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Abstract 

Several tectonic features in Southern California cannot be directly 

explained by the plate tectonic interpretation for the region. In 

particular, both the existence of the Transverse Ranges and the geometry 

of the San Andreas fault imply a stress pattern deviating from the 

simple ho.rizontal shear, which parallels the spreading between the 

Pacific and North American plates. A number of possible mechanisms 

responsible for this anomalous stress field, are examined quantitatively 

in the light of seismicity and other tectonic observations, and in 

particular to the Palmdale uplift which was reported to have occurred 

between the years 1960-1965. 

The subsidence in the Wilmington oil field in Long Beach has long 

been a source of concern, as its economic consequences were disastrous. 

An area of approximately 20 mi has been affected by the subsidence, 

which in 1965 reached a value of 29 ft in the center of a bowl shaped 

pattern. The subsidence was accompanied by horizontal displacements 

of up to 12 feet. A series of shallow earthquakes, with hypocentral 

d~pths between 500 to 600 meters took place in the years 1947, 1949, 

1952, 1955, and 1961. The slip planes were within a thin shale layer 

above the producing zones of the Wilmington field. It is now agreed 

upon that the subsidence was caused by the pore fluid pressure reduction 

resulting from oil production in the field. Indeed, after a repressuri

zation program had been initiated, the subsidence was virtually 

stopped in all areas of the field. The subsidence, and subsequent 

rebound are simulated with the aid of the Finite Element calculation 
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method. Pressure data compiled from records of individual oil wells 

are converted to input data for the numerical calculation. The simu

lations reproduce synthetically the field observations of vertical 

movements, horizontal movements, and collar count survey data. For 

the material rheology of the formations of the Wilmington field, 

first a layered linearly elastic approximation is used. However, it 

is found that not all observations can be reproduced with this 

material model, and in particular, the size of the subsidence pattern 

is overestimated by the linear models. Therefore, a more complete 

elastic-plastic cap model is incorporated into the simulations. With 

the aid of the nonlinear material characterization, the field observa

tions can be reproduced in a satisfactory manner. It is demonstrated 

that the stress, prior to the onset of oil production in the Wilmington 

field, can have a dominant influence on the size and shape of the 

subsidence pattern. Accordingly, the final, and most successful, 

simulation includes a horizontal extensional stress component which 

is added to the overburden stresses at points lying in the vicinity 

of the center of subsidence. 

The lithosphere in the vicinity of island arcs and seamounts can 

be modeled as a plate which overlies an invicid fluid of asthenosphere 

material. It has been recognized that bathymetry profiles in such 

areas resemble the mathematical solutions of certain plate bending 

problems. This study attempts to improve on previous models by incorporating 

a lithosphere rheology based on rock deformation data for Dunn-

Mountain Dunite. The material behavior is approximated to be as 

strain rate dependent elastic-plastic. The rheological approximation 
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is converted into a moment-curvature relation for the lithosphere, 

which in turn is incorporated into a Finite Element algorithm for 

solving von Karman's plate bending equations. The complete formulation 

is tested in matching gravity and bathymetry in a profile in the 

vicinity of the island of Molukai of the Hawaiian-Emperor seamount 

chain. It is shown that the model can match the observations, while 

avoiding the excessive fibre stresses which have been produced in 

previous models. 
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Introduction 

This thesis contains three numerical modeling studies of tectonic 

processes in the lithosphere. Chapter one describes a numerical 

simulation of the tectonics of Southern California; chapter two 

presents a model for the subsidence in the Wilmington oil field; 

while chapter three contains a study on the flexure of the lithosphere 

from loads such as seamounts and island arcs, which is applied to an 

example in the Hawaiian-Emperor island chain. Although the three 

problems are on different dimension and time scales, the common 

feature is the use of the Finite Element method to solve the partial 

differential equations of equilibrium. Details of the numerical 

algorithms used in this study are given in the appendices. 

The problem of modeling tectonic processes in the Earth is a very 

difficult one because of the lack of reliable data for the boundary 

conditions, material response,and initial conditions. Whereas the 

seismic structure of the Earth is known to a high degree of precision, 

the knowledge on the state of stress in the lithosphere, or on the 

forces responsible for tectonic deformation is at best 'crude. Further

more, the material response of the crust and upper mantle as a function 

of depth is not known precisely, and questions such as what is the 

mechanical nature of faults beyond a depth of a f ew kilometers?, cannot 

be answered in a satisfactory manner. 

In view of these problems, the approach of this thesis has 

been to choose problems where it is felt that there is some control 

on the data, and to limit the study to those aspects of these problems, 

where it appears that meaningful conclusions can be reached. 
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In the problem of the tectonics of Southern California, the 

faulting pattern in the region and certain aspects of the Geology, 

are incorporated in the model. The study is based on a fault model 

which is often used by Geophysicists, and it attempts to draw infer

ences from it on the mechanisms responsible for the formation of the 

Transverse Ranges and the Palmdale uprise. 

The Long Beach subsidence problem presents a study on a very 

small scale in comparison. In this problem the deformations took 

place in an accessible region of the crust, and there is relatively 

good data control on the forces responsible for the Earth movements. 

Therefore, the Long Beach subsidence problem presents a test case 

for the numerical techniques used in all the thesis. Indeed, the fit 

between data and observation obtained in the Long Beach study gives 

confidence in the ability to simulate accurately tectonic processes 

whenever good data are available. 

The third study is an attempt to construct a realistic moment

curvature relat ion for the lithosphere in the vicinity of seamounts 

and island arcs. The rheological model is based on laboratory results 

for the deformation of Dunite at various strain rates and temperatures. 

The material model is incorporated into a Finite Element code and the 

method is tested i n fitting a bathymetric profile in the v i cinity 

of Oahu . Although flexure problems are non- unique, the success in 

fitting profiles by using a material model based on experimental data, 

demonstrates that there is no paradox between laboratory deduced rock 

deformation properties and global observations. In particular , the 

third study shows that the excessively high stress levels which were 
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encountered in previous plate flexure models are not necessary for 

explaining observed morphological features. 

The Finite Element technique used in the three studies in this 

thesis appears suitable for modeling other tectonic processes in the 

Earth, whenever data is available. Indeed, it would seem that since 

the advent of numerical codes capable of solving fully 3-D continuum 

problems including a realistic material rheology prescription, very 

often the main obstacle in constructing models lies not in the numerical 

method, but rather in the data. 
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Chapter One: NUMERICAL SIMULATIONS OF TECTONIC PROCESSES 

IN SOUTHERN CALIFORNIA 

1.1 Introduction 

Several tectonic features in Southern California do not fit 

easily into the simple plate tectonic model for the region. According 

to the simple model, the boundary between the North American plate 

and the Pacific Plate, lies in California, trending in a SE-NW 

direction (e.g., Atwater, 1970; Minster et al., 1974). The San Andreas 

fault is a transform fault, along which a large portion of the motion 

between the two plates occurs. The simple model explains the gross 

recent tectonic motion which is of a right lateral shear, parallel 

to the relative velocity vectors between the Pacific plate and North 

American plate (Minster, et al., 1974). However, it does not explain 

the existence of the big bend in the San Andreas fault between Taft 

and San Bernardino, nor the nature of faulting in the Transverse 

Ranges, nor the Garlock fault, a major feature (Davis and Burchfiel, 1973) 

(Figure 1. 1). 

The Transverse Ranges and the area of the White Wolf fault 

(Figure 1.1) represent narrow zones in which there is a considerable 

thrust component in the faulting. Thi s indicates a major change in 

the type of stresses which are responsible for the faulting, since 

in all other areas of Southern California the faulting is predomi

nantly of the strike-slip type. A number of investigators (Rogers 

and Chinnery, 1973; Scholtz, 1973) have suggested that the difference 
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Figure 1.1 Map of the main tectonic features in Southern California. 
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in fault pattern has been caused by the geometry of the San Andreas 

fault at the big bend. However, it has not been demonstrated quanti

tatively that fault geometry can indeed produce such effects, nor 

does such an hypothesis explain the asymmetry in topography and 

faulting between the Mojave desert and the San Gabriel Mountains, 

which lie on opposite sides of the San Andreas fault in the region 

of the bend. 

