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ABSTRACT

From intelligent transportation systems to the smart grid, the next generation of
cyber-physical systems (CPS) will substantially transform our society. It is vital that
these systems are scalable and robust to uncertainties, with contextual awareness and
fast adaptation. This dissertation presents progress towards addressing key challenges
arising in the control of large-scale CPS, with a special focus on applications in
sustainable energy systems.

Large-scale CPS such as the smart grid often consist of numerous interconnected
and heterogeneous subsystems that must coordinate to achieve global objectives
by exchanging information over a communication network. Therefore, the first
part of this thesis focuses on developing control algorithms that handle crucial
design requirements emerging from scalability and communication constraints, such
as disturbance localization, communication delay conformation, and distributed
implementation.

Sustainable energy systems are crucial for reducing greenhouse gas emissions
and mitigating climate change. However, the inherent unpredictability and large
uncertainties associated with renewable generation pose significant challenges for
maintaining system stability and safety. Traditional control approaches, while robust
and effective for known system models, often fall short when faced with the dynamic
and uncertain nature of modern power systems. In the second part of the thesis, we
address this challenge by integrating machine learning techniques with model-based
control methods using uncertainty sets constructed from real-time data. In particular,
we will introduce and provide convergence guarantees for a classic uncertainty set
estimation method. Building on these uncertainty sets, we combine learning and
control techniques to tackle core CPS control problems, such as adversarial stability
certification for linear time-varying systems as well as networked systems under
communication constraints where the system models are unknown.

The final part of this thesis applies the developed methodologies to address the
voltage control problem in power distribution networks with unknown grid topologies.
We will combine online learning techniques and a robust predictive controller to
achieve provably finite-time convergence to safe voltage limits, despite uncertainties
in network topology and load variations. Our case study on a Southern California
Edison 56-bus distribution system demonstrates the effectiveness of this approach in
nonlinear, partial observation, and partial control settings.
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C h a p t e r 1

INTRODUCTION

From intelligent transportation systems to the smart grid, the next generation of
cyber-physical systems (CPS) will reshape our society. Control theory provides
principled frameworks to design robust, distributed, and performant controllers,
ensuring worst-case stability and constraint satisfaction guarantees for these safety-
critical CPS. However, control methods often rely on accurate model information,
which is increasingly difficult to obtain due to the growing complexity, scale, and
uncertainty in CPS. For example, smart grid topology can change unpredictably due
to renewable energy supply variations or line failures, while in robotics, differing
environmental conditions lead to distinct system dynamics.

On the other hand, recent advancements in machine learning (ML) open up exciting
opportunities to transform current control approaches to data-driven methods with
unprecedented performance, contextual awareness, and flexible adaptation. In
particular, there is now a growing body of research that investigates the incorporation
of ML techniques in control design, often referred to as learning-based control, to
enable efficient algorithms for complex systems whose dynamics are hard to model
or even unknown.

Despite recent theoretical developments and successful applications of ML in various
domains including games [1], robotics [2], [3], and more recently large language
models [4], principled integration of learning in control tasks for CPS remain open
due to the safety-critical, large-scale, networked, and resource-constrained nature of
CPS:

• Safety-critical: Safety assumptions in the application of ML in highly-
controlled environments, such as bounded system behavior and unconstrained
exploration, are no longer practical for CPS due to physical limitations,
operational requirements, and the feedback effects of algorithms deployed
in the closed loop. For instance, a common assumption in the learning-
based control literature is that the learning algorithm has access to a known
stabilizing controller. This assumption ensures bounded and, therefore, safe
system behavior throughout the learning phase, sidestepping the main technical
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hurdle of safe exploration in uncertain environments. Unfortunately, such
an assumption is often unrealistic, as stabilization itself, a prerequisite for
any other performance objectives, is a significant task even if the dynamics
model is available. For example, the voltage stabilization problem remains
challenging in inverter-based resources dominated microgrids even when the
network is known. It remains a grand challenge to deploy data-driven methods
in critical tasks where incorrect decisions can have catastrophic consequences.

• Large-scale and networked: Centralized control algorithms are often pro-
hibitively expensive to design and execute for large-scale networked CPS,
such as robotic swarms and the smart grid. Moreover, centralized schemes
can expose the system to targeted attacks, creating disastrous vulnerabili-
ties. Therefore, significant efforts have been made to develop distributed
controllers for such systems, where sub-controllers leverage local information
and computational resources from small neighborhoods in the network and
coordinate among one another to achieve system-level objectives. On the other
hand, most ML algorithms perform centralized data collection and learning.
If learning-based algorithms are to be deployed in real-world systems, it is
imperative to adapt ML to distributed design.

• Resource-constrained A key characteristic of large-scale CPS is that the
subsystems in the network often face significant resource constraints, including
limited computational power, memory, and communication. Even with dis-
tributed algorithms, these limitations persist, leading to further implementation
challenges. For instance, communication delays can occur due to restricted
communication bandwidth, particularly when substantial volumes of data are
exchanged within the network, as seen in data centers. Therefore, to achieve
robust and reliable CPS operation, it is essential to consider these resource
constraints and the associated implementation challenges during algorithm
design and understand the impact of such constraints.

The goal of this thesis is to provide a unified learning and control framework to
broadly addresses key challenges arising in the control of large-scale CPS, with a
special focus on applications in sustainable energy systems. In the next sections, we
highlight important problems, survey related work, and provide an outline for the
thesis.
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1.1 Major Challenges and Prior Work
Significant progress has been made in algorithm design for large-scale CPS, especially
in the area of learning-based control. Despite the many milestones in the recent
years, we are still in the early stages of developing reliable, scalable, and practical
controllers for future CPS, particularly in the following key problems.

Adversarially Safe Control
Safety in CPS is often modeled by defining a set of permissible states and actions
that the system can undertake during operation. A minimum safety criteria is to
maintain system stability, where all internal states of the system remain bounded
or converge to a desired steady state despite exogenous perturbations. Ensuring
safety is of paramount importance to critical CPS infrastructures. However, it has
become increasingly challenging due to various uncertainties stemming from the
growing complexity, scale, and technological advancements in modern CPS. For
instance, intelligent transportation systems have humans in the loop with strategic
behaviors that introduce additional variability and unpredictability. The power
grid now faces more frequent and volatile changes due to the rising penetration of
distributed renewable energy sources. Thus, how to ensure safety despite complex
and dynamic uncertainties is a core challenge.

Handling uncertainty is one of the main goals of classical control design, commonly
referred to as robust control [5]–[7]. Robust control is often formulated to achieve
stability and performance guarantees in the worst-case under all possible uncertainties.
A canonical example is to design a simultaneously stabilizing controller for an entire
set of uncertain models. Naturally, there does not exist such a controller if the
model uncertainty set is too large. Thus, a fundamental challenge of such offline
worst-case control design is that the conservativeness limits the feasibility of these
problems to only “small” uncertainty sets. To tackle it, adaptive and online control
literature incorporates online data to significantly reduce the conservativeness [8]–
[11]. Inspired by this line of work, recent progress has been made towards a promising
approach that integrates robust control and machine learning-based online adaptation
to tackle large uncertainties in the system model [12]–[15].

Another common uncertainty modeling is to introduce disturbances into the system.
It is common to model disturbances as stochastic, with simplified distributions that
are amenable to theoretical analysis [16]–[21]. However, such stochastic modeling
does not fully capture many realistic uncertainties such as discretization errors as
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a result of sampling-based digital control, unmodeled nonlinearities, or malicious
attacks. Therefore, an alternative approach is to treat disturbances as deterministic
and arbitrary from a fixed admissible disturbance set, e.g., [22], [23]. However, these
problems do not simultaneously consider large model uncertainties and adversarial
disturbances.

Despite much progress, the fundamental problem of adversarial stability guarantee
for the simplest setting, i.e., linear dynamical systems with arbitrarily large model
uncertainty under adversarial disturbances, remained elusive. In this thesis, we will
address this gap with a unified framework that incorporate ML techniques with robust
control design to enable robustness and safety against large uncertainties commonly
seen in CPS. Still, many open questions stand, such as heterogeneous and imperfect
sensing for decision making with adversarial safety. In particular, there is a gap in
our grasp of adversarial robustness in control dynamical systems where uncertainties
and attacks in the perception module lead to compounding errors due to feedback
effects. Another important question is how we should define and provide adversarial
safety for human-in-the-loop multi-agent systems. The methodologies and insights
from this thesis will hopefully serve as a step towards a principled understanding in
adversarially safe control design.

Learn and Control with Uncertainty Sets
While adversarial guarantees are crucial for safety-critical CPS, it is well known
that algorithms designed to be robust against adversarial attacks and worst-case
uncertainties can be overly conservative and costly in typical, non-adversarial
scenarios. On the other hand, recent advancements in ML have enabled unprecedented
performance in various domains, but often overlook rare yet plausible worst-case
scenarios, leaving the system open to potentially catastrophic failures. Integrating
learning and robust algorithms with simultaneous worst-case safety and average-case
performance guarantees is an essential step towards real-world applications.

To enable learning-based control methods with such capabilities, a popular approach
is to apply ML techniques for estimation of the system model and parameters
that are relevant for the control tasks, then apply model-based control using the
estimated model [24]–[28]. It is therefore critical to quantify the uncertainty of the
estimations in order for the algorithm to robustly satisfy safety constraints despite
these uncertainties [29], [30]. On the one hand, an uncertainty set that is too large
gives rise to over-conservative control actions, resulting in degraded performance.
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On the other hand, if the uncertainty set is underestimated and fails to contain the
true system model, the resulting controller may lead to unsafe behaviors [30], [31].
Therefore, understanding how we leverage sequentially revealed online data to learn
non-conservative uncertainty sets that guarantee the containment of the true model
is a key step in the integration of ML and control.

Furthermore, given an uncertainty set, it remains unclear how to design controllers
based on the uncertainty set, as most control methods are based on a single model
rather than a set of models. A common approach is to select a point from the
uncertainty set for downstream model-based control design. In particular, the
selection must balance between exploitation (select models that are close to the true
model) and exploration (select models such that the control actions generated based
on the selection reduce the size of the uncertainty set) tradeoff. While a similar
tradeoff has been extensively studied in online learning (see [32] and the references
therein), little has been explored in the control and dynamical system setting.

Scalable Control and Learning under Communication Constraints
New developments in distributed sensing, communication, and computation tech-
nologies, such as Internet of Things and edge computing, create novel opportunities
for distributed algorithm design for CPS that are efficient, scalable, reconfigurable,
and adaptive [33]–[36]. While many of the algorithms have seen success in high-
fidelity simulations and industrial implementation, there is a lack of principled
understanding of potential vulnerabilities and limitations of the algorithms through
theoretical analysis. In particular, many realistic considerations must be taken into
account. One major challenge is that communication constraints, e.g., resulting from
communication delay or privacy considerations, impose structural constraints on
algorithm design. It is known that even for simpler classes of policies such as linear
distributed controllers, such constraints are generally non-convex [37]. For general
controllers, structured optimal control design is intractable [38].

Recent work has focused on special cases of distributed control problems, such as
those satisfying Quadratic Invariance (QI) [39], where exact convex reformulation
can be found. Under QI, substantial progress was made towards control design that
can handle constraints such as communication delay and distributed implementation
[40]–[43]. However, QI requires global information exchange for strongly connected
networks. This imposes major scalability issues on the synthesis procedures based
on QI and the implementation of the resulting distributed controllers. In particular, it
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was observed in [44] that controllers leveraging QI can be more complex to synthesize
than their central counterparts. In order to move beyond QI, researchers have focused
on novel controller parameterization that admits convex formulation [45]–[47]. In
this thesis, we focus on an important class of structured control design problems with
communication delay and localization constraints. We will develop novel optimal
and robust controllers with fully distributed synthesis and implementation.

Even with distributed and scalable control algorithms that conform to various
communication constraints, it is not straightforward to integrate ML into the design
loop for systems to handle large uncertainties, e.g., power grid with heterogeneous
energy storage and high renewables penetration. In particular, the sheer scale
and communication constraints in CPS, such as privacy concerns, often render it
impossible to carry out centralized learning and data collection. However, scalability
and communication constraints have only been considered separately; no general
approach exists in learning-based control literature. Bridging this gap will provide
crucial insights for a unified framework for scalable learning and control algorithms
of CPS.

1.2 Thesis Roadmap and Contributions
Motivated by the key challenges outlined above, the central mission statement of this
thesis is:

To design scalable controllers that are capable of learning and adaptation,
with simultaneous worst-case safety and average-case performance guarantee,

all while conforming to communication constraints.

The remainder of this thesis is structured as follows.

Part I: Distributed Control under Communication Constraints
Large-scale CPS such as the smart grid often consist of numerous interconnected
and heterogeneous subsystems that must coordinate to achieve global objectives.
One of the key challenges in managing such large-scale CPS is the effective
design and implementation of distributed controllers that can operate under various
communication constraints while allowing scalable synthesis and implementation.

In this context, the first part of this thesis focuses on developing distributed controllers
to address important classes of communication constraints when the system model is
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known. Specifically, we will concentrate on three essential design requirements that
naturally emerge due to communication constraints in large-scale CPS:

1. Localization: It is desirable that the effects of disturbances as well as infor-
mation exchange among subsystems are limited to a predefined local region
without cascading to the global network. By confining the impact of distur-
bances, we can enhance the robustness and reliability of the entire system.
Disturbance localization also facilitates localized communication, where it
becomes unnecessary for subsystems that are far away from one another to
exchange information.

2. Communication delay: Controllers for each subsystem can only access infor-
mation that may be delayed from other subsystems according to the structure
of a given communication network. Handling communication delays is crucial
for maintaining system stability and performance, as delays can significantly
impact the closed-loop stability.

3. Distributed implementation: Controller implementation needs to be distributed,
allowing only sparse information to be exchanged between subsystems within
a local region to reduce communication and computation burdens on local
systems. A distributed approach not only alleviates the load on communication
networks but also enhances the scalability and flexibility of the system, enabling
it to adapt to varying system topologies.

In Chapter 2, we will present the optimal distributed H2 linear state-feedback
controllers that satisfy the three design requirements for linear systems under a
fixed communication structure. In particular, we develop a state-space controller
under the framework of System Level Synthesis (SLS), an emerging distributed
control framework that enables scalable design of optimal controllers for systems
with locality, communication, and other constraints that made pre-SLS methods
intractable. All previous SLS-based distributed controllers required a “finite-horizon”
approximation. Such an approximation not only resulted in suboptimality but also
restricted the applicability of the framework since it is well known that such an
approximation is not feasible for many systems of interest such as robotics. In
contrast, we derive the first infinite-horizon solution in this chapter. Building upon
the optimal state-feedback controller, we leverage the separation principle to develop
a suboptimal distributed output-feedback controller that is internally stabilizing and
memory-efficient.
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In Chapter 3, we focus on linear systems with input and state constraints, which are
essential for safety-critical systems. We develop a distributed nonlinear controller
that not only adheres to the safety constraints but also prevents large oscillations
and ensures graceful performance degradation under input saturation caused by
unexpected disturbances. The resulting nonlinear controller reduces the overall
control cost by 5-35% compared to state-of-the-art linear methods, while conforming
to sparse actuation, disturbance localization, and communication delay constraints.

Part II: Interfacing Learning and Control via Uncertainty Sets
In the second part of this thesis, we will address the key challenge of learning
and adaptation with safety and performance guarantees. We investigate a unified
framework for learning-based control that uses uncertainty sets as the main building
block to interface ML techniques and model-based control approaches like the ones
developed in Part I. Such an uncertainty-set based approach enables novel algorithms
with first-of-its-kind, rigorous guarantees, such as adversarially safe learning-based
control as well as scalable and distributed learning-based control.

Set Membership uncertainty sets. We will start by introducing a classic and
popular uncertainty set estimation method, called set membership estimation (SME)
[48]. One of the most popular uncertainty set estimation methods in control literature,
SME identifies the set of system models that are consistent with observed data.

Despite broad applications and empirical success, even in the basic setting of linear
systems under simple stochastic distributions, the convergence rate of SME remains
open. Quantifying the convergence rate will unlock rigorous performance and safety
analysis of popular control designs based on SME, such as adaptive model predictive
control and robust online control [49]–[55]. Therefore, in Chapter 4 we provide
the first non-asymptotic convergence rate for SME in linear dynamical systems.
Moreover, we alleviate the common yet restrictive assumption that a tight upper
bound of disturbances must be known a priori and present a novel upper confidence
bound based SME method with explicit convergence rate. An immediate implication
of this result is that many state-of-the-art algorithms that were based on alternative
uncertainty set estimation methods can now use SME to enable substantially improved
performance guarantees.

An uncertainty-set centric learning-based control framework. Motivated
by new theoretical insights of SME developed in Chapter 4, we investigate an
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uncertainty-set based framework where ML techniques and model-based control
design interfaces through the uncertainty sets generated by SME, which was first
proposed in [13].

The main ideas of the framework is shown in Figure 1.1. At the beginning of the
algorithm, we will have an arbitrarily large uncertainty set for the system model and
parameters. As an example, this is illustrated as a dark gray square denoted as P0.
As the algorithm interacts with the unknown or uncertain system and environment
during deployment, it will observe the resulting state transitioned from the previous
time step as a result of the control actions and any unobservable environmental
changes such as disturbances and measurement noise (step 1). Every such new
observation will provide some information about the uncertainty set. In particular,
the observations will provide new constraints (illustrated as dashed lines) for the
models that are consistent with the data, carving out the set of implausible models.
This is essentially the SME method for constructing uncertainty sets (line 2). In
the pictorial example, the new uncertainty set is denoted as P1. With this latest
SME uncertainty set P1, we will invoke learning algorithms to select a hypothesis
model out of the uncertainty set. The selected hypothesis model is denoted as
Θ̂1 ∈ P1 (Step 3). Based on the selected model, we will perform model-based control
synthesis depending on the control objective (step 4). For example, to guarantee
safety constraints satisfaction, one may use model predictive control. If instead only
stability is required, then robust control methods can be used. The control actions
generated based on the currently selected hypothesis model will then be input into
the system dynamics, and the process continues, as illustrated in the third picture
under step 2, where a new uncertainty set is denoted as P2 after a new observation.

2. Apply SME to construct uncertainty set based on observations

3. Pick a hypothesis model with machine learning 
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Figure 1.1: Overview of the Uncertainty Set-based Framework

This approach differs from existing adaptation and learning-based control methods
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such as Thompson sampling [28], [56], [57], online least squares [58], [59], optimism-
based exploration [60]–[62], etc., in that (1) the uncertainty set generated via SME
provides a deterministic uncertainty quantification of the unknown system that
remains valid even with distribution shift of the disturbances, and (2) the selection via
online learning induces a novel exploration-exploitation tradeoff that is particularly
well-suited for systems that are safety-critical where experiments and data collection
can be highly restricted, such as power systems.

Under this general framework, we will illustrate different combinations of ML
techniques (step 3) and control methods (step 4) that unlocks novel algorithms
with rigorous safety and performance guarantees. In Chapter 5, we will discuss
an instantiation of the framework to enable online learning-based control for time-
varying linear systems under adversarial disturbances with guaranteed stability.
Chapter 6 will demonstrate how this framework can flexibly incorporate control
approaches developed in Part I to enable scalable and distributed learning-based
control under communication constraints.

Part III: Application to Sustainable Energy Systems
The expansion of sustainable energy systems is essential for decarbonizing the energy
infrastructure, but a significant challenge lies in managing the unpredictability and
large uncertainties associated with renewable generation as well as the participation
of energy storage systems. For example, the renewable energy leads to faster voltage
variations in the electricity distribution network, causing voltage deviations from
nominal operating limits, which may damage electrical equipment and cause power
outages [63], [64]. Yet, an increasing number of distributed energy resources,
e.g., photovoltaic and storage devices, are not owned or operated by electric utility
companies. This results in a lack of up-to-date information about the grid topol-
ogy [65], [66], making it challenging for grid operators to design control algorithms
which generally require accurate grid topology to respond to the variations from the
renewables.

The last part of this thesis focuses on addressing the problem of voltage control in the
distribution network where there is large uncertainty in both the network topology
as well as load and generation variations. In particular, in Chapter 7, we combine
a nested convex body chasing algorithm with a robust predictive controller under
the framework presented in Part II to achieve provably finite-time convergence to
safe voltage limits. In an online fashion, our algorithm narrows down the set of
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possible grid models that are consistent with observations and adjusts reactive power
generation accordingly to keep voltages within desired safety limits. Our approach
can also incorporate existing partial knowledge of the network to improve voltage
control performance. We will demonstrate the effectiveness of our approach in a case
study on a Southern California Edison 56-bus distribution system. Our experiments
show that in practical settings, the controller is indeed able to narrow the set of
consistent topologies quickly enough to make control decisions that ensure stability
in both linearized and realistic nonlinear models of the distribution grid.



Part I

Distributed Control under
Communication Constraints

12
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C h a p t e r 2

OPTIMAL DISTRIBUTED H2 CONTROL WITH LOCALIZATION
AND DELAY

Large-scale CPS such as data centers often face significant scalability issues and
communication constraints in algorithm design due to the sheer volume of data
exchanged between subsystems and privacy concerns. We will start our investigation
of distributed control design under communication constraints with the classical
control setting of linear quadratic control, also known as the optimal H2 control,
where the cost is quadratic and the dynamics is linear in states and control inputs.
We describe a variant of the optimal H2 control problem under localization and
communication delay constraints and present the optimal state-feedback controller
with distributed implementation under this setting. Based on the separation principle
of the optimal linear quadratic Gaussian (LQG) control, we will build upon the state-
feedback controllers and describe a suboptimal but memory-efficient output-feedback
controller under the same communication constraints. This chapter is mainly based
on the following papers:

[1] J. Yu, Y.-S. Wang, and J. Anderson, “Localized and distributed H2 state
feedback control,” 2021 American Control Conference (ACC), pp. 2732–
2738, 2021. doi: 10.23919/ACC50511.2021.9483301.

[1] O. Kjellqvist* and J. Yu*, “On infinite-horizon system level synthesis
problems,” 2022 IEEE 61st Conference on Decision and Control (CDC),
pp. 5238–5244, 2022. doi: 10.1109/CDC51059.2022.9992443.

2.1 Introduction
Large-scale interconnected systems often demand control designs that comply with
structural requirements induced by communication constraints, such as sparsity for
distributed or localized control [44], [67], and communication delay constraints [44],
[68]. These requirements become especially crucial in engineering applications
such as power grids [69] and vehicle platoons [70]. Such control design problems
are challenging due to the non-convex nature of the problem [39]. Collectively,
the challenge of designing controllers subject to these constraints is referred to as

https://doi.org/10.23919/ACC50511.2021.9483301
https://doi.org/10.1109/CDC51059.2022.9992443
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distributed or structured control [71]. It is known that distributed control problems
are in general non-convex.

Lately, researchers have focused on novel controller parameterization that admits con-
vex formulation under structural constraints [45]–[47]. These constraints are referred
to as the system-level constraints (SLCs) [45]. Examples of SLCs include sparsity
constraints on the Youla parameter [72], qudratic invariance (QI) [39] subspace
constraints on the feedback controllers, and finite impulse response constraints on the
closed-loop responses to disturbances [44], [46]. Among these parameterizations,
System Level Synthesis (SLS) emerges as a promising and unified framework for
structured controller synthesis that is capable of handling the largest class of structural
constraints subsuming all previously convexifiable constraints [73]. A vital feature of
the SLS framework is that both the synthesis and the implementation of the structured
controller can be done locally and in parallel, thus scaling favorably with the number
of subsystems in a network.

All current SLS-based control methods require both the parameterization and
implementation to have finite impulse responses (FIR), with the exception of
[74] where continuous-time SLS was formulated, and [75] where suboptimal SLS
controllers without structural constraints were presented. This is because optimal
controller synthesis, regardless of the choice of convex reparameterization, remains
an infinite-dimensional non-convex optimization problem due to system dynamics.
The current method of choice to relax SLS problem into a tractable finite-dimensional
optimization problem is to restrict the optimization variables to having FIR. Such
relaxation technique is required for many parameterizations other than SLS [76] and
can be used to specify the temporal propagation of the disturbances in the closed loop.
Although previous work almost exclusively uses FIR approximations to make SLS
tractable, we emphasize that FIR is not a requirement for SLS, but rather a convenient
way to use off-the-shelf optimization software. However, FIR approximations result
in suboptimal control actions, and more importantly, they lead to deadbeat control,
which can cause poorly damped oscillations between discrete sampling intervals and
a lack of robustness to model uncertainties due to the high control gains needed to
reach the origin in a finite time [75]. Moreover, if the system is only stabilizable but
not controllable, FIR approximations can be infeasible.

Contribution. In this chapter, we lift the FIR constraint of SLS methods to
synthesize the optimal infinite-horizon solution to a canonicalH2 control problem
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under localization and communication delay constraints in the state-feedback case.
To achieve this, we make a connection between the infinite-horizon state-feedback
SLS problems with the Riccati solution for the classic linear quadratic regulator
(LQR) problems. Our formulation further relieves several assumptions in existing
work, such as the requirement of block diagonal control matrix in the dynamics. The
resulting SLS controller has a distributed state-space form that significantly reduces
the required memory compared to the FIR SLS controllers and obtains optimalH2

performance compared to FIR approximations.

In the second half of this chapter, we then generalize the state-feedback result and
investigate a class of infinite-horizon output-feedback SLS problems. In particular, we
study an output-feedback SLS problem that corresponds to a class of LQG problems
with localization and communication delay constraints. Our solution leverages an
analogous separation principle for SLS parameterization, where the infinite-horizon
state-feedback SLS solution is used. A key advantage of this approach is the ability
to compute the control gains of each subsystem locally in one swoop using local
information, without iterations or communications among subsystems, which were
required by previous methods, e.g., [77]. Furthermore, we demonstrate an internally
stabilizing output-feedback controller that is distributed and localized based on the
proposed suboptimal solution. The proposed state-space controller has a fixed, low
memory requirement, unlike existing FIR-based SLS controllers where the length of
the memory grows linearly with the FIR horizon.

Notation. Latin letters 𝑥 ∈ R𝑛 and 𝐴 ∈ R𝑚×𝑛 present vectors and matrices
respectively. 𝐴(𝑖, 𝑗) refers to the (𝑖, 𝑗)th element of the matrix. We use 𝐴(:, 𝑗)
and 𝐴( 𝑗 , :) to refer to the 𝑗 th column and 𝑗 th row of 𝐴 respectively. Bold font x
denotes the signal vector sequence x := {𝑥(𝑡)}∞

𝑡=0. Transfer matrices are written
as G(𝑧) ∈ C𝑛×𝑚 where G(𝑧) = Σ∞

𝑖=0𝑧
−𝑖𝐺 [𝑖] with convolution kernels 𝐺 [𝑖] ∈ R𝑛×𝑚.

We will omit the dependence on the complex variable 𝑧 and use G when there
is no ambiguity. The 𝑗 th standard basis vector is 𝑒 𝑗 ∈ R𝑛. Sp (·) is the support
of a matrix. For two binary matrices 𝑆1, 𝑆2 ∈ {0, 1}𝑚×𝑛, the operation 𝑆1 ∪ 𝑆2

performs an element-wise OR operation. Given the matrix 𝐴, we say Sp (𝐴) ⊆ 𝑆1

if Sp (𝐴) ∪ 𝑆1 = 𝑆1. We abbreviate the set {1, 2, . . . , 𝑁} as [𝑁] for 𝑁 ∈ N. Non-
negative integers are denoted as N+. We write 𝐴 ≻ 𝐵 (𝐴 ⪰ 𝐵) to mean that 𝐴 − 𝐵 is
a positive (semi)definite matrix. We use RH∞ for the space of all proper and real
rational stable transfer matrices and denote G ∈ 1

𝑧
RH∞ if and only if 𝑧G ∈ RH∞.
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Figure 2.1: Scalar chain network for Example 1, 2, and 3.

2.2 The Localized and Distributed H2 Problem
In this section, we describe the system model, and both the state-feedback and
output-feedback H2 optimal control design problem subject to localization and
communication delay constraints.

System Model
We consider interconnected systems consisting of 𝑁 subsystems. For each subsystem
𝑖, let 𝑥𝑖 ∈ R𝑛𝑖 , 𝑢𝑖 ∈ R𝑚𝑖 , 𝑤𝑖 ∈ R𝑛𝑖 be the local state, control, and disturbance vectors
respectively. Each subsystem 𝑖 has discrete-time dynamics:

𝑥𝑖 (𝑡 + 1) =
∑︁

𝑗∈N1
in (𝑖)

𝐴𝑖 𝑗𝑥 𝑗 (𝑡) + 𝐵𝑖 𝑗𝑢 𝑗 (𝑡) + 𝑤𝑖 (𝑡),

where we denote 𝑗 ∈ N 𝑘
in(𝑖) if the states and control actions of subsystem 𝑗 affect

those of subsystem 𝑖 in 𝑘 time steps through the open-loop network dynamics.
Analogously, we write 𝑖 ∈ N 𝑘

out( 𝑗) when the states of subsystem 𝑖 are affected by
subsystem 𝑗 via dynamics in 𝑘 time steps. Stacking the dynamics of all subsystems,
we can represent the global network dynamics as

𝑥(𝑡 + 1) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡) + 𝑤(𝑡), (2.1)

with 𝑥(𝑡) ∈ R𝑁𝑥 and 𝑢(𝑡) ∈ R𝑁𝑢 . We will refer to this system as the state-feedback
dynamics where the states 𝑥(𝑡) can be directly observed and used for feedback control
design.

Example 1. Consider a chain network as shown in Figure 2.1. Each subsystem
𝑖 has its local plant 𝑃𝑖 and controller 𝐶𝑖 with scalar state 𝑥𝑖 and control action
𝑢𝑖. For each 𝑖, N1

in(𝑖) and N1
out(𝑖) only contains its nearest neighbors. The stacked

network dynamics (2.1) for this system has tri-diagonal state propagation matrix 𝐴
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and diagonal 𝐵 matrix:

𝐴 =



∗ ∗ 0 0 0
∗ ∗ ∗ 0 0
0 ∗ ∗ ∗ 0
0 0 ∗ ∗ ∗
0 0 0 ∗ ∗


𝐵 =



∗ 0 0 0 0
0 ∗ 0 0 0
0 0 ∗ 0 0
0 0 0 ∗ 0
0 0 0 0 ∗


.

In practice, the states of the system (2.1) may not be directly observable. Therefore,
we also consider the output-feedback system where in addition to (2.1),

𝑦(𝑡) = 𝐶𝑥(𝑡) + 𝑣(𝑡). (2.2)

Here, 𝑦(𝑡) ∈ R𝑁𝑦 is the observable output of the system and 𝑣(𝑡) ∈ R𝑁𝑦 is the
measurement noise.

In what follows, we define structural constraints arising from locality and com-
munication delays, which belong to the family of SLCs that can be formulated as
convex sparsity constraints via the SLS parameteration. We denote any such sparsity
constraints as S := {𝑆[𝑘]}∞

𝑘=1 where each 𝑆[𝑘] are binary matrices specifying the
sparsity of the kernels of a transfer matrix. Given a transfer matrix 𝚽 and an SLC
defined by the sparsity constraint S, we say 𝚽 ∈ S if Sp (Φ [𝑘]) ⊆ 𝑆[𝑘] for all 𝑘 .

Localization
It is often desirable to limit the effects of disturbances in (2.1) to a local region for
a large network. We can specify the disturbance localization pattern with binary
matrices.

Definition 2.2.1 (Localization SLCs). An SLC S𝐿 := {𝑆𝐿 [𝑘]}∞
𝑘=1 is called the

localization SLC if 𝑆𝐿 [𝑘] for all 𝑘 are the same binary matrices.

To specify disturbance localization with localization SLCs, we can impose on control
design such that disturbance w 𝑗 propagates to the state x𝑖 in the closed loop if and
only if S𝐿 (𝑖, 𝑗) ≠ 0. We call the subsystems that can be affected by w𝑖 the localized
region of w𝑖. Subsystems in the localized region of w𝑖 correspond to the indices of
the non-zero elements of the 𝑖th column of S𝐿 . A simple way to ensure disturbance
localization per Definition 2.2.1 is that the “boundary” subsystems of each localized
region must remain at zero to prevent disturbances from propagating outside of
the localized region. To this end, we will formalize the notion of the boundary
subsystems.
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Definition 2.2.2 (Extended Localization SLCs). Given a localization SLC S𝐿 , the
corresponding extended localization SLC is S𝐿,𝑒 := {Sp

(
Sp (𝐴) 𝑆𝐿 [𝑘]

)
}∞
𝑘=1.

Since any (extended) localization SLCs can be uniquely identified by its binary matrix
components, we will use S𝐿 (S𝐿,𝑒) and its binary matrix component interchangeably
when there is no ambiguity. Sparsity patternS𝐿,𝑒 can be interpreted as the propagation
of S𝐿 according to dynamics (2.1) if no action were to be taken to contain the spread
of disturbances. We now define the boundary subsystems for a given localization
SLC S𝐿 .

Definition 2.2.3 (Boundary Subsystems). The set of the boundary subsystems for the
localized region of w𝑖 is

B(𝑖) := { 𝑗 ∈ [𝑁𝑥] | S𝐿,𝑒 ( 𝑗 , 𝑖) − S𝐿 ( 𝑗 , 𝑖) ≠ 0}.

Intuitively, the set B(𝑖) for the localized region of w𝑖 contains the indices of the
bordering subsystems that controls the spread of the disturbance from within the
localized region to the outside of the region.

Example 2. We continue with Example 1, where we now specify S𝐿 = Sp (𝐴). With
Definition 2.2.2 and 2.2.3, we have:

S𝐿,𝑒 =



1 1 1 0 0
1 1 1 1 0
1 1 1 1 1
0 1 1 1 1
0 0 1 1 1


, S𝐿,𝑒 − S𝐿 =



0 0 1 0 0
0 0 0 1 0
1 0 0 0 1
0 1 0 0 0
0 0 1 0 0


.

The boundary index set B(𝑖) thus corresponds to the position of non-zero elements
on the 𝑖th column of S𝐿,𝑒 − S𝐿 . For instance, B(3) = {1, 5} and B(1) = {3}.

Communication Delay
In addition to disturbance localization, one may wish to additionally incorporate
communication delay SLCs to specify how information exchange happens among
subsystems while each subsystem tries to localize disturbances. Combined together,
such delayed localization SLCs correspond to scenarios when communication delays
allow disturbances to propagate through dynamics, before subsystems are able to
coordinate to completely attenuate and localize them. For ease of exposition, here
we consider a communication delay pattern among subsystems that matches the



19

dynamics. The results in this chapter can be generalized to broader classes of
communication patterns.

Definition 2.2.4 (d-Delayed Localization SLCs). For a fixed integer 𝑑 ≥ 1, a
localization SLC S𝐿 , a delayed localization SLC S𝑑 := {𝑆𝑑 [𝑘]}∞

𝑘=1 is such that
𝑆𝑑 [𝑘] = Sp

(
Sp (𝐴)𝑘

)
for 𝑘 ≤ 𝑑 and 𝑆𝑑 [𝑘] = Sp

(
Sp (𝐴)𝑑

)
∪𝑆𝐿 [𝑘] for all 𝑘 ≥ 𝑑+1.

This is sometimes called the (𝐴, 𝑑)-sparsity [44] and generalizes the localization
SLCs. For the rest of chapter, we consider d-delayed localization SLCs for structured
controller synthesis. We assume that any given SLCs are feasible for the control
design of the underlying system.

Problem Statement
We now state the localized and distributed optimalH2 problem both in state-feedback
form (P0-SF) and output-feedback form (P0-OF). The objective function is theH2

performance index of output z = 𝑄
1
2 x + 𝑅 1

2 u (𝑄 1
2 y + 𝑅 1

2 u) of the state-feedback
(output-feedback) closed loop of (2.1) (and (2.2)), with𝑄 1

2 , 𝑅
1
2 ≻ 0. The disturbances

𝑤(𝑡) are assumed to be independently and identically distributed (iid) over different
coordinates as well as time, and drawn from zero-mean Gaussian distributionN(0, 𝐼)
in the state-feedback case. In the output-feedback case, we assume a more general
form where 𝑤(𝑡) ∼ N (0,𝑊), and 𝑣(𝑡) ∼ N (0, 𝑉) iid, with 𝑊, 𝑉 ≻ 0. The goal
is to synthesize a controller that localizes disturbances and accommodates to the
communication delay among subsystems.

State-feedback control. This problem can be represented as the following opti-
mization problem:

minimize
K

E𝑤(𝑡)∼N (0,𝐼)


[
𝑄

1
2 0

0 𝑅
1
2

] [
x
u

]2

2

(P0-SF)

subject to State-feedback dynamics(2.1)

u = Kx, K internally stabilizing

K localizes disturbances according to S𝐿 (2.3a)

K conforms to S𝑑 , (2.3b)

where ∥x∥22 :=
∑∞
𝑘=0 ∥𝑥(𝑘)∥22. We assume (𝐴, 𝐵) is stabilizable. Problem (P0-SF)

has practical application in large-scale cyber-physical systems, especially in power
systems [78], [79]. We note that in contrast to all previously formulated SLS
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problems, there is no FIR constraint in (P0-SF), rendering it an infinite-dimensional
problem.

Output-feedback control. Analogous to the state-feedback problem, the distributed
and localizedH2 output-feedback control problem is as follows:

minimize
K

E𝑤(𝑡)∼N (0,𝑊)
𝑣(𝑡)∼N (0,𝑉)


[
𝑄

1
2𝐶 0
0 𝑅

1
2

] [
x
u

]2

2

(P0-OF)

subject to Output-feedback dynamics(2.1), (2.2)

u = Ky, K internally stabilizing

K localizes disturbances according to S𝐿

K conforms to S𝑑 ,

where instead of quadratic costs on the states, we penalize quadratic costs on the
observable outputs.

2.3 System Level Synthesis
It is well known that structured control design problems such as (P0-SF) and (P0-OF)
are infinite-dimensional problems and non-convex in K. Therefore, we leverage the
System Level Synthesis (SLS) framework [73]. The SLS theory approaches the
constrained state-feedback and output-feedback control problem described above by
characterizing all achievable closed-loop mappings (CLMs) from w (and v) to x, u
under an internally stabilizing controller K. Then, using any achievable CLMs, SLS
provides an implementation of the controller K that realizes the prescribed CLMs.

State-feedback SLS
Consider the closed loop of (2.1) under any linear (potentially dynamic and time-
varying) state feedback policy u = Kx. We denote the closed-loop mappings (CLMs)

from disturbance w to x and u by 𝚽𝑥𝑤,𝚽𝑢𝑤 respectively, i.e.,

[
x
u

]
=

[
𝚽𝑥𝑤

𝚽𝑢𝑤

]
w.

As an example, consider a fixed static controller 𝐾 ∈ R𝑁𝑢×𝑁𝑥 such that 𝑢(𝑡) = 𝐾𝑥(𝑡).
Then the system (2.1) has the following closed loop dynamics,

𝑥(𝑡) =
𝑡∑︁
𝑘=1
(𝐴 + 𝐵𝐾)𝑘−1𝑤(𝑡 − 𝑘), 𝑢(𝑡) =

𝑡∑︁
𝑘=1

𝐾 (𝐴 + 𝐵𝐾)𝑘−1𝑤(𝑡 − 𝑘), (2.5)

where we absorb the initial state 𝑥(0) into 𝑤(−1) and assume 𝑥(0) = 0 without loss
of generality. Let Φ𝑥𝑤 [𝑘] := (𝐴 + 𝐵𝐾)𝑘−1 and Φ𝑢𝑤 [𝑘] := 𝐾 (𝐴 + 𝐵𝐾)𝑘−1 be the
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convolution kernels. Then (2.5) can be written as 𝑥(𝑡) = ∑𝑡
𝑘=1 Φ𝑥𝑤 [𝑘]𝑤(𝑡 − 𝑘) and

𝑢(𝑡) = ∑𝑡
𝑘=1 Φ𝑢𝑤 [𝑘]𝑤(𝑡 − 𝑘)], or equivalently, x = 𝚽𝑥𝑤w and u = 𝚽𝑢𝑤w.

A main result of SLS is the following characterization of all achievable CLMs
under internally stabilizing state-feedback controllers. Crucially, SLS allows re-
parameterization of any stabilizing controllers to be expressed and implemented with
CLMs.

Theorem 1 ([45]). For the linear dynamics with 𝐶 = 𝐼 and 𝑣(𝑡) = 0, CLMs 𝚽𝑥𝑤

and 𝚽𝑢𝑤 can be achieved by a linear internally stabilizing controller K if and only if[
𝑧𝐼 − 𝐴 −𝐵

] [
𝚽𝑥𝑤

𝚽𝑢𝑤

]
= 𝐼, 𝚽𝑥𝑤 , 𝚽𝑢𝑤 ∈

1
𝑧
RH∞. (2.6)

Moreover, K = 𝚽𝑢𝑤 (𝚽𝑥𝑤)−1 achieves the prescribed CLMs, and can be implemented
as

𝑢(𝑡) =
𝑡∑︁
𝑘=1

Φ𝑢𝑤 [𝑘]𝑤(𝑡 − 𝑘) (2.7a)

𝑤(𝑡) = 𝑥(𝑡 + 1) −
𝑡−1∑︁
𝑘=1

Φ𝑥𝑤 [𝑘 + 1]𝑤(𝑡 − 𝑘) , (2.7b)

where ŵ is the internal state of the controller.

Controller (2.7) can be regarded as estimating past disturbances in (2.7b) and acting
upon the estimated disturbances according to a specified closed-loop mapping 𝚽𝑢𝑤

in (2.7a). An important consequence of Theorem 1 is that any structures imposed on
the closed-loop responses 𝚽𝑥𝑤 ,𝚽𝑢𝑤, such as sparsity constraints on the kernels of
𝚽𝑥𝑤 ,𝚽𝑢𝑤, trivially translate into structures on the realizing controllers (2.7).

Output-feedback SLS
Similar to the state-feedback SLS, the CLMs of the closed loop of the output-feedback
dynamics (2.1) and (2.2) under an output-feedback linear controller such that u = Ky
can be fully characterized.

Theorem 2 ([45]). CLMs 𝚽𝑥𝑥 , 𝚽𝑥𝑦, 𝚽𝑢𝑥 , 𝚽𝑢𝑦 ∈ 1
𝑧
RH∞ can be achieved by a linear

internally stabilizing output-feedback controller K if and only if[
𝑧𝐼 − 𝐴 −𝐵

] [
𝚽𝑥𝑥 𝚽𝑥𝑦

𝚽𝑢𝑥 𝚽𝑢𝑦

]
=

[
𝐼 0

]
(2.8a)
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1
𝑧

𝐴

𝐶 𝐵+

1
𝑧

�̂�𝑥𝑥

�̂�𝑥𝑦 �̂�𝑢𝑥

𝚽𝑢𝑦

+

+
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𝜹𝑦
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x

𝜷

y

Figure 2.2: Output-feedback controller architecture adapted from [45]. Here,
�̂�𝑥𝑥 = 𝑧(𝐼 − 𝑧𝚽𝑥𝑥), �̂�𝑢𝑥 = 𝑧𝚽𝑢𝑥 and �̂�𝑥𝑦 = −𝑧𝚽𝑥𝑦. The controller is internally
stable; the closed-loop mappings from perturbations (𝜹𝑥 , 𝜹𝑦, 𝜹𝑢, 𝜹𝛽) to internal
signals (x, y, u, 𝜷) are stable.[

𝚽𝑥𝑥 𝚽𝑥𝑦

𝚽𝑢𝑥 𝚽𝑢𝑦

] [
𝑧𝐼 − 𝐴
−𝐶

]
=

[
𝐼

0

]
, (2.8b)

where 𝚽𝑥𝑥 , 𝚽𝑥𝑦, 𝚽𝑢𝑥 , 𝚽𝑢𝑦 maps w, v to x, u under an output-feedback controller K,

i.e.,

[
x
u

]
=

[
𝚽𝑥𝑥 𝚽𝑥𝑦

𝚽𝑢𝑥 𝚽𝑢𝑦

] [
w
v

]
. In particular, K can be implemented as the following,

which is illustrated in Figure 2.2:

𝑧𝜷 = �̂�𝑥𝑥𝜷 + �̂�𝑥𝑦y

u = �̂�𝑢𝑥𝜷 +𝚽𝑢𝑦y,
(2.9)

where �̂�𝑥𝑥 = 𝑧(𝐼 − 𝑧𝚽𝑥𝑥), �̂�𝑢𝑥 = 𝑧𝚽𝑢𝑥 , �̂�𝑥𝑦 = −𝑧𝚽𝑥𝑦, and 𝛽 is the controller
internal state.

Further, it was shown in [45] that (2.8) is equivalent to stabilizability and detectability
of (2.1) and (2.2). Therefore, (2.9) parameterizes all internally stabilizing linear
controller K for (2.1) and (2.2). We also note that Theorem 1 is a special case of
Theorem 2.

2.4 Main Results
With the SLS framework introduced in Section 2.3, SLCs in (P0-SF) and (P0-OF)
can be equivalently expressed in terms of the CLMs of the closed loop of (2.1) and
(2.2).
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min
𝚽𝑥𝑤 ,𝚽𝑢𝑤∈ 1

𝑧
RH∞


[
𝑄1/2 0

0 𝑅1/2

] [
𝚽𝑥𝑤

𝚽𝑢𝑤

]2

H2

s.t.
[
𝑧𝐼 − 𝐴 −𝐵

] [
𝚽𝑥𝑤

𝚽𝑢𝑤

]
= 𝐼, (SF-SLS)

𝚽𝑥𝑤 ∈ S𝐿 , 𝚽𝑢𝑤 ∈ S𝑑 ,

and

min
𝚽∈ 1

𝑧
RH∞


[
𝑄1/2𝐶 0

0 𝑅1/2

] [
𝚽𝑥𝑥 𝚽𝑥𝑦

𝚽𝑢𝑥 𝚽𝑢𝑦

] [
𝑊1/2 0

0 𝑉1/2

]2

H2

s.t.
[
𝑧𝐼 − 𝐴 −𝐵

] [
𝚽𝑥𝑥 𝚽𝑥𝑦

𝚽𝑢𝑥 𝚽𝑢𝑦

]
=

[
𝐼 0

]
[
𝚽𝑥𝑥 𝚽𝑥𝑦

𝚽𝑢𝑥 𝚽𝑢𝑦

] [
𝑧𝐼 − 𝐴
−𝐶

]
=

[
𝐼

0

]
(OF-SLS)

𝚽𝑥𝑥 ,𝚽𝑥𝑦 ∈ S𝐿 and 𝚽𝑢𝑥 ,𝚽𝑢𝑦 ∈ S𝑑 ,

where we used 𝚽 to collectively refer to the tuple
(
𝚽𝑥𝑥 ,𝚽𝑢𝑥 ,𝚽𝑥𝑦,𝚽𝑢𝑦

)
to reduce

notation.

In what follows, we will first derive the infinite-horizon optimal solution to the
state-feedback Problem (SF-SLS) with the corresponding distributed controller
description. Then we build upon the state-feedback solution and leverage separation
principle to synthesize a suboptimal output-feedback solution to (OF-SLS) with
distributed state-space controller implementation.

The State-feedback Solution
We will derive the optimal solution of (SF-SLS) in two steps. First, we will derive the
solution to (SF-SLS) disregarding delay constraints, i.e., we will restrict our attention
to the special case that 𝚽𝑥𝑤, 𝚽𝑢𝑤 ∈ S𝐿 . We will decribe an explicit controller
that implements the CLMs that enables distributed computation with only local
information. The solution to this special problem will be used to further solve the
full problem of (SF-SLS) with delay constraints.

Column-wise decomposition

It is known that (SF-SLS) is column-wise separable [73], [78], where the optimization
problem can be decomposed into subproblems involving columns of the CLMs.



24

Therefore, we will synthesize the CLMs one column at a time where each subsystem
synthesizes the columns corresponds to its local states, in a parallel fashion. Such
parallel synthesis scales favorably with the number of subsystems in large networks.
From here on, everything will be seen by the 𝑗 th subsystem. To reduce notation,
we assume each subsystem has scalar dynamics where 𝑥𝑖 (𝑡), 𝑢𝑖 (𝑡), 𝑤𝑖 (𝑡) ∈ R1. Let
𝝋𝒙 := 𝚽𝑥𝑤 (:, 𝑗) and 𝝋𝒖 := 𝚽𝑢𝑤 (:, 𝑗) with kernels 𝜑𝑥 [𝑘] and 𝜑𝑢 [𝑘] for 𝑘 ∈ N+,
respectively corresponding to the 𝑖th column of 𝚽𝑥𝑤 and 𝚽𝑢𝑤 . Furthermore we use
𝑠𝑥 [𝑘] and 𝑠𝑢 [𝑘] to denote the 𝑗 th column of 𝑆𝐿 [𝑘] and 𝑆𝑑 [𝑘] respectively. Each
corresponding column problem to be solved locally by subsystem 𝑗 becomes

min
𝝋𝒙,𝝋𝒖

∞∑︁
𝑘=1

𝜑𝑥 [𝑘]⊤𝑄𝜑𝑥 [𝑘] + 𝜑𝑢 [𝑘]⊤𝑅𝜑𝑢 [𝑘] (P1)

s.t. 𝜑𝑥 [𝑘 + 1] = 𝐴𝜑𝑥 [𝑘] + 𝐵𝜑𝑢 [𝑘] (2.10a)

𝜑𝑥 [0] = 0, 𝜑𝑥 [1] = 𝑒 𝑗
𝜑𝑥 [𝑘] ∈ 𝑠𝑥 [𝑘], 𝜑𝑢 [𝑘] ∈ 𝑠𝑢 [𝑘] , ∀𝑘 ∈ N+ . (2.10b)

This new problem is a constrained linear quadratic optimal control problem, and would
be a standard infinite-horizon LQR problem if not for the sparsity constraints (2.10b).

The solution to this column problem has two steps. First, we will solve a version
of the problem that only considers localization constraints. Then we will transform
the original column problem to a finite-horizon LQR problem with time-varying
dynamics. A dynamic programming based solution is proposed based on the solutions
with only localization constraints.

Solution with localization SLCs only

In this section, we will consider the column problem (P1) with only localization
constraints, where (2.10b) is replaced by 𝜑𝑥 [𝑘] ∈ 𝑆𝐿 [𝑘], and 𝜑𝑢 [𝑘] ∈ 𝑆𝐿 [𝑘], for
all 𝑘 ∈ N+. Therefore, every kernel of 𝝋𝒙 and 𝝋𝒖 will now have the same localization
sparsity constraints for all the kernel matrices. Therefore, we can reduce (P1) by
removing zero entries in 𝝋𝒙 and 𝝋𝒖 , other than those associated with the indices in
B( 𝑗). We denote the reduced column vectors that contains the entries associated
with B( 𝑗) as �̃�𝑥 and 𝝋𝑢. Similarly, the problem parameters 𝐴, 𝐵, 𝑄, 𝑅 can be
reduced by selecting submatrices 𝐴( 𝑗) , 𝐵( 𝑗) , 𝑄 ( 𝑗) , and 𝑅( 𝑗) consisting of columns
and rows associated with the boundary entries and non-zero entries of 𝝋𝒙 and 𝝋𝒖.
Note these sub-matrices now contain only dynamics information from subsystems

1One can alleviate this assumption by running the algorithm for multiple columns per subsystem.
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that are allowed to transmit information to the subsystems to which x 𝑗 belong. We
further rearrange the reduced vectors and matrices in (2.10a) by grouping the entries
associated with boundary subsystems as follows:[

𝜑𝑥,𝑛

𝜑𝑥,𝑏

]
[𝑘 + 1]︸           ︷︷           ︸

𝜑𝑥 [𝑘+1]

=

[
𝐴
( 𝑗)
𝑛𝑛 𝐴

( 𝑗)
𝑛𝑏

𝐴
( 𝑗)
𝑏𝑛

𝐴
( 𝑗)
𝑏𝑏

]
︸          ︷︷          ︸

𝐴( 𝑗 )

[
𝜑𝑥,𝑛

𝜑𝑥,𝑏

]
[𝑘] +

[
𝐵
( 𝑗)
𝑛

𝐵
( 𝑗)
𝑏

]
︸ ︷︷ ︸
𝐵 ( 𝑗 )

𝜑𝑢 [𝑘] , (2.11)

where �̃�𝑥,𝑏 denotes the entries on column vector �̃�𝑥 that are associated with B( 𝑗) and
�̃�𝑥,𝑛 represents the entries of �̃�𝑥 that are not associated with boundary subsystems.
Here, 𝐴( 𝑗) and 𝐵( 𝑗) are partitioned accordingly. With abuse of notation, we overload
𝝋𝑢 to denote the rearranged and reduced vector of 𝝋𝒖.

Example 3. Consider the scalar chain example in Figure 2.1 for the local problem
with 𝑗 = 4, i.e., the subproblem (P1) corresponding to the fourth column of
𝚽𝑥𝑤 ,𝚽𝑢𝑤. We have the constraint 𝝋𝒙 = [0, 0, 𝚽𝑥𝑤 (3, 4), 𝚽𝑥𝑤 (4, 4), 𝚽𝑥𝑤 (5, 4)]⊤

according to the fourth column of localization pattern S𝐿 = Sp (𝐴). According
to Example 2, we have 𝝋𝒙,𝒃 = [𝚽𝑥𝑤 (2, 4)] defined in Definition 2.2.3 and 𝝋𝒙,𝒏 =

[𝚽𝑥𝑤 (3, 4), 𝚽𝑥𝑤 (4, 4), 𝚽𝑥𝑤 (5, 4)]⊤. Therefore, the rearranged and reduced vector
is 𝝋𝒙 = [𝚽𝑥𝑤 (3, 4), 𝚽𝑥𝑤 (4, 4), 𝚽𝑥𝑤 (5, 4), 𝚽𝑥𝑤 (2, 4)]⊤.

Note that constraint (2.10b) now becomes equivalent to the requirement that �̃�𝑥,𝑏
remains at the origin at all time for the localized region of w 𝑗 . By keeping the
entries associated with boundary subsystems at zero, we implicitly impose that for
all 𝑘 , Sp (𝐴𝜑𝑥 [𝑘] + 𝐵𝜑𝑢 [𝑘]) ⊆ S𝐿 (:, 𝑗), which is necessary and sufficient to ensure
𝝋𝒙 ∈ S𝐿 (:, 𝑗). Therefore, the local problem (P1) after rearrangement becomes

min
�̃�𝑥 ,𝝋𝑢∈ 1

𝑧
RH∞

∞∑︁
𝑘=0
𝜑𝑥 [𝑘]⊤𝑄 ( 𝑗)𝜑𝑥 [𝑘] + 𝜑𝑢 [𝑘]⊤𝑅( 𝑗)𝜑𝑢 [𝑘] (P2)

subject to 𝜑𝑥 [0] = 0 , 𝜑𝑥 [1] = 𝑒 𝑗 𝑗 , (2.11) (2.12a)

𝜑𝑥,𝑏 [𝑘] = 0,∀𝑘 ∈ N+ (2.12b)

where 𝑗𝑖 denotes the new position of element 𝚽𝑥𝑤 ( 𝑗 , 𝑖) in the rearranged and reduced
vector �̃�𝑥 . Vectors 𝑒 𝑗𝑖 have the same dimension as �̃�𝑥 . We differentiate the position
of element 𝚽𝑥𝑤 ( 𝑗 , 𝑖) in 𝝋𝒙,𝒏 with the notation �̃�𝑖. Vectors 𝑒 �̃�𝑖 has the same dimension
as 𝝋𝒙,𝒏.

Example 4. Continuing Example 3 where 𝑖, 𝑗 = 4, then 𝚽𝑥𝑤 (4, 4) is in the second
position in rearranged and reduced vector 𝝋𝒙. Thus, 𝑗4 = 2, 𝑒 𝑗4 = [0, 1, 0, 0]⊤,
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and �̃�4 = 2 with 𝑒 �̃�4 = [0, 1, 0]⊤. Consider instead 𝑗 = 4 and 𝑖 = 5, then 𝚽𝑥𝑤 (4, 5)
is in the first position in �̃�𝑥 = [𝚽𝑥𝑤 (4, 5), 𝚽𝑥𝑤 (5, 5), 𝚽𝑥𝑤 (3, 5)]⊤ while it is also
in the first position in 𝝋𝒙,𝒏 = [𝚽𝑥𝑤 (4, 5), 𝚽𝑥𝑤 (5, 5)]⊤. We then have 𝑗5 = 1 with
𝑒 𝑗5 = [1, 0, 0]⊤ and �̃�5 = 1 with 𝑒 �̃�5 = [1, 0]⊤.

We are now in a position to de-constrain (P2) by characterizing CLMs that satisfy
(2.12b). We first substitute (2.12b) into (2.11) in (P2) and conclude that (2.12b) is
equivalent to requiring

−𝐵( 𝑗)
𝑏

𝝋𝑢 = 𝐴
( 𝑗)
𝑏𝑛

�̃�𝑥,𝑛. (2.13)

Due to the equality constraint (2.12a) and (2.11), the free optimization variable is 𝝋𝑢
in (P2). It is clear (2.13) has solutions 𝝋𝑢 if and only if the following assumption
holds:

Assumption 1 (existence of solution). 𝐵( 𝑗)
𝑏
𝐵
( 𝑗)†
𝑏

= 𝐼 for all 𝑗 ∈ [𝑁𝑥] .

Recall that constraint (2.12b) is sufficient and necessary for the CLMs to comply to
the localization pattern S𝐿 . This means assumption 1 is the minimum requirement
for the each local problems (P2) to be feasible. Further, per Definition 2.2.3, the
number of boundary subsystems can generally be less than the total dimension of
control actions, i.e., 𝐵( 𝑗)

𝑏
can be a wide matrix.

Lemma 1. Under Assumption 1, the parametrization

𝜑𝑢 [𝑘] = −𝐵( 𝑗)†𝑏
𝐴
( 𝑗)
𝑏𝑛
𝜑𝑥,𝑛 [𝑘] +

(
𝐼 − 𝐵( 𝑗)†

𝑏
𝐵
( 𝑗)
𝑏

)
𝜇[𝑘] (2.14)

with 𝜇[𝑘] a free vector variable characterizes all 𝜑𝑢 [𝑘] that satisfies (2.12b).

Proof. Under Assumption 1, (2.13) has solutions of the form (2.14). This can be
checked by confirming that Range

(
𝐼 − 𝐵( 𝑗)†

𝑏
𝐵
( 𝑗)
𝑏

)
= Kernel

(
𝐵
( 𝑗)
𝑏

)
. Substituting

(2.14) in (2.11), one can verify that 𝜑𝑥,𝑏 [𝑘] = 0, ∀𝑘 ∈ N+. □

The reparametrization with variable 𝜇[𝑘] enables an equivalent local optimization
problem without (2.12b). Substitute (2.14) into (P2), we end up with:

min
�̃�𝑥,𝑛,𝜇∈ 1

𝑧
RH∞

∞∑︁
𝑘=0
𝜑𝑥,𝑛 [𝑘]⊤𝑄 ( 𝑗)𝜑𝑥,𝑛 [𝑘] + 𝜇⊤ [𝑘]𝑅( 𝑗)𝜇[𝑘]

subject to 𝜑𝑥,𝑛 [0] = 0 , 𝜑𝑥,𝑛 [1] = 𝑒 �̃� 𝑗 (P3)

𝜑𝑥,𝑛 [𝑘 + 1] = 𝐴( 𝑗)𝜑𝑥,𝑛 [𝑘] + 𝐵( 𝑗)𝜇[𝑘] ,
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where

𝑅( 𝑗) =

((
𝑅( 𝑗)

) 1
2
(
𝐼 − 𝐵( 𝑗)†

𝑏
𝐵
( 𝑗)
𝑏

))⊤
((
𝑅( 𝑗)

) 1
2
(
𝐼 − 𝐵( 𝑗)†

𝑏
𝐵
( 𝑗)
𝑏

))
𝑄 ( 𝑗) =

(
(𝑄 ( 𝑗)) 1

2 − (𝑅( 𝑗)) 1
2𝐵
( 𝑗)†
𝑏

𝐴
( 𝑗)
𝑏𝑛

)⊤(
(𝑄 ( 𝑗)) 1

2 − (𝑅( 𝑗)) 1
2𝐵
( 𝑗)†
𝑏

𝐴
( 𝑗)
𝑏𝑛

)
𝐴( 𝑗) = 𝐴( 𝑗)𝑛𝑛 − 𝐵( 𝑗)𝑛 𝐵

( 𝑗)†
𝑏

𝐴
( 𝑗)
𝑏𝑛

𝐵( 𝑗) = 𝐵( 𝑗)𝑛
(
𝐼 − 𝐵( 𝑗)†

𝑏
𝐵
( 𝑗)
𝑏

)
.

(2.16)

For each column 𝑗 with 𝑗 ∈ [𝑁𝑥], problem (P3) can be treated as an infinite horizon
LQR problem with which an optimal “control policy” 𝐾 ( 𝑗)★ can be computed in
closed form via discrete-time algebraic Riccati equation (DARE):

𝐾
( 𝑗)
★ = −

(
𝑅( 𝑗) + 𝐵( 𝑗)𝑇𝑋 ( 𝑗)★ 𝐵( 𝑗)

)−1
𝐵( 𝑗)𝑇𝑋 ( 𝑗)★ 𝐴( 𝑗) , (2.17)

where 𝑋 ( 𝑗)★ is the Riccati solution to the DARE:

𝑋
( 𝑗)
★ = 𝑄 ( 𝑗) + 𝐴( 𝑗)𝑇𝑋 ( 𝑗)★ 𝐴( 𝑗) − 𝐴( 𝑗)𝑇𝑋 ( 𝑗)★ 𝐵( 𝑗)(

𝑅( 𝑗) + 𝐵( 𝑗)𝑇𝑋 ( 𝑗)★ 𝐵( 𝑗)
)−1

𝐵( 𝑗)𝑇𝑋 ( 𝑗)★ 𝐴( 𝑗) . (2.18)

With the optimal solution 𝜇[𝑘] = 𝐾 ( 𝑗)★ 𝜑𝑥,𝑛 [𝑘] to (P3), the solution to (P2) can be
recovered via (2.14) as

𝜑𝑥,𝑛 [1] = 𝑒 �̃� 𝑗 (2.19a)

𝜑𝑢 [𝑘] =
(
−𝐵( 𝑗)†

𝑏
𝐴
( 𝑗)
𝑏𝑛
+

(
𝐼 − 𝐵( 𝑗)†

𝑏
𝐵
( 𝑗)
𝑏

)
𝐾
( 𝑗)
★

)
𝜑𝑥,𝑛 [𝑘] (2.19b)

𝜑𝑥,𝑛 [𝑘] =
(
𝐴( 𝑗) + 𝐵( 𝑗)𝐾 ( 𝑗)★

)
𝜑𝑥,𝑛 [𝑘 − 1] . (2.19c)

Note the optimal solution to (P3) via the Riccati equation is stable, so 𝜇 and �̃�𝑥,𝑛
construct stable and strictly proper operators.

In summary, we went through a series of transformations and decompositions from
the original localized and distributed state feedbackH2 problem (P0-SF) with only
localization SLCs to (P3). Given solutions to the local problems (P3), solutions
to (SF-SLS) can be recovered. In particular, we define embedding operator 𝐸𝑥 (·)
and 𝐸𝑢 (·) that apply padding of zero’s to the reduced vectors 𝜑𝑥,𝑛 [𝑘] and 𝜑𝑢 [𝑘]
by assigning entries of 𝜑𝑥,𝑛 [𝑘] and 𝜑𝑢 [𝑘] to the positions of non-zero elements of
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Φ𝑥𝑤 [𝑘] (:, 𝑗) and Φ𝑢𝑤 [𝑘] (:, 𝑗) such that 𝐸𝑥
(
𝜑𝑥,𝑛 [𝑘]

)
∈ R𝑁𝑥 and 𝐸𝑢 (𝜑𝑢 [𝑘]) ∈ R𝑁𝑢 .

We define the application of the embedding operator on the transfer matrices to be
the application of the embedding operator on the kernel matrices.

Theorem 3. Let 𝚽★
𝑥𝑤 be the column-wise concatenation of 𝐸𝑥

(
�̃�𝑥,𝑛

)
and let 𝚽★

𝑢𝑤

be the column-wise concatenation of 𝐸𝑢
(
𝝋𝑢

)
, where �̃�𝑥,𝑛’s and 𝝋𝑢’s are solutions

to (P3) via (2.19). Then 𝚽★
𝑥𝑤 and 𝚽★

𝑢𝑤 are the unique optimal solution to (SF-SLS)
with localization SLCs only.

Proof. It is straightforward to check that optimization (SF-SLS) is an instance of
column-wise separable problem (see Section III, [78]) where both the objective
function and constraints are column-wise separable and can be partitioned and
solved in columns as in (P1) in parallel. Therefore, solutions to subproblem (P1)
can be concatenated to recover the solution to (SF-SLS). Note that by construction,
𝐸𝑥

(
�̃�𝑥,𝑛

)
= 𝚽𝑥𝑤 (:, 𝑗) and 𝐸𝑢

(
𝝋𝑢

)
= 𝚽𝑢𝑤 (:, 𝑗) for all 𝑗 ∈ [𝑁𝑥]. Therefore, they

comprise the optimal solution to (P1) for each 𝑗 . Concatenate 𝐸𝑥
(
�̃�𝑥,𝑛

)
’s and

𝐸𝑢
(
𝝋𝑢

)
’s in a column-wise fashion and the resulting matrices are solutions to

(SF-SLS) when only localization SLCs are considered. The uniqueness of the
optimal solution is given by the fact that the objective function is strongly convex. □

Distributed controller implementation

Given the column-wise state-space description of the infinite-horizon CLMs𝚽𝑥𝑤 (:, 𝑖)
and 𝚽𝑥𝑤 (:, 𝑖) in (2.19), we now describe a state-space agent-level controller that
implements these CLMs.

By Theorem 1, we can directly conclude that theoretically, K = 𝚽𝑢𝑤 (𝚽𝑥𝑤)−1

with implementation (2.7) achieves any given CLMs 𝚽𝑥𝑤 ,𝚽𝑢𝑤 and conforms to
the localization and delay constraints. This is because the inheritance of sparsity
structures of the controller implementation from CLMs in Theorem 1. Interested
readers are referred to [80] for in-depth discussion on implementation of SLS
controllers for cyber-physical systems. However, due to the state-space form of the
solution with explicit kernel description, practical implementation of a controller
that achieves the theoretical global CLMs remains elusive.

We will decompose the global SLS controller (2.7) into 𝑁𝑥 sub-controllers using the
solution to (SF-SLS). The global control action 𝑢[𝑡] can be accordingly decomposed
into 𝑁𝑥 "sub-control actions". These sub-control actions are then assembled together
to recover the global control action. Importantly, the computation of each sub-control



29

action conforms to the localization SLC S𝐿 . We now make precise of this high-level
description.

To ease notation, we denote 𝑥ℓ (𝑡) ∈ R and 𝑤ℓ (𝑡) ∈ R, for ℓ ∈ [𝑁𝑥] as the ℓth
position in the state 𝑥(𝑡) and disturbance vector 𝑤(𝑡) in the global dynamics (2.1),
respectively. Furthermore, for general networks with 𝑁 non-scalar subsystem with
local state vector 𝑥 𝑗 ∈ R𝑛 𝑗 and 𝑢 𝑗 ∈ R𝑚 𝑗 , we define the indices associated with 𝑥 𝑗

of subsystem 𝑗 ∈ [𝑁] as X( 𝑗) := {ℓ ∈ [𝑁𝑥] | 𝑥ℓ ∈ 𝑥 𝑗 }. Thus, X( 𝑗) partitions the
global state vector 𝑥(𝑡) in (2.1) into 𝑁 sets containing the coordinates associated
with the 𝑁 subsystems. Conversely, we use X−1(ℓ) to denote the subsystem index to
which state 𝑥ℓ belongs.

For each ℓ ∈ [𝑁𝑥], we compute the sub-control action vector 𝑢ℓ (𝑡), which is a vector
with the same dimension as the total number of non-zero elements in the ℓth column
of Φ𝑢𝑤 [𝑡], as:

𝑤ℓ (𝑡) = 𝑥ℓ (𝑡) −
∑︁

𝑖∈N𝑤 (ℓ)
𝜉𝑖 (𝑡)

(
ℓ̃𝑖

)
(2.20a)

𝜉ℓ (𝑡 + 1) = 𝐴ℓ𝐾𝜉ℓ (𝑡) + 𝐵
ℓ
𝐾𝑤ℓ (𝑡) (2.20b)

𝑢ℓ (𝑡) = 𝐶ℓ𝐾𝜉ℓ (𝑡) + 𝐷
ℓ
𝐾𝑤ℓ (𝑡), (2.20c)

where 𝑤ℓ (𝑡) ∈ R can be considered as an estimate of the ℓth element of the true
disturbance vector 𝑤(𝑡). The internal state 𝜉ℓ (𝑡) of each sub-controller has the same
dimension as the total number of non-zero elements in the ℓth column of Φ𝑥𝑤 [𝑡] and
𝜉𝑖 (𝑡)

(
ℓ̃𝑖

)
denotes the ℓ̃𝑖th element in the internal state vectors 𝜉𝑖. Note that controller

internal variables have initial condition 𝑤ℓ (0) = 𝑥ℓ (0) and 𝜉ℓ (0) = 0. We also define
the set N𝑤 (ℓ) as N𝑤 (ℓ) :=

{
𝑖 ∈ [𝑁𝑥] | 𝑆𝐿

(
X−1(ℓ),X−1(𝑖)

)
≠ 0

}
. In particular, the

set N𝑤 (ℓ) contains global indices 𝑖 ∈ [𝑁𝑥] such that 𝑥𝑖 is a state that is allowed to
communicate its information to the subsystem that contains state 𝑥ℓ, conforming
to the localization communication pattern S𝐿 . Equation (2.20b) and (2.20c) are
the sub-controller internal dynamics specified by

(
𝐴ℓ
𝐾
, 𝐵ℓ

𝐾
, 𝐶ℓ

𝐾
, 𝐷ℓ

𝐾

)
that takes in

estimated disturbance 𝑤ℓ and output decomposed control actions 𝑢ℓ. The internal
dynamics for the 𝑙th sub-controller are:

𝐴ℓ𝐾 = 𝐴(ℓ) + 𝐵(ℓ)𝐾 (ℓ)★ , 𝐵ℓ𝐾 =

(
𝐴(ℓ) + 𝐵(ℓ)𝐾 (ℓ)★

)
𝑒
ℓ̃ℓ

𝐶ℓ𝐾 = −𝐵(ℓ)†
𝑏

𝐴
(ℓ)
𝑏𝑛
+

(
𝐼 − 𝐵(ℓ)†

𝑏
𝐵
(ℓ)
𝑏

)
𝐾
(ℓ)
★

𝐷ℓ
𝐾 =

(
−𝐵(ℓ)†

𝑏
𝐴
(ℓ)
𝑏𝑛
+

(
𝐼 − 𝐵(ℓ)†

𝑏
𝐵
(ℓ)
𝑏

)
𝐾
(ℓ)
★

)
𝑒
ℓ̃ℓ
,



30

where all matrices in the equations above are defined in (2.16) and (2.17). It
is straightforward to see that (2.20) is indeed the state space realization of each
decomposed SLS controller implementing the reduced ℓth column of 𝚽𝑥𝑤 (:, ℓ) and
𝚽𝑢𝑤 (:, ℓ) synthesized from (P2). In particular, (2.20) implements a transfer function
mapping from scalar signal xℓ to vector signal uℓ. Further, each sub-controller is
stable since 𝐴ℓ

𝐾
is Hurwitz. The block diagram of this transfer function is shown in

Figure 2.3, where:

𝚿ℓ
𝑥 =

[
𝐴ℓ
𝐾

𝐵ℓ
𝐾

𝐼 0

]
, 𝚿ℓ

𝑢 =

[
𝐴ℓ
𝐾

𝐵ℓ
𝐾

𝐶ℓ
𝐾

𝐷ℓ
𝐾

]
. (2.21)

For each state ℓth state xℓ deviating from the origin due to disturbance wℓ, it triggers
subsystems 𝑗 ∈ N𝑤 (ℓ) to transmit information among each other in order to generate
a collaborative sub-control action uℓ from these subsystems. Moreover, internal
dynamics (2.20b), (2.20c) of each ℓ sub-controller involves only the global dynamics
associated with subsystems 𝑗 ∈ N𝑤 (ℓ). Therefore, by definition of N𝑤 (ℓ), we
conclude that each sub-controller’s implementation conforms to the communication
pattern specified by S𝐿 . By the superposition property of the input-output behaviors
of linear systems, we can sum over all the sub-control actions induced by each wℓ

and the global control action 𝑢(𝑡) ∈ R𝑁𝑢 is:

𝑢(𝑡) =
𝑁𝑥∑︁
𝑖=1

𝐸𝑢 (𝑢ℓ (𝑡)), (2.22)

where each sub-control action uℓ, which has the same vector dimension as Φ̃ℓ
𝑢 can be

appropriately padded with zeros using the linear operator 𝐸𝑢 (·) to recover a vector
dimension in R𝑁𝑢 .

Figure 2.3: Column-wise sub-controller implementation for global controller K =

𝚽𝑢𝑤 (𝚽𝑥𝑤)−1 where the CLMs are computed column-wise in (P2). xℓ is the ℓth state,
ŵℓ is the estimated ℓth disturbance, and uℓ is the sub-control actions induced by ℓth
state’s deviation from origin.

The following result confirms that collectively, the sub-controllers indeed achieve
the prescribed global behaviors.
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Theorem 4. controller implemented (2.20) and (2.22) defined by solutions to (P2)
is internally stabilizing for (2.1) and achieves the closed-loop mappings 𝚽𝑥𝑤 and
𝚽𝑢𝑤 constructed by stacking in a column-wise fashion the solutions to (P2).

Proof. Recall Theorem 1, where an internally stabilizing controller that realizes
𝚽𝑥𝑤 and 𝚽𝑢𝑤 has centralized implementation (2.7). Therefore, we establish the
equivalence between global control action 𝑢(𝑡) generated from (2.7) and 𝑢(𝑡)
generated from (2.22). Consider (2.7b) where the controller’s internal state ŵ has
dynamics

𝑤(𝑡) = 𝑥(𝑡) −
𝑡∑︁
𝑘=1

Φ𝑥𝑤 [𝑘]𝑤(𝑡 − 𝑘)

= 𝑥(𝑡) −
𝑁𝑥∑︁
𝑖=1

𝑡∑︁
𝑘=1

Φ𝑖
𝑥𝑤 [𝑘]𝑤𝑖 (𝑡 − 𝑘).

For each ℓth position in 𝑤(𝑡), due to the localization sparsity pattern S𝐿 imposed on
𝚽𝑥𝑤 , the scalar dynamics is

𝑤ℓ (𝑡) = 𝑥ℓ (𝑡) −
∑︁

𝑖∈N𝑤 (ℓ)

𝑡∑︁
𝑘=1

Φ𝑥𝑤 (ℓ, 𝑖) [𝑘] 𝑤𝑖 (𝑡 − 𝑘).

Since 𝚽𝑖
𝑥𝑤 for all 𝑖 ∈ [𝑁𝑥] are recovered from (2.19) via the linear operators 𝐸𝑥 (·),

it is straightforward to verify that

𝑡∑︁
𝑘=1

Φ𝑥𝑤 (ℓ, 𝑖) [𝑘] 𝑤𝑖 (𝑡 − 𝑘) = 𝜉ℓ (𝑡) (ℓ̃𝑖), for 𝑡 = 1, 2, . . . .

We therefore conclude that (2.7b) and (2.20a),(2.20b) are equivalent. Similarly,
re-write (2.7a) as

𝑢(𝑡) =
𝑁𝑥∑︁
𝑖=1

𝑡∑︁
𝑘=0

Φ𝑖
𝑢𝑤 [𝑘]𝑤𝑖 (𝑡 − 𝑘).

According to (2.19), one can check that
∑𝑡
𝑘=0 Φ

𝑖
𝑢𝑤 [𝑘]𝑤𝑖 (𝑡 − 𝑘) = 𝐸𝑢 (𝑢ℓ (𝑡)), thus

verifying the equivalence between (2.7a) and (2.20b), (2.20c), and (2.22). □

The intuition behind sub-controllers is that at every time step, the global controller
actions are decomposed into ℓth sub-control actions that only attenuate the ℓth
disturbance, i.e., wℓ. Therefore, whenever wℓ enters the system, only subsystems in
the localized region of this disturbance reacts, computing the sub-control actions
using only local information available according to S𝐿 .
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Solution with delayed localization SLCs

Using the optimal solution to (SF-SLS) with only localization SLCs, we will now
present the solution to the original problem (SF-SLS) with delayed localization
SLCs. In particular, we will follow a similar procedure as in the localization only
problem, then invoke the solution to the localization only problem to derive the full
solution.

Recall 𝑠𝑥 [𝑘] and 𝑠𝑢 [𝑘] denote the 𝑗 th column of 𝑆𝐿 [𝑘] and 𝑆𝑑 [𝑘] respectively.
Let 𝑛𝑥 [𝑘] be the number of non-zero elements in the 𝑁𝑥-dimensional vector 𝑠𝑥 [𝑘]
and 𝑛𝑢 [𝑘] be the number of non-zero elements in the 𝑁𝑢-dimensional vector 𝑠𝑢 [𝑘].
Then there exists a surjective matrix 𝑀𝑥 [𝑘] ∈ R(𝑁𝑥−𝑛𝑥 [𝑘])×𝑁𝑥 and an injective matrix
𝑀𝑢 [𝑘] ∈ R𝑁𝑢×𝑛𝑢 [𝑘] such that (2.10b) is equivalent to

𝑀𝑥 [𝑘]𝜑𝑥 [𝑘] = 0, 𝜑𝑢 [𝑘] = 𝑀𝑢 [𝑘]𝑞 [𝑘], (2.23)

where 𝑞 [𝑘] ∈ R𝑛𝑢 [𝑘] becomes the new variable. In particular, one can construct
𝑀𝑥 [𝑘] by horizontally stacking standard basis vectors with non-zero positions
corresponding to the positions that are zero in 𝜑𝑥 [𝑘]. On the other hand, 𝑀𝑢 [𝑘] can
be obtained similarly but with basis vectors corresponding to the non-zero positions
in 𝜑𝑢 [𝑘]. Since 𝜑𝑥 [𝑘 + 1] is uniquely determined by 𝜑𝑥 [𝑘] and 𝜑𝑢 [𝑘], substitution
of (2.23) into (2.10a) yields

𝑀𝑥 [𝑘 + 1]𝐴𝜑𝑥 [𝑘] + 𝑀𝑥 [𝑘 + 1]𝐵𝑀𝑢 [𝑘]︸                  ︷︷                  ︸
𝐹 [𝑘]

𝑞 [𝑘] = 0. (2.24)

The solutions to (2.24) can be expressed as

𝑞 [𝑘] = 𝐹 [𝑘]†𝑀𝑥 [𝑘 + 1]𝐴𝜑𝑥 [𝑘] + 𝑁𝐹 [𝑘]𝑟 [𝑘], (2.25)

where 𝑁𝐹 [𝑘] ∈ R𝑛𝑢 [𝑘]×𝑛𝑟 [𝑘] is a bĳection onto the nullspace of 𝐹 [𝑘]. The vector
𝑟 [𝑘] ∈ R𝑛𝑟 [𝑘] is now our new unconstrained optimization variable. Substituting
𝜑𝑢 [𝑘] = 𝑀𝑢 [𝑘]𝑞 [𝑘] and (2.25) into (P1) we get the equivalent time-varying LQR
problem

min
𝑟 [𝑘]∈R𝑛𝑟 [𝑘 ]

∞∑︁
𝑘=1

(
𝜑𝑥 [𝑘]⊤𝑄 [𝑘]𝜑𝑥 [𝑘]+

2𝑟 [𝑘]⊤𝑍𝜑𝑥 [𝑘] + 𝑟 [𝑘]⊤𝑅[𝑘]𝑟 [𝑘]
)

s.t. 𝜑𝑥 [𝑘 + 1] = 𝐴𝜑𝑥 [𝑘] + 𝐵[𝑘]𝑟 [𝑘] (2.26)
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𝜑𝑥 [0] = 0, 𝜑𝑥 [1] = 𝑒 𝑗 ,

where

𝜅 [𝑘] = 𝑀𝑢 [𝑘]𝐹 [𝑘]†𝑀𝑥 [𝑘 + 1]𝐴
𝑍 [𝑘] = 𝑁𝐹 [𝑘]⊤𝑀𝑢 [𝑘]⊤𝑅𝜅 [𝑘], 𝑄 [𝑘] = 𝑄 + 𝜅 [𝑘]⊤𝑅𝜅 [𝑘]
𝑅[𝑘] = (𝑀𝑢 [𝑘]𝑁𝐹 [𝑘])⊤𝑅[𝑘]𝑀𝑢 [𝑘]𝑁𝐹 [𝑘] (2.27)

𝐴[𝑘] = 𝐴 − 𝐵𝜅 [𝑘], 𝐵[𝑘] = 𝐵𝑀𝑢 [𝑘]𝑁𝐹 [𝑘] .

