatic or Born-Oppenheimer
approximation [9]

ψ({Rα},{rβ})≈ ψn({Rα})ψe({rβ};{Rα}) (1.1)

is then typically applied to decouple electrons, where ψn and ψe are nuclear and
electron wavefuction respectively, and {Rα}, {rβ} are nuclear and electron coor-
dinates. The electronic Hamiltonian Ĥe is solved for each given nuclear positions
{Rα}, and the nuclear Hamiltonian Ĥn is solved with the electronic state energy
as a function of {Rα} (also known as the potential energy surface (PES)) obtained
in the former task. In certain cases, such as conical intersection [10, 11], Born-
Oppenheimer approximation fails, and non-adiabatic effects could be important
[12, 13].

The electronic structure problem aims to obtain the eigenvalue and eigenstates of
Ĥe as a function of the nuclear positions. Most of the electronic structure methods
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employ a single-electron basis set (also referred as atomic orbitals) {φµ} and de-
compose the wavefunction to the superposition of atomic orbitals [14, 15]. With
such atomic orbitals, Ĥe can be written in the second-quantized form [16]

Ĥe = ∑
µν

hµνc†
µcν + ∑

µνλσ

Vµνλσ c†
µc†

νcσ cλ , (1.2)

where c†
µ and cµ are the creation and annihilation operators of atomic orbitals.

The two-electron term ∑µνλσ Vµνλσ c†
µc†

νcσ cλ results in the correlation between
electrons, whose exact description requires diagonalization in exponentially-scaled
Hilbert space, which is computationally infeasible. The mean-field-level Hartree–
Fock (HF) theory [17] is a well-known approximation that neglects the effect from
electron correlations by representing the wavefunction in the form of a Slater deter-
minant [18]:

|ψ⟩= ∏
i∈occ

c†
i |0⟩, (1.3)

where c†
i =∑µ Ciµc†

µ is the creation operator of the corresponding molecular orbital
φi = ∑µ Ciµφµ , and Eq. 1.3 loops over all the occupied molecular orbitals. Such
Slater determinant wavefunction counts for the exchange effects originated from
the fermionic anti-commutation requirement of the electron wavefunction. Some of
the advanced electron structure methods such as Møller-Plesset perturbation [19],
configuration interaction [20], and coupled cluster [21] are based on the HF method,
and are known as the Post-Hartree-Fock methods. [22]

Aside from classical ab initio calculations, machine learning and quantum com-
puting algorithms have also emerged to solve electronic structure problems. Most
machine learning methods learn electronic energy and other molecular properties as
a function of molecular structures [23–25], while other approaches have also been
suggested by combining with density functional theory (DFT) or Quantum Monte
Carlo[26, 27]. Quantum computing algorithms featured by quantum phase estima-
tion (QPE) [28] and variational quantum eigensolver (VQE) [29] have also been
developed to perform the electronic structure calculations on quantum computers.
A molecular-orbital-based machine learning (MOB-ML) method is introduced in
Chapter 2 of this thesis to learn molecular properties calculated by advanced elec-
tronic structure methods with the Hartree–Fock level input.

With the electron structure problem solved, the obtained PES enters into the nuclei
Hamiltonian Ĥn. The dynamical behavior of nuclei can be solved by the time-
dependent Schrodinger equation. Unlike electrons, nuclei behave much more clas-
sically due to the heavy mass, and thus in many cases, the nuclei movements can
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be well approximated by the classical Newton’s laws of motion on the PES. Nev-
ertheless, the quantum nuclear effects appear for light nuclei such as hydrogen and
deuterium, and result in various phenomena including kinetic isotope effects, zero
point energy, and quantum tunneling. [30, 31] Semi-classical treatments like path
integral molecular dynamics (PIMD) [32] and full quantum treatments like multi-
configuration time-dependent Hartree (MCTDH) [33] have been used to describe
the nuclear quantum effects. Chapter 3 of this thesis develops the PIMD method
by generalizing a set of strongly stable and dimension-free integrators for robust
numerical computations.

Periodic crystal systems: In periodic crystal systems, atoms are defined on pe-
riodic unit cells, and the structure is translational invariant. This implies that the
Hamiltonian and the translation operators in the three directions can be simultane-
ously diagonalized, and thus the eigenstates can be labeled by a real wave vector
k. A Fourier transformation is applied to the localized atomic orbitals φµ , which
generates a set of Bloch functions φkµ as the atomic orbitals in the crystal electronic
structure calculations. Within the mean-field framework via either HF or DFT, the
mean-field Hamiltonian becomes

Ĥe = ∑
kµ

εkµc†
kµ

ckµ , (1.4)

while the electron correlation can be interpreted as collisions between electrons.
Thus the energy levels are a set of energy bands labeled by the index µ . Each of
these energy levels evolves smoothly with changes in k, forming a smooth band of
states.

Unlike the molecular situation, the electronic Hamiltonian is solved only on the
equilibrium structure instead of as a function of the nuclear positions, while the
atomic oscillations are treated perturbatively. Up to second-order perturbation, the
oscillation normal modes (also known as phonons) and frequencies can be obtained
by diagonalizing the dynamical matrix in the Fourier basis. Let the phonon creation
and annihilation operators with wave vector q and branch i be b†

qi and bqi, and the
frequency be ωqi, the phonon Hamiltonian is given by

Ĥph = ∑
i

h̄ωqi(b
†
qibqi +

1
2
). (1.5)

Compared with the molecular case, non-adiabatic effects in crystal, which is ef-
fectively the electron-phonon coupling, are more important due to its relation with
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the transport [34]. The electron-phonon Hamiltonian can be obtained by Taylor
expansion of the nuclear-electron attractions. The leading order electron-phonon
Hamiltonian [35] is given by

Ĥe-ph = ∑
µν ikq

gµν i(k,q)c
†
k+q,µck,ν(bq j +b†

−q j), (1.6)

which leads to the scattering of a single electron with a phonon created or annihi-
lated. Higher orders of scattering are also available via higher order effects of the
leading order Hamiltonian or higher orders of the Hamiltonian. Combining Eq. 1.4,
1.5, and 1.6 gives the Fröhlich Hamiltonian Ĥ = Ĥe + Ĥph + Ĥe-ph.

Electron-phonon coupling is crucial for understanding many properties of materi-
als. The scattering between electrons and phonons strongly affects the electric and
thermal conductivity [36, 37]. Especially, in the Bardeen-Cooper-Schrieffer (BCS)
theory of superconductivity [38], electron-phonon interactions lead to the formation
of Cooper pairs, which are pairs of electrons that can move through a lattice with-
out resistance. The transport effects are typically described by the semi-classical
Boltzmann transport equation [39]. An ab initio-based semi-analytical model of
electron-phonon scattering is introduced in Chapter 4 of this thesis to describe the
transport and noise behavior in GaAs.

Non-equilibrium many-body quantum systems: Unlike systems at equilibrium,
where static properties and steady states dominate the analysis, non-equilibrium
systems are characterized by time-dependent processes, driven by external forces,
quenches, or interactions with their environment [40–42]. These systems can ex-
hibit a rich variety of phenomena, such as relaxation, thermalization, and the emer-
gence of non-thermal steady states, all of which are dictated by the intricate inter-
play between coherent quantum dynamics and dissipative effects [43–45].

One particularly intriguing aspect of non-equilibrium many-body dynamics is the
study of quantum systems under continuous observation or measurement. In classi-
cal systems, measurements simply reveal the state of the system without altering its
evolution significantly. However, in quantum mechanics, the act of measurement
plays a fundamentally different role due to the collapse of the wavefunction, which
can significantly influence the system’s dynamics [46]. This interplay between uni-
tary evolution and measurement has led to the discovery of novel phases of matter,
termed measurement-induced phase transitions (MIPT) [47, 48].

Measurement-induced phase transitions occur in systems where frequent measure-
ments compete with the unitary evolution driven by a many-body Hamiltonian. As
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measurements are introduced, they can either stabilize certain quantum states or
disrupt the coherence needed for complex quantum entanglement. When the rate of
measurement is varied, the system can undergo a phase transition between different
dynamical regimes.

Non-equilibrium many-body quantum systems can be classically simulated by strongly-
correlated methods including tensor network [49], Quantum Monte Carlo [50], and
dynamical mean-field theory [51]. Besides, quantum computers have also been
used to simulate many-body dynamics via Trotterized time evolution, especially
for highly entangled systems [52, 53]. Chapter 5 of this thesis introduces a demon-
stration of the MIPT behavior via the linear cross-entropy benchmarking on a su-
perconducting quantum processor.

The thesis is organized as follows. In Chapter 2 we develop a machine learning
solution named orbital-based machine learning (MOB-ML), which is originally in-
troduced by our collaborators, for the electronic structure problem. Compared with
the commonly used strategy that learns the electronic properties with the molecular
structure as input, MOB-ML uses the ∆-learning strategy that learns the correla-
tion energy (i.e. the difference with the Hartree–Fock energy) with the Hartree–
Fock level information as the input. Furthermore, the Nesbet theorem is employed
in MOB-ML to provide a rigorous decomposition of the correlation energy to lo-
cal pair energies. Our developments of MOB-ML include three aspects. First,
we carefully design the input features and the machine learning algorithm to en-
sure important physics constraints including invariance conditions and size consis-
tency, which have been proven to be vital for traditional electronic structure meth-
ods. With such physical constraints, better learnability and transferability from
small systems to large systems are observed in various types of benchmarking
datasets. Second, we develop the alternative black-box matrix-matrix multiplica-
tion (AltBBMM) method, which is improved from the original BBMM method,
and apply it to MOB-ML. Such AltBBMM method reduces the O(N3) training cost
of the Gaussian Process Regression (GPR), which is the regressor of MOB-ML,
to O(N2) via an iterative solver. AltBBMM also outperforms BBMM by a four-
time speedup on the QM7B benchmarking dataset with negligible loss of accuracy.
Third, we extend MOB-ML to learn linear-response properties by introducing the
rotational-equivariant derivative kernel and generalizing the pair energy decompo-
sition scheme. Such rotational-equivariant derivative kernel ensures the learned
dipole moments to be the gradients of energy with respect to the external electric
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field without explicitly including training data with non-zero electric field, and also
ensures the rotational covariance requirement. The generalized pair energy frame-
work ensures the locality of the machine learning target, which is vital for learning
large systems. The accuracy and efficiency of the proposed approach are tested
on various benchmark systems, and better accuracy is observed compared with all
other literature methods so far.

In Chapter 3, we generalize the Cayley integrator proposed in our previous work
to a family of integrators in the ring-polymer molecular dynamics (RPMD) algo-
rithm, which is a type of the PIMD methods for simulation of molecular quantum
dynamics. All such generalized integrators are strongly stable and dimension-free,
which have been proven as the key properties of the previous Cayley integrator, and
losing such properties leads to non-ergodicity and other pathological behaviors. We
analytically evaluate such a family of integrators by equilibrium accuracy, time step
stability, and convergence to equilibrium with the assumption of harmonic external
potential. Within the generalized class, we find the previous Cayley integrator to be
superior with respect to accuracy and efficiency for various configuration-dependent
observables, although other integrators within the generalized class perform better
for velocity-dependent quantities. The theoretical superiority is further verified with
numerical benchmarking on both a one-dimensional quantum harmonic oscillator
and a quantum-mechanical model of room-temperature liquid water.

In Chapter 4, we develop an ab initio-based semi-analytical model of the electron-
phonon scattering in GaAs and study the transport behavior. The ab initio calcu-
lation of the electron-phonon scattering, especially the contribution from the two-
phonon scattering, is computationally expensive, and thus several approximations
such as on-shell approximation are typically applied. Such approximations were
believed to be the origin of the failure to predict the characteristic non-monotonic
trend of the current noise behavior, which is described by the current power spectral
density (PSD). Our semi-analytical model lifts such approximations by assuming
the electron-phonon scattering to be Fröhlich, which is a valid assumption in po-
lar semiconductors like GaAs. Using the semi-analytical model, we calculate the
drift velocity, scattering rates, and current PSD. Agreement within 15% for the drift
velocity and 25% for the Γ valley scattering rates is found by comparing with the
experimental results, which verifies the semi-analytical model. However, the mono-
tonic PSD trend is not observed in the semi-analytical model. These results indicate
that the most probable origin of the non-monotonic PSD trend is the formation of
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space charge domains, instead of the intervalley electron-phonon scattering, which
has been broadly believed so far.

In Chapter 5, we simulate the measurement-induced phase transition (MIPT) behav-
ior on a superconducting quantum process. Such MIPT happens when a quantum
many-body system undergoes both unitary dynamics which increase the entangle-
ments, and measurements which decrease the entanglements. In our previous work,
we observe the MIPT with up to 14 qubits on a superconducting quantum computer.
However, the notorious post-selection issue leads to requirements of exponential re-
sources, which prohibits the application to larger systems. To overcome this issue,
we employ the recently introduced linear cross-entropy benchmarking, which elim-
inates such exponential overhead. With such linear cross-entropy benchmarking,
we demonstrate the MIPT on up to 22 physical qubits with less than 8 device hours,
which is significantly improved from the previous 5200 device hours. We also intro-
duce a Clifford circuit compression technique, which allows us to investigate circuit
models with all-to-all connectivities. We also compare the critical exponents, which
are the key properties of phase transitions, with the theoretical predictions, and find
good agreements. This work paves the way for studies of other critical phenom-
ena on near-term quantum hardware and provides a potential benchmarking tool
for quantum circuits with mid-circuit measurements.
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C h a p t e r 2

DEVELOPMENT OF MOLECULAR-ORBITAL-BASED
MACHINE LEARNING FOR IMPROVED TRANSFERABILITY,

SCALING, AND GENERALITY
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This chapter is adapted from

1. Sun, J., Cheng, L. & Miller Thomas F., I. Molecular dipole moment learning
via rotationally equivariant derivative kernels in molecular-orbital-based ma-
chine learning. The Journal of Chemical Physics 157, 104109. ISSN: 0021-
9606. https://doi.org/10.1063/5.0101280 (Sept. 2022).
Contribution: J.S. participated in the conception of the project, designed
and implemented the algorithm, trained the ML models, and wrote the arti-
cle.

2. Husch, T., Sun, J., Cheng, L., Lee, S. J. R. & Miller Thomas F., I. Improved
accuracy and transferability of molecular-orbital-based machine learning:
Organics, transition-metal complexes, non-covalent interactions, and transi-
tion states. The Journal of Chemical Physics 154, 064108. ISSN: 0021-9606.
https://doi.org/10.1063/5.0032362 (Feb. 2021).
Contribution: J.S. participated in the algorithm design and implementation
of the improved features, and contributed to writing the article.

3. Sun, J., Cheng, L. & Miller III, T. F. Molecular energy learning using alter-
native blackbox matrix-matrix multiplication algorithm for exact Gaussian
process. arXiv preprint arXiv:2109.09817. https://arxiv.org/abs/
2109.09817 (2021).
Contribution: J.S. conceptualized the project, designed and implemented
the algorithm, trained the ML models, and wrote the article.

Electron correlation plays an important role in physical and chemical processes,
but its quantitative description typically requires advanced ab-initio calculations.
Molecular-orbital-based machine learning (MOB-ML) provides a general frame-
work for the prediction of correlation energies at the cost of obtaining molecular
orbitals. The application of Nesbet’s theorem makes it possible to decompose the
learning task of total correlation energies into the learning of local pair energies
from pairs of molecular orbitals. Employing Gaussian Process Regression, MOB-
ML is capable of reaching chemical accuracy on small molecules with dozens of
training molecules. In this work, we introduce a few improvements, that extend the
ability of MOB-ML from small systems to large systems, enhance its training effi-
ciency, and allow it to learn other molecular properties. Specifically, the improved
feature design automatically incorporates crucial physical constraints such as size
consistency, which ensures the transferability of MOB-ML from small systems to
large systems. The integration of a black-box matrix-matrix multiplication tech-
nique scales up MOB-ML training by nearly a hundredfold without compromising
learning speed. Additionally, the introduction of a rotationally equivariant deriva-
tive kernel enables MOB-ML to learn general response properties with the same

https://doi.org/10.1063/5.0101280
https://doi.org/10.1063/5.0032362
https://arxiv.org/abs/2109.09817
https://arxiv.org/abs/2109.09817
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efficiency as correlation energy learning. These advancements establish MOB-ML
as a comprehensive, efficient, and robust framework for learning various molecular
properties.

2.1 Introduction
The calculation of accurate potential energies of molecules and materials at afford-
able cost is at the heart of computational chemistry. While state-of-the-art ab initio
electronic structure theories can yield highly accurate results, they are computa-
tionally too expensive for routine applications. Density functional theory (DFT) is
computationally cheaper and has, thus, enjoyed widespread applicability. [54–56]
However, DFT is hindered by a lack of systematic improvability and by an uncertain
quality for many applications. [57, 58]

Applications of machine learning (ML) to electronic structure theory have grown
rapidly with an increasing number of studies in a variety of chemical systems and
applications [59, 60], such as directly predicting the molecular properties, devel-
oping force fields and interatomic potentials, and designing novel and efficient cat-
alysts [61, 62], drugs [63–66], and materials [67, 68]. Important applications of
machine learning include predicting chemical properties directly to reduce compu-
tational costs via supervised learning [69, 70], detecting the patterns of chemical
spaces via unsupervised learning [71, 72], and proposing more suitable chemical
systems via reinforcement learning [65, 73], and generative models [74, 75].

Numerous approaches have been presented in the field of machine learning for
electronic structure during the last decades to aid in the learning of molecular en-
ergies and other molecular properties [25, 27, 76–114]. Among these methods,
Molecular-Orbital-Based Machine Learning (MOB-ML) stands out for learning the
correlation energy from molecular orbitals derived from Hartree–Fock computa-
tions. [89, 94, 95, 103, 115] The defining feature of MOB-ML is its framing of
learning highly accurate correlation energies as learning a sum of orbital pair corre-
lation energies. These orbital pair correlation energies can be individually regressed
with respect to a feature vector representing the interaction of the molecular orbital
pairs. Without approximation, it can be shown that such pair correlation energies
add up to the correct total correlation energy for single-reference wave function
methods. Phrasing the learning problem in this manner has the advantage that a
given pair correlation energy, and, hence, a given feature vector, is independent
of the molecular size (after a certain size threshold has been reached) because of
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the inherent spatial locality of dynamic electron correlation. Utilizing these advan-
tages, MOB-ML has shown great efficiency for highly accurate predicted molecular
energies with few training data.

Despite the theoretical advantages obtained from the Nesbet theorem and the accu-
racy predictions on small systems, challenges remain for MOB-ML. First, MOB-
ML shows a worse learnability in the transferability task of learning large molecules
from small molecules [95], which hinders it from applying to more realistic sys-
tems. Second, MOB-ML employs the accurate GPR method with the price of the
O(N3) computational complexity, which limits the training size to a few thousand.
Considering the pair energy framework, MOB-ML training is limited to a few hun-
dred molecules. Third, MOB-ML relies on the pair energy decomposition of the to-
tal correlation energies, which cannot be directly applied to other important molec-
ular properties, such as linear response properties.

Three improvements are introduced to address these three challenges, respectively.
To ensure the transferability to large systems, we demonstrate the importance of
preserving physical constraints, including invariance conditions and size consis-
tency, when generating the input for the machine learning model. The MOB-ML
features are adjusted carefully to satisfy these physical constraints. With the new
MOB-ML features, numerical improvements are demonstrated for different datasets
covering total and relative energies for thermally accessible organic and transition-
metal-containing molecules, non-covalent interactions, and transition-state ener-
gies. In particular, this MOB-ML model is significantly more accurate than other
methods when transferred to a dataset comprising thirteen heavy atom molecules,
exhibiting no loss of accuracy on a size-intensive (i.e., per-electron) basis.

To overcome the high computational complexity of GPR, we present an applica-
tion of the black-box matrix-matrix multiplication (BBMM) algorithm, which has
an improved computational scaling O(N2). [116, 117] An alternative implementa-
tion of BBMM (AltBBMM) is also proposed to train more efficiently (over four-
fold speedup) with the same accuracy and transferability as the original BBMM
implementation. The training of MOB-ML was limited to 220 molecules, and
BBMM and AltBBMM scaled the training of MOB-ML up by over 30 times to
6500 molecules (more than a million pair energies). The accuracy and transferabil-
ity of both algorithms are examined on the benchmark datasets of organic molecules
with 7 and 13 heavy atoms.

Finally, to extend MOB-ML to learn general linear response properties featured
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by dipole moments, a derivative kernel is introduced to learn the contribution of
electron correlation to the dipole moments as a summation of pairwise contribu-
tions. Such derivative kernel automatically ensures the rotational equivariance of
the predicted linear response properties and allows the co-training of different prop-
erties. The accuracy and efficiency of the proposed MOB-ML approach are tested
on various benchmark systems, including water, fourteen small molecules, the QM9
benchmark dataset [118], and four series of peptides [106].

2.2 Review of MOB-ML
MOB-ML predicts correlation energies based on information from the molecular
orbitals. [119–121] The correlation energy Ecorr in the current study is defined
as the difference between the true total electronic energy and the Hartree–Fock
(HF) energy for a given basis set. Without approximation, the correlation energy
is expressed as a sum over correlation energy contributions from pairs of occupied
orbitals i and j, [122]

Ecorr = ∑
i j

εi j, (2.1)

where i and j can be either canonical orbitals or non-canonical orbitals. In MOB-
ML, we always use the local orbitals obtained by the Boys localization. [123] Since
pair energies on local orbitals only depend on the local chemical environment, such
construction ensures the accurate prediction of pair energies with a fixed size of
input feature vectors.

Electronic structure theories offer different ways of approximating these pair corre-
lation energies. For example, with the canonical orbitals, the second-order Møller-
Plesset perturbation theory (MP2) correlation energy is [124]

ε
MP2
i j = ∑

ab

⟨ia|| jb⟩2

Faa +Fbb−Fii−Fj j
, (2.2)

where a,b denote virtual orbitals, F the Fock matrix in the molecular orbital ba-
sis, and ⟨ia|| jb⟩ the anti-symmetrized exchange integral. The expression for non-
canonical orbitals is more complicated, so we do not list it here. We denote a general
repulsion integral over the spatial coordinates x1,x2 of molecular orbitals p,q,m,n

following the chemist’s notation as

[κ pq]mn = ⟨pq|mn⟩

=
∫

dx1dx2 p(x1)
∗q(x1)

1
|x1−x2|

m(x2)
∗n(x2).

(2.3)
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The evaluation of correlation energies with post-HF methods like MP2 or coupled-
cluster theory (including CCSD(T)) involves computations that exceed the cost of
HF theory by orders of magnitude. By contrast, MOB-ML predicts the correlation
energy at negligible cost compared to a HF calculation by machine-learning the
map

εi j ≈ ε
ML(fi j), (2.4)

where fi j denotes the feature vector into which information on the molecular or-
bitals is compiled. MOB-ML is a so-called ∆ machine learning (∆-ML) model
which, in this context, means that the difference between an energy calculated
with a cheap (e.g., HF) and with an expensive (e.g., CCSD(T)) quantum chemical
method is predicted. Other machine learning models which fall into this category
are DeepHF [125] (based on a HF calculation), NeuralXC [126] (based on a DFT
calculation), and OrbNet [127] (based on a semi-empirical calculation).

Following our previous work,[120] we define a canonical order of the orbitals i

and j by rotating them into gerade and ungerade combinations (see Eq. (7) in
Ref. [120]), creating the rotated orbitals ĩ and j̃. The feature vector fi j assem-
bles information on the molecular orbital interactions: (i) Orbital energies of the
valence-occupied and valence-virtual orbitals Fpp, (ii) mean-field interaction en-
ergy of valence-occupied and valence-occupied orbitals and of valence-virtual and
valence-virtual orbitals Fpq, (iii) Coulomb interaction of valence-occupied and valence-
occupied orbitals, of valence-occupied and valence-virtual orbitals, and valence-
virtual and valence-virtual orbitals [κ pp]qq, and (iv) exchange interaction of valence-
occupied and valence-occupied orbitals, of valence-occupied and valence-virtual
orbitals, and valence-virtual and valence-virtual orbitals [κ pq]pq. We note that all
of these pieces of information enter either the MP2 or the MP3 correlation energy
expressions, which helps to motivate their value within our machine learning frame-
work. We remove repetitive information from the feature vector and separate the
learning problem into the cases where (i) i ̸= j where we employ the feature vector
as defined in Eq. (2.5) and (ii) i = j where we employ the feature vector as defined
in Eq. (2.6),

fi j ={{Fĩĩ,Fĩ j̃,Fj̃ j̃},{Fĩk},{Fj̃k},{Fab},

{[κ ĩĩ]ĩĩ, [κ
ĩĩ] j̃ j̃, [κ

j̃ j̃] j̃ j̃},{[κ
ĩĩ]kk},{[κ j̃ j̃]kk},{[κ ĩĩ]aa},{[κ j̃ j̃]aa},{[κaa]bb},

{[κ ĩ j̃]ĩ j̃},{[κ
ĩk]ĩk},{[κ

j̃k] j̃k},{[κ
ĩa]ĩa},{[κ

j̃a] j̃a},{[κ
ab]ab}},

(2.5)
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fi ={Fii,{Fik},{Fab}, [κ ii]ii,{[κ ii]kk},{[κ ii]aa},{[κaa]bb},{[κ ik]ik},{[κ ia]ia},{[κab]ab}}.
(2.6)

Here, the index k denotes an occupied orbital other than i and j. For blocks in the
feature vector that include more than one element, we specify a canonical order
of the feature vector elements by the sum of the Euclidean distances between the
centroids of orbital ĩ and p and between the centroids of orbital j̃ and p. A cutoff
to 20 occupied orbitals and 20 virtual orbitals is applied to ensure that the feature
vector fi j always has a fixed length independent of the molecule size.

The universal functional in Eq. 2.4 is finally learned by GPR. GP [128] describes
a prior distribution of random functions such that, for any finite number of possi-
ble inputs X = {x1, . . . ,xn}, the function values f (X) = { f (x1), . . . , f (xn)} has a
multivariate Gaussian distribution

f (X)∼ N(0,K(X,X)), (2.7)

where K(X,X) is the kernel matrix. Assuming the training data (X,y) has a Gaus-
sian distributed noise with variance σ2

n (also referred as Gaussian likelihood), i.e.,
y ∼ N( f ,Σn), where Σn = σ2

n I, the GPR prediction f (X⋆) for the test points is a
multivariate Gaussian distribution with the mean (prediction) and variance (uncer-
tainty) as

E[ f (X⋆)] = K(X⋆,X)K̂−1y

Var[ f (X⋆)] = K(X⋆,X)K̂−1K(X,X⋆),
(2.8)

where
K̂ = K(X,X)+Σn. (2.9)

Back to MOB-ML, X contains all feature vectors fi j, and y contains all pair energies
εi j. In practice, the kernel function K is parameterized by some kernel parameters.
All the parameters, which include the Gaussian noise variance σ2

n and kernel pa-
rameters, are optimized in GP training by maximizing the log marginal likelihood

L =−1
2

yT K̂−1y− 1
2

log|K̂|− n
2

log2π. (2.10)

2.3 Improved feature design: Theory
Feature vector constructed by Eq. 2.5 and 2.6 includes enough information. How-
ever, they do not satisfy some important physical constraints, including the orbital-
index permutation invariance and size consistency. In this section, we demonstrate
the importance of these physical constraints, and introduce a set of improved feature
designs so that these physical constraints are automatically satisfied.
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Defining importance of feature vector elements
Careful ordering of the elements of the feature vector blocks is necessary in the
current work because Gaussian process regression (GPR) is sensitive to permutation
of the feature vector elements. Furthermore, the application of a Gaussian process
requires that the feature vectors be of fixed length. [129]

Given the near-sighted nature of dynamical electron correlation, it is expected that
only a limited number of orbital-pair interactions are important to predict the pair
correlation energy with MOB-ML. To construct the fixed-length feature vector, a
cutoff criterion must be introduced.[119] For some feature vector elements, a ro-
bust definition of importance is straight-forward. The spatial distance between the
orbital centroids i and a is, for example, a reliable proxy for the importance of the
feature vector elements {[κ ii]aa} of the feature vector fi. However, the definition
of importance is less straightforward for feature vector elements that involve more
than two indices. The most prominent example is the {[κab]ab} feature vector block
of fi j, which contains the exchange integrals between the valence-virtual orbitals a

and b and which should be sorted with respect to the importance of these integrals
for the prediction of the pair correlation energy εi j. It is non-trivial to define a spa-
tial metric which defines the importance of the feature vector elements {[κab]ab} to
predict the pair correlation energy εi j; instead, we employ the the MP3 approxima-
tion for the pair correlation energy,

ε
MP3
i j =

1
8 ∑

abcd

(
tab
i j

)∗
⟨ab||cd⟩ tcd

i j +
1
8 ∑

klab

(
tab
i j

)∗
⟨kl||i j⟩ tab

kl

− ∑
kabc

(
tab
i j

)∗
⟨kb||ic⟩ tac

k j ,
(2.11)

where tab
i j denotes the T-amplitude. Although we operate in a local molecular orbital

basis, the canonical formulae are used to define the importance criterion; if we
consider orbital localization as a perturbation (as in Kapuy–Møller–Plesset theory
[130]), the canonical expression is the leading order term. The term we seek to
attach an importance to, {[κab]ab}, appears in the first term of Eq. (2.11) and all
integrals necessary to compute this term are readily available as (a combination of)
other feature elements, i.e., we do not incur any additional significant computational
cost to obtain the importance of the feature vector elements.

The way in which we determine the importance of the {[κab]ab} elements here is
an example of a more general strategy that we employ, in which the importance
is assigned according to the lowest-order perturbation theory in which the features
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first appear. Similar considerations have to be made for each feature vector block,
all of which are specified in detail in Tables 6.1 and 6.2.

Orbital-index permutation invariance
The Fock, Coulomb, and exchange matrix elements that comprise MOB features
are naturally invariant to rotation and translation of the molecule. However, some
care is needed to ensure that these invariances are not lost in the construction of
symmetrized MOB features. In particular, rotating the valence-occupied orbitals
into gerade and ungerade combinations leads to an orbital-index permutation vari-
ance for energetically degenerate orbitals i, j because the sign of the feature vector
elements M j̃ p, where M j̃ p may be Fj̃ p, [κ j̃ j̃]pp, or [κ j̃ p] j̃ p,

M j̃ p =
1√
2

(
Mip−M jp

)
, (2.12)

depends on the arbitrary assignment of the indices i and j. To rectify this issue, we
include the absolute value of the generic feature vector element M in the feature
vector instead of the signed value,

M j̃ p =
1√
2

∣∣Mip−M jp
∣∣ . (2.13)

The corresponding equation,

M j̃ p =
1√
2

(
Mip +M jp

)
, (2.14)

is already orbital-index permutation invariant because we chose Mpq (p ̸= q) to be
positive. [120]

Size consistency
Size consistency is the formal property by which the energy of two isolated molecules
equals the sum of their dimer upon infinite separation.[131, 132] In the context of
MOB-ML, satisfaction of this property requires that the contributions from the di-
agonal feature vectors are not affected by distant, non-interacting molecules and
that

ε
ML(fi j) = 0 for ri j = ∞ (2.15)

for contributions from the off-diagonal feature vectors. To ensure that MOB-ML ex-
hibits size-consistency without the need for explicit training on the dimeric species,
the following modifications to the feature vectors are made.
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Diagonal feature vector. The feature vector as defined in Eq. (2.6) contains three
blocks whose elements are independent of orbital i, {Fab}, {[κaa]bb}, and {[κab]ab}.
The magnitude of these feature vector elements does not decay with an increasing
distance between orbital i localized on molecule I and an orbital (for example, a)
localized on molecule J. To address this issue, we multiply these feature vector el-
ements by their estimated importance (see Section 2.3) so that they decay smoothly
to zero. The other feature vector elements decay to zero when the involved orbitals
are non-interacting albeit at different rates; we take the cube of feature vector el-
ements of the type {[κ pp]qq} to achieve a similar decay rate for all feature vector
elements in the short- to medium-range which facilitates machine learning.

Off-diagonal feature vector. We modify the off-diagonal feature vector such
that fi j = 0 for ri j = ∞ by first applying the newly introduced changes for fi also
for fi j. Further action is needed for the off-diagonal case because many feature
vector elements do not decay to zero when the distance between i and j is large
due to rotation of the orbitals into a gerade and an ungerade combination, e.g.,
Fĩk =

∣∣∣ 1√
2
Fik +

1√
2
Fjk

∣∣∣ = ∣∣∣ 1√
2
Fik

∣∣∣ for ri j = ∞,r jk = ∞. As a remedy, we apply a

damping function of the form 1
1+ 1

6 (ri j/r0)6 to each feature vector element. The form
of this damping function is inspired by the semi-classical limit of the MP2 expres-
sion as it is also used for semi-classical dispersion corrections. [133] The damping
radius, r0, needs to be sufficiently large as to not interfere with machine learning
at small ri j. If a damping radius close to zero would be chosen, all off-diagonal
feature vectors would be zero which nullifies the information content; however, the
damping radius r0 also should not be too large as size-consistency has to be fully
learned until the off-diagonal feature vector is fully damped to zero. Therefore, we
employ a damping radius in the intermediate-distance regime and we empirically
found r0 = 5.0 Bohr to work well. Although it could be systematically and au-
tomatically optimized in general, we simply apply r0 = 5.0 Bohr throughout this
work.

Lastly, we enforce that εML(0) = 0. The MOB features are engineered to respect
this limit and would, for example, in a linear regression with a zero intercept triv-
ially predict a zero-valued pair correlation energy without any additional training.
However, the Gaussian process regression we apply in this work does not trivially
yield a zero-valued pair correlation energy for a zero-valued feature vector. In the
case that a training set does not include examples of zero-valued feature vectors, we
need to include zero-valued feature vectors and zero-valued pair correlation ener-
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gies in training to ensure that εML(0) = 0. For no model trained in the current study
were more than 5% zero-valued feature vectors included.

The resulting MOB-ML model leads to size-consistent energy predictions to the
degree to which the underlying MO generation is. It is not required that the dimer
is explicitly part of training the MOB-ML model to obtain this result. The detailed
definition of each feature vector block is summarized in Tables 6.1 and 6.2. We
apply the feature set defined in Tables 6.1 and 6.2 consistently in this work.

2.4 Improved feature design: Results
Transferability within a molecular family
We first examine the effect of the feature vector generation strategy on the transfer-
ability of MOB-ML models within a molecular family. To this end, we revisit our
alkane data set [120] which contains 1000 ethane and 1000 propane geometries as
well as 100 butane and 100 isobutane geometries. We perform the transferability
test outlined in Ref. [120], i.e., training a MOB-ML model on correlation energies
for 50 randomly chosen ethane geometries and 20 randomly chosen propane ge-
ometries to predict the correlation energies for the 100 butane and 100 isobutane
geometries (see Figure 2.1). This transferability test was repeated with 10000 dif-
ferent training data sets (each consisting of data for 50 ethane molecules and 20
propane molecules) to assess the training set dependence of the MOB-ML models.
As suggested in Ref. [125], we consider various performance metrics to assess the
prediction accuracy of the MOB-ML models: (i) the mean error (ME), (ii) the mean
absolute error (MAE), (iii) the maximum absolute error (MaxAE), and (iv) the mean
absolute relative error (MARE) which applies a global shift setting the mean error
to zero. We report the minimum, peak, and maximum encountered MAREs in Ta-
ble 2.1 alongside literature values obtained in our previous work [120], by Dick et

al., [126] and by Chen et al. [125]

In general, MOB-ML as well as NeuralXC[126] and DeePHF[125] produce MAREs
well below chemical accuracy for correlation energies of butane and isobutane when
trained on correlation energies of ethane and propane. Updating the feature vector
generation strategy for MOB-ML results in the best peak MAREs for butane as well
as for isobutane which are 0.11 kcal/mol and 0.10 kcal/mol, respectively. As in our
previous work, [120] we note that the total correlation energy predictions may be
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Figure 2.1: Errors in the predicted correlation energies with respect to the CCSD(T)
reference values for butane and isobutane. The bar attached to each prediction error
indicates the associated Gaussian process variance. The MOB-ML model used for
these predictions was trained on 50 ethane and 20 propane molecules. The gray
shaded area corresponds to the region where the error is smaller than chemical
accuracy (1 kcal/mol).

Method Feature set MARE
Butane Isobutane

min peak max min peak max
NeuralXC[126]— 0.15 0.14
DeePHF[125]— 0.06 0.11 0.43 0.07 0.13 0.53
MOB-
ML

Ref. [120] 0.20 0.21

this work 0.06 0.11 0.19 0.06 0.10 0.19

Table 2.1: Comparison of the minimum, peak, and maximum mean absolute error
after global shift (MARE) in kcal/mol for the prediction of CCSD(T) correlation
energies for butane and isobutane obtained with different methods.
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shifted with respect to the reference data so that the MEs for MOB-ML range from
−0.92 to 2.70 kcal/mol for butane and from −0.18 to 1.02 kcal/mol for isobutane.
This shift is strongly training-set dependent, which was also observed for results
obtained with DeePHF [125].

The results highlight that this is an extrapolative transferability test. A considerable
advantage of applying GPR in practice is that each prediction is accompanied by a
Gaussian process variance which, in this case, indicates that we are in an extrapola-
tive regime (see Figure 2.1). Here, this can be seen by comparing the variances of
butane and isobutane molecules to variances of ethane and propane molecules not
employed in training. The maximum variance for ethane molecules is below 0.01
kcal/mol and the one for propane molecules is below 0.06 kcal/mol. Extrapolations
might be associated with quality degradation which we see, most prominently, for
the mean error in butane. By contrast, other machine learning approaches like neu-
ral networks are less clear in terms of whether the predictions are in an interpolative
or extrapolative regime.[134] By including the butane molecule with the largest
variance in the training set (which then consists of 50 ethane, 20 propane, and 1
butane geometries) we reduce the ME from 0.78 to 0.25, MAE from 0.78 to 0.26,
MaxAE from 1.11 to 0.51, and the MARE from 0.11 to 0.09 kcal/mol for butane.
These results directly illustrate that MOB-ML can be systematically improved by
including training data that is more similar to the test data; the improved confidence
of the prediction is then also directly reflected in the associated Gaussian process
variances.