Interest in the area of the Transverse Ranges gained momentum 

after the observation of ground upheavals of about 23 cm in the Palm

dale area, between the years 1960-1965 (Castle ~t al., 1976). The 

observation raised the question of the responsible mechanism for such 

large displacements, and whether they are related to an impending 

large earthquake. 

This study presents a method of simulating various intra-plate 

tectonic processes numerically. The method is applied in the region 

of Southern California in an attempt to explain its topographic and 

tectonic features. In principle, the availability of computer codes 

which are capable of solving three dimensional continuum problems with 

a wide range of material rheologies make it possible to solve defor

mations in a given region, once boundary and initial conditions and 

a prescription of its material properties have been specified . In 

practice, however, the available data in most cases are insufficient 

to pose these problems. In tackling numerical tectonic simulations 

therefore for the values of the parameters for the boundary conditions, 

and for the material rheologies , one must resort to making simplifying 

assumptions. 
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Most of the assumptions in this study are based on the notion 

that on a gross scale the plate tectonic model for Southern California 

is correct, and various perturbations in it have been considered in 

order to explain and reproduce the observed anomalous intraplate 

features. 

For the posing of initial conditions in setting up the models, 

a point requiring attention concerns the time scale to be covered. The 

present available data suggest that the current tectonic regime in 

Southern California, has been in existence for about the past four 

and one half million years (Atwater, 1970). However, the historical 

record of earthquakes and deformations extends back only a few hundred 

years at best, and does not give enough data to verify all the results 

of a simulation of the movements prior to the data's collection. On 

the other hand, simulations of present or future motions do depend on 

past history. 

A possibility of resolving the difficulty is to assume that 

mechanisms in the San Andreas fault behave in a cyclical manner 

(Wallace, 1970), with each cycle consisting of a series of large 

earthquakes such as the Fort Tejon earthquake of 1857 or the San 

Francisco earthquake of 1906 , followed by numerous smaller events in 

other segments of the San Andreas· fault , and in other faults of the 

region. With this assumption only one cycle needs to be simulated 

rather than the full history. Since, according to the slip rate 

between the Pacific and North American plates and seismicity, the time 

scale of a cycle in California is on the order of a few hundred years, 

the conf i guration of the region would not change appreciably after a 
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few cycles. The use of the infinitesimal continuum theory in simulating 

motion during each cycle therefore appears justified. Obviously this 

approach can be used only to approximate motion in the last hundreds, 

or perhaps thousands, of years, so that processes like the evolution 

and change of the tectonic regime with time cannot be simulated. 

An additional important factor is the choice of material rheology 

for the lithosphere in Southern California. It is assumed that most 

nonlinear behavior occurs around faults, and consequently a ·nonhomo

geneous linear elastic prescription has been used to simulate the 

lithospheric response. Fault segments which undergo creep at certain 

depths are approximated by narrow zones with a very low shear modulus. 

As long as the loading of such a creep zone proceeds in the same 

direction, the approximation resembles an elastic plastic material 

with a Von-Mises yield criterion (Fung, 1965). Although it is not 

expected that the approximation of material properties will reproduce 

correctly causal sequences of events, the existence, or possibility, 

of stress concentrations and surface uplifts resulting from fault 

motion, can be reproduced correctly. Thus, the creep event of the 

Palmdale uplift (Castle et al_., 1976), for example, is reproduced, 

but the modeling cannot determine the exact time that it happened, 

or when it will produce another event in the future . 

1.2 Modeling Procedure 

In most of the models tested for the study, a region of Southern 

California surrounding the Transverse Ranges, has been modeled as a 

block of continuum material (Figurel.2). According to the assumptions 
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Figure 1.2 A sketch of a typical tectonic model configuration . The 
large block depicts a portion of the crust and upper mantle in Southern 
California and the interior brick shape region represents the portion 
covered by the Finite Element grid. In the upper left corner a single 
3-D element is shown where the displacements U~ refer to its eight 
nodes and the stresses er .. are related to the l. element centroid. 
Below the various symbol~Jof the plot are shown where, (1) denotes a 
boundary condition of a specified traction component in the direction 
of the arrows , (2) denotes a displacement specified boundary condition, 
and (3) gives the magnitude of the specified displacement. 
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made for each model, various regions are assigned different material 

properties, and a set of displacement or traction boundary conditions 

are posed on the outer surfaces. The deformations of the region are 

calculated by a Finite Element method, after approximating the continuum 

by a three dimensional grid (Figure 1 . 2) . The Finite Element calcula

tions produce three components of displacements at each node of the 

grid, and six stress components at the centroids of each element 

(Figure 1.2). 

Since the Finite Element mesh approximates only a finite portion 

of the entire earth, it is important to minimize the effect of this 

finiteness on the calculations. To achieve this the Eastern and 

Western boundaries of the FE mesh are chosen far enough away from the 

surroundings of the San Andreas fault to lie in regions where, according 

to the plate tectonic postulate, it is justified to assume that the 

rigidity of the plates holds. (This assumption can be questioned on 

the east where Basin and Range faulting and other tectonic deformations 

occur . ) The Northern and Southern boundar i es of t he mesh traverse 

the San Andreas fault and other active faults so that it is necessary 

to pose the boundary conditions in a manner that will not affect the 

validity of the calculated results. It is found that this can be 

achieved by constraining the horizontal component of motion which is 

tangential to these boundaries, but allowing free motion in the two 

remaining directions (Figure 1.2) . 

The bottom boundary is usually taken at a depth well below the 

crust-Moho transition, which is about 30 km deep in Southern California 

(Kanamori and Hadley, 1975). Since it is assumed that little vertical 
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motion takes place below this depth on the bottom boundary, the verti

cal displacements are constrained to be zero. The horizontal displa ce

ments on this boundary are not constrained in the two models discussed 

in this study, and no tractions are applied there either. (In other 

models combinations of drag forces of various signs are applied on the 

bottom boundary). 

For the present study, two of the tested models have been chosen 

for presentation, a model of a straight and long transform fault, and 

a model for a region containing a major transform with a bend. 

1.3 A Model of a Straight and Long Transform Fault 

The first model tested is of a straight and long transform fault 

surrounded by a homogeneous medium. It serves to establish a back

ground deformation pattern, upon which contributions from the various 

complications in the tectonics of Southern California can be super

imposed in later models. Since the results can be interpreted readily, 

it also serves to insure that the computations are not artificially 

influenced by the configuration of the Finite Element mesh. 

The model consists of a crustal block 435 km long, 300 km wide and 

60 km deep (Figure 1.3a). A vertical weak zone, 20 km wide is situated 

in the middle of the block between the depths of 30 km and 60 km 

(Figurel.3a). It represents the unlocked portion of the transform 

fault undergoing creep. The choice of these depths is based on the 

observation that all hypocentral depths in Southern California,so f ar , 

have been shallower than 20 km (Hileman ~ a-1. , 1973) , and on the as s wnption 

that fault motion is totally aseismic a few kilometers beyond that 
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( b) 

Figure 1.3 (a) A horizontal cross section of the Finite Element grid 
of the first model, which gives the horizontal dimensions and the 
fault geometry. The material parameters for regions outside the 
faults were a density of 2.8 gr/cm3 and P and S velocities of 6 km/sec 
and 3.464 km/sec respectively. The fault zones were assigned a 
density of 2.8 gr/cm3 and P and S velocities of 4.4726 km/sec and 
0.14 km/sec respectively. (b) A plot of the horizontal displacements 
at the free surface . (c) A plot of the horizontal displacements at 
a depth of 45 km. 
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depth. (In a later section we discuss the implications of fault creep 

at shallower depths than 25-30 km with regard to the shape of the 

Palmdale bulge.) On the lower boundary, the block is allowed to slide 

freely in the horizontal directions, but is prevented from moving 

vertically. Hence this boundary is considered a decoupling zone at 

the bottom of the plate. The model tested the hypothesis that the 

main tectonic driving force in regions around transform faults is 

caused by drag from the sides by the two plates which meet at the 

fault. Consequently, a displacement increment of ±3 meters in opposite 

directions is applied to the Eastern and Western boundaries, corre

sponding to approximately one hundred years of plate motion (spreading) 

in California (Savage and Burford, 1973; Brune, 1968). It should be 

noted that for a given displacement increment, the width of the block 

will determine the magnitude of the strains, with the results seeming 

to depend on the choice of block width. However in the absence of 

heterogeneities and faults, the boundary conditions in this example 

approximately produce a state of constant shear strain, and thus 

conclusions concerning stress concentration factors over the homo

geneous case, or the perturbations of displacement patterns, are still 

considered valid for this model. 

