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ABSTRACT

This thesis investigates the neural and computational mechanisms underlying human
decision-making in unfamiliar environments through three interconnected studies.
The first study demonstrates that aesthetic value computation for visual art can be
systematically predicted from visual features, which are hierarchically represented
along the brain’s rostrocaudal axis, as revealed by combining deep neural networks
with functional MRI data. The second study examines feature-based transfer learn-
ing, highlighting the importance of slow integration mechanisms, akin to glial cell
functions, for effective knowledge transfer in humans. The third study explores how
action affordance influences decision-making in novel environments, showing that
action selection results from a competitive interaction between affordance-based and
value-based systems, with meta-control exerted by the pre-supplementary motor area
and anterior cingulate cortex. Taken together, these studies provide a comprehensive
neuro-computational perspective for understanding how the brain navigates novel
environments by doing feature-based value computation, transferring knowledge,

and using affordance as a guide for action selection.
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Chapter 1

GENERAL INTRODUCTION

1.1 Overview

Decision-making in novel environments, where an individual encounters a situation
they have never experienced before, is challenging but occurs almost every day in our
daily lives. For example, choosing what to eat in a restaurant you are visiting for the
first time involves evaluating multiple factors, such as visual cues from menu photos
or past experiences at similar restaurants. In such scenarios, decisions are made
by integrating current environmental cues with knowledge from past experiences.
This interplay between new information and prior knowledge enables individuals to

make informed choices, even in unfamiliar situations.

The ability to navigate novel environments and make effective decisions is a funda-
mental aspect of human cognition, and understanding how the brain achieves this
cognitive flexibility is crucial for advancing our knowledge of natural intelligence.
It also has significant implications for the development of artificial intelligence

systems that can replicate or assist in human decision-making.

This thesis explores the computational and neural mechanisms that enable decision-
making in novel environments. First, feature-based value computation will be
studied, as it is a key mechanism that supports value assessments in never-before-
seen environments, facilitating reasonable decision-making. Imagine a situation
where you make a food choice at an exotic restaurant solely based on pictures. You
might focus on visual features, such as whether the dish has a lot of red, which
might indicate the spiciness of the cuisine. Here, feature-based value computation
will be discussed using one of the most complex visual stimuli we can imagine:
visual arts. Computational modeling of the valuation process will be explored using
feature-based computation and cutting-edge techniques from artificial intelligence
which transforms high-dimensional pixel inputs are into a scalar liking value in a

biologically plausible manner.

Next, we will explore transfer learning, which supports decision-making in novel
environments by enabling humans to apply previously learned knowledge to the
current situation. For example, when you play a new video game, you might rely on

your experience with similar games to understand the basic mechanics, controls, and
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objectives. This ability to transfer knowledge from one context to another allows for
quicker adaptation and more effective decision-making, even in unfamiliar settings.
The study of transfer learning in this thesis will focus on scenarios in which multiple
environments share visual cues. The computational mechanisms behind learning
the meaning of these cues and transferring this knowledge will be discussed using

online and offline behavioral data.

Finally, the concept of action affordance will be examined as a critical factor in
decision-making within real-world novel environments. Action affordance refers to
the ability to perceive potential actions that an environment offers, based on both its
physical characteristics and the individual’s capabilities. For instance, when faced
with an unfamiliar tool, you might infer its possible uses based on its shape and
similarity to other tools you have used before. This aspect of decision-making is
essential for quickly determining the most appropriate actions in a new environment,
allowing for effective interaction and problem-solving. The neuro-computational
mechanisms behind the effect of affordance in value-based decision-making will be

explored.

Together, these studies will provide a comprehensive understanding of how the
brain computes value, transfers knowledge, and perceives action opportunities in
novel environments, thereby enabling adaptive and intelligent learning and decision-

making.

1.2 Decision neuroscience

Decision neuroscience, also known as neuroeconomics, is a field that seeks to under-
stand how the brain supports decision-making processes. It integrates principles and
methods from neuroscience, psychology, economics, and computer science to study
the neural basis of decision-making. Historically, decision-making was primarily
studied within the realms of psychology and economics, with a focus on behavior
and the outcomes of decisions rather than the underlying neural mechanisms. The
foundation for neuroeconomics was established by combining economic theories

with neurobiological data (Glimcher and Rustichini, 2004).

In classical economics, it was assumed that humans make logically optimal deci-
sions, such as maximizing utilities, the outcomes of their decisions, based on a set
of rational principles. This assumption is central to the concept of the “rational
actor,” a theoretical individual who always chooses the option that maximizes their

utility. However, a series of behavioral data showed that classical economics does
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not realistically describe actual human decision-making. For instance, real human
decisions often violate the principle of transitivity. In classical economics, if a
person prefers option A over option B and option B over option C, they should
logically prefer option A over option C. However, empirical studies have shown that
human preferences are not always consistent in this way (Tversky, [1969). More-
over, classical economics fails to explain phenomena such as loss aversion, framing
effects, and overconfidence, where people deviate from rational behavior predicted

by utility maximization (Kahneman and Tversky, |1984; Thaler, [1985).

The emergence of neoclassical economics was started by incorporating psycholog-
ical insights into economic models. This transition was significantly influenced
by the findings of psychologists like Daniel Kahneman and Amos Tversky (Kah-
neman and Tversky, 2013). Kahneman and Tversky proposed Prospect Theory,
which became a cornerstone of behavioral economics and laid the groundwork for
decision neuroscience. Prospect Theory introduced the concept that people value
gains and losses differently, leading them to make decisions based on perceived
potential losses rather than potential gains. This theory explains why people are
often risk-averse when pursuing potential gains but become risk-seeking when try-
ing to avoid losses. It also introduced the idea of loss aversion, where the pain of
losing is psychologically more impactful than the pleasure of gaining (Tversky and
Kahneman, [1992; Kahnemanl, 2011)).

Prospect Theory challenged the traditional economic models by showing that human
decision-making is influenced by biases, heuristics, and emotional responses, rather
than purely rational utility maximization. This paradigm shift opened the door for
further exploration into the cognitive and neural processes that support decision-
making. Researchers began to investigate how different brain regions contribute
to evaluating risks and rewards, processing uncertainty, value, and integrating past

experiences with current information.

The field of decision neuroscience emerged from these interdisciplinary explo-
rations, seeking to identify the specific brain circuits and mechanisms involved in
decision-making (Glimcher and Rustichini, [2004). Significant progress in decision
neuroscience has been driven by studies using model animals, such as macaques and
rodents, where electrophysiological techniques have been employed to record neu-
ronal activity with high temporal and spatial resolution. These animal studies have
provided critical insights into the neural dynamics of decision-making processes,

allowing researchers to link specific neural circuits to behavior (Schultz et al.,|1997;
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Shadlen and Newsomel |2001). In addition, advances in neuroimaging techniques,
such as functional magnetic resonance imaging (fMRI), have allowed researchers
to directly observe brain activity during decision-making tasks in humans as well.
Together, these studies have revealed that decision-making is supported by a network
of brain regions, including the prefrontal cortex (PFC), striatum, anterior cingulate
cortex (ACC), and posterior parietal cortex (PPC) each playing a role in different
aspects of the decision-making process (Gold and Shadlen, 2007).

The prefrontal cortex (PFC) is essential for higher-order cognitive functions and
plays a pivotal role in decision-making. Within the PFC, the orbitofrontal cortex
(OFC) is particularly important for encoding the value of different options, integrat-
ing sensory information with knowledge of expected outcomes to guide decision-
making. One of the first evidence that OFC encodes economical value was shown in
monkey experiments, which identified neural activities that encode the quantity of
juice outcomes independent of the location to the choice options (Padoa-Schioppa
and Assad, [2006). A series of fMRI studies also showed that OFC and ventromedial
preforntal cortex (vmPFC) have activities correlated with subjective values indepen-
dent of the type of outcome that resemble common currencies of value or the true
meaning of utility (Chib et al.| |2009; Levy and Glimcher, [2012; |Plassmann et al.,
2007). On top of that, recent studies showed that the subjective value is constructed
in feature-based computation which feature representation is supported by lateral
orbitofrontal cortex (lIOFC). For example, it has shown that subjective value on food
can be explained by the subjective assessment of the nutrient content of the food

and those nutrient information are represented in IOFC (Suzuki et al., 2017b).

In addition, the neural correlates of decision-making have also been found in the
posterior parietal cortex (PPC) and other effector-specific regions, such as the frontal
eye field (FEF). The PPC, particularly the lateral intraparietal area (LIP), has been
shown to play a crucial role in the representation of decision variables, particularly in
tasks involving spatial attention and saccadic eye movements. For example, neural
activities in the LIP were shown to be reflecting the outcomes of the choice options
that invloves saccadic eye movments to making decisions (Platt and Glimcher, 1999;
Dorris and Glimcher, [2004). Also, neurons in the LIP encode the accumulated evi-
dence for making a decision about the direction of motion in a visual task, effectively
reflecting the gradual formation of a decision over time (Gold and Shadlen, [2007).
This area of the PPC is involved in integrating sensory evidence with motor plans,

linking the perception of stimuli to the actions required to respond, which suggests
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its role as a key node in the decision-making process (Andersen et al., 1997; Snyder
et al., [1997;|Andersen and Cui, 2009; ?).

Moreover, the FEF, traditionally associated with the control of eye movements, has
been implicated in decision-making processes related to visual attention and sac-
cades. It is found that FEF neurons not only predict the direction of upcoming
saccades but also encode information about the relative value of different eye move-
ment choices, indicating that this region integrates decision-related signals with

motor planning (Schall, 2001).

Furthermore, effector-specific regions outside the PPC and FEF, such as the dorsal
premotor cortex (PMd), have been shown to encode decision variables related to the
selection of motor actions. It is demonstrated that neurons in the PMd are involved
in planning and deciding between competing motor actions, with neural activity
representing the competition between potential movements before the final decision
is made (Cisek and Kalaskal, 2005, 2010; Cisekl, 2007). This supports the idea
that decision-making is not confined to prefrontal regions but involves a distributed
network, including effector-specific areas that are directly related to the execution

of chosen actions.

The anterior cingulate cortex (ACC) is implicated in monitoring conflicts and er-
rors, assessing the costs associated with different choices (Rushworth et al., 2004;
Shenhav et al., [2017). It helps the brain to adapt behavior in response to unex-
pected outcomes and is particularly active when decisions require weighing difficult
trade-offs. For example, a series of studies using the Stroop task has shown that
the ACC represents the cognitive control signal necessary to selectively process
goal-related information when sensory information conflicts with task goals. In the
Stroop task, where participants must name the color of the ink a word is printed in
while ignoring the word itself (e.g., the word “red” printed in blue ink), the ACC is
activated in response to the conflict between the automatic reading process and the
task requirement to name the ink color. The ACC was found to be more active during
high-conflict trials in the stroop task, supporting its role in conflict monitoring and
signaling the need for increased cognitive control (Botvinick et al.| 2001; Yeung
et al.l 2004b).

The striatum, particularly the ventral striatum, plays a crucial role in processing
rewards and adapting choice behavior to maximize rewards. It receives dopaminer-
gic signals from the midbrain that encode reward prediction errors—the difference

between expected and actual outcomes (Schultz et al.,|1997). This feedback mech-
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anism allows the brain to learn from experience, updating expectations and refining
future decisions. The dorsal striatum, on the other hand, is closely associated with
habitual decision-making, where behaviors become automatic through repeated re-
inforcement. It has shown that the dorsal striatum is involved in the development of
habits, as it integrates the history of actions and their outcomes, reinforcing behavior
patterns that lead to consistent rewards (Yin and Knowlton, 2006 [Tricomi et al.,
2009b)).

Studies on reinforcement learning (RL) have further demonstrated that the dorsal and
ventral striatum support different aspects of the learning process. The dorsal striatum
is primarily related to the prediction error when an action is involved, indicating
its role in instrumental learning. In contrast, the ventral striatum is associated with
prediction errors even in the absence of action, emphasizing its role in value-based
learning where outcomes are anticipated without direct behavioral input (O’ Doherty
et al., 2004). This distinction underscores the specialized functions of these striatal

regions in different forms of learning and decision-making.

Together, these neural circuits form an integrated network that supports the complex
and dynamic process of decision-making. The interaction between these regions
allows for the flexible evaluation of options, the integration of past experiences
and the physical constraint, and the adjustment of behavior in response to new

information and changing circumstances.

1.3 Artificial intelligence and reinforcement learning

Artificial intelligence (AI) has been widely accepted in modeling complex human
behaviors, brain functions, and decision-making processes. One prominent exam-
ple of AI’s contribution to neuroscience is the use of Convolutional Neural Net-
works (CNNs) as models of the ventral visual stream (Yamins and DiCarlol 2016
Kriegeskorte, 2015)). The ventral visual stream, often referred to as the “what” path-
way, is crucial for object recognition and visual perception. CNNs, inspired by the
hierarchical organization of the visual cortex, have been widely used to model how
the brain processes visual information. These networks consist of layers that mimic
the stages of visual processing in the brain, from simple edge detection in early
layers to complex object recognition in later layers that mimics the activities in the
V4 and inferior temporal cortex (Yamins et al., 2014). The neural representations
in CNNs are not limited to those learned through supervised training on image clas-

sification tasks; unsupervised contrastive training can also enable CNNs to mimic
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the ventral visual stream(Zhuang et al.l 2021a). Additionally, a study that trained
a CNN using Q-learning, a reinforcement learning algorithm, demonstrated that
the network could represent action-related state information, similar to the dorsal

stream’s function in the brain (Cross et al., [2021).

The other prominent sub-field in Al, reinforcement learning (RL), has been widely
accepted as a biologically plausible account of value learning and decision-making
in humans and animals. Atits core, RL involves an agent learning to make decisions
by interacting with an environment, receiving feedback in the form of rewards or
punishments, and updating its behavior to maximize cumulative rewards. This
process is mathematically formalized using concepts like the Bellman equation and
Temporal Difference (TD) learning. The Bellman equation provides a recursive
decomposition of the value of a state into immediate rewards plus the expected
value of subsequent states, guiding the learning process. TD learning, in particular,
captures the idea of prediction error—the difference between expected and actual
outcomes—which has been closely linked to midbrain dopaminergic activities in the
brain. This connection suggests that dopamine neurons encode prediction errors,
providing a neurobiological substrate for RL-like learning mechanisms (Schultz
et al., [1997; Sutton, 2018)).

In reinforcement learning (RL), approaches are generally categorized into policy-
based and value-based methods, with the value-based approach further divided
into model-free and model-based RL. Model-free RL involves learning the value
of actions directly from experience, without constructing an explicit model of the
environment. This approach is often associated with habitual decision-making in hu-
mans and animals, where actions become automatic through repeated reinforcement.
Conversely, model-based RL entails building an internal model of the environment
(Tolman, 1948), enabling goal-directed behavior through planning and simulating
future outcomes before making decisions. This distinction between model-free and
model-based RL has been mapped onto human behavior and brain function, with
model-free processes linked to the dorsolateral striatum and habitual behavior, while
model-based processes are associated with the prefrontal cortex and goal-directed
decision-making. Notably, studies using two-step Markov decision tasks have al-
lowed researchers to behaviorally dissociate habitual and goal-directed behaviors,
explaining them as a mixture of model-based and model-free RL processes (Daw
et al., |2005; |Lee et al., 2014b). The concept that human behavior results from the

interaction of multiple specialized systems has been expanded to model learning
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from observing others’ behavior as well (O’ Doherty et al.,2021a; |Charpentier et al.,
2020).

RL has also been integrated with neural networks, particularly in the form of deep
reinforcement learning, to predict and model complex behaviors. By combining
deep learning techniques with heuristics that stabilize the training process, deep RL
models can handle high-dimensional inputs, such as visual data, allowing them to
perform tasks like playing video games or controlling robotic systems with human-
like proficiency (Mnih et al.,|2015; [Silver et al., 2016)). These models learn to extract
task-relevant features from raw sensory inputs and use them to make decisions,
paralleling the way the brain processes information along the dorsal visual pathway
(Cross et al., 2021). Recent advances in RL have introduced the use of multiple
policies, modulated by an arbitrator based on each policy’s performance on the
current task, akin to the concept of a mixture of experts and arbitration among
different systems (Badia et al., [2020; Fan et al., |2023)). Utilizing multiple policies
and reapplying them to new tasks has also been explored as a solution for transfer

learning in the RL context (Fernandez and Veloso, [2006; Fernandez et al., 2010).

