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STATIC AND DYNAMICAL MODELS

OF LONG-PERIOD VARIABLE STARS

by Douglas Allan Keeley

ABSTRACT

The parameters of the models were M=1 and 1.3 Mo’
MB = -3,8 to -5, and Te = 2200°K to 3200°K. The equation of state
included a detailed calculation of ionization equilibrium and the dis-
sociation of H,, OH, CO, and H,0. The opacity of CO, OH, and
H,O0 was included. The dynamical calculations show that large-
amplitude pulsation can occur in convective models., The opacity
mechanism causes strong driving of the pulsation in the region outside
the hydrogen ionization zone, and the I'-mechanism results in very low
dissipation in the hydrogen zone, The phase relation between the bolo-
metric luminosity and the radius variations is similar to that of Cepheids.
The static models have large ionization and dissociation zones, which

L
cause the pulsation parameter Q=P, (P/PG,)2 to become greater than

ays
0.15 in some models. The fundamental periods range from 180 days to
greater than 2000 days; the overtone periods are about } as long. The
positions of many observed stars in the theoretical HR diagram suggest

that their periods should be associated with the overtone periods of the

models,
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INTRODUCTION

The original goal of the work which led to this thesis was to
investigate the possibility that an extreme red giant of about 1.3 My
could produce a planetary nebula by ejecting one or two tenths of a
solar mass., The basis for this idea was discussed by Abell and
Goldreich (1966), Goldreich suggested that the instability would prove
to be in the envelope rather than the deep interior,

Very few published static model calculations available at that
time included the complications of molecular dissociation, ionization
zones, and superadiabatic convection, Thus it was necessary to cal-
culate static models to provide a clear picture of the envelope structure
of extreme red giants, The static model calculations suggested that
there was, in fact, a good possibility that large-scale mass-loss could
occur in these stars,

In Poland, B, Paczynski began a similar study of static models
at about the same time, and concluded that red giants in the mass-range
required should become dynamically unstable and should be able toeject
their entire envelopes. His conclusion was based on the fact that the
total energy of the envelope was positive for extreme models; if the
ionization energy of hydrogen could be converted efficiently into kinetic
energy of expansion, it would be sufficient to expel the envelope.

The condition of positive energy is related to the usual condition
for dynamical instability through the virial theorem. Although a linear
stability analysis may make a reliable prediction of vibrational instability,
its prediction of dynamical instability must be viewed with caution. The

instability is of little interest for the present application unless it



develops into a large amplitude phenomenon, and the linear stability
analysis can't predict this. For this reason it was necessary to work
with the full non-linear equations of the problem.

No satisfactory way was found for treating the inner boundary
condition for envelope models close to dynamical instability., Although
interesting results were obtained, and will be described briefly, they
were not sufficiently secure to be wérth pursuing until the inner boundary
condition could be made more realistic., By this point in the work,
numerous pulsating models had been calculated, and the boundary
condition was not a problem for them, It seemed advisable at that time
to set aside the original goal, and to pursue an investigation of pulsation
in convective stars,

Pulsating models of Cepheids and RR Lyrae stars have provided
a new method of analyzing observations; they can give information on
the mass and helium content which for most stars could not be obtained
.in any other way. The calculations were not extended to convective
stars, partly because of the difficulty in describing convection in a
time-dependent situation, and partly because the people with experience
in hydrodynamics problems of this type were already engaged in fruitful
work on RR Lyrae stars, supernovae, etc. For the present work it was
assumed that if a model were really dynamically unstable, the details of
the treatment of convection would not be of great importance in deter-
mining the final result, Therefore a relatively simple treatment was
used, even after the decision was made to concentrate on pulsating models,

Before the models can be used to analyze the observations, the

observations must be used to refine the physics in the models. The stage



of analyzing observations has been reached for RR Lyrae models, but it
is still a distant goal for the long-period variables. The more limited
goal of this thesis was to make some initial contribution toward under-
standing the pulsation phenomenon in convective stars,

The text has been written in three distinct sections, Part 1 and
Part 2 were written with the intention of submitting them for publication
as two separate papers. They are therefore self-contained; each has
tables and figures numbered starting from one, and each has its own
appendices and references, InPart 3 there is extra material not

intended for publication.



PART 1

THE STATIC STRUCTURE OF LONG-PERIOD VARIABLE STARS



ABSTRACT

Static model calculations for lMe and 1.3 Mo stars of solar
composition are presented, The equation of state includes a detailed
calculation of ionization equilibrium and the dissociation of H,, OH,
CO, and H,0O. The opacity due to H,O0, OH, and CO is included.
Preliminary dynamical calculations show fundamental and overtone
instability, The fundamental periods range from 180 days to greater
than 2000 days; the first overtone periods are roughly § as long. The
periods and positions of models in the HR diagram suggest that many

observed stars may be overtone pulsators.
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I. INTRODUCTION

The object of the static model calculations was two-fold: 1) To
survey the part of the HR diagram occupied by the long-period variable
stars., 2) To provide initial conditions for dynamical calculations, The
detailed results of dynamical calculations will be reported in a separate
paper, but some of the results will be used in the present discussion.

The general procedure for calculating static models is to choose
values of luminosity, mass, and radius compatible with observations,
and integrate inward with the luminosity independent of depth until a
small fraction of the radius is reached, No core is integrated, but it is
possible to determine the core mass from the envelope integration. If
the core mass is in a range consistent with the requirements of the
theory of stellar evolution, and if the envelope is a reasonable model for
comparison with observ:;,tions, it is assumed that a physically-reasonable
core could be connected to the envelope,

Some models of long-period variables have been discussed
previously. One of the earliest models to include the ionization zones
and the dissociation of hydrogen molecules in detail was the model of
Kamijo (1962). Recently Paczynski (1969) has studied models of 1 M
extreme red giants. Some results of these calculations will be mentioned
briefly.

The equation of state, the opacity, and numerical procedures
are discussed in the appendices, The chemical composition used was
X=10.,788, Y =0.197, Z = ‘0. 015; details of the rnetal abundances are

given in Appendix C,
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II. STRUCTURE OF A TYPICAL MODEL

A red giant interior structure including a core is shown in
Figure 1. The data was taken from Schwarzschild (1958). The main
difference between the structure of his model and the structure of the
more extreme models considered in the present work is that the flat
part of the M., vs. log P relation begins at much lower pressure
in the extreme models, In Figure l it is clear that the core mass can
be estimated reasonably well from an integration which doesn't go all
the way to the centre,

The envelope structure of a 1 Mo model of a long-period
variable is shown in Figure 2. The mass and radius curves are
similar to those in Figure 1 but the mass curve becomes flat at log P=8.0
instead of 12.0. An integration to logP=10.0 yields a close estimate
of the core mass, which in this case is 0.54 Mo‘ The log T curve in
Figure 2 is flat at low pressure but the molecular opacity causes a
gradual rise in temperature until log P=3.0, With no molecular opacity
in the model, the curve would stay relatively flat and then rise abruptly
at higher pressure, The beginning of the region unstable to convection
is marked by the cross near ylog P=2.0. Although the actual temperature
gradient is low, the adiabatic gradient is lower because of the dissociation
of hydrogen molecules., The convective flux is very small and the log T
curve is essentially the same as if the region were radiative. The steep
rise in temperature through log T = 3,75 is caused by the opacity of
H , andis a characteristic feature of the structure of cool stars,
Before the temperature is up to 10% oK, convection carries almost the

entire flux of energy. The temperature gradient V¥V = dln T/dln P drops
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as the adiabatic temperature gradient drops in the ionization zone of
hydrogen, but rises again where almost all the hydrogen is ionized. When
V becomes greater than 0.25 the radiation pressure fraction begins to in-
crease, Radiation accounts for about 20% of the total pressureatlogP =
9.45. The bottom of the convection zone is at log P=9.0, The temperature
gradient is substantially superadiabatic throughout the convection zone.

Deviations from the perfect gas law cause the variations in
T, = (dln P/ 8ln p)s shown in Figure 2, At the surface, T, x~1.06 because
of the dissociation of hydrogen molecules. The region of neutral hydrogen
is a narrow peak about one pressure scale-height wide because of the
steep temperature gradient. The hydrogen ionization zone contains about
10% of the mass of the star. Ionization of He I distorts the I} curve
at logP=5.3; ionization of Hell at log P = 6.2 doesn't cause I} to
drop below 4/3. The broad dip in I beginning at log P=7.0 is caused
by the increasing radiation pressure near the bottom of the ionization zone.

The small kink in the density curve (Figure 2) at log P = 2.5 is
caused by an abrupt change in the mean molecular weight in the hydrogen
molecule dissociation zone, The initial point of the integration was in
the region of partial dissociation. As the density increases with the
temperature almost unchanging the equilibrium shifts very gradually
toward the molecules., When the temperature finally begins to increase
the mean molecular weight decreases abruptly as complete dissociation
occurs. The density inversion at log P=3.5 is caused by the steep
temperature gradient. In hotter models the density inversion may be

much larger in magnitude, and the region of low density may extend over

two or three pressure scale-heights,
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Ulrich (1968) has calculated a number of giant envelopes using
his own non-local treatment of convection. His models show the same
general characteristics as the models considered here, in which the
usual local mixing-length theory has been used, In particular, they

have large ionization zones and are appreciably superadiabatic through

the entire convection zone,

III. DEPENDENCE OF THE STRUCTURE ON POSITION

IN THE HR DIAGRAM

The relevant part of the HR diagram is shown in Figure 3, The
filled circles are static models at 1.3 M@; the open circle is the 1 M
model described in the previous section, The core mass-fraction for
each model is indicated, At a fixed luminosity the mass fraction decreases
rapidly with decreasing effective temperature, The boundary of the
Havyashi forbidden region is roughly at the point where the core mass
would be zero. The position of this boundary determines the lowest
effective temperature possible for a giant star at the mass and luminosity
considered. The boundary slopes toward lower temperatures as the
luminosity increases but curves back toward higher temperatures above
M‘bol ~ -5.5, Paczynski (1969) obtained the same result although he used
an unusual expression for the temperature gradient in the optically-thin
region, For the present calculations the usual diffusion equation was
used. Paczynski's method is discussed further in Appendix D. The
slope toward higher temperature can be seen in Figure 3 for the most

luminous models at log Te = 3.40 and 3.42,

The position of the Hayashi line depends strongly on the opacity,
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which depends on the composition of the envelope., Several 1.3 M@
models with composition X = 0.973, Z = 0.0001 and no molecular
opacity are indicated by crosses in Figure 3, One has almost no mass
in the core and is not a physically-reasonable red giant model for this
reason. An increase in opacity moves the Hayashi line to lower tem-
peratures, In the present models water vapor contributes most of the
low~temperature opacity. The amount of water vapor which can be
formed depends on the numerical excess of oxygen atoms over carbon
atoms. In population II stars in which the abundance of both is very
low, or in population I stars in which carbon ocutnumbers oxygen, a
different opacity source will be important at low temperatures. If it
is less effective than water vapor, models with a given core mass (and
total mass) and luminosity will have higher Te. The position of the
Hayashi line also depends on the total mass. The 1 M@ model denoted
by the open circle in Figure 3 has a core mass of 0,54 Me ; a 1.3 M@
model at the same position (not shown) has 13% or 0,17 M(9 in its core,

The ratio of mixing-length to pressure scale-height is not a well-
determined parameter of the convection theory and has been set to unity
in these calculations. A decrease of 10% in this ratio can result in a
significant increase in core mass for an envelope integrated from the
same surface conditions, For a model at log ’I‘e = 3,42 with a
luminosity L = 10%7 ergs/sec, changing the ratio from 1.0 to 0.9
increased the core mass-fraction from 0.49 to 0.69. When the ratio
is reduced, a higher temperature gradient V is required for the
convection to carry the same flux. This causes a decrease in the
density gradient ldp/drl and the mass is not used up so quickly during

the inward integration. Because of the larger V the convection zone
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is less deep and the model is more centrally-condensed. Auman and
Bodenheimer (1967) investigated the relative importance of changes in
the opacity and changes in convective efficiency in determining the
position of the Hayashi line., They found that it is more sensitive to the
efficiency of convection.

An important property of a sequence of models at a given
luminosity and total mass is that the mass in the hydrogen ionization
zone is largest in the model nearest the Hayashi line. For example,
the four coolest models at L =2 X 10*? ergs/sec in Figure 3 have,
respectively, greater than 7%, 15%, 29%, and 53% of the mass above
the region of full hydrogen ionization. If two models with the same core
mass but different luminosity are compared, the model with higher
luminosity will have more mass in the hydrogen zone, (This is true at
least up to the luminosity at which the lines of constant core mass turn
back toward higher Te.) At fixed luminosity, the mass outside the
hydrogen zone increases as Te decreases, At fixed Te, a model with
higher luminosity (at least up to the turn-back point) has more mass
outside the hydrogen zone., At a given Te and luminosity, a model
with lower total mass has a greater mass fraction outside the hydrogen
zone. These last three results are probably related to changes in the
surface gravity, but this may not be the only factor involved,

Some of the high-luminosity low~-temperature envelopes were
found to have positive total energy, as was first reported for models of

this type by Paczynski and Ziolkowski (1968a,b).
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IvVv. PERIODS OF THE MODELS:

THE PERIOD-MEAN DENSITY RELATION

The pulsation period is given roughly by

1

2
P‘Zrnfsr‘l i) = a (5 31‘1 ) 0
where
I = a,®* MR? is the moment of inertia of the star about its centre,
N = a,® M%/R is the gravitativona.l energy, and

IN = is a mean of (dln P/Bln p)s over the star (Rosseland 1949).

The pulsation constant Q is defined by

days[ /(R :l ; (2)

Q

and so is of the form

o

O
"

a -
constant times a—1~ (3n-4) . (3)
2

It is not strictly constant since a,, a,, and I}, depend onthe detailed
structure of the star,

The time-dependent behaviour of many of the models in Figure 3
was investigated. The periods and Q values for the fundamental mode
and an overtone are given in Table 1. The period for model 2.5 is not
well~determined since much less than a full period was followed; it is
probably longer than the time given, The fundamental periods for
Sequence 1 are not accurate because the overtone mode dominated at that
luminosity, Itis difficult tobe certainthat thereis only onenodeinanover-

tone model unless the model is fairly well-relaxed. Inthe case of Sequencelthe
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identification as the first overtone is certain, For Sequences 2 and 3
the overtone periods are not very reliable because of the strong inter-
ference from the fundamental mode. The anomalous value of Q, for
model 2.3 is an indication of the uncertainty in the period estimates for
Sequence 2,

In Sequence 2, Q increases as the temperature decreases. The
same behaviour was found in the extensive calculations by Christy (1966a).
It may be seen to arise from the structural changes along the sequence,
which were described in the previous section.

The ratio of overtone period to fundamental period P, /P, is
low compared to the value = ‘i- found for Cepheids and RR Lyrae stars,
but is consistent with results quoted by Ledoux and Walraven (1958). The
work of Schwarzschild (1941),as displayed by Christy (1966b), shows that
a value P, /P, ~ 0.3 is expected for Q, ~ 0.1.

Epstein (1950) showed that the pulsation frequency is very sensitive
to the physical conditions near a fractional radius of 0.7 for the fundamental
mode and 0.8 for the first overtone. This is just the region where
ionization of hydrogen causes a low value of T", in the present models,
From the I'| -dependence of Epstein's expression for the frequency,
(modified to take into account the variations in T, [see Ledoux and Pekeris
{1941}] ), it is clear that a value of I, less than 4/3 near the critical
radius could result in a significant decrease in the pulsation frequency and
increase in Q,

In Sequence 1 all the models pulsated preferentially in the overtone
mode; the models in Sequence 2 generally had a mixture of fundamental

and overtone. Model 2.3 had a mixture even after many periods of

calculation., At a fixed luminosity the strength of the fundamental mode
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increased as the temperature decreased. vAlso, at a given luminosity
and effective temperature, models of lower mass showed a stronger
fundamental. These effects seem to be correlated with the mass above
the hydrogen ionization zone; an increase in this mass results in a
stronger fundamental mode. This is because strong driving of the
pulsation occurs near the outer edge of the hydrogen ionization zone;
the closer this region is to the surface, the stronger is the driving in
the overtone mode. It may be possible that below some critical
luminosity only the overtone mode will be driven effectively. This has
not been checked by calculations.

Kamijo's model of Mira (Kamijo 1962) had parameters M=MG,

T, = 2370°K, R =2.85X108cms, and its composition included 18%
heiium by number. Its structure was similar to that of the present
models but the two helium ionization zones were much larger. From a
linear stability analysis with a standing-wave boundary condition at the
surface, Kamijo found a period of about 1050 days. Although this is too
long for Mira it is consistent with what would be expected from the
present work.