As a second example, we examine the transferability of a MOB-ML model trained
within a basin of a potential energy surface to the transition-state region of the same
potential energy surface. We chose malonaldehyde for this case study as it has also
been explored in previous machine learning studies [135]. We train a MOB-ML
model on 50 thermalized malonaldehyde structures which all have the property that
d(O1–H) + d(O2–H) > 0.4 Å (where d denotes the distance between the two nuclei)
which ensures that we are sampling from the basins. We then apply this trained
model to predict the correlation energies for an MP2 potential energy surface map-
ping out the hydrogen transfer between the two oxygen atoms (see Figure 2.2).
MOB-ML produces an accurate potential energy surface for the hydrogen transfer
in malonaldehyde only from information on the basins (compare left and middle
left panel of Figure 2.2). The highest encountered errors on the minimum potential
energy path are smaller than 1.0 kcal/mol. Unsurprisingly, the predicted minimum



22

energy structure (d(O1–H) = 1.00 Å, d(O2–H) = 1.63 Å) is very similar to the refer-
ence minimum energy structure (d(O1–H) = 1.00 Å, d(O2–H) = 1.64 Å). Strikingly,
the predicted energy of 2.65 kcal/mol at the saddle point at d(O1–H) = d(O2–H) =
1.22 Å differs from the reference energy by only 0.35 kcal/mol, although the MOB-
ML model was not trained on any transition-state like structures. The highest errors
are encountered in the high-energy regime and this region is also associated with
the highest Gaussian process variance indicating low confidence in the predictions
(compare middle right and right panel of Figure 2.2). The Gaussian process vari-
ance reflects the range of structures the MOB-ML model has been trained in and
highlights again that we did not include transition-state-like structures in the train-
ing.

Figure 2.2: Relative energies obtained with MP2/cc-pVTZ (top left), relative en-
ergies predicted with MOB-ML (top right), the difference between the MOB-ML
prediction and the reference data (bottom left), and the Gaussian process variance
(bottom right) for the proton transfer in malonaldehyde as a function of the distance
of the proton from the two oxygen atoms.
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Transferability across organic chemistry space
The Chemical Space Project[136] computationally enumerated all possible organic
molecules up to a certain number of atoms, resulting in the GDB databases.[137]
In this work, we examine thermalized subsets [120] of the GDB13 data set [137] to
investigate the transferability of MOB-ML models across organic chemistry space.
The application of thermalized sets of molecules has the advantage that we can
study the transferability of our models for chemical and conformational degrees of
freedom at the same time. To test the transferability of MOB-ML across chemical
space, we train our models on MP2 energies for a thermalized set of seven and
fewer heavy-atom molecules (also known as QM7b-T [120]) and then we test the
prediction accuracy for MP2 energies for a QM7b-T test set and for MP2 energies
for a thermalized set of molecules with thirteen heavy atoms (GDB13-T [120]), as
also outlined in our previous work. [120, 121] We demonstrated previously that
MOB-ML learns other single-reference correlated wave function methods such as
CCSD or CCSD(T) with similar efficiency.[120]

We first investigate the effect of changing the feature vector generation protocol on
the QM7b-T→QM7b-T prediction task (see Figure 2.3). In Ref. [120], we found
that training on about 180 structures is necessary to achieve a model with an MAE
below 1 kcal/mol. The FCHL method yields an MAE below 1 kcal/mol when train-
ing on about 800 structures [138] and the DeePHF method already exhibits an MAE
below 1 kcal/mol when training on their smallest chosen training set which consists
of 300 structures (MAE=0.79 kcal/mol). [125] The refinements in the current work
reduce the number of required training structures to reach chemical accuracy to
about 100 structures when sampling randomly. This number is, however, strongly
training set dependent. We can remove the training-set dependence by switching to
an active learning strategy where we can achieve an MAE below 1 kcal/mol reli-
ably with about 70 structures. In general, the MAE obtained with the active learning
strategy is comparable to the smallest MAEs obtained with random sampling strate-
gies. This has the advantage that a small number of reference data can be generated
in a targeted manner.

In general, our aim is to obtain a machine learning model which reliably predicts
broad swathes of chemical space. For an ML model to be of practical use, it has
to be able to describe out-of-set molecules of different sizes to a similar accuracy
when accuracy is measured size-intensively. [132] We probe the ability of MOB-
ML to describe out-of-set molecules with a different number of electron pairs by
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Figure 2.3: Comparison of the prediction mean absolute errors of total correla-
tion energies for QM7b-T test molecules as a function of the number of QM7b-T
molecules chosen for training for different machine learning models: MOB-ML as
outlined in Ref. [120] (orange circles), MOB-ML as outlined in this work with ran-
dom sampling (green circles), and MOB-ML as outlined in this work with active
sampling. The green shaded area corresponds to the 90% confidence interval for
the predictions obtained from 50 random samples of the training data.

applying a model trained on correlation energies for QM7b-T molecules to predict
correlation energies for GDB13-T. We collect the best results published for this
transfer test in the literature in Figure 2.4. Our previous best single GPR model
achieved an MAE of 2.27 kcal/mol when trained on 220 randomly chosen struc-
tures. [120] The modifications in the current work now yield a single GPR model
which achieves an MAE of 1.47–1.62 kcal/mol for GDB13-T when trained on 220
randomly chosen QM7b-T structures. Strikingly, MOB-ML outperforms machine
learning models trained on thousands of molecules like our RC/GPR model and
FCHL18 [138]. The current MOB-ML results are of an accuracy that is similar to
the best reported results from DeePHF (an MAE of 1.49 kcal/mol);[125] however,
MOB-ML only needs to be trained on about 3% of the molecules in the QM7b
data set while DeePHF is trained on 42% to obtain comparable results (MAE of
1.52 kcal/mol for 3000 training structures). The best reported result for DeePHF
(MAE of 1.49 kcal/mol) was obtained by training on 97% of the molecules of the
QM7b data set. The data sets in this work focus on the extremely small data regime,
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Figure 2.4: Comparison of the prediction mean absolute errors of total correla-
tion energies for GDB13-T molecules as a function of the number of QM7b-T
molecules chosen for model training for different machine learning models: MOB-
ML as outlined in this work with random sampling (green circles), MOB-ML with
a single GPR [120] (orange circles), MOB-ML with RC/GPR [121] (brown cir-
cles), DeePHF [125] (red squares), and FCHL18 [138] (purple squares). The green
shaded area corresponds to the 90% confidence interval for the predictions obtained
from 50 random samples of the training data.

whereas widely used neural net methods like SchNet or ANI-1 have instead been
applied with data sets which are orders of magnitude larger. For example, a di-
rect comparison of the learning efficiency between MOB-ML and SchNet has been
provided in the context of forces.[139] We attribute the excellent transferability of
MOB-ML to the fact that it focuses on the prediction of orbital-pair contributions,
thereby reframing an extrapolation problem into an interpolation problem when
training machine learning models on small molecules and testing them on large
molecules. The pair correlation energies predicted for QM7b-T and for GDB13-T
span a very similar range (0 to −20 kcal/mol), and they are predicted with a similar
Gaussian process variance which we would expect in an interpolation task. The
final errors for GDB13-T are larger than for QM7b-T, because the total correlation
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energy is size-extensive; however, the size-intensive error per electron pair spans a
comparable range for QM7b-T and for GDB13-T. This presents a significant advan-
tage of MOB-ML over machine learning models which rely on a whole-molecule
representation and creates the opportunity to study molecules of a size that are be-
yond the reach of accurate correlated wave function methods.

Most studies in computational chemistry require accurate relative energies rather
than accurate total energies. Therefore, we also assess the errors in the relative ener-
gies for the sets of conformers for each molecule in the QM7b-T and in the GDB13-
T data sets obtained with MOB-ML with respect to the MP2 reference energies (see
Figure 2.5). We emphasize that MOB-ML is not explicitly trained to predict con-

Figure 2.5: Prediction mean absolute errors for relative correlation energies as a
function of the number of QM7b-T molecules chosen for model training for QM7b-
T (blue circles) and for GDB13-T (orange crosses). The blue and orange shaded
areas correspond to the 90% confidence interval for the predictions obtained from
50 random samples of the training data. The gray shaded area corresponds to the
region where the error is smaller than chemical accuracy (1 kcal/mol).

former energies, and we include at most one conformer for each molecule in the
training set. Nevertheless, MOB-ML produces on average chemically accurate rel-
ative conformer energies for QM7b-T when trained on correlation energies for only
30 randomly chosen molecules (or 0.4% of the molecules) in the QM7b set. We
obtain chemically accurate relative energies for the GDB13-T data set when train-
ing on about 100 QM7b-T molecules. The prediction accuracy improves steadily
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when training on more QM7b-T molecules reaching a mean MAE of 0.43 kcal/mol
for the relative energies of the rest of the QM7b-T set and of 0.77 kcal/mol for the
GDB13-T set.

We now present the first reported test of MOB-ML for non-covalent interactions
in large molecules. To this end, we examine the backbone-backbone interaction
(BBI) data set [140] which was designed to benchmark methods for the prediction
of interaction energies encountered within protein fragments. Using the implemen-
tation of MOB-ML described here and using only MP2 energies for 20 randomly
selected QM7b-T molecules for training, the method achieves a mean absolute error
of 0.98 kcal/mol for the BBI data set (see Figure 2.6). However, these predictions
are uncertain as indicated by the large Gaussian process variances associated with
these data points which strongly suggest that we are now, as expected, in an ex-
trapolative regime. We further improve the predictive capability of MOB-ML by
augmenting the MOB-ML model with data from the BBI set. Specifically, we can
draw on an active learning strategy and consecutively include data points until all
uncertainties are below 1 kcal/mol which in this case corresponds to only two data
points. This reduces the MAE to 0.28 kcal/mol for the remaining 98 data points in
the BBI set. Including more reference data points would further improve the perfor-
mance for this specific data set. However, this is not the focus of this work. Instead,
we simply emphasize that MOB-ML is a clearly extensible strategy to accurately
predict energies for large molecules and non-covalent intermolecular interactions
while providing a useful estimation of confidence.

Transition-metal complexes
We finally present the first application of MOB-ML to transition-metal complexes.
To this end, we train a MOB-ML model on a thermalized subset of mononuclear,
octahedral transition-metal complexes introduced by Kulik and co-workers [141]
which we denote as TM-T. The chosen closed-shell transition-metal complexes
feature different transition metals (Fe, Co, Ni) and ligands. The ligands span the
spectrochemical series from weak-field (e.g., thiocyanate) over to strong-field (e.g.,
carbonyl) ligands. We see in Figure 2.7 that the learning behaviour between TM-T
and QM7b-T is similar when the error is measured per valence-occupied orbital.
These results demonstrate that MOB-ML formalism can be straightforwardly ap-
plied outside of the organic chemistry universe without additional modifications. It
is particularly notable that the learning efficiency for TM-T is comparable to that for
QM7b-T, as seen in the relatively simple organic molecules in QM7b-T (Fig. 2.7).
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Figure 2.6: Top panel: Errors in predictions were made with a MOB-ML model
trained on 20 randomly selected QM7b-T molecules with respect to reference
MP2/cc-pVTZ interaction energies for the BBI data set. Bottom panel: Errors in
predictions were made with a MOB-ML model trained on 20 randomly selected
QM7b-T molecules and augmented with the 2 BBI data points with the largest vari-
ance (orange circles) with respect to reference MP2/cc-pVTZ interaction energies.
The bar attached to each prediction error indicates the associated Gaussian process
variance. The gray shaded area corresponds to the region where the error is smaller
than chemical accuracy (1 kcal/mol).
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Figure 2.7: Learning curve for the prediction of MP2 correlation energies per
valence-occupied orbital for transition metal complexes (TM-T) and for QM7b-T
as a function of the number of structures the MOB-ML model was trained on.

We note that we do not expect MP2 theory to be quantitative for transition metal
complexes.[142, 143] Instead, it provides a demonstration of the learning efficiency
of MOB-ML for transition-metal complexes in the current example; and as previ-
ously demonstrated, MOB-ML learns other correlated wave function methods with
similar efficiency.[119, 120]

2.5 Scaling up MOB-ML training by AltBBMM
Applying MOB-ML to the large data regime has remained challenging due to the
O(N3) complexity scaling associated with the standard GPR algorithm. A strategy
to reduce the complexity of GPR is to introduce a low-rank kernel approximation,
which has been exploited in the Sparse Gaussian Process Regression [144] and
Stochastic Variational Gaussian Processes [145] methods. However, such treat-
ments of GPR sometimes result in a significant loss of accuracy. In contrast, Gard-
ner et al. [116, 117] recently proposed the black box matrix-matrix multiplication
(BBMM) method, which provides exact GP inference while reducing the training
time complexity to O(N2) and allowing for multi-GPU usage.

In the following, we employ BBMM and a novel alternative implementation for
BBMM (AltBBMM) to speed up and scale the GPR training in MOB-ML for
molecular energies. We show that AltBBMM delivers more efficient training on
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over 1 million pair energies without sacrificing transferability across chemical sys-
tems of different molecular sizes. The accuracy and efficiency of BBMM and Al-
tBBMM in modeling physical problems are demonstrated by comparisons with lit-
erature results on the same datasets.

Conjugate gradient (CG)
The standard approach to obtain the predictive mean in Eq.2.8 via direct matrix
inverse has a O(N3) computational complexity. In constrast, the conjugate gradient
(CG) [146] algorithm can iteratively solve ω = K̂−1y, or equivalently K̂ω = y with
an O(N2) cost in each iteration. CG requires only the matrix-vector multiplications
(MVMs) with the kernel matrix K̂, which is amenable to multi-GPU acceleration.
In the iteration k, the solution is found in the order-k Krylov space

K = span
{

K̂iy
∣∣∣i = 0,1, ...k−1

}
. (2.16)

The solution ωk of CG at iteration k converges to the exact solution ω∗ exponen-
tially measured by the relative residual ||K̂ωk−y||

||y|| . However, the total number of
iterations kc to converge is usually very large for a kernel K̂ with high singularity.
A common way to reduce kc is to construct a preconditioner P and then solve the
equivalent equation P−1K̂ω = P−1y such that P−1K̂ is less singular than K̂. [147].

Block conjugate gradient (BCG) [148], as a variant of CG, can also be used to
further reduce kc. It extends CG to solve s linear equations K̂ωi = yi, i = 0,1...s−1
simultaneously. The number of linear equations s is also known as block size. In
the iteration k of BCG, the solution is found in

K block = span
{

K̂ jyi

∣∣∣i = 0,1, ...s−1, j = 0,1, ...k−1
}
. (2.17)

By setting y0 = y, and yi ∼ N(0, I) for i > 0, BCG can converge to the same exact
solution ω∗0 = ω∗ with fewer iterations since Kk ⊂K block

k .

Blackbox matrix-matrix multiplication (BBMM) and Alternative BBMM (Al-
tBBMM)
BBMM [116, 117] calculates the GP inference by utilizing CG combined with the
pivoted Cholesky decomposition preconditioner [149, 150]. Furthermore, a mod-
ified batched version of conjugate gradients (mBCG1) [116] is also proposed to
estimate the marginal likelihood and its derivatives, which are required in the GP

1mBCG (modified batched conjugate gradients) differs from BCG (block conjugate gradient )
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hyperparameter optimization. These enhancements reduce the training complex-
ity to O(N2) in time, and O(N) in memory and therefore enable the training of a
million data points.

Here, we propose an alternative realization of BBMM (AltBBMM) to achieve sim-
ilar accuracy as BBMM with a lower cost in molecular energy prediction applica-
tions, where a low Gaussian noise (10−5∼10−8) is required to reach the desired
accuracy. However, since the low Gaussian noise significantly increases the singu-
larity of K̂, CG would converge slowly or even fail to converge when the rounding
errors exceed the Gaussian noise.[151] In order to speedup the CG convergence,
we employ the BCG algorithm described in the previous section. The additional
computational cost of BCG in each iteration is negligible compared with the ker-
nel matrix calculations. To further improve the robustness of the convergence, we
use the double-precision floating numbers in the implementation and employ the
symmetric preconditioning P−1/2K̂P−1/2. The Nystreoem preconditioner [147] is
used as an example, but we note that better preconditioners could exist. Finally,
the hyperparameters are optimized on a random subset of the entire training set
in AltBBMM since the optimized hyperparameters remain similar across various
training sizes for MOB-ML.

Computational details
We train all the models on random subsets of the QM7b-T dataset [89, 94, 152],
which contains 7211 organic molecules with up to 7 heavy atoms. The test sets are
the remaining QM7b-T molecules and the whole GDB-13-T dataset [89, 94, 152]
containing 1000 organic molecules with 13 heavy atoms. The Matérn 5/2 kernel is
used in all the GP trainings. We independently implement the BBMM according to
the description of the mBCG and hyperparameter optimization in Ref. [116]. The
symmetric Nystroem preconditioner and the block CG are used in this work. In
both BBMM and AltBBMM, the rank r of the preconditioner is chosen as 10000,
the BCG block size s is fixed as 50, and the BCG iterations stop when all the s

relative residuals are smaller than 10−6. The hyperparameters are optimized from
a full GP trained on 50 random molecules. To overcome the memory limit and
maximize the multi-GPU efficiencies, the kernel computations in CG are performed
in 4096× 4096 batches, and such computations are dynamically distributed to all
the available GPUs. Additionally, we add a Gaussian noise regularization σ2

add =

10−5 to the optimized Gaussian noise reduce the singularity of K̂.
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Low noise regularization for accurate GP
We first demonstrate the necessity of utilizing a low noise regularization to achieve
accurate predictions. We train all the offdiagonal energies (εo) pairs from 1000
QM7b-T molecules with different σ2

add and test on the εo of the rest QM7b-T
molecules. The training time and the prediction mean absolute error (MAE) are dis-
played in Table 2.2. For both BBMM and AltBBMM, regularizing with σ2

add = 10−1

results in a less singular K̂ and saves half the training time, but its prediction MAE
doubles when compared to the results of σ2

add = 10−5. Since the MOB-ML data
generation is significantly more expensive than model training, we fix σ2

add = 10−5

for all of the following BBMM and AltBBMM experiments to achieve the most
accurate model with the least amount of data.

Table 2.2: Test MAEs (kcal/mol) of offdiagonal contributions (∑εo) in each
molecule, training time (s) and memory usage (MB) by training on εo pairs from
1000 QM7b-T molecules (N=175,795) with different Gaussian noise regulariza-
tions.

BBMM AltBBMM
Memory/GPU (MB)

σ2
add Test MAE Time (s) Test MAE Time (s)

10−1 0.636 1104.30 0.619 456.46
3,891

10−5 0.314 2150.93 0.312 760.54

Table 2.3: Test MAEs (kcal/mol), training time (hrs) and memory usage (MB) of
BBMM and AltBBMM trained on 6500 QM7b-T moleculesa with the same initial
hyperparameters.

Algorithm QM7b-T MAE GDB-13-T MAE/7HA Time (hr) Memory/GPU (MB)

BBMM 0.185 0.490 26.52
15,359

AltBBMM 0.193 0.493 6.24
a Training size of εo is 1,152,157 and training size of εd is 124,973

BBMM and AltBBMM for energies of organic molecules
We now examine the accuracy and transferability of BBMM and AltBBMM in
learning QM7b-T and GDB-13-T molecular energies. The transferability of MOB-
ML is assessed by the MAEs per 7 heavy atoms (MAE/7HA) of test GDB-13-T
molecules predicted by the models trained on QM7b-T molecules. Table 2.3 lists
the wall-clock time of training on 6500 QM7b-T molecules by BBMM and Al-
tBBMM and the corresponding prediction MAEs on test QM7b-T and GDB-13-T
molecules. Similar to the results in Table 2.2, by utilizing our AltBBMM approach,
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Figure 2.8: Learning curves for MOB-ML with different training protocols trained
on QM7b-T and tested on (a) QM7b-T and (b) GDB-13-T. The accuracies of
QM7b-T and GDB-13-T are measured by the MAEs and MAEs per 7 heavy atoms
(MAE/7HA) of test molecules, respectively. We additionally plot the current best
results in low and big data regimes, i.e., MOB-ML training with full GPR from
Ref. [152] and the state-of-art DeePHF/extended NN from Ref. [153], respectively.
The gray shaded area represents the chemical accuracy of 1 kcal/mol.

we gain a four-fold speedup in the training timings while only introducing 4%
and 1% additional MAE in the prediction of QM7b-T and GDB-13-T, respectively,
compared with BBMM.

In addition, we compare the performance of BBMM and AltBBMM with the re-
sults of the current most accurate literature methods, i.e., MOB-ML with full GP
(MOB-ML/Full GP) [152] and DeePHF with extended neural network regressor
(DeePHF/extended NN) [153]. The literature results of MOB-ML/Full GP are only
available with up to 220 training molecules due to the limited memory resources.
The introduction of BBMM and AltBBMM allows MOB-ML to scale up the train-
ing to 6500 molecules (over 1 million training pair energies) while retaining the ac-
curacy and transferability compared with MOB-ML/full GP in Figure 2.8. By train-
ing on 6500 molecules, BBMM and AltBBMM reach the current best MAE/7HA
for GDB-13-T as 0.490 kcal/mol and 0.493 kcal/mol, respectively. In all the cases
we tested, BBMM and AltBBMM provide a better accuracy on QM7b-T and a
better transferability on GDB-13-T than DeePHF/extended NN.

2.6 Extension to learning linear response properties: Theory
In the following, we extend MOB-ML to learn general time-independent linear re-
sponse properties using dipole moments as an example. Following the idea of pair
energies, we first introduce a decomposition of the contribution of electron corre-
lation to the dipole moment to a summation of pairwise contributions. These pair
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dipole moments can be learned as the functions of MOB features and their deriva-
tives to electric fields via a rotationally equivariant derivative kernel in GPR. Such
a framework also allows the natural co-training of energies and dipole moments.

MO Decomposition of dipole moments in MOB-ML
For a given system, the electric dipole moments µ can be expressed as the linear
response of the energy E with respect to external electric field EEE , i.e.,

µ=−∇EEE E, (2.18)

which could be further expressed as the sum of HF and correlation components:

µ=−(∇EEE EHF +∇EEE Ecorr) = µHF +µcorr. (2.19)

The correlation part µcorr can then be decomposed on pairs of occupied orbitals
similar to Eq. 2.1:

µcorr =−∇EEE Ecorr =− ∑
i j∈occ

∇EEE εi j = ∑
i j∈occ

µi j. (2.20)

µi j is referred to as pair dipole moments and is regressed by ML similar to Eq. 2.4.
Compared with Eq. 2.4, we add the feature derivatives information ∇EEE fi j(φk) as
part of the features motivated by µi j = ∇EEE εi j.

µi j ≈ µML[fi j(φk),∇EEE fi j(φk)]. (2.21)

Figure 2.9 displays an example of the dipole moment decomposition on a water
molecule to facilitate an understanding of this decomposition.

Feature design of dipole learning in MOB-ML
The energy feature set f ε

i j includes enough information to model molecular energy
and satisfies different invariance properties, including translational, rotational, and
orbital permutational invariances. [94, 102] To efficiently model the dipole mo-
ments, we additionally include the responses of feature vector to electric field EEE ,
i.e., ∇EEE f

ε
i j, in the design of dipole feature set fµ

i j .

fµ
i j = {f

ε
i j,∇EEE f

ε
i j} (2.22)

However, the direct definition of ∇EEE f
ε
i j does not satisfy translational invariance due

to the dependence of the Fock matrix elements ∇EEE Fpq on the positional operator
matrix element rpq.
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Figure 2.9: Example decomposition of dipole moments as a sum of pairwise MO
contributions for a water molecule. The four vertices of the tetrahedron represent
the self-interactions of four MOs (indexing as ii), and the six edges connecting the
vertices represent the interactions between two MOs (indexing as i j). The pair
dipoles µii and µi j are shown in red and blue arrows with correct direction and
scaling, respectively. Four MOs are also shown next to the corresponding vertex i.
The relative length scaling is also shown using a grey line.

Fpq = hpq +
n

∑
k=1

(2Jk
pq−Kk

pq)+����rpq ·EEE ,

∇EEE Fpq

∣∣∣
EEE=0

= ∇EEE

(
hpq +

n

∑
k=1

(2Jk
pq−Kk

pq)

)∣∣∣
EEE=0

+
��������
∇EEE rpq ·EEE

∣∣∣
EEE=0

+HHrpq.

where hpq are the one-electron Hamiltonian matrix elements, Jk
pq and Kk

pq are Coloumb
and exchange matrix elements of the kth orbital, and rpq are the position operator
matrix elements. The rpq ·EEE and ∇EEE rpq ·EEE terms vanish when EEE = 0. However,
the existence of rpq term in Eq. 2.23 results in a non-translataional invariant dipole
feature design. Therefore, a redefinition of the derivatives of Fock matrix elements
is adapted by subtracting the rpq term to make dipole feature vector (Eq. 2.22)
translataional invariant.
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GPR with rotationally equivariant derivative kernel for ML response
Several previous studies have recognized the importance of rotational equvariance
for ML framework to efficiently learn molecular dipole moments. [107, 110] For
any rotational operator Û , a function g : x→ g(x) is rotationally equivariant if

g(Ûx) = Ûg(x). (2.23)

From a physics perspective, the rotational equivariance guarantees that the predicted
property will rotate correspondingly with the rotation of the system. Therefore, the
rotational equivariance property is required for any tensorial molecular properties,
such as force, dipole moment, and polarizability. In addition, the molecular energy
is rotationally invariant, i.e., remains constant with the rotation of the system. The
conditions for energy and dipole models can be formulated as follows:εML[f ε

i j] = εML[Ûf ε
i j]

µML[Ûfµ
i j ] = ÛµML[fµ

i j ].
(2.24)

For the MOB features, when applying a rotation operator Û , the energy and dipole
feature sets satisfy the relationship Ûf ε

i j = f ε
i j and Ûfµ

i j = {f ε
i j,U∇EEE f

ε
i j}, respec-

tively, where U is the matrix representation of Û . Therefore, the MOB-ML energy
model is always rotationally invariant for any regressor. However, it remains chal-
lenging and requires a special ML algorithm design to make the MOB-ML dipole
model rotationally equivariant for a greater learning efficiency.

Assuming the training energy and dipole sets are (Xε ,yε)= {fϵ
i j,εi j} and (Xµ ,yµ)=

{fµ
i j ,µi j}, respectively, we introduce a rotationally equivariant derivative kernel

that could accurately learn dipole moment and energy separately or simultaneously.

A single-task energy model could be directly learnt using the naive GPR in Eq. 2.8
with the prior distribution

ε
ML(Xε)∼ N(0,Kε(Xε ,Xε)). (2.25)

Since the derivative of a GP is also a GP [128, 154], dipole moments can be re-
gressed by GPR with the prior distribution of ∇EEE εML(Xε):

µML(Xµ) =−∇EEE ε
ML(Xε)∼ N(0,Kµ(Xµ ,Xµ)). (2.26)

µML and the corresponding kernel matrix Kµ could be written as follows:

µML(xµ) =−∇EEE xε ·∇xε
ε

ML(xε),

Kµ(xµ ,x′µ) = ∇EEE xε∇EEE x′ε ·K
(1,2)
ε (xε ,x′ε), (2.27)
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where we use symbol x to represent general input features, and the superscripts of
Kε represent the derivatives to the arguments, e.g. K(1,2)(x1,x2) = ∇x1∇x2K(x1,x2).
Since ∇EEE Xε will produce the derivative terms {∇EEE f

ε
i j}, including these derivatives

in the dipole feature set is necessary to model µML. This mathematical deduction
agrees with the physical intuition discussed in Sec. 2.6.

By using the Gaussian likelihood yµ ∼ N(µML,Σµ) with Σµ = σ2
µ I, for a set of

test points X⋆
µ , the prediction mean and variance of the derivative kernel can be

evaluated using Eq. 2.8 as

E[µML(X⋆
µ)] =Kµ(X⋆

µ ,Xµ)(Kµ(Xµ ,Xµ)+Σµ)
−1yµ

Var[µML(X⋆
µ)] =Kµ(X⋆

µ ,Xµ)(Kµ(Xµ ,Xµ)+Σµ)
−1

Kµ(Xµ ,X⋆
µ).

(2.28)

The rotationally equivariant derivative kernel can be generalized to the multi-task
learning of εML and µML simultaneously. In such case, their joint distribution is
also a GP with the predictive mean and variance as

E

[
εML(X⋆

µ)

µML(X⋆
µ)

]
=Kεµ(X⋆

µ ,Xµ)(Kεµ(Xµ ,Xµ)+Σεµ)
−1yεµ

Var

[
εML(X⋆

µ)

µML(X⋆
µ)

]
=Kεµ(X⋆

µ ,Xµ)(Kεµ(Xµ ,Xµ)+Σεµ)
−1

Kεµ(Xµ ,X⋆
µ),

(2.29)

where

yεµ =

[
yε

yµ

]
, Σεµ =

[
σ2

ε I 0
0 σ2

µ I

]
,

Kεµ(xµ ,x′µ) =

[
Kε(xε ,x′ε) ∇EEE x′ε ·K

(2)
ε (xε ,x′ε)

∇EEE ε ·K(1)
ε (xε ,x′ε) ∇EEE xε∇EEE x′ε ·K

(1,2)
ε (xε ,x′ε)

]
.

(2.30)

We note that there might be other rotationally equivariant GPR frameworks that
provide models with similar accuracy, they might not ensure the learnt dipole model
is a derivative of the energy model.

As an analogy to the response in physics, it is desirable for the ML model of h

and its response property model g to satisfy Eq. 2.31, termed as "ML response
relationship".

g(x) = ∇h(x). (2.31)
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This relationship requires model g to be conservative (or curl-free), i.e., ∇×g = 0

[155, 156]. In this study, we apply this physically driven rotationally equivariant
derivative kernel formalism to satisfy this response relationship at any electric field.
Both the single-task and multi-task GPR with this derivative kernel satisfy the ro-
tational equivariance (Eq. 2.24). The proof in given in Appendix 6.2. Without any
specification, we adapt the single-task framework of GPR with rotationally equiv-
ariant derivative kernel for all the following training. The performance comparisons
of single-task and multi-task models are demonstrated in Sec. 2.7.

2.7 Extension to learning linear response properties: Results
The accuracy and efficiency of the proposed MOB-ML approach are tested on
various benchmark systems, including water, fourteen small molecules, the QM9
benchmark dataset [118], and four series of peptides [106]. Since the QM9 dataset
contains more than a hundred thousand molecules, we combine the local GPR with
the Gaussian mixture model (GMM) unsupervised clustering (GMM/GPR) tech-
nique introduced in Ref. [115], and the AltBBMM technique introduced in Sec.
2.5.

Computational details
The water with random field dataset is generated by computing the data of each
structure in the water dataset at finite electric field ranging from 0 to 0.05 a.u. with
random directions. The structures of the QM9 dataset and the four different series
of peptides are directly obtained from Ref. [118] and Ref. [106], respectively. The
derivatives of the pair energies with respect to electric fields are implemented and
calculated in the Molpro package following Ref. [157].

For all the datasets, we separately learn the energies and dipole moments using the
energy feature set and dipole feature set, respectively. For the water and the small
molecule datasets, the results for multi-task models, i.e., dipole + energy models,
that learn both tasks simultaneously are also included for comparison. Table 2.4
summarizes the usage of energy and dipole features in this work. We unsupervis-
edly cluster the MOs represented by energy features instead of separately clustering
energy and dipole feature space, i.e., the clustering models are identical for the en-
ergy and dipole learning with the same training sets. Feature selection is performed
before all the models on energy labels using the random forest regression imple-
mentation in the SCIKIT-LEARN [158] package following the protocol in Ref. [94].
For the dipole learning, we use the selected energy features and their derivatives as
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the selected dipole features.

Table 2.4: Usages of different feature sets in different learning models.

ML model Feature set Learning task
Clustering (GMM) Energy features All energy & dipole models

Regression (GPR)
Energy features Energy (single-task)

Dipole features
Dipole (single-task)

Dipole + energy (multi-task)

We apply the AltBBMM algorithm as the default GP regressor, and reimplement the
GMM with full covariance matrix following SCIKIT-LEARN using CUPY [159] to
enable multi-GPU training. The implementations for both algorithms are available
online at https://github.com/SUSYUSTC/BBMM.git. For all GPR and GMM/GPR,
we employ the Matérn 5/2 kernel with white noise regularization [128]. The param-
eters used in training for GPR and GMM/GPR are further discussed in Supporting
information.

All the results for water and small molecule datasets are collected with GPR with-
out clustering. The local GPR with GMM unsupervised clustering is applied to
scale the MOB-ML training in the QM9 dataset. In this work, we follow the same
clustering protocol introduced in Ref. [115] to generate the GMM models. The
GMM model is initialized by K-means clustering, and its number of clusters is au-
tomatically determined by minimizing the Bayesian information criterion. GMM
could not be performed to cluster 50,000 and 110,000 QM9 molecules due to lim-
ited memory, and we thus apply the GMM model trained on 20000 QM9 molecules
to approximate the clustering results of these two models. To reduce the learning
costs, we also apply the same capping strategy described in Ref. [95]. For the
clusters containing a large number of points, we randomly select training points
with the capping size defined ahead to regress these local GPR. The capping size is
1,000,000 and 300,000 pairs for dipole and energy learning, respectively.

Dipole moment learning for small molecules via MOB-ML
To demonstrate the ability to learn dipole moments using the MOB representa-
tions, we first test the prediction accuracies of MOB-ML on water and other small
molecules. Figure 2.10 displays the mean absolute errors (MAEs) of dipole mo-
ments (|µ|) and molecular energies E for water learnt by single-task and multi-task
models. The sizes of the training set are varied from 2 to 100 geometries, and the
test set is composed of 100 geometries not included in any training sets. MAEs at

https://github.com/SUSYUSTC/BBMM.git
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the same order of reference data accuracy for molecular energies are achieved by
training on 100 geometries using energy labels (5.54× 10−5 kcal/mol) and dipole
combined with energy labels (1.84×10−5 kcal/mol). Across all the training sizes,
single-task and multi-task models provide similar accuracies for molecular ener-
gies, but dipole models provide much better dipole predictions than the dipole +
energy model.
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Figure 2.10: Prediction accuracies of dipole moments and energies of water using
a reference theory of MP2/cc-pVTZ at zero electric field. The predicted MAEs
are plotted versus the number of training geometries on a log-log scale ("learning
curves"). The MOB-ML models for dipole moments and energies are constructed
by training on the labels individually (dipole model and energy model) or simul-
taneously using multi-task learning (dipole + energy model). The primary and
secondary y-axises represent the prediction MAE of dipole moments |µ|err in milli-
Debye (mDebye) and the prediction MAE of energy in kcal/mol, separately.

Table 2.5 lists the MAEs of dipole moments and total energies from single-task and
multi-task models training on 50 geometries and testing on different 50 geometries
for small molecules with different sizes. MOB-ML provides very accurate predic-
tions for all the test molecules. Comparing the results of molecules with different
molecular sizes sharing similar MO properties, such as CH4, C2H6, and C3H8, it is
clear that the larger molecules have much bigger errors than the smaller ones for
both dipole and energy owing to the increasing number of pairwise contributions to
the final result. The total errors should scale linearly with the increase of molecular
size by summing up predicted pairwise contribution with Gaussian distributed pair-
wise errors. For the systems that share similar numbers of MOs, such as C2H4 and
C2H6, the more rigid molecule (C2H4) is easier to learn for both dipole and energy.
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Table 2.5: Predicted error of the MOB-ML training on dipole only or dipole and
energy together on different small molecules. All the models are trained on 50
configurations and tested on the remaining 50 configurations using AltBBMM as
the regressor.

System Dipole only Energy only Dipole + Energy
|µ|MAE EMAE |µ|MAE EMAE
(mDebye) (kcal/mol) (mDebye) (kcal/mol)

CH4 0.024 0.0005 0.040 0.003
NH3 0.030 0.0007 0.080 0.002
HF 0.00008 0.00005 0.0001 0.00007
CO 0.004 0.00009 0.010 0.001
CH2O 0.030 0.0005 0.049 0.003
HCN 0.052 0.0002 0.137 0.005
C2H4 0.151 0.004 0.260 0.011
C2H6 0.339 0.014 0.482 0.028
CH3OH 1.143 0.018 1.430 0.020
CH2F2 2.180 0.080 3.529 0.060
C3H8 0.565 0.035 0.998 0.047
n-
Butane

0.912 0.026 1.842 0.076

Isobutane 0.812 0.047 1.883 0.071
C6H6 2.433 0.039 3.403 0.053

Learning dipole moments and molecular energies simultaneously do not always
provide better prediction accuracies of both dipole and energy for most of the
molecules (12 out of total 14 molecules) and needs higher computational costs since
it trains more points within a model. This observation indicates that dipole vectors
and energies of each pair of MOs might vary independently as functions of MOB
features, and therefore no mutual supervision could be provided by multi-task learn-
ing.