The flexibility of deep learning and deep RL has led to the development of a new class
of behavior modeling with significantly enhanced predictive power. For instance,
using recurrent neural networks (RNNs) for behavioral modeling has shown greater
sensitivity in distinguishing the choice characteristics of mental health patients from
those of the healthy population (Dezfouli et al., 2019b). Moreover, RNNs have
demonstrated the ability to uncover underlying cognitive mechanisms, with trial-by-
trial updating patterns of hidden activations that align with models that simulated
the behaviors (Ji-An et al., [2023b; Miller et al., [2024). This advancement heralds a
new era of cognitive modeling, capable of addressing more complex and naturalistic

behaviors.

The flexibility and predictive power of deep learning and deep reinforcement learning
models have not only enhanced our ability to simulate and predict human behav-
1or and neural activities but have also opened new avenues for understanding the
intricacies of mental health, cognitive disorders, and naturalistic decision-making.
As Al continues to evolve, its applications in neuroscience will likely lead to even
deeper insights into the workings of the human brain, providing a foundation for the

development of more sophisticated and human-like Al systems.



1.4 Motivation for the Thesis

Chapter 2 will explore the computational mechanisms underlying value computation
using naturalistic visual stimuli, specifically focusing on the domain of art. We aim to
investigate how the brain transforms complex visual inputs into subjective aesthetic

preferences by leveraging feature-based analysis and computational modeling.

The motivation for this project stems from the concept of feature-based value com-
putation, which posits that preferences for complex stimuli can be constructed by
integrating various features extracted from those stimuli (Palmer et al., 2013; Chat-
terjee, 2003; Pelletier and Fellows) 2019; Suzuki et al., 2017a). In the context
of art, individual artworks possess a wide range of features—from low-level vi-
sual properties such as color, contrast, and texture to high-level semantic elements
like meaning, emotion, and symbolism(Leder et al., 2004). Understanding how
these features collectively shape subjective aesthetic judgments can reveal the com-
putational principles underlying human preference formation (Ramachandran and
Hirsteinl, [{1999; [Zekil, [2002).

Previous research has explored the psychological and neural bases of aesthetic judg-
ment, highlighting the influence of multiple features and the role of PFC (Kawabata
and Zeki, 2004; (Cela-Conde et al., 2004; Leder et al., [2004). While models of
aesthetic processing have suggested feature-based valuation as a mechanism, they
rarely address how such features are extracted from complex, naturalistic images

like works of art and used for constructing subjective preference.

Machine learning and computer vision research have advanced feature extraction
techniques, with convolutional neural networks demonstrating success in modeling
human-like visual recognition (Bishop, 2006; |Yamins and DiCarlol 2016; Dezfouli
et al., 20194} |[LeCun et al., 2015). However, few studies have applied these mod-
els to aesthetic valuation, where subjective preferences must be inferred from a
high-dimensional feature space. Additionally, it remains unclear how feature repre-
sentations extracted by computational models correspond to neural representations
supporting human preferences. Another gap in the literature is the limited under-
standing of how various levels of features—ranging from low-level visual statistics

to high-level semantic attributes—are integrated to form subjective value judgments.

To address these gaps, Chapter 2 will combine computational modeling with neu-
roimaging to investigate how human preferences for art emerge from a multi-level
feature integration process. We will apply CNNs to extract low- and high-level

features from visual art, and analyze brain activity to uncover neural mechanisms
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supporting value computation. This approach will help advancing our understanding

of the neural basis of art appreciation.

In chapter 3, I will explore human transfer learning, employing RL algorithms to
model this complex cognitive process. The findings from this study are expected
to provide valuable insights into addressing transfer learning challenges within the
RL context, potentially offering novel solutions to this longstanding problem in Al
(Parisi et al., [2019; [Flesch et al., 2023)).

Previous research in cognitive science has extensively explored transfer learning
through declarative memory frameworks, and cognitive map theories (Tolman, 1948;
Reber et al., [1996; Squire and Zola, 1996). While RL models have provided
valuable insights into how humans adapt to new tasks, they typically assume task-
specific learning and struggle to generalize across environments (Botvinick, |2012;
Tessler et al., 2017). Declarative memory models emphasize flexible knowledge
application but lack precise computational implementations of how such flexibility
arises. Similarly, cognitive map theories have been useful for structural knowledge
tasks but do not generalize well to feature-based transfer domains (Mark et al.,
2020).

A notable gap in the literature is the limited exploration of how humans maintain
long-term, transferable representations of feature-based information across tasks.
Additionally, research on RNNs has demonstrated success in modeling sequential
behavior, but RNNs typically lack biologically plausible mechanisms for retaining
learned knowledge over extended periods (J1-An et al., 2023b; Miller et al., 2024).

To address these limitations, we incorporate slow integration mechanisms inspired
by the physiological properties of astrocyte glial cells, which presumably support
long-term information retention (Mu et al., [2019; Perea et al., 2009a}; Kofuji and
Araque, 2021; Mederos et al., 2021; |Wang et al., 2017). We hypothesize that such
mechanisms enable the gradual accumulation of learned feature-based information,
facilitating transfer learning across tasks. To test these models, we designed a
feature-based multi-armed bandit task, requiring participants to learn action values
based on shared visual features. We collected three independent behavioral datasets
from both online and in-person experiments to ensure robust, generalizable results.
Through model-driven analysis, we compare RL models with and without slow
integration components, alongside RNN models, to identify the mechanisms best

capturing human transfer learning behavior.
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Chapter 4 will explore the computational and neural mechanisms underlying nat-
uralistic decision-making, focusing on how action affordance shapes value-based
learning in novel environments. Specifically, we aim to investigate how action

affordances interact with value-driven decision-making processes (Cisek, [2007).

Previous research in cognitive neuroscience and psychology has extensively studied
action affordance in terms of automatic action potentiation (Ellis and Tucker, 2000
Zhang et al., [2021)). Studies have shown that affordances can prime actions com-
patible with an object’s physical properties, facilitating action selection in visually
guided tasks (Symes et al., 2007} (Cisek and Pastor-Bernier, [2014). However, these
accounts primarily focus on immediate action selection and do not explain how
affordance-based processes might contribute to learning and adaptation in complex

decision-making environments (Pastor-Bernier and Cisek, [2011).

One key gap in the literature is understanding how action affordances influence
the learning process itself rather than merely biasing action selection. It remains
unknown whether affordances act as a persistent bias, an initial prior to guide
exploration, or as a fully independent controller that dynamically competes with

value-driven policies.

To address these open questions, we designed a novel decision-making task that
explicitly manipulates action affordance and reward contingencies. Using this task,
we collected both behavioral and fMRI data to model the competing influences
of affordance-based and value-based policies. Through computational modeling,
we test whether these systems function as independent controllers governed by a
meta-controller, and we examine the neural correlates of this arbitration process.
By integrating insights from cognitive neuroscience and artificial intelligence, this
work aims to advance our understanding of how action affordances shape adaptive

behavior in complex and dynamic environments.
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Chapter 2

AESTHETIC PREFERENCE FOR ART EMERGES FROM A
WEIGHTED INTEGRATION OVER HIERARCHICALLY
STRUCTURED VISUAL FEATURES IN THE BRAIN

The following chapter is adapted from ligaya et al., 2021 and ligaya et al., 2023 and

modified according to Caltech Thesis format.

Kiyohito ligaya, Sanghyun Yi, Iman A Wahle, Koranis Tanwisuth, and John P
O’Doherty. Aesthetic preference for art can be predicted from a mixture of low-
and high-level visual features. Nature human behaviour, 5(6):743-755, 2021.
doi: https://doi.org/10.1038/s41562-021-01124-6.

Kiyohito ligaya, Sanghyun Yi, Iman A Wahle, Sandy Tanwisuth, Logan Cross, and
John P O’Doherty. Neural mechanisms underlying the hierarchical construction
of perceived aesthetic value. Nature Communications, 14(1):127, 2023. doi:
https://doi.org/10.1038/s41467-022-35654-y.

2.1 Abstract

It is an open question whether preferences for visual art can be lawfully predicted
from the basic constituent elements of a visual image. Moreover, little is known
about how such preferences are actually constructed in the brain. Here we developed
and tested a computational framework to gain an understanding of how the human
brain constructs aesthetic value. We show that it is possible to explain human
preferences for a piece of art based on an analysis of features present in the image.
This was achieved by analyzing the visual properties of drawings and photographs
by multiple means, ranging from image statistics extracted by computer vision
tools, subjective human ratings about attributes, to a deep convolutional neural
network. Crucially, it is possible to predict subjective value ratings not only within
but also across individuals, speaking to the possibility that much of the variance in
human visual preference is shared across individuals. Neuroimaging data revealed
that preference computations occur in the brain by means of a graded hierarchical
representation of lower and higher level features in the visual system. These features
are in turn integrated to compute an overall subjective preference in the parietal and

prefrontal cortex. Our findings suggest that rather than being idiosyncratic, human
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preferences for art can be explained at least in part as a product of a systematic
neural integration over underlying visual features of an image. This work not
only advances our understanding of the brain-wide computations underlying value
construction but also brings new mechanistic insights to the study of visual aesthetics

and art appreciation.

2.2 Introduction

From ancient cave paintings to digital pictures posted on Instagram, the expression
and appreciation of visual art is at the core of human experience. As Kant famously
pointed out, art is both subjective and universal (Kant (1987)). Each individual
person may have his/her own taste, but a given piece of art can also appeal to a
large number of people across cultures and history. This subjective universality
raises a fundamental question: should artistic tastes be likened to the inscrutable,
idiosyncratic, and irreducible, or is it possible to deduce lawful and generalizable

principles by which humans form aesthetic opinions?

The nature of aesthetic judgment has long been subject to empirical investigation
(Fechner (1876); |IRamachandran and Hirstein| (1999); [Zeki (2002); |[Leder et al.
(2004); Biederman and Vessel (2006); [(Chatterjee (2011); [Shimamura and Palmer
(2012); [Palmer et al.| (2013)); Leder and Nadal (2014))). Some studies have focused
on the visual and psychological aspects of art might influence aesthetics (e.g., see
Ramachandran and Hirstein (1999); Chatterjee| (2003); Leder et al.[(2004); Bar and
Neta(2006)); Palmer et al.|(2013));Van Paasschen et al.|(2014))), while other work has
highlighted the brain regions whose activity level correlates with aesthetic values
(e.g., Cela-Conde et al. (2004); Kawabata and Zeki| (2004)). However, attaining a
mechanistic understanding of how humans compute aesthetic judgments in the first

place from the raw visual input has thus far proved elusive.

A long-standing finding, which partly supports the idiosyncrasy of preference forma-
tion, is that prior experience with a specific stimulus can influence value judgment,
such as the role of prior episodic memories involving the item, or prior associative
history (Fechner (1876)); Ramachandran and Hirstein| (1999); Zeki (2002)); |Leder
et al.[| (2004); Weber and Johnson (2006); Wimmer and Shohamy| (2012); |Barron
et al.[ (2013))). However, while the influence of past experience on current prefer-
ence is undeniable, humans can express preferences for completely novel stimuli,

suggesting that value judgments can be actively and dynamically computed.

It is an open question how the brain can transform realistically complex stimuli into
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a simple subjective value. The brain takes a massively high-dimensional input (e.g.,
a complex art image) and eventually reduces this input to a one-dimensional scalar
output (e.g., how much do I like this?). Little is known about how dimensionality
reduction can be performed at this scale, while generating reliable output (preference

ratings) for all kinds of visual input.

In machine-learning, classification problems (e.g., dog vs. non-dog) are typically
solved by projecting an input to a feature space (Bishop| (2006)). Each feature is a
useful attribute that guides the classification of the input. Features can be engineered
by taking easily observable characteristics of an object (e.g., its height and weight),
or in other cases can be implicitly generated in a more abstracted and less easily
interpretable manner (e.g., the activation patterns of hidden layers in deep artificial

neural networks).

While previous studies have hinted at the use of such a feature-based framework,
in those prior studies the features involved were salient and obvious properties of a
stimulus (e.g., multi-attribute artificial stimuli including the movement and the color
of dots (Kahnt et al.| (201 1b)); [Mante et al. (2013])); Pelletier and Fellows| (2019)), or
items that are suited to a functional decomposition such as food odor (Howard and
Gotttried| (2014))) or nutritive components (Suzuki et al| (2017a)); see also (Hare
et al. (2009); ILim et al.| (2013))). However, in the case of visual imagery, the
sheer visual complexity of one art piece, as well as the enormous variation between
pieces, renders the task of identifying the relevant features that underpin this process
exceedingly challenging. In addition, it is not even clear if features are extracted and
used for aesthetic judgment in the first place. Moreover, even if relevant features
are identified, it is unknown to what extent people may idiosyncratically select the
features they use to shape their preferences and how they weigh those features to
generate value judgments. Finally, the manner by which a complex visual image

gets transformed into relevant features and then into a subjective value, is unclear.

Here, we aimed to establish a general mechanism that could underpin the construc-
tion of aesthetic preference. We first extracted features of an art image that have been
theorized to play a role in aesthetic valuation (Palmer et al. (2013); [Li and Chen
(2009); Chatterjee et al.,| (2010); Vaidya et al.| (2017); (Chatterjee (2003)). These
features reflect subjective judgments about an image, and as such, we deemed them
to be “high-level” features, as they required human judgment to determine their
presence in an image. We augmented this with a bottom-up process that extracted

visual features derived from each image’s statistics and visual properties, a feature
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set we labeled as “low-level.” We then used ratings from human participants’ across
a large set of painting and photography images to ascertain the extent to which we
could predict art preferences using our image feature set. Finally, we applied a deep
convolutional neural network (DCNN) to establish the degree to which features for
computing visual preference might emerge spontaneously while processing visual
images in an (approximately) brain-like architecture. Finally, we applied both linear
and DCNN models to functional magnetic resonance imaging (fMRI) data collected
from human participants, which allowed us to identify the specific neural mecha-
nisms underlying these feature representations during the evaluation of visual art, as
well as to identify the mechanism by which such features are integrated to produce

a value judgment.

2.3 Results

Linear feature summation (LFS) model predicts human valuation of visual art
Participants were asked to report how much they liked various pieces of art (images
of paintings). The data were collected from both in-lab (N=7) and online participants
using Amazon Mechanical-Turk (N=1359). In-lab participants were recruited from
the local community. These participants visited our lab in person and performed the
task in a standard laboratory setting, while online participants performed the task

over the internet.

On each trial, participants were presented with an image of a painting on a computer
screen and asked to report how much they liked it on a scale of O (not at all) to 3 (very
much) (Figure[2.T|A). Each of the in-lab participants rated all of the paintings without
repetition (1001 different paintings), while online participants rated approximately
60 stimuli, each drawn randomly from the image set. The stimulus set consisted of
paintings from a broad range of art genres (Figure[2.1B), and each online participant
saw images that were taken with equal proportions from different genres to avoid

systematic biases related to style and time-period.