Schwarzschild and Stothers (1961) calculated the adiabatic pulsation
period of an unpublished model with M=1.3 My, L= 6390 Lo’ R =175 Ro’
log Te ~ 3.60, and with a composition X=0.90, Y=0.099. They found
Q=0.063 and a fundamental period of 107 days, both of which are
smaller than any calculated inthe present work. The radius of their model
is about the same as that of model 1.1 (Table 1), but the effective temperature
is much higher. Their period is shorter by a factor approximatelyequalto
the ratio of the Q's. Schwarzschild and Stothers used y= 5/3 throughout,

whereas in model 1.1, I'; was less than 4/3 in the outer part of the star
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due to hydrogen molecule dissociation and hydrogen ionization. The

difference in y's must be responsible for the difference in periods.

V. COMPARISON WITH OBSERVATIONS

a) Uncertainties in the Models

The comparison of static models with observations is subject to
many difficulties, The uncertainty in the position of the Hayashi line
{(and therefore in the core mass at a given luminosity and effective
temperature) has been discussed in §III. Inclusion of a full atmosphere
calculation using the equation of transfer and boundary conditions
appropriate for real stars may also make a difference in the position of
the Hayashi line. The effective temperature can't be defined uniquely by
g Te"‘ = flux if the flux is not independent of depth in the atmosphere.
Two methods of eliminating the ambiguity are discussed in Appendix D.

The periods of the models, and the knowledge of which pulsation
modes dominate are potentially the most valuable information for
comparison with observations. If Q were a constant a reasonable
estimate of the mass would give a strong hold on the radius. In Table 1
it is shown that Q changes fairly slowly along a model sequence at
constant luminosity except near the Hayashi line. The changes occur
faster at higher luminosity because of the generally-larger amount of
mass in the hydrogen ionization zone.

A change in the position of the Hayashi line must cause a change

in the Q of models near the line, but it may also change Q in models

far from the line, For example, a change in the opacity below some
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temperature Tc can only influence models with Te near or below TC;
the structure of a model should not be changed if Te is sufficiently high
that the optical depth is very small in the part of the atmosphere where
the change in opacity is made. However, if the Hayashi line is moved
by a change in the ratio of mixing-length to scale-height, then the
structure will be changed in all models in which convection is important.
Q also depends on the mass because a change in the mass of a
model at given luminosity and effective temperature causes a change in
the central condensation. This effect is large near the Hayashi line for
the mass considered, as the example in § II showed. The lM@ model
in Figure 3 (the open circle) had Q=0.11. This is probably smaller
than the Q of the 1.3 Me model at the same position, but is not very
different from the Q's of the other models at the same luminosity, At
higher luminosity the ionization zone occupies a greater fraction of the
envelope mass at a given core mass (cf. §III), so Q could be more
sensitive to changes in the envelope mass.
The long-period variables are apparently of mixed stellar
population. Plaut (1965) groups them as follows in order of increasing
population II characteristics:
group 1 : period > 300 days
group 2: period < 150 days and 200 < period < 300 days
group 3: 150 < period < 200 days,

Possible differences in mass and composition for the three groups

complicate the interpretation of the HR diagram.
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b) Requirements from the Theory of Stellar Evolution

Stellar evolution theory leads to some restrictions on the models.
The masses of the models are in agreement with the results of Fernie
(1959), and Fernie and Brooker (1961), who found that the masses of
X Oph and o Ceti could not be much more than lMQ. Stars with mass
less than 0.7 or 0.8 M0 must have main-sequence lifetimes greater
than the age of the galaxy. Thus the longperiod variables could be sub-
stantially less massive than the sun only if they have undergone consider-
able mass loss. They are observed to lose mass (Deutsch 1960), but the
rate is not high enough to allow a loss of the order of several tenths of
a solar mass. On the other hand, the long-period variables can't be
too massive because they don't have a galactic distribution expected for
young stars with masses of 2.5 M0 or greater,

The luminosity required by observations can be produced by
stars with ma sses about lMo' Pre-helium-flash models by Schwarzschild
and Selberg (1962), and by Schwarzschild and Harm (1962, 1964), at lMQ
and 1.3M_ reached luminosities of 10% L, for an interval of about 10%
years just before the peak of the helium flash. A lifetime of 10* years
is probably teo short to account for the observed number of long-period
variables. More recent calculations by Iben (1968) suggest slightly lower
luminosities at the peak of the flash. Solar mass stars in the stage of
helium shell-burning, or combined hydrogen and helium shell-burning
may be able to reach luminosities around 10% LQ for appreciable lengths
of time.

The core masses of the Schwarzschild models were about 0.5

Mo' Iben (1968) found similar values for a range of chemical coampositiong



18

and for masses from 0.7 to 1.3M0. He found that neutrino losses

increase the core mass and the luminosity at the peak of the helium

flash.

c¢) Discussion of the Observations

Some of the observational data has been plotted in Figure 3.

The X's are the statistical data of Osvalds and Risley (1961). These
authors estimated absolute visual magnitudes at maximum light for
eight groups of M stars by means of statistical parallaxes. The
absolute bolom.etfic magnitudes for their points are given by Smak(1966a)
and the effective temperatures are given by Smak (1964). The loops are
the data of Pettit and Nicholson (1933) for seven stars which they
observed with a thermocouple, The absolute magnitudes of R Hya,

X Oph, and o Ceti have been adjusted as discussed in Appendix A, but
the rest of the Pettit and Nicholson data has been used unchanged, The
circles in Figure 4 are the same models as in Figure 3. The funda-
mental periods of the models and the observed periods for the obser-
vational points are indicated.

The loops show that the bolometric luminosity range is about
one magnitude, and the full radius amplitude is about 25%. The data
points of Osvalds and Risley are at the high-temperature high-luminosity
ends of similar loops. Interpreted in this way, the points cover the
same general range of temperature and luminosity as the models, but
the periods are much shorter. The masses appropriate to the statis-

tical points are unknown, but since the period goes roughly as M_l/z,

masses much larger than 1.3 Mo would be required to explain the

discrepancy, In many cases the periods are in much better agreement
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with the overtone periods of the models. However, it is not certain
that the overtone mode would always be favored over the fundamental,
especially for the points with log ’I‘e below 3.40.

Feast (1963) suggested on the basis of radial velocity data that
the stars with periods less than 149 days were overtone pulsators
corresponding to stars with fundamental periods around 300 days.

Plaut (1965) has associated stars with periods less than 150 days with
those having periods between 200 and 300 days. Only one of the Osvald
and Risley points has a period less than 150 days, and its position in the
HR diagram suggests it may be an overtone pulsator. It is considerably
less luminous than most of the other Osvald and Risley points, and so

it doesn't support Feast's hypothesis that the two groups of stars he
associates consist of essentially identical stars pulsating in different
modes. The possible interpretation of most of the Osvald and Risley
points as overtone pulsators is also inconsistent with Feast's idea.

The Pettit and Nicholson data presents a problem. R Leo,

R Aql, x Cyg o Ceti, and possibly R Tri are beyond the Hayashi line
for 1.3 Mo' It is necessary to move the Hayashi line to lower tempera-~
tures to give them reasonable core masses. A model with mass con-
siderably below 1 Mo would be required to account for the low effective

temperature of R Agquilae if its luminosity is really M,=-3.8. For the

B
stars at higher luminosity a smaller decrease in mass would suffice.

An increase in the low-temperature opacity and/or a decrease in con-

- vective efficiency Would also help, and may even be necessary to explain
the temperature of R Aquilae.

The periods are so short that they pose a serious problem if

the radii inferred from the temperatures are correct. If the mass of
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R Aquilae is assumed to be 1 Mo’ a Q of 0,046 would be required to

give the correct period. This Q would require an extreme change in
the structure, which is probably impossible to achieve under reasonable
assumptions. A Q of 0.046 would be reasonable for a first overtone.
However, it has been noted previously that the fundamental mode
becomes progressively stronger as the mass and temperature are dec-
reased at a given luminosity. The 1 Me model indicated in Figure 4 by
the open circle showed a strong fundamental component in its pulsation.
The problem with the periods is about the same or worse for the stars
at higher luminosity; their radii are larger, the observed periods are
about the same, and they are expected to show a stronger fundamental
mode. A reasonable increase in mass would not help much to explain
the periods, and would make it more difficult to explain the low
temperatures.

Smak gives a calibration of T, vs. spectral type (Smak 1964),
and bolometric correction vs. spectral type (Smak 1966a), which
together give a relation between B.C. and Te" The temperature
change of the Pettit and Nicholson stars during a period causes a change
in the bolometric correction. If this change is added to the change in
bolometric luminosity from maximum to minimum, the result should be
greater than or equal to the observed visual luminosity amplitude. When
this procedure is applied to R Tri the calculated visual range is too
small by about 1.5 magnitudes. This test can't be applied to any of the
other Pettit and Nicholson stars because they are off the cool end of
Smak's calibration of Te at minimum luminosity. Some of the hotter
Osvald and Risley data points may also present the same problem as

R Tri.
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The main conclusion from the observations is that it is
difficult to explain the periods in terms of the fundamental mode of
pulsation. This is especially true for all the Pettit and Nicholson stars
except R Tri. At the same time dynamical calculations suggest that
the fundamental mode may be dominant at low temperature and high
luminosity. Any general upward adjustment of the temperature scale
may cause problems in explaining the visual luminosity amplitude if
Smak's determination (Smak 1964) of the effect of TiO is correct.
Perhaps the observed temperature characterizes conditions in an
extended envelope around the actual star, and is not a good indicator of
the radius (or effective temperature) of the pulsating star.

This entire discussion must be considered tentative until it is
shown that the present treatment of the low-temperature atmosphere
does not result in a serious error in the position of the Hayashi line.

I wish to thank Peter Goldreich and Robert F. Christy for
their interest, advice, encouragement, and many valuable discussions.
Thanks also go to T. Tsuji for making available his detailed opacity
calculations, and to Roger K. Ulrich for communicating results of his
calculations in advance of publication. I gratefully acknowledge the
financial assistance of the California Institute of Technology, the

National Research Council of Canada, and the Woodrow Wilson

Foundation.
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APPENDIX A

The absolute bolometric magnitudes given by Pettit and
Nicholson (1928) were used to establish the zero points for the light
curves (Pettit and Nicholson 1933), Changes were made in the three
cases listed below:

1) o Ceti: A distance modulus of 3.0 and an absolute visual mag-
nitude at maximum of MV = -L.0 were taken from Allen (1963), The
bolometric correction at maximum bolometric luminosity is -3.5
(Pettit and Nicholson 1928). The difference in bolometric correction
between maximum visual light and maximum bolometric luminosity was
estimated to be 0.5 magnitudes from the Pettit and Nicholson tem -
peratures and Smak's calibration of Te (1964) and B.C (1966a) vs.

spectral type. The luminosity was normalized to give M, = -4,0 at

B
visual phase 0.0,

2) X Oph: Smak's (1964) distance modulus of 7.4 was used with the
Pettit and Nicholson (1928) values of m_ and B.C. to normalize the

light curve.

3) R Hya: Smak's (1964) distance modulus of 5.9 was used as in the

case of X Oph.
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APPENDIX B

The opacity table was generated from the following formula:

p J B.ax10™? i X TV X (1-2 NH2/NHT)
K = -7 6/ma 6 - - -4, Y/
e] pT 2X10%/ T4+ 21T 4.5T6+T ™ (4x10™>/ T4 2x10 ‘/p/*) 1
i 1 1.5
Y | TaxioT Tt I8 +o.1T6]
- Tl/z
tZ | 20T + 5% ¢ T5:|
- 27
(NH + NH2) 5,55x10~7 T+ NCO -2
* b 1+10T%+ 3.42x10°5/78 |* ~ 5 (2.75X10 )

+

NOH (1.4X10 2 T¢\ NH20/(_2.6x10"" +9,72x10'1°e'3~&553/T
P 0.1+T* ) p \4.23X1074+T4 7 1+3.78 X103 T10

T is in units of 104°*K

p is the density

Pe is the electron pressure

X, Y, and Z are the usual mass-fractions

NHT is the total number density of protons in any form (hydrogen
molecules, atoms, ions, H etc.)

NH, NH2, etc. are the number densities of the species indicated by the

symbols following N,

The terms multiplied by Pe are the same as those described by
Christy (1966a), with one exception. The term contributing the low-
temperature opacity of hydrogen has been modified to account for the

depletion of hydrogen atoms due to formation of molecules, The term
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with coefficient (NH + NH2) takes account of Rayleigh scattering by

hydrogen and hydrogen molecules. (The cross-sections are about the
same and have been taken equal for simplicity, )

Data on molecular opacities was supplied by Tsuji (1967). In
these calculations the smearing parameter discussed by Tsuji (1966) was
taken equal to unity. This results in the highest opacity of all the cases
he considered. Although Tsuji gave the Rosseland mean absorption
coefficient explicitly, his monochromatic data was required for resolving
the mean opacity into contributions by different species, Since the
Rosseland mean of a sum of monochromatic opacities does not equal the
sum of the Rosseland means, the breakdown can be made clearly only
when one particular species dominates. Individual terms in the formula
are not to be considered as a good representation of the opacity contrib-
uted by a particular molecule except over a limited range where that
molecule dominates. Terms which never dominate were constructed
essentially to fill the gaps left by dominant terms, and were attributed
to the species which was considered on the basis of the monochromatic
data to be responsible for the extra opacity required.

The errors in fitting a formula to Tsuji's data should not exceed
10 % for most combinations of temperature and pressure, This is accept-
able in view of the uncertainties in his calculated data.

The molecular contributions have been written explicitly in terms
of number densities and may be useful over some range of composition,
However, the formula should be used with caution for carbon and oxygen
abundances much different from those used by Tsuji (1966),

Figure 5 is a plot of fnk in the range of temperature and density

where the molecules contribute, The plateau at the lowest temperatures,
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and the hump next to it in the high density region are caused by water

vapor,
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APPENDIX C

The Equation of State

A general program was developed for calculating the ionization
equilibrium for any number of elements with any number of stages of
ionization contributing simultaneously. The dissociation equilibria of
H™, H,, H,', CO, OH, and H,0 were included.

The chemical composition is given in Table Cl; it was taken
from the work of Lambert (1967).

Six quantities were tabulated for the equation of state. They
were (n ,Pgas’ Ink, Eion (the internal energy due to ionization),
(BlnN/aﬂnT)p, (a,en(N/p)/alnp)T, and (aEion/aT)p' From these, all
the required thermodynamic functions may be calculated.

The tabular spacing was 0.3 in log p. In log T it was 0.02
for 3.0<1log T < 4.80, and 0.05 for log T > 4.80.

The dissociation equilibria for H, H2+, and H, were cal-

culated from the formulae given by Vardya (1961). The following

expressions given by Tsuji (1967) were used for CO, OH, and H,0:

NcNo) _ ((((( - 1791392 X 10 %0 + 2.835639 X 10'2) 0

lo
glo Nco

- .1748075). 0+ .5426277)9 - 12.14802) 0

4 29.74919) -log T
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log, (—I\bl\gé:l-

) = (((((-3.788928)(10"46 + 6.441536><10'3)9
- 4.547711 xlo"") + .1874514) 6 -5.037783)9

+ 28.14544) ~log T

HNH

Log o (LM

HOH ) ) (((«‘95425“10_79 + 665139 X 10‘5) 0

- 1.915%><1o'3) 6 + 3.0786x10'2) o - 5.44421)9
+ 28.9062?_) - log T
where 0 = 5040/T and T 1is in degrees K,

The atomic ionization potentials and partition functions were

taken from Allen (1963),
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APPENDIX D
I. CALCULATION OF STATIC MODELS
The form for the hydrostatic equation is

dP GMop «kpL
gas _ _ T + rad (D 1)

dr T4 47”_-2 c

The last term is the exact expression for the radiation force if K is
the flux-mean opacity or if it is independent of wavelength. In the
actual calculation the Rosseland mean is used. When the diffusion

equation

KpL
d 1 _ rad
o e R T ()

is used to calculate the temperature gradient driving the radiative flux,

the hydrostatic equation can be written in the form

== -— (D 3)

where P =P
a

a5 + 4 aT*. In the optically-thick part of the star P is

the ordinary isotropic pressure because 1aT* is the correct
expression for the isotropic pressure of radiation. In the optically-
thin region {aT* does not have this interpretation. However, the
gradient of 3aT* still gives the radiation force correctly, if the

diffusion equation is used to calculate the temperature gradient.