According to Ref.[103], an energy model could directly provide accurate force pre-
dictions by using the ML response relationship. Here we show that it is not expected
to enhance the learning efficiency of the dipole model by adding energy data at a
zero electric field. Figure 2.11 could help explain this observation by using the
water molecule as an example. The relative water MP2/cc-pVTZ total energy is
plotted as a function of one of the O-H bond lengths and the strength of the exter-
nal electric field along the bond direction. We fix the bond angle and only change
one of the O-H bond lengths (red curve) with E = 0 to facilitate the understanding.
The training set can be treated as samples of this simplified potential. We note that
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Figure 2.11: Relative MP2/cc-pVTZ total energy of a water molecule as a function
of one of its O-H bond lengths d and the strength of applied electric field E along
the bond direction. The bond angle and the other O-H bond length are fixed to the
equilibrium value. The relative energy is shifted to 0 at equilibrium geometry with
E = 0. The red curve corresponds to the energy surface at E = 0. The dashed red
lines represent the projection of the red curve to d-E plane. The blue and black
arrows illustrate the direction of the derivatives to get dipole moments and forces.

all the bond lengths and angles vary in the actual water dataset. From these data,
the energy information can then directly infer the force information (black arrows)
since the derivative with respect to bond length d could be estimated as differences
between two sampled training points. However, since there is no change along the
axis of the electric field EEE , no estimated information of dipole moments (blue ar-
rows) is available from the training set. We additionally show the results of adding
data computed with random finite electric fields ranging from 0 to 0.05 a.u. (wa-
ter with finite electric field dataset) in Fig. 2.12. The multi-task learning models
(best MAE=3.70×10−4 kcal/mol) provide around twice better accuracies than the
single-task energy models (best MAE=8.20×10−4 kcal/mol). The single-task and
multi-task dipole models can reach 0.030 and 0.051 mDebye, respectively. The
single-task energy models could directly provide reasonably good predictions (best
MAE=0.152 mDebye) for dipole moments.

As shown in Fig. 2.12, multi-task learning could always improve the energy model
but only outperform the single-task dipole model slightly with few training data.
There are 400 points in the multi-task learning model (300 dipole + 100 energy
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points) when training on 100 geometries. Comparing with the single-task energy
and dipole models, 300 additional dipole points carry more information than 100
additional energy points in the multi-task model. Therefore, it is more beneficial to
have additional supervision for energy learning than dipole learning. Furthermore,
the inclusion of new tasks in the multi-task models further complicates the learning
process and might even lead to deterioration in training if the original information
contents are enough. Since dipole MOB features have already carried extremely
high-quality information to learn dipole moments when training on 30 geometries
(90 points), the few newly added energy data bring in more regression hardness
than the supervision benefits. This size-dependence of performance of multi-task
GPR agrees with the conclusion of Ref. [160] that a large training size might harm
the performance of multi-task GPR due to the lower information quality included by
the additional task, which is also supported by the various numerical experiments in
Ref. [160]. Therefore, the dipole + energy model for these small molecules cannot
provide better accuracies than only training on dipoles.
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Figure 2.12: Prediction accuracies of dipole moments and energies of water with
finite electric field using a reference theory of MP2/cc-pVTZ. Compared with the
types of results included in Fig. 2.10, the results of predicting dipole moments di-
rectly using the model trained on energy labels only are additionally included to
support the explanation in Fig. 2.11. The primary and secondary y-axises represent
the prediction MAE of dipole moments |µ|err in milli-Debye (mDebye) and the pre-
diction MAE of energy in kcal/mol, separately.

MOB-ML for dipole moments and energies of organic molecules in QM9
In our previous studies, we have illustrated the excellent accuracy and transfer-
ability of MOB-ML to learn molecular energies using two thermalized organic
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Figure 2.13: Prediction accuracies of dipole moments and energies of test QM9
molecules trained on QM9 molecules using MOB-ML. The single-task MOB-ML
models for (a) dipole moments and (b) energies are constructed by training on the
labels individually. For the methods that only report the prediction errors of the
models training on 110,000 molecules, we plot their results as scatters with differ-
ent shapes. The learning curves of other literature methods trained on QM9 prop-
erties computed using B3LYP/6-31G(2df,p) level of theory [118] are also plotted
for comparison. The ones marked with daggers are the approaches using ∆-learning
approaches. The prediction MAEs of dipole moments |µ|err and energy are in milli-
Debye (mDebye) and kcal/mol units, respectively.

molecule datasets, i.e., QM7b-T and GDB-13-T [94, 95, 102, 115]. In this study, we
systematically examine the learning performance of MOB-ML for both the dipole
and energy using the benchmark organic chemistry dataset QM9[118], which con-
tains optimized structures of 133,885 molecules with up to nine heavy atoms (HAs)
of C, O, N, and F. QM9 is a standard benchmark dataset that has been assessed
in many different literature studies. [25, 87, 98, 105–114] Figure 2.13 displays
the predicted MAEs for dipole moments (in mDebye) and energies (in kcal/mol)
as functions of number of training geometries on a log-log scale (learning curves).
Since our GPR regression, AltBBMM, can only train at most 1 million points, we
collect the results of MOB-ML (GPR) up to training on 1,000 and 2,000 dipole mo-
ments and molecular energies, respectively. The application of GMM/GPR scales
the training of dipole moments and energy to the same training size (at most 110,000
QM9 molecules) as the literature models. The test sets of MOB-ML approaches re-
main the same across the entire learning curve with a size of 11,843 molecules.
Different literature approaches computed at the B3LYP/6-31G(2df,p) level of the-
ory are included for comparison. Since this study is the first work providing MP2
energies and dipoles for the QM9 dataset, there are lack of direct literature compar-
isons testing on the same reference data.

For dipole moments in Fig. 2.13a, we compare the results from MOB-ML with
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those from the state-of-the-art literature (SOTA) methods, including FCHL18* [114],
MuML (combined) [106], PhysNet [25], SchNet [87], DimeNet++ [108], SphereNet
[109], PaiNN [110], and OrbNet-Equi [107]. All the compared literature methods
provide the predictions at B3LYP/6-31G(2df,p) level of theory. OrbNet-Equi (∆-
learning) and QML (MO, ∆-learning) use GFN-xTB and HF/STO-3G inputs, re-
spectively, and all the rest of shown approaches use geometric inputs. MOB-ML
could also be treated as a ∆-learning approach that uses HF/cc-pVTZ inputs. It is
clear that both MOB-ML regressed by AltBBMM (MOB-ML(GPR)) and MOB-
ML regressed by GMM clustering with local AltBBMM (MOB-ML(GMM/GPR))
outcompete other literature methods in the low-data learning regime (training set
smaller than 2,000 molecules). MOB-ML/GPR and MOB-ML(GMM/GPR) achieve
similar MAEs of 37.61 and 45.58 mDebye, respectively, by training on only 100
molecules. This indicates that the introduction of unsupervised clustering does
not affect the accuracy of MOB-ML in learning dipole moments. Meanwhile, the
second-best OrbNet-Equi learnt by ∆-learning (OrbNet-Equi (∆-learning)) [107]
requires 1,024 molecules to reach the same level of accuracy. However, OrbNet-
Equi (∆-learning) models are improved faster with an increasing number of data
points with the deepest slope of the learning curve relative to other methods. When
there are enough examples in the training set (110,000 training molecules), OrbNet-
Equi (∆-learning) could reach a slightly worse MAE of 4.78 mDebye than MOB-
ML(GMM/GPR) (4.21 mDebye).

Similarly, the prediction errors of energies from MOB-ML approaches are com-
pared with SchNet [87], SLATM [112], PhysNet [25], SOAP [113], FCHL18 [111],
OrbNet-Equi [107], and QML [105] in Fig. 2.13b. MOB-ML (GPR) and MOB-ML
(GMM/GPR) still provide the best sets of results across all the training sizes. MOB-
ML (GMM/GPR) achieves accuracies of 0.99 kcal/mol and 0.045 kcal/mol with
only 100 and 110,000 training molecules, respectively. Both numbers are the cur-
rent best in this field. QML with an orbital based features and (∆-learning) (QML
(MO, ∆-learning)) and OrbNet-Equi (∆-learning) are other two most accurate ap-
proaches.

The top approaches to predict dipole moments and energies, i.e., MOB-ML, OrbNet-
Equi (∆-learning), and QML (MO, ∆-learning), are further compared here from a
theoretical perspective. To achieve the best accuracy, all three approaches apply the
idea of "∆-learning" by predicting the differences between low-level and high-level
theories instead of directly predicting. In addition, all three approaches are orbital-
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based ML approaches that adapt features related to energy matrix elements, and
these features are considered to contain high-quality quantum-level information to
make the ML map easier. Although the three approaches share several similari-
ties, their differences might explain their prediction accuracy differences. Firstly,
MOB-ML predicts the results from wavefunction theories using HF computations
with the same basis, while OrbNet-Equi and QML (MO) predict the results from
DFT using GFN-xTB and minimal basis HF computations, respectively. Since HF
computed with cc-pVTZ basis set is more expensive and contains more accurate
information about the orbitals than GFN-xTB and minimal basis HF, MOB-ML is
more expensive in evaluation than the other two methods. MOB-ML explicitly de-
composes the differences between low- and high-level theory results onto MOs and
learns these pairwise contributions using GPR, while OrbNet-Equi and QML (MO)
directly learn these differences by implicitly decomposing them to each kernel in
kernel ridge regression (KRR) or nodes in graph neural network (GNN) by carefully
designing the ML frameworks. This explicit decomposition brings an accuracy gain
to MOB-ML but limits the applications of MOB-ML to decomposable properties.
On the other hand, QML (MO) and OrbNet-Equi are able to predict more different
molecular properties.

Timing and learning efficiency of GMM/AltBBMM with rotationally equivari-
ant derivative kernels
Figure 2.14 displays the accuracy improvements of test QM9 molecules as functions
of training costs using MOB-ML (GPR) and MOB-ML (GMM/GPR) for dipole
moments and energies. These models are collected on 8 NVIDIA Tesla V100-
SXM2-32GB GPUs. Since each local GPR could be regressed independently on
different GPUs, GMM/GPR is a highly-parallelized approach with excellent multi-
GPU speedups. For both dipole and energy learning, it is clear that GMM/GPR
provides much lower training costs compared with learning without clustering.
Across all the training sizes that we could train directly with GPR, GMM/GPR
could achieve more than 68.5 and 21.4 times speedups for dipole and energy learn-
ing, respectively, without loss of accuracy and transferability. For example, the best
GMM/GPR energy model training on 110,000 molecules only takes 20.7 hrs, but
it is over seven times more expensive than the best dipole model (146.5 hrs). This
is because the training points of dipole moment are three times larger than ones of
energy for each molecule.

Although MOB-ML provides accurate post-HF predictions for these peptides, the
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Figure 2.14: Learning costs of MOB-ML approaches for QM9 models shown in
Fig. 2.13. The prediction MAEs for dipole moments and energies of QM9 test
molecules are plotted as functions training hours using 8 GPUs on log-log scales.
The primary axis (left axis) labels the MAEs of the dipole moments, and the sec-
ondary axis (right axis) shows the MAEs of energies. Results for dipole and energy
models are plotted in solid and dashed lines, respectively. Different colors represent
different learning protocols and match the ones in Fig. 2.13 The timing results only
include the ML training costs and do not include HF costs.

applications of MOB-ML to predict large molecular systems are limited by the
relatively high costs of HF computations (O(N3

orbNocc) with density-fitting). Table
2.6 lists the training and evaluation time of MOB-ML (GMM/GPR) and literature
approaches (with timing reported) on the QM9 dataset. The average evaluation
timings of the best MOB-ML are significantly slower than other listed approaches.
To reduce the evaluation costs of MOB-ML, predicting the molecular properties
using the information from HF with smaller basis sets or GFN-xTB is a potential
future research direction.

Predictions of dipole moments of four challenge cases
To illustrate the accuracy of MOB-ML in the actual biochemical systems, we further
assess the prediction accuracy of the best MOB-ML (GMM/GPR) model on four
different sets of peptides, termed as "challenging dataset". This challenging dataset
is firstly introduced in Veit et al. [106], and in this study, we also included the lit-
erature results predicted by MuML model at B3LYP/daDZ level of theory [106].
B3LYP usually provides big errors for large organic molecules[161, 162], and Elst-
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Figure 2.15: Dipole moment predictions for series of (a) α-helix, (b) β -strand,
(c) polyenoic amino acid, and (d) n-amino carboxylic acid using MOB-ML and
MuML. The dipole moments of different molecules are plotted versus the chain
length. The MOB-ML dipole moments are computed from the best MOB-
ML(GMM/GPR) trained on 110,000 QM9 molecules. The results of MuML (com-
bined) are predicted from the MuML model trained on 5,400 QM7b molecules and
extracted from Fig. 6 in Ref. [106]. The reference dipole moments computed us-
ing MP2/cc-pVTZ (for MOB-ML) and B3LYP/daDZ (for MuML) are shown in the
plots, and the HF dipole moments are also provided for further discussion. In (a),
the molecules with n = 7,10,13,16 cannot be computed by MP2/cc-pVTZ, and re-
sults from other theories and ML models are shown.

Table 2.6: Training and evaluation time of different literature methods with different
reference theories on the QM9 dataset. Other training information is also listed for
comparison. The evaluation time is reported as the average evaluation time for each
molecule.

ML approach Task Training size Training time (hr) Evaluation time (s)

MOB-ML
Energy

110000
20.7 (8 GPUs) 44.78 (1 core CPU)

Dipole 146.5 (8 GPUs) 96.29 (1 core CPU)
QML [105] Energy 110000 – 2.376 (24 core CPUs)
MuML[106] Dipole 20000 1 (24 core CPUs) 0.12 (24 core CPUs)
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ner et al. [163] additionally stated the systematic errors of B3LYP on glycine can be
accumulated for longer peptides. A higher level of theory is needed to achieve more
reliable results for peptides. In this study, we apply the MP2/cc-pVTZ MOB-ML
model trained on QM9 to predict the four sets of peptides. All the true and predicted
dipole moments from different theories and ML models are plotted as a function
of the chain length in Fig. 2.15. Table S4 in SI summarizes the predicted and
true dipole moments and energies using the best QM9 energy model (GMM/GPR
trained on 110,000 molecules). The corresponding MP2, HF and MOB-ML evalua-
tion time are also shown in Table S3. We note that MP2/cc-pVTZ is still an afford-
able theory for the QM9 benchmark dataset, but it is nearly impossible to obtain
MP2 energy for the molecules with more than 30 heavy atoms, for instance, α-
helix molecules with n = 7,10,13,16 in the challenging dataset. Therefore, no true
MP2/cc-pVTZ results are provided for these large α-helix molecules; meanwhile,
MOB-ML provides reasonable dipole moment predictions for these molecules.

(a) True correlation

(b) Predicted correlation

(c) Error

Figure 2.16: True and predicted correlation part of the dipole contribution of CC
double bonds in the polyenoic amino acid with n=6. (a) True MP2/cc-pVTZ cor-
relation part (b) predicted MP2/cc-pVTZ correlation from QM9 110k model (c)
error between true and predicted correlation part of the dipole contribution of each
CC double bond. The balls represent the atoms and the lines in between represent
connections between atoms. The colors are C: black, H: grey, O: red, and N: blue.
Since each double bond has two MOs, there are two green arrows on each double
bond to represent the corresponding dipoles.
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Except the large polyenonic amino acids in Fig. 2.15(c), MOB-ML provides nearly
identical predicted dipole moments as MP2 for all other molecules in panels (a),
(b), and (d), which indicates that the MOB-ML model for dipole moments has an
excellent transferability to large molecules. MuML (combined) model also has
a deteriorated accuracy for all the molecules in polyenoic amino acids. In this
case, the MOB-ML model over-corrects the results from HF calculation, and the
size of the errors increases dramatically with the increasing of sizes. To further
investigate the source of the large deviations of MOB-ML, we additionally check
the correlation part of the MP2 and predictions from MOB-ML model. Compared
with the true MP2 correlation dipole, MOB-ML has errors linearly increased with
the increase of the carbon chain of polyenoic amino acids and the numerical values
are shown in Table 6.3 in the Appendix. The correlation part of the dipole is on
the opposite direction of HF dipole. The major error source is identified to be
the systematically wrong predictions for CC double bonds, and Table 6.4 in the
Appendix shows the true and predicted average correlation parts of the dipoles for
each type of MO using n=6 as an example. Figure 2.16 displays the true and
predicted correlation dipoles for all the CC double bond MOs for the polyenoic
amino acid with n=6. MOB-ML provides consistently wrong predictions of all the
double bond MOs. Compared with the true values, the predictions rotate toward the
right on the plot (COOH end). The errors of the CC double bonds closer to two end
groups are much smaller than the ones in the middle. With n increases, all the newly
added repeating units become the middle CC double bonds and have increasingly
larger errors. Therefore, the predictions of MOB-ML on CC double bond MOs are
accurate when n is small (n=2 or 4), but the errors increase dramatically with the
increase of the molecular size when n is large.

Compared with the results of n-amino carboxylic acid, the much larger true MP2
dipole moments of the polyenoic amino acids can be attributed to the charge transfer
across the entire molecule via the conjugation, which results in much larger partial
charges on the end groups. This observation is supported by the partial charge study
from Ref. [106]. Since the n-amino carboxylic acid molecules lose the double
bonds and cannot delocalize the charges to the end groups, they have near-constant
dipole moments with increasing molecular length.

2.8 Conclusions
Molecular-orbital-based machine learning (MOB-ML) provides a general frame-
work to learn correlation energies at the cost of molecular orbital generation. In
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this work, we introduce three improvements to ensure the transferability to large
systems, scale up the maximum training size, and extend MOB-ML to learn gen-
eral linear response properties, respectively.

First, we demonstrate that preservation of physical symmetries and constraints leads
to machine-learning methods with greater learning efficiency and transferability.
With the improved feature design presented in the current work, MOB-ML is shown
to be highly data-efficient, which is important due to the high computational cost
of generating reference correlation energies. Without ever being trained to pre-
dict relative energies, MOB-ML provides chemically accurate relative energies for
QM7b-T when training on only 0.4% of the QM7b-T molecules. Furthermore, we
have demonstrated that MOB-ML is not restricted to the organic chemistry space
and that we are able to apply our framework out-of-the box to describe a diverse
set transition-metal complexes when training on correlation energies for tens of
molecules. Beyond data efficiency, MOB-ML models are shown to be very trans-
ferable across chemical space. Such transferability is demonstrated by training a
MOB-ML model on QM7b-T and predicting energies for a set of molecules with
thirteen heavy atoms (GDB13-T), and the best result for GDB13-T is reported by
only training on 3% of QM7b-T.

Second, we introduce the BBMM algorithm and a new alternative implementation,
AltBBMM, to perform the GPR training for the MOB-ML method on over a mil-
lion pair energies. Even though the use of BBMM alone increases our previously
attainable training-set size limit over 30 times, our newly introduced AltBBMM
implementation improves this further by offering a four-fold speed-up while main-
taining high accuracy. With the BBMM and AltBBMM approaches, MOB-ML
models can be trained using datasets with over 6500 QM7b-T molecules, yielding
the best accuracy for the QM7b-T and GDB-13-T datasets.

Third, we extend the MOB-ML framework to learn pairwise contributions of elec-
tron correlation part of dipole moments accurately and transferablely using the in-
formation computed from HF calculations. The introduction of rotationally equiv-
ariant derivative kernel for GPR leads to efficient and physical modeling of dipole
moments by satisfying the significant properties of equivariance and ML response.
For water and other small molecules, MOB-ML could provide more accurate pre-
dictions for the dipole moments and energies by learning two tasks separately than
simultaneously. To generate a universal dipole model and energy model for or-
ganic molecules, we combine MOB-ML with the previously introduced GMM and
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AltBBMM techniques, and apply it to the QM9 dataset and train the two sets of
labels separately using the corresponding GPR training protocols. The final MOB-
ML model could achieve accuracies of 4.21 mDebye and 0.045 kcal/mol by learn-
ing 110000 QM9 molecules for dipole moments and energies, respectively, and
an accuracy of 0.99 kcal/mol by only training on 100 QM9 molecules for ener-
gies. Furthermore, MOB-ML shows comparable learnabilities compared with all
other literature results for both dipole moments and molecular energies and pro-
vides accurate and transferable results to most of the tested peptides with different
three-dimensional structures.
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C h a p t e r 3

A GENERALIZED CLASS OF STRONGLY STABLE AND
DIMENSION-FREE T-RPMD INTEGRATORS
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This chapter is adapted from

1. Rosa-Raíces, J. L., Sun, J., Bou-Rabee, N. & Miller Thomas F., I. A gen-
eralized class of strongly stable and dimension-free T-RPMD integrators.
The Journal of Chemical Physics 154, 024106. ISSN: 0021-9606. https:
//doi.org/10.1063/5.0036954 (Jan. 2021).
Contribution: J.S. conceptualized the project, formulated the theory, and
contributed to writing the article.

Recent work shows that strong stability and dimensionality freedom are essential
for robust numerical integration of thermostatted ring-polymer molecular dynam-
ics (T-RPMD) and path-integral molecular dynamics (PIMD), without which stan-
dard integrators exhibit non-ergodicity and other pathologies [J. Chem. Phys. 151,
124103 (2019); J. Chem. Phys. 152, 104102 (2020)]. In particular, the BCOCB
scheme, obtained via Cayley modification of the standard BAOAB scheme, features
a simple reparametrization of the free ring-polymer sub-step that confers strong sta-
bility and dimensionality freedom and has been shown to yield excellent numerical
accuracy in condensed-phase systems with large time-steps. Here, we introduce a
broader class of T-RPMD numerical integrators that exhibit strong stability and di-
mensionality freedom, irrespective of the Ornstein–Uhlenbeck friction schedule. In
addition to considering equilibrium accuracy and time-step stability as in previous
work, we evaluate the integrators on the basis of their rates of convergence to equi-
librium and their efficiency at evaluating equilibrium expectation values. Within
the generalized class, we find BCOCB to be superior with respect to accuracy and
efficiency for various configuration-dependent observables, although other integra-
tors within the generalized class perform better for velocity-dependent quantities.
Extensive numerical evidence indicates that the stated performance guarantees hold
for the strongly anharmonic case of liquid water. Both analytical and numerical re-
sults indicate that BCOCB excels over other known integrators in terms of accuracy,
efficiency, and stability with respect to time-step for practical applications.

3.1 Introduction
Path-Integral Molecular Dynamics (PIMD) provides a practical and popular tool to
simulate condensed-phase systems subject to strong nuclear quantum effects.[164–
166] Based on the ring-polymer correspondence between quantum and classical
Boltzmann statistics,[167, 168] PIMD exploits the computational methods of molec-
ular dynamics[169–172] to approximate quantum thermodynamics and kinetics
through various classical models.[173–178] Applications of PIMD include calcula-

https://doi.org/10.1063/5.0036954
https://doi.org/10.1063/5.0036954
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tions of chemical reaction rates,[179, 180] diffusion coefficients,[181, 182] absorp-
tion spectra,[183, 184] solid and liquid structure,[94, 185] and equilibrium isotope
effects.[186, 187]

Many numerical integration schemes for PIMD are based on a symmetric Trotter
(i.e., Strang) splitting[188, 189] of the exact time-evolution operator, and feature a
sub-step for free ring-polymer propagation.[190–192] Due to fast harmonic motions
present in the free ring polymer, a strongly stable implementation of this sub-step
is essential.[193, 194] Strong stability can be achieved by one of two approaches.
The first approach introduces a preconditioned form of the equations of motion by
modifying the ring-polymer mass matrix. Preconditioning improves the stability
of the exact free ring-polymer update at the expense of consistent dynamics.[190,
192, 195–198] The second approach does not modify the ring-polymer mass matrix,
leaving the dynamics non-preconditioned,[191, 199–202] and instead replaces the
exact free ring-polymer update with a strongly stable approximation.[203] We ap-
ply the latter approach in the current work to Thermostatted Ring-Polymer Molec-
ular Dynamics (T-RPMD),[200] a non-preconditioned variant of PIMD featuring
an Ornstein–Uhlenbeck thermostat that approximately preserves the real-time dy-
namical accuracy of RPMD for quantum correlation functions of a wide range of
observables.[204]

In addition to strong stability of the free ring-polymer update, another basic require-
ment of a numerical integrator for T-RPMD is non-zero overlap between the numer-
ically sampled and exact ring-polymer configurational distributions in the limit of
an infinite number of ring-polymer beads. Standard integrators fail to satisfy this
requirement at any finite integration time-step,[205] which motivates the introduc-
tion of dimension-free T-RPMD schemes that allow for accurate configurational
sampling with large time-stepping and arbitrarily many ring-polymer beads. We
recently found that standard integrators could be made dimension-free through the
introduction of a suitable strongly stable ring-polymer update,[205] and the current
paper investigates this finding in much greater generality.

To this end, we introduce a function θ that defines the free ring-polymer update
and deduce how the choice of θ impacts the properties and performance of the
corresponding T-RPMD integrator. The case θ(x) = x, i.e., θ is the identity, cor-
responds to the exact free ring-polymer update. Therefore, to ensure second-order
accuracy, θ must approximate the identity near the origin, i.e., θ(0) = 0, θ ′(0) = 1
and θ ′′(0) = 0. Moreover, strong stability requires that the range of the function θ
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is within (0,π) for x > 0, and ergodicity and dimensionality freedom of the corre-
sponding T-RPMD integrator impose additional requirements on θ . There are many
choices of θ that fulfill the identified requirements, including θ(x) = 2arctan(x/2)
which leads to the BCOCB scheme introduced in Ref. [205]. In fact, we find that
this choice of θ is superior for the estimation of configurational averages via T-
RPMD from the perspectives of accuracy and efficiency, despite its poor perfor-
mance with respect to the ring-polymer velocities.

3.2 Theory
T-RPMD
Consider a one-dimensional quantum particle with the Hamiltonian operator

Ĥ =
1

2m
p̂2 +V (q̂) , (3.1)

where m is the particle mass, q̂ and p̂ the position and momentum operators, and
V (q̂) a potential energy surface. Ignoring exchange statistics, the properties of this
system at thermal equilibrium are encoded in the quantum partition function

Q = tr[e−β Ĥ ] , (3.2)

where β = (kBT )−1, kB is the Boltzmann constant and T the physical temperature.
Using a path-integral discretization (i.e., a Trotter factorization of the Boltzmann
operator[188]), Q = limn→∞ Qn can be approximated by the classical partition func-
tion Qn of a ring polymer with n beads,[167, 168]

Qn =
mn

(2π h̄)n

∫
dnq

∫
dnv e−βHn(q,v) , (3.3)

where q=
[
q0 . . . qn−1

]T
is the vector of bead positions and v the corresponding

vector of velocities. The ring-polymer Hamiltonian is given by

Hn(q,v) = H0
n (q,v)+V ext

n (q) , (3.4)

which includes contributions from the physical potential

V ext
n (q) =

1
n

n−1

∑
j=0

V (q j) (3.5)

and the free ring-polymer Hamiltonian

H0
n (q,v) =

mn

2

n−1

∑
j=0

[
v2

j +ω
2
n (q j+1−q j)

2] , (3.6)
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where mn = m/n, ωn = n/(h̄β ) and qn = q0.

T-RPMD evolves the phase
[
qT vT

]T
of the ring polymer as per

q̇(t) = v(t) ; v̇(t) =−Ω2q(t)+m−1
n F (q(t))

−Γv(t)+
√

2β−1m−1
n Γ1/2Ẇ (t) ,

(3.7)

which is a coupling of the Hamitonian dynamics of Hn(q,v) with a Ornstein–
Uhlenbeck thermostat. In Eq. 3.7 we introduced F (q)=−∇V ext

n (q), an n-dimensional
standard Brownian motion W (t) and the n×n matrices

Ω = U diag(0,ω1,n, . . . ,ωn−1,n)U
T and

Γ = U diag(0,γ1,n, . . . ,γn−1,n)U
T ,

(3.8)

where γ j,n ≥ 0 is the jth friction coefficient, U the n×n real discrete Fourier trans-
form matrix, and the ring-polymer frequencies are given by

ω j,n =

2ωn sin
(

π j
2n

)
if j is even ,

2ωn sin
(

π( j+1)
2n

)
else .

(3.9)

Observe that the zero-frequency (i.e., centroid) ring-polymer mode is uncoupled
from the thermostat, and the coefficients {γ j,n}n−1

j=1 in Eq. 3.8 constitute the friction
schedule applied to the non-centroid modes.

Numerical integrators for Eq. 3.7 typically employ symmetric propagator splittings
of the form[206–208]

e∆tLn ≈ ea ∆t
2 One

∆t
2 Bne

∆t
2 Ane(1−a)∆tOn

× e
∆t
2 Ane

∆t
2 Bnea ∆t

2 On with a ∈ {0,1},
(3.10)

where the operator Ln =An+Bn+On includes contributions from the n-bead free
ring-polymer motion (An), the external potential (Bn) and the thermostat (On), and
∆t is a sufficiently small time-step. Note that the standard microcanonical RPMD
integrator is recovered in the limit of zero coupling to the thermostat,[191] and that
Eq. 3.10 yields the OBABO scheme of Bussi and Parrinello [206] if a = 1 and the
BAOAB scheme of Leimkuhler [207] if a = 0.

Standard implementations of the T-RPMD splittings in Eq. 3.10 use the exact free
ring-polymer propagator e

∆t
2 An to evolve the uncoupled ring-polymer modes; how-

ever, recent work by us[203] showed that such implementations exhibit poor er-
godicity if large numbers n of ring-polymer beads are employed in conjunction
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with large time-steps ∆t, and suggested replacing the exact ring-polymer propa-
gator with its Cayley approximation[209] for improved performance. Follow-up
work[205] introduced a Cayley-modified BAOAB scheme, denoted BCOCB, and
presented numerical evidence that cemented the scheme as an improvement over
standard BAOAB due to its superior equilibrium accuracy and time-step stability.

Generalizing beyond the Cayley modification, the current work studies a family
of modified BAOAB schemes that contains BCOCB and introduces others with
similar theoretical guarantees. Specifically, the BAOAB modifications are obtained
by replacing the exact free ring-polymer update in Eq. 3.10 with approximations
that endow the properties listed below.

(P1) Strong stability. For a free ring polymer (i.e., for V (q)= const.), the integrator
with γ j,n = 0 is both strongly stable and second-order accurate in ∆t.

(P2) Free ring-polymer ergodicity. For a free ring polymer, the integrator with
γ j,n > 0 is ergodic with respect to the distribution with density proportional
to e−βH0

n (q,v).

(P3) Dimension-free stability. For a harmonically confined ring polymer (i.e., for
V (q) = (Λ/2)q2), the integrator with γ j,n = 0 is stable for any n if ∆t leads to
stable integration for n = 1.

(P4) Dimension-free ergodicity. For a harmonically confined ring polymer, the
integrator with γ j,n > 0 and stable ∆t is ergodic with respect to its stationary
distribution for any n.

(P5) Dimension-free equilibrium accuracy. For a harmonically confined ring poly-
mer, the integrator leaves invariant an accurate approximation of the distribu-
tion with density proportional to e−

βmn
2 qT(Λ

m+Ω2)q, with bounded error for any
n.

To obtain integrators satisfying properties (P1)-(P5), we introduce a function θ that
defines the free ring-polymer update and then construct θ accordingly. To this end,
let

S
1/2
j,n = Q j,n

[
eiθ(ω j,n∆t)/2 0

0 e−iθ(ω j,n∆t)/2

]
Q−1

j,n , (3.11)

where Q j,n =

[
1 1

iω j,n −iω j,n

]
and essential properties of θ are determined in the

sequel. We focus on T-RPMD schemes derived from the BAOAB splitting (i.e.,
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a = 0 in Eq. 3.10) with the exact free ring-polymer update replaced by S
1/2
j,n . For

such schemes, an integration time-step is composed of the following sequence of
sub-steps:

B: Update velocities for half a step: v← v+ ∆t
2

F
mn

.

Convert bead Cartesian coordinates to normal modes using

ϱ=UTq and φ=UTv . (3.12)

A: Evolve the free ring polymer in normal-mode coordinates for half a step:[
ρ j

ϕ j

]
←S

1/2
j,n

[
ρ j

ϕ j

]
for 0≤ j ≤ n−1. (3.13)

O: Perform an Ornstein–Uhlenbeck velocity update for a full time-step:

ϕ j← e−γ j,n∆t
ϕ j +

√
1− e−2γ j,n∆t

βmn
ξ j , (3.14)

where ξ j are independent standard normal random variables and 0 ≤ j ≤
n−1.

A: Evolve the free ring polymer in normal-mode coordinates for half a step:[
ρ j

ϕ j

]
←S

1/2
j,n

[
ρ j

ϕ j

]
for 0≤ j ≤ n−1. (3.15)

Convert back to bead Cartesian coordinates using the inverse of U , which is
just its transpose since U is orthogonal.

B: Update velocities for half a step: v← v+ ∆t
2

F
mn

.

In the remainder of this section, we identify conditions on the choice of θ that imply
properties (P1)-(P5) for the corresponding T-RPMD integrator. Despite our focus
on BAOAB-like splittings, we describe how the conditions on θ can be adjusted to
construct integrators derived from the OBABO splitting (i.e., a = 1 in Eq. 3.10) that
satisfy properties (P1)-(P5).
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Strong stability of RPMD with a constant external potential
In this section, sufficient conditions on θ are identified to satisfy property (P1) in
Section 3.2. Let V (q) = const. and γ j,n = 0 for 1≤ j ≤ n−1, corresponding to the

free ring polymer. The jth normal mode
[
ρ j ϕ j

]T
satisfies[

ρ̇ j

ϕ̇ j

]
=A j,n

[
ρ j

ϕ j

]
where A j,n =

[
0 1
−ω2

j,n 0

]
. (3.16)

In this case, the algorithm from Section 3.2 reduces to a full step of S j,n≈ exp(∆tA j,n),
i.e., [

ρ j

ϕ j

]
←S j,n

[
ρ j

ϕ j

]
for 0≤ j ≤ n−1, (3.17)

where S j,n = S
1/2
j,n S

1/2
j,n follows from Eq. 3.11 and the function θ is such that

property (P1) holds.

We proceed to identify sufficient conditions on θ such that the corresponding free
ring-polymer update satisfies property (P1). First note that for any function θ such
that θ(−x) = −θ(x) for x > 0, the structure of S

1/2
j,n guarantees that the corre-

sponding free ring-polymer update is reversible, symplectic, and preserves the free
ring-polymer Hamiltonian H0

n (q,v). Now, observe that S j,n is exact if θ(x) = x;
therefore, second-order accuracy requires that θ approximates the identity near the
origin, i.e.,

θ(0) = 0, θ
′(0) = 1, and θ

′′(0) = 0. (C1)

Moreover, strong stability follows if the eigenvalues e±iθ(ω j,n∆t) of S j,n are dis-
tinct;[203] to this end we require that

0 < θ(x)< π for x > 0. (C2)

Jointly, conditions (C1) and (C2) guarantee that the update in Eq. 3.17 satisfies
property (P1). There are many different choices of θ that obey these conditions,
e.g., θ(x) = arctan(x), arccos(sech(x)),1 and 2arctan(x/2). The latter choice leads
to the Cayley approximation of the free ring-polymer update, as can be verified
by substitution in Eq. 3.11 and comparison of the resulting S

1/2
j,n with Eq. 17 in

Ref. [205]. Figure 3.1 compares the eigenvalues of S j,n with θ(x) = x and several
choices of θ that meet conditions (C1) and (C2).

1The function θ(x)= arccos(sech(x)) is not differentiable at the origin and hence, strictly speak-
ing, does not satisfy condition (C1). Moreover, the function has even symmetry and hence fails to
yield a reversible free ring-polymer update. These formal shortcomings can be fixed by multiplying
the function by sign(x), which we implicitly do for this and other functions θ with similar features.
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(d) θ(x) = arccos(sech(x))

Figure 3.1: Eigenvalues of S j,n for 50 different time step sizes between 0.05 and 5.0
(evenly spaced) and fixed Matsubara frequency ω = 3. The colors go from blue (smallest
time step) through green and yellow to red (largest time step). In panel (a), the eigenvalues
rotate around the unit circle several times, which indicates that the corresponding S j,n is
not always strongly stable. In panels (b), (c), and (d), the eigenvalues are distinct and on
the unit circle; thus the corresponding S j,n is strongly stable.
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Ergodicity of T-RPMD with a constant external potential
In this section, it is shown that condition (C2) implies property (P2) in Section 3.2.
Let V (q) = const. and γ j,n > 0 for 1 ≤ j ≤ n− 1, corresponding to the free ring
polymer with a Ornstein–Uhlenbeck thermostat. In this case, the jth normal mode
satisfies [

ρ̇ j

ϕ̇ j

]
= (A j,n +C j,n)

[
ρ j

ϕ j

]
+

 0√
2γ j,n
βmn

Ẇj

 , (3.18)

where C j,n =

[
0 0
0 −γ j,n

]
and Ẇj is a scalar white-noise. The solution

[
ρ j(t) ϕ j(t)

]T

of Eq. 3.18 is an ergodic Markov process, and in the limit as t→ ∞, its distribution
converges to the centered bivariate normal with covariance

Σ j,n =
1

βmn

[
s2

j,n 0
0 1

]
where s2

j,n =
1

ω2
j,n

. (3.19)

This distribution corresponds to the jth marginal of the free ring-polymer equilib-
rium distribution with density proportional to e−βH0

n (q,v).

The choice of γ j,n > 0 in Eq. 3.18 determines the rate at which the associated
Markov process converges to its stationary distribution if initialized away from it.
When γ j,n < 2ω j,n, the process is dominated by the deterministic Hamiltonian dy-
namics and is characterized as underdamped; on the other hand, when γ j,n > 2ω j,n,
the process is overdamped; and at the critical value γ j,n = 2ω j,n the process is
characterized as critically damped and converges to equilibrium fastest.[210, 211]
This analytical result motivates the so-called PILE friction schedule.[191, 200] We
specialize to this schedule in the remainder of the section and set γ j,n = 2ω j,n for
1≤ j ≤ n−1.