Using this rating data, we tested our hypothesis that the subjective value of an indi-
vidual painting can be constructed by integrating across features commonly shared
across all paintings. For this, each image was decomposed into its fundamental
visual and emotional features. These feature values are then integrated linearly,
with each participant being assigned a unique set of features weights from which
the model constructs a subjective preference (Figure [2.1C). This model embodies

the notion that subjective values are computed in a feature space, whereby overall
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Behavioural analyses

Example stimuli

a ART: art-preference report task Abstract art Impressionism

A

How much do you like the artwork shown?
“0="Not at all’, 1 = ‘Like a little’, 2 = ‘Like’, and 3 = ‘Strongly like™

Colour fields
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MTurk (short task): 1,359 participants
On-site (long task): 7 participants
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Figure 2.1:  Testing the linear feature summation (LFS) model that constructs
aesthetic value of visual stimuli. (A). The task (ART: art-liking rating task). Par-
ticipants were asked to report how much they like a stimulus (a piece of artwork)
shown on the screen using a four-point Likert rating ranging from 0 to 3. (B).
Example stimuli. The images were taken from four categories from Wikiart.org.:
Cubism, Impressionism, Abstract art and Color Fields, and supplemented with art
stimuli previously used (Vaidya et al.|(2017)). Each m-turk participant performed
approximately 60 trials, while in-lab participants performed 1001 trials (one trial
per image). (C). Schematic of the LFS model. A visual stimulus (e.g., artwork) is
decomposed into various low-level visual features (e.g., mean hue, mean contrast),
as well as high-level features (e.g., concreteness, dynamics). We hypothesized that
high-level features are constructed from low-level features, and that subjective value
is constructed from a linear combination of all low and high-level features. (D).
How features can help construct subjective value. In this example, preference was
separated by the concreteness feature. (E). In this example, the value over the con-
creteness axis was the same for four images; but another feature, in this case, the
brightness contrast, could separate preferences over art. Due to copyright issues,
some paintings presented here are not identical to what we actually used. Credit:
History and Art Collection, ART Collection, Aleksandra Konoplya, Alamy Stock
Photo, RISD Museum.
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Figure 2.2: The LFS model successfully predicts the subjective value of paintings.
(A). The LFS model with shared features captured in-lab participants’ art liking
ratings. The predictive score, defined by the Pearson correlation coefficient between
the model’s out-of-sample prediction and actual ratings, was significantly greater
than chance for all subjects who performed the task in the lab. The model was
trained on six participants and tested on the remaining participant (blue), trained
and tested on the same participant (red), and trained on on-line participants and tested
on in-lab participants (yellow). In-lab subjects performed a long task with 1001
trials. Statistical significance was tested against a null distribution of correlation
scores constructed by the same analyses with permuted image labels. The chance
level (the mean of the null distribution) is indicated by the dotted lines (at 0).
The same set of features (shown in C) was used throughout the analysis. (B).
Our model also successfully accounted for the on-line participants’ liking of the
art stimuli. We trained the model on all-but-one participants and tested on the
remaining participants (left). We also fit the model separately to in-lab participants
and tested it independently on all on-line participants (middle). The model predicted
liking ratings significantly in all cases, even when we used low-level attributes alone
(right). Each on-line participant performed approximately 60 trials. The error bars
show the mean and the SEM over participants. The chance level (the mean of the
null distribution constructed in the same manner as F) is indicated by the dotted
line. (C). Weights on shared features that were estimated for in-lab participants. We
estimated weights by fitting individual participants separately. (D). The low-level
features can predict the variance of high-level features. Classification accuracy (high
or low values, split by medians) are shown. Note that though the prediction is highly
significant, there is still a small amount of variance remaining that is unique to
high-level features. The chance level (the mean of the null distribution) is indicated
by the dotted line. The error bars indicate the standard errors over cross-validation
partitions. In all panels, three stars indicate p < 0.001 against permutation tests.
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Figure 2.3: Cluster analysis in the feature space suggests the existence of distinct
groups of individuals who vary in their preference computations across our online
sample. (A). The estimated feature weights of all participants, colored by cluster
membership. We fit the LFS model to each individual online participant. We
then performed a clustering analysis on the estimated weights using a Gaussian
mixture model. The number of Gaussians was optimized by comparing Bayes
Information Criterion (BIC) scores. Estimated weights from three features are
shown for illustration. (B). The estimated feature weights at the center of each
cluster. Cluster 1 assigns a large positive value to concreteness, while cluster 3
assigns a large negative value to concreteness. Cluster 2 has a distinctively large
weight on the dynamics. (C). Predictive accuracy of participants in each cluster,
using a model with the mean of each gaussian as its parameters. The result suggests
that Cluster 1 and 2 have conflicting preferences, while cluster 3 is rather distinct.
(D). Example stimuli that were preferred by each cluster of participants. The
stimuli preferred by participants in cluster 1 include realistic landscape paintings,
some of which are from impressionism. The stimuli preferred by cluster 2 include
abstract, complex paintings, e.g., in cubism. Cluster 3’s favorite stimuli include
simple paintings in color fields and abstract art. Art images are purchased from
Alamy.com. Due to copyright, issues colour field paintings presented here are
not identical to what we actually used. Credit: History and Art Collection, ART
Collection, LatitudeStock, Volgi archive/Alamy Stock Photo, RISD Museum.
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subjective value is computed as a weighted linear sum over feature content (Figure
2.1DE). We refer to this model as the Linear Feature Summation (LFS) model.

The LFS model extracts various low-level visual features from an input image using a
combination of computer vision methods (e.g., L1 and Chen| (2009)). This approach
computes numerical scores for different aspects of visual content in the image, such
as the average hue and brightness of image segments, as well as the entirety of the
image itself, as identified by machine learning techniques, e.g., Graph-Cuts Rother
et al. (2004) (Details of this approach are described in the Methods section). Thus,
we note that the LFS model performs a (weighted) linear sum over features, where

features can be constructed non-linearly.

The LFS model also includes more abstract or “high-level” attributes that are likely
to contribute to valuation. For this, we introduced three features based on previous
studies: |Chatterjee et al.| (2010); Vaidya et al.| (2017) the image is ‘abstract or
concrete,” ‘dynamic or still,” ‘hot or cold,” as well as a fourth high-level feature
concerning whether the image had a positive or negative emotional valence. Note
that “valence” is not necessarily synonymous with valuation: if a piece of art denotes
content with a negative emotional tone (e.g., Edvard Munch’s “The Scream”), it can
still be judged to have a highly positive subjective value by the art appreciator.
We hypothesized that these high-level features are constructed in downstream units
using low-level features as input (Figure[2.TC). However, because we do not know the
value of these high-level features a priori, following previous studies Chatterjee et al.
(2010); Vaidya et al.| (2017) we invited participants with familiarity and experience
in art (n=13) to provide subjective judgments about the presence of each of these
features in each of the images in our stimulus set (though we note that a previous
study found that artistic experience did not affect feature annotations (Chatterjee
et al., 2010)). We took the average score over these experts’ ratings as the input
into the model representing the content of each high-level attribute feature for each

image.

The final output of the model is a linear combination of low- and high- level features.
We assumed that weights over the features are fixed for each individual, which is a
necessary requirement to derive generalizable conclusions about the features used
to generate valuation across images. As our high-level features were annotated by
humans, we treat low-level and high-level features equally, in a non-hierarchical

manner, in order to determine the overall predictive power of our LFS model.

We first determined a minimal set of features that can reliably capture rating scores
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across participants in order to gain insights into aesthetic preference universality.
For this, we performed a group-level lasso regression on the data we collected in our
in-depth in-lab study (n=7; each rated all 1001 images) using all of the low-level and
high-level features that we constructed. By doing so, we removed from consideration
those features that do not provide useful predictive information, ultimately selecting
the features most uniquely predictive of subjective value, leaving 9 low-level and 4
high-level attribute features. The features include some low-level features computed
from the entire images such as the ‘mean hue contrast’ and the ‘blurring effect’ as
well as some low-level features computed using segmentation methods such as the
‘position and the size of the largest segment,” in addition to high-level features
(please see the Methods for more details). Note that while the integration weights
can be tuned for individual participant(s), the feature values for each image remain

consistent for all participants.

We then asked how a linear regression model with these features can predict an
individual’s liking for visual art. To our surprise, we found that we can predict
subjective ratings in both a within-, and out-of-, participants manner; the model
predicts subjective value not only when we trained the model’s weights on the same
participant (using a cross-validated procedure) but also when we trained the weights
on other in-lab participants, and even when we trained the weights in an entirely

independent sample of online participants (Figure [2.2]A).

Similarly, we found that we could reliably predict value ratings for online partici-
pants (Figure [2.2B), not only when training the model on the online participants’
data (using leave-one-out cross-validation) but also when the model had been trained
using in-lab participants’ data. We also tested the extent to which we can predict
value from the low-level attributes alone. Removing the high-level features im-
paired predictive performance somewhat, but yielded highly significant prediction
nonetheless (Figure[2.2B). These results suggest that a non-negligible proportion of
the variance in participants’ aesthetic ratings can be captured using simple visual

features, and can be generalized across people and the art genres that we tested here.

Although we could predict each individual’s ratings by training the model on the
ratings of others, the degree to which each individual could be predicted from the
pooled weights of other participants varied considerably. This suggests that while a
common generic model of feature integration can predict individual liking ratings
to a surprisingly high degree, there are also likely to be individual differences in

how particular features are weighted, which reflects personal aesthetic tastes.
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We therefore asked how the model’s integration weights for each participant can
be varied across participants if we fit the model to each participant separately. We
found that the estimated model’s feature weights varied across in-lab participants,
though all seven of them assigned the largest positive value to the concreteness
feature (Figures and [2.18). This preference for concreteness generalized to
many of the participants in our much larger scale dataset of online participants.
However, we also found that a significant number of participants showed a small or
even negative weight on the concreteness feature (Figure 2.3A).

To better understand the heterogeneity of aesthetic computation across our sample,
we aimed to identify potential clusters of individuals that might use features similarly,
using the large-scale online participants’ data. We fit the LFS model weights to
each individual participant, and then fit a Gaussian mixture model to the estimated
weights over participants. By comparing the Bayes Information Criteria score
between models with a different number of Gaussians, we identified three clusters
in the data (Figure[2.3]A,B). Clusters 1 and 2 show somewhat opposing preferences,
while cluster 3 shows a distinct preference altogether (Figure [2.3(C). Consistent
with our in-lab dataset, the majority of individuals (78%) in our online dataset
belonged to Cluster 1, showing a positive weight on the concreteness feature (Figure
[2.3)A,B), apparently preferring images of scenery and impressionism (Figure[2.3D).
The remainder belong to one of two other groups: cluster 2 (7%) exhibited a strong
preference for dynamic images (e.g., cubism), while cluster 3 (15%) had a large
negative weight on concreteness and a positive weight on valence, exhibiting a
preference for abstract art and color fields (Figure @A,B,D). We also noticed that

the difference between clusters was not well described by art categories.

One potential concern might be that the model’s performance relies on the prefer-
ences for a particular art genre over the other (e.g., people may like impressionism
over cubism); however, the same model trained on all images captures significant
variations in preference within each art genre after taking out the effect of genre
preferences (Figure [2.19), suggesting that the model captures variations in subjec-
tive preference both within and across genres. Indeed, we found in a representation
dissimilarity analysis over visual stimuli, that low-level features seem to capture art

genres, but high-level features go beyond the genres (Figure [2.20)).

Although our model can capture significant variance in aesthetic liking judgements,
it by no means captures everything. We compared our model’s out-of-participant

performance with the average correlations in ratings between participants, showing



22

that there is significant variance in ratings that the model fails to capture in all of
the art genres (Figure [2.21)). The latter provides an estimate of a noise ceiling, that
is, the variance in ratings that can in principle be predicted from the data. The
difference between the model’s predictions and the average ratings shows that there
is still significant remaining variance that the model fails to capture in all of the art

genres.

The above results are based on a linear regression of low- and high-level features,
but we also considered the possibility that high-level features are comprised of low-
level features (illustrated in Figure [2.1]C). To assess this, we probed the degree to
which a linear combination of low-level features could predict the annotated ratings
of high-level features. For this, we trained a linear support vector machine using all
low-level features as input, and indeed we found that variance ascribed to high-level
features could be predicted by low-level features (Figure 2.2D). This suggests that
high-level features can be constructed using objective elements of the images, rather
than subjective sensations, although the construction may well depend on additional

nonlinear operations.

Finally, to test for the effects of the salience of features within the image on the
behavioral prediction, we calculated a saliency map for each stimulus using the
standard saliency toolbox Walther and Koch| (2006). Then we re-calculated visual
features (11 global features, 20 segmented features) with the saliency map, simply
by filtering the features through the saliency map (please see Method for details).
We added these saliency-weighted features to the original feature set, and performed
linear regression analysis. We however found that the salience map filtered features
did not improve the model’s predictive accuracy (Figure [2.22).

The LFS model also predicts human valuation of photographs

One potential concern we had was that our ability to predict artwork rating scores
using this linear model might be somehow idiosyncratic due to specific properties
of the stimuli used in our stimulus-set. To address this, we investigated the extent to
which our findings generalize to other kinds of visual images by using a new image
database of 716 images Murray et al| (2012); Figure 2.4A), this time involving
photographs (as opposed to paintings) of various objects and scenes, including
landscapes, animals, flowers, and pictures of food. We obtained ratings for these
716 images in a new m-Turk sample of 382 participants. Using the low-level

attributes alone (these images were not annotated with high-level features), the
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Figure 2.4: The LFS model also predicts subjective liking ratings for various kinds
of photographs. (A). Example stimuli from the photography dataset. We took a wide
range of images from the online photography (AVA) dataset Murray et al.| (2012),
and ran a further on-line experiment in new M-Turk participants (n = 382) to obtain
value ratings for these images. (B). A linear model with low-level features alone
captured liking ratings for photography. This model when trained on liking ratings
for photography (data from the current experiment) also captured liking ratings
for paintings (data from the previous experiment described in 2.1, and the model
trained on liking ratings for paintings could also liking ratings for photography. We
note that in all cases the model was trained and tested on completely separate sets of
participants. Significance was tested against the null distribution constructed from
the analysis with permuted image labels. The error bars indicate the mean and the
s.e., while the dots indicate individual participants.

linear integration model could reliably predict photograph ratings (Figure [2.4B).
The model performed well when trained and tested on the photograph database, but
to our surprise, the same model (as trained on photographs) could also predict the
ratings for paintings that we collected in our first experiment, and vice versa (a model
trained on the painting ratings could predict photograph ratings). Of note, accuracy
was reduced if trained on paintings and tested on photographs (though still highly
above chance), suggesting that the photographs enabled improved generalization
(possibly because the set of photographs were more diverse). We stress that here, in

all cases the model was trained and tested on completely separate sets of participants.

We also tested whether the inclusion of high-level features can improve the model’s
predictive accuracy in the photograph dataset. Using the support vector machine that

is trained on high-level features in the visual art dataset, we estimated binarized high
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level features in the photograph dataset. We then tested how the model with both
low- and high-level features predict ratings in photograph dataset. We found that the
full model with both high- and low-level features performs significantly better than
the prediction from average ratings, though the direct comparison between the model
with low-level alone and the full model did not yield statistical significance (Figure
[2.23). This indicates that abstract high-level features can contain information that
is generalized across different images, which enables the model to go beyond the

average ratings for each image.

A deep convolutional neural network (DCNN) model predicts human liking
ratings for visual art

We now have shown that our LFS model can capture subjective preference for
visual art; however, as we selected the model’s features using a mixture of prior
literature and bottom-up machine learning tools, we do not know if this strategy has
any biological import. In particular, 1) because we handpicked the LFS model’s
features, it is not clear if and how a neural system learns to represent these features.
It is unlikely that an actual neural system (e.g., human brain) is trained on the
features explicitly. Rather, if the LFS model represents a biologically plausible
computation, features should emerge out of training on value judgements without
explicitly trained on features. Also, 2)itis not clear what kind of network architecture
is sufficient to achieve the LFS model’s computation. Specifically, it is unknown how
a network architecture could end up representing low-level and high-level features

hierarchically and integrating them to construct subjective value.

To address these issues, we utilized a standard deep convolutional neural network
(DCNN; VGG 16 Simonyan and Zisserman| (2014))), that had been pre-trained
for object recognition with ImageNet Deng et al.| (2009). This allows us to test
if the computation of the LFS model can be realized in a standard feed-forward
network. We used this network with fixed pre-trained weights in convolutional
layers, but trained the weights for the last three fully-connected layers on averaged
liking ratings. Mirroring the results of our LFS model, we found that our DCNN
model can predict human participants’ liking ratings across all participants (Figure
[2.5)A). This shows that it is indeed possible to predict preferences for visual art
using a deep-learning approach without explicitly selecting stimulus features. In a
supplementary analysis, we also opened the convolutional layers to training, but saw

no improvement.
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Figure 2.5: A deep convolutional neural network (DCNN) can predict subjective
values (i.e., liking ratings) of art stimuli, and the features that we introduced to our
LFS model spontaneously emerge in the hidden layers of the network. We utilized a
standard convolutional neural network (VGG 16 |Simonyan and Zisserman| (2014))
that came pre-trained on object recognition with ImageNet Deng et al. (2009),
consisting of 13 convolutional and three fully connected layers. We trained the last
three fully connected layers of our network on average art liking scores without
explicitly teaching the network about the LFS model’s features. (A).The neural
network could successfully predict human participants’ liking ratings significantly
greater than chance across all participants. The significance (p < 0.001, indicated
by three stars) was tested by a permutation test. (B). We found that we can decode
average liking ratings using activation patterns in each of the hidden layers. The
predictive accuracy was defined by the Pearson correlation between (out-of-sample)
model’s predictions and the data. For this, we used a (ridge) linear regression to
predict liking ratings from each hidden layer. We first reduced the dimensions of
each layer with a PCA, taking top PCs that capture 80% of the variance in each
layer. The accuracy gradually increases over layers despite the fact that most layers
(layers 1-13) were not trained on liking ratings but on ImageNet classifications
alone. (C,D). When performing the same analysis with the LFS model’s features,
we found some low-level visual features with significantly decreasing predictive
accuracy over hidden layers (e.g., the mean hue and the mean saturation). We also
found that a few computationally demanding low-level features showed the opposite
trend (see the main text). (E,F). We found some high-level visual features with
significantly increasing predictive accuracy over hidden layers (e.g., concreteness
and dynamics). We also found that temperature, which we introduced as a putative
high-level feature, actually shows the opposite trend, likely because it is a color-based
feature that can be straightforwardly computed from pixel data. Credit: History and
Art Collection/Alamy Stock Photo.
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The LFS model’s features emerge spontaneously in the DCNN model’s hidden

layers

We turn now to ask whether the features used in our LFS model are spontaneously
encoded in the neural network. Mirroring our illustration of the LFS model in
Figure [2.TC, we hypothesized that low-level visual features would be represented
in early layers of the DCNN, while more abstract high-level attributes would be
represented in later layers of the network. For our investigation, we performed
decoding analyses to predict high- and low-level feature values using the activation
patterns in each hidden layer. We first reduced the dimensions of each layer using
principal component analysis (PCA), and using the top principal components (PCs)
that capture 80% of the variance of each layer, we trained a regression model for a
given variable that we aimed to predict (e.g., ratings or a feature) using the PCs of

each layer.