The diffusion equation was used in the present models. In a
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recent paper Paczynski'(1969) modified the equation for the temperature
gradient in the optically-thin region. There is some justification for
imposing an r? dependence on T* to maintain consistency with a
radiation energy-density tempe rature when further interaction with the
atmosphere is negligible. However, this condition will not be applicable
close to a star where the effects of a stellar wind, or possibly a chromos-

phere, etc., can cause a much different temperature distribution.
Because of these problems it is not clear that the modified equation is
any more satisfactory than the diffusion equation.

The convective flux for the static models was calculated using

the usual mixing-length equations (Mihalas 1965; Bohm-Vitense 1958).

II. THE DEFINITION OF EFFECTIVE TEMPERATURE

In a plane parallel atmosphere in radiative equilibrium the
effective temperature is defined by (rTé = F, where the flux F is
constant with depth. In a gray atmosphere in local thermodynamic

equilibrium, the theory of radiative transfer gives the relation
4 - _ 3 F
TS =2 T (7+q(7)) = 2 = (7+q(7)) (D4)

If To is defined by Tt q(’re) = 4/3, then T(Te) = Te' This
provides an alternative definition of the effective temperature when the
appropriate value of Te is known. In a real star, if ¥ is sufficiently
constant over the entire range of optical depth of interest, the plane-
parallel approximation is valid. In a situation where F 1is not

sufficiently constant, not only is the plane -parallel approximation
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unjustified, but the definition of Te in terms of the flux is no longer
useful, It is still possible to define T, = T( 're), but it is not certain
what the value of To should be.

Initial values of M, L, P, T, and R are required tc; start
the inward integration., A combination of P, T, and R is chosen such
that the optical depth of a scale-height of atmosphere at that point is
very small. If the integration is carried in to some pre-assigned value
of 7, itis generally found that 4wR%gT* # L at that point. If T  and
T, are specified ahead of time, it is possible to choose the initial P,
T, and R such that the starting point is at low optical depth, T( 'Te)=Te,
and 47R%¢T* =L at 7= 7,. When this is done, the model is uniquely
determined in the sense that there is no other model with the same M,
1, Te’ LA for which all these conditions are satisfied but the pressure,
for example, is different at 're.

Another approach was used by Paczynski (1969). The differ-
ential form of the diffusion equation is not the source of the diffiéulty he
points out regarding starting values of T and R; the problem is in the
constant of integration in the integrated form which he discusses. By
putting R(7=0) = co he could have eliminated the problem, but then
would have had to impose a further condition to define the model uniquely.
Instead, he specifies a T(r) relation to hold at small optical depth, and
uses the derivative of it to get a steeper temperature gradient than that
given by the diffusion equation in the optically-thin region. Then, by
defining Te = T(’re) he defines a unique model at each (L, Te) point. In
general the relation 4mR2%¢T* =L will not be satisfied at 7= T

At a given M, 1, Te a whole sequence of models could be

calculated, for different choices of physically reasonable 're's; each
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would have a different core mass. A pair of models with L =10%ergs/sec,
M=13M_, logT =3.42 were calculated satisfying 47mRZ2¢T* =L at
T= T with T = 2 in one model and 7, =1 in the other. For 7 = 2
the core mass-fraction was 0491, while for 7, =1 it was 0.386. Ata
given T Paczynski's method of imposing uniqueness will give a
different core mass.

For most of the models calculated here an effective temperature
was estimated ahead of time and the starting temperature was calculated
from T* = %;Te" . The initial radius and pressure were chosen to make
the starting point at very small 7. The quantity 4mr?cT* decreases
inward initially due to the decrease in r, but T* increases rapidly as
T becomes of order unity. The equation 4mr2cT* = L. is satisfied at a
721 The value of T at which this occurred was taken to be the
effective temperature. The optical depth was not forced to have any
particular value at this point so the definition of Te was not unique.

The value of T where the condition on the luminosity was satisfied was
checked in a sequence of six models at L=2X 107 ergs/sec, with logTe
ranging from 3477 to 3.347. The value of 7 was generally in the
range 0.65 < 7 < 0.75. This uniformity was due partly to the way the
starting temperature and pressure were chosen, and partly to experience
in choosing the initial R. The spread in the effective temperature vs.
core mass relation due to the spread in T is of the order of a few per
cent except very near the Hayashi line where it may be higher. For
calculations where strict internal consistency was required, an iterative

procedure was used to fix LA at a pre-determined value.
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TABLE 1

THE PERIOD - MEAN DENSITY RELATION

Sequence 1

L=10%"ergs/sec

Sequence 2

L=2X10¥ergs/sec

Sequence 3

L=3xX103ergs/sec

hAodelh@J%A
1.1 0.94
1.2 0.88
1.3 0,57
2.1 0.93
2.2 0.85
2.3 0.64
2.4 0.40
2.5 0,20
3.1 0.73

R
(1013

cms)
1.15
1.31

1.65

1.86
2,22
2.65
3.07

3.37

3.26

Po

days)

180
220

310

434
640
865
1600

>2500

1190

Qo

0.098
0.098

0.098

0.114
0.129
0.160
0.198

>0.27

0.135

Py
{days)

Q

70 0.038

81

125

175
250

330

290

0.

0

036

.039

.035
.046

.041

.033
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TABLE C1

THE CHEMICAL COMPOSITION

Element Relative Abundance by Number
H 1.00
K 1.12%x 107"
Na 1.51 x10°°
Al 2.51 x10°°
Ca 2.14x107°
Mg 3,02%10°°
Fe 3.24x10°°
Si 3.55X 10"
S 1.62x10°
3.55 x10°*
5.89 X 10 *
8.51 x 10
Ne 7.58x10°°

He 6.30 X102
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FIGURE CAPTIONS

Curves showing the dependence of the mass and radius on the
pressure in the interior of a red giant.

Curves showing the envelope structure of a lMo extreme
red giant, L=10" ergs/sec. log T =3.39.

The grid of models in the HR diagram. The closed circles
are 1.3 Mo models; the open circle is a 1M(9 model. The
crosses are 1.3 M0 models with low helium and metal
abundance, The numbers are the core mass-fractions.

Comparison of models (circles) with observational data. The
crosses are the statistical points of Osvalds and Risley.
The loops show the luminosity and temperature variations
observed by Pettit and Nicholson,

Dependence of the total opacity (calculated from the formula
in Appendix B) on temperature and specific volume in the

region where molecular opacity is important.



35

10

05 -

0.0 I I
10 15 20
LogP

Figure 1



——-10
10

36

1.2 —
1.0

] _
_ <
3 1607 3 R
| \ ! _
AN <~
(swb ccOLN (W2 o,0M Y

LogP

Figure 2



L (1037 ergs/sec)

W

3x10'3 cm

s
X X —-5.0
70 .30
-
X X Q
53 .03 93 \ 64 .40.20 =
—-4.0

3.50 3.40 3.30



38

X131

® ©
180 220

3x40%3¢cm

%376

® o
310 520

R Tri 266

2 x 1013 cm

3.40
Log Te

Figure 4

3.30







40

REFERENCES
Allen, C. W. 1963, Astrophysical Quantities (2d ed.; London: The
Athlone Press),
Auman, J,, and Bodenheimer, P. 1967, Ap,J., }':4'2, 641,
Bohm-Vitense, E. 1958, Zs,f, Ap., ié, 108.
Christy, R. F, 1966a, Ap.J., 144, 108.

1966a, Ann, Rev, Astr, and Ap., 4, 353.

Deutsch, A, J. 1960, Stellar Atmospheres, ed. J. L. Greenstein

(Chicago: University of Chicago Press), Chap. XV.
Epstein, I. 1950, Ap.J., 112, 6,

Feast, M. W, 1963, M.N.R, A,S., 125, 367,

Fernie, J. D, 1959, Ap.J. 130, 611,
Fernie, J. D.,and Brooker, A, A, 1961, Ap,J. 133, 1088.
Iben, I., Jr. 1968, Ap.J., 154, 58l1.

Kamijo, F. 1962, Pub, A,S, Japan, 14, 271,

Lambert D, L, 1967, (private communication).

Ledoux, P., and Pekeris, C,L, 1941, Ap.J,, 94 124,

Ledoux, P., and Walraven, Th, 1958, Hdb, d. Phys., E}, 353,
Mihalas, D. 1965, Ap.J., 141, 564.
Nicholson, S.B., and Pettit, E. 1928, Ap.J., 68, 279.

1933, Ap.J., 78, 320.

Osvalds, V., and Risley, A.M, 1961, Pub, Leander McCormick Obs.,

11, part 21, 147,

Paczynski, B. 1969, Acta Astron., 19, 1.

Paczynski, B., and Ziolkowski, J. 1968a, I, A, U, Symposium No, 34:

Planetary. Nebulae,




41

REFERENCES, (Cont'd.)

1968b, Acta Astron., 18, 255.

Plaut, L. 1965, Galactic Structure, ed. A, Blaauw and M. Schmidt

(Chicago: University of Chicago Press), Chap., XIII,

Rosseland, S. 1949, The Pulsation Theory of Variable Stars, (Oxford:

Clarendon Press).
Schwarzschild, M. 1941, Ap.J., 94, 245,

Schwarzschild, M. 1958, Structure and Evolution of the Stars, (Princeton:

Princeton University Press),
Schwarzschild, M., and Selberg, H, 1962, Ap.J., E..é’ 150,
Schwarzschild, M., and Harm, H. 1962, Ap.J., }33, 158.
1964, Ap, J., 139, 594.

Schwarzschild, M., and Stothers, R. 1961, Ap,J., 133, 343,

Smak, J. 1964, Ap, J, Suppl. 9, 141,

1966a, Acta Astron., 16, 1.

1966b, Ann, Rev, Astr, and Ap., 4, 19.

Tsuji, T, 1966, Pub. A, S, Japan, 18, 127.

Tsuji, T. 1967, (private communication),
Ulrich, R. K. 1968, (private communication),

Vardya, M. S. 1961, Ap,J., 133, 107.



42

PART 2

DYNAMICAL MODELS OF LONG-PERIOD VARIABLE STARS
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ABSTRACT

It is shown that large-amplitude pulsation can occur in stars
which are convective through most of the envelope. The opacity
mechanism causes strong driving of the pulsation in the region outside
the hydrogen ionization zone, and the I'-mechanism results in very
low dissipation in the hydrogen zone. The phase relation between the
bolometric luminosity and the radius variations is similar to that of
Cepheids. A relaxed fundamental pulsator is discussed in detail, and

some overtone pulsators and two models close to dynamical instability

are described briefly,
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I. INTRODUCTION

The text which follows is divided into six main parts, In §II-§V
the detailed results for one model are described. This model has
M=M_, L=10% ergs/sec, (Mbol = -3.8), log T ,=3.39, anda core
mass-fraction of 0.54. The approach to steady pulsation is described
in §II, and the influence of the treatment of convection on the model
behaviour is discussed in §III, The relaxed model is discussed in §IV,
and some comparisons with observations are made in §V, In §VIa
brief description is given of two overtone models, a model with a
strong mixture of fundamental and overtone, and two models close to
dynamical instability, In §VII some of the results are reviewed and
discussed.

No attempt was made to develop a detailed physical treatment of
convection in a time-dependent situation because that would have been
a major problem in itself, and it was apart from the main interest in
the calculations. It was expected that some important results concern-
ing the dynamical behaviour of convective stars could be obtained with-
out such a treatment. The results which are presented below confirm
that expectation. They also show clearly which aspects of the treat-
ment of convectionv are most in need of improvement, and suggest what
further calculations may be useful even without an improvement,

A full description of the treatment of convection is given in
Appendix C, Tinile—dependence was included by the method used by
Cox, Brownlee, and Eilers (1966), but some modifications were made,.

In the conventional mixing-length treatment of convection the flux is
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calculated locally; it depends only on the conditions and the gradients
at the point where the flux is required., One result of this is that there
is no overshoot region, A siinple procedure was developed which makes
the convective flux depend on conditions over a region about a scale-
height in thickness. The convective flux will be called non-local, or
coupled, if it was calculated in this way,

In Appendix B the calculation of initial models is described
briefly. Static models integrated with the usual differential equations
were not used directly as initial conditions for dynamical calculations.
The initial models were calculated from a system of difference equations
obtained from the dynamical equations by suppressing the time derivat-
ives, Thus the initial values for all variables were determined on the
mass grid that was to be used in the dynamical calculations. In spite
of this there was in some cases a suggestion of some incompatibility
between the solution for the static model and the equations in the
dynamical program. This problem is discussed in Appendix B,

The dynamical program is described briefly in Appendix D, It
uses an implicit system of difference equations for the dynamics as well
as for the heat transfer. The program has two modes of operation, In
the hydrodynamic (HD) 'mode the equation of motion is used. In the
hydrostatic (HS) mode the heat transfer is calculated in the usual way
but the model is constrained to remain close to hydrostatic equilibrium
at all times. A damping term (which could be set to zero) was included
in the equation of motion. This made it possible to damp the pulsational
motion on an arbitrary time-scale., Only the envelope was included in

the dynamical calculation; the conditions applied at the inner boundary
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were that the velocity be identically zero, and the luminosity be a
constant in time (the core luminosity).

In Appendix A the secular stability of convective envelopes is
examined by means of a simple linear analysis,

A previous paper on static models ([Keeley 1969], hereafter
called Paper I) referred to some of the general results described in
the present paper. In Appendix E there is a brief discussion of the

models described in Paper I,

The equation of state and the opacity were discussed in the

appendices of Paper I.
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II. THE APPROACH TO STEADY PULSATION
The parameters for the initial model were M = M, L= 1037
ergs/sec, log Te = 3.39, and the core mass-fraction was 0,54,
This model was identical to the one solar mass model which was
described in detail in Paper I,

The initial model was calculated using the local treatment of
convection, When it was plugged into the dynamical program using
the non-local treatment, the luminosity was not independent of
depth and the model began to readjust itself to reach this condition.
The model was followed for about 7 X107 seconds in the HD mode
with damping, This was enough time for the initial disturbance
caused by the change in energy transfer to settle down, but was
not enough for the full readjustment to occur,

The model was then given a fundamental-mode velocity
perturbation and was followed in the HD mode. The kinetic
energy of the initial perturbation was 1.5 X 10%2 ergs. The light
curve starting from the time of the initial perturbation is shown

in Figure 1. The rapid initial growth in amplitude occurred in

all models which were excited
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in the most unstable mode. The kinetic energy reached a peak of
7.5X10%ergs at t=35.5 1, and then gradually decreased to 3.4X10%
ergs by t=120. The mean luminosity per period had a time-average
value greater than the core luminosity until about t=110. By t=110,
an excess of 1.8X10* ergs had been radiated. At this time the total
internal energy of the envelope was 1.75X10%%ergs, and the potential
energy was —1.55X1046ergs. Gravitational contraction provided the
excess luminosity and simultaneously increased the internal energy.
The effect of the contraction is clear from the period of the light curve.
The change in structure described above was not entirely the
result of the change in the energy transfer. Three different contributions
were identified. Table 1 contains the radius of each mass-shell for four
different hydrostatic models which are described below. Modell is the
original static model integrated with the local description of convection.
Model 2 was obtained from model 1 by perturbing it slightly and then
calculating in the HS mode using local convection, until it had returned
to the condition of luminosity-constancy. The difference between model
2 and model 1 is a source of some concern, and is discussed in Appendix
B. Model 3 was obtained from model 1 by using the non-local convection
equations and integrating forward in time with the HS mode until lum-
inosity-constancy was reached. The difference between model 2 and
model 3 is caused entirely by the change to non-local convection. The
overshoot from the convection zone helps transfer energy near the

inner edge of the surface radiative region where the opacity is high.

!The unit of time in expressions of the form t=-.. will be
107 seconds unless it is explicitly given otherwise.
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This causes a net energy loss from the non-local model which is stopped
by the adjustment it makes. Model 3 is the static model which the
pulsating model would have approached if it had been stable; in this
sense, model 3 is really the initial model of the calculation.

Model 4 in Table 1 was obtained from the steadily-pulsating model
by damping out the kinetic energy on a timescale of about one pulsation
period. The difference between model 3 and model 4 is entirely due to
the non-linearity of the pulsation. Model 4 is very close to hydrostatic
equilibrium, but is far from luminosity constancy. Except near the
boundargr of the core the luminosity was about 0.8X10% ergs/sec, which
is less than the core luminosity of 1037 ergs/sec. The difference in
radius between corresponding mass shells in models 3 and 4 is more than
sufficient to account for the lower luminosity. The damping procedure
was repeated with a longer timescale over which there was a slow decay
of the amplitude. The result is shown in Figure 2. The luminosity and
radius curves for the heavily-damped model are shown for comparison.
The radius and luminosity amplitudes of the undamped model are also
indicated. The heavily-damped model was followed for a long time,
partly in the HS mode. It gradually expanded out past a radius of
1.65X108 cms, and would certainly have returned to the structure of
model 3 (Table 1) after a sufficiently long time. At least 107 seconds
would have passed before the luminosity difference between the core and
the surface could have supplied the necessary gravitational energy.