The horizontal displacement a t the free surface is given in 

Figure 1.3b,:inwhich at each node a product of the horizontal dis

placement and a constant scale factor are added to the coordinate. 

The plot shows a rather diffuse displacement pattern, while the trace 

of the weak zone at depth is not distinct. The general pattern is of 

horizontal shear which extends to the boundary, with no not i ceable 
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adverse distortions (such as twisting where the fault contact the 

boundary). Figure 1.3c displays the displacements at a depth of 45 km. 

It can be seen that a large portion of the strains are taken up on 

the fault. 

The vertical displacement contours at the free surface are given 

in Figurel.4. In the central portion of the plot, the vertical dis

placement values are within the resolution limits of the contour plot, 

and are practically zero. Only where the creep zone intersects the 

Northern and Southern boundaries of the Finite Element mesh . are 

there noticeable vertical displacements. 

Figures 1 . Sa, 1 . Sb, 1. Sc and 1. 5d give lower hemisphere stereographic 

projections of stresses at chosen points in four horizontal layers, at 

depths of 7.5 lan, 22.5 km, 37.5 km and 52.5 km respectively. In 

these plots, the radius of each circle is linearly proportional to the 

difference between the maximum and minimum principal stresses at the 

center point. Such plots display the orientation of the principal 

stresses, as well as give some information about their values . A 

similar stereographic projection method is often used to display focal 

mechanisms of earthquakes. Hence, for fracture models in which the 

fracture plane is close to a maximum shear plane, these plots can 

predict and display the f ocal mechanism for an ear thquake which will 

be caused by the stresses. The derivations used to construct these 

plots are given in appendix F. 

Figure 1. Sa and 1 . Sb show that in the two upper layers the stresses 

are essentially of horizontal shear wi th a large s tress concentration 

at points directly above the creep zone. In the lower layers, the 
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Figure 1.4 Vertical displacement contours in centimeters on the free 
surface for the first model. 
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stresses are lower and more uniform. Adjacent to the fault zone, 

one of the two maximum shear planes is rotated towards the fault. In 

all the layers the stresses vary only as a function of distance from 

the Eastern or Western boundary and not in the N-S direction. This 

again shows that the boundary conditions can be used to approximate 

the effect of the surrounding media on the region under study, except 

toward its edges . 

An additional class of models, in which the driving forces are 

supplied by tractions on the lower boundaries as opposed to a dis

placement specification, also have been tested. In general, the results 

for these models do not differ in nature from the results of models 

with the displacement specification. For example, one model uses the 

grid configuration of Figures 1. 3a and 1. 3b, and has a driving mechanism 

of two uniform tractions applied respectively on the Eastern and 

Western halves of the lower boundary of the grid. These tractions 

are equal in magnitude, but opposite in sign in a right lateral sense. 

The calculated displacement and stress patterns f or this model are 

very similar to the patterns in Figures 1.3, 1.4, and 1.5; the only signifi

cant difference is a somewhat higher stress and strain concentration 

above the creep zone . 

1.4 A Model for a Region Containing a Major Transform. Fault with a 

Bend 

In seeking an explanation for some of the major physical process es 

in Southern Cal i fornia, a model has been set up which consists of a 

lithospheric plate decoupled from below, containing a transform fault 
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with a pre-existing bend in it (Figure 1. 6a). According to this model, 

between major earthquakes, motion along the fault is restricted to 

creep at lower depths until the stress buildup in the locked zone 

exceeds the strength of its material. It is then that the rupture 

will occur . Variations on this model have been proposed by a number 

of investigators (Allen, 1968; Rogers and Chinnery, 1973; 

Scholtz, 1973; Barker, 1976), while some researchers put forth the 

suggestion that the Transverse Ranges have been caused because the 

bend in the San Andreas fault does not allow the material to be dis

placed freely, and it becomes compressed (Scholtz, 1973; Rogers and 

Chinnery, 1973). 

The model has been tested numerically by simulating motion at 

intervals between large earthquakes along the segment of the San 

Andreas fault between San Bernardino and Taft (Figurel.l). This par

ticular example considers creep at depth only along the San Andreas 

and San Jacinto faults. Other examples which have been tested con

sider also creep along other faults, including the Garlock fault and 

the Newport-Inglewood fault. 

In this model the upper portion of the San Andreas fault above 

30 km, is considered to be locked. However, in the upper layers, 

the San Jacinto fault is approximated by a zone with a shear modulus 

reduced to about one third of the shear modulus of the crust, thus 

attempting to account for the higher level of seismicity on this 

fault (Hileman et al., 1973) . 

Figure 1. 6a gives the grid configuration, as well as other pertinent 

parameters for the calculations in the model. The vertical dimension 
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of the lithospheric block is 60 km. This depth has been chosen to 

correspond roughly to the thickness of oceanic plates, but it is obvious 

that there is need for data on whether such a decoupling zone exists 

at such a depth in Southern California. However, we have not exper

ienced significantly different results in a model with a plate 

thickness of 70 km. The fault zones are 7.5 km wide (one element), in 

segments which are parallel to the grid, and are slightly wider in 

the region of the bend (e.g. Figure 1.8). The material constants chosen 

to represent the lithosphere, correspond to a P velocity of 6 km/sec, 

an S wave velocity of 3.464 km/sec and a density of 2.8 gr/cm3 . These 

values are close to values often quoted for granite. However~ it is 

questionable whether these parameters accurately represent the response 

of the lithosphere to long term loads, and they are used only as an 

approximation. The creep zones of the faults are assigned P and S 

velocities of 4.4726 km/sec and 0.14 km/sec respectively with a density 

3 
of 2. 8 gr/cm. These velocities correspond to a shear modulus three 

orders of magnitude smaller than t he modulus of crustal material. 

The upper layers of material along the San Jacinto fault have P and 

S velocities of 5.03 km/sec and 2. km/sec respectively, and a density 

3 of 2.8 gr/cm. A displacement boundary condition of+ 3 meters is 

applied on the Eastern and Western boundaries of the grid . The calcu-· 

lations use a 30 X 24 X 4 grid totaling 2880 elements and 3875 nodes. 

At points corresponding to the region where higher accuracy is required, 

the mesh is finer . 

The calculated horizontal displacements at the free surface and 

at a depth of 45 lan are shown in Figure L 6b and 1.6c respectively. As in 
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the previous example (Figures 1.3b and 1.3c), the faults are not very 

noticeable on the free surface, and the strain is distributed over a 

wide zone. In the deeper layers where the faults are not locked, most 

of the strain is concentrated on the faults. The traces of the San 

Andreas fault and the San Jacinto fault can be easily distinguished 

there. 

Figure 1. 7 gives the calculated vertical displacements at the free 

surface. The striking feature in the plot is the surface uplift 

above the bend in the creep zone. The contours resemble the so-called 

"Palmdale uplift" which, as reported by Castle et al. (1976), occurred 

between the years 1968-1965. (This uplift does not appear in the 

previous model of a straight fault; that it appears here must be a 

consequence of the bend in the fault geometry.) 

The stereographic projections of stresses at selected points in 

the four layers of elements, are given in Figures 1.8 a, ·h, c and d. 

In the first two layers, which are above the creep zones, the stresses 

are dominated by horizontal shear. The main effect of the unlocked 

portions of the faults in the lower layers is to produce stress 

concentrations above them, and to rotate the maximum shear planes 

in the upper layers of the bend segment . toward alignment with the 

fault trace. In the two lower layers, the stresses are low along the 

faults. Adjacent to them, one of the maximum shear planes is tilted . 