We first tested to see if we can predict subjective liking ratings using the hidden layer
activation patterns. We were able to decode subjective ratings across all layers, but
noted that decodability gradually increased for layers deeper in the network (Figure
[2.5B). This came as a surprise since all but the last three layers (layers 1 to 13,
out of 16) were pre-trained not on the rating scales being decoded, but on image
classifications alone using ImageNet, hinting at a tight relationship between value

coding and visual recognition.

We then tested to see how the hidden layers related to the LFS model’s features. This
analysis showed that hidden layers could predict all 23 features included in the LFS
model. Consistent with our hypothesis, six (of the 19) putative low-level features
tested were represented more robustly in early layers, as shown by a significantly
negative decoding slope across layers (Figure[2.5[CD). We also found four (out of 19)
low-level features had a decoding accuracy that increased as a function of the depth
of the layer, suggesting those low-level features, in fact, may be better identified
as high-level features. However, we note that the overall predictive accuracy of
these features was low compared to those showing negative slopes. These positive

29 ¢

slope features include: ‘“the presence of a person,” “the mass center for the largest

29 ¢

segment,” “mass variance of the largest segment,” and “entropy in the 2nd largest
segment,” all of which require relatively complex computations (e.g., segmentation
and the identification of the location of the segments) compared to the ones showing
negative slopes (e.g., average saturation). We note that this result is consistent with

a previous electrophysiological and computational modeling study in macaques
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(Hong et al.| 2016), which reported that the position of an object on the screen
is more robustly represented in higher visual areas and deeper layers, as position
identifications of a segment and an object likely involve similar computations. These
object-related features were also referred to as ‘low-level’ features (Hong et al.,
2016)), in line with our original reference. The other 9 low-level features tested did

not show either a strong positive or negative slope.

Similarly, for the putative high-level features, we found that two (of 4) features were
more robustly represented in later layers (Figure [2.5EF). However, “temperature,”
which was labelled as a high-level feature, showed a significant negative slope. Given
that this feature is based on color palettes in the image (i.e., whether the color palette
is hot or cold), this feature’s variance may already be well captured by low-level
image statistics. The fourth putative high-level feature, valence, did not show either
an increasing or decreasing trend in decoding across layers. Thus, the DCNN allows
a more principled means to identify low and high-level features, enabling us to label
6 features as low-level (based on greater representation of those features in earlier
layers of the network), and 6 as high-level features, indicated by representations
that are present to a greater extent in later layers of the network. These LFS model-
based analyses on the DCNN sheds light into what are often-considered-to-be “black
box” computations in deep artificial neural networks, and may provide an empirical
definition of computational complexity in feature extraction of visual as well as

other sensory inputs.

Taken together, our DCNN analyses suggest that our conceptualized LFS model
(Figure 2.1C) is, in fact, a natural consequence of training the neural network on
object recognition and predicting subjective aesthetic value, without requiring any

explicit feature engineering.

The LFS model’s features emerge in the DCNN model’s style features as well

In addition to our analysis of the decodability of low- and high-level features from the
hidden layers, we also investigated whether these features could be decoded from the
style representations of the convolutional layers. Specifically, we examined the Gram
matrices of channel activations in each hidden layer, which capture the correlations
between feature maps and are commonly associated with the style information of a
painting genre (Gatys, [2015). Therefore, the style features could serve as a proper

representation for the considered feature sets.

Similar to the previous analyses, the style features were first reduced to the dimen-
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Figure 2.6: Comparison between the original and reduced dimensions after applying
PCA. The upper row shows the hidden layer activations, while the lower row displays
the style features of the hidden activations.

sions that explain 80% of the total variance using PCA. In particular, the number
of principal components needed to explain 80% of the total variance was signifi-
cantly lower when PCA was applied to the style features (Figure [2.6] left column).
Additionally, the relative number of principal components required to explain the

variance compared to the original dimensions was reduced by nearly a factor of 10
(Figure [2.6] right column).

We then conducted a decoding analysis on the style features analogous to the one
performed on the hidden layers. Most of the subjective ratings and features included
in the LFS model could be decoded from the style features, with the exceptions of
mass skewness for the second largest segment and the vertical coordinate of the mass
center for the largest segment (Figures [2.7)and [2.8)). This is likely due to the style
features losing spatial information as a result of the dot products between channels.
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The decodability order of high-level features was identical to that observed in
the hidden layer decoding analyses (strongest to weakest: temperature, valence,
dynamics, and concreteness; see Figures and [2.8). The order of decoding
performance for low-level features from the style features was similar, though some
discrepancies were noted compared to the original hidden layer decoding (Figures
and [2.§). For instance, the feature with the second highest decodability was the
mean color value of the largest segment in the hidden layer decoding, but it was the
horizontal coordinate of the mass center for the largest segment in the style feature

decoding.

The decoding slope was mostly similar, but the style feature decoding showed a dip
in the early layers, following the pattern of decoding from the original hidden layers
in the higher convolutional layers (Figure [2.9). However, in general, the decoding
accuracies were higher in the higher convolutional layers compared to the lower

layers.

The subjective value of art is represented in the medial prefrontal cortex
(mPFC)

We first tested for brain regions correlating with the subjective liking ratings of each
individual stimulus at the time of stimulus onset. We expected to find evidence
for subjective value signals in the medial prefrontal cortex (mPFC), given this is
the main area found to correlate with value judgments for many different stimuli
from an extensive prior literature, including for visual art (e.g., |(Cela-Conde et al.
(2004); [Kawabata and Zeki| (2004); Padoa-Schioppa and Assad| (2006); Kable and
Glimcher (2007); |Glascher et al. (2008]); (Grabenhorst and Rolls| (2011)); (Ishizu and
Zeki (2013)). Consistent with our hypothesis, we found that voxels in the mPFC
are positively correlated with subjective value across participants (Figure [2.12]
See Figure for the timecourse of the BOLD signals in the mPFC cluster).
Consistent with previous studies, e.g., Hampton and O’doherty| (2007)); Serences
(2008); |Chatterjee et al. (2009); Stanisor et al.| (2013); FitzGerald et al. (2013));
Suzuki et al. (2017a)); Bach et al.| (2017), other regions are also correlated with

liking value (Figure [2.29]and [2.30).

These subjective value signals could reflect other psychological processes such as
attention. Therefore we performed a control analysis with the same GLM with
additional regressors that can act as proxies for the effects of attention and mem-

orability of stimuli, operationalized by reaction times, squared reaction times and
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existence of human) for each feature for each layer.
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the deviation from the mean rating (O’Doherty, |2014). We found that subjective

value signals in all participants that we report in Figure 2.12f survived this control
analysis (Figure [2.31).

Visual stream shows hierarchical, graded, representations of low-level and
high-level features

As illustrated in Figure [2.10d, and reflecting our hypothesis regarding the encoding
of low vs. high-level features across layers of the DCNN, we hypothesized that
the brain would decompose visual input similarly, with early visual regions first
representing low-level features, and with downstream regions representing high-
level features. Specifically, we analyzed visual cortical regions in the ventral and
dorsal visual stream (Wang et al., [2014) to test the degree to which low-level and
high-level features are encoded in a graded, hierarchical manner. In pursuit of this,
we constructed a GLM that included the shared feature time-locked to stimulus onset.
We identified voxels that are significantly modulated by at least one low-level feature
by performing an F-test over the low-level feature beta estimates, repeating the same
analysis with high-level features. We then compared the proportion of voxels
that were significantly correlated with low-level features vs. high-level features
in each region of interest in both the ventral and dorsal visual streams. This
method allowed us to compare results across regions while controlling for different
signal to noise ratios in the BOLD signal across different brain regions (Barch
et al., |2013). Regions of interest were independently identified by means of a
detailed probabilistic visual topographical map (Wang et al., 2014). Consistent
with our hypothesis, our findings suggest that low- and high-level features relevant
for aesthetic valuation are indeed represented in the visual stream in a graded
hierarchical manner. Namely, the relative encoding of high-level features with
respect to low-level features dramatically increases across the visual ventral stream
(Figure 2.13p). We found a similar, hierarchical organization in the dorsolateral
visual stream (Figure [2.13p), albeit less clearly demarcated than in the ventral case.
We also confirmed in a supplementary analysis that referring to feature levels (high or
low) according to our DCNN analysis, i.e., by using the slopes of our decoding results
(ligaya et al., 2021)), did not change the results of our fMRI analyses qualitatively

and does not affect our conclusions (see Figure[2.32).

We also performed additional encoding analysis using cross validation at each voxel
of each participant (Naselaris et al.l 2011). Specifically, we performed a lasso

regression at each voxel with the low- and high-level features that we considered in
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our original analyses. Hyperparameters are optimized in 12-fold cross validation at

each voxel across stimuli.

As a robustness check, we determined if our GLM results can be reproduced using
the lasso regression analysis. We analyzed how low-level feature weights and high-
level feature weights changed across ROIs. For this, we computed the sum of
squares of low-level feature weights and the sum of squares of high-level feature
weights at each voxel. Because these weights estimates include those that can be
obtained by chance, we also computed the same quantities by performing the lasso
regression with shuffled stimuli labels (labels were shuffled at every regression).
The null distribution of feature magnitudes (the sum of squares) was estimated for
low-level features and high-level features at each ROI. For each voxel, we asked
if estimated low-level features and high-level features are significantly larger than
what is expected from noise, by comparing the magnitude of weights against the
weights from null distribution (p < 0.001). We then examined how encoding of
low-level vs high-level features varied across ROlIs, as we did in our original GLM

analysis.

As seen in Figure [2.33] the original GLM analysis results were largely reproduced
in the lasso regression. Namely, low-level features are more prominently encoded
in early visual regions, while high-level features are more prominently encoded in
higher visual regions. In this additional analysis, such effects were clearly seen
across five out of six participants, while one participant (P1) showed less clear
early vs late region-specific differentiation with regard to low vs high-level feature
representation. We also note that the model’s predictive accuracy in visual regions

was lower for this participant (P1) than for the rest of the participants (Figure[2.34).

Non-linear feature representations

We found that features of the LFS model are represented across brain region and
contribute to value computation. However, it is possible that nonlinear combinations
of these features are also represented in the brain and that these may contribute to
value computation. To explore this possibility, we constructed a new set of nonlinear
features by multiplying pairs of the LFS model’s features (interaction terms). We
grouped these new features into three groups: interactions between pairs of low-
level features (low-level x low-level), interactions between pairs of low-level and
high-level features (low-level x high-level), and interactions between pairs of high-

level features (high-level x high-level). To control the dimensionality of the new
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feature groups, we performed principal component analysis within each of the three
groups of non-linear features, and took the first five PCs to match the number of the
high-level features specified in our original LFS model. We performed a LASSO

regression analysis with these new features and the original features.

We found that in most participants, non-linear features created from pairs of high
level features produced significant correlations with neural activity across multiple
regions, while also showing similar evidence for a hierarchical organization from
early to higher order regions, as found for the linear high level features (Figures[2.14]
and [2.35). Though comparisons between separately optimized lasso regressions
should be cautiously interpreted, the mean correlations of the model with both
linear and nonlinear features across ROIs showed a slight improvement in predictive
accuracy compared to the original LFS model with only linear features (Figure
[2.34), while the DCNN model features out-performed both the original LFS model

and the LFS model + nonlinear features.

Indeed, nonlinear features created from pairs of high-level features significantly
contribute more to behavioral choice predictions than do other nonlinear features
not built solely from high-level features (Figure[2.36). The first principal component
of high level x high level features well captured three participants (3,5,6) behavior,
while other participants show somewhat different weight profiles. However, we

found that these newly added features only modestly improved the model’s behavioral

predictions (Figure [2.37).

DCNN model representations

We then tested whether activity patterns in these regions resemble the computations
performed by the hidden layers of the DCNN model. We extracted the first three
principal components from each layer of the DCNN, and included each as regressors
in a GLM. Indeed, we found evidence that both the ventral and dorsal visual stream
exhibits a similar hierarchical organization to that of the DCNN, such that lower
visual areas correlated better with activity in the early hidden layers of the DCNN,
while higher-order visual areas (in both visual streams) tend to correlate better with
activity in deeper hidden layers of the DCNN (Figure [2.13fcd).

We also performed additional analyses with LASSO regression using the DCNN
features. To test if we can reproduce the DCNN results originally performed with
the GLM approach (as shown in Figure[2.13)), we first performed LASSO regression

with the same 45 features from all hidden layers. Hyperparameters were optimized



36

by 12-fold cross-validation. The estimated weights were compared against the null
distribution of each ROI constructed from the same analysis with shuffled stimuli
labels. We then also performed the same analysis but with a larger set of features
(150 features). In Figures[2.38]and [2.39] we show how the weights on features from
different layers varied across different ROIs in the visual stream. We computed
the sum of squared weights of hidden layer groups (layer 1-4, 5-9, 10-13, 14-15).
Again, in order to discard weight estimates that can be obtained by chance, we
computed a null distribution by repeating the same analysis with shuffled labels and
took the weight estimates that are significantly larger than the null distribution (at
p < 0.001) in each ROI. We again found that LASSO regression with within-subject

cross validation reproduced our original GLM analysis results.

As a further control analysis, we asked whether similar results could be obtained
from a DCNN model with random, untrained, weights (Kell et al., [2018). We
repeated the same LASSO regression analysis as we did in our analysis with the
trained DCNN model. We found that such a model does not reproduce the finding
of a hierarchical representation of layers that we found across the visual stream and

other cortical areas as in the analysis with trained DCNN weights (Figures [2.40/and

2.41).

PPC and PFC show mixed coding of low- and high-level features

We next probed these representations in downstream regions of association cortex
(Baizeretal., 1991} Rao et al., 1997). We performed the same analysis with the same
GLM as before in regions of interest that included the posterior parietal cortex (PPC),
lateral prefrontal cortex (IPFC) and medial prefrontal cortex (mPFC). We found that
both the LFS model features and the DCNN layers were represented in these regions
in a mixed manner (Rigotti et al., 2013; [Zhang et al., 2017). We found no clear
evidence for a progression of the hierarchical organization that we had observed
in the visual cortex; instead, each of these regions appeared to represent both low
and high-level features to a similar degree (Figure [2.15p). Activity in these regions
also correlated with hidden layers of the DCNN model (Figure[2.15b). We obtained
similar results using a LASSO regression analysis with cross validation based on
either the LFS model features (Figure[2.42) or the DCNN features (Figure [2.43]and
[2.44). These findings suggest that, as we will see, these regions appear to play a

primary role in feature integration as required for subjective value computations.
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Features encoded in PPC and IPFC are strongly coupled to the subjective value
of visual art in mPFC

Having established that both the engineered LFS model and the emergent DCNN
model features are hierarchically represented in the brain, we asked if and how
these features are ultimately integrated to compute the subjective value of visual
art. First, we analyzed how aesthetic value is represented across cortical regions
alongside the model features by adding the participant’s subjective ratings to the
GLM. We found that subjective values are, in general, more strongly represented in
the PPC as well as in the lateral and medial PFC than in early and late visual areas
(Figures [2.16p and Figure [2.45). Furthermore, value signals appeared to become
more prominent in medial prefrontal cortex compared to the lateral parietal and
prefrontal regions (consistent with a large prior literature, e.g., Cela-Conde et al.
(2004); Padoa-Schioppa and Assad| (2006); Kable and Glimcher| (2007); |Glascher
et al.| (2008)); Noonan et al.| (2010); |Grabenhorst and Rolls| (201 1)); Ishizu and Zeki
(2013)). This pattern was not altered when we control for reaction times and
the distance of individual ratings from the mean ratings, proxy measures for the
degree of attention paid to each image (Figure[2.46)). In a further validation of our
earlier feature encoding analyses, we found that the pattern of hierarchical feature
representation in visual regions was unaltered by the inclusion of ratings in the GLM
(Figure [2.47). We note that even when using the DCNN model to classify features
as either high or low as opposed to relying on the a-priori assignment from the LFS
model, this did not change the results of our fMRI analyses qualitatively and does

not affect our conclusions (Figure[2.32).