The BAOAB-like update in Section 3.2 applied to Eq. 3.18 can be written compactly
as [

ρ j

ϕ j

]
← M j,n

[
ρ j

ϕ j

]
+R

1/2
j,n

[
ξ j

η j

]

for 0≤ j ≤ n−1,

(3.20)

where ξ j and η j are independent standard normal random variables and we have
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introduced the 2×2 matrices

M j,n = S
1/2
j,n O j,nS

1/2
j,n , O j,n =

[
1 0
0 e−2ω j,n∆t

]
and

R j,n =
1− e−4ω j,n∆t

βmn
S

1/2
j,n

[
0 0
0 1

]
(S

1/2
j,n )

T .

Since S
1/2
j,n and the Ornstein–Uhlenbeck update are individually preservative irre-

spective of the chosen θ , Eq. 3.20 exactly preserves the free ring-polymer equilib-
rium distribution for any choice of θ that satisfies (C1) and (C2).

The ergodicity of the integrator specified by Eq. 3.20 depends entirely on the asymp-
totic stability of M j,n, i.e., whether or not ∥M k

j,n∥ → 0 as k→ ∞ where ∥ · ∥ is a
matrix norm. The matrix M j,n is asymptotically stable if its spectral radius (i.e.,
the modulus of its largest eigenvalue) is smaller than unity,[194] which depends on

det(M j,n) = e−2ω j,n∆t and

tr(M j,n) = cos(θ(ω j,n∆t))(1+ e−2ω j,n∆t) .

In particular, the eigenvalues of M j,n are both inside the unit circle if and only if

|tr(M j,n)|< 1+det(M j,n)< 2 ; (3.21)

a proof of this claim is provided in Appendix 7.1. This inequality reveals that
condition (C2) implies property (P2). Moreover, if tr(M j,n)

2− 4det(M j,n) ≤ 0,
then the spectral radius of M j,n is minimal and equal to

√
det(M j,n) = e−ω j,n∆t ;

this occurs when |cos(θ(ω j,n∆t))| ≤ sech(ω j,n∆t) for all ω j,n∆t, which holds if the
function θ satisfies

arccos(sech(x))≤ θ(x)≤ π− arccos(sech(x))

for x > 0.
(3.22)

Any choice of θ that does not satisfy Eq. 3.22 will be overdamped in some modes,
in the sense that the corresponding M j,n will have a spectral radius strictly larger
than e−ω j,n∆t .

The function θ(x) = arccos(sech(x)) saturates the (left) inequality in Eq. 3.22 while
satisfying conditions (C1) and (C2), and hence provides a strongly stable and criti-
cally damped integrator for the thermostatted free ring polymer. As an illustration,
Fig. 3.2a shows that θ(x) = arctan(x) is overdamped for all modes whereas the Cay-
ley angle θ(x) = 2arctan(x/2) exhibits mixed damping. In contrast, the function
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Figure 3.2: Spectral properties of the T-RPMD update for the free ring polymer for var-
ious choices of θ . Panel (a) plots the functions θ(x) = arccos(sech(x)), arctan(x) and
arctan(x/2), and regions of overdamping and underdamping with PILE friction, separated at
the locus of points where |cos(θ(x))cosh(x)|= 1. The gray region (|cos(θ(x))cosh(x)|<
1) is where the dynamics is underdamped, while in the white region (|cos(θ(x))cosh(x)|>
1) the dynamics is overdamped. The function θ(x) = arctan(x) lies in the overdamped re-
gion for x > 0, whereas θ(x) = 2arctan(x/2) is in the underdamped region for x ⪅ 2.4 and
in the overdamped region otherwise. The function θ(x) = arccos(sech(x)), however, is crit-
ically damped for x > 0 and optimizes the convergence rate of the integrator. Panel (b) plots
the spectral radius of M j,n corresponding to each choice of θ as a function of x.

θ(x) = arccos(sech(x)) preserves the critically damped behavior of its continuous
counterpart under the PILE friction schedule. Figure 3.2b confirms that the spectral
radius of M j,n is minimal at θ(x) = arccos(sech(x)) for x > 0; consequently, this
choice of θ optimizes the convergence of the integrator to stationarity.

Conditions (C1) and (C2) also imply property (P2) for the OBABO-like update
associated with a compliant choice of θ , because the matrices S

1/2
j,n O j,nS

1/2
j,n and

O
1/2
j,n S j,nO

1/2
j,n have equal spectral radii.
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Dimension-free stability of RPMD with a harmonic external potential
In this section, we identify a condition on θ that yields property (P3) in Section 3.2.
Let V (q) = (Λ/2)q2 and γ j,n = 0 for 1 ≤ j ≤ n− 1, corresponding to the non-
thermostatted ring polymer with a harmonic external potential. In this case, the jth
normal mode satisfies [

ρ̇ j

ϕ̇ j

]
= (A j,n +B)

[
ρ j

ϕ j

]
, (3.23)

where B =

[
0 0

−Λ/m 0

]
, and conserves the Hamiltonian

H j,n(ρ j,ϕ j) =
mn

2
(
|ϕ j|2 +(ω2

j,n +Λ/m)|ρ j|2
)
. (3.24)

For this system, the BAOAB-like update in Section 3.2 reduces to[
ρ j

ϕ j

]
← M j,n

[
ρ j

ϕ j

]
for 0≤ j ≤ n−1, (3.25)

where we have introduced the 2×2 matrices

M j,n = B1/2S j,nB
1/2 and B1/2 =

[
1 0

−∆t(Λ/m)/2 1

]
. (3.26)

This update may be interpreted as a symplectic perturbation of the free ring-polymer
update in Eq. 3.17 due to the harmonic external potential,[203] and conserves a
modification of H j,n for choices of θ and ∆t that lead to stable integration.[212]

The update in Eq. 3.25 is stable if[196]

max
0≤ j≤n−1

1
2
|tr(M j,n)|= max

0≤ j≤n−1
|A j,n|< 1 , (3.27)

where

A j,n = cos(θ(ω j,n∆t))− ∆t2(Λ/m)

2
sin(θ(ω j,n∆t))

ω j,n∆t
. (3.28)

Moreover, the 0th (i.e., centroid) mode, like the single-bead ring polymer, evolves
through the velocity Verlet algorithm, whose stability requires that ∆t2Λ/m < 4.
Combining this requirement with condition (C2) yields a sufficient condition for
Eq. 3.27 to hold at any bead number n,

0 < θ(x)≤ 2arctan(x/2) for x > 0. (C3)

A proof of this result is provided in Appendix 7.2. The functions θ(x)= 2arctan(x/2),
arctan(x) and arccos(sech(x)) all satisfy condition (C3), which ensures that the cor-
responding RPMD integrator meets property (P3).
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Dimension-free ergodicity and equilibrium accuracy of T-RPMD with a har-
monic external potential
In this section, it is shown that condition (C3) implies property (P4) in Section 3.2,
and an additional condition is introduced to ensure that property (P5) holds. Let
V (q) = (Λ/2)q2 and γ j,n = 2ω j,n for 1 ≤ j ≤ n− 1. In this case, the jth normal
mode satisfies [

ρ̇ j

ϕ̇ j

]
= (A j,n +B+C j,n)

[
ρ j

ϕ j

]
+

 0√
4ω j,n
βmn

Ẇj

 . (3.29)

The solution
[
ρ j(t) ϕ j(t)

]T
of Eq. 3.29 is an ergodic Markov process, and its

distribution as t → ∞ converges to the centered bivariate normal with covariance
matrix

Σ j,n =
1

βmn

[
s2

j,n 0
0 1

]
where s2

j,n =
1

Λ/m+ω2
j,n

; (3.30)

the associated position-marginal is the jth marginal of the ring-polymer configura-
tional distribution with density e−

βmn
2 qT(Λ

m+Ω2)q.

For this system, the BAOAB-like update in Section 3.2 is of the same form as
Eq. 3.20 with

M j,n = B1/2S
1/2
j,n O j,nS

1/2
j,n B1/2 and

R j,n =
1− e−4ω j,n∆t

βmn
B1/2S

1/2
j,n

[
0 0
0 1

]
(B1/2S

1/2
j,n )

T .
(3.31)

As in the case of a constant external potential, the ergodicity of this integrator de-
pends on the spectral radius of M j,n. By Theorem 3 in Appendix 7.1 and the fact
that

det(M j,n) = e−2ω j,n∆t and

tr(M j,n) = A j,n(1+ e−2ω j,n∆t) ,

it follows that condition (C3) gives a simple and sufficient condition for ergodicity
at any bead number n and hence implies property (P4) for the BAOAB-like update
specified by Eqs. 3.20 and 3.31. Furthermore, because the matrix M j,n of the
corresponding OBABO-like update has equal trace and determinant, condition (C3)
also guarantees property (P4) in that case.2

2Condition (C3) may be viewed as a relaxation of the sufficient condition for ergodicity given
in Eq. (18) of Ref. [205]. Indeed, condition (C3) implies ergodicity irrespective of the Ornstein–
Uhlenbeck friction schedule, whereas Eq. (18) in Ref. [205] does not imply ergodicity for friction
schedules that lead to overdamped dynamics.
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If condition (C3) holds, the BAOAB-like update is ergodic with respect to a cen-
tered bivariate normal distribution whose covariance matrix Σ j,∆t satisfies the linear
equation

Σ j,∆t = M j,nΣ j,∆tM
T
j,n +R j,n , (3.32)

for which the solution is

Σ j,∆t =
1

βmn

[
s2

j,∆t 0

0 r2
j,∆t

]
, (3.33)

where the variance in the position- and velocity-marginal is respectively (βmn)
−1s2

j,∆t

and (βmn)
−1r2

j,∆t with

s2
j,∆t =

(
ω

2
j,n +

Λ

m
ω j,n∆t/2

tan
(
θ(ω j,n∆t)/2

))−1

and

r2
j,∆t = 1− ∆t2Λ

4m
tan
(
θ(ω j,n∆t)/2

)
ω j,n∆t/2

.

(3.34)

Because the tangent function is monotonically increasing on the range of θ speci-
fied by condition (C3), we have the correspondence

0 < s2
j,∆t ≤ s2

j and 1− ∆t2Λ

4m
≤ r2

j,∆t < 1 (3.35)

between the exact and numerical variances of the jth ring-polymer mode. Equa-
tion 3.34 reveals that θ(x) = 2arctan(x/2) is the unique function that complies
with condition (C3) and saturates the inequality s2

j,∆t ≤ s2
j in Eq. 3.35; consequently,

the corresponding BAOAB-like scheme preserves the exact position-marginal in all
modes and trivially satisfies property (P5). The BCOCB integrator from Ref. [205]
corresponds to this choice of θ and thus uniquely provides optimal equilibrium
position-marginal accuracy for harmonic external potentials.

To identify other BAOAB-like schemes compliant with condition (C3) that satisfy
property (P5), we examine the overlap between the numerical stationary position-
marginal distribution µn,∆t and the exact distribution µn, where

µn =
n−1

∏
j=1

N

(
0,

s2
j

βmn

)
and µn,∆t =

n−1

∏
j=1

N

(
0,

s2
j,∆t

βmn

)
. (3.36)

Centroid-mode marginals have been suppressed in the definitions of µn and µn,∆t . A
BAOAB-like scheme is dimension-free if it admits an n-independent upper bound



68

on the distance dTV(µn,µn,∆t) between µn and µn,∆t , where dTV is the total variation
metric.[213] In particular, if we require

x
1+ |x|

≤ θ(x)≤ 2arctan(x/2) for x > 0, (C4)

then we have the dimension-free bound

dTV(µn,µn,∆t)<

(√
4
3

h̄β

∆t

)
∆t2Λ

m
. (3.37)

A proof of this claim is provided in Appendix 7.4. Condition (C4) ensures that any
BAOAB-like integrator with a compliant choice of θ meets property (P5).

For OBABO-like schemes, the bound in condition (C4) must be tightened to guar-
antee non-zero overlap between µn and µn,∆t for arbitrarily large n. In particular,
replacing 2arctan(x/2) with min{2arctan(x/2),C} for some C ∈ (0,π) in the up-
per bound of condition (C4) yields a n-independent bound on dTV(µn,µn,∆t) for all
compliant OBABO-like integrators, as can be shown through arguments similar to
those in Appendix 7.4.

Jointly, conditions (C1)-(C4) specify a family of BAOAB-like schemes with dimension-
free stability, ergodicity and equilibrium accuracy for applications with harmonic
external potentials. Numerical results in Section 3.3 suggest that the integrators
exhibit similar properties in a more realistic setting with a strongly anharmonic
external potential.

Dimension-free convergence to equilibrium of T-RPMD with a harmonic ex-
ternal potential
Beyond ensuring ergodicity of the BAOAB-like update specified by Eqs. 3.20 and 3.31,
condition (C3) leads to explicit dimension-free equilibration rates for compliant
schemes. Theorem 6 in Appendix 7.3 proves this result in the infinite-friction
limit for ring-polymer modes with arbitrarily high frequency. In detail, the theorem
shows that the configurational transition kernel associated with the BAOAB-like up-
date for the jth ring-polymer mode is contractive in the 2-Wasserstein metric[214]
and equilibrates any initial mode distribution at a rate determined by the function θ ,
the (external) potential curvature Λ, and the (stable) time-step ∆t if condition (C3)
holds. The rate in Theorem 6, though obtained in the infinite-friction limit, holds
for finite friction coefficients γ j,n leading to spectral radii ρ(M j,n)≤ |A j,n|, where
A j,n is defined in the display after Eq. 3.27 and |A j,n| = limγ j,n→∞ ρ(M j,n) is the
spectral radius at infinite friction.
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Figure 3.3: Dimension-free convergence to equilibrium of BAOAB-like T-RPMD schemes
with a harmonic external potential. The physical parameters of the ring-polymer system
(i.e., Λ, m, and β ) are listed in Section 3.3. Panels (a), (b) and (c) plot the normalized 2-
Wasserstein distance between the configurational ring-polymer distribution at stationarity
and at time k∆t, as evolved via various BAOAB-like schemes from an initial point-mass
distribution. Regions with darker color indicate smaller 2-Wasserstein distance to stationar-
ity, and black lines mark iso-distance contours. The contours plateau at some value of n for
all tested schemes, which checks that they exhibit dimension-free convergence as predicted
by Theorem 6.
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To illustrate dimension-free convergence, Fig. 3.3 plots the 2-Wasserstein distance
between the stationary configurational (i.e., position-marginal) distribution µn,∆t

and the distribution µk
n,∆t at the kth T-RPMD step evolved from a point mass at the

origin using the schemes specified by θ(x)= arccos(sech(x)) (Fig. 3.3a), 2arctan(x/2)
(Fig. 3.3b), and arctan(x) (Fig. 3.3c) for a range of bead numbers n. These choices
of θ respectively lead to overdamped, critical, and Cayley evolution of the ther-
mostatted free ring polymer under PILE friction (see Section 3.2), and are identified
accordingly in Fig. 3.3. The ring-polymer system considered in Fig. 3.3 approxi-
mates the O–H stretch dynamics in liquid water at room temperature with the pa-
rameters listed in Section 3.3. Velocity-marginals were initialized as in the setting
of Theorem 6 (see Appendix 7.3), and the position of the jth ring-polymer mode
at time k∆t follows a centered normal distribution with variance (βmn)

−1(sk
j,∆t)

2,
where

(sk
j,∆t)

2 = (M k
j,n)

2
12 +βmn

k−1

∑
ℓ=0

(
M ℓ

j,nR j,n(M
ℓ
j,n)

T)
11

for k > 0.

(3.38)

The 2-Wasserstein distances in Fig. 3.3 were evaluated using a well-known analyt-
ical result for multivariate normal distributions.[215]

Figures 3.3a and 3.3c clearly show that the critical and overdamped schemes con-
verge at dimension-free rates, but this is less evident from Fig. 3.3b for the Cay-
ley scheme. The latter scheme nonetheless displays an n-independent, and hence
dimension-free, distance to stationarity at all times k∆t > 0, indicated by plateau-
ing of the contour lines towards the right of Fig. 3.3b. The ladder-like pattern
that precedes this plateau illustrates a transition from geometric (i.e., fast) to sub-
geometric (i.e., slow) convergence upon introducing higher-frequency modes into
the ring polymer. The transition manifests with the Cayley scheme because of its
aggressive overdamping of the high-frequency modes, which is absent in the other
two schemes (see Fig. 3.2).

The example considered in this section illustrates that the equilibration timescale
(e.g., the time until the 2-Wasserstein distance decays below 10−6) of the Cayley
scheme at large n can dramatically exceed that of other BAOAB-like schemes. Al-
though this negative feature may render the scheme impractical for pathological
applications, we find in the next section that the Cayley scheme’s superior configu-
rational sampling provides compelling justification for its preferred use in realistic
settings.
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3.3 Numerical results
The current section provides numerical comparisons of the BAOAB-like T-RPMD
integrators in Section 3.2, on applications featuring harmonic (Section 3.3) and
anharmonic (Section 3.3) external potentials. Three representative choices of θ are
considered in the numerical comparisons, namely θ(x)= arctan(x), arccos(sech(x)),
and 2arctan(x/2). These choices respectively lead to overdamped, critical, and
Cayley evolution of the thermostatted free ring polymer under PILE friction (Sec-
tion 3.2), and are identified accordingly throughout the current section. It is borne
out from the numerical comparisons that the Cayley scheme exhibits superior con-
figurational sampling among the tested schemes in both applications.

One-dimensional quantum harmonic oscillator
In the current section, we numerically integrate Eq. 3.7 with the harmonic poten-
tial V (q) = (Λ/2)q2 using PILE friction (i.e., Γ = 2Ω), m = 0.95 amu,

√
Λ/m =

3886 cm−1, and T = 298 K. This choice of physical parameters corresponds to a
harmonic approximation of the Morse contribution to the O–H bond potential in
the q-TIP4P/F force field for water,[216] and sets a least upper bound for the T-
RPMD stability interval at ∆tmax = 2/

√
Λ/m = 2.74 fs. The simulations reported

throughout this section employ the time-step ∆t = 0.73×∆tmax = 2.00 fs.

Figure 3.4 compares the accuracy and efficiency of various BAOAB-like T-RPMD
schemes at equilibrium as a function of the bead number n. For a description of
the numerical simulation and statistical estimation procedures used to generate the
numerical data (filled circles) in Fig. 3.4, the reader is referred to Appendix 7.7.
Figures 3.4a and 3.4c report the mean quantum kinetic energy at equilibrium as per
the primitive and virial estimators,

KEpri
n (q) =

n
2β
−

n−1

∑
j=0

mnω2
n

2
(q j+1−q j)

2 and

KEvir
n (q) =

1
2β

+
1
2

n−1

∑
j=0

(q j−q)∂q jV
ext
n (q) ,

(3.39)

where q = 1
n ∑

n−1
j=0 q j is the centroid position of the n-bead ring polymer. For these

two observables, Figs. 3.4b and 3.4d quantify the equilibrium sampling efficiency of
the schemes in terms of the integrated autocorrelation time (or normalized asymp-
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Figure 3.4: Performance at equilibrium of various BAOAB-like T-RPMD schemes ap-
plied to the one-dimensional quantum harmonic oscillator with physical parameters listed
in Section 3.3. Panels (a), (c), and (e), respectively, plot the equilibrium mean primitive
kinetic energy, virial kinetic energy, and non-centroid classical kinetic energy per mode as
a function of bead number n; the corresponding means in the exact infinite bead limit are
plotted as dashed lines. Panels (b), (d), and (f), plot the integrated autocorrelation times
(Eq. 3.40) of the respective observables. Exact (resp. numerically estimated) values of the
plotted quantities are shown with empty (resp. filled) circles. Numerical estimates were
obtained using the protocol described in Appendix 7.7.
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totic variance)[217–221]

aVar(On)

Var(On)
=

limK→∞ Var
(

1√
K ∑

K−1
k=0 On(ξ

(k∆t))
)

Var
(
On
)

= 1+2
∞

∑
k=1

Cor
(
On(ξ

(0)),On(ξ
(k∆t))

)
, (3.40)

where On is an n-bead observable, {ξ(k∆t)}∞
k=0 = {(q(k∆t),v(k∆t))}∞

k=0 a stationary
T-RPMD trajectory, Var(On) the variance of On at equilibrium, and Cor(On(ξ

(0)),On(ξ
(k∆t)))

the lag-k∆t autocorrelation of On along the T-RPMD trajectory. The integrated
autocorrelation time of On is interpreted as the timescale over which adjacent ob-
servations along an equilibrium trajectory become statistically uncorrelated[217–
221] and is hence a measure of the efficiency of a T-RPMD scheme at estimating
the mean of On with respect to the numerically sampled equilibrium distribution.
Figures 3.4a-d show that the scheme specified by the Cayley angle (orange) outper-
forms others in terms of both accuracy and efficiency at estimating the equilibrium
average of the quantum kinetic energy observables.

From the perspective of configurational accuracy, the optimality of the Cayley an-
gle displayed in Figs. 3.4a and 3.4c is not surprising in light of the findings in
Section 3.2. Less expected are the results in Figs. 3.4b and 3.4d, which suggest that
the Cayley angle is also optimal from the standpoint of configurational sampling
efficiency for the quantum kinetic energy observables in Eq. 3.39. Appendix 7.5
supports this conjecture with an analytical result for harmonic external potentials.

Figure 3.4e plots the mean classical kinetic energy at equilibrium as computed from
the non-centroid ring-polymer velocities,

KEcla
n (v) =

mn

2(n−1)

n−1

∑
j=0

(v2
j − v2)≈ 1

2β
, (3.41)

and Fig. 3.4f plots the corresponding integrated autocorrelation time as given by
Eq. 3.40. For this observable, the equilibrium accuracy and efficiency of the Cayley
scheme are significantly worse than those of the others as n increases. This is a
consequence of the strongly overdamped behavior of Cayley T-RPMD at high fre-
quencies (see Fig. 3.2), for which the integrator’s ergodicity degrades as its spectral
radius approaches unity. Note that this shortcoming of the Cayley scheme presents
no adverse implications to the equilibrium sampling of observables that exclusively
depend on the ring-polymer configuration, as confirmed by Figs. 3.4a-d.
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In summary, Fig. 3.4 establishes that the T-RPMD scheme specified by the Cayley
angle provides optimally accurate and efficient configurational sampling at equi-
librium. To exploit this remarkable feature in practice, the scheme must mani-
fest rapid converge to equilibrium when initialized away from it, as is necessary
in most realistic applications of T-RPMD. Fortunately, Theorem 6 guarantees that
any BAOAB-like scheme compliant with conditions (C1)-(C4) features a contrac-
tive configurational transition kernel for any number of ring-polymer beads, and
Fig. 3.3 in Section 3.2 illustrates this fact for the quantum harmonic oscillator con-
sidered in the current section.

Room-temperature liquid water
While theoretical analysis and numerical tests of BAOAB-like T-RPMD schemes
in previous sections have focused on harmonic external potentials, the current sec-
tion demonstrates that the resulting insights carry over to a realistic, strongly an-
harmonic model of room-temperature liquid water. Our test system is a periodic
box containing 32 water molecules at a temperature of 298 K and a density of
0.998 g/cm3, with potential energy described by the q-TIP4P/F force field.[216]
As in Section 3.3, we compare the performance of various BAOAB-like T-RPMD
schemes for integrating the many-dimensional analogue of Eq. 3.7 with PILE fric-
tion, using the simulation time-step ∆t = 1.4 fs in all simulations. Numerical tests
reported in Appendix 7.6 show that this value of ∆t closely approximates the up-
per limit of the Verlet (i.e., n = 1) stability interval for q-TIP4P/F liquid water. In
agreement with Section 3.3, the experiments reveal that among the tested T-RPMD
schemes, the Cayley scheme offers superior configurational sampling. For details
on the numerical simulation and statistical estimation procedures used to generate
the data presented in this section, the reader is referred to Appendix 7.8.

Figure 3.5 compares the equilibrium accuracy achieved by the tested schemes in
terms of the quantum and classical kinetic energy per hydrogen atom (Figs. 3.5a,
3.5c, and 3.5i) and the intramolecular potential energy per water molecule (Figs. 3.5e
and 3.5g); also plotted are the respective integrated autocorrelation times as a func-
tion of bead number n. The kinetic energy estimates in Figs. 3.5a and 3.5c exhibit
similar trends to those seen in Fig. 3.4 for the one-dimensional harmonic oscillator.
In particular, the T-RPMD scheme specified by the Cayley angle outperforms oth-
ers in terms of quantum kinetic energy accuracy as n increases, most outstandingly
with a highly accurate primitive kinetic energy estimate despite the large time-step
employed. Still in close agreement with the harmonic oscillator results, Figs. 3.5b
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Figure 3.5: Performance of various BAOAB-like T-RPMD schemes applied to q-TIP4P/F
liquid water at room temperature. As a function of the bead number n and for a 1.4-fs time-
step, panels (a) and (c) plot the equilibrium kinetic energy per H atom as per the primitive
and virial estimators (Eq. 3.39), and panels (b) and (d) plot the corresponding integrated
autocorrelation times. Likewise, panels (e) and (g) plot the equilibrium potential energy
per H2O molecule due to the O−H-stretch and H−O−H-bend contributions, as defined in
the q-TIP4P/F force field,[216] and the corresponding autocorrelation times are plotted by
panels (f) and (h). Finally, panel (i) plots the classical kinetic energy per H atom computed
from the non-centroid velocity estimator (Eq. 3.41), and panel (j) plots the corresponding
autocorrelation time. The numerical estimates and reference results (dashed lines) were
obtained using the protocols described in Appendix 7.8.
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and 3.5d show that the Cayley scheme displays the shortest integrated autocorre-
lation time among the tested schemes for the quantum kinetic energy observables.
Similar trends manifest in the intramolecular potential energy averages and their
autocorrelation times (Figs. 3.5e-h), where the Cayley scheme also achieves supe-
rior accuracy and efficiency. Finally, Figs. 3.5i and 3.5j confirm that the relative
performance of the compared schemes in terms of velocity-marginal sampling is
qualitatively consistent with the harmonic results. Taken together, the results in
Fig. 3.5 suggest that the superiority of the Cayley scheme for configurational sam-
pling, proven in the model setting of a harmonic external potential, is also reflected
in realistic applications.

In a final numerical test, Fig. 3.6 confirms that the sampling advantages of the Cay-
ley T-RPMD scheme are obtained without downside in the estimation of dynamical
quantities of typical interest. Specifically, Fig. 3.6b shows (unnormalized) infrared
absorption spectra for room-temperature liquid water, computed from the 128-bead
T-RPMD trajectories used to generate Fig. 3.5 using linear response theory and the
T-RPMD approximation to real-time quantum dynamics.[183, 200] Linear response
dictates that the absorption spectrum is proportional to ω2Ĩ (ω), where Ĩ (ω) =∫

R dt e−iωtC̃µµ(t) is the Fourier transform of the quantum-mechanical Kubo-transformed
dipole autocorrelation function C̃µµ(t). The latter is approximated within the T-
RPMD framework[174, 181] by C̃µµ(t)≈ 1

NH2O
∑

NH2O
i=1 E(µ i(t) ·µ i(0)), where NH2O

is the number of molecules in the liquid, µ i(t) is the bead-averaged dipole mo-
ment of molecule i at time t, and the covariance E(µ i(t) ·µ i(0)) is estimated from
a stationary T-RPMD trajectory as indicated in Appendix 7.8. Figure 3.6a plots the
T-RPMD estimates of C̃µµ(t) leading to the absorption spectra in Fig. 3.6b. On
the scale in which the absorption spectrum exhibits its key features, the spectra in
Fig. 3.6b show very minor qualitative discrepancies. A similar conclusion holds
for Fig. 3.6c, where the T-RPMD approximation of the Kubo-transformed velocity
autocovariance function C̃vv(t) ≈ 1

NH2O
∑

NH2O
i=1 E(vi(t) · vi(0)) is plotted for the three

tested T-RPMD schemes. Collectively, these observations indicate that the accuracy
of dynamical properties computed with BAOAB-like schemes is not significantly
affected by the particular θ employed if conditions (C1)-(C4) in Section 3.2 are
met. This result is expected due to the fact that the considered dynamical proper-
ties depend on bead-averaged (i.e., centroid-mode) coordinates, whose evolution is
largely independent of the choice of θ under weak coupling between the centroid
and non-centroid ring-polymer modes.
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Figure 3.6: Molecular dipole autocovariance function (a), corresponding infrared absorp-
tion spectrum (b), and molecular velocity autocovariance function (c) in room-temperature
liquid water for various BAOAB-like T-RPMD schemes. The plotted quantities autoco-
variance exhibit minor qualitative discrepancies across schemes, which suggests that all
schemes compliant with conditions (C1)-(C4) exhibit comparable accuracy in the compu-
tation of dynamical properties. Numerical estimates of the autocovariance functions were
obtained using the protocol described in Appendix 7.8.
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3.4 Summary
Previous works showed that strong stability[203] and dimensionality freedom[205]
are essential features of a robust T-RPMD integration scheme that standard inte-
grators do not possess. A T-RPMD scheme with these features, denoted BCOCB,
was introduced via a simple and inexpensive Cayley modification of the free ring-
polymer update (i.e., the “A” sub-step) of the standard BAOAB integrator. The
BCOCB scheme was then shown to dramatically outperform BAOAB at estimat-
ing static and dynamic properties of various systems with remarkable accuracy at
unprecedented time-steps.[205]

The current work generalizes beyond the Cayley modification by introducing a sim-
ple parameterization of the free ring-polymer update and a corresponding family of
strongly stable and dimension-free modifications of the BAOAB scheme. Among
these schemes lies BCOCB, which is found to exhibit superior configurational sam-
pling despite exhibiting worse accuracy and efficiency for observables that depend
on the non-centroid ring-polymer velocities. This conclusion is obtained theoreti-
cally via exhaustive analysis of a harmonic model, and numerically via simulation
of a realistic quantum-mechanical model of liquid water at room temperature. In
this way, the current work convincingly demonstrates the superiority of the BCOCB
scheme for accurate and efficient equilibrium simulation of condensed-phase sys-
tems with T-RPMD.

To conclude, we stress that implementing BCOCB or any of the new dimension-
free and strongly-stable schemes leads to no additional cost, parameters or coding
overhead relative to the standard BAOAB integrator. The modified integrators thus
provide “turnkey” means to significantly improve the accuracy and stability of ex-
isting (T-)RPMD implementations.[222, 223]



79

C h a p t e r 4

TRANSPORT AND NOISE OF HOT ELECTRONS IN GAAS
USING A SEMIANALYTICAL MODEL OF TWO-PHONON

POLAR OPTICAL PHONON SCATTERING
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This chapter is adapted from

1. Sun, J. & Minnich, A. J. Transport and noise of hot electrons in GaAs using
a semianalytical model of two-phonon polar optical phonon scattering. Phys.
Rev. B 107, 205201. https://link.aps.org/doi/10.1103/PhysRevB.
107.205201 (20 May 2023).
Contribution: J.S. participated in the conception of the project, designed
and implemented the algorithm, performed the numerical simulation, ana-
lyzed the results, and wrote the article.

Recent ab-initio studies of electron transport in GaAs have reported that electron-
phonon (e-ph) interactions beyond the lowest order play a fundamental role in
charge transport and noise phenomena. Inclusion of the next-leading-order process
in which an electron scatters with two phonons was found to yield good agreement
for the high-field drift velocity, but the characteristic non-monotonic trend of the
power spectral density of current fluctuations (PSD) with electric field was not pre-
dicted. The high computational cost of the ab-initio approach necessitated various
approximations to the two-phonon scattering term, which were suggested as possi-
ble origins of the discrepancy. Here, we report a semi-analytical transport model of
two-phonon electron scattering via the Fröhlich mechanism, allowing a number of
the approximations in the ab-initio treatment to be lifted while retaining the accu-
racy to within a few percent. We compare the calculated and experimental transport
and noise properties as well as scattering rates measured by photoluminescence ex-
periments. We find quantitative agreement within 15% for the drift velocity and
25% for the Γ valley scattering rates, and agreement with the Γ− L intervalley
scattering rates within a factor of two. Considering these results and prior studies
of current noise in GaAs, we conclude that the most probable origin of the non-
monotonic PSD trend versus electric field is the formation of space charge domains
rather than intervalley scattering as has been assumed.

4.1 Introduction
Electron transport in semiconductors is of fundamental interest and of high rele-
vance for microelectronic devices [224–226]. The upper limit for the mobility of
a semiconductor is governed by scattering of electrons by phonons. Early studies
of charge transport properties employed a semi-empirical description of the band
structure and electron-phonon scattering. The introduction of the Monte Carlo
(MC) method allowed for the numerical simulation of transport with fewer approx-
imations [227]. Later, full-band MC tools capable of simulating realistic device

https://link.aps.org/doi/10.1103/PhysRevB.107.205201
https://link.aps.org/doi/10.1103/PhysRevB.107.205201
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geometries were developed, but the treatment of the e-ph scattering rates in general
required fitting parameters. [228–230]. The development of the ab-initio descrip-
tion of the electron-phonon interactions based on density functional theory (DFT),
density functional perturbation theory (DFPT) and Wannier interpolation has en-
abled the parameter-free computation of low-field charge transport properties such
as mobility [231–233]. These methods have now been applied to a range of semi-
conductors, including Si [234, 235], GaN [236], GaAs [237], two-dimensional ma-
terials [238–240], and others. Recent methodology developments, including two-
phonon scattering [241], quadrupole interactions [242, 243], and GW corrections
[235, 244], have facilitated a rigorous comparison of the accepted level of theory
with experiment.

The accuracy of the ab-initio calculations has been mainly based on comparison to
low-field mobility values. Recent works have extended these calculations to beyond
low-field transport and noise properties. [245–248] In GaAs, it was found that
although the qualitative shape of the drift velocity versus electric field curve was
predicted correctly compared to experiment, the magnitude of the drift velocity
was overpredicted by about 50%. [247] The inclusion of the next-leading-order
term of scattering involving two phonons (2ph) yielded a low-field mobility and
drift velocity with substantially improved agreement. However, the characteristic
nonmonotonic trend of PSD with electric field was not predicted even with the
2ph theory. Owing to the high cost of the ab-initio calculations, the treatment of
2ph processes in that work required several approximations, such as the neglect
of off-shell 2ph scattering processes. Whether these neglected processes or other
numerical considerations can account for the PSD discrepancy remains unknown.

Here, we introduce a semi-analytical model for both 1ph and 2ph e-ph scattering via
the Fröhlich mechanism, allowing the full 2ph scattering term to be treated over the
wide range of energies needed for high-field transport while introducing error on the
order of only a few percent. We find that the transport and noise properties are quali-
tatively unchanged compared to the ab-initio calculations. The calculated scattering
rates agree with those obtained from photoluminescence experiments to within 25%
for the Γ valley rates and a factor of two for the Γ-L intervalley rates. Despite this
degree of agreement, the qualitative discrepancy observed previously for the PSD
remains. We consider the remaining approximations in the semi-analytical model
and find that they are unlikely to account for the PSD discrepancy. Therefore, we
conclude that the characteristic peak in the PSD with electric field most likely arises
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from the formation of space charge domains rather than intervalley scattering as has
been assumed in the literature. This finding has implications for the use of transport
measurements to study intervalley scattering.

4.2 Theory
Overview of formalism for charge transport and noise properties
We first review the ab-initio treatment of electron transport and electronic noise
using the BTE [249]. For a spatially homogeneous system with electric field E , the
electron distribution function fmk is governed by

∂ fmk

∂ t
+

eE
h̄
·∇k fmk = I [ fmk], (4.1)

where fmk is the electron occupation in the state with band index m and wave vector
k, e is the fundamental charge, and I [ fmk] is the collision term, which describes
the scattering of electrons with phonons [231]. In this work, index m is dropped in
all the following derivations for simplicity as only one band is relevant for electron
transport in GaAs in the range of electric fields considered.

For non-degenerate electrons, the collision term can be linearized as [247]

I [ fk′]≈−∑
k

Θk′,k fk, (4.2)

where Θk′,k is e-ph collision matrix. For consistency with our prior work [247],
the diagonal and off-diaonal elements of this matrix are positive and negative, re-
spectively. The diagonal elements Θk,k are equal to the total scattering rates as
Θk,k = Γk = −∑k′ ̸=k Θk′,k. The relative error of the linearization is on the order
of fk according to Eq. 3 in Ref. [247]. Due to the non-degenerate carrier concen-
tration (1015 cm−3) used in this work, we find that fk ≲ 4× 10−3, which implies
that the linearization error can be neglected. With this linearization and a finite dif-
ference representation of the derivative operator ∇k [246], Eq. 4.1 becomes a linear
partial-differential equation which can be solved by numerical linear algebra. The
equation for the steady distribution function f s

k is given by Eq. 6 of Ref. [246].
Steady-state mean transport properties such as drift velocity can be calculated with
the appropriate Brillouin zone sum using this distribution.

The current power spectral density (PSD) is used to characterize fluctuations in
occupation about the mean distribution. The PSD is defined as the Fourier transform
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of the autocorrelation of the current density fluctuations (Eq. 12 of Ref. [246]).
Following Ref. [246], the current PSD at frequency ω can be calculated as

S jα jβ (ω) = 2
(

2e
V0

)2

ℜ

[
∑
k

vkαgkβ

]
, (4.3)

where vkα is the group velocity of the electron at state k along axis α , V0 is the
supercell volume, and gkβ is the effective distribution function [250]. Note that the
effective distribution function is distinct from the e-ph matrix elements, gν(k,q).
gkβ satisfies the following equation:

∑
k

(Θk′,k+
eE
h̄
·Dk′,k+ iωδk′,k)gkα = f s

k′(vk′,α −Vα), (4.4)

where D is the finite difference representation of ∇k (see Eq. 4 in Ref. [246]), f s
k is

the steady-state occupation for the state at wave vector k, and Vα =∑k vkα f s
k/∑k f s

k

is the drift velocity along axis α .