Finally we note that for 𝑘 ≥ 𝑑 +1, the localization patterns are constant, implying that
the dynamics matrices of the transformed problem are static for 𝑘 ≥ 𝑑 + 1. Standard
dynamic programming arguments allow us to first solve the Riccati equation for
the time-invariant problem for 𝑘 ≥ 𝑑 + 1 to get the positive definite solution 𝑋★
and the feedback gain 𝐾★, and then to solve a finite-horizon time-varying problem
by replacing the cost function of each column problem (2.26) with equivalent cost
function

𝐽 =

𝑑∑︁
𝑘=1

(
𝜑𝑥 [𝑘]⊤𝑄 [𝑘]𝜑𝑥 [𝑘] + 2𝑟 [𝑘]⊤𝑍𝜑𝑥 [𝑘] + 𝑟 [𝑘]⊤𝑅[𝑘]𝑟 [𝑘]

)
+ 𝜑𝑥 [𝑑 + 1]⊤𝑋★𝜑𝑥 [𝑑 + 1] . (2.28)

The matrices 𝑋★ and 𝐾★ are defined to be (2.17) and (2.18) for each column
problem, which is the optimal solution to the time-invariant problem with only static
localization SLCs. Finally, the solution to the time-varying finite-horizon problem
(2.26) with cost (2.28) is given by the Riccati iteration with 𝑋 [𝑑 + 1] = 𝑋★, and for
𝑘 = 1, . . . , 𝑑,

𝑋 [𝑘] = 𝑄 [𝑘] + 𝐴[𝑘]⊤𝑋 [𝑘 + 1]𝐴[𝑘] −
(
𝐴[𝑘]⊤𝑋 [𝑘 + 1]𝐵[𝑘] + 𝑍 [𝑘]

)
·
(
𝑅[𝑘] + 𝐵[𝑘]⊤𝑋 [𝑘 + 1]𝐵[𝑘]

)−1 (
𝐵[𝑘]⊤𝑋 [𝑘 + 1]𝐴[𝑘]

)
𝐾 [𝑘] =

(
𝑅[𝑘] + 𝐵[𝑘]𝑋 [𝑘 + 1]𝐵[𝑘]

)−1
·
(
𝐵[𝑘]⊤𝑋 [𝑘 + 1]𝐴[𝑘] + 𝑍 [𝑘]⊤

)
.

(2.29)

Substituting 𝑟 [𝑘] = 𝐾 [𝑘]𝜑𝑥 [𝑘] into (2.25) and further into (2.24), one can obtain
the solution to the original problem (P1). We formally state the optimality of the
proposed solution.
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Theorem 5. The optimal solution to the infinite-horizon state-feedback SLS problem
in (SF-SLS) is given, in a column-wise fashion, by

𝚽★
𝑥𝑤 (:, 𝑖) =

[
𝐴𝑖SF 𝐵𝑖SF
𝐶𝑖SF 0

]
, 𝚽★

𝑢𝑤 (:, 𝑖) =
[
𝐴𝑖SF 𝐵𝑖SF
𝐾 𝑖SF 0

]
, (2.30)

where

𝐴𝑖SF =



0 . . . 0
𝐴CL,𝑖 [1] 0 . . . 0

0 𝐴CL,𝑖 [2] 0 . . . 0

0 0 . . .
...

𝐴CL [𝑑] 𝐴
(𝑖)
CL,★


𝐵𝑖SF =

[
𝑒⊤
𝑖

0 . . . 0
]⊤

𝐶𝑖SF =

[
𝐼 𝐼 . . . 𝐼

]
𝐾 𝑖SF =

[
𝐾𝑖 [1] 𝐾𝑖 [2] . . . 𝐾𝑖 [𝑑] 𝐾

(𝑖)
★

]
, (2.31)

with 𝐾𝑖 [𝑘] and 𝐴CL,𝑖 [𝑘] := 𝐴[𝑘] − 𝐵[𝑘]𝐾 [𝑘] computed using (2.27) and (2.29) for
the 𝑖th column problem. Matrix 𝐾 (𝑖)★ and 𝐴(𝑖)CL,★ :=

(
𝐴( 𝑗) + 𝐵( 𝑗)𝐾 ( 𝑗)★

)
are given by

(2.17) and (2.19c) respectively, where with slight abuse of notation, we overload
𝐾
(𝑖)
★ and 𝐴(𝑖)CL,★ to mean both the original matrix and the matrix with appropriately

padded zeros such that 𝐾 (𝑖)★ ∈ R𝑁𝑢×𝑁𝑥 and 𝐴(𝑖)CL,★ ∈ R
𝑁𝑥×𝑁𝑥 by reversing the reduction

procedure carried out in (2.11).

Proof. The optimality follows directly from the column separable property of
(SF-SLS), and the equivalent transformations between (2.10) and (2.26). The finite-
horizon LQR problem with cost (2.28) is equivalent to (2.26) by Bellman’s optimality
principle. It is straightforward to verify that (2.30) is a state-space realization of the
solution to (2.26) by substituting the optimal solution 𝑟 [𝑘] via (2.29) into (2.25). □

Compared to the solutions with only localization SLCs, the state-space realization
of the optimal CLMs here has a higher order because of the first 𝑑-delay pattern.
Given the column-wise state-space description of the optimal CLMs 𝚽★

𝑥𝑤 (:, 𝑖) and
𝚽★
𝑢𝑤 (:, 𝑖), we can adopt the same state-space agent-level controller described in

Section 2.4 by simply replacing the state-space implementation of the CLMs with
the state space solution (2.30).
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Structured Kalman filter design

Theorem 5 can also be used to solve the dual problem of optimal structured Kalman
filter design with delayed localization SLCs for (2.1) [81]. In particular, the optimal
structured infinite-horizon CLMs that map w and v to state estimation error e under
a linear observer L with respect to the mean estimation error is given by the solution
to the dual problem of (SF-SLS) as shown below:

min
𝚽𝑒𝑤 ,𝚽𝑒𝑣∈ 1

𝑧
RH∞


[
𝑊1/2 0

0 𝑉1/2

] [
𝚽⊤𝑒𝑤
𝚽⊤𝑒𝑣

]
H2

(KF-SLS)

subject to
[
𝚽𝑒𝑤 𝚽𝑒𝑣

] [
𝑧𝐼 − 𝐴
−𝐶

]
= 𝐼 (2.32)

𝚽𝑒𝑤 ∈ S𝑑 , 𝚽𝑒𝑣 ∈ S𝑑 .

Readers are referred to [81] for detailed derivation. We highlight the resemblance
between constraints (2.32) and that of (SF-SLS) as well as (OF-SLS). In what
follows, we will use the optimal solutions from the state-feedback and Kalman-filter
SLS problem to construct a suboptimal solution to the output-feedback SLS problem.

The Output-feedback Solution
It is well known that for a linear system, observer-based feedback is always stabilizing
if the observer error dynamics are stable and the feedback gain stabilizes the state-
feedback case. In [45], the authors pointed out that a similar property holds for
CLMs from state-feedback and Kalman-filter SLS problems described above.

Theorem 6 ([73]). Assume there exist stable and strictly proper transfer matrices
𝚽SF = (𝚽SF

𝑥𝑤,𝚽
SF
𝑢𝑤) and 𝚽KF = (𝚽KF

𝑒𝑤 ,𝚽
KF
𝑒𝑣 ) satisfying[

𝑧𝐼 − 𝐴 −𝐵
] [

𝚽SF
𝑥𝑤

𝚽SF
𝑢𝑤

]
= 𝐼,

[
𝚽KF
𝑒𝑤 𝚽KF

𝑒𝑣

] [
𝑧𝐼 − 𝐴
−𝐶

]
= 𝐼 .

The transfer functions

𝚽𝑥𝑥 = 𝚽SF
𝑥𝑤 +𝚽KF

𝑒𝑤 −𝚽SF
𝑥𝑤 (𝑧𝐼 − 𝐴)𝚽KF

𝑒𝑤

𝚽𝑢𝑥 = 𝚽SF
𝑢𝑤 −𝚽SF

𝑢𝑤 (𝑧𝐼 − 𝐴)𝚽KF
𝑒𝑤

𝚽𝑥𝑦 = 𝚽KF
𝑒𝑣 −𝚽SF

𝑥𝑤 (𝑧𝐼 − 𝐴)𝚽KF
𝑒𝑣

𝚽𝑢𝑦 = −𝚽SF
𝑢𝑤 (𝑧𝐼 − 𝐴)𝚽KF

𝑒𝑣

(2.33)

are strictly proper and satisfy (2.8).
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<latexit sha1_base64="5I+Vorr7LIS6i/HuoI6Dy9LYehY=">AAAB+3icbVDLSsNAFL2pr1pfsS7dDBbBhZREirosuHFZwT6gCWUymbRDJw9mJsUS8ituXCji1h9x5984abPQ1gMDh3Pu5Z45XsKZVJb1bVQ2Nre2d6q7tb39g8Mj87jek3EqCO2SmMdi4GFJOYtoVzHF6SARFIcep31velf4/RkVksXRo5on1A3xOGIBI1hpaWTWnRCriRdkjmLcp9ksz0dmw2paC6B1YpekASU6I/PL8WOShjRShGMph7aVKDfDQjHCaV5zUkkTTKZ4TIeaRjik0s0W2XN0rhUfBbHQL1Joof7eyHAo5Tz09GSRVK56hfifN0xVcOtmLEpSRSOyPBSkHKkYFUUgnwlKFJ9rgolgOisiEywwUbqumi7BXv3yOuldNe3rZuuh1WhflnVU4RTO4AJsuIE23EMHukDgCZ7hFd6M3Hgx3o2P5WjFKHdO4A+Mzx/p8ZT0</latexit>

ṽ

<latexit sha1_base64="4ZyaruQcL9MeHq+DjZaj8T93+9U=">AAAB+HicbVDLSsNAFJ3UV62PRl26GSyCCymJFHVZcOOygn1AE8pkOmmHTiZh5kZoQ7/EjQtF3Pop7vwbJ20W2npg4HDOvdwzJ0gE1+A431ZpY3Nre6e8W9nbPzis2kfHHR2nirI2jUWsegHRTHDJ2sBBsF6iGIkCwbrB5C73u09MaR7LR5gmzI/ISPKQUwJGGthVLyIwDsLMmzEgczywa07dWQCvE7cgNVSgNbC/vGFM04hJoIJo3XedBPyMKOBUsHnFSzVLCJ2QEesbKknEtJ8tgs/xuVGGOIyVeRLwQv29kZFI62kUmMk8pl71cvE/r59CeOtnXCYpMEmXh8JUYIhx3gIecsUoiKkhhCpusmI6JopQMF1VTAnu6pfXSeeq7l7XGw+NWvOyqKOMTtEZukAuukFNdI9aqI0oStEzekVv1sx6sd6tj+VoySp2TtAfWJ8/3eqTKg==</latexit>

⇣

<latexit sha1_base64="BqLhCC4sj7/e4lGm0C+EodxyQUs=">AAAB8nicbVDLSgMxFL1TX7W+qi7dBIvgQsqMFHVZcCO4qWAfMB1KJs20oZlkSDJCGfoZblwo4tavceffmGlnoa0HAodz7iXnnjDhTBvX/XZKa+sbm1vl7crO7t7+QfXwqKNlqghtE8ml6oVYU84EbRtmOO0liuI45LQbTm5zv/tElWZSPJppQoMYjwSLGMHGSn4/xmYcRtn9DA2qNbfuzoFWiVeQGhRoDapf/aEkaUyFIRxr7XtuYoIMK8MIp7NKP9U0wWSCR9S3VOCY6iCbR56hM6sMUSSVfcKgufp7I8Ox1tM4tJN5RL3s5eJ/np+a6CbImEhSQwVZfBSlHBmJ8vvRkClKDJ9agoliNisiY6wwMbalii3BWz55lXQu695VvfHQqDUvijrKcAKncA4eXEMT7qAFbSAg4Rle4c0xzovz7nwsRktOsXMMf+B8/gAOvpEM</latexit>

K

<latexit sha1_base64="DAuyGSLC99ZAQk+dVIXQfI9b+58=">AAAB+XicbVDLSsNAFJ3UV62vqEs3g0VwISWRoi4LblxWsA9oSplMb9qhkwczN4US+iduXCji1j9x5984abPQ1gMDh3Pu5Z45fiKFRsf5tkobm1vbO+Xdyt7+weGRfXzS1nGqOLR4LGPV9ZkGKSJooUAJ3UQBC30JHX9yn/udKSgt4ugJZwn0QzaKRCA4QyMNbNsLGY79IPNwDMjmdGBXnZqzAF0nbkGqpEBzYH95w5inIUTIJdO65zoJ9jOmUHAJ84qXakgYn7AR9AyNWAi6ny2Sz+mFUYY0iJV5EdKF+nsjY6HWs9A3k3lOverl4n9eL8Xgrp+JKEkRIr48FKSSYkzzGuhQKOAoZ4YwroTJSvmYKcbRlFUxJbirX14n7euae1OrP9arjauijjI5I+fkkrjkljTIA2mSFuFkSp7JK3mzMuvFerc+lqMlq9g5JX9gff4AnaOTlg==</latexit>

✓

<latexit sha1_base64="moQ1eAq+Dmt/jk6i++3naazu6pg=">AAAB+nicbVDLSsNAFL3xWesr1aWbwSK4kJJIUZcFNy4r2Ae0oUymk3boZBJmJpYS8yluXCji1i9x5984abPQ1gMDh3Pu5Z45fsyZ0o7zba2tb2xubZd2yrt7+weHduWoraJEEtoiEY9k18eKciZoSzPNaTeWFIc+px1/cpv7nUcqFYvEg57F1AvxSLCAEayNNLAr/RDrsR+k/THW6TTL0MCuOjVnDrRK3IJUoUBzYH/1hxFJQio04VipnuvE2kux1IxwmpX7iaIxJhM8oj1DBQ6p8tJ59AydGWWIgkiaJzSaq783UhwqNQt9M5kHVcteLv7n9RId3HgpE3GiqSCLQ0HCkY5Q3gMaMkmJ5jNDMJHMZEVkjCUm2rRVNiW4y19eJe3LmntVq9/Xq42Loo4SnMApnIML19CAO2hCCwhM4Rle4c16sl6sd+tjMbpmFTvH8AfW5w+tC5Q2</latexit>

ŵ
<latexit sha1_base64="Tnw064XkDCbYOchmEks2X3vfc0I=">AAAB+HicbVDLSsNAFJ3UV62PVl26GSyCCymJFHVZcOOygq2FJpTJ9KYdOnkwcyPU0C9x40IRt36KO//GSZuFth4YOJxzL/fM8RMpNNr2t1VaW9/Y3CpvV3Z29/artYPDro5TxaHDYxmrns80SBFBBwVK6CUKWOhLePAnN7n/8AhKizi6x2kCXshGkQgEZ2ikQa3qhgzHfpC5PiCb0UGtbjfsOegqcQpSJwXag9qXO4x5GkKEXDKt+46doJcxhYJLmFXcVEPC+ISNoG9oxELQXjYPPqOnRhnSIFbmRUjn6u+NjIVaT0PfTOYx9bKXi/95/RSDay8TUZIiRHxxKEglxZjmLdChUMBRTg1hXAmTlfIxU4yj6apiSnCWv7xKuhcN57LRvGvWW+dFHWVyTE7IGXHIFWmRW9ImHcJJSp7JK3mznqwX6936WIyWrGLniPyB9fkDuRKTEg==</latexit>

� <latexit sha1_base64="/9spVMLj0lIhbjIcqE80N3ZmHkE=">AAAB/HicbVDLSsNAFJ3UV62vaJduBovgQkoiRV0W3LisYB/QhjKZ3LRDJw9mJkoI8VfcuFDErR/izr9x0mahrQcGDufcyz1z3JgzqSzr26isrW9sblW3azu7e/sH5uFRT0aJoNClEY/EwCUSOAuhq5jiMIgFkMDl0HdnN4XffwAhWRTeqzQGJyCTkPmMEqWlsVkfBURNXT8bKcY9yB7zHI/NhtW05sCrxC5JA5XojM2vkRfRJIBQUU6kHNpWrJyMCMUoh7w2SiTEhM7IBIaahiQA6WTz8Dk+1YqH/UjoFyo8V39vZCSQMg1cPVlElcteIf7nDRPlXzsZC+NEQUgXh/yEYxXhognsMQFU8VQTQgXTWTGdEkGo0n3VdAn28pdXSe+iaV82W3etRvu8rKOKjtEJOkM2ukJtdIs6qIsoStEzekVvxpPxYrwbH4vRilHu1NEfGJ8/SM6VHw==</latexit>

w̃

<latexit sha1_base64="BqLhCC4sj7/e4lGm0C+EodxyQUs=">AAAB8nicbVDLSgMxFL1TX7W+qi7dBIvgQsqMFHVZcCO4qWAfMB1KJs20oZlkSDJCGfoZblwo4tavceffmGlnoa0HAodz7iXnnjDhTBvX/XZKa+sbm1vl7crO7t7+QfXwqKNlqghtE8ml6oVYU84EbRtmOO0liuI45LQbTm5zv/tElWZSPJppQoMYjwSLGMHGSn4/xmYcRtn9DA2qNbfuzoFWiVeQGhRoDapf/aEkaUyFIRxr7XtuYoIMK8MIp7NKP9U0wWSCR9S3VOCY6iCbR56hM6sMUSSVfcKgufp7I8Ox1tM4tJN5RL3s5eJ/np+a6CbImEhSQwVZfBSlHBmJ8vvRkClKDJ9agoliNisiY6wwMbalii3BWz55lXQu695VvfHQqDUvijrKcAKncA4eXEMT7qAFbSAg4Rle4c0xzovz7nwsRktOsXMMf+B8/gAOvpEM</latexit>

K

<latexit sha1_base64="OTWNjPZAJpaVRQmCCARS6cBZasg=">AAAB+HicbVBNS8NAFHypX7V+tOrRS7AIHqQkUtRjwYvHCrYWmlBetpt26WYTdjdCDf0lXjwo4tWf4s1/46bNQVsHFoaZ93izEyScKe0431ZpbX1jc6u8XdnZ3duv1g4OuypOJaEdEvNY9gJUlDNBO5ppTnuJpBgFnD4Ek5vcf3ikUrFY3OtpQv0IR4KFjKA20qBW9SLU4yDMPOTJGGeDWt1pOHPYq8QtSB0KtAe1L28YkzSiQhOOSvVdJ9F+hlIzwums4qWKJkgmOKJ9QwVGVPnZPPjMPjXK0A5jaZ7Q9lz9vZFhpNQ0CsxkHlMte7n4n9dPdXjtZ0wkqaaCLA6FKbd1bOct2EMmKdF8aggSyUxWm4xRItGmq4opwV3+8irpXjTcy0bzrllvnRd1lOEYTuAMXLiCFtxCGzpAIIVneIU368l6sd6tj8VoySp2juAPrM8fKUaTXA==</latexit>↵

<latexit sha1_base64="WYjCZcZ2Vms1clHWfiqm4W7sJEo=">AAAB+HicbVBNSwMxFMzWr1o/WvXoJVgED1J2pajHghePFWwtdJfyNs22oUl2SbJCXfpLvHhQxKs/xZv/xmy7B20dCAwz7/EmEyacaeO6305pbX1jc6u8XdnZ3duv1g4OuzpOFaEdEvNY9ULQlDNJO4YZTnuJoiBCTh/CyU3uPzxSpVks7800oYGAkWQRI2CsNKhVfQFmHEaZPwIhYDao1d2GOwdeJV5B6qhAe1D78ocxSQWVhnDQuu+5iQkyUIYRTmcVP9U0ATKBEe1bKkFQHWTz4DN8apUhjmJlnzR4rv7eyEBoPRWhncxj6mUvF//z+qmJroOMySQ1VJLFoSjl2MQ4bwEPmaLE8KklQBSzWTEZgwJibFcVW4K3/OVV0r1oeJeN5l2z3jov6iijY3SCzpCHrlAL3aI26iCCUvSMXtGb8+S8OO/Ox2K05BQ7R+gPnM8fJK2TWQ==</latexit>�

<latexit sha1_base64="xH+OTfeSMntp/CpkdG5AjocIBxA=">AAAB8XicbVDLSgMxFL1TX7W+qi7dBIvgQsqMFHVZcOOygn1gW0omvdOGZjJDkhHK0L9w40IRt/6NO//GTDsLbT0QOJxzLzn3+LHg2rjut1NYW9/Y3Cpul3Z29/YPyodHLR0limGTRSJSHZ9qFFxi03AjsBMrpKEvsO1PbjO//YRK80g+mGmM/ZCOJA84o8ZKj72QmrEfpMlsUK64VXcOskq8nFQgR2NQ/uoNI5aEKA0TVOuu58amn1JlOBM4K/USjTFlEzrCrqWShqj76TzxjJxZZUiCSNknDZmrvzdSGmo9DX07mSXUy14m/ud1ExPc9FMu48SgZIuPgkQQE5HsfDLkCpkRU0soU9xmJWxMFWXGllSyJXjLJ6+S1mXVu6rW7muV+kVeRxFO4BTOwYNrqMMdNKAJDCQ8wyu8Odp5cd6dj8Vowcl3juEPnM8f9PqRDA==</latexit>u

<latexit sha1_base64="Oq1P/G/slUdBYEB4h3mUnuXboZ4=">AAAB6nicbVDLSgNBEOz1GeMr6tHLYBA8aNiVoB4jXjxGNA9IljA7mSRDZmeXmV4hLvkELx4U8eoXefNvnCR70MSChqKqm+6uIJbCoOt+O0vLK6tr67mN/ObW9s5uYW+/bqJEM15jkYx0M6CGS6F4DQVK3ow1p2EgeSMY3kz8xiPXRkTqAUcx90PaV6InGEUr3Z89XXcKRbfkTkEWiZeRImSodgpf7W7EkpArZJIa0/LcGP2UahRM8nG+nRgeUzakfd6yVNGQGz+dnjomx1bpkl6kbSkkU/X3REpDY0ZhYDtDigMz703E/7xWgr0rPxUqTpArNlvUSyTBiEz+Jl2hOUM5soQyLeythA2opgxtOnkbgjf/8iKpn5e8i1L5rlysnGZx5OAQjuAEPLiECtxCFWrAoA/P8ApvjnRenHfnY9a65GQzB/AHzucP1vaNcw==</latexit>�zA

<latexit sha1_base64="vownMTIKBl7brjvBLvnJnHgUoC0=">AAAB6nicbVDLSgNBEOz1GeMr6tHLYBA8aNiVoB6DXjxGNA9IljA7mSRDZmeXmV4hLvkELx4U8eoXefNvnCR70MSChqKqm+6uIJbCoOt+O0vLK6tr67mN/ObW9s5uYW+/bqJEM15jkYx0M6CGS6F4DQVK3ow1p2EgeSMY3kz8xiPXRkTqAUcx90PaV6InGEUr3Z89XXcKRbfkTkEWiZeRImSodgpf7W7EkpArZJIa0/LcGP2UahRM8nG+nRgeUzakfd6yVNGQGz+dnjomx1bpkl6kbSkkU/X3REpDY0ZhYDtDigMz703E/7xWgr0rPxUqTpArNlvUSyTBiEz+Jl2hOUM5soQyLeythA2opgxtOnkbgjf/8iKpn5e8i1L5rlysnGZx5OAQjuAEPLiECtxCFWrAoA/P8ApvjnRenHfnY9a65GQzB/AHzucP2HqNdA==</latexit>�zB

<latexit sha1_base64="r6KF4yV4WXDRtWshRE6YsBP3QKE=">AAAB8nicbVBNS8NAEJ3Ur1q/qh69LBbBg5REinosePFYwX5AGspmu2mXbnbD7kaoIT/DiwdFvPprvPlv3LY5aOuDgcd7M8zMCxPOtHHdb6e0tr6xuVXeruzs7u0fVA+POlqmitA2kVyqXog15UzQtmGG016iKI5DTrvh5Hbmdx+p0kyKBzNNaBDjkWARI9hYye9HCpPMy7OnfFCtuXV3DrRKvILUoEBrUP3qDyVJYyoM4Vhr33MTE2RYGUY4zSv9VNMEkwkeUd9SgWOqg2x+co7OrDJEkVS2hEFz9fdEhmOtp3FoO2NsxnrZm4n/eX5qopsgYyJJDRVksShKOTISzf5HQ6YoMXxqCSaK2VsRGWObgrEpVWwI3vLLq6RzWfeu6o37Rq15UcRRhhM4hXPw4BqacActaAMBCc/wCm+OcV6cd+dj0Vpyiplj+APn8wei+JFu</latexit>

1

z
<latexit sha1_base64="vTND6UeDsXOf7CPKG5MLy3WA7ew=">AAAB6XicbVDLSgNBEOyNrxhfUY9eBoPgQcOuBPUY8OIxinlAEsLspDcZMju7zMwKcckfePGgiFf/yJt/4yTZgyYWNBRV3XR3+bHg2rjut5NbWV1b38hvFra2d3b3ivsHDR0limGdRSJSLZ9qFFxi3XAjsBUrpKEvsOmPbqZ+8xGV5pF8MOMYuyEdSB5wRo2V7s+fesWSW3ZnIMvEy0gJMtR6xa9OP2JJiNIwQbVue25suilVhjOBk0In0RhTNqIDbFsqaYi6m84unZATq/RJEClb0pCZ+nsipaHW49C3nSE1Q73oTcX/vHZigutuymWcGJRsvihIBDERmb5N+lwhM2JsCWWK21sJG1JFmbHhFGwI3uLLy6RxUfYuy5W7Sql6lsWRhyM4hlPw4AqqcAs1qAODAJ7hFd6ckfPivDsf89ack80cwh84nz9O5Y0o</latexit>�z

<latexit sha1_base64="S4HoLIGNNSzkN8IP05jAaRSvezo=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgQcKuBPUY8OIxAfOAZAmzk95kzOzsMjMrxJAv8OJBEa9+kjf/xkmyB00saCiquunuChLBtXHdbye3tr6xuZXfLuzs7u0fFA+PmjpOFcMGi0Ws2gHVKLjEhuFGYDtRSKNAYCsY3c781iMqzWN5b8YJ+hEdSB5yRo2V6k+9Ysktu3OQVeJlpAQZar3iV7cfszRCaZigWnc8NzH+hCrDmcBpoZtqTCgb0QF2LJU0Qu1P5odOyZlV+iSMlS1pyFz9PTGhkdbjKLCdETVDvezNxP+8TmrCG3/CZZIalGyxKEwFMTGZfU36XCEzYmwJZYrbWwkbUkWZsdkUbAje8surpHlZ9q7KlXqlVL3I4sjDCZzCOXhwDVW4gxo0gAHCM7zCm/PgvDjvzseiNedkM8fwB87nD+WRjPE=</latexit>z

<latexit sha1_base64="09i0N5pQ1ZeenQ+gejbQQTW1x4U=">AAAB8HicbVBNSwMxEJ31s9avqkcvwSJUsGVXinqseNFbBfsh7VKyabYNTbJLkhVq6a/w4kERr/4cb/4b03YP2vpg4PHeDDPzgpgzbVz321laXlldW89sZDe3tnd2c3v7dR0litAaiXikmgHWlDNJa4YZTpuxolgEnDaCwfXEbzxSpVkk780wpr7APclCRrCx0kOx8HSLiujqpJPLuyV3CrRIvJTkIUW1k/tqdyOSCCoN4VjrlufGxh9hZRjhdJxtJ5rGmAxwj7YslVhQ7Y+mB4/RsVW6KIyULWnQVP09McJC66EIbKfApq/nvYn4n9dKTHjpj5iME0MlmS0KE45MhCbfoy5TlBg+tAQTxeytiPSxwsTYjLI2BG/+5UVSPyt556XyXTlfOU3jyMAhHEEBPLiACtxAFWpAQMAzvMKbo5wX5935mLUuOenMAfyB8/kDSsqOtg==</latexit>�(zI � A)

<latexit sha1_base64="09i0N5pQ1ZeenQ+gejbQQTW1x4U=">AAAB8HicbVBNSwMxEJ31s9avqkcvwSJUsGVXinqseNFbBfsh7VKyabYNTbJLkhVq6a/w4kERr/4cb/4b03YP2vpg4PHeDDPzgpgzbVz321laXlldW89sZDe3tnd2c3v7dR0litAaiXikmgHWlDNJa4YZTpuxolgEnDaCwfXEbzxSpVkk780wpr7APclCRrCx0kOx8HSLiujqpJPLuyV3CrRIvJTkIUW1k/tqdyOSCCoN4VjrlufGxh9hZRjhdJxtJ5rGmAxwj7YslVhQ7Y+mB4/RsVW6KIyULWnQVP09McJC66EIbKfApq/nvYn4n9dKTHjpj5iME0MlmS0KE45MhCbfoy5TlBg+tAQTxeytiPSxwsTYjLI2BG/+5UVSPyt556XyXTlfOU3jyMAhHEEBPLiACtxAFWpAQMAzvMKbo5wX5935mLUuOenMAfyB8/kDSsqOtg==</latexit>�(zI � A)

<latexit sha1_base64="UbGf3VfjcVsevoKIwx6WM3st/uo=">AAACAXicdVDJSgNBEO1xjXGLehG8NAbBgww92UxuAS8eI5gFMsPQ0+lJmvQsdPeIYRgv/ooXD4p49S+8+Td2FkFFHxQ83quiqp4XcyYVQh/G0vLK6tp6biO/ubW9s1vY2+/IKBGEtknEI9HzsKSchbStmOK0FwuKA4/Trje+mPrdGyoki8JrNYmpE+BhyHxGsNKSWzi0A6xGnp/aI6xSuzVimZsmt1nmForILNeQZZUgMlGjXmtYmlSr9TKqQMtEMxTBAi238G4PIpIENFSEYyn7FoqVk2KhGOE0y9uJpDEmYzykfU1DHFDppLMPMniilQH0I6ErVHCmfp9IcSDlJPB05/Re+dubin95/UT5dSdlYZwoGpL5Ij/hUEVwGgccMEGJ4hNNMBFM3wrJCAtMlA4tr0P4+hT+Tzol06qZlatKsXm2iCMHjsAxOAUWOAdNcAlaoA0IuAMP4Ak8G/fGo/FivM5bl4zFzAH4AePtExxcl+0=</latexit>

�̂ux

<latexit sha1_base64="RTQ384P73W0ymPJfONA3HR3ybpA=">AAACAXicdVDJSgNBEO1xjXGLehG8NAbBgwyzhCy3gBePEcwCmWHo6fQkTXoWunskYRgv/ooXD4p49S+8+Td2FkFFHxQ83quiqp6fMCqkYXxoK6tr6xubha3i9s7u3n7p4LAj4pRj0sYxi3nPR4IwGpG2pJKRXsIJCn1Guv74cuZ3bwkXNI5u5DQhboiGEQ0oRlJJXunYCZEc+UHmjJDMnNaI5l42meS5Vyobul2z7YYFDb1q1S27rohlVs2GAU3dmKMMlmh5pXdnEOM0JJHEDAnRN41EuhnikmJG8qKTCpIgPEZD0lc0QiERbjb/IIdnShnAIOaqIgnn6veJDIVCTENfdc7uFb+9mfiX109lUHczGiWpJBFeLApSBmUMZ3HAAeUESzZVBGFO1a0QjxBHWKrQiiqEr0/h/6Rj6WZVr1xXys2LZRwFcAJOwTkwQQ00wRVogTbA4A48gCfwrN1rj9qL9rpoXdGWM0fgB7S3TydSl/Q=</latexit>

�̂xx

<latexit sha1_base64="IJgkJ9Rt67bih02vV/pcFZaG5YE=">AAACAXicdVDLSsNAFJ34rPVVdSO4GSyCCwkTG5q6K7hxWcE+oAllMp20QycPZiZCCXHjr7hxoYhb/8Kdf+OkraCiBy4czrmXe+/xE86kQujDWFpeWV1bL22UN7e2d3Yre/sdGaeC0DaJeSx6PpaUs4i2FVOc9hJBcehz2vUnl4XfvaVCsji6UdOEeiEeRSxgBCstDSqHbojV2A8yd4xV5rbGLB9k6TTPB5UqMi8QchwEkWkjp1araWLZTr3RgJaJZqiCBVqDyrs7jEka0kgRjqXsWyhRXoaFYoTTvOymkiaYTPCI9jWNcEill80+yOGJVoYwiIWuSMGZ+n0iw6GU09DXncW98rdXiH95/VQFDS9jUZIqGpH5oiDlUMWwiAMOmaBE8akmmAimb4VkjAUmSodW1iF8fQr/J51z06qb9rVdbZ4t4iiBI3AMToEFHNAEV6AF2oCAO/AAnsCzcW88Gi/G67x1yVjMHIAfMN4+ASZ3l/Q=</latexit>

�̂uy
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Figure 2.4: Controller implementation of Figure 2.2 after plugging (2.33) in the
output-feedback SLS controller (2.9).

Then, a feasible output-feedback SLS controller satisfying the constraints in (OF-SLS)
can be constructed using (2.33) with CLMs from (SF-SLS) and (KF-SLS) to stabilize
the output-feedback system (2.1) and (2.2) while respecting the prescribed localization
and communication delay constraints.

Local controller implementation

This section describes Algorithm 1, which summarizes the local implementation of
the global controller (2.9) using CLMs in Figure 2.2 using the localized state-feedback
controllers and Kalman filters of Section 2.4.

Globally, the controller after plugging (2.33) in the controller (2.9) is shown in
Figure 2.4. Consider the intermediate signals in Figure 2.4,

𝜻 = −𝚽SF
𝑥𝑤

ṽ︷            ︸︸            ︷
(𝑧𝐼 − 𝐴)𝚽KF

𝑒𝑣 y+

v̂︷︸︸︷
𝚽KF
𝑒𝑣 y

𝜽 = −𝚽SF
𝑢𝑤 (𝑧𝐼 − 𝐴)𝚽KF

𝑒𝑣 y

𝜶 = 𝚽SF
𝑥𝑤

w̃︷                     ︸︸                     ︷
(𝜷 − (𝑧𝐼 − 𝐴)𝚽KF

𝑒𝑤 𝜷) +

ŵ︷︸︸︷
𝚽KF
𝑒𝑤 𝜷,

𝜸 = 𝚽SF
𝑢𝑤 (𝜷 − (𝑧𝐼 − 𝐴)𝚽KF

𝑒𝑤 𝜷).

(2.34)

With these intermediate signals, we can compute the controller internal state 𝜷 and
the control signal u in Figure 2.2 from 𝑧𝜷 = −𝑧(𝐴𝜶 + 𝐵2𝜸) − 𝑧𝜻 , and u = 𝑧𝜸 + 𝜽 .

Locally, due to the communication constraints specified in Section 2.2, one can not
carry out the computation described above in a centralized way. In particular, the
local computation of each signal in (2.34) involves delayed and locally available
information. We now describe the information exchange among subsystems and how
they compute (2.34). Recall that the state-feedback solution 𝚽SF := (𝚽SF

𝑥𝑤 ,𝚽
SF
𝑢𝑤) and

Kalman-filters 𝚽KF := (𝚽KF
𝑒𝑤 ,𝚽

KF
𝑒𝑣 ) synthesized using (2.30) are enforced to respect
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the communication and localization constraints expressed as d-delayed localization
SLCs. Denote

𝚽SF
𝑤 (:, 𝑖) =


𝐴𝑖SF 𝐵𝑖SF

𝐼 0

 . (2.35)

Then 𝚽SF
𝑥𝑤 (:, 𝑖) = 𝐶𝑖SF𝚽

SF
𝑤 (:, 𝑖) and 𝚽SF

𝑢𝑤 (:, 𝑖) = 𝐾 𝑖SF𝚽
SF
𝑤 (:, 𝑖) where 𝐶𝑖SF and 𝐾 𝑖SF

are from (2.31). Computing the local components of 𝜶 and 𝜷 requires only one
realization of 𝚽SF

𝑤 as they can share the same copy of the states within each subsystem.
An analogous statement holds true for 𝜻 and 𝜽 . Denote the two realizations of (2.35)
as 𝚽SF

𝑤,𝛼 and 𝚽SF
𝑤,𝜁

. During each time step 𝑡, every node observes its local output 𝑦𝑖 (𝑡)
and goes through four stages of computation and communication with its neighbors
leading to an update to the internal controller states and the application of the actuator
signal 𝑢𝑖 (𝑡). This is summarized in Algorithm 1 with subroutines 2.1–2.4 describing
these computations in detail.

Algorithm 1: Local computation of controller signals
for Each node 𝑖 = 1, . . . , 𝑁 do

Input: 𝚽SF
𝑤,𝛼 (:, 𝑖), 𝚽SF

𝑤,𝜁
(:, 𝑖), 𝚽KF

𝑒𝑤 (:, 𝑖), 𝚽KF
𝑒𝑣 (:, 𝑖)

Initialize :𝛽𝑖 (0) ← 0, 𝑤𝑖 (𝑡) ← 0, 𝑣𝑖 (𝑡) ← 0
end
for 𝑡 = 0, 1, . . . do

for each node 𝑖 = {1, . . . , 𝑁} do // parallel

1 Observe 𝑦𝑖 (𝑡) Receive 𝛽 𝑗 (𝑡) and 𝑦 𝑗 (𝑡) from 𝑗 ∈ N 𝑑
in(𝑖)

2 subroutine1()
3 Receive 𝑤 𝑗 (𝑡) and �̂� 𝑗 (𝑡) from 𝑗 ∈ N1

in(𝑖)
4 subroutine2()
5 Receive �̂�(N𝑑

out ( 𝑗)) (𝑡 + 1), 𝜁 (N𝑑
out ( 𝑗)) (𝑡 + 1), �̂� (N𝑑

out ( 𝑗)) (𝑡 + 1) and
�̂� (N

𝑑
out ( 𝑗)) (𝑡) from 𝑗 ∈ N 𝑑

in(𝑖)
6 subroutine3()
7 Receive 𝛼 𝑗 (𝑡 + 1) and 𝛾 𝑗 (𝑡 + 1) from 𝑗 ∈ N1

in(𝑖)
8 subroutine4()
9 Apply 𝑢𝑖 (𝑡)

10 end
end

Control signal computation at subsystem 𝑖 begins by receiving the measurements
from neighbors 𝑗 at most 𝑑 steps away (line 1) and computing the 𝑖th element of
the internal signals �̂�(𝑡 + 1) and 𝑤(𝑡 + 1) via Subroutine 2.1, where the function
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y𝑖

y 𝑗1

y 𝑗𝑚

...

...

𝚽KF
𝑒𝑣 (𝑖, :) v̂𝑖y[N𝑑

in (𝑖)]

Figure 2.5: Illustration of subroutine 1. The computation of 𝑤 is similar.

v̂𝑖

v̂ 𝑗1

v̂ 𝑗𝑚

...

...

𝐴(𝑖, :)

−𝑧

+ ṽ𝑖
v̂[N1

in (𝑖)]

𝚽SF
𝑤,𝜁
(:, 𝑖) 𝐶𝑖

𝑆𝐹

out

out

out

...

...

𝝃𝑖 �̂�
(N1

out (𝑖))

�̂�
(N1

out (𝑖))
𝑗1

�̂�
(N1

out (𝑖))
𝑖

�̂�
(N1

out (𝑖))
𝑗𝑚

𝐾 𝑖
𝑆𝐹

�̂�
(N1

out (𝑖))

Figure 2.6: Illustration of subroutine 2.

step(𝐺, 𝑢) means that the internal dynamics of the system 𝐺 is propagated one
time-step with the input 𝑢.

Subroutine 2.1: Compute 𝑤𝑖 (𝑡 + 1) and �̂�𝑖 (𝑡 + 1)
Receive 𝛽 𝑗 (𝑡) and 𝑦 𝑗 (𝑡) from 𝑗 ∈ N 𝑑

in(𝑖)
𝛽[N𝑑

in (𝑖)]
(𝑡) ← vec(𝛽 𝑗1 (𝑡), . . . , 𝛽 𝑗𝑚 (𝑡))

𝑦 [N𝑑
in (𝑖)]
(𝑡) ← vec(𝑦 𝑗1 (𝑡), . . . , 𝑦 𝑗𝑚 (𝑡))

𝑤𝑖 (𝑡 + 1) ← step(𝑧𝚽KF
𝑒𝑤 (𝑖, :), 𝛽[N𝑑

in (𝑖)]
(𝑡))

�̂�𝑖 (𝑡 + 1) ← step(𝑧𝚽KF
𝑒𝑣 (𝑖, :), 𝑦 [N𝑑

in (𝑖)]
(𝑡))

In the second stage, the node receives �̂� 𝑗 (𝑡) and 𝑤 𝑗 (𝑡) from its closest neighbors
(line 3) and computes the outgoing components of (2.34). The computations are
outlined in Subroutine 2.2 and illustrated in Figure 2.6.

In the third stage, which is demonstrated in Figure 2.7, the node receives the
components pertaining to its element of the signals in (2.33) from other nodes a
distance at most 𝑑 steps away with delayed information (line 5) and sums them
to compute the 𝑖th element of each signal in (2.34). This step is described in
Subroutine 2.3.

In the final stage (Subroutine 2.4) the node receives 𝛼 𝑗 (𝑡 + 1) and 𝛾 𝑗 (𝑡 + 1) from its



39

Subroutine 2.2: Compute the outgoing components of (2.34)
𝑤 [N1

in (𝑖)]
(𝑡) ← vec(𝑤 𝑗1 (𝑡), . . . , 𝑤 𝑗𝑚 (𝑡))

�̂� [N1
in (𝑖)]
(𝑡) ← vec(�̂� 𝑗1 (𝑡), . . . , �̂� 𝑗𝑚 (𝑡))

𝑤𝑖 (𝑡) = 𝛽𝑖 (𝑡) + 𝐴𝑤 [N1
in (𝑖)]
(𝑡) − 𝑤𝑖 (𝑡 + 1)

�̃�𝑖 (𝑡) = 𝐴�̂� [N1
in (𝑖)]
(𝑡) − �̂�𝑖 (𝑡 + 1)

𝜆𝑖 (𝑡 + 1) ← step(𝚽SF
𝑤,𝛼 (:, 𝑖), 𝑒𝑖𝑤𝑖 (𝑡))

𝜉𝑖 (𝑡 + 1) ← step(𝚽SF
𝑤,𝜁
(:, 𝑖), 𝑒𝑖 �̃�𝑖 (𝑡))

�̂�(N
𝑑
out ( 𝑗)) (𝑡 + 1) ← 𝐶𝑖

𝑆𝐹
𝜆𝑖 (𝑡 + 1)

𝜁 (N
𝑑
out ( 𝑗)) (𝑡 + 1) ← 𝐶𝑖

𝑆𝐹
𝜉𝑖 (𝑡 + 1)

�̂� (N
𝑑
out ( 𝑗)) (𝑡 + 1) ← 𝐾 𝑖

𝑆𝐹
𝜆𝑖 (𝑡 + 1)

�̂� (N
𝑑
out ( 𝑗)) (𝑡) ← 𝐾 𝑖

𝑆𝐹
𝜉𝑖 (𝑡 + 1)

in

in

in

...

...

+ +

v̂𝑖

𝜻 𝑖

�̂�
(Nout ( 𝑗1))
𝑖

�̂�
(Nout ( 𝑗𝑛))
𝑖

�̂�
(Nout (𝑖))
𝑖

Figure 2.7: Illustration of subroutine 3.

Subroutine 2.3: Compute the local elements of (2.34)

𝛼𝑖 (𝑡 + 1) ← 𝑤𝑖 (𝑡 + 1) +∑
𝑗 �̂�
(N1

out ( 𝑗))
𝑖

(𝑡 + 1)
𝛾𝑖 (𝑡 + 1) ← ∑

𝑗 �̂�
(N1

out ( 𝑗))
𝑖

(𝑡 + 1)
𝜁𝑖 (𝑡 + 1) ← �̂�𝑖 (𝑡 + 1) +∑

𝑗 𝜁
(N1

out ( 𝑗))
𝑖

(𝑡 + 1)
𝜃𝑖 (𝑡) ←

∑
𝑗 �̂�
(N1

out ( 𝑗))
𝑖

(𝑡)
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closest neighbors (line 7) and computes 𝛽𝑖 (𝑡 + 1) and 𝑢𝑖 (𝑡). We conclude that the
node has now received information from nodes at most 2𝑑 + 2 steps away.

Subroutine 2.4: Compute 𝑢𝑖 (𝑡) and 𝛽𝑖 (𝑡 + 1)
𝛼[N1

in (𝑖)]
(𝑡 + 1) ← vec

(
𝛼 𝑗1 (𝑡 + 1), . . . , �̂� 𝑗𝑚 (𝑡 + 1)

)
𝛾[N1

in (𝑖)]
(𝑡 + 1) ← vec

(
𝛾 𝑗1 (𝑡 + 1), . . . , �̂� 𝑗𝑚 (𝑡 + 1)

)
𝛽𝑖 (𝑡 + 1) ← −𝐴(𝑖, :)𝛼[N1

in (𝑖)]
(𝑡 + 1) − 𝐵(𝑖, :)𝛾[N1

in (𝑖)]
(𝑡 + 1) − 𝜁𝑖 (𝑡 + 1)

𝑢𝑖 (𝑡) ← 𝛾𝑖 (𝑡 + 1) + 𝜃𝑖 (𝑡)

We summarize the stability properties of Algorithm 1 in the following theorem:

Theorem 7. Algorithm 1 with 𝚽SF
𝑤 as in (2.35), 𝚽KF

𝑒𝑤 and 𝚽KF
𝑒𝑣 solved from (KF-SLS)

internally stabilizes system (2.1) and (2.2). Moreover if 𝚽SF
𝑤 , 𝚽KF

𝑒𝑤 and 𝚽KF
𝑒𝑣 are

𝑑-localized, the closed loop is at most 2𝑑 + 2-localized.

Proof. By Theorem 6 the closed-loop mappings satisfy (2.8a) and (2.8b). Concate-
nating y𝑖, 𝜷𝑖 and u𝑖 we get precisely the signals in Figure 2.2 which is internally
stable [73], we need to show that the closed-loop is internally stable for perturbations
entering in the intermediate steps outlined in Subroutines 2.1–2.4. Note that a pertur-
bation entering at any of the intermediate signals can be modeled as a disturbance
entering as 𝜹𝑥 , 𝜹𝑦 or 𝜹𝛽 pre-filtered through a stable linear system. Similarly, probing
any of the internal signals can be represented as probing y, u or 𝜷 post-filtered
through a stable system. We conclude Algorithm 1 is internally stable in feedback
with the system (2.1), (2.2). Finally, as 𝑑-localization is closed under addition, and
composition of a 𝑑- and a 𝑘-localized operator is at most 𝑑 + 𝑘-localized, (2.33)
implies that the closed loop is at most 2𝑑 + 2-localized. □

2.5 Simulation
Consider a bi-directional scalar chain network parameterized by 𝛼 and 𝜌:

𝑥𝑖 (𝑡 + 1) = 𝜌(1 − 2𝛼)𝑥𝑖 (𝑡) + 𝜌𝛼
∑︁

𝑗∈{𝑖±1}
𝑥 𝑗 (𝑡) + 𝑢𝑖 (𝑡) + 𝑤𝑖 (𝑡) ,

where 𝛼 is a coupling constant and 𝜌 is the spectral radius of the global state-transition
matrix 𝐴, with 𝜌 ≥ 1 being unstable. We first verify the optimality of the infinite-
horizon state-feedback solution given in Section 2.4. In this simulation, we choose
the number of scalar subsystems to be 15, 𝛼 = 0.6 and 𝜌 = 1. For the quadratic cost
matrices, we let 𝑄 = 𝐼 and 𝑅 = 300 · 𝐼. For SLCs, we let the delayed localization
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Figure 2.8: The infinite-horizon SLS solution achieves the optimal cost.

parameter be 𝑑 = 3. The result is shown in Figure 2.8, where the optimality of our
approach is clear. Due to the high penalty on the control actions, the performance
degradation under FIR approximation can be significant.

Next, we investigate the optimality gap between the suboptimal infinite-horizon
output-feedback solution proposed in this work against the FIR output-feedback
solution computed numerically with a fixed FIR horizon of 20. We let all other
parameters remain the same as before, and change the number of subsystems to
10 in this simulation. First, we study how the 𝑑 delayed localization parameter
influence the optimality gap. This is illustrated in Figure 2.9. As expected, the more
localized the output-feedback problem is, the bigger the optimality gap is between the
constructed solution using separation principle and the direct FIR output-feedback
solution. As the delayed localization pattern becomes more global, the proposed
output-feedback solution becomes more optimal. When the delayed localization
SLCs become non-binding (for 𝑑 ≥ 6), we see that the proposed infinite-horizon
output-feedback solution actually becomes optimal and achieves lower cost than the
FIR solution. This is due to the separation principle of centralized LQG.

Next, we investigate how the optimality gap grows with the number of subsystems
in the network. Here we set 𝐶 = 𝐼 and fix the delayed localization parameter
to be 𝑑 = 3. As can be seen in Figure 2.10, we observe that the optimality gap
grows apparently linearly in the number of subsystems. However, we highlight the
numerical efficiency and stability of our approach despite the suboptimality. When
the number of subsystems exceeds 12 with FIR horizon of 20, the FIR solution solved
in MATLAB using CVX renders NaN due to numerical instability (total of 11520
variables).
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Figure 2.9: The proposed infinite-horizon suboptimal solution to the output-feedback
SLS problem versus the FIR output-feedback solution numerically computed for
(OF-SLS) for varying SLC delayed localization parameter 𝑑.
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Figure 2.10: The proposed suboptimal solution to the output-feedback SLS problem
versus the FIR output-feedback solution numerically computed for (OF-SLS) for
varying number of subsystems in the network.

2.6 Conclusion
In this chapter, we propose and derive the optimal solution to a structuredH2 state-
feedback control problem under localization and communication delay constraints. In
particular, our controller is synthesized directly in infinite-dimensional space, without
the finite-impulse response relaxation common in related work. Our method can
also be used to construct optimal distributed Kalman filters with limited information
exchange. We combine the distributed Kalman filter with state-feedback control
to perform localized LQG control with communication constraints. We provide
agent-level implementation details for the resulting output-feedback state-space
controller. The distributed Riccati solutions presented in this work can be used as
quadratic terminal cost in distributed model predictive control to enable significantly
better performance, as seen in [82].
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C h a p t e r 3

NONLINEAR DISTRIBUTED CONTROL FOR LARGE-SCALE
SYSTEMS WITH CONSTRAINTS

In Chapter 2, we presented the optimal distributed linear controller for linear systems
with quadratic cost under communication constraints. However, it is known that
even the optimal linear controllers can be outperformed by nonlinear controllers
for control design under communication constraints [38]. Moreover, the optimal
linear distributed controllers do not handle safety constraints, such as when states
are constrained to be inside a safe set. Such safety constraints are critical for CPS
such as the power grid.

Therefore, in this chapter, we propose a novel nonlinear distributed control technique
for linear discrete-time systems with input saturation and state constraints that allows
us to simultaneously satisfy performance and safety objectives defined for small- and
large-disturbance regimes respectively. Previous methods for this class of systems
trade off between the two objectives whereas our method allows the controller to
perform well in both regimes by incorporating online information about disturbances
during operation.

[1] J. Yu* and D. Ho*, “Achieving performance and safety in large scale systems
with saturation using a nonlinear system level synthesis approach,” 2020
American Control Conference (ACC), pp. 968–973, 2020. doi: 10.23919/
ACC45564.2020.9147577.

3.1 Introduction
Linear systems with input saturation, where control inputs are limited to a certain
range, and state constraints, which require the system states to remain within
predefined bounds, are an important class of nonlinear models for many practical
applications, such as robotics, power systems, and automotive systems, where
physical limitations on actuators and safety requirements must be strictly adhered to.
Moreover, even without the state constraints, the input saturation alone can result in
large and sometimes diverging oscillations in the closed loop.

There are generally two approaches to handle the challenge. The first approach
is to include these constraints in the overall controller design. Methods following

https://doi.org/10.23919/ACC45564.2020.9147577
https://doi.org/10.23919/ACC45564.2020.9147577
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such principle include robust Model Predictive Control (MPC) [83]–[85] and
constrained System Level Synthesis (SLS) [86]. However, such methods are often
characteristically conservative. In particular, MPC-based methods may suffer from
recursive feasibility issues in addition to challenges in dealing with disturbances.
The second approach attempts to separately design a desired nominal controller
for small signals and a "compensator" that compensates for saturation-induced
performance degradation or even instability. Generally, the design goal is to have the
saturated closed loop stay as close as possible to the small-signal nominal behavior.
Anti-windup Schemes [87], Reference Governor [88], and other Lyapunov invariant
set-based compensators[89] all belong to this approach. Despite vast literature on
the topics, decentralized schemes that accommodate large-scale systems are few.

Contribution. In this chapter, we propose a novel offline distributed nonlinear con-
troller synthesis procedure that outperforms any optimal linear distributed controller
for constrained LQR problem [83]–[86]. In addition, the same controller inherently
prevents windup-instabilities in saturated linear systems which are traditionally
mitigated via additional anti-windup design [88], [90], [91]. Another significant
advantage of the approach, is that despite being a nonlinear synthesis method it
naturally enjoys the same benefits as the linear system level approach introduced in
Chapter 2, which makes it scalable in the large-system setting.

[92] describes the system-level characterization of closed loops of general nonlinear
discrete-time systems and introduces a simple universal control structure, called a
system level controller, that has the capacity to stabilize any nonlinear system if
parametrized with the according closed loop maps. In this chapter, we will show
that just using a very special case of the framework presented in [92] provides
new promising tools for control design. In particular, we will illustrate how a
simple projection nonlinearity can become a powerful tool for solving the problems
described above.

The remainder of the chapter starts with preliminaries and notations in Section 3.2,
followed by a review on nonlinear System Level Synthesis (NLSLS) in Section 3.3.
The proposed nonlinear controller is introduced in Section 3.4, followed by Sec-
tion 3.5 where the constrained distributed LQR problem is discussed. We show
in Section 3.6 that the proposed nonlinear controller can be augmented for natural
anti-windup properties and therefore allow for large-scale distributed anti-windup
design. Numerical simulation in Section 3.7 corroborates the presented theory.
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3.2 Preliminaries
We will define ℓ𝑛 to be the space of sequences of vectors in R𝑛. Sequences
of vectors will be denoted by small bold letters x := (𝑥𝑡)∞𝑡=0 unless otherwise
specified. Occasionally, we will define sequences explicitly with the tuple notation
x = (𝑥0, 𝑥1, . . . ) and 𝑥 𝑗𝑡 denotes the 𝑗 th element of vector 𝑥𝑡 . We use the 𝑥𝑖: 𝑗 to refer
to the truncation of a sequence x to the tuple (𝑥𝑖, 𝑥𝑖+1, . . . , 𝑥 𝑗 ). Furthermore, we
will adopt |𝑥 | and |𝐴| for 𝑥 ∈ R𝑛 and 𝐴 ∈ R𝑛×𝑛 as the vector ∞-norm and induced
∞-norm on R𝑛, respectively. We reserve ∥ · ∥𝑝 to refer to the norm and induced norm
over vector sequence space ℓ𝑝:

∥x∥𝑝 :=

( ∞∑︁
𝑘=0
|𝑥𝑘 |𝑝

) 1
𝑝

∥x∥∞ := sup
𝑘≥0
|𝑥𝑘 |.

Operators
Operators that maps between sequence spaces will be denoted in bold capital letters
T : ℓ𝑛 → ℓ𝑘 . Similar to the sequence of vectors, we write T := {𝑇𝑡}∞𝑡=0 with its
component functions 𝑇𝑡 : ℓ𝑛 → R𝑘 . An operator T will be called causal if for any
pair of input x and its corresponding output y = T(x), the output 𝑦𝑡 does not depend
on future input sequence 𝑥𝑡+𝑘 , 𝑘 ≥ 1. More precisely, a causal operator T is fully
characterized by its component functions 𝑇𝑡 : R𝑛×(𝑡+1) → R𝑘 such that

T(x) = (𝑇0(𝑥0), 𝑇1(𝑥1, 𝑥0), 𝑇2(𝑥2, 𝑥1, 𝑥0), . . . ).

Note that every component function 𝑇𝑡 of a causal operator T has 𝑡 + 1 arguments
which are populated in reverse-chronological order. If in addition , component
functions 𝑇𝑡 satisfy 𝑇𝑡 (𝑥𝑡:0) = 𝑇𝑡 (0, 𝑥𝑡−1:0), then T will be called strictly causal.

We define the space of all causal and strictly causal operators that maps ℓ𝑛 → ℓ𝑝

as C(ℓ𝑛, ℓ𝑝) and C𝑠 (ℓ𝑛, ℓ𝑝), respectively. Moreover, let the space of all linear
causal and strictly causal operators be denoted as LC(ℓ𝑛, ℓ𝑝) ⊂ C(ℓ𝑛, ℓ𝑝) and
LC𝑠 (ℓ𝑛, ℓ𝑝) ⊂ C𝑠 (ℓ𝑛, ℓ𝑝). Occasionally, for two operators with matching domains
such as A ∈ C(ℓ𝑛, ℓ𝑝) and B ∈ C(ℓ𝑛, ℓ𝑞), we denote the composite operator
(A,B) ∈ C(ℓ𝑛, ℓ𝑝 × ℓ𝑞) as (A,B) : x ↦→ (A(x),B(x)).

ℓ𝑝 Stability
Let the vector sequence space ℓ𝑛𝑝 ⊂ ℓ𝑛 be defined as

ℓ𝑛𝑝 := {x ∈ ℓ𝑛 | ∥x∥𝑝 < ∞}.

We define stability for causal operators as follows:
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Definition 3.2.1 (ℓ𝑝 Stability). An operator T ∈ C(ℓ𝑛, ℓ𝑚) is said to be ℓ𝑝-stable, if

T(x) ∈ ℓ𝑚𝑝 for all x ∈ ℓ𝑛𝑝 .

Further, if there exist two scalars 𝛾, 𝛽 ≥ 0 such that for all x ∈ ℓ𝑛𝑝, we have

∥T(x)∥𝑝 ≤ 𝛾∥x∥𝑝 + 𝛽,

then T is finite gain ℓ𝑝-stable.

3.3 An Overview of the Nonlinear System Level Approach
This section will focus on introducing the notion of closed loop maps as causal
operators with respect to a general nonlinear causal system. Moreover, we summarize
necessary and sufficient conditions for operators to be closed loop maps and how
they can be realized by a dynamic controller.

Closed Loop Maps of Nonlinear Systems
Consider a discrete-time nonlinear system with additive disturbances

𝑥𝑡 = 𝑓 (𝑥𝑡−1, 𝑢𝑡−1) + 𝑤𝑡 , (3.1)

where 𝑥𝑡 ∈ R𝑛, 𝑢𝑡 ∈ R𝑚, 𝑤𝑡 ∈ R𝑛 and 𝑓 : R𝑛 × R𝑚 → R𝑛 with 𝑓 (0, 0) = 0 and
𝑥0 = 𝑤0. Let F(x, u) : ℓ𝑛 × ℓ𝑚 → ℓ𝑛 be the strictly causal operator representation
of the function 𝑓 such that F(x, u) := (0, 𝑓 (𝑥0, 𝑢0), 𝑓 (𝑥1, 𝑢1), . . . ). Assume that 𝑤𝑡
can not be measured and that 𝑢𝑡 is generated by some causal controller K ∈ C(ℓ𝑛, ℓ𝑚)
such that 𝑢𝑡 = 𝐾𝑡 (𝑥𝑡:0). An equivalent operator form of the dynamics (3.1) is

x = F(x, u) + w (3.2a)

u = K(x). (3.2b)

For a fixed disturbance sequence w, the dynamics (3.1) produces unique closed
loop trajectories for state x and input u. Therefore, given a fixed K, the dynamics
induce a causal map from w to (x, u) and we will call the corresponding operators
disturbance-to-state and disturbance-to-input closed loop map, respectively.

Definition 3.3.1 (Closed Loop Maps). Define 𝚽[F,K] ∈ C(ℓ𝑛, ℓ𝑛 × ℓ𝑚) as the
operator that maps w to the corresponding response (x, u) according to the closed-
loop dynamics (3.2). We call 𝚽[F,K] the closed loop maps (CLMs) of (3.2).
Moreover we will refer to the partial maps w→ x and w→ u with 𝚽x [F,K] and
𝚽u [F,K], respectively.
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Without specifying a controller K, one could alternatively consider the realizable
CLMs of (3.2a) for some causal controller K′. We call a composite operator
𝚿 = (𝚿x,𝚿u) ∈ C(ℓ𝑛, ℓ𝑛 × ℓ𝑚) that maps w ↦→ (𝚿x(w),𝚿u(w)) realizable CLMs
for open-loop dynamic (3.2a) if there exists a so-called realizing controller K′ such
that 𝚿 = 𝚽[F,K′]. With this notion of realizable CLMs of an open-loop dynamics,
we define the space of all realizable CLMs:

Definition 3.3.2 (Space of Realizable CLMs). Given an open-loop dynamics (3.2a),
the set of all feasible closed loop maps 𝚽[F] ∈ C(ℓ𝑛, ℓ𝑛 × ℓ𝑚) for open loop (3.2a)
is defined as

𝚽[F] := {𝚿 : ∃K ∈ C(ℓ𝑛, ℓ𝑚) such that 𝚿 = 𝚽[F,K]}.

The following theorem characterizes the space of realizable CLMs for a given open
loop:

Theorem 8 (Characterization of CLMs [92]). A composite operator 𝚿 = (𝚿x,𝚿u) ∈
C(ℓ𝑛, ℓ𝑛 × ℓ𝑚) are realizable CLMs of the open loop (3.2a) if and only if they satisfy
the operator equation

𝚿x = F(𝚿) + I. (3.3)

Moreover, for any operators 𝚿 satisfying (3.3), the inverse (𝚿x)−1 exists, is a causal
operator, and K = 𝚿u(𝚿x)−1 is a realizing controller for CLMs 𝚿. If 𝚿u is
surjective, then K is unique.

System Level Implementations
Aside from the technical assumption on the codomain of 𝚿u, Theorem 8 states
that there is a one-to-one relation between CLMs (𝚿x,𝚿u) and their realizing
controllers K = 𝚿u(𝚿x)−1. Nevertheless, different implementations of K need to be
distinguished: despite realizing the same CLMs with respect to the trajectory (w, x, u),
they do not give the same closed loop behavior once we add additional perturbations
to the system. We will denote the following realization of K = 𝚿u(𝚿x)−1 as the
System Level (SL)-implementation of K:

Definition 3.3.3 (SL Implementation). Given a composite operator 𝚿 = (𝚿x,𝚿u) ∈
C(ℓ𝑛, ℓ𝑛 × ℓ𝑚) satisfying (3.3), the realizing controller K = 𝚿u(𝚿x)−1 can be
implemented as follows

𝑢𝑡 = Ψ𝑢
𝑡 (𝑤𝑡:0) (3.4a)
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𝑤𝑡+1 = 𝑥𝑡+1 − Ψ𝑥
𝑡+1(0, 𝑤𝑡:0) (3.4b)

for 𝑡 = 0, 1, . . . , where 𝑤 denotes the internal state of the controller with initial
condition 𝑤0 = 𝑥0. We will write K = SL(𝚿x,𝚿u) to underscore that the controller
K = 𝚿u(𝚿x)−1 is implemented in this fashion.

Now consider the closed loop of (3.1) and controller K = SL(𝚿x,𝚿u) perturbed by
additional noise v and input disturbance d such that

𝑥𝑡 = 𝑓 (𝑥𝑡−1, 𝑢𝑡−1) + 𝑤𝑡 (3.5a)

𝑢𝑡 = Ψ𝑢
𝑡 (𝑤𝑡:0) + 𝑑𝑡 (3.5b)

𝑤𝑡 = 𝑥𝑡 − Ψ𝑥
𝑡 (0, 𝑤𝑡−1:1) + 𝑣𝑡 . (3.5c)

The following result characterizes the closed-loop stability under the realizing
controller.

Theorem 9 (Internal Stability of Closed Loop [92]). If 𝑓 is uniformly continuous
and the operator (𝚿x,𝚿u) is ℓ𝑛+𝑚𝑝 -stable (or ℓ𝑛+𝑚𝑝 finite gain-stable) CLMs of (3.1) ,
then the closed loop dynamics (3.5) are ℓ𝑛+𝑚𝑝 -stable (or finite gain ℓ𝑛+𝑚𝑝 -stable) with
respect to the perturbation (w, d, v).

Relation to Linear System Level Approach
If we restrict the previous analysis to linear time-invariant (LTI) systems and
controllers, we recover the results of [73] for the state-feedback case. If the open-
loop dynamics now is 𝑥𝑡 = 𝐴𝑥𝑡−1 + 𝐵𝑢𝑡−1 + 𝑤𝑡 and K is an LTI operator, then the
corresponding linear CLMs are LTI as well. In this case, we recover the CLMs
introduced in Section 2.3, where the component functions of the CLMs can be
written as

Ψ𝑥
𝑡 (𝑤𝑡:0) =

𝑡+1∑︁
𝑘=1

𝑅𝑘𝑤𝑡+1−𝑘 (3.6a)

Ψ𝑢
𝑡 (𝑤𝑡:0) =

𝑡+1∑︁
𝑘=1

𝑀𝑘𝑤𝑡+1−𝑘 , (3.6b)

where 𝑅𝑘 ∈ R𝑛×𝑛 are the kernels of the state-feedback linear Sytem Level Synthesis
(SLS) CLM from w to x, i.e., 𝚽𝑥𝑤, and 𝑀𝑘 ∈ R𝑚×𝑛 are the kernels of 𝚽𝑢𝑤 1 (c.f.
Section 2.3). Moreover, the corresponding CLMs characterization condition (3.3)

1In this chapter, we adopted the convention of causal relationship between x and u in (3.1), where
𝑥𝑡 is influenced by 𝑤𝑡 , in order to simplify arguments regarding operators. This causes a one-step time



49

reduces to the affine constraint on the matrices 𝑅𝑘 , 𝑀𝑘 which coincides with the
linear SLS feasibility conditions (2.6). In particular, if we further restrict 𝚿 to have
Finite Impulse Response (FIR) with horizon 𝑇 , i.e., component functions Ψ𝑥

𝑡 and Ψ𝑢
𝑡

only depend on the past min{𝑇, 𝑡 + 1} inputs, then (3.6) becomes

Ψ𝑥
𝑡 (𝑤𝑡:0) =

min{𝑡+1,𝑇}∑︁
𝑘=1

𝑅𝑘𝑤𝑡+1−𝑘 (3.7a)

Ψ𝑢
𝑡 (𝑤𝑡:0) =

min{𝑡+1,𝑇}∑︁
𝑘=1

𝑀𝑘𝑤𝑡+1−𝑘 . (3.7b)

The CLMs characterization (3.3) in the FIR LTI case reduces to the following
conditions on the kernel matrices 𝑅𝑘 , 𝑀𝑘 for 𝑘 = 1, . . . , 𝑇 − 1:

𝑅1 = 𝐼 (3.8a)

𝑅𝑘+1 = 𝐴𝑅𝑘 + 𝐵𝑀𝑘 (3.8b)

𝐴𝑅𝑇 + 𝐵𝑀𝑇 = 0 . (3.8c)

Further, K = SL(𝚿x,𝚿u) results in the implementation below, which also coincides
with the linear SLS controller (2.7):

𝑢𝑡 =

min{𝑡+1,𝑇}∑︁
𝑘=1

𝑀𝑘𝑤𝑡+1−𝑘

𝑤𝑡+1 = 𝑥𝑡+1 −
min{𝑡+2,𝑇}∑︁

𝑘=2
𝑅𝑘𝑤𝑡+2−𝑘 ,

for all 𝑘 = 0, 1, . . . with 𝑤0 = 𝑥0.

3.4 Nonlinear Blending of Linear System Level Controllers
As introduced in the previous section, system level controllers defined in Defini-
tion 3.3.3 can implement arbitrary CLMs for nonlinear systems of the form (3.1). The
results in [92] motivate a new approach for nonlinear control synthesis: Searching for
stable operators 𝚿x, 𝚿u that satisfy (3.3) and constructing a corresponding system
level controller SL(𝚿x,𝚿u) by Definition 3.3.3.

It is conceivable that the generality of this approach could lead to an entirely new
direction of nonlinear dynamic control methods. Serving as a first step towards
index shift from the classic convention where 𝑥𝑡 is influenced by 𝑤𝑡−1, which is used in Chapter 2.
Therefore, the NLSLS CLMs are defined to be causal, while the linear SLS CLMs are strictly causal.
However, different indexing conventions do not affect the equivalence between the two since one can
simply re-label the indices of the disturbances and the kernel matrices in one convention without loss
of generality to match the other convention.
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exploring the potential of this new perspective, the remainder of this chapter focuses
on a subset of nonlinear system level controllers SL(𝚿x,𝚿u) that proves particularly
useful for controlling large-scale linear systems subject to state/input constraints and
input saturation.

In particular we will restrict ourselves to the class of controllers SL(𝚿x,𝚿u) where
𝚿x and 𝚿u are structured as

Ψ𝑥
𝑡 (·) =

𝑁∑︁
𝑖=1

min{𝑇,𝑡+1}∑︁
𝑘=1

𝑅
(𝑖)
𝑘
(P𝜂𝑖 − P𝜂𝑖−1) (𝑤𝑡+1−𝑘 )

Ψ𝑢
𝑡 (·) =

𝑁∑︁
𝑖=1

min{𝑇,𝑡+1}∑︁
𝑘=1

𝑀
(𝑖)
𝑘
(P𝜂𝑖 − P𝜂𝑖−1) (𝑤𝑡+1−𝑘 ). (3.9)

We choose 𝜂𝑁 ≥ 𝜂𝑁−1 ≥ · · · ≥ 𝜂0 = 0 and the operator P𝜂𝑖 (·) : R𝑛 → R𝑛 as
any nonlinear function with a projection-like property defined for parameter 𝜂𝑖.
𝑅
(𝑖)
𝑘
∈ R𝑛×𝑛, 𝑀 (𝑖)

𝑘
∈ R𝑚×𝑛 are the kernel matrices associated with linear FIR CLMs

𝚿x,i,𝚿u,i, 𝑖 ∈ [𝑁] with FIR horizon 𝑇 for a linear system of interests:

𝑥𝑡 = 𝐴𝑥𝑡−1 + 𝐵𝑢𝑡−1 + 𝑤𝑡 , (3.10)

with 𝑥𝑡 ∈ R𝑛,𝑤𝑡 ∈ R𝑛, 𝑢 ∈ R𝑚 such that for each 𝑖 ∈ { 𝑁 }, 𝚿x,i,𝚿u,i satisfies (3.8).
Concretely, we consider two specific nonlinear projections:

Definition 3.4.1 (Saturation Projection). Let vector 𝑤 = [𝑤1, . . . , 𝑤𝑛]⊤ ∈ R𝑛. The
saturation projection is an element-wise projection:

P𝜂 (𝑤) :=


sat(𝑤1, 𝜂)

...

sat(𝑤𝑛, 𝜂)

 (3.11)

where sat(𝑤, 𝜂) = sign(𝑤)max{|𝑤 |, 𝜂}.

Definition 3.4.2 (Radial Projection). The radial projection is defined as

P𝜂 (𝑤) :=
sat( |𝑤 |/𝜂, 1)
|𝑤 |/𝜂 𝑤 (3.12)

Unless otherwise specified, the results derived in the rest of the chapter hold for both
projections.

Remark 1. For 𝑛 = 1, radial projection and saturation projection coincide with each
other. The radial and saturation projection operator act as the identity whenever
|𝑤 | ≤ 𝜂. Otherwise, the radial projection re-scales 𝑤 such that |P𝜂 (𝑤) | = 𝜂 whereas
the saturation projection performs element-wise radial projection.
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The proposed nonlinear controller SL(𝚿x,𝚿u) can be thought of as a nonlinear
blend of the linear FIR controllers SL(𝚿x,i,𝚿u,i), 𝑖 ∈ [𝑁]. Although the nonlinear
operator 𝚿x, 𝚿u differs from its linear components 𝚿x,i, 𝚿u,i only by the static
nonlinear function P𝜂𝑖 (𝑤), the upcoming sections will demonstrate that this simple
additional nonlinearity proves surprisingly useful. In particular, 𝜂𝑖’s separate any
disturbance 𝑤𝑡 into 𝑁 zones such that for each 𝑖th linear controller SL(𝚿x,i,𝚿u,i),
only the portion of 𝑤𝑡 that "falls" between 𝜂𝑖 and 𝜂𝑖−1 is acted upon. Intuitively,
one could choose different behaviors for various portions of the disturbance signal,
specifying either performance or safety properties. The explicit expression of the
dynamic controller SL(𝚿x,𝚿u) with CLMs defined in (3.9) is

𝑢𝑡 =

𝑁∑︁
𝑖=1

min{𝑇,𝑡+1}∑︁
𝑘=1

𝑀
(𝑖)
𝑘
(P𝜂𝑖 − P𝜂𝑖−1) (𝑤𝑡+1−𝑘 )

𝑤𝑡+1 = 𝑥𝑡+1 −
𝑁∑︁
𝑖=1

min{𝑇,𝑡+2}∑︁
𝑘=2

𝑅
(𝑖)
𝑘
(P𝜂𝑖 − P𝜂𝑖−1) (𝑤𝑡+2−𝑘 ),

with 𝑘 = 0, 1, . . . , and 𝑤0 = 𝑥0.

For ease of exposition, we focus on the two-zone case of the proposed controller
SL(𝚿x,𝚿u) though all the analysis extends naturally to the 𝑁-zone case. Thus, (3.9)
simplifies to

Ψ𝑥
𝑡 (𝑤𝑡:0) =

min{𝑇,𝑡+1}∑︁
𝑘=1

𝑅
(1)
𝑘

P𝜂1 (𝑤𝑡+1−𝑘 )+

𝑅
(2)
𝑘
(P𝜂2 (𝑤𝑡+1−𝑘 ) − P𝜂1 (𝑤𝑡+1−𝑘 ))

Ψ𝑢
𝑡 (𝑤𝑡:0) =

min{𝑇,𝑡+1}∑︁
𝑘=1

𝑀
(1)
𝑘

P𝜂1 (𝑤𝑡+1−𝑘 )+

𝑀
(2)
𝑘
(P𝜂2 (𝑤𝑡+1−𝑘 ) − P𝜂1 (𝑤𝑡+1−𝑘 )). (3.13)

Note that system level controller SL(𝚿x,𝚿u) of the two-zone CLM is internally
stabilizing and achieves the two-zone CLM behavior for (3.10) as long as ∥w∥∞ ≤ 𝜂2.

In the remainder of this chapter we will explore the consequence of this blending
technique for distributed control design with respect to input saturation and state
constraints in linear systems. we show that the simple nonlinearity in (3.13) offers
a variety of advantages over linear controllers, including the ones presented in
Chapter 2.
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3.5 A General Framework for Constrained LQR
We present a novel synthesis procedure for a class of constrained LQR problems using
the proposed SL controller with CLMs (3.13). In particular, we will show that the
synthesized nonlinear blending system level controller is guaranteed to outperform
any linear controller for the class of constrained LQR problems to be discussed.
Additionally, we comment on how structural constraints for large-scale systems such
as delay, actuation sparsity, and localization can be easily accommodated.

Consider a control problem where we wish to minimize an average LQR cost,
but also want that the closed loop meets certain safety guarantees against a set of
rare yet possible worst-case disturbances. Ideally, we would like to synthesize a
controller that can guarantee the necessary safety constraints without too much loss
in performance compared to the unconstrained LQR controller. We will phrase this
design goal as the following constrained LQR problem:

min
K

lim
𝑇→∞

1
𝑇

𝑇∑︁
𝑡=1
E𝑤𝑖

𝑡∼𝑝(𝑤) [J (𝑥𝑡 , 𝑢𝑡)] (3.14a)

𝑠.𝑡. 𝑥𝑡 = 𝐴𝑥𝑡−1 + 𝐵𝑢𝑡−1 + 𝑤𝑡 (3.14b)

𝑢𝑡 = 𝐾𝑡 (𝑥𝑡:0) (3.14c)

∀w : | |w| |∞ ≤ 𝜂𝑚𝑎𝑥 : (3.14d)

sup
𝑘

|𝑥𝑘 | ≤ 𝑥𝑚𝑎𝑥 sup
𝑘

|𝑢𝑘 | ≤ 𝑢𝑚𝑎𝑥 ,

where J abbreviates the quadratic stage cost J (𝑥, 𝑢) = 𝑥⊤𝑄𝑥 + 𝑢𝑃𝑢 with 𝑄,𝑃 ≻ 0.
We will assume that the disturbance is stochastic but bounded such that ∥w∥∞ ≤ 𝜂𝑚𝑎𝑥
with known distribution which satisfies the following

Assumption 2. Disturbance 𝑤𝑖𝑡 are i.i.d. drawn from the scalar centered distribution
𝑝(𝑤) and uncorrelated in time 𝑡 and coordinate 𝑖.

We can equivalently phrase the optimal control problem (3.14) in terms of closed-loop
mappings as defined in Section 3.3. Recalling Definition 3.3.1, the optimal control
problem (3.14) can be described as an optimization over the set of feasible CLMs
(𝚿x,𝚿u) ∈ 𝚽(Ax + Bu) and by using the characterization in Theorem 8:

min
𝚿x,𝚿u

lim
𝑇→∞

1
𝑇

𝑇∑︁
𝑡=1
E[J (Ψ𝑥

𝑡 (𝑤𝑡:0),Ψ𝑢
𝑡 (𝑤𝑡:0))] (3.15a)

𝑠.𝑡. Ψ𝑥
𝑡 (𝑤𝑡:0) = Ψ𝑥

𝑡 (0, 𝑤𝑡−1:0) + 𝑤𝑡 (3.15b)
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Ψ𝑥
𝑡+1(0, 𝑤𝑡:0) = 𝐴Ψ

𝑥
𝑡 (𝑤𝑡:0) + 𝐵Ψ𝑢

𝑡 (𝑤𝑡:0)
∀𝑡, |𝑤𝑡 | ≤ 𝜂𝑚𝑎𝑥 : |Ψ𝑥

𝑡 (𝑤𝑡:0) | ≤ 𝑥𝑚𝑎𝑥 (3.15c)

∀𝑡, |𝑤𝑡 | ≤ 𝜂𝑚𝑎𝑥 : |Ψ𝑢
𝑡 (𝑤𝑡:0) | ≤ 𝑢𝑚𝑎𝑥 . (3.15d)

As in the linear SLS case [73], we do not need to have the controller K be a decision
variable, since we can always realize the optimal solution (𝚿x,★,𝚿u,★) to (3.15) with
a system level controller SL(𝚿x,★,𝚿u,★).