These results suggest that rich feature representations in the PPC and lateral PFC
could potentially be leveraged to construct subjective values in mPFC. However,
it is also possible that features represented in visual areas are directly used to
construct subjective value in mPFC. To test this, we examined which of the voxels
representing the LFS model features across the brain are coupled with voxels that
represent subjective value in mPFC at the time when participants make decisions
about the stimuli. A strong coupling would support the possibility that such feature
representations are integrated at the time of decision-making in order to support a

subjective value computation.

To test for this, we first performed a psychological-physiological interaction (PPI)
analysis, examining which voxels are coupled with regions that represent subjective

value when participants made decisions (Figure [2.16p and Figure [2.48)). We stress
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that this is not a trivial signal correlation, as in our PPI analysis all the value and
feature signals are regressed out. Therefore the coupling is due to noise correlations
between voxels. Then we asked how much of the feature-encoding voxels overlap
with these PPI voxels. Specifically, we tested for the fraction of feature-encoding
voxels that are also correlated with the PPI regressor across each ROI. Finding
overlap between feature encoding voxels and PPI connectivity effects would be con-
sistent with a role for these feature encoding representations in value construction.
We found that the overlap was most prominent in the PPC and IPFC, while there
was virtually no overlap in the visual areas at all (Figure [2.16f), consistent with
the idea that features in the PPC and IPFC, instead of visual areas, are involved in
constructing subjective value representations in mPFC. A more detailed decompo-
sition of the PFC ROI from the same analysis shows the contribution of individual
sub-regions of lateral and medial PFC (Figure [2.49).

We also performed a control analysis to test the specificity of the coupling to an
experimental epoch by constructing a similar PPI regressor locked to the epoch of
inter-trial-intervals (ITIs). This analysis showed a dramatically altered coupling that
did not involve the same PPC and PFC regions (Figure[2.50)). These findings indicate
that coupling between PPC and LPFC with mPFC value representations occurs
specifically at the time that subjective value computations are being performed,
suggesting that these regions are playing an integrative role of feature representations
at the time of valuation. We however note that all of our analyses are based on

correlations, which do not provide information about the direction of the coupling.

2.4 Discussion

Whether we can lawfully account for personal preferences in the aesthetic appreci-
ation of art has long been an open question in the arts and sciences (Kant (1987));
Fechner (1876); Zeki (2002); Chatterjee| (2011)). Here, we addressed this question
by engineering a hierarchical linear feature summation (LFS) model that generates
subjective preference according to a weighted mixture of explicitly designed stim-
ulus features. This model was verified with both in-depth lab-based small scale
behavioural experiments and large-scale on-line behavioral experiments, and con-
trasted to a deep convolutional neural network (DCNN) model as well as in in-depth
focused, within- subject, neuroimaging experiments. We found that it is indeed
possible to predict subjective valuations of both paintings and photography using
the same feature set, and we demonstrate hierarchical feature representations in a

DCNN that predicts aesthetic valuations. Moreover, we demonstrate how the brain
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transforms visual stimuli into subjective value, from the primary visual cortex to

parietal and prefrontal cortices.

Our results indicate that linearly integrating a small set of visual features can explain
human preferences for paintings and photography. Not only is it possible to predict
an individual’s ratings based on that particular individual’s prior ratings for other
images, but we also found that this strategy allowed us to predict one individual’s
preferences from the preferences of others, even for novel stimuli. This is achievable
likely because the majority of participants shared substantial variance in their pref-
erences, and the model efficiently extracted this, as shown by our clustering analysis
whereby one dominant cluster was found to account for the majority of participants’
liking ratings. Our results are consistent with a number of empirical aesthetics stud-
ies proposing that statistical properties of images can account for aesthetic values
(e.g., Bar and Neta (2006); Mallon et al. (2014); Graham and Field (2008)).

We also found that the LFS model with the same visual feature set can predict
subjective values for both visual art and for diverse photographic stimuli. This
suggests that the features used for visual aesthetic judgement may not be domain-
specific but universal, relying on a small set of visual features shared across visual
stimuli. Our findings also hint that the extraction of these features might be a
natural consequence of developing a visual system. We found that a DCNN model
trained on object recognition and valuation represents those features throughout the
hidden layers. Further studies could investigate whether such feature-extractions
and feature-based value judgement are universal computations not only in visual

processing but also other sensory domains such as in audition and olfaction.

The cluster analysis we ran on the large-scale online study showed that there is
variation in preferences across individuals. A substantial component of that variation
is whether or not participants liked concrete art or abstract art: the majority assigned
large positive weights to concreteness, while the others assigned large negative
weights. This indicates that concreteness alone is explaining a substantial part of the
variance, and accounting for variation in preferences across groups of individuals.
However, it should be noted that while concreteness does account for a substantial
portion of variance in people’s preferences, other high-level features also play an

important role, including dynamics and valence.

We also note that, though such high-level features, including concreteness, can be
used to predict preference, much if not most of the significant variance explained

by such high-level features can also be explained directly as a linear combination
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of a number of low-level visual features. This is consistent with the idea that many
low-level sensory features (that are present in early layers in DCNN) are transformed
into a smaller number of task-specific high-level features (that are present in deeper

layers in DCNN), which are in turn used to predict subjective value.

It is also important to note there was in addition variance across individuals in
preferences that the model did not capture well (Vessel et al. (2018)); Vessel and Rubin
(2010)). Thus, while art preferences share some commonalities across clusters of
individuals, there is in addition some degree of individual variability. We found that
the degree of commonality in subjective ratings in our study was in a similar range to
previous studies (e.g., the average correlation between our M-turk samples was 0.45,
which is similar to [Vessel et al.| (2018)). We nonetheless should stress that in our
study there are two limitations. One is that most of our in-lab and online participants
are not art experts and it thus remains possible that artistically experienced people
might judge artworks differently. The second is that we only covered a relatively
narrow subset of art genres, leaving open the possibility that there may be some art
genres for which the model may not perform well. That said, we also validated our
models using a wide range of photographs, indicating the potential generalizability
of our findings even beyond drawings. In fact, previous studies (e.g., |Graham
and Field (2008)) suggest that artworks and natural scenes share some statistical

regularities, of which our model might be able to take advantage.

It should also be noted that the predictive power of our model varied across par-
ticipants. One possibility is that some participants were more reliable/consistent
in reporting their ratings. Unfortunately, we did not present the same stimuli mul-
tiple times to each participant, making it difficult to directly test the consistency
of participants’ choices. However we did present the same set of stimuli to each
participant. We thus directly tested how ratings of each painting were similar across
participants. To test this, we computed the average ratings over n-1 participants of
each painting and computed correlation between the average ratings and the ratings
of the remaining participant. We performed this for each participant, and found that
the correlation systematically co-varied with the within participant predictions of
the model. This suggests that variability in predictability is largely due to noise in

participant’s preferences.

Here, utilizing a set of interpretable visual and emotional features, we showed that
these features are employed by individuals to make value judgments for art. We note

that this is by no means a complete enumeration of the features used by humans.
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For instance, the semantic meaning of a painting, its historical importance, as well
as memories of past experiences elicited by the painting, are also likely to play
important roles (see, e.g., Leder et al.| (2004); Palmer et al.| (2013))). Thus, rather
than offering a feature catalogue, our findings shed light on the general principles
by which feature integration yields to aesthetic valuation. However, the features that
we identified are likely to be important, particularly as we utilized a reasonably large
set of potential features in our initial feature set which was subsequently narrowed

down to a set of only the most relevant features.

We found evidence using a DCNN model that the features engineered for use in the
LFS model spontaneously emerge in a neurally plausible manner. Our deep network
model was not explicitly trained on any of the LFS model’s features, nor were the
convolutional hidden layers of the network trained on liking ratings (only the later
fully connected layers were trained using rating scores). Nevertheless, we were still
able to identify LFS features from the hidden layers of the network, which suggests
that the features used for aesthetic valuation likely emerge spontaneously through
more basic and generalizable aspects of visual development. Further, those features
may well be utilized for a wide range of visual tasks, including object classification,
prediction, and identification. Thus, we speculate that these findings suggesting
a common feature space shared across different tasks may provide insights into

transfer learning (Bengio| (2012))) in machine learning.

One important consideration is whether linear feature operations are sufficient to
describe the computations underlying aesthetic valuation. Notably, the highly non-
linear deep network did not substantively outperform the simple linear model. How-
ever, in the LFS model, the feature extraction process itself is not necessarily linear
(e.g., segmentation). As such, our results do not rule out the possibility of non-
linearity in feature extraction processes in the brain, but they do suggest that the
final feature value integration for computing subjective art valuation can be ap-
proximated by a linear operation. This computational scheme resonates with a
widely-used machine-learning technique referred to as the kernel method, whereby
inputs are transformed into a high-dimensional feature space in which categories
are linearly separable (Leshno et al.| (1993); Hofmann et al. (2008))), as well as
with high-dimensional task-related variables represented in the brain (Rigotti et al.
(2013)).

Focusing first on the visual system, we found that low-level features that predict

visual art preferences are represented more robustly in early visual cortical areas,
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while high-level features that predict preferences are increasingly represented in
higher-order visual areas. These results support a hierarchical representation of
the features required for valuation of visual imagery, and further support a model
whereby lower-level features extracted by early visual regions are integrated to
produce higher-level features in the higher visual system (Chatterjee| (2003). While
the notion of hierarchical representations in the visual system is well established
in the domain of object recognition Van Essen and Maunsell| (1983); Felleman
and Van| (1991); Hochstein and Ahissar (2002); |[Konen and Kastner| (2008)), our
results substantially extend these findings by showing that features relevant to a very
different behavioral task — forming value judgments, are also represented robustly

in a similar hierarchical fashion.

We then showed that the process through which feature representations are mapped
into a singular subjective value dimension in a network of brain regions, including
the posterior parietal cortex (PPC), lateral and medial prefrontal cortices (IPFC
and mPFC). While previous studies have hinted at the use of such a feature-based
framework in the prefrontal cortex (PFC), especially in orbitofrontal cortex (OFC),
in those previous studies the features were more explicit properties of a stimulus
(e.g., the movement and the color of dots (Kahnt et al., 2011b; Mante et al., 2013;
Pelletier and Fellows| [2019), or items that are suited to a functional decomposition
such as food odor (Howard and Gottfried, 2014) or nutritive components of food
(Suzuki et al.,[2017a); see also Hare et al.|(2009); [Lim et al.| (2013))). Here we show
that features relevant for computing subjective value of visual stimuli are widely
represented in IPFC and PPC, whereas subjective value signals are more robustly
represented in parietal and frontal regions, with the strongest representation in
mPFC.

Further, we showed that PFC and PPC regions encoding low- and high-level features
enhanced their coupling with the mPFC region encoding subjective value at the time
of image presentation. While further experiments are needed to infer the direction-
ality of the connectivity effects, our findings are compatible with a framework in
which low and high-level feature representations in IPFC and PPC are utilized to

construct value representations in mPFC, as we hypothesized in the LFS model.

Going beyond our original LFS model, we also found that in most participants, non-
linear features created from pairs of high level features specified in the original model
produced significant correlations with neural activity across multiple regions, while

largely showing similar evidence for a hierarchical organization from early to higher
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order regions, as found for the linear high level features. These findings indicate
that the brain encodes a much richer set of features than our original proposed set
of low-level and high-level features as specified in the original LFS model. It will
be interesting to see if the nonlinear features that we introduced here, especially
the ones that were constructed from pairs of high-level features, can also be used to
support behavioral judgments beyond the simple value judgments studied here, such
as object recognition and other more complex judgements (Durkin et al.|[2020). We
also note that there are other ways to construct nonlinear features. Further studies
with richer set of features, e.g, other forms of interactions, may improve behavioral

and neural predictions

Accumulating evidence has suggested that value signals can be found widely across
the brain including even in sensory regions (e.g., Hampton and O’doherty| (2007);
Serences (2008); Chatterjee et al. (2009); Stanisor et al. (2013); FitzGerald et al.
(2013); Suzuki et al.| (2017a); Bach et al.| (2017)), posing a question about the
differential contribution of different brain regions if value representations are so
ubiquitous. While we also saw multiple brain regions that appeared to correlate with
value signals during aesthetic valuation, our results suggest an alternative account
for the widespread prevalence of value signals, which is that some components of the
value signals especially in sensory cortex might reflect features that are ultimately
used to construct value in later stages of information processing, instead of the value
itself. Because neural correlates of features have not been probed previously, our
results suggest that it may be possible to reinterpret at least some apparent value
representations as reflecting the encoding of precursor features instead of value per
se. In the present case even after taking into account feature representations, value
signals were still detectable in the medial prefrontal cortex and elsewhere, supporting
the notion that some brain regions are especially involved in value coding more than
others. In future work it may be possible to even more clearly dissociate value from
its sensory precursors by manipulating the context in which stimuli are presented,
wherein features remain invariant across contexts, while the value changes. In
doing so, further studies can illuminate finer dissociations between features and
value signals (O’Doherty et al.,|[2021c).

While previous studies have suggested similarities between representations of units
in DCNN models for object recognition and neural activity in the visual cortex
(e.g., [Cadieu et al. (2014); Khaligh-Razavi and Kriegeskorte| (2014); |Giiclii and
van Gerven| (2015); |[Hong et al.| (2016)), here we show that the DCNN model can
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also be useful to inform how visual features are utilized for value computation
across a broader expanse of the brain. Specifically, we found evidence to support
the hierarchical construction of subjective value, where the early layers of DCNN
correlate early areas of the visual system, and the deeper layers of DCNN correlate
higher areas of the visual system. All of the DCNN layers’ information was equally
represented in the PPC and PFC.

These findings are consistent with the suggestion that the hierarchical features which
emerge in the visual system are projected into the PPC and PFC to form a rich feature
space to construct subjective value. Further studies using neural network models
with recurrent connections (Kar and DiCarlo, 2020) may illuminate more detail,
such as the temporal dynamics, of value construction in such a feature space across

brain regions.

Although the deep neural network approach has been successfully applied to a wide
range of machine learning problems (e.g., Esteva et al. (2017);/LeCun et al. (2015))),
the underlying computational mechanisms that deep neural networks leverage in
order to attain high performance across domains are opaque and often poorly under-
stood. Here, we provide evidence that the hidden layers in the deep network encode
low-level and high-level features relevant for computing aesthetic visual preferences
in a hierarchical manner, which are utilized to produce coherent behavioral outputs.
Thus our study provides a clear link from distributed neuronal computations to in-
terpretable, explicit, hierarchical feature representations. Our study thus highlights
the merits of a model-based analysis of artificial neural networks in order to better
understand the nature of the computations implemented therein. We however cau-
tion that we do not claim that the DCNN model necessarily provides a plausible
account of actual neural computations going on in the brain. Unlike a DCNN which
is exclusively feedforward in its connections between layers, the brain is heavily
recurrent, and thus is likely to be better approximated by networks with recurrent

architecture.

One open question is how the brain has come to be equipped with a feature-based
value construction architecture. We showed that a DCNN model trained solely on
object recognition tasks represents the LFS’s low- and high-level features in the
hidden layers in a hierarchical manner, suggesting the possibility that such features
could naturally emerge over development (ligaya et al., 2021]). While the similarity
between the DCNN and the LFS model correlations with fMRI responses in adult

participants provides a promising link between these models and the brain, further
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investigations applying these models to studies with children or other species has the
potential to inform understanding of the origin of feature-based value construction

across development and across species.

Following the typical approach utilized in non-human primate and other animal
neurophysiology as well as in human visual neuroimaging, we performed in-depth
scanning (20 sessions) in a relatively small number of participants (six) in order to
address our neural hypotheses. Because we were able to obtain a sufficient amount
of fMRI data in individual participants, we were able to reliably perform single-
subject inference in each participant and evaluate the results across participants
side-by-side. This approach contrasts with a classic group-based neuroimaging
study in which results are obtained from the group average of many participants,
where each participant performs short sessions, thus providing data with low signal
to noise. One advantage of our approach over the group averaging approach is
that we can treat each participant as a replication unit, meaning that we can obtain
multiple replications (Smith and Littlel 2018)) from one study instead of just one
group result. If every participant shows similar patterns, then it is unlikely that those
results are spurious, and much more likely they reflect a true property of human
brain function. We indeed found that all participants similarly performed our-
hypothesized feature-based value construction across the brain. Another advantage
of our methodological approach concerns possible heterogeneity across participants.
Not all brains are the same, and there is known to be considerable variation in the
location and morphology of different brain areas across individuals (Llera et al.,
2019). Thus, it is unlikely that all brains actually represent the same variable at the
same MNI coordinates. The individual subject-based approach to fMRI analyses
used here takes individual neuroanatomical variation into account, allowing for
generalization that goes beyond a spatially smoothed average that does not represent
any real brain. We note that one important limitation of this in-depth fMRI method
is that it is not ideal for studying and characterizing differences across individuals.
To gain a comprehensive account of such variability across individuals. it would
be necessary to collect data from a much larger cohort of participants. As it is not
feasible to scale the in-depth approach to such large cohorts due to experimenter
time and resource constraints, such individual difference studies would necessarily

require adopting more standard group-level scanning approaches and analyses.