The e-ph collision matrix is obtained from perturbation theory in orders of the e-ph
interaction strength. The first two orders in the expansion correspond to scatter-
ing with one phonon (1ph) and two phonons (2ph). The corresponding Feynman
diagrams can be found in Fig. 1 and Fig. 2 in Ref. [241]. For 1ph scattering of
non-degenerate electrons, the non-diagonal scattering matrix elements are given by
[247]:

Θ
(1ph)
k′=k+q,k =−

2π

h̄
1
N ∑

ν

|gν(k,q)|2
(

δ (εk− h̄ωνq−εk+q)Nqν +δ (εk+ h̄ωνq−εk+q)(Nqν +1)
)

(4.5)

for k ̸= k′, where gν(k,q) is the e-ph scattering matrix element, εk is the energy
of the electronic state k, ωνq is the frequency of phonon with mode ν and wave
vector q, N is the total number of k points in the Brillouin zone, Nqν is the phonon
occupation according to the Bose-Einstein statistics, and the two delta functions are
energy conservation conditions for the emission and absorption subprocesses, re-
spectively. We note that here we neglect the dependence of the phonon distribution
on the external electric field. For sufficiently high electric fields and currents, the
dissipated power from Joule heating can increase the phonon occupation above its
thermal value, which is known as the hot phonon effect [251, 252]. In this work
and in relevant experiments used for comparison, this effect is negligible due to the
small non-degenerate carrier density (∼ 1015 cm-3).
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Two-phonon scattering
The collision integral for 2ph scattering was derived in Ref. [241], and the linearized
form is given in Ref. [247]. 2ph scattering can be divided into the two-emission
(2e), one-emission-one-absorption (1e1a) and two-absorption (2a) subprocesses.
Here, we rewrite the original formalism in Ref. [241] to facilitate the derivations in
the next section. Assuming non-degenerate electron statistics in Eq. 4 in Ref. [241],
we rewrite Eq. 12 in Ref. [247] by splitting W (i) into two parts:

W (i) = |W̃k,q,p,α2 +W̃k,p,q,α1|
2

=
[
|W̃k,q,p,α2|

2 +Re(W̃k,q,p,α2W̃
∗
k,p,q,α1

)
]
+
[
|W̃k,p,q,α1|

2 +Re(W̃k,p,q,α1W̃
∗
k,q,p,α2

)
]
,

(4.6)
where

W̃k,q,p,α =
gν(k,q)gµ(k+q,p)

εk′− εk+q+α h̄ωνp+ iη− ih̄Γk+q/2
, (4.7)

where η is a positive infinitesimal, Γk+q = Γ
(1ph)
k+q +Γ

(2ph)
k+q is the total scattering rate

of the intermediate state k+q, and h̄Γk+q/2 is the imaginary part of the self-energy.
As is usually assumed for transport calculations, the Debye-Waller contribution to
the self-energy is not included due to its computational difficulty.

For the 2e and 2a subprocesses, the two terms give the same contribution after the
summation. For the 1e1a subprocess, the two terms in Eq. 4.6 physically repre-
sent the emission-then-absorption (a-e) and absorption-then-emission (e-a) subpro-
cesses, respectively. Finally, we exchange the summation order of q and p in Eq. 9
in Ref. [247] for the second term of Eq. 4.6 and arrange the equations to obtain:

Θ
(2ph)
k′,k =−2π

h̄
1

N2 ∑
α1=±1

∑
α2=±1

∑
q+p=k′−k

∑
νµ

Θ̃
(α1,α2)
k,qν ,pµ

(4.8)

for k ̸= k′, where α1 and α2 indicate whether the first and second phonon is emitted
(α1,2 = 1) or absorbed (α1,2 = −1), so that the four combinations of α1,2 = ±1
describe the four subprocesses.

The term Θ̃
(α1,α2)
k,qν ,pµ

in Eq. 4.8 is defined as

Θ̃
(α1,α2)
k,qν ,pµ

=(Nqν +δα1,1)(Npµ +δα2,1)
[
|W̃k,q,p,α2|

2 +Re(W̃k,q,p,α2W̃
∗
k,p,q,α1

)
]
×

δ (εk− εk′−α1ωνq−α2ωµp).
(4.9)
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As the 2ph scattering rates depend on the intermediate state rates, the 2ph scattering
must be calculated iteratively. In each iteration, the intermediate state rates of the
previous iteration are used to update the 2ph scattering matrix Θ

(2ph)
k′,k and scattering

rates Γ
(2ph)
k .

Compared with 1ph scattering, 2ph scattering is much more computationally ex-
pensive, particularly for high-field transport which requires a larger energy window
than for low-field transport. In Ref. [247], several approximations were made to
make the computation feasible, including limiting the number of self-consistent
iterations of the 2ph rates to three, restricting the off-shell extent |εk′ − εk+q +

α h̄ωνp| to 25 meV, and neglecting the interference term Re(W̃k,q,p,α2W̃
∗
k,p,q,α1

)

term in Eq. 4.9. Additionally, the maximum grid density that could be used was
200× 200× 200. The effect of these approximations on the observable transport
and noise properties was not assessed. In particular, the on-shell approximation
neglects off-shell processes and thus underestimates the scattering rates. These ap-
proximations were mentioned as possible reasons for the PSD discrepancy in Ref.
[247].

Semi-analytical model for 1ph and 2ph Γ-Γ scattering
In this section, we introduce a semi-analytical model to treat 1ph and 2ph Γ−Γ

intravalley scattering by the Fröhlich interaction that retains the accuracy of the
ab-initio formalism to within a few percent while allowing the approximations de-
scribed above to be lifted. This model is based on the fact that over the range of
wavevectors considered in this study, the Γ valley in GaAs is nearly spherically
symmetric, and Γ-Γ scattering can be accurately described by using only the Fröh-
lich interaction [253]. The model is valid only for Γ intravalley scattering because
Γ-L intervalley scattering lacks an analytic description of similar accuracy. We also
note that this model is valid only for materials in which the Fröhlich mechanism
makes the dominant contribution to e-ph scattering.

The semi-analytical model uses the following approximations. First, the band struc-
ture is described using the Kane model [254] for a spherically symmetric, non-
parabolic band. This description is accurately satisfied for the Γ valley, with the
Kane model bands deviating from the ab-initio band structure by at most 7% over
the range of wave vectors considered (∼ 0.1G, where G is the reciprocal lattice con-
stant). Second, prior works have shown that Γ-Γ e-ph scattering in GaAs is domi-
nated by longitudinal optical (LO) phonons via the Fröhlich interaction [255]. We
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therefore neglect scattering processes involving other phonon branches and scatter-
ing mechanisms. The computed matrix elements gLO(k,q) for Fröhlich scattering
are found to exhibit negligible anisotropy so that gLO(k,q) = gLO(q), enabling an
analytic form of gfit

LO(q) to be fit to the ab initio values as described in Sec. 4.3. In
the range of wave vectors considered, this approximation is satisfied to within 3%
[253]. A detailed comparison of ab-initio and semi-analytical band structure and
e-ph matrix elements can be found in Appendix 8.1. Third, we take the LO phonon
frequency to be a constant ωLO = 35 meV. In the range of phonon wave vectors
q ∈ (0,0.2G) considered here, this assumption is satisfied to within less than 0.3%.

We now discuss the treatment of 1ph and 2ph e-ph scattering based on these simpli-
fications. The summation in Eq. 4.8 may be rewritten as an integral in the Brillouin
zone over the intermediate wave vector km by letting q→ km−k and p→ k′−km.
Additionally, we exploit spherical symmetry to rewrite all the quantities in spheri-
cal coordinates as: Θk′,k = Θ(k,k′,θk,k′) and Γk = Γk. After some simplifications,
we obtain the 1ph and 2ph collision matrices as

Θ
(1ph)(k,k′,θk,k′) =

2π

h̄
1

ΩBZ
|gfit

LO(|k′−k|)|2 ∑
α=±1

Aαδ (εk−α h̄ωLO−εk′) (4.10)

and

Θ
(2ph)(k,k′,θk,k′)=

2π

h̄
1

Ω2
BZ

∑
α1=±1

∑
α2=±1

Aα1Aα2δ (εk−εk′−(α1+α2)h̄ωLO)I(α1,α2)(k,k′,θk,k′),

(4.11)
where ΩBZ is the Brillouin zone volume. Aα is the phonon occupation factor de-
fined as

Aα = NLO +δα,+1, (4.12)

where NLO = (exp(h̄ωLO/kBT )−1)−1 is the LO phonon occupation, and I(α1,α2) =

I(α1,α2)
1 + I(α1,α2)

2 is decomposed to the non-interference part I(α1,α2)
1 and the inter-

ference part I(α1,α2)
2 :

I(α1,α2)
1 (k,k′,θk,k′) =

∫
|W̃k,km−k,k′−km,α2|

2d3km

=
∫ ∣∣∣∣ gfit

LO(|km−k|)gfit
LO(|k′−km|)

εk′− εkm +α2ωLO + iη− h̄Γkm/2

∣∣∣∣2 d3km,

(4.13)



87

and

I(α1,α2)
2 (k,k′,θk,k′) =

∫
q+p=k′−k

Re(W̃k,q,p,α2W̃
∗
k,p,q,α2

)d3pd3q. (4.14)

Equation 4.13 can be further simplified by writing the integration in spherical coor-
dinates and separating the radius and angular part:

I(α1,α2)
1 (k,k′,θk,k′) =

∫ Ĩ(α1,α2)(k,k′,θk,k′,km)

|εk′− εkm +α2ωLO + iη− h̄Γkm/2|2
k2

mdkm, (4.15)

where Ĩ(α1,α2)
1 is the angular part defined as

Ĩ(α1,α2)
1 (k,k′,θk,k′,km) =

∫
|gfit

LO(|km−k|)gfit
LO(|k′−km|)|2 sinθkmdθkmdφkm,

(4.16)
where θkm , φkm are the polar angle and azimuthal angle defining the intermediate
wave vector km, respectively. Since Ĩ(α1,α2)

1 is independent of the band structure
and the self-energy, recomputation of this term in each 2ph iteration is not required.
In practice, to significantly reduce the computational cost, Ĩ(α1,α2)

1 (k,k′,θk,k′,km)

is precomputed on a grid of k, k′, θk,k′ and km before the 2ph iteration. We note
that k, k′, and θk,k′ are not independent of each other due to the energy conser-
vation condition. Once Ĩ(α1,α2)

1 (k,k′,θk,k′ ,km) is computed on a predefined grid,
Θ(2ph)(k,k′,θk,k′) can be calculated according to Eqs. 4.11, 4.15 and 4.14. We note
that such separation of the radius and spherical part is not valid for Ĩ(α1,α2)

2 , so an
expensive iterative update is required. However, since Ĩ(α1,α2)

2 is generally much
smaller compared with Ĩ(α1,α2)

2 , we update Ĩ(α1,α2)
2 every 10 iterations to decrease

the cost of the self-consistent calculations.

To complete the 2ph iteration, the last quantities to be computed are the total 1ph
and 2ph scattering rates:

Γ
(type)
k =

∫
Θ
(type)(k,k′,θk,k′)d

3k′ =
∫

Θ
(type)(k,k′,θk,k′)2πk′2dk′ sinθk,k′dθk,k′ ,

(4.17)
where type = 1ph, 2ph indicates the type of scattering. We also perform the radius
integration over k′ analytically to integrate the delta functions in Eq. 4.10 and 4.11.
The angular integrations in Eq. 4.17 are performed numerically; details are provided
in Sec. 4.3.

The computational flow of the semi-analytical model is as follows. First, we gen-
erate a grid of k, θk,k′ , km and calculate the corresponding k′ from the energy con-
servation conditions for each subprocess. Second, we calculate Θ(1ph)(k,k′,θk,k′)
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by Eq. 4.10 and Γ
(1ph)
k by Eq. 4.17. Then, we calculate Ĩ(α1,α2)

1 (k,k′,θk,k′,km) by
Eq. 4.16. Finally, we perform the self-consistent 2ph iterations using Eqs. 4.15,
4.14, 4.11 and 4.17 until convergence, where Eq. 4.14 is calculated every 10 itera-
tions.

From the perspective of computational cost, the semi-analytical model reduces the
number of integration variables in the 2ph scattering rate calculation from 9 (in-
tegration over k, k′, km) to 5 (k, θk,k′ , km) due to the spherical symmetry, and
avoids the recomputation of I(α1,α2)

1 in the 2ph self-consistent iterations due to the
separation of radius and angular integration in Eq. 4.15. This reduction allows for
the use of a denser grid for the intermediate state integration and thereby reduces
the discretization error. Therefore, the total scattering rates can be calculated with
negligible discretization error compared with the ab-initio calculation. However,
since the semi-analytical model is only for Γ-Γ scattering, a discretized scattering
matrix (Θk′,k) is still needed to compute the drift velocity and current PSD, which
are affected by Γ-L intervalley scattering. As a result, the discretization error in the
final state integration cannot be avoided for the present calculations. Nevertheless,
the semi-analytical model still decreases the discretization error of the intermediate
state integration and treats the full 2ph scattering term. The differences between the
ab-initio calculation and the semi-analytical model for Γ intravalley scattering are
summarized in Table 4.1.

Ab-initio calculation Semi-analytical model

Final state integration 2003 2003 for observables
Exact for scattering rates

Intermediate state integration 2003 Exact
Processes On-shell only All processes included

Two-phonon iterations 3 Iterate until convergence
Interference term Not included Included

Computational time (CPU hours) 50000 40

Table 4.1: Comparison between the ab-initio calculation and the semi-analytical
model for Γ−Γ intravalley scattering. The semi-analytical model improves upon
the ab-initio model in all respects except the final state integration grid density for
observables, for which the same grid is used.

4.3 Computational details
Ab-initio calculations
The ab-initio calculation parameters are identical to those in our previous work
[247]. In brief, electronic structure and e-ph matrix elements are computed us-
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ing Density Functional Theory (DFT) and Density Functional Perturbation Theory
(DFPT) with QUANTUM ESPRESSO [256, 257] with an 8× 8× 8 coarse grid, 72
Ry plane wave energy cutoff, a relaxed lattice parameter of 5.556 Å, and a non-
degenerate carrier concentration of 1015 cm−3. Following our previous work [247],
we apply a band structure correction for both the Γ valley and the L valley. For the
Γ valley, we use a spherically symmetric Kane model band structure [258] with an
experimental effective mass of 0.067me and a non-parabolicity of 0.64 eV−1 [225].
For the L valley, we shift the energy by 50 meV to achieve the experimental Γ-L
valley separation of 300 meV. Wannier interpolation in PERTURBO [259] is then
applied to interpolate the e-ph matrix elements to a finer grid of 200× 200× 200.
After the e-ph matrix elements are obtained, the 1ph and 2ph scattering matrices
are computed according to Eqs. 4.5 and 4.8. The delta functions in Eqs. 4.5 and 4.9
are approximated by a Gaussian function with a standard deviation of 5 meV.

During the computation of scattering matrices, a phonon frequency cutoff of 2 meV
is applied to neglect phonons with low frequencies. An energy cutoff of 360 meV
above the conduction band minimum is used to reduce the number of k points in the
Brillouin zone integration. The 2ph calculation applies the on-shell approximation
by restricting the off-shell extent to 25 meV. Following Ref. [246], the linear sys-
tem of equations representing the Boltzmann equation is solved by the generalized
minimal residual method (GMRES).

Semi-analytical model
The band structure used in the semi-analytical model is the same as that in the
ab-initio calculation. The LO phonon energy is taken to be ωLO = 35 meV. The
function gfit

LO(q) is obtained by a weighted averaged of gLO(ki,pi):

gfit
LO(q) =

∑i gLO(ki,pi)exp(− (q−pi)
2

2σ2 )

∑i exp(− (q−pi)2

2σ2 )
, (4.18)

where the standard deviation σ = 5× 10−4 Ry, the summation is over all the on-
shell processes, and the gLO(ki,pi) are calculated by the Wannier interpolation.
The spherical coordinates integration in Eq. 4.16 is defined such that the the θkm =

0 direction is orthogonal with both k and k′. 200 grid points are used for each
θkm and φkm integration. The radius integration in Eq. 4.15 is transformed into
the integration of εkm and performed using an adaptive integration range with 120
grid points. The integration range is (εk′ +α2h̄ω0− 6h̄Γkm,εk′ +α2h̄ω0 + 6h̄Γkm),
corresponding to a width of 12h̄Γkm around the center of the Lorentzian function
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Figure 4.1: (a) 1ph and 2ph Γ-valley scattering rates at 300 K obtained from ab-
initio calculations (symbols and shaded regions) and semi-analytical model (lines).
Note that intervalley scattering is excluded from these rates. Due to the variations of
the ab-initio rates, we apply a Gaussian smearing and plot the shaded region to in-
dicate the region within a standard deviation. (b) Decomposition of semi-analytical
2ph rates (black solid line) to four contributing subprocesses (blue, orange, green,
and red solid lines). In both (a) and (b), vertical dashed lines indicating energies of
h̄ωLO and 2h̄ωLO are plotted.

in the denominator of Eq. 4.15. The relative residual error from this choice of
integration limits is estimated as 1/122 ≈ 0.7%. In the final state integration of
both 1ph and 2ph, the angular integrations in Eq. 4.17 are performed with 200
grid points. All the above numerical integrations are performed on uniform grids
using the midpoint rule. The 2ph calculation is performed with 20 iterations, with
the interference term Eq. 4.14 updated every 10 iterations. The relative difference
between the 10th and 20th iterations is less than 1%, indicating convergence of the
iterative process. The discretization of Θ(k,k′,θk,k′) to Θk′,k is performed by the
regular grid interpolation provided in scipy [260].

4.4 Results
valley scattering rates at 300 K

We first present the 1ph and 2ph Γ valley scattering rates versus energy obtained by
ab-initio calculation and the semi-empirical model for GaAs at 300K in Fig. 4.1a.
For both 1ph and 2ph rates, the ab-initio calculations and the semi-analytical model
are in quantitative agreement. Specifically, we observe a rapid increase of the 1ph
and 2ph rates at h̄ωLO ≈ 35 meV followed by a nearly constant trend. The de-
gree of agreement between the semi-analytical model and the mean values of the
ab-initio calculation is notable considering the semi-analytical model includes off-
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shell processes and the interference term, both of which are neglected in the ab-
initio calculations. The agreement can be attributed in part to the cancellation of
errors between the limitation on the iteration number and the on-shell approxima-
tion in the ab-initio calculation. The third iteration of the 2ph rates yields values
that are overestimated from the converged value by about 9%, while the on-shell ap-
proximation and the non-interference approximation are found to underestimate the
rates by around 3% and 5%, respectively. These approximations offset each other
to yield good agreement between the two approaches. Overall, the contribution of
off-shell processes is found to make only a minor contribution to the Γ intravalley
2ph scattering rates even up to energies of 300 meV.

The major difference between the ab-initio and the semi-analytical rates is the varia-
tion of the individual rates in the ab-initio calculation in a given energy range, which
is due to the relatively low grid density used in the ab-initio calculation (see Ap-
pendix 8.1). As explained in Sec. 4.2, the semi-analytical model uses a significantly
finer grid, leading to negligible variations in individual scattering rates in the same
energy range. Although anisotropy could in principle lead to similar variations of
the ab-initio rates, this contribution is negligible owing to the high spherical sym-
metry of the band structure and e-ph matrix elements (about 3% as mentioned in
Sec. 4.2).

The high grid density in the semi-analytical model enables features in the scattering
rates to be observed that cannot be discerned in the ab-initio calculations, including
the previously mentioned rapid increase of 1ph and 2ph rates at h̄ωLO, and also a
small but evident kink at 2h̄ωLO (about 70 meV). We now analyze each of these
observations. For the 1ph rates, the increase at h̄ωLO is because LO phonon emis-
sion from an electron may only occur above an energy of h̄ωLO. For the 2ph rates,
the situation is more complicated due to the existence of four subprocesses (2e,
e-a, a-e, 2a) in 2ph scattering. To better understand the features in the 2ph scat-
tering rates, the scattering rates of the four subprocesses are plotted separately in
Fig. 4.1b. We observe that the increase of the total 2ph rates at h̄ωLO can be at-
tributed to the e-a subprocess due to a similar reason with the emission subprocess
in 1ph process, namely that the e-a subprocess requires the electron to have energy
exceeding h̄ωLO. The kink at 2h̄ωLO comes from the cancellation between the in-
crease of the 2e rates and the decrease of e-a rates. The increase of the 2e rates is
due to the emission of 2 LO phonons at energies higher than 2h̄ωLO. The decrease
of the e-a rates is due to the increase of the intermediate state rates in the denomi-
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nator of Eq. 4.7 (or Eq. 4.15). Specifically, for an e-a subprocess with εk = 2h̄ωLO,
the corresponding intermediate state has the band energy εk+q = h̄ωLO, where an
increase of both Γ(1ph) and Γ(2ph) occurs as explained above. In fact, the effect of
the intermediate state self-energy leads to change at any integer multiple of h̄ωLO,
but the magnitudes are decaying with increasing energy such that they cannot be
observed above a few multiples of h̄ωLO.

Another observation in Fig. 4.1b is the difference between the e-a rates and a-e
rates asymptotically decreases to zero with increasing energy. This trend can be
understood by analysis of Eq. 4.11. Specifically, in the process ki → km → k f ,
the relative differences between norms of the state vectors ki, km, k f become small
at high energies (above a few multiples the LO phonon energy), so that the factor
I(α1,α2)(k,k′,θk,k′) becomes insensitive to the subprocess type. Thus, their mag-
nitudes are fully determined by the phonon occupation factor Aα1Aα2 defined in
Eq. 4.12 which satisfy Γ(2a)/A2

−1 =Γ(e−a)/A−1A+1 =Γ(a−e)/A−1A+1 =Γ(2e)/A2
+1.

From this relationship, we find Γ(e−a) = Γ(a−e). Furthermore, a common ratio
Γ(2a)/Γ(e−a) = Γ(e−a)/Γ(2e) = A−1/A+1 can also be obtained for the subprocess
rates at the high energy region. This relationship is observed in Fig. 4.1b.

Drift velocity and current PSD at 300 K
We now examine the transport and noise properties from each model. For the semi-
analytical model results, the Γ-Γ block of the scattering matrix is calculated by the
semi-analytical model in Eq. 4.10 and 4.11, while the Γ-L and L-L blocks are those
of the ab-initio calculation. Figures 4.2a and 4.2b display the drift velocity and
normalized current PSD, respectively, from the ab-initio calculations and the semi-
analytical model. The experimental measurements are also plotted for comparison.
In Fig. 4.2a, the ab-initio calculation and the semi-analytical model give a similar
prediction of the drift velocity versus electric field up to 5 kVcm−1. Both give the
low-field mobility of around 7000 cm2V−1s−1, which agrees with the experimental
value of about 8000 cm2V−1s−1 to within around 15%. The similarity between
the ab-initio and semi-analytical results is expected due to the agreement of their
scattering rates as discussed in Sec. 4.4.

In Fig. 4.2b, the PSD obtained from different experimental measurements reveal a
non-monotonic pattern characterized by an initial decrease, followed by a marked
rise around the commencement of negative differential mobility, and a subsequent
decrease. The origin of this trend was explained in Ref. [247]. However, both the
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Figure 4.2: Drift velocity and normalized PSD versus electric field for the (1+2)ph
results obtained by ab-initio calculation (dashed blue line) and semi-analytical
model (solid red line) at a temperature of 300 K. (a) Drift velocity versus elec-
tric field. The ab-initio calculation and semi-analytical model qualitatively agree
with the measurements of Ruch et al. [261] (filled circles) and Ashida et al. [262]
(open circles) (b) Normalized PSD versus electric field. Values calculated us-
ing two approaches show consistent discrepancies compared with the results ob-
tained from noise temperature and differential mobility measurements (filled cir-
cles, Ref. [263] and open circles, Ref. [264]), and from time of flight experiments
(triangles, Ref. [265]).

ab-initio calculation and the semi-analytical model predict the PSD to be nearly
independent of electric field and thus fail to predict the characteristic PSD peak at
about 3 kVcm−1.

Comparison of cryogenic and -L scattering rates to experiment
The lifetimes of photoexcited hot electrons in GaAs have been experimentally mea-
sured at 10 K from an analysis of the linewidths of peaks from continuous-wave
luminescence spectroscopy. [266] In this section, we compare the ab-initio, semi-
analytical and experimental scattering rates at cryogenic temperatures. In Fig. 4.3a
and 4.3b, we show the Γ and Γ-L scattering rates obtained by ab-initio calculation,
the semi-analytical model, and experiment. The calculations were performed at
cryogenic temperatures to enable comparison with experiment. The experimental
scattering rates and error bars are converted from the corresponding lifetimes and
error bars directly reported in Ref. [266]. Since the semi-analytical model is only
valid for Γ-Γ scattering, only the experimental and ab-initio results are shown in
Fig. 4.3b.

Figure 4.3a shows that the experimental and theoretical values for the Γ-valley scat-
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Figure 4.3: Experimental (black symbols, Ref. [266]), ab-initio 1ph (orange sym-
bols) and (1+2)ph (blue symbols), semi-analytical 1ph (green lines) and (1+2)ph
results (red lines) of (a) Γ valley scattering rates and (b) Γ-L intervalley scattering
rates versus energy at helium temperatures. The (1+2)ph calculations agree better
with experiment compared to the 1ph calculations in all cases. The (1+2)ph scat-
tering rates agree with experiment to within 25% and a factor of two for Γ rates and
Γ-L intervalley rates, respectively.

tering all yield a nearly constant value between 100 meV and 325 meV. The exper-
imental rates are about 8 ps−1 in this energy range, while the semi-analytical 1ph
and (1+2)ph calculations give about 3.5 ps−1 and 6 ps−1, respectively. This result
affirms that the 2ph scattering makes a non-negligible contribution to electron scat-
tering in GaAs. Similarly with Sec. 4.4, the ab-initio calculations give mean values
of the scattering rates that agree quantitatively with the semi-analytical model but
with substantial scatter about the mean. Such observation again suggests that the
approximations in the ab-initio calculations do not result in qualitative deviations.

Figure 4.3b shows the Γ-L intervalley scattering rates of the ab-initio calculations
and the photoluminescence experiments. According to Ref. [266], the experimental
Γ-L rates are obtained by

ΓΓ−L = Γtot−ΓΓ−Γ, (4.19)

where ΓΓ−Γ is taken as a constant estimated by fitting the data in Fig. 4.3a. To
make a consistent comparison with experiment, the ab-initio Γ-L intervalley scat-
tering rates in Fig. 4.3b are also calculated by Eq. 4.19 instead of being directly
calculated from the scattering matrix. It is found that the experimental intervalley
rates are about 6 ps−1 in the energy range from 340 meV and 400 meV, while the
ab-initio 1ph and (1+2)ph give around 2 ps−1 and 3 ps−1, respectively. Although
the additional 2ph calculation decreases the deviation from experiment results, an
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underestimation of a factor of two is still observed. This discrepancy could be at-
tributed to the need for an off-shell extent larger than 25 meV in the 2ph calculation,
owing to the larger intermediate state scattering rates (appearing in the denominator
of Eq. 4.7 and Eq. 4.15) at energies above 300 meV. However, at present a larger
off-shell extent is computationally infeasible.

4.5 Discussion
The semi-analytical model treats the full scattering term for Γ intravalley 2ph scat-
tering but does not qualitatively alter transport and noise properties. In particular,
the marked discrepancy with the experimental PSD remains. We now examine al-
ternate possible origins for the discrepancy.

Underestimated -L intervalley scattering rates
A comparison of our computed cryogenic rates with those measured from photo-
luminescence experiments indicates that the Γ rates agree to within 25%, but the
Γ-L intervalley rates are underestimated by around a factor of two. Despite this
underestimate, prior work suggests that this effect is unlikely to reconcile the PSD
discrepancy. Specifically, Monte Carlo simulations of electron transport in GaAs
with a three-valley Γ-L-X model have found that increased intervalley scattering
suppresses the PSD feature (see Fig. 7 of Ref. [267]). Therefore, although the pos-
sibility cannot be definitively excluded at present, including intervalley scattering
processes beyond those treated already is not expected to yield improved agreement
with the PSD.

Contribution from simultaneous electron-two-phonon interaction
According to Ref. [247], another possibility is that the contribution of electron-two-
phonon (e-2ph) interaction [268] is not considered. Here, we make a qualitative
estimation of the magnitude of this effect based on the Fröhlich mechanism for
electron scattering. According to Ref. [268], the e-ph Hamiltonian up to the second
order can be written as

He-ph = ∑
Rκ

uRκ ·∇V (r−Rκ)+
1
2 ∑

κ

uRκ ·∇∇V (r−Rκ) ·uRκ , (4.20)

where κ is the index of atom in a unit cell, R is the unit cell position, uRκ is the
corresponding phonon-induced displacement, and V is the electron potential. In
the long wavelength limit, the electric potential for the Fröhlich interaction can be
obtained by assigning a point dipole to each atom [253]. For acoustic phonons with
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the same displacements for atoms in the same unit cell, the net dipole moment will
be zero and no scattering will occur. Similarly, the electric potential for e-2ph inter-
action can be obtained by assigning a point quadrupole to each atom. Following the
same logic, the net quadrupole moment will be zero if the quadrupoles are induced
by two acoustic phonons or two optical phonons, which means that the simultane-
ous e-2ph interaction based on the Fröhlich interaction can only be induced by an
acoustic and optical phonon.

We estimate the order of magnitude of such simultaneous e-2ph interaction involv-
ing an acoustic and optical phonon. A full derivation can be found in the Ap-
pendix 8.2. The final estimated scattering rates in the Γ valley is

Γ
(e−2ph)(k)∼ 8π2

ΩBZh̄
k3

εk

(
eZ

Ωε∞

√
h̄

2MωA

√
h̄

2MωO

)2

(NA +1)(NO +1), (4.21)

where ωO and ωA are frequencies of optical and acoustic phonons at the edge of
Brillouin zone, NO and NA are the corresponding phonon occupations, ΩBZ is the
Brillouin zone volume, M is the average atom mass in a unit cell, ε∞ is the high-
frequency permittivity, and Z is the Born effective charge of a single atom. For
a typical k such that εk = 200 meV, the e-2ph scattering rates at 300 K can be
estimated as 10−2.5 ps-1, which is about 3.5 orders of magnitude smaller than the
ab-initio or semi-analytical 2ph scattering rates obtained in this work. Thus, we
conclude that the effect of the simultaneous e-2ph interaction based on the Fröhlich
interaction can be neglected. A related effect involving strong electron-phonon
interactions, polaron formation, can also likely be excluded as this effect has no
dependence on electric field strength.

Space charge domains and experimental non-idealities
Finally, we consider an alternate mechanism for the PSD peak which does not rely
solely on intervalley scattering. The earliest studies of negative differential resis-
tance in GaAs arose from the observation of current instabilities at electric fields
approaching a threshold value of around 3 kVcm−1. [269] These instabilities were
attributed to the formation of space charge domains associated with the negative
differential resistance. The typical Boltzmann formalism used to describe charge
transport from first principles does not include the contribution of such effects be-
cause it neglects real-space gradients and space charge effects which are essential
to the instability.

Space charge instabilities manifest as current fluctuations, and therefore the nucle-
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ation of space-charge domains could explain the PSD peak around the threshold
field. However, an inconsistency with this explanation is that the increase in PSD
begins at a field below the threshold value for NDR as in Fig 4.2. This inconsis-
tency can be accounted for by considering the possibility that the local electric field
exceeds the threshold even though the average field does not. Such a possibility
was investigated theoretically by McCumber and Chynoweth [270], who found that
the dipole layer generation process was sensitive to inhomogeneities such as dop-
ing fluctuations that would arise from purely random Poisson statistics. The dipole
layer was found to propagate even if the average uniform field was less than the
nominal threshold field based on the velocity-field characteristics.

These considerations support the explanation of the PSD peak in terms of instabili-
ties associated with the local electric field exceeding the threshold field for negative
differential resistance space charge domain formation. This finding has implica-
tions for the use of transport studies to determine intervalley scattering strength.
In particular, Monte Carlo methods have been used for decades for this purpose in
GaAs by interpreting transport and noise measurements, and in those simulations,
noise was assumed to arise from solely intervalley scattering. Our result indicates
that this approach to studying intervalley scattering is not valid because the physical
origin of noise differs from that assumed in the model. Instead, photoluminescence
methods which directly provide an electronic lifetime as in Ref. [266] should be
employed.

4.6 Conclusions
We have introduced a semi-analytical model of 1ph and 2ph Γ intravalley scattering
for electrons in GaAs which allows for prior approximations in the treatment of the
2ph term for Γ scattering to be lifted while incurring errors of a few percent. We find
that the calculated transport and noise properties are qualitatively unchanged from
the ab-initio values. The computed drift velocity agrees with experiment to within
15%, while agreement with measured cryogenic scattering rates are within 25%
for the Γ valley scattering rates and a factor of two for Γ-L intervalley scattering.
However, the qualitative discrepancy for the PSD is not improved with the semi-
analytical model. Considering the totality of the evidence, our work suggests that
the PSD peak mostly likely arises from space charge domain formation rather than
partition noise associated with intervalley scattering, as has been assumed for many
decades. This result implies that care must be taken when interpreting transport and
electrical noise measurements in terms of intervalley scattering. Our findings high-
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light the insights into charge transport that can be obtained from a first-principles
treatment of high-field charge transport and noise properties.
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C h a p t e r 5

EXPERIMENTAL DEMONSTRATION OF SCALABLE
CROSS-ENTROPY BENCHMARKING TO DETECT

MEASUREMENT-INDUCED PHASE TRANSITIONS ON A
SUPERCONDUCTING QUANTUM PROCESSOR



100

This chapter is adapted from

1. Kamakari, H., Sun, J., Li, Y., Thio, J. J., Gujarati, T. P., Fisher, M., Motta,
M. & Minnich, A. J. Experimental demonstration of scalable cross-entropy
benchmarking to detect measurement-induced phase transitions on a super-
conducting quantum processor. arXiv preprint arXiv:2403.00938. https:
//arxiv.org/abs/2403.00938 (2024).
Contribution: J.S. designed and implemented the circuit compression algo-
rithm, and contributed to writing the article.

Quantum systems subject to random unitary evolution and measurements at ran-
dom points in spacetime exhibit entanglement phase transitions which depend on
the frequency of these measurements. Past work has experimentally observed en-
tanglement phase transitions on near-term quantum computers, but the character-
ization approach using entanglement entropy is not scalable due to exponential
overhead of quantum state tomography and post selection. Recently, an alterna-
tive protocol to detect entanglement phase transitions using linear cross-entropy
was proposed which eliminates both bottlenecks. Here, we report the demonstra-
tion of this protocol in systems with one-dimensional and all-to-all connectivities
on IBM’s quantum hardware on up to 22 qubits, a regime which is presently in-
accessible if post-selection is required. We demonstrate a collapse of the data into
a scale-invariant form with critical exponents agreeing with theory within uncer-
tainty. Our demonstration paves the way for studies of measurement-induced en-
tanglement phase transitions and associated critical phenomena on larger near-term
quantum systems.

5.1 Introduction
Quantum systems undergoing unitary evolution in the presence of an observer mak-
ing measurements (monitored quantum systems) [271–273] exhibit unique dynam-
ics, distinct from both thermalizing closed systems [274] and conventional open
quantum systems [275]. When the system is weakly monitored and subject to suf-
ficiently entangling unitaries, initial product states typically exhibit a linear in time
growth of the entanglement entropy, before evolving into steady states where the en-
tanglement entropy admits a volume-law scaling [276–280]. In contrast, strongly
monitored systems are not able to support highly entangled states, resulting in area-
law entanglement scaling even at long times [281, 282]. Separating the two phases
lies a phase transition, which was initially found theoretically in simplified quantum
circuit models with mid-circuit measurements, and was later found to be generic to

https://arxiv.org/abs/2403.00938
https://arxiv.org/abs/2403.00938
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a wide range of monitored dynamics [282–297]. Such measurement-induced phase
transitions (MIPTs) have recently garnered much interests [298], in part due to mul-
tiple theoretical viewpoints one can take in describing them [299–303].

An experimental observation of MIPTs was recently demonstrated on IBM quan-
tum hardware with up to 14 qubits [304]. By directly measuring the entanglement
entropy after a comprehensive quantum tomography of the steady states, Koh et
al. [304] were able to observe MIPT and confirm the competing effects of random
unitaries and mid-circuit measurements. However, the experiment required over
5200 device hours and is limited in scalability due to the exponential cost of quan-
tum state tomography and post-selection of measurement outcomes. The lifetime of
superconducting qubits also puts a stringent limit on the circuit depth (as well as on
system size when circuit depth scales with the number of qubits), since mid-circuit
measurements can be an order of magnitude slower than two-qubit unitary gates.

To avoid mid-circuit measurements, a space-time duality mapping was introduced [305,
306] and recently implemented on Google’s superconducting processor [307], where
MIPT-like physics was observed in 1D unitary circuits with a reduced number of
post-selections, and at the boundary of shallow 2D unitary circuits of 70 qubits
without post-selection. Alternatively, order parameters based on reference qubits
can be used to efficiently and scalably probe MIPTs [308], where post-selection
can be avoided with an accompanying classical simulation. The use of a reference
qubit to probe MIPTs has been demonstrated in trapped ion systems for Clifford cir-
cuits [309], featuring a high gate fidelity and non-local qubit connectivity. Another
order parameter which can be used to probe MIPTs is the cross entropy [310], which
requires no ancilla qubits and lacks the exponential overhead of post selection. Al-
though the theoretical basis for this method has been established, a demonstration
of this protocol on near-term quantum hardware has not yet been reported.