All models, not just the one described above, developed a lum-
inosity excess and then gradually reduced it by making a change in

structure. The local treatment of convection was used in most
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calculations, so the non-local treatment was not responsible for this
behaviour, Models given an inward initial velocity perturbation also
developed the luminosity excess, The overtone models were usually
slower to show a structural change, possibly because of their generally
lower amplitudes, but again the luminosity excess was clear., Some of
the early models were calculated using an explicit system of difference
equations for the dynamics, and using a different surface boundary
condition, but they also showed the same general behaviour. The

reason for this behaviour is discussed in the next section.

II1. INFLUENCE OF THE TREATMENT OF CONVECTION

ON THE DYNAMICAL BEHAVIOUR OF THE MODELS

The convective flux at time t + At is calculated from the flux

at time t by

F(t+ At) - F(t) _ F' - F(t) )
'T ?

At

where F' is the flux calculated from the instantaneous conditions at
time t+ At, and 7 is a time-scale which will be discussed later.
Thus the actual flux F is changed at a rate such that it would reach
the instantaneous value F' after a time 7. At almost all times during
the calculation At/7 < 0.2}. The differential equation corresponding to
equation (1) is

' .
& BE (2)
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If 7 is a constant, and if the driving term ¥F' has the form

- iwkt
F'=F, + ), F e , (3)
k
the solution of (2) is
F iw, t
-t -t/ T Y k -t
F(t) = F(0)e ™ T4 By e 7) 4 ) T (e Ko /Ty
k k
Even if F(0) = F, the relaxed solution,
F -iw, t
k k
Fit)=Fo + ), s © , (5)
k k

is not reached until t/7 >>1, If F' is a pure sine wave, or if

Wy T < <1 for all k, the function F(t) will look the same as F"',
Terms in F' with frequencies such that W T> 1 have lower amplitude
in F(t); thus F' is smoothed over a time 7. The most important
result is that the time-average of F(t) is equal to F, , the time
average of F' in the relaxed solution., If F, is not equal to the flux
in the equilibrium model, then the time-average of F(t) will be
different from the equilibrium flux. The solution of the difference

equation (1) after n steps of equal length At is

(At/T)F, &'t

Fn+l)=F, + — (6)
© T 1-(-at/m)e WAt

if (1-at/ 'r)n< < 1. (The driving function F' has been assumed to have

only one frequency component.) If wAt < <1, equation (6) reduces to
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exactly the same form as the solution of the differential equation.

The time-scale T is not a constant during the calculation, "It
is written in the form 7= #/v, where £ is the mixing-length and v
is the convective velocity, This choice of 7T implies that the energy
transferred by a convecting element builds up to the full value only after
the element has moved a distance the order of a mixing-length, i.e.,

only after it has existed for an appreciable fraction of its lifetime, As

a decay time-scale, 7T is in agreement with experiments (Batchelor

1953), which give
L i 2 - - ¥

where A is of order unity. Thus 7T is a reasonable time-scale for
the decay of turbulent kinetic energy in the absence of forces to drive
the turbulence. In equation (7) the length £ is roughly the size of the
eddies responsible for most of the energy transfer, and is usually taken
to be about a pressure scale-height in stellar convection calculations.
Both £ and v may vary considerably during a dynamical calculation.
The mixing-length £ depends on the physical structure while the
velocity v is related to the convective flux,

In almost all the calculations reported here, the instantaneous
convective velocity, corresponding to the instantaneous flux F', was
used for v in the calculation of 7. Using the instantaneous velocity
favors a fast rise and a slow decay in F(t). This is shown in Figure 3,
The instantaneous velocity varies from 1.36 to 2.30 km/sec. During

the decay of F' the instantaneous velocity drops quickly; the low
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velocity causes a large 7T and results in a slow decay of F(t).

In some early model calculations the sound-speed was used in
the expression for the timescale 7. It exceeds the convective velocity
by a factor of four or more through the region where convection is
important, and doesn't vary as much as the instantaneous velocity.
Thus the time-scale is shorter, especially deep in the interior, and is
not coupled to the instantaneous flux F!', In spite of these differences,
a similar excess luminosity and structural change developed in the
early models,

An estimate of the actual convective velocity can be obtained by
assuming it is related to the actual flux F(t) in the same way és in the
time-independent situation. The velocity calculated in this way from the
non-local flux at time t is used in the timescale T to calculate the
local flux at time t + At from equation (1). The local flux is then
spatially smoothed as described in Appendix C to give the non-local flux.

The instantaneous velocity was used in the calculations des-
cribed in §II. Some parts of the calculation were repeated with the
velocity calculated from the actual flux as described above., When the
calculation of the steadily-pulsating model was continued with the new
velocity, the time-average surface luminosity was immediately reduced
below the core luminosity, and remained below it for the four periods
in which the calculation was continued, The radius amplitude and the
peak kinetic energy increased slightly. If the calculation had been
continued the mean radius would have increased until a steady pulsation
was reached., A new calculation was begun starting from the non-local

static model 3 in Table 4, During the nine periods it was followed the
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energy loss in luminosity amounted to about half the amount lost in the
calculation using the instantaneous velocity, and the loss rate was still
fairly large. These two calculations showed that changing the calcula-
tion of the velocity made a difference, but didn't change the order of
magnitude of the energy loss. A plot of luminosity vs, time similar to
Figure 3 revealed that the asymmetry between the rise and the decay of
the convective luminosity had been reduced but not eliminated.

The variations in the mixing-length # make an important con-
tribution to the changes in the time-scale T in the outer part of the
convection zone where the pulsation amplitude is large. The mixing-
length at a given mass shell is proportional to PVr?, where P is the
pressure, V is the specific volume, and r is the radius, The var-
iations in r dominate in the outer regions of the model, so ¢ is
largest at the time of maximum expansion. The expansion is not in
phase with the convective flux (see Fig.4); { is generally small when
the flux is increasing, and large when it is decreasing, This also
contributes to the fast rise and slow decay of the luminosity. Near the
inner edge of the hydrogen ionization zone { changes by only about 10%;
near the outer edge it varies by a factor of 1.7. The variation in £ in
the outer part of the star is comparable to the variation in the convective
velocity; thus the definition of £ is important to the dynamical
behaviour, and it must be chosen carefully., For example, the mixing
length would vary much more if it were defined to be the thickness of a
mass layer which‘ is one scale-height in thickness in the equilibrium
model; in this case, £ o specific volume, and it could vary by an

order of magnitude in the outer part of a large-amplitude model. The
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resulting modulation of T would be a dominant factor in the dynamical
behaviour,

The behaviour of some of the quantities related to the luminosity
is shown in Figure 3 for the steadily-pulsating model in which the
instantantous velocity was used to calculate the time-scale. The curves
are plotted for boundary 13, near the bottom of the hydrogen ionization
zone, The peak in the instantaneous flux F' is off scale; F' reaches
a maximum of 2.59X10%ergs cm “sec™ at t= 118.50, just about the

time of maximum compression in zones 13 and 14, The instantaneous

flux has the form
Ji
[ ] - _—
F' a CpLpTv(V-Vg) G (8)

. . . . . .
in the standard notation. (See Appendix C.) The ratio Frnax/ min~ 8
is made up as follows:

vma,x/vmin =17

(CppT) /(chT)min =1.76

max

max min

W/E), ) = 1.06

Thus all parts of the expression for F' contribute to its variation.
The variation in CP at the bottom of the ionization zone opposes the
variation in the factor pT, which alone gives a ratio of 2.73. At the

outer edge of the ionization zone CP and pT work together. The
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phase shift between the flux F(t) and the radius R (Fig. 3) causes the
maximum luminosity to occur later than the maximum flux F, and
also causes the luminosity amplitude to be smaller than the flux ampli-
tude. The flux at boundary 13 in model 4 (Table 1) is 0,735X101!0 erg
cm’ sec-l, and is equal to F' since the oscillations have been damped
out. The time-average value of F' in Figure 3 is larger than this., The
luminosity at boundary 13 in the pulsating model gets as low as the
luminosity in the damped model 4 only at the minimum luminosity in

the pulsating model; the mean luminosity in the pulsating model is

close to the core luminosity of 10% ergs/sec. Thus the model transfers
energy much more efficiently when it is pulsating.

From the above discussion it is clear that the excessive luminos-
ity which develops in pulsating models is caused by the non-linear
behaviour of the convective flux, The discussion in §IVd will show
that the dynamical behaviour is also very non-linear, and should also
contribute to non-linearity in the energy transfer. It is possible that
the convection‘calculation used here gave unrealistic results for the
time~average‘ flux. Several variations of the same basic method gave
similar results. A completely different approach to convection in a
time-dependent situation, such as that developed by Castor (1968),
should be tried, to help determine how much the result obtained here
depends on the method used,

One consequence of the structural change is that the time-average
temperature and specific volume near the inside rigid boundary of the

steadily-pulsating model are different from the values in the original

model. In other words, the pulsating model will not connect to exactly
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the same core as the initial model. Thus the general behaviour of the
model during the approach to steady pulsation is not associated with
either the initial static model or the final pulsating model consisting

of an envelope plus a core. If the non-linearity of the pulsation really
does change the energy transfer as much as was found here, then it will
be important to determine what would have happened if a core had been
connected, Probably only a very small adjustment of the core would
result, but if the energy generation rate were sensitive to the change,
then the occurrence of pulsational instability could have some effect on
the evolutionary timescale,

The change in structure makes the calculations more difficult,
Usually, the model approaches its limiting amplitude from above
rather than below, so that strong shocks and irregularities which slow
the calculation are more likely to be present, It is almost impossible
to study the driving mechanism at low amplitude because of the secular
changes which are always occurring until the model reaches a steady

pulsation. The model relaxes to a steady pulsation only after many

periods,
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Iv., STEADY PULSATION

a) Driving of the Pulsation

Non-adiabatic effects determine whether a mechanical disturbance
will damp out or grow to a finite amplitude. For growth, the star must
function as a heat engine, converting heat into kinetic energy faster than
the kinetic energy is dissipated, For a mass zone to produce net mecha-
nical energy during a cyclic process it must absorb heat at a high temp-
erature and expel it at a low tem;erature as it goes around the cycle.

The conversion of energy from the luminosity into mechanical
energy is an alternate means of transferring energy to the outside, If
the energy finally escaping from the star is entirely in the form of
radiation, then the exterior luminosity averaged over a period is equal
to the core luminosity. The mean luminosity across the inner boundary
of a mass zone which produces kinetic energy will be greater than the
mean luminosity across its outer boundary by an amount equal to the
kinetic energy produced., The kinetic energy is transferred at the speed

of sound to other parts of the star, but there is a net outflow to balance

the luminosity deficit,

From the equation of motion,

Dy T7r\ _ DV 9 2
Dt(Z r) P = aMr(4”rrP)' (9)

When this is integrated over the mass of the envelope and the boundary

conditions f(MC) =0, P(M) = 0 are applied the result is



59

M
L (KE+PE) = ( %‘%)er : (10)
M
C

During a periodic pulsation AKE and APE are both zero over a

period, but the integral over a period
I= 5( PdV (11)

is not generally zero for any particular mass zone. For each mass
zone this integral is positive if it is producing kinetic energy and
negative if it is absorbing it. For a periodic pulsation the change in

internal energy of any mass zone is zero over the period, so that
p Pav = Hdq (12)

where dQ is the heat absorbed by the zone during time dt.

In Figure 4 the average of AM § PdV and AMf dQ is plotted for
each mass zone, Zones where this quantity is positive are driving the
pulsation. The model was approaching the limiting amplitude from
above, and the dissipation exceeded the driving by 2.89X10*? ergs
during the period. The peak kinetic energy was 3.42X10% ergs. The
region of partial ionization of hydrogen (I < 4/3) is shown at its
extreme positions in Figure 4, The outer boundary of the convection
zone, defined as the point at which radiation carries half the flux,
moves approximately in step with the outer edge of the hydrogen ioni-

zation zone,

Almost all of the driving comes from zones 19 to 23, over
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which the boundaries of the ionization and convection zones move during
a period. At maximum expansion the boundaries from 20 outward are
radiative., During compression the opacity increases and blocks the
flux until the convective flux can build up. By the time the convection-
zone has reached out to boundary 23 the compression has been reversed
and the convection zone recedes again, As the zones become radiative
again they release the ionization energy that was stored in them. The
opacity that blocks the flux is mostly from H and neutral hydrogen;
thus the driving does not depend on the uncertainties of the molecular
opacity.” The mean flux of kinetic energy from the driving region is
small compared to the mean luminous flux through it,

The mass in zones 20 to 23 is 3.1X10% gms and so the energy
required to ionize them completely is roughly 4X10* ergs, which is
greater than the total luminosity integrated over a period. Thus these
four zones are capable of storing all the luminous energy for an entire
period. The total variation in internal energy of the envelope during a
period is about 1.9X10*® ergs, The internal energy in zones 20 to 23
changes by almost 10* ergs; most of this is ionization energy. At
boundary 23, about 3X103'2V1ergs/sec are required to advance the
ionization zone with velocity vy if complete ionization is required.
Thus even with the full luminosity this wbuld give v

I

full luminosity is not available but complete‘ ionization is not required;

<1lkm/sec. The

in fact, the ionization zone advances by about 0.5 km/sec between

boundaries 22 and 23.
The spatial smoothing of the convective flux (by the non-local

treatment) provides an overshoot region which helps transfer energy
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even outside the region of convective instability, but it also decreases
the flux near the edge of the region of efficient convective transfer,
Because of these two effects it is not absolutely certain that the smooth-
ing works against the opacity mechanism, but it probably does,

There is weak dissipation in the middle of the ionization zone
(see Fig. 4) but the dissipation is low at the bottom of the zone., There
is slight driving in two zones., This suggests that the region of low
T, can also contribute to the instability., The dissipation in the region
of low Iy 1is much less than in the region immediately below. The very
strong driving at the outer edge of the ionization zone may cause over-
driving of the ionization zone nearby; this could account for the dissi-
pation which occurs near the middle of the ionization zone. There is
no sign of the Hell ionization zone which occurs around zones 7 and 8.
In these zones I, never gets as low as 4/3. The data for zones 2
and 3 is spurious because of a small numerical instability in that region.
The dissipation in the surface regions is mpch stronger than that in the
Cepheid and RR Lyrae models of Christy. (See eg. Christy 1966), In
the present model the surface region dissipates almost as much kinetic
energy as the interior. In the outside few zones especially, much of
the dissipation is caused by a strong shock. The region of dissociation
of hydrogen molecules is always radiative, (although it is unstable to
convection for part of the time), and is optically thin for much of the
period. It is not clear whether the low I} in this region causes a
reduction in the dissipation. In cooler models this region could become
optically thick., Perhaps the hydrogen molecule dissociation region

could contribute some driving in that situation.
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Figure 5 is a plot of AM 9( dQ averaged over two periods during
a time when the model was considerably more over-driven than during
the period from which the data for Figure 4 was taken. The radius
amplitude Z(Rmax - Rmin)/(Rmax+ Rmin) is also plotted. The general
features in Figure 5 are in agreement with those in Figure 4, The
damping in the middle of the hydrogen zone, and at its bottom edge, is
considerably stronger in Figure 5 than in Figure 4, but there is still a
significant reduction in damping near the bottom edge compared to the
region below it,

The strong driving near the surface is favorable for the excitation
of overtone modes, In models hotter than the one being discussed here,
there was not so much mass outside the ionization zone and the overtone
mode did dominate. If the hydrogen molecule dissociation region could
drive pulsation under some conditions, it might also excite the overtone
modes, Inthe overtone models calculated, the node generally occurred
near the middle of the hydrogen ionization zone, at the place where the
dissipation shown in Figure 4 would occur,

Model 3 in Table 1 was tested for instability with the opacity fixed
at its initial value in each zone, The perturbation decayed slowly and a
very small amplitude pulsation could possibly have been sustained.
Much of the ionization zone showed weak driving or very low dissipation.
However, it is fairly certain that a large-amplitude oscillation could not

be maintained in this model without the variation in opacity.

b) Velocity Curves

The velocity of the outer eight boundaries is plotted against time
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in Figure 6a. Outward velocities are positive, All the boundaries out-
side number 23 reach higher speeds on infall than during expansion,
During infall, the acceleration may be 10% or 20% of the acceleration of
gravity near the outer part of the convection zone, but at the outer two
or three boundaries it may be as high as 80%, Near the time of velocity
reversal, accelerations become cormparable to the acceleration of gravity
in outer zones. These accelerations have some influence on the con-
vective flux, but in general the very large accelerations occur only in
the radiative region near the surface. An asymmetry can be present in
the dynamics because the inward acceleration never exceeds the accelera-
tion of gravity, whereas the outward acceleration may.