Conservativeness of Linear Solutions
We will first discuss properties of solutions to our original problem (3.14), if we
restrict ourselves to only LTI controllers K. Consider the equivalent problem
formulation (3.15) with the CLMs (𝚿x,𝚿u) restricted to be linear. This poses a
convex problem and as shown in [86], it can be approximately solved by searching
over FIR CLMs (𝚿x,𝚿u). Yet, the corresponding linear CLMs {𝚿x,lin,★,𝚿u,lin,★}
come with undesirable restrictions:

• {𝚿x,lin,★,𝚿u,lin,★} impose stricter safety constraints than the required con-
straints (3.15c) and (3.15d).

• {𝚿x,lin,★,𝚿u,lin,★} do not depend on the disturbance distribution 𝑝(𝑤).

To see the first point, we have the following result as a consequence of linearity:

Lemma 2. For any linear {𝚿x,lin, 𝚿u,lin}, the constraint (3.15c),(3.15d) is equivalent
to

sup
𝑡

|Ψ𝑥,𝑙𝑖𝑛
𝑡 (𝑤𝑡:0) | ≤ sup

𝑡

𝑥𝑚𝑎𝑥

𝜂𝑚𝑎𝑥
|𝑤𝑡 | (3.16a)

sup
𝑡

|Ψ𝑢,𝑙𝑖𝑛
𝑡 (𝑤𝑡:0) | ≤ sup

𝑡

𝑢𝑚𝑎𝑥

𝜂𝑚𝑎𝑥
|𝑤𝑡 |. (3.16b)

Proof. Clearly, (3.16) implies (3.15c),(3.15d). The reverse implication follows by
the assumed linearity of {𝚿x,lin,𝚿u,lin} and homogeneity of norms. □

Lemma 2 shows that the restriction of linearity in CLMs imposes stricter safety
conditions (3.16) than (3.15c),(3.15d). To elaborate on the second point, notice
that for linear CLMs 𝚿x,lin,𝚿u,lin our objective function (3.15a) can be expressed
equivalently as

(3.15a) = 𝜎2

 𝑄1/2𝚿x

𝑃1/2𝚿u

2

H2

, 𝜎2 := E𝑤∼𝑝(𝑤) [𝑤2] (3.17)



54

where 𝜎2 denotes the variance of the scalar distribution 𝑝(𝑤) and ∥.∥H2 denotes
theH2 norm for linear operators. Since the objective function only gets scaled by a
constant factor 𝜎2 for different distributions 𝑝(𝑤), this shows that for linear CLMs,
the solutions {𝚿x,lin,𝚿u,lin} to (3.15) are independent of the distribution 𝑝(𝑤).

A NLSLS Take
Consider the general problem (3.15), where now we search over CLMs (𝚿x,𝚿u) of
the form presented in (3.13) with the choice of 𝜂2 = 𝜂𝑚𝑎𝑥 , some 𝜂1 < 𝜂2, and an FIR
horizon 𝑇 . Recall that (𝚿x,𝚿u) is a blending of two linear CLMs and has the form
(3.13). Restricting ourselves to this form of CLMs allows us to derive the following
convex problem which is a relaxation of the general problem (3.15):

min
𝑅 (𝑖) ,𝑀 (𝑖)


[
𝑄 0
0 𝑃

]1/2 [
𝑅(1) 𝑅(2)

𝑀 (1) 𝑀 (2)

]
Σ

1/2
𝑤


2

𝐹

(3.18a)

𝑠.𝑡. 𝜂1 |𝑅(1) | + (𝜂2 − 𝜂1) |𝑅(2) | ≤ 𝑥𝑚𝑎𝑥 (3.18b)

𝜂1 |𝑀 (1) | + (𝜂2 − 𝜂1) |𝑀 (2) | ≤ 𝑢𝑚𝑎𝑥 (3.18c)

𝑅
(𝑖)
𝑘+1 = 𝐴𝑅

(𝑖)
𝑘
+ 𝐵𝑀 (𝑖)

𝑘
(3.18d)

𝑅
(𝑖)
1 = 𝐼, 𝑅

(𝑖)
𝑇

= 0 ,

where

Σ𝑤 =

[
𝛼1𝐼 𝛼2𝐼

𝛼2𝐼 𝛼3𝐼

]
with 𝛼1 = E[P𝜂1 (𝑤)2], 𝛼2 = E[P𝜂1 (𝑤) (P𝜂2 (𝑤) − P𝜂1 (𝑤))], and 𝛼3 = E[(P𝜂2 (𝑤) −
P𝜂1 (𝑤))2], where𝑤 ∼ 𝑝(𝑤) and ∥w∥∞ ≤ 𝜂𝑚𝑎𝑥 . Moreover 𝑅(𝑖) and𝑀 (𝑖) are abbrevia-
tions for the horizontal concatenation of the kernel matrices associated with the linear
CLMs 𝚿x,i, 𝚿u,i, i.e, 𝑅(𝑖) = [𝑅(𝑖)

𝑇
, 𝑅
(𝑖)
𝑇−1, . . . , 𝑅

(𝑖)
1 ], 𝑀

(𝑖) = [𝑀 (𝑖)
𝑇
, 𝑀
(𝑖)
𝑇−1, . . . , 𝑀

(𝑖)
1 ].

Hereby, only constraints (3.18b), (3.18c) are sufficient condition of the constraint
(3.15c), (3.15d) via norm multiplicativity. All other equations in the above opti-
mization are equivalent to the original problem (3.15) restricting the search over
CLMs of the form (3.13). Finally, solving the convex problem (3.18) gives the
suboptimal nonlinear CLMs {𝚿★x,𝚿★u} for the system dynamics (3.14b), which can
be realized with the internally stabilizing system level controller SL(𝚿★x,𝚿★u). The
next theorem states a main result of this chapter:
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Theorem 10. For all 𝜂1 ∈ [0, 𝜂2], the nonlinear system level controller SL(𝚿★x,𝚿★u)
synthesized from (3.18) achieves lower optimal LQR cost for (3.14) than any linear
solutions.

Proof. First, recall that restricting K to be linear in problem (3.14) is equivalent to
restricting 𝚿x and 𝚿u to be linear in the equivalent formulation (3.15). Furthermore,
notice that under the restriction of linear (𝚿x,𝚿u), problem (3.15) is equivalent to
(3.18) with the added constraint 𝑅(1) = 𝑅(2) , 𝑀 (1) = 𝑀 (2) , which shows that any
solution (𝚿★x,𝚿★u) of problem (3.18) achieve smaller cost than a linear solution
(𝚿x,lin,★,𝚿u,lin,★) of (3.15). □

The above argument also extends directly to the N-blend case.

Distributed Controller for Constrained LQR
Thanks to the particular form of (3.9), when the projection is chosen to be the
saturation projection Definition 3.4.1, structural constraints of controller such as
sparsity and delay constraints can be added in a convex way to the synthesis
procedure described in Section 3.5. This is because imposing structural constraints
on the nonlinear controller (3.9) is equivalent to imposing them on the linear CLM
components of (3.9). As discussed in Chapter 2, localization of disturbances, as well
as communication and actuation delays are all convex constraints in terms of linear
CLMs in the linear SLS framework. Specifically, all mentioned constraints could be
cast as a convex system level constraints (SLCs) for linear CLMs 𝚿x,i,𝚿u,i, 𝑖 ∈ [𝑁].
The corresponding system level controller SL(𝚿u,𝚿x) can then be implemented in
a localized fashion conforming to the SLCs on 𝚿x,i,𝚿u,i. Therefore, the nonlinear
controller synthesis in Section 3.5 naturally inherits all capabilities of the linear system
level controllers in terms of distributed controller synthesis and implementation.

3.6 Distributed Anti-windup Controller for Saturated Systems
Now consider a linear input saturated system where the disturbances and initial
condition are not necessarily constrained to have a known norm bound 𝜂𝑚𝑎𝑥 . The
control actions are projected via saturation projector:

𝑥𝑡 = 𝐴𝑥𝑡−1 + 𝐵P𝑢𝑚𝑎𝑥
(𝑢𝑡−1) + 𝑤𝑡 , (3.19)

In this scenario, controller SL(𝚿x,𝚿u) previously constructed with (3.13) no longer
realizes the designed closed-loop response (3.13) for (3.19). Nevertheless, we would
like the saturated system to degrade gracefully and preserve stability. Such property
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is traditionally achieved via anti-windup design[91]. Here, we show that the proposed
nonlinear controller achieves natural anti-windup property with little modification.

Anti-windup Controller
Inspired by internal model control (IMC) [93], we modify SL(𝚿x,𝚿u) and consider
an augmented controller SL(𝚿x,a,𝚿u) where the operator 𝚿x,a is constructed from
(3.13) with augmentation:

𝚿x,a
𝑡 (𝑤𝑡:0) =

𝑁∑︁
𝑖=1

( min{𝑇,𝑡+1}∑︁
𝑘=1

𝑅
(𝑖)
𝑘
(P𝜂𝑖 − P𝜂𝑖−1) (𝑤𝑡+1−𝑘 )

)
+
𝜏+1∑︁
𝑘=1

𝐴𝑘−1 (
𝑤𝑡+1−𝑘 − P𝜂𝑁 (𝑤𝑡−𝑘+1)

)
, (3.20)

where 𝜏 is a positive integer. Recall that by design, we have chosen 𝜂𝑁 = 𝜂𝑚𝑎𝑥 ,
the expected norm bound on disturbances. Compared to (3.13) for the two-zone
case (𝑁 = 2) and (3.9) for the N-zone case, we note that (3.20) has the additional
"open-loop" dynamics term. This extra term accounts for the residual disturbances
that are not attenuated by the original controller SL(𝚿x,𝚿u) because the disturbances
are larger than expected by the projection mapping, i.e., |𝑤𝑡 | > 𝜂𝑚𝑎𝑥 . Therefore,
SL(𝚿x,a,𝚿u) considers the 𝜏-step propagation of the unaccounted disturbances from
SL(𝚿x,𝚿u). Note that when the disturbances satisfy the assumption ∥w∥∞ ≤ 𝜂𝑚𝑎𝑥 ,
augmented controller SL(𝚿x,a,𝚿u) is identical to SL(𝚿x,𝚿u) constructed from
(3.9) and (3.13).

The IMC-like structure of the augmented controller SL(𝚿x,a,𝚿u) helps the saturated
system to degrade gracefully and preserve stability even when 𝚿x,a,𝚿u are not the
exact CLMs for the closed-loop system. The closed-loop dynamics of (3.19) under
augmented controller SL(𝚿x,a,𝚿u) from (3.20) can be checked to be

𝑤𝑡 = 𝐴
𝜏+1(𝑤𝑡−𝜏 − P𝜂𝑚𝑎𝑥

(𝑤𝑡−𝜏)) + 𝑤𝑡 . (3.21)

As shown in [92], the stability of the overall closed loop is equivalent to the stability of
(3.21). We now certify the anti-windup property of SL(𝚿x,a,𝚿u) with the following
result.

Lemma 3. If 𝜏 satisfies |𝐴𝜏+1 | < 1, then internal dynamics (3.21) is globally
finite-gain ℓ∞-stable where for all w ∈ ℓ𝑛∞,

∥ŵ∥∞ ≤
1

1 − |𝐴𝜏+1 |
∥w∥∞ .
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Proof. We first present an operator small-gain theorem.

Theorem 11 (Small-gain Theorem[92]). Let Δ ∈ C𝑠 (ℓ𝑛, ℓ𝑛). If for all x ∈ ℓ𝑛𝑝,
∥Δ(x)∥𝑝 ≤ 𝛾∥x∥𝑝 + 𝛽 with 0 < 𝛾 < 1, 𝛽 ≥ 0, 𝑝 = 1, 2, . . . ,∞, then for all w ∈ ℓ𝑛𝑝,
∥ŵ∥𝑝 ≤ 1

1−𝛾 (∥w∥𝑝 + 𝛽) where ŵ = (𝐼 − Δ)−1w.

Note that the inverse exists because Δ ∈ C(ℓ𝑛, ℓ𝑛) [92]. We are now in a position to
prove the lemma. We can write (3.21) in the operator form as

ŵ = (𝐼 − Δ)−1w, (3.22)

whereΔ is a strictly causal operator with component functionΔ𝑡 (𝑤𝑡:0) := 𝐴𝜏+1(𝑤𝑡−𝜏−
P𝜂𝑚𝑎𝑥

(𝑤𝑡−𝜏)). For all ŵ ∈ ℓ𝑛∞, ∥Δ(ŵ)∥∞ ≤ |𝐴𝜏+1 |∥ŵ∥∞ where we have chosen 𝜏
such that |𝐴𝜏+1 | < 1. Therefore, invoking Theorem 11 gives the desired result in
Lemma 3. □

In particular, if 𝐴 is schur, then there exists 𝑘 ∈ N such that ∥𝐴𝑘 ∥ < 1 for any
norm. Therefore, if (3.19) is open-loop stable, SL(𝚿x,a,𝚿u) guarantees graceful
degradation when the closed loop is saturated.

Localized Implementation
Similar to the large-scale constrained LQR case in Section 3.5, since the anti-windup
controller SL(𝚿x,a,𝚿u) for the saturated linear system (3.19) is composed of linear
CLMs synthesized from (3.18) with locality constraints, localization can be easily
imposed as a convex subspace constraint on the composing linear CLMs. When the
the information structure of the controllers are constrained to the state propagation
pattern according to open-loop dynamics i.e., the sparsity of 𝐴, the anti-windup
controller SL(𝚿x,a,𝚿u) can be implemented in a localized fashion where information
is exchanged and disturbance is contained in a local controller patch [44]. As will be
illustrated in Section 3.7, this allows for distributed anti-windup controller design for
large-scale saturated systems.

3.7 Simulation
Constrained LQR
To corroborate the results presented in the previous sections, we demonstrate the
performance of a four-zone nonlinear blending controller with radial projection
compared against the optimal linear controller for the constrained LQR problem of
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an open-loop unstable system:

𝑥𝑘+1 =


1 1 0
1 2 1
0 1 1

 𝑥𝑘 +

0
0
1

 𝑢𝑘 + 𝑤𝑘 (3.23)

with 𝑢𝑚𝑎𝑥 = 40, 𝑥𝑚𝑎𝑥 = 15, 𝜂𝑚𝑎𝑥 = 1, 𝑄 = 𝐼3, 𝑃 = 10. The disturbances 𝑤𝑘 are
chosen to be a truncated i.i.d. gaussian random variables with variance 𝜎2. Figure 3.1
shows the optimal cost improvement of the presented nonlinear approach over the
optimal linear controller for different choices of variance 𝜎2. Figure 3.1 showcases
that the proposed controller can exploit the knowledge of the disturbance distribution
to achieve performance improvement over the linear optimal linear controller: for
small 𝜎 the proposed controller gains more than 30% cost reduction over safe
controller. On the other hand, with increasing 𝜎, large disturbances in the system
become more likely, and therefore the opportunity to improve upon the linear optimal
controller is reduced.
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Figure 3.1: Performance improvement of optimal nonlinear controller SL(𝚿★x,𝚿★u)
over optimal linear controller SL(𝚿x,lin,★,𝚿u,lin,★) for different variances 𝜎2 of the
non-truncated disturbance. The nonlinear blending controller synthesizes over 4
linear controllers w.r.t. to the projection parameters 𝜂1 = 0.05, 𝜂2 = 0.1, 𝜂3 =

0.2, 𝜂4 = 𝜂𝑚𝑎𝑥 = 1.

Localized Anti-Windup Controller
Consider a bi-directional chain system with 𝑖th node’s dynamics being

𝑥𝑖𝑡+1 = (1 − 0.4|N (𝑖) |)𝑥𝑖𝑡 + 0.4
∑︁
𝑗∈N𝑖

𝑥
𝑗
𝑡 + sat(𝑢𝑖𝑡 , 𝑢𝑚𝑎𝑥) + 𝑤𝑖𝑡 ,

where N(𝑖) denotes the set of vertices that has an edge connected to 𝑖th vertex and
𝑤𝑖𝑡 is the 𝑖th coordinate of disturbance vector at time 𝑡. In particular, ∥w∥∞ ≤ 1 and
𝑥0 = 0. One can check that the overall chain system is open-loop marginally stable.
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(a) Integral Controller
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(b) Non-integral Controller
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(c) Nonlinear Controller
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(e) Non-integral Controller
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(f) Nonlinear Controller

Figure 3.2: Worst-case (top row) and Staggered Step Input (bottom row) Response
under Saturation for a marginally stable 20-node Chain System with Sparse Actuation.
Top Row: The heatmaps show how a worst-case disturbance is propagated through
space-time for the saturated chain system. The integral controller becomes unstable
due to saturation and the naive blending controller possesses has the anti-windup
property of the non-integral controller. In addition to anti-windup, the proposed
controller is localized and accommodates sparse actuation, communication delay,
and controller sparsity constraints. Here every other node has a control input
(50% actuation) with 1 time step actuation delay and 1 time step communication
delay between nodes, while enforcing a controller sparsity that conforms to the
communication pattern of dynamics matrix 𝐴. Bottom Row: Response to small
step disturbances at node 8,10,12 entering at time 2,6,10, respectively. As in the
scalar case, the proposed blending controller not only stabilizes under saturation
but also recovers the performance objective of rejecting small step disturbances.
This contrasts against the non-integral controller, which sacrifices small-signal
performance for stability.
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We illustrate the anti-windup property of the nonlinear controller (3.9) in the
decentralized setting with additional sparsity, locality, and delay constraints. First,
a nominal integral controller for this system is designed and dubbed the Integral
Controller. Due to its integral structure, the Integral Controller for the unconstrained
closed loop guarantees convergence of the state to the origin under persistent
disturbance, i.e, step rejection. In comparison, a second linear controller synthesized
from standard constrained LQR problem that guarantees stability for all admissible
w under saturation is generated. We refer to this linear controller as the Non-integral
Controller since the states only stay bounded under persistent admissable disturbance.

The nonlinear controller with saturation projection here is chosen to be a two-zone
blending controller consisted of CLMs of the form (3.13). The simulation shows
the anti-windup property as well as preservation of step rejection in both large-
and small-disturbance schemes of the proposed method. Figure 3.2 shows that the
blending controller stabilizes the system while integral controller becomes unstable
under worst-case bounded disturbance. On the other hand, the proposed blending
controller preserves performance of step rejection while the linear Non-integral
Controllers forfeits the performance objective in order to preserve stability in the
saturated closed loop. In this chain example, we allow 1 time step communication
delay between nodes and actuation delay with 50% control authority. The localization
pattern imposed on the system response allows SL(𝚿x,𝚿u) to be implemented in
local patches, therefore making the controller distributed.

3.8 Conclusion
Int his chapter, we propose a tractable nonlinear distributed control synthesis method
that outperforms any optimal linear controllers for the distributed and localized LQR
problems under input saturation and state constraints. It was further shown that
such controller naturally possesses anti-windup property for linear systems with
input saturation. A key highlight is that the presented approach enjoys the same
compatibility with locality and communication delay constraints and distributed
implementation, as the linear system level synthesis approach presented in Chapter 2.
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C h a p t e r 4

NON-ASYMPTOTIC LEARNING OF UNCERTAINTY SETS VIA
SET MEMBERSHIP

In this chapter, we present the uncertainty set estimation method that will serve as
a link between machine learning techniques and model-based control methods as
introduced in Chapter 1. Uncertainty sets are crucial for the quality of robust learning
and control since they directly influence the conservativeness and the safety of the
algorithm.

Departing from the confidence region analysis of least squares estimation, which is
one of the most common estimation methods in learning-based control literature,
this chapter investigates properties of the set membership estimation (SME) method
commonly seen in robust adaptive control. Though good numerical performance
have attracted applications of SME in many domains including energy systems and
robotics, the non-asymptotic convergence rate of SME for linear systems remains an
open question. In this chapter, we will provide the first convergence rate bounds for
SME and propose novel variations of SME under relaxed assumptions that improve
the practicality and performance of SME. Interestingly, in some settings, SME breaks
through the theoretical lower bound on sample complexity of the estimation task of
linear dynamical systems previously shown for the popular ordinary least squares
estimation, enabling improved performance for a range of safety-critical tasks over
previous approaches.

[1] Y. Li*, J. Yu*, L. Conger, T. Kargin, and A. Wierman, “Learning the uncer-
tainty sets of linear control systems via set membership: A non-asymptotic
analysis,” Forty-first International Conference on Machine Learning (ICML),
2024. [Online]. Available: https://openreview.net/forum?id=
n2kq2EOHFE.

4.1 Introduction
The problem of estimating unknown linear dynamical systems of the form 𝑥𝑡+1 =

𝐴★𝑥𝑡 + 𝐵★𝑢𝑡 +𝑤𝑡 with unknown parameters (𝐴★, 𝐵★) has seen considerable progress
recently [26], [58]–[60], [94]–[96]. Most literature focuses on the analysis of the least
squares estimator (LSE) and its variants, where sharp bounds on the convergence
rates for subGaussian disturbances 𝑤𝑡 have been obtained [59], [96]. Building on

https://openreview.net/forum?id=n2kq2EOHFE
https://openreview.net/forum?id=n2kq2EOHFE
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this, there is a rapidly growing body of literature on “learning to control" unknown
linear systems that leverages LSE to achieve various control objectives, such as
stability and regret [17], [24], [25], [28], [59], [97].

However, for successful application of learning-based control methods to safety-
critical applications, it is crucial to quantify the uncertainties of the estimated system
and to robustly satisfy safety constraints and stability despite these uncertainties [29],
[30]. A promising framework for achieving this is to estimate the uncertainty set of
the unknown system parameters and to utilize robust controllers to satisfy the robust
constraints under any parameters in the uncertainty set [30], [98]. Uncertainty set
estimation is crucial for the success of robust control: on the one hand, too large of an
uncertainty set gives rise to over-conservative control actions, resulting in degraded
performance; on the other hand, if the uncertainty set is underestimated and fails to
contain the true system, the resulting controller may lead to unsafe behaviors [30],
[31].

To estimate uncertainty sets, a popular method is to construct LSE’s confidence
regions [24], [59]. However, this approach yields a confidence region for a point
estimate rather than directly estimating the uncertainty set of the model. Further, the
confidence regions are usually derived from concentration inequalities, which allows
convergence rate analysis but may suffer conservative constant factors [31], [59].

In this chapter, we instead focus on a direct uncertainty set estimation method: set
membership estimation (SME), which estimates the uncertainty set without relying
on the concentration inequalities underlying the approaches based on LSE. SME
has a long history in the control community [48], [49], [99]–[102]. SME has
primarily been proposed for scenarios with bounded disturbances, which is common
in safety-critical systems, e.g. power systems [103], unmanned aerial vehicles (UAV)
[104], [105], and building control [106]. Further, the bounded disturbance is a
standard assumption in control when certain safety requirements are desired, such as
robust (adaptive) constrained control [24], [49], [107], online (constrained) control
[14], [108]–[110].

Consequently, SME has been widely adopted in the robust (adaptive) constrained
control literature [49]–[54] and the online control literature [13], [55], [99], [111].
Figure 4.1 provides a toy example illustrating SME’s promising performance under
bounded disturbances.

On the theory side, the convergence analysis of SME generally considers a simple
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(a) Diameters of uncertainty sets
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Figure 4.1: A visualized toy example of uncertainty set comparison between SME
in (4.2) and LSE confidence regions in [59], [60] for a one-dimensional system
𝑥𝑡+1 = 𝐴★𝑥𝑡 + 𝐵★𝑢𝑡 + 𝑤𝑡 , with 𝑤𝑡 , 𝑢𝑡 ∈ [−1, 1] generated i.i.d. from a truncated
Gaussian distribution. Detailed experiment settings are in Section 4.I. Figure (a)
compares the diameters of the uncertainty sets from SME and LSE 90% confidence
bounds. Figure (b) and (c) visualize the the uncertainty sets after 𝑇 = 5 and 𝑇 = 250
data points.

regression problem: 𝑦𝑡 = 𝜃★𝑥𝑡 + 𝑤𝑡 with a deterministic sequence of 𝑥𝑡 and bounded
i.i.d. disturbances 𝑤𝑡 [112]–[116]. This regression problem does not capture the
correlation between 𝑥𝑡 and the history 𝑤𝑡−1, . . . , 𝑤0 in the dynamical systems. This
issue was largely overlooked in the vast literature of empirical algorithm design
related to SME (for example, see [49], [117], etc.). It was not until recently that
[118] provided the first asymptotic convergence guarantees for SME in linear systems.
However, the non-asymptotic convergence rate still remains open for SME in linear
dynamical systems.

Contributions. This chapter tackles the open question above by providing non-
asymptotic bounds on the convergence rates of SME for linear systems. To the best
of our knowledge, this is the first convergence rate analysis of SME for dynamical
systems in the literature.

We consider two scenarios in our analysis. Firstly, when a tight boundW on the
support of 𝑤𝑡 is known, we provide an instance-dependent convergence rate for SME.
Interestingly, for several common distributions of 𝑤𝑡 , SME enjoys a convergence
rate 𝑂 (𝑛1.5

𝑥 (𝑛𝑥 + 𝑛𝑢)2/𝑇), which is faster than the LSE’s error bound 𝑂 (
√
𝑛𝑥+𝑛𝑢√
𝑇
)

in terms of the number of samples 𝑇 but is worse in terms of the dependence on
state and control dimensions 𝑛𝑥 , 𝑛𝑢. The improved convergence rate of SME with
respect to 𝑇 is enabled by leveraging the additional boundedness property of 𝑤𝑡 ,
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which is a common assumption in robust constrained control but is not utilized in
LSE’s analysis. Secondly, when a tight bound of 𝑤𝑡 is unknown, we introduce a
UCB-SME algorithm that learns conservative upper bounds of 𝑤𝑡 from data and
constructs uncertainty sets based on the conservative upper bounds. We also provide
a convergence rate of UCB-SME, which has the same dependence on 𝑇 but has
worse dependence on 𝑛𝑥 by a factor of √𝑛𝑥 compared with the convergence rate with
a known tight bound.

Our estimation error bound relies on a novel construction of an event sequence based
on designing a sequence of stopping times. This construction, together with the
BMSB condition in [96], addresses the challenge caused by the correlation between
𝑥𝑡 , 𝑢𝑡 , and the history disturbances (see the proof of Theorem 12 for more details).

Moreover, our results lay a foundation for future non-asymptotic analysis of control
designs based on SME. To illustrate this, we apply our results to robust-adaptive
model predictive control and robust SLS and discuss the novel non-asymptotic
guarantees enabled by our convergence rates of SME.

Finally, we conduct extensive simulations to compare the numerical behaviors of
SME, UCB-SME, and LSE’s confidence regions, which demonstrates the promising
performance of SME and UCB-SME.

4.2 Problem Formulation and Preliminaries
This chapter focuses on the identification of uncertainty sets of unknown system
parameters in the linear dynamical system:

𝑥𝑡+1 = 𝐴★𝑥𝑡 + 𝐵★𝑢𝑡 + 𝑤𝑡 , (4.1)

where 𝐴★, 𝐵★ are the unknown system parameters, 𝑥𝑡 ∈ R𝑛𝑥 , 𝑢𝑡 ∈ R𝑛𝑢 . For notational
simplicity, we define 𝜃★ = (𝐴★, 𝐵★) by matrix concatenation and 𝑧𝑡 = (𝑥⊤𝑡 , 𝑢⊤𝑡 )⊤ ∈
R𝑛𝑧 by vector concatenation, where 𝑛𝑧 = 𝑛𝑥 + 𝑛𝑢. Accordingly, the system (4.1) can
be written as 𝑥𝑡+1 = 𝜃★𝑧𝑡 + 𝑤𝑡 .

The goal of the uncertainty set identification problem is to determine a setΘ𝑇 that con-
tains the true parameters 𝜃★ = (𝐴★, 𝐵★) based on a sequence of data {𝑥𝑡 , 𝑢𝑡 , 𝑥𝑡+1}𝑇−1

𝑡=0 .
Set Θ𝑇 is called an uncertainty set since it captures the remaining uncertainty on the
system model after the revelation of the data sequence {𝑥𝑡 , 𝑢𝑡 , 𝑥𝑡+1}𝑇−1

𝑡=0 .

Uncertainty sets play an important role in robust control, where one aims to achieve
robust constraint satisfaction [49], [107], robust objective optimization [119], and/or
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robust stability [120] for any model in the uncertainty set.1 Therefore, the diameter
of the uncertainty sets heavily influences the conservativeness of robust controllers
and thus the control performance. Formally, we define the diameter as follows.

Definition 4.2.1 (Diameter of a set of matrices). Consider a set S of matrices 𝜃 ∈
R𝑛𝑥×𝑛𝑧 . We define the diameter of S in Frobenius norm as diam(S) = sup𝜃,𝜃′∈S ∥𝜃 −
𝜃′∥𝐹 .

Set Membership Estimation (SME)
In this section, we review set membership estimation (SME), which is an uncertainty
set identification method that has been studied in the control literature for decades
[102], [107]. SME primarily focuses on systems with bounded disturbances, i.e.
𝑤𝑡 ∈ W for some boundedW for all 𝑡 ≥ 0. WhenW is known, SME computes an
uncertainty/membership set by

Θ𝑇 =

𝑇−1⋂
𝑡=0
{�̂� : 𝑥𝑡+1 − �̂�𝑧𝑡 ∈ W}. (4.2)

It is straightforward to see that 𝜃★ ∈ Θ𝑇 when 𝑤𝑡 ∈ W.

The bounded disturbance assumption may seem restrictive, considering that the
uncertainty set identification based on the confidence region of LSE only requires
subGaussian disturbances [96]. However, in many control applications, it is reason-
able and common to assume bounded 𝑤𝑡 . For example, bounded disturbances is
a standard assumption in the robust constrained control literature, such as robust
constrained LQR [24], [49], [107], [118], and online constrained control of linear
systems [108], [110]. This is different from unconstrained control, where unbounded
subGaussian disturbances are usually considered [120]. The difference in the dis-
turbance formulation is largely motivated by the applications: constrained control
is mostly applied to safety-critical applications, where the disturbances are usually
bounded. For example, in UAV and flight control, the disturbances are mostly caused
by wind gusts, and wind disturbances are bounded in practice [104], [105]. Similarly,
in building thermal control, the disturbances are caused by external heat exchanges,
which are also bounded [106].

Ideally, one hopes that Θ𝑇 converges to the singleton of the true model {𝜃★} or at
least a small neighborhood of 𝜃★. This usually calls for additional assumptions, such

1In addition to model uncertainties, robust control may also consider other system uncertainties,
e.g., disturbances, measurement noises, etc.
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as the persistent excitation property on the observed data and additional stochastic
properties on 𝑤𝑡 . In this chapter, we consider the following assumptions to establish
convergence rate bounds on the diameter of Θ𝑇 , which, to the best of our knowledge,
is the first non-asymptotic guarantee of SME for linear dynamical systems.

The first assumption formalizes the bounded disturbance assumption discussed above
and introduces stochastic properties of 𝑤𝑡 for analytical purposes.

Assumption 3 (Bounded i.i.d. disturbances). The disturbances are box-constrained,
𝑤𝑡 ∈ W := {𝑤 ∈ R𝑛𝑥 : ∥𝑤∥∞ ≤ 𝑤max} for all 𝑡 ≥ 0. Further, 𝑤𝑡 is i.i.d., has zero
mean and positive definite covariance matrix Σ𝑤.

Assumption 3 is common in SME literature, e.g. [113], [116], [118]. In terms of
generality, boundedness is essential for SME. The stochastic properties, such as i.i.d.,
zero mean, positive definite covariance, are standard in the recent learning-based
control literature and allow the use of statistical tools utilized and developed in
the recent literature for non-asymptotic analysis [96], [121]. Besides, it is worth
mentioning that SME still works in non-stochastic settings. In particular, as long as
𝑤𝑡 ∈ W, even without the stochastic properties in Assumption 3, the SME algorithm
(4.2) still generates a valid uncertainty set that contains 𝜃★. It is an interesting
future direction to study the convergence rate of SME without assuming stochastic
disturbances.

Next, we introduce the assumptions on 𝑢𝑡 , which relies on the block-martingale
small-ball (BMSB) condition proposed in [96]. It can be shown that the BMSB
guarantees persistent excitation (PE) with high probability under proper conditions
(see Proposition 2.5 in [96] and Lemma 4). The PE condition requires that 𝑧𝑡 explores
all directions, which is essential for system identification [122].

Definition 4.2.2 (Persistent excitation). There exists 𝛼 > 0 and 𝑚 ∈ N+, such that
for any 𝑡0 ≥ 0,

1
𝑚

𝑡0+𝑚−1∑︁
𝑡=𝑡0

(
𝑥𝑡

𝑢𝑡

)
(𝑥⊤𝑡 , 𝑢⊤𝑡 ) ⪰ 𝛼2𝐼𝑛𝑥+𝑛𝑢 .

Definition 4.2.3 (BMSB [96]). Consider a filtration {F𝑡}𝑡≥1 and an {F𝑡}𝑡≥1-adapted
random process {𝑍𝑡}𝑡≥1 in R𝑑 . {𝑍𝑡}𝑡≥1 satisfies the (𝑘, Γ𝑠𝑏, 𝑝)-block martingale
small-ball (BMSB) condition for 𝑘 > 0, a positive definite Γ𝑠𝑏, and 0 ≤ 𝑝 ≤ 1, if the
following holds: for any fixed 𝜆 ∈ R𝑑 with ∥𝜆∥2 = 1, we have 1

𝑘

∑𝑘
𝑖=1 P( |𝜆⊤𝑍𝑡+𝑖 | ≥√

𝜆⊤Γ𝑠𝑏𝜆 | F𝑡) ≥ 𝑝 for all 𝑡 ≥ 1.
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The following is the assumption on 𝑢𝑡 .

Assumption 4 (BMSB and boundedness). With filtrationF𝑡 = F (𝑤0, . . . , 𝑤𝑡−1, 𝑧0, . . . , 𝑧𝑡),
the F𝑡-adapted stochastic process {𝑧𝑡}𝑡≥0 satisfies (1, 𝜎2

𝑧 𝐼𝑛𝑧 , 𝑝𝑧)-BMSB for some
𝜎𝑧, 𝑝𝑧 > 0. Besides, there exists 𝑏𝑧 ≥ 0 such that ∥𝑧𝑡 ∥2 ≤ 𝑏𝑧 almost surely for all
𝑡 ≥ 0.

Assumption 4 requires 𝑢𝑡 to guarantee both BMSB and bounded 𝑧𝑡 . This can be
satisfied by several robust (adaptive) constrained control policies, such as robust
(adaptive) model predictive control [49], [107], [118], system level synthesis [24],
and control barrier functions [123]. In the following, we briefly discuss robust
(adaptive) MPC as an example. The other approaches can be similarly shown to
satisfy Assumption 4.

Example 5 (Robust (adaptive) MPC). Robust MPC is a popular method for the
robust constrained control [124], which aims to optimize the control objective while
satisfying robust safety constraints,

𝑧𝑡 ∈ Zsafe, where 𝑥𝑡+1=𝜃𝑧𝑡 + 𝑤𝑡 ,∀ 𝜃 ∈Θ0, 𝑤𝑡 ∈W, (4.3)

where Θ0 is an initial uncertainty set known a priori, and the safety constraint Zsafe

is usually bounded. The robust MPC policy, denoted by 𝑢𝑡 = 𝜋RMPC(𝑥𝑡 ;Θ0,W),
satisfies the constraints (4.3) for any 𝜃 ∈ Θ0. Therefore, it naturally guarantees
bounded 𝑧𝑡 under the true 𝜃★. Further, as shown in [125], BMSB can be achieved
by adding a random disturbance, i.e. 𝑢𝑡 = 𝜋RMPC(𝑥𝑡 ;Θ0,W) + 𝜂𝑡 , where 𝜂𝑡 is i.i.d.,
bounded, and has positive definite covariance. Therefore, the randomly perturbed
robust MPC can satisfy Assumption 4. Robust adaptive MPC is based on the same
control design, 𝑢𝑡 = 𝜋RMPC(𝑥𝑡 ;Θ𝑡 ,W), but utilizes adaptively updated uncertainty
sets Θ𝑡 . Notice that Θ𝑡 is usually updated by SME in the literature of robust adaptive
MPC [49], [107], [117].

We also note that BMSB and bounded 𝑧𝑡 with high probability are assumed in
LSE literature (Theorem 2.4 [96]), and bounded 𝑧𝑡 with high probability under
subGaussian disturbances corresponds to bounded 𝑧𝑡 under bounded disturbances
for linear systems (see bounded-input-bounded-output stability in Sec. 9 of [126]).

Finally, we assume that the bound 𝑤max on 𝑤𝑡 is tight in all directions, which is
common in the literature on SME analysis [112], [113], [118].
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Assumption 5 (Tight bound on 𝑤𝑡). For any 𝜖 > 0, there exists 𝑞𝑤 (𝜖) > 0, such that
for any 1 ≤ 𝑗 ≤ 𝑛, we have

min(P(𝑤 𝑗
𝑡 ≤ 𝜖 − 𝑤max), P(𝑤 𝑗

𝑡 ≥ 𝑤max − 𝜖)) ≥ 𝑞𝑤 (𝜖),

where 𝑤 𝑗
𝑡 denotes the 𝑗 th entry of vector 𝑤𝑡 . Without loss of generality, we can

further assume 𝑞𝑤 (𝜖) to be non-decreasing with 𝜖 and 𝑞𝑤 (2𝑤max) = 1.2

In essence, Assumption 5 requires that a hyper-cubicW = {𝑤 : ∥𝑤∥∞ ≤ 𝑤max}
should be tight on the support of 𝑤𝑡 in all coordinate directions, that is, there exists a
positive probability 𝑞𝑤 (𝜖) such that 𝑤𝑡 visits an 𝜖-neighborhood of 𝑤max and −𝑤max,
respectively, on all coordinates.

When the support of 𝑤𝑡 is indeed W = {𝑤 : ∥𝑤∥∞ ≤ 𝑤max}, many common
distributions enjoy 𝑞𝑤 (𝜖) ≥ Ω(𝜖).3 For example, for the uniform distribution onW,
we have 𝑞𝑤 (𝜖) = 𝜖

2𝑤max
; for the truncated Gaussian distribution with zero mean, 𝜎2

𝑤 𝐼𝑛

covariance, and truncated regionW, we have 𝑞𝑤 (𝜖) = 𝜖
2𝑤max𝜎𝑤

exp( −𝑤
2
max

2𝜎2
𝑤
); and for

the uniform distribution on the boundary ofW (a generalization of Rademacher
distribution), we have 𝑞𝑤 (𝜖) ≥ 1

2𝑛𝑥 ≥ Ω(𝜖) (see Section 4.C for more details).

However, knowing a tight bound on the support of 𝑤𝑡 can be challenging in practice.
Therefore, we will discuss how to relax this assumption and learn a tight bound from
data in Section 4.3.

Further, the requirement of a hyper-cubicW can be restrictive because different
entries of disturbances may have different magnitudes, resulting in a hyper-rectangular
support that violates Assumption 5. Our follow-up work [127] relaxes this assumption
and generalizes the results in this chapter.

4.3 Set Membership Convergence Analysis
Convergence Rate of SME with Known 𝑤max

We now present the main result (Theorem 12) of this chapter, which is a non-
asymptotic bound on the estimation error of SME given bounded i.i.d. stochastic
disturbances.

2This is because P(𝑤 𝑗
𝑡 ≤ 𝜖 − 𝑤max) and P(𝑤 𝑗

𝑡 ≥ 𝑤max − 𝜖) are non-decreasing with 𝜖 , and
P(𝑤 𝑗

𝑡 ≥ −𝑤max) = P(𝑤 𝑗
𝑡 ≤ 𝑤max) = 1 by Assumption 3.

3The Ω(·) notation is the lower bound version of 𝑂 (·).
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Theorem 12 (Convergence rate of SME). For any 𝑚 > 0 any 𝛿 > 0, when 𝑇 > 𝑚,
we have

P(diam(Θ𝑇 ) > 𝛿) ≤
𝑇

𝑚
𝑂 (𝑛2.5

𝑧 )𝑎
𝑛𝑧
2 exp(−𝑎3𝑚)︸                           ︷︷                           ︸
T1

+𝑂 ((𝑛𝑥𝑛𝑧)2.5)𝑎𝑛𝑥𝑛𝑧4

(
1 − 𝑞𝑤

(
𝑎1𝛿

4√𝑛𝑥

)) ⌈𝑇/𝑚⌉
︸                                                 ︷︷                                                 ︸

T2 (𝛿)

where 𝑎1 =
𝜎𝑧 𝑝𝑧

4 , 𝑎2 =
64𝑏2

𝑧

𝜎2
𝑧 𝑝

2
𝑧
, 𝑎3 =

𝑝2
𝑧

8 , 𝑎4 =
4𝑏𝑧
√
𝑛𝑥

𝑎1
, 𝑝𝑧, 𝜎𝑧, 𝑏𝑧 are defined in

Assumption 4, ⌈·⌉ denotes the ceiling function, and diam(·) is defined in Definition
4.2.1, the factors hidden in 𝑂 (·) are provided in Appendix 4.D.

Theorem 12 provides an upper bound on the “failure” probability of SME, i.e., the
probability that the diameter of the uncertainty set is larger than 𝛿. In this bound,
T1 decays exponentially with 𝑚, so for any small 𝜖 > 0, 𝑚 can be chosen such that
T1 ≤ 𝜖 , which indicates 𝑚 ≥ 𝑂 (𝑛𝑧 + log𝑇 + log(1/𝜖)). For any 𝛿 > 0, T2(𝛿) decays
exponentially with the number of data points 𝑇 and involves a distribution-dependent
function 𝑞𝑤 (·), which characterizes how likely it is for 𝑤𝑡 to visit the boundary of
W as defined in Assumption 5. To ensure the probability upper bound in Theorem
12 to be less than 1, one can choose 𝑚 = 𝑂 (log𝑇) and a large enough 𝑇 such that
𝑇 ≥ 𝑂 (𝑚) = 𝑂 (log(𝑇)). If 𝑤𝑡 is more likely to visit the boundary, (a larger 𝑞𝑤 (·)),
then SME is less likely to generate an uncertainty set with a diameter bigger than 𝛿.

Estimation error bounds when 𝑞𝑤 (𝜖) = Ω(𝜖). To provide intuition for T2(𝛿)
and discuss the estimation error bound in Theorem 12 more explicitly, we consider
distributions satisfying 𝑞𝑤 (𝜖) = Ω(𝜖) for all 𝜖 > 0. Notice that several common
distributions satisfy this additional requirement, such as uniform distribution and
truncated Gaussian distribution as discussed after Assumption 5.

Corollary 12.1 (Estimation error bound when 𝑞𝑤 (𝜖) = Ω(𝜖)). For any 𝜖 > 0, let

𝑚 ≥ 𝑂 (𝑛𝑧 + log𝑇 + log(1/𝜖))

in the following.4 If 𝑤𝑡 is generated i.i.d. by a distribution satisfying 𝑞𝑤 (𝜖) = Ω(𝜖)
for all 𝜖 > 0, then with probability at least 1 − 2𝜖 , for any �̂�𝑇 ∈ Θ𝑇 , we have

∥�̂�𝑇 − 𝜃★∥𝐹 ≤ diam(Θ𝑇 ) ≤ 𝑂
(
𝑛1.5
𝑥 (𝑛𝑥 + 𝑛𝑢)2

𝑇

)
.

4A detailed formula is provided in Appendix 4.E.
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Corollary 12.1 indicates that the estimation error of any point in the uncertainty set
Θ𝑇 can be bounded by 𝑂

(
𝑛1.5
𝑥 (𝑛𝑥+𝑛𝑢)2

𝑇

)
when 𝑞𝑤 (𝜖) ≥ Ω(𝜖).

Dynamical systems without control inputs. SME also applies to dynamical systems
with no control inputs, i.e., 𝑥𝑡+1 = 𝐴★𝑥𝑡 + 𝑤𝑡 , where the uncertainty set of 𝐴★ can be
computed by A𝑇 =

⋂𝑇−1
𝑡=0 {𝐴 : ∥𝑥𝑡+1 − 𝐴𝑥𝑡 ∥∞ ≤ 𝑤max}. Its convergence rate can be

similarly derived via the proof of Theorem 12.

Corollary 12.2 (Convergence rate with 𝐵★ = 0 (informal)). For stable 𝐴★, for any
𝑚 > 0, 𝛿 > 0, 𝑇 > 𝑚, we have

P(diam(A𝑇 ) > 𝛿) ≤
𝑇

𝑚
𝑂 (𝑛2.5

𝑥 )𝑎
𝑛𝑥
2 exp(−𝑎3𝑚)

+𝑂 (𝑛5
𝑥)𝑎

𝑛2
𝑥

4 (1 − 𝑞𝑤 (
𝑎1𝛿

4
√
𝑛𝑥
)) ⌈𝑇/𝑚⌉

Consequently, when 𝑞𝑤 (𝜖) = Ω(𝜖), e.g. uniform or truncated Gaussian, we have
diam(A𝑇 ) ≤ 𝑂 (𝑛3.5

𝑥 /𝑇).

Note that [96] have shown a lower bound Ω(
√
𝑛𝑥/
√
𝑇) for the estimation of linear

systems with no control inputs when 𝑤𝑡 follows an (unbounded) Gaussian distribution.
Interestingly, Corollary 12.2 reveals that, for some bounded-support distributions of
𝑤𝑡 , e.g. Uniform and truncated Gaussian, SME is able to converge at a faster rate
𝑂 (1/𝑇) in terms of the sample size 𝑇 . This does not conflict with the lower bound in
[96] because SME’s rate only holds for bounded disturbances. In fact, from (4.2), it is
straightforward to see that SME does not even converge under Gaussian disturbances.
Therefore, SME is mostly useful in applications with bounded disturbances, e.g.
robust constrained control, safety-critical systems, etc., while LSE’s confidence
regions are preferred for unbounded disturbances.

Lastly, Corollary 12.2 shows that SME’s convergence rate has a poor dependence
with respect to 𝑛𝑥: 𝑂 (𝑛3.5

𝑥 ). This is likely a proof artifact because we do not observe
such poor dimension scaling in simulation (see Figure 4.3). It is left as future work
to refine the dimension dependence.

SME with Unknown 𝑤max

Next, we discuss the convergence rates of SME without knowing a tight bound 𝑤max

in three steps: 1) only knowing a conservative upper bound of 𝑤max, 2) learning
𝑤max from data, and 3) a variant of SME that converges without prior knowledge of
𝑤𝑚𝑎𝑥 .
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1) SME with a conservative upper bound for 𝑤max. In many practical scenarios, it
is easier to obtain an over-estimation of the range of the disturbances instead of a
tight upper bound, i.e., 𝑤max ≥ 𝑤max. In this case, we can show that the uncertainty
set converges to a small neighborhood around 𝜃★ of size 𝑂 (√𝑛𝑥 (𝑤max − 𝑤max)) at
the same convergence rate as Theorem 12.

Theorem 13 (Convservative bound on𝑤max). When𝑤max in Assumption 5 is unknown
but an upper bound 𝑤max ≥ 𝑤max is known, consider the following SME algorithm:

Θ̂𝑇 (𝑤max) =
𝑇−1⋂
𝑡=0
{�̂� : ∥𝑥𝑡+1 − �̂�𝑧𝑡 ∥∞ ≤ 𝑤max} .

For any 𝑚 > 0, 𝛿 > 0, 𝑇 > 𝑚, we have

P(diam(Θ̂𝑇 )>𝛿 + 𝑎5
√
𝑛𝑥 (𝑤max − 𝑤max)) ≤ T1+T2(𝛿) ,

where 𝑎5 = 4
𝑎1

, T1,T2(𝛿) are defined in Theorem 12.

2) Learning 𝑤max. When 𝑤max is not accurately known, we can try to learn it from
the data. Let’s first consider the learning algorithm studied in [112].

�̄�
(𝑇)
max = min

𝜃
max

0≤𝑡≤𝑇−1
∥𝑥𝑡+1 − 𝜃𝑧𝑡 ∥∞. (4.4)

Though algorithm (4.4) cannot provide an upper bound on 𝑤max under finite samples
because �̄� (𝑇)max ≤ 𝑤max for finite 𝑇 ,5 it can be shown that �̄� (𝑇)max converges to 𝑤max as
𝑇 → +∞. The convergence for linear regression has been established in [112]. The
following theorem establishes the convergence and convergence rate of algorithm
(4.4) for linear dynamical systems. Based on this convergence rate, we will design
an online learning algorithm (4.5) that generates converging upper bounds of 𝑤max.

Theorem 14. The estimation �̄� (𝑇)max of 𝑤max satisfies:

0≤ 𝑤max − �̄� (𝑇)max≤ 𝑏𝑧 diam(Θ𝑇 )︸         ︷︷         ︸
T3

+𝑤max− max
0≤𝑡≤𝑇−1

∥𝑤𝑡 ∥∞︸                   ︷︷                   ︸
T4

Therefore, for any 𝛿 > 0,

P(𝑤max − �̄� (𝑇)max > 𝛿) ≤ T1 + T2

(
𝛿

2𝑏𝑧

)
+ T5

(
𝛿

2

)
,

where T5(𝛿) = (1 − 𝑞𝑤 (𝛿))𝑇 .
5If SME does not use an upper bound on 𝑤max, the generated uncertainty set may not contain the

true parameter 𝜃★.
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Notice that T4 is the smallest possible learning error of 𝑤max from history 𝑤𝑡 , which
can be achieved if one can directly measure 𝑤𝑡 . However, with unknown 𝜃★, it is
challenging to measure/compute 𝑤𝑡 exactly, then Theorem 14 shows that the learning
error of 𝑤max has an additional term T3 that depends on the uncertainty around 𝜃★.
Therefore, the convergence rate of �̄� (𝑇)max can be obtained by our non-asymptotic
analysis of SME in Theorem 12.

Further, when 𝑞𝑤 (𝜖) = Ω(𝜖), the convergence rate of �̄� (𝑇)max can be explicitly bounded
by 𝑂 (𝑛1.5

𝑥 𝑛2
𝑧/𝑇), which is of the same order as the convergence rate of the diameter

of Θ𝑇 .

Corollary 14.1. For any 0 < 𝜖 < 1/3 and any 𝑇 ≥ 1, there exists 𝛿𝑇 > 0 satisfying
lim𝑇→∞ 𝛿𝑇 = 0 such that

0 ≤ 𝑤max − �̄� (𝑇)max ≤ 𝛿𝑇

with probability at least 1 − 3𝜖 .

In particular, when 𝑞𝑤 (𝛿) = 𝑂 (𝛿), with probability 1 − 3𝜖 ,

0 ≤ 𝑤max − �̄� (𝑇)max ≤ 𝛿𝑇 = 𝑂 (𝑛1.5
𝑥 𝑛2

𝑧/𝑇)

3) SME with unknown 𝑤max. Unfortunately, �̄� (𝑇)max cannot be directly applied
to SME because �̄� (𝑇)max ≤ 𝑤max, which may cause 𝜃★ ∉ Θ̂𝑇 (�̄� (𝑇)max). However, by
leveraging our convergence rate bound in Theorem 14, we can construct an upper
confidence bound (UCB) of 𝑤max and a corresponding UCB-SME algorithm:

𝑤
(𝑇)
max = �̄�

(𝑇)
max + 𝛿𝑇 , Θ̂ucb

𝑇 = Θ̂𝑇 (𝑤 (𝑇)max), (4.5)

where 𝛿𝑇 is defined in Corollary 14.1.

Then, by combining Theorem 13 and Corollary 14.1, we can verify the well-
definedness of UCB-SME and obtain its convergence rate.

Theorem 15. For any 0 < 𝜖 < 1/3, any 𝑇 ≥ 1, with probability at least 1 − 3𝜖 , we
have

𝜃★ ∈ Θ̂ucb
𝑇 , diam(Θ̂ucb

𝑇 ) ≤ 𝑂 (
√
𝑛𝑥𝛿𝑇 ).

In particular, if 𝑞𝑤 (𝜖) = Ω(𝜖), then diam(Θ̂ucb
𝑇
) ≤ 𝑂 (𝑛2

𝑥𝑛
2
𝑧/𝑇) with probability at

least 1 − 3𝜖 .

Notice that UCB-SME converges at the same rate in terms of 𝑇 but √𝑛𝑥-worse in
terms of dimensionality when compared with SME knowing a tight bound 𝑤max.
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Remark 2 (Computation complexity). SME can be computed by linear programming
since all constraints are linear in (4.2). Further, UCB-SME can also be computed
by linear programming because (4.4) can be reformulated as a linear program.
However, the number of constraints for SME and UCB-SME increases linearly with 𝑇 .
To address the computation issue of SME, many computationally efficient algorithms
have been proposed based on approximations of (4.2), e.g. [55], [115], [118]. The
convergence rates of these approximate algorithms are unknown and how to design
computationally efficient UCB-SME remains open.

4.4 Proof Sketch
The major technical novelty of this chapter is the proof of Theorem 12, thus we
describe the key ideas here. The complete proof is provided in Appendix 4.D. For
ease of notation and without loss of generality, we assume 𝑇/𝑚 is an integer in the
following.

Specifically, we first define a set Γ𝑇 on the model estimation error 𝛾 = �̂� − 𝜃★ by
leveraging the observation that 𝑥𝑠+1 − �̂�𝑧𝑠 = 𝑤𝑠 − (�̂� − 𝜃★)𝑧𝑠,

Γ𝑡 =

𝑡−1⋂
𝑠=0
{𝛾 : ∥𝑤𝑠 − 𝛾𝑧𝑠∥∞ ≤ 𝑤max}, ∀ 𝑡 ≥ 0. (4.6)

Notice that Θ𝑡 = 𝜃★ + Γ𝑡 , so diam(Θ𝑡) = diam(Γ𝑡), and

diam(Γ𝑡) = sup
𝛾,𝛾′∈Γ𝑡

∥𝛾 − 𝛾′∥𝐹 ≤ 2 sup
𝛾∈Γ𝑡
∥𝛾∥𝐹 .

Thus, we can define E1 B {∃ 𝛾 ∈ Γ𝑇 , s.t. ∥𝛾∥𝐹 ≥ 𝛿
2 } such that P(diam(Θ𝑇 ) > 𝛿) ≤

P(E1).

Next, we define an event E2 below, which is essentially PE on every time segments
𝑘𝑚 + 1 ≤ 𝑡 ≤ 𝑘𝑚 + 𝑚 for 𝑘 ≥ 0, where the choice of 𝑚 will be specified later.

E2 =

{
1
𝑚

𝑚∑︁
𝑠=1

𝑧𝑘𝑚+𝑠𝑧
⊤
𝑘𝑚+𝑠 ⪰ 𝑎

2
1𝐼𝑛𝑧 ,∀0 ≤ 𝑘 ≤

⌈
𝑇

𝑚

⌉
−1

}
,

where 𝑎1 =
𝜎𝑧 𝑝𝑧

4 . Now, by dividing the event E1 based on E2, we obtain

P(diam(Θ𝑇 ) > 𝛿) ≤ P(E1) ≤ P(E𝑐2) + P(E1 ∩ E2).

The proof can be completed by establishing the following bounds on P(E𝑐2) and
P(E1 ∩ E2).
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(b) Uniform Distribution (c) 𝑤 (𝑇 )max and �̄� (𝑇 )max in UCB-SME

Figure 4.2: Figures (a)-(b) compares the diameters of SME, UCB-SME, and SME
with loose disturbance upper bounds that are 2, 3, 5, and 10 times larger than the
true disturbance bound 𝑤max, as well as the baseline uncertainty set from the 90%
confidence region of LSE. Figure (c) shows the convergence to the true bound 𝑤max
of the lower estimation �̄�max in (4.4) and the UCB 𝑤max generated by the UCB-SME
algorithm in Figures (a)-(b).

Lemma 4 (Bound on P(E𝑐2)). P(E
𝑐
2) ≤ T1, where 𝑎2 =

64𝑏2
𝑧

𝜎2
𝑧 𝑝

2
𝑧

and 𝑎3 =
𝑝2
𝑧

8 .

Lemma 5 (Bound onP(E1∩E2)). P(E1∩E2) ≤ T2(𝛿), where 𝑎4 = max(1, 4𝑏𝑧
√
𝑛𝑥/𝑎1).

Roughly, Lemma 4 indicates that PE holds with high probability, which is proved by
leveraging the BMSB assumption and set discretization. The proof of Lemma 5 is
more involved and is our major technical contribution. On a high level, the proof
relies on two technical lemmas below.

Lemma 6 (Discretization ofE1∩E2 (informal)). LetM = {𝛾1, . . . , 𝛾𝑣𝛾 } denote an 𝜖𝛾-
net of {𝛾 : ∥𝛾∥𝐹 = 1}. Under a proper choice of 𝜖𝛾 , we have 𝑣𝛾 = 𝑂 (𝑛2.5

𝑥 𝑛2.5
𝑧 )𝑎

𝑛𝑥𝑛𝑧
4 .6

We can construct Γ̃𝑇 such that

P(E1 ∩ E2) ≤ P({∃ 1 ≤ 𝑖 ≤ 𝑣𝛾, 𝑑 ≥ 0, s.t. 𝑑𝛾𝑖 ∈ Γ̃𝑇 } ∩ E2)

≤
𝑣𝛾∑︁
𝑖=1
P(E1,𝑖 ∩ E2)

where E1,𝑖 = {∃ 𝑑 ≥ 0, s.t. 𝑑𝛾𝑖 ∈ Γ̃𝑇 }.

Lemma 6 leverages finite set discretization to bound the existence of a feasible
element in an infinite continuous set. The formal version of Lemma 6 is provided as
Lemma 15 in the appendix.

6The exact formulas of 𝑣𝛾 and 𝜖𝛾 are in Lemma 11.
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Lemma 7 (Construction of event 𝐺𝑖,𝑘 via stopping times (informal)). Consider F𝑡
as defined in Assumption 4. Under the conditions in Lemma 6, we construct 𝐺𝑖,𝑘 for
all 𝑖 and all 0 ≤ 𝑘 ≤ 𝑇/𝑚 − 1 by

𝐺𝑖,𝑘 =

{
𝑏𝑖,𝑘𝑚+𝐿𝑖,𝑘𝑤

𝑗𝑖,𝑘𝑚+𝐿𝑖,𝑘
𝑘𝑚+𝐿𝑖,𝑘 ≥

𝑎1𝛿

4√𝑛𝑥
− 𝑤max, and

1
𝑚

𝑚∑︁
𝑠=1

𝑧𝑘𝑚+𝑠𝑧
⊤
𝑘𝑚+𝑠 ⪰ 𝑎

2
1𝐼𝑛𝑧

}
,

where 𝑏𝑖,𝑡 , 𝑗𝑖,𝑡 are measurable in F𝑡 , and 𝐿𝑖,𝑘 is constructed as a stopping time
with respect to {F𝑘𝑚+𝑙}𝑙≥0. The formal definitions of 𝑏𝑖,𝑡 , 𝑗𝑖,𝑡 , 𝐿𝑖,𝑘 are provided in
Appendix 4.D.

Then, we have

P(E1,𝑖 ∩ E2) ≤P
(
𝑇/𝑚−1⋂
𝑘=0

𝐺𝑖,𝑘

)
≤

(
1 − 𝑞𝑤

(
𝑎1𝛿

4
√
𝑛𝑥

)) 𝑇
𝑚

The constructions of 𝐺𝑖,𝑘 and 𝐿𝑖,𝑘 in Lemma 7 are our major technical contribution.
With the constructions above, the proof can be completed by leveraging the conditional
independence property of stopping times, which is briefly discussed below. Notice
that by conditioning on the event {𝐿𝑖,𝑘 = 𝑙}, we have 𝑤𝑘𝑚+𝐿𝑖,𝑘 = 𝑤𝑘𝑚+𝑙 and 𝑤𝑘𝑚+𝑙 is
independent ofF𝑘𝑚+𝑙 . Consequently,𝑤𝑘𝑚+𝑙 is also independent of 𝑏𝑖,𝑘𝑚+𝐿𝑖,𝑘 , 𝑗𝑖,𝑘𝑚+𝐿𝑖,𝑘
conditioning on {𝐿𝑖,𝑘 = 𝑙} since 𝑏𝑖,𝑘𝑚+𝑙 , 𝑗𝑖,𝑘𝑚+𝑙 are measurable in F𝑘𝑚+𝑙 . Therefore,
the probability of 𝐺𝑖,𝑘 conditioning on {𝐿𝑖,𝑘 = 𝑙} can be bounded by the probability
distribution of 𝑤𝑡 , which enjoys good properties such as Assumption 5. More details
of the proof are in Appendix 4.D.

In conclusion, Lemma 5 follows directly from Lemma 6 and Lemma 7. Combining
Lemma 5 and Lemma 4 completes the proof of Theorem 12.

Remark 3 (Convergence rate of SME for general time series). Similar to Theorem
2.4 in [96], our results for linear dynamical systems can also be generalized to
general time series with linear responses:

𝑦𝑡 = 𝜃
★𝑧𝑡 + 𝑤𝑡 , 𝑡 ≥ 0,

where F 𝑦𝑡 = F (𝑤0, . . . , 𝑤𝑡 , 𝑧0, . . . , 𝑧𝑡), 𝑦𝑡 ∈ R𝑛𝑦 is measurable in F 𝑦𝑡 but not in F 𝑦
𝑡−1.

The SME algorithm is

Θ
𝑦

𝑇
=

𝑇−1⋂
𝑡=0
{�̂� : 𝑦𝑡 − �̂�𝑧𝑡 ∈ W}.



77

Under Assumptions 3, 4, and 5, we have

P(diam(Θ𝑦

𝑇
) > 𝛿) ≤ 𝑇

𝑚
𝑂 (𝑛2.5

𝑧 )𝑎
𝑛𝑧
2 exp(−𝑎3𝑚)

+𝑂 ((𝑛𝑦𝑛𝑧)2.5)𝑎
𝑛𝑦𝑛𝑧

4

(
1 − 𝑞𝑤

(
𝑎1𝛿

4√𝑛𝑦

)) ⌈𝑇/𝑚⌉
,

where 𝑎1, 𝑎2, 𝑎3 are defined in Theorem 12 and 𝑎4 =
4𝑏𝑧
√
𝑛𝑦

𝑎1
.

4.5 Applications to Robust Adaptive Control
Robust adaptive control usually involves two steps: updating the uncertainty set
estimation, and designing robust controllers based on the updated uncertainty set.
SME can be naturally applied to robust adaptive control as the updating rule of the
uncertainty set estimation. To illustrate this, we discuss the applications of SME
to two popular controllers, robust adaptive MPC and robust SLS. We focus on the
implications of our convergence rates.

Application of SME to robust adaptive MPC. SME has long been adopted
in the robust adaptive MPC design (see e.g., [49], [107], [117]). Despite the
regret analysis for unconstrained MPC and its variants (e.g. [128], [129]), the
non-asymptotic analysis for robust adaptive MPC remains unsolved. Applying
Theorem 12 straightforwardly, we can obtain a non-asymptotic estimation error
bound for robust adaptive MPC below, which lays a foundation for future regret
analysis. For simplicity, we consider a tight boundW is known below, but our
results for unknownW can also be applied similarly.

Corollary 15.1. Consider the robust adaptive MPC controller introduced in Example
5, where Θ𝑡 is updated by SME andW is known.7 Under the conditions of Corollary
12.1, the estimation error for any �̂�𝑇 ∈ Θ𝑇 can be bounded by ∥�̂�𝑇 −𝜃★∥𝐹 ≤ 𝑂 (

𝑛1.5
𝑥 𝑛2

𝑧

𝑇
)

with high probability.

Application of SME to robust SLS. Robust SLS has been proposed in [24] for
robust constrained control under system uncertainties [24]. Since [24] assumes
bounded disturbances, one can apply SME for the uncertainty set estimation in place
of the LSE’s confidence regions in [24]. Then, by leveraging Theorems 3.1, 4.1 in
[24] and our Theorem 12, we can directly obtain a non-asymptotic suboptimality
gap for learning-based robust SLS with SME as the uncertainty set estimation. For

7WhenW is unknown, Theorems 13-15 all apply.
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simplicity, we consider a known tight boundW, but our results for unknownW can
also be similarly applied here.

Corollary 15.2. Under the conditions in Theorem 3.1 in [24] and Corollary 12.1,
for large enough 𝑇 , we have 𝐽 (𝐴★,𝐵★,K̂)−𝐽★

𝐽★
≤ 𝑂 (𝑛1.5

𝑥 𝑛2
𝑧/𝑇), where K̂ denotes the

robust SLS controller in [24] under the uncertainty set Θ𝑇 constructed by SME,
𝐽 (𝐴★, 𝐵★, K̂) = lim𝑇→+∞ E

1
𝑇

∑𝑇−1
𝑡=0 (𝑥⊤𝑡 𝑄𝑥𝑡 + 𝑢⊤𝑡 𝑅𝑢𝑡) denotes the infinite-horizon

averaged total cost by implementing the robust SLS controller K̂, and 𝐽★ denotes the
optimal infinite-horizon averaged total cost.

4.6 Simulation
We evaluate the empirical performance of SME on various systems and applications.
For all experiments, we use the 90% confidence regions of LSE computed by Lemma
E.3 in [59] and Theorem 1 in [60] as the baseline. The details of the simulation
settings are provided in Appendix 4.I.8

Comparison of SME, SME with loose bound, UCB-SME, and LSE. This
experiment is based on the linearized longitudinal flight control dynamics of Boeing
747 as studied in recent literature on learning-based control of linear systems [17],
[130].

In Figure 4.2, we show the diameters of SME, SME with loose disturbance bounds,
and UCB-SME on the identification problem of the Boeing 747 dynamics with
i.i.d. truncated Gaussian (Figure 4.2(a)) and uniform (Figure 4.2(b)) disturbances.
We use control actions sampled from a uniform distribution in both cases. In
Figure 4.2(c), we show that both the upper bound 𝑤max used for UCB-SME and
the lower bound �̄�max in (4.4) converge to the true bound 𝑤max as 𝑇 increases. The
quantitative behaviors of SME and its variants are consistent with those predicted by
our theoretical results. In particular, in Figure 4.2(a) and Figure 4.2(b), SME and
UCB-SME outperform the 90% confidence regions of LSE in both the magnitude
and the convergence rate. In Figure 4.2(c), we verify that the UCB estimation 𝑤 (𝑇)max

converges to the true disturbance bound 𝑤max from above, while the estimation �̄� (𝑇)max

converges from below. It is worth noting that �̄� (𝑇)max converges to 𝑤max very quickly
in the simulations, allowing �̄� (𝑇)max to be another potential approximation of 𝑤max for
SME when 𝑇 is very large.

8The code to reproduce all the experimental results can be found at https://github.com/
jy-cds/non-asymptotic-set-membership.

https://github.com/jy-cds/non-asymptotic-set-membership
https://github.com/jy-cds/non-asymptotic-set-membership
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Figure 4.3: Diameters of the uncertainty sets constructed by SME, UCB-SME, and
LSE for systems with different dimensions.

Scaling with dimension. We compare the scaling of SME, SME-UCB, and LSE
with respect to the system dimensions in Figure 4.3. We use an autonomous system
𝑥𝑡+1 = 𝐴★𝑥𝑡 + 𝑤𝑡 , where 𝐴 ∈ R𝑛𝑥×𝑛𝑥 has varying 𝑛𝑥 . Disturbances 𝑤𝑡 are sampled
from a truncated Gaussian distribution and uniform distribution with 𝑤max = 2.
Surprisingly, the scaling of SME with respect to the dimension of the system is
not significantly worse than that of LSE in the simulation. This suggests that the
convergence rate in Corollary 12.1 can potentially be improved in terms of the
dimension dependence, which is left for future investigation.
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Figure 4.4: Linear quadratic tracking of robust adaptive MPC based on SME, LSE’s
confidence regions, and the accurate model (OPT).

Application to robust adaptive MPC. We provide an example of the quantitative
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impact of using SME for adaptive robust MPC in Figure 4.4. We consider the task of
constrained linear quadratic tracking problem as in [125]. The model uncertainty set
is estimated online with SME and LSE’s 90 % confidence region. Control actions are
computed using the tube-based robust MPC [131], [132] with the uncertainty sets.
We also plot the optimal MPC controller with accurate model information. Thanks
to the fast convergence of SME, the tracking performance of the tube-based robust
MPC with SME estimation quickly coincides with OPT, while the same controller
based on LSE’s confidence region estimation converges more slowly.

4.7 Conclusion
This work provides the first convergence rates for SME in linear dynamical systems
with bounded disturbances and discusses variants of SME with unknown bound
on 𝑤𝑡 . Numerical experiments demonstrate SME’s promising performance under
bounded disturbances.

Regarding future directions, this work only considers box constraints on 𝑤𝑡 , so it
is worth extending the analysis to more general constraints. In this work, we only
measure the size of the uncertainty sets by their diameters. We leave for future
work to consider other metrics, such as volume. Further, our bounds suffer poor
dependence on the system dimension, which is not reflected in simulations. Hence, it
is important to refine the bounds and discuss the fundamental limits. Another exciting
direction is to speed up the computation of SME since the current computation
complexity increases linearly with the sample size. The convergence rate of such
algorithms is an important open question. Other interesting directions include the
extensions of the SME analysis to nonlinear systems, where recent nonlinear system
identification literature [133], [134] may provide insights; and analyzing SME in the
presence of other uncertainties, e.g. measurement noises [135].

SME is a valid estimation for bounded non-stochastic disturbances [48], [100],
[101], [136]. Thus, a fruitful direction is to study SME’s convergence rates under
non-stochastic 𝑤𝑡 . Another method for uncertainty set estimation is the credible
regions of Bayesian approaches, e.g. Thompson sampling for linear systems [28],
[137] and Gaussian processes for nonlinear systems [138]. A future direction is to
study the convergence rates of credible regions.

Roadmap for the Appendix

• Section 4.A introduces additional notation used throughout the Appendix.
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• Section 4.B provides more literature review on LSE and SM, and a more
detailed discussion on the technical contributions of this chapter.

• Section 4.C provides more discussions on examples that satisfy Assumptions
4 and 5.

• Section 4.D presents the proof of Theorem 12. In particular, we provide
helper lemmas in Section 4.D and prove Lemma 4, Lemma 5 in Section 4.D
and Section 4.D respectively. A more precise upper bound for Theorem 12
(without the 𝑂 (·) notation) is provided in Appendix 4.D.

• Section 4.E presents a proof of Corollary 12.1

• Section 4.F provides a proof of Corollary 12.2.

• Section 4.G presents a proof of Theorem 13.

• Appendix 4.H provides proofs of Theorem 14, Corollary 14.1, and Theorem 15.

• Section 4.I provides details of the simulation.

4.A Additional Notations
Let S𝑛 (0, 1) denote the unit sphere in R𝑛 in 𝑙2 norm, i.e., S𝑛 (0, 1) = {𝑥 ∈ R𝑛 : ∥𝑥∥2 =

1}. Let S𝑛×𝑚 (0, 1) denote the unit sphere in R𝑛×𝑚 with respect to the Frobenius
norm, i.e., S𝑛×𝑚 (0, 1) = {𝑀 ∈ R𝑛×𝑚 : ∥𝑀 ∥𝐹 = 1}. Let �̄�𝑛 (0, 1) denote the closed
unit ball in R𝑛 in 𝑙2 norm, i.e., �̄�𝑛 (0, 1) = {𝑥 ∈ R𝑛 : ∥𝑥∥2 ≤ 1}. Let �̄�𝑛×𝑚 (0, 1)
denote the closed unit ball in R𝑛×𝑚 in Frobenius norm, i.e., �̄�𝑛×𝑚 (0, 1) = {𝑀 ∈
R𝑛×𝑚 : ∥𝑀 ∥𝐹 ≤ 1}. For a matrix 𝑀 ∈ R𝑛×𝑚, vec(𝑀) is the vectorization of 𝑀.
Moreover, we define the inverse mapping of vec(·) as mat(·), i.e., for a vector
𝑑 ∈ R𝑛𝑚, mat(𝑑) ∈ R𝑛×𝑚. Consider a 𝜎-algebra F and a random variable 𝑋 , we
write 𝑋 ∈ F if 𝑋 is measurable with respect to F , i.e., for all Borel measurable
sets 𝐵 ⊆ R, we have 𝑋−1(𝐵) ∈ F . We can similarly define F -measurable random
matrices and random vectors. Further, consider a polyhedral D = {𝑥 : 𝐴𝑥 ≤ 𝑏}, we
write D ∈ F if matrix 𝐴 and vector 𝑏 are measurable with respect to F . Consider
two symmetric matrices 𝐴, 𝐵 ∈ R𝑛×𝑛, we write 𝐴 ⪰ 𝐵 if 𝐴 − 𝐵 is a positive definite
matrix. We define min ∅ = +∞. For a set E, let 1E denote the indicator function on
E . For a vector 𝑥 ∈ R𝑛, we use 𝑥 𝑗 to denote the 𝑗 th coordinate of 𝑥. Throughout the
chapter, we use TrunGauss(0, 𝜎𝑤, [−𝑤max, 𝑤max]) to refer to the truncated Gaussian
distribution generated by Gaussian distribution with zero mean and 𝜎2

𝑤 variance
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with truncated range [−𝑤max, 𝑤max]. The same applies to multi-variate truncated
Gaussian distributions.

4.B Dicussion on Least Squares and SME
System identification studies the problem of estimating the parameters of an unknown
dynamical systems from trajectory data. There are two main classes of estimation
methods: point estimator such as least squares estimation (LSE), and set estimator
such as set membership estimation (SME). In the following, we provide more
discussions and literature review on LSE and SME. We will also discuss the major
technical novelties of this work.

Least Squares Estimation
For linear dynamical systems 𝑥𝑡+1 = 𝐴★𝑥𝑡 + 𝐵★𝑢𝑡 +𝑤𝑡 = 𝜃★𝑧𝑡 +𝑤𝑡 , given a trajectory
of data {𝑥𝑡 , 𝑢𝑡}𝑡≥0, least squares estimation generates a point estimator that minimizes
the following quadratic error [139], [140]:

�̂�LSE = min
�̂�

𝑇−1∑︁
𝑡=0
∥𝑥𝑡+1 − �̂�𝑧𝑡 ∥22.

Least-square estimation is widely used and its convergence (rate) guarantees have
been investigated for a long time. In particular, non-asymptotic convergence rate
guarantees of LSE has become increasingly important as these guarantees are the
foundations for non-asymptotic performance analysis of learning-based/adaptive
control algorithms. Earlier non-asymptotic analysis of LSE focused on the simpler
regression model 𝑦𝑡 = 𝜃★𝑥𝑡 + 𝑤𝑡 , where 𝑥𝑡 and 𝑦𝑡 are independent [141]–[143].

Recently, there is one major breakthrough in [96] that provides LSE’s convergence rate
analysis for linear dynamical system 𝑥𝑡+1 = 𝜃★𝑧𝑡 + 𝑤𝑡 , where 𝑥𝑡+1 and 𝑧𝑡 = [𝑥⊤𝑡 , 𝑢⊤𝑡 ]⊤

are correlated. More specifically, [96] establishes a fundamental property, block-
martingale small-ball (BMSB), to analyze LSE under correlated data. BMSB enables
a long list of subsequent literature on LSE’s non-asymptotic analysis for different
types of dynamical systems, e.g., [19], [95], [109], [144]–[149].

Though LSE is a point estimator, one can establish confidence region of LSE based
on proper statistical assumptions on 𝑤𝑡 . The pioneer works on the confidence
region of LSE for linear dynamical systems are [27], [60], which construct ellipsoid
confidence regions for LSE. Moreover, the non-asymptotic bounds on estimation
errors established in [24], [96] can also be viewed as confidence bounds. Further,
the estimation error 𝑂 (

√
𝑛𝑥+𝑛𝑧√
𝑇
) has been shown to match the fundamental lower
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bound for any estimation methods for unbounded disturbances in [96]. However,
these confidence bounds all rely on statistical inequalities, which may result in
loose constant factors despite an optimal convergence rate. When applying these
confidence bounds to robust control, where the controller is required to satisfy
certain stability and constraint satisfaction properties for every possible system in the
confidence region, a loose constant factor will result in a larger confidence region
and a more conservative control design. Finally, in robust control and many practical
applications, the disturbances are usually bounded, and it will be interesting to see
how the knowledge of the boundedness will improve the uncertainty set estimation.

On a side note, this chapter is also related with the ambiguity set estimation for the
transition probabilities in robust Markov decision processes [31]. There are attempts
on improving the ambiguity set estimation based on LSE for less conservative robust
MDP [31].

Set Membership Estimation
Set membership is commonly used in robust control for uncertainty set estimation
[50]–[54], [150]–[152]. There is a long history of research on SME for both
deterministic disturbances, such as [48], [100], [101], [115], [136], [153], and
stochastic disturbances, such as [112]–[115], [118]. For the stochastic disturbances,
both convergence and convergence rate analysis have been investigated under the
persistent excitation (PE) condition. However, the existing convergence rates are
only established for simpler regression problems, 𝑦𝑡 = 𝜃★𝑥𝑡 + 𝑤𝑡 , where 𝑦𝑡 and 𝑥𝑡 are
independent [112]–[115].

Recently, [118] provided an initial attempt to establish the convergence guarantee of
SME for linear dynamical systems 𝑥𝑡+1 = 𝜃★𝑧𝑡 + 𝑤𝑡 for correlated data 𝑥𝑡+1 and 𝑧𝑡 .
However, [118] assumes that PE holds deterministically, and designs a special control
design based on constrained optimization to satisfy PE deterministically. Therefore,
the convergence for general control design and the convergence rate analysis remain
open questions for correlated data arising from dynamical systems.

In this work, we establish the convergence rate guarantees of SME on linear dynamical
systems under the BMSB conditions in [96]. Compared with [118], BMSB condition
can be satisfied by adding an i.i.d. random noise to a general class of control designs
[109].

Technically, one major challenge of SME analysis compared with the LSE analysis
is that the diameter of the membership set does not have an explicit formula,
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which is in stark contrast with LSE, where the point estimator is the solution to a
quadratic program and has explicit form. A common trick to address this issue in the
analysis of SME is to connect the diameter bound with the values of disturbances
subsequences {𝑤𝑠𝑘 }𝑘≥0: it can be generally shown that a large diameter indicates
that a long subsequence of disturbances are far away from the boundary of W.
However, existing construction methods of {𝑤𝑠𝑘 }𝑘≥0 will cause the time indices
{𝑠𝑘 }𝑘≥0 to correlate with the realization of the sequences {𝑥𝑡 , 𝑢𝑡 , 𝑤𝑡}𝑡≥0 [113], [115],
[118].9 Consequently, in the correlated-data scenario and when PE does not hold
deterministically, under the existing construction methods in [113], [115], [118],
the probability of {𝑤𝑠𝑘 }𝑘≥0 with correlated time indices cannot be bounded by the
probability of the independent sequence {𝑤𝑡}𝑡≥0. One major technical contribution
of this chapter is to provide a novel construction of {𝑤𝑠𝑘 }𝑘≥0 based on a sequence of
stopping times and establish conditional independence properties despite correlated
data and stochastic PE condition (BMSB). More details can be found in Lemma 7
and the proof or Lemma 5.