In this work, we report an experimental demonstration of the detection of MIPTs
on prototypical hybrid Clifford circuit models with up to 22 physical qubits. The
required circuits were executed in less than 8 device-hours on IBM superconducting
devices, representing a decrease in device time by nearly two orders of magnitude
compared to the approach based on measuring entanglement entropy. Moreover,
a circuit compression technique allows us to investigate circuit models with all-to-
all connectivity on IBM’s 2D layout. From the data, we extract critical exponents
which are compatible with theoretical predictions within the experimental uncer-
tainty. This work paves the way for studies of other critical phenomena on near-
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Figure 5.1: (Adapted from Ref. [271]) (a) A typical quantum circuit to characterize
MIPT. The circuit is composed of alternating layers of unitary operations (bricks)
and mid-circuit measurements with probabilities p (dots). (b) Asymptotic relation
between entanglement entropy S and circuit depth t. In the volume phase p <
pc, the critical point p = pc, and the area-law phase p > pc, the corresponding
asymptotic relations are S ∼ t, S ∼ log t, and S ∼ t0, repsectively, where pc is the
critical measurement probability.

term quantum hardware and provides a potential benchmarking tool for quantum
circuits with mid-circuit measurements.

5.2 Cross entropy benchmark for MIPT
Review of MIPT
The phenomenon of measurement-induced entanglement transitions (MIPT) comes
from the competition between the unitary dynamics which tends to generate the en-
tanglement, and measurements which tend to destroy the entanglement. [271, 272,
283] A typical example is the quantum circuit composed of alternating layers of
Haar-random unitary operations and probabilistic mid-circuit measurements, where
each measurement independently takes place with probability p. (see Fig 5.1(a))
Let C indicate a specific choice of the circuit, including the choice of both unitary
operations and the positions of mid-circuit measurement, and m=(m1,m2, . . . ,mN)

be the bitstring representing the measurement outcomes, where m j are the outcomes
(0 or 1) from each mid-circuit measurement. Consider a division of the system to
two subsystems A and B, and let S be the entanglement entropy between A and B.
Such entanglement entropy S can be viewed as a function of C and m. MIPT can
be observed from the relation between the averaged value of S over C and m, de-
noted as S̄ = ⟨S⟩C,m, and the measurement rate p in the thermodynamic limit of
infinite system size. For 0 ≤ p ≤ 1, there exists two distinct phases separated by a
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tencoding tbulk

|ϕ⟩

(a)

(b)
|ϕ′￼⟩

2-qubit Clifford unitary

Multi-qubit Pauli measurement 

Single-qubit  measurement Z

Figure 5.2: Schematic of the cross entropy benchmark protocol. (a) An L-qubit
Clifford circuit used in the cross entropy benchmark protocol [310]. We choose the
initial state |φ⟩ to be either |0T ⟩⊗L/2, where |T ⟩ is a magic state, or |0⟩⊗L. The red
box represents one layer of unitaries (and one layer of measurements in the bulk
stage). (b) The compressed L/2-qubit circuit consisting of at most L/2 multi-qubit
Pauli measurements. The compressed initial state is |φ ′⟩= |T ⟩⊗L/2 or |0⟩⊗L/2.

critical measurement rate pc. For p > pc, the system is in the area-law phase such
that S̄ ∼ const, while for p < pc, the system is in the volume-law phase such that
S̄∼ T . (See Fig. 5.1(b)) The latter is a generalized result of pure unitary dynamics.
[311] At the exact critical point, the entanglement has a logarithmic growth with
the circuit depth, i.e. S̄ ∼ logT . However, S̄ cannot be obtained by the averaged
density matrix over C and m, but instead require the resolution of each individual
quantum trajectory for each C and m. This imposes two exponential overheads: the
exponentially scaled overhead of quantum state tomography to evaluate ρ , and the
exponentially–scaled overhead to post-select each measurement bitstring m. Thus,
direct experimental characterization of MIPT was limited to small system sizes.
[304]

Cross entropy benchmark
In this work, we use the cross entropy benchmark protocol of Ref. [310] to charac-
terize MIPT. We consider a family of random circuits, where each circuit consists
of two stages: an purely unitary “encoding stage” consisting of tencoding layers,
and a “bulk stage” consisting of tbulk layers with both unitary gates and mid-circuit
measurements, see Fig. 5.2(a). For an L-qubit circuit, both stages must contain a
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number of layers scaling at least linearly with L for the system to enter a steady
state, particularly when the steady state has volume-law scaling of entanglement
entropy. For a given circuit C with mid-circuit measurements bitstring m, let the
unnormalized quantum operation conditioned on mid-measurement bitstring m be
Cm, which satisfies ∑mC†

mCm = I. With the initial state ρ , the corresponding
unnormalized final state conditioned on the mid-measurement results m be

ρm =CmρC†
m, (5.1)

and the corresponding probabilitity to obtain m be

pρ
m = tr(ρm). (5.2)

The protocol involves the application of the same circuit to two different initial
states, ρ and σ , and a comparison between the two ensembles of measurement
records. Let the probabilities of obtaining m with the initial states ρ and σ be pρ

m

and pσ
m. The normalized linear cross entropy acts as a distance measure between

the two probability distributions pρ
m and pσ

m, and is defined for this circuit as

χC =
∑m pρ

m pσ
m

∑m(pσ
m)

2 , (5.3)

which can be estimated by taking the sample average of pσ
m/
(
∑m(pσ

m)
2) over many

runs of the quantum circuit with input state ρ . We then average over random circuits
C, obtaining the final cross entropy for a given measurement rate as χ = ECχC.
As shown in [310], for ρ ̸= σ and in the absence of noise, the quantity χ acts
as an order parameter which, in the thermodynamic limit, approaches 1 when the
system is in the volume-law phase and approaches a constant strictly less than 1
in the area-law phase. Intuitively, χ measures the distinguishability of the two
initial states by comparing mid-circuit measurement records, after the two initial
states are “scrambled” by the encoding unitary. Previously, the linear cross entropy
has been used as a figure of merit for random circuit sampling [312–315], or in
benchmarking quantum simulators [316, 317]. For χ to be efficiently obtainable
from quantum and classical hardware, the probabilities pσ

m, as well as ∑m(pσ
m)

2,
need to be efficiently classically computable. This is possible when the bulk of the
circuit contains only Clifford operations and when the input state σ is a stabilizer
state. The cross entropy protocol is similar in spirit to hybrid quantum-classical
observables used in previous experiments [307, 309] (see also [318, 319]) and, as
we will show, allows us to probe the transition and obtain critical exponents on
noisy processors.
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5.3 Experimental implementation
Circuit setup
This approach is implemented by our collaborators on IBM Quantum processors.
The systems we considered are a 1D chain with nearest-neighbor qubit connec-
tivity and an infinite-dimensional system with all-to-all qubit connectivity. We
chose the initial L-qubit states on the quantum processor in both cases to be ρ =

|0T 0T · · ·0T ⟩⟨T 0T 0 · · ·T 0| with |T ⟩ = (|0⟩+ exp(iπ/4)|1⟩)/
√

2, the alternating
magic state, and σ = |0⊗L⟩⟨0⊗L|, the all-zero state. Note that ρ is not a stabilizer
state. For the alternating magic states, the number of T gates grows linearly with
the number of qubits, so that an exact simulation of the circuit via either the state-
vector simulation or Clifford+T simulation [320–323] requires exponential classical
resources.

For all experiments, the circuits are constructed using alternating layers of unitaries
and measurements. Each unitary layer consists of L/2 two-qubit unitary gates,
sampled uniformly from the two-qubit Clifford group. For the 1D chain, the two-
qubit Clifford gates are applied in a brickwork pattern on nearest-neighbor qubits.
For the infinite dimensional system, L/2 two-qubit unitaries are applied to pairs
of qubits selected uniformly at random. Each measurement layer, in both the 1D
chain and the infinite-dimensional system, consists of single-qubit Z measurements
occurring on each qubit with probability p. For both systems, we used an encoding
ratio and bulk ratio of 3, namely tbulk = tencoding = 3L. For all experiments, 1,000
random circuits are generated for each (L, p) pair, and each circuit was run 1,000
times on the ibm_sherbrooke machine.

Compression of Clifford circuit with magic initial state
The resulting circuits with the above properties have as many as L2 mid-circuit
measurements, which are relatively slow operations and introduce both readout and
quantum state errors, and so they cannot be executed while preserving adequate
fidelity. We therefore employ a circuit compression scheme which exploits the
input state being an alternating magic state and the circuit bulk being fully Clifford.
The compression is based on Ref. [324] with an improvement that removes the
requirement for dynamic circuits (adaptivity), instead using an efficient classical
simulation and classical coin flipping.

In a particular circuit realization the unitaries and the measurements can be written
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as

Cm = . . .U3Mm2U2Mm1U1. (5.4)

Here m j is the j-th measurement outcome of the entire record, and correspondingly
Mm j = (1+(−1)m jPj)/2 is the j-th projection operator, with Pj the Pauli operator
being measured. The first step is to convert it to the so-called Pauli-based computing
(PBC) model, via rewriting Eq. 5.4 by moving all unitaries past the measurements
to the right as

Cm = . . .M̃m2M̃m1, (5.5)

where

M̃m j =
1
2
(1+ z jP̃j), P̃j =U†

1 U†
2 . . .U

†
j PjU jU j−1 . . .U1 (5.6)

are now multi-site Pauli measurements and z j = (−1)m j . In other words, the circuit
is now composed of P̃1, P̃2, etc.

In such a PBC model, some of the Pauli measurements have 1/2 probabilities of
generating ±1 outcomes, which allows us to equivalently generate classical pseu-
dorandom numbers and rewrite the corresponding projection operation as a new
Clifford operation. The detailed compression algorithm is shown in Appendix 9.1.
The PBC model simplified by the above process can be turned again into a standard
circuit with a reduced number of gates and measurements on a subset of the qubits.
In Table 5.1 we present a summary of the quantum hardware resource requirements
before and after circuit compression. The number of hardware qubits as well as the
number of 2 qubit gates are both reduced by a constant factor after compression,
while the average number of measurements becomes independent of the measure-
ment rate p. We note that although the depth increases by a factor of L after circuit
compression, for the system sizes in our experiments the increase in depth was not
a limiting factor.

With the circuit compression, the initial state of the circuit is now |T ⟩⊗L/2, see
Fig. 5.2(b). All circuits used in our experiments use Clifford compression, allowing
us to treat up to 44 qubit systems using only 22 physical qubits.

Qubit selection
For the 1D-chain experiment with ρ ̸= σ , the qubits were selected heuristically at
run time as in Ref. [304]. The qubits we selected based on the one and two qubit
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Before compression After compression
Num. hardware qubits L L/2

Average depth 9L L2

Num. 2 qubit gates 3L2 L2/2
Avg. num. measurements 3L2 p L/2

Table 5.1: Hardware resources required before and after Clifford circuit compres-
sion for a fixed L and p. The number of hardware qubits, average depth, and average
number of 2 qubit gates required are reduced by a constant factor after compression,
whereas the average number of measurements is reduced by a factor of L and is in-
dependent of p. The values in this table apply both to the 1D system as well as the
all-to-all system.

gate error rates, ε1q and ε2q, respectively, as well as the qubit readout error ε ro

rates provided by IBM in their hardware callibration data. Denoting by χ the set
of qubit selections which contain all L/2 qubits in a connected chain, an average
circuit error for circuit C is calculated as

Ex∈χ [C] = ∑
j∈x

(ε1qN1q
j [C]+ ε

2qN2q
j [C]+ ε

roNro
j [C]), (5.7)

where the subscript j represents the j’th qubit in the qubit set x, and the function
N1q,2q,ro

j computes the number of single qubit gates, two qubit gates, and measure-
ments, respectively, acting on qubit j in the circuit C. The qubit chain used in the
experiment is then selected as the one which minimizes the average error over all
circuits C , argminx∈χEC∈C Ex[C]. For the all-to-all and ρ = σ experiments, we used
the same qubit layouts that were selected for the 1D-chain.

Fitting critical parameters ν and pc by collapsing hardware data
Near the critical measurement rate pc, the order parameter χ for different system
sizes and under suitable rescaling is expected to collapse onto a single curve [271,
325, 326]. Quantitatively, this can be expressed as χ(L, p) collapsing to the same
curve for all system sizes L when we suitably rescale both L and p:

χ(L, p) = F
[
L1/ν(p− pc)

]
. (5.8)

The critical measurement rate depends on the microscopic details of the circuits,
such as the encoding and bulk ratios, whereas the the critical exponent is indepen-
dent of the microscopic circuit details and is the same for all systems in the same
universality class [271, 325]. If the scaling function F was known, we could obtain
the optimal pc and ν , denoted by p∗c and ν∗, by minimizing the residual sum of
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squares (RSS) over all data points:

p∗c ,ν
∗ = argmin

pc,ν
∑
L

∑
p

(
F
[
L1/ν(p− pc)

]
−χexp(L, p)

)2
, (5.9)

where χexp(L, p) is the cross entropy obtained from the experiment for a system
size L and measurement rate p. When the scaling function is unknown, we still find
p∗c and ν∗ by minimizing an RSS, but instead use an interpolating function for our
scaling function for a fixed L, followed by symmetrization over all L in order to
prevent preferential treatment of any portion of the data [304, 326]. Our approach
to fitting pc and ν follows Ref. [304] with modifications due to there being only one
critical exponent in our case, versus two critical exponents in Ref. [304]. We denote
by L the set of system sizes used in the experiment and PL the set of measurement
rates used for a fixed L. For each L ∈L and p ∈PL, we first compute the rescaled
controlled variable

qL(p) = L1/ν(p− pc). (5.10)

We then construct an interpolating function for χ(L, p) from the rescaled experi-
mental data, which we denote by fL(q). The interpolating function is used since the
q values for different values of L are different, and the RSS is taken over points with
identical q values. From numerical simulations, we expect the scaling function to
decrease monotonically for increasing p [310]. To preserve this monotonicity, we
use a piecewise cubic Hermite polynomial implemented in SciPy to construct the
interpolating function [327]. We denote the set of qL as QL, q−L = minQL and
q+L = maxQL . Adapting the measure of goodness of fit from References [326] and
[304], we define the loss function as

R(ν , pc) = ∑
L∈L

∑
L′∈L ,
L′ ̸=L

∑
q∈QL′ ,

q−L≤q≤q+L

( fL(q)− fL′(q))
2 . (5.11)

In the innermost summation, we constrain q by q−L ≤ q ≤ q+L in order to avoid
extrapolation of fL(q). Our reported best fit values of pc and ν are then given by

p∗c ,ν
∗ = argmin

pc,ν
R(ν , pc). (5.12)

Following References [304, 326],the errors for ν and pc are given by the width of
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Figure 5.3: Cross entropy for identical initial states (ρ = σ) obtained from
ibm_sherbrooke with up to 18 physical qubits (equivalent to a system size of L = 36
qubits before compression). The errors incurred from the physical qubits results in
a cross entropy lower than the theoretical value of 1.

the minimum at level η :

δν± = ην
∗
[

2log
R(ν∗±ην∗, p∗c)

R(ν∗, p∗c)

]−1/2

(5.13)

δ pc± = η p∗c

[
2log

R(ν∗, p∗c±η p∗c)
R(ν∗, p∗c)

]−1/2

. (5.14)

Our final values of ν and pc are then reported, setting η to the 10% level, as

ν
∗±max(δν+,δν−) (5.15)

p∗c±max(δ pc+,δ pc−). (5.16)

5.4 Results for 1D connectivity
The results for 1D connectivity are obtained by our collaborators. We first present
the experimental results when we set ρ = σ to provide a benchmark of the hardware
performance. The circuits are obtained from the compressed 1D circuits, but replace
all |T ⟩ states with |0⟩ states, so that the initial states on both ρ and σ are the all-zero
state; see Fig. 5.2(b). In this case, since the circuits run on both the quantum and
classical sides are identical, we expect to observe χ = 1 for all L and for all p in the
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Figure 5.4: (a) Cross entropy χ for 1D chains with up to 22 physical qubits (cor-
responding to a system size of L = 44 qubits before compression) computed on
ibm_sherbrooke. (b) Collapse of cross entropy curves near the critical point ob-
tained by minimizing the scatter of all points to an unknown scaling function. The
fitting procedure gives a critical measurement rate of pc = 0.14±0.01 and critical
exponent ν = 1.4±0.5.

absence of any noise or hardware errors. The deviation of the cross entropy from
1 therefore provides a measure of the overall errors and noise in the circuit, which
could be due to various sources such as gate errors, qubit decay and dephasing, and
cross-talk from mid-circuit measurements.

Fig. 5.3 shows the cross entropy χ versus p for various L. We observe that χ > 0.9
for L > 8 for all p, but it decreases below unity for larger L and p ≳ 0.1. That
χ ≈ 1 for small L can be attributed to the short circuit depths of these circuits. For
instance, a compressed four qubit circuit requires only two physical qubits and two



111

Pauli measurements, allowing them to be executed with high fidelity and result-
ing in a high cross entropy. For increasing L at fixed p, both uncompressed and
compressed circuits contain more mid-circuit measurements.

The trends of χ with L and p in Fig. 5.3 qualitatively agree with noisy simulations
(see Appendix 9.2).

We next present experimental results for the 1D chain for ρ ̸= σ . Fig. 5.4 shows χ

versus p for L between 4 and 44 (2 to 22 physical qubits) up to p = 0.2 obtained
from the 127 qubit ibm_sherbooke device. Qualitatively, we see the expected char-
acteristics as described below Eq. (5.3); namely, with increasing L, χ approaches
unity for p ≲ 0.12, while it plateaus to a constant < 1 for larger values of p. The
curves for different L cross at a value of p we denote as pc, with pc ∈ (0.15,0.175).

The cross entropy χ is related to a domain wall free energy in an associated statis-
tical mechanics model [310], and its value near the critical point depends only on
the ratio of the system size and the correlation length, according to standard scaling
hypotheses. We verify this hypothesis by collapsing the data from different system
sizes L and measurement probabilities p with the method explained in Sec. 5.3. The
resulting collapsed curve is shown in Fig. 5.4b. We obtain the critical measurement
rate pc = 0.14± 0.01 and critical exponent ν = 1.4± 0.5 at the 90% confidence
level. Our reported values of pc and ν are in quantitative agreement with classical
numerical calculations of uncompressed circuits in the presence of 0.1% erasure
noise, where we obtained ν ≈ 1.33 and pc = 0.14, see Appendix 9.2. For chains of
fewer than 10 qubits, finite-size effect are observed as indicated by deviations from
the collapsed curve as well as the plateau to a larger value for large p. Removing the
smaller system sizes from the fitting did not change the values of ν and pc within
the reported uncertainties.

5.5 Results for all-to-all connectivity
The results for all-to-all connectivity are obtained by our collaborators. We finally
present the experimental results for the all-to-all connectivity experiment. Com-
pared to 1D systems, all-to-all connected systems without compression would re-
quire O(L3) SWAP gates per circuit to implement all the 2 qubit unitaries on hard-
ware with nearest neighbor interactions. This prohibitive scaling makes all-to-all
systems harder to simulate than 1D systems. With circuit compression, however,
the resource requirements are the same as the 1D system since in both cases the
compressed circuits have L/2 qubits and at most L/2 mid-circuit measurements.
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We demonstrate this resource reduction application of circuit compression by ex-
perimentally observing an MIPT for an all-to-all connected system. Theory predicts
qualitatively similar dependencies of the cross entropy on p and L as in the 1D case,
but the transition is in a different universality class [328]. The initial states used in
this experiment are the same as in the 1D-chain case.

0.05 0.10 0.15 0.20 0.25 0.30
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0.7

0.8

0.9

1.0 (a)

1.5 1.0 0.5 0.0 0.5
L1/ (p pc)

0.7

0.8

0.9

1.0 (b)

10 16 22 28 34 40
L

Figure 5.5: (a) Cross entropy χ for infinite-dimensional systems with up to 20
physical qubits (corresponding to a system size of L =40 qubits before compres-
sion) computed on ibm_sherbrooke. (b) Collapse of cross entropy curves near the
critical point obtained by minimizing the scatter of all points to an unknown scaling
function. The fitting procedure gives a critical measurement rate of pc = 0.26±0.02
and critical exponent ν = 1.9±0.4.

Fig. 5.5 shows χ for p increasing from 0.05 to 0.325. The qualitative features of
χ in the all-to-all case are similar to the 1D-chain case, with larger values of χ for
larger systems when p < pc, crossing of all χ for different L at critical value of p,
and a plateau to a constant for p > pc. The critical values we extract from fitting to
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the finite size scaling form Eq. (5.8) are pc = 0.26±0.02 and ν = 1.9±0.4 at the
90% confidence level.

A mean-field analysis of all-to-all circuits [328] predicts ν ≈ 2.5, and numerical
simulations of uncompressed noisy circuits in the presence of a 0.1% erasure chan-
nel predicts ν ≈ 0.8 (see Appendix Fig. 9.7). The presence of noise evidently re-
duces the value of ν , and may explain why the ν obtained from experiments is
lower than the theoretical value of 2.5. The increased value of pc for the infinite-
dimensional case compared to the 1D case is consistent with the intuitive picture
that entanglement in a system with high connectivity is more stable to measure-
ments that in one with low connectivity.

5.6 Resource analysis
We now discuss the resource requirements of this protocol compared to previous
studies of measurement-induced phase transitions. The demonstrations reported
here required fewer than 8 device-hours while retaining the hardware implementa-
tion of mid-circuit measurements. This value is more than two orders of magnitude
less than the 5200 device-hours in Ref. [304] Additionally, we were able to demon-
strate this protocol using 22 hardware qubits, corresponding to uncompressed sys-
tems of up to 44 qubits. This size regime is presently inaccessible to protocols
requiring post-selection.

In particular, the total number of device-hours required was reduced from above
5,200 device-hours in Ref. [304] to less than 8 device-hours in our demonstration
while retaining the hardware implementation of mid-circuit measurements.

With the use of circuit compression, we expect that larger systems with as many as
30 physical qubits could be accessed while still maintaining the fidelity of the cur-
rent experiments. The limiting factor in the present demonstration is only the com-
putational cost of the circuit compression which scales polynomially with system
size. As this work focused on demonstrating the protocol on near-term hardware,
we did not emphasize efficient implementations of the classical circuit-compression
algorithm; this task could be a focus of future work. To increase to larger system
sizes, the bulk and encoding ratios can also be reduced from 3, used in our experi-
ments, to as low as 1 while still maintaining a visible phase transition.

Improvement of the experimental performance of the processor, for instance by
reducing cross-talk and introducing carefully tailored dynamical decoupling se-
quences may also allow us to explore the phase transition in even larger systems.
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Preliminary experiments including dynamical decoupling show some improvement
in the fidelity obtained in the intermediate regime of 5 to 8 hardware qubits; how-
ever, for larger systems dynamical decoupling had little effect and so was not used
in any of the experiments, see SI Sec. 9.6. We have also attempted a readout error
mitigation for our ρ ̸= σ experiments in 1D, which did not change our results and
was not applied to our data, see SI Sec. 9.6.

5.7 Discussion
Our results show that MIPTs can be studied efficiently for systems with various
connectivities on near-term superconducting quantum hardware, when restricted to
Clifford circuits with an arbitrary initial state. The cross-entropy protocol used
in this Letter eliminates both of the exponential bottlenecks in previous studies of
MIPTs on superconducting hardware [304] while preserving the mid-circuit mea-
surements in the bulk of the circuit, providing a benchmark for the quality of mid-
circuit measurements in near-term quantum hardware. In future work, this protocol
may be extended to extract other critical exponents using a different circuit struc-
ture [310], or to detect other related phenomena [295, 297, 329–332].

A technique we used throughout this work is Clifford circuit compression, which
takes a circuit with non-stabilizer initial states and outputs a gate-efficient repre-
sentation for it. Circuit compression allows us to study systems larger than the
number of available hardware qubits while minimizing the number of mid-circuit
measurements, which is the slowest element of hybrid circuits. Circuit compression
also makes possible the exploration of related phenomena on graphs that cannot be
embedded in 2D, for example on those with all-to-all connectivity [292, 293] or
on trees [285, 319]. From the cross entropy data for ρ ̸= σ we can extract criti-
cal exponents that are evidently comparable to classical simulations and theoretical
predictions, even though no error mitigation techniques are applied. On the other
hand, the circuit compression complicates the propagation of noise, whose analysis
we leave for future work.

Comparing χρ=σ (Fig. 5.3) with χρ ̸=σ (Fig. 5.4a), we find that the former is often
visibly smaller than the latter, particularly for the larger values of p we accessed
in our experiments. On the other hand, as we show in Appendix 9.2 with rigorous
arguments, one has the bound χρ=σ ≥ χρ ̸=σ in Clifford circuits with a simple noise
model, namely those that can be written as stabilizer operations and their proba-
bilistic mixtures. These include the erasure errors we use in our classical numerical
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simulations. We attribute the violation of this bound to real device error, which nec-
essarily involves e.g. coherent and non-unital noise which are not included in our
simple noise model. Evidently, χρ=σ is more sensitive to noise than when two dif-
ferent initial states are used. It will be an interesting future direction to explore the
effects and the description of real device noise on the critical properties, and con-
versely, the extent to which a phase transition in cross entropy can be informative
of experimental conditions and changes, such as dynamical decoupling, for large
systems where process tomography is too costly.

5.8 Summary
In this work, we demonstrate the detection of MIPT on IBM superconducting de-
vices by a prototypical hybrid Clifford circuit model on IBM superconducting de-
vices. Compared with our previous work, this work employs the linear cross-
entropy benchmarking protocol and overcomes the notorious post-selection issues.
We also introduce a Clifford circuit compression algorithm that significantly re-
duces the circuit depth. With the linear cross-entropy benchmarking and the Clif-
ford circuit compression algorithm, we realize the detection of MIPT with up to 22
physical qubits using only 8 device hours, which significantly improves from our
previous work, which used over 5200 device hours. Detection of MIPT is observed
on both 1D-connected and all-to-all-connected circuit models. We also compare the
critical exponents with the theoretical predictions and find good agreements. This
work paves the way for studies of other critical phenomena on near-term quantum
hardware and provides a potential benchmarking tool for quantum circuits with
mid-circuit measurements.
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6.1 Feature definition
Tables 6.1 and 6.2 specify how the improved feature vector fi j corresponding to the
(i, j) pair of occupied orbitals. The feature vector is composed of several blocks
listed in each row of the tables. Indices k, l, ... indicate occupied orbitals except for
i and j, while indices a,b indicate virtual orbitals. A sorting is applied to the blocks
with more than one element, and the sorting criterion of each block is listed in the
tables.

Table 6.1: Diagonal part of the improved feature. The importance I is, if necessary,
defined within a row.

Name Value Sorting Criterion
Fii

〈
i| f̂ |i

〉
—

Fik
∣∣〈i| f̂ |k〉∣∣ ⟨ii|kk⟩3

Faa
〈
a| f̂ |a

〉
· I I = ⟨ii|aa⟩3

Fab
∣∣〈a| f̂ |b〉∣∣ · I I = ⟨ii|aa⟩⟨aa|bb⟩⟨ii|bb⟩

(2Faa−2Fii)(2Fbb−2Fii)

[κ ii]ii ⟨ii|ii⟩3 –
[κ ii]kk ⟨ii|kk⟩3 ⟨ii|kk⟩3

[κ ii]aa ⟨ii|aa⟩3 ⟨ii|aa⟩3

[κaa]aa ⟨aa|aa⟩3 · I I = ⟨ii|aa⟩3

[κaa]bb ⟨aa|bb⟩3 · I I = ⟨ii|aa⟩⟨aa|bb⟩⟨ii|bb⟩
(2Faa−2Fii)(2Fbb−2Fii)

[κ ik]ik ⟨ik|ik⟩ ⟨ik|ik⟩
[κ ia]ia ⟨ia|ia⟩ ⟨ia|ia⟩
[κab]ab ⟨ab|ab⟩ · I I = ⟨ia|ia⟩⟨ab|ab⟩⟨ib|ib⟩

(2Faa−2Fii)(2Fbb−2Fii)
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Table 6.2: Off-diagonal part of the improved feature. The importance I is, if neces-
sary, defined within a row. The damping function is defined as G(ri j) =

1
1+ 1

6 (ri j/r0)6

Name Value Sorting Criterion
Fĩĩ G(ri j) ·

(1
2

〈
i| f̂ |i

〉
+ 1

2

〈
j| f̂ | j

〉
+
∣∣〈i| f̂ | j〉∣∣) —

Fĩ j̃ G(ri j) ·
∣∣〈ĩ| f̂ | j̃〉∣∣ —

Fj̃ j̃ G(ri j) ·
(1

2

〈
i| f̂ |i

〉
+ 1

2

〈
j| f̂ | j

〉
−
∣∣〈i| f̂ | j〉∣∣) —

Fĩk G(ri j) ·
(

1√
2

∣∣〈i| f̂ |k〉∣∣+ 1√
2

∣∣〈 j| f̂ |k
〉∣∣) 1√

2
⟨ii|kk⟩3 + 1√

2
⟨ j j|kk⟩3

F j̃k G(ri j) ·
∣∣∣ 1√

2

∣∣〈i| f̂ |k〉∣∣− 1√
2

∣∣〈 j| f̂ |k
〉∣∣∣∣∣ ∣∣∣ 1√

2
⟨ii|kk⟩3− 1√

2
⟨ j j|kk⟩3

∣∣∣
Faa G(ri j) ·

〈
a| f̂ |a

〉
· I I =

∣∣∣1
2 ⟨ii|aa⟩3− 1

2 ⟨ j j|aa⟩3
∣∣∣

Fab G(ri j) ·
∣∣〈a| f̂ |b〉∣∣ · I I =

(| 12 ⟨ii|aa⟩− 1
2 ⟨ j j|aa⟩|)⟨aa|bb⟩(| 12 ⟨ii|bb⟩− 1

2 ⟨ j j|bb⟩|)
(2Faa−Fii−Fj j)(2Fbb−Fii−Fj j)

[κ ĩĩ]ĩĩ G(ri j)
(
·12 ⟨ii|ii⟩

3 + 1
2 ⟨ j j| j j⟩3 + ⟨ii| j j⟩3

)
—

[κ ĩĩ] j̃ j̃ G(ri j) ·
∣∣∣1

2 ⟨ii|ii⟩
3− 1

2 ⟨ j j| j j⟩3
∣∣∣ —

[κ j̃ j̃] j̃ j̃ G(ri j) ·
(

1
2 ⟨ii|ii⟩

3 + 1
2 ⟨ j j| j j⟩3−⟨ii| j j⟩3

)
—

[κ ĩĩ]kk G(ri j) ·
(

1√
2
⟨ii|kk⟩3 + 1√

2
⟨ j j|kk⟩3

)
1√
2
⟨ii|kk⟩3 + 1√

2
⟨ j j|kk⟩3

[κ j̃ j̃]kk G(ri j) ·
∣∣∣ 1√

2
⟨ii|kk⟩3− 1√

2
⟨ j j|kk⟩3

∣∣∣ ∣∣∣ 1√
2
⟨ii|kk⟩3− 1√

2
⟨ j j|kk⟩3

∣∣∣
[κ ĩĩ]aa G(ri j) ·

(
1√
2
⟨ii|aa⟩3 + 1√

2
⟨ j j|aa⟩3

)
1√
2
⟨ii|aa⟩3 + 1√

2
⟨ j j|aa⟩3

[κ j̃ j̃]aa G(ri j) ·
∣∣∣ 1√

2
⟨ii|aa⟩3− 1√

2
⟨ j j|aa⟩3

∣∣∣ ∣∣∣ 1√
2
⟨ii|aa⟩3− 1√

2
⟨ j j|aa⟩3

∣∣∣
[κaa]aa G(ri j) · ⟨aa|aa⟩3 · I I =

∣∣∣1
2 ⟨ii|aa⟩3− 1

2 ⟨ j j|aa⟩3
∣∣∣

[κaa]bb G(ri j) · ⟨aa|bb⟩3 · I I =
(| 12 ⟨ii|aa⟩− 1

2 ⟨ j j|aa⟩|)⟨aa|bb⟩(| 12 ⟨ii|bb⟩− 1
2 ⟨ j j|bb⟩|)

(2Faa−Fii−Fj j)(2Fbb−Fii−Fj j)

[κ ĩ j̃]ĩ j̃ G(ri j) ·
∣∣1

2 ⟨ii|ii⟩−
1
2 ⟨ j j| j j⟩

∣∣ —

[κ ĩk]ĩk G(ri j) ·
(

1√
2
⟨ik|ik⟩+ 1√

2
⟨ jk| jk⟩

)
1√
2
⟨ik|ik⟩+ 1√

2
⟨ jk| jk⟩

[κ j̃k] j̃k G(ri j) ·
∣∣∣ 1√

2
⟨ik|ik⟩− 1√

2
⟨ jk| jk⟩

∣∣∣ ∣∣∣ 1√
2
⟨ik|ik⟩− 1√

2
⟨ jk| jk⟩

∣∣∣
[κ ĩa]ĩa G(ri j) ·

(
1√
2
⟨ia|ia⟩+ 1√

2
⟨ jk| jk⟩

)
1√
2
⟨ia|ia⟩+ 1√

2
⟨ jk| jk⟩

[κ j̃a] j̃a G(ri j) ·
∣∣∣ 1√

2
⟨ia|ia⟩− 1√

2
⟨ ja| ja⟩

∣∣∣ ∣∣∣ 1√
2
⟨ia|ia⟩− 1√

2
⟨ ja| ja⟩

∣∣∣
[κab]ab G(ri j) · ⟨ab|ab⟩ · I I =

(| 12 ⟨ia|ia⟩− 1
2 ⟨ ja| ja⟩|)⟨ab|ab⟩(| 12 ⟨ib|ib⟩− 1

2 ⟨ jb| jb⟩|)
(2Faa−Fii−Fj j)(2Fbb−Fii−Fj j)

6.2 Rotational equivariance of dipole model
In this section, we prove that rotational equivariance is satisfied by both the single-
task and multi-task GPR model with derivatives, respectively.

We first prove the rotational equivariance for the single-task GPR model.

Theorem 1. For an n-dimensional external variable α ∈ Rn, we train single-task
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GPR with derivatives using features Xc = (X,∇αX) and labels ∇αy and generate

the predicted distribution ∇α f (X⋆
c) on test features X⋆

c . Assume that the transfor-

mation of features and labels under rotation operator Û is given by

ÛX = X,Û∇αX =U∇αX,Ûy = y,Û∇αy =U∇αy, (6.1)

we show that ∇α f (X⋆
c) satisfies rotational equivariance:

∇α f (ÛX⋆
c) =U∇α f (X⋆

c). (6.2)

Proof. In single-task GPR with derivatives, the kernel matrix element of xc =(x,∇αx),
x′c = (x′,∇αx′) is

Ks(xc,x′c) = ∇αx∇x∇x′K(x,x′)(∇αx′)T . (6.3)

Let the Gaussian likelihood covariance to be Σs. The prediction on X⋆
c is a Gaussian

distributed function ∇α f (X⋆
c) with the mean and variance

E[∇α f (X⋆
c)] = Ks(X⋆

c ,Xc)(Ks(Xc,Xc)+Σs)
−1

∇αy, (6.4)

Var[∇α f (X⋆
c)] = Ks(X⋆

c ,Xc)(Ks(Xc,Xc)+Σs)
−1Ks(Xc,X⋆

c). (6.5)

So the rotational equivariance is equivalent to

E[∇α f (ÛX⋆
c)] =UE[∇α f (ÛX⋆

c)],

Var[∇α f (ÛX⋆
c)] =UVar[∇α f (ÛX⋆

c)]U
T .

Note that

Ks(ÛX⋆
c ,Xc) =U∇αX⋆

∇x⋆∇XK(X⋆,X)(∇αX)T =UKs(X⋆
c ,Xc), (6.6)

Ks(Xc,ÛX⋆
c) = ∇αX∇X∇x⋆K(X,X⋆)(U∇αX⋆)T = Ks(Xc,X⋆

c)U
T . (6.7)

Thus we have

E[∇α f (ÛX⋆
c)] = Ks(ÛX⋆

c ,Xc)(Kx(Xc,Xc)+Σs)
−1

∇αy (6.8)

=UKs(X⋆
c ,Xc)(Kx(Xc,Xc)+Σs)

−1
∇αy (6.9)

=UE[∇α f (X⋆
c)] (6.10)

and

Var[∇α f (ÛX⋆
c)] = Ks(ÛX⋆

c ,Xc)(Kx(Xc,Xc)+Σs)
−1Ks(Xc,ÛX⋆

c) (6.11)

=UKs(X⋆
c ,Xc)(Kx(Xc,Xc)+Σs)

−1Ks(Xc,X⋆
c)U

T (6.12)

=UVar[∇α f (ÛX⋆
c)]U

T . (6.13)

which finish the proof.
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In MOB-ML dipole learning, the features fµ
i j = {f ε

i j,∇EEE f
ε
i j} and the pair dipole

moment labels satisfy the condition in Eq. 6.1, and thus the prediction µML is
rotational equivariant.

We then prove the rotational equivariance for the multi-task GPR model.