The curves for boundaries inside number 22 are shown in Figure
6b. Maximum inward velocity occurs earliest around boundaries 22
and 23, Above them, the phase shift to later times shows a compression
wave propagating outward, becoming a shock by the time it reaches
boundary 26 or 27, Inside boundary 22 the maximum inward velocity
shifts to later times as a compression wave propagates inward, It
reflects from the inner rigid sphere and returns about 3X10° seconds
later at boundary 9., The sound speed inside boundary 1 is so high that
the travel time from there to the centre and back is less than 10° seconds.
The maximum outward velocity is reached first in the inner regions as
the reflected wave returns, The curves are smooth out to boundary 22,
but above there the wave arrives after the velocity has been reversed
due to the compression wave originating around ‘boundary 22, At
boundaries 24-27 the first wave brings the velocity to zero and the

second initiates the expansion. In this model the peak kinetic energy



64

was larger by a few per cent during infall than during expansion,

c) Behaviour of the Luminosity at Interior Boundaries

As expansion begins in the interior, the luminosity profile
L(Mr) has a hump in the middle of the ionization zone, but the luminosity
at the surface is near its minimum value, The region where convection
is effective (flux greater than 50%) reaches out to boundary 24, The
hump in L(Mr) is only about 30% above the mean luminosity; the
luminosity amplitude in the interior of Christy's radiative models,
(Christy 1966), is much larger than this, In the present model the non-
local treatment of the convective luminosity reduced the amplitude and
spread the peak out because of the close coupling to zones where the
peak in local flux was not very high., The convective zone recedes as
expansion occurs, and the divergence of the flux becbmes positive and
large in the transition region between convective and radiative energy
transfer, This divergence results from a steep gradient in the radiative
flux, The luminosity L(Mr) is almost independent of M_ in the
radiative region during the rise to maximum luminosity. After com-
pression begins the convective zone spreads outward again. The initial
increase in the convective flux outside the region of efficient convection
is caused by overshoot. Convection contributes 10 or 15% of the
luminosity at optical depth unity near the time of maximum luminosity,

and essentially all of this is overshoot from deeper layers.

d) The Non-linearity of the Dynamics

The behaviour of the pressure and specific volume as functions
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of time is shown in Figures 7a and 7b. Zone 2l is near the outside edge
of the hydrogen ionization zone; zone 13 is near the inside edge of the
ionization zone, The curves for zone 13 are more regular than those
for zone 21, but even in zone 13 the non-linearity of the pulsation is
quite evident, The phase relationship between P and V in zone 13
shows that it neither dissipates nor drives very strongly. The high-
pressure spikes in zone 13 contribute significantly to the non-linearity
in the instantaneous flux F!' (see §III).

The specific volume in zone 21 has its main peak earlier than
the peak in zone 13, but shows a secondary peak near the time of maxi-
mum in zone 13, The main peak in the specific volume in zone 21 is
caused by the motion of the boundary between the radiative and convective
regions during expansion, When boundary 22 becomes radiative, zone
22 begins to cool very rapidly. The pressure drop due to cooling
causes a faster decrease in the outward velocity at boundary 22 than at
boundary 21. Zone 22 is compressed and zone 21 expands; this causes
the main peak in the specific volume. Eventually boundary 21 becomes
radiative also, and soon its velocity drops below that of boundaries 20
and 22. Then zone 22 resumes expanding and compression begins in
zone 21. The same process repeats at boundary 20, which is the last
one to become radiative., A plot of pressure vs, specific volume for
zone 21 is shown in Figure 8. The early peak in the specific volume
does not make the difference between driving (positive area) and
damping. Note that the specific volume varies by a factor of seven and

the pressure variés by a factor of about sixteen.

The temperature for zone 21 is also shown in Figure 7a, The



66

rapid simultaneous increases in pressure and temperature terminate
together as the compression almost stops and the specific heat begins
to increase rapidly due to ionization of hydrogen. When expansion
begins the pressure drops very rapidly. The temperature holds up
longer, partly because of the high specific heat, and partly because for
awhile the zone is absorbing heat from the flux, The rapid drop in
temperature begins as boundary 21 becomes radiative and the expansion

of zone 21 is terminated.

e) Miscellaneous Details

The mass of the hydrogen molecule dissociation region (defined
by T, < 4/3) varies from 1.33X10% gms to 2.9 x10% gms. For the
hydrogen ionization zone the variation is from 2.53X10*3gms (12% of
the mass of the star), to 1.56X10%?2gms, The mass of the convection
zone is about 1033 gms, and it changes by about 3X103! gms during the
pulsation. The turbulent kinetic energy calculated as = %mvé from
the instantaneous convective velocity varied from 1,27X10% to 2.64 X
108 ergs, The largest turbulent energy density comes from just below
the ionization zone around boundary 11, Probably the variation would be
a little smaller if the actual convective velocity (see §III) were used.
The variation in turbulent kinetic energy is comparable to the peak
kinetic energy of the pulsation, which was about 3.4X10*3ergs. The
energy required to increase the turbulent kinetic energy comes partly
from the buoyant force and partly from the work done against the tur-

bulent pressure., For a reliable calculation of the kinetic energy

amplitude of the pulsation it will probably be necessary to include the
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turbulent pressure in the equation of motion, and to write an additional
differential equation for the time dependence of the turbulent kinetic

energy. Neither of these were included in this work,

V. THE EXTERIOR REGIONS OF THE MODEL:

COMPARISON WITH OBSERVATIONS

There are several uncertainties in the optically-thin part of the
model, The diffusion equation with a Rosseland mean opacity has been
used to calculate the radiative flux. The boundary condition relating the

temperature and luminosity at the surface was written in the form
= p(47R%¢TH) , (13)

where p is a constant chosen as described in Appendix D, The optical

depth was calculated from T = ZgpAr, where Ar is the thickness of a
mass zone, The number of zones in the region 7T <1 varied from three
to six; thus the grid of optical depth was very crude,

No attempt was made to fit the model to a particular star, but it
is convenient for the purpose of discussion to compare it to Mira. The
period of Mira is about 30 days longer than the period of the model, but
the mass and luminosity of the model may be about right, The atmos-

pheric temperature of the model is higher than the observed temperature

of Mira,
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a) The Bolometric Luminosity Curve

The bolometric luminosity curve for the model is shown in
Figdre 9. The range is about 1.64 magnitudes, which is larger than
the observed one magnitude range of Mira, which seems to be typical
(Pettit and Nicholson 1933). The general appearance of the light curve,
with the rise to maximum occurring in less than half the period, is
similar to that of Mira, The peculiar bumps on the curve repeat fairly
regularly, but it is not certain that they are of physical significance;
they could be caused by incomplete relaxation, or by the coarse zoning
in the model,

For comparison the radius of boundary 27 is also plotted in
Figure 9, The phase relation is qualitatively similar to that of Cepheids,
in which maximum luminosity occurs near maximum outward velocity.
The observations of Pettit and Nicholson (1933) first showed that the
maximum bolometric luminosity followed the maximum visual luminosity
by about 15% of the period. Their observations showed that the photo-
spheric temperature was decreasing between these times, and so im-
plied that the radius was increasing. They pointed out in their paper
that the situation was qualitatively similar to that for a Cepheid. More
recent observations, (eg. Eggen 1967), have confirmed the phase shift

between the visual and infrared light curves,

b) Radius Curves

The radius variation for mass shells throughout the model is

shown in Figure 10. The fractional amplitude of the 7=1 surface is

about 0.45, compared to the value 0.365 determined by Pettit and
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Nicholson (1933) for Mira, In the model the maximum radius at 7 =1
occurs just after maximum bolometric luminosity. If a 7 less than
unity should be used to describe the photosphere, then maximum radius
comes later, and the fractional amplitude is larger, If the region of
0,01 < 7<1 is as extended as the model suggests during infall, then
curvature effects will be important in the atmospheric structure,

The phase shift in times of maximum radius for the outer few
boundaries is quite large, as shown in Figure 10, Observations of
Mira by Joy (1926) show that the absorption lines have maximum inward
velocity around the time of maximum visual light. If these lines are
formed in a region of the star comparable to the outer zone of the model,
and if maximum visual light does occur around minimum radius as stated
by Pettit and Nicholson (1933), then it may be possible to understand the
phase of the absorption line velocities.

Figure 11 shows the outward velocity plotted against optical depth
for different times before velocity reversal, A positive slope indicates
a velocity gradient corresponding to compression, By t=102.62 there
is a shock developing between 7=0,1 and 0.2, The actual thickness of
the shock is not given by the calculation, since the method of artificial
viscosity (Richtmyer 1957) smears it out over two or three zones; how-
ever, the speed of advance should be about right. By t=103.0 the
shock has moved to 7< 0.1 and by t=103.28 it has run through all the
mass layers of the model, It is not possible to say from the model

whether this shock would produce emission lines,
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c¢) The Visual Luminosity and Effective Temperature

It is difficult to estimate the time at which the model reaches
maximum visual luminosity, Pettit and Nicholson (1933) found that
maximum visual luminosity occurred very nearly at the time of maxi-
mum temperature; this is consistent with the strong temperature
sensitivity expected for the visual flux. Curves of the temperature vs,
time for the outer layers of the model are shown in Figure 12, The
maximum photospheric temperature would be expected to occur between
t = 103.30 and 103,75; in terms of the radius, this is from near mini-
mum to about the time-average, and in terms of the bolometric lum-
inosity it is from near minimum to well above the time average.
Although maximum compression occurs near t = 103,31, maximum
temperature is delayed in the outer few zones because of a negative flux
divergence in them during the initial states of expansion. The times of
minimum temperature also show a shift corresponding to the times of
maximum specific volume,

Maximum visual flux will occur when the temperature at the
surface 7T (visual) = % is highest., This will not necessarily occur
when the temperature is highest at the surface 7 (Rosseland) =% , nor

will it necessarily occur when the temperature defined by
2 4 -
47R_oT: = L (14)

is highest. (Re is the radius at 7T(Rosseland) = £), However, it is
still useful to check the results of simple estimates of the temperature.

The temperatures T' at T(Rosseland) =% and Te defined in equation
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(14) are given in Table 2 at various times during the period. The range
of T' is 600°*K, while that of Te is only 380°K. Some of this diff-
erence is caused by a positive flux divergence near minimum luminosity.
The maximum in Te occurs at the time of maximum bolometric lum-
inogity, whereas the maximum in T' occurs about 0.15 period earlier,
If the radius is increasing at the time of maximum temperature, then
the maximum visual luminosity may come after the maximum visual
flux. If Smak's calibrations of bolometric correction vs. spectral type
(Smak 1966) and temperature vs, spectral type {Smak 1964) are used
with the temperature variation given by T', the maximum visual
luminosity occurs only about 0,04 period before maximum bolometric
luminosity., According to observations the interval should be about 0.15
period. The discrepancy may be in the model, or it may be in the
method used to estimate the visual luminosity,

Pettit and Nicholson estimated radii from their temperature
measurements using equation (14) and their measured bolometric lum-
inosity curve. They found that the minimum radius occurred 0.15 period
before maximum bolometric luminosity, In the model, the corresponding
time interval is about 4 of a period. If the Pettit and Nicholson radius
curve can be compared with the radius curve for a mass shell in the
model, at least near minimum radius, then there is a real discrepancy.
An error in the time of maximum luminosity would not be surprising in
view of the crude treatment of the atmosphere. In the model, the max-
imum luminosity occurs a little after maximum outward velocity; how-

ever, there is no reason to expect the model to behave exactly as a

Cepheid,
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Vi. FIVE OTHER MODELS

a) Two Overtone Models

These models both had luminosity L = 10> ergs/sec and mass
M=1.3 Mo' Model 1 had log Te = 3,505, and a core mass-fraction of
0.94. Model 2 had log Te= 3.478 and a core mass-fraction of 0.88,
These models are identical to models 1.1 and 1.2 in Paper 1.

The possibility of overtone pulsation in models of long-period
variables may be important to the interpretation of the observations. In
Figure 13 are shown the luminosity curve and the radius curves for two
mass-shells in model 1, This model was perturbed in the fundamental
mode but developed the overtone very clearly after only three funda-
mental periods., During the changeover the kinetic energy remained
considerably below the level of the initial perturbation, The crosses in
Figure 13 show the kinetic energy at times near the peak kinetic energy
for each period. After the change to the overtone was well-established
the kinetic energy grew rapidly. The mean luminosity was very clearly
greater than the core luminosity of 1037 ergs/sec by the end of the time
interval shown in Figure 13, This situation continued for many more
periods, and the model was not followed to the final relaxed pulsation,.
The luminosity range was one magnitude, and the radius amplitude
AR/R was about 0,1 at optical depth 7 = 1.

The probable reason for the overtone instability was discussed
in §IV. The node occurred in the hydrogen ionization zone, probably at

the position which minimized the dissipation in that region, Because the

model was far from being relaxed, no detailed study of the driving was
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possible. The pulsation mode was not a pure overtone even after 50
periods; the node still moved around over two or three boundaries
during the period. A rough indication of the amplitude curve 8R/R is
shown in Figure 14. In the region of strong driving it has a kink similar
to the one in the amplitude curve for the fundamental mode. (See Figure
5.)

Both overtone models described in this section were calculated
using a local treatment of convection. After the non-local method was
developed and tested, model 1 was repeated from the beginning using
the non-local equations. It was again excited in the fundamental mode,
but with a smaller initial perturbation. The fundamental behaviour per-
sisted for three or four periods but then the luminosity curve started
to show extra bumps at the overtone frequency. The model was followed
for about fifty more overtone periods. Compared to the same model with
local convection it behaved very sluggishly. At the end of fifty periods
there was no doubt that the overtone was the dominant mode, but the rate
of increase of kinetic energy remained low. The luminosity amplitude
AL/L was still only 20%, and the light curve was quite irregular com-
pared to the clean pulses of the local-convection model. There can be
no doubt that a realistic treatment of convection, including the non-local
effects, will be necessary for investigation of short-period models.

The behaviour of model 2 was similar to that of model 1; it
switched from the fundamental mode to the first overtone after five or
six periods. A sample of its light curve and radius variation is shown

in Figure 15a. Again, the excess luminosity was clear, since the core

luminosity was 10% ergs/sec. The dependence of the light curve on the
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convective timescale 7T (see §III) was tested by multiplying 7T by 0.3
and continuing the calculation. The light-curve of the model after it
had settled down again is shown in Figure 15b., Here again it is clear
that the details of the treatment of convection are important. The lum-
inosity excess was considerably reduced, but it was not eliminated, The
minima were deeper but the amplitude AL/L was about the same.

It is interesting to note that the light curves in Figure 15 show
broader maxima than minima, in contrast to the curve for a fundamental
pulsator shown in Figure 9, Model 1 also showed this when the non-
local calculation was used. Fundamental and overtone pulsators of the
RR Lyrae type can be separated quite clearly by the difference in their
light curves; fundamental pulsators show a sharp rise to maximum and
a slow decline to a broad minimum, whereas overtone pulsators have a
more symmetric light curve, The visual light-curves of long-period
variables have been classed into similar forms. The fundamental-like
curves are more numerous at the longest periods, while the more
symmetric curves are more numerous at periods less than 200 days.
(See Liedoux and Walraven [1958].) Between 200 and 340 days they are
about equally common. The range of mean luminosities for long-period
variables is probably considerably larger than the range for RR Lyrae
stars; thus a sharp separation between fundémental and overtone at
some particular period can't be expected. It is not certain how well the
observed visual light curves can be compared with the bolometric curves
of the models, However, model calculations in the future should be of
considerable value in helping to separate the fundamental pulsators from

the overtones, This will provide important information about the radii,
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luminosities, and masses of long period variables.

b) A Mixed-Mode Model

The initial parameters of this model were M=1L3 M , L=2X10%
ergs/sec, log Te——- 3.44, and the core mass-fraction was 0.8 . This
model was identical to model 2.3 in Paper I. The local calculation of
convection was used.