While we found that results from the visual cortex were largely consistent across

participants, the proportion of features represented in PCC and PFC, as well as
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the features that were used, were quite different across participants. Understanding
such individual differences will be important in future work. For instance, there is
evidence that art experts tend to evaluate art differently from people with no artistic
training (Hekkert and van Wieringen, |1996; Chatterjee and Vartanian, 2014)). It
would be interesting to study if feature representations may differ between experts
and non-experts, while probing whether the computational motif that we found here
(hierarchical visual feature representation in visual areas, value construction in PPC
and PFC) might be conserved across different levels of expertise. We should also
note that the model’s predictive accuracy about liking ratings varied across par-
ticipants. It is likely that some participants used features that our model did not
consider, such as personal experience associated with stimuli. Brain regions such
as the hippocampus may potentially be involved in such additional feature computa-
tions. Further, behavior and fMRI signals can be inherently noisy in that there will
be a portion of data that cannot be predicted (i.e., a noise ceiling). Characterizing
the contribution of these noise components will require further experiments with

repeated measurements of decisions about the same stimuli.

The present findings offer a mechanism through which artistic preferences can be
predicted. It is of course important to note that aesthetic experience more broadly
defined goes beyond the simple one-dimensional liking rating (a proxy of valuation)
that we study here (e.g., Zeki| (2002); Chatterjee| (201 1)); Palmer et al.| (2013)), and
that judgments can be context-dependent (Brieber et al.| (2015)). Art is likely to
be perceived along many dimensions, of which valuation is but one, with some
dimensions relying more on idiosyncratic experience than others. Nevertheless,
we speculate that just as it is possible to explain aesthetic valuation in terms of
underlying features, many other aspects of the experience of art can also likely be
decomposed into more atomic feature-based computations, with different dimen-
sions employing different weights over those features. Indeed, subjective value can
itself be considered to be a “feature” in a feature space, albeit a high-level one,
alongside other judgments that might be made about a piece of art. Further, al-
though we did not find evidence for this in the present study, it is undoubtedly the
case that various psychological processes such as attention are likely to dynamically
modulate the relative weights over features that construct subjective value, as well

as modulating underlying neural activity (Lim et al.| (2013)).

Taken together, these findings are consistent with the existence of a large-scale

processing hierarchy in the brain that extends from early visual cortex to medial pre-
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frontal cortex, whereby visual inputs are transformed into various features through
the visual stream. These features are then projected to PPC and IPFC, and subse-
quently integrated into subjective value judgment in mPFC. Crucially, the flexibility
afforded by such a feature-based mechanism of value construction ensures that value
judgments can be formed even for stimuli that have never before been seen, or in
circumstances where the goal of valuation varies (e.g., selecting a piece of art as
a gift). Therefore, our study proposes a brain-wide computational mechanism that
does not limit to aesthetics, but can be generalized to value constrictions of a wide

range of visual and other sensory stimuli.

2.5 Methods
Participants
All participants provided informed consent for their participation in the study, which

was approved by the Caltech IRB.

Online study: A total of 1936 volunteers (female: 883 (45.6%). age 18-24 yr:
285 (14.8%); 25-34 yr: 823 (42.8%); 35-44 yr: 435 (22.6%); 45 yr and above:
382 (19.8%)) participated in our on-line studies in the Amazon Mechanical Turk
(M-turk). 1545 of them participated in the ART task, and 391 of them participated
in the AVA photo task. Among these, participants who missed trials and failed to
complete 50 trials were excluded from our analyses, leaving us with online 1359
participants in the ART task data and 382 participants in the AVA photo task data.

In-lab study: Seven volunteers (female: 3. age 18-24 yr: 5; 25-34 yr: 5; 35-44 yr:
3. 4 Asian, 3 Caucasian) were recruited to our in-lab study The in-lab participants
did not include lab members but were instead recruited from the local community
in Pasadena. Seven participants completed master’s degree or higher. None of the
participants possessed an art degree. Six of the participants reported that they visit
art museums less than once a month, while one participant reported visiting art

museums at least once but less than four times a month.

JMRI study: Six volunteers (female: 6; age 18-24 yr: 4; 25-34 yr: 1; 35-44 yr: 1.
4 White, 2 Asian) were recruited into our fMRI study. 1 participants completed
master’s degree or higher, 4 participants earned a college degree as the highest
level, and 1 participant had a high-school degree as the highest degree. None of the
participants possessed an art degree. All of the participants reported that they visit

art museums less than once a month.

Additionally, thirteen art-experienced participants [reported in our previous behav-
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1oral paper (ligaya et al.,[2021))] (female: 6; ages 18-24 yr: 3; 25-34 yr: 9; 35-44 yr:

1) were invited to evaluate the high-level feature values (outside the scanner). These
participants for annotation were primarily recruited from the ArtCenter College of

Design community.

Stimuli

The same stimuli as our recent behavioral study (ligaya et al.,|2021) were used in the
current fMRI study. Painting stimuli were taken from the visual art encyclopedia
www.wikiart.org. Using a script that randomly selects images in a given category
of art, we downloaded 206 or 207 images from four categories of art (825 in total).
The categories were ‘Abstract Art,” ‘Impressionism,” ‘Color Fields,” and ‘Cubism’.
We randomly downloaded images with each tag using our custom code in order
to avoid subjective bias. We supplemented this database with an additional 176
paintings that were used in a previous study (Vaidya et al., 2017). For the fMRI
study reported here, one image was excluded from the full set of 1001 images to

have an equal number of trials per run (50 images/run X 20 runs = 1000 images).

Picture images were taken from the Aesthetic Visual Analysis (AVA) dataset. This
dataset consists of images from multiple online photo contests. We took images
from the following categories (about 90 images from each): ‘Animals,” ‘Floral,
‘Nature,” ‘Sky,” ‘Still Life,” ‘Advertisement,” ‘Sky,” and ‘Abstract Pictures’. In a total

of 716 images were used.

Tasks

Behavioral task

Liking rating task: On each trial, participants were presented with an image of the
artwork (in the Art-liking Rating Task: ART) or a picture image (in the AVA photo
task) on the computer screen. Participants reported within 6 seconds how much
they like the artwork (or the picture image), by pressing buttons corresponding to a
scale that ranged from 0, 1, 2, 3, where 0 = not like at all, 1= like a little, 2 = like,
and 3 = strongly like, presented at the bottom of the image. Each of the on-line
ART participants performed on average 57 trials of the rating task, followed by a
familiarity task in which they reported if they could recognize the name of the artist
who painted the artwork for the same images that they reported their liking ratings.
The images for each online participant were drawn to balance different art genres.
On-site ART participants performed 1001 trials of rating tasks. On-site participants
had a chance to take a short break approximately every 100 trials. Each of the
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on-line AVA photo task participants performed on average 115 trials of the rating
task.

Feature annotation: The four high-level features were annotated in a manner fol-
lowing (Chatterjee et al| (2010); Vaidya et al.| (2017). On each trial, participants
were asked about the feature value of a given stimulus, ranged from -2, -1, 0, 1, 2.
Following Chatterjee et al. (2010), example figures showing extreme feature values
are always shown on the screen as a reference (please see Figure [2.24)). Each par-
ticipants completed four separate tasks (for four features) in a random order, where

each task consists of 1001 trials (with 1001 images).

fMRI task

On each trial, participants were presented with an image of the artwork on the
computer screen for three seconds. Participants were then presented with a scale
from 0, 1, 2, 3 in which they had to indicate how much they liked the artwork. The
location of each numerical score was randomized across trials. Participants had
to press a button of a button box that they hold with both hands to indicate their
rating within three seconds, where each of four buttons corresponded to a particular
location on the screen from left to right. The left (right) two buttons were instructed
to be pressed by their left (right) thumb. After a brief feedback period showing their
chosen rating (0.5 sec), a center cross was shown for inter-trial intervals (jittered
between 2 to 9 seconds). Each run consists of 50 trials. Participants were invited to
the study over four days to complete twenty runs, where participants completed on
average five runs on each day.

fMRI data acquisition

fMRI data were acquired on a Siemens Prisma 3T scanner at the Caltech Brain Imag-
ing Center (Pasadena, CA). With a 32-channel radiofrequency coil, a multi-band
echo-planar imaging (EPI) sequence was employed with the following parameters:
72 axial slices (whole-brain), A-P phase encoding, —30 degrees slice tilt with re-
spect to AC-PC line, echo time (TE) of 30ms, multi-band acceleration of 4, repetition
time (TR) of 1.12s, 54-degree flip angle, 2mm isotropic resolution, echo spacing of
0.56ms. 192mm x 192mm field of view, in-plane acceleration factor 2, multi-band

slice acceleration factor 4.

Positive and negative polarity EPI-based field maps were collected before each
run with very similar factors as the functional sequence described above (same

acquisition box, number of slices, resolution, echo spacing, bandwidth and EPI
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factor), single band, TE of 50ms, TR of 5.13s, 90-degree flip angle.

T1-weighted and T2-weighted structural images were also acquired once for each
participant with 0.9mm isotropic resolution. T1’s parameters were: repetition time
(TR) 2.4 s: echo time (TE), 0.00232 s; inversion time (TI) 0.8 s; flip angle, 10
degrees; , in-plane acceleration factor 2. T2’s parameters were: TR 3.2 s; TE

0.564s; flip angle, 120 degrees; in-plane acceleration factor 2.

fMRI data processing

Results included in this manuscript come from preprocessing performed using fM-
RIPrep 1.3.2 (Esteban et al.[(2018a); RRID:SCR_016216), which is based on Nipype
1.1.9 (Gorgolewski et al.[(2018); RRID:SCR_002502).

Anatomical data preprocessing

The T1-weighted (T1w) image was corrected for intensity non-uniformity (INU)
with N4Bias Field Correction Tustison et al.| (2010), distributed with ANTs 2.2.0
(Avants et al., 2008, RRID:SCR_004757), and used as T1w-reference throughout
the workflow. The T1w-reference was then skull-stripped with a Nipype imple-
mentation of the antsBrainExtraction.sh workflow (from ANTs), using OA-
SIS30ANTS as target template. Spatial normalization to the ICBM 152 Nonlinear
Asymmetrical template version 2009c¢ was performed through nonlinear registra-
tion with antsRegistration (ANTs 2.2.0), using brain-extracted versions of both
T1w volume and template. Brain tissue segmentation of cerebrospinal fluid (CSF),
white-matter (WM) and gray-matter (GM) was performed on the brain-extracted

T1w using fast.

Functional data preprocessing

For each of the 20 BOLD runs found per subject (across all tasks and sessions),
the following preprocessing was performed. First, a reference volume and its
skull-stripped version were generated using a custom methodology of fMRIPrep.
A deformation field to correct for susceptibility distortions was estimated based on
two echo-planar imaging (EPI) references with opposing phase-encoding directions,
using 3dQwarp(AFNI 20160207). Based on the estimated susceptibility distortion,
an unwarped BOLD reference was calculated for a more accurate co-registration

with the anatomical reference.
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The BOLD reference was then co-registered to the T1w reference using £lirt with
the boundary-based registration cost-function. Co-registration was configured with
nine degrees of freedom to account for distortions remaining in the BOLD reference.
Head-motion parameters with respect to the BOLD reference (transformation matri-
ces, and six corresponding rotation and translation parameters) are estimated before
any spatiotemporal filtering using mcflirt The BOLD time-series (including slice-
timing correction when applied) were resampled onto their original, native space by
applying a single, composite transform to correct for head-motion and susceptibility
distortions. These resampled BOLD time-series will be referred to as preprocessed
BOLD in original space, or just preprocessed BOLD. The BOLD time-series were
resampled to MNI152NLin2009cAsym standard space, generating a preprocessed
BOLD run in MNII52NLin2009cAsym space. First, a reference volume and its
skull-stripped version were generated using a custom methodology of fMRIPrep.
Several confounding time-series were calculated based on the preprocessed BOLD:
framewise displacement (FD), DVARS and three region-wise global signals. FD
and DVARS are calculated for each functional run, both using their implementations

in Nipype.

The three global signals are extracted within the CSF, the WM, and the whole-brain
masks. Additionally, a set of physiological regressors were extracted to allow for
component-based noise correction. Principal components are estimated after high-
pass filtering the preprocessed BOLD time-series (using a discrete cosine filter with
128s cut-off) for the two CompCor variants: temporal (tCompCor) and anatomical
(aCompCor). Six tCompCor components are then calculated from the top 5%
variable voxels within a mask covering the subcortical regions. This subcortical
mask is obtained by heavily eroding the brain mask, which ensures it does not
include cortical GM regions. For aCompCor, six components are calculated within
the intersection of the aforementioned mask and the union of CSF and WM masks
calculated in T1w space, after their projection to the native space of each functional

run (using the inverse BOLD-to-T1w transformation).

The head-motion estimates calculated in the correction step were also placed within
the corresponding confounds file. All resamplings can be performed with a single
interpolation step by composing all the pertinent transformations (i.e., head-motion
transform matrices, susceptibility distortion correction when available, and co-
registrations to anatomical and template spaces). Gridded (volumetric) resamplings

were performed using ants Apply Transforms (ANTs), configured with Lanczos
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interpolation to minimize the smoothing effects of other kernels.

Computational models

The computational methods and behavioral modeling reported in this manuscript
overlap with that reported in our recent article focusing exclusively on behavior
ligaya et al| (2021). For completeness, we reproduce some of the descriptions of

these methods as first described in|ligaya et al.[(2021).

Linear feature summation model (LFS model)

We hypothesized that subjective preferences for visual stimuli are constructed by
the influence of visual and emotional features of the stimuli. As its simplest, we
assumed that the subjective value of the i-th stimulus v; is computed by a weighted

sum of feature values f; ;:

nf
Vi = ijfi’j (21)
J=0

where w; is a weight of the j-th feature, f;; is the value of the j-th feature for
stimulus 7, and n; is the number of features. The 0-th feature is a constant f; o = 1

for all i’s.

Importantly, w; is not a function of a particular stimulus but shared across all visual
stimuli, reflecting the faste of a participant. The same taste (w;’s) can also be shared
across different participants, as we showed in our behavioral analysis. The features
Jfi,; were computed using visual stimuli; we used the same feature values to predict
liking ratings across participants. We used the simple linear model Eq.(2.1) to
predict liking ratings in our behavioral analysis (see below for how we determined

features and weights).

As we schematically showed in Figure[2.10], we hypothesized that the input stimulus
is first broke down into low-level features and then transformed into high-level
features, and indeed we found that a significant variance of high-level features can
be predicted by a set of low-level features. This hierarchical structure of the LFS
model was further tested in our DCNN and fMRI analysis.

Features

Because we did not know a priori what features would best describe human aesthetic

values for visual art, we constructed a large feature set using previously published
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methods from computer vision augmented with additional features that we ourselves

identified using additional existing machine learning methods.

Visual low-level features introduced in [Li and Chen (2009)

We employed 40 visual features introduced in|L1 and Chen| (2009). We do not repeat
descriptions of the features here; but briefly, the feature sets consist of 12 global
features that are computed from the entire image that include color distributions,
brightness effects, blurring effects, and edge detection, and 28 local features that
are computed for separate segments of the image (the first, the second and the third
largest segments). Most features are computed straightforwardly in either HSL (hue,

saturation, lightness) or HSV (hue, saturation, value) space (e.g., average hue value).

One feature that deserves description is a blurring effect. Following Ke et al.
(2006); L1 and Chen! (2009), we assumed that the image I was generated from
a hypothetical sharp image with a Gaussian smoothing filter with an unknown
variance o. Assuming that the frequency distribution for the hypothetical image
is approximately the same as the blurred, actual image, the parameter o represents
the degree to which the image was blurred. The o was estimated by the Fourier
transform of the original image by the highest frequency, whose power is greater

than a certain threshold.