In regard to a possible mechanism for producing the Transverse 

Ranges, the stresses in the plots of the two upper layers nowhere 

appear to be conducive to thrust faulting. Basically, both the 

maximum and minimum principal stresses there are horizontal, while 
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for thrust faulting, in most fracture models, the minimum principal 

stress has to be close to vertical. Other models have been tested 

as mechanisms for the Transverse Ranges. These include features such 

as crustal heterogeneities, creep o.n other faults including the Gar

lock fault, or a driving mechanism of drag on the plate bottom. The 

results also do not produce significantly different stress patterns. 

A model based on dislocation theory in a half space, in which dis

placement discontinuities are prescribed along the faults, again does 

not produce stress patterns conducive to thrust faulting. On the 

other hand, the stresses can be modified by introducing localized 

forces or obstacles which resist motion on the bottom boundaries. It 

appears therefore, that if the Transverse Ranges are produced only as 

a result of material heterogeneities in the crust, or by the geometry 

of the San Andreas fault, the rate of strain release by thrust faulting 

must be slower than the rate of release of horizontal shear strain by 

right lateral motion. 

In order to clarify further this point , we have cons idered t he 

stress tensor o~~) , which is obtained by subtracting from the stresses 
J.J 

shown in Figure 1. 8a and Figure 1. 8b, a uniform shear stress a~~), of 
J.J 

magnitude 6.56 bars , and an orientation parallel to the sides of the 

grid. To a good approximation , these uniform stresses are produced in 

a homogeneous model which does not contain faults , and has the same 

dimensions as the model of this secti on. This is because the strains 

in such a model, essentially consist of horizontal shear, equal in 

magnitude to the ratio between the absolute values of the specified 

displacements on either of the two sides of the grid, and the width 
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of the mesh. Physically, the uniform stresses,a~~), build up during 
lJ 

periods in which the faults are inactive , a s the lithosphere then 

behaves approximately like a homogeneous block. When certain faults 

become activated by creep at depth, a new stress pattern is produced, 

which in the model of this section is the pattern of Figures L8a, b, c 

(1) 
Thus the stresses of q . . are the perturbation to the stresses 

1] 
and d. 

of the homogeneous model caused by the inception of creep on faults. 

The perturbation stresses q~:) for the two upper layers 
1J 

are 

plotted in Figure 1. 9a and 1.9b respectively. In these plots, the stresses 

directly above the creep zone are still predominantly of horizontal 

shear. The rotation of the maximum shear planes toward the direction 

of the trace of the San Andreas fault is very apparent. In the regions 

of the grid corresponding to the Transverse Ranges province, the minimum 

compressive stress axis is close to vertical. These stress perturba

tions, therefore, are conducive to thrust faulting. The feature is 

asymmetric, and in the region corresponding to the Mojave desert is 

less apparent. Apparently this is the result of the existenc e of the 

San Jacinto fault in the model. Indeed, with a model containing an 

additional fault at depth (Figures 1. 9c and 1. 9d) in the vicinity of the 

Newport-Inglewood fault, this characteristic is further enhanced 

(especially s i nce the numerical values of t h e stresses there a re 

higher than in Figures 1. 9a and 1. 9b ). These r esults may give a clue to 

the cause of the Transverse Ranges by suggesting a model in which 

for some particular reason the right lateral faults to the west of 

the San Andreas fault and south of the Transverse Ranges cannot 

continue throughout this province. The right lateral motion along 
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them,therefore, concentrates stresses which are conducive to thrust 

faulting. Other alternative explanations could involve local forces on 

the bottom of the plate below the Transverse Ranges, but at the moment 

the amount of data available on their values may render an attempt at 

calculation premature. 

1.5 The Palmdale Uplift 

Figure 1. 7 shows that a tectonic model of Southern California which 

includes the San Andreas fault with a creep zone at depth, produces a 

vertical displacement pattern similar to the so-called Palmdale uplift 

as reported by Castle et al. (1976). This explanation of the Palmdale 

uplift invokes a shear stress buildup in the region of the bend in the 

San Andreas fault. Thus, after one or a nllIIlber of such events, when 

the stresses will exceed the strength of the material, the locked zone 

of the fault ruptures. In this section, the main implications of this 

model in the formation of Palmdale uprise will be summarized. 

(a) According to the model of Figures 1. 6a and L 6b, the Palmdale 

uprise has been caused by creep at depth on a weak zone of finite width 

on the San Andreas fault in the region of the bend. In this area, the 

trace of the San Andreas fault is at an angle to the predominant NW-SE 

shear stress plane in Southern California. consequently, weak material 

in the creep zone which is squeezed, pushes the material above it 

upward, resulting in a bulge on the surface. 

(b) From the results of calculations in a number of cases, it 

appears that in order to form an uplift pattern which resembles the 

Palmdale uprise, the creep zone must begin at a depth of at least 25 km 



-29-

and extend to depths of 50-60 km. This is because for shallower depths 

the uplift would be much narrower than observed. 

(c) For a creep zone 7.5 km wide and a deep fault, the ratio 

between fault dislocation at the bottom of the creep zone and the 

surface uplift is between five to one to ten to one. Thus the observed 

uplift of around 23 cm around Palmdale, corresponds to about 1-2 meters 

of creep on the fault at depth. 

(d) In this explanation, creep on the Garlock fault could not have 

taken place during the formation of the Palmdale uprise, because models 

which include the fault produce totally different contours. 

(e) The numerical model predicts that uprises of the type of 

the Palmdale uplift will be accompanied by a horizontal shear strain 

parallel to the trace of the San Andreas fault in the region of the 

bend. From Figure 1. 9a and Figure 1. 6c these strains are on the order of 

10-5 . 

According to this explanation, during periods in which the faults 

are inactive at all depths, the lithosphere in Southern California 

behaves like a uniform block subjected to a shear stress rate field 

parallel to the spreading vector between the North American and 

Pacific plates. When the San Andreas fault in the bend area becomes 

active at depth, the stress rates in t he vicinity of the fault will 

accelerate and rotate in a counter clockwise direction with respect 

to their previous orientation (as in Figuresl.9a and 1.9b). 
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1.6 Conclusion 

This study has attempted to shed some light on the mechanism 

responsible for producing the Transverse Ranges. It has found that 

in the plate tectonic interpretation of Southern California, their 

existence cannot be directly attributed to the geometry of the San 

Andreas fault, nor to crustal heterogeneities, nor to the existence 

of the Garlock fault. In models which account for creep on the San 

Jacinto fault, as well as on some other right lateral faults in 

Southern California, a very small stress component conducive to thrust 

faulting is observed in the region of the Transverse Ranges. Because 

this component is very small, it appears that either the rate of stress 

release by thrust faulting in the Transverse Ranges is much smaller 

than the rate of release by right lateral strike slip faulting on the 

San Andreas fault, or that there is a separate mechanism which is 

responsible for the formation of the Transverse Ranges. 

The study also shows that a region containing creep zones of a 

finite width, under certain circumstances, can experience surface 

upheavals similar to the Palmdale uplift. 
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Chapter Two: SUBSIDENCE IN THE WILMINGTON OIL FIELD 

2.1 Location and Subsidence History 

The Wilmington oil field is situated in the Western part of the 

Los Angeles basin in the Long Beach harbour area (Figure 2.1). The 

field extends lengthwise approximately 18 Km in a SE-NW direction. 

The width is about 5 Km in the SW-NE direction. Production in the 

field began in 1936. Cumulative production through 1967 was 1156 

billion barrels of oil, and 840 million ft3 of gas (Mayuga, 1970). 

The subsidence in the field began in 1937 (Gilluly and Grant, 

1949, p. 479), but was first definitely recognized in 1941, when the 

U.S. Coast and Geodetic Survey releveled lines between San Pedro and 

Long Beach which had been previously run in 1933-34. Subsequent 

releveling showed an increasing maximum subsidence of 8 feet in 1947, 

13 feet in 1951, 20 feet in 1954, 26 feet in 1958, until the maximum 

of 29 feet in 1965 . Figure 2.2 shows the subsidence contours for the 

year 1958. Their pattern has roughly an elliptic shape, and most of 

the subsidence occurred in areas lying above fault blocks II, III, and 

IV (e . g . Figure 2. 5). 