Though we only consider box constraints for 𝑤𝑡 , it is worth mentioning that SME
can be applied to much more general forms of disturbances. For example, a common
alternative is the ellipsoidal-bounded disturbance whereW := {𝑤 ∈ R𝑛𝑥 : 𝑤⊤𝑃𝑤 ≤
1} with positive definite 𝑃 ∈ R𝑛𝑥×𝑛𝑥 [115], [154]–[156] and polytopic-bounded
disturbance W := {𝑤 ∈ R𝑛𝑥 : 𝐺𝑤 ≤ ℎ} for positive definite 𝐺 ∈ R𝑛𝑥×𝑛𝑥 and
ℎ ∈ R𝑛𝑥 [48], [107], [118]. There are also SME literature assuming bounded energy
of the disturbance sequences [115]. It is an interesting future direction to extend the
analysis in this chapter to more general disturbance constraints.

Further, exact SME involves the intersection of an increasing number of sets, thus
causing the computation complexity increases with time 𝑡, which can become
prohibitive when 𝑡 is large. There are many methods trying to reduce the computation
complexity by approximating the membership sets (see e.g., [101], [118], etc.). It is
an exciting future direction to study the diameter bounds of the approximated SME
methods.

Lastly, it is worthing mentioning that SME can also be applied to the uncertainty set
estimation in perception-based control [157], [158].

9In [118], the correlation between {𝑠𝑘}𝑘≥0 and {𝑥𝑡 , 𝑢𝑡 , 𝑤𝑡 }𝑡≥0 is via the PE condition, but [118]
assume deterministic PE to avoid this correlation issue.
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4.C Discussion on Assumptions
Assumption 4
The BMSB condition has been widely used in learning-based control. It has
been shown that BMSB can be satisfied in many scenarios. For example, [96],
[120] showed that linear systems with i.i.d. perturbed linear control policies, i.e.,
𝑥𝑡+1 = 𝐴𝑥𝑡 + 𝐵(𝐾𝑥𝑡 + 𝜂𝑡) + 𝑤𝑡 ,10 satisfy BMSB if the disturbances 𝑤𝑡 and 𝜂𝑡 are
i.i.d. and follow Gaussian distributions with positive definite covariance matrices.
Later, [24] showed that 𝑥𝑡+1 = 𝐴𝑥𝑡 + 𝐵(𝐾𝑥𝑡 + 𝜂𝑡) + 𝑤𝑡 can still satisfy BMSB even
for non-Gaussian distributions of 𝑤𝑡 , 𝜂𝑡 , as long as 𝑤𝑡 and 𝜂𝑡 have independent
coordinates and finite fourth moments. Recently, [109] extended the results to linear
systems with nonlinear policies, i.e., 𝑥𝑡+1 = 𝐴𝑥𝑡 +𝐵(𝜋𝑡 (𝑥𝑡) +𝜂𝑡) +𝑤𝑡 , and showed that
BMSB still holds as long as the nonlinear policies 𝜋𝑡 generate bounded trajectories
of states and control inputs, and 𝑤𝑡 , 𝜂𝑡 are bounded and follow distributions with
certain anti-concentrated properties (a special case is positive definite covariance
matrix).

Assumption 5
In this subsection, we provide two example distributions, truncated Gaussian and
uniform distributions, and discuss their corresponding 𝑞𝑤 (𝜖) functions. It will be
shown that for both distributions below, 𝑞𝑤 (𝜖) = 𝑂 (𝜖).

Lemma 8 (Example of uniform distribution). Consider 𝑤𝑡 that follows a uniform
distribution on [−𝑤max, 𝑤max]𝑛𝑥 . Then, 𝑞𝑤 (𝜖) = 𝜖

2𝑤max
.

Proof. Since Unif(W) is symmetric, we only need to consider one direction 𝑗 = 1.

P(𝑤 𝑗 + 𝑤max ≤ 𝜖) =
∫
𝑤1+𝑤max≤𝜖

∫
𝑤2,...,𝑤𝑛𝑥 ∈[−𝑤max,𝑤max]

1
(2𝑤max)𝑛𝑥

1(𝑤∈W) d𝑤

=

∫
𝑤1≤𝜖−𝑤max

1
2𝑤max

1(𝑤∈W)d𝑤1 =
𝜖

2𝑤max

Similarly, P(𝑤max − 𝑤1 ≤ 𝜖) =
∫
𝑤1≥𝑤max−𝜖

1
2𝑤max

1(𝑤∈W)𝑑𝑤
1 = 𝜖

2𝑤max
. □

Lemma 9 (Example of truncated Gaussian distribution). Consider 𝑤𝑡 follows a trun-
cated Gaussian distribution on [−𝑤max, 𝑤max]𝑛𝑥 generated by a Gaussian distribution
with zero mean and𝜎𝑤 𝐼𝑛𝑥 covariance matrix. Then, 𝑞𝑤 (𝜖) = 1

min(
√

2𝜋𝜎𝑤 ,2𝑤max)
exp( −𝑤

2
max

2𝜎2
𝑤
)𝜖 .

10Though we only describe a static linear policy 𝑢𝑡 = 𝐾𝑥𝑡 here, the results in [24], [96], [120]
hold for dynamic linear policies.
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Proof. Since this distribution is symmetric and each coordinate is independent, we
only need to consider one direction 𝑗 . Let 𝑋 denote a Gaussian distribution with
zero mean and 𝜎2

𝑤 variance. By the definition of truncated Gaussian distributions,
we have

P(𝑤 𝑗 + 𝑤max ≤ 𝜖) =
P(−𝑤max ≤ 𝑋 ≤ −𝑤max + 𝜖)
P(−𝑤max ≤ 𝑋 ≤ 𝑤max)

.

Notice that 𝑋/𝜎𝑤 follows the standard Gaussian distribution, so we can obtain the
following bounds,

P(−𝑤max ≤ 𝑋 ≤ −𝑤max + 𝜖) =
∫ (−𝑤max+𝜖)/𝜎𝑤

−𝑤max/𝜎𝑤

1
√

2𝜋
exp(− 𝑧

2

2
) d𝑧

≥ 1
√

2𝜋
exp(−𝑤2

max/(2𝜎2
𝑤))

𝜖

𝜎𝑤

and

P(−𝑤max ≤ 𝑋 ≤ 𝑤max) =
∫ 𝑤max/𝜎𝑤

−𝑤max/𝜎𝑤

1
√

2𝜋
exp(− 𝑧

2

2
) d𝑧

≤ min(1, 1
√

2𝜋
2𝑤max
𝜎𝑤
) .

Therefore, we obtain

P(𝑤 𝑗 + 𝑤max ≤ 𝜖) =
P(−𝑤max ≤ 𝑋 ≤ −𝑤max + 𝜖)
P(−𝑤max ≤ 𝑋 ≤ 𝑤max)

≥ max( 1
√

2𝜋
exp(−𝑤2

max/𝜎2
𝑤)

𝜖

𝜎𝑤
,

𝜖

2𝑤max
exp(
−𝑤2

max

2𝜎2
𝑤

))

=
1

min(
√

2𝜋𝜎𝑤, 2𝑤max)
exp(
−𝑤2

max

2𝜎2
𝑤

)𝜖 .

Finally, P(𝑤max − 𝑤1 ≤ 𝜖) can be bounded similarly. □

Lemma 10 (Example of uniform distribution on the boundary ofW (a generalization
of Rademacher distribution)). Consider 𝑤𝑡 follows a uniform distribution on {𝑤 :
∥𝑤∥∞ = 𝑤max}. Then 𝑞𝑤 (𝜖) = 1

2𝑛𝑥 .

Proof. Since the hyper-cube {𝑤 : ∥𝑤∥∞ = 𝑤max} has 2𝑛𝑥 facets, the probability on
each facet is 1

2𝑛𝑥 . Therefore, P(𝑤 𝑗 ≤ 𝜖 − 𝑤max) ≥ P(𝑤 𝑗 = −𝑤max) = 1
2𝑛𝑥 for all 𝑗 .

The same applies to P(𝑤 𝑗 ≥ −𝜖 + 𝑤max). □
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4.D Proof of Theorem 12
The section provides more details for the proof of Theorem 12. In particular, we first
provide technical lemmas for set discretization, then prove Lemma 4 and Lemma 5
respectively. The proof of Theorem 12 follows naturally by combining Lemma 4 and
Lemma 5.

Technical Lemmas: Set Discretization
This subsection provide useful technical lemmas for the proofs of Lemma 4 and
Lemma 5. The results are based on a finite-ball covering result that is classical in the
literature [159] [160].

Theorem 16 (Theorem 1.1 and 1.2 in [160] and Theorem 2 in [159] (revised to match
the setting of this chapter)). Consider a closed ball B̄𝑛 (0, 1) = {𝑥 ∈ R𝑛 : ∥𝑥∥2 ≤ 1}
in 𝑙2 norm. Considering covering this ball B̄𝑛 (0, 1) with smaller closed balls B̄𝑛 (𝑧, 𝜖)
for 𝑧 ∈ R𝑛. Let 𝑣𝜖,𝑛 denote the minimal number of smaller balls needed to cover
B̄𝑛 (0, 1). For 𝑛 ≥ 1 and 0 < 𝜖 < 1/2, we have

𝑣𝜖,𝑛 ≤ 544𝑛2.5 log(𝑛/𝜖) (1
𝜖
)𝑛

Proof. Theorem 1.1 and 1.2 in [160] and Theorem 2 in [159] discuss the upper
bounds of 𝑣𝜖,𝑛 in several different cases. These upper bounds in these different cases
are unified by the upper bound in the theorem above by algebraic manipulations. □

We apply Theorem 16 to obtain the number of covering balls in the two settings below.
These two settings will be considered in the proofs of Lemma 4 and 5 respectively.

Corollary 16.1. There exists a finite setM′ = {𝜆1, . . . , 𝜆𝑣𝜆} ⊆ S𝑛𝑧 (0, 1) such that
for any 𝜆 ∈ R𝑛𝑧 with ∥𝜆∥2 = 1, there exists 𝜆𝑖 ∈ M′ such that ∥𝜆 − 𝜆𝑖∥2 ≤ 2𝜖𝜆.

In the following, we consider 𝜖𝜆 = 𝜎2
𝑧 𝑝

2
𝑧/(64𝑏2

𝑧 ) = 1/𝑎2. Notice that 𝜖𝜆 < 1/2.
Accordingly,

𝑣𝜆 ≤ 544𝑛2.5
𝑧 log(𝑎2𝑛𝑧)𝑎𝑛𝑧2 . (4.7)

Proof. 𝜖𝜆 ≤ 1/64 < 1/2 because 𝑝𝑧 ≤ 1 and 𝜎𝑧 ≤ 𝑏𝑧 by the definitions of BMSB
and 𝑏𝑧. Then, the bound on 𝑣𝜆 follows from Theorem 16. □

Lemma 11. There exists a finite setM = {𝛾1, . . . , 𝛾𝑣𝛾 } ⊆ S𝑛𝑥×𝑛𝑧 (0, 1) such that
for any 𝛾 ∈ R𝑛𝑥×𝑛𝑧 and ∥𝛾∥𝐹 = 1, there exists 𝛾𝑖 ∈ M such that ∥𝛾 − 𝛾𝑖∥𝐹 ≤ 2𝜖𝛾.
Consider 𝜖𝛾 = 𝑎1

4𝑏𝑧
√
𝑛𝑥

= 1/𝑎4. Notice that 𝜖𝛾 < 1/2. Accordingly,

𝑣𝛾 ≤ 544𝑛2.5
𝑥 𝑛2.5

𝑧 log(𝑎4𝑛𝑥𝑛𝑧)𝑎𝑛𝑧𝑛𝑥4 .
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Proof. The proof is basically by mapping the matrices to vectors based on matrix
vectorization, then mapping the vectors back to matrices. These two mappings are
isomorphism.

Specifically, consider a closed unit ball in R𝑛𝑥𝑛𝑧 . There exist 𝑣𝜖,𝑛𝑥𝑛𝑧 smaller
closed balls to cover it, denoted by B1, . . . ,B𝑣 𝜖 ,𝑛𝑥𝑛𝑧 . Consider the non-empty
sets from B1 ∩ S𝑛𝑥𝑛𝑧 (0, 1), . . . ,B𝑣 𝜖 ,𝑛𝑥𝑛𝑧 ∩ S𝑛𝑥𝑛𝑧 (0, 1). For any 1 ≤ 𝑖 ≤ 𝑣𝜖,𝑛𝑥𝑛𝑧 ,
if B𝑖 ∩ S𝑛𝑥𝑛𝑧 (0, 1) ≠ ∅, select a point vec(𝛾) ∈ B𝑖 ∩ S𝑛𝑥𝑛𝑧 (0, 1). Notice that
∥vec(𝛾)∥2 = 1. In this way, we construct a finite sequence {vec(𝛾1), . . . , vec(𝛾𝑣𝛾 )}
where 𝑣𝛾 ≤ 𝑣𝜖𝛾 ,𝑛𝑥𝑛𝑧 .11

For any 𝛾 ∈ R𝑛𝑥×𝑛𝑧 , we have vec(𝛾) ∈ R𝑛𝑥𝑛𝑧 and ∥vec(𝛾)∥2 = 1. Hence, there exists
1 ≤ 𝑖 ≤ 𝑣𝛾 such that vec(𝛾) ∈ B𝑖 ∩ S𝑛𝑥𝑛𝑧 (0, 1). Hence, ∥vec(𝛾) − vec(𝛾𝑖)∥2 ≤ 2𝜖𝛾.
Moreover, ∥𝛾𝑖∥𝐹 = ∥vec(𝛾𝑖)∥2 = 1. Therefore, ∥𝛾𝑖 − 𝛾∥𝐹 ≤ 2𝜖𝛾. So the set
M = {𝛾1, . . . , 𝛾𝑣𝛾 } satisfies our requirement. □

Proof of Lemma 4
Essentially, Lemma 4 shows that PE holds with high probability under the BMSB
condition. This result has been established in Proposition 2.5 in [96], though in a
different form. The rest of this subsection will prove the PE condition needed in this
chapter based on Proposition 2.5 in [96].

Firstly, we review Proposition 2.5 in [96] for the convenience of the reader.

Theorem 17 (Proposition 2.5 in [96] when 𝑘 = 1). Let {𝑍𝑡}𝑡≥1 be an {F 𝑍𝑡 }𝑡≥1-
adapted random process taking values in R. 𝑍0 is given. If {𝑍𝑡}𝑡≥0 is (1, 𝑣, 𝑝)-BMSB,
then

P(
𝑇∑︁
𝑡=1

𝑍2
𝑡 ≤ 𝑣2𝑝2𝑇/8) ≤ exp(−𝑇 𝑝2/8)

Next, we prove the PE in one segment of data sequence.

Lemma 12 (Probability of PE in one segment). For any 𝑚 ≥ 1, for any 𝑘 ≥ 0, we
have

P(
𝑘𝑚+𝑚∑︁
𝑡=𝑘𝑚+1

𝑧𝑡𝑧
⊤
𝑡 ≻ (𝜎2

𝑧 𝑝
2
𝑧𝑚/16)𝐼𝑛𝑧 | F𝑘𝑚) ≥ 1 − 𝑣𝜆 exp(−𝑚𝑝2

𝑧/8))

11Here, without loss of generality, we consider B1 ∩ S𝑛𝑥𝑛𝑧 (0, 1), . . . ,B𝑣𝛾 ∩ S𝑛𝑥𝑛𝑧 (0, 1) are not
empty.
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Proof. ConsiderM′ = {𝜆1, . . . , 𝜆𝑣𝜆} defined in Corollary 16.1. For any 𝜆𝑖 ∈ M′,
𝜆⊤
𝑖
𝑧𝑡 satisfies the (1, 𝜎𝑧, 𝑝𝑧)-BMSB condition. Therefore, by Theorem 17, we have

P(
𝑇∑︁
𝑡=1

𝜆⊤𝑖 𝑧𝑡𝑧
⊤
𝑡 𝜆𝑖 ≤ 𝜎2

𝑧 𝑝
2
𝑧𝑇/8) ≤ exp(−𝑇 𝑝2

𝑧/8).

Notice that the horizon length 𝑇 is arbitrary and the starting stage 𝑡 = 1 can also
be different because we consider a time-invariant dynamical system in this chapter.
Therefore, for any 𝑚 ≥ 1, 𝑘 ≥ 0, for any 𝜆𝑖 ∈ M′, we have

P(
𝑚∑︁
𝑖=1

𝜆⊤𝑖 𝑧𝑘𝑚+𝑖𝑧
⊤
𝑘𝑚+𝑖𝜆𝑖 ≤ 𝜎

2
𝑧 𝑝

2
𝑧𝑚/8 | F𝑘𝑚) ≤ exp(−𝑚𝑝2

𝑧/8),

where we condition on F𝑘𝑚 to make sure 𝑧𝑘𝑚 is known under F𝑘𝑚, which is required
by Theorem 17.

For arbitrary 𝜆 such that ∥𝜆∥2 = 1, there exists 𝜆𝑖 ∈ M′ such that ∥𝜆 − 𝜆′∥2 ≤ 2𝜖𝜆.
Therefore, we can bound

∑𝑘𝑚+𝑚
𝑡=𝑘𝑚+1 𝜆

⊤𝑧𝑡𝑧⊤𝑡 𝜆 by
∑𝑘𝑚+𝑚
𝑡=𝑘𝑚+1 𝜆

⊤
𝑖
𝑧𝑡𝑧
⊤
𝑡 𝜆𝑖.

𝑘𝑚+𝑚∑︁
𝑡=𝑘𝑚+1

𝜆⊤𝑧𝑡𝑧
⊤
𝑡 𝜆 =

𝑘𝑚+𝑚∑︁
𝑡=𝑘𝑚+1

𝜆⊤𝑖 𝑧𝑡𝑧
⊤
𝑡 𝜆𝑖 +

𝑘𝑚+𝑚∑︁
𝑡=𝑘𝑚+1

(𝜆 + 𝜆𝑖)⊤𝑧𝑡𝑧⊤𝑡 (𝜆 − 𝜆𝑖)

≥
𝑘𝑚+𝑚∑︁
𝑡=𝑘𝑚+1

𝜆⊤𝑖 𝑧𝑡𝑧
⊤
𝑡 𝜆𝑖 −

𝑘𝑚+𝑚∑︁
𝑡=𝑘𝑚+1

∥𝜆 + 𝜆𝑖∥2∥𝑧𝑡 ∥22∥𝜆𝑖 − 𝜆∥2

(𝑎)
≥

𝑘𝑚+𝑚∑︁
𝑡=𝑘𝑚+1

𝜆⊤𝑖 𝑧𝑡𝑧
⊤
𝑡 𝜆𝑖 −

𝑘𝑚+𝑚∑︁
𝑡=𝑘𝑚+1

4𝑏2
𝑧𝜖𝜆

=

𝑘𝑚+𝑚∑︁
𝑡=𝑘𝑚+1

𝜆⊤𝑖 𝑧𝑡𝑧
⊤
𝑡 𝜆𝑖 − 4𝑏2

𝑧𝜖𝜆𝑚
(𝑏)
≥

𝑘𝑚+𝑚∑︁
𝑡=𝑘𝑚+1

𝜆⊤𝑖 𝑧𝑡𝑧
⊤
𝑡 𝜆𝑖 − 𝜎2

𝑧 𝑝
2
𝑧𝑚/16 ,

where (𝑎) is by Assumption 4, ∥𝜆 − 𝜆𝑖∥2 ≤ 2𝜖𝜆, and ∥𝜆∥2 = ∥𝜆𝑖∥2 = 1; and (𝑏) is
by choosing 𝜖𝜆 ≤ 𝜎2

𝑧 𝑝
2
𝑧/(64𝑏2

𝑧 ).

Therefore, by the definition of positive definiteness and the inequalities above, we
can complete the proof by the following:

P(
𝑘𝑚+𝑚∑︁
𝑡=𝑘𝑚+1

𝑧𝑡𝑧
⊤
𝑡 ≻ (𝜎2

𝑧 𝑝
2
𝑧𝑚/16)𝐼𝑛𝑧 | F𝑘𝑚) = P(∀ ∥𝜆∥2 = 1,

𝑘𝑚+𝑚∑︁
𝑡=𝑘𝑚+1

𝜆⊤𝑧𝑡𝑧
⊤
𝑡 𝜆 > 𝜎

2
𝑧 𝑝

2
𝑧𝑚/16 | F𝑘𝑚)

≥ P(∀1 ≤ 𝑖 ≤ 𝑣𝜆,
𝑘𝑚+𝑚∑︁
𝑡=𝑘𝑚+1

𝜆⊤𝑖 𝑧𝑡𝑧
⊤
𝑡 𝜆𝑖 > 𝜎

2
𝑧 𝑝

2
𝑧𝑚/8 | F𝑘𝑚)

≥ 1 −
𝑣𝜆∑︁
𝑖=1
P(

𝑘𝑚+𝑚∑︁
𝑡=𝑘𝑚+1

𝜆⊤𝑖 𝑧𝑡𝑧
⊤
𝑡 𝜆𝑖 ≤ 𝜎2

𝑧 𝑝
2
𝑧𝑚/8 | F𝑘𝑚)
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≥ 1 − 𝑣𝜆 exp(−𝑚𝑝2
𝑧/8)),

which completes the proof. □

Now, we are ready for the proof of Lemma 4.

Proof of Lemma 4. Recall that E2 = { 1
𝑚

∑𝑚
𝑠=1 𝑧𝑘𝑚+𝑠𝑧

⊤
𝑘𝑚+𝑠 ⪰ 𝑎2

1𝐼𝑛𝑧 , ∀0 ≤ 𝑘 ≤
⌈𝑇/𝑚⌉ − 1}, where 𝑎1 = 𝜎𝑧𝑝𝑧/4. Hence

E2 =

𝑇/𝑚−1⋂
𝑘=0
{
𝑘𝑚+𝑚∑︁
𝑡=𝑘𝑚+1

𝑧𝑡𝑧
⊤
𝑡 ≻ (𝜎2

𝑧 𝑝
2
𝑧𝑚/16)𝐼𝑛𝑧 }.

Therefore,

P(E2) ≥ 1 −
𝑇/𝑚−1∑︁
𝑘=0
P(

𝑘𝑚+𝑚∑︁
𝑡=𝑘𝑚+1

𝑧𝑡𝑧
⊤
𝑡 ⪯ (𝜎2

𝑧 𝑝
2
𝑧𝑚/16)𝐼𝑛𝑧 )

≥ 1 − 𝑇
𝑚
𝑣𝜆 exp(−𝑚𝑝2

𝑧/8)

= 1 − 𝑇
𝑚
(544𝑛2.5

𝑧 log(𝑎2𝑛𝑧)𝑎𝑛𝑧2 ) exp(−𝑚𝑝2
𝑧/8),

where we use Lemma 12 and the fact that if P(∑𝑘𝑚+𝑚
𝑡=𝑘𝑚+1 𝑧𝑡𝑧

⊤
𝑡 ⪯ (𝜎2

𝑧 𝑝
2
𝑧𝑚/16)𝐼𝑛𝑧 |

F𝑘𝑚) ≤ 𝑣𝜆 exp(−𝑚𝑝2
𝑧/8)), thenP(∑𝑘𝑚+𝑚

𝑡=𝑘𝑚+1 𝑧𝑡𝑧
⊤
𝑡 ⪯ (𝜎2

𝑧 𝑝
2
𝑧𝑚/16)𝐼𝑛𝑧 ) ≤ 𝑣𝜆 exp(−𝑚𝑝2

𝑧/8)).
□

Proof of Lemma 5
This proof takes four major steps:

(i) Define 𝑏𝑖,𝑡 , 𝑗𝑖,𝑡 , 𝐿𝑖,𝑘 .

(ii) Provide a formal definition of E1,𝑘 based on 𝑏𝑖,𝑡 , 𝑗𝑖,𝑡 , 𝐿𝑖,𝑘 and prove a formal
version of Lemma 6.

(iii) Prove Lemma 7.

(iv) Prove Lemma 5 by the formal version of Lemma 6 and Lemma 7.

It is worth mentioning that the formal definition of E1,𝑘 is slightly different from the
definition in Lemma 6, but we still have P(E1 ∩ E2) ≤

∑𝑣𝛾

𝑖=1 P(E1,𝑘 ∩ E2), which is
the key property that will be used in the proof of Lemma 5.
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Step (i): definitions of 𝑏𝑖,𝑡 , 𝑗𝑖,𝑡 , 𝐿𝑖,𝑘 .

Recall the discretization of S𝑛𝑥×𝑛𝑧 (0, 1) in Lemma 11, which generates the set
M = {𝛾1, . . . , 𝛾𝑣𝛾 }. We are going to define 𝑏𝑖,𝑡 , 𝑗𝑖,𝑡 , 𝐿𝑖,𝑘 for 𝛾𝑖 ∈ M for each
1 ≤ 𝑖 ≤ 𝑣𝛾. Notice thatM is a deterministic set of matrices.

Lemma 13 (Definition of 𝑏𝑖,𝑡 , 𝑗𝑖,𝑡). For any 𝛾𝑖 ∈ M, any 0 ≤ 𝑡 ≤ 𝑇 , there exist
𝑏𝑖,𝑡 ∈ {−1, 1} and 1 ≤ 𝑗𝑖,𝑡 ≤ 𝑛𝑥 such that 𝑏𝑖,𝑡 , 𝑗𝑖,𝑡 ∈ F (𝑧𝑡) ⊆ F𝑡 and

∥𝛾𝑖𝑧𝑡 ∥∞ = 𝑏𝑖,𝑡 (𝛾𝑖𝑧𝑡) 𝑗𝑖,𝑡 .

Note that one way to determine 𝑏𝑖,𝑡 , 𝑗𝑖,𝑡 from 𝑧𝑡 is by the following: first pick the
smallest 𝑗 such that | (𝛾𝑖𝑧𝑡) 𝑗 | = ∥𝛾𝑖𝑧𝑡 ∥∞, then let 𝑏𝑖,𝑡 = sgn((𝛾𝑖𝑧𝑡) 𝑗 ), where sgn(·)
denotes the sign of a scalar argument.

Proof. For any 𝛾𝑖 ∈ M, any 0 ≤ 𝑡 ≤ 𝑇 , we have

∥𝛾𝑖𝑧𝑡 ∥∞ = max
1≤ 𝑗≤𝑛𝑥

max
𝑏∈{−1,1}

𝑏(𝛾𝑖𝑧𝑡) 𝑗 .

Hence, there exist 𝑏𝑖,𝑡 , 𝑗𝑖,𝑡 such that ∥𝛾𝑖𝑧𝑡 ∥∞ = 𝑏𝑖,𝑡 (𝛾𝑖𝑧𝑡) 𝑗𝑖,𝑡 . Further, 𝑏𝑖,𝑡 , 𝑗𝑖,𝑡 only
depend on 𝛾𝑖 and 𝑧𝑡 , so they are F (𝑧𝑡)-measurable, and F (𝑧𝑡) ⊆ F𝑡 . □

Lemma 14 (Definition of stopping times 𝐿𝑖,𝑘). Let 𝜂 =
𝑎1√
𝑛𝑥

. For any 𝛾𝑖 ∈ M, any
0 ≤ 𝑘 ≤ 𝑇/𝑚 − 1, we can define a random time index 1 ≤ 𝐿𝑖,𝑘 ≤ 𝑚 + 1 by

𝐿𝑖,𝑘 = min(𝑚 + 1,min{𝑙 ≥ 1 : ∥𝛾𝑖𝑧𝑘𝑚+𝑙 ∥∞ ≥ 𝜂}).

Then, we have 1 ≤ 𝐿𝑖,𝑘 ≤ 𝑚 + 1. Further, for any 1 ≤ 𝑙 ≤ 𝑚, {𝐿𝑖,𝑘 = 𝑙} ∈ F𝑘𝑚+𝑙 ,
and {𝐿𝑖,𝑘 = 𝑚 + 1} ∈ F𝑘𝑚+𝑚 ⊆ F𝑘𝑚+𝑚+1. In other words, 𝐿𝑖,𝑘 is a stopping time with
respect to filtration {𝐹𝑘𝑚+𝑙}𝑙≥1.

Proof. For any 𝑖 and any 𝑘 , it is straightforward to see that 𝐿𝑖,𝑘 is well-defined and
1 ≤ 𝐿𝑖,𝑘 ≤ 𝑚 + 1.

When 𝐿𝑖,𝑘 = 𝑙 ≤ 𝑚, this is equivalent with ∥𝛾𝑖𝑧𝑘𝑚+𝑙 ∥∞ ≥ 𝜂 but ∥𝛾𝑖𝑧𝑘𝑚+𝑠∥ < 𝜂

for 1 ≤ 𝑠 < 𝑙. Notice that this event is only determined by 𝑧𝑘𝑚+𝑙 , . . . , 𝑧𝑘𝑚+1, so
{𝐿𝑖,𝑘 = 𝑙} ∈ F𝑘𝑚+𝑙 .

When 𝐿𝑖,𝑘 = 𝑚 + 1, this is equivalent with ∥𝛾𝑖𝑧𝑘𝑚+𝑠∥ < 𝜂 for 1 ≤ 𝑠 ≤ 𝑚. Notice that
this event is only determined by 𝑧𝑘𝑚+𝑚, . . . , 𝑧𝑘𝑚+1, so {𝐿𝑖,𝑘 = 𝑚 + 1} ∈ F𝑘𝑚+𝑚.

Therefore, by definition, 𝐿𝑖,𝑘 is a stopping time with respect to filtration {F𝑘𝑚+𝑙}𝑙≥1.
□
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Step (ii): a formal version of Lemma 6 and its proof

Lemma 15 (Discretization of E1 ∩ E2 (Formal version of Lemma 6)). LetM =

{𝛾1, . . . , 𝛾𝑣𝛾 } be an 𝜖𝛾-net of {𝛾 : ∥𝛾∥𝐹 = 1} as defined in Lemma 11, where
𝜖𝛾 = min( 𝑎1

4𝑏𝑧
√
𝑛𝑥
, 1), 𝑣𝛾 = 𝑂 (𝑛2.5

𝑥 𝑛2.5
𝑧 )𝑎

𝑛𝑥𝑛𝑧
4 , and 𝑎4 =

4𝑏𝑧
√
𝑛𝑥

𝑎1
. Define

E1,𝑖 = {∃ 𝛾 ∈ Γ𝑇 , s.t. 𝑏𝑖,𝑘𝑚+𝐿𝑖,𝑘 (𝛾𝑧𝑘𝑚+𝐿𝑖,𝑘 )
𝑗𝑖,𝑘𝑚+𝐿𝑖,𝑘 ≥ 𝑎1𝛿

4
√
𝑛𝑥
, ∀ 𝑘 ≥ 0}.

Then, we have

P(E1 ∩ E2) ≤
𝑣𝛾∑︁
𝑖=1
P(E1,𝑖 ∩ E2).

The rest of this subsubsection is dedicated to the proof of Lemma 15. As an
overview: firstly, we will discuss the implications of E2 on 𝛾𝑖 ∈ M. Then, we
discuss the implications of E2 on any 𝛾. Lastly, we prove Lemma 15 by combining
the implications of E2 on any 𝛾 and ∥𝛾∥𝐹 ≥ 𝛿/2.

Lemma 16 (The implication of E2 on 𝛾𝑖). If E2 happens, then for any 𝛾𝑖 ∈ M, any
0 ≤ 𝑘 ≤ 𝑇/𝑚 − 1, we have

max
1≤𝑠≤𝑚

∥𝛾𝑖𝑧𝑘𝑚+𝑠∥∞ ≥
𝑎1√
𝑛𝑥
.

Therefore, almost surely, we have 1 ≤ 𝐿𝑖,𝑘 ≤ 𝑚 and

𝑏𝑖,𝑘𝑚+𝐿𝑖,𝑘 (𝛾𝑖𝑧𝑘𝑚+𝐿𝑖,𝑘 )
𝑗𝑖,𝑘𝑚+𝐿𝑖,𝑘 ≥ 𝑎1√

𝑛𝑥
.

Proof. If E2 happens, then by definition, we have

1
𝑚

𝑚∑︁
𝑠=1

𝑧𝑘𝑚+𝑠𝑧
⊤
𝑘𝑚+𝑠 ⪰ 𝑎

2
1𝐼𝑛𝑧 ,

for all 0 ≤ 𝑘 ≤ 𝑇/𝑚 − 1.

Now, for any 𝛾𝑖 ∈ M, we have that

1
𝑚

𝑚∑︁
𝑠=1

𝛾𝑖𝑧𝑘𝑚+𝑠𝑧
⊤
𝑘𝑚+𝑠𝛾

⊤
𝑖 ⪰ 𝑎2

1𝛾𝑖𝛾
⊤
𝑖 . (4.8)

Therefore, by taking trace at each side of (4.8), we obtain

1
𝑚

𝑚∑︁
𝑠=1

tr(𝛾𝑖𝑧𝑘𝑚+𝑠𝑧⊤𝑘𝑚+𝑠𝛾
⊤
𝑖 ) ≥ 𝑎2

1tr(𝛾𝑖𝛾⊤𝑖 ) . (4.9)
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Since 𝛾𝑖 ∈ S𝑛𝑥×𝑛𝑧 (0, 1), we have ∥𝛾𝑖∥𝐹 = 1, so tr(𝛾𝑖𝛾⊤𝑖 ) = tr(𝛾⊤
𝑖
𝛾𝑖) = ∥𝛾𝑖∥2𝐹 = 1.

Further, we have

tr(𝛾𝑖𝑧𝑘𝑚+𝑠𝑧⊤𝑘𝑚+𝑠𝛾
⊤
𝑖 ) = tr(𝑧⊤𝑘𝑚+𝑠𝛾

⊤
𝑖 𝛾𝑖𝑧𝑘𝑚+𝑠) = 𝑧⊤𝑘𝑚+𝑠𝛾

⊤
𝑖 𝛾𝑖𝑧𝑘𝑚+𝑠 = ∥𝛾𝑖𝑧𝑘𝑚+𝑠∥22.

Consequently, we have
1
𝑚

𝑚∑︁
𝑠=1
∥𝛾𝑖𝑧𝑘𝑚+𝑠∥22 ≥ 𝑎

2
1

for all 𝑘 .

By the pigeonhole principle, we have that

max
1≤𝑠≤𝑚

∥𝛾𝑖𝑧𝑘𝑚+𝑠∥22 ≥ 𝑎
2
1.

This is equivalent with max1≤𝑠≤𝑚 ∥𝛾𝑖𝑧𝑘𝑚+𝑠∥2 ≥ 𝑎1.

Notice that ∥𝛾𝑖𝑧𝑘𝑚+𝑠∥2 ≤
√
𝑛𝑥 ∥𝛾𝑖𝑧𝑘𝑚+𝑠∥∞, so max1≤𝑠≤𝑚

√
𝑛𝑥 ∥𝛾𝑖𝑧𝑘𝑚+𝑠∥∞ ≥ 𝑎1,

which completes the proof of the first inequality in the lemma statement.

Next, we prove the second inequality in the lemma statement. Notice that by
the definition of 𝐿𝑖,𝑘 in Lemma 14 and by 𝜂 =

𝑎1√
𝑛𝑥

, we have 1 ≤ 𝐿𝑖,𝑘 ≤ 𝑚 and
∥𝛾𝑖𝑧𝑘𝑚+𝐿𝑖,𝑘 ∥∞ ≥

𝑎1√
𝑛𝑥

for all 𝑘 . Further, by Lemma 13, we have ∥𝛾𝑖𝑧𝑘𝑚+𝐿𝑖,𝑘 ∥∞ =

𝑏𝑖,𝑘𝑚+𝐿𝑖,𝑘 (𝛾𝑖𝑧𝑘𝑚+𝐿𝑖,𝑘 )
𝑗𝑖,𝑘𝑚+𝐿𝑖,𝑘 almost surely. Hence, we have 𝑏𝑖,𝑘𝑚+𝐿𝑖,𝑘 (𝛾𝑖𝑧𝑘𝑚+𝐿𝑖,𝑘 )

𝑗𝑖,𝑘𝑚+𝐿𝑖,𝑘 ≥
𝑎1√
𝑛𝑥

, which completes the proof.

□

Lemma 17 (The implication of E2 on 𝛾𝑧𝑡). If E2 happens, then for any 𝛾 ∈ R𝑛𝑥×𝑛𝑧 ,
there exists 1 ≤ 𝑖 ≤ 𝑣𝛾, such that

𝑏𝑖,𝑘𝑚+𝐿𝑖,𝑘 (𝛾𝑧𝑘𝑚+𝐿𝑖,𝑘 )
𝑗𝑖,𝑘𝑚+𝐿𝑖,𝑘 ≥ 𝑎1

2
√
𝑛𝑥
∥𝛾∥𝐹 ,

for all 0 ≤ 𝑘 ≤ 𝑇/𝑚 − 1.

Proof. Firstly, when 𝛾 = 0, the inequality holds because both sides are 0.

Next, when 𝛾 ≠ 0, it suffices to prove 𝑏𝑖,𝑘𝑚+𝐿𝑖,𝑘 (
𝛾

∥𝛾∥𝐹 𝑧𝑘𝑚+𝐿𝑖,𝑘 )
𝑗𝑖,𝑘𝑚+𝐿𝑖,𝑘 ≥ 𝑎1

2
√
𝑛𝑥

.
Therefore, we will only consider 𝛾 ∈ S𝑛𝑥×𝑛𝑧 (0, 1). By Lemma 11, there exists
𝛾𝑖 ∈ M such that ∥𝛾 − 𝛾𝑖∥𝐹 ≤ 2𝜖𝛾 = min( 𝑎1

2𝑏𝑧
√
𝑛𝑥
, 2). Notice that by Lemma 16, if

E2 happens, for all 𝑘 , we have

𝑏𝑖,𝑘𝑚+𝐿𝑖,𝑘 (𝛾𝑖𝑧𝑘𝑚+𝐿𝑖,𝑘 )
𝑗𝑖,𝑘𝑚+𝐿𝑖,𝑘 ≥ 𝑎1√

𝑛𝑥
.
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Therefore,

𝑏𝑖,𝑘𝑚+𝐿𝑖,𝑘 (𝛾𝑧𝑘𝑚+𝐿𝑖,𝑘 )
𝑗𝑖,𝑘𝑚+𝐿𝑖,𝑘 = 𝑏𝑖,𝑘𝑚+𝐿𝑖,𝑘 (𝛾𝑖𝑧𝑘𝑚+𝐿𝑖,𝑘 )

𝑗𝑖,𝑘𝑚+𝐿𝑖,𝑘

− 𝑏𝑖,𝑘𝑚+𝐿𝑖,𝑘 ((𝛾𝑖 − 𝛾)𝑧𝑘𝑚+𝐿𝑖,𝑘 )
𝑗𝑖,𝑘𝑚+𝐿𝑖,𝑘

≥ 𝑎1√
𝑛𝑥
− |𝑏𝑖,𝑘𝑚+𝐿𝑖,𝑘 ((𝛾𝑖 − 𝛾)𝑧𝑘𝑚+𝐿𝑖,𝑘 )

𝑗𝑖,𝑘𝑚+𝐿𝑖,𝑘 |

≥ 𝑎1√
𝑛𝑥
− ∥(𝛾𝑖 − 𝛾)𝑧𝑘𝑚+𝐿𝑖,𝑘 ∥2

≥ 𝑎1√
𝑛𝑥
− ∥𝛾𝑖 − 𝛾∥2∥𝑧𝑘𝑚+𝐿𝑖,𝑘 ∥2

≥ 𝑎1√
𝑛𝑥
− 2𝜖𝛾𝑏𝑧 ≥

𝑎1

2
√
𝑛𝑥
.

□

Proof of Lemma 15. By Lemma 17, under E2, for any 𝛾 ∈ R𝑛𝑥×𝑛𝑧 , there exists
1 ≤ 𝑖 ≤ 𝑣𝛾, such that

𝑏𝑖,𝑘𝑚+𝐿𝑖,𝑘 (𝛾𝑧𝑘𝑚+𝐿𝑖,𝑘 )
𝑗𝑖,𝑘𝑚+𝐿𝑖,𝑘 ≥ 𝑎1

2
√
𝑛𝑥
∥𝛾∥𝐹 ,

for all 0 ≤ 𝑘 ≤ 𝑇/𝑚 − 1. Therefore, if E1 ∩ E2 happens, there exists 𝛾 ∈ Γ𝑇 and a
corresponding 𝑖, such that

𝑏𝑖,𝑘𝑚+𝐿𝑖,𝑘 (𝛾𝑧𝑘𝑚+𝐿𝑖,𝑘 )
𝑗𝑖,𝑘𝑚+𝐿𝑖,𝑘 ≥ 𝑎1

2
√
𝑛𝑥
∥𝛾∥𝐹 ≥

𝑎1𝛿

4
√
𝑛𝑥
.

Therefore,

P(E1 ∩ E2) ≤ P(
𝑣𝛾⋃
𝑖=1
E1,𝑖 ∩ E2) ≤

𝑣𝛾∑︁
𝑖=1
P(E1,𝑖 ∩ E2),

which completes the proof. □

Proof of Lemma 7

Notice that Lemma 7 states two inequalities: in the following, we will first prove the
first inequality P(E1,𝑖 ∩ E2) ≤ P(∩𝑇/𝑚−1

𝑘=0 𝐺𝑖,𝑘 ), then prove the second inequality on
P(𝐺𝑖,𝑘 | ∩𝑘−1

𝑘 ′=0𝐺𝑖,𝑘 ′).

Lemma 18 (Bound E1,𝑖 ∩ E2 by 𝐺𝑖,𝑘). Under the conditions in Lemma 7, for any
1 ≤ 𝑖 ≤ 𝑣𝛾, we have

P(E1,𝑖 ∩ E2) ≤ P(
𝑇/𝑚−1⋂
𝑘=0

𝐺𝑖,𝑘 ).
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Proof. Firstly, for any 𝛾 ∈ Γ𝑇 , we have ∥𝑤𝑡 − 𝛾𝑧𝑡 ∥∞ ≤ 𝑤max for all 𝑡 ≥ 0. This
suggests that, for any 1 ≤ 𝑗 ≤ 𝑛𝑥 , we have

−𝑤max ≤ 𝑤 𝑗
𝑡 − (𝛾𝑧𝑡) 𝑗 ≤ 𝑤max.

Hence, we have 𝑏(𝛾𝑧𝑡) 𝑗 ≤ 𝑏𝑤 𝑗
𝑡 + 𝑤max for any 𝑏 ∈ {−1, 1}, 1 ≤ 𝑗 ≤ 𝑛𝑥 , and 𝑡 ≥ 0.

Next, by E1,𝑖, there exists 𝛾 ∈ Γ𝑇 such that 𝑏𝑖,𝑘𝑚+𝐿𝑖,𝑘 (𝛾𝑧𝑘𝑚+𝐿𝑖,𝑘 )
𝑗𝑖,𝑘𝑚+𝐿𝑖,𝑘 ≥ 𝑎1𝛿

4
√
𝑛𝑥

for

all 𝑘 ≥ 0. Therefore, 𝑏𝑖,𝑘𝑚+𝐿𝑖,𝑘𝑤
𝑗𝑖,𝑘𝑚+𝐿𝑖,𝑘
𝑘𝑚+𝐿𝑖,𝑘 + 𝑤max ≥ 𝑎1𝛿

4√𝑛𝑥 for all 𝑘 .

Finally, E1,𝑖∩E2 implies that 𝑏𝑖,𝑘𝑚+𝐿𝑖,𝑘𝑤
𝑗𝑖,𝑘𝑚+𝐿𝑖,𝑘
𝑘𝑚+𝐿𝑖,𝑘 +𝑤max ≥ 𝑎1𝛿

4√𝑛𝑥 and 1
𝑚

∑𝑚
𝑠=1 𝑧𝑘𝑚+𝑠𝑧

⊤
𝑘𝑚+𝑠 ⪰

𝑎2
1𝐼𝑛𝑧 for all 𝑘 , which is

⋂
𝑘 𝐺𝑖,𝑘 by the definition of 𝐺𝑖,𝑘 .

□

Lemma 19 (Bound on P(𝐺𝑖,𝑘 | ∩𝑘−1
𝑘 ′=0𝐺𝑖,𝑘 ′)). Under the conditions in Lemma 7, for

any 1 ≤ 𝑖 ≤ 𝑣𝛾 and any 𝑘 ≥ 0, we have

P(𝐺𝑖,𝑘 |
𝑘−1⋂
𝑘 ′=0

𝐺𝑖,𝑘 ′) ≤ 1 − 𝑞𝑤 (
𝑎1𝛿

4
√
𝑛𝑥
).

Proof. Firstly, notice that when 1
𝑚

∑𝑚
𝑠=1 𝑧𝑘𝑚+𝑠𝑧

⊤
𝑘𝑚+𝑠 ⪰ 𝑎

2
1𝐼𝑛𝑧 , we have 1 ≤ 𝐿𝑖,𝑘 ≤ 𝑚

by the proof of Lemma 16. Therefore, we have

P(𝐺𝑖,𝑘 |
𝑘−1⋂
𝑘 ′=0

𝐺𝑖,𝑘 ′) ≤ P(𝑏𝑖,𝑘𝑚+𝐿𝑖,𝑘𝑤
𝑗𝑖,𝑘𝑚+𝐿𝑖,𝑘
𝑘𝑚+𝐿𝑖,𝑘 + 𝑤max ≥

𝑎1𝛿

4√𝑛𝑥
, 1 ≤ 𝐿𝑖,𝑘 ≤ 𝑚 |

𝑘−1⋂
𝑘 ′=0

𝐺𝑖,𝑘 ′)

≤
𝑚∑︁
𝑙=1
P(𝑏𝑖,𝑘𝑚+𝑙𝑤 𝑗𝑖,𝑘𝑚+𝑙

𝑘𝑚+𝑙 + 𝑤max ≥
𝑎1𝛿

4√𝑛𝑥
, 𝐿𝑖,𝑘 = 𝑙 |

𝑘−1⋂
𝑘 ′=0

𝐺𝑖,𝑘 ′)

≤
𝑚∑︁
𝑙=1
P(𝑏𝑖,𝑘𝑚+𝑙𝑤 𝑗𝑖,𝑘𝑚+𝑙

𝑘𝑚+𝑙 + 𝑤max ≥
𝑎1𝛿

4√𝑛𝑥
| 𝐿𝑖,𝑘 = 𝑙,

𝑘−1⋂
𝑘 ′=0

𝐺𝑖,𝑘 ′)P(𝐿𝑖,𝑘 = 𝑙 |
𝑘−1⋂
𝑘 ′=0

𝐺𝑖,𝑘 ′)

(𝑎)
≤ (1 − 𝑞𝑤 (

𝑎1𝛿

4
√
𝑛𝑥
))

𝑚∑︁
𝑙=1
P(𝐿𝑖,𝑘 = 𝑙 |

𝑘−1⋂
𝑘 ′=0

𝐺𝑖,𝑘 ′)

≤ 1 − 𝑞𝑤 (
𝑎1𝛿

4
√
𝑛𝑥
) .

The inequality (𝑐) is proved in the following:

P(𝑏𝑖,𝑘𝑚+𝑙𝑤 𝑗𝑖,𝑘𝑚+𝑙
𝑘𝑚+𝑙 + 𝑤max ≥

𝑎1𝛿

4√𝑛𝑥
| 𝐿𝑖,𝑘 = 𝑙,

𝑘−1⋂
𝑘 ′=0

𝐺𝑖,𝑘 ′)

=

∫
𝑣0:𝑘𝑚+𝑙

P(𝑏𝑖,𝑘𝑚+𝑙𝑤 𝑗𝑖,𝑘𝑚+𝑙
𝑘𝑚+𝑙 + 𝑤max ≥

𝑎1𝛿

4√𝑛𝑥
, 𝑤0:𝑘𝑚+𝑙 = 𝑣0:𝑘𝑚+𝑙 | 𝐿𝑖,𝑘 = 𝑙,

𝑘−1⋂
𝑘 ′=0

𝐺𝑖,𝑘 ′)d𝑣0:𝑘𝑚+𝑙
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=

∫
𝑣0:𝑘𝑚+𝑙∈𝑆𝑘𝑚+𝑙

P(𝑏𝑖,𝑘𝑚+𝑙𝑤 𝑗𝑖,𝑘𝑚+𝑙
𝑘𝑚+𝑙 + 𝑤max ≥

𝑎1𝛿

4√𝑛𝑥
| 𝑤0:𝑘𝑚+𝑙 = 𝑣0:𝑘𝑚+𝑙)

× P(𝑤0:𝑘𝑚+𝑙 = 𝑣0:𝑘𝑚+𝑙 | 𝐿𝑖,𝑘 = 𝑙,
𝑘−1⋂
𝑘 ′=0

𝐺𝑖,𝑘 ′)d𝑣0:𝑘𝑚+𝑙

(𝑏)
≤ (1 − 𝑞𝑤 (

𝑎1𝛿

4
√
𝑛𝑥
))

∫
𝑣0:𝑘𝑚+𝑙∈𝑆𝑘𝑚+𝑙

P(𝑤0:𝑘𝑚+𝑙 = 𝑣0:𝑘𝑚+𝑙 | 𝐿𝑖,𝑘 = 𝑙,
𝑘−1⋂
𝑘 ′=0

𝐺𝑖,𝑘 ′)d𝑣0:𝑘𝑚+𝑙

= 1 − 𝑞𝑤 (
𝑎1𝛿

4
√
𝑛𝑥
),

where we define a shorthand notation 𝑤0:𝑘𝑚+𝑙 = (𝑤0, . . . , 𝑤𝑘𝑚+𝑙−1), and we use
𝑣0:𝑘𝑚+𝑙 to denote a realization of 𝑤0:𝑘𝑚+𝑙 , then we define the set of values of
𝑤0:𝑘𝑚+𝑙 as 𝑆𝑘𝑚+𝑙 such that 𝐿𝑖,𝑘 = 𝑙,

⋂𝑘−1
𝑘 ′=0𝐺𝑖,𝑘 ′ holds. Notice that 𝐿𝑖,𝑘 = 𝑙 can

be determined by a set of values of 𝑤0:𝑘𝑚+𝑙 because 𝐿𝑖,𝑘 is a stopping time of
{𝐹𝑘𝑚+𝑙}𝑙≥1 and thus {𝐿𝑖,𝑘 = 𝑙} ∈ F𝑘𝑚+𝑙 . The inequality (𝑏) above is because
of the following: firstly, notice that 𝑏𝑖,𝑘𝑚+𝑙 , 𝑗𝑖,𝑘𝑚+𝑙 ∈ F𝑘𝑚+𝑙 , so 𝑏𝑖,𝑘𝑚+𝑙 , 𝑗𝑖,𝑘𝑚+𝑙 are
deterministic values when 𝑤0:𝑘𝑚+𝑙 = 𝑣0:𝑘𝑚+𝑙 . Further, since 𝑤𝑘𝑚+𝑙 is independent
of 𝑤0:𝑘𝑚+𝑙 , we have P(𝑤𝑚𝑎𝑥 + 𝑏𝑤 𝑗

𝑘𝑚+𝑙 ≥ 𝜖 | 𝑤0:𝑘𝑚+𝑙 = 𝑣0:𝑘𝑚+𝑙) ≤ 1 − 𝑞𝑤 (𝜖)
for any deterministic 𝑏, 𝑗 and any 𝜖 > 0 by Assumption 5. Hence, we have
P(𝑏𝑖,𝑘𝑚+𝑙𝑤 𝑗𝑖,𝑘𝑚+𝑙

𝑘𝑚+𝑙 + 𝑤max ≥ 𝑎1𝛿
4√𝑛𝑥 | 𝑤0:𝑘𝑚+𝑙 = 𝑣0:𝑘𝑚+𝑙) ≤ 1 − 𝑞𝑤 ( 𝑎1𝛿

4
√
𝑛𝑥
). □

Proof of Lemma 5

The proof is by leveraging Lemma 15 and Lemma 7.

P(E1 ∩ E2) ≤
𝑣𝛾∑︁
𝑖=1
P(E1,𝑖 ∩ E2)

≤
𝑣𝛾∑︁
𝑖=1
P(
𝑇/𝑚−1⋂
𝑘=0

𝐺𝑖,𝑘 )

=

𝑣𝛾∑︁
𝑖=1
P(𝐺𝑖,0)P(𝐺𝑖,1 | 𝐺𝑖,0) · · · P(𝐺𝑖,𝑇/𝑚−1 |

𝑇/𝑚−2⋂
𝑘=0

𝐺𝑖,𝑘 )

≤
𝑣𝛾∑︁
𝑖=1
(1 − 𝑞𝑤 (

𝑎1𝛿

4
√
𝑛𝑥
))𝑇/𝑚

≤ 544𝑛2.5
𝑥 𝑛2.5

𝑧 log(𝑎4𝑛𝑥𝑛𝑧)𝑎𝑛𝑧𝑛𝑥4 (1 − 𝑞𝑤 (
𝑎1𝛿

4
√
𝑛𝑥
))𝑇/𝑚 .
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A More Precise Upper Bound for Theorem 12
By the proof of Lemma 4 and Lemma 5 above, we have

P(diam(Θ𝑇 ) > 𝛿) ≤544
𝑇

𝑚
𝑛2.5
𝑧 log(𝑎2𝑛𝑧)𝑎𝑛𝑧2 exp(−𝑎3𝑚)

+ 544𝑛2.5
𝑥 𝑛2.5

𝑧 log(𝑎4𝑛𝑥𝑛𝑧)𝑎𝑛𝑧𝑛𝑥4 (1 − 𝑞𝑤 (
𝑎1𝛿

4
√
𝑛𝑥
))𝑇/𝑚 (4.10)

4.E Proof of Corollary 12.1
The proof involves two parts. Firstly, we will show that Term 1 ≤ 𝜖 under our choice
of 𝑚. Secondly, we will let Term 2 = 𝜖 , then we will show 𝛿 ≤ 𝑂 (𝑛1.5

𝑥 𝑛2
𝑧/𝑇), which

completes the proof.

Step 1: show Term 1 ≤ 𝜖 . Notice that when 𝑚 ≥ 1
𝑎3
(log(𝑇

𝜖
) + 𝑛𝑧 log(𝑎2) +

2.5 log(𝑛𝑧)+log log(𝑎2𝑛𝑧)+7) = 𝑂 (𝑛𝑧+log𝑇+log(1/𝜖)), we have𝑇𝑂 (𝑛2.5
𝑧 )𝑎

𝑛𝑧
2 exp(−𝑎3𝑚) ≤

𝜖 . Since 𝑚 ≥ 1, we obtain Term 1 ≤ 𝜖 .

Step 2: let Term 2 = 𝜖 and show 𝛿 ≤ 𝑂 (𝑛1.5
𝑥 𝑛2

𝑧/𝑇). Let Term 2 = 𝜖 , then
we have (1 − 𝑞𝑤 ( 𝑎1𝛿

4
√
𝑛𝑥
))𝑇/𝑚 = 𝜖

𝑂 (𝑛2.5
𝑥 𝑛2.5

𝑧 )𝑎
𝑛𝑥𝑛𝑧
4

. Then, we obtain (1 − 𝑞𝑤 ( 𝑎1𝛿
4
√
𝑛𝑥
)) =(

𝜖

𝑂 (𝑛2.5
𝑥 𝑛2.5

𝑧 )𝑎
𝑛𝑥𝑛𝑧
4

)𝑚/𝑇
, which is equivalent with

𝑞𝑤 (
𝑎1𝛿

4
√
𝑛𝑥
) = 1 −

(
𝜖

𝑂 (𝑛2.5
𝑥 𝑛2.5

𝑧 )𝑎𝑛𝑥𝑛𝑧4

)𝑚/𝑇
.

When 𝑞𝑤 ( 𝑎1𝛿
4
√
𝑛𝑥
) = 𝑂 ( 𝑎1𝛿

4
√
𝑛𝑥
), we obtain

𝛿 = 𝑂 (
4
√
𝑛𝑥

𝑎1
) ©«1 −

(
𝜖

𝑂 (𝑛2.5
𝑥 𝑛2.5

𝑧 )𝑎𝑛𝑥𝑛𝑧4

)𝑚/𝑇ª®¬
≤ 𝑂 (

−4
√
𝑛𝑥

𝑎1
) log ©«

(
𝜖

𝑂 (𝑛2.5
𝑥 𝑛2.5

𝑧 )𝑎𝑛𝑥𝑛𝑧4

)𝑚/𝑇ª®¬
= 𝑂 (

4
√
𝑛𝑥𝑚

𝑎1𝑇
) (log(1/𝜖) + 𝑛𝑥𝑛𝑧 + log(𝑛𝑥𝑛𝑧))

= 𝑂

(
𝑛1.5
𝑥 𝑛2

𝑧

𝑇

)
.

Step 3: prove Corollary 12.1. By leveraging the bounds above and Theorem 12, we
have P(diam(Θ𝑇 ) ≤ 𝑂

(
𝑛1.5
𝑥 𝑛2

𝑧

𝑇

)
) ≥ P(diam(Θ𝑇 ) ≤ 𝛿) ≥ 1 − 2𝜖 .

Since 𝜃★ ∈ Θ𝑇 by definition, for any �̂�𝑇 ∈ Θ𝑇 , we have ∥�̂�𝑇 − 𝜃★∥𝐹 ≤ diam(Θ𝑇 ) ≤
𝑂

(
𝑛1.5
𝑥 𝑛2

𝑧

𝑇

)
with probability at least 1 − 2𝜖 .
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4.F Proof of Corollary 12.2
We provide a formal version of Corollary 12.2 and its proof below.

Corollary 17.1 (Convergence rate when 𝐵★ = 0 (formal version)). When 𝐴★ is
(𝜅, 𝜌)-stable, i.e., ∥(𝐴★)𝑡 ∥2 ≤ 𝜅(1 − 𝜌)𝑡 for all 𝑡 with 𝜌 < 1, for any 𝑚 > 0 and any
𝛿 > 0, when 𝑇 > 𝑚, we have

P(diam(A𝑇 ) > 𝛿) ≤
𝑇

𝑚
𝑂 (𝑛2.5

𝑥 )𝑎
𝑛𝑥
2 exp(−𝑎3𝑚) +𝑂 (𝑛5

𝑥)𝑎𝑛
2

4 (1 − 𝑞𝑤 (
𝑎1𝛿

4
√
𝑛𝑥
)) ⌈𝑇/𝑚⌉

where 𝑏𝑥 = 𝜅∥𝑥0∥2 + 𝜅
√
𝑛𝑥/𝜌, 𝑝𝑥 = 1/192, 𝜎𝑥 =

√︁
𝜆min(Σ𝑤)/2, 𝑎1 =

𝜎𝑥 𝑝𝑥
4 , 𝑎2 =

64𝑤max
𝜎2
𝑥 𝑝

2
𝑥

, 𝑎3 =
𝑝2
𝑥

8 , 𝑎4 =
4𝑏𝑥
√
𝑛𝑥

𝑎1
.

Consequently, when the distribution of 𝑤𝑡 satisfies 𝑞𝑤 (𝜖) = 𝑂 (𝜖), e.g. uniform or
truncated Gaussian, we have ∥�̂� − 𝜃★∥ ≤ 𝑂 (𝑛3.5

𝑥 /𝑇).

The proof of Corollary 12.2 is exactly the same as the proofs of Theorem 12 and
Corollary 12.1. When 𝐴★ is stable, we can show that ∥𝑥𝑡 ∥2 ≤ 𝑏𝑥 for all 𝑡. Further,
by [24], the sequence {𝑥𝑡}𝑡≥0 satisfies the (1, 𝜎𝑥 , 𝑝𝑥)-BMSB condition. Therefore,
we complete the proof.

4.G Proof of Theorem 13
Specifically, we define 𝜖0 =

4
√
𝑛𝑥
𝑎1
(𝑤max − 𝑤max).

The proof is similar to the proof of Theorem 12. Firstly, we define Γ̂𝑇 as a translation
of the set Θ̂𝑇 :

Γ̂𝑡 =

𝑡−1⋂
𝑠=0
{𝛾 : ∥𝑤𝑠 − 𝛾𝑧𝑠∥∞ ≤ 𝑤max}, ∀ 𝑡 ≥ 0. (4.11)

Notice that
Θ̂𝑇 = 𝜃★ + Γ̂𝑇

by considering 𝛾 = �̂� − 𝜃★. Therefore, we can upper bound our goal event
{diam(Θ̂𝑇 ) > 𝛿 + 𝜖0} by the event E3 defined below.

P(diam(Θ̂𝑇 ) > 𝛿 + 𝜖0) ≤ P(E3), where E3 := {∃ 𝛾 ∈ Γ̂𝑇 , s.t. ∥𝛾∥𝐹 ≥
𝛿 + 𝜖0

2
}.

(4.12)

Next, notice that

P(diam(Θ̂𝑇 ) > 𝛿 + 𝜖0) ≤ P(E3) ≤ P(E3 ∩ E2) + P(E𝑐2) .

By Lemma 4, we have already shown P(E𝑐2) ≤ Term 1. So we only need to discuss
P(E3 ∩ E2).
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Lemma 20.
P(E3 ∩ E2) ≤ Term 2

Proof. Firstly, define

E3,𝑖 = {∃ 𝛾 ∈ Γ̂𝑇 , s.t. 𝑏𝑖,𝑘𝑚+𝐿𝑖,𝑘 (𝛾𝑧𝑘𝑚+𝐿𝑖,𝑘 )
𝑗𝑖,𝑘𝑚+𝐿𝑖,𝑘 ≥ 𝑎1(𝛿 + 𝜖0)

4
√
𝑛𝑥

, ∀ 𝑘 ≥ 0}.

We have P(E3 ∩ E2) ≤
∑𝑣𝛾

𝑖=1 P(E3,𝑖 ∩ E2) based on the same proof ideas of Lemma
15.

Next, we will show that

Pr(E3,𝑘 ∩ E2) ≤ P(
𝑇/𝑚−1⋂
𝑘=0

𝐺𝑖,𝑘 ) . (4.13)

This is because for any 𝛾 ∈ Γ̂𝑇 , we have 𝑏(𝛾𝑧𝑡) 𝑗 ≤ 𝑏𝑤
𝑗
𝑡 + 𝑤max for any 𝑏 ∈

{−1, 1}, 1 ≤ 𝑗 ≤ 𝑛𝑥 , and 𝑡 ≥ 0. By E3,𝑖, there exists 𝛾 ∈ Γ̂𝑇 such that
𝑏𝑖,𝑘𝑚+𝐿𝑖,𝑘 (𝛾𝑧𝑘𝑚+𝐿𝑖,𝑘 )

𝑗𝑖,𝑘𝑚+𝐿𝑖,𝑘 ≥ 𝑎1 (𝛿+𝜖0)
4
√
𝑛𝑥

for all 𝑘 ≥ 0. Thus, 𝑏𝑖,𝑘𝑚+𝐿𝑖,𝑘𝑤
𝑗𝑖,𝑘𝑚+𝐿𝑖,𝑘
𝑘𝑚+𝐿𝑖,𝑘 +

𝑤max ≥ 𝑎1 (𝛿+𝜖0)
4√𝑛𝑥 for all 𝑘 . Notice that this is equivalent with 𝑏𝑖,𝑘𝑚+𝐿𝑖,𝑘𝑤

𝑗𝑖,𝑘𝑚+𝐿𝑖,𝑘
𝑘𝑚+𝐿𝑖,𝑘 +

𝑤max ≥ 𝑎1𝛿
4√𝑛𝑥 for all 𝑘 because 𝜖0 =

4
√
𝑛𝑥
𝑎1
(𝑤max − 𝑤max). In this way, we can prove

(4.13).

Finally, we can complete the proof by the following:

P(E3 ∩ E2) ≤
𝑣𝛾∑︁
𝑖=1
P(E3,𝑖 ∩ E2) ≤

𝑣𝛾∑︁
𝑖=1
P(
𝑇/𝑚−1⋂
𝑘=0

𝐺𝑖,𝑘 )

=

𝑣𝛾∑︁
𝑖=1
P(𝐺𝑖,0)P(𝐺𝑖,1 | 𝐺𝑖,0) · · · P(𝐺𝑖,𝑇/𝑚−1 |

𝑇/𝑚−2⋂
𝑘=0

𝐺𝑖,𝑘 )

≤
𝑣𝛾∑︁
𝑖=1
(1 − 𝑞𝑤 (

𝑎1𝛿

4
√
𝑛𝑥
))𝑇/𝑚 ≤ Term 1 ,

where the second last inequality is by Lemma 19 and the last inequality uses the
definition of 𝑣𝛾 in Lemma 11. □

4.H Proofs of Theorem 14, Corollary 14.1, and Theorem 15
This section provides proofs of the main results related to the SME with unknown
𝑤max as discussed in section 4.3. Namely, Theorem 14 and Corollary 14.1 provide the
rate of convergence of the estimator �̄� (𝑇)max defined in (4.4) to 𝑤max, and Theorem 15
states the rate of convergence of UCB-SME algorithm introduced in (4.5).
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For ease of notation, we introduce the following function indexed by the time horizon
𝑇 > 0,

𝑊𝑇 : 𝜃 ↦→ max
0≤𝑡≤𝑇−1

∥𝑥𝑡+1 − 𝜃𝑧𝑡 ∥∞. (4.14)

The estimator �̄� (𝑇)max is simply the infimum of this function, i.e., �̄� (𝑇)max = inf𝜃𝑊𝑇 (𝜃).

Proof of Theorem 14
The proof of Theorem 14 involves two steps:

• Step 1: We demonstrate that the learning error of𝑤max incurred by the estimator
�̄�
(𝑇)
max is governed by the diameter of the uncertainty set Θ𝑇 and the minimum

learning error achievable if 𝜃∗ were known.

• Step 2: We then provide an upper bound the probability of learning error
exceeding a fixed threshold.

Before we proceed with the proof of Theorem 14, we present the the following
technical lemma.

Lemma 21. Consider the sequence of functions {𝑊𝑇 }𝑇>0 defined in (4.14). The
following holds:

i. 𝑊𝑇 is convex in R𝑛𝑥×𝑛𝑧 ,

ii. The sequence {inf𝜃𝑊𝑇 (𝜃)}𝑇>0 is bounded and monotonically non-decreasing,
i.e.,

0 ≤ inf
𝜃
𝑊𝑇 (𝜃) ≤ inf

𝜃
𝑊𝑇+1(𝜃) ≤ 𝑤max,

for all 𝑇 > 0,

iii. 𝑊𝑇 attains its minimum in Θ𝑇 , i.e., arg min𝜃𝑊𝑇 (𝜃) ⊂ Θ𝑇 .

Proof. (𝑖.) For 0 ≤ 𝑡 ≤ 𝑇 − 1, the function 𝜃 ↦→ ∥𝑥𝑡+1 − 𝜃𝑧𝑡 ∥∞ is convex due
to convexity of norms. Since the maximum of convex functions is convex [161],
convexity of𝑊𝑇 follows.
(𝑖𝑖.) Notice that 𝑊𝑇+1 can be defined in terms of 𝑊𝑇 recursively as 𝑊𝑇+1(𝜃) =
max (𝑊𝑇 (𝜃), ∥𝑥𝑇+1 − 𝜃𝑧𝑇 ∥∞). Thus,𝑊𝑇 (𝜃) ≤ 𝑊𝑇+1(𝜃) for all 𝜃 ∈ R𝑛𝑥×𝑛𝑧 , implying
monotonicity of {inf𝜃𝑊𝑇 (𝜃)}𝑇>0. To see boundedness, first notice that

𝑊𝑇 (𝜃★) = max
0≤𝑡≤𝑇−1

∥𝑥𝑡+1 − 𝜃★𝑧𝑡 ∥∞ = max
0≤𝑡≤𝑇−1

∥𝑤𝑡 ∥∞ ≤ 𝑤max,
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since 𝑥𝑡+1 = 𝜃★𝑧𝑡 + 𝑤𝑡 . Therefore, for any 𝑇 > 0, we have that

inf
𝜃
𝑊𝑇 (𝜃) = inf

𝜃
max

0≤𝑡≤𝑇−1
∥𝑥𝑡+1 − 𝜃𝑧𝑡 ∥∞ ≤ max

0≤𝑡≤𝑇−1
∥𝑥𝑡+1 − 𝜃★𝑧𝑡 ∥∞ ≤ 𝑤max

.
(𝑖𝑖𝑖.) First, we show that𝑊𝑇 attains its minimum onR𝑛𝑥×𝑛𝑧 . If 𝑧𝑡 = 0 for 𝑡 ∈ [𝑇], then
𝑊𝑇 is a constant function and any 𝜃 ∈ R𝑛𝑥×𝑛𝑧 is a minimum of𝑊𝑇 . Now, suppose
𝑧𝑡 ≠ 0 for some 𝑡 ∈ [𝑇]. Then,𝑊𝑇 diverges at the infinity, i.e., lim𝑘→∞𝑊𝑇 (𝜃𝑘 ) = ∞
for any sequence {𝜃𝑘 }𝑘∈N such that ∥𝜃𝑘 ∥ → ∞ as 𝑘 →∞. Since𝑊𝑇 is convex and
bounded below with finite infimum, there exists a global minimizer 𝜃𝑇 ∈ R𝑛𝑥×𝑛𝑧
such that 𝑊𝑇 (𝜃𝑇 ) = inf𝜃𝑊𝑇 (𝜃) = �̄�

(𝑇)
max. Furthermore, by (𝑖𝑖), we have that

∥𝑥𝑡+1−𝜃𝑇 𝑧𝑡 ∥∞ ≤ 𝑤max for all 𝑡 ∈ [𝑇] and any global minimizer 𝜃𝑇 ∈ arg min𝜃𝑊𝑇 (𝜃),
hence 𝜃𝑇 ∈ Θ𝑇 by definition. □

Step 1 of the proof of Theorem 14: We first show that the error margin of the
estimate �̄� (𝑇)max from 𝑤max is governed by the sum of two factors: (i) the diameter of
Θ𝑇 , which arises due to the lack of knowledge of 𝜃∗, and (ii) the minimum learning
error achievable if 𝜃∗ were known, namely

0 ≤ 𝑤max − �̄� (𝑇)max ≤ 𝑏𝑧 diam(Θ𝑇 ) + 𝑤max − max
0≤𝑡≤𝑇−1

∥𝑤𝑡 ∥∞. (4.15)

First, 0 ≤ 𝑤max − �̄� (𝑇)max is simply due to Lemma 21. Next, we prove the second
inequality 𝑤max − �̄� (𝑇)max ≤ 𝑏𝑧 diam(Θ𝑇 ) +𝑤max −max0≤𝑡≤𝑇−1 ∥𝑤𝑡 ∥∞. By Lemma 21,
there exists 𝜃𝑇 ∈ Θ𝑇 such that𝑊𝑇 (𝜃𝑇 ) = 𝑤max and

𝑤max = max
0≤𝑡≤𝑇−1

∥𝑥𝑡+1 − 𝜃𝑇 𝑧𝑡 ∥∞,

= max
0≤𝑡≤𝑇−1

∥𝑥𝑡+1 − 𝜃★𝑧𝑡 + (𝜃★ − 𝜃𝑇 )𝑧𝑡 ∥∞,

≥ max
0≤𝑡≤𝑇−1

(
∥𝑥𝑡+1 − 𝜃★𝑧𝑡 ∥∞ − ∥(𝜃★ − 𝜃𝑘 )𝑧𝑡 ∥∞

)
,

where the inequality is due to reverse triangle inequality. Furthermore, by using
the equivalence of ℓ2 and ℓ∞ norms, i.e., ∥𝑥∥2 ≤ ∥𝑥∥∞ for 𝑥 ∈ R𝑛𝑥 , we bound 𝑤max

further below by

𝑤max ≥ max
0≤𝑡≤𝑇−1

(
∥𝑥𝑡+1 − 𝜃★𝑧𝑡 ∥∞ − ∥(𝜃★ − 𝜃𝑇 )𝑧𝑡 ∥2

)
,

≥ max
0≤𝑡≤𝑇−1

(
∥𝑥𝑡+1 − 𝜃★𝑧𝑡 ∥∞ − ∥𝜃★ − 𝜃𝑇 ∥2∥𝑧𝑡 ∥2

)
,

≥ max
0≤𝑡≤𝑇−1

∥𝑤𝑡 ∥∞ − 𝑏𝑧 diam(Θ𝑇 ),
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where the second inequality is due to ∥𝜃★ − 𝜃𝑇 ∥2 B sup𝑧≠0
∥(𝜃★−𝜃𝑇 )𝑧∥2
∥𝑧∥2 ≤ ∥(𝜃

★−𝜃𝑇 )𝑧𝑡 ∥2
∥𝑧𝑡 ∥2

and the third inequality follows from the assumption ∥𝑧𝑡 ∥2 ≤ 𝑏𝑧, the equivalence
of Frobenius and spectral norms ∥𝜃★ − 𝜃𝑇 ∥2 ≤ ∥𝜃★ − 𝜃𝑇 ∥𝐹 , and 𝜃★, 𝜃𝑇 ∈ Θ𝑇 .
Consequently,

𝑤max − �̄� (𝑇)max ≤ 𝑤max − max
0≤𝑡≤𝑇−1

∥𝑤𝑡 ∥∞ + 𝑏𝑧 diam(Θ𝑇 ).

This completes the proof of the first step. □

Step 2 of the proof of Theorem 14: Using the learning error bound in (4.15), we
obtain an upper bound on the probability of learning error exceeding a fixed 𝛿 > 0 as
shown below

P(𝑤max − �̄� (𝑇)max > 𝛿) ≤ T1 + T2

(
𝛿

2𝑏𝑧

)
+ T5

(
𝛿

2

)
, (4.16)

where T5(𝛿) B (1 − 𝑞𝑤 (𝛿))𝑇 .

First, using the the fact that {𝑤𝑡}𝑇−1
𝑡=0 are iid, we show that

P

(
𝑤max − max

0≤𝑡≤𝑇−1
∥𝑤𝑡 ∥∞ > 𝛿

)
= P(𝑤max − 𝛿 > ∥𝑤𝑡 ∥∞, ∀0 ≤ 𝑡 ≤ 𝑇 − 1),

=

𝑇−1∏
𝑡=0
P(𝑤max − 𝛿 > ∥𝑤𝑡 ∥∞),

≤
𝑇−1∏
𝑡=0
P(𝑤max − 𝛿 > 𝑤1

𝑡 ),

≤ (1 − 𝑞𝑤 (𝛿))𝑇 ,

where the first inequality is due to 𝑤1
𝑡 ≤ ∥𝑤𝑡 ∥∞ and the second inequality is from

Assumption 5. Finally, we obtain the desired convergence rate using the error bound
in (4.15) as follows:

P(𝑤max − �̄� (𝑇)max > 𝛿) ≤ P
(
𝑏𝑧 diam(Θ𝑇 ) + 𝑤max − max

0≤𝑡≤𝑇−1
∥𝑤𝑡 ∥∞ > 𝛿

)
≤ P

(
𝑏𝑧 diam(Θ𝑇 ) > 𝛿/2 or 𝑤max − max

0≤𝑡≤𝑇−1
∥𝑤𝑡 ∥∞ > 𝛿/2

)
≤ P

(
diam(Θ𝑇 ) >

𝛿

2𝑏𝑧

)
+ P

(
𝑤max − max

0≤𝑡≤𝑇−1
∥𝑤𝑡 ∥∞ > 𝛿/2

)
≤ T1 + T2

(
𝛿

2𝑏𝑧

)
+ T5(𝛿/2).

where the last inequality is by Theorem 12.

This completes the second and the last step of the proof. □
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Proof of Corollary 14.1
First, by the proof of Corollary 12.1 in section 4.E, we have thatT1=

𝑇
𝑚
𝑂 (𝑛2.5

𝑧 )𝑎
𝑛𝑧
2 exp(−𝑎3𝑚) ≤

𝜖 whenever 𝑚≥𝑂 (𝑛𝑧+log𝑇+log 1
𝜖
).

Next, we show T5(𝛿𝑇/2) ≤ T2( 𝛿𝑇2𝑏𝑧 ). Since 𝑏𝑧 ≥ 𝜎𝑧 by the definition of BMSB, we
have 𝑎1𝛿𝑇

8√𝑛𝑥𝑏𝑧 ≤
𝛿𝑇
2 . Since 𝑞𝑤 (·) is a non-decreasing function, we have 1−𝑞𝑤 ( 𝑎1𝛿𝑇

8√𝑛𝑥𝑏𝑧 ) ≥
1−𝑞𝑤 ( 𝛿𝑇2 ). Notice that𝑚 ≥ 1, and the constant factors in front of the (1−𝑞𝑤 (·)) ⌈(𝑇/𝑚)⌉

in T2 is also larger than 1. Consequently, T2( 𝛿𝑇2𝑏𝑧 ) ≥ T5(𝛿/2). Therefore, the choice
of 𝛿𝑇 for the second term T2 also guarantees T5(𝛿𝑇/2) ≤ 𝜖 .

Therefore, it suffices to ensure T2( 𝛿𝑇2𝑏𝑧 ) ≤ 𝜖 . Notice that, when 𝛿𝑇
2𝑏𝑧 = 2𝑤max, then

T2( 𝛿𝑇2𝑏𝑧 ) = 0 ≤ 𝜖 , so there exists 𝛿𝑇 such that T2( 𝛿𝑇2𝑏𝑧 ) ≤ 𝜖 .

Next, we will show that there exists such 𝛿𝑇 that diminishes to zero as 𝑇 goes to
infinity. Notice that we need

1 − 𝑞𝑤
(
𝑎1𝛿𝑇

8𝑏𝑧
√
𝑛𝑥

)
≤

(
𝜖

𝑂 ((𝑛𝑥𝑛𝑧)2.5𝑎𝑛𝑥𝑛𝑧4 )

)1/⌈𝑇/𝑚⌉

,

so that

𝑞𝑤

(
𝑎1𝛿𝑇

8𝑏𝑧
√
𝑛𝑥

)
≥ 1 −

(
𝜖

𝑂 ((𝑛𝑥𝑛𝑧)2.5𝑎𝑛𝑥𝑛𝑧4 )

)1/⌈𝑇/𝑚⌉

,

where the right hand side converges to zero as 𝑇 →∞.

Now, consider 𝛿(𝑘) = 1/𝑘 . Since 𝑞𝑤
(
𝑎1𝛿(𝑘)
8𝑏𝑧
√
𝑛𝑥

)
> 0, there exists a large enough 𝑇𝑘

for any 𝑘 > 0 such that for any 𝑇 ≥ 𝑇𝑘 , we have that

𝑞𝑤

(
𝑎1𝛿(𝑘)
8𝑏𝑧
√
𝑛𝑥

)
≥ 1 −

(
𝜖

𝑂 ((𝑛𝑥𝑛𝑧)2.5𝑎𝑛𝑥𝑛𝑧4 )

)1/⌈𝑇𝑘/𝑚⌉

.

Furthermore, for any 𝑇 > 0, we can define

𝛿𝑇 =


𝛿(𝑘), if 𝑇𝑘 ≤ 𝑇 < 𝑇𝑘+1, for 𝑘 > 0,

2𝑤max, if 𝑇 < 𝑇1.

In this way, 𝛿𝑇 satisfies T2( 𝛿𝑇2𝑏𝑧 ) ≤ 𝜖 and 𝛿𝑇 → 0 as 𝑇 → +∞.

Finally, using the proof of Corollary 12.1, we can show that there exists 𝛿𝑇
2𝑏𝑧 =

𝑂 (𝑛1.5
𝑥 𝑛2

𝑧/𝑇) such that T2( 𝛿𝑇2𝑏𝑧 ) ≤ 𝜖 whenever 𝑞𝑤 (𝛿) = 𝑂 (𝛿). This implies 𝛿𝑇 =

𝑂 (𝑛1.5
𝑥 𝑛2

𝑧/𝑇) and completes the proof. □
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Proof of Theorem 15
We first show that the unknown 𝜃★ is a member of USC-SME uncertainty set Θ̂ucb

𝑇

with high probability. By Theorem 14, Corollary 14.1, and the definition in (4.5),
we have

P(𝑤max > 𝑤
(𝑇)
max) = P(𝑤max − �̄� (𝑇)max > 𝛿𝑇 ) ≤ 3𝜖,

which implies 1 − 3𝜖 ≤ P(𝑤max ≤ 𝑤 (𝑇)max) ≤ P(𝜃★ ∈ Θ̂ucb
𝑇
).