The amplitude of the fundamental mode grew rapidly for five
periods after the initial perturbation; the peak kinetic energy increased
to about 80 times the initial perturbation of kinetic energy. During this
time the model radiated 8X10* ergs more than the energy it received
from the core, and made a rapid readjustment of its internal structure.
The fundamental mode died down again in about four periods more and
the overtone became dominant. As this happened the luminosity drain
was reversed and the envelope began to absorb energy from the lumino-
sity and increase its mean radius. The overtone mode dominated the
behaviour at the surface but the fundamental was still present in the
interior, and it increased gradually in stréngth. After a total time of
14X 10? seconds the fundamental mode had become so strong that it
dominated the behaviour even in the outer zones. After that it decreased
in amplitude for another 6X10® seconds, and was about equal in
sti-ength to the overtone component when the calculation was stopped.

Examples of radius and luminosity curves are shown for
several stages of the calculation. Figure 16 a shows the behaviour at a

time shortly after the initial change to the overtone, when the strength

of the overtone relative to the fundamental was about maximum. Figure
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16 b shows the situation after the fundamental had grown back again, and
Figure 16 ¢ shows the behaviour at the time the calculation was stopped.
In all, the calculation covered about 120 overtone periods from the time
the overtone first appeared.

Ther e was no indication that either mode would ever become
essentially pure. This model was restarted from the equilibrium model
with an overtone velocity distribution, but it developed a strong modula-
tion by the fundamental mode after five or six periods. The behaviour
suggests that the model would always have a mixture. This causes a
continuing irregularity in the light curve, and suggests a possible rela-
tion to the many semi-regular and irregular variable red giants.

The significance of the long-term changes in character, from
fundamental to overtone and back, is not so clear; it may be related to
the initial condition of the model. However, it was pointed out by
Christy (1964) that this type of behaviour is known to occur in oscillating
systems with non-linear coupling between modes. It is possible that
this can arise in stellar pulsation, although it is not established by the

behaviour of this particular model.

c} An Irregular Pulsator

The parameters of this model were M=13M_, L=2 X10¥7ergs/
sec, log Te =3.368, and the core mass-fraction was 0.40. This model
was identical to model 2.4 in Paper I. The local calculation of con-
vection was used.

The luminosity curve, and the radius curve for a mass shell near

the surface are shown in Figure 17. Although the model was initiated in
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the fundamental mode, waves at a frequency reasonable for the first
overtone built up quickly. In the fourth period the model expanded to a
much larger radius than in the normal oscillation. The expansion was
very smooth and slow; the velocity was only one or two km/sec through
most of the interior. The amplitude was extraordinarily large even in
the deep interior where the rigid boundary condition was applied. An
appreciable fraction of the ionization energy of the envelope was con-
verted to potential energy and luminosity. The peak kinetic energy of
the subsequent infall was 9.7X10* ergs, and by t=55.0, 2.39X10¥ ergs
had been lost in radiation since the beginning of the expansion. A very
strong shock was produced when the infall was halted, and the outer
three boundaries of the model, carrying about 0.7% of the total mass,
reached escape velocity, It is not certain that the shock or the atmos-
pheric structure was sufficiently well- represented for the mass estim-
ate to be reliable. The peak kinetic energy during the bounce was 7.7
X10* ergs.

Because of the large loss of energy in radiation the model sub-
sequently pulsated in a very erratic manner about a contracted config-
uration. The oscillation amplitude and mean radius increased gradually
as some of the core luminosity was converted to potential energy.

This same calculation was repeated with a smaller initial per-
turbation, and the result was similar. However, the amplitude of the
big expansion wasn't so large as in the previous case. The bounce was
not so violent and the subsequent pulsations were fairly regular. The
amplitude increased gradually and the computation became difficult

because of strong shocks in the surface regions.
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It was clear that the inner boundary condition was not good by
the time the giant expansion had proceeded very far, and that it was
expecially bad during the bounce. The possibility of unstable behaviour
of this type is probably not in doubt, but the amplitude is very uncertain,
This calculation was done with a relatively primitive version of the com-
putational program, and the inner boundary condition could be applied
deeper in the star if the latest version were used. It would be especially
interesting to determine if the type of behaviour found in this model
could occur many times, perhaps ejecting a small but non-negligible

fraction of the mass each time.

d) A Model Close to Dynamic Instability

The parameters of this model were M=13M_, L= 2X107 ergs
/sec, log T, =3.347, and the core mass-fraction was 0.20. This model
was identical to model 2.5 in Paper I. The local calculation of con-
vection was used.

This model was calculated to check the possibility that anextreme
red giant could eject its envelope and form a planetary nebula. Abell
and Goldreich (1966) presented arguments in favor of this hypothesis,
and the problem was subsequently pursued by Paczynski (1968), by
Paczynski and Ziolkowski (1968a,b), and by the author. The internal
energy per gram caﬁ exceed the gravitational energy per gram in an
extreme giant envelope when the radius is so large that the ionization
energy of hydrogen per gram is comparable to the potential energy per
gram. Thus the ejection of the envelope seems possible from energy

considerations, However, there are several sources of uncertainty.
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The energy criterion is based on an adiabatic expansion, but it is poss-
ible that most of the energy would escape in the form of radiation, and
leave the mass behind. Also, it must be demonstrated that real stars
actually reach the evolutionary state where the proposed ejection be-
comes possible; in other words, the initial condition of the time -
dependent model must be justified.

This model was the closest to dynamical instability of any that
was calculated. The core mass is undoubtedly too small to be consistent
with stellar evolution considerations. An equally-unstable model with
larger core mass could probably have been obtained at higher luminosity,.
but there were computational difficulties with high-luminosity models.
Since the main interest at this point was to investigate the behaviour of
the envelope, the present model was considered adequate.

Two initial models were tested, differing only in the depth at
which the inner boundary condition was applied. The results of four
different calculations are given in Table 3. The kinetic energy as a
function of time is shown in Figure 18. Cases 3 and 5 used the initial
model with the deep integration; cases 1 and 2 were calculated on an
early version of the program using an explicit system of difference
equations. Case 2 differed from case 1 only in that the initial velocity
perturbation was directed inward instead of outward. Cases 3 and 5
differed only in the magnitude of the initial perturbation.

In case 1, after an initial small decrease in the kinetic energy
the expansion occurred without any preliminary oscillations. The expan-

sion proceeded very smoothly, as in the model discussed in §VIc, and

the velocities never much exceeded 10 km/sec. Escape velocity was
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never reached, even when the outer layers reached a radius of about
2X10¥ cms. The model was optically thin to about 1.5X10¥ cms at this
time. As the envelope expanded the boundary of the surface radiative
region moved in through the mass, always remaining a little outside of
the hydrogen ionization zone. The hydrogen ionization zone and the
hydrogen molecule dissociation region both showed unstable behaviour
by their outward accelerations. The expansion finally stopped when
most of the mass had passed through these regions,.

The 10%® ergs lost in luminosity (see Table 3) was a dominant
factor in the behaViour. The energy required to disperse the entire
envelope to infi'rﬁty in cases 3 and 5 was only L13X10%ergs. Even if
only 25% of the envelope had escaped, that would have been sufficient for
comparison with a planetary nebula. It is clear that the non-adiabatic
behaviour of the envelope is of extreme importance. If solid particles
could form and keep the opacity high, the energy loss could be delayed.
It is also possible that a more luminous meodel, with a greater fraction
of envelope mass in the hydrogen ionization zone, would have gone
farther.

Some comments on the behaviour of case 2 are of interest since
it was the only one of the four in which the initial perturbation was a
compression. The hydrogen ionization zone showed a tendency toward
an infall instability such as occurs during pre-main-sequence contrac-
tion. The modest inward motion of the perturbation was not reversed
until the outside radius of the star had dropped to about 65% of its initial
value. The temperature and pressure in the zone adjacent to the rigid

inner boundary went from T=6.2X10* to 8.2X10% *K, and P=1.01X
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10° to 6.37X10°dynes/cm? by the time the infall was halted. The
subsequent expansion shown in Figure 18 was extreme, but eventually
the envelope began to fall back.

In cases 3 and 5 there was more mass below the hydrogen ioni-
zation zone, which could contribute to thé push once it started to re-
combine. However, the results showed clearly that the additional mass
tended to damp the instability. The small initial perturbation of case 3
produced little indication of the severe instability observed in cases 1
and 2. The larger perturbation in case 5 produced a better response
but it still fell far short of cases 1 and 2. It would have been interesting
to follow the pulsation in cases 3 and 5; it is quite possible that these
cases would have worked up to a giant expansion after several oscilla-
tions.

An obvious serious problem with these calculations is the interior
boundary condition. Even for cases 3 and 5 the data in Table 3 show
that the boundary condition was completely unrealistic by the time the
expansion had proceeded very far. Unfortunately, the structure of the
static models makes it difficult to integrate much deeper without adding
a considerable number of zones.

Paczynski (1969) also calculated a model of this type, in which
he integrated a little deeper than in case 3. He found essentially the
same behaviour. The envelope expanded slowly and never reached the
escape velocity., There was a large energy loss in luminosity, and a
complete breakdown in the inner boundary condition.

It will be useful to pursue calculations of this type when a

satisfactory procedure (other than brute force - i.e.many more zones) is
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devised for treating the inner boundary condition, Experience with other
calculations suggests that a more sophisticated treatment of convection
should be included, Also, in view of the importance of radiative energy
1ossés, a better treatment of the surface radiative regions may be

necessary.

VII. DISCUSSION

a) The Structural Changes

It is clear from the discussion in §III that the treatment of
convection is responsible, at least in part, for the difference between
the equilibrium luminosity and the time-average luminosity of a high-

amplitude model pulsating about the equilibrium configuration, The
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uncertainty in the reality of an effect of the magnitude found here is the
principal deficiency in the work. Because of this, relaxed models were
not used in the discussion of the periods of models in Paper I. (See
Appendix E.) However, this uncertainty does not influence the general

conclusions on the dynamical behaviour of the models investigated,

b) The Non-Linearity

The non-linearity of high-amplitude pulsations can have important
consequences, The simple one-zone adiabatic model discussed by
Usher and Whitney (1968) showed that the time-average radius can be
much greater than the equilibrium radius during a high-amplitude
pulsation. This same behaviour was evident in Figure 2; the time-
average radius and luminosity decreased markedly as the pulsation was
damped out, Even if there were no non-linear effects in the energy
transfer itself, the change in mean radius would change the luminosity,

There is no reason why the time-average properties of a non-
linear oscillator should be identical tothe properties it would have when
at rest in the equilibrium position, The model never passes throughthe
equilibrium configuration during the course of the pulsation because of
the phase shifts in the motions and in the energy transfer, Thus some
shift in the mean luminosity should be expected. Determining the mag-
nitude of the change, and the time-scale over which it occurs, is the
important problem,

Because of the extreme behaviour of some of the models it is

possible to identify interesting properties which could have gone un-

noticed except if a very well-relaxed model were studied for a very
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long time. An example is the behaviour of the model in §VIb, which
pulsated with a mixture of fundamental and overtone. The quasi-periodic
change in relative strength of the two modes is accompanied by a change
in the mean radius, which in turn would cause a change in the period.
Periodic variations in period have been noted for several stars; it was
shown by Campbell and Sterne (1937) that this behaviour is reasonably

certain for R Cnc, S Ser, and U Boo.

c¢) The Instability Region in the HR Diagram

Although no attempt was made to locate the boundaries of the
region where convective stars are unstable to pulsation, it is possible
to make some qualitative statements about them. In the luminosity
range investigated, the low-temperature boundary is determined by the
boundary of the Havyashi forbidden region, The high-temperature
boundary is more interesting, It has been suspected that the onset of

effective convection is responsible for the low-temperature boundary of

the Cepheid instability region; howevér, the existence of variable stars
at much lower temperature showed that convective stars could be un-
stable. The hottest model studied in any detail was the overtone model
described in §VIa, with log Te =3,505. It was quite unstable when the
local calculation of convection was used, but much less unstable when
the non-local treatment was used. In high-temperature models, the
region of driving by the opacity mechanism is thin and close to the
surface. The flux carried by overshoot from the convection zone may
be a sufficiently large fraction of the total that the opacity mechanism

becomes ineffective at high temperature. The I'-mechanism alone was
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unable to drive a large amplitude oscillation in the fundamental model
discussed in §IVa, Overtone models calculated using local convection
have a high narrow peak in L(Mr) near the node at the time of maxi-
mum compression. The non-local method of calculation gives a much
wider but lower peak., The extra width may interfere with the operation
of the overtone mode,

The opacity mechanism may be capable of exciting only the
overtone mode below a certain luminosity, because the fraction of the
envelope mass which is in or above the hydrogen ionization zone
generally decreases with decreasing luminosity., Any low-level excita-
tion by the I'-mechanism would eventually be choked off for the same
reason, If the low-temperature boundary continues to slope toward
higher effective temperature at lower luminosity, it might eventually

intersect the high-temperature boundary and provide a low-luminosity

cut-off of the instability region,
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APPENDIX A

LINEAR STABILITY ANALYSIS

The linear stability analysis which has proved so useful in the
discussion of radiative stars has not been applied very effectively to
convVective stars., However, it can be used to obtain a simple result
which may be of importance. For simplicity, the convective luminosity
is treated as if it can react immediately to changes in conditions in the
star, and non-local effects are neglected.

a) Method 1

This discussion follows the method of Baker (1966) for the one-
zone model. The luminosity variation is written in the form

oL

oL _ _ or 6
L—Er+n

tE (a1)

ol

where €, 1, § are unspecified coefficients, The time-dependence eSt
is substituted into the linearized system of equations; a cubic equation

of the form
s> + AK ¢s? + Bo?s + Ka*D =0 (A2)
gives the possible values for s.

A= (5n + ag) (Ty-1) (A3)

B = (3F1 - 4) (A4)

D= (" -1) [a(e -4n) - (40 —3)§:l (A5)



88
where

I, -1= (BInT/alnp)s , Ty = (34nP/3snp)
§=-(np/3tnT)p 21, a= (31np/31nP)T 21,

o? = R®%/GM , and K is a measure of the departure from adiabacy.
K=0 is the adiabatic case., Nuclear energy generation has not been
included in the equations,

The cubic equation has a real root with sign opposite to the sign
of D, If D< 0 there is a positive root s,, and an initial perturbation
will grow exponentially with timescale l/s0 until non-linear effects
become important. For a radiative star, €=4, n= -(84nk/84n P)T,
£ =~ [(8!nx/8£nT)P-4]. With Kramers opacity n=-1 and £=17/2.
Then

D= (T, -1)[86 - (4a—3)} (A6)

In an ionization zone both & and & are >1. If they are set to unity for

simplicity the result is

D=-4(I -1, (A7)

and the condition for instability is satisfied., The convective luminosity

is of the form

L o rZCPpT (V'VA)3/2 . (A8)

A very simple linearization of this is

s

=285,
r

o
"Ul"U
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The terms left out are not really negligible, but they will be ignored

for now, With this linearization, €=2, n=1, £=0 and

D=-2(T5-1) . (A10)

This also satisfies the condition for instability, and the growth rate is
four times larger than for the radiative case,

b) Method 2

This discussion is based on a criterion for secular stability
derived by Jeans (1928) and discussed by Ledoux (1965). The condition

for secular stability against a homologous contraction is

n-3m<3p+v |, (Al11)

where p and v are the exponents of p and T in the nuclear energy-
generation formula, and m and n are the exponents of p and 1/T in
the opacity formula. For Kramers opacity the inequality (All) becomes

1 <3u+v. The opacity exponents enter through the linearized expression
for the radiative luminosity. The result of repeating the calculation

using equation (A9) is 2 <3y + v,

The point of concer;x with the models is that only the envelope is
studied; in effect, 3u 4+ v = 0. In the absence of nuclear energy genera-
tion a star contracts on a Kelvin time-scale to supply the energy lost in
luminosity., The situation with envelope models is different because
energy is supplied at a constant rate appropriate to the static model.
However, this cannot prevent the instability from developing if the
conditions for it are satisfied.

c¢) Conclusions

The very crude arguments above suggest that the problem may be
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more serious for convective than for radiative envelopes, From
equation (A6) it is clear that € <0, n > 0, £ > 0 contribute toward a
negative D, The coefficient € is positive for both the radiative and
convective luminosity. The discussion in §III showed that the instan-
taneous convective luminosity increases strongly during compression;
at boundary 13 the flux increases by a factor of eight, whereas 5P/P =
2.96 and 8T/T =1.29. This suggests that in a low amplitude situation
where the linear analysis would be valid, the adopted linearization in
equation (A9) may under-estimate the destabilizing effect of the tem-
perature and pressure dependence,

No published work on Cepheid or RR Lyrae pulsation has suggested
that a secular instability exists for those models, Perhaps the surface
region of the star where (ax/aT)p > 0, (which favors pulsational in-
stability), can stabilize the models against secular contraction. To

first order in K, the real root of equation (A2) is

Sg = ‘KO‘D/B . (Al2)

In the convective stars with large ionization zones, the ratio (I'y-1) /
(3T"y - 4) which appears in D/B can become large. The growth rate of
a pulsation is proportional to Ko also; thus the high growth rate
observed in the present models suggests that they are more non-
adiabatic than R R Lyrae models, and so K is larger. Both of these
results favor a rapid growth rate for the secular instability if it really
exists,

Since the analysis is very crude, the results are far from being

established. Non-linear calculations will eventually confirm or deny
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that this instability is of importance in understanding the behaviour of
the models. It is clear from the second method, and could have been
shown by the first, that any of the usual nuclear reactions would be able

to stabilize the star, even if the envelope alone were unstable.
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APPENDIX B
I. THE INITIAL MODELS

The dynamical equations are written in Lagrangian form, with
M, as the spacial independent variable., The grid-points for the diff-
erence equations are at specified values of Mr’ and are labelled from
1 to N starting from the inner boundary. The variables r and L are
also defined on this grid., The N-1 zones between the grid points are
numbered from 3/2 to N-%; the thermodynamic variables are defined
on the mass zones,

The difference equations used to integrate the static models
follow directly from the Lagrangian form of the hydrostatic equation and
the equation of continuity, The hydrostatic equation is used to advance
the pressure, and the condition of luminosity-constancy is used to
determine the temperature by iteration., Then the equation of continuity
is used to advance the radius., Initial values for the inward integration
are obtained from a model integrated with the differential equations.
(See Paper 1,)

The difference form used for the convective luminosity is given
in Appendix C. The local expression is used, since otherwise a step-

by step integration would be impossible, The expression used for the

radiative luminosity is

2
L _ _8;9_'_ (47I'Rf<) T;("l/zan(‘*‘lA
rad 3 Ky (mk_,‘2+ mk+1/2)

(Bl)
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where mk—l/ is the mass of the zone between boundaries k-1 and k.