1
Sotur = max (ky, ky) o s (2.2)

where ky = 2(x — n,/2)/n, and k, = 2(y — n,/2)/n, with (x,y) and (n.,n,) are
the coordinates of the pixel and the total number of pixel values, respectively. The

above max was taken within the components whose power is larger than four (L1
and Chen, 2009).

The segmentation for this feature set was computed by a technique called kernel
GraphCut (Rother et al., 2004} Salah et al., 2010). Following Li and Chen|(2009),
we generated a total of at least six segments for each image using a C** and Matlab
package for kernel graph cut segmentation (Salah et al., 2010). The regularization
parameter that weighs the cost of cut against smoothness was adjusted for each
image in order to obtain about six segments. See Salah et al.|(2010); ILi and Chen

(2009)) for the full description of this method and examples.

Of these 40 features, we included all of them in our initial feature set except for local

features for the third-largest segment, which were highly correlated with features for
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the first and second-largest segments and were thus deemed unlikely to add unique

variance to the feature prediction stage.

Additional Low-Level Features

We assembled the following low-level features to supplement the set by [Li and
Chen| (2009). These include both global features and local features. Local features
were calculated on segments determined by two methods. The first method was
statistical region merging (SRM) as implemented by Nock and Nielsen| (2004),
where the segmentation parameter was incremented until at least three segments
were calculated. The second method converted paintings into LAB color space and
used k-means clustering of the A and B components. While the first method reliably
identified distinct shapes in the paintings, the second method reliably identified

distinct color motifs in the paintings.

The segmentation method for each feature is indicated in the following descriptions.

Each local feature was calculated on the first and second-largest segments.

Local Features:

» Segment Size (SRM): Segment size for segment i was calculated as the area

of segment i over the area of the entire image:

area segment I 2.3)

fse ment size —
g total area

e HSV Mean (SRM): To calculate mean hue, saturation, and color value for

each segment, segments were converted from RGB to HSV color space.

fmean hue = mean(hue values in segment 7) 2.4)
Jmean saturation = mean(saturation values in segment 7) (2.5)
Jimean color value = Mmean(color values in segment i) (2.6)

* Segment Moments (SRM):

X Xk
kesegment i
fCoM X coordinate = —______________—. (2.7)
area segment i
X Yk
kesegment i
fCoM Y coordinate = —___— . (28)

area segment {
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kesegment i

Jvariance = . (2.9)
area segment i

> (=0 + (-’

kesegment i

Skew = : (2.10)
area segment ¢

where (X, y) is the center of mass coordinates of the corresponding segment.

* Entropy (SRM):
fentropy = - Z(pj * 10gz(Pj)) (2-1 1)
J

where p equals the normalized intensity histogram counts of segment i.

* Symmetry (SRM): For each segment, the painting was cropped to maximum
dimensions of the segment. The horizontal and vertical mirror images of the
rectangle were taken, and the mean squared error of each was calculated from

the original.

2. (segment, , — horizontal_flip(segment), y)?
x,y€Esegment

f horizontal symmetry = # piXClS in segment

(2.12)

2. (segment, , — vertical_flip(segment) x,y)z
x,y€esegment

Frertical symmetry = # pixels in segment

(2.13)
* R-Value Mean (K-Means): Originally, we took the mean of R, G, and B
values for each segment, but found these values to be highly correlated, so we

reduced these three features down to just one feature for mean R value.

JRovalue = mean(R-values in segment) (2.14)

* HSV Mean (K-Means): As with SRM generated segments, we took the
hue, saturation, and color value means of segments generated by K-means

segmentation as described in equations 2-4.
Global Features:

* Image Intensity: Paintings were converted from RGB to grayscale from 0 to
255 to yield a measure of intensity. The 0-255 scale was divided into five
equally-sized bins. Each bin count accounted for one feature.

# pixels with intensity € M,@
P yeltrs 5 (2.15)

fintensity count bin ie{1,4} = total area
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* HSV Modes: Paintings were converted to HSV space, and the modes of the
hue, saturation, and color value across the entire painting were calculated.
While we took mean HSV values over segments in an effort to calculate
overall-segment statistics, we took the mode HSV values across the entire

image in an effort to extract dominating trends across the painting as a whole.

Smode hue = mode(hue values in segment i) (2.16)
Jmode saturation = mode(saturation values in segment 7) 2.17)
Jimode color value = mode(color values in segment 7) (2.18)

» Aspect (width-height) Ratio:

image width (2.19)

f aspect ratio — —image height
* Entropy: Entropy over the entire painting was calculated according to equation
0.

High-Level Feature Set (Chatterjee et al., 2010; Vaidya et al., 2017)

We also introduced features that are more abstract and not easily computed by a
simple algorithm. Chatterjee et al.|(2010) pioneered this by introducing 12 features
(color temperature, depth, abstract, realism, balance, accuracy, stroke, animacy,
emotion, color saturation, complexity) that were annotated by human participants for
24 paintings, in which the authors have found that annotations were consistent across
participants, regardless of their artistic experience. Vaidya et al. (2017) further
collected annotations of these feature sets from artistically experienced participants
for an additional 175 paintings and performed a principal component analysis,
finding three major components that summarize the variance of the original 12
features. Inspired by the three principal components, we introduced three high-level
features: concreteness, dynamics, and temperature. Also, we introduced valence
as an additional high-level feature. The four high-level features were annotated
in a similar manner to the previous studies (Chatterjee et al., 2010; Vaidya et al.,
2017). We took the mean annotations of all 13 participants for each image as feature
values. In addition, we also annotated our image set with whether or not each image
included a person. This was done by manual annotation, but it can also be done
with a human detection algorithm (e.g., see Zhu et al. (2006)). We included this

presence-of-a-person feature in the low-level feature set originally (ligaya et al.,
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2020b)), though we found in our DCNN analysis that the feature shows a signature
of a high-level feature (ligaya et al., 2020b). Therefore in this current study, we
included this presence of a person to the high-level feature set. As we showed in
the main text, classifying this feature as a low-level feature or as a high-level feature

does not change our results.

Identifying the shared feature set that predicts aesthetic preferences

The above method allowed us to have a set of 83 features in total that are possibly used
to predict human aesthetic valuation. These features are likely redundant because
some of them are highly correlated, and many may not contribute to decisions at
all. We thus sought to identify a minimal subset of features that are commonly
used by participants. In [ligaya et al. (2020b), we performed this analysis using
Matlab Sparse Gradient Descent Library|[T] For this, we first orthogonalized features
by sparse PCA (Hein and Biihler, 2010). Then we performed a regression with a
LASSO penalty at the group level using participants’ behavioral data with a function
group — lasso — problem. We used Fast Iterative Soft Thresholding Algorithm
(FISTA) with cross-validation. After eliminating PC’s that were not shared by more
than one participant, we transformed the PC’s back to the original space. We then
eliminated one of the two features that were most highly correlated (> > 0.5) to

obtain the final set of shared features.

To identify relevant features for use in the current fMRI analysis, we utilized be-
havioral data from both our previous in-lab behavioral study (ligaya et al., 2020b)
and the fMRI participants included in the current study (13 participants in total).
Because the goal of the fMRI analysis is to highlight the hierarchical nature in neural
coding between low and high-level features, we first repeated the above procedure
with low-level features alone (79 features in total) and then we added high-level
features (the concreteness, the dynamics, the temperature, and the valance) to the

obtained shared low-level features.

The identified shared features are the following: the concreteness, the dynamics, the
temperature, the valence, the global average saturation from |Li and Chen| (2009),
the global blurring effect from L1 and Chen| (2009), the horizontal coordinate of
mass center for the largest segment using the Graph-cut from Li and Chen| (2009),
the vertical coordinate of mass center for the largest segment using the Graph-cut

from L1 and Chen (2009), the mass skewness for the second largest segment using

Thttps://github.com/hiroyuki-kasai/SparseGDLibrary
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the Graph-cut from L1 and Chen| (2009), the size of the largest segment using SRM,

the mean hue of the largest segment using SRM, the mean color value of largest
segment using SRM, the mass variance of the largest segment using SRM, global
entropy, the entropy of the second-largest segment using SRM, the image intensity

in bin 1, the image intensity in bin 2, and the presence of a person.

Nonlinear interaction features

We constructed additional feature sets by multiplying pairs of LFS features. We
grouped the resulting features into three groups. 1) features created from interactions
between high level features 2) features created from interactions between low level
features and 3) features created from interactions between a high-level and a low-level
feature. In order to determine the contribution of these three groups of features, we
performed PCA on each group so that we can take the same number of components
from each group. In our analysis, we took five PCs from each group to match with

the number of features of original high-level features.

Behavioral Model fitting

We tested how our shared-feature model can predict human liking ratings using out-
of-sample tests. All models were cross-validated in twenty folds, and we used ridge
regression unless otherwise stated. Hyperparameters were tuned by cross-validation.
We calculated the Pearson correlation between model predictions (pooled predic-
tions from all cross-validation sets) and actual data, and defined it as the predictive

accuracy.

We estimated individual participant’s feature weights by fitting a linear regression
model with the shared feature set to each participant. For illustrative purposes,

the weights were normalized for each participant by the maximum feature value

(concreteness) in Figures [2.10g, [2.25| and [2.36]

The significance of the above analyses was measured by generating a null distribu-

tion constructed by the same analyses but with permuted image labels. The null
distribution was construed by 10000 permutations. The chance level was determined

by the mean of the null distribution.
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Deep Convolutional Neural Network (DCNN) analysis

Network architecture

The deep convolutional neural network (DCNN) we used consists of two parts. An
input image feeds into convolutional layers from the standard VGG-16 network that
is pre-trained on ImageNet. The output of the convolutional layers then projects to
fully connected layers. This architecture follows the current state-of-the-art model

on aesthetic evaluation Murray et al. (2012); Murray and Gordo| (2017)).

The details of the convolutional layers from the VGG network can be found in
Simonyan and Zisserman| (2014)); but briefly, it consists of 13 convolutional layers
and 5 intervening max pooling layers. Each convolutional layer is followed by a
rectified linear unit (ReLLU). The output of the final convolutional layer is flattened

to a 25088-dimensional vector so that it can be fed into the fully connected layer.

The fully connected part has two hidden layers, where each layer has 4096 dimen-
sions. The fully connected layers are also followed by a ReLU layer. During training,
a dropout layer was added with a drop out probability 0.5 after every ReLU layer
for regularization. Following the current state of the art model Murray and Gordo
(2017), the output of the fully connected network is a 10-dimensional vector that is
normalized by a softmax. The output vector was weighted averaged to produce a

scalar value Murray and Gordo| (2017) that ranges from O to 3.

Network training

We trained our model on our behavioral data set by tuning weights in the fully
connected layers. We employed 10-fold cross-validation to benchmark the art rating
prediction. The model was optimized using a Huber loss metric, which is robust to
outliers Huber (1964).

We used stochastic gradient descent (SGD) with momentum to train the model. We
used a batch size of 100, a learning rate of 1074, the momentum of 0.9, and weight

decay of 5 x 107*. The learning rate decayed by a factor of 0.1 every 30 epochs.

To handle various sizes of images, we used the zero-padding method. Because our
model could only have a 224 x 224 sized input, we first scaled the input images to
have the longer edges be 224 pixels long. Then we filled the remaining space with
0 valued pixels (black).

We used Python 3.7, Pytorch 0.4.1.post2, and CUDA 9.0 throughout the analysis.
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Retraining DCNN to extract hidden layer activations

We also trained our network on single fold ART data in order to obtain a single
set of hidden layer activations. We prevented over-fitting by stopping our training
when the model performance (Pearson correlation between the model’s prediction

and data) reached the mean correlation from the 10-folds cross-validation.

Decoding features from the deep neural network

We decoded the LFS model features from hidden layers by using linear (for con-
tinuous features) and logistic (for categorical features) regression models, as we
described in|ligaya et al. (2020b). We considered the activations of outputs of ReLU
layers (total of 15 layers). First, we split the data into ten folds for the 10-fold
cross-validation. In each iteration of the cross-validation, because dimensions of
the hidden layers are much larger (64 x 224 x 224 = 3211264) than the actual
data size, we first performed PCA on the activation of each hidden layer from the
training set. The number of principal components was chosen to account for 80%
of the total variance. By doing so, each layer’s dimension was reduced to less than
536. Then the hidden layers’ activations from the test set were projected onto the
principal component space by using the fitted PCA transformation matrices. The
hyperparameter of the ridge regression was tuned by doing a grid search, and the
best performing coefficient for each layer and feature was chosen based on the scores
from the 10-folds cross-validation. We tested for a total of 19 features, including all
18 features that we used for our fMRI analysis, as well as the simplest feature that was
not included into our fMRI analysis (as a result of our group-level feature selection)
but that was also of interest here: the average hue value. For the continuous features
(e.g., rating, mean hue), Pearson correlation between the model’s predication and
data were used as the metric for goodness of fit, while for the categorical features
(e.g., presence of person), we calculated accuracy, area under curve (AUC), and
F1 scores. The sign of slopes of decoding plots from these metrics were identical.
In a supplementary analysis, we also explored whether adding ‘style matrices’ of
hidden layers |Gatys et al.| (2016) to the PCA-transformed hidden layer’s activations
can improve the decoding accuracy; however, we found the style matrices do not

improve the decoding accuracy. Sklearn 0.19.2 on Python 3.7 was used.
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Reclassifying features according to the slopes of the decoding accuracy across
hidden layers

In our LFS model, we classified putative low-level and high-level features simply
by whether a feature is computed by a computer algorithm vs annotated by humans,
respectively. In reality, however, some putative low-level features are more complex
in terms of how they could be constructed than other lower level features, while
some putative high-level features could in fact be computed straightforwardly from
raw pixel inputs. Using the decoding results of the features from hidden layers
in the DCNN, we identified DCNN-defined low-level and high-level features. For
this, we fit a linear slope to the estimated decoding accuracy vs hidden layers. We
permuted layer labels 10,000 times and performed the same analysis to construct
null distribution as described earlier. We classified a feature as high-level if the slope
was significantly positive at p < 0.001, and we classified a feature as a low-level

feature if the slope was signifcantly negative at p < 0.001.

The features showing negative slopes were: the average hue, the average saturation,
the average hue of the largest segment using GraphCut, the average color value of
the largest segment using GraphCut, the image intensity in bin 1, the image intensity

in bin 3, and the temperature.

The features showing positive slopes were: the concreteness, the dynamics, the
presence of a person, the vertical coordinate of the mass center for the largest segment
using the Graph Cut, the mass variance of the largest segment using the SRM,
the entropy in the 2nd largest segment using SRM. All of these require relatively
complex computations, such as localization of segments or image identification.
This is consistent with a previous study showing that object-related local features

showed a similar increased decodability at a deeper layer (Hong et al., 2016).

fMRI analysis
Standard GLM analysis

We conducted a standard GLM analysis on the fMRI data with SPM 12. The
SPM feature for asymmetrically orthogonalizing parametric regressors was disabled
throughout. We collected enough data from each individual participant (four days of
scanning) so that we can analyze and interpret each participant’s results separately.
The following regressors were obtained from the fmriprep preprocessing pipeline
and added to all analysis as nuisance regressors: framewise displacement, comp-

cor, non-steady, trans, rot. The onsets of Stimulus, Decision, and Action were also
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controlled by stick regressors in all GLMs described below. In addition, we added
the onset of the Decision period, the onset of feedback to all GLM as nuisance

regressors, because we focused on the stimulus presentation period.

Identifying subjective value coding (GLM 1)

In order to gain insight into how the subjective value of art was represented in the
brain, we performed a simple GLM analysis with a parametric regressor at the onset
of Stimulus (GLM 1). The parameter was linearly modulated by participant’s liking
ratings on each trial. The results were cluster FWE collected with a height threshold
of p < 0.001.

Identifying feature coding (GLM 2,3, 2, 3°)

In order to gain insight into how features were represented in the brain, we performed
another GLM analysis with a parametric regressor at the onset of Stimulus (GLM
2,3). In GLM 2, there are in total 18 feature-modulated regressors; each representing
the value of one of the shared features for the fMRI analysis. We then performed
F-tests on high-level features and low-level features (a diagonal contrast matrix with
an entry set to one for each feature of interest was constructed in SPM) in order to
test whether a voxel is significantly modulated by any of the high and/or low-level
features. We then counted the number of voxels that are significantly correlated
(p < 0.001) in each ROI (note that the F-value for significance is different for high
and low features due to the difference in the number of consisting features). We

then displayed the proportions of two numbers in a given ROI.