The subsidence was also accompanied by large horizontal displace

ments which reached a maximum of about 12 feet (Allen, 1973) . In 

general, the horizontal displacement vectors pointed roughly towards 

the center of the subsidence bowl . 

Although most of the subsidence and horizontal motion took place 

in a continuous manner, in a number of instances abrupt strain release 
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Figure 2.2 Observed subsidence in feet for 1958 (Courtesy of City of 
Long Beach). 
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also happened in the form of small earthquakes. These events occurred 

in the years 1947, 1949, 1952, 1955, 1961 and have not been observed 

since (Richter, 1958; Poland, 1969). The hypocenters were at shallow 

depths between 450 to 550 meters in bedded shale formations (Figure 

2.3). The fault planes were always close to horizontal (Richter, 1958; 

Mayuga, 1965; Kovach, 1974). The epicentral locations were as shown 

in Figure 2.3. Because of their shallow depths, the earthquake events 

produced unique seismograms in Pasadena and Riverside, which consisted 

essentially of surface waves (Kovach, 1974; Richter, 1958). 

The Wilmington oil field subsidence caused considerable damage 

in the port of Long Beach. Extensive remedial measures were required 

to prevent flooding of lands and structures, primarily in the form of 

construction levees, retaining walls, fills, etc. (Poland, 1969). In 

order to prevent further major subsidence, a repressurization program 

by water injection was initiated in 1958. By 1962, the subsidence 

rate had decreased appreciably, while in certain areas there was a 

rebound to a maximum of about J. . 5 feet (Allen~ 1973). 

In 1965, after it had become apparent that the subsidence could 

be checked by repressurization, an offshore extension of the field 

was developed. In order to prevent the recurrence of subsidence, and 

its associated effects,in the new extension area~ a pressure mainte

nance program was initiated at the onset of production. The present 

study is concerned with the subsidence, and with the subsequent 

rebound in the area of the field exploited until 1965. In the absence 

of major pressure changes in the new area which has been exploited 

since 1965, it is very unlikely that its development affected elevation 
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LOS ANGELES 
AUG. 15, 1951 

JAN. 25, 1955 
LONG BEACH 

S A N 
p E D R 0 

B A y 
0 1 2 km 

Figure 2.3 Epicentral lo~ations and slip planes of subsidence 
earthquakes. 
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changes in the older area. 

Furthe~ details on the various aspects of the subsidence and 

rebound in the Wilmington oil field may be found in the references 

(Allen and Mayuga, 1969; Mayuga, 1965; Mayuga, 1970, Allen, 1973; 

Poland, 1969; Gilluly and Grant, 1949) . 

2.2 Geological Structure 

Oil in the Wilmington field has been produced between depths of 

approximately 600 to 2000 meters in seven producing zones of sedi

mentary rock, namely; Tar, Ranger, Upper Terminal, Lower Terminal, 

Union Pacific , Ford and 237 (Figure 2 .4). In the following discussion 

the last three zones will be considered together and referred to as 

the "deep" zones. The oil bearing formations are of Pliocene and 

Miocene age, and include the Puente and Repetto formations which are 

found throughout the LA basin. The producing zones overlie unconform

ably a schist Cretacious basement. The sediments are composed pre

dominantly of sands and siltstones, with interbedding of shale layers. 

The sediments tend to be rather loose and unconsolidated in the upper 

layers, and become more consolidated and cemented with increasing 

depth . The percentage of sand i n the seve r al zones ranges from 23% to 

70%, and t he average porosi ty r anges from 24 to 34 percent (Pol and, 

1969). 

The Wilmington field is a gently plunging anticline trending in 

a SE-NW direction . The old portion of t he fi eld is divided into six 

main s tructural blocks by five faults, namely : "Wi lmington" , 

"Ceritos", "Powerline", "Harbour Ave" , and "Daisy Ave" (Figure 2.5) . 
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0 0 
All the faults have a. 50 - 60 Eastward dip, except the Powerline and 

Daisy Ave faults, which dip Westward (Figure 2.4). The faults 

terminate at the unconformity at the top of the Repetto formation, at 

depths of approximately 600 meters. They therefore appear to be 

inactive at the present time. The faults restrict fluid flow between 

the blocks, but their effectiveness as barriers is highly variable 

(Poland, 1969). 

2.3 Cause Of Subsidence 

In the beginning, the cause of subsidence in the Wilmington oil 

field was debatable. Among the reasons , other than oil withdrawal, 

which had been proposed to explain the subsidence were: (1) increased 

loading due to surface structures and fill deposit on the surface; 

(2) crustal changes from tectonic origin; (3) lowering of the water 

table in shallow water bearing formations; (4) vibration incident to 

land use (Mayuga, 1965). However two reports by Harris and Harlow 

(1947), and Gilluly and Grant (1949)~ both based on consultation work 

performed in 1945, concluded that the subsidence was caused by a 

compaction of the oil bearing strata, which in turn resulted from a 

decrease in reservoir pressures due to production in the field. The 

collar count method , introduced i n 1948- 1949 > l eft little doubt about 

oil withdrawal being the main subsidence cause. In the collar count 

method, vertical distances between well casing joints are measured 

periodically. The lengthening or shortening patterns of the joints 

give a good indication of the vertical compaction or stretching in 

the formations around the individual wells although the actual amount 
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of collar shortening must not be interpreted too seriously. Figure 

2.6 is an example of results of collar count surveys, taken in different 

years, for a typical well in the region of large subsidence. It is 

apparent from the figure that the bulk of the compaction occ.urred 

between depths of 650 to 1100 meters. 

There have been a number of attempts to explain the Wilmington 

subsidence in quantitative terms. The problem can be described in 

terms of volumetric changes in a nonhomogeneous half space. The 

regions of volume change and the amounts are not definitely known, 

and the behaviour of the soil and rock material at the stress levels 

developed is nonlinear and hysteretic. Such a complex situation is 

difficult to reduce to simple models, so that early attempts to 

describe the behaviour were unsatisfactory. Assuming that the regional 

response could be taken to be linearly elastic, G.D. McCann and C.H. 

Wilts (1951) performed a mathematical analysis of the subsidence. 

Their study was based on the tension center concept, introduced by 

Carillo (1950) . This invol ved repr e senting t he producing z ones by a 

number of spherical regions, whose volume was reduced to correspond 

approximately to the estimated volume changes in those zones. The 

general picture of ground deformations was reasonably reproduced by 

the model, considering i ts limitati ons and t he computational methods 

available at t he time . Grant ( 1954) proposed explaining the subsidence 

by modelling the formations above the producing zones as a beam sub

jected to a distributed load underneath . Although such a model can 

match some characteristics of the subsidence , it is obviously somewhat 

arbitrary , since the beam anal og does not permit: simulating a 3-D 
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continuous medium, such as the Wilmington field. A more recent series 

of attempts to model the Wilmington subsidence was made by Jungels 

(1973), and Archambeau (1975). In addition to considering the defor

mations in the solid medium, they considered and solved the problem 

of fluid diffusion in the producing zones of the field. To do this, 

they performed a series of 2-D axisymmetric subsidence simulations, 

and were able to match the time history of the maximum subsidence, 

and to reproduce roughly the shape of the subsidence bowl, as well as 

to provide an explanation for the cause of the shallow earthquakes 

in the field. 

2.4 Outline Of Study 

The purpose of the present study has been to simulate numerically 

the Wilmington subsidence, in order to explain the mechanics of the 

observed deformations, and to provide a model for the effects of 

future fluid withdrawals and injections. The Finite Element method 

has been chosen, enabling fully three dimensional simulations to be 

performed. Having obtained a satisfactory fit to the data, it is 

now possible to use the developed numerical capability for predicting 

future displacements, given appropriate reservoir pressure programs . 