Next, we show that the diameter of the UCB-SME uncertainty set is controlled by
𝛿𝑇 with high probability. Notice that Θ̂ucb

𝑇
⊆ Θ𝑇 (𝑤max + 𝛿𝑇 ) because �̄� (𝑇)max ≤ 𝑤max.

Therefore, by Theorem 13, the following holds for any constant 𝑟 > 0:

P(diam(Θ̂ucb
𝑇 ) > 𝑟 + 𝑎5

√
𝑛𝑥𝛿𝑇 ) ≤ P(diam(Θ𝑇 (𝑤max + 𝛿𝑇 )) > 𝑟 + 𝑎5

√
𝑛𝑥𝛿𝑇 ),

≤ T1 + T2(𝑟).

Let 𝑟 = 𝛿𝑇 , then, using the inequality T2(𝛿𝑇 ) ≤ T2(𝛿𝑇/2𝑏𝑧), we have that

P(diam(Θ̂ucb
𝑇 ) > 𝛿𝑇 + 𝑎5

√
𝑛𝑥𝛿𝑇 ) ≤ P(diam(Θ𝑇 (𝑤max + 𝛿𝑇 )) > 𝛿𝑇 + 𝑎5

√
𝑛𝑥𝛿𝑇 ),

≤ 2𝜖 .

Therefore, with probability 1 − 2𝜖 , the diameter of Θ̂ucb
𝑇

is bounded above by

diam(Θ̂ucb
𝑇 ) ≤ 𝛿𝑇 + 𝑎5

√
𝑛𝑥𝛿𝑇 = 𝑂 (√𝑛𝑥𝛿𝑇 ).

Finally, we can verify that the event {diam(Θ̂ucb
𝑇
) ≤ 𝛿𝑇 + 𝑎5

√
𝑛𝑥𝛿𝑇 = 𝑂 (√𝑛𝑥𝛿𝑇 )}

and the event {𝜃★ ∈ Θ̂ucb
𝑇
} simultaneously happen with probability at least 1 − 3𝜖 as

follows:

P
(
𝜃★ ∉ Θ̂𝑇 (𝑤 (𝑇)max), or diam(Θ̂𝑇 (𝑤max + 𝛿𝑇 )) > 𝛿𝑇 + 𝑎5

√
𝑛𝑥𝛿𝑇

)
≤ P

(
𝑤max− max

0≤𝑡≤𝑇−1
∥𝑤𝑡 ∥∞ ≥ 𝛿𝑇/2, or diam(Θ𝑇 ) > 𝛿𝑇/2𝑏𝑧, or diam(Θ̂𝑇 (𝑤max + 𝛿𝑇 )) > 𝛿𝑇+𝑎5

√
𝑛𝑥𝛿𝑇

)
≤ 𝜖 + P(E2) +

𝑣𝛾∑︁
𝑖=1
P

(⋂
𝑘

𝐺𝑖,𝑘 (min(𝛿𝑇/2𝑏𝑧, 𝛿𝑇 ))
)

≤ 3𝜖 .

The third inequality follows from

• the proof of Theorem 14 in section 4.H,

• Theorem 13,
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• the fact that the probabilties P(diam(Θ𝑇 ) > 𝛿𝑇/2𝑏𝑧) and P(diam(Θ̂𝑇 (𝑤max +
𝛿𝑇 )) > 𝛿𝑇 + 𝑎5

√
𝑛𝑥𝛿𝑇 ) are bounded by the same events E2,

• and 𝐺𝑖,𝑘 (𝛿𝑇 ), 𝐺𝑖,𝑘 (𝛿𝑇/2𝑏𝑧) ⊆ 𝐺𝑖,𝑘 (min(𝛿𝑇/2𝑏𝑧, 𝛿𝑇 )), where 𝐺𝑖,𝑘 (𝛿) is de-
fined in Lemma 7 as a function of 𝛿.

This completes the proof. □

4.I Simulation Details
This section provides the details on the simulation experiments, along with some addi-
tional results. The code for replicating the presented results can be found in the github
repository: https://github.com/jy-cds/non-asymptotic-set-membership.

Baseline: LSE Confidence Regions
In all our experiments, we use the 90% confidence region of the LSE as the baseline
uncertainty set. The diameters of LSE’s confidence regions are computed by taking
minimum of the formulas provided in the following two papers: Lemma E.3 in
[59] and Theorem 1 in [60]. To apply Theorem 1 in [60], we used regularization
parameter 𝜆 = 0.1, 𝛿 = 0.1 for 90% confidence, 𝑆 =

√︁
tr (𝜃★,⊤𝜃★), variance proxy

𝐿 = 1 for truncated Gaussian distribution and 𝐿 = 4/3 for uniform distribution.

To determine the parameters in Lemma E.3 of [59], we approximately optimize the
projection matrix 𝑃 in Lemma E.3 as follows. First, we consider an orthogonal
transformation of the empirical covariance matrix Λ =

∑𝑇
𝑡=1 𝑧𝑡𝑧

⊤
𝑡 with Λ = 𝐺𝑀𝐺⊤

where 𝐺 is unitary. This transforms the event E in Lemma E.3 to 𝑀 ≥ 𝜆1𝑃0 +
𝜆2(𝐼 − 𝑃0), where 𝐺𝑃0𝐺

⊤ = 𝑃. We select 𝑃0 as a block matrix [[𝐼𝑝, 0], [0, 0]],
then optimize over the block size 𝑝 in search of the tightest LSE confidence bound.

Figure 4.1: SME and LSE Uncertainty Set Visualization
In this experiment, we consider 𝑥𝑡+1 = 𝐴★𝑥𝑡 + 𝐵★𝑢𝑡 + 𝑤𝑡 , where 𝐴★ = 0.8 and
𝐵★ = 1 are unknown. 𝑤𝑡 ∼ TrunGauss(0, 𝜎𝑤, [−𝑤max, 𝑤max]) is i.i.d. and 𝑢𝑡 ∼
TrunGauss(0, 𝜎𝑢, [−𝑢max, 𝑢max]) are also i.i.d generated, where 𝜎𝑤 = 𝜎𝑢 = 0.5,
and 𝑤max = 𝑢max = 1. We compare SME that knows 𝑤max = 1 and LSE’s 90%
confidence region computed based on Section 4.I.

Figure 4.2
In this experiment, we consider the the linearized longitudinal flight control dynamics
of Boeing 747 [17], [130] with i.i.d. bounded inputs and disturbances sampled from

https://github.com/jy-cds/non-asymptotic-set-membership
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truncated Gaussian and uniform distribution. The dynamics is 𝑥𝑡+1 = 𝐴★𝑥𝑡+𝐵★𝑢𝑡+𝑤𝑡
with

𝐴 =


0.99 0.03 −0.02 −0.32
0.01 0.47 4.7 0
0.02 −0.06 0.4 0
0.01 −0.04 0.72 0.99


𝐵 =


0.01 0.99
−3.44 1.66
−0.83 0.44
−0.47 0.25


.

Disturbances are sampled from TrunGauss(0, 𝐼, [−𝑤max, 𝑤max]4) and Unif( [−𝑤max, 𝑤max]4),
while control inputs are samples from TrunGauss(0, 𝐼, [−𝑤max, 𝑤max]2) in both dis-
turbance settings, with 𝑤max = 2. To compute the UCB for SME using (4.5), we
heuristically define 𝛿𝑇 = 𝛽

𝑛1.5
𝑥 ·𝑛2

𝑧 ·(max𝑡 ∥𝑥𝑡 ∥)
𝑇

, where 𝑛𝑥 = 4 and 𝑛𝑧 = 6 are the system
dimension, while 𝛽 is a tunable parameter. This definition matches the dimension
and time order of the theoretical analysis in Corollary 14.1. In both experiments of
Figure 4.2, we fix 𝛽 = 0.01.

In Figure 2(a)-(b), we plot SME with accurate and conservative bounds of 𝑤max,
UCB-SME, and LSE’s 90% confidence regions computed by Section 4.I. We use
10 different seeds to generate the disturbance sequences for each plot, and use the
shaded region to denote 1 standard deviation from the mean (colored lines).

Figure 4.3
In this experiment, we consider autonomous systems of the form 𝑥𝑡+1 = 𝐴★𝑥𝑡 + 𝑤𝑡 ,
where 𝐴★ ∈ R𝑛𝑥 is randomly sampled and its spectral radius is normalized to be
0.9. We simulate SME and LSE for 𝑛𝑥 = 5, 10, 15, 20, 25. The disturbances are
sampled from TrunGauss(0, 𝐼, [−𝑤max, 𝑤max]𝑛𝑥 ) as well as Unif( [−𝑤max, 𝑤max]𝑛𝑥 )
with 𝑤max = 2. This simulation is run on 10 random seeds and the total length of the
simulation is set to be 𝑇 = 1000 across all 𝑛𝑥 experiments. The mean is plotted as
solid lines and the shaded regions denote 1 standard deviation from the mean.

Though SME’s theoretical bound with respect to the dimension is 𝑂 (𝑛1.5
𝑥 𝑛2

𝑧 ) from
Corollary 12.2, which is much worse than LSE’s bound, it is not reflected in Figure 4.3.
Therefore, it is promising that the dimension scaling in the analysis in Section 4.3
can be further tightened. We leave this for future work.

Figure 4.4
To illustrate the quantitative impact of using SME for adaptive tube-based robust
MPC, we study tube-based robust MPC for a system 𝑥𝑡+1 = 𝐴★𝑥𝑡 + 𝐵★𝑢𝑡 + 𝑤𝑡
with nominal system 𝐴★ = 1.2, 𝐵★ = 0.9 with an initial model uncertainty set
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Θ0 := [1, 1.2] × [0.9, 1.1]. We use the basic tube-based robust MPC method
[131], [132] and parameterize the control policy as 𝑢𝑘 = 𝐾𝑥𝑘 + 𝑣𝑘 + 𝜂𝑘 , where
𝐾 = −1, 𝑣𝑘 is determined by the tube-based robust MPC algorithm, and 𝜂𝑘 is a
bounded exploration injection with 𝜂𝑘 ∼ Unif( [−0.01, 0.01]). The disturbance 𝑤𝑘
has a known bound of 𝑤max = 0.1 and is generated to be i.i.d. Unif( [−0.1, 0.1]).
The horizon of the tube-based robust MPC is set to be 5. The state and input
constraints are such that 𝑥𝑘 ∈ [−10, 10] and 𝑢𝑘 ∈ [−10, 10] for all 𝑘 ≥ 0. We
consider the task of constrained LQ tracking problem with a time-varying cost
function 𝑐𝑡 := (𝑥𝑡 − 𝑔𝑡)⊤𝑄(𝑥𝑡−𝑔𝑡) + 𝑢⊤𝑡 𝑅𝑢𝑡 where the target trajectory is generated
as 𝑔𝑡 = 8 sin(𝑡/20).

We compare the performance of an adaptive tube-based robust MPC controller that
uses the SME for uncertainty set estimation against one that uses the LSE 90%
confidence region (LSE). For better visualization of the trajectory difference as a
result of different estimation methods, we used the minimum of the the dominant
factors in Dean, Mania, Matni, et al. [58, equation C.12] and the LSE 90% confidence
region for the LSE uncertainty set. We also plot the offline optimal RMPC controller,
i.e., the controller that has knowledge of the true underlying system parameters
(OPT).

Since the controller has to robustly satisfy constraints against the worst-case model
in the uncertainty set, smaller uncertainty set for the tube-based robust MPC means
more optimal trajectories can be computed. This observation is consistent with the
extensive empirical results in the control literature [49], [117], [118].
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C h a p t e r 5

ONLINE ADVERSARIAL STABILIZATION OF UNKNOWN
TIME-VARYING SYSTEMS

In the previous chapter, we introduced SME, an uncertainty set estimation method.
We demonstrated that for linear control dynamical systems, the uncertainty sets
generated by SME converge linearly (with respect to the number of samples) to the
true model under stochastic perturbations. Importantly, even when the stochastic
assumptions in Chapter 4 fail to hold, SME still guarantees that the uncertainty sets
contain the true model, provided we have an upper bound on the disturbances. This
makes SME an ideal method for estimating uncertainty sets in both stochastic and
non-stochastic settings when perturbations are bounded.

Recall that in Chapter 1 (Figure 1.1), we introduced a learning-based control
framework that leverages SME uncertainty sets to integrate learning algorithms with
model-based control design. Thanks to the robustness of SME as discussed above,
the framework can be used to guarantee safety of the closed loop system despite
learning under potentially adversarial disturbances.

In this chapter, we will study the canonical problem of online stabilization of
unknown linear time-varying (LTV) system under bounded non-stochastic (potentially
adversarial) disturbances. The study of LTV systems are crucial for CPS such as
sustainable energy systems. For instance, as power systems continue to adopt more
renewable energy supply, the system dynamics for frequency regulation will become
time-varying due to the intermittency of the renewables. Moreover, LTV system
can be used to approximate practical applications where system dynamics are often
nonlinear.

To address this, we instantiate the framework introduced in Chapter 1 and propose a
novel algorithm based on convex body chasing (CBC), an online learning technique,
and classical linear qudratic regulator (LQR) control. Assuming infrequently
changing or slowly drifting dynamics, our algorithm guarantees bounded-input-
bounded-output stability for the unknown LTV system. Our approach avoids system
identification and requires minimal disturbance assumptions. This chapter is based
on the following paper:
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[1] J. Yu, V. Gupta, and A. Wierman, “Online adversarial stabilization of
unknown linear time-varying systems,” 2023 62nd IEEE Conference on De-
cision and Control (CDC), pp. 8320–8327, 2023. doi: 10.1109/CDC49753.
2023.1038384.

5.1 Introduction
Learning-based control of linear-time invariant (LTI) systems in the context of
linear quadratic regulators (LQR) has seen considerable progress. However, many
real-world systems are time-varying in nature. For example, the grid topology in
power systems can change over time due to manual operations or unpredictable line
failures [66]. Therefore, there is increasing recent interest in extending learning-based
control of LTI systems to the linear time-varying (LTV) setting [162]–[166].

LTV systems are widely used to approximate and model real-world dynamical
systems such as robotics [167] and autonomous vehicles [168]. In this chapter, we
consider LTV systems with dynamics of the following form:

𝑥𝑡+1 = 𝐴𝑡𝑥𝑡 + 𝐵𝑡𝑢𝑡 + 𝑤𝑡 , (5.1)

where 𝑥𝑡 ∈ R𝑛, 𝑢𝑡 ∈ R𝑚 and 𝑤𝑡 denotes the state, the control input, and the bounded
and potentially adversarial disturbance, respectively. We use 𝜃𝑡 = [𝐴𝑡 𝐵𝑡] to
succinctly denote the system matrices at time step 𝑡.

On the one hand, offline control design for LTV systems is well-established in the
setting where the underlying LTV model is known [169]–[173]. Additionally, recent
work has started focusing on regret analysis and non-stochastic disturbances for
known LTV systems [162], [174].

On the other hand, online control design for LTV systems where the model is
unknown is more challenging. Historically, there is a rich body of work on adaptive
control design for LTV systems [175]–[177]. Also related is the system identification
literature for LTV systems [178]–[180], which estimates the (generally assumed to
be stable) system to allow the application of the offline techniques.

In recent years, the potential to leverage modern data-driven techniques for controller
design of unknown linear systems has led to a resurgence of work in both the LTI and
LTV settings. There is a growing literature on “learning to control” unknown LTI
systems under stochastic or no noise [17], [24], [181]. Learning under bounded and
potentially adversarial noises poses additional challenges, but online stabilization
[99] and regret [26] results have been obtained.

https://doi.org/10.1109/CDC49753.2023.1038384
https://doi.org/10.1109/CDC49753.2023.1038384
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In comparison, there is much less work on learning-based control design for unknown
LTV systems. One typical approach, exemplified by [163], [182], [183], derives
stabilizing controllers under the assumption that offline data representing the input-
output behavior of (5.1) is available and therefore an offline stabilizing controller
can be pre-computed. Similar finite-horizon settings where the algorithm has access
to offline data [184], or can iteratively collect data [185] were also considered. In
the context of online stabilization, i.e., when offline data is not available, work has
derived stabilizing controllers for LTV systems through the use of predictions of
𝜃𝑡 , e.g., [18]. Finally, another line of work focuses on designing regret-optimal
controllers for LTV systems [164]–[166], [186], [187]. However, with the exception
of [18], existing work on online control of unknown LTV systems share the common
assumption of either of open-loop stability or knowledge of an offline stabilizing
controller. Moreover, the disturbances are generally assumed to be zero or stochastic
noise independent of the states and inputs.

In this chapter, we propose an online algorithm for stabilizing unknown LTV systems
under bounded, potentially adversarial disturbances. Our approach uses convex
body chasing (CBC), which is an online learning problem where one must choose
a sequence of points within sequentially presented convex sets with the aim of
minimizing the sum of distances between the chosen points [188], [189]. CBC has
emerged as a promising tool in online control, with most work making connections
to a special case called nested convex body chasing (NCBC), where the convex sets
are sequentially nested within the previous set [190], [191]. In particular, [13] first
explored the use of NCBC for learning-based control of time-invariant nonlinear
systems. NCBC was also used in combination with System Level Synthesis to design
a distributed controller for networked systems [99] and in combination with model
predictive control [55] for LTI system control as a promising alternative to system
identification based methods. However, this line of work depends fundamentally on
the time invariance of the system, which results in nested convex sets. LTV systems
do not yield nested sets and therefore represent a significant challenge.

This work addresses this challenge and presents a novel online control scheme
(Algorithm 2) based on CBC (non-nested) techniques that guarantees bounded-
input-bounded-output (BIBO) stability as a function of the total model variation∑∞
𝑡=1 ∥𝜃𝑡 − 𝜃𝑡−1∥, without predictions or offline data under bounded and potentially

adversarial disturbances for unknown LTV systems (Theorem 18). This result
implies that when the total model variation is finite or growing sublinearly, BIBO
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stability of the closed loop is guaranteed (Corollaries 18.1 and 18.2). In particular,
our result depends on a refined analysis of the CBC technique (Lemma 22) and is
based on the perturbation analysis of the Lyapunov equation. This contrasts with
previous NCBC-based works for time-invariant systems, where the competitive ratio
guarantee of NCBC directly applies and the main technical tool is the robustness of
the model-based controller, which is a proven using a Lipschitz bound of a quadratic
program in [99] and is directly assumed to exist in [13].

We illustrate the proposed algorithm via numerical examples in Section 5.4 to
corroborate the stability guarantees. We demonstrate how the proposed algorithm
can be used for data collection and complement data-driven methods like [163],
[183], [184]. Further, the numerics highlight that the proposed algorithm can be
efficiently implemented by leveraging the linearity of (5.1) despite the computational
complexity of CBC algorithms in general (see Line 5 for details).

Notation. We use S𝑛−1 to denote the unit sphere in R𝑛 and N+ for positive integers.
For 𝑡, 𝑠 ∈ N+, we use [𝑡 : 𝑠] as shorthand for the set of integers {𝑡, 𝑡 + 1, . . . , 𝑠} and
[𝑡] for {1, 2, . . . , 𝑡}. Unless otherwise specified, ∥·∥ is the operator norm. We use
𝜌(·) for the spectral radius of a matrix.

5.2 Preliminaries
In this section, we state the model assumptions underlying our work and review key
results for convex body chasing, which we leverage in our algorithm design and
analysis.

Stability and model assumptions
We study the dynamics in (5.1) and make the following standard assumptions about
the dynamics.

Assumption 6. The disturbances are bounded: ∥𝑤𝑡 ∥∞ ≤ 𝑊 for all 𝑡 ≥ 0.

Assumption 7. The unknown time-varying system matrices {𝜃𝑡}∞𝑡=0 belong to a
known (potentially large) polytope Θ such that 𝜃𝑡 ∈ Θ for all 𝑡. Moreover, there
exists 𝜅 > 0 such that ∥𝜃∥ ≤ 𝜅 and 𝜃 is stabilizable for all 𝜃 ∈ Θ.

Bounded and non-stochastic (potentially adversarial) disturbances is a common
model both in the online learning and control problems [115], [192]. Since we
make no assumptions on how large the bound𝑊 is, Assumption 6 models a variety
of scenarios, such as bounded and/or correlated stochastic noise, state-dependent
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disturbances, e.g., the linearization and discretization error for nonlinear continuous-
time dynamics, and potentially adversarial disturbances. Assumption 7 is standard
in learning-based control, e.g. [23], [193].

We additionally assume there is a quadratic known cost function of the state and
control input at every time step 𝑡 to be minimized, e.g. 𝑥⊤𝑡 𝑄𝑥𝑡 + 𝑢⊤𝑡 𝑅𝑢𝑡 , with
𝑄, 𝑅 ≻ 0. For a given LTI system model 𝜃 = [𝐴 𝐵] and cost matrices 𝑄, 𝑅,
we denote 𝐾 = LQR(𝜃;𝑄, 𝑅) as the optimal feedback gain for the corresponding
infinite-horizon LQR problem.

Remark 4. Representing model uncertainty as convex compact parameter sets where
every model is stabilizable is not always possible. In particular, if a parameter set
Θ has a few singular points where (𝐴, 𝐵) loses stabilizability such as when 𝐵 = 0,
a simple heuristic is to ignore these points in the algorithm since we assume the
underlying true system matrices 𝜃𝑡 must be stabilizable.

Convex body chasing
Convex Body Chasing (CBC) is a well-studied online learning problem [190], [191].
At every round 𝑡 ∈ N+, the player is presented a convex body/set K𝑡 ⊂ R𝑛. The
player selects a point 𝑞𝑡 ∈ K𝑡 with the objective of minimizing the cost defined as
the total path length of the selection for 𝑇 rounds, e.g.,

∑𝑇
𝑡=1 ∥𝑞𝑡 − 𝑞𝑡−1∥ for a given

initial condition 𝑞0 ∉ K1. There are many known algorithms for the CBC problem
with a competitive ratio guarantee such that the cost incurred by the algorithm is
at most a constant factor from the total path length incurred by the offline optimal
algorithm which has the knowledge of the entire sequence of the bodies. We will use
CBC to select 𝜃𝑡’s that are consistent with observed data.

The nested case

A special case of CBC is the nested convex body chasing (NCBC) problem, where
K𝑡 ⊆ K𝑡−1. A known algorithm for NCBC is to select the Steiner point of K𝑡 at
𝑡 [191]. The Steiner point of a convex set K can be interpreted as the average
of the extreme points of K and is defined as st(K) := E𝑣:∥𝑣∥≤1 [𝑔K (𝑣)], where
𝑔K (𝑣) := argmax𝑥∈K𝑣⊤𝑥 and the expectation is taken with respect to the uniform
distribution over the unit ball. The intuition is that Steiner point remains “deep”
inside of the (nested) feasible region so that when this point becomes infeasible due
to a new convex set, this convex set must shrink considerably, which indicates that
the offline optimal must have moved a lot. Given the initial condition 𝑞0 ∉ K1, the
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Steiner point selector achieves competitive ratio of O(𝑛) against the offline optimal
such that for all 𝑇 ∈ N+,

∑𝑇
𝑡=1 ∥st(K𝑡) − st(K𝑡−1)∥ ≤ O(𝑛) ·OPT, where OPT is the

offline optimal total path length. There are many works that combine the Steiner
point algorithm for NCBC with existing control methods to perform learning-based
online control for LTI systems, e.g., [13], [55], [99].

General CBC

For general CBC problems, we can no longer take advantage of the nested property
of the convex bodies. One may consider naively applying NCBC algorithms when
the convex bodies happen to be nested and restarting the NCBC algorithm when
they are not. However, due to the myopic nature of NCBC algorithms, which try to
remain deep inside of each convex set, they no longer guarantee a competitive ratio
when used this way. Instead, [188] generalizes ideas from NCBC and proposes an
algorithm that selects the functional Steiner point of the work function.

Definition 5.2.1 (Functional Steiner point). For a convex function 𝑓 : R𝑛 → R, the
functional Steiner point of 𝑓 is

st( 𝑓 ) = −𝑛 · −
∫
𝑣:∥𝑣∥=1

𝑓 ∗(𝑣) 𝑣 𝑑𝑣, (5.2)

where −
∫
𝑥∈S 𝑓 (𝑥)𝑑𝑥 denotes the normalized value

∫
𝑥∈S 𝑓 (𝑥)𝑑𝑥∫
𝑥∈S 1𝑑𝑥 of 𝑓 (𝑥) on the set S,

and
𝑓 ∗(𝑣) := inf𝑥∈R𝑛 𝑓 (𝑥) − ⟨𝑥, 𝑣⟩ (5.3)

is the Fenchel conjugate of 𝑓 .

The CBC algorithm selects the functional Steiner point of the work function, which
records the smallest cost required to satisfy a sequence of requests while ending in a
given state, thereby encapsulating information about the offline-optimal cost for the
CBC problem.

Definition 5.2.2 (Work function). Given an initial point 𝑞0 ∈ R𝑛, and convex sets
K1, . . . ,K𝑡 ⊂ R𝑛, the work function at time step 𝑡 evaluated at a point 𝑥 ∈ R𝑛 is
given by:

𝜔𝑡 (𝑥) = min
𝑞𝑠∈K𝑠

∥𝑥 − 𝑞𝑡 ∥ +
𝑡∑︁
𝑠=1
∥𝑞𝑠 − 𝑞𝑠−1∥ . (5.4)

Importantly, it is shown that the functional Steiner points of the work functions are
valid, i.e., st(𝜔𝑡) ∈ K𝑡 for all 𝑡 [188]. On a high level, selecting the functional Steiner
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point of the work function helps the algorithm stay competitive against the currently
estimated offline optimal cost via the work function, resulting in a competitive ratio
of 𝑛 against the offline optimal cost (OPT) for general CBC problems,

𝑇∑︁
𝑡=1
∥st(𝜔𝑡) − st(𝜔𝑡+1)∥ ≤ 𝑛 · OPT. (5.5)

Given the non-convex nature of (6.3) and (5.4), we note that, in general, it is
challenging to compute the functional Steiner point of the work function. However,
in the proposed algorithm, we are able to leverage the linearity of the LTV systems
and numerically approximate both objects with efficient computation in Line 5.

5.3 Main Results
We present our proposed online control algorithm to stabilize the unknown LTV
system (5.1) under bounded and potentially adversarial disturbances in Algorithm 2.
After observing the latest transition from 𝑥𝑡 , 𝑢𝑡 to 𝑥𝑡+1 at 𝑡 + 1 according to (5.1)
(line 2), the algorithm constructs the set of all feasible models �̂�𝑡’s (line 3) such
that the model is consistent with the observation, i.e., there exists an admissible
disturbance 𝑤𝑡 satisfying Assumption 6 such that the state transition from 𝑥𝑡 , 𝑢𝑡 to
𝑥𝑡+1 can be explained by the tuple (�̂�𝑡 , 𝑤𝑡). We call this set the consistent model
set P𝑡 and we note that the unknown true dynamics 𝜃𝑡 = [𝐴𝑡 𝐵𝑡] belongs to P𝑡 .
The algorithm then selects a hypothesis model out of the consistent model set P𝑡
using the CBC algorithm by computing the functional Steiner point (6.3) of the
work function (5.4) with respect to the history of the consistent parameter sets
P1, . . . , P𝑡 (line 4). In particular, we present an efficient implementation of the
functional Steiner point chasing algorithm in Line 5 by taking advantage of the fact
that P𝑡’s are polytopes that can be described by intersection of half-spaces. The
implementation is summarized in Algorithm 3. Based on the selected hypothesis
model �̂�𝑡 , a certainty-equivalent LQR controller is synthesized (line 5) and the
state-feedback control action is computed (line 6).

Note that, by construction, at time step 𝑡 ∈ N+ we perform certainty-equivalent
control 𝐾𝑡−1 based on a hypothesis model �̂�𝑡−1 computed using retrospective data,
even though the control action (𝑢𝑡 = 𝐾𝑡−1𝑥𝑡) is applied to the dynamics (𝜃𝑡) that we do
not yet have any information about. In order to guarantee stability, we would like for
𝐾𝑡−1 to be stabilizing the “future” dynamics (𝜃𝑡). This is the main motivation behind
our choice of the CBC technique instead of regression-based techniques for model
selection. Thanks to the competitive ratio guarantee (5.5) of the functional Steiner
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point selector, when the true model variation is “small,” our previously selected
hypothesis model will stay “consistent” in the sense that 𝐾𝑡−1 can be stabilizing for
𝜃𝑡 despite the potentially adversarial or state-dependent disturbances. On the other
hand, when the true model variation is “large,” 𝐾𝑡−1 does not stabilize 𝜃𝑡 , and we
see growth in the state norm. Therefore, our final state bound is in terms of the total
variation of the true model.

We show in the next section that, by drawing connections between the stability
of the closed-loop system and the path length cost of the selected hypothesis
model via CBC, we are able to stabilize the unknown LTV system without any
identification requirements, e.g., the selected hypothesis models in Algorithm 2
need not be close to the true models. It is observed that even in the LTI setting,
system identification can result in large-norm transient behaviors with numerical
stability issues if the underlying unknown system is open-loop unstable or under
non-stochastic disturbances, thus motivating the development of NCBC-based online
control methods [13], [26], [99]. In the LTV setting, it is not sufficient to use NCBC
ideas due to the time-variation of the model; however, the intuition for the use of
CBC is similar. In fact, it can be additionally beneficial to bypass identification in
settings where the true model is a moving target, thus making identification more
challenging. We illustrate this numerically in Section 5.4.

Algorithm 2: Unknown LTV stabilization
Input: 𝑊 > 0, Θ ⊂ R𝑛×(𝑛+𝑚)
Initialize :𝑢0 = 0, �̂�0 ∈ Θ

1 for 𝑡 + 1 = 1, 2, . . . do
2 Observe 𝑥𝑡+1
3 Construct consistent set

P𝑡 := {𝜃 = [𝐴, 𝐵] : ∥𝑥𝑡+1 − 𝐴𝑥𝑡 − 𝐵𝑢𝑡 ∥∞ ≤ 𝑊} ∩ Θ
4 Select hypothesis model �̂�𝑡 ← CBC({P𝑠}𝑡𝑠=1; �̂�0)
5 Synthesize controller 𝐾𝑡 ← LQR

(
�̂�𝑡 ;𝑄, 𝑅

)
6 Compute feedback control input 𝑢𝑡+1 = 𝐾𝑡𝑥𝑡+1
7 end

Stability Analysis
The main result of this paper is the BIBO stability guarantee for Algorithm 2 in terms
of the true model variation and the disturbance bound. We sketch the proof in this
section and refer Section 5.C for the formal proof. This result depends on a refined
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Algorithm 3: CBC
Input: P1, . . ., P𝑡 , �̂�0, 𝑁
Output: �̂�𝑡

1 for 𝑘 = 0, 1, . . . 𝑁 do
2 Sample 𝑣𝑖 uniformly from S𝑛−1

3 ℎ𝑖 ← (5.12)
4 end
5 �̂�𝑡 ← projΘ∩P𝑡

(
− 𝑛
𝑁

∑𝑁
𝑖=1 ℎ𝑖𝑣𝑖

)
analysis of the competitive ratio for the functional Steiner point chasing algorithm
introduced in [188], which is stated as follows.

Lemma 22 (Partial-path competitive ratio). For 𝑡 ∈ N+, let 𝑠, 𝑒 ∈ [𝑡] and 𝑠 < 𝑒, and
let Θ ⊂ R𝑛 be a convex compact set. Denote Δ̂[𝑠,𝑒] :=

∑𝑒
𝜏=𝑠+1 ∥st(𝜔𝜏) − st(𝜔𝜏−1)∥𝐹

as the partial-path cost of the functional Steiner point selector during interval [𝑠, 𝑒]
and {OPT𝜏}𝑡𝜏=1 as the (overall) offline optimal selection for K1, . . . , K𝑡 ⊂ Θ. The
functional Steiner point chasing algorithm has the following competitive ratio,

Δ̂[𝑠,𝑒] ≤ 𝑛
(
dia(Θ) + 2𝜅 +

𝑒∑︁
𝜏=𝑠+1

∥OPT𝜏 − OPT𝜏−1∥𝐹

)
on interval [𝑠, 𝑒], where dia(Θ) := max𝜃1, 𝜃2∈Θ ∥𝜃1 − 𝜃2∥𝐹 denotes the diameter of
Θ and 𝜅 := max𝜃∈Θ ∥𝜃∥𝐹 .

Proof. See Section 5.A. □

Theorem 18 (BIBO Stability). Under Assumption 6 and 7, the closed loop of (5.1)
under Algorithm 2 is BIBO stable such that for all 𝑡 ≥ 0,

∥𝑥𝑡 ∥ ≤ 𝑊 · 𝑐1

𝑡−2∑︁
𝑠=0

𝑐
Δ[𝑠,𝑡−1]
2 𝜌𝑡−𝑠𝐿

where Δ[𝑠,𝑡−1] :=
∑𝑡−1
𝜏=𝑠+1 ∥𝜃𝜏 − 𝜃𝜏−1∥𝐹 is the true model variation, 𝑊 is the dis-

turbance bound, and 𝑐1, 𝑐2 > 0, 𝜌𝐿 ∈ (0, 1) are constants that depend on the
system-theoretical quantities of the worst-case model in the parameter set Θ.

Proof Sketch: At a high level, the structure of our proof is as follows. We first use
the fact that our time-varying feedback gain 𝐾𝑡 is computed according to a hypothesis
model from the consistent model set. Therefore, we can characterize the closed-loop
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dynamics in terms of the consistent models �̂�𝑡 and 𝐾𝑡 . Specifically, consider a time
step 𝑡 where we take the action 𝑢𝑡 = 𝐾𝑡−1𝑥𝑡 after observing 𝑥𝑡 . Then, we observe
𝑥𝑡+1 = 𝐴𝑡𝑥𝑡 + 𝐵𝑡𝑢𝑡 + 𝑤𝑡 and select a new hypothesis model �̂�𝑡 = [𝐴𝑡 𝐵𝑡] that is
consistent with this new observation. Since we have selected a consistent hypothesis
model, there is some admissible disturbance 𝑤𝑡 satisfying Assumption 6 such that

𝑥𝑡+1 =

(
𝐴𝑡 + 𝐵𝑡𝐾𝑡−1

)
𝑥𝑡 + 𝑤𝑡 =

(
𝐴𝑡 + 𝐵𝑡𝐾𝑡−1

)
𝑥𝑡 + 𝑤𝑡 .

Without loss of generality, we assume initial condition 𝑥0 = 0. We therefore have

𝑥𝑡 = 𝑤𝑡−1 +
𝑡−2∑︁
𝑠=0

∏
𝜏∈[𝑡−1:𝑠+1]

(
𝐴𝜏 + 𝐵𝜏𝐾𝜏−1

)
𝑤𝑠 . (5.6)

We have two main challenges in bounding ∥𝑥𝑡 ∥ in (5.6):

1. 𝐾𝑡 is computed using �̂�𝑡 in Algorithm 2, but is applied to the next time step
�̂�𝑡+1. While we know 𝜌(𝐴𝑡 + 𝐵𝑡𝐾𝑡) < 1, in (5.6) we have 𝐾𝑡−1 instead of 𝐾𝑡 .

2. Naively applying submultiplicativity of the operator norm for (5.6) results in
bounding

(𝐴𝜏 + 𝐵𝜏𝐾𝜏−1

). However, even if 𝐾𝑡−1 satisfies 𝜌(𝐴𝑡 + 𝐵𝑡𝐾𝑡) < 1,
in general the operator norm can be greater than 1.

To address the first challenge, our key insight is that by selecting hypothesis models
via CBC technique, in any interval where the true model variation is small, our
selected hypothesis model also vary little. Specifically, by Lemma 22, we can bound
the partial-path variation of the selected hypothesis models with the true model
partial-path variation Δ[𝑠,𝑒] as follows:

Δ̂[𝑠,𝑒] ≤ 𝑛
(
dia(Θ) + 2𝜅 +

𝑒−1∑︁
𝜏=𝑠

∥OPT𝜏+1 − OPT𝜏∥𝐹

)
≤ 𝑛

(
dia(Θ) + 2𝜅 + Δ[𝑠,𝑒]

)
, (5.7)

whereΘ and 𝜅 are from Assumption 7. A consequence of (5.7) is that, during intervals
where the true model variation is small, we have

(
𝐴𝑡 + 𝐵𝑡𝐾𝑡−1

)
≈

(
𝐴𝑡 + 𝐵𝑡𝐾𝑡

)
.

For the second challenge, we leverage the concept of sequential strong stability
[21], which allows bounding

∏𝜏∈[𝑡−1:𝑠+1]

(
𝐴𝜏 + 𝐵𝜏𝐾𝜏−1

) approximately with∏
𝜏∈[𝑡−1:𝑠+1] 𝜌

(
𝐴𝜏 + 𝐵𝜏𝐾𝜏

)
times O

(
exp(Δ[𝑠,𝑡−1])

)
.
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We now sketch the proof. The helper lemmas are summarized in Section 5.B and the
formal proof can be found in Section 5.C. Consider 𝐿𝑡 , 𝐻𝑡 ∈ R𝑛×𝑛 with 𝐻𝑡 ≻ 0 such
that

𝐴𝑡 + 𝐵𝑡𝐾𝑡−1 := 𝐻1/2
𝑡 𝐿𝑡𝐻

−1/2
𝑡 .

We use 𝐼𝑠 as shorthand for the interval [𝑡 − 1 : 𝑠 + 1]. Then each summand in (5.6)
can be bounded as∏

𝜏∈𝐼𝑠

(
𝐴𝜏 + 𝐵𝜏𝐾𝜏−1

)
≤

𝐻1/2
𝑡−1

 𝐻−1/2
𝑠+1

︸             ︷︷             ︸
(𝑎)

∏
𝑘∈𝐼𝑠+1

𝐻−1/2
𝑘

𝐻
1/2
𝑘−1

︸                  ︷︷                  ︸
(𝑏)

∏
𝜏∈𝐼𝑠
∥𝐿𝜏∥︸    ︷︷    ︸
(𝑐)

. (5.8)

Therefore showing BIBO stability comes down to bounding individual terms in
(5.8). In particular we will show that by selecting appropriate 𝐻𝑡 and 𝐿𝑡 , term (a)
is bounded by a constant 𝐶𝐻 that depends on system theoretical properties of the
worst-case parameter in Θ. For (b) and (c), we isolate the instances when�̂�𝑡 − �̂�𝑡−1


𝐹
≤ 𝜖 (5.9)

for some chosen 𝜖 > 0. For instances where (5.9) holds, we use the perturbation
analysis of the Lyapunov equation involving the matrix 𝐴𝑡 + 𝐵𝑡𝐾𝑡−1 (Lemma 27 for
(b) and Lemma 25 for (c)) to bound (b) and (c) in terms of the partial-path movement
of the selected parameters Δ̂[𝑠,𝑒] :=

∑𝑒
𝜏=𝑠+1 ∥st(𝜔𝜏+1) − st(𝜔𝜏)∥𝐹 . Specifically,

Lemma 27 implies

𝐻−1/2
𝑡 𝐻

1/2
𝑡−1

 ≤ 
𝑒

𝛽∥ 𝜃𝑡 −𝜃𝑡−1∥𝐹
2 , if (5.9) holds

�̄� otherwise,
(5.10)

where 𝛽, �̄� > 1 are constants. We also show that from Lemma 25,

∥𝐿𝑡 ∥ ≤

𝜌𝐿 if (5.9) holds

�̄� otherwise,
(5.11)

for 𝜌𝐿 ∈ (0, 1) and �̄� > 1 a constant.

We now plug (5.10) and (5.11) into (5.8). Denote by 𝑛[𝑠,𝑡] the number of pairs (𝜏, 𝜏−1)
with 𝑠 + 1 ≤ 𝜏 ≤ 𝑡 − 1 where (5.9) fails to hold. Let Δ[𝑠,𝑒] :=

∑𝑒
𝜏=𝑠+1 ∥𝜃𝜏 − 𝜃𝜏−1∥𝐹
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be the true model partial-path variation. Then (5.8) can be bounded as ∏
𝜏∈[𝑡−1:𝑠+1]

(
𝐴𝜏 + 𝐵𝜏𝐾𝜏−1

)
≤ 𝐶𝐻 · �̄�𝑛[𝑠,𝑡 ] · 𝑒

𝛽Δ̂[𝑠+1,𝑡−1]
2 · �̄�𝑛[𝑠,𝑡 ] · 𝜌𝑡−𝑠−�̂�[𝑠,𝑡 ]−1

𝐿

≤ 𝐶𝐻
(
�̄��̄�

𝜌𝐿

) Δ̂[𝑠,𝑡−1]
𝜖∗

𝑒
𝛽Δ̂[𝑠+1,𝑡−1]

2 · 𝜌𝑡−𝑠−1
𝐿

≤ 𝐶𝐻
(
�̄��̄�

𝜌𝐿

) �̄�(dia(Θ)+2𝜅+Δ[𝑠,𝑡−1])
𝜖∗

𝑒
𝛽�̄�(dia(Θ)+2𝜅+Δ[𝑠+1,𝑡−1])

2 · 𝜌𝑡−𝑠−1
𝐿

=: 𝑐 · 𝑐Δ[𝑠,𝑡−1]
2 𝜌𝑡−𝑠𝐿 ,

for constants 𝑐, 𝑐2 and �̄� := 𝑛(𝑛 + 𝑚) for the dimension of the parameter space for
𝐴𝑡 , 𝐵𝑡 . In the second inequality, we used the observation that 𝑛[𝑠,𝑡] ≤

Δ̂[𝑠,𝑡−1]
𝜖

and in
the last inequality we used Lemma 22. Combined with (5.6) and Assumption 6, this
proves the desired bound. ■

An immediate consequence of Theorem 18 is that when the model variation in (5.1)
is bounded or sublinear, Algorithm 2 guarantees BIBO stability. This is summarized
below.

Corollary 18.1 (Bounded variation). Suppose (5.1) has model variation Δ[0,𝑡] ≤ 𝑀
for a constant 𝑀 . Then,

sup
𝑡

∥𝑥𝑡 ∥ ≤
𝑐1 · 𝑐𝑀2
1 − 𝜌𝐿

.

Corollary 18.2 (Unbounded but sublinear variation). Let 𝛼 ∈ (0, 1) and 𝑡 ∈ N+.
Suppose (5.1) is such that for each 𝑘 ≤ 𝑡, Δ[𝑘,𝑘+1] ≤ 𝛿𝑡 := 1/𝑡 (1−𝛼) , implying a
total model variation Δ[0,𝑡] = O(𝑡𝛼). Then for large enough 𝑡, 𝜌𝐿𝑐𝛿𝑡2 ≤

1+𝜌𝐿
2 , and

therefore

∥𝑥𝑘 ∥ ≤ 𝑐1

𝑘∑︁
𝑖=0

(
𝜌𝐿𝑐

𝛿𝑡
2

) 𝑖
≤ 2𝑐1

1 − 𝜌𝐿
.

Corollary 18.1 can be useful for scenarios where the mode of operation of the system
changes infrequently and for systems such that 𝜃 (𝑡) → 𝜃★ as 𝑡 → ∞ [194]. As an
example, consider power systems where a prescribed set of lines can potentially
become disconnected from the grid and thus change the grid topology. Corollary 18.2
applies to slowly drifting systems [195].
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Efficient implementation of CBC
In general, implementation of the functional Steiner point of the work function may
be computationally inefficient. However, by taking advantage of the LTV structure,
we are able to design an efficient implementation in our setting. The key observation
here is that for each 𝑡, P𝑡 (Algorithm 2, line 3) can be described by the intersection
of half-spaces because the ambient parameter space Θ is assumed to be a polytope
and the observed online transition data from 𝑥𝑡 , 𝑢𝑡 to 𝑥𝑡+1 specifies two half-space
constraints at each time step due to linearity of (5.1). Our approach to approximate
the functional Steiner point for chasing the consistent model sets is inspired by [189]
where second-order cone programs (SOCPs) are used to approximate the (nested set)
Steiner point of the sublevel set of the work functions for chasing half-spaces.

Denote {(𝑎𝑖, 𝑏𝑖)}𝑝𝑡𝑖=1 as the collection of 𝑝𝑡 half-space constraints describing P𝑡 , i.e.,
𝑎⊤
𝑖
𝜃 ≤ 𝑏𝑖. To approximate the integral for the functional Steiner point (6.3) of 𝜔𝑡 , we

sample 𝑁 number of random directions 𝑣 ∈ S𝑛−1, evaluate the Fenchel conjugate of
the work function 𝜔∗𝑡 at each 𝑣 with an SOCP, and take the empirical average. Finally
we project the estimated functional Steiner point back to the set of consistent model
P𝑡 ∩ Θ. Even though the analytical functional Steiner point (6.3) is guaranteed to
be a member of the consistent model set, the projection step is necessary because
we are integrating numerically, which may result in an approximation that ends up
outside of the set. We summarize this procedure in Algorithm 3. Specifically, given
a direction 𝑣 ∈ S𝑛−1, the Fenchel conjugate of the work function at time step 𝑡 is

𝜔∗𝑡 (𝑣) = inf
𝑥∈R𝑛

𝜔𝑡 (𝑥) − ⟨𝑥, 𝑣⟩

= min
𝑥∈R𝑛
𝑞𝑠∈K𝑠

𝑡∑︁
𝑠=1
∥𝑞𝑠 − 𝑞𝑠−1∥ + ∥𝑥 − 𝑞𝑡 ∥ − ⟨𝑥, 𝑣⟩ .

This can be equivalently expressed as the following SOCP with decision variables
𝑥, 𝑞1, . . . , 𝑞𝑡 , 𝜆, 𝜆1, . . . , 𝜆𝑡 :

min
𝑥,𝑞1,...,𝑞𝑡
𝜆,𝜆1,...,𝜆𝑡

𝜆 +
𝑡∑︁
𝑠=1

𝜆𝑠 − ⟨𝑣, 𝑥⟩

s.t. ∥𝑞𝑠 − 𝑞𝑠−1∥ ≤ 𝜆𝑠, for 𝑠 ∈ [𝑡]
∥𝑥 − 𝑞𝑡 ∥ ≤ 𝜆

𝑎⊤𝑖 𝑞𝑠 ≤ 𝑏𝑖, for 𝑖 ∈ [𝑝𝑠], 𝑠 ∈ [𝑡] .

(5.12)

Another potential implementation challenge is that the number of constraints in the
SOCP (5.12) grows linearly with time due to the construction of the work function
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(5.4). This is a common drawback of online control methods based on CBC and
NCBC techniques and can be overcome through truncation or over-approximation in
of the work functions in practice. Additionally, if the LTV system is periodic with a
known period, then we can leverage Algorithm 2 during the initial data collection
phase. Once representative (persistently exciting) data is available, one could employ
methods like [163] to generate a stabilizing controller for the unknown LTV system.
In Section 5.4, we show that data collection via Algorithm 2 results in a significantly
smaller state norm than random noise injection when the system is unstable.

5.4 Simulation
In this section, we demonstrate Algorithm 2 in two LTV systems. Both of the systems
we consider are open-loop unstable, thus the algorithms must work to stabilize
them. We use the same algorithm parameters for both, with Θ = [−2, 3]2, LQR cost
matrices 𝑄 = 𝐼 and 𝑅 = 1.

Example 1: Markov linear jump system
We consider the following Markov linear jump system (MLJS) model from [196],
with

𝐴1 =

[
1.5 1
0 0.5

]
, 𝐴2 =

[
0.6 0
0.1 1.2

]
, 𝐵1 =

[
0
1

]
,

𝐵2 =

[
1
1

]
, Π =

[
0.8 0.2
0.1 0.9

]
,

where Π is the transition probability matrix from 𝜃1 to 𝜃2 and vice versa. We
inject uniformly random disturbances such that 𝑤𝑡 ∈ {−101, −31, 31} where 1 is
the all-one vector. We set the disturbances to be zero for the last 10 time steps to
make explicit the stability of the closed loop. We implement certainty-equivalent
control based on online least squares (OLS) with different sliding window sizes
𝐿 = 5, 10, 20 and a exponential forgetting factor of 0.95 [197] as the baselines.

We show two different MLJS models generated from 2 random seeds and show the
results in Figure 5.1. For both systems, the open loop is unstable. In Figure 5.1(a) the
OLS-based algorithms fail to stabilize the system for window size of 𝐿 = 20, while
stabilizing the system but incurring larger state norm than the proposed algorithm for
𝐿 = 5, 10. On the other hand, in Figure 5.1(b), OLS with 𝐿 = 5 results in unstable
closed loop. This example highlights the challenge of OLS-based methods, where
the choice of window size is crucial for the performance. Since the underlying LTV
system is unknown and our goal is to control the system online, it is unclear how to
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(b) closed loop of seed # 2

Figure 5.1: Markov linear jump system for two different random seeds. For each
seed: Top plot shows the state norm trajectories of the proposed algorithm, certainty-
equivalent control based on online least squares (OLS) with different sliding window
sizes, and the open loop. Middle plot shows the norm of the selected hypothesis
model via Algorithm 3. Bottom plot shows the true model switches.

select the appropriate window size to guarantee stability for OLS-based methods a
priori. In contrast, Algorithm 2 does not require any parameter tuning.

We note that while advanced least-squares based identification techniques that
incorporate sliding window with variable length exist, e.g. [164], [197], due to
the unknown system parameters, it is unclear how to choose the various algorithm
parameters such as thresholds for system change detection. Therefore, we only
compare Algorithm 1 against fixed-length sliding window OLS methods as baselines.

Example 2: LTV system
Our second example highlights that Algorithm 2 is a useful data-collection alternative
to open-loop random noise injection. We consider the LTV system from [163], [184],
with

𝐴(𝑘) =
[

1.5 0.0025𝑘
−0.1 cos(0.3𝑘) 1 + 0.053/2 sin(0.5𝑘)

√
𝑘

]
,

𝐵(𝑘) = 0.05

[
1

0.1𝑘+2
0.1𝑘+3

]
.

where we modified 𝐴(1, 1) from 1 to 1.5 to increase the instability of the open loop
in the beginning; thus making it more challenging to stabilize. We consider no
disturbances here, which is a common setting in direct data-driven control, e.g., [163],
[182], [183]. In particular, we compare the proposed algorithm against randomly
generated bounded inputs from UNIF[−1, 1]. We also modify the control inputs from
Algorithm 2 to be 𝑢𝑡 = 𝐾𝑡−1𝑥𝑡 + 𝜂𝑡 · 1 with 𝜂𝑡 ∼ UNIF[−1, 1] so that we can collect
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Figure 5.2: Simulation result for the LTV system in example 2. Here we plot the the
state and control norm, as well as the selected hypothesis model via CBC �̂�𝑡 and true
models 𝜃𝑡 .

rich data in the closed loop. This is motivated by the growing body of data-driven
control methods such as [163], [183], [184] that leverage sufficiently rich offline data
to perform control design for unknown LTV systems. However, most of these works
directly inject random inputs for data collection. It is evident in Figure 5.2 that when
the open-loop system is unstable it may be undesirable to run the system without any
feedback control. Therefore, Algorithm 2 complements existing data-driven methods
by allowing safe data collection with significantly better transient behavior.

5.5 Conclusion
In this chapter, we propose a model-based approach for stabilizing an unknown
LTV system under arbitrary non-stochastic disturbances in the sense of bounded
input bounded output under the assumption of infrequently changing or slowly
drifting dynamics. Our approach uses ideas from convex body chasing (CBC),
which is an online problem where an agent must choose a sequence of points
within sequentially presented convex sets with the aim of minimizing the sum of
distances between the chosen points. The algorithm requires minimal tuning and
achieves significantly better performance than the naive online least squares based
control. Future work includes sharpening the stability analysis to go beyond the
BIBO guarantee in this work, which will require controlling the difference between
the estimated disturbances and true disturbances. Another direction is to extend the
current results to the networked case, similar to [99].
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5.A Proof of Lemma 22
We have

𝑒∑︁
𝜏=𝑠+1

�̂�𝜏 − �̂�𝜏−1


𝐹
=

𝑒∑︁
𝜏=𝑠+1

∥st(𝜔𝜏) − st(𝜔𝜏−1)∥𝐹

(𝑎)
≤ 𝑛 −

∫
𝑣

(
𝑒∑︁

𝜏=𝑠+1

��𝜔∗𝜏 (𝑣) − 𝜔∗𝜏−1(𝑣)
��) 𝑣 𝑑𝑣

(𝑏)
= 𝑛 −

∫
𝑣

(
𝑒∑︁

𝜏=𝑠+1
𝜔∗𝜏 (𝑣) − 𝜔∗𝜏−1(𝑣)

)
𝑣 𝑑𝑣

= 𝑛 −
∫
𝑣

(
𝜔∗𝑒 (𝑣) − 𝜔∗𝑠 (𝑣)

)
𝑣 𝑑𝑣

(𝑐)
≤ 𝑛 · (min

𝑥
𝜔𝑒 (𝑥) −min

𝑦
𝜔𝑠 (𝑦) + 2𝜅) , (5.13)

where (a) is due to the definition (6.3). For (b), we used the observation that 𝜔∗𝑡 (𝑣) is
non-decreasing in time. For (c), by definition of the Fenchel conjugate (5.3), we have
that 𝜔∗𝑒 (𝑣) = inf𝑥𝜔𝑒 (𝑥) − ⟨𝑥, 𝑣⟩. Denote (𝑥★, 𝑞★1 , . . . , 𝑞

★
𝑒 ) as the optimal solution to

the problem min𝑥 𝜔𝑒 (𝑥). It is clear that 𝜔∗𝑒 (𝑣) ≤ 𝜔𝑒 (𝑥★) −
〈
𝑥★, 𝑣

〉
≤ min𝑥 𝜔𝑒 (𝑥) + 𝜅

where in the last inequality we used Cauchy-Shwarz and 𝜅 := max𝜃∈Θ ∥𝜃∥𝐹 . Similarly,
we also have 𝜔∗𝑠 (𝑣) ≥ inf𝑦 𝜔𝑠 (𝑦) − 𝜅.

Denote OPT[0,𝑒] as the minimizing trajectory (OPT0, . . . ,OPT𝑒) to min𝑥 𝜔𝑒 (𝑥)
where argmin𝑥𝜔𝑒 (𝑥) = OPT𝑒. This last equality is by the observation that if
𝑥★ := argmin𝑥𝜔𝑒 (𝑥) ≠ OPT𝑒, then 𝜔𝑒 (OPT𝑒) ≤ 𝜔𝑒 (𝑥★) by definition (5.4), thus
contradicting that 𝑥★ is defined to be the minimizer of 𝜔𝑒. We also denote INT[0,𝑠]
as the minimizing trajectory to min𝑦 𝜔𝑠 (𝑦). To reduce notation, we denote ΔOPT

[𝑠,𝑒] :=∑𝑒
𝜏=𝑠+1 ∥OPT𝜏 − OPT𝜏−1∥𝐹 and ΔINT

[𝑠,𝑒] :=
∑𝑒
𝜏=𝑠+1 ∥INT𝜏 − INT𝜏−1∥𝐹 . Then we have

(5.13) = 𝑛 ·
(
ΔOPT
[0,𝑒] − Δ

INT
[0,𝑠] + 2𝜅

)
(𝑐)
≤ 𝑛 ·

(
ΔOPT
[0,𝑒] − Δ

OPT
[0,𝑠] + dia(Θ) + 2𝜅

)
= 𝑛 ·

(
ΔOPT
[𝑠,𝑒] + dia(Θ) + 2𝜅

)
,

where (c) holds because if
∑𝑠
𝜏=1 ∥OPT𝜏 − OPT𝜏−1∥𝐹 >

∑𝑠
𝜏=1 ∥INT𝜏 − INT𝜏−1∥𝐹 +

dia(Θ) and OPT[0,𝑠] ≠ INT[0,𝑠] , then we can replace the [0, 𝑠] portion of the
optimal trajectory OPT[0,𝑒] with INT[0,𝑠] and achieve a lower cost for 𝜔𝑒 (OPT𝑒),
thus contradicting the optimality of OPT[0,𝑒] . To see why the fictitious trajectory(
INT[0,𝑠] ,OPT[𝑠+1,𝑒]

)
achieves lower cost than OPT[0,𝑒] , we compare the total
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movement cost during the interval [0, 𝑠 + 1],
𝑠∑︁
𝜏=1
∥INT𝜏 − INT𝜏−1∥𝐹 + ∥OPT𝑠+1 − INT𝑠∥𝐹

≤
𝑠∑︁
𝜏=1
∥INT𝜏 − INT𝜏−1∥𝐹 + ∥OPT𝑠+1 − OPT𝑠∥𝐹

+ ∥OPT𝑠 − INT𝑠∥𝐹

≤
𝑠∑︁
𝜏=1
∥INT𝜏 − INT𝜏−1∥𝐹 + ∥OPT𝑠+1 − OPT𝑠∥𝐹 + dia(Θ)

<

𝑠∑︁
𝜏=1
∥OPT𝜏 − OPT𝜏−1∥𝐹 + ∥OPT𝑠+1 − OPT𝑠∥𝐹 ,

which means the fictitious trajectory achieves lower overall cost. Therefore (c) must
hold. ■

5.B Auxiliary Results
Here we summarize the helper lemmas used in the proof sketch of Theorem 18. First,
we define some useful notation.

Lyapunov equation. Let 𝑋,𝑌 ∈ R𝑛×𝑛 with 𝑌 = 𝑌⊤ ≻ 0 and 𝜌(𝑋) < 1. Define
dlyap(𝑋,𝑌 ) to be the unique positive definite solution 𝑍 to the Lyapunov equation
𝑋⊤𝑍𝑋 − 𝑍 = 𝑌 . For a stabilizable system (𝐴, 𝐵) with optimal infinite-horizon LQR
feedback 𝐾 := 𝐾∗( [𝐴 𝐵]) with cost matrices 𝑄, 𝑅 = 𝐼, we define

𝑃(𝐴, 𝐵) = dlyap(𝐴 + 𝐵𝐾∗( [𝐴 𝐵]), 𝐼𝑛 + 𝐾∗( [𝐴 𝐵])⊤𝐾∗( [𝐴 𝐵]))

and
𝐻 (𝐴, 𝐵) = dlyap(𝐴 + 𝐵𝐾∗( [𝐴 𝐵]), 𝐼𝑛).

We also define the shorthand for the following:

𝑃𝑡 := 𝑃(𝐴𝑡 , 𝐵𝑡), 𝐻𝑡 := 𝐻 (𝐴𝑡 , 𝐵𝑡). (5.14)

Constants. Throughout the proof, we will reference the following system-theoretical
constants for the parameter set Θ defined in Assumption 7:

∥𝐾∗∥ := sup
[𝐴 𝐵]∈Θ

∥𝐾∗( [𝐴 𝐵])∥ , 𝛾∗ := max
[𝐴 𝐵]∈Θ

∥𝐴 + 𝐵𝐾∗( [𝐴 𝐵])∥ .

We also quantify the stability of every model in Θ under its corresponding optimal
LQR gain. Let

𝐶∗ > 0, 𝑟∗ ∈ (0, 1)
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be such that for all 𝜃 := [𝐴 𝐵] ∈ Θ, 𝐾 := 𝐾∗(𝜃), and 𝑖 ∈ N+,
((𝐴 + 𝐵𝐾)𝑇 ) 𝑖 ·(𝐴 + 𝐵𝐾)𝑖 ≤ 𝐶∗𝑟2𝑖

∗ . By Lemma 23 which is stated below and Assumption 7, such
𝐶∗ and 𝑟∗ always exist. Further, we define

∥𝑃∗∥ := sup
[𝐴 𝐵]∈Θ

∥𝑃(𝐴, 𝐵)∥ , ∥𝐻∗∥ := sup
[𝐴 𝐵]∈Θ

∥𝐻 (𝐴, 𝐵)∥ ,

𝜖∗ := 1/
(
54 ∥𝑃∗∥5

)
, 𝑐∗ := max

[𝐴 𝐵]∈Θ

𝜆max𝐻 (𝐴, 𝐵)
𝜆min𝐻 (𝐴, 𝐵)

,

ℎ∗ := sup
[𝐴1 𝐵1], [𝐴2 𝐵2]∈Θ

𝐻 (𝐴1, 𝐵1)1/2
 𝐻 (𝐴2, 𝐵2)−1/2

 .
To justify the existence of these constants, note that discrete-time optimal LQR
controller has guaranteed stability margin [198] and that by Lemma 23 and the fact
that the solution to Lyapunov equation has the following closed form:

𝑃(𝐴, 𝐵) =
∞∑︁
𝑖=0

(
(𝐴 + 𝐵𝐾)⊤

) 𝑖 (𝐼 + 𝐾⊤𝐾) (𝐴 + 𝐵𝐾)𝑖, (5.15)

we have that for all [𝐴, 𝐵] ∈ Θ,

∥𝑃(𝐴, 𝐵)∥ ≤
(
1 + ∥𝐾 ∥2

) (
1 +

∞∑︁
𝑖=1

((𝐴 + 𝐵𝐾)⊤) 𝑖 (𝐴 + 𝐵𝐾)𝑖)

≤

(
1 + ∥𝐾∗∥2

) (
1 − 𝑟2

∗ + 𝐶∗
)

1 − 𝑟2
∗

=: ∥𝑃∗∥ .

We can similarly derive ∥𝐻∗∥. By definition of the Lyapunov solution (5.15),
∥𝑃∗∥ ≥ ∥𝐻∗∥ ≥ 1.

Lemma 23 ([199, page 183]). For a matrix 𝐴 ∈ R𝑛×𝑛, with 𝜌 := 𝜌(𝐴), there exist
constants 𝜅1, 𝜅2 such that for any positive integer 𝑖

𝜅1𝜌
𝑖𝑖𝑛1−1 ≤

𝐴𝑖 ≤ 𝜅2𝜌
𝑖𝑖𝑛1−1

where 𝑛1 is the size of the largest Jordan block corresponding to eigenvalue of 𝜌 in
Jordan block form representation of 𝐴.

Lemma 24 ([59, Proposition 6]). LetΘ = [𝐴 𝐵] be a stabilizable system, with optimal
controller 𝐾 := 𝐾∗(𝜃) and 𝑃 := 𝑃(𝐴, 𝐵). Let �̂� = [𝐴 𝐵] be an estimate of 𝜃, 𝐾 :=
𝐾∗(�̂�) the optimal controller for the estimate, and 𝜖 := max

{𝐴 − 𝐴 , 𝐵 − 𝐵}.
Then if 𝛼 := 8 ∥𝑃∥2 𝜖 < 1:𝐵 (

𝐾 − 𝐾
) ≤ 8(1 − 𝛼)−7/4 ∥𝑃∥7/2 𝜖 .
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Lemma 25 ([59, Theorem 8]). Let 𝜃 = [𝐴 𝐵] be a stabilizable system, with
𝑃 := 𝑃(𝐴, 𝐵), and 𝐻 = 𝐻 (𝐴, 𝐵). Let �̂� = [𝐴 𝐵] be an estimate of 𝜃 satisfying
max

{𝐴 − 𝐴 , 𝐵 − 𝐵} ≤ 𝜖 . Consider certainty equivalent controller 𝐾 = 𝐾∗(�̂�).
Then if 𝜖 is such that 54 ∥𝑃∥5 𝜖 ≤ 1, we have

(𝐴 + 𝐵𝐾)⊤𝐻 (𝐴 + 𝐵𝐾) ⪯
(
1 − 1

2
∥𝐻∥−1

)
𝐻 ⪯

(
1 − 1

2
∥𝑃∥−1

)
𝐻.

Lemma 26 ([200]). Let 𝑋 be the solution to the Lyapunov equation 𝑋 − 𝐹⊤𝑋𝐹 = 𝑀 ,
and let 𝑋 + Δ𝑋 be the solution to the perturbed problem

𝑍 − (𝐹 + Δ𝐹)⊤𝑍 (𝐹 + Δ𝐹) = 𝑀.

The following inequality holds for the spectral norm:

∥Δ𝑋 ∥
∥𝑋 + Δ𝑋 ∥ ≤ 2

 +∞∑︁
𝑘=0

(
𝐹⊤

) 𝑘
𝐹𝑘

 · (2∥𝐹∥ + ∥Δ𝐹∥) · ∥Δ𝐹∥.
Lemma 27. Suppose 𝜖𝑡+1 := max

{𝐴𝑡+1 − 𝐴𝑡 , 𝐵𝑡+1 − 𝐵𝑡} and𝛼 := 8 ∥𝑃∗∥2 𝜖𝑡+1 ≤
1/2, . Then 𝐻𝑡 defined in (5.14) satisfies

𝐻𝑡 ⪯ 𝐻𝑡+1(1 + 𝜂𝑡+1)

for 𝜂𝑡+1 := 𝑐∗𝛽∗𝜖𝑡+1, and

𝛽∗ :=
2𝐶∗

1 − 𝑟2
∗
(2𝛾∗ + 3 + ∥𝐾∗∥)

(
1 + 32 ∥𝑃∗∥2 + ∥𝐾∗∥

)
.

Proof of Lemma 27. For notational brevity, we drop the time index for 𝜖 and 𝜂 in
the proof. Applying Lemma 26 with 𝑋 = 𝐻𝑡 , 𝑋 + Δ𝑋 = 𝐻𝑡+1 and 𝐹 = 𝐴𝑡 + 𝐵𝑡𝐾𝑡
and Δ𝐹 = (𝐴𝑡+1 − 𝐴𝑡) + (𝐵𝑡+1𝐾𝑡+1 − 𝐵𝑡𝐾𝑡), and 𝑀 = 𝐼𝑛 we have

∥𝐻𝑡+1 − 𝐻𝑡 ∥
∥𝐻𝑡+1∥

≤ 2

 +∞∑︁
𝑘=0

(
(𝐴𝑡 + 𝐵𝑡𝐾𝑡)⊤

) 𝑘
(𝐴𝑡 + 𝐵𝑡𝐾𝑡)𝑘


·
(
2
𝐴𝑡 + 𝐵𝑡𝐾𝑡 + 𝐴𝑡+1 − 𝐴𝑡)+𝐵𝑡+1(𝐾𝑡+1 − 𝐾𝑡) + (𝐵𝑡+1 − 𝐵𝑡)𝐾𝑡 )

·
( 𝐴𝑡+1 − 𝐴𝑡) + 𝐵𝑡+1(𝐾𝑡+1 − 𝐾𝑡) + (𝐵𝑡+1 − 𝐵𝑡)𝐾𝑡 )
≤ 𝜖 2𝐶∗

1 − 𝑟2
∗

(
2𝛾∗ + 𝜖

(
1 + 32 ∥𝑃∗∥2 + ∥𝐾∗∥

))
·(

1 + 32 ∥𝑃∗∥2 + ∥𝐾∗∥
)
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≤ 𝜖 2𝐶∗
1 − 𝑟2

∗
(2𝛾∗ + 3 + ∥𝐾∗∥)

(
1 + 32 ∥𝑃∗∥2 + ∥𝐾∗∥

)
=: 𝜖 𝛽,

where in the second inequality we used Lemma 24 to bound
𝐵𝑡+1(𝐾𝑡+1 − 𝐾𝑡) ≤

32 ∥𝑃𝑡+1∥7/2 𝜖 and in the last inequality we use the assumption 8𝜖 ∥𝑃∗∥2 ≤ 1/2.

To show 𝐻𝑡 ⪯ 𝐻𝑡+1(1 + 𝜂) for some 𝜂, it suffices to show that for all vectors 𝑣 ∈ 𝑅𝑅𝑛,
𝑣⊤(𝐻𝑡 − 𝐻𝑡+1)𝑣 ≤ 𝜂𝑣⊤𝐻𝑡+1𝑣. With the preceding calculation, we have

𝑣⊤(𝐻𝑡 − 𝐻𝑡+1)𝑣 ≤ ∥𝑣∥2 ∥𝐻𝑡 − 𝐻𝑡+1∥
≤ 𝜖 𝛽∗∥𝑣∥2 ∥𝐻𝑡+1∥
≤ 𝜖 𝛽∗𝑐∗𝜆min(𝐻𝑡+1)∥𝑣∥2

≤ 𝜖 𝛽∗𝑐∗𝑣⊤𝐻𝑡+1𝑣 .

This proves the desired bound, with 𝜂 = 𝑐∗𝛽∗𝜖 and

𝛽∗ =
2𝐶∗

1 − 𝑟2
∗
(2𝛾∗ + 3 + ∥𝐾∗∥)

(
1 + 32 ∥𝑃∗∥2 + ∥𝐾∗∥

)
.

■

5.C Proof of Theorem 18
Recall that the closed loop dynamics can be characterized as (5.6). Therefore,

∥𝑥𝑡 ∥ ≤ 𝑊 +𝑊
𝑡−2∑︁
𝑠=0

 ∏
𝜏∈[𝑡−1:𝑠+1]

(
𝐴𝜏 + 𝐵𝜏𝐾𝜏−1

) . (5.16)

Define

𝐿𝑡 := 𝐻−1/2
𝑡 (𝐴𝑡 + 𝐵𝑡𝐾𝑡−1)𝐻1/2

𝑡 ,

where 𝐻𝑡 is defined in (5.14). This gives,

𝐴𝑡 + 𝐵𝑡𝐾𝑡−1 := 𝐻1/2
𝑡 𝐿𝑡𝐻

−1/2
𝑡 .

Therefore, each summand in (5.16) can be bounded as∏
𝜏∈𝐼𝑠

(
𝐴𝜏 + 𝐵𝜏𝐾𝜏−1

)
≤

𝐻1/2
𝑡−1

 𝐻−1/2
𝑠+1

︸             ︷︷             ︸
(𝑎)

∏
𝑘∈𝐼𝑠+1

𝐻−1/2
𝑘

𝐻
1/2
𝑘−1

︸                  ︷︷                  ︸
(𝑏)

∏
𝜏∈𝐼𝑠
∥𝐿𝜏∥︸    ︷︷    ︸
(𝑐)

(5.17)
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where we used 𝐼𝑠 as shorthand for the interval [𝑡 − 1 : 𝑠 + 1].

Bounding (a). We directly use the system-theoretical constant introduced in
Section 5.B so that (a) ≤ ℎ∗.

Bounding (b). Lemma 27 directly implies that for all 𝑡 ∈ N+, 𝐻𝑡−1𝐻
−1
𝑡 ⪯ (1 + 𝜂𝑡)𝐼.

Therefore, we have𝐻1/2
𝑡−1𝐻

−1/2
𝑡

 ≤ (1 + 𝜂𝑡)1/2 ≤ 1 + 𝜂𝑡/2 ≤ 𝑒𝜂𝑡/2.

Hence with the fact that 𝐻𝑡’s are symmetric,

𝐻−1/2
𝑡 𝐻

1/2
𝑡−1

 ≤ 
𝑒

𝑐∗𝛽∗∥ 𝜃𝑡 −𝜃𝑡−1∥𝐹
2 ,

�̂�𝑡 − �̂�𝑡−1


𝐹
≤ 𝜖∗

ℎ∗ otherwise.
(5.18)

Bounding (c). Lemma 25 implies that if
�̂�𝑡 − �̂�𝑡−1


𝐹
≤ 𝜖∗ then(

𝐴𝑡 + 𝐵𝑡𝐾𝑡−1

)⊤
𝐻𝑡

(
𝐴𝑡 + 𝐵𝑡𝐾𝑡−1

)
⪯

(
1 − 1

2
∥𝑃𝑡 ∥−1

)
𝐻𝑡 .

This in turn implies that

𝐿⊤𝑡 𝐿𝑡 = 𝐻
−1/2
𝑡 (𝐴𝑡 + 𝐵𝑡𝐾𝑡−1)⊤𝐻𝑡 (𝐴𝑡 + 𝐵𝑡𝐾𝑡−1)𝐻−1/2

𝑡

⪯ 𝐻−1/2
𝑡

(
1 − 1

2
∥𝑃𝑡 ∥−1

)
𝐻𝑡𝐻

−1/2
𝑡

⪯
(
1 − 1

2
∥𝑃𝑡 ∥−1

)
𝐼𝑛.

This in turn implies that ∥𝐿𝑡 ∥ ≤
(
1 − 1

2∥𝑃∗∥

)1/2
. To summarize,

∥𝐿𝑡 ∥ ≤

𝜌𝐿 :=

(
1 − 1

2∥𝑃∗∥

)1/2
< 1,

�̂�𝑡 − �̂�𝑡−1


𝐹
≤ 𝜖∗

ℓ∗ otherwise,
(5.19)

for some constant ℓ∗ such that for all 𝑡 ∈ N+,𝐻1/2
𝑡 (𝐴𝑡 + 𝐵𝑡𝐾𝑡−1)𝐻−1/2

𝑡

 ≤ ℓ∗
Combining (a,b,c). We now plug in the bounds (5.18) and (5.19) into (5.17).
Let Δ̂[𝑠,𝑒] :=

∑𝑒
𝜏=𝑠+1

�̂�𝜏 − �̂�𝜏−1


𝐹

be the partial-path movement of the selected
hypothesis models and Δ[𝑠,𝑒] :=

∑𝑒
𝜏=𝑠+1 ∥𝜃𝜏 − 𝜃𝜏−1∥𝐹 be the true model partial-path
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variation. We also denote by 𝑛𝑠,𝑡 the number of pairs (𝜏, 𝜏−1) with 𝑠 +1 ≤ 𝜏 ≤ 𝑡 −1
where

�̂�𝜏 − �̂�𝜏−1


𝐹
> 𝜖∗. Note that 𝑛𝑠,𝑡 ≤ Δ̂[𝑠,𝑡−1]/𝜖∗. Therefore, ∏

𝜏∈[𝑡−1:𝑠+1]

(
𝐴𝜏 + 𝐵𝜏𝐾𝜏−1

)
≤ ℎ∗ · ℎ𝑛𝑠,𝑡∗ · 𝑒

𝑐∗𝛽∗Δ̂[𝑠+1,𝑡−1]
2 · ℓ𝑛𝑠,𝑡∗ · 𝜌

𝑡−𝑠−1−𝑛𝑠,𝑡
𝐿

≤ ℎ∗
(
ℓ∗ℎ∗
𝜌𝐿

) Δ̂[𝑠,𝑡−1]
𝜖∗

𝑒
𝑐∗𝛽∗Δ̂[𝑠+1,𝑡−1]

2 · 𝜌𝑡−𝑠−1
𝐿

≤ ℎ∗
(
ℓ∗ℎ∗
𝜌𝐿

) �̄�(dia(Θ)+2𝜅+Δ[𝑠,𝑡−1])
𝜖∗

· 𝑒
𝑐∗𝛽∗ �̄�(dia(Θ)+2𝜅+Δ[𝑠+1,𝑡−1])

2 · 𝜌𝑡−𝑠−1
𝐿

=: 𝑐0 · 𝑐
Δ[𝑠,𝑡−1]
1 𝜌𝑡−𝑠−1

𝐿 ,

where �̄� := 𝑛(𝑛 + 𝑚) is the dimension of the parameter space for [𝐴𝑡 𝐵𝑡]. Finally
plugging the above in (5.16) gives

∥𝑥𝑡 ∥ ≤ 𝑊
(
1 + 𝑐0

𝑡−2∑︁
𝑠=0

𝑐
Δ[𝑠,𝑡−1]
1 𝜌𝑡−𝑠−1

𝐿

)
.

■
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C h a p t e r 6

ONLINE ADVERSARIAL STABILIZATION OF UNKNOWN
NETWORKED SYSTEMS

In this chapter, we continue to explore the SME uncertainty set-based learning and
control framework. In particular, we will instantiate the framework for another
important class of problems where the goal is to stabilize unknown networked
systems under communication constraints and non-stochastic (potentially adversarial)
perturbations. Networked systems model a variety of CPS, such as power systems,
connected vehicles, and building control systems. As sensing, actuation, and
communication technologies continue to expand for CPS, these network models will
be too large-scale and complex to model accurately. Moreover, due to the sheer scale
of such systems, communication constraints, such as delay and locality as introduced
in Part I, must be considered in the algorithm design. To add to the challenge,
CPS are increasingly susceptible to attacks. These considerations motivate us to
devise an algorithm that can guarantee network stability for unknown systems under
communication constraints against adversarial attacks.

We will propose the first provably stabilizing algorithm for this setting. The algorithm
uses a distributed version of nested convex body chasing to maintain a consistent
estimate of the network dynamics and applies SLS to determine a distributed
controller based on the selected model. Our approach accommodates a broad class
of communication delays while enabling fully distributed execution and scaling
favorably with the number of subsystems in the network.

[1] J. Yu, D. Ho, and A. Wierman, “Online adversarial stabilization of unknown
networked systems,” Proceedings of the ACM on Measurement and Analysis
of Computing Systems (SIGMETRICS), vol. 7, no. 1, pp. 1–43, 2023. doi:
10.1145/3579452.

6.1 Introduction
Large-scale networked dynamical systems play a crucial role in many emerging
engineering systems such as the power grid [69], autonomous vehicles [70], and
swarm robots [201]. Motivated by the success of learning-based control methods for
single-agent (centralized) linear systems, there has been growing interest in learning

https://doi.org/10.1145/3579452
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distributed controllers for unknown networked systems composed of interconnected
and spatially distributed linear time-invariant (LTI) subsystems [121], [202]–[205].

However, since most existing literature ports centralized learning-based control
techniques over to the distributed setting, almost all previous work assumes that the
underlying dynamics are stable, or that a stabilizing and distributed controller is
known. For a large-scale networked system, such assumptions are often unrealistic,
because designing stabilizing distributed controllers itself is a significant task even if
the dynamics model is available [39], [44], [71], [73], [206], [207].

Recent work has begun to lift the assumption of the knowledge of a stabilizing
controller in the centralized case, e.g. [26], [96], [208]. This line of work follows the
approach of system identification, either by letting the unstable system run open-loop
or by exciting the system via control inputs. However, such approaches induce
explosive transient behaviors due to the instability of the underlying system. Without
proper generalization to the networked setting, such explosive behavior can cause
catastrophic system degradation before a proper stabilizing controller can be learned.

Further, until now, scalability and information constraints have only been considered
separately in learning-based distributed controller design; no general approach
exists. On the other hand, information constraints and scalability have been the
central topics in distributed control for the past decade due to their theoretical
challenge and practical importance [40]–[43], [78]. Therefore, it is crucial to
simultaneously consider such constraints when designing learning-based distributed
control algorithms for networked systems.

Contribution
We overcome the aforementioned challenges by leveraging recent advances in online
learning and distributed control. In particular, we propose an approach that combines
a distributed version of nested convex body chasing (NCBC), in order to maintain a
consistent estimate of the network dynamics, with system level synthesis (SLS), in
order to determine a distributed controller based on the selected consistent model.
This combination yields the first online algorithm that provably stabilizes a networked
LTI system with information constraints under adversarial disturbances (Theorem
22). The proposed algorithm (Algorithm 5) is distributed and scales favorably to the
number of subsystems in the network.

The approach in this chapter is fundamentally different than traditional system
identification based methods, which may incur prohibitively large state norm under
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Table 6.1: Maximum and top 90% infinity norm of the state (∥𝑥(𝑡)∥∞) for different
disturbance profiles averaged over 10 runs. The goal of the controller is to minimize
the size of the state. Simulation details are provided in Section 6.5.