Theorem 2. For an n-dimensional external variable α ∈ Rn, we train multi-task

GPR with derivatives using features Xc = (X,∇αX) and labels yc = (y,∇αy) and

generate the predicted distribution

[
f (X⋆

c)

∇α f (X⋆
c)

]
on test features X⋆

c . Assume that

the transformation of features and labels under rotation operator Û is given by

ÛX = X,Û∇αX =U∇αX,Ûy = y,Û∇αy =U∇αy, (6.14)

we show that f (X⋆
c) satisfies rotaional invariance and ∇α f (X⋆

c) satisfies rotational

equivariance: [
f (ÛX⋆

c)

∇α f (ÛX⋆
c)

]
=

[
f (X⋆

c)

U∇α f (X⋆
c)

]
. (6.15)

Proof. In multi-task GPR with derivatives, the kernel matrix element for xc =

(x,∇αx), x′c = (x′,∇αx′) is

Km(xc,x′c) =

[
K(x,x′) ∇x′K(x,x′)(∇αx′)T

∇αx∇xK(x,x′) ∇αx∇x∇x′K(x,x′)(∇αx′)T

]
. (6.16)

Let the Gaussian likelihood covariance to be Σm. The prediction of X⋆
c is a Gaussian

distributed function

[
f (X⋆

c)

∇α f (X⋆
c)

]
with the mean and variance

E[

[
f (X⋆

c)

∇α f (X⋆
c)

]
] = Km(X⋆

c ,Xc)(Km(Xc,Xc)+Σm)
−1yc, (6.17)

Var[

[
f (X⋆

c)

∇α f (X⋆
c)

]
] = Km(X⋆

c ,Xc)(Km(Xc,Xc)+Σm)
−1Km(Xc,X⋆

c). (6.18)

So the rotational equivariance is equivalent to

E[

[
f (ÛX⋆

c)

∇α f (ÛX⋆
c)

]
] =

[
I 0
0 U

]
E[

[
f (X⋆

c)

∇α f (X⋆
c)

]
], (6.19)

Var[

[
f (ÛX⋆

c)

∇α f (ÛX⋆
c)

]
] =

[
I 0
0 U

]
Var[

[
f (X⋆

c)

∇α f (X⋆
c)

]
]

[
I 0
0 UT

]
. (6.20)
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Note that

Km(ÛX⋆
c ,Xc) =

[
K(X⋆,X) ∇XK(X⋆,X)(∇αX)T

U∇αX⋆∇x⋆K(X⋆,X) U∇αX⋆∇x⋆∇XK(X⋆,X)(∇αX)T

]
=

[
I 0
0 U

]
Km(X⋆

c ,Xc),

(6.21)

Km(Xc,ÛX⋆
c) =

[
K(X,X⋆) ∇x⋆K(X,X⋆)(U∇αX⋆)T

∇αX∇XK(X,X⋆) ∇αX∇X∇x⋆K(X,X⋆)(U∇αX⋆)T

]
= Km(Xc,X⋆

c)

[
I 0
0 UT

]
.

(6.22)

Thus we have

E[

[
f (ÛX⋆

c)

∇α f (ÛX⋆
c)

]
] = Km(ÛX⋆

c ,Xc)(Km(Xc,Xc)+Σm)
−1yc, (6.23)

=

[
I 0
0 U

]
Km(X⋆

c ,Xc)(Km(Xc,Xc)+Σm)
−1yc, (6.24)

=

[
I 0
0 U

]
E[

[
f (ÛX⋆

c)

∇α f (ÛX⋆
c)

]
], (6.25)

and

Var[

[
f (ÛX⋆

c)

∇α f (ÛX⋆
c)

]
] = Km(ÛX⋆

c ,Xc)(Km(Xc,Xc)+Σm)
−1Km(Xc,ÛX⋆

c), (6.26)

=

[
I 0
0 U

]
Ks(X⋆

c ,Xc)(Km(Xc,Xc)+Σm)
−1Km(Xc,X⋆

c)

[
I 0
0 UT

]
,

(6.27)

=

[
I 0
0 U

]
Var[

[
f (ÛX⋆

c)

∇α f (ÛX⋆
c)

]
]

[
I 0
0 UT

]
, (6.28)

which finish the proof.

In MOB-ML energy+dipole learning, the features fµ
i j = {f ε

i j,∇EEE f
ε
i j} and the labels

(pair energies and pair dipoles) satisfy the condition in Eq. 6.14, and thus the energy
prediction εML is rotational invariant and the dipole prediction µML is rotational
equivariant.

6.3 Analysis of MOBML prediction for polyenoic amino acid
The true and predicted contribution of dipole moments of polyenoic amino acid is
reported in Table 6.3, and the values on each orbital pairs are reported in Table 6.4.
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Table 6.3: True and predicted contribution (debye) of polyenoic amino acid with
different n values. The model is trained on QM9 110K molecules with derivative
kernel. The corresponding true and predicted dipoles are shown in Figure 7c in the
main text.

n True correlation Predicted correlation
2 -0.7241 -0.7590
4 -1.4535 -1.7515
6 -2.1242 -3.1819
8 -2.7921 -4.7708

10 -3.4290 -6.5512

Table 6.4: Average pair-wise dipole true and predicted contribution (debye) of each
type of MO for the correlation part of the dipole of polyenoic amino acid with n=6.
The correlation parts are computed using true MP2 as a reference (on the direction
of true MP2). The off-diagonal pairs have already been summed up and included in
the contributions. The CC double bond has a significantly large error. The model
is trained on QM9 110K molecules with derivative kernel. The corresponding true
and predicted dipoles are shown in Figure 7c in the main text.

Connection Bond order True correlation Predicted correlation
CC 1 0.1985 0.2162
CC 2 -0.1946 -0.0466
CN 1 0.4573 0.4793
CO 1 -0.2568 -0.2742
CO 2 -0.6463 -0.6508
CH 1 -0.0113 -0.0119
NH 1 -0.0843 -0.0897
OH 1 0.1780 0.1570
N – 0.9734 0.9591
O – -0.1056 -0.1233
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7.1 Necessary and sufficient condition for eigenvalues of a 2× 2 real matrix
to be inside the unit circle

This section provides a proof of the standard result used in Sections 3.2 and 3.2
to infer ergodicity of the T-RPMD update for free and harmonically-confined ring
polymers.

Theorem 3. The spectral radius of a 2×2 real matrix M is strictly less than one

if and only if

|tr(M)|< 1+det(M)< 2 . (7.1)

Fig. 7.1 plots eigenvalue pairs λ1,λ2 that satisfy Eq. 7.1 for a fixed value of det(M)=

λ1λ2. Note that the spectral radius of M is minimized when λ1 and λ2 are on the
circle with radius r =

√
det(M).

Proof. Let λ1,λ2 be the (possibly complex) eigenvalues of M . By definition, the
spectral radius of M is max(|λ1|, |λ2|)=: ρ . Since M is real, both tr(M)= λ1+λ2

and det(M) = λ1λ2 are real. Thus, either:

1. λ1,λ2 are a complex conjugate pair; or,

2. λ1,λ2 are both real.

In the first case, λ1 = a+ ib and λ2 = a− ib for some real numbers a and b with
b ̸= 0, and hence, det(M) = λ1λ2 = a2 +b2 > 0, and ρ = |λ1|= |λ2|=

√
a2 +b2,

i.e., the eigenvalues lie on the circle with radius ρ =
√

a2 +b2 =
√

det(M). In this
case, the first inequality in Eq. 7.1 holds since b ̸= 0 implies

|tr(M)|= 2|a|< 2ρ ≤ 1+ρ
2 = 1+det(M) . (7.2)

Hence, Eq. 7.1 is equivalent to 1+det(M)< 2 or ρ < 1.

In the second case, λ1,λ2 are both real, and the condition |tr(M)|< 1+det(M) is
equivalent to

1+λ1λ2 +λ1 +λ2 = (1+λ1)(1+λ2)> 0 and ,

1+λ1λ2−λ1−λ2 = (1−λ1)(1−λ2)> 0 .
(7.3)

Together with det(M)= λ1λ2 < 1, these conditions are equivalent to ρ =max(|λ1|, |λ2|)<
1.
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Figure 7.1: This figure plots all possible eigenvalue pairs λ1,λ2 of a matrix M that satisfies
Eq. 7.1 with det(M) = λ1λ2 = 1/4. The eigenvalue pairs either lie on the circle with radius
r = 1/2 or are both real, and in the former case, the spectral radius of M is minimal.

7.2 Stability condition for harmonic external potentials
This section proves that condition (C3) implies property (P3), as claimed in Sec-
tion 3.2. For notational brevity, we define

A(x) := cos(θ(x))− ∆t2(Λ/m)

2
sin(θ(x))

x
. (7.4)

Note that A(x) is equal to A j,n in the display under Eq. 3.27 if x = ω j,n∆t.

Theorem 4. For any α⋆ > 0, (A2) implies (A1).

(A1) For all Λ ≥ 0, m > 0 and ∆t > 0 satisfying ∆t2Λ/m < α⋆, the function θ

satisfies

|A(x)|< 1 for x > 0 . (7.5)

(A2) The function θ satisfies:

0 < θ(x)< 2arctan(2x/α
⋆) for x > 0 . (7.6)

Proof. Let α = ∆t2(Λ/m). For notational brevity, define

φα(x) := arctan(α/(2x)) for x > 0 . (7.7)
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By the harmonic addition identity

cos(θ)− tan(φα)sin(θ) =
cos(θ +φα)

cos(φα)
, (7.8)

note that (A1) can be rewritten as∣∣∣∣cos(θ(x)+φα(x))
cos(φα(x))

∣∣∣∣< 1 for x > 0, 0 < α < α
⋆ . (7.9)

For 0 < θ(x)< π , Eq. 7.9 holds if and only if

φα(x)< θ(x)+φα(x)< π−φα(x) , (7.10)

which can be rewritten as

0 < θ(x)< 2arctan(2x/α) , (7.11)

where we used the identity

π−2arctan(x) = 2arctan(1/x) valid for x > 0 . (7.12)

Since arctan is monotone increasing, and 0 < α < α⋆ by assumption, we may con-
clude that

0 < θ(x)< 2arctan(2x/α
⋆)< 2arctan(2x/α) . (7.13)

Thus, if (A2) holds, then Eq. 7.11 holds and therefore (A1) holds.

Fix ε ∈ (0,1). Since Theorem 4 is true for arbitrary α⋆, if we take α⋆ = 4− ε ,
then the theorem holds with ∆t2Λ/m < 4− ε in Theorem 4 (A1), and θ(x) <

2arctan(2x/(4− ε)) in Theorem 4 (A2). Since ε > 0 is arbitrary, and arctan is
monotone increasing, we can conclude that the theorem holds with ∆t2Λ/m < 4
and θ(x)≤ 2arctan(x/2). Summarizing,

Corollary 5. Suppose that the function θ satisfies

0 < θ(x)≤ 2arctan(x/2) for x > 0 . (7.14)

Then for all Λ≥ 0, m > 0 and ∆t > 0 satisfying ∆t2Λ/m < 4, we have

|A(x)| < 1 for x > 0 . (7.15)
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7.3 Dimension-free quantitative contraction rate for harmonic external po-
tentials in the infinite-friction limit

In the infinite-friction limit, Eq. 3.31 simplifies to

M j,n = B1/2S
1/2
j,n

[
1 0
0 0

]
S

1/2
j,n B1/2 and

R j,n =
1

βmn
B1/2S

1/2
j,n

[
0 0
0 1

]
(B1/2S

1/2
j,n )

T .

The kth step of the corresponding T-RPMD integrator can be written compactly as[
ρ
(k)
j

ϕ
(k)
j

]
= M j,n

[
ρ
(k−1)
j

ϕ
(k−1)
j

]
+R

1/2
j,n

[
ξ
(k−1)
j

η
(k−1)
j

]
, (7.16)

where ξ
(k−1)
j and η

(k−1)
j are independent standard normal random variables. Sup-

pose that the initial velocity is drawn from the Maxwell–Boltzmann distribution,
i.e., ϕ

(0)
j ∼N (0,(βmn)

−1) and the initial position is drawn from an arbitrary dis-

tribution µ j on R, i.e., ρ
(0)
j ∼ µ j. Let pk

j,n denote the k-step transition kernel of the

position-marginal, i.e., µ j pk
j,n is the probability distribution of ρ

(k)
j with ρ

(0)
j ∼ µ j.

The next theorem shows that starting from any two initial distributions µ j and ν j on
R, the distance between the distributions µ j pk

j,n and ν j pk
j,n is contractive. We quan-

tify the distance between these distributions in terms of the 2-Wasserstein metric.
For two probability distributions µ and ν on R, the 2-Wasserstein distance between
µ and ν is defined as

W2(µ,ν) =
(

inf
X∼µ

Y∼ν

E(|X−Y |2)
)1/2

, (7.17)

where the infimum is taken over all bivariate random variables (X ,Y ) such that
X ∼ µ and Y ∼ ν .[214]

Theorem 6. Suppose that the function θ satisfies

0 < θ(x)≤ 2arctan(x/2) for x > 0 . (7.18)

Then for all k > 1, Λ ≥ 0, m > 0 and ∆t > 0 satisfying ∆t2Λ/m < 4, and for all

initial distributions µ j and ν j on R,

W2(µ j pk
j,n,ν j pk

j,n) ≤A(ω j,n∆t)k−1W2(µ j,ν j) if A(ω j,n∆t)> 0,
1
2

1
k−1W2(µ j,ν j) else.

(7.19)
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Proof. In the infinite-friction limit, the eigenvalues of M j,n are {0,A(ω j,n∆t)},
where A(x) is defined in Appendix 7.2. Let ρ

(0)
j ∼ µ j and ρ̃

(0)
j ∼ ν j be an optimal

coupling of µ j and ν j, i.e., W2(µ j,ν j) = E(|ρ(0)
j − ρ̃

(0)
j |2)1/2. Conditional on ρ

(0)
j

and ρ̃
(0)
j , ρ

(k)
j and ρ̃

(k)
j are Gaussian random variables with equal variances, but

different means. By a well-known result for the 2-Wasserstein distance between
Gaussian distributions,[215]

W2(µ j pk
j,n,ν j pk

j,n)
2

= |A(ω j,n∆t)|2(k−1)(M j,n)
2
11W2(µ j,ν j)

2

= |A(ω j,n∆t)|2(k−1) (1+A(ω j,n∆t))2

4
W2(µ j,ν j)

2 , (7.20)

where we used (M j,n)11 = (1+A(ω j,n∆t))/2.

Now we distinguish between two cases. In the case where A(ω j,n∆t)> 0, we obtain
the required result since |A(ω j,n∆t)|< 1 by Corollary 5, and therefore

(1+A(ω j,n∆t))2

4
≤ 1 . (7.21)

Otherwise, for −1 < A(ω j,n∆t)≤ 0 the quantity |A(ω j,n∆t)|2(k−1)(1+A(ω j,n∆t))2

is maximized at (−1+1/k)2k(k−1)−2, and therefore

|A(ω j,n∆t)|2(k−1) (1+A(ω j,n∆t))2

4
≤ 1

4(k−1)2 . (7.22)

Inserting Eq. 7.21 and Eq. 7.22 into Eq. 7.20, and then taking square roots, gives
the required result.

7.4 Total variation bound on the equilibrium accuracy error for harmonic
external potentials

In this section, we show that Eq. 3.37 follows from conditions (C1)-(C4) in the
setting of Section 3.2. It is helpful to recall the quantities

ω j = lim
n→∞

ω j,n =


π j
h̄β

if j is even ,

π( j+1)
h̄β

else .
(7.23)

In the following, µ j,∆t and µ j respectively denote the jth factor of the product dis-
tributions µn,∆t and µn introduced in Section 3.2.

Theorem 7. Suppose that the function θ satisfies conditions (C1)-(C4). Then for

all Λ ≥ 0, m > 0 and ∆t > 0 satisfying ∆t2Λ/m < 4, the total variation distance

between µn and µn,∆t is bounded as in Eq. 3.37.
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Proof. Subadditivity of the total variation distance dTV between product distribu-
tions and its equivalence with the Hellinger distance[213] dH lead to the inequalities

dTV(µn,µn,∆t)
2 ≤

n−1

∑
j=1

dTV(µ j,µ j,∆t)
2

≤
n−1

∑
j=1

2dH(µ j,µ j,∆t)
2 ≤

n−1

∑
j=1

2(s j− s j,∆t)
2

(s2
j + s2

j,∆t)

≤
n−1

∑
j=1

(
1−

s j

s j,∆t

)2

≤
n−1

∑
j=1

(
1−

s2
j

s2
j,∆t

)2

, (7.24)

where the second-to-last step uses Eq. 3.35 and the last step uses the elementary
inequality (1− x2)2 ≥ (1− x)2 valid for all x≥ 0.

Since tan(·) increases superlinearly on the interval (0,π), we have θ(x)/2≤ tan(θ(x)/2)≤
x/2 for x > 0, where the second inequality uses (C3). Consequently, the jth sum-
mand in Eq. 7.24 admits the bound(

1−
s2

j

s2
j,∆t

)2

=

(
Λ/m

ω2
j,n +Λ/m

(
ω j,n∆t/2

tan
(
θ(ω j,n∆t)/2

) −1

))2

≤
(

∆t2Λ/m
(ω j,n∆t)2

(
ω j,n∆t

θ(ω j,n∆t)
−1
))2

≤
(

∆t2Λ

m

)2 1
(ω j,n∆t)2 ,

(7.25)

where the last line uses the lower bound in (C4). Using that for any even positive
integer n

n−1

∑
j=1

1
ω2

j,n
< lim

n→∞

n−1

∑
j=1

1
ω2

j,n
=

∞

∑
j=1

1
ω2

j
<

(
h̄β

π

)2 ∞

∑
j=1

2
j2 , (7.26)

where we used Eq. 7.23, the bound in Eq. 7.24 becomes

dTV(µn,µn,∆t)
2 <

(
∆t2Λ

m

)2( h̄β

π∆t

)2 ∞

∑
j=1

2
j2 . (7.27)

Taking square roots and using the Riemann zeta function[333] to evaluate the infi-
nite sum yields Eq. 3.37.

7.5 Asymptotic variance of kinetic energy observables for harmonic external
potentials in the infinite-friction limit

In Section 3.3, Figs. 3.4b and 3.4d show that the T-RPMD scheme specified by
θ(x) = 2arctan(x/2), which coincides with the Cayley-modified BAOAB scheme
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introduced in Ref. [205], provides the smallest integrated autocorrelation time (Eq. 3.40)
for quantum kinetic energy observables (Eq. 3.39) among several schemes with
properties (P1)-(P5). In this section, we show that this scheme minimizes an up-
per bound (Eq. 7.32) on the integrated autocorrelation time of the quantum kinetic
energy among all dimension-free and strongly-stable BAOAB-like schemes for har-
monic external potentials.

To this end, note that for a n-bead thermostatted ring polymer with external potential
V ext

n (q) = Λ

2n |q|
2, Eq. 3.39 can be rewritten

KEpri
n (ϱ) =

n
2β
−

n−1

∑
j=1

mnω2
j,n

2
ρ

2
j and

KEvir
n (ϱ) =

1
2β

+
n−1

∑
j=1

Λ

2n
ρ

2
j ,

(7.28)

where ϱ is defined in Eq. 3.12. In the following, we denote both observables in
Eq. 7.28 as KEn and distinguish between the two as needed.

To control the integrated autocorrelation time of KEn, we need the stationary au-
tocorrelation Cor

(
KEn(ϱ

(0)),KEn(ϱ
(k∆t))

)
for k ≥ 0. Note that the distributions of

ϱ(k∆t) and ϱ(0) are equal by stationarity, and that components (ρ j)
n−1
j=0 are uncorre-

lated in a harmonic external potential. Thus,

Cor
(
KEn(ϱ

(0)),KEn(ϱ
(k∆t))

)
=

n−1

∑
j=1

χ j,nCor
(
|ρ(0)

j |
2, |ρ(k∆t)

j |2
)
,

where

χ j,n =
κ2

j,nVar
(
|ρ(0)

j |2
)

∑
n−1
i=1 κ2

i,nVar
(
|ρ(0)

i |2
) (7.29)

and

κ j,n =


mnω2

j,n
2 for KEpri

n ,

Λ

2n for KEvir
n .

(7.30)

If the evolution of the ring polymer is governed by the BAOAB-like update in
Eq. 3.20, then the jth mode satisfies

Cor
(
|ρ(0)

j |
2, |ρ(k∆t)

j |2
)
=

Cov
(
|ρ(0)

j |2, |ρ
(k∆t)
j |2

)
Var
(
|ρ(0)

j |2
)

= (M k
j,n)

2
11 ,

(7.31)
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where we used that the phase
[
ρ
(k∆t)
j ϕ

(k∆t)
j

]T
follows a centered Gaussian distri-

bution with covariance given in Eq. 3.33 for all k ≥ 0. Therefore, in the infinite-
friction limit where M j,n is given in Appendix 7.3, the integrated autocorrelation
time of KEn evaluates to

aVar(KEn)

Var(KEn)
= 1+2

n−1

∑
j=1

χ j,n

∞

∑
k=1

(M k
j,n)

2
11

≤ 1+
1
2

max
1≤ j≤n−1

∣∣∣∣1+A(ω j,n∆t)
1−A(ω j,n∆t)

∣∣∣∣ , (7.32)

where simplification of (M k
j,n)11 was aided by the Cayley–Hamilton theorem for

2×2 matrices,[334] A(x) is defined in Appendix 7.2, and in the last line we used that

∑
n−1
j=1 χ j,n = 1. Eq. 7.32 states that the integrated autocorrelation time of KEn can

only be as small as that of the component |ρ j|2 exhibiting the slowest uncorrelation
at stationarity.

Having derived Eq. 7.32, we now prove our claim for this section. Let x :=ω j,n∆t >

0 and α := ∆t2Λ/m ∈ (0,4). For fixed x and α , the function A(x) := cos(θ(x))−
α

2x sin(θ(x)) monotonically decreases toward −1 as the angle θ(x) increases to-
ward π . Consequently, the function

∣∣(1+A(x)
)
/
(
1−A(x)

)∣∣ decreases (toward 0)
as θ(x) increases (toward π), but condition (C3) requires θ(x) ≤ 2arctan(x/2) to
achieve stable evolution. Therefore, because it yields the largest stable angle, the
choice θ(x) = 2arctan(x/2) (i.e., the Cayley angle) minimizes the upper bound in
Eq. 7.32.

A similar argument can be made to support the conjecture, suggested by Fig. 3.4f,
that the non-centroid velocity estimator for the classical kinetic energy KEcla

n in
Eq. 3.41, equivalently written

KEcla
n (φ) =

mn

2(n−1)

n−1

∑
j=1

ϕ
2
j (7.33)

with φ defined in Eq. 3.12, exhibits a maximal integrated autocorrelation time if the
Cayley angle θ(x) = 2arctan(x/2) is used. Indeed, the integrated autocorrelation
time of this estimator is bounded by

aVar(KEcla
n )

Var(KEcla
n )
≤ 1+

1
2

max
1≤ j≤n−1

∣∣∣∣1−A(ω j,n∆t)
1+A(ω j,n∆t)

∣∣∣∣ , (7.34)

where the function
∣∣(1−A(x)

)
/
(
1+A(x)

)∣∣ monotonically increases as θ(x) ap-
proaches the largest stable (i.e., Cayley) angle for fixed x and α .
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To conclude, we note that the conclusions of this section hold for arbitrary friction
schedules despite our use of the infinite-friction limit in Eqs. 7.32 and 7.34.

7.6 Stability interval calibration for liquid water simulations
This section describes the computational procedure used to identify ∆t = 1.4 fs as
close to the upper bound of the stability interval of T-RPMD applied to q-TIP4P/F
liquid water at 298 K and 0.998 g/cm3. The procedure consisted of integrating
an ensemble of 104 thermally initialized T-RPMD trajectories using the algorithm
outlined in Section 3.2 in its single-bead realization (identical to velocity Verlet in
classical MD[171]), and counting the fraction of trajectories that remained within
an energy sublevel (i.e., did not exhibit detectable energy drift) throughout their
duration for each tested time-step. A time-step was deemed stable if 99% or more
of the ensemble remained in an energy sublevel throughout a 50-picosecond time
period. A range of time-steps was tested, and the fraction of stable trajectories at
each time-step is reported in Fig. 7.2.

To avoid initialization bias in the stability interval estimation, thermalized initial
phase-points were generated with a Metropolized Markov-chain Monte Carlo sam-
pler targeted at the equilibrium configurational distribution of the liquid. Specif-
ically, a randomized Hamiltonian Monte Carlo[196, 335] (rHMC) simulation of
sufficient length was used to thermalize a crystalline configuration of the system at
the target density, and 102 configurations were extracted from well-separated points
along the rHMC trajectory. Each of these approximately independent draws from
the equilibrium configurational distribution of the liquid at the target physical con-
ditions was subsequently paired with 102 independent velocities drawn from the
corresponding Maxwell–Boltzmann distribution, yielding 104 approximately inde-
pendent draws from the phase space distribution of the classical liquid at thermal
equilibrium.

7.7 One-dimensional quantum harmonic oscillator
Numerical equilibrium averages and integrated autocorrelation times for the quan-
tum harmonic oscillator were estimated by averaging over a 10-nanosecond T-
RPMD trajectory integrated using the algorithm listed in Section 3.2, and initial-
ized at an exact sample from the numerical stationary distribution (listed for the jth
ring-polymer mode in Eq. 3.34) corresponding to the physical parameters (i.e., Λ,
m, and β ) and simulation parameters (i.e., n, ∆t, and the function θ ) listed in Sec-
tion 3.3. Specifically, the statistics reported in Fig. 3.4 were obtained by partitioning
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Figure 7.2: Stability interval calibration for q-TIP4P/F room-temperature liquid water
simulations. Data points correspond to the fraction of thermally initialized single-bead
T-RPMD trajectories that remained stable over a 50-picosecond period at the respective
integration time-step ∆t. Error bars correspond to the standard error of the fraction of sta-
ble trajectories across initialization points with different configurations. The gray dashed
line marks the ≥99% threshold for deeming a time-step stable, which no time-step beyond
∆t = 1.4 fs reaches.

the T-RPMD trajectory into 10 disjoint blocks, estimating the equilibrium average
and autocorrelation time within each block, and computing the sample mean and
standard error among the resulting block estimates with 1000 bootstrap resamples.

We now describe the formulas and methods used to obtain block estimates for the
equilibrium mean and integrated autocorrelation time. The equilibrium average
µOn of observable On within each block of the partitioned T-RPMD trajectory was
estimated using the standard estimator[336]

µ̂On =
1
K

K−1

∑
k=0

O
(k∆t)
n , (7.35)

where K is the number of steps in the block (i.e., the block size) and O
(k∆t)
n the

value of On at the kth step within the block. Similarly, the lag-k∆t autocovariance
COn(k∆t) was estimated using[336]

ĈOn(k∆t) =
K−k−1

∑
ℓ=0

(
O
(ℓ∆t)
n −µ̂On

)(
O
((ℓ+k)∆t)
n −µ̂On

)
K− k

(7.36)

for 0 ≤ k∆t ≤ (K− 1)∆t = 1 ns. The integrated autocorrelation time was subse-
quently estimated using[218, 336]

âVarOn

VarOn

(M) = 1+2
M

∑
k=1

ĈOn(k∆t)
ĈOn(0)

, (7.37)
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where 0 < M ≤ K is a suitable cutoff. The choice of M is nontrivial, as it car-
ries a trade-off between bias (more pronounced at small M) and variance (more
pronounced at large M).[218] To choose M judiciously, we follow the automatic

windowing (AW) method described in Appendix C of Ref. [337]. The AW method
dictates that M should correspond to the smallest lag that satisfies the inequality

M ≥ c
âVarOn

VarOn

(M) , (7.38)

where the parameter c > 0 dictates the variance-bias trade-off in place of M, and is
chosen as large as possible to reduce the bias of the estimator for a given variance
threshold.

Fig. 7.3 illustrates usage of the AW method for integrated autocorrelation time
estimation, using trajectory data generated by the T-RPMD scheme with θ(x) =

2arctan(x/2) at n = 64 beads and ∆t = 2.0 fs, and focusing on the observables
KEpri

n (black), KEvir
n (red), and KEcla

n (cyan) introduced in Section 3.3. The esti-
mated integrated autocorrelation times are plotted with solid lines in Fig. 7.3a for
various values of c, and the corresponding cutoffs M are plotted in Fig. 7.3b. Exact
integrated autocorrelation times are plotted with dashed lines in Fig. 7.3a. Note
that as c (and thus M) increases, the estimates converge to the corresponding exact
values at the expense of a larger variance, which can nonetheless be controlled by
adjusting the block size K.

7.8 Room-temperature liquid water
The equilibrium averages and integrated autocorrelation times reported in Fig. 3.5
were obtained by averaging over 10-nanosecond T-RPMD trajectories integrated
for each considered bead number n, time-step ∆t, and function θ . All trajectories
were initialized at an approximate sample from the corresponding numerical equi-
librium distribution, obtained by thermalizing for 20 picoseconds a classical (i.e.,
n = 1) configuration of the system into the n-bead ring-polymer phase space. The
reference equilibrium averages plotted with dashed lines in Fig. 3.5 were obtained
by averaging over a one-nanosecond, 256-bead staging PIMD[190] trajectory inte-
grated at a 0.1-fs time-step with the mass and friction parameters recommended in
Ref. [192], and initialized with the same protocol used for the T-RPMD simulations.

The observables considered in Fig. 3.5 measure properties per H atom or per H2O
molecule, and thus the reported values are averages over estimates obtained for
each simulated moiety. The equilibrium mean and integrated autocorrelation time
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Figure 7.3: Integrated autocorrelation times of several observables of the one-dimensional
harmonic oscillator in Section 3.3, estimated with the AW method. Trajectory data for
the estimates was generated using the T-RPMD scheme with θ(x) = 2arctan(x/2) at n =
64 beads and ∆t = 2.0 fs, and processed as described in the current section. Estimated
(resp. exact) integrated autocorrelation times for observables KEpri

n (black), KEvir
n (red),

and KEcla
n (cyan) are shown in solid (resp. dashed) lines in panel (a) as a function of the

windowing parameter c. Panel (b) plots the cutoffs determined by the choice of c for the
three observables, where the linear relation between M∆t and c at large values of the latter
corroborates the non-spurious convergence of the autocorrelation time estimates.
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of observable On for each moiety was estimated by partitioning the trajectory of the
moiety into 10 disjoint 1-nanosecond blocks, evaluating Eqs. 7.35 and 7.37 within
each block, and determining the sample mean and standard error among the block
estimates with 1000 bootstrap resamples. The AW method[337] was applied to
choose a cutoff lag M ≤ 1 ns in Eq. 7.37, as illustrated in Fig. 7.3 for the harmonic
oscillator application.

The T-RPMD trajectories used to generate Fig. 3.5 also yielded Fig. 3.6, where
panels (a) and (c) plot autocovariance functions of the form 1

NH2O
∑

NH2O
i=1 E

(
Ōi(0) ·

Ōi(k∆t)
)
, where NH2O = 32 is the number of simulated H2O molecules and Ōi(k∆t)

is the bead-averaged value of observable O (e.g., the molecular dipole moment
or center-of-mass velocity) on the ith molecule at time k∆t along a stationary T-
RPMD trajectory. The autocovariance E

(
Ōi(0) · Ōi(t)

)
was estimated for the lags

k∆t shown in Fig. 3.6 by

E
(
Ōi(0) · Ōi(k∆t)

)
≈

K−k−1

∑
ℓ=0

Ō
(ℓ∆t)
i · Ō((ℓ+k)∆t)

i
K− k

, (7.39)

where K∆t = 1 ns is the length of each block in a partitioned 10-nanosecond T-
RPMD trajectory. As with the results in Fig. 3.5, statistics for each molecule were
obtained from block estimates via bootstrapping, and Figs. 3.6a and 3.6c report
molecule-averaged statistics.

Fig. 7.4 validates the 20-picosecond thermalization interval used to initialize the
trajectories that generated Figs. 3.5 and 3.6. In detail, Figs. 7.4a and 7.4b (resp.,
Figs. 7.4c and 7.4d) plot the non-equilibrium mean of the primitive and virial quan-
tum kinetic energy per H atom (resp. the mean O−H bond and H−O−H angle
potential energy per water molecule) as it approaches the equilibrium value in
Figs. 3.5a and 3.5c (resp., Figs. 3.5e and 3.5g) for a 64-bead ring polymer at a
1.4 fs time-step with the considered choices of θ . At each time k∆t within the
20-picosecond interval, the non-equilibrium mean is estimated by averaging across
1000 independent trajectories initialized at a point-mass distribution on the n-bead
ring-polymer phase space centered at the classical (i.e., n = 1) sample used to ini-
tialize the reported simulations. Within statistical uncertainty, the non-equilibrium
mean for each observable converges to its equilibrium value within the 20-picosecond
interval at visually indistinguishable rates across the tested choices of θ .
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Figure 7.4: Convergence to equilibrium of the BAOAB-like schemes considered in Sec-
tion 3.3 with n = 64 ring-polymer beads and a ∆t = 1.4 fs time-step. With respect to the
non-equilibrium 64-bead configurational distribution evolved from a point mass at a classi-
cal (i.e., n = 1) configuration, panels (a) and (c) plot the mean kinetic energy per H atom
for the n-bead system as per the primitive and virial estimators, respectively, for times up
to 1.0 ps. Panels (b) and (d), respectively, plot the non-equilibrium mean O−H-bond and
H−O−H-angle potential energy per q-TIP4P/F water molecule,[216] for times up to 10 ps.
The lightly shaded interval around each curve corresponds to the standard error of the esti-
mated non-equilibrium mean, computed with 1,000 bootstrap resamples from a sample of
1,000 independent trajectories.
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8.1 Comparison of band structure and e-ph matrix elements
Here, we compare the band structure and e-ph matrix elements in Γ valley for the
ab-initio calculation and the semi-analytical model. In Fig. 8.1a, we show the Γ

valley band structure below 360 meV obtained in the ab-initio DFT calculation and
the Kane model [258] used in the semi-analytical model. The Kane model uses
an experimental effective mass of 0.067me and a non-parabolicity of 0.64 eV−1.
The figure shows that the anisotropy of the DFT band structure is negligible below
200 meV, and the maximum anisotropy remains less than 7% below 360 meV. The
Kane model uses an isotropic experimental effective mass and non-parabolicity,
which results in a slightly different band structure, especially for small k. The
difference between DFT and Kane model band structure at low energy is because
the Kane model uses the experimental effective mass 0.067me instead of the ab-
initio effective mass 0.056me.

In Fig. 8.1b, we show the density of states (DOS) obtained from the ab-initio calcu-
lation and the semi-analytical model. The two DOS agree in overall trend, but the
ab-initio DOS has large variations in energy due to the finite sampling of the Bril-
louin zone (fine grid density of 200×200×200). Comparing Figs. 8.1b and 4.1a,
the variations of the DOS in the ab-initio calculation can account for the variations
in scattering rates.

In Fig. 8.1c, we plot the absolute values of ab-initio e-ph scattering matrix ele-
ments |gLO(k,q)| for LO phonons involved in the on-shell Γ-Γ scattering versus
the phonon wavevector norm q in the range of q < 0.2G. We see good agreement
for q< 0.05G and slightly larger variations for large q> 0.05G. In order to quantify
the errors, we compute the relative error by

∆err =
∑(k,q)∈on-shell

∣∣|gLO(k,q)|− |gfit
LO(q)|

∣∣
∑(k,q)∈on-shell |gLO(k,q)|

. (8.1)

We finally find ∆err < 3%.

8.2 Derivation of simultaneous electron-two-phonon scattering rates
We provide a derivation for estimation of the simultaneous e-2ph scattering rates
given in Sec. 4.5. Consider a crystal in which each primitive unit cell has atoms
with charge Zκ at position τκ , R is the lattice vector, and G is the reciprocal lattice
constant. The lattice displacement uRκ is decomposed using normal modes:

uRκ = ∑
qν

uqκνeiq·R, (8.2)
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Figure 8.1: (a): Γ valley band structure in the ab-initio DFT calculation and the
semi-analytical Kane model below 360 meV. For the DFT band structure the [100],
[110], [111] directions are plotted. The DFT band structure exhibits only slight
anisotropy. (b): Electronic DOS versus energy in the ab-initio calculation and the
semi-analytical model. The ab-initio DOS has large variations due to the finite grid
density. (c): Absolute values of on-shell e-ph scattering matrix elements |g(k,q)|
for LO phonons versus q in the range of q < 0.2G of the Γ-Γ scattering process in
the ab-initio calculation along with the fitted relation (Eq. 4.18) used in the semi-
analytical model.

where

uqκν =

√
h̄

2NMκωqν

eqκν(b†
qν +b−qν), (8.3)

N is the number of unit cells in a supercell, Mκ is the mass of atom κ , ν is the
phonon mode, eqκν is the phonon polarization unit vector, b†

qν , and bqν are creation
and annihilation operators of phonon qν , respectively.