The important observations used for the fitting . included the 

subsidence contour maps of given years (e.g . Figure 2 . 2), horizontal 

displacement maps, and internal data such as collar counts and the 

location of earthquake ep i centers. Each simulation is arranged to 

produce the first three observations synthetically for ea se of 

comparison. The study enables an identification of the influence of 
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the input parameters of the simulations on the observed quantities. 

In particular, certain aspects of nonlinear material behaviour are 

examined and shown to have a definite and interesting influence on 

the subsidence process. 

2.5 Basic Equations in Poroelasticity 

Quantitative simulations of the subsidence and subsequent rebound 

in the Wilmington oil field area involve the mechanics of a fluid 

saturated porous medium. Biot (1941) developed the theory for the 

mechanics of an elastic porous medium containing a fluid, which is 

now known as "the theory of poroelasticity11
• In his derivation, Biot 

considers the stresses and strains in the solid matrix and in the fluid 

as well. The basic assumptions are, first that a strain energy function 

exists for the fluid-matrix system, and second that the relation 

between stresses and strains is linear. The first study dealt with 

media undergoing small deformations, but in later works (Biot, 1956; 

Biot, 1962; Biot, 1972) the theory was extended to treat finite 

deformations and to consider time dependent viscoelastic behaviour. 

Whereas Biot's approach is empirical, there have been more recent 

attempts to derive the equations of poroelasticity theoretically from 

the theory of interacting continua (Garg and Nur , 1973) , according 

to which the solid and the fluid are viewed as a solution of two 

elastic substances. However, the main drawback in these types of 

derivations is that they do not consider the role of matrix structure, 

or of grain shape and size distribution in determining the mechanical 

properties of the solid-fluid composite. 
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This section presents a brief summary, based on Biot's derivation, 

of the theory of poroelasticity for small deformations in an isotropic 

medium. It is assumed that the system is under isothermal equilibrium 

and thus temperature effects can be ignored. Section 2.12 contains an 

extension of the theory to the case of a matrix with an elastic-

plastic rheology. 

Let u.(x) denote the three Cartesian displacement components at 
]. -

point ~ in the solid matrix, and U.(x) denote the displacement com-
1 -

ponents in the fluid. The strains in the matrix are given by; 

(2 .1) e .. . = 
lJ 

1 au. 
( l + 

2 ax. 
J 

i ,j = J. . . . 3 , 

where x. is a set of chosen cartesian coordinates. The fluid dilata-
1 

tion is given by, 

(2. 2) e: = 
au . 

l 

dX. 
l 

The volume of fluid~ which enters a unit volume of porous 

material during deformation is given by, 

(2. 3) 

where n is the porosity. 

The stresses are conveniently divided into three types namely: 

(a) those from which the total forces on a unit cube of solid and 

matrix can be derived; (b) those from which the f orces on the solid 
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part of the cube pha3e can be derived; (c) those from which the 

forces on the fluid part of the cube phase can be derived. We denote 

these stresses by 'T .. , C5.. and er respectively. These stresses are 
lJ lJ 

related to each other by, 

(2.4) 'T • . = C5 . . + C50 • . , 
lJ lJ lJ 

i,j = 1 . .. 3 . 

The fluid stresses can be expressed in terms of the pore fluid 

pressure Pf, according to, 

(2 . 5) C5 = -n pf . 

In a linear poro-elastic medium, the relation between the stresses 

and the strains can be written, 

( 2. 6a) 

and, 

( 2. 6b) 1 
µ Pf+ ae . 

j,i=l. . . 3 

I n the above equations , A andµ are r espec tively Lame's constant 

and the shear modulus of the solid phase . The coefficient a is 

empirical. It appears in both equations (2.6a), (2.6b), as a conse

quence of the assumption that the fluid-solid system possesses a 

strain energy function (Biot and Willis, 1957) . In the same paper 

Biot demonstrates that the factor (1 - a) equals the ratio between 



the unjacketed compressibility and the jacketed compressibility of a 

sample of fluid-saturated porous material. In loose porous materials 

a is usually very close to unity (Nur and Byerlee, 1971; Brace, 1968). 

Under conditions of static equilibrium, the total stress com

ponents must satisfy the three equilibrium equations, 

ch .. 
(2.7) --2J.. +Pg.= 0, 

dX. l. 
i = 1, ... 3, 

J 

where g_ is the ith component of the gravitational acceleration, P is 
l. 

the mass per unit volume of fluid-solid composite. The equilibrium 

in the fluid is expressed by the equation of hydrostatics which reads, 

(2. 8) 
a 

dX. 
l. 

where pf is the fluid density. 

i = 1, ... 3, 

In the Wilmington subsidence problem, as well as in many hydraulic 

problems, the medium is not under s tatic equilibrium, as there is a con-

tinuous flow of fluid through the pores. In most of these problems, 

however, inertial effects are negligible. When a dissipation function 

for the composite exists, the balance of forces on the fluid is given 

by Darcy's laws 

(2.9) 
a 

dX. 
l. 

which replaces (2.8). K is the permeability coefficient and n 

represents the fluid viscosity. 
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After specification of the appropriate boundary and the initial 

conditions with reference to a given volume of porous material, equa

tions (z.6a), (2. 6b), (2. 7) and (2.9) completely determine the mechan

ical evolution of the system in time. 

2. 6 The Boundary and Initial Conditions for the Wilmington Field 

There are two possible approaches to model subsidence in oil 

fields each involving a different specification of boundary and initial 

conditions. 

The first approach is to solve the complete system of equations 

(2.6a), (2.6b), (2.7) and (2.9). This involves the isolation of a 

region which includes the oil field. The unknowns are chosen to be 

the three displacement components in the matrix, plus the pore fluid 

pressure. The boundary conditions include a specification on the 

outer surfaces of the displacement or the traction time history, and 

a specification of the pressure history. Alternatively, the boundary 

conditions include a specification of the pressure gradient history 

or the flow rate as a function of time. The producing wells in the 

field are considered as part of the boundary on which either the pres

sure or fluid withdrawal rate is specified. The initial conditions 

for a subsidence simulation a r e zero di spla cement everywhere , and a 

given initial pressure. As was stated previ ously , in the Wilmington 

field the initial well pressures were approximately equal to the 

hydrostatic head. The solution of the above ment ioned t r ansient 

equations gives the time history fo r the di splacement and the pore 

fluid pressure in the field. This approach can be used for predicting 
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future displacements and pressures when a well production program for 

the field exists. The technique was used by Jungels (1973), and 

Archambeau (1975) for a series of axi-symmetric models for the 

Wilmington subsidence. 

The second method is based on the fact that if the pore fluid 

time history is known, and therefore considered as data, the displace

ment history can be obtained by solving static equations (2.6a), 

(2.1) and (2.7) at different times. The boundary conditions include 

a specification of displacements or tractions on the boundaries of 

the region under consideration. The input body forces are equal to the 

product of ~ times the gradient of the pore fluid pressure . This 

approach can be applied in developed oil fields, such as the Wilmington 

field, where there is a large number of wells which can be used as 

pressure data points. The method can be used for matching past 

observed displacements, as well as for predicting future displacements, 

when a pressure program for the management of the oil reservoir exists . 

The main advantage of the first appr oach i s that it permits 

calculation of pore fluid pressure profiles and displacement histories 

simultaneously, whereas in the second approach, only displacements 

can be calculated. The main drawback of this approach lies in the 

uncertainties in permeability values. Whereas most of the material 

constants of the various porous formations in an oil f i eld do not 

vary usually more than one order of magnitude, the constant of perme

ability can vary over a few .orders of magnitude (e . g . shale vs sand), 

and is often a highly nonlinear function of strains . 

In this study, the second approach was chosen because of the 
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existence of good pressure data for the Wilmington field. Input for 

a simulation of the subsidence includes a specification of the material 

rheology as a function of space, and pressure data for points in the 

producing zones of the field. The output consists of the displacement 

solutions. In practice,equations (2.6a), (2.1), and (2.7) cannot be 

solved analytically for realistic material parameter variation in 

space, and numerical methods must be employed. 