Algorithm Correlated Gaussian (Top 90%) Uniform (Top 90%) State-dependent (Top 90%)

This work 1.21 × 101 (0.31 × 101) 2.30 × 101 (0.36 × 101) 7.14 × 101 (0.54 × 101)
SysID 5.12 × 1011 (1.71 × 1011) 5.12 × 1011 (1.71 × 1011) 5.12 × 1011 (1.71 × 1011)

adversarial disturbances, even in the simplest setting (see Table 6.1). The reason is
that system identification-based approaches seek to learn the full system dynamics,
which requires full excitation of the system against worst-case disturbances. On the
other hand, our approach does not require precise knowledge of the system. Instead,
we maintain model estimates that are consistent with the observations generated by the
unknown system at all times. A consequence of focusing on consistency is a natural
endogenous exploration-exploitation scheme where our algorithm performs well
(small state norm) while the selected model stays consistent, and gains information
about the system whenever it observes a large state norm that renders the selected
model inconsistent.

The main result of this chapter is an input-to-state stability guarantee (Theorem 22),
where we draw novel connections between the path length property of NCBC
techniques and system stability analysis. This follows from a set of novel technical
results for SLS in the learning-based control context. In particular, we generalize a
previous result [73] on the characterization of the closed loop under SLS controllers
that are synthesized from an arbitrary and potentially incorrect system model
(Lemma 28). This result enables the analysis of our algorithm when each subsystem
uses local, asynchronous, and wrong model information for local controller synthesis.
Further, we derive a novel perturbation result with explicit constants for finite-
horizon SLS synthesis (Theorem 21) that globally bounds the sensitivity of the
optimal solution to the SLS problem (a quadratic program with equality and sparsity
constraints) with respect to the model. This result is also applicable in other contexts
such as a class of MPC problems under sparsity constraints [209]–[211].

Related Work
This work contributes to a large and growing body of work on the topics related to
learning-based control design, online control, and distributed control. We briefly
review the literature most related to this work below.

Stabilization of unknown systems. Stabilizing unknown linear systems has long
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been a fundamental problem studied in adaptive control theory [212]. It recently
reemerged as a learning problem and received considerable attention from the
machine learning community [208], [213]–[215]. Most works have been developed
under single-agent setting, with a no-noise assumption [181], [216] or Gausssian
noise models [17], [147]. Under the adversarial noise setting, which is the focus of
this chapter, the only work that guarantees stabilization for LTI systems is [26], with a
system identification-based approach that achieves order-optimal regret. In contrast,
we propose a novel framework for stabilization under adversarial noise that does not
rely on accurate identification of the true dynamics. In particular, our method is the
first algorithm to stabilize a networked LTI system under adversarial disturbances with
information constraints while simultaneously achieving magnitudes of improvement
in empirical performance over the state-of-the-art identification-based approach [26]
in the single-agent setting, despite the regret-optimal guarantee in [26].

Distributed control. Motivated by large-scale cyberphysical systems that are
composed of physically distributed subsystems with local dynamical interactions,
there is a large body of work on control design for networked systems [73], [207],
[217]. Cyberphysical systems such as the power grid are commonly constrained
by a communication layer that allows specific structure of information exchange
among the subsystems. Such information structure imposes significant challenges
for optimal control design, often rendering the problem NP-hard [218]. In [39], it
was shown that a large class of practically relevant distributed control problems is
convex and tractable to solve. Since then, many works have focused on this class of
problems [206], [219]. However, [45] observes that the complexity of computation
and implementation of distributed controllers developed under this setting can be
prohibitively expensive, and thus not scalable to large-scale systems. The System
Level Synthesis (SLS) framework is developed as a scalable alternative to distributed
control design [73]. In particular, SLS allows order-constant complexity for synthesis
and implementation, due to its special parameterization and implementation of the
feedback controller. As a result, many works have adopted SLS as the basis for novel
(learning-based) control algorithms in both distributed and centralized setting [61],
[210], [220], [221]. We contribute to the literature on SLS by developing a suit of
technical results for SLS controllers that can find applications beyond the setting of
this work.

Learning distributed controllers. Many learning-based control algorithms for
networked systems adopt a centralized learning or computational approach with
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the objective of regret minimization, e.g., [202]–[205], [222]. All prior work use
the stochastic noise or no-noise model and assume a known stabilizing distributed
controller is given [121], [210], [223]–[226]. As far as we are aware, no previous work
accommodates communication delay while doing both learning and control. The
most related to our work are [227] and [203], where learning-based SLS controllers
are designed to control unknown networked systems. Both of the methods require
the knowledge of a stabilizing and distributed controller. [227] is only applicable to
small-uncertainty scenarios, while [203] requires a stabilizing distributed controller
and performs centralized learning. In this work, we focus on stabilization and propose
the first distributed learning-based control algorithm that guarantees stability for
unknown networked systems under adversarial disturbances.

Online learning. The problem of online stabilization for unknown dynamical
systems is an instance of online decision making problems, where an agent makes a
sequence of decisions based on the feedback from an unknown environment with
the goal of cost minimization. Online decision making is studied extensively in
the online learning literature, with a line of work [55], [165], [228], [229] that
makes interesting connections between convex function and body chasing [230],
[231] and linear control theory. In particular, [13] proposes an online nonlinear
robust control method based on convex body chasing that guarantees finite mistakes
under adversarial disturbances without the need for system identification. While
[13] considers binary cost functions for general nonlinear systems, we present novel
technical results that establish the first connection between convex body chasing and
stability analysis for both single-agent and networked multi-agent linear dynamical
systems.

Notation. Let ∥ · ∥ be the ℓ2 norm and ∥ · ∥𝐹 be the Frobenius norm. We denote the
(𝑖, 𝑗)th position of a matrix 𝑀 as 𝑀 (𝑖, 𝑗) and use 𝑀 (:, 𝑗), 𝑀 (𝑖, :) for the 𝑗 th column
and 𝑖th row of 𝑀 respectively. We use [𝑁] for the set of positive integers up to 𝑁 .
Positive integers are denoted as N+. Bold face lower cases are reserved for vector
signal of the form x := {𝑥(𝑡)}∞

𝑡=0 with 𝑥(𝑡) ∈ R𝑛. We reserve bold face capital letters
for causal linear operators/transfer matrices with components 𝐾 [0], 𝐾 [1], . . . , such
that

K :=


𝐾 [0] 0 . . .

𝐾 [1] 𝐾 [0] 0 . . .
...

. . .
. . .

. . .

 .
We write y = Gx to mean that 𝑦(𝑡) = ∑𝑡

𝑘=0𝐺 [𝑘]𝑥(𝑡 − 𝑘). Given any binary matrix
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Dynamics
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(c) Adjacency ma-
trix C.

Figure 6.1: Example networked LTI system with information constraints.

C ∈ {1, 0}𝑁×𝑁 , we say 𝑀 ∈ C for a matrix 𝑀 ∈ R𝑁×𝑁 if the sparsity of 𝑀 is C. We
use {𝑒 𝑗 }𝑛𝑗=1 for the standard basis in R𝑛.

6.2 Preliminaries and Problem Setup
We consider the task of stabilizing an unknown networked system made up of 𝑁
interconnected, heterogeneous linear time-invariant (LTI) subsystems, illustrated in
Figure 6.1(a). For each subsystem 𝑖 ∈ [𝑁], let 𝑥𝑖 (𝑡) ∈ R𝑛𝑖 , 𝑢𝑖 (𝑡) ∈ R𝑚𝑖 , 𝑤𝑖 (𝑡) ∈ R𝑛𝑖
be the local state, control, and disturbance vectors respectively. Each subsystem 𝑖

has dynamics,

𝑥𝑖 (𝑡 + 1) =
∑︁
𝑗∈N (𝑖)

(
𝐴𝑖 𝑗𝑥 𝑗 (𝑡) + 𝐵𝑖 𝑗𝑢 𝑗 (𝑡)

)
+ 𝑤𝑖 (𝑡), (6.1)

where we write 𝑗 ∈ N (𝑖) if the states or control actions of subsystem 𝑗 affect those
of subsystem 𝑖 through the open-loop network dynamics (𝑖 ∈ N (𝑖)). Concatenating
all the subsystem dynamics, we can represent the global dynamics as

𝑥(𝑡 + 1) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡) + 𝑤(𝑡), (6.2)

where 𝑥(𝑡) ∈ R𝑁𝑥 , 𝑢(𝑡) ∈ R𝑁𝑢 , 𝑤(𝑡) ∈ R𝑁𝑥 , with 𝑁𝑥 =
∑𝑁
𝑖=1 𝑛𝑖 and 𝑁𝑢 =

∑𝑁
𝑖=1 𝑚𝑖,

and we define 𝐴𝑖 𝑗 , 𝐵𝑖 𝑗 ≡ 0 for all 𝑗 ∉ N(𝑖). The networked LTI model (6.1) has
been extensively studied in the networked control literature for various applications
such as robotic swarms [232], voltage control for the distribution network of the
power grid [55], and many other large-scale cyber-physical systems [37], [233]. An
example is the linearized swing equation for power systems, where the global system
is composed of a mesh of interacting buses [234], [235]. In this setting, the states 𝑥𝑖

of each bus 𝑖 is two-dimensional and corresponds to the phase angle relative to some
given setpoint and the associated frequency. The input 𝑢𝑖 at bus 𝑖 is the controllable
load, while 𝑤𝑖 is the bounded load disturbances that are often correlated in space
and time.
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We assume that the topology among the subsystems is known, i.e., the sets N(𝑖) for
𝑖 ∈ [𝑁] are known. However, the parameters of the dynamics (entries of matrices
𝐴𝑖 𝑗 , 𝐵𝑖 𝑗 ) are unknown. Let 𝜃𝑖 denote the unknown local parameter for subsystem 𝑖,
i.e., 𝜃𝑖 :=

(
𝐴𝑖 𝑗 , 𝐵𝑖 𝑗

)
𝑗∈N (𝑖) . Further, let Θ := (𝜃1, . . . , 𝜃𝑁 ) be the global parameter.

We write 𝐴(Θ) and 𝐵(Θ) (equivalently 𝐴𝑖 𝑗 (𝜃𝑖), 𝐵𝑖 𝑗 (𝜃𝑖)) to emphasize that 𝐴 and 𝐵
are matrices constructed with appropriate zeros according to the network topology
(known), and the nonzero entries specified by Θ (unknown).

Example 6. Consider the networked system in Figure 6.1(a) where each subsystem
𝑖 ∈ [6] has 𝑥𝑖 (𝑡) ∈ R and 𝑢𝑖 (𝑡) ∈ R. For each 𝑖, the set N(𝑖) contains the
subsystems that has a dashed arrow pointing towards 𝑥𝑖 in the figure. For example,
N(6) = {1, 3, 5, 6}. Each 𝐴𝑖 𝑗 and 𝐵𝑖 𝑗 for 𝑗 ∈ N (𝑖) is a scalar. The stacked global
dynamics has matrix 𝐴 and 𝐵 with structure shown in Figure 6.1(b). The unknown
local parameter 𝜃𝑖 corresponds to the ∗ entries of the 𝑖th row of 𝐴 and 𝐵, while the
global parameter Θ is a vector containing ∗ entries in matrix 𝐴 and 𝐵.

We now introduce three core assumptions needed for our algorithm and analysis. As
we highlight below, these are standard assumptions in the learning-based control
literature.

Assumption 8 (Adversarial disturbances). ∥𝑤(𝑡)∥∞ ≤ 𝑊 for (6.2).

Assumption 9 (Compact Parameter Set). The network structure N(𝑖) for 𝑖 ∈ [𝑁] is
known. The true system parameter Θ★ :=

(
𝜃1,★, . . . , 𝜃𝑁,★

)
is an element of a known

compact convex set P0 = P1
0 × · · · × P

𝑁
0 , which is a product space of local parameter

sets where 𝜃𝑖,∗ ∈ P𝑖0. The known parameter set is bounded such that there exists a
known constant 𝜅 > 0 where ∥ [𝐴 (Θ) 𝐵 (Θ)] ∥𝐹 ≤ 𝜅 for all Θ ∈ P0.

Assumption 10 (Controllability). For all Θ ∈ P0, (𝐴(Θ), 𝐵(Θ)) is controllable.

Bounded adversarial disturbances is a common model in the adversarial online
learning and control problems [12], [23], [221]. Since we make no assumptions
on how large the bound on the disturbance 𝑊 is, Assumption 8 models a variety
of disturbance models, such as bounded and correlated stochastic noise or state-
dependent disturbances such as the linearization and discretization error for nonlinear
continuous dynamics [120]. Moreover, the known bound 𝑊 can be relaxed to an
unknown parameter 𝜂 with 𝜂 ≤ 𝑊 for a known constant𝑊 to reduce conservatism
for large 𝑊 . Assumptions 9 and 10 are standard in the learning-based control
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literature, e.g., see [23], [193]. We impose controllability in Assumption 10 for
ease of exposition but it can be relaxed to stabilizability by adjusting the choice of
model-based controller to an infinite-horizon controller such as the one proposed in
[236] for the algorithm.

Stability
One of the fundamental goals for control design is to ensure stability. In this chapter,
we aim to learn a stabilizing controller for the networked linear system (6.2) in the
sense of input to state stability (ISS) [237]. ISS is one of the main notions of stability
for both linear and nonlinear systems [238], [239]. Here we adapt the ISS definition
to the ℓ∞-norm.

Definition 6.2.1 (ISS). A dynamical system of the form (6.2) is said to be input to
state stable (ISS) if there exist functions 𝛽 : R+ ×N→ R+ that is continuous, strictly
increasing, and bĳective with respect to the second argument with lim𝑡→∞ 𝛽(𝑎, 𝑡) = 0
for all 𝑎 ≥ 0, 𝑡 ∈ N, and 𝛾 : R+ → R+ that is continuous, strictly increasing, and
bĳective such that for all initial state 𝑥(0), disturbance sequence w, and time 𝑡 ≥ 𝑡0
for 𝑡0 ∈ N+, we have ∥𝑥(𝑡)∥∞ ≤ 𝛽(∥𝑥(𝑡0)∥∞ , 𝑡 − 𝑡0) + 𝛾(sup𝑡≥𝑡0 ∥𝑤(𝑡)∥∞).

Distributed Design and Information Constraints
For large-scale networks such as the power grid with state dimension in the orders
of thousands to millions, it is unrealistic and prohibitively costly for a central agent
to learn a global policy online. A promising remedy is to decompose the global
policy learning into a local one, where each subsystem in the network learns a local
policy in a distributed fashion. In this work, we propose a distributed learning-based
control algorithm for the networked linear system (6.2) that guarantees stability of
the global system.

In addition to distributed design, networks of the form (6.1) are often modelled
with additional information constraints that require careful consideration. In this
work we consider two common information constraints. The first is communication
delay, where the dynamical system is endowed with a communication network that
specify delayed information transmission among subsystems. The second is local
information, where each subsystem only computes with (delayed) local information
within a specified neighborhood, and discard information outside of the neighborhood.
We come back to these information constraints and present definitions in Section 6.4.
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Algorithm Preliminaries
Our proposed algorithm makes use of two emerging techniques, one from the learning
community, i.e., nested convex body chasing (NCBC), and one from the control
community, i.e., system level synthesis (SLS). We provide important background on
each below before introducing our algorithm in the next section.

Preliminaries on NCBC

The Nested Convex Body Chasing (NCBC) problem is a well-studied online learning
problem [189], [191]. At every round 𝑡, the player is presented a convex body
K𝑡 ⊂ R𝑛 which is nested in the previous body, e.g., K𝑡 ⊆ K𝑡−1. The player selects a
point 𝑞𝑡 ∈ K𝑡 with the objective of minimizing the total path length of the selection
for 𝑇 rounds, e.g.,

∑𝑇
𝑡=0 ∥𝑞𝑡+1 − 𝑞𝑡 ∥. There are many algorithms for the NCBC

problem such as greedy projection of the previously selected point onto the current
body [240]. Among these, the Steiner point selector has been shown to achieve
optimal competitive ratio against the offline optimal selector [191]. The Steiner point
of a convex body K can be interpreted as the average of the extreme points and is
defined as

St(K) := E𝑣:∥𝑣∥≤1 [𝑔K (𝑣)] ,

where 𝑔K (𝑣) := argmax𝑥∈K𝑣⊤𝑥 and the expectation is taken with respect to the
uniform distribution over the unit ball. The Steiner point selector achieves the
following total path length:

𝑇∑︁
𝑡=0
∥St(K𝑡) − St(K𝑡+1)∥ ≤ 𝑛 · diam(K0), for all 𝑇 ∈ N+. (6.3)

We note that the Steiner point can be approximated with any accuracy by solving
sampling based linear programs [189, Algorithm 3].

Distributed control via SLS

Even when the dynamics (6.1) is known, it remains challenging to design distributed
and localized control policies that accommodates communication delay and infor-
mation constraints due to non-convexity and computational scalability issues. In
Section 2.3, we introduced the SLS framework that synthesizes distributed controllers
by via convex parameterization of feedback controllers with the closed-loop mappings
induced by the controllers. For ease of notation, we will denote the CLMs from w to
x and u as 𝚽x : w→ x and 𝚽u : w→ u.
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Recall that by Theorem 1, for any 𝚽x,𝚽u satisfying (2.6), controller K = 𝚽u(𝚽x)−1

achieves the prescribed closed-loop responses and internally stabilizes the system
with implementation (2.7).

In this chapter, we will restrict our attention to the space of linear causal operators
with FIR up to horizon 𝐻, instead of the entire space of linear causal operators
as presented in Theorem 1. This is because FIR allows temporal localization of
disturbances, in addition to the spatial localization which can be encoded as sparsity
constraints as shown in Chapter 2. Such temporal localization implies that any
introduced errors from asynchronous learning will only have an effect on the system
up to finite number of time steps. For completeness, we present the SLS theorem
Theorem 1 specialized to linear operators with finite impulse responses (FIR) here.

Theorem 19 (Adapted from [73]). For system (6.2), any linear causal operators
𝚽x,𝚽u with finite impulse response of horizon 𝐻 and satisfying the following

Φ𝑥 [0] = 𝐼, Φ𝑥 [𝑘 + 1] = 𝐴Φ𝑥 [𝑘] + 𝐵Φ𝑢 [𝑘] , for 𝑘 = 0, . . . , 𝐻 − 1 (6.4a)

Φ𝑥 [𝜏] = 0 for 𝜏 ≥ 𝐻 (6.4b)

are closed-loop mappings for (6.2) under a stabilizing linear controller K. Moreover,
given any linear causal operators 𝚽x, 𝚽u that satisfy (6.4), the following SLS
controller constructed using 𝚽x, 𝚽u,

𝑤(𝑡) = 𝑥(𝑡) −
𝐻−1∑︁
𝑘=1

Φ𝑥 [𝑘]𝑤(𝑡 − 𝑘) (6.5a)

𝑢(𝑡) =
𝐻−1∑︁
𝑘=0

Φ𝑢 [𝑘]𝑤(𝑡 − 𝑘) (6.5b)

with 𝑤(0) = 𝑥(0) achieves the desired closed-loop response prescribed by 𝚽x, 𝚽u.

The horizon 𝐻 is a system-dependent design parameter relating to controllability of
(6.2). Under Assumption 10, 𝐻 ≤ 𝑁𝑥 . We note that here we have shifted the indices
of the kernels of the CLMs to allow for causal operators rather than strictly causal
operators without loss of generality. Moreover, (6.4) provides affine constraints on
finite number of nonzero parameters of the closed-loop responses. Therefore, one
can tractably optimize the closed-loop responses with respect to a convex cost. A
common choice is the Linear Quadratic Regulator (LQR) cost on the state and input
expressed in terms of the closed-loop responses, e.g.,

min
𝚽x,𝚽u

∞∑︁
𝑘=0


[
𝑄1/2 0

0 𝑅1/2

] [
Φ𝑥 [𝑘]
Φ𝑢 [𝑘]

]2

𝐹

s.t. (6.4) . (6.6)
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In this work, we leverage the SLS controllers (6.5) that is parameterized by and
constructed from the operators 𝚽x, 𝚽u. The interpretation of (6.5) is intuitive. When
𝚽x, 𝚽u satisfy (6.4), they are valid closed-loop responses, mapping w to x and u
under (6.2). Then equation (6.5a) estimates the disturbance entering the state in the
last time step by computing the difference between the currently observed state 𝑥(𝑡)
and the counterfactual state

∑𝐻−1
𝑘=1 Φ𝑥 [𝑘]𝑤(𝑡 − 𝑘) that should have been observed

according to the closed-loop respsonse 𝚽x if there were no disturbance. Indeed, a
simple calculation using substitution will reveal that 𝑤(𝑡) = 𝑤(𝑡 − 1), i.e., that the
estimated disturbance from an SLS controller constructed with operators that satisfy
(6.4) is the perfect one-step delayed estimation of the true disturbances. Then (6.5b)
computes the control action to attenuate the estimated disturbance according to the
prescription of the closed-loop responses 𝚽u.

Recall from Chapter 2 that a feature of SLS is that both the closed-loop response
synthesis (6.6) and the controller implementation (6.5) can be performed in a
distributed manner, unlike the commonly adopted optimal LQR control method via
the Riccati equation [59]. This is crucial for scalability of the control algorithm for
large-scale systems.

In particular (6.6) is a column separable problem, which means that we can parti-
tion matrix variables Φ𝑥 [𝑘], Φ𝑢 [𝑘] into columns such as Φ𝑥 [𝑘] (:, 𝑖), Φ𝑢 [𝑘] (:, 𝑖)
corresponding to each subsystem 𝑖. We refer to [78] for the definition of column
separability and the verification of (6.6) as a column separable problem. Thus, sub-
system 𝑖 only needs to solve the column subproblems corresponding to its dynamics
(6.1) in the global dynamics (6.2) as follows. Let ϕ𝑖,𝑥 and ϕ𝑖,𝑢 denote the 𝑖th column
of 𝚽x and 𝚽u respectively and let ϕ𝑖 collectively stand for ϕ𝑖,𝑥 , ϕ𝑖,𝑢. The 𝑖th column
subproblem is

min
ϕi

∞∑︁
𝑘=0


[
𝑄1/2 0

0 𝑅1/2

] [
𝜙𝑖,𝑥 [𝑘]
𝜙𝑖,𝑢 [𝑘]

]
𝐹

s.t. 𝜙𝑖,𝑥 [𝑘 + 1] = 𝐴𝜙𝑖,𝑥 [𝑘] + 𝐵𝜙𝑖,𝑢 [𝑘] for 𝑘 = 0, . . . , 𝐻 − 1

𝜙𝑖,𝑥 [0] = 𝑒𝑖, 𝜙𝑖,𝑥 [𝐻] = 0 ,

(6.7)

where the constraints in (6.7) is the column-wise decomposition of the constraints
(6.4) for the closed-loop repsonse synthesis (6.6). It is straightforward to see that
stacking the solutions to the column subproblems recovers the optimal solution to
(6.6).

When the dynamics interaction among subsystems (6.1) is sparse, additional sparsity
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can be imposed on the closed-loop responses during synthesis (6.6). With sparse 𝚽x

and 𝚽u, the implementation of the controller (6.5) can be distributed in a similar
decomposition as the synthesis procedure. In particular, each subsystem computes a
disjoint subset of coordinates of 𝑤(𝑡). Due to sparsity, such local computation for
subsystem 𝑖 only requires the solutions to the column subproblems from the local
neighbors of 𝑖 via communication instead of from the entire network.

6.3 Online Stabilization under Adversarial Sisturbances
In this section, we propose a novel online algorithm presented in Algorithm 4 that
stabilizes an unknown networked linear system (6.2) under bounded and potentially
adversarial disturbances. The algorithm selects hypothesis models using methods for
NCBC and constructs an SLS distributed controller based on the hypothesis model.
Our approach is distinguished from prior learning-based control methods in that it
does not perform system identification as part of the algorithm.

We first introduce our algorithm without any communication or localization con-
straints. Then, in Section 6.4, we extend the algorithm to a distributed one that
accommodates communication delay and local information (Algorithm 5). Though
inspired by the approach in [13], Algorithms 4 and 5 are the first to consider the con-
trol goal of stabilization, which can not be subsumed under the framework proposed
in [13] where only binary cost functions are considered. To cast stabilization in
terms of a binary cost function, one needs to specify the largest norm of the state and
control input of the closed-loop system, which is unavailable a priori1. Moreover,
our algorithms perform both the parameter selection and the model-based control
design distributedly for each local subsystem based on delayed information from
other subsystems, whereas [13] is a single-agent algorithm.

Algorithm 4 starts with the construction of a set of candidate models that are
consistent with the online data (line 3) after observing the latest state transition
(line 2). A hypothesis model is selected from the set of candidate models with NCBC
techniques (line 5) if the previously selected hypothesis model is invalidate by the
new observation (line 4). Based on the selected hypothesis model, model-based
control design is performed using the SLS procedure introduced in Section 2.3 (line
6 - 7). We discuss the details of Algorithm 4 in the following subsections.

1A crude approximation of the largest norm can be achieved by computing the worst-case state
norm over all systems in the initial parameter set P0, but such approximation results in significant
conservatism and requires the knowledge of control theoretical constants of the controller, e.g., SLS
controllers, that may not always be available.
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Algorithm 4: Online stabilization under adversarial disturbances
Input: Parameter set P0
Initialize: 𝑡 = 0, 𝑢(0) = 0

1 for 𝑡 = 1, 2, . . . do
2 Observe 𝑥(𝑡)

/* CONSIST: Select consistent models */

3 Construct P𝑡 with (6.8)
4 if Θ𝑡−1 ∈ P𝑡 then Θ𝑡 ← Θ𝑡−1
5 else Θ𝑡 ← St(P𝑡)

/* CONTROL: Perform model-based control with SLS */

6 Synthesize 𝚽x
t , 𝚽u

t using (6.6) based on Θ𝑡
7 Compute 𝑢(𝑡) using the SLS controller (6.5) with 𝚽x

t , 𝚽u
t

8 end

CONSIST: Consistent Hypothesis Model Selection
The first component of Algorithm 4 is to select a hypothesis model Θ𝑡 in order
to perform model-based control. We name this component CONSIST. Due to
the potentially adversarial disturbances such as state-dependent noise, standard
identification methods such as linear regression do not guarantee accurate estimation
of the model. Instead, we leverage NCBC for hypothesis model selection.

After observing the latest state transition from 𝑥(𝑡 −1), 𝑢(𝑡 −1) to 𝑥(𝑡), the algorithm
constructs the set of all Θ’s such that 𝐴(Θ), 𝐵(Θ) satisfy (6.2) with some admissible
disturbances defined in Assumption 8. In particular, each observed transition defines
a set of linear constraints on Θ and we construct the consistent parameter set, P𝑡
at each time 𝑡 using the set membership estimation (SME) method introduced in
Chapter 4, namely,

P𝑡 := {Θ ∈ P𝑡−1 : ∥𝑥(𝑡) − (𝐴(Θ)𝑥(𝑡 − 1) + 𝐵(Θ)𝑢(𝑡 − 1))∥∞ ≤ 𝑊} (6.8)

with P0 as the local initial parameter set defined in Assumption 9. Recall that by
construction, the consistent parameter set P𝑡 is always convex, and nested within the
parameter set P𝑡−1 recursively. Moreover, P𝑡 is nonempty for all 𝑡 ∈ N+ because the
true parameter Θ★ belongs to every P𝑡 . The key property of SME is that for all 𝑡,
any Θ𝑡 ∈ P𝑡 could have generated the observed trajectory up to 𝑥(𝑡) and is equally
likely to be the true system model. By construction, the observed state trajectory can
be written as

𝑥(𝑡) = 𝐴(Θ★)𝑥(𝑡 − 1) + 𝐵(Θ★)𝑢(𝑡 − 1) + 𝑤★(𝑡 − 1) (6.9a)

= 𝐴(Θ𝑡)𝑥(𝑡 − 1) + 𝐵(Θ𝑡)𝑢(𝑡 − 1) + 𝑤(𝑡 − 1), (6.9b)
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where 𝑤★(𝑡) is the true disturbance and {𝑤(𝑘)}∞
𝑡=0 is some admissible disturbance

sequence such that ∥𝑤(𝑡)∥∞ ≤ 𝑊 . We say a model is consistent with observations
up to time 𝑡 if it belongs to P𝑡 . Among all consistent models, we need to select a
hypothesis model Θ𝑡 in order to perform model based control. An ideal candidate
is one that can remain inside of future consistent parameter sets. To see why,
consider an extreme case where the first selected parameter Θ1 stays consistent for
the entire online operation as we apply control actions generated based on Θ1. Since
the consistent model (6.9b) generates the same trajectory as the true model (6.9a),
any guarantees that the model-based control policy has for Θ1 will manifest in the
observation. Note Θ1 does not necessarily have to be close to Θ★.

This intuition motivates us to select a Θ𝑡 that could remain an element of the (yet
unknown) future consistent parameter set. In particular, if the hypothesis model
selected at a previous time is consistent for the current observation, we continue to
use it. If the previous hypothesis model is invalidated by the new observation, then
we want to select a new Θ𝑡’s from the nested and convex body P𝑡 with the objective of
moving as little as possible for future bodies. This is an instance of NCBC introduced
in Section 6.2. The total path length cost function in NCBC formalizes a measure of
model consistency in our case: the less the a selector moves, the longer the selected
points stay consistent overall. In Algorithm 4, we select the Steiner point of P𝑡 as
the hypothesis model. The finite path length guarantee of Steiner point in (6.3) can
be interpreted as a finite budget for the adversarial disturbances: if the disturbances
try to make the state norm large, then the selected (wrong) hypothesis model will be
quickly invalidated thanks to the excitation from the disturbances. This will make
CONSIST frequently re-select new hypothesis models. However, such inconsistent
model selection has bounded occurrences due to the finite path length guarantee (6.3)
of the Steiner point, i.e., CONSIST gains information and stops moving eventually.

CONTROL: Model-based Control with SLS
After the selection of a hypothesis model Θ𝑡 from the consistent parameter set, Algo-
rithm 4 performs the SLS closed-loop response synthesis (6.6) and implementation
(6.5) based on Θ𝑡 . We name this component of the algorithm CONTROL.

Distributed Implementation of Algorithm 4
Per discussion in Chapter 2, it is straightforward to see that Algorithm 4 can be
implemented by each subsystem in a distributed fashion. In particular, in the
CONSIST component, subsystem 𝑖 constructs a local consistent parameter set P𝑖𝑡
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based on the local observations generated from the local dynamics (6.1). Subsystem
𝑖 then selects the Steiner point of P𝑖𝑡 as its local hypothesis model 𝜃𝑖𝑡 . In the
CONTROL component, all subsystems collects the local hypothesis models from
other subsystems and construct a global estimate Θ𝑡 = (𝜃1

𝑡 , . . . , 𝜃
𝑁
𝑡 ) since we assume

no communication delay here. Based on Θ𝑡 , each subsystem synthesizes columns of
𝚽x

t and 𝚽u
t by solving the subproblems decomposed from (6.6). After collecting and

assembles the column solutions via instantaneous communication, each subsystem
computes a disjoint subset of coordinates of 𝑤(𝑡) and 𝑢(𝑡), corresponding to the
positions of the local states 𝑥𝑖 (𝑡) and input 𝑢𝑖 (𝑡) in the global dynamics (6.2)
respectively.

Stability Guarantee
The main result in this section is the following ISS guarantee for Algorithm 4.

Theorem 20. Under Assumption 8-10, Algorithm 4 guarantees the stability of the
closed loop of (6.2) in the sense of ISS such that for all 𝑡 ≥ 𝑡0

max{∥𝑥(𝑡)∥∞, ∥𝑢(𝑡)∥∞} ≤ O
(
𝑒𝑁𝑥

5/2
)
·
(
𝑒−(𝑡−𝑡0)/𝐻𝑥(𝑡0) + sup

𝑡0≤𝑘<𝑡
∥𝑤(𝑘)∥∞

)
,

where 𝑥(𝑡0) is the initial condition, 𝑁𝑥 is the total state dimension of the global
network (6.2), and 𝐻 is the finite impulse response horizon for the SLS model-based
control synthesis.

We remark that the decay factor 𝑒−𝑡/𝐻 corroborates the fact that 𝐻 quantifies the
controllability of the parameter set P0. Intuitively, the smaller 𝐻 can be for the SLS
synthesis (6.18) to be feasible, the easier the systems in the set can be learned and
controlled.

Proof. The main idea of the proof is as follows. First, we characterize the closed
loop dynamics of (6.2) under any SLS controllers constructed with arbitrary linear
causal operators (Lemma 28). We then relax the original SLS condition (6.4) in
Theorem 19 to a sufficient condition for ISS of the closed-loop dynamics under
bounded adversarial disturbances (Lemma 29). Crucially, we show that the bounded
path length property (6.3) of the selected hypothesis models in Algorithm 4 implies
the satisfaction of the sufficient condition for closed-loop stability. This implication
is established through a novel perturbation analysis (Theorem 21) of the SLS closed-
loop response synthesis problem (6.6). We defer the proofs of the helper lemmas
used here to Section 6.B.
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Specifically, we show that given arbitrary𝚽x, 𝚽u with FIR horizon𝐻, the closed-loop
dynamics of (6.2) under an SLS controller constructed from 𝚽x, 𝚽u is characterized
as follows.

Lemma 28 (Closed-loop characterization). The closed loop of (6.2) under Algorithm
4 is characterized as follows for all time 𝑡 ∈ N:

𝑥(𝑡) =
𝐻−1∑︁
𝑘=0

Φ𝑥
𝑡 [𝑘]𝑤(𝑡 − 𝑘), 𝑢(𝑡) =

𝐻−1∑︁
𝑘=0

Φ𝑢
𝑡 [𝑘]𝑤(𝑡 − 𝑘) (6.10a)

𝑤(𝑡) =
𝐻∑︁
𝑘=1

(
𝐴Φ𝑥

𝑡−1 [𝑘 − 1] + 𝐵Φ𝑢
𝑡−1 [𝑘 − 1] −Φ𝑥

𝑡 [𝑘]
)
𝑤(𝑡 − 𝑘) + 𝑤(𝑡 − 1) ,

(6.10b)

where 𝐴, 𝐵 are the true model parameters from (6.2) while 𝑤(𝑡) is the true unknown
bounded disturbances with ∥𝑤(𝑡)∥∞ ≤ 𝑊 . The linear causal operators 𝚽x

t , 𝚽u
t are

synthesized via (6.6) based on the selected hypothesis model at 𝑡 and 𝑤(𝑡) is the
estimated disturbance from the SLS controller (6.5).

This result generalizes Theorem 19 where we characterize the closed loop behaviour
of SLS controllers constructed from any linear casual operators, not necessarily
those satisfying (6.4a). Under Algorithm 4, we can further replace the true model in
(6.10b) with the selected hypothesis model (Steiner point of the consistent set) Θ𝑡 ,
i.e.,

(6.10b) =
𝐻∑︁
𝑘=1

(
𝐴(Θ𝑡)Φ𝑥

𝑡−1 [𝑘 − 1] + 𝐵(Θ𝑡)Φ𝑢
𝑡−1 [𝑘 − 1] −Φ𝑥

𝑡 [𝑘]
)
𝑤(𝑡−𝑘)+𝑤(𝑡−1),

with admissible disturbances such that ∥𝑤∥∞ ≤ 𝑊 due to the consistency property
(6.9) of Θ𝑡 .

Moreover, Lemma 28 leads to a simple sufficient condition for stability of the closed
loops under any SLS controllers. To see this, we first argue that there exist constants
that bound the decay rate of the closed loop responses synthesized from (6.6). In
particular, due to the finite impulse response property imposed by (6.4b) of the
synthesized closed-loop responses, there always exists a large enough 𝐶 > 0 and
𝜌 ∈ (0, 1) such that

[
𝜙𝑖,𝑥 [𝑘]
𝜙𝑖,𝑢 [𝑘]

]
𝐹

≤ 𝐶𝜌𝑘 for all closed-loop responses satisfying (6.4b).
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This property is commonly employed in SLS-based analysis [24], [203], [220]. We
use 𝐶 and 𝜌 for the sake of proof here and does not require the knowledge of them
for Algorithm 4 to execute.

With the decay property, according to Lemma 28, if ∥𝑤(𝑡)∥∞ ≤ 𝑊∞ for some
𝑊∞ > 0, then we can bound the global state via (6.10a) as follows:

∥𝑥(𝑡)∥∞ ≤ 𝑊∞
𝐻−1∑︁
𝑘=0

Φ𝑥
𝑡 [𝑘]


∞ ≤ 𝑊∞𝐶

1/2𝑁𝑥
1/2 1

1 − 𝜌1/2 .

The bound on control input ∥𝑢(𝑡)∥∞ follows analogously. Therefore, the stability
of the closed loop reduces to the boundedness of 𝑤(𝑡) in (6.10b). To show this, we
prove the following.

Lemma 29 (Sufficient condition for 𝐻-convolution ISS). Let 𝐻 ∈ N+. For 𝑘 ∈ [𝐻],
let {𝑎𝑡 [𝑘]}∞𝑡=1 and {𝑤𝑡}∞𝑡=0 be positive sequences. Let {𝑠𝑡}∞𝑡=0 be a positive sequence
such that

𝑠𝑡 ≤
𝐻∑︁
𝑘=1

𝑎𝑡−1 [𝑘] · 𝑠𝑡−𝑘 + 𝑤𝑡−1 . (6.11)

Then {𝑠𝑡}∞𝑡=0 is ISS if
∑∞
𝑡=0

∑𝐻
𝑘=1 𝑎𝑡 [𝑘] ≤ 𝐿 for some 𝐿 ∈ R+. In particular, for all

𝑡 ≥ 𝑡0,

𝑠𝑡 ≤ 𝑒−(𝑡−𝑡0)/𝐻 · 𝑒𝐿𝑠𝑡0 +
(
𝑒𝐿 + 𝑒 − 1

)
𝑒 − 1

sup
𝑡0≤𝑘<𝑡

𝑤𝑘 . (6.12)

The above sufficient condition is suitable for analyzing dynamical evolution under
adversarial inputs. Consider taking the norm on both sides of (6.10b). Then
Lemma 29 is immediately applicable with 𝑠𝑡 = ∥𝑤(𝑡)∥∞, and

𝑎𝑡 [𝑘] =
𝐴(Θ𝑡)Φ𝑥

𝑡−1 [𝑘 − 1] + 𝐵(Θ𝑡)Φ𝑢
𝑡−1 [𝑘 − 1] −Φ𝑥

𝑡 [𝑘]

∞ . (6.13)

Therefore, a sufficient condition for ISS of (6.2) under Algorithm 4 is the boundedness
of (6.13) summing over time 𝑡 ∈ N+ and horizon 𝑘 ≤ 𝐻. This quantity represents
the total error of the implemented closed-loop responses 𝚽x

t , 𝚽
u
t synthesized from

the selected hypothesis dynamics model Θ𝑡 , with respect to the correct closed-loop
responses generated from the true model Θ★.

To bound (6.13), we make a crucial connection between the total path length of the
Steiner point model selection in Algorithm 4 and (6.13). This is established via the
following perturbation result for the SLS closed-loop response synthesis problem
(6.6), where the formal statement (Theorem 26) and proof is presented in Appendix
6.D.
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Theorem 21 (Informal, Perturbation bound). Let 𝜙★(𝐴, 𝐵) := [x★,⊤, u★,⊤]⊤ denote
the concatenated optimal solution to the following optimization problem

min
𝑥,𝑢

𝐻∑︁
𝑡=0

𝑥(𝑡)⊤𝑄𝑥(𝑡) + 𝑢(𝑡)⊤𝑅𝑢(𝑡)

s.t. 𝑥(𝑡 + 1) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡), 𝑥(0) = 𝑥0, 𝑥(𝐻) = 0 ,

(6.14)

with 𝑄, 𝑅 ≻ 0. Let (𝐴1, 𝐵1) and (𝐴2, 𝐵2) be two system matrices such that (6.14)
is feasible. Then the corresponding optimal solutions 𝜙★(𝐴1, 𝐵1) and 𝜙★(𝐴2, 𝐵2)
satisfy

∥𝜙★(𝐴1, 𝐵1) − 𝜙★(𝐴2, 𝐵2)∥𝐹 ≤ Γ


[
𝐴1 − 𝐴2

𝐵1 − 𝐵2

]
𝐹

,

where
𝜙★(𝐴, 𝐵)

𝐹
:=

∑𝐻
𝑘=0 ∥ [𝑥(𝑘)⊤, 𝑢(𝑘)⊤] ∥𝐹 . Constant Γ > 0 involves the system

theoretical quantities for 𝐴1, 𝐴2, 𝐵1, 𝐵2, 𝑄, 𝑅.

The quadratic program (6.14) corresponds to the column-wise decomposed sub-
problems of the SLS closed-loop response synthesis (6.6). Therefore, (6.13) can be
bounded as follows:

(6.13) =
𝐴(Θ𝑡) (Φ𝑥

𝑡−1 [𝑘 − 1] −Φ𝑥
𝑡 [𝑘 − 1]) + 𝐵(Θ𝑡) (Φ𝑢

𝑡−1 [𝑘 − 1] −Φ𝑢
𝑡 [𝑘 − 1])


∞

≤ 2𝑁𝑥𝜅


[
Φ𝑥
𝑡−1 [𝑘 − 1] −Φ𝑥

𝑡 [𝑘 − 1]
Φ𝑢
𝑡−1 [𝑘 − 1] −Φ𝑢

𝑡 [𝑘 − 1]

]
𝐹

,

where the equality is due to the constraint (6.4) during the model-based control step
in Line 5 of Algorithm 4. The inequality invokes Assumption 9. Finally we show
the total error summing (6.13) over all time step 𝑡 and horizon 𝑘 ≤ 𝐻 is bounded by
the total path length of the selected hypothesis models via the Steiner point.

∞∑︁
𝑡=0

𝐻∑︁
𝑘=1

(6.13) ≤ 2𝑁𝑥𝜅
∞∑︁
𝑡=0

𝐻∑︁
𝑘=1


[
Φ𝑥
𝑡−1 [𝑘 − 1] −Φ𝑥

𝑡 [𝑘 − 1]
Φ𝑢
𝑡−1 [𝑘 − 1] −Φ𝑢

𝑡 [𝑘 − 1]

]
𝐹

≤ 2𝑁3/2
𝑥 𝜅Γ

∞∑︁
𝑡=0
∥Θ𝑡−1 − Θ𝑡 ∥𝐹 ≤ 2𝑁5/2

𝑥 𝜅Γdiam(P0), (6.15)

where we use Theorem 21 for the second inequality and the total path length bound
(6.3) of the Steiner point selector for the last inequality. Finally, we plug the total
bound (6.15) in (6.12) for an ISS bound on 𝑤(𝑡), which gives the desired state and
control input bound in Theorem 20. □
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Remark 5. NCBC algorithms other than the Steiner point selector can be substituted
in Algorithm 4 as long as the finite path length guarantee (6.3) holds. Therefore, we
can use a more computationally efficient algorithm with respect to the number of
constraints in (6.8), such as greedy projection, at the expense of a larger worst-case
path length bound. Such trade-off is potentially important since the number of
constraints in (6.8) grows linearly with time. A topic of continuing work is to find an
efficient representation of (6.8) that does not involve linear growth in the number of
constraints.

Comparison of Theorem 20 with previous results Compared to the state-of-art
system identification-based algorithm for online control under adversarial distur-
bances given in [26], which inducesΩ(2𝑛) state and control input norm, our algorithm
also incurs state norms that are exponential-polynomial in the global dimension.
However, our bound is a worst-case guarantee which is on average not achieved
during deployment. On the other hand, the exponential bound in [26] is qualitatively
obtained, since system identification-based methods require full excitation of the
system despite adversarial disturbances [26, Lemma 14]. This is the reason behind
the orders of magnitude of performance improvement of our algorithm over system
identification-based methods observed in the numerical study shown in Table 6.1.

Comparison of Theorem 21 with previous results The Lipschitz continuity of
optimal control problems, similar to (6.14), has been investigated in learning-based
LQR literature, e.g., [241], [242]. However, our perturbation result Theorem 21
(formal statement in Theorem 26) is with regard to a finite-horizon quadratic program
with terminal state constraints, whereas previous Lipschitz continuity analysis is
performed with respect to the infinite-horizon LQR optimal gain. As a result, we use
a different set of tools from matrix theory, unlike the Riccati equation (value function)
based analysis for infinite-horizon LQR problems in previous works. In Section 6.4,
we further generalize the perturbation result to handle sparsity constraints.

6.4 Adversarial Stabilization with Information Constraints
The implementation of Algorithm 4 assumes that each subsystem has instantaneous
access to the information from other subsystems, such as the local consistent
hypothesis models, and the column solutions to the subproblems decomposed from
(6.6). Such instantaneous information sharing is often unrealistic in large-scale
networked control systems. Therefore, in this section we extend the presentation
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in Section 6.3 to a fully distributed algorithm, shown in Algorithm 5, that for the
first time guarantees the stability of unknown interconnected LTI systems with
information constraints under bounded adversarial disturbances. These results are
the main contribution of this chapter.

Specifically, we consider two classes of information constraints, namely communica-
tion delay and local information, which we define formally below. After defining
these information constraints, we describe the adjustments to Algorithm 4 and present
our main result.

Communication Delay
A key feature of large-scale networked systems is that information observed locally
at each subsystem cannot be immediately available to the global network. Instead,
information sharing among subsystems is constrained by communication limitations.
Such limitations often lead to delayed partial observation and pose further challenges
for learning-based algorithm design [121], [205], [210]. To formalize the communi-
cation constraints, we define a communication graph G𝐶 = (𝑉𝐶 , 𝐸𝐶) for (6.2), where
𝑉𝐶 = [𝑁] and 𝐸𝐶 is the set of directed communication link from one subsystem
to the other. Self-loops at all vertices are included in 𝐸𝐶 and they represent zero
delay. The communication graph is demonstrated by the solid blue lines in Figure
6.1(a). We use C ∈ {1, 0}𝑁×𝑁 to denote the adjacency matrix associated with the
communication graph G𝐶 . Moreover, we define the information delay induced by
G𝐶 as follows.

Definition 6.4.1 (Information delay). The information delay from subsystem 𝑖 to 𝑗 is
defined to be the total distance of the shortest path from 𝑖 to 𝑗 according to G𝐶 and
is denoted as 𝑑 (𝑖 → 𝑗).

Globally, the 𝑘th power of the adjacency matrix C𝑘 has nonzero (𝑖, 𝑗)th entry if
subsystem 𝑖 gets 𝑘-delayed information from subsystem 𝑗 . Locally, at time step 𝑡,
subsystem 𝑖 has access to subsystem 𝑗’s full information up to time 𝑡 − 𝑑 ( 𝑗 → 𝑖).
Moreover, 𝑑 ( 𝑗 → 𝑖) is the smallest integer such that C𝑑 ( 𝑗→𝑖) (𝑖, 𝑗) ≠ 0. With slight
abuse of notation, we write C𝑘 to mean the support of the matrix so C𝑘 ∈ {1, 0}𝑁×𝑁 .

Example 7. Consider the system in Figure 6.1(a) where the solid blue line denotes
the communication among subsystems. The adjacency matrix C is depicted in Figure
6.1(c). Observe that C(1, 3) = 0 but C2(1, 3) ≠ 0. Therefore, the delay from
subsystem 3 to subsystem 1 is 𝑑 (3→ 1) = 2.
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Given G𝐶 , we make a mild assumption on the communication delay. This assumption
ensures that the graph describing the global dynamics is a subgraph of the communi-
cation graph. Such an assumption ensures nested information structure [243] and is
commonly adopted [205], [219]. It holds true for systems where communication
operates at least as fast as the dynamical propagation.

Assumption 11 (Communication Topology). C(𝑖, 𝑗) = 1 for all 𝑗 ∈ N (𝑖).

The communication delay model considered here is well-established in the distributed
control literature [219], [244], [245] and is applicable to many engineering systems
[246], [247]. We refer interested readers to [40] for a detailed discussion on
information structures and their consequences for distributed control design. While
we specify the communication delay to be synchronous with the discrete time
dynamics propagation for ease of exposition, our results can be readily applied to
systems with faster communication than the dynamics propagation.

Local Information
Even though communication delay causes asynchronous partial information for each
subsystem, eventually each subsystem can obtain the delayed global information.
However, due to the scale of the global network, it can be prohibitively costly
for subsystems to compute their local control actions using such delayed global
information. Moreover, a larger delay between subsystems means, intuitively, that
they are more dynamically decoupled due to Assumption 11. Therefore, by discarding
information from far-away subsystems, each subsystem has a smaller and more up-
to-date information set. A common approach is to require each subsystem 𝑖 to only
use delayed information from a local neighborhood. In this work, we define three
neighborhoods, Din (𝑖), Dout (𝑖), andM (𝑖) that subsystem 𝑖 is allowed to access
information from. This is sometimes referred to as localized control in multi-agent
reinforcement learning [248]–[250] and distributed control [78], [210] as a method
for ensuring a scalable implementation of the control policy in large-scale networked
systems. Below we define each of the neighborhoods.

Definition 6.4.2 (𝑑-incoming/outgoing neighbors). The 𝑑-incoming and outgoing
neighbors of subsystem 𝑖 according to G𝐶 are respectively

Din (𝑖) = { 𝑗 ∈ [𝑁] : 𝑑 ( 𝑗 → 𝑖) ≤ 𝑑} , Dout (𝑖) = { 𝑗 ∈ [𝑁] : 𝑑 (𝑖 → 𝑗) ≤ 𝑑} .

The localization parameter 𝑑 is a design choice that is network structure dependent.
Here we focus on the cases where the dynamics topology and communication graph
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have sparse enough edges that the network structure can be leveraged to design a
localization parameter 𝑑 (given) that is much smaller than the size of the global
network and scales well with the number of subsystems.

Definition 6.4.3 (𝑑-interaction neighbors). The 𝑑-interaction neighbors of subsystem
𝑖 according to local interaction (6.1) and G𝐶 is defined as

M (𝑖) = {ℓ ∈ [𝑁] : 𝑗 ∈ N (ℓ) for some 𝑗 ∈ Dout (𝑖)} .

The intuition behindM (𝑖) is that any subsystem ℓ ∈ M (𝑖) is dynamically influence
by subsystem 𝑗 because 𝑗 ∈ N (ℓ). Furthermore, 𝑗 makes local decisions such as
𝑢 𝑗 (𝑡) based on the information from subsystem 𝑖 because 𝑗 ∈ Dout (𝑖). Therefore, it
is sensible for subsystem 𝑖 to take the information from ℓ into consideration during
decision making, since ℓ will be indirectly affected by decisions made at 𝑖 through
information sharing and dynamical interaction via 𝑗 .

Finally, we make the following feasibility assumption.

Assumption 12 (Feasibility). For all Θ ∈ P0, there exists a stabilizing controller for
𝐴(Θ), 𝐵(Θ) such that each agent with local dynamics (6.1) uses delayed and locally
available information from its 𝑑-interaction, incoming, and outgoing neighbors
according to G𝐶 .

Assumption 12 ensures the well-posedness of the distributed controller learning
problem and is commonly employed [60], [109], [251]. If a parameter setP0 has a few
singular points where (𝐴, 𝐵) loses feasibility such as when 𝐵 = 0, a simple heuristic
is to ignore these points in the algorithm since we assume the underlying system is
controllable. We discuss the case of non-convex parameter sets in Section 6.E.

A Fully Distributed and Localized Algorithm
We now describe how to extend Algorithm 4 to handle communication delay and
localized control constraints. To do this we add additional information exchange
steps to Algorithm 4 in each of the two components. The full algorithm is shown
in Algorithm 5. For ease of exposition, we let the subsystems have scalar state
and fully actuated control actions (𝑁𝑥 = 𝑁𝑢 = 𝑁) in order to minimize notation.
It is straightforawrd to generalize the presented algorithm and analysis to vector
subsystems.
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Algorithm 5: Distributed online stabilization under information constraints
Input: Parameter set P0
Initialize: 𝑡 = 0, 𝑢(0) = 0, I(𝑖, 0) = ∅ for 𝑖 ∈ [𝑁]

1 for 𝑡 = 1, 2, . . . do
2 for Subsystem 𝑖 = 1, 2, . . . , 𝑁 do
3 Observe 𝑥𝑖 (𝑡)

/* CONSIST: Select consistent models */

4 Construct P𝑖𝑡 with (6.16)
5 if 𝜃𝑖

𝑡−1 ∈ P
𝑖
𝑡 then 𝜃𝑖𝑡 ← 𝜃𝑖

𝑡−1
6 else 𝜃𝑖𝑡 ← St(P𝑖𝑡 )

/* CONTROL: Perform model-based control with SLS */

7 Assemble local estimate of the global model 𝐴
(
Θ̂𝑖𝑡

)
, 𝐵

(
Θ̂𝑖𝑡

)
with (6.17)

8 Synthesize closed-loop response columns ϕ𝑖𝑡 using (6.18) based on
𝐴

(
Θ̂𝑖𝑡

)
, 𝐵

(
Θ̂𝑖𝑡

)
9 Assemble delayed local column solutions

⋃
𝑗∈Din (𝑖) ϕ

𝑗

𝑡−𝑑 ( 𝑗→𝑖)
10 Compute local control action 𝑢𝑖 (𝑡) using (6.19) with the assembled

column solutions
11 end
12 end

CONSIST

This component of Algorithm 5 is identical to that of the distributed implementation
of Algorithm 4 discussed in Line 8. Formally, subsystem 𝑖 constructs the local
consistent parameter set, P𝑖𝑡 according to local dynamics (6.1) as

P𝑖𝑡 :=
𝜃𝑖 ∈ P𝑖𝑡−1 :

𝑥𝑖 (𝑡) − ©«
∑︁
𝑗∈N (𝑖)

𝐴𝑖 𝑗 (𝜃𝑖)𝑥 𝑗 (𝑡 − 1) + 𝐵𝑖 𝑗 (𝜃𝑖)𝑢 𝑗 (𝑡 − 1)ª®¬

∞

≤ 𝑊


(6.16)

withP𝑖0 as the local initial parameter set defined in Assumption 9. The communication
delay pattern allows the construction of P𝑖𝑡 because each subsystem 𝑖 precisely has
access to 𝑥 𝑗 (𝑡 − 1) and 𝑢 𝑗 (𝑡 − 1) from its immediate dynamical interaction neighbors
N(𝑖) by Assumption 11.

Analogous to Algorithm 4, each subsystem 𝑖 selects the Steiner point ofP𝑖𝑡 as the local
hypothesis model if the previous selection is invalidated by the latest observation.
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CONTROL

Since the local hypothesis models are no longer shared instantly among subsystems
due to the communication delay and local information constraints, we modify
the model-based control component of Algorithm 4 and carefully keep track of
the available information. To give an overview, at every step 𝑡, subsystem 𝑖 first
assembles a local estimate of the “global” model using delayed information from other
subsystems (line 7). Based on the estimated global model, subsystem 𝑖 synthesizes
the 𝑖th column of the SLS closed-loop responses by solving the column subproblem
of (6.6) as discussed in Line 8 (line 8). Then, subsystem 𝑖 assembles a local SLS
controller with the local column solutions ϕ𝑖𝑡 computed from the previous step and
the delayed column solutions from other subsystems (line 9). Finally, the local
control action is computed using the locally assembled SLS controller (6.19) (line
10).

Local estimate of the global model (line 7). After selecting a local hypothesis
model, Subsystem 𝑖 assembles a local estimate of the “global” parameter by collecting
the available (delayed) local hypothesis models from its neighbors inM (𝑖),

Θ̂𝑖𝑡 :=
(
𝜃
𝑗

𝑡−𝑑 ( 𝑗→𝑖)

)
𝑗∈M(𝑖)

, (6.17)

where the local neighborhood M (𝑖) (Definition 6.4.3) represents the the set of
neighbors whose model information 𝑖 needs for synthesizing its local column solution
later in (6.18).

Local column synthesis (line 8). Analogous to line 6 in Algorithm 4, subsystem 𝑖

now performs model-based control via SLS by solving the column subproblem (6.7)
with additional communication delay and local information constraints based on
the locally estimated “global” parameter Θ̂𝑖𝑡 . It is well-established that information
constraints described in Section 6.4 becomes convex sparsity constraints on 𝚽x and
𝚽u [45]. In particular, these information constraints can be represented as binary
matrices C𝑘 (for delay) and C𝑑 (for local information) with 𝑘 ∈ [𝐻]. Now, the
column subproblem for subsystem 𝑖 changes from (6.7) to

min
ϕ𝑖,𝑥

𝑡 ,ϕ𝑖,𝑢
𝑡

∞∑︁
𝑘=0


[
𝑄1/2 0

0 𝑅1/2

] [
𝜙
𝑖,𝑥
𝑡 [𝑘]
𝜙
𝑖,𝑢
𝑡 [𝑘]

]
𝐹

(6.18a)

s.t. 𝜙
𝑖,𝑥
𝑡 [𝑘 + 1] = 𝐴

(
Θ̂𝑖𝑡

)
𝜙
𝑖,𝑥
𝑡 [𝑘] + 𝐵

(
Θ̂𝑖𝑡

)
𝜙
𝑖,𝑢
𝑡 [𝑘] , for 𝑘 ∈ [𝐻 − 1] (6.18b)

𝜙
𝑖,𝑥
𝑡 [0] = 𝑒𝑖, 𝜙

𝑖,𝑥
𝑡 [𝐻] = 0 (6.18c)

𝜙
𝑖,𝑥
𝑡 [𝑘], 𝜙

𝑖,𝑢
𝑡 [𝑘] ∈ C𝑘 (:, 𝑖) ∩ C𝑑 (:, 𝑖) , for 𝑘 ∈ [𝐻 − 1] , (6.18d)
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where (6.18a)-(6.18b) are the same LQR cost and closed-loop response characteriza-
tion in (6.7). The communication and local information constraints are introduced
via (6.18d). We refer interested readers to [235], [236] for a standard derivation on
how (6.18d) is equivalent to the information constraints specified in Section 6.4. The
problem (6.18) is always feasible due to Assumption 10 and 12.

Delay in the local parameter information results in differently synthesized columns
of different 𝚽x,𝚽u for different subsystems. This contrasts Algorithm 4 where all
subsystems use the same global model as input to the local synthesis problems and
output a column of the same 𝚽x,𝚽u.

Asynchronous closed-loop response assembly (line 9). Once local closed-loop
columns are synthesized, subsystem 𝑖 has to assemble other relevant columns from
subsystem 𝑗 from Din (𝑖) in order to perform the downstream task of local control
action computation via the local version of the SLS controller (6.5), shown in (6.19).
In particular, (6.19) requires the 𝑖th element of every column 𝑗 such that C𝑑 (𝑖, 𝑗) ≠ 0.
By definition, Din (𝑖) (Definition 6.4.2) is the set of 𝑗’s such that C𝑑 has nonzero
(𝑖, 𝑗)th element. Thus, only closed-loop columns from 𝑗 ∈ Din (𝑖) are required. The
assembled closed-loop responses for each subsystem has asynchronous columns with
varying delays.

Local Control Action Computation (line 10). The final step in CONTROL is
to compute a local control action, where each subsystem 𝑖 plugs the assembled
closed-loop responses into the SLS controller (6.5). Due to the sparsity constraints
(from information constraints) enforced on the column solutions during the synthesis
(6.18), the matrix-vector computation in (6.5) does not require the entire network’s
delayed column solution. Instead, subsystem 𝑖 computes a local version of (6.5),

𝑤𝑖 (𝑡) = 𝑥𝑖 (𝑡) −
∑︁

𝑗∈Din (𝑖)

𝐻−1∑︁
𝑘=1

𝜙
𝑗 ,𝑥

𝑡−𝑑 ( 𝑗→𝑖) [𝑘] (𝑖) · 𝑤
𝑗 (𝑡 − 𝑘) (6.19a)

𝑢𝑖 (𝑡) =
∑︁

𝑗∈Din (𝑖)

𝐻−1∑︁
𝑘=0

𝜙
𝑗 ,𝑢

𝑡−𝑑 ( 𝑗→𝑖) [𝑘] (𝑖) · 𝑤
𝑗 (𝑡 − 𝑘), (6.19b)

where 𝑥𝑖 (𝑡), 𝑢𝑖 (𝑡), 𝑤𝑖 (𝑡) ∈ R are the local state, control action, and estimated
disturbance respectively. The local controllers are initiated with 𝑤𝑖 (0) = 𝑥𝑖 (0).
Similar to the global controller (6.5), the intuition behind (6.19) is that each
subsystem 𝑖 counterfactually assumes that the global closed loop of (6.2) behaves
exactly as the columns ϕ 𝑗

𝑡−𝑑 ( 𝑗→𝑖) prescribe. In particular, the 𝑖th position of the 𝑗 th
column solution 𝝓j

𝒕−𝒅( 𝒋→𝒊)
maps the 𝑗 th position of w (w 𝑗 ) to the 𝑖th position of x
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and u (x𝑖 and u𝑖). Therefore, (6.19a) estimates the local disturbances by comparing
observed local state 𝑥𝑖 (𝑡) and the counterfactual state computed with ϕ

𝑗

𝑡−𝑑 ( 𝑗→𝑖)’s.
Then (6.19b) acts upon the computed disturbance.

In this step, the errors caused by the delayed information propagate further during
(6.19) when each subsystem computes control action using the assembled closed-loop
column solutions from different sets of sub-controllers in (6.17). This contrasts the
setting in Algorithm 5, where without communication delay, all subsystems use the
globally agreed closed-loop operators 𝚽x,𝚽u to compute the local control action
using (6.5).

Thanks to (6.18d), regardless of the delay, all closed-loop columns has the correct
sparsity required by the communication and locality constraints. Consequently,
any assembled closed loop columns used for (6.19) at each subsystem preserve the
required sparsity. Therefore, the SLS controller implemented with these column
solutions conforms to the information constraints.

Stability Guarantee
We now present the main result of this chapter. This is the first stabilization result for
a distributed policy (Algorithm 5) in a networked setting with unknown dynamics,
communication delay, local information constraint, and adversarial disturbances.

Theorem 22 (Stability). Under Assumptions 8-12, Algorithm 5 guarantees the ISS
of the closed loop of (6.2) such that for all 𝑡 ≥ 𝑡0,

max{∥𝑥(𝑡)∥∞, ∥𝑢(𝑡)∥∞} ≤ O
(
𝑒(�̄�)

9/2𝑑
) (
𝑒−(𝑡−𝑡0)/𝐻𝑥(𝑡0) + sup

𝑡0≤𝑘≤𝑡
∥𝑤(𝑘)∥∞

)
,

where 𝑥(𝑡0) is the initial condition, local dimension �̄� = max{∥C𝑑 ∥1, ∥C𝑑 ∥∞, max 𝑗 |M ( 𝑗) |}
represents the total state dimension in the 𝑑-neighborhood specified by the dynamics
interaction (6.1) and the communication graph G𝐶 . Parameter 𝑑 is the largest local
delay each subsystem allows for delayed information, and 𝐻 is the SLS closed-loop
response finite impulse horizon.

Theorem 22 highlights that only the local constants 𝑑 and �̄� impact the stability
guarantee, in contrast to the dependence on the global network dimension in
Algorithm 4 and in system-identification based approaches [26]. Further, the result
makes explicit that communication delay adds an exponential factor of error on the
state deviation from the desired steady state compared to Theorem 20. When the
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network connectivity is sparse, local constants �̄� and 𝑑 can remain small even if the
number of subsystems in the network is large and growing [235], [252].

Proof Outline. The proof of Theorem 22 follows a similar structure as that of
Theorem 20. We defer formal proofs to Section 6.C. The main challenge here is to
characterize the error caused by asynchronous information at different subsystems
throughout the algorithm due to delay.

To begin, we use Lemma 28 and show that despite the fact that each subsystem in
Algorithm 5 uses differently delayed information to compute the local parameter,
sub-controller, and control actions, the closed loop for the global system under
such distributed policy can be characterized with a simple global representation. In
particular, denote the actual closed-loop response implemented by Algorithm 5 as
𝚽x

t , 𝚽u
t . By observation, each element of Φ𝑥

𝑡 [𝑘], Φ𝑢
𝑡 [𝑘] is

Φ𝑥
𝑡 [𝑘] (𝑖, 𝑗) := 𝜙 𝑗 ,𝑥

𝑡−𝑑 ( 𝑗→𝑖) [𝑘] (𝑖), Φ𝑢
𝑡 [𝑘] (𝑖, 𝑗) := 𝜙 𝑗 ,𝑢

𝑡−𝑑 ( 𝑗→𝑖) [𝑘] (𝑖) .

Therefore, the closed loop of (6.2) under Algorithm 5 can be characterized by (6.10)
with 𝚽x

t , 𝚽u
t . It follows from Lemma 29 that as long as the error term

∞∑︁
𝑡=1

𝐻∑︁
𝑘=1

𝐴(Θ𝑡)Φ𝑥
𝑡−1 [𝑘 − 1] + 𝐵(Θ𝑡)Φ𝑢

𝑡−1 [𝑘 − 1] −Φ𝑥
𝑡 [𝑘]


∞ (6.20)

is bounded, then the closed loop is ISS. Here Θ𝑡 is the consistent global model
constructed from the local consistent hypothesis models selected by all subsystems
at time 𝑡. In Section 6.C, we quantify the effect of delay that manifests in 𝚽x

t and 𝚽u
t .

To bound (6.20), we extend the perturbation bound in Theorem 21 to accommodate
the additional sparsity constraints in (6.18) (Corollary 23.1). This result allows us
to make a connection between (6.20) and the total path length of each subsystem’s
local parameter selection. Furthermore, Corollary 23.1 has potential application for
a class of SLS-based distributed and localized MPC problems [210], [211].

6.5 Simulation
The main contribution of this work focuses on deriving a stability guarantee for the
proposed method under adversarial disturbances and information constraints. In
this section, we provide a preliminary numerical exploration of the performance
improvement of our approach compared the state-of-the-art adversarial control
method in the single-agent case in Section 6.5. We further test our method on a mesh
network of discretized swing dynamics for power systems, where we demonstrate
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near-optimal performance of Algorithm 4 and Algorithm 5 compared to the offline
optimal controller synthesized according to the true dynamics in Section 6.5. Further,
we study the effect of the localization parameter and the network size under correlated
Gaussian noise.

Single-agent: Double Integrator Dynamics
We consider the classic double integrator dynamics [253],[

𝑥1

𝑥2

]
(𝑡 + 1) =

[
1 1
0 1

] [
𝑥1

𝑥2

]
(𝑡) +

[
0
1

]
𝑢(𝑡) +

[
𝑤1

𝑤2

]
(𝑡),

where 𝑥(𝑡) = [𝑥1, 𝑥2]⊤(𝑡) ∈ R2, 𝑢(𝑡) ∈ R. Disturbance 𝑤(𝑡) ∈ R2 is the bounded
(∥𝑤(𝑡)∥∞ ≤ 1). The system models a unit mass vehicle with position (𝑥1) and
velocity (𝑥2) as its state under force 𝑢.

To the best of our knowledge, the only online algorithm that guarantees stability
under bounded adversarial disturbances is [26], where system identification is
performed before a certainty-equivalent controller is synthesized based on the
estimated dynamics. Therefore, we study the performance of our algorithm and that
of [26]. The results are summarized in Table 6.1, where we report the averaged
maximum and top 90% state deviation from origin, i.e. max𝑡 ∥𝑥(𝑡)∥∞ across 10 runs
under three different disturbance profiles. In particular, we generate correlated (across
coordinates) Gaussian noise projected to −1 and 1, the uniform disturbance, and
the projected state-dependent adversarial disturbance, where the adversary chooses
𝑤(𝑡) = sign

(
𝐴(Θ★)𝑥(𝑡) + 𝐵(Θ★)𝑢(𝑡)

)
.

To instantiate [26], we use exact system theoretical constants required for the algorithm
and perform the black-box system identification algorithm in [26, Algorithm 2]
with identification accuracy set to be 10−2 (largest error tolerable by the algorithm).
Then, we generate a stabilizing controller with [26, Algorithm 3]. For the proposed
approach, we use the optimal LQR feedback gain in place of the centralized SLS
controller (6.6) and (6.5), since under Assumption 10, the SLS controller synthesized
under with LQR cost is equivalent to the optimal LQR feedback [73]. We remark
that for all disturbance profiles and regardless of the choice of stabilizing controller,
the system identification algorithm of [26] always requires control inputs in the order
of 1011. Therefore, across all disturbances, the trajectories generated by [26] are
nearly identical.
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Figure 6.2: State trajectory of the optimal distributed controller, Algorithm 4, and
Algorithm 5 for the 5 × 5 mesh network.

Multi-agent:Discretized Swing Dynamics in Power Systems
We now consider a power network with randomly generated sparse edges representing
dynamical interactions over a 5 by 5 mesh, where each vertex represents a bus,
illustrated at the right lower corner of Figure 6.2. The local dynamics at bus 𝑖 is
given by the two-state discretized swing equations [73],

𝑥𝑖 (𝑡 + 1) =
[

1 Δ𝑡

−
∑

𝑗∈N(𝑖) 𝑘𝑖 𝑗
𝑚𝑖

Δ𝑡 1

]
𝑥𝑖 (𝑡) +

∑︁
𝑗∈N (𝑖)

[
0 0

− 𝑘𝑖 𝑗
𝑚𝑖
Δ𝑡 0

]
𝑥 𝑗 (𝑡) +

[
0
1

] (
𝑢𝑖 (𝑡) + 𝑤𝑖 (𝑡)

)
where the states are the phase angle (first state) and frequency (second state)
deviation from the set point (origin), Δ𝑡 = 0.1s is the discretization time step, and
𝑚𝑖, 𝑘𝑖 𝑗 , 𝑢

𝑖, 𝑤𝑖, are the inertia, line susceptance between bus 𝑖 and 𝑗 , control action,
and external disturbance respectively. We assume each bus has a phase measurement
unit and a frequency sensor to measure 𝑥𝑖.

We randomly generate each 𝑘𝑖 𝑗 ∈ [0.1, 1] and 𝑚𝑖 between [0.1, 10], and assume
these parameters are unknown to the algorithm except their bounds. The global
network is generated to be open-loop unstable. We use correlated (across buses)
Gaussian disturbances with a known bound. In Figure 6.2 we compare the perfor-
mance of Algorithm 4 (information shared globally and without delay), Algorithm 5,
and the offline optimal distributed SLS controller synthesized from (6.6) with the
knowledge of 𝑘𝑖 𝑗 ’s and 𝑚𝑖’s, all subject to the same distributed control design
requirements. Specifically, the communication network is assume to be the same
as the dynamical interaction mesh graph, and we choose the localization parameter
to be 𝑑 = 3, which is much smaller compared to the network size of 25. The
centralized algorithm where no communication delay is present matches closely with
the trajectory generated by the offline optimal controller, whereas the presence of
the information constraints for Algorithm 5 degrades the performance. However,
we highlight that despite the exponential dependency on the local dimensions in
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Theorem 22, the actual performance of Algorithm 5 in this case is significantly better
than the theoretical guarantee.

Localization parameter Mean Top 95% Network Size Mean Top 95%

𝑑 = 3 3.98 14.02 𝑁 = 9 2.96 10.28
𝑑 = 5 3.85 14.18 𝑁 = 25 3.98 14.02
𝑑 = 10 4.19 14.08 𝑁 = 36 4.27 14.05

Table 6.2: Comparison of the state norm (∥𝑥(𝑡)∥∞) for different localization parame-
ters 𝑑 on the 5 by 5 network (left) and comparison for different network sizes with 𝑁
agents with fixed localization parameter 𝑑 = 3 (right).

Furthermore, we compare the effects of different localization parameter choices. On
the one hand, larger 𝑑 results in larger worst-case guarantee in Theorem 22 due
to delayed information for local computation. On the other, larger 𝑑 means that
each agent in the network can access more (delayed) information. This trade-off
manifests on the left of Table 6.2, where 𝑑 = 5 appears to achieve lower average state
norm over 4 random runs with correlated Gaussian noises, slightly outperforming
controllers with 𝑑 = 3 (too little information) and 𝑑 = 10 (too much delay from
far-away neighbors). On the right of Table 6.2, we corroborate Theorem 22 where the
stability guarantee only depends on local constants 𝑑 and �̄�. We randomly generate
3x3, 5x5, and 6x6 mesh networks of similar network structure, and the resulting state
norm does not scale with the network size.

6.6 Conclusion
In this chapter, we instantiated the SME uncertainty set-based learning and control
framework and propose the first learning-based algorithm that provably achieves
online stabilization for networked LTI systems subject to communication delays under
adversarial disturbances. We leverage nested convex body chasing and distributed
control. The novel approach achieves orders of magnitude of improvement in
performance over state-of-the-art methods for single-agent systems and handles
information delays in networked multi-agent systems. Since most systems are
time-varying in nature, an immediate extension of this work is to combine general
convex body chasing and model-based control methods to handle time-varying
dynamical systems. Future directions include extending the communication model
to incorporate stochastic and time-varying delays among agents.



161

6.A Notation Summary

Table 6.3: Notations and definitions for the model setup, algorithms, and proofs

Notation Meaning

𝑥𝑖 (𝑡), 𝑢𝑖 (𝑡), 𝑤𝑖 (𝑡) State (R𝑛𝑖 ), action (R𝑚𝑖 ), disturbances (R𝑛𝑖 ) at subsystem 𝑖;
N(𝑖) Dynamical neighbors of subsystem 𝑖 where 𝑥 𝑗 (𝑡 − 1) affects 𝑥𝑖 (𝑡) for 𝑗 ∈ N (𝑖);
𝑥(𝑡), 𝑢(𝑡), 𝑤(𝑡) Global state, control action, and disturbance vector concatenated from the local

ones in (6.1);
𝐴𝑖 𝑗 , 𝐵𝑖 𝑗 Local dynamics matrices describing how states and control action of subsystem 𝑗

affects subsystem 𝑖 for 𝑗 ∈ N (𝑖) in (6.1);
𝐴, 𝐵 Concatenated global dynamics matrices from 𝐴𝑖 𝑗 ’s and 𝐵𝑖 𝑗 ’s ;
𝜃𝑖 The parameters for the nonzero locations in local dynamics matrices and we write

𝐴𝑖 𝑗 (𝜃𝑖), 𝐵𝑖 𝑗 (𝜃𝑖). In particular, 𝜃𝑖 ∩ 𝜃 𝑗 = ∅ for all 𝑖 ≠ 𝑗 ;
Θ The concatenated local parameters for the global dynamics with Θ :=

⋃
𝑖∈[𝑁 ] 𝜃

𝑖;
P0 The known initial compact convex parameter set where the true dynamics

parameter lies;
G𝐶 Communication graph defined over system (6.2) with vertices 𝑉𝐶 corresponding

to subsystems and directed edges 𝐸𝐶 ;
C The adjecency matrix of G𝐶 ;
𝑑 (𝑖 → 𝑗) Communication delay from subsystem 𝑖 to subsystem 𝑗 defined as the graph

distance from 𝑖 to 𝑗 according to G𝐶 ;
Din (𝑖) 𝑑-incoming neighbors of subsystem 𝑖whereDin (𝑖) := { 𝑗 ∈ [𝑁] : 𝑑 ( 𝑗 → 𝑖) ≤ 𝑑}.

In particular, 𝑗 ∈ Din (𝑖) if C𝑑 (𝑖, 𝑗) ≠ 0;
Dout (𝑖) 𝑑-outgoing neighbors of subsystem 𝑖 where Dout (𝑖) := { 𝑗 ∈ [𝑁] : 𝑑 (𝑖 → 𝑗) ≤

𝑑}. In particular, 𝑗 ∈ Din (𝑖) if C𝑑 ( 𝑗 , 𝑖) ≠ 0;
M (𝑖) Subsystems whose model information is needed for sub-controller

synthesis at subsystem 𝑖 with Algorithm 5 where M (𝑖) =

{ℓ ∈ [𝑁] : 𝑗 ∈ N (ℓ) for some 𝑗 ∈ Dout (𝑖)};
𝑑-neighbor of 𝑖 The union of all subsystems in Din (𝑖), Dout (𝑖),M (𝑖);
P𝑖
𝑡 Local consistent parameter set constructed by subsystem 𝑖 at time 𝑡 with (6.16);

𝜃𝑖𝑡 Local consistent parameter for subsystem 𝑖 for 𝐴𝑖 𝑗 and 𝐵𝑖 𝑗 constructed with
Algorithm 5;

Θ̂𝑖
𝑡 The assembled local estimate of the "global" parameter where Θ̂𝑖

𝑡 :=⋃
𝑗∈M(𝑖) 𝜃

𝑗

𝑡−𝑑 ( 𝑗→𝑖) ;
ϕ𝑖
𝑡 Local column solutions generated by subsystem 𝑖 at time 𝑡 from (6.18);

ϕ𝑖,𝑥
𝑡 , ϕ𝑖,𝑢

𝑡 The 𝑥 and 𝑢 components of ϕ𝑖
𝑡 , respectively. They are synthesized from (6.18);

Θ𝑡 The collection of all local consistent parameters at time 𝑡 where Θ𝑡 =
⋃𝑁

𝑖=1 𝜃
𝑖
𝑡 ;

𝐴𝑡 , 𝐵𝑡 , 𝑤(𝑡) The global consistent matrices 𝐴(Θ𝑡 ), 𝐵(Θ𝑡 ), and corresponding admissible
disturbance;

𝑎𝑖𝑡 , 𝑏𝑖𝑡 The 𝑖th row of 𝐴𝑡 , 𝐵𝑡 respectively;
𝑤(𝑡) Concatenated global estimated disturbance from 𝑤𝑖 (𝑡) in (6.19);
𝚽x

t Concatenated global closed loop operators whereΦ𝑥
𝑡 [𝑘] (𝑖, 𝑗) := 𝜙 𝑗 ,𝑥

𝑡−𝑑 ( 𝑗→𝑖) [𝑘] (𝑖)
from (6.19) ;

𝚽u
t Concatenated global closed loop operators whereΦ𝑢

𝑡 [𝑘] (𝑖, 𝑗) := 𝜙 𝑗 ,𝑢

𝑡−𝑑 ( 𝑗→𝑖) [𝑘] (𝑖)
from (6.19) ;

6.B Proofs for Section 6.3
Below we restate and prove the auxiliary results needed for the proof of Theorem 20
in Section 6.3.
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Table 6.4: Constants used throughout the chapter

Constants Meaning

𝑁 Number of subsystems in the global dynamics (6.2);
𝑛𝑖 , 𝑚𝑖 Local state and control action dimension for subsystem 𝑖 in (6.1);
𝑛𝑥 , 𝑛𝑢 Global state and control dimension with 𝑛𝑥 =

∑𝑁
𝑖=1 𝑛𝑖 and 𝑛𝑢 =

∑𝑁
𝑖=1 𝑚𝑖;

𝑊 The known bound on the true disturbances such that ∥𝑤(𝑡)∥∞ ≤ 𝑊 ;
𝜅 The bound on all possible system matrices where ∥𝐴(Θ)∥2, ∥𝐵(Θ)∥2 ≤ 𝜅 for all

Θ ∈ P0;
𝑑 The localization parameter such that each subsystem is constrained to only use

information from its 𝑑-neighbors in Algorithm 5;
�̄� The largest total local state dimension for the 𝑑-neighbors of the subsystems

where �̄� = max{∥C𝑑 ∥1, ∥C𝑑 ∥∞, max 𝑗 |M ( 𝑗) |} ;
𝐶, 𝜌 The decay rate for the closed-loop columns ϕ𝑖

𝑡 synthesized in (6.18) such that𝜙𝑖𝑡 [𝑘]2 ≤ 𝐶𝜌
𝑘 ;

Lemma 30 (Closed loop Dynamics). The closed loop of (6.2) under Algorithm 4 is
characterized as follows for all time 𝑡 ∈ N+:

𝑥(𝑡) =
𝐻−1∑︁
𝑘=0

Φ𝑥
𝑡 [𝑘]𝑤(𝑡 − 𝑘), 𝑢(𝑡) =

𝐻−1∑︁
𝑘=0

Φ𝑢
𝑡 [𝑘]𝑤(𝑡 − 𝑘) (6.21a)

𝑤(𝑡) =
𝐻∑︁
𝑘=1

(
𝐴(Θ𝑡)Φ𝑥

𝑡−1 [𝑘 − 1] + 𝐵(Θ𝑡)Φ𝑢
𝑡−1 [𝑘 − 1] −Φ𝑥

𝑡 [𝑘]
)
𝑤(𝑡 − 𝑘) + 𝑤(𝑡 − 1) ,

(6.21b)

where 𝐴, 𝐵 are the true model parameters from (6.2) while 𝑤(𝑡) is the true unknown
bounded disturbances with ∥𝑤(𝑡)∥∞ ≤ 𝑊 . The linear causal operators 𝚽x

t , 𝚽u
t are

synthesized via (6.6) based on the selected hypothesis model at 𝑡 and 𝑤(𝑡) is the
estimated disturbance from the SLS controller (6.5).