The opacity K, 1s a mean of Kk-‘/g and Kk+1/2’ of the form used by

Christy (1964).

I, INITIAL EQUILIBRIUM OF STATIC MODELS

The most obvious possible explanation of the difference between
model 1 and model 2 in Table 1 is that the solution of the equations in
the static model program does not satisfy very well the dynamical
equations with time-derivatives set equal to zero. This possibility was
checked by having the dynamical program print out the initial accelera-
tion and luminosity at each grid-point. The luminosity was independent
of depth to one part in 10°, and the accelerations were less than 5 XIO-B,
of the local acceleration of gravity, The luminosity was less than the
core luminosity more often than it was higher. There was no systematic
trend in the accelerations, The initial equilibrium of one other model
was checked and found satisfactory also. It was not determined whether
all the models would make an adjustment analogous to the difference
between model 1 and model 2 in Table 1, If the problem really is one of
incompatibility of the two sets of equations, then the model structure

must be very sensitive to small deviations from equilibrium.
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APPENDIX C

I. LOCAL EQUATIONS
The equations for the convective flux are quite similar to those

used by Mihalas (1965). In difference form they are written:

k AL
j PVQ /2 "
o= G [ v, ©)

0Ty 1/ Tieyy)

Vv, = (C3)
Vi - <vA>k ) 16U(T4>k 1 (Kp)klk (ca)
Vi Vg (I/H)k<CppT)kvk 1+(Kp>§(£é
2, = (PV), /g, (C5)
W/Hy = (PP A/ (myey) (Cé)
where
<x>kE (Xk'l/z+xk+1/z)/ 2 ,
and

oy = gyt ) /2

A.k and g, are, respectively, the area and the acceleration of gravity

at boundary k. The ratio of mixing-length to pressure scale-height
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(I/H) is unity in a hydrostatic model. If the equations are used in a
non-static situation, they must be written in a form which causes the
convection to die out in freely-falling material, and to increase when
the effective gravity -VP/p is larger than the acceleration of gravity,
This is taken into account by the definition of (I/H) in equation (C6).

The equation used to advance the convective flux by one timestep

At is
Fie+at) =28 Fiy 1 - &) it (C7)
for At/T <1, and
F(t+ At) = F! (C8)

for At/T = 1. F' is the instantaneous flux calculated from equation
(Cl). This equation was used by Cox, Brownlee, and Eilers (1966). The
equation is used even if F' drops to zero; then, if At/T << 1 the flux

decays approximately exponentially, The expression used for the time-

scale T is

T = 4/v. (C9)

The definitions of £ and v were discussed in §111,
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II. NON-LOCAL EQUATIONS

The convective luminosity at time t+ At is written in a form

L, = BLy + (l—ﬁ)[a(Lk_l) + (1-a) (Lk+1>:] , (C10)
where
* _ At at
Lo=28n +(1-28Y 1 ) (c11)

is similar to equation (C6) except that it is written with the luminosity

instead of the flux.

ﬁ = Mln[(rk+1-rk‘l)/ Zlk, 1] . (C].Z)

The factor f determines the coupling between boundary k and the two

adjacent boundaries,

= (ry o1/ (rgtr ) (C13)

is the weighting function for the contributions from boundaries k-1 and

k+1,

(hipr? = ¥+ -v) Ly, () (C14)

where

y = Min[vat/(rk+1-rk) , 1} . (C15)
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Note that in all the above equations, L. written without an argument
refers to time t+ At. For each value of k, equation (Cl0) contains
L(t+ At) at three consecutive boundaries, This coupled system of
linear equations is easily solved when boundary conditions are specified

at the end-points of the grid. At the outer boundary it is assumed that

F'=0 and

Ly(t+at) = [1 - (o) / zN_J {Lyop) - (C16)

Normally, LN-l is very small, At the inner boundary the convective

luminosity is fixed at the value given by the static model.
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APPENDIX D
THE DYNAMICAL CALCULATIONS
The two equations which describe the radial pulsation of a

spherically-symmetric star are the equation of motion,

- P r
= - 2 O |
r = -47r oM I'Z ) (Dl)
r
and the first law of thermodynamics,
_V-E _DE DV
o = * P Dt - (D2)

The pressure P includes the artificial viscosity term used in the
automatic treatment of shock waves (Richtmyer 1957)., E is the internal
energy per gram and D/Dt is the derivative following the motion,

The dynamical program was changed many times during the
course of this work. By the time the calculations described in this
work were completed, the finite difference analogues of equations (D1)
and (D2) were being written in the form used by Fraley (1968), and so
they will not be repeated here, The advantage of the form used by
Fraley for the equation of motion is that the difference equations
conserve energy exactly, independent of changes in size of the timestep.
The accuracy of the energy conservation during the integration forward
in time is determined by the accuracy of the iterated solution of the
equations. The disadvantage of Fraley's form is that the system of
equations is only marginally stable, Numerical difficulties arising

from this can be overcome by the method suggested by Fraley.
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The equations are solved by the Newton-Raphson iteration method.
Several terms, including the convective flux, were omitted from the
linearization of the first law of thermodynamics, but none were neglected
in the linearization of the equation of motion. The equation of state and
the subroutine which calculated the convective flux were used during
each iteration,

A rigid sphere with a constant luminosity was used for the inner
boundary condition, The pressure in the zone outside the surface
boundary was put equal to zero. A constant p was defined from the

original static model by

- 4
LN = p.(41rRN_1RN UTN_%) s (D3)

where N refers to the boundary at the surface, and N-3 refers to the
zone just inside it., The value of p was always between 1.5 and 2.0,
Equation (D3) was then used with that value of u, as a boundary
condition for the dynamical model, This condition is very similar to
the one used by Christy (1964).

A term of the form -\A* was included in the equation of motion,
The kinetic energy is damped on a timescale 1/\.

The basic method used in the HS mode was described by Cox,

Brownlee, and Eilers (1966), except that the solution was iterated in

the present program,
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APPENDIX E

THE MODELS IN PAPER I

Because of the changes in structure which always occurred
before the models reached a relaxed pulsation, the periods of the
relaxed models were different from those of the initial static models,
The periods given in Paper I were estimated from the pulsating models
before a significant structural change had occurred; they are presum-
ably similar to the periods which would have been obtained from a

linear non-adiabatic analysis of the static model.
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TABLE 1
RADII OF MASS SHELLS

Radius (10'? cms)

Boundary Number Model 1 Model 2 Model 3 Model 4
1. . . . . 1.58 1.58 1.58 1.58
2. . . 1,96 1.92 1.90 1.79
3. . . . . 2.38 2.29 2.26 2,01
4. e . . 2.87 2,73 2,68 2.29
5. . 3.42 3.24 3.16 2.63
6. . 4,08 3.84 3.74 3.04
7. 4,86 4.56 4.43 3.54
8. . 5.82 5.45 5.28 4,16
9. 6.97 6.52 6.33 4.95
10, . . . . 8,36 7.83 7.60 5,87
m. . . . . 10.04 9.40 9.12 ©7.20
2. . . . . 11.44 10.70 10.38 8.21
13, . 12,66 11.83 11. 48 9.10
14, . . . . 13.76 12.85 12.46 9.89
15, . . . . 14,75 13,77 13.34 10.61
6. . . . . 15,63 14,60 14,15 11.28
v, o o . . l6.42 15,34 14.87 11,90
18. . . . . 17.10 15,99 15.50 12,48

19. . . . . 17,68 16.56 16,05 13,00
20 ., . 18.13 17.02 16. 41 13, 47
21. ., . . . 18.42 17.33 16.69 13,87
22, . . . . 18.68 17.59 16.94 14,15
23, . . . . 18.96 17,86 17.19 14,37
24. . . . . 19.20 18.10 17.43 14.56
25 . . . . 19,39 18.31 17.63 14.73
26 . . . . . 19,54 18.48 17.81 14,88
7. . . . . 19,67 18.62 17.96 15.00
28. . . . . 19.81 18.75 18.09 15.11
29. . . . . 19,95 18,88 18.23 15,20



102

TABLE 2

TEMPERATURE ESTIMATES

Time Re L Té Tt
(107sec) (10'3cms) (10%7 (*K) (*K)
ergs/sec)

103. 06 1.16 0.409 2550 2364
103. 31 1.21 0.518 2650 2623
103.56 1.44 0. 946 2830 2818
103.75 1.65 1.356 2890 2896
104.03 1.84 1.753 2920 2863
104.13 1.89 1.860 2930 2835
104. 27 1.95 1.646 2790 2670
104. 40 1.95 1.493 2720 2584
104.72 1.79 1.130 2660 2437
105, 00 1.51 0.767 2620 2335
105. 31 1,22 0. 551 2680 2299
105, 54 1.16 0.432 2590 2379

105,77 1.16 0. 461 2630 2474
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TABLE 3

DATA FOR MODEL NEAR DYNAMICAL INSTABILITY

Case 1 Case 2 Case 3 Case 5

RY (1013cm) 0.147 0.147 0.0252  0,0252
R, /R_T 0.0416  0.0416  0.0071 0.0071
R, at t=0 (10'3cm) 0.354 0.354 0.0478 0.0478
R, at peak KE 1.96 2.04 0.141 0.455
T, at t=0 (104 °K) 6.21 6.21 24.30 24.30
T, at peak KE 1.89 1.80 9.86 3.65
P, at t=0 (10®dyn/cm?) 1.01 1.01 24.50 24.50
P, at peak KE 0.0019  0.0016  0.448 0.0068
Initial KE (104 ergs) 1.53 1.53 1.33 4,89
Peak KE 63.8 80.9 5.30 24.6
Peak L (1037 ergs/sec) 22.0 23.6 10.0 15.9
Time t; of peak L (107sec) 12.93 23.37 13.86 11.54
f(L-LC)dt at time t; (0%ergs) 926, 881, 588, 804,
R_(t;) (10'3 cm) 11.1 11.3 8.68 11.4

Subscrlpts refer to boundaries or zones, numbered outward
from the inner boundary. Zone 2 is between boundaries 1 and 2,

tThe surface radius Rsz 3.89X1013 cm at t=0,



104

FIGURE CAPTIONS

Fig, 1. The light-curve of a 1M0 model with core luminosity 1037
ergs/sec. The unit of time is 107 sec,

Fig. 2. The surface luminosity (L) and radius of mass-shell 27(R).
The pulsation energy was being dissipated by an artificial
frictional term in the equation of motion. The two pairs of
curves show the results of damping on a short or long time-
scale, At t=122.5 the mechanism for producing kinetic
energy in the model was almost making up the losses in the
damping term, and so the damping timescale was decreased
again to speed the decay., AL and AR show the full
luminosity and radius amplitude for the undamped model.

Fig, 3. The non-local flux F and the non-local luminosity L are
shown at a mass-shell near the inner edge of the hydrogen
ionization zone, Also shown are the instantaneous flux F
and the radius R of the mass-shell,

Fig, 4. Kinetic energy production and dissipation. The average of
AMfdQ and AM§PdV is plotted for each mass zone. The
peak kinetic energy is 3.42X10%* ergs.

Fig. 5, Kinetic energy production and dissipation, The radius

amplitude SR/R 1is also shown. This is the same model as
in Figure 4, but the pulsation amplitude is higher,

Fig, 6a, Velocity vs, time for the outer mass-shells, Zero velocity
for each shell is indicated by the horizontal line near the
shell number. Outward velocity is positive.

Fig., 6b. Velocity vs, time for interior mass-shells,

Fig. 7a,b. The specific volume, pressure, and temperature for zone 21,
near the outside of the ionization zone, and for zone 13, near

the inside,

Fig. 8. Pressure vs. specific volume for zone 21. Kinetic energy is
produced in this zone,

Fig. 9. L is the bolometric luminosity at the surface; R is the
radius of mass-shell 27. '

Fig., 10. Radius vs, time for the mass-shells indicated.

Fig, 11,  Velocity vs, optical depth, showing the development of a shock
as the inward velocity is reversed, Negative velocityis inward.
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Figure Captions, (Cont'd,)

Temperature vs, time for the outer mass zones,

Luminosity L, radius R, and kinetic energy for overtone
model 1. The radius curves are for boundaries 20 and 10,

Fractional amplitude SR/R for overtone model 1.

Radius and luminosity curves for overtone model 2. Core
luminosity is 1037 ergs/sec.

The radius and luminosity curves in model 2 when the
convective timescale has been multiplied by a factor 0.3,

Luminosity and radius curves for the mixed-mode model
just after the fundamental mode has decayed to its lowest
level,

Curves for the same model after the fundamental mode has
grown back and is again dominant,

The fundamental mode has decayed again.
Surface luminosity, and radius of mass-shell 21,

Kinetic energy curves for four calculations of a model near
dynamical instability.
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SUPPLEMENTARY MATERIAL
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I. IMPROVEMENTS REQUIRED IN THE CALCULATIONS

a) Convection

It was clear from the discussion of the approach to relaxed
pulsation, (Part 2, §II, III), that the results obtained were caused by
the non-linearity of the equations for the convective flux, It was not
clear how sensitive was the result to the particular treatment of con-
vection used in this work. The importance of the structural change, if
it is real, has already been pointed out, For this reason, a treatment
of convection is required which was developed from the beginning for
use in a time-dependent situation.

The change in turbulent kinetic energy during a period was
found to be comparable with the peak pulsation energy, Thus the diff-
erential equation describing the growth and decay of turbulent kinetic
energy should certainly be included in future calculations, This could
have an effect on the pulsation amplitude and on the shape of the bolom-
etric luminosity curve. The improvement suggested here would be a
step in the direction of identifying overtone pulsators by their light
curves,

Energy transfer by overshoot from the convection zone may be
important in de-activating the opacity mechanism at the high-temperature
side of the instability region in the I%'[R diagram. Thus a more quantit-

ative treatment of the overshoot region is required,

b) The Atmosphere

For a static model,using the diffusion equation in the atmosphere
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is roughly equivalent to using the plane-parallel gray atmosphere temp-
erature distribution. The plane-parallel approximation is being pushed
to its limit, but is probably not too bad in most cases, For a time-
dependent model the diffusion equation has the additional fault of pre-
dicting too rapid relaxation to radiative equilibrium in optically thin
regions (eg. Castor 1966), Also, the time-dependent model may deviate
far more from plane-parallel geometry than the original static model,
(See eg. Part 2, §V.) Both the diffusion equation and the boundary
condition relating the surface luminosity to the temperature and radius
are not very good in that case. An improvement in the treatment of the
atmosphere would result in a better bolometric luminosity curve, and
may give some information on the velocity curves of absorption and
emission lines,

Vast amounts of data in the form of visual light curves have been
accumulated for long-period variables; it will be a long time before a
comparable amount of data has been collected for the infra-red region
where these stars radiate most of their energy. The infra-red data
which is now becoming available will help to check the physics of the
models, However, if the models are to be used for analysis of past
observations, they must be able to predict a reasonable visual light
curve. Alternatively, they must demonstrate that gross characteristics
such as the shapes (but not the amplitudes) of the light curve in the.

visual and infra-red are not too different, It is not certain that this will

be the case,
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c) The Interior Boundary Conditions

If the present calculations are to be extended to include violent
large-amplitude pulsation, or dynamical instability, it is clear from
the discussion in Part 2, §VIc and d that a better treatment of the

inner boundary condition is required.