We performed a similar analysis using the DCNN hidden layers (GLM 3). We took
the first three principal components of each convolutional and fully connected layers
(three PCs times 15 layers = 45 parametric regressors). We then performed F-tests
on PCs from layers 1 to 4, layers 5 to 9, layers 10 to 13, and fully connected layers
(layers 14 and 15). The proportions of the survived voxels were computed for each
ROL

In addition, we also performed the same analyses with GLMs to which we added
liking ratings for each stimulus. We call these analyses GLM 2’ and GLM 3,

respectively.

We note that, because in our LFS model the liking rating is a linear integration of

features, adding liking rating regressor means to identify neural correlates of the
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liking ratings that are outside of the LFS model’s prediction.

Region of Interests (ROI)

We constructed ROIs for visual topographic areas using a previously published
probabilistic map (Wang et al., 2014). We constructed 17 masks based on the 17
probabilistic maps taken from Wang et al. (2014), consisting of 8 ventral-temporal
(V1v, V2v, V3v, hV4, VOI1, VO2, PHCI, and PHC2) and 9 dorsal-lateral (V1d,
V2d, V3d, V3A, V3B, LO1, LO2, hMT, and MST) masks. In this, ventral and
dorsal regions for early visual areas V1, V2, V3 are separately defined. Each mask
was constructed by thresholding the probability map at p > 0.01. We defined
Vi2z as V1v +V2v+ V3v+ VId + V2d + V3d + V3A + V3B, and Vje; as hV4 +
VOI + VO2 + PHC1 + PHC2 + LO1 + LO2 + hMT + MST. (hV4: human V4,
VO: ventral occipital cortex, PHC: posterior parahippocampal cortex, LO: lateral
occipital cortex, h(MT: human middle temporal area, MST: medial superior temporal

area.)

We also constructed ROIs for parietal and prefrontal cortices using the AAL
database. Posterior parietal cortex (PPC) was defined by bilateral MNI-Parietal-
Inf + MNI-Parietal-Sup. lateral orbitofrontal cortex (IOFC) was defined by bilat-
eral MNI-Frontal-Mid-Orb + MNI-Frontal-Inf-Orb + MNI-Frontal-Sup-Orb, and
medial OFC (mOFC) was defined by bilateral MNI-Frontal-Med-Orb + bilateral
MNI-Rectus. Dorsomedial PFC (dmPFC) was defined by bilateral MNI-Frontal-
Sup-Medial + MNI-Cingulum-Ant, and dorsolateral PFC (dIPFC) was defined by
bilateral MNI-Frontal-Mid + MNI-Frontal-Sup. Ventrolateral PFC (VIPFC) was
defined by bilateral MNI-Frontal-Inf-Oper + MNI-Frontal-Inf-Tri.

We also constructed lateral PFC (LPFC) as vIPFC + dIPFC +IOFC, and medial PFC
(MPFC) as mOFC + dmPFC.

PPI analysis (GLM 4, 4°)

We conducted a psychobiological-physiological interaction analysis. We took a
seed from the GLM 1 identified cluster showing subjective value in MPFC (Figure
[2.48), and a psychological regressor as a box function, which is set to one during
the stimulus epoch and O otherwise. We added the time course of the seed, the PPI
regressor, to a variant of GLM 2’ (the parametric regressors in which feature values
and liking values were constructed using a boxcar function at stimulus periods,

instead of its onsets) and determined which voxels were correlated with the PPI
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regressor (GLM 4). Following Suzuki et al.| (2017a), boxcar functions were used
because feature integration can take place throughout the duration of each stimulus

presentation.

We also conducted a control PPI analysis. For this we took the same seed, but
now the psychological regressor was a box function which is one during ITI, and
0 otherwise. We added the time course of the seed and the PPI regressor, the box
function for ITI, and the PPI regressor to the same variant of GLM 2’ (the parametric
regressors with feature and liking values were constructed using boxcar function at

Stimulus periods, instead of its onsets). We refer to this as GLM 4°.

Feature integration analysis

We conducted an F-test using GLM 2, to test whether any of the shared features
were significantly correlated with a given voxel (a diagonal with one at all features
in SPM). The resulting F-map is thresholded at p < 0.05 cFWE at the whole-brain
with height threshold at p < 0.001. We then asked within the survived voxels,
which of them were also significantly positively correlated with PPI regressor in
GLM 4, using at value thresholded at p < 0.001 uncorrected. We then counted the

fraction of voxels that survived this test in a given ROL.

Regression analysis with cross validation

In addition to the SPM GLM analysis, we also performed regression analyses with
cross validation within each participant (Naselaris et al., 2011). We first extracted
beta estimates at stimulus presentation time on each trial from a GLM with regressors
at each stimulus onset, where the GLM also included other nuisance regressors,
including framewise displacement, comp-cor, non-steady, trans, rot, the onsets of
Decision, Action and feedback. We then used these beta estimates at the stimulus
presentation time as dependent variables in our regression analysis. In all fMRI
analyses, we used a Lasso penalty unless otherwise stated. The hyperparameters
were optimized using 12-fold cross validation. The Matlab lasso function was used.
We note that each stimulus was presented only once in our experiment in a given

participant.

We performed a feature coding analysis analogous to what we performed using SPM.
We first estimated the weights of the LFS model features using lasso regression at
each voxel. We then computed a sum of squared weights for low-level features

and high-level features separately. In order to discard weight estimates that can
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be obtained by chance, we also performed the same lasso regression analysis using
shuffied stimuli labels. We then constructed a null distribution with a sum of squared
weights at each ROI using the weight estimates from this analysis. If the sum of
squared weights of low (or high) -level features obtained from correct stimuli labels
at a given voxel is significantly larger than the null distribution of low (or high)
-level features in the ROI (p < 0.001), we identified the voxel as encoding low-level

(or high-level) features.

We also ran a similar analysis with the LFS model’s features where we also included
‘nonlinear features’ that are constructed by multiplying pairs of the LFS model’s
features. As described above, we grouped the nonlinear features into three groups.
1) features created from interactions between high level features 2) features created
from interactions between low level features, and 3) features created from interac-
tions between high-level and low-level features. We took five PCs from each group

to match with the number of original high-level features from the model.

When comparing predictive accuracy across different models, we calculated Pearson
correlations between the data and each model’s predictions, where the model’s

predictions were pooled over predictions from testing sets across cross-validations.

We performed a similar analysis using the DCNN’s features, where the DCNN was
trained to predict behavioral data. Using the obtained results, we computed the sum
of squared features from layers one to four, layers five to nine, layers ten to thirteen,
and layers fourteen to fifteen. Again, estimates that are significantly greater than
the ones obtained by chance (at p < 0.001) were included in our results, using the
same regression analysis with shuffled labeled data. We performed analyses with
45 features (3 PCs from each layer) and 150 features (10 PCs from each layer).

We also performed the same DCNN analysis using untrained, random, weights.

Data availability
The data that support the findings of this study are available at https://github.com/kiigaya/Art
or from the corresponding author upon request.

Code availability
The code that support the findings of this study are available at https://github.com/kiigaya/Art

or from the corresponding author upon request.
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Figure 2.10: Neuroimaging experiments and the model of value construction. (a).
Neuroimaging experiments. We administered our task (ART: art rating task) to
human participants in an fMRI experiment. Each participant completed 20 scan
sessions spread over four separate days (1,000 trials in total with no repetition of
the same stimuli). On each trial, a participant was presented with a visual art
stimulus (paintings) for 3 sec. The art stimuli were the same as in our previous
behavioral study (ligaya et al., 2021)). After the stimulus presentation, a participant
was presented with a set of possible ratings (0,1,2,3), where they had to choose one
option within 3 seconds, followed by brief feedback with their selected rating (0.5
sec). The positions of the numbers were randomized across trials, and the order of
presented stimuli was randomized across participants. (b). Example stimuli. The
images were taken from four categories from Wikiart.org.: Cubism, Impressionism,
Abstract art and Color Fields, and supplemented with art stimuli previously used
(Vaidyaetal.,2017). (c). The idea of value construction. An input is projected into a
feature space, in which the subjective value judgment is performed. Importantly, the
feature space is shared across stimuli, enabling this mechanism to generalize across
a range of stimuli, including novel ones. (d). Schematic of the LFS model (ligaya
et al., 2021)). A visual stimulus (e.g., artwork) is decomposed into various low-level
visual features (e.g., mean hue, mean contrast), as well as high-level features (e.g.,
concreteness, dynamics). We hypothesized that in the brain high-level features are
constructed from low-level features, and that subjective value is constructed from
a linear combination of all low and high-level features. (e). How features can
help construct subjective value. In this example, preference was separated by the
concreteness feature.Reproduced from |ligaya et al.| (2021). (f). In this example,
the value over the concreteness axis was the same for four images; but another
feature, in this case, the brightness contrast, could separate preferences over art.
Reproduced from |ligaya et al.| (2021). (g). The LFS model successfully predicts
participants’ liking ratings for the art stimuli. The model was fit to each participant
(cross-validated). Statistical significance was determined by a permutation test
(one-sided). Three stars indicate p < 0.001. Due to copyright considerations, some
paintings presented here are not identical to that used in our studies. Credit: Jean
Metzinger, Portrait of Albert Gleizes (public domain; RISD Museum).
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Figure 2.11: The deep convolutional neural network (DCNN) model naturally
encodes low-level and high-level features and predict participants’ choice behavior.
(a). Schematic of the deep convolutional neural network (DCNN) model and the
results of decoding analysis (ligaya et al., 2021). The DCNN model was first trained
on ImageNet object classifications, and then the average ratings of art stimuli.
We computed correlations between each of the LFS model features and activity
patterns in each of the hidden layers of the DCNN model. We found that some
low-level visual features exhibit significantly decreasing predictive accuracy over
hidden layers (e.g., the mean hue and the mean saturation). We also found that
a few computationally demanding low-level features showed the opposite trend
(see the main text). We further found that some high-level visual features exhibit
significantly increasing predictive accuracy over hidden layers (e.g., concreteness
and dynamics). Results reproduced from ligaya et al. (2021)).(b). The DCNN model
could successfully predict human participants’ liking ratings significantly greater
than chance across all participants. Statistical significance (p < 0.001, indicated
by three stars) was determined by a permutation test (one-sided). Credit: Jean
Metzinger, Portrait of Albert Gleizes (public domain; RISD Museum).
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Figure 2.12: Subjective value (i.e., liking rating). Subjective value for art stimuli at
the time of stimulus onset was found in the medial prefrontal cortex in all six fMRI
participants (One-sided t-test. An adjustment was made for multiple comparisons:
whole-brain cFWE p < 0.05 with height threshold at p < 0.001).
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Figure 2.13: fMRI signals in visual cortical regions show similarity to our LFS
model and DCNN model. (a). Encoding of low and high-level features in the
visual ventral-temporal stream in a graded hierarchical manner. In general, the
relative encoding of high-level features with respect to low-level features increases
dramatically across the ventral-temporal stream. The maximum probabilistic map
(Wang et al, 2014) is shown color-coded on the structural MR image at the top
to illustrate the anatomical location of each ROI. The proportion of voxels that
significantly correlated with low-level features (blue; one-sided F-test p < 0.001)
against high-level features (red; one-sided F-test p < 0.001) are shown for each
ROL. See the Methods section for detail. (b). Encoding low and high-level features
in the dorsolateral visual stream. The anatomical location of each ROI
is color-coded on the structural MR image. (¢). Encoding of DCNN features
(hidden layers’ activation patterns) in the ventral-temporal stream. The top three
principal components (PCs) from each layer of the DCNN were used as features in
this analysis. In general, early regions more heavily encode representations found
in early layers of the DCNN, while higher-order regions encode representations
found in deeper CNN layers. The proportion of voxels that significantly correlated
with PCs of convolutional layers 1 to 4 (light blue), convolutional layers 5 to 9
(blue), convolutional layers 10 to 13 (purple), fully connected layers 14-15 (pink)
are shown for each ROI. The significance was set at p < 0.001 by one-sided F-test.
(d). Encoding of DCNN features in the dorsolateral visual stream. Credit: Jean
Metzinger, Portrait of Albert Gleizes (public domain; RISD Museum).
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Figure 2.14: Encoding of nonlinear feature representations. We performed encoding
analysis of low-level, high-level, and interaction term features (low x low, high x
high, low x high), using lasso regression with cross validation within subject. The
results of ROIs in the ventral-temporal and dorso-lateral visual streams are shown.
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Figure 2.15: Parietal and prefrontal cortex encode features in a mixed manner. (a).
Encoding of low- and high-level features from the LFS model in posterior parietal
cortex (PPC), lateral prefrontal cortex (IPFC) and medial prefrontal cortex (mPFC).
The ROIs used in this analysis are indicated by colors shown in a structural MR
image at the top. (b). Encoding of the DCNN features (activation patterns in the
hidden layers) in PPC and PFC. The same analysis method as Figure [2.13| was used.
Credit: Jean Metzinger, Portrait of Albert Gleizes (public domain; RISD Museum).
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Figure 2.16: Features are integrated from PPC and lateral PFC to medial PFC
when constructing the subjective value of visual art. (a). Encoding of low- and
high-level features (green) and liking ratings (red) across brain regions. Note that
the ROIs for the visual areas are now grouped as V1-2-3 (V1, V2 and V3) and
V-high (Visual areas higher than V3). See the Methods section for detail. (b). The
schematics of functional coupling analysis to test how feature representations are
coupled with subjective value. We identified regions that encode features (green),
by performing a one-sided F-test (p < 0.05 whole-brain cFWE with the height
threshold p < 0.001). We also performed a psychophysiological interaction (PPI)
analysis (orange: p < 0.001 uncorrected) to determine the regions that are coupled
to the seed regions in mPFC that encode subjective value (i.e., liking rating) during
stimulus presentation (red: seed, see Figure[2.48). We then tested for the proportion
of overlap between voxels identified in these analyses in a given ROL. (¢). The results
of the functional coupling analysis show that features represented in the PPC and
IPFC are coupled with the region in mPFC encoding subjective value. This result
dramatically contrasts with a control analysis focusing on ITI instead of stimulus
presentations (Figure 2.50). Credit: Jean Metzinger, Portrait of Albert Gleizes
(public domain; RISD Museum).
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Figure 2.18: The estimated feature weights of in-lab participants. The significance

was estimated against the null distribution of weighs constructed by model fittings
to permuted data. One star, two starts, three stars, indicates p < 0.05, p < 0.01,

p < 0.001, respectively.



75

I Impressionism

[ Abstract
0.6 — - "I Color fields
I Cubism
— 0.5 —
>
S 0.4 —

o

Participant

Figure 2.19: Predictive accuracy of the LFS model within different art genres. The
model was trained on all images using 20 fold cross validation in each participant.
Predictions for images in each art genre were compared with the actual data. The
predictive accuracy was measured by Pearson correlation. This figure shows that
our overall predictive accuracy is not merely an artifact of the fact that people like
different genres differently, i.e., that the LFS model is sensitive only to differences
between images as a result of genre and that this alone enables it to have success.
Here, even within specific genres, the model can still succeed in predicting liking
ratings just as it can across genres. Note that correlation values are smaller than the
overall value presented in Figure 1. This is because between-genre correlation is
indeed present in Figure 1.
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Figure 2.20: Representation dissimilarity matrix using low-level and high-level
features. Image index; 1-204: Impressionism. 205-417: Abstract art. 418-621:
Color fields. 622-826: Cubism. 827-1000: Pictures from the stimulus set of Vaidya

etal. (2017).
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Figure 2.21: The model’s predictive accuracy when using full features or the
concreteness feature alone, tested in the large scale online dataset. The full model
significantly outperforms the model with concreteness feature alone, but shows room
to improve when compared against the performance of an average rating model. The
error bars indicate the mean and SEM.
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Figure 2.22: The inclusion of salience-weighted features does not improve our
model’s predictive accuracy in M-Turk participants. The error bars indicate SEM.
N.S. indicates not significant in permutation test.
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Figure 2.23: The predictive accuracy of model on photograph ratings. Left: the
original model with low-level features. Middle: the model with low-level and
high-level features, where the binary high level features are approximated by a
nonlinear support vector machine trained on visual art set using low-level features.
Right: correlations with the average ratings for each image. The one star indicates
p < 0.05 in permutation test across participants. The error bars indicate SEM.
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On a scale of -2 = Abstract to 2 = Concrete, what is the Realisticity of the artwork shown?
-2 = Abstract, -1 = Slightly Abstract, 0 = Neutral, 1 = Slightly Concrete, 2 = Concrete

Figure 2.24: An example trial of feature annotation. Annotators were asked to
evaluate high-level feature values (from -2 to 2). Frits Thaulow-Marmortrappen
credit: ART Collection / Alamy Stock Photo.
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