Proof. First, we write out the global closed-loop dynamics of (6.2) under the SLS
controller (6.5) with the synthesized closed-loop responses,

𝑥(𝑡) = 𝐴
(
Θ★

)
𝑥(𝑡 − 1) + 𝐵

(
Θ★

)
𝑢(𝑡 − 1) + 𝑤(𝑡 − 1) (6.22a)

𝑤(𝑡) = 𝑥(𝑡) −
𝐻−1∑︁
𝑘=1

Φ𝑥
𝑡 [𝑘]𝑤(𝑡 − 𝑘) (6.22b)

𝑢(𝑡) =
𝐻−1∑︁
𝑘=0

Φ𝑢
𝑡 [𝑘]𝑤(𝑡 − 𝑘), (6.22c)

where (6.22a) is the global dynamics (6.2) while (6.22b) and (6.22c) are the imple-
mented SLS controller. Now, we use the consistency property of all the consistent
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hypothesis model Θ𝑡 selected by Algorithm 4 and represent dynamics (6.22a) in
terms of the global consistent parameter 𝐴𝑡 := 𝐴(Θ𝑡), 𝐵𝑡 := 𝐵(Θ𝑡),

𝑥(𝑡) = 𝐴𝑡𝑥(𝑡 − 1) + 𝐵𝑡𝑢(𝑡 − 1) + 𝑤(𝑡 − 1), (6.23)

with admissible consistent disturbances ∥𝑤(𝑡)∥∞ ≤ 𝑊 for all time 𝑡. The replacement
of (𝐴

(
Θ★

)
, 𝐵

(
Θ★

)
), 𝑤(𝑡)) with (𝐴𝑡 , 𝐵𝑡 , 𝑤(𝑡)) is by definition of the consistent set

(6.8). Next, observe that by moving 𝑥(𝑡) to the left side, (6.22b) becomes

𝑥(𝑡) =
𝐻−1∑︁
𝑘=1

Φ𝑥
𝑡 [𝑘]𝑤(𝑡 − 𝑘) + 𝑤(𝑡)

=

𝐻−1∑︁
𝑘=0

Φ𝑥
𝑡 [𝑘]𝑤(𝑡 − 𝑘) , (6.24)

where in the last equality we used the fact that each Φ𝑥
𝑡 [0] = 𝐼 by the constraint (6.4).

Now we substitute (6.23) into (6.22b) to get

𝑤(𝑡) = 𝑥(𝑡) −
𝐻−1∑︁
𝑘=1

Φ𝑥
𝑡 [𝑘]𝑤(𝑡 − 𝑘) (6.25a)

= 𝐴𝑡𝑥(𝑡 − 1) + 𝐵𝑡𝑢(𝑡 − 1) −
𝐻−1∑︁
𝑘=1

Φ𝑥
𝑡 [𝑘]𝑤(𝑡 − 𝑘) + 𝑤(𝑡 − 1) (6.25b)

= 𝐴𝑡

𝐻−1∑︁
𝑘=0

Φ𝑥
𝑡−1 [𝑘]𝑤(𝑡 − 1 − 𝑘) + 𝐵𝑡

𝐻−1∑︁
𝑘=0

Φ𝑢
𝑡−1 [𝑘]𝑤(𝑡 − 1 − 𝑘) −

𝐻−1∑︁
𝑘=1

Φ𝑥
𝑡 [𝑘]𝑤(𝑡 − 𝑘)

+ 𝑤(𝑡 − 1) (6.25c)

=

𝐻−1∑︁
𝑘=1

(
𝐴𝑡Φ

𝑥
𝑡−1 [𝑘 − 1] + 𝐵𝑡Φ𝑢

𝑡−1 [𝑘 − 1] −Φ𝑥
𝑡 [𝑘]

)
𝑤(𝑡 − 𝑘)

+
(
𝐴𝑡Φ

𝑥
𝑡−1 [𝐻 − 1] + 𝐵𝑡Φ𝑢

𝑡−1 [𝐻 − 1] −Φ𝑥
𝑡−1 [𝐻]

)
𝑤(𝑡 − 𝐻) + 𝑤(𝑡 − 1)

(6.25d)

=

𝐻∑︁
𝑘=1

(
𝐴𝑡Φ

𝑥
𝑡−1 [𝑘 − 1] + 𝐵𝑡Φ𝑢

𝑡−1 [𝑘 − 1] −Φ𝑥
𝑡 [𝑘]

)
𝑤(𝑡 − 𝑘) + 𝑤(𝑡 − 1),

(6.25e)

where in (6.25c) we substituted (6.24) and (6.22c) into 𝑥(𝑡 − 1) and 𝑢(𝑡 − 1)
respectively. In (6.25d), we grouped the terms according to 𝑤(𝑡 − 𝑘) and used the
fact that the closed-loop responses are synthesized in (6.6) such that Φ𝑥

𝑡−1 [𝐻] = 0
for all 𝑡. Together, (6.22c),(6.24), and (6.25e) are as requested. □
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Lemma 31 (Sufficient condition for 𝐻-convolution ISS). Let 𝐻 ∈ N. For 𝑘 ∈ [𝐻],
let {𝑎𝑡 [𝑘]}∞𝑡=1 and {𝑤𝑡}∞𝑡=1 be positive sequences. Let {𝑠𝑡}∞𝑡=0 be a positive sequence
such that

𝑠𝑡 ≤
𝐻∑︁
𝑘=1

𝑎𝑡−1 [𝑘] · 𝑠𝑡−𝑘 + 𝑤𝑡−1 . (6.26)

Then {𝑠𝑡}∞𝑡=0 is bounded if
∑∞
𝑡=0

∑𝐻
𝑘=1 𝑎𝑡 [𝑘] ≤ 𝐿 for some 𝐿 ∈ R+. In particular, for

all 𝑡 ≥ 𝑡0,

𝑠𝑡 ≤ 𝑒−(𝑡−𝑡0)/𝐻 · 𝑒𝐿𝑠𝑡0 +
(
𝑒𝐿 + 𝑒 − 1

)
𝑒 − 1

sup
𝑡0≤𝑘<𝑡

𝑤𝑘 .

Proof. Fix 𝑡0 and 𝑡 ≥ 𝑡0. Denote {𝑧𝑡𝑖 } as a finite subsequence of {𝑠𝜏}𝑡𝜏=𝑡0 such that

𝑧𝑡𝑁 = 𝑠𝑡

𝑧𝑡𝑖−1 = max
𝑡𝑖−𝐻≤𝜏≤𝑡𝑖−1

𝑠𝜏 , for 𝑖 = 𝑁, 𝑁 − 1, . . . , 1,

with 𝑡𝑁 = 𝑡 and 𝑧𝑡𝑖 = 𝑠𝑡𝑖 . This construction of the {𝑧𝑡𝑖 } has to terminate at 𝑧𝑡0 = 𝑠𝑡0 .
Therefore, 𝑁 is at least (𝑡−𝑡0)

𝐻
and at most 𝑡 − 𝑡0. By the recursive relationship of 𝑠𝑡 in

(6.26), we have for any 𝑖,

𝑧𝑡𝑖 = 𝑠𝑡𝑖 ≤
𝐻∑︁
𝑘=1

𝑎𝑡𝑖−1 [𝑘]𝑠𝑡𝑖−𝑘 + 𝑤𝑡𝑖−1

≤
(
𝐻∑︁
𝑘=1

𝑎𝑡𝑖−1 [𝑘]
)
𝑧𝑡𝑖−1 + 𝑤𝑡𝑖−1

= �̂�𝑡𝑖−1 · 𝑧𝑡𝑖−1 + 𝑤𝑡𝑖−1, (6.27)

where we use the fact that 𝑎𝑡 [𝑘] ≥ 0 for all 𝑡 and 𝑘 . We also denote �̂�𝑡𝑖−1 =(∑𝐻
𝑘=1 𝑎𝑡𝑖−1 [𝑘]

)
for the last equality. By the recursion (6.27), we have

𝑠𝑡 = 𝑧𝑡𝑁 ≤
𝑁∏
𝑖=1

�̂�𝑡𝑖−1 · 𝑧𝑡0 +
(

sup
𝑡0≤𝑘<𝑡

𝑤𝑘

) ©«1 +
𝑁∑︁
𝑗=1

𝑁∏
𝑖= 𝑗

�̂�𝑡𝑖−1
ª®¬ . (6.28)

Now,
∏𝑁
𝑖= 𝑗 �̂�𝑡𝑖−1 =

∏𝑁
𝑖= 𝑗

( (
�̂�𝑡𝑖−1 − 1

)
+ 1

)
≤ ∏𝑁

𝑖= 𝑗 𝑒
�̂�𝑡𝑖−1−1 = 𝑒

∑𝑁
𝑖= 𝑗 (�̂�𝑡𝑖−1−1) ≤ 𝑒𝐿−(𝑁− 𝑗+1) ,

where the last inequality is due to the hypothesis that
∑∞
𝑡=0 �̂�𝑡 ≤ 𝐿. Plug this inequality

for
∏𝑁
𝑖= 𝑗 �̂�𝑡𝑖−1 back to (6.28), we continue with

𝑠𝑡 ≤ 𝑒−(𝑡−𝑡0)/𝐻 · 𝑠𝑡0𝑒𝐿 +
(

sup
𝑡0≤𝑘<𝑡

𝑤𝑘

) ©«1 +
𝑁∑︁
𝑗=1
𝑒𝐿−(𝑁− 𝑗)

ª®¬
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≤ 𝑒−(𝑡−𝑡0)/𝐻 · 𝑠𝑡0𝑒𝐿 +
(

sup
𝑡0≤𝑘<𝑡

𝑤𝑘

) ©«1 + 𝑒𝐿
𝑁−1∑︁
𝑗=0

𝑒− 𝑗
ª®¬

≤ 𝑒−(𝑡−𝑡0)/𝐻 · 𝑠𝑡0𝑒𝐿 +
(

sup
𝑡0≤𝑘<𝑡

𝑤𝑘

) (
1 + 𝑒𝐿 1

𝑒 − 1

)
,

where we used 𝑧𝑡0 = 𝑠𝑡0 and that 𝑁 is at least (𝑡 − 𝑡0)/𝐻. This is the required bound,
which holds for any 𝑡, 𝑡0 ∈ N. □

6.C Proof of Theorem 22
Theorem 23 (Stability, Scalar Subsystems). Under Assumptions 8-12, Algorithm 5
guarantees the ISS of the closed loop of (6.2) with

max{∥𝑥(𝑡)∥∞, ∥𝑢(𝑡)∥∞} ≤ O
(
𝑒(�̄�)

9/2𝑑
) (
𝑒−(𝑡−𝑡0)/𝐻𝑥(𝑡0) + sup

𝑡0≤𝑘≤𝑡
∥𝑤(𝑘)∥∞

)
,

where 𝑥(𝑡0) is the initial condition, local dimension �̄� = max{∥C𝑑 ∥1, ∥C𝑑 ∥∞, max 𝑗 |M ( 𝑗) |}
represents the total state dimension in the 𝑑-neighborhood specified by the dynamics
interaction (6.1) and the communication graph G𝐶 . Parameter 𝑑 is the largest local
delay each subsystem allows for delayed information, and 𝐻 is the SLS closed-loop
response finite impulse horizon.

Proof. We first characterize the closed loop dynamics of (6.2) under Algorithm 5. In
particular, despite the fact that each subsystem uses differently delayed information
to compute the local parameter, column solutions to the closed-loop responses, and
control actions, the closed loop for the global system under such distributed policy
can be simply characterized as

𝑥(𝑡) =
𝐻−1∑︁
𝑘=0

Φ𝑥
𝑡 [𝑘]𝑤(𝑡 − 𝑘), 𝑢(𝑡) =

𝐻−1∑︁
𝑘=0

Φ𝑢
𝑡 [𝑘]𝑤(𝑡 − 𝑘) (6.29a)

𝑤(𝑡) =
𝐻∑︁
𝑘=1

(
𝐴𝑡Φ

𝑥
𝑡−1 [𝑘 − 1] + 𝐵𝑡Φ𝑢

𝑡−1 [𝑘 − 1] −Φ𝑥
𝑡 [𝑘]

)
𝑤(𝑡 − 𝑘) + 𝑤(𝑡 − 1),

(6.29b)

by Lemma 30. Here 𝑢(𝑡), 𝑤(𝑡) are concatenated control action and estimated
disturbance from (6.19). 𝐴𝑡 , 𝐵𝑡 are the global consistent parameter concatenated
with the local consistent parameters 𝐴𝑖 𝑗 (𝜃𝑖𝑡), 𝐵𝑖 𝑗 (𝜃𝑖𝑡). Vector 𝑤(𝑡) are the admissible
consistent disturbances corresponding to 𝐴𝑡 , 𝐵𝑡 with the property that ∥𝑤(𝑡)∥∞ ≤ 𝑊
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for all time 𝑡. Operators 𝚽x
t ,𝚽

u
t are shorthand for global closed-loop operators when

(6.19) is implemented, with

Φ𝑥
𝑡 [𝑘] (𝑖, 𝑗) := 𝜙 𝑗 ,𝑥

𝑡−𝑑 ( 𝑗→𝑖) [𝑘] (𝑖), Φ𝑢
𝑡 [𝑘] (𝑖, 𝑗) := 𝜙 𝑗 ,𝑢

𝑡−𝑑 ( 𝑗→𝑖) [𝑘] (𝑖) .

We follow similar procedure in the proof of Theorem 20 and bound ∥𝑤(𝑡)∥∞ from
(6.29b) by examining the following dynamical evolution,

∥𝑤(𝑡)∥∞ ≤
𝐻∑︁
𝑘=1

𝐴𝑡Φ𝑥
𝑡−1 [𝑘 − 1] + 𝐵𝑡Φ𝑢

𝑡−1 [𝑘 − 1] −Φ𝑥
𝑡 [𝑘]


∞ ∥𝑤(𝑡 − 𝑘)∥∞ + ∥𝑤(𝑡 − 1)∥∞ .

(6.30)

By Lemma 31, as long as
∑∞
𝑡=1

∑𝐻
𝑘=1

𝐴𝑡Φ𝑥
𝑡−1 [𝑘 − 1] + 𝐵𝑡Φ𝑢

𝑡−1 [𝑘 − 1] −Φ𝑥
𝑡 [𝑘]


∞ ≤

𝐿 for some positive constant 𝐿, then we can bound (6.30) with

∥𝑤(𝑡)∥∞ ≤ 𝑒−(𝑡−𝑡0)/𝐻 · 𝑒𝐿𝑥(𝑡0) + sup
𝑡0≤𝑘<𝑡

∥𝑤(𝑡)∥∞
(
𝑒𝐿 + 𝑒 − 1

)
𝑒 − 1

.

Therefore, what’s left is to show

∞∑︁
𝑡=1

𝐻∑︁
𝑘=1

𝐴𝑡Φ𝑥
𝑡−1 [𝑘 − 1] + 𝐵𝑡Φ𝑢

𝑡−1 [𝑘 − 1] −Φ𝑥
𝑡 [𝑘]


∞ ≤ 𝐿 ,

which is proved in Proposition 32 where 𝐿 = O
(
poly (�̄�) 𝑑

)
. This concludes the

proof. □

Lemma 32 (Bounded error for closed loop operators). Let 𝚽x
t ,𝚽

u
t denote the global

closed loop operators concatenated from sub-controllers generated with Algorithm
5 where Φ𝑥

𝑡 [𝑘] (𝑖, 𝑗) := 𝜙 𝑗 ,𝑥
𝑡−𝑑 ( 𝑗→𝑖) [𝑘] (𝑖) and Φ𝑢

𝑡 [𝑘] (𝑖, 𝑗) := 𝜙 𝑗 ,𝑢
𝑡−𝑑 ( 𝑗→𝑖) [𝑘] (𝑖). Denote

matrices 𝐴𝑡 , 𝐵𝑡 as the global consistent parameter concatenated with local consistent
parameters 𝐴𝑖 𝑗 (𝜃𝑖𝑡), 𝐵𝑖 𝑗 (𝜃𝑖𝑡). Then we have

∞∑︁
𝑡=1

𝐻∑︁
𝑘=1

𝐴𝑡Φ𝑥
𝑡−1 [𝑘 − 1] + 𝐵𝑡Φ𝑢

𝑡−1 [𝑘 − 1] −Φ𝑥
𝑡 [𝑘]


∞ (6.31)

≤ (𝑑 + 3)�̄�3diam(P0)
(
𝜅�̄�

3
2 Γ𝐻 + 𝐶

1 − 𝜌

)
,

where �̄� = max{∥C𝑑 ∥1, ∥C𝑑 ∥∞, max 𝑗 |M ( 𝑗) |}, and 𝑑 is the largest local delay
each subsystem considers for the algorithm, while 𝐻 is SLS controller horizon. Here,
Γ is a system-theoretical constant that does not depend on the global dynamics
properties detailed in Theorem 26.
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Proof. To ease notation, we use 𝑎𝑖𝑡 and 𝑏𝑖𝑡 to denote the 𝑖th row of 𝐴𝑡 and 𝐵𝑡

respectively.

Our strategy is to bound each term in (6.31) for a fixed 𝑡 and 𝑘 . We will see that the
summation of these terms over all 𝑘 and 𝑡 remain bounded. Each term in (6.31) can
be bounded as follows:𝐴𝑡Φ𝑥

𝑡−1 [𝑘 − 1] + 𝐵𝑡Φ𝑢
𝑡−1 [𝑘 − 1] −Φ𝑥

𝑡 [𝑘]

∞

= max
𝑖∈[𝑁]

∑︁
𝑗∈Din (𝑖)

����������
(
𝑎𝑖𝑡

)𝑇
Φ𝑥
𝑡−1 [𝑘 − 1] (:, 𝑗) +

(
𝑏𝑖𝑡

)𝑇
Φ𝑢
𝑡−1 [𝑘 − 1] (:, 𝑗) − Φ𝑥

𝑡 [𝑘] (𝑖, 𝑗)︸        ︷︷        ︸
Defined to be 𝜙 𝑗 ,𝑥

𝑡−𝑑 ( 𝑗→𝑖) [𝑘] (𝑖)

���������� .
(6.32)

Due to the sparsity constraints that correspond to the information constraints placed
on the closed-loop responses during synthesis (6.18), the only nonzero elements in a
particular row 𝑖 of Φ𝑥

𝑡 [𝑘] are the positions at 𝑗 ∈ Din (𝑖). Hence, we can write sum
of each row 𝑖 as sum of the elements in position (𝑖, 𝑗) where 𝑗 ∈ Din (𝑖) in (6.32).
Recall that 𝜙 𝑗 ,𝑥

𝑡−𝑑 ( 𝑗→𝑖) are synthesized in (6.18) such that

𝜙
𝑗 ,𝑥

𝑡−𝑑 ( 𝑗→𝑖) [𝑘] (𝑖) =
(
𝑎𝑖
𝑡−𝑑 ( 𝑗→𝑖)−𝑑 (𝑖→ 𝑗)

)𝑇
𝜙
𝑗 ,𝑥

𝑡−𝑑 ( 𝑗→𝑖) [𝑘 − 1]

+
(
𝑏𝑖
𝑡−𝑑 ( 𝑗→𝑖)−𝑑 (𝑖→ 𝑗)

)𝑇
𝜙
𝑗 ,𝑢

𝑡−𝑑 ( 𝑗→𝑖) [𝑘 − 1] (6.33)

because 𝜙 𝑗 ,𝑥
𝑡−𝑑 ( 𝑗→𝑖) is synthesized by 𝑗 at time 𝑡 − 𝑑 ( 𝑗 → 𝑖). The 𝑖th position of

𝜙
𝑗 ,𝑥

𝑡−𝑑 ( 𝑗→𝑖) in particular uses model information from subsystem 𝑖, which is transmitted
to 𝑗 from 𝑖 with delay 𝑑 (𝑖 → 𝑗). Therefore, we substitute (6.33) into (6.32) to get

(6.32) = max
𝑖∈[𝑁]

∑︁
𝑗∈Din (𝑖)

����� (𝑎𝑖𝑡 )𝑇 Φ𝑥
𝑡−1 [𝑘 − 1] (:, 𝑗) −

(
𝑎𝑖
𝑡−𝑑 ( 𝑗→𝑖)−𝑑 (𝑖→ 𝑗)

)𝑇
𝜙
𝑗 ,𝑥

𝑡−𝑑 ( 𝑗→𝑖) [𝑘 − 1]

+
(
𝑏𝑖𝑡

)𝑇
Φ𝑢
𝑡−1 [𝑘 − 1] (:, 𝑗) −

(
𝑏𝑖
𝑡−𝑑 ( 𝑗→𝑖)−𝑑 (𝑖→ 𝑗)

)𝑇
𝜙
𝑗 ,𝑢

𝑡−𝑑 ( 𝑗→𝑖) [𝑘 − 1]
�����. (6.34)

Adding and subtracting
(
𝑎𝑖𝑡

)𝑇
𝜙
𝑗 ,𝑥

𝑡−𝑑 ( 𝑗→𝑖) [𝑘 − 1] and
(
𝑏𝑖𝑡

)𝑇
𝜙
𝑗 ,𝑢

𝑡−𝑑 ( 𝑗→𝑖) [𝑘 − 1] in (6.34),
we can group terms and get

(6.34) ≤ max
𝑖∈[𝑁]

∑︁
𝑗∈Din (𝑖)

����� (𝑎𝑖𝑡 )𝑇 (
Φ𝑥
𝑡−1 [𝑘 − 1] (:, 𝑗) − 𝜙 𝑗 ,𝑥

𝑡−𝑑 ( 𝑗→𝑖) [𝑘 − 1]
)

+
(
𝑏𝑖𝑡

)𝑇 (
Φ𝑢
𝑡−1 [𝑘 − 1] (:, 𝑗) − 𝜙 𝑗 ,𝑢

𝑡−𝑑 ( 𝑗→𝑖) [𝑘 − 1]
) ����� (6.35a)
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+ max
𝑖∈[𝑁]

∑︁
𝑗∈Din (𝑖)

����� (𝑎𝑖𝑡 − 𝑎𝑖𝑡−𝑑 ( 𝑗→𝑖)−𝑑 (𝑖→ 𝑗)

)𝑇
𝜙
𝑗 ,𝑥

𝑡−𝑑 ( 𝑗→𝑖) [𝑘 − 1]

+
(
𝑏𝑖𝑡 − 𝑏𝑖𝑡−𝑑 ( 𝑗→𝑖)−𝑑 (𝑖→ 𝑗)

)𝑇
𝜙
𝑗 ,𝑢

𝑡−𝑑 ( 𝑗→𝑖) [𝑘 − 1]
�����. (6.35b)

We now consider (6.35a) and (6.35b) separately. For the remainder of the proof, we
use ϕ 𝑗 ,𝑥

𝑡 and ϕ
𝑗 ,𝑢
𝑡 as shorthand for the 𝑗 th column of 𝚽x

t and 𝚽u
t respectively. Apply

Cauchy-Schwarz,

(6.35a) ≤ max
𝑖∈[𝑁]

∑︁
𝑗∈Din (𝑖)

𝑎𝑖𝑡2

𝜙 𝑗 ,𝑥
𝑡−1 [𝑘 − 1] − 𝜙 𝑗 ,𝑥

𝑡−𝑑 ( 𝑗→𝑖) [𝑘 − 1]


2

+
𝑏𝑖𝑡2

𝜙 𝑗 ,𝑢
𝑡−1 [𝑘 − 1] − 𝜙 𝑗 ,𝑢

𝑡−𝑑 ( 𝑗→𝑖) [𝑘 − 1]


2
(6.36a)

(by Assumption 9) ≤ 𝜅 · max
𝑖∈[𝑁]

∑︁
𝑗∈Din (𝑖)

𝜙 𝑗 ,𝑥
𝑡−1 [𝑘 − 1] − 𝜙 𝑗 ,𝑥

𝑡−𝑑 ( 𝑗→𝑖) [𝑘 − 1]


2

+
𝜙 𝑗 ,𝑢

𝑡−1 [𝑘 − 1] − 𝜙 𝑗 ,𝑢
𝑡−𝑑 ( 𝑗→𝑖) [𝑘 − 1]


2

(6.36b)

= 𝜅 · max
𝑖∈[𝑁]

∑︁
𝑗∈Din (𝑖)

©«
∑︁

ℓ∈Dout ( 𝑗)

���𝜙 𝑗 ,𝑥
𝑡−1 [𝑘 − 1] (ℓ) − 𝜙 𝑗 ,𝑥

𝑡−𝑑 ( 𝑗→𝑖) [𝑘 − 1] (ℓ)
���2ª®¬

1/2

+ ©«
∑︁

ℓ∈Dout ( 𝑗)

���𝜙 𝑗 ,𝑢
𝑡−1 [𝑘 − 1] (ℓ) − 𝜙 𝑗 ,𝑢

𝑡−𝑑 ( 𝑗→𝑖) [𝑘 − 1] (ℓ)
���2ª®¬

1/2

(6.36c)

= 𝜅 · max
𝑖∈[𝑁]

∑︁
𝑗∈Din (𝑖)

©«
∑︁

ℓ∈Dout ( 𝑗)

���𝜙 𝑗 ,𝑥
𝑡−1−𝑑 ( 𝑗→ℓ) [𝑘 − 1] (ℓ) − 𝜙 𝑗 ,𝑥

𝑡−𝑑 ( 𝑗→𝑖) [𝑘 − 1] (ℓ)
���2ª®¬

1/2

+ ©«
∑︁

ℓ∈Dout ( 𝑗)

���𝜙 𝑗 ,𝑢
𝑡−1−𝑑 ( 𝑗→ℓ) [𝑘 − 1] (ℓ) − 𝜙 𝑗 ,𝑢

𝑡−𝑑 ( 𝑗→𝑖) [𝑘 − 1] (ℓ)
���2ª®¬

1/2

,

(6.36d)

where to arrive at (6.36c) we used the fact that the nonzero elements in any column/sub-
controller synthesized or assembled at subsystem 𝑗 corresponds to the elements in
Dout ( 𝑗). The last equality comes from the definition of 𝚽x

t−1,𝚽u
t−1. Continuing, we

bound any sum using the largest summand multiplied by the number of summands:

(6.35a) ≤ (6.36d)

≤ 𝜅 · max
𝑖∈[𝑁]

∑︁
𝑗∈Din (𝑖)

(
�̄� · max

ℓ∈Dout ( 𝑗)

𝜙 𝑗 ,𝑥
𝑡−1−𝑑 ( 𝑗→ℓ) [𝑘 − 1] − 𝜙 𝑗 ,𝑥

𝑡−𝑑 ( 𝑗→𝑖) [𝑘 − 1]
2

2

)1/2



169

+
(
�̄� · max

ℓ′∈Dout ( 𝑗)

𝜙 𝑗 ,𝑢
𝑡−1−𝑑 ( 𝑗→ℓ′) [𝑘 − 1] − 𝜙 𝑗 ,𝑢

𝑡−𝑑 ( 𝑗→𝑖) [𝑘 − 1]
2

2

)1/2

(6.37a)

= 𝜅�̄�3/2 max
𝑖∈[𝑁]

max
𝑗∈Din (𝑖)

( (
max

ℓ∈Dout ( 𝑗)

𝜙 𝑗 ,𝑥
𝑡−1−𝑑 ( 𝑗→ℓ) [𝑘 − 1] − 𝜙 𝑗 ,𝑥

𝑡−𝑑 ( 𝑗→𝑖) [𝑘 − 1]
2

2

)1/2

+
(

max
ℓ′∈Dout ( 𝑗)

𝜙 𝑗 ,𝑢
𝑡−1−𝑑 ( 𝑗→ℓ′) [𝑘 − 1] − 𝜙 𝑗 ,𝑢

𝑡−𝑑 ( 𝑗→𝑖) [𝑘 − 1]
2

2

)1/2
)
. (6.37b)

Recall that 𝜙 𝑗
𝑡−1−𝑑 ( 𝑗→ℓ) are generated by subsystem 𝑗 using model information

Θ̂
𝑗

𝑡−1−𝑑 ( 𝑗→ℓ) during synthesis procedure ((6.17), Algorithm 5). Similarly, 𝜙 𝑗
𝑡−𝑑 ( 𝑗→𝑖)

are generated using Θ̂
𝑗

𝑡−𝑑 ( 𝑗→𝑖) . Therefore, we can invoke Corollary 23.1 and arrive at

(6.35a) ≤ (6.36d) ≤ (6.37b)

≤ 𝜅�̄�3/2Γ max
𝑖∈[𝑁]

max
𝑗∈Din (𝑖)

( (
max

ℓ∈Dout ( 𝑗)

Θ̂ 𝑗

𝑡−1−𝑑 ( 𝑗→ℓ) − Θ̂
𝑗

𝑡−𝑑 ( 𝑗→𝑖)

2

𝐹

)1/2

+ max
ℓ′∈Dout ( 𝑗)

(Θ̂ 𝑗

𝑡−1−𝑑 ( 𝑗→ℓ′) − Θ̂
𝑗

𝑡−𝑑 ( 𝑗→𝑖)

2

𝐹

)1/2
)
.

(6.38)

For any fixed 𝑖, 𝑗 , ℓ, ℓ′, the following holds true:

(6.38) = 𝜅�̄�3/2Γ
(Θ̂ 𝑗

𝑡−1−𝑑 ( 𝑗→ℓ) − Θ̂
𝑗

𝑡−𝑑 ( 𝑗→𝑖)


𝐹
+

Θ̂ 𝑗

𝑡−1−𝑑 ( 𝑗→ℓ′) − Θ̂
𝑗

𝑡−𝑑 ( 𝑗→𝑖)


𝐹

)
= 𝜅�̄�3/2Γ

∑︁
𝑚∈M( 𝑗)

𝜃𝑚𝑡−1−𝑑 ( 𝑗→ℓ)−𝑑 (𝑚→ 𝑗) − 𝜃
𝑚
𝑡−𝑑 ( 𝑗→𝑖)−𝑑 (𝑚→ 𝑗)


𝐹

+
∑︁

𝑚∈M( 𝑗)

𝜃𝑚𝑡−1−𝑑 ( 𝑗→ℓ′)−𝑑 (𝑚→ 𝑗) − 𝜃
𝑚
𝑡−𝑑 ( 𝑗→𝑖)−𝑑 (𝑚→ 𝑗)


𝐹

≤ 𝜅�̄�3/2Γ
∑︁

𝑚∈M( 𝑗)

©«
min(𝑡1,𝑡2)+𝛿𝑡+1∑︁
𝑝=min(𝑡1,𝑡2)

𝜃𝑚𝑡−𝑝+1 − 𝜃𝑚𝑡−𝑝
𝐹
+

min(𝑡′1,𝑡2)+𝛿
′
𝑡+1∑︁

𝑝=min(𝑡′1,𝑡2)

𝜃𝑚𝑡−𝑝+1 − 𝜃𝑚𝑡−𝑝
𝐹

ª®¬ ,
(6.39)

where we define 𝑡1 = 1 + 𝑑 ( 𝑗 → ℓ) + 𝑑 (𝑚 → 𝑗), 𝑡′1 = 1 + 𝑑 ( 𝑗 → ℓ′) + 𝑑 (𝑚 → 𝑗),
𝑡2 = 1 + 𝑑 ( 𝑗 → 𝑖) + 𝑑 (𝑚 → 𝑗), and 𝛿𝑡 = |𝑑 ( 𝑗 → 𝑖) − 𝑑 ( 𝑗 → ℓ) − 1|, 𝛿𝑡′ =

|𝑑 ( 𝑗 → 𝑖) − 𝑑 ( 𝑗 → ℓ′) − 1|. We stop at (6.39) for the moment for our bound for
(6.35a) and change course to bound the other term (6.35b) in (6.35). We start with
cauchy-schwarz for (6.35b).

(6.35b) ≤ max
𝑖∈[𝑁]

∑︁
𝑗∈Din (𝑖)

𝑎𝑖𝑡 − 𝑎𝑖𝑡−𝑑 ( 𝑗→𝑖)−𝑑 (𝑖→ 𝑗)


2

𝜙 𝑗 ,𝑥
𝑡−𝑑 ( 𝑗→𝑖) [𝑘 − 1]


2
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+
𝑏𝑖𝑡 − 𝑏𝑖𝑡−𝑑 ( 𝑗→𝑖)−𝑑 (𝑖→ 𝑗)


2

𝜙 𝑗 ,𝑢
𝑡−𝑑 ( 𝑗→𝑖) [𝑘 − 1]


2

≤ 𝐶𝜌𝑘−1�̄� · max
𝑖∈[𝑁]

max
𝑗∈Din (𝑖)

𝑎𝑖𝑡 − 𝑎𝑖𝑡−𝑑 ( 𝑗→𝑖)−𝑑 (𝑖→ 𝑗)


2
+

𝑏𝑖𝑡 − 𝑏𝑖𝑡−𝑑 ( 𝑗→𝑖)−𝑑 (𝑖→ 𝑗)


2

= 𝐶𝜌𝑘−1�̄� · max
𝑖∈[𝑁]

max
𝑗∈Din (𝑖)

𝜃𝑖𝑡 − 𝜃𝑖𝑡−𝑑 ( 𝑗→𝑖)−𝑑 (𝑖→ 𝑗)


2
. (6.40)

Here we have used the decay property of the finite-impulse-response closed-loop
responses to bound the decay rate of the sub-controllers. The last equality holds by
recalling that we have defined 𝑎𝑖𝑡 and 𝑏𝑖𝑡 to be the 𝑖th row of the 𝐴𝑡 and 𝐵𝑡 respectively,
which is constructed from the global consistent parameter Θ𝑡 = ∪𝑁𝑖=1𝜃

𝑖
𝑡 . Therefore,

by definition, [𝑎𝑖𝑡 , 𝑏𝑖𝑡] = 𝜃𝑖𝑡 .

We now return to bound
∑∞
𝑡=0

∑𝐻
𝑘=1

𝐴𝑡Φ𝑥
𝑡−1 [𝑘 − 1] + 𝐵𝑡Φ𝑢

𝑡−1 [𝑘 − 1] −Φ𝑥
𝑡 [𝑘]


∞. In

particular, we have so far showed that

∞∑︁
𝑡=0

𝐻∑︁
𝑘=1

𝐴𝑡Φ𝑥
𝑡−1 [𝑘 − 1] + 𝐵𝑡Φ𝑢

𝑡−1 [𝑘 − 1] −Φ𝑥
𝑡 [𝑘]


∞ ≤

∞∑︁
𝑡=0

𝐻∑︁
𝑘=1

(6.39) + (6.40).

(6.41)

Therefore, our goal is to bound each component of the right hand side. Specifically,

∞∑︁
𝑡=0

𝐻∑︁
𝑘=1

(6.39)

≤
∞∑︁
𝑡=0

𝐻∑︁
𝑘=1

𝜅�̄�3/2Γ
∑︁

𝑚∈M( 𝑗)

©«
min(𝑡1,𝑡2)+𝛿𝑡+1∑︁
𝑝=min(𝑡1,𝑡2)

𝜃𝑚𝑡−𝑝+1 − 𝜃𝑚𝑡−𝑝
𝐹
+

min(𝑡′1,𝑡2)+𝛿
′
𝑡+1∑︁

𝑝=min(𝑡′1,𝑡2)

𝜃𝑚𝑡−𝑝+1 − 𝜃𝑚𝑡−𝑝
𝐹

ª®¬ ,
(6.42)

for a different tuple of (𝑖 ∈ [𝑁], 𝑗 ∈ Din (𝑖) , ℓ ∈ Dout ( 𝑗) , ℓ′ ∈ Dout ( 𝑗)) at each 𝑡.
However, for any (𝑖, 𝑗 , ℓ, ℓ′), the following holds:

∞∑︁
𝑡=0

𝐻∑︁
𝑘=1

(6.39)

≤ 𝜅�̄�3/2Γ
𝐻∑︁
𝑘=1

∑︁
𝑚∈M( 𝑗)

©«
min(𝑡1,𝑡2)+𝛿𝑡+1∑︁
𝑝=min(𝑡1,𝑡2)

∞∑︁
𝑡=0

𝜃𝑚𝑡−𝑝+1 − 𝜃𝑚𝑡−𝑝
𝐹
+

min(𝑡′1,𝑡2)+𝛿
′
𝑡+1∑︁

𝑝=min(𝑡′1,𝑡2)

∞∑︁
𝑡=0

𝜃𝑚𝑡−𝑝+1 − 𝜃𝑚𝑡−𝑝
𝐹

ª®¬
≤ 2𝜅�̄�9/2Γ𝐻diam(P0)

(
max

𝑖∈[𝑁] , 𝑗∈Din (𝑖), ℓ∈Dout ( 𝑗)
(1 + 1 + |𝑑 ( 𝑗 → 𝑖)) − 𝑑 ( 𝑗 → ℓ) − 1|

)
(6.43a)

≤ 2𝜅�̄�9/2Γ𝐻diam(P0) (𝑑 + 3). (6.43b)
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Here we have used in the competitiveness of each local Steiner point selector via
(6.3) in (6.43a) with competitive ratio of �̄�/2. Furthermore, by definition of Din (𝑖)
and Dout ( 𝑗), we know that the largest delay for 𝑑 ( 𝑗 → 𝑖) and 𝑑 ( 𝑗 → ℓ) for any
choice of 𝑖, 𝑗 , ℓ is less than 𝑑.

Finally, we investigate the second component of the right hand side of (6.41).

∞∑︁
𝑡=0

𝐻∑︁
𝑘=1

(6.40) =
∞∑︁
𝑡=0

𝐻∑︁
𝑘=1

𝐶𝜌𝑘−1�̄� · max
𝑖∈[𝑁]

max
𝑗∈Din (𝑖)

𝜃𝑖𝑡 − 𝜃𝑖𝑡−𝑑 ( 𝑗→𝑖)−𝑑 (𝑖→ 𝑗)


2

(6.44a)

≤
𝐻∑︁
𝑘=1

𝐶𝜌𝑘−1�̄�max
𝑖∈[𝑁]

max
𝑗∈Din (𝑖)

𝑑 ( 𝑗→𝑖)+𝑑 (𝑖→ 𝑗)+1∑︁
𝑝=0

∞∑︁
𝑡=0

𝜃𝑖𝑡−𝑝+1 − 𝜃𝑖𝑡−𝑝2

(6.44b)

≤ 𝐶�̄�3diam(P0) (𝑑 + 1)/(1 − 𝜌) , (6.44c)

where we once again used the competitive ratio of the local Steiner point selector (6.3).
Moreover, by definition of Din (𝑖), the largest delay 𝑑 (𝑖 → 𝑗) for any 𝑗 ∈ Din (𝑖) is
less than 𝑑.

Finally, we have the bound on the target quantity with (6.43b) and (6.44c) and
conclude

∞∑︁
𝑡=1

𝐻∑︁
𝑘=1

𝐴𝑡Φ𝑥
𝑡−1 [𝑘 − 1] + 𝐵𝑡Φ𝑢

𝑡−1 [𝑘 − 1] −Φ𝑥
𝑡 [𝑘]


∞ ≤ (6.43b) + (6.44c)

≤ 2(𝑑 + 3)�̄�3diam(P0)
(
𝜅�̄�

3
2 Γ𝐻 + 𝐶

1 − 𝜌

)
.

□

Corollary 23.1 (of Theorem 26, Structured SLS sensitivity). Consider the optimal
solutions 𝜙, 𝜙′ to (6.18) with two different parameters input Θ, Θ′ respectively. Then
we have

∥𝜙 − 𝜙′∥2 ≤ Γ ∥Θ − Θ′∥2 ,

with Γ = O (Γ𝐴 + Γ𝐵) where Γ𝐴 and Γ𝐵 are constants in Theorem 26.

Proof. The SLS synthesis problem that we consider in (6.18) has one additional spar-
sity constraints than general SLS synthesis presented in (6.49) to which Theorem 26
apples. Therefore, we need to de-constrain the synthesis problem (6.18) and turn it
into a problem of the form (6.49) in order to apply Theorem 26. To do so, we follow
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the procedure in Section 2.4 of Chapter 2, where a re-parameterization of ϕ 𝑗 ,𝑢
𝑡 is

used to characterize all sparse ϕ 𝑗 ,𝑢
𝑡 which will result in sparse ϕ 𝑗 ,𝑥

𝑡 according to the
dynamical evolution (6.18b). First, we rewrite (6.18b) with the nonzero variables
grouped together as follows:[

𝜙 𝑗 ,𝑥

𝜙
𝑗 ,𝑥

𝑏

]
[𝑘 + 1] =

[
𝐴
( 𝑗)
𝑛𝑛 𝐴

( 𝑗)
𝑛𝑏

𝐴
( 𝑗)
𝑏𝑛

𝐴
( 𝑗)
𝑏𝑏

] [
𝜙 𝑗 ,𝑥

𝜙
𝑗 ,𝑥

𝑏

]
[𝑘] +

[
𝐵
( 𝑗)
𝑛

𝐵
( 𝑗)
𝑏

]
𝜙 𝑗 ,𝑢 [𝑘] , (6.45)

where 𝜙 𝑗 ,𝑥 denotes the vector of nonzero entries in ϕ
𝑗 ,𝑥
𝑡 and 𝜙

𝑗 ,𝑥

𝑏
denotes the

“boundary” positions of 𝜙 𝑗 ,𝑥 . The “boundary” positions of 𝜙 𝑗 ,𝑥 corresponds to the
positions in the vector that would become nonzero from zero due to the dynamical
evolution (6.18b) in one time step. We refer Chapter 2 for detailed setup/derivation for
(6.45). We also partition 𝐴,𝐵 in (6.18b) to correspond the entries that are associated
with 𝜙 𝑗 ,𝑥 and 𝜙 𝑗 ,𝑥

𝑏
. 𝜙 𝑗 ,𝑢 denote the reduced vector with only nonzero entries of 𝜙𝑖,𝑢𝑡 .

For completeness, we re-state a key lemma from Chapter 2.

Lemma 33. If 𝐵( 𝑗)
𝑏
𝐵
( 𝑗)†
𝑏

= 𝐼, then the vectors {𝑣 𝑗 [𝑘]} characterize all 𝜙 𝑗 ,𝑢 [𝑘] via

𝜙 𝑗 ,𝑢 [𝑘] = −𝐵( 𝑗),†
𝑏

𝐴
( 𝑗)
𝑏𝑛
𝜙 𝑗 ,𝑥 [𝑘] +

(
𝐼 − 𝐵( 𝑗),†

𝑏
𝐵
( 𝑗)
𝑏

)
𝑣 𝑗 [𝑘] . (6.46)

We remark that the pseudo-inverse condition in Lemma 33 is equivalently to
Assumption 12, as observed in [236] and [254].

We can now substitute (6.46) into the synthesis problem (6.18) and obtain an SLS
synthesis problem in the same form as (6.49) with transformed dynamical evolution
in terms of the new variables 𝜙 𝑗 ,𝑥 [𝑘] and 𝑣 𝑗 [𝑘]. Consider the optimal solutions 𝜙
and 𝜙′ (concatenated from 𝜙 𝑗 ,𝑥 and 𝑣 𝑗 ) computed from the de-constrained problem
with two different model input Θ and Θ′. By Theorem 26, we have𝜙 − 𝜙′2 ≤ (Γ𝐴 + Γ𝐵) ∥Θ − Θ

′∥𝐹 . (6.47)

Observe that
𝜙 𝑗 ,𝑢 =

[
−𝐵( 𝑗),†

𝑏
𝐴
( 𝑗)
𝑏𝑛

(
𝐼 − 𝐵( 𝑗),†

𝑏
𝐵
( 𝑗)
𝑏

)]
𝜙.

Therefore, we could bound the sensitivity of the solution to (6.18) via

∥𝜙 − 𝜙′∥2 ≤

[

𝐼 0
−𝐵( 𝑗),†

𝑏
𝐴
( 𝑗)
𝑏𝑛

(
𝐼 − 𝐵( 𝑗),†

𝑏
𝐵
( 𝑗)
𝑏

)] 𝜙 − [
𝐼 0

−𝐵
′ ( 𝑗),†
𝑏

𝐴
′ ( 𝑗)
𝑏𝑛

(
𝐼 − 𝐵

′ ( 𝑗),†
𝑏

𝐵
′ ( 𝑗)
𝑏

)] 𝜙′
2

≤

([

0 0
−𝐵( 𝑗),†

𝑏
𝐴
( 𝑗)
𝑏𝑛
+ 𝐵

′ ( 𝑗),†
𝑏

𝐴
′ ( 𝑗)
𝑏𝑛

−𝐵( 𝑗),†
𝑏

𝐵
( 𝑗)
𝑏
+ 𝐵

′ ( 𝑗),†
𝑏

𝐵
′ ( 𝑗)
𝑏

])
𝜙


2
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+

[

𝐼 0
−𝐵

′ ( 𝑗),†
𝑏

𝐴
′ ( 𝑗)
𝑏𝑛

(
𝐼 − 𝐵

′ ( 𝑗),†
𝑏

𝐵
′ ( 𝑗)
𝑏

)] (
𝜙 − 𝜙′

)
2

≤ 4𝐶𝜅
𝜎min(1 − 𝜌)

+
(
2 + 2𝜅

𝜎min

)
(Γ𝐴 + Γ𝐵) ∥Θ − Θ′∥𝐹

= O (Γ𝐴 + Γ𝐵) ∥Θ − Θ′∥𝐹 ,

where 𝜎min denotes the minimum singular value of the matrix 𝐵𝑏 for all 𝐵(𝜃𝑖) with
𝜃𝑖 ∈ P𝑖0. Note that the left pseudo-inverse has the largest singular value of 1/𝜎min

with 𝜎min the smallest singular value of the original matrix. Due to Assumption 10
and Assumption 12, we know that 𝐵𝑏 has to be bounded from below so that (6.18) is
feasible. We have also used the fact that the norm of an lower triangular block matrix
is upper bounded by the sum of the norm of each component block. We invoke the
exponential decay property of the closed-loop responses to bound the decay rate of 𝜙
by relating the nonzero component of the solution to (6.18) and 𝜙 via (6.47). □

6.D Perturbation Analysis of H2-optimal SLS Synthesis
FromH2-optimal control to Least Squares
This section presents results about general SLS synthesis. Due to notation overhead,
we will drop time indices and suppress the horizon index 𝑘 ∈ [𝐻] in closed-loop
operators Φ𝑥 [𝑘], Φ𝑥 [𝑘] and write Φ𝑥

𝑘
, Φ𝑢

𝑘
instead. Let Φ𝑥

𝑘
∈ R𝑛×𝑛 and Φ𝑢

𝑘
∈ R𝑚×𝑛

and consider the following canonical SLS synthesis problem with LQR cost for
system matrices [𝐴, 𝐵] and weighting matrices 𝐶 ∈ R𝑛×𝑛, 𝐷 ∈ R𝑚×𝑚 :

𝑆 = min


[
𝐶 0
0 𝐷

] [
Φ𝑥

1 Φ𝑥
2 . . . Φ𝑥

𝑇

Φ𝑢
1 Φ𝑢

2 . . . Φ𝑢
𝑇

]2

𝐹

(6.48)

s.t.: Φ𝑥
1 = 𝐼

Φ𝑥
𝑘+1 = 𝐴Φ𝑥

𝑘 + 𝐵Φ
𝑢
𝑘 , ∀ 𝑘 : 1 ≤ 𝑘 ≤ 𝐻

Φ𝑥
𝐻+1 = 0 .

The objective in (6.48) is equivalent to weighted H2 norm on the closed-loop
operators 𝚽x and 𝚽u, as well as the LQR cost on the state and control input weighed
by 𝐶2 and 𝐷2. Denote 𝜙 𝑗 ,𝑥

𝑘
∈ R𝑛, 𝜙 𝑗 ,𝑢

𝑘
∈ R𝑚 as the 𝑗 th column of Φ𝑥

𝑘
∈ R𝑛×𝑛,

Φ𝑢
𝑘
∈ R𝑚×𝑛 and 𝑒 𝑗 the unit vector in the 𝑗-th coordinate axis. As described in

Section 2.3, we can separate the problem by columns and can equivalently restate
(6.48) in terms of each column 𝜙 𝑗 ,𝑥

𝑘
and 𝜙 𝑗 ,𝑢

𝑘
:

𝑆 𝑗 := min

[𝐶 𝐷

] [
𝜙
𝑗 ,𝑥

1 𝜙
𝑗 ,𝑥

2 . . . 𝜙
𝑗 ,𝑥

𝐻

𝜙
𝑗 ,𝑢

1 𝜙
𝑗 ,𝑢

2 . . . 𝜙
𝑗 ,𝑢

𝐻

]2

𝐹

(6.49)
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s.t. 𝜙 𝑗 ,𝑥1 = 𝑒 𝑗

𝜙
𝑗 ,𝑥

𝑘+1 = 𝐴𝜙
𝑗 ,𝑥

𝑘
+ 𝐵𝜙 𝑗 ,𝑢

𝑘
, ∀ 1 ≤ 𝑘 ≤ 𝐻

𝜙
𝑗 ,𝑥

𝐻+1 = 0 .

We will now fix 𝑗 and rewrite (6.49) further and introduce new variables to avoid
tedious notation. Define 𝑢𝑘 = 𝜙

𝑗 ,𝑢

𝑘
,∀1 ≤ 𝑘 ≤ 𝐻, u = [𝑢⊤1 , . . . , 𝑢

⊤
𝐻
]⊤ and the

block-lower-triangular matrix G𝑢 ∈ R𝐻𝑛×𝐻𝑚, the vector 𝜉 𝑗 ∈ R𝐻𝑛 and the lifted
weight matrices C, D as

G𝑢 =



𝐵 0 0 . . . 0
𝐴𝐵 𝐵 0 . . . 0
𝐴2𝐵 𝐴𝐵 𝐵 . . . 0

. . . . . .

𝐴𝐻−1𝐵 𝐴𝐻−2𝐵 𝐴𝐻−3𝐵 . . . 𝐵


𝜉 𝑗 =


−𝐴𝑒 𝑗
−𝐴2𝑒 𝑗

. . .

−𝐴𝐻𝑒 𝑗


C = 𝐼𝐻 ⊗ 𝐶 D = 𝐼𝐻 ⊗ 𝐷,

(6.50)

where 𝐼𝑘 is the identity matrix for R𝑘 . Denote by 𝑃𝑖, 1 ≤ 𝑖 ≤ 𝐻 the 𝑖-th block-row of
G𝑢:

𝑃𝑖 = [𝐴𝑖−1𝐵, 𝐴𝑖−2𝐵, . . . , 𝐵, 0, . . . , 0] . (6.51)

Observe that with these definitions, it holds that for any feasible 𝜙 𝑗 ,𝑢
𝑘

, 𝜙 𝑗 ,𝑥
𝑘

and for all
∀1 ≤ 𝑘 ≤ 𝐻:

𝜙
𝑗 ,𝑥

𝑘+1 = −𝜉 𝑗 ,𝑘 + 𝑃𝑘u

due to the constraints in (6.49). Now we can rewrite the subproblem 𝑆 𝑗 as

𝑆 𝑗 = min
u


[
CG𝑢

D

]
u −

[
C𝜉 𝑗

0

]2

2

+ (𝐶⊤𝐶) 𝑗 𝑗 (6.52a)

s.t.: 0 = 𝐴⊤𝑒 𝑗 + 𝑃𝐻u . (6.52b)

For large systems which consist of many interconnected (sparsely) small systems, it
is often the case that the overall system is 𝐻-controllable for some suitable choice of
𝐻 ≪ 𝑛 where 𝑛 is the global state dimension.

Representation as a Least-Squares problem
We now rewrite (6.52) as a least square problem. Define u∗𝑐 := 𝑃⊤

𝐻
(𝑃𝐻𝑃⊤𝐻)−1𝐴⊤𝑒 𝑗 ,

which is the solution to the optimization problem

min
u

∥u∥22
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s.t. 0 = −𝐴⊤𝑒 𝑗 + 𝑃𝐻u.

We can interpret u∗𝑐 as the smallest control action, measured in ℓ2, that drives the
system from the origin to −𝐴⊤𝑒 𝑗 in 𝐻 time-steps. This relates to controllability
grammians as described in [5]. Using 𝑀† to denote the Moore-Penrose Inverse
of a matrix𝑀 , we can also writeu∗𝑐 := 𝑃+

𝐻
𝐴⊤𝑒 𝑗 = 𝑃⊤𝐻𝑊

−1
𝐻
𝐴⊤𝑒 𝑗 , where𝑊𝐻 = 𝑃𝐻𝑃

⊤
𝐻

.

Let 𝐻 denote the FIR-Horizon of the problem, then define the matrices

G𝑤 (𝐴) =



𝐼 0 0 . . . 0
𝐴 𝐼 0 . . . 0
𝐴2 𝐴 𝐼 . . . 0

. . . . . .

𝐴𝐻−1 𝐴𝐻−2 𝐴𝐻−3 . . . 𝐼


, G𝑢 (𝐴, 𝐵) =



𝐵 0 0 . . . 0
𝐴𝐵 𝐵 0 . . . 0
𝐴2𝐵 𝐴𝐵 𝐵 . . . 0

. . . . . .

𝐴𝐻−1𝐵 𝐴𝐻−2𝐵 𝐴𝐻−3𝐵 . . . 𝐵


(6.53)

and denote 𝑃𝑖 (𝐴, 𝐵) as the 𝑖th block matrix row of G𝑢 (𝐴, 𝐵):

𝑃𝑖 (𝐴, 𝐵) = [𝐴𝑖−1𝐵, 𝐴𝑖−2𝐵, . . . , 𝐵, 0, . . . , 0] . (6.54)

G𝑢 (𝐴, 𝐵) can be written as G𝑢 (𝐴, 𝐵) = G𝑤 (𝐴) (𝐼𝐻 ⊗ 𝐵), where 𝐼𝐻 is the identity
matrix in R𝐻 . Let 𝑍 ∈ R𝐻×𝐻 be defined as the nilpotent matrix

𝑍 =

[
0𝐻−1×1 𝐼𝐻−1

0 01×𝐻−1

]
, (6.55)

and notice its psuedo-inverse is 𝑍† = 𝑍⊤. Using 𝑍 , it is easy to verify that G𝑤 (𝐴)
can be expressed as

G𝑤 (𝐴) =
(
𝐼𝐻 − 𝑍† ⊗ 𝐴

)−1
. (6.56)

Ignoring the constant terms in (6.52a), we can reparametrize u = −u∗𝑐 + u′ where
u′ ∈ null(𝑃𝐻) and describe (6.52) as the optimization problem:

𝑆 𝑗 := min
u′∈null(𝑃𝐻 (𝐴,𝐵))

 [
C 0
0 D

] [
G𝑢 (𝐴, 𝐵)

𝐼

]
(u′ − u∗𝑐 (𝐴, 𝐵))

2

2
. (6.57)

Let u∗(𝐴, 𝐵) be a minimizer of the above problem for fixed 𝐴, 𝐵, we are interested
in the SLS solutions

𝜙∗ 𝑗 (𝐴, 𝐵) :=

[
𝜙
∗ 𝑗
𝑥 (𝐴, 𝐵)
𝜙
∗ 𝑗
𝑢 (𝐴, 𝐵)

]
=

[
G𝑢 (𝐴, 𝐵)

𝐼

]
(u∗(𝐴, 𝐵) − u∗𝑐 (𝐴, 𝐵))
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and how these solutions are perturbed with changes in 𝐴, 𝐵.

For the rest of the discussion, we will drop mentioning the explicit dependence
on (𝐴, 𝐵) and the column index 𝑗 to reduce the notational burden. First, we
(over-)parametrize u as

u = (𝐼 − 𝑃†
𝐻
𝑃𝐻)η,

to cast the above problem into an unconstrained one:

𝑆 𝑗 := min
η

 [
C 0
0 D

] [
G𝑢 (𝐴, 𝐵)

𝐼

]
(𝐼 − 𝑃†

𝐻
𝑃𝐻)︸                                       ︷︷                                       ︸

F

η −
[
C 0
0 D

] [
G𝑢 (𝐴, 𝐵)

𝐼

]
u∗𝑐 (𝐴, 𝐵)︸                                   ︷︷                                   ︸

g

2

2
.

(6.58)

The unique min-norm solution 𝜂∗ to the above problem is 𝜂∗ = F †g and therefore
the optimal solution 𝜙∗ takes the form

𝜙∗ =

[
C−1 0

0 D−1

]
(F F †g − g) =

[
C−1 0

0 D−1

]
(F F † − 𝐼)g︸         ︷︷         ︸

𝜈∗

=:

[
C−1 0

0 D−1

]
𝜈∗

(6.59)

Local lipshitzness ofH2-optimal closed-loop operators
Here, we perform perturbation analysis on the term 𝜈∗ = (F F † − 𝐼)g. Throughout
the discussion, we will make frequent use of the following identities:

Lemma 34. For arbitrary matrices 𝑋,𝑌 ∈ R𝑛×𝑚 and 𝐴, 𝐵 ∈ R𝑛×𝑛, it holds that

1. 𝐴𝑘1 − 𝐴
𝑘
2 =

∑𝑘−1
𝑗=0 𝐴

𝑘−1− 𝑗
1 (𝐴1 − 𝐴2)𝐴 𝑗2

2. 𝑋𝑋† − 𝑌𝑌† = (𝐼 − 𝑋𝑋†) (𝑋 − 𝑌 )𝑌† +
[
(𝐼 − 𝑌𝑌†) (𝑋 − 𝑌 )𝑋†

]⊤
3. If 𝐴 and 𝐵 are invertible, then 𝐴−1 − 𝐵−1 = 𝐴−1(𝐵 − 𝐴)𝐵−1.

The following is a corollary from Theorem 4.1 in [255]:

Theorem 24. Let 𝑋 and 𝑌 be matrices with equal rank, let ∥ · ∥2 denote the induced
2-norm and ∥ · ∥𝐹 denote the Frobenius norm. The following inequalities hold:

∥𝑋† − 𝑌†∥2 ≤ 𝜑∥𝑋†∥2∥𝑌†∥2∥𝑋 − 𝑌 ∥2
∥𝑋† − 𝑌†∥𝐹 ≤

√
2∥𝑋†∥2∥𝑌†∥2∥𝑋 − 𝑌 ∥𝐹

where 𝜑 = 1+
√

5
2 denotes the golden ratio constant.
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Next we present the core theorem of the perturbation analysis: Given two arbitrary
controllable systems (𝐴1, 𝐵1) and (𝐴2, 𝐵2), Theorem 25 bounds the worst-case
difference in solutions ∥𝜙∗1 − 𝜙

∗
2∥2 in terms of the differences in parameters space

∥𝐴1− 𝐴2∥2 and ∥𝐵1−𝐵2∥2 between both systems. This result is the first perturbation
bound forH2-optimal control with SLS (considering arbitrary pairs of 𝐴1, 𝐴2 and
𝐵1, 𝐵2) .

Theorem 25. Let 𝐶, 𝐷 ≻ 0, let (𝐴1, 𝐵1) and (𝐴2, 𝐵2) be two controllable pairs
of system matrices with FIR horizon 𝐻 and let 𝜙∗ 𝑗1 and 𝜙∗ 𝑗2 be the corresponding
SLS-solutions to the subproblem 𝑆 𝑗 . Then, it holds that

∥𝜙 𝑗∗1 − 𝜙
𝑗∗
2 ∥2 ≤ Γ𝐴∥𝐴1 − 𝐴2∥𝐹 + Γ𝐵∥𝐵1 − 𝐵2∥𝐹 (6.60)

where the Lipshitz-constants Γ𝐴, Γ𝐵 stand for

Γ𝐴 = 𝜅𝐶𝐷Γ
′
1 + 𝜅𝐶𝐷Γ

′
2∥𝐵1∥2∥G𝑤 (𝐴1)∥2, 𝜅𝐶𝐷 =

max{𝜎𝑚𝑎𝑥 (𝐶), 𝜎𝑚𝑎𝑥 (𝐷)}
min{𝜎𝑚𝑖𝑛 (𝐶), 𝜎𝑚𝑖𝑛 (𝐷)}

Γ𝐵 = 𝜅𝐶𝐷Γ
′
2∥G𝑤 (𝐴2)∥2

and Γ′1 and Γ′2 are defined as

Γ′1 = 𝛼𝐻,1𝛼𝐻,2𝐻 (1 +
G𝑢,2


2)∥𝑃

†
𝐻,2∥2

Γ′2 = 𝛼𝐻,1∥𝑃†𝐻,1∥2
(
1 + 𝜑∥𝑃†

𝐻,2∥2 + 𝜑∥𝑃
†
𝐻,2∥2

G𝑢,2


2

)
+ ∥g2∥2(∥F †1 ∥2 + ∥F

†
2 ∥2)

+ 𝜑∥g2∥2(∥F †1 ∥2 + ∥F
†

2 ∥2)∥𝑃
†
𝐻,1∥2∥𝑃

†
𝐻,2∥2(∥𝑃𝐻,1∥2 + ∥𝑃𝐻,2∥2) (1 + ∥G𝑢,1∥2)

and 𝜑 = 1+
√

5
2 is the golden ratio.

Proof. Recall the identities of Lemma 34. Write 𝜈∗1 − 𝜈
∗
2 where 𝜈∗

𝑖
is from (6.59) for

(𝐴𝑖, 𝐵𝑖) as

𝜈∗1 − 𝜈
∗
2 = (F1F †1 − 𝐼) (g1 − g2) + (F1F †1 − F2F †2 )g2

∥𝜈∗1 − 𝜈
∗
2∥2 ≤ ∥g1 − g2∥2 + ∥F1F †1 − F2F †2 ∥2∥g2∥2, (6.61)

where we used the fact that (F1F †1 − 𝐼) is a projection and therefore ∥F1F †1 − 𝐼 ∥2 = 1.
Rewrite F1F †1 − F2F †2 as

(𝐼 − F1F †1 ) (F1 − F2)F †2 +
[
(𝐼 − F2F †2 ) (F1 − F2)F †1

]⊤
to conclude that

∥F1F †1 − F2F †2 ∥2 ≤ ∥F1 − F2∥2(∥F †1 ∥2 + ∥F
†

2 ∥2). (6.62)

Substitution into (6.61) yields

∥𝜈∗1 − 𝜈
∗
2∥2 ≤ ∥g1 − g2∥2 + ∥F1 − F2∥2(∥F †1 ∥2 + ∥F

†
2 ∥2)∥g2∥2, (6.63)
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1. Bounding ∥F1 − F2∥2: Rewrite F1 − F2 as[
C−1 0

0 D−1

]
(F1 − F2)

=

[
G𝑢,1

𝐼

]
(𝐼 − 𝑃†

𝐻,1𝑃𝐻,1) −
[
G𝑢,2

𝐼

]
(𝐼 − 𝑃†

𝐻,2𝑃𝐻,2) (6.64)

=

[
G𝑢,1

𝐼

]
(𝑃†

𝐻,2𝑃𝐻,2 − 𝑃
†
𝐻,1𝑃𝐻,1) +

[
G𝑢,1 −G𝑢,2

0

]
(𝐼 − 𝑃†

𝐻,2𝑃𝐻,2) . (6.65)

From the above we can derive the inequality:

∥F1 − F2∥2
max{∥𝐶∥2, ∥𝐷∥2}
≤(1 + ∥G𝑢,1∥2)∥𝑃†𝐻,2 − 𝑃

†
𝐻,1∥2(∥𝑃𝐻,1∥2 + ∥𝑃𝐻,2∥2) + ∥G𝑢,1 −G𝑢,2∥2 .

(6.66)

Now we will use the result Theorem 24 to bound ∥𝑃†
𝐻,2 − 𝑃

†
𝐻,1∥2 as

∥𝑃†
𝐻,2 − 𝑃

†
𝐻,1∥2 ≤ 𝜑∥𝑃

†
𝐻,1∥2∥𝑃

†
𝐻,2∥2∥𝑃𝐻,2 − 𝑃𝐻,1∥2 . (6.67)

Furthermore, noticing 𝑃𝐻,2 − 𝑃𝐻,1 = [0, . . . , 0, I𝑛] (G𝑢,2 − G𝑢,1) we can
conclude

∥𝑃†
𝐻,2 − 𝑃

†
𝐻,1∥2 ≤ 𝜑∥𝑃

†
𝐻,1∥2∥𝑃

†
𝐻,2∥2∥G𝑢,2 −G𝑢,1∥2. (6.68)

We combine this into (6.66) to obtain

∥F1 − F2∥2
max{∥𝐶∥2, ∥𝐷∥2}
≤

(
1 + 𝜑∥𝑃†

𝐻,1∥2∥𝑃
†
𝐻,2∥2(1 + ∥G𝑢,1∥2) (∥𝑃𝐻,1∥2 + ∥𝑃𝐻,2∥2)

)
∥G𝑢,1 −G𝑢,2∥2.

(6.69)

2. Bounding ∥g1 − g2∥2: Introduce the constant 𝛼𝐻 := max0≤𝑘≤𝐻 ∥𝐴𝑘 ∥2 and
observe that ∥𝐴𝐻1 − 𝐴

𝐻
2 ∥2 can be bounded as

∥𝐴𝐻1 − 𝐴
𝐻
2 ∥2 = ∥

𝐻−1∑︁
𝑗=0

𝐴
𝐻−1− 𝑗
1 (𝐴1 − 𝐴2)𝐴 𝑗2∥ ≤ 𝐻𝛼𝐻,1𝛼𝐻,2∥𝐴1 − 𝐴2∥2 .

(6.70)

We can rewrite g1 − g2 as[
C−1 0

0 D−1

]
(g1 − g2) =

[
G𝑢,1

𝐼

]
𝑃
†
𝐻,1𝐴

𝐻
1 𝑒 𝑗 −

[
G𝑢,2

𝐼

]
𝑃
†
𝐻,2𝐴

𝐻
2 𝑒 𝑗 (6.71)
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=

[
(G𝑢,1 −G𝑢,2)

0

]
𝑃
†
𝐻,1𝐴

𝐻
1 𝑒 𝑗 +

[
G𝑢,2

𝐼

]
(𝑃†

𝐻,1 − 𝑃
†
𝐻,2)𝐴

𝐻
1 𝑒 𝑗

(6.72)

+
[
G𝑢,2

𝐼

]
𝑃
†
𝐻,2(𝐴

𝐻
1 − 𝐴

𝐻
2 )𝑒 𝑗

and obtain the bound

∥g1 − g2∥2
max{∥𝐶∥2, ∥𝐷∥2}

≤ 𝛼𝐻,1
G𝑢,1 −G𝑢,2


2 ∥𝑃

†
𝐻,1∥2 + 𝛼𝐻,1(1 +

G𝑢,2


2)
𝑃†

𝐻,1 − 𝑃
†
𝐻,2


2

(6.73)

+ 𝛼𝐻,1𝛼𝐻,2𝐻 (1 +
G𝑢,2


2)∥𝑃

†
𝐻,2∥2∥𝐴1 − 𝐴2∥2

(6.74)

≤ 𝛼𝐻,1∥𝑃†𝐻,1∥2
(
1 + 𝜑∥𝑃†

𝐻,2∥2 + 𝜑∥𝑃
†
𝐻,2∥2

G𝑢,2


2

) G𝑢,1 −G𝑢,2


2

(6.75)

+ 𝛼𝐻,1𝛼𝐻,2𝐻 (1 +
G𝑢,2


2)∥𝑃

†
𝐻,2∥2∥𝐴1 − 𝐴2∥2 .

(6.76)

We get the bound

∥𝜈∗1 − 𝜈
∗
2∥2

max{∥𝐶∥2, ∥𝐷∥2}
≤ Γ′1∥𝐴1 − 𝐴2∥2 + Γ′2∥G𝑢,1 −G𝑢,2∥2 (6.77)

where Γ′1 and Γ′2 are the constants

Γ′1 = 𝛼𝐻,1𝛼𝐻,2𝐻 (1 +
G𝑢,2


2)∥𝑃

†
𝐻,2∥2 (6.78)

Γ′2 = 𝛼𝐻,1∥𝑃†𝐻,1∥2
(
1 + 𝜑∥𝑃†

𝐻,2∥2 + 𝜑∥𝑃
†
𝐻,2∥2

G𝑢,2


2

)
+ ∥g2∥2(∥F †1 ∥2 + ∥F

†
2 ∥2) + . . .

(6.79)

+ 𝜑∥g2∥2(∥F †1 ∥2 + ∥F
†

2 ∥2)∥𝑃
†
𝐻,1∥2∥𝑃

†
𝐻,2∥2(∥𝑃𝐻,1∥2 + ∥𝑃𝐻,2∥2) (1 + ∥G𝑢,1∥2)

Using Lemma 35, we obtain the final bound:

∥𝜙∗1 − 𝜙
∗
2∥2 ≤ 𝜅𝐶𝐷 ∥𝜈

∗
1 − 𝜈

∗
2∥2 ≤ Γ𝐴∥𝐴1 − 𝐴2∥2 + Γ𝐵∥𝐵1 − 𝐵2∥2 (6.80)

with the constants Γ𝐴, Γ𝐵 defined as:

Γ𝐴 = 𝜅𝐶𝐷Γ
′
1 + 𝜅𝐶𝐷Γ

′
2∥𝐵1∥2∥G𝑤 (𝐴1)∥2∥G𝑤 (𝐴2)∥2 (6.81)

Γ𝐵 = 𝜅𝐶𝐷Γ
′
2∥G𝑤 (𝐴2)∥2 (6.82)

□
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Global lipshitzness ofH2-optimal closed-loop operators over compact sets S
This section derives a global Lipshitz bound forH2-optimal SLS solutions over a
compact set of controllable systems S. As a starting point we consider the previous
theorem Theorem 25. Our main proof strategy is to derive global bounds on the
constants Γ𝐴 and Γ𝐵 instead of for a fixed pair of systems. We proceed with a
collection lemmas bounding individual terms in the equations (6.80) and (6.81) for
S.

Auxiliary Lemmas

Lemma 35. For any pair of system matrices (𝐴1, 𝐵1) and (𝐴2, 𝐵2) (with compatible
dimensions) holds

∥G𝑤 (𝐴1) −G𝑤 (𝐴2)∥2 ≤ ∥G𝑤 (𝐴1)∥2∥G𝑤 (𝐴2)∥2∥𝐴1 − 𝐴2∥2 (6.83)

∥G𝑢 (𝐴1, 𝐵1) −G𝑢 (𝐴2, 𝐵2)∥2 ≤ ∥𝐵1∥2∥G𝑤 (𝐴1)∥2∥G𝑤 (𝐴2)∥2∥𝐴1 − 𝐴2∥2 + ∥G𝑤 (𝐴2)∥2∥𝐵1 − 𝐵2∥2

Proof. Using Lemma 34 we can write Using G𝑢 (𝐴, 𝐵) = G𝑤 (𝐴) (𝐼𝐻 ⊗ 𝐵) and
Lemma 34 we can write G𝑢,1 −G𝑢,2 as

G𝑢,1 −G𝑢,2 = G𝑤 (𝐴1) (𝐼𝐻 ⊗ 𝐵1) −G𝑤 (𝐴2) (𝐼𝐻 ⊗ 𝐵2) (6.84)

= (G𝑤 (𝐴1) −G𝑤 (𝐴2)) (𝐼𝐻 ⊗ 𝐵1) +G𝑤 (𝐴2) (𝐼𝐻 ⊗ (𝐵1 − 𝐵2))
(6.85)

It holds that

G𝑤 (𝐴1) −G𝑤 (𝐴2) = G𝑤 (𝐴1) (G𝑤 (𝐴2)−1 −G𝑤 (𝐴1)−1)G𝑤 (𝐴2) (6.86)

= G𝑤 (𝐴1) (𝑍† ⊗ (𝐴1 − 𝐴2))G𝑤 (𝐴2) (6.87)

which leads to the bound

∥G𝑤 (𝐴1) −G𝑤 (𝐴2)∥2 ≤ ∥G𝑤 (𝐴1)∥2∥𝐴1 − 𝐴2∥2∥G𝑤 (𝐴2)∥2 . (6.88)

□

In total, we need to global bounds on the quantities ∥G𝑢∥2,∥G𝑤 ∥2, ∥𝑃†
𝐻
∥2, ∥𝑃𝐻 ∥2,

∥F †∥2, ∥g∥2.
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Lemma 36. Let (𝐴, 𝐵) be pair of fixed system matrices, let G𝑢 (𝐴, 𝐵), G𝑤 (𝐴) be the
matrices defined in (6.53), and let𝑊𝑢

𝐻
=

∑𝐻−1
𝑖=0 𝐴𝑖𝐵𝐵⊤𝐴𝑖⊤,𝑊𝑤

𝐻
=

∑𝐻−1
𝑖=0 𝐴𝑖𝐴𝑖⊤ be the

𝐻th controllability grammian w.r.t to the input 𝑢 and the distrubance 𝑤, respectively.
Then it holds:

∥G𝑢 (𝐴, 𝐵)∥2 ≤
√︃
𝐻𝜎𝑚𝑎𝑥 (𝑊𝑢

𝐻
(𝐴, 𝐵)) ∥G𝑤 (𝐴)∥2 ≤

√︃
𝐻𝜎𝑚𝑎𝑥 (𝑊𝑤

𝐻
(𝐴)) (6.89)

Proof. ∥G𝑢∥2 is defined as ∥G𝑢∥22 := max
∥𝑢∥2=1

∥G𝑢u∥22, by decomposingu = [𝑢⊤0 , . . . , 𝑢
⊤
𝐻−1]

⊤

we can rewrite this as

∥G𝑢∥22 = max
∥𝑢∥2=1




𝐵𝑢0

𝐴𝐵𝑢0 + 𝐵𝑢1

. . .

𝐴𝐻−1𝐵𝑢0 + +𝐵𝑢𝐻−1




2

2

= max
∥𝑢∥2=1

𝐻∑︁
𝑘=1
∥𝑃𝑘u∥22 (6.90)

≤
𝐻∑︁
𝑘=1

max
∥𝑢∥2=1

∥𝑃𝑘u∥22 =

𝐻∑︁
𝑘=1
∥𝑃𝑘 ∥22 ≤ 𝐻∥𝑃𝐻 ∥

2
2 ≤ 𝐻∥𝑊

𝑢
𝐻 ∥2 . (6.91)

where we used the fact that ∥𝑃𝑘 ∥22 increases in 𝑘 and that ∥𝑃𝑘 ∥22 is equal to the induced
2-norm of the corresponding controllabillity grammian𝑊𝑢

𝑘
=

∑𝑘−1
𝑖=0 𝐴

𝑖𝐵𝐵⊤𝐴𝑖⊤. Thus,
we obtain the bound

∥G𝑢 (𝐴, 𝐵)∥2 ≤
√︃
𝐻𝜎𝑚𝑎𝑥 (𝑊𝑢

𝐻
(𝐴, 𝐵)),

and the bound on ∥G𝑤 (𝐴)∥2 follows in the same way. □

Lemma 37. Let (𝐴, 𝐵) be pair of 𝐻-controllable fixed system matrices, let 𝑃𝐻 (𝐴, 𝐵)
be the matrix defined in (6.54), and let𝑊𝑢

𝐻
=

∑𝐻−1
𝑖=0 𝐴𝑖𝐵𝐵⊤𝐴𝑖⊤ be the 𝐻th controlla-

bility grammian w.r.t to the input 𝑢. Then, the induced 2 norm of 𝑃𝐻 (𝐴, 𝐵) and its
Moore-Penrose Inverse 𝑃†

𝐻
(𝐴, 𝐵) can be written as:

∥𝑃𝐻 (𝐴, 𝐵)∥2 =
(
𝜎𝑚𝑎𝑥 (𝑊𝑢

𝐻 (𝐴, 𝐵))
) 1

2 ∥𝑃†
𝐻
(𝐴, 𝐵)∥2 =

(
𝜎𝑚𝑖𝑛 (𝑊𝑢

𝐻 (𝐴, 𝐵))
)−1

2

(6.92)

Proof. Because we assume a sufficient degree of controllability, 𝑃𝐻 (𝐴, 𝐵) is full
row-rank. This implies that

∥𝑃𝐻 (𝐴, 𝐵)∥2 =

√︃
𝜆𝑚𝑎𝑥 (𝑃𝐻 (𝐴, 𝐵)𝑃⊤𝐻 (𝐴, 𝐵)) =

√︃
𝜎𝑚𝑎𝑥 (𝑊𝑢

𝐻
(𝐴, 𝐵)) (6.93)(

∥𝑃†
𝐻
(𝐴, 𝐵)∥2

)−1
=

√︃
𝜆𝑚𝑖𝑛 (𝑃𝐻 (𝐴, 𝐵)𝑃⊤𝐻 (𝐴, 𝐵)) =

√︃
𝜎𝑚𝑖𝑛 (𝑊𝑢

𝐻
(𝐴, 𝐵)) (6.94)

□
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Lemma 38. Let (𝐴, 𝐵) be a fixed pair of 𝐻-controllable system matrices, and let
F (𝐴, 𝐵) denote the matrix

F (𝐴, 𝐵) =
[
C 0
0 D

] [
G𝑢 (𝐴, 𝐵)

𝐼

]
(𝐼 − 𝑃†

𝐻
(𝐴, 𝐵)𝑃𝐻 (𝐴, 𝐵)). (6.95)

Then, ∥F †(𝐴, 𝐵)∥2 ≤ 𝜎−1
𝑚𝑖𝑛
(𝐷).