II. FURTHER USEFUL INVESTIGATIONS

It is clear that many refinements must be made in the models
before they can be used for detailed analysis of the observations, How-
ever, there are several problems which may be studied profitably with
only some, or none, of the improvements which may ultimately be made.
It would be useful to compare the dynamical periods with the prediction
of a linear adiabatic analysis to determine if the latter is reasonably
reliable for the type of models considered in this work. A calculation
of some relaxed overtone models might give more insight into the
reasons for the high-temperature boundary of the instability region,
Some type of non-local treatment of convection should be used, but the
method used in the present work might be adequate for an initial
investigation. It would also be interesting to see if the overtone is the
only high-amplitude mode at somewhat lower luminosity than in the
present models. There are many giants with luminosity lower than the
Mira stars which have low-amplitude irregular variability. It mightalso

be possible to learn something about these objects.
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III. STATIC MODEL CALCULATIONS WITH

DIFFERENCE EQUATIONS

The equations used for the static model integration are:

k-Y% k+Y% 47rRI‘<

(1)

Vv
R%(—lzR'f(-i _k;%. (2)

4 mk_%

Lk = Lcore (3)

where

Mk - Mk-l is the mass of a zone,

-1

= 1
My = amy )
Vk Y is the specific volume
=2

The expression for the radiative luminosity was given previously
(Part 2, Appendix D) and will not be repeated. The expression for the
convective luminosity was given in Part 2, Appendix C,

Many of the problems associated with the mass division have
been discussed by Christy (1964), Since the models are to be used as
initial conditions for time-dependent calculations the number of grid

points must be kept to a minimum. However, the grid should be fine
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enough that all the important features of the structure can be represen-
ted sufficiently accurately,

Two conditions are required if derivatives are to be represented
accurately by finite differences:

1) Since P, T*, and R?® are not approximately linear in M_,
the point-to-point changes in them should not be too large.

2) Masses of adjacent zones must be equal or the hydrostatic
and diffusion equations will not be correctly centred for second order
accuracy.

The second condition can't be followed strictly because of the
structure of the star., Small zone masses are required near the surface
and near the core because of the strong dependence of pressure on Mr

in those regions. (See Figurel), In the intermediate region, the zones

are chosen as large as possible, consistent with the condition

Christy (1964) found that a factor as large as 1.5 did not result in
serious error,

Log T changes rapidly with Mr near the outside boundary of
the hydrogen ionization zone, but it is best not to put many grid points
in this region. In a time-dependent calculation the position of the steep
rise in temperature moves around in the mass grid, so a high density
of points would be required over a much larger range of mass than is

obvious from the static structure, Because of the requirement

(equation (4] ) on the gradient of zone masses, a concentration of
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Fig. la. The solid lines show the solution of the differential equations,
The crosses on the radius curve indicate points on the
solution of the difference equations.

Fig. 1b. The crosses show all the zones from the difference-equation

solution. The circles show some points from the differential
equations.
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points in the critical region would make necessary a higher density of
points throughout the interior. Christy (1964) showed that for many
purposes the region of steep temperature gradient could be represented
satisfactorily with only a few grid points if the mean opacity at a grid
point was defined appropriately, This is discussed in more detail below.

If the mass grid was fine enough, the difference equations gave
the same results as accurate integration of the differential equations by
standard numerical methods; hoWever, a coarse grid was required for
models used in extensive time-dependent calculations because of the
cost of computation, Models with a coarse grid are not independent of
the position of the grid points, or of the expression used for the opacity
mean. The greatest sensitivity to both of these occurs in the region of
high temperature gradient. Small differences between the solutions of
differential and difference equations in this region may grow into large
differences when Mr gets close to the core mass, Red giant envelopes
have structures which correspond to solutions of the differential equa-
tions which are not regular at r=0, and for small r such solutions
are sensitive to small changes in the outer part of the envelope,

The difference equations have solutions which are qualitatively
similar to those of the differential equations, even when a coarse grid
is used. However, models which connect onto the same physical core
would be different at the surface. For some purposes it was useful to
have strictly similar results from the difference and differential equa-

tions. It was found that the sensitivity to the opacity mean could be used
to compensate for the sensitivity of the position of the grid points. The

expression used for the opacity at a boundary k was
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4 - 4
a Tk“l/z /Kk_l/2 + (1 a)Tk+l/2/Kk+1/z

aTE 4+ 1) T, (3)

A
Ky

where @ is a free parameter, With q=0.5 this mean is identical to
that of Christy (1964), The situation in the present models is somewhat
different from that in Christy's models. In Christy's models the sharp
rise in temperature ends when the hydrogen opacity reaches its peak,
whereas in the present models it ends when convection becomes
effective; however, the models are quite similar at the low-temperature
side of the steep rise. In the present work a was chosen to make the
solution of the difference equations agree with the solution of the differ-
ential equations at the inner mass-point, Usually a was in the range
0.4 <a <0.55. Models showing excessive sensitivity to @ were re-
zoned, In Figure 1l the solution of the differential equations is com-
pared with the solution of the difference equations, Figure la shows r
as a function of Mr' The solid line is from the differential equations,
and the crosses are grid-points from the difference equations., Figure
1b shows log T as a function of log P, since both of these are defined
on zones., The crosses indicate the solution of the difference equations,

and the points outline the results from the differential equations,

IV. DETAILED DISCUSSION OF THE DYNAMICAL PROGRAM

a) Difference Equations

The general conditions under which the solution of a difference
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equation will approximate the solution of a differential equation are
discussed by Richtmyer (1957), However, for complicated non-linear
systems, previous experience is an important guide to constructing
suitable difference equations.

The integration forward in time can be done by an explicit or
implicit method, An explicit scheme was used by Christy (1964). Its
main advantage is that only one non-linear system of algebraic equations
must be solved during a time-step; this system comes from the
difference representation of the first law of thermodynamics. The main
disadvantage is that for mathematical stability of the difference equations,
the time-step must be less than the sound travel-time across any mass
zone, The implicit system does not have this limitation, but it has the
disadvantage of yielding two coupled systems of non-linear equations
which must be solved simultaneously for changes in the temperature and
radius. For the present models the zones in the far interior typically
have sound-travel times of the order of 2X10* seconds, while the
pulsation periods are often greater than 107 seconds. With the implicit
Ir;ethod, time-steps between 105 and 10°% seconds can be used.

The method of solution of the two systems of equations is
illustrated by the following simple example,

Problem: Find r and T such that f(r,T)=0 and g(r,T)=0.

Let T,, r, be trial values. Then correction terms are given by

(8f/8T) 6T + (8f/0r) 6t = -f(r,, To)

(6)
(0g/8T) 8T + (8g/dr) b = -g(ry, Ty) ,
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where the derivatives are evaluated at (ry,T,). The process is iterated
until it converges, Reasonably good trial values may be required,

In the actual model calculations there is an equation

fk+% (Tk+3/2’ Tk+%,’ Tk-‘/z’ Trsle rk) =0 (7)

for each zone; this comes from the first law of thermodynamics, For

each boundary the equation of motion has the form

'gk(rk+1’ Tl Tre1 Ty Tk-l/z) =0 . (8)
Equations (7) and (8) must be solved simultaneously for all values of k.

b) The Heat Equation

The difference representation for the first law of thermodynamics

is

AEm+/2 (P+q)m+1/2 Avm+/g At(LEJrl/z _p 0t
/2

K+ S Ykl Dyt )/mk+1/“°

where q is the artificial viscosity term., The points on the time grid
are denoted by superscripts, AEn+1/2 = En+1 -En; PnJrl/2 means an
average value of P" and Pn+1. A similar convention holds for sub-
scripts, but for them, integer subscripts refer to averages for quantities
defined on zones, whereas half-integer subscripts refer to averages if
the quantity to which they refer is defined on a boundary,

Let X(m) be the approximate value of a quantity X after m

iterations; X(exact) = X(m)+ §X., Equation (9) is linearized and written
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in the form

25E + (P(m)+P“+q(m)+q“) 5V+ (5P+ 6q) AV(m)-At(éLk-éLkH) /w1, =CON,

(10)
where
CON = 'ZAE(m)-<P(m)+ Pn+ q(m)+q(n)) AV(m)
(m) . (m) n .n
vat [(Lk _Lk+1) +(Lk'Lk+1)]/ et 14 (11)

Subscripts k+!4 have been suppressed in obvious places. Equation (10)
must now be expressed entirely in terms of 8R and 6T. The mean
values of the pressure and luminosity have been written as arithmetic

(m)

means. In equation (10), §E = ET 8T + Egn) 8V and 6P=P,(I‘m)6T

(m) . -
+ PV 8V, with ET = (8E/8T)V , etc,

The artificial viscosity term is defined by

2
C(Uk+1-Uk)/Vk+l/a for U, ,-U, <0

et 1 = (12)
o for U, ,-U, >0,

where the constant C was equal to 2 in this work. Then

§q = -q\™) [6V/V(m)+ Za(UkH-Uk)/ (Uk+1-Uk)] . (13)

¥ ARPT - At(Un+1+ Un) /2, then
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AR™) | sR = At(U(m) + U4 5U)/ 2. (14)
At each step in the iteration, AR(m) is determined., Then
g™ 2 AR /At - U (15)

and 6U = 26R/At. The change in specific volume is

8V = (Ak+16rk+l ) Ak6rk> / R RV (16)

The variation in luminosity 6L = ASF + 2L 5R/R. The expression
resulting from the linearization of the variations in convective flux is
very complex and has not been used. Calculations of numerical deriv-
atives of the convective flux would also be time-consuming. Also,
6Fk-6Fk+1 for the convective flux would contain terms in SR at four
consecutive boundaries, whereas all the terms considered so far include
S8R at only two different boundaries. Including four terms would com-
plicate the matrix inversion procedure used in solving for the 8R's and
§T's. It is usually possible to obtain reasonably good convergence of
the iterations even when &F (convective) is left out; therefore it was
omitted from the linearization,

For the radiative flux

6F = 2F ™sR/R + (aF/aTk_%) 6Tyt (8F/8Tk+1/2)6Tk+1/2+xkF s(1/k, ).
(7)

In the expression for 6(1/Kk)‘ the terms depending on specific volume
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also have been omitted because they depend on four different 5R's.
This does not usually cause serious convergence problems. The final

form for equation (10) is
-CM 6Tk_%+CO 6Tk+1/2~CP 6Tk+3/_,_ -CRM 6Rk+CRP 6Ry 4= CON (18)
where subscripts kt+ls are implied on all the coefficients.

¢) The Equation of Motion

The basic form for the equation of motion is

n+ . n+Ys
AU ’ . Ax : (Apn+1/z +Aqn+1/z>_ GM (19)
At mk k k (Rli)n'i'l;z

The means in this equation were taken in two different ways. In case 1,
the first term was written as (Ak(APk+Aqk)>/mk and the second was
written as GMk<1/Rf<> , where (A) denotes an arithmetic mean, In

case 2, used by Fraley (1968),
1 2 2
AR - 4 [(R“) + ROROHL (R“”):\ /3, (20)

1
and 1/(Rz)n+/2 = 1/(Ran+1), and arithmetic means were used for
pt Y n+%

and q

AUn+1/2 = Un+1-—Un = (2ARn+l/2 /At - Un) (21)

Equation (19) is linearized (no terms are neglected) and put in the form
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DpP 6Rk+1 + DO 6Rk + DM (SRk_1 -TP 5Tk+1/2 + TM 6Tk—1/2= DON , (22)

where subscript k is implied for all the coefficients,

Boundary conditions are required before equations (14) and (22)
can be solved. At the inner boundary (k=1), I, and r, are fixed
constants, When these conditions are applied, equation (18) can be put

in the form
5'I‘3/ = CC 6T5/ + DD + EE 8R, (23)
2 2

for k=2. When the boundary conditions and equation (23) are used in

equation (17) for k=2 the result can be put in the form
6R, = RR 6T5/ + SS + RT 6R, (24)
2

for k=2, Equations (22) and (23) are then substituted into equations
(18) and (21) and the whole set of equations for all k can be reduced to
the form of (22) and (23). When the surface boundary conditions Pn+1/=0
2
= 4 -
and Ly = 4:77RNRN__lcr'I‘N_l/2 are used, 6Ry and 6TN-1/2 can be cal
culated. Then all the 6R's and §T's can be calculated sequentially

by substituting known values into the analogues of equations (23)and (24).

d) Energy Conservation

The equation of motion and the heat equation can be combined in

the form
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. GM )
- 54 E) = - 52 (L4 4rrti(Prq) (25)
2 r aMr r ’ )

An integration over the envelope gives

3 M T2 GMr
rn 1\f4 (—z— -—E E) dM_ = L(M_) - L(M) (26)
C

if f(MC)= 0 and P+q=0 at M_=M. An integration of equation (26)

gives
tz
(energy of envelope at time t,) = f [:L(MC)-L(M)-‘dt
tl -
+ (energy of envelope at time t;) (27)

The difference equations should satisfy an equation of this form for the
entire time t, -t, of the calculation, Whether or not a difference-
equation analogue of (27) holds depends on the form of the equations as
well as on the accuracy of the iteration procedure by which they are
solved. Fraley's form of the equation of motion (19) conserves energy
exactly if the equations are solved exactly, This is demonstrated as

n+l

1
follows. Equation (19) is multiplied by (U™ '+u™)/2 = aR™ /Z/At and

rearranged to give

[U™-U™]  Grmar™ %

= -AR™ 2 (Anp)Pt e 2
m 3 + (Rz)n+1/2 AR { ) . (28)

n+l

The potential energy term reduces to -GMm/R"™ '+ GMm/Rn if

1
(R?‘)n+/2 = R"R™ | In the heat equation (9),



n+1,3 n+1 3 n 3 n3
Avn+1/z _4m I: Ryep) "By )7 4y [:(Rkﬂ) ~(Ry) “ (29)
katp 3 oy 3L iy,
This has the form
n+ Y5 ntl, ntl n+Y n+1/2
AV = ( AR A -AR 30
k+% ( k+1  kH ko M ) / i+ (30)

1 1 +1
where An+/°‘ was defined in equation (20). When the term pit /zmA\f1 Z

in equation (9) is summed over all zones, the result can be written in the

form

N
e n+Y5 !
2 n+/2

Z( e k+1/2) ARTR AR (31)

This will cancel all the pressure terms in equation (28) when it is
1
summed over all boundaries, if An+/2 in equation (28) is defined as
1
in equation (20), and if the mean pressure 1:’n+/2 is chosen the same

way in equations (9) and (19). Thus the final result is

N n+1 2 G

Z [(_.) ) Mk} Z m - At Ln+1/2 n+1/z)
- REH k-1 k 1/2 ( N

N nz oG
+kZ::z mk[(%—) I:k} L Mg -1 EE-% , (32)

Ry

which when summed over all the timesteps between t, and t, gives
exactly the form of equation (27). If the alternative method of averaging
is used in the equation of motion, equation (32) will not be satisfied

exactly, If the model performs a periodic oscillation, then the deviations

from energy conservation will also be periodic; if the magnitude of the
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maximum deviation is not too large, there is no problem in the inter-
pretation of the behaviour of the model.

The kinetic energy of the turbulence changes as the convection
zone grows or shrinks, but this energy has not been included in the
discussion of conservation, A partial differential equation must be
written for the mean square turbulent velocity, and it then is included
in the sum over all boundaries, The turbulent pressure term must be
included in the equation of motion, and the heat equation must also be
modified to account for the énergy which is dissipated by the turbulence
and the work done by buoyant forces to increase the turbulent energy.

All this has been discussed by Fraley (1968), and by Castor (1968),
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