In this study the Finite Element method has proven most suitable 

for subsidence simulations, because of its flexibility in incorporating 

nonhornogeneous material parameter variations and various boundary 

conditions. 

2.7 Construction of Input Parameters for Subsidence Simulations 

In a Finite Element simulation, a region of the Earth's crust 

surrounding and including the Wilmington field is isolated and 

represented by a Finite Element mesh as shown in Figure 2.7. The 

input parameters include a specification of the mater ial properties 

for all elements, and the pressure reduction values in those elements 

which lie in regions corresponding to portions of the producing zones 

of the field . The output of a simulation includes displacement com

ponents at the nodes of t he grid , and stresses at the centroids of 

the elements . 

Ideally the boundaries of the grid should correspond to points 

far enough removed from the limits of the oil field so as not to 

artificially affect the calculated results . In the case of the Wilming

ton field, however, there are additional fields in the area , and it 
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. ' . . -

A -Oil well 

P - Oil production 
zone 

Figure 2.7 A sketch of a typical Finite Element subsidence model 
configuration. 
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is difficult to find an "undisturbed" region at which to locate the 

grid boundaries. It has been found that by placing the boundaries at 

a distance of 6 km from the production limits, the displacements in 

the central portion of the mesh do not appear to be too sensitive to 

the boundary conditions. This has been partially verified by comparing 

an analytic displacement solution for an axisymmetric pressure reduc-

tion zone in a homogeneous isotropic elastic halfspace (Geertsma and Kepel, 

1973), to a FE displacement solution obtained with the mesh shown in 

Figure 2.8a. The analytic and FE displacement solutions at the earth's 

surface are compared in Figure 2.8b. The agreement between the 

solutions is close up to a radius of 3 Km, beyond which the FE solution 

becomes stiffer as a result of the fixed displacement boundary condition 

at the outer radius of the grid. 

With regard to the mechanical properties of the geological 

layers of the Wilmington field, the information is not as detailed as 

is ideally desirable. Only a few samples were tested in the original 

investigation 25-30 years ago, and these were subjected mostly to one 

dimensional tests. However, in recent years a number of investigations 

have been performed on the behaviour of soils at high confining 

pressures (Vesic and Clough, 1968), and the results can be employed 

to fill in gaps in the data. 

The first series of 3-D subsidence simulations has used a linearly 

elastic nonhomogeneous model to represent the material response of 

the geologic formations in the Wilmington field. The model is based 

on the experimental results of Vesic and Clough (1968) for sands. Each 

layer of elements of the FE mesh is assigned an elastic modulus which 
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equals the modulus derived by Vesic and Clough at a pressure equal 

to the lithostatic confining pressure at the center of the layer. In 

this rheological approximation, the material properties are not related 

directly to the geological structure but rather are assigned only on 

the basis of depth of burial by the overburden . This prescription 

appears justified in the case of the Wilmington oil field, in which 

no major change in material properties, other than in the degree of 

compaction or . cementation,can be observed between geologic 

formations (Muyuga, 1965; Mayuga, 1970. A density of 2.0 gr/cm3 is 

assumed for the material in every layer. Table 2.1 lists the material 

coefficients at a number of representative depths . The values of the 

parameters in this material approximation are within a factor of two 

of soil test results for the formations of the field (Mccann and 

Wilts, 1951; Scranton, personal communications, 1977), and are also 

within an order of magnitude for measured results on shales and clays 

(Rieke and Chilingarian, 1974). 

It is interesting to note that the seismic wave velocities 

shown in Table 2.1 are much lower than velocities derived from surface 

wave dispersion (Kovach, 1974; Archambeau, 1975), or from in situ 

ultrasonic measurements (Scranton, personal communications, 1977). 

This can be attributed to the fact that the elastic constants derived 

from static tests correspond to larger strains than those encountered 

during seismic wave propagation, and the assumption of linear 

elasticity is an approximation to be used only in a limited range 

of strain variation. 

The second class of input data are the pore fluid pressure values 
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in the producing zones of the field, at given times. The initial 

reservoir pressures in the oil producing zones were approximately 

equal to the pressure of a column of sea water extending from sea 

level to the individual zone (Gilluly and Grant, 1949, p. 464 and 

p. 479). Reservoir pressure values at subsequent times are obtained 

by compiling the pressure records of individual wells. The calculated 

displacements are measured in this study from the state of the field 

before production began. The input pressure, Pf, for equation (2.6a) 

is equal to the difference between the pore pressures at the end of 

the time interval of the simulation and the pressures at the beginning 

of the interval. Ideally, the size of the time intervals for the sub

sidence calculations should be small. However, in this study, because 

of the overwhelming amount of pressure data involved,we choose two 

relatively large time intervals, one between the years 1936 to 1958, 

a period in which most of the subsidence took place, and one interval 

between 1958 to 1975, when the rebound occurred. The pore pressure 

values for 1936 are approximated to be equal to the hydros tatic head , 

and the values for 1958 and 1975 are obtained from well data. In 

simulations which use a linear elastic rheology the calculations are 

path independent and the calculated subsidence for a given year does 

not depend on the number of time inter vals . On the other hand, f or sub

sidence models which employ a nonlinear material rheology, the size of 

the time intervals may somewhat affect the accui:acy of the results. 

However, we feel that considering the accuracy of the available 

pressure and material property data, little can be gained by a finer 

division in time . 
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For the FE calculations, the pore pressure data from the field 

has been converted into input data at the centroids of the elements. 

The standard grid shown in Figure 2.9 is used in all the simulations. 

The data reduction process involves the following steps; 

(a) Compilation of structural data; refer to Figure 2.10 which is a 

horizontal section of the grid shown in Figure 2.9. The numbering 

system, 1 ~ I ~ 18, 1 ~ J ~ 13, is used to locate elements in the 

shaded region of the figure. The coordinate system in feet defines 

the correspondence between points in the oil field (on the earth's 

surface) and points in the figure. The depth to the top of each of 

the producing zones and to the basement are compiled from logs of 

representative wells in the field. Each element in Figure 2.10 is 

then assigned six depths, which are equal to the average vertical 

distance from the center of the element (on the earth's surface) to 

the five producing zones and the basement beneath the element (because 

of the correspondence between points in Figure 2.10 and points in the 

oil field, we refer loosely to points in the figure as points in the 

field (the more precise., but cumbersome, definition is to refer 

to points in the field as images of points in the figure); 

(b) calculation of initial pore fluid pressure values for the year 

1936 in the producing zones of the field . For each element in the 

shaded area in Figure 2.10, the initial pore fluid pressures in the 

portions of the producing zones located directly beneath the element 

are calculated from, 
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where Pi is the initial pore fluid pressure in the nth zone, pis the 
n 

water density , g is the gravitational acceleration, and h is the 
n 

average between the depth to the top of the nth zone, obtained 

according to (a), and the depth to the bottom of the zone; 

(c) Projection of measured pressure values fo r given ye ars into the 

elements in the shaded area of Figure 2.10. Each element in the 

figure is assigned five pressure values for each one of the producing 

zones,which are equal to the pore fluid pressure at the given year 

at the portion of the zone directly beneath the element; 

(d) calculation of pressure reduction values for specified time 

intervals. The value of the pressure reduction i s s imply equal to the 

difference between the pore fluid pressures at the end of the interval 

and the pressure values at the beginning of the interval . For time 

intervals which begin in the year 1936 , the pressures at the beginning 

of the interval are calculated according to (b). In all other years 

the pore fluid pressures are obtained according to (c) ; 

(e) Cons t ruction of e lement pressure reduction input values. The 

elements in the 3-D grid shown i n Figure 2. 9 are scanned one by one, 

and tested,on the basis of the data in (a), to see if they contain 

a volume portion wh i ch corr esponds in the f ield to a volume por tion 

of one or more of the produci ng zones . In cas es when an element 

contains s uch a volume, it i s ass i gned a pr essure reduction value equa l 

to, 

p 

5 

=L 
i=l 

P. 
1 



-62-

where P. is the pressure reduction value in the volume portion of the 
l 

i element which contains part of the ith producing zone, and W 
T 

is a 

weighting factor equal to the ratio of the thickness of the zone in 

the element to the total zone thickness in the vertical section 

containing the element. 