Proof. For an arbitrary matrix 𝑀, (∥𝑀†∥2)−1 is equal to the smallest non-zero
singular eigenvalue of 𝑀 (we will denote this quantity as 𝜎−1(𝑀)). Thus, in order
to bound ∥𝑀†∥2 from above, we have to bound 𝜎−1(𝑀) from below. Denote L as
the matrix

L :=

[
C 0
0 D

] [
G𝑢 (𝐴, 𝐵)

𝐼

]
and notice that it is full column rank and has rank of 𝐻 × 𝑛𝑢. The projection
ΠN(𝑃𝐻 ) := (𝐼−𝑃†

𝐻
(𝐴, 𝐵)𝑃𝐻 (𝐴, 𝐵)) has rank 𝐻×𝑛𝑢−𝑛𝑥 due to the assumption of 𝐻-

controllability. Hence, F = LΠN(𝑃𝐻 ) is full column rank with rank 𝑟F := 𝐻×𝑛𝑢−𝑛𝑥
and has a null space N(F ) of dimension 𝑛𝑥 . From these observations, we can
equivalently say that 𝜎−1(F ) is the 𝑟F th largest (or equivalently 𝑛𝑥 + 1 smallest)
singular eigenvalue of F . Using the Minimax principle, we can therefore write

𝜎−1(F ) = max
proj.Π, s.t.: rank(Π)=𝑟F

min
𝑥 s.t.: ∥Π𝑥∥=1

𝑥⊤ΠF ⊤FΠ𝑥 (6.96)

= max
proj.Π, s.t.: rank(Π)=𝑟F

min
𝑥 s.t.: ∥Π𝑥∥=1

𝑥⊤ΠΠN(𝑃𝐻 )L
⊤LΠN(𝑃𝐻 )Π𝑥 . (6.97)

Now recall that ΠN(𝑃𝐻 ) is of rank 𝑟F , hence it is a feasible choice for the variable Π

of the outer optimization problem. This leads to the bound

𝜎−1(F ) ≥ min
𝑥 s.t.: ∥ΠN(𝑃𝐻 )𝑥∥=1

𝑥⊤ΠN(𝑃𝐻 )L
⊤LΠN(𝑃𝐻 )𝑥 (6.98)

≥ min
𝑧 s.t.: ∥𝑧∥=1

𝑧⊤L⊤L𝑧 = 𝜎𝑚𝑖𝑛 (L) . (6.99)

We obtain a simple, but possibly conservative, lower bound on 𝜎𝑚𝑖𝑛 (L) as follows:

𝜎2
𝑚𝑖𝑛 (L) = min

𝑧 s.t.: ∥𝑧∥=1
∥L𝑧∥22 = min

𝑧 s.t.: ∥𝑧∥=1
∥CG𝑢 (𝐴, 𝐵)𝑧∥22 + ∥D𝑧∥22 ≥ 𝜎

2
𝑚𝑖𝑛 (CG𝑢 (𝐴, 𝐵)) + 𝜎2

𝑚𝑖𝑛 (D)

=⇒ 𝜎𝑚𝑖𝑛 (L) ≥ 𝜎𝑚𝑖𝑛 (D) .

Finally, this provides us with the final result: ∥F †(𝐴, 𝐵)∥2 = 𝜎−1
−1 (F ) ≤ 𝜎

−1
𝑚𝑖𝑛
(L) ≤

𝜎−1
𝑚𝑖𝑛
(D) . □
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We obtain an upper bound for ∥g∥2, as a corollary of the previous three Lemmas:

Lemma 39. Let (𝐴, 𝐵) be a fixed pair of 𝐻-controllable system matrices. Let
g = Lu∗𝑐, where L and u∗𝑐 are defined as:

L :=

[
C 0
0 D

] [
G𝑢 (𝐴, 𝐵)

𝐼

]
u∗𝑐 := 𝑃+𝐻𝐴

𝐻𝑒 𝑗 = 𝑃
⊤
𝐻𝑊

−1
𝐻 𝐴𝐻𝑒 𝑗 . (6.100)

Then, it holds:

∥g∥2 ≤
(
∥𝐶∥2

√
𝐻𝜎

1
2
𝑚𝑎𝑥 (𝑊𝑢

𝐻) + ∥𝐷∥2
)
𝜎
−1

2
𝑚𝑖𝑛
(𝑊𝑢

𝐻)𝛼𝐻 ,

where 𝛼𝐻 := max0≤𝑘≤𝐻 ∥𝐴𝑘 ∥2.

The final bound

With the results of the last section, we can now bound the constants Γ𝐴 and Γ𝐵 used
in Theorem 25. Rather than writing the explicit form of the constants we shall only
analyze how they scale with system parameters. Recall Γ𝐴, Γ𝐵 are defined as

Γ𝐴 = 𝜅𝐶𝐷Γ
′
1 + 𝜅𝐶𝐷Γ

′
2∥𝐵1∥2∥G𝑤 (𝐴1)∥2∥G𝑤 (𝐴2)∥2

Γ𝐵 = 𝜅𝐶𝐷Γ
′
2∥G𝑤 (𝐴2)∥2,

where Γ′1, Γ′2 are dominated by the terms

Γ′1 ∼ O
(
𝛼𝐻,1𝛼𝐻,2𝐻

G𝑢,2


2 ∥𝑃
†
𝐻,2∥2

)
Γ′2 ∼ O

(
∥g2∥2(∥F †1 ∥2 + ∥F

†
2 ∥2)∥𝑃

†
𝐻,1∥2∥𝑃

†
𝐻,2∥2(∥𝑃𝐻,1∥2 + ∥𝑃𝐻,2∥2) (1 + ∥G𝑢,1∥2)

)
.

Let us first revisit the collection of bounds we have derived:

1. ∥G𝑢 (𝐴, 𝐵)∥2 ≤
√︁
𝐻𝜎𝑚𝑎𝑥 (𝑊𝑢

𝐻
(𝐴, 𝐵)), ∥G𝑤 (𝐴)∥2 ≤

√︁
𝐻𝜎𝑚𝑎𝑥 (𝑊𝑤

𝐻
(𝐴))

2. ∥𝑃𝐻 (𝐴, 𝐵)∥2 =
(
𝜎𝑚𝑎𝑥 (𝑊𝑢

𝐻
(𝐴, 𝐵))

) 1
2 , ∥𝑃†

𝐻
(𝐴, 𝐵)∥2 =

(
𝜎𝑚𝑖𝑛 (𝑊𝑢

𝐻
(𝐴, 𝐵))

)−1
2

3. ∥F †(𝐴, 𝐵)∥2 ≤ 𝜎−1
𝑚𝑖𝑛
(𝐷)

4. ∥g∥2 ≤
(
∥𝐶∥2

√
𝐻𝜎

1
2
𝑚𝑎𝑥 (𝑊𝑢

𝐻
) + ∥𝐷∥2

)
𝜎
−1

2
𝑚𝑖𝑛
(𝑊𝑢

𝐻
)𝛼𝐻

5. 𝛼𝐻 := max0≤𝑘≤𝐻 ∥𝐴𝑘 ∥2

6. 𝜅𝐶𝐷 =
max{𝜎𝑚𝑎𝑥 (𝐶),𝜎𝑚𝑎𝑥 (𝐷)}
min{𝜎𝑚𝑖𝑛 (𝐶),𝜎𝑚𝑖𝑛 (𝐷)}
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Before we state the final bound, we require the following standard controllability
result [5].

Lemma 40. Let S be a compact set of matrices where each element (𝐴 ∈ R𝑛×𝑛, 𝐵 ∈
R𝑛×𝑚) ∈ S represents a controllable linear dynamical system with equations
𝑥(𝑡 + 1) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡) + 𝑤(𝑡), state 𝑥(𝑡) ∈ R𝑛, input 𝑢(𝑡) ∈ R𝑚 and disturbance
𝑤(𝑡) ∈ R𝑛. Then, there exists an FIR Horizon 𝐻 ≤ 𝑛, and positive scalar constants
𝜎𝑤, 𝜎𝑤, 𝜎𝑢, 𝜎𝑢 such that the following statements hold:

• For any (𝐴, 𝐵) ∈ S and any initial state, 𝜁0, there exists an input𝑢(0), . . . , 𝑢(𝐻 − 1),
such that the system trajectory 𝑥(𝑡 + 1) = 𝐴𝑥(𝑡)+𝐵𝑢(𝑡),∀𝑡 ≤ 𝐻 − 1, 𝑥(0) = 𝜁0

satisfies 𝑥(𝐻) = 0 at time 𝐻.

• For any (𝐴, 𝐵) ∈ S, the matrix 𝑃𝐻 = [𝐴𝐻−1𝐵, 𝐴𝐻−2𝐵, . . . , 𝐵] ∈ R𝑛×𝐻𝑚 is
full column rank.

• For any (𝐴, 𝐵) ∈ S, the following FIR-SLS-constraint is feasible:
There exist Φ𝑥 [1], . . . ,Φ𝑥 [𝐻] ∈ R𝑛×𝑛 and Φ𝑢 [0], . . . ,Φ𝑢 [𝐻 − 1] ∈ R𝑚×𝑛

such that:

Φ𝑥 [0] = 𝐼, ∀𝑘 = 0, ..., 𝐻 − 1 : Φ𝑥 [𝑘 + 1] = 𝐴Φ𝑥 [𝑘] + 𝐵Φ𝑢 [𝑘], and Φ𝑥 [𝐻] = 0

• For any (𝐴, 𝐵) ∈ S, the corresponding grammians𝑊𝑢
𝐻
(𝐴, 𝐵) and𝑊𝑤

𝐻
(𝐴) are

positive-definite and their singularvalues satisfy the inequalities:

𝜎𝑢 ≤ 𝜎𝑚𝑖𝑛 (𝑊𝑢
𝐻 (𝐴, 𝐵)), 𝜎𝑚𝑎𝑥 (𝑊𝑢

𝐻 (𝐴, 𝐵)) ≤ 𝜎
𝑢

𝜎𝑤 ≤ 𝜎𝑚𝑖𝑛 (𝑊𝑤
𝐻 (𝐴)), 𝜎𝑚𝑎𝑥 (𝑊𝑤

𝐻 (𝐴)) ≤ 𝜎
𝑤 .

We can not use 𝜎
𝑢
, 𝜎𝑢, 𝜎𝑤, 𝜎𝑤 in Lemma 40 in conjuncture of the bounds derived

above to obtain

Γ′2 = O
(
𝛼𝐻 𝜅𝐶𝐷 𝐻

(
𝜎𝑢

𝜎
𝑢

) 3
2
)

Γ′1 = O
(
𝛼2
𝐻𝐻

3
2

(
𝜎𝑢

𝜎
𝑢

) 1
2
)

(6.101)

and finally

Γ𝐴 = O
(
𝛼2
𝐻 𝜅

2
𝐶𝐷 ∥𝐵1∥2 𝐻2

(
𝜎𝑢

𝜎
𝑢

) 3
2

𝜎𝑤

)
Γ𝐵 = O

(
𝛼𝐻 𝜅

2
𝐶𝐷 𝐻

3
2

(
𝜎𝑢

𝜎
𝑢

) 3
2

𝜎
1
2
𝑤

)
.

(6.102)
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Theorem 26. Let 𝐶, 𝐷 ≻ 0, and let S be a compact set of controllable systems
with known FIR horizon 𝐻 and constants 𝜎

𝑢
, 𝜎𝑢, 𝜎𝑤, 𝜎𝑤 as defined in Lemma 40.

Then there are fixed constants Γ𝐴, Γ𝐵, such that for any two pairs of system matrices
(𝐴1, 𝐵1), (𝐴2, 𝐵2) ∈ S the correspondingH2 optimal SLS-solutions of problem 𝑆 𝑗

( 𝑗 arbitrary), denoted 𝜙∗ 𝑗1 and 𝜙∗ 𝑗2 , satisfy the following inquality:

∥𝜙 𝑗∗1 − 𝜙
𝑗∗
2 ∥2 ≤ Γ𝐴∥𝐴1 − 𝐴2∥𝐹 + Γ𝐵∥𝐵1 − 𝐵2∥𝐹 . (6.103)

Furthermore, Γ𝐴 and Γ𝐵 satisfy

Γ𝐴 = O
(
𝛼2
𝐻 𝜅

2
𝐶𝐷 𝛽 𝐻

2
(
𝜎𝑢

𝜎
𝑢

) 3
2

𝜎𝑤

)
Γ𝐵 = O

(
𝛼𝐻 𝜅

2
𝐶𝐷 𝐻

3
2

(
𝜎𝑢

𝜎
𝑢

) 3
2

𝜎
1
2
𝑤

)
, (6.104)

where 𝛽 := max
(𝐴,𝐵)∈S

∥𝐵∥2 and 𝜅𝐶𝐷 stands for

𝜅𝐶𝐷 =
max{𝜎𝑚𝑎𝑥 (𝐶), 𝜎𝑚𝑎𝑥 (𝐷)}
min{𝜎𝑚𝑖𝑛 (𝐶), 𝜎𝑚𝑖𝑛 (𝐷)}

.

6.E Extensions to Non-Convex Parameter Set Setting
Representing model uncertainty as convex compact parameter sets is not always
practical, sometimes potentially even impossible. Our approach can be readily
extended to compact non-convex parameter sets S, if those can be written as a
finite union of convex sets

⋃𝑁
𝑖=1 P𝑖. This class of non-convex sets covers a large

range of practical scenarios and the presented approach can be extended without
losing stability guarantees. We can ensure by wrapping the proposed algorithm in
a high-level routine SETSELECT, which runs the algorithm on the smaller convex
sets P𝑖 until they become entirely inconsistent:

1. At 𝑡 = 0, we select an arbitrary convex set P𝑘0 and perform consistent model
chasing with CONSIST as before.

2. If at some point P𝑘0 becomes entirely inconsistent, we select an arbitrary set
P𝑘1 from the remaining collection {P1, . . . ,P𝑁 } \ P𝑘0 and restart CONSIST
with that set P𝑘1 . If P𝑘1 is also entirely inconsistent, repeat that selection
process.

Per definition, the above algorithm never violates consistency. Because there are
finitely many convex sets P𝑘𝑖 , the cost accrued due to restarting CONSIST scales up
the total movement cost of the convex counterpart by a fixed constant. Overall, the
stability proof is not impacted.
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C h a p t e r 7

SAFE CONTROL FOR VOLTAGE REGULATION WITH AN
UNKNOWN GRID TOPOLOGY

So far, we have focused on analyzing the theoretical underpinning of the uncertainty
set-based learning and control framework. From the convergence and performance
guarantees in stochastic settings to the stability guarantees in adversarial settings,
the framework provides flexible and principled integration of data-driven learning
methods and model-based controllers.

In this chapter, we will explore how these algorithmic ideas can be applied to
sustainable energy systems. In particular, we will study the voltage control problem
in the distribution network. Voltage control generally requires accurate information
about the grid’s topology in order to guarantee network stability. However, accurate
topology identification is a challenging problem for existing methods, especially
as the grid is subject to increasingly frequent reconfiguration due to the adoption
of renewable energy. Further, running existing control mechanisms with incorrect
network information may lead to unstable control. To address this challenge, we
instantiate the framework presented in Part II and combine nested convex body
chasing algorithms with a robust predictive controller to achieve provably finite-time
convergence to safe voltage limits where there is uncertainty in both the network
topology as well as load and generation variations. Even though we develop the
theoretical results under the assumption of linear system dynamics, our experiments
show that the algorithm continues to stabilize the voltage in realistic nonlinear
simulations with real-world data from the Southern California Edison utility under
the partial observation and partial control settings. This chapter is mainly based on
the following papers:

[1] C. Yeh, J. Yu, Y. Shi, and A. Wierman, “Robust online voltage control with an
unknown grid topology,” Proceedings of the Thirteenth ACM international
conference on future energy systems (e-Energy), pp. 240–250, 2022. doi:
10.1145/3538637.3538853.

[1] C. Yeh, J. Yu, Y. Shi, and A. Wierman, “Online learning for robust voltage
control under uncertain grid topology,” IEEE Transactions on Smart Grid,
2024. doi: 10.1109/TSG.2024.3383804.

https://doi.org/10.1145/3538637.3538853
https://doi.org/10.1109/TSG.2024.3383804
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7.1 Introduction
Operators of electricity distribution grids must maintain voltages at each bus within
certain operating limits, as deviations from such limits may damage electrical
equipment and cause power outages [63], [64]. This “voltage control” or “voltage
regulation” problem has been well-studied, e.g., [256]–[258] and the references
therein. Voltage control devices and algorithms aim to guarantee grid stability and
minimize the costs associated with control inputs. While classic voltage regulation
devices such as tap-changing transformers are effective in dealing with slow voltage
variations [259], [260], increasing penetration of renewables leads to faster variations,
and a growing body of literature has focused on inverter-based controllers that can
respond quickly by adjusting their active and reactive power set-points. Most of
these works cast voltage control as an optimization problem and then propose
different centralized or decentralized algorithms depending on the communication
infrastructure.

Typically, voltage control algorithms assume exact knowledge of the underlying
grid topology. This includes centralized controllers such as algorithms based on
model predictive control (MPC) which optimize control decisions for a short-term
horizon. [261] uses MPC to manage distributed generation and energy storage
systems, whereas [262] proposes a robust MPC controller that is robust to uncertainty
in the forecasts of future loads and solar generation.

However, the exact grid topology and line parameters are often not known, and
using existing voltage control algorithms with incorrect grid information may lead to
problems with grid stability [263], [264]. For example, parts of the grid may undergo
reconfiguration due to load balancing or unplanned maintenance, as frequently
as every hour of the day [66], [265]–[267]. This problem is exacerbated by the
increasing integration of distributed energy resources (DERs), such as photovoltaic
(PV) and storage devices. Especially in distribution grids, where DERs are not
owned or operated by the electricity utility, the grid operator may lack up-to-date
information about the grid topology [65]. While a grid operator can install sensors to
help identify the current network topology, unless such sensors are densely deployed
(at great cost), uncertainty about the topology remains. Thus, distribution grid
operators cannot expect to operate with perfect topology information and the design
of voltage control algorithms robust to unknown grid topology is crucial.

There are several families of existing algorithms that do not require knowing the
network topology: decentralized controllers, model-free controllers, and controllers
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that first try to infer the network topology. While decentralized voltage control
algorithms are generally efficient to implement, such controllers lack voltage stability
guarantees when the load is time-varying [257], [268]–[271]. Likewise, model-
free controllers based on deep reinforcement learning do not require knowing
the network topology, but they generally have no performance or voltage stability
guarantees and are therefore not suitable for safety-critical infrastructure [272]–[276].
Some recent works [277]–[279] have proposed methods for introducing stability
guarantees for model-free deep reinforcement learning approaches. Their main tool
is Lyapunov stability theory, from which a structural constraint for stable controllers
is derived, and policy optimization with the constraint is performed. However, their
stability guarantees are only valid over an infinite time horizon, and achieving good
performance with deep reinforcement learning generally requires large amounts of
historical training data. In contrast, our proposed framework jointly learns the system
model (consistent with data) and stable controller in an online fashion, achieving a
finite-mistake guarantee and good performance without relying on historical data.

Another standard approach for handling uncertainty about network topology is to
first estimate the topology and line parameters using a form of system identification
with data and then apply a standard voltage control algorithm using the identified
network topology. There is a growing literature of such data-driven methods, e.g.,
[65], [263], [264], [280]–[288]. A common approach is to leverage least squares for
system model estimation. The estimation and therefore control guarantees depend on
statistical modeling of measurement noise (e.g., Gaussian). In contrast, we leverage
online learning in order to be robust against any bounded disturbances, such as
modeling errors and adversarial noise. While least squares-based algorithms focus
on asymptotic estimation convergence, e.g. [289], [290], we present a finite mistake
guarantee that is crucial for safe transient system behavior.

Another prominent approach is to use graphical models for topology reconstruc-
tion [291], via maximum likelihood methods while enforcing other structural
restrictions like low-rank and sparsity. However, these methods that first perform
some form of system identification have drawbacks. First, the estimated topology
and/or system dynamics may be imperfect [292], and applying standard voltage
control algorithms using these imperfect estimates may still lead to system instability.
Second, these methods either assume access to historical data or require acquiring
data online over hundreds of time steps, during which the stability of the system is
ignored [65], [291]. In contrast, our proposed approach does not perform system
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identification separately from control; the joint operation of our robust controller
with the system dynamics estimation gives rise to our stability guarantee.

Contributions
We propose a new approach for voltage control over an uncertain grid topology
with uncertain maximum variability of load and generation entities in the grid that
does not perform system identification and voltage control separately. Instead, our
approach robustly learns to stabilize voltage within the desired limits directly, without
any prior knowledge of the topology and without needing to precisely learn the
topology.

Our approach takes ideas from online nested convex body chasing (CBC) [240] and
robust predictive control and combines them using an uncertainty set-based learning
and control framework [13], [99], [111], [293] to apply them to voltage control
for the first time. Intuitively, we use a nested CBC algorithm in order to track the
set of topologies that are consistent with the observed voltage measurements—as
more measurements are taken the set of consistent topologies shrinks (and so the
sets are nested). As these measurements are taken, a form of robust predictive
control is used for voltage control, where the robustness guarantee is used to ensure
the uncertainty about the topology can be handled. Our main result (Theorem 27)
provides a finite error stability bound for the overall controller, which is summarized
in Algorithm 6. This represents the first voltage control algorithm that is provably
robust to uncertainty about network topology.

In addition to providing theoretical guarantees, we demonstrate the effectiveness
of our proposed approach using a case study of a 56-bus distribution grid from the
Southern California Edison (SCE) utility [294]. In this setting, we give the controller
no prior information about the topology of the grid, yet the controller quickly narrows
down the set of topologies and line parameters that are consistent with its observations
and adjusts reactive power generation to keep voltages within desired safety limits
when faced with disturbance. In fact, our controller’s performance nearly matches
that of controllers which assume perfect knowledge of the topology, even when given
only partial observations of bus voltages.

Beyond the linear model, we test the performance of the proposed algorithm with a
more realistic nonlinear power flow model with partial control and partial observation.
Even though the design of our method is based on a linear approximation to the
power flow model, our method still performs well for the nonlinear system. We also
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demonstrate how to incorporate existing partial knowledge of the grid topology and
network line parameters into the algorithm. We show that incorporating such prior
knowledge can improve the performance of our algorithm.

7.2 Model
We study voltage control on an unknown grid topology. We consider a radial (tree-
structured) power distribution network represented as a connected directed graph
𝐺 = (N , E), whereN = {0, 1, 2, . . . , 𝑛} is the set of buses (nodes) and E ⊂ N ×N
is the set of lines (directed edges). Let the network be rooted at bus 0 (the substation
or slack bus), and let other buses be branch buses. Let C ⊆ N denote the subset
of buses with controllable reactive power injection. Because the network is radial
and rooted at bus 0, there is a unique path P𝑖 from bus 0 to any other bus 𝑖. For
branch buses, let 𝑣 ∈ R𝑛 be their squared voltage magnitudes and 𝑝 + i𝑞 be their
complex power injection, where 𝑝 ∈ R𝑛 (units W) is the net active power injection,
and 𝑞 ∈ R𝑛 (units Var) is the net reactive power injection. The DistFlow branch
equations [295] for a distribution grid are as follows, for all 𝑗 ∈ N and (𝑖, 𝑗) ∈ E:

−𝑝 𝑗 = 𝑃𝑖 𝑗 − 𝑟𝑖 𝑗 𝑙𝑖 𝑗 −
∑︁

𝑘:( 𝑗 ,𝑘)∈E
𝑃 𝑗 𝑘 (7.1a)

−𝑞 𝑗 = 𝑄𝑖 𝑗 − 𝑥𝑖 𝑗 𝑙𝑖 𝑗 −
∑︁

𝑘:( 𝑗 ,𝑘)∈E
𝑄 𝑗 𝑘 (7.1b)

𝑣 𝑗 = 𝑣𝑖 − 2(𝑟𝑖 𝑗𝑃𝑖 𝑗 + 𝑥𝑖 𝑗𝑄𝑖 𝑗 ) + (𝑟2
𝑖 𝑗 + 𝑥2

𝑖 𝑗 )𝑙𝑖 𝑗 (7.1c)

𝑙𝑖 𝑗 =
𝑃2
𝑖 𝑗
+𝑄2

𝑖 𝑗

𝑣𝑖
(7.1d)

where 𝑃𝑖 𝑗 and 𝑄𝑖 𝑗 represent the active power and reactive power flow on line
(𝑖, 𝑗), and 𝑟𝑖 𝑗 , 𝑥𝑖 𝑗 > 0 are the real-valued line resistance and reactance (units Ω).
Equations (7.1a) and (7.1b) represent the real and reactive power conservation at bus
𝑗 , and (7.1c) represents the voltage drop from bus 𝑖 to bus 𝑗 .

Assuming the branch power losses (𝑟𝑖 𝑗 𝑙𝑖 𝑗 , 𝑥𝑖 𝑗 𝑙𝑖 𝑗 ) are negligible yields the simplified
DistFlow equations [296], which can be rearranged into

𝑣 = 𝑅★𝑝 + 𝑋★𝑞 + 𝑣01𝑛 (7.2)

where 𝑣0 ∈ R𝑛 is the known, constant squared voltage magnitude at the substation,
and 𝑅★, 𝑋★ ∈ S𝑛 are computed from the network topology and line parameters

𝑅★𝑖 𝑗 := 2
∑︁

(ℎ,𝑘)∈P𝑖∩P 𝑗

𝑟ℎ𝑘 , 𝑋★𝑖 𝑗 := 2
∑︁

(ℎ,𝑘)∈P𝑖∩P 𝑗

𝑥ℎ𝑘 , 𝑖, 𝑗 ∈ [𝑛] (7.3)
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with [𝑛] := {1, . . . , 𝑛} [269]. (S𝑛 is the set of symmetric 𝑛 × 𝑛 matrices.) 𝑅★, 𝑋★

are positive definite with nonnegative entries [297], and the largest entry of each row
of these matrices is along the diagonal, since

𝑋★𝑖 𝑗 = 2
∑︁

(ℎ,𝑘)∈P𝑖∩P 𝑗

𝑥ℎ𝑘 ≤ 2
∑︁
(ℎ,𝑘)∈P𝑖

𝑥ℎ𝑘 = 𝑋
★
𝑖𝑖 (7.4)

and likewise for 𝑅★
𝑖 𝑗
≤ 𝑅★

𝑖𝑖
.

We assume that the active power injection 𝑝 is exogenous but that reactive power at
each bus can be decomposed as 𝑞 = 𝑞𝑐+𝑞𝑒, where 𝑞𝑐 is the “controllable” component
and 𝑞𝑒 is the “exogenous” (i.e., uncontrollable) component. Following [269], we
define 𝑣par = 𝑅★𝑝 + 𝑋★𝑞𝑒 + 𝑣01𝑛 ∈ R𝑛 (“par” stands for “partial”) representing the
exogenous effects on voltage. Then, 𝑣 = 𝑋★𝑞𝑐 + 𝑣par, which can be modeled as a
discrete-time linear system

𝑣(𝑡 + 1) = 𝑋★𝑞𝑐 (𝑡) + 𝑣par(𝑡). (7.5)

Substituting 𝑢(𝑡) = 𝑞𝑐 (𝑡) −𝑞𝑐 (𝑡−1) (change in controllable reactive power injection)
and 𝑤(𝑡) = 𝑣par(𝑡) − 𝑣par(𝑡 − 1) (change in exogenous noise) yields the linear
dynamical system

𝑣(𝑡 + 1) = 𝑣(𝑡) + 𝑋★𝑢(𝑡) + 𝑤(𝑡). (7.6)

The voltage control problem [294] is to drive the squared voltage magnitudes of
each bus from an initial state 𝑣(1) ∈ R𝑛 into a given multi-dimensional interval
[𝑣, 𝑣] ⊂ R𝑛; it is possible that 𝑣(1) does not start within the interval due to some large
initial disturbance. For all 𝑡 ≥ 2, the voltage control algorithm aims to maintain 𝑣(𝑡)
within [𝑣, 𝑣], ideally as close as possible to a “nominal” value 𝑣nom ∈ [𝑣, 𝑣], typically
𝑣nom = (𝑣 + 𝑣)/2. The cost for deviating from 𝑣nom is measured by ∥𝑣(𝑡) − 𝑣nom∥2𝑃𝑣

for some positive semidefinite matrix 𝑃𝑣, where ∥𝑥∥2𝐴 := 𝑥⊤𝐴𝑥.

At each time step, buses may change their reactive power injection 𝑞𝑐 (𝑡) in order to
regulate the voltage close to 𝑣nom. The reactive power injection (including 𝑞𝑐 (0)) is
limited within a given bound [𝑞, 𝑞] ⊂ R𝑛. Buses not in C do not have any ability to
control the reactive power injection: ∀𝑖 ∉ C. 𝑞

𝑖
= 𝑞𝑖 = 0. We do not place any hard

“ramp constraints” on 𝑢(𝑡). However, we impose a quadratic ramping cost ∥𝑢(𝑡)∥2𝑃𝑢
where 𝑃𝑢 is a positive semidefinite matrix.

In summary, the voltage control problem is to determine an online sequence of reactive
power injections 𝑞𝑐 (1), 𝑞𝑐 (2), . . . to drive voltages 𝑣(𝑡) to a desired interval [𝑣, 𝑣]
while minimizing voltage violation and control costs ∥𝑣(𝑡) − 𝑣nom∥2𝑃𝑣

+ ∥𝑢(𝑡)∥2𝑃𝑢 . In
this work, we solve the voltage control problem in the setting where 𝑋★ is unknown.
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Figure 7.1: Online robust voltage control

7.3 Robust Online Voltage Control
In this section we introduce our robust online voltage control algorithm (Algorithm 6)
and its performance bound (Theorem 27), which is the main result of this chapter.

Algorithm
As shown in Figure 7.1, the algorithm has two main components: a consistent
model chasing algorithm SEL (Algorithm 6, step 1) and a robust control oracle Π

(Algorithm 6, step 2). SEL and Π are combined by adapting ideas from [13].

The model chasing algorithm SEL selects a consistent model for the robust control
oracle Π out of all plausible models that are consistent with the online observations
and prior knowledge of the grid, where the model uncertainty set is constructed with
set membership estimation [115], [293]. The selection may use any competitive
NCBC algorithm, which is the online problem of choosing a sequence of points
within sequentially nested convex sets, with the aim of minimizing the sum of
distances between the chosen points [240]. In our experiments, we use a simple
projection-based NCBC algorithm, detailed in Section 7.5.

The robust control oracle Π is a novel robust predictive controller (Theorem 29). The
robustness guarantee of Π is necessary for the analysis which integrates SEL with Π

to provide the finite mistake guarantee of the overall algorithm. We remark that other
choices for either component are possible, as long as they provide the guarantees
needed in the analysis in Section 7.4.

Intuitively, SEL and Π are combined in a way such that SEL always reduces the
uncertainty about the unknown model whenever Π outputs an action that causes a
voltage limit violation. This means that Π cannot take too many “bad” actions before
the system uncertainty is small.
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Algorithm 6: Online Robust Voltage Controller
Input:

• desired nominal squared voltage magnitude: 𝑣nom ∈ R𝑛
• limits on the squared voltage magnitude: [𝑣, 𝑣] ⊂ R𝑛
• limits on the reactive power injection: [𝑞, 𝑞] ⊂ R𝑛
• initial state: 𝑣(1), 𝑞𝑐 (0) ∈ R𝑛
• state and action cost matrices: 𝑃𝑣, 𝑃𝑢 ∈ S𝑛+
• compact convex uncertainty set for the model parameter: X ⊂ S𝑛+ ∩ R𝑛×𝑛+
• compact convex uncertainty set for exogenous voltage quantities: Vpar ⊂ R𝑛
• upper bound for noise: 𝜂 > 0
• robustness padding: 𝜖 > 0
• weight for slack variable: 𝛽 > 0
• weight for noise accuracy: 𝛿 > 0

Initialize: Initialize an empty trajectory 𝐷0 = [ ]. Set 𝑡 = 1
Procedure:
(1) If 𝑡 = 1, initialize estimate of model parameters 𝑋1 ∈ X.

Otherwise, query the model chasing algorithm for a new consistent parameter
estimate: (𝑋𝑡 , 𝜂𝑡) ← SEL[𝐷𝑡].

SEL[𝐷𝑡] := NCBC(𝑃𝑡 , 𝑋𝑡−1, 𝜂𝑡−1) (7.7a)

𝑃𝑡 :=


(𝑋, 𝜂)

����������
𝑋 ∈ X, 𝜂 ∈ [0, 𝜂]
∀(𝑣𝑖, 𝑣𝑖+1, 𝑢𝑖, 𝑞𝑐𝑖 ) ∈ 𝐷𝑡 :
∥𝑣𝑖+1 − 𝑣𝑖 − 𝑋𝑡𝑢𝑖∥∞ ≤ 𝜂
𝑣𝑖+1 − 𝑋𝑞𝑐𝑖 ∈ Vpar


(7.7b)

(2) Query the robust control oracle for the next control action: 𝑢(𝑡) ← Π
𝑋𝑡 ,𝜂𝑡
(𝑣(𝑡)).

Π
𝑋𝑡 ,𝜂𝑡

: min
𝑢,𝜉
∥�̂�′ − 𝑣nom∥2𝑃𝑣

+ ∥𝑢∥2𝑃𝑢 + 𝛽𝜉
2 (7.8a)

s.t. 𝑢 ∈ R𝑛, 𝜉 ∈ R+ (7.8b)
𝑞 ⪯ 𝑞𝑐 (𝑡 − 1) + 𝑢 ⪯ 𝑞 (7.8c)

�̂�′ = 𝑣(𝑡) + 𝑋𝑡𝑢 (7.8d)

𝑘 = 𝜂𝑡 + 𝜌
(
1
𝛿
+ ∥𝑢∥2

)
(7.8e)

𝑣 + (𝑘 − 𝜉)1 ⪯ �̂�′ ⪯ 𝑣 − (𝑘 − 𝜉)1 (7.8f)

where 𝜌 = 𝛿𝜖/(1 + 𝛿∥𝑞 − 𝑞∥2).
(3) Apply the control action 𝑢(𝑡). Observe the system transition to

𝑣(𝑡 + 1) = 𝑣(𝑡) + 𝑋★𝑢(𝑡) + 𝑤(𝑡) and 𝑞𝑐 (𝑡) = 𝑞𝑐 (𝑡 − 1) + 𝑢(𝑡).
(4) Append (𝑣(𝑡), 𝑣(𝑡 + 1), 𝑢(𝑡), 𝑞𝑐 (𝑡)) to the trajectory:

𝐷𝑡 = [(𝑣(𝑖), 𝑣(𝑖 + 1), 𝑢(𝑖), 𝑞𝑐 (𝑖))]𝑡𝑖=1 .

(5) Increment 𝑡 ← 𝑡 + 1. Repeat from Step (1).
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Assumptions
Before presenting the main results, we introduce three assumptions that underlie our
analysis and discuss why they are both needed and practical.

Assumption 13. The change in noise is bounded as

∀𝑡 : ∥𝑤(𝑡)∥∞ ≤ 𝜂★,

where 𝑤(𝑡) = 𝑣par(𝑡) − 𝑣par(𝑡 − 1). 𝜂★ ∈ [0, 𝜂] is a constant (possibly unknown),
while 𝜂 is a known upper-bound.

This first assumption is standard and bounds the noise in the dynamics. It represents
realistic behavior in power systems where the active and exogenous reactive power
injections do not vary dramatically between time steps, as can be seen by expanding
𝑤(𝑡):

𝑤(𝑡) = 𝑣par(𝑡) − 𝑣par(𝑡 − 1)
= 𝑅★(𝑝(𝑡) − 𝑝(𝑡 − 1)) + 𝑋★(𝑞𝑒 (𝑡) − 𝑞𝑒 (𝑡 − 1)).

For example, if the net active and exogenous reactive power injection is the same at
time steps 𝑡 and 𝑡 − 1, then 𝑤(𝑡) = 0.

An unknown 𝜂★ indicates uncertainty in the maximum variability of the exogenous
power injections. Our inclusion of both an unknown 𝜂★ and a known upper-bound
𝜂 allows more flexibility in the algorithmic design and the incorporation of prior
knowledge.

Assumption 14. The true model 𝑋★ lies within a known compact, convex uncertainty
set X ⊂ S𝑛+ ∩ R𝑛×𝑛+ . (S𝑛+ is the set of 𝑛 × 𝑛 positive semidefinite matrices, and R𝑛×𝑛+ is
the set of 𝑛 × 𝑛 matrices with nonnegative entries.)

Our second assumption bounds the uncertainty about the network topology and
line parameters. It ensures that the unknown true model parameters 𝑋★ belong to
a compact, convex set X, which is a minimal assumption necessary for proving
an analytic guarantee. 𝑃1 = X × [0, 𝜂] forms the initial “consistent set” (see
Definition 7.4.1) for our consistent model chasing algorithm SEL.

This assumption is realistic, as a grid operator should have at least some prior
knowledge about the distribution grid topology and the range of possible line
parameters, even if they do not have the exact values. In cases where the grid has
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multiple possible topologies due to switches, X could be set to the convex hull of the
corresponding 𝑋 matrices.

Definition 7.3.1 (∥·∥△ and ∥·∥△,𝛿). For any matrix 𝑋 ∈ S𝑛 and scalars 𝜂, 𝛿 ≥ 0,
define

∥𝑋 ∥△ := ∥vech(𝑋)∥2 =

√√√ 𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=𝑖

𝑋2
𝑖 𝑗

∥(𝑋, 𝜂)∥△,𝛿 :=

√√√
𝛿2𝜂2 +

𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=𝑖

𝑋2
𝑖 𝑗
=

√︃
𝛿2𝜂2 + ∥𝑋 ∥2△.

For any sets X ⊆ S𝑛 and 𝐴 ⊆ R, we define diameters diam(X) and diam(X × 𝐴)
with respect to the norms ∥·∥△ and ∥·∥△,𝛿, respectively.

These norms isometrically map our parameter space to Euclidean space, enabling us
to take advantage of known results on NCBC within Euclidean space. For the norm
∥·∥△,𝛿, the hyperparameter 𝛿 trades off the weight between 𝑋 and 𝜂 in the norm. The
choice of 𝛿 is discussed in Section 7.5.

In practice, we consider uncertainty sets of the form

X𝛼 =

{
𝑋 ∈ S𝑛+ ∩ R𝑛×𝑛+

����� ∥𝑋 − 𝑋★∥△ ≤ 𝛼
𝑋★△ ,

∀𝑖, 𝑗 ∈ [𝑛] : 𝑋𝑖 𝑗 ≤ 𝑋𝑖𝑖

}
with diam(X𝛼) = 2𝛼

𝑋★△. A larger 𝛼 yields a larger uncertainty set. From
Section 7.2 (e.g., (7.4)), we know that 𝑋★ ∈ X𝛼.

Furthermore, we can incorporate partial knowledge we may have of the network
topology and/or line parameters by adding constraints to the description of X.
For example, if we know that the lowest common ancestor between buses 𝑖, 𝑗 in
the network is bus 𝑘 , then we can add the following constraint on 𝑋 , which is a
consequence of (7.3):

𝑋𝑖 𝑗 =


0, 𝑘 = 0

𝑋𝑘𝑘 , otherwise.
(7.9)

If we additionally know the values for some line parameters 𝑥𝑖 𝑗 , we may be able to
further constrain some entries of 𝑋 , again by applying (7.3).

Assumption 15. There exists a compact, convex setVpar ⊂ R𝑛 such that ∀𝑡 ≥ 0 :
𝑣par(𝑡) ∈ Vpar. Furthermore, for some known 𝜖 > 0,

∀𝑣par ∈ Vpar, 𝑋 ∈ X.
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∃𝑞𝑐 ∈ [𝑞, 𝑞] s.t. 𝑋𝑞𝑐 + 𝑣par ∈ [𝑣 + (𝜂 + 𝜖)1, 𝑣 − (𝜂 + 𝜖)1] .

Our final assumption is about the existence of feasible control actions for the robust
control oracle. This assumption can be interpreted as either a bound on the noise, or a
requirement that the controllable reactive power injection be flexible enough to satisfy
the demand of any admissible noise. It represents the reasonable assumption that
a grid operator should have installed enough controllable reactive power injection
capability to perform voltage control. Intuitively, the 𝜂 padding is required for
robustness to the noise 𝑤(𝑡), while the 𝜖 padding is required for robustness to model
uncertainty (i.e., uncertainty about 𝑋★).

Main result
We now state our main result, which is a finite-error bound for Algorithm 6.

Theorem 27 (Main Result). Under Assumptions 13 to 15, Algorithm 6 ensures
that the voltage limits will be violated at most 2𝛾(𝑚)

𝜌
diam(X × [0, 𝜂]) + 1 times,

where 𝜌 = 𝛿𝜖
1+𝛿∥𝑞−𝑞∥2 and 𝛾(𝑚) is the competitive ratio of the NCBC algorithm in

𝑚-dimensional Euclidean space, where 𝑚 = 1 + 𝑛(𝑛+1)
2 .

Furthermore, if 𝜂★ is known, then the voltage limits will be violated at most
2𝛾(𝑚)
𝜌

diam(X) + 1 times, where 𝜌 = 𝜖
∥𝑞−𝑞∥2 and 𝑚 =

𝑛(𝑛+1)
2 .

To the best of our knowledge, this result is the first provable stability bound for
voltage control in a setting where the network topology is unknown. It highlights
that Algorithm 6 can ensure stability even after unknown changes to the network
topology, e.g., due to maintenance, failures, etc., without the need to perform system
identification while remaining robust to any bounded and potentially adversarial
perturbations satisfying Assumptions 13 and 15.

Intuitively, this result guarantees that the model chasing algorithm SEL will learn
a “good enough” model for voltage regulation quickly. When the robust controller
Π makes a mistake, the model chasing algorithm will learn from that mistake and
significantly reduce the set of consistent models. Because the initial set of consistent
models is bounded, and this set shrinks a significant amount after each mistake, the
total number of mistakes is bounded. Note that this finite mistake bound implies
finite-time convergence to safe voltage limits without an explicit finite-time bound.

To interpret the error bounds in Theorem 27, we notice that they are proportional to
the diameter of the parameter space and the competitive ratio 𝛾(𝑚) of the NCBC
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algorithm, and inversely proportional to the oracle robustness margin 𝜌. Because of
computational tractability concerns, our experiments implement SEL with a greedy
projection-based NCBC algorithm with 𝛾proj(𝑚) = 𝜋(𝑚 − 1)𝑚𝑚/2 [240], rather than
the state-of-the-art Steiner point method which can achieve 𝛾Steiner(𝑚) = 𝑚/2 [191].
As our case studies show, in practice the projection-based NCBC algorithm performs
much better than the worst-case bound. We note that any other NCBC algorithm
with a finite competitive ratio can be used in (7.7a) in Algorithm 6. Investigating
whether widely-used estimation methods, like least squares, have a finite competitive
ratio would be an interesting avenue for future research.

Note that for Theorem 27 to hold, the optimization problem for the robust control
oracle Π should first be solved without the slack variable 𝜉 in Algorithm 6. This
ensures that if (𝑋𝑡 , 𝜂𝑡) is sufficiently close enough to the true model, then the
algorithm will not make a mistake. In the case that Π is infeasible initially (e.g., when
the initial model estimate is far from the true model), it should be solved again with a
slack variable, which ensures feasibility. However, solving Π twice is unnecessary in
practice, and so we have written Algorithm 6 to reflect its practical implementation.

We outline a proof of Theorem 27 in the next section. We want to highlight one
piece of that proof that is of independent interest. In particular, a major step in the
proof is to provide a feasibility guarantee for the robust control oracle component Π
of the algorithm, which is done in Theorem 29.

7.4 Proofs
We now prove our main result Theorem 27. Our proof builds on and adapts
the approach of [13], which outlines a general framework for integrating model
chasing and robust control via uncertainty sets constructed from set membership
estimation. To explain the general framework, we first consider a discrete-time
nonlinear dynamical system

𝑥𝑡+1 = 𝑓∗(𝑥𝑡 , 𝑢𝑡) + 𝑤𝑡 , 𝑥0 given, ( 𝑓∗,w) ∈ F ,

where 𝑥 ∈ S ⊆ R𝑛 is the system state and 𝑢 ∈ U ⊆ R𝑚 is the control input.
The unknown function 𝑓∗ and disturbance sequence w ∈ ℓ∞(Z+;R𝑛) belong to an
uncertainty set F , and the disturbance is bounded as ∥w∥∞ ≤ 𝜂. Assume that F
has a compact parametrization (T,K, 𝑑), where T : K→ ℘(F ) is a mapping from a
parameter space K to a set of functions and disturbances such that F ⊆ ⋃

𝜃∈K T[𝜃].
℘(F ) denotes the powerset of F . Let 𝑑 denote a metric on K, so (K, 𝑑) is a compact
metric space.
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The control objective is specified as a sequence of indicator “goal" functions
G = (G0,G1, . . . ). Each G𝑡 : X ×U → {0, 1} encodes a desired condition per time
step 𝑡:

G𝑡 (𝑥𝑡 , 𝑢𝑡) = 1[𝑥𝑡 , 𝑢𝑡 violate desired condition at time 𝑡] .

The main result of [13] specifies a set of sufficient conditions for a finite-mistake
guarantee—i.e.,

∑∞
𝑡=0 G𝑡 (𝑥𝑡 , 𝑢𝑡) < ∞. These conditions decouple online robust

control into separate online learning and robust control components. The online
learning component requires a consistent model chasing algorithm SEL, which
takes as input the current observed trajectory 𝐷𝑡 = [(𝑥𝑖, 𝑥𝑖+1, 𝑢𝑖)]𝑡𝑖=1 and outputs an
estimated parameter 𝜃𝑡 ∈ K which must be consistent with 𝐷𝑡 .

Definition 7.4.1 (Consistent Parameter). We say 𝜃 ∈ K is consistent with 𝐷𝑡 if there
exists ( 𝑓 ,w) ∈ T[𝜃] such that

∀(𝑥𝑡 , 𝑥𝑡+1, 𝑢𝑡) ∈ 𝐷𝑡 : 𝑥𝑡+1 = 𝑓 (𝑥𝑡 , 𝑢𝑡) + 𝑤𝑡 .

Let 𝑃𝑡 denote the set of all parameters consistent with 𝐷𝑡 ; 𝑃𝑡 is called the consistent
set. We say SEL is 𝛾-competitive if

∑∞
𝑡=1 𝑑 (𝜃𝑡 , 𝜃𝑡−1) ≤ 𝛾max𝜃∈K 𝑑 (𝑃∞, 𝜃) holds for

a fixed constant 𝛾 > 0, which we call the competitive ratio.

The robust control component requires a control oracle Π, which given the current
state 𝑥𝑡 and a parameter 𝜃𝑡 , outputs a control action 𝑢𝑡 = Π𝜃𝑡 (𝑥𝑡) that is robust for all
systems that are close to 𝜃𝑡 . In particular, we call a control oracle 𝜌-robust for control
objective G, if all trajectories in 𝑆Π [𝜌; 𝜃] achieve G after finitely many mistakes.
𝑆Π [𝜌; 𝜃] is defined as the set of all possible trajectories generated by Π

�̂�
for all �̂�

such that 𝑑 (𝜃, �̂�) ≤ 𝜌:

𝑆Π [𝜌; 𝜃] =


𝐷∞ = [(𝑥𝑡 , 𝑥𝑡+1, 𝑢𝑡)]∞𝑡=1 :

𝑢𝑡 = Π
�̂�
(𝑥𝑡)

𝑥𝑡+1 = 𝑓 (𝑥𝑡 , 𝑢𝑡) + 𝑤𝑡

��������
( 𝑓 ,w) ∈ T[𝜃],
𝑑 (�̂�, 𝜃) ≤ 𝜌


Due to the page limit, we refer readers to [13] for a more detailed discussion of
consistent model chasing algorithms and 𝜌-robust control oracles. As a summary,
if SEL chases consistent models and Π is a robust oracle for G, then the resulting
𝐴Π (SEL) algorithm achieves a finite mistake guarantee, which is stated in the
following.

Theorem 28. [13, Theorem 2.5] Assume that SEL chases consistent models and Π

is a robust oracle for objective G. Then for any starting point 𝑥0 and trajectory
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[(𝑥𝑡 , 𝑢𝑡)]∞𝑡=0 generated byAΠ (SEL) (illustrated in Figure 7.1), the following mistake
guarantees hold: (i) If Π is robust, then

∑∞
𝑡=0 G𝑡 (𝑥𝑡 , 𝑢𝑡) < ∞; (ii) If Π is uniformly

𝜌-robust and SEL is 𝛾-competitive, then
∞∑︁
𝑡=0
G𝑡 (𝑥𝑡 , 𝑢𝑡) < max

{
1, 𝑀Π

𝜌

} (
2𝛾
𝜌

diam(K) + 1
)

where 𝑀Π
𝜌 denotes the worst case total mistakes of the 𝜌-robust control oracle Π.

To apply Theorem 28 to prove Theorem 27, we need to prove that (i) the proposed
algorithm (7.7) chases consistent models and has a bounded competitive ratio,
and (ii) the proposed robust algorithm in (7.11) is a 𝜌-robust control oracle, for
bounded disturbance in the system topology. In particular, the correspondence of the
definitions is as follows. We have 𝜃 = (𝑋, 𝜂), and

K = X × [0, 𝜂], 𝑣(1), 𝑞𝑐 (0) given

𝑑 ((𝑋, 𝜂), (𝑋′, 𝜂′)) = ∥(𝑋, 𝜂) − (𝑋′, 𝜂′)∥△,𝛿

T[(𝑋, 𝜂)] =


( 𝑓 ,w)

�����������
𝑓 (𝑣, 𝑢) = 𝑣 + 𝑋𝑢, ∥w∥∞ ≤ 𝜂,

∀𝑡 ≥ 0 : 𝑣par
0 +

𝑡∑︁
𝜏=1

𝑤(𝜏) ∈ Vpar

where 𝑣par
0 := 𝑣(1) − 𝑋𝑞𝑐 (0)


F =

⋃
(𝑋,𝜂)∈X×[0,𝜂]

𝑇 [(𝑋, 𝜂)]

G𝑡 (𝑣(𝑡)) = 1[𝑣(𝑡) ∈ [𝑣, 𝑣]] .

We begin by proving that the set 𝑃𝑡 defined in (7.7b) in Algorithm 6 is consistent
with the trajectory 𝐷𝑡 .

Lemma 41 (SEL is consistent). Suppose 𝐷𝑇 is a trajectory of voltage measurements
and control actions taken up to time 𝑇:

𝐷𝑇 = [(𝑣(𝑡), 𝑣(𝑡 + 1), 𝑢(𝑡), 𝑞𝑐 (𝑡))]𝑇𝑡=1 .

The set

𝑃𝑇 :=


(𝑋, 𝜂)

�����������
𝑋 ∈ X, 𝜂 ∈ [0, 𝜂],
∀(𝑣(𝑡), 𝑣(𝑡 + 1), 𝑢(𝑡), 𝑞𝑐 (𝑡)) ∈ 𝐷𝑇 :

∥𝑣(𝑡 + 1) − 𝑣(𝑡) − 𝑋𝑢(𝑡)∥∞ ≤ 𝜂
𝑣(𝑡 + 1) − 𝑋𝑞𝑐 (𝑡) ∈ Vpar


(7.10)
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is a consistent set for 𝐷𝑇 , i.e., (𝑋, 𝜂) is consistent (Definition 7.4.1) if and only if
(𝑋, 𝜂) ∈ 𝑃𝑇 .

Proof. Consider any (𝑋, 𝜂) ∈ 𝑃𝑇 . For 𝑡 ∈ [𝑇], define

�̂� (𝑣, 𝑢) := 𝑣 + 𝑋𝑢, 𝑤(𝑡) := 𝑣(𝑡 + 1) − 𝑣(𝑡) − 𝑋𝑢(𝑡)

so ∥𝑤(𝑡)∥ ≤ 𝜂 and 𝑣(𝑡 + 1) = �̂� (𝑣(𝑡), 𝑢(𝑡)) + 𝑤(𝑡). Define 𝑣par
0 := 𝑣(1) − 𝑋𝑞𝑐 (0),

so for all 𝑡 ≥ 0,

𝑣
par
0 +

𝑡∑︁
𝜏=1

𝑤(𝜏) = 𝑣(𝑡 + 1) − 𝑋𝑞𝑐 (𝑡) ∈ Vpar.

Thus, ( �̂� , 𝑤) ∈ T[(𝑋, 𝜂)], so (𝑋, 𝜂) is consistent with 𝐷𝑇 .

Conversely, suppose (𝑋, 𝜂) is consistent with 𝐷𝑇 , which implies the existence of
�̂� (𝑣, 𝑢) := 𝑣+𝑋𝑢 and ŵ satisfying

ŵ
∞ ≤ 𝜂 such that 𝑣(𝑡+1) = �̂� (𝑣(𝑡), 𝑢(𝑡))+𝑤(𝑡).

Rearranging yields 𝑤(𝑡) = 𝑣(𝑡 + 1) − 𝑣(𝑡) − 𝑋𝑢(𝑡), so (𝑋, 𝜂) satisfies the norm
constraint in (7.10). Now define

∀𝑡 ≥ 0 : 𝑣par(𝑡) := 𝑣(𝑡 + 1) − 𝑋𝑞𝑐 (𝑡) = 𝑣par
0 +

𝑡∑︁
𝜏=1

𝑤(𝑡)

so 𝑣par(𝑡) ∈ Vpar satisfies the remaining constraint in (7.10). □

Observe that each 𝑃𝑡 is a closed, bounded, and convex set. Furthermore, 𝑃𝑡 is
non-empty, since (𝑋★, 𝜂★) ∈ 𝑃𝑡 . Intuitively, 𝑃𝑡 is the smallest set containing all
parameters that could generate the observed trajectory 𝐷𝑡 along with a corresponding
admissible sequence of noise compatible with Assumptions 13 to 15.

The consistent sets are nested 𝑃𝑡 ⊆ 𝑃𝑡−1, and we use our particular choice of
norm ∥·∥△,𝛿 to establish a linear bĳection between (S𝑛 × R, ∥·∥△,𝛿) and Euclidean
space (R𝑚, ∥·∥2). This allows us to take advantage of any 𝛾(𝑚)-competitive NCBC
algorithm in Euclidean space [191], [240], where 𝑚 is the dimension of the space, to
prove that SEL is 𝛾(𝑚)-competitive. This is formalized in the following lemma.

Lemma 42 (SEL is competitive). If the NCBC algorithm used in SEL has competitive
ratio 𝛾(𝑚), then SEL is 𝛾(𝑚)-competitive.

Proof. There exists a norm-preserving linear bĳection between (S𝑛 × R, ∥·∥△,𝛿) and
Euclidean space (R𝑚, ∥·∥2). In particular, the mapping between the two spaces is the
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vectorization of the upper-triangle of the symmetric matrix, concatenated with an
additional dimension corresponding to learning 𝜂. Therefore, any NCBC algorithms
with a 𝛾(𝑚) competitive ratio will result in 𝛾(𝑚) competitive ratio for SEL. □

Finally, we show that our controller Π is 𝜌-robust. In particular, we prove that Π
𝑋

makes no mistakes (𝑀Π
𝜌 = 0) given consistent parameters (𝑋, 𝜂) ∈ 𝑃𝑡 .

Theorem 29 (Π is 𝜌-robust). Under Assumptions 13 to 15, suppose (𝑋, 𝜂) ∈ 𝑃𝑡 ,
where 𝑃𝑡 is given in (7.10) for 𝑡 ≥ 1. Define 𝜌 = 𝛿𝜖

1+𝛿∥𝑞−𝑞∥2 . Then, the following
optimization problem is feasible:

min
𝑢∈R𝑛

∥�̂�′ − 𝑣nom∥2𝑃𝑣
+ ∥𝑢∥2𝑃𝑢 (7.11a)

s.t. 𝑞 ⪯ 𝑞𝑐 (𝑡 − 1) + 𝑢 ⪯ 𝑞 (7.11b)

�̂�′ = 𝑣(𝑡) + 𝑋𝑢 (7.11c)

𝑘 = 𝜂 + 𝜌
(
1
𝛿
+ ∥𝑢∥2

)
(7.11d)

𝑣 + 𝑘1 ⪯ �̂�′ ⪯ 𝑣 − 𝑘1. (7.11e)

Further, the solution of (7.11), 𝑢(𝑡), guarantees voltage stability for all (𝑋, 𝜂) ∈
X × [0, 𝜂] such that ∥(𝑋, 𝜂) − (𝑋, 𝜂)∥△,𝛿 ≤ 𝜌. That is, 𝑣(𝑡) + 𝑋𝑢(𝑡) + 𝑤(𝑡) ∈ [𝑣, 𝑣]
for all 𝑤(𝑡) such that ∥𝑤(𝑡)∥∞ ≤ 𝜂.

Observe that (7.11) corresponds to (7.8) in Algorithm 6 with the slack variable set
to zero. We note that the robustness margin 𝜌 decreases as [𝑞, 𝑞] increase. The
intuitive reason is that the voltage is more sensitive to changes in 𝑋 when the range
of possible 𝑢’s expands. Therefore, a fixed voltage buffer of 𝜖 in constraints (7.8e)
and (7.11d) affords less robustness to changes in 𝑋 as [𝑞, 𝑞] gets larger.

Proof of Theorem 29. First, we will show that the following two conditions are
sufficient for feasibility of the optimization problem and 𝜌-robustness for the
solution.

• Feasibility: 𝑘 ≤ 𝜂 + 𝜖
• Robustness: 𝑘 ≥ 𝜂 + 𝜌

√︃
1
𝛿2 + ∥𝑢∥22

Then, we will show that our choices of 𝑘 and 𝜌 satisfy these sufficient conditions.

To derive the sufficient condition for feasibility, define

𝑣par(𝑡 − 1) := 𝑣(𝑡) − 𝑋𝑞𝑐 (𝑡 − 1)
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as the conjectured noise when we assume the underlying parameter is 𝑋 . Since
𝑋 ∈ 𝑃𝑡 and 𝑃𝑡 ⊆ 𝑃𝑡−1, we have 𝑣par(𝑡 − 1) ∈ Vpar. Then, by Assumption 15, there
exists 𝑞𝑐 ∈ [𝑞, 𝑞] such that

𝑣 + (𝜂 + 𝜖)1 ⪯ 𝑋𝑞𝑐 + 𝑣par(𝑡 − 1) ⪯ 𝑣 − (𝜂 + 𝜖)1.

Set 𝑢 = 𝑞𝑐 − 𝑞𝑐 (𝑡 − 1) (which satisfies (7.11b)) and define

�̂�′(𝑢) := 𝑣(𝑡) + 𝑋𝑢 = 𝑣(𝑡) + 𝑋 [𝑞𝑐 − 𝑞𝑐 (𝑡 − 1)]
= 𝑋𝑞𝑐 + 𝑣par(𝑡 − 1).

Recalling (7.6), we can interpret �̂�′(𝑢) as the one-step voltage prediction (without
disturbance) under the model 𝑋 given control action 𝑢 and the current voltage 𝑣(𝑡).
We thus have

𝑣 + (𝜂 + 𝜖)1 ⪯ �̂�′(𝑢) ⪯ 𝑣 − (𝜂 + 𝜖)1.

Therefore, as long as 𝑘 ≤ 𝜂 + 𝜖 , 𝑢 will satisfy constraint (7.11e).

Next, we derive the sufficient condition for robustness. Let 𝑢 be a solution of (7.11),
so it satisfies (7.11e). Let (𝑋, 𝜂) ∈ X × [0, 𝜂] be arbitrary parameters satisfying
∥(𝑋, 𝜂) − (𝑋, 𝜂)∥△,𝛿 ≤ 𝜌. Define 𝜌𝑋 := ∥𝑋 − 𝑋 ∥△. By Lemma 43,

−𝜌𝑋 ∥𝑢∥2 1 ⪯ (𝑋 − 𝑋)𝑢 ⪯ 𝜌𝑋 ∥𝑢∥2 1. (7.12)

Furthermore, suppose
−𝜂1 ⪯ 𝑤(𝑡) ⪯ 𝜂1. (7.13)

Adding together the 3 inequalities (7.11e), (7.12), (7.13) yields

𝑣 + (𝑘 − 𝜌𝑋 ∥𝑢∥2 − 𝜂)1 ⪯ 𝑣(𝑡) + 𝑋𝑢 + 𝑤(𝑡)
⪯ 𝑣 − (𝑘 − 𝜌𝑋 ∥𝑢∥2 − 𝜂)1.

Clearly, if 𝑘 − 𝜌𝑋 ∥𝑢∥2 − 𝜂 ≥ 0, then the desired robustness condition is satisfied.
Since

∥(𝑋, 𝜂) − (𝑋, 𝜂)∥2△,𝛿 = 𝜌2
𝑋 + 𝛿2 |𝜂 − 𝜂 |2 ≤ 𝜌2,

we have |𝜂 − 𝜂 | ≤ 1
𝛿

√︃
𝜌2 − 𝜌2

𝑋
. This implies 𝜂 ≤ 𝜂 + 1

𝛿

√︃
𝜌2 − 𝜌2

𝑋
. Therefore, we can

express the robustness condition in terms of 𝜂:

𝑘 ≥ 𝜂 + 1
𝛿

√︃
𝜌2 − 𝜌2

𝑋
+ 𝜌𝑋 ∥𝑢∥2 =: 𝑓 (𝜌𝑋).
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For 𝜌 > 0, 𝑓 (𝜌𝑋) is strictly concave and twice-differentiable and therefore achieves
its maximum when 𝑓 ′(𝜌𝑋) = 0. This maximum value is 𝜂 + 𝜌

√︃
1
𝛿2 + ∥𝑢∥22. Thus, if

𝑘 is at least this value, then we achieve robustness.

Finally, we show that our choices of 𝑘 and 𝜌 satisfy the sufficient conditions. Since
𝑎 + 𝑏 ≥

√
𝑎2 + 𝑏2 for all 𝑎, 𝑏 ≥ 0, our choice of 𝑘 satisfies the robustness condition:

𝑘 = 𝜂 + 𝜌
(
1
𝛿
+ ∥𝑢∥2

)
≥ 𝜂 + 𝜌

√︂
1
𝛿2 + ∥𝑢∥

2
2.

Note that while setting 𝑘 = 𝜂 + 𝜌
√︃

1
𝛿2 + ∥𝑢∥22 would also satisfy the robustness

condition, this expression would make (7.11) a non-convex optimization problem.

The remaining step is to satisfy the feasibility condition. We must choose 𝜌 such that
𝜂+𝜌

(
1
𝛿
+ ∥𝑢∥2

)
≤ 𝜂+𝜖 . Since 𝜂 ≤ 𝜂, it suffices to find 𝜌 such that 𝜌

(
1
𝛿
+ ∥𝑢∥2

)
≤ 𝜖 .

As ∥𝑢∥2 ≤ ∥𝑞 − 𝑞∥2, setting 𝜌 = 𝛿𝜖

1+𝛿
𝑞−𝑞

2

satisfies the inequality. □

In the case where 𝜂★ is known, a similar proof shows that 𝑘 = 𝜂★ + 𝜌 ∥𝑢∥2 and
𝜌 = 𝜖

∥𝑞−𝑞∥2 satisfy feasibility and robustness. (This can be seen as the 𝛿 → ∞
limiting case of Theorem 29 such that consistent model chasing only updates 𝑋 and
keeps 𝜂 = 𝜂★ fixed.)

Lemma 43. For all 𝐴 ∈ S𝑛, 𝑏 ∈ R𝑛, and 𝛼 ∈ R+,

∥𝐴∥△ ≤ 𝛼 implies − 𝛼 ∥𝑏∥2 1 ⪯ 𝐴𝑏 ⪯ 𝛼 ∥𝑏∥2 1.

Proof. Let 𝐴𝑖 denote the 𝑖th row of 𝐴. By symmetry of 𝐴,

∥𝐴𝑖∥22 =

𝑛∑︁
𝑗=1

𝐴2
𝑖, 𝑗 =

𝑖−1∑︁
𝑘=1

𝐴2
𝑘,𝑖 +

𝑛∑︁
𝑗=𝑖

𝐴2
𝑖, 𝑗

≤
𝑛∑︁
𝑘=1

𝑛∑︁
𝑗=𝑘

𝐴2
𝑘, 𝑗 = ∥𝐴∥

2
△ ≤ 𝛼2,

so ∥𝐴𝑖∥2 ≤ 𝛼. Then

−𝛼 ∥𝑏∥2 ≤ − ∥𝐴𝑖∥2 ∥𝑏∥2 ≤ (𝐴𝑏)𝑖 ≤ ∥𝐴𝑖∥2 ∥𝑏∥2 ≤ 𝛼 ∥𝑏∥2 .

This holds for all 𝑖 ∈ {1, . . . , 𝑛}, which yields the desired result. □

Finally, combining Theorem 29 with Lemma 42 and applying Theorem 28 completes
the proof of Theorem 27.
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Figure 7.2: Schematic diagram of SCE 56 bus distribution system.
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Figure 7.3: Voltage profile of 7 buses without control, simulated with (a) linear
dynamics (7.2) and (b) nonlinear balanced AC dynamics (7.1).

7.5 Case Study
We demonstrate the effectiveness of Algorithm 6 using a case study based on a single-
phase 56-bus network (𝑛 = 55) from the Southern California Edison (SCE) utility
(Figure 7.2), with line parameters 𝑟𝑖 𝑗 , 𝑥𝑖 𝑗 from [294, Table 1]. In our experiments,
we use both the linear power model in Equation (7.5) to solve for voltages as well as
the more realistic nonlinear DistFlow model (7.1). Even though our algorithm only
has guarantees for the linear power flow model (7.2), we show that our algorithm
works well on both the linear and nonlinear model.

Experimental Setup
Following [271], we adapt real-world load and PV data from [298] for the 56-
bus network by adding power injection (scaled by the PV generation) at buses
C = {2, 4, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 19, 20, 23, 25, 26, 32}. Exogenous active
and reactive power injection measurements are taken at each bus at 6-second intervals
over a 24-hour period. Figure 7.3 plots these values for several buses to illustrate the
setting considered. We assume that controllers with reactive power injection capacity
are available at every node. The network parameters used in our experiments are:
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• nominal squared voltage magnitude at the substation
𝑣0 = 𝑣nom = (12kV)2

• squared voltage magnitude limits
[𝑣, 𝑣] = [0.95, 1.05]pu = [11.42, 12.62]kV2

• reactive power injection limits
[𝑞, 𝑞] = [−0.24, 0.24]MVar

• state and input cost matrices 𝑃𝑣 = 0.1𝐼, 𝑃𝑢 = 10𝐼

• initial state 𝑣(1) = 𝑅★𝑝(0) + 𝑋★𝑞𝑒 (0) + 𝑣01, 𝑞𝑐 (0) = 0

In comparison to previous work in the voltage control literature, our reactive power
injection limits [𝑞, 𝑞] are slightly more generous than ±0.2 MVar used in, e.g., [271].
We choose ±0.24 MVar because even a controller with perfect knowledge of the
future would need reactive power injection capabilities of at least ±0.238 MVar in
order to maintain 𝑣(𝑡) ∈ [𝑣, 𝑣] (if 𝑞 = −𝑞) under linear dynamics (7.2).

We set 𝜂 = 10, which upper-bounds the maximum change in exogenous noise
observed in our data, which is ≈ 8.6:

𝜂★ = max
𝑡

𝑅★(𝑝(𝑡) − 𝑝(𝑡 − 1)) + 𝑋★(𝑞𝑒 (𝑡) − 𝑞𝑒 (𝑡 − 1))

∞ .

We fix 𝜖 = 0.1. In order to satisfy the requirement in Assumption 15 that 𝑣(𝑡) ∈
[𝑣 + (𝜂+ 𝜖), 𝑣− (𝜂+ 𝜖)], the reactive power injection capabilities must exceed ±0.528
MVar. As we show in experiments with only ±0.24 MVar range of control, though,
Assumption 15 does not need to be fully satisfied in order for our method to still
provide strong empirical results.

For the robust controller Π, we set slack variable weight 𝛽 = 100 and Vpar =

[𝑣par, 𝑣par] to be a rectangle around the true noise. Under linearized system dynamics,
𝑣par(𝑡) is calculated as described in Section 7.2, and then we set

∀𝑖 ∈ [𝑛] : 𝑣par
𝑖
= min

𝑡
𝑣

par
𝑖
(𝑡), 𝑣par

𝑖 = max
𝑡
𝑣

par
𝑖
(𝑡).

Under nonlinear system dynamics, we approximate 𝑣par(𝑡) as the nodal squared
voltage magnitudes when 𝑞𝑐 (𝑡) = 0 (as shown in Figure 7.3), and we add 0.5kV2

padding which empirically suffices as a convex outer approximation ofVpar:

𝑣par
𝑖
= min

𝑡
𝑣

par
𝑖
(𝑡) − 0.5, 𝑣par

𝑖 = max
𝑡
𝑣

par
𝑖
(𝑡) + 0.5.

As mentioned previously, we use a greedy projection-based NCBC algorithm [240]
in SEL that minimizes the movement distance ∥(𝑋𝑡 , 𝜂𝑡) − (𝑋𝑡−1, 𝜂𝑡−1)∥△,𝛿 between
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nested convex sets 𝑃𝑡 ⊆ 𝑃𝑡−1:

NCBCproj(𝑃𝑡 , 𝑋𝑡−1, 𝜂𝑡−1) := arg min
(𝑋,𝜂)∈𝑃𝑡

∥(𝑋, 𝜂) − (𝑋𝑡−1, 𝜂𝑡−1)∥△,𝛿 . (7.14)

This achieves competitive ratio 𝛾proj(𝑚) = 𝜋(𝑚 − 1)𝑚𝑚/2.

To keep the optimization problem (7.7) computationally tractable for consistent model
chasing, our implementation does not use the full trajectory 𝐷 as in the constraints
of the consistent set (7.10). Instead, we include the 20 latest observations and 80
more observations sampled uniformly at random (𝑣(𝑡), 𝑣(𝑡 + 1), 𝑢(𝑡), 𝑞𝑐 (𝑡)) ∼ 𝐷.
This provides a computationally tractable approximation of the uncertainty set. In
our experiments on linear system dynamics, we found that 𝑋𝑡 selected using this
approximation was always in the consistent set defined by the full trajectory 𝐷, when
allowing for small numerical inaccuracies introduced by the CVXPY solver.

Unless otherwise stated, we initialize 𝜂1 = 0. We initialize 𝑋1 by adding noise
to the true 𝑋★ in two ways. First, we scale each line impedance 𝑥𝑖 𝑗 by a random
factor 𝜎𝑖 𝑗

iid∼ Uniform[0, 2]. Second, we randomly permute the bus ordering, so 𝑋1

corresponds to a permuted grid topology. Finally, we project 𝑋1 into the uncertainty
set X𝛼, with 𝛼 = 1.

Except for the experiments in Figure 7.8, we fix 𝛿 = 20 which empirically strikes a
balance between minimizing the modeling error ∥𝑋𝑡 − 𝑋★∥△ and overfitting noise.

Table 7.1: Performance of our method simulated under linear system dynamics (top)
and nonlinear system dynamics (bottom). See Section 7.5.

Info provided # mistakes avg. violation max violation

Unknown 662.2 ± 435.1 0.43 ± 0.16 4.40 ± 2.59
Topo-14 917.0 ± 155.2 0.34 ± 0.12 4.93 ± 2.19
Lines-14 1085.8 ± 186.6 0.57 ± 0.29 2.55 ± 1.09
Known 88.0 0.07 0.12

Unknown 16.0 ± 15.8 0.68 ± 0.56 2.74 ± 2.39
Topo-14 0.5 ± 0.6 2.21 ± 2.56 2.90 ± 3.38
Lines-14 0.5 ± 0.6 1.01 ± 1.20 1.45 ± 1.73
Known 0.0 0.00 0.00

Experimental Results
Our experimental results demonstrate the ability of Algorithm 6 to stabilize the
system without knowledge of the network topology, providing good voltage control
performance even though it still has significant uncertainty about the topology at
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Figure 7.4: (a)-(d) Voltage profiles of 7 different buses simulated under linear
system dynamics (7.2). Dotted black lines indicate voltage limits [𝑣, 𝑣]. (a) Π+SEL
initialized with random 𝑋 ∈ X𝛼. (b) like (a) but the topology for buses 1-14 is known.
(c) like (a) but the topology and line parameters for buses 1-14 are known. (d) like
(a) but 𝑋 = 𝑋★ is fixed and known so only 𝜂 is learned.
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Figure 7.5: Parallels Figure 7.4. Voltage profiles of 7 different buses simulated under
balanced nonlinear AC power flow (7.1).

the end of the experiments. We test our algorithm under both the linearized system
dynamics (7.5) as well as the more realistic nonlinear balanced AC power flow setting
(7.1) simulated using Pandapower [299]. The convex optimization problems for SEL
and Π are solved with CVXPY [300] using the MOSEK solver [301]. Code for our
simulations are available on GitHub.1

Linearized power flow with full control Our first set of experiments, shown in
Figure 7.4 and Table 7.1 (top), tests our algorithm’s performance on the SCE-56
bus network under linearized system dynamics (7.5). Different amounts of network
information are provided to the consistent model chasing algorithm SEL via the
initial consistent set X𝛼, ranging from no information (“unknown,” Figure 7.4(a)),
information about the edges among the first 14 buses but not the line impedances
(“topo-14,” Figure 7.4(b)), information about the edges and line impedances among
the first 14 buses (“lines-14,” Figure 7.4(c)), and complete information about the
network (“known,” Figure 7.4(d)). Because the buses in the SCE 56-bus network

1https://github.com/chrisyeh96/voltctrl

https://github.com/chrisyeh96/voltctrl
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Figure 7.6: Convergence of 𝑋𝑡 towards true 𝑋★ (solid lines, left axis) and estimated
𝜂 (dotted lines, right axis) for linear (a) and nonlinear (b) dynamics corresponding
to the experiments in Figure 7.4 and Figure 7.5 respectively. Notice that even when
∥𝑋𝑡 − 𝑋★∥△ does not reach 0, the controller still successfully achieve voltage safety.

are numbered in a topological ordering, the “topo-14” setting adds constraints of
the form (7.9) for all of the first 14 buses, and the “lines-14” setting constrains all
𝑋 ∈ X𝛼 such that 𝑋𝑖 𝑗 = 𝑋★𝑖 𝑗 for all 𝑖, 𝑗 ∈ {1, . . . , 14}.

As shown in Figure 7.6(a), incorporating more prior knowledge about the network
into the initial uncertainty set reduces the model estimation error ∥𝑋 − 𝑋★∥△.
Furthermore, the model estimation error decreases the most dramatically when the
voltage violations are the largest. However, we note that lower model estimation
error does not always result in fewer mistakes in our experiments.

Table 7.1 quantifies our algorithm’s performance under varying amounts of initial
network information. A “mistake” refers to any time step where any bus’ voltage
violated the limits [𝑣, 𝑣]. “Avg. violation” refers to the average absolute squared-
voltage violation

mean
𝑖∈[𝑛], 𝑡∈[𝑇]: 𝑣𝑖 (𝑡)∉[𝑣𝑖 ,𝑣𝑖]

max(𝑣𝑖 (𝑡) − 𝑣𝑖, 𝑣𝑖 − 𝑣𝑖 (𝑡)).

“Max violation” is like “avg. violation” but replaces the mean with a max. Results
given show the mean and standard deviation over 4 random initializations of 𝑋1.

Nonlinear power flow with full control Our second set of experiments test our
online controller on the standard balanced AC power flow model (7.1). As in
the linearized power flow experiments, we compare Algorithm 6’s performance
across varying levels of prior information (Figure 7.5, Figure 7.6(b), and Table 7.1,
bottom). Even though the controller is designed under the assumption of linearized
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Figure 7.7: Balanced nonlinear AC power flow simulation of the voltage profiles
under different algorithms with partial control and observation. The dark colors
plot the mean voltages across 4 random initializations of 𝑋1 and the light shading
plots ±1 standard deviation. (a) bus 18 (b) bus 30.

0h 4h 8h 12h 16h 20h 24h
time t

50

100

150

200

250

300

||X
t

X
||

* known
=1
=20
=100
=500

0h 4h 8h 12h 16h 20h 24h
time t

50

100

150

200

250

300

||X
t

X
||

0

2

4

6

8

10

(a)

0h 4h 8h 12h 16h 20h 24h
time t

40
60
80

100
120
140
160
180

||X
t

X
||

0

2

4

6

8

10

(b)

Figure 7.8: Effect of varying 𝛿 on consistent model chasing. As in Figure 7.6(a),
convergence of 𝑋𝑡 towards 𝑋★ is plotted in solid lines (left axis), and estimated 𝜂 is
plotted in dotted lines (right axis). In blue are results where we fix 𝜂 = 𝜂★ = 8.65
and 𝛿 has no effect. (a) linear dynamics (b) nonlinear dynamics.

voltage dynamics, our algorithm still performs well in the nonlinear simulation. The
performance improves progressively, with less voltage violation and smaller overall
deviation from the desired steady state voltage as it is provided more information.

Nonlinear power flow with partial observation and partial control We also test
our proposed online controller in the partial observation and partial control setting.
In Figure 7.7, we withhold voltage observations and control authority from buses
𝑖 ∈ {8, 18, 21, 30, 39, 45, 54} by setting 𝑞𝑐

𝑖
(𝑡) = 0 for all 𝑡. We simulate the voltage

profiles across 4 random initializations of 𝑋1 and plot the mean and ±1 standard
deviation. Despite the more challenging setting, the performance of Algorithm 6
remains strong. We again observe in Figure 7.7 that adding prior topology and line
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parameter information marginally improves the performance of Algorithm 6.

Varying 𝛿 In Figure 7.8, we demonstrate the effect of varying 𝛿 on the performance
of our algorithm. From a theoretical perspective, Theorem 27 shows that our
algorithm achieves a finite mistake bound for every 𝛿 > 0, and this bound is
minimized by taking 𝛿 to be very large. What happens when using a large 𝛿, though,
is that the model chasing algorithm may overfit to noise until a time when the noise
is too large, forcing the algorithm to increase the noise bound (e.g., around the 16h
mark in Figure 7.8). This leads to inconsistent performance in the short term, albeit
with perhaps better worst-case performance. In contrast, a smaller 𝛿 allows more
of the network uncertainty to be captured in a larger noise 𝜂 term at the cost of
learning a less accurate 𝑋 , but the decrease in modeling error ∥𝑋𝑡 − 𝑋★∥△ becomes
monotonic.

In practice, 𝛿 should be treated as a prior “confidence” about how close the initial
guess of 𝜂 is to 𝜂★. 𝛿 should be larger when there is greater confidence that 𝜂 is close
to the true 𝜂★.

Detecting topology changes Finally, we consider the challenge of responding to
a change in the distribution grid topology in real-time. If the topology changes
from one radial grid to another due to switches, new observed data may render
the consistent set empty. That is, when consistent model chasing (7.14) becomes
infeasible, we are assured that the topology has changed. At this point, we may reset
the algorithm by discarding the observed trajectory 𝐷𝑡 and reinitializing consistent
parameter estimates from the original consistent set 𝑃1. Figure 7.9 demonstrates this
on linear system dynamics, where we introduce a topology change at the 12h mark.
We replace lines 33→ 40 and 46→ 48 with new lines 1→ 40 and 10→ 48, which
maintains a radial distribution grid.

7.6 Conclusion
This chapter provides the first controller that establishes a finite-mistake guarantee for
voltage control in a setting with uncertainty in both the grid topology and load and
generation variations. We showed that our proposed algorithm is able to learn a model
of the grid dynamics in an online fashion and provably (under linearized voltage
dynamics) converge to a stable controller. Further, simulated experiments on a 56-bus
distribution grid demonstrate the effectiveness of our algorithm even under more
realistic nonlinear dynamics. We demonstrated how to incorporate prior knowledge
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Figure 7.9: Demonstration of the detection of a topology change under linear system
dynamics. Convergence of 𝑋𝑡 towards 𝑋★ is plotted in solid lines (left axis), where
𝑋★ changes at the 12h mark. The topology change triggers a reset of the consistent
model chasing algorithm. Estimated 𝜂 is plotted in dotted lines (right axis).

about the network topology and line parameters to improve performance, while also
extending our algorithm to the partial observability and partial controllability setting
which may better reflect real-world scenarios.

As the current algorithm is centralized, future works may consider decentralized
approaches to topology-robust voltage control in order to enable faster real-time
control with ideas from [99]. Another direction is to extend the current algorithm
to the time-varying topology setting with techniques from works such as [111].
Further studies may also explore loosening the radial topology assumption and test
our algorithm on unbalanced 3-phase AC grids to accommodate a wider range of
distribution grids. This would be a challenging, but important, extension. Finally, an
interesting algorithmic extension is to consider computationally efficient convex body
chasing algorithms with better competitive ratios. Existing methods based on Steiner
point [191], [240] achieve nearly-optimal competitive ratio but are computationally
inefficient in high dimension settings such as voltage control, so designing efficient
approximate Steiner point algorithms could potentially lead to significant performance
improvements.
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