The Coulomb potential energy of an electron generated by point charge Z at position
Rκ =R+τκ is

V (r−R−τκ) =−
Zκe2

4πε∞|r−R−τκ |
. (8.4)

It will be convenient to rewrite V (r−R−τκ) in reciprocal space by Fourier trans-
formation:

V (r−R−τκ) =−
1

NΩ
Zκ ∑

q
∑
G

V (q+G)ei(q+G)·(r−R−τκ ), (8.5)

where Ω is the primitive unit cell volume, and

V (q+G)=
e2

ε∞(q+G)2 . (8.6)

Following Ref. [268], the electron-two-phonon Hamiltonian is

H(r) =
1
2 ∑
Rκ

uRκ ·∇∇V (r−R−τκ) ·uRκ . (8.7)
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From Eq. 8.5, we can obtain

∇∇V (r−R−τκ) = Zκ(k+G)(k+G)∑
k

∑
G

V (k+G)ei(k+G)·(r−R−τκ ), (8.8)

where the product of the vectors in this and following equations is defined as the
outer product. By using Eq. 8.2 and Eq. 8.8, we have

H(r) =
1

2Ω
∑
Rκ

ZκuRκ ·∇∇V (r−R−τκ) ·uRκ

=
1

NΩ
∑
Rκ

∑
qν<q′ν ′

Zκ ∑
k

∑
G

uqκν · (k+G)uq′κν ′ · (k+G)V (k+G)ei(q+q′)·Rei(k+G)·(r−R−τκ )

=
1

NΩ
∑
Gκ

∑
qν<q′ν ′

Zκuqκν · (q+q′+G)uq′κν ′ · (q+q′+G)V (q+q′+G)ei(q+q′+G)·(r−τκ )

=
e2

Ωε∞
∑
Gκ

∑
qν<q′ν ′

Zκuqκν ·
(q+q′+G)(q+q′+G)

|(q+q′+G)|2
·uq′κν ′e

i(q+q′+G)·(r−τκ )

∼ e2

Ωε∞
∑
Gκ

∑
qν<q′ν ′

Zκuqκνuq′κν ′e
i(q+q′+G)·(r−τκ )(b†

qν +b−qν)(b
†
q′ν ′+b−q′ν ′)

∼ e2

Ωε∞
∑

qν<q′ν ′
∑
κ

Zκuqκνuq′κν ′e
i(q+q′)·(r−τκ )(b†

qν +b−qν)(b
†
q′ν ′+b−q′ν ′),

(8.9)
where uqκν =

√
h̄/2Mκωq is the amplitude of the phonon displacement,

∑
R

ei(q+q′−k−G)·R = Nδk,q+q′ (8.10)

was used in the third line,

(q+q′+G)(q+q′+G)

|(q+q′+G)|2
∼ 1 (8.11)

was used in the fourth line, and the contributions from G ̸= 0 are neglected from

∑G in the last line.

We observe that the quadrupole moment ∑κ Zκuqκνuq′κν ′ appears in the third line
of Eq. 8.9. For a polar material like GaAs that each unit cell has two atoms with
opposite charge and similar mass, we can perform a Z2 symmetry analysis for the
quadrupole moment. Since Zκ has odd symmetry for the two atoms in a unit cell,
the phonon modes must be one of odd symmetry (optical mode) and one of even
symmetry (acoustic mode) to avoid cancellation.

The electron-phonon scattering matrix elements can be written as

g(2)
νν ′(q,p)∼

Zκe2

Ωε∞

uqκνupκν ′, (8.12)
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where the phase factor is neglected.

Similar to Eq. 4.11 and Eq. 4.13, we can derive the e-2ph collision matrix element
for a specific phonon mode and subprocess type as

Θk′,k ∼
2π

h̄
1

Ω2
BZ

δ (εk′− εk−∆E)
∫
q+p=k′−k

NqNp
∣∣g(2)(q,p)∣∣2d3p. (8.13)

In the following, we assume that phonon q is optical and phonon p is acoustic. We
additionally assume that optical phonons have no dispersion and acoustic phonons
have linear dispersion with velocity s such that

ωq = ωO

ωp ∼ sp∼ p
kmax

ωA,
(8.14)

where ωO and ωA are phonon frequencies at the edge of the Brillouin zone for
optical and acoustic phonons, respectively. Since the frequencies of transverse and
longitudinal phonons at the edge of the Brillouin zone are of the same magnitude
here we neglect their difference. Using the phonon dispersion relation assumed
above, we then have

Nq ∼ N(ωO)

Np ∼ N(ωA)
N(ωp)

N(ωA)
∼ N(ωA)

ωA

ωp
∼ N(ωA)

kmax

p
,

(8.15)

where in the second line we assume the temperature is not too low in the sense of
β h̄ω ≲ 1 so that N(ω) = 1

eβ h̄ω−1
∼ 1

β h̄ω
, and kmax is the wave vector the edge of the

Brillouin zone.

Similarly, we have

g(2)(q,p)∼ g(2)(kmax,kmax)

√
kmax

p
, (8.16)

where

g(2)(kmax,kmax) =
eZ
Ωε

√
h̄

2MωA

√
h̄

2MωO
. (8.17)

We can then calculate Θk′,k from Eq. 8.13 as

Θk′,k ∼
2π

h̄
1

Ω2
BZ

∣∣g(2)(kmax,kmax)
∣∣2δ (εk′− εk−∆E)Aα1(ωO)Aα2(ωA)

∫ (kmax

p

)2
d3p

∼ 2π

h̄
1

Ω2
BZ

∣∣g(2)(kmax,kmax)
∣∣2δ (εk′− εk−∆E)Aα1(ωO)Aα2(ωA)ΩBZ

=
2π

h̄
1

ΩBZ

∣∣g(2)(kmax,kmax)
∣∣2δ (εk′− εk−∆E)Aα1(ωO)Aα2(ωA),

(8.18)
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where ΩBZ is the Brillouin zone volume, α1,2 indicates whether a phonon is ab-
sorbed or emitted, and

Aα(ω) = N(ω)+δα,+1. (8.19)

The scattering rate can be calculated by integrating Θk′,k over k′:

Γk =
∫

Θk′,kd3k′

∼
∫ 2π

h̄
1

ΩBZ

∣∣g(2)(kmax,kmax)
∣∣2δ (εk′− εk−∆E)Aα1(ωO)Aα2(ωA)4πk′

2
dk′

=
8π2

h̄ΩBZ

∣∣g(2)(kmax,kmax)
∣∣2Aα1(ωO)Aα2(ωA)k′

2 dk′

dεk′

∼ 8π2

h̄ΩBZ

∣∣g(2)(kmax,kmax)
∣∣2Aα1(ωO)Aα2(ωA)

k3

εk

∼ 8π2

h̄
(

k
kmax

)3∣∣g(2)(kmax,kmax)
∣∣2Aα1(ωO)Aα2(ωA)

1
εk
,

(8.20)
where k′∼ k is assumed since the phonon energy (≤ 35 meV) is low compared with
the energy range we are considering (∼ 200 meV).

Considering GaAs at temperature ∼ 300 K and an energy of about 200 meV (cor-
responding to k

kmax
∼ 0.05), we have:

Aα1(ωO)∼ Aα2(ωA)∼ 1(
k

kmax

)3

∼ 0.053 ∼ 10−4

εk ∼ 0.2eV∼ 10−2Ry∣∣g(2)(kmax,kmax)
∣∣2 ∼ 10−4Ry.

(8.21)

Thus

Γk ∼
8π2

h̄

(
k

kmax

)3 ∣∣g(2)(kmax,kmax)
∣∣2Aα1(ωO)Aα2(ωA)

1
εk
∼ 10−8Ry∼ 10−4ps−1

(8.22)

Considering 3×3 phonon polarizations and 2×2 subprocess types, the total scat-
tering rate is about Γ

(total)
k ∼ 36Γk ∼ 10−2.5ps−1, which is about 3.5 magnitudes

lower than the 2ph rates studied in this work.
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9.1 Compression of Clifford circuit with magic initial state
Here we describe the Clifford-based compression algorithm we use to reduce the
required number of physical qubits by a factor of two, as well as to reduce the
total number of mid-circuit measurements to equal the number of physical qubits.
The compression is based on Ref. [324] with an improvement that removes the
requirement for dynamic circuits (adaptivity), instead using an efficient classical
simulation and classical coin flipping. Here, we first summarize the compression
algorithm stated in Ref. [324], and then explain how to remove the adaptivity.

In a particular circuit realization the unitaries and the measurements can be written
as

Cm = . . .U3Mm2U2Mm1U1. (9.1)

Here m j is the j-th measurement outcome of the entire record, and correspondingly
Mm j = (1+(−1)m jPj)/2 is the j-th projection operator, with Pj the Pauli operator
being measured. Moving all unitaries past the measurements to the right, we can
equivalently write

Cm = . . .M̃m2M̃m1, (9.2)

where

M̃m j =
1
2
(1+ z jP̃j), P̃j =U†

1 U†
2 . . .U

†
j PjU jU j−1 . . .U1 (9.3)

are now multi-site Pauli measurements and z j = (−1)m j .

Let A = {1, . . . ,k}, and B = {k+ 1, . . . ,N}. Following Ref. [324], we state with-
out proof that the following algorithm correctly samples an output bitstring of the
circuit C on a input state in the new basis, with input states of the form |ψ⟩ =
|φA⟩⊗ |0⊗N−k

B ⟩.

1. Initialize the quantum state |φA⟩, define the initial stabilizer group S = ⟨Zk+1, . . .ZN⟩,
and let the Pauli operators be {P̃j}.

2. Consider each P̃j in increasing order of j. For each j there are three possible
cases:

a) P̃j ∈S . In this case the measurement result is deterministic, and can be
classically computed and we do not need to update the state or S .
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b) P̃j /∈S , and it anticommutes with at least one element Q ∈S . In this
case, the measurement result of P̃j is equally likely z j =±1. We can flip
a classical coin to sample z j. Further, we need to account for the change
in the state, which can be shown to be

|φ⟩ →Vj(z j) |ψ⟩ , (9.4)

where Vj(z j) is a Clifford unitary operator

Vj(z j) =
1√
2
(Q+ z jP̃j). (9.5)

Instead of evolving the state and updating S , we adopt the Heisenberg
picture and modify all subsequent measurements P̃k> j as follows:

P̃k→Vj(z j)
†P̃kVj(z j), ∀k > j. (9.6)

c) P̃j /∈ S , and it commutes with all elements of S . It then necessarily
commutes with Zk+1, . . . ,ZN since these stabilizers are permanent, as we
can check at the end of the algorithm (see comment 2 below). It follows
that P̃j only contains the identity operator or the Pauli Z operator on B.
We can then consider a truncated Pauli operator that is supported only
on A,

P̃A
j := η j · P̃j|A, (9.7)

where P̃j|A is the restriction of P̃j on A, and the sign η j = ±1 can be
chosen such that for any state |φA⟩ we have

⟨φA| P̃A
j |φA⟩= ⟨φA⊗0⊗N−k

B | P̃j |φA⊗0⊗N−k
B ⟩ . (9.8)

The measurement of P̃j on the joint system AB can therefore be faith-
fully simulated by a measurement of P̃A

j on just A. We perform this
measurement on the state |φA⟩, update the state accordingly and record
the measurement result z′j. We then update the stabilizer group as

S → ⟨S ,z′jP̃
A
j ⟩. (9.9)

We see that in this algorithm

1. Cases (1) and (2) can be accounted for by classical simulation, and only in
case (3) a quantum operation on |φA⟩ needs to be performed.
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2. The stabilizer group S gets augmented only in case (3), and can be aug-
mented at most k times. Once an operator is added into S , it will remain in
S until the algorithm terminates.

In this way, a given sequence of multi-site measurements can be simulated by a
“compressed circuit” with at most k multi-site measurements on A, as well as clas-
sical coin flips, up to a polynomial time overhead.

A technical problem of the above algorithm is that the update of the stabilizer group
S in case (c) depends on the quantum measurement result z′j. Not knowing z′j
before the circuit execution will lead to the lack of knowledge of the sign of Q ∈S

in case (b) if occuring after the update of S due to case (c). Here we show the
adaptivity can be removed by proving that the effect of flipping signs of z′j or Q can
be captured by classical postprocessing.

In order to prove it, we first notice that Q→−Q is equivalent to z j→−z j in Eq. 9.5
(V →−V has no effect on Eq. 9.6). We additionally notice that

Vj(−z j) = QVj(z j)Q, (9.10)

so that for any k > j,

Vj(−z j)
†P̃kVj(−z j) = QVj(z j)

†QP̃kQVj(z j)Q

= λQ,P̃k
QVj(z j)

†P̃kVj(z j)Q

= λQ,P̃k
λQ,V j(z j)†P̃kV j(z j)

Vj(z j)
†P̃kVj(z j), (9.11)

where we have defined the commutator of Pauli operators A,B

AB = λA,BBA. (9.12)

Eq. (9.11) implies that flipping measurement results z′j at most result in sign changes
of the subsequent measurements operators P̃k> j, and such sign dependence can be
classically captured. In practice, we can first determine the form of each Pauli op-
erator to be measured on A in the compressed circuit, and assume they all have +1
sign; the adativity can be re-introduced in post-processing, by flipping the measure-
ment results appropriately.

9.2 Simulated noisy data for the 1D circuit
In this section, we provide classical numerical simulations as a reference for 1D
circuit experimental data presented in the main text.
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We first choose ρ = σ = (|0⟩⟨0|)⊗L, as in Fig. 5.3. In the circuit, we insert an era-
sure channel at each spacetime location of the ρ-circuit with probability q = 0.1%,
while keeping the σ -circuit noiseless. The erasure channel replaces the local den-
sity matrix with a maximally mixed one, and upon averaging over random circuit
realizations becomes a weak depolarizing channel,

Ex(ρ) = (1−q)ρ +q
[(

1
2

)
x
⊗ trxρ

]
. (9.13)

The results are shown in Fig. 9.1(a), where we see a decrease in χ
noisy
ρ=σ when either

L or p is increased. This trend is qualitatively consistent with what we observe in
Fig. 5.3. The data can be fitted to the following functional form:

χ
noisy
ρ=σ ∝ exp

[
−α(p,q) ·L2] , (9.14)

where α(p,q) is a nonzero coefficient depending on p and q, see Fig. 9.1(b). As we
will explain below, this form can be motivated from a statistical mechanics picture,
see Eq. (9.24). However, this functional form is inconsistent with the experimental
data, see Fig. 9.1(c).

Next we consider the ρ ̸= σ case, but instead with stabilizer initial states ρ = 1
2L 1

and σ = (|0⟩⟨0|)⊗L to facilitate efficient classical simulation. In Fig. 9.2(a), we
present numerical results obtained from a noiseless simulation. The overall trend of
the results are in qualitative agreement with those in Fig. 5.4. The data collapse in
Fig. 9.2(b) is performed with pc = 0.16 and ν = 1.33, as consistent with Ref. [310].

We also perform a noisy simulation for ρ = 1
2L 1 and σ = (|0⟩⟨0|)⊗L, where we

insert an erasure channel at each spacetime location of the ρ-circuit with probability
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Figure 9.1: (Left) Results from noisy numerical simulations of Clifford circuits in
1D, for system sizes L ≤ 40. We take the initial states ρ = σ = (|0⟩⟨0|)⊗L as in
Fig. 5.3, and randomly insert an erasure channel at each spacetime location of the
ρ-circuit with probability q = 0.1%. (Middle) We find the data consistent with the
functional form in Eq.(9.14). (Right) Experimentally obtained χ . The non-linear
behaviour may be caused due to coherent errors or other noise sources not captured
by an erasure channel.
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Figure 9.2: (Left) Results from noiseless numerical simulations of Clifford circuits
in 1D, for system sizes L ≤ 256. In our simulation, we take ρ = 1

2L 1 and σ =

(|0⟩⟨0|)⊗L, as in Ref. [310]. (Right) When fitting the data to the scaling form in
Eq. (5.8), we obtain pc ≈ 0.16 and ν ≈ 1.33, as consistent with Ref. [310].
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Figure 9.3: (Left) Results from noisy numerical simulations of Clifford circuits in
1D, for system sizes L≤ 40. We take the same initial states ρ and σ as in Fig. 9.2,
and randomly insert an erasure channel at each spacetime location of the ρ-circuit
with probability q = 0.1%. (Right) When fitting the data to the scaling form in
Eq. (5.8), we use pc ≈ 0.14 and ν ≈ 1.33 as obtained from Fig. 5.4 in the main text,
where we find consistency.

q = 0.1%. The numerical results are shown in Fig. 9.3. As we anticipate from
statistical mechanics arguments (see Ref. [310] and below), for any finite noise rate,
the cross entropy will be suppressed to zero for all value of p, in the thermodynamic
limit. For small system sizes (before the cross entropy is reduced to zero) the curves
will instead appear to cross at a smaller value of pc. Indeed, the best fit for pc has
now shifted to a smaller value, pc ≈ 0.14 (whereas we use the same value for ν),
close to the one used for fitting in the main text.

The qualitative behavior the results in Fig. 9.3 can be understood from a mapping to
statistical mechanics models, which we briefly describe here. (We refer the reader
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to Ref. [310] and references therein for further details.) Recall that

χ := ECχC = EC
∑m pρ

m pσ
m

∑m (pσ
m)

2 = EC
∑m tr[Cm(ρ)] · tr[Cm(σ)]

∑m(tr[Cm(σ)])2 = EC
∑m tr[C⊗2

m (ρ⊗σ)]

∑m tr[C⊗2
m (σ ⊗σ)]

.

(9.15)

Here Cm(ρ) denotes the resultant state when unitaries and projective measurements
(labeled by the measurement record m) from C are applied to the initial state ρ .1 It
is easier to study the following proxy quantity, which is an approximation of χ by
averaging the numerator and the denominator separately over C,

χ =
EC ∑m tr[C⊗2

m (ρ⊗σ)]

EC ∑m tr[C⊗2
m (σ ⊗σ)]

. (9.16)

For C a brickwork circuit with local 2-qubit random unitary gates forming a 2-
design, the averages can be performed. As a result, the numerator and the denomi-
nator will both take the form of a partition function of the Ising model on a triangu-
lar lattice, where the Boltzmann weights can be explicitly written down ([279, 300,
338–340]). The two partition functions are identical in the bulk, and only differ in
their boundary conditions (coming from the difference in initial states). Following
Ref. [310], we denote them Zρ ̸=σ and Zρ=σ , respectively.

In all our circuits we choose ρ and σ to be tensor products of onsite density ma-
trices, and let them be different states. We also take the circuit to have a purely-
unitary “encoding” stage without measurements, before measurements take place
(see Fig. 5.2 of the main text). Within these circuits, χ = Zρ ̸=σ/Zρ=σ corresponds
to the partition function ratio shown in Fig. 9.4(a). Each term lives in a rectangular
geometry, with the lower half an Ising model at zero temperature (corresponding
to the encoding stage), and the upper half at finite temperature [310]. The blue
color denotes a “+” boundary condition, and the yellow color denotes a “−” one.
The numerator Zρ ̸=σ has a boundary condition where both the top and bottom spins
are fixed to be +, whereas Zρ=σ has an additional contribution where the bottom
boundary condition is also “−”. Thus,

χρ ̸=σ =
Zρ ̸=σ

Zρ=σ

=
1

1+Z+−/Z++
. (9.17)

The p< pc phase of circuit maps to the the ferromagnetic phase of the Ising magnet,
where− ln(Z+−/Z++) is the free energy of a horizontal domain wall separating the

1This notation is different from Ref. [310] to accommodate possible appearances of quantum
channels.
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Figure 9.4: Mapping χ defined in Eq. (9.17) to quantities in an effective Ising
model, when the circuit is (a) noiseless and (b) noisy. See the text for more details.
In both figures the blue color represents spins pointing in the “+” direction, the
yellow color represents spins pointing in the “−” direction, and the black color
represents a “free” boundary condition, where the spins can point in either direction.

bottom and the top (see Fig. 9.4(a)), which diverges with L, therefore χ → 1. On
the other hand, in the p > pc “paramagnetic” phase the domain wall free energy
vanishes, so Z+−/Z++→ 1 and χ → 1/2. We see that the numerical value of χ in
the p > pc phase differs from our numerical results, due to the annealed average.

The Ising picture is also useful for a qualitative understanding of the behavior of
linear cross entropy in the presense of noise. For simplicity, we take the the noise
to be a random erasure at each spacetime location. The cross entropy now reads

χ := EC,N χC,N = EC,N
∑m tr[(C′m⊗Cm)(ρ⊗σ)]

∑m tr[C⊗2
m (σ ⊗σ)]

. (9.18)

Here the circuit C′ is obtained from C by inserting erasure noise (denoted N ) at
random spacetime locations, which in general turns pure states into mixed states.
Similarly, we define

χ
noisy
ρ ̸=σ

=
EC,N ∑m tr[(C′m⊗Cm)(ρ⊗σ)]

EC ∑m tr[C⊗2
m (σ ⊗σ)]

=
Znoisy

ρ ̸=σ

Zρ=σ

. (9.19)

This quantity is similar to our of experimental data in Fig. 5.4. We can also consider
the following ratio:

χ
noisy
ρ=σ =

Znoisy
ρ=σ

Zρ=σ

, (9.20)

which approaches 1 as the noise rate vanishes, and is similar to Fig. 5.3. Both Znoisy
ρ ̸=σ

and Znoisy
ρ=σ can be obtained from their noiseless versions by applying a “magnetic

field” everywhere in the system favoring the “+” direction and penalizing the “−”
direction. More precisely, its effect can be captured by an additional term to the
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energy function of the Ising model,

E[{s},h] = E[{s},h = 0]+h∑
j

δs j,−1 = E[{s},h = 0]+
h
2 ∑

j
(1− s j), (9.21)

where Z[h] = tr{s}e−βE[{s},h] is the Ising partition function, and h is the strength
of the field (proportional to the strength of the noise). The field breaks the Ising
symmetry and destroys the phase transition. For Eq. (9.20), we write the partition
function in the numerator as follows:

Znoisy
ρ=σ = e−V f (h), (9.22)

where V ∝ L2 is the circuit volume, and f (h) is the free energy density when the
field is applied to the magnet. Regardless of the phase the Ising magnet is in, a finite
magnetization density m(h) will appear, as a response to a small but finite h. The
free energy density can then be approximated as

f (h) = f (h = 0)+
h
2
(1−m(h)). (9.23)

Therefore, we have

χ
noisy
ρ=σ =

Znoisy
ρ=σ

Zρ=σ

∝ exp
[
−const · h

2
(1−m(h)) ·L2

]
. (9.24)

This is consistent with the functional form in Eq. (9.14) and numerical results
Fig. 9.1(b). In particular, we observe in Fig. 9.1(b) a increasing rate of the ex-
ponential decay for a fixed noise rate and increasing p, corresponding to a smaller
magnetization m(h) as we raise the temperature.

A similar exponential dependence on L2 is expected for χ
noisy
ρ ̸=σ

. The dependences
will cancel if we take their ratio. As we illustrate in Fig. 9.4(b), their ratio should
always be upper bounded by 1,

χ
noisy
ρ ̸=σ

χ
noisy
ρ=σ

=
Znoisy

ρ ̸=σ

Znoisy
ρ=σ

=
1

1+Z+−(h > 0)/Z++(h > 0)
≤ 1, (9.25)

as the Ising partition functions remain positive under the erasure channel. To com-
plement the statistical mechanics approach, below in Sec. 9.4 we give a rigorous
derivation of an upper bound of χ (rather than its proxy χ) in circuits with stabi-
lizer operations. We also discuss the the apparent violation of the upper bound by
experimental data.
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9.3 Simulated noisy data for the all-to-all circuit
We perform classical numerical simulations for circuits with all-to-all connectiv-
ity, taking the same initial states as our 1D simulations. The results are shown in
Fig. 9.5, 9.7. We fit both noiseless and noisy data to the scaling form in Eq. (5.8).

From the noiseless simulation (Fig. 9.5) of L≤ 256 we obtain fits pc≈ 0.33 and ν ≈
2.50. In particular, the critical exponent ν ≈ 2.50 agrees with a mean-field analysis
as well as numerical simulations from Ref. [328]. We also observe that if we only
include data from L≤ 40, then both the parameters here (pc,ν)≈ (0.33,2.50), and
the best fits obtained from experimental data (pc,ν) ≈ (0.26,1.90) (see Fig. 5.5),
will result in high quality data collapses (data not shown). This is consistent with
our observation of a large uncertainty in the fitting parameters in our experimental
data from Fig. 5.5. Indeed, collapsing the experimental data from Fig. 5.5 with the
theoretical value ν = 2.5, we find reasonable agreement (see Fig. 9.6), even though
ν = 2.5 lies outside the 90% confidence interval, ν = 1.9± 0.4, as obtained from
fitting procedures in Sec. 5.3.

On the other hand, from our noisy data at noise rate q = 0.1%, we obtain pc ≈ 0.20
and ν ≈ 0.80, see Fig. 9.7. Recall that the same noise model and noise rate produced
Fig. 9.3, which are comparable to experimental results in 1D. This suggests that
noise affects the data strongly in all-to-all connectivity, and our experimental data
cannot be fully captured by the simple simulated noise model.

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
p

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

2.0 1.5 1.0 0.5 0.0 0.5 1.0
p

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

8

16

24

32

40

64

128

256
L

Figure 9.5: (Left) Results from noiseless numerical simulations of Clifford circuits
with all-to-all connectivity, for system sizes L ≤ 256. In our simulation, we take
ρ = 1

2L 1 and σ = (|0⟩⟨0|)⊗L, identical to our choices in Fig. 9.2. (Right) When
fitting the data to the scaling form in Eq. (5.8), we obtain pc ≈ 0.33 and ν ≈ 2.50.
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Figure 9.6: (Left) Data collapse for the experimentally obtained cross entropy when
fitting both ν and pc. (Right) Data collapse for the experimentally obtained cross
entropy when setting ν to its theoretical value of ν = 2.5.
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Figure 9.7: (Left) Results from noisy numerical simulations of Clifford circuits
with all-to-all connectivity, for system sizes L≤ 40. We take the same initial states
ρ and σ as in Fig. 9.5, and randomly insert an erasure channel at each spacetime
location of the ρ-circuit with probability 0.1%. (Right) When fitting the data to the
scaling form in Eq. (5.8), we find pc ≈ 0.20 and ν ≈ 0.80.

9.4 Effect of Pauli noise
Our stat mech picture in Appendix 9.2 suggests that χ

noisy
ρ ̸=σ
≤ χ

noisy
ρ=σ (see Eq. (9.25)),

while our experimental results clearly violate this relation, compare χρ=σ (Fig. 5.3)
with χρ ̸=σ (Fig. 5.4a). To get a better handle on this, we formalize the following
characterization of linear cross entropy in stabilizer circuits (where the circuit ar-
chitecture is arbitrary).

Proposition 8. Let ρ and σ be two stabilizer states, which are in general different

from each other. Consider a “noiseless” Clifford circuit C, composed of arbitrary

Clifford unitaries and arbitrary Pauli measurements; and a noisy Clifford circuit C′

obtained from C by injecting a number of stabilizer channels2 at arbitrary space-
2With stabilizer channels we mean channels that can be represented as stabilizer operations, of
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time locations. Define

χ(C′,ρ|C,σ) =
∑m tr[C′m(ρ)] · tr[Cm(σ)].

∑m(tr[Cm(σ)])2 . (9.26)

We have the following inequality between the linear cross entropies:

χ(C′,ρ|C,σ)≤ χ(C′,σ |C,σ). (9.27)

Proof. We first adopt a purified representation for the Pauli measurements, see Ap-
pendix S2 of [310]. For each measurement of Pauli operator P in the circuit, we
can introduce an additional register qubit, and apply a controlled Clifford unitary
operator acting on the register qubit as well as qubits being measured, followed by
a dephasing channel on the register, to simulate the effect of that measurement. In
effect, at the end of the time evolution we have the following joint stabilizer states
on the physical qubits Q and the register qubits R,

ρ
C′
QR = ∑

m
C′m(ρ)⊗|m⟩⟨m|R , (9.28)

σ
C′
QR = ∑

m
C′m(σ)⊗|m⟩⟨m|R , (9.29)

σ
C
QR = ∑

m
Cm(σ)⊗|m⟩⟨m|R . (9.30)

With this representation, we have

χ(C′,σ |C,σ) =
tr[σC′

R ·σC
R ]

tr[(σC
R )

2]
, (9.31)

χ(C′,ρ|C,σ) =
tr[ρC′

R ·σC
R ]

tr[(σC
R )

2]
, (9.32)

where ρC′
R , σC′

R , and σC
R are reduced state of ρC′

QR, σC′
QR, and σC

QR on R, respectively.

Denote by S (ρ) the stabilizer group corresponding to a stabilizer state ρ . By
induction, one can show that (Lemma 1, see below)

S (σC′
QR)⊆S (σC

QR), (9.33)

due to that C′ is obtained from C by additional stabilizer channels. Such channels
can only eliminate elements from the stabilizer group.

the form E (·) = 1
2 (·)+

1
2 P(·)P with Pauli operator P (e.g. biased erasure errors), or their composi-

tions (e.g. erasure errors).
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By similar reasoning, we also have (Lemma 2, see below)

S (ρC′
QR)∩S (σC

QR)⊆S (σC′
QR)∩S (σC

QR) = S (σC′
QR). (9.34)

We can then calculate

χ(C′,ρ|C,σ) =
tr[ρC′

R ·σC
R ]

tr[(σC
R )

2]
≤
|S (ρC′

QR)∩S (σC
QR)|

|S (σC
QR)|

≤
|S (σC′

QR)∩S (σC
QR)|

|S (σC
QR)|

= χ(C′,σ |C,σ),

(9.35)

where we use the following result [310]:

tr[ρRσR] =
1

22|R| ∑
g∈SρR

∑
h∈SσR

tr[gh] =

2−|R||SρR ∩SσR|, −1 /∈SρR ·SσR

0, −1 ∈SρR ·SσR

(9.36)

for any two stabilizer states on R.

Lemma 9. S (σC′
QR)⊆S (σC

QR).

Proof. We can show this by induction on the quantum operations appearing in the
circuit C′ and C, which are Clifford unitaries and stabilizer channels. For brevity,
we adopt the shorthand notation S ′

t and St to denote the stabilizer groups of the
instantaneous states for the two circuits C′ and C after t quantum operations shared
between C and C′ are applied.

• At initialization, before any operation is applied, the two states are equal, so
that S ′

0 = S0 ⊆S0.

• If the next operation is a unitary shared between C and C′, we have that

S ′
t →S ′

t+1 =US ′
t U†, St →St+1 =USt+1U†. (9.37)

The inclusion is prevserved.

• If the next operation is a stabilizer channel shared between C and C′ we have

E (·) = 1
2
(·)+ 1

2
P(·)P, (9.38)
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then

S ′
t →S ′

t+1 = {g ∈S ′ : gP = Pg} ⊆S ′
t , (9.39)

St →St+1 = {g ∈S : gP = Pg} ⊆St . (9.40)

The inclusion is also prevserved.

• If the next operation is a stabilizer channel that is only in C′ but not in C, S

remains unchanged, and we have

S ′
t → {g ∈S ′

t : gP = Pg} ⊆S ′
t ⊆St . (9.41)

By induction, we conclude that S (σC′
QR)⊆S (σC

QR) after all operations are applied.

Lemma 10. S (ρC′
QR)∩S (σC

QR)⊆S (σC′
QR)∩S (σC

QR).

Proof. The idea is similar to the proof of Lemma 1. Let the corresponding stabilizer
groups at time t be denoted S ′

ρ , S ′
σ , and Sσ , respectively. We want to show that

S ′
ρ∩Sσ ⊆S ′

σ ∩Sσ at all times, by induction. This property is true at initialization
since S ′

σ = Sσ to start with. The preservation of this property under Clifford
unitaries and quantum operations can also be straightforwardly verified.

The inequality Eq. (9.27) applies to each sample from the ensemble of stabilizer
circuits we considered in our numerical simulation above. Eq. (9.27) also applies to
a slighlty broader class of error channels beyond stabilizers, e.g. if each additional
stabilizer channel in C′ (but not in C) is replaced by a probabilistic mixture of sta-
bilizer channels, since linear cross entropy is linear in each channel, see Eq. (9.26).
These include weak depolarizing or weak dephasing noise, as is usually assumed in
the literature of random circuit sampling [313, 341–343].

Furthermore, we argue that the same inequality holds for a compressed circuit, as
obtained from the algorithm in Sec. 5.3. Recall that the compression algorithm re-
turns a circuit composed of measurements of Pauli operators only. In particular, a
Pauli measurement in the uncompressed circuit either maps to another Pauli mea-
surement in the compressed circuit, or to a classical coin flip. In the compressed
circuit, the sign of a later Pauli operators might depend on earlier measurement re-
sults and/or earlier coin flip results, therefore “adaptive”. To remove such adaptiv-
ity, we showed that one can simply assume that all Pauli operators (to be measured)
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have the sign +1, and the adaptivity can be equivalently achieved by postprocess-
ing the measurement results and the results of the classical coin flips. In particular,
the postprocessing takes the form of an F2-linear map on (F2)

N , where N is the
number measurements in the uncompressed circuit (which is equal to the number
of measurements plus the number of coin flips in the compressed circuit). Thus
the compressed circuit would seem to have more structure than the circuits C we
considered above. To make our results applicable, we note that

• The classical coin flips can be simulated by initializing a corresponding regis-
ter qubit in the maximally mixed state. We treat the other Pauli measurements
as usual, by introducing an register qubit for each. This way, we have N reg-
ister qubits in total.

• The “postprocessing” map can be realized by a Clifford unitary on the N

register qubits, which is also diagonal in the computational basis.

This way, the compressed circuits can also be recasted as a stabilizer circuit with
Clifford unitaries and stabilizer channels. For such a circuit C, and a “noisy” version
C′ obtained from C by inserting stabilizer channels (which can be seen as a crude
approximation of the hardware experiments we carried out), we will also have

χ(C′,ρ|C,σ)≤ χ(C′,σ |C,σ). (9.42)

The differences between the setup in our Proposition and the experiment are (i)
the initial state ρ in our experiments is taken to be a nonstabilizer state, and (ii)
the noise in our experiments is not simply of the form of a stabilizer channel (or
their probabilistic mixture). The violation of the inequality Eq. (9.27) by our ex-
perimental results in Figs. 5.3,5.4 may thus be attributed to non-stabilizerness of
the initial state, realistic error models (which necessarily involve coherent and non-
unital noise, as well as read-out error), or a combination thereof. While it is easy
to construct contrived example Clifford circuits with adversarial coherent noise that
show violations of the bound (e.g. a unitary that exchanges the two initial state), we
have not been able to find natural and physically relevant examples that can closely
approximate the experimental data. It will be an interesting future direction to ex-
plore the effects and the description of non-stabilizer noise channels on MIPT, and
conversely, the extent to which many-body phenomena in random circuits can be
informative of noise.
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We also state a result similar in spirit to Proposition 1, which applies to other
choices of initial states. The key condition to Proposition 1 is the relation S (ρC′

QR)∩
S (σC

QR)⊆S (σC′
QR)∩S (σC

QR), which is preserved throughout the time evolution.
It is straightforward to a similar condition in the following scenario.

Proposition 2. Let ρ1,2 and σ be three stabilizer states, which are in general differ-
ent from each other. Let ρ1 be obtainable from ρ2 via stabilizer channels (or their
probabilistic mixtures). Consider a “noiseless” Clifford circuit C and a noisy Clif-
ford circuit C′ specified the same way as in Proposition 1. We have the following
inequality between the linear cross entropies:

χ(C′,ρ1|C,σ)≤ χ(C′,ρ2|C,σ). (9.43)

9.5 Calculation of error bars
In order for the linear cross entropy to be a scalable probe for measurement in-
duced phase transitions, the number of circuits and and circuit evaluations required
for a given (L, p) pair must be polynomial in L, p, and 1/ε , the error in estimat-
ing χ(L, p) from multiple samples. As shown in Reference [310], the number of
samples can in fact be taken to be independent of L and p, and exhibits a linear
dependence on N in 1/ε , where N is the number of circuits used. We can see this
dependence explicitly in the calculation of the error bars reported in the main text,
shown in the following.

For a given (L, p) pair, we use N randomly generated circuits and execute each
circuit M times on IBM’s quantum hardware, resulting in M different measurement
outcomes. We calculate the cross entropy for each circuit i as

χi =
1
M

M

∑
j=1

xi j, (9.44)

where xi j is the j’th measurement bit string for the i’th circuit and is defined as

xi j =

1, if xi j can occur on σi

0, if xi j cannot occur on σi

. (9.45)

Here, σi is the σ circuit corresponding to the i’th ρ circuit. We next calculate the
standard error of the mean as

εi =
ŝi√
M
, ŝ2

i =
1

M−1

M

∑
j=1

(xi j−χi)
2. (9.46)
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We then compute the final estimate of the cross entropy as χ̄ = (1/N)∑
N
i=1 χi. The

variance of χ̄ is given by

ε
2 =

1
N

N

∑
i=1

ε
2
i (9.47)

and the error bars reported in all figures are given by χ̄ ± 1.96ε , representing the
95% confidence interval for the estimate of χ .

9.6 Error mitigation for hardware experiments
Here we consider to error mitigation techniques, i.e. dynamical decoupling (DD),
and readout error mitigation (ROEM).

DD is a quantum control technique employed in quantum computing to mitigate
errors by taking advantage of time-dependent pulses [344–350]. In its simplest
form, DD is implemented by sequences of X control pulses, whose effect is to pro-
tect qubits from decoherence due to low-frequency system-environment coupling.
Here, we applied sequences of two X pulses (as in Ramsey echo experiments) to idle
qubits. In Figure 9.8, we illustrate the impact of DD on the cross entropy, focusing
on the ρ = σ case. As seen, for L≃ 10, DD increases the cross entropy towards the
exact value of χ = 1. However, the increase in χ is of order 0.01 whereas the differ-
ence between χ and 1 is of order 0.1 and, furthermore, it becomes less pronounced
for L≃ 18.
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Figure 9.8: Cross entropy χ for chains of L = 6 to L = 18 qubits, with initial states
ρ = σ , computed without (a) and with (b) dynamical decoupling, and difference
between these two quantities (c).

ROEM is a standard technique to compensate for errors incurred during qubit read-
out [351, 352]. We tested ROEM for small systems of up to L = 14 (7 physical
qubits) and observed negligible differences between the readout error mitigated
cross entropies and the unmitigated cross entropies, see Figure 9.9. Due to the
negligible effects of ROEM, we did not use ROEM for any of the results presented
in the main text.
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Figure 9.9: Effects of readout error mitigation on cross entropy for systems with
up to 7 physical qubits. (a) The raw cross entropies without ROEM. (b) The cross
entropies with ROEM applied. (c) The difference χraw− χROEM, which shows that
the differences between the raw and ROEM cross entropies are significantly smaller
than the error bars for the raw cross entropies.
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