The element pressure values obtained in (e) are supplied to the 

Finite Element program as input data. 

The specification of material parameters and pressure reduction 

values covers the required data for a Finite Element simulation. 

The remaining input parameters are used in defining the Finite Element 

mesh and for various other bookkeeping purposes. The next stage 

involves the actual Finite Element . calculation of displacements and 

stresses. 

2.8 Evaluation of Data for the Comparison Between the Subsidence 

Simulations and Field Observations. 

Before discussing the subsidence simulations it is appropriate 

to examine the observational data which are available for comparing 

the calculations to. 

The first set of data consists of surface observations of vertical 

and horizontal ground movements . For both observations, the data are 

compiled from surveys of movements of benchmarks which are distributed 

throughout the Wilmington field. The horizontal movements are 

surveyed once i n every four years (Allen , 1977, personal communications). 

The data are presented in vector plot maps which show the displacement 

and magnitude of horizontal movements between survey dates (see Figure 
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2.13). The plots display the horizontal movements,as they are measured, 

without much personal interpretation. The vertical displacements are 

surveyed twice a year (Allen, 1977, personal communications). The 

data aredisplayed in contour plots which usually show vertical move

ments between specified years. The contour maps are based on some 

smoothing and personal interpretation of the investigator. In partic

ular the rebound contours are subject to some uncertainties,as the ver

tical displacements associated with the settlement of land fill can 

often have magnitudes similar to the rebound magnitude. Furthermore, 

the total rebound maps do not refer to a specific time interval,but 

rather, they display the rebound which occurred at each point from the 

largest subsidence value which was ever attained there. Since different 

points have attained their maximum subsidence at different times, it 

is impossible to compare accurately the observed rebound maps with 

subsidence simulations-,which always refer to a specific time interval. 

The next type of observations include the collar count survey 

data which give the lengthening or shortening of well casing joints 

between specified survey dates. These observations give some picture 

of the vertical strains in the vicinity of the oil wells, but it is 

not assured that the deformations in the metal casings and in the 

surrounding medium are always the same. The collar count method is 

useful in establishing the regions where the majority of the compaction 

took place, but the numerical values of a single collar count survey 

are not to be taken literally. 

The subsidence earthquakes are a transient phenomenon which is 

not covered by the quasistatic analysis used in this study. However, 
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the epicentral locations and the shear planes could be mapped 

accurately by observing the depths at which oil wells were damaged. 

This information can then be used in comparing the stresses which are 

predicted by the simulations at the epicentral depths, and quoted 

failure strengths for the type of shales present in the earthquake 

slip planes. 

2.9 A Linear Elastic Subsidence Calculation for the Year 1958 

The first numerical subsidence simulation uses a linear elastic 

approximation to material response, and covers the time interval 1936-

1958. In this period, well pressures were monotonically decreasing 

in most parts of the field,as the effects of the repressurization 

program were not yet noticeable. The subsidence during this time 

followed the trend of the pressure reduction, and was progressing 

continuously. In 1958, a maximum subsidence of 26 feet was observed 

(Figure 2.2). 

For constructing the input data for the numerical calculations, 

the procedure outlined in Section 2.7 is used. As the beginning of 

the time interval coincided with the onset of production in the 

Wilmington field, the initial pressures are taken to be equal to the 

hydrostatic head (see Section 2.7). The material parameters for the 

calculations are listed in table 2.1 ; the Finite Element grid is 

shown in Figure 2.9. In order to compare calculations and observations, 

the results are displayed graphically i n a series of plots ) whose 

description occupies the remainder of this section. 

Figure 2.11 shows the calculated vertical displacements at the 
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Table 2.1 Elastic Constants of the Axisymrnetric Layered Model. 

Layer Depth to Base Shear Modulus Bulk Modulus 
Number Km Kbars Kbars 

1 0.3 0 . 8000 1.5943 

2 0.6 0.9946 2.0080 

3 0.9 1. 2301 2.5544 

4 1.2 1. 6589 3 . 4618 

5 1.5 2.0352 4.4628 

6 1.8 2.4781 5.3845 

7 2.1 2.8426 6.4599 

8 2.522 3.2805 7.4360 

9 3.639 3.6295 8.6636 
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earth's surface for the year 1958. For comparison the 4 meter subsi

dence contour observed in the same year (denoted by the dashed line) 

is included in the figure. The maximum calculated subsidence in the 

center of the subsidence bowl has a value of approximately 8 meters, 

in fair agreement with observations. The main discrepancy, however, 

between calculation and observation, is that although the shape and 

location of the subsidence bowl are very similar in both cases, the 

calculated subsidence ellipse is two to three times larger than that 

of the observed bowl (Figure 2.11). As the following text shows, 

this discrepancy appears consistently in all comparisons of this 

material model with observations, and therefore is an important 

motivation for considering more complex material rheological models. 

The calculated horizontal displacements at the earth's surface 

are shown in Figure 2.12a. Each arrow in the figure points in the 

direction of the displacement at the node from which it originates, 

and its length is scaled in proportion to the displacement magnitude. 

The pattern i s roughly of convergence towards the center of subsidence, 

but is neither symmetric nor strictly r adial. The maximum calculated 

horizontal displacement is about 6 meters, which is somewhat larger 

than the 3-4 meters which was observed (Allen, 1973) . The calculated 

vertical displacements at a depth of 900 mare shown in Figure 2.12b. 

This figure r esembles Figure 2 . 12a; however a slightly smaller displace

ment decay with distance from the center of subsidence in Figure 2.12b 

appears to be responsible for the slight visual difference between the 

two figures. For comparison, the observed surface horizontal displace

ments are shown in Figure 2.13 (a) - (f) . The broken arrows in this 
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figure represent the horizontal displacement history at the point from 

which they initiate. Each segment represents the dis placement betwe en 

the years which are marked on its ends. The pattern of these figures 

is very similar to the calculated results shown in Figure 2.12a. 

However, as with the vertical displacements , the cal culated hor izontal 

displacements form a wider pattern than the observed one. 

In order to provide a picture of the variation of subsidence with 

depth, a series of synthetic collar count plots was constructed 

(Figure 2.14 (a)-(d)). Each figure represents a vertical column from 

the earth's surface to a depth of 1.8 Km (where the lower boundary of 

the Finite Element grid lies). The coordinate where each column 

intersects the earth's surface is marked in feet on the left part of 

each figure (see Fig. 2.10)_. ThetwelvelayersoftheFiniteElementrnesh 

are defined in the figures by .solid lines, whereas the top of each (observed) 

producing zone is denoted by a dashed line. The shortening or lengthen

ing of each section of the column (which corresponds to a layer in the 

Fini t e Element mesh) is printed on the right side o f the column. From 

these figures, it is apparent that most of the calculated shortening 

occurred in the four upper producing zones. This is in general agree

ment with observations (Allen, 1968; see also Figure 2.6), although 

the synthetic collar counts produce slightly more shortening t han that 

observed in the Tar and Lower Terminal zones. The synthetic values 

show a small amount of compaction in the deep zones, a point which 

was neither verified nor refuted by the measurements. This coincides 

with the observation that material in the deep zones appears stiffer 

and more cemented than material in the four upper zones, and therefore 
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(a) ( b ) 33° 48
1 

( C ) ( d ) 
33° 44

1 

---------~-----1180121 118° 61 

118° 18
1 

Figure 2.13 Index of maps of observed horizontal displacements shown 
in Figure 2.13 (a) - (e). 
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Figure 2.14 (a) - (d) Synthetic collar counts for el astic subsidence 
model. 
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may need a separate rheological prescription including much stiffer 

elastic moduli (Allen, personal communications, 1977; Mayuga , 1970). 

All the plots show a small amount of extension above the producing 

zones, in agreement with suggestions from some investigators based on 

observed behaviour (Allen and Mayuga, 1968). 

It is instructive to compare the calculated collar counts in 

Figure 2.14 (a) - (d) with one dimensional subsidence calculations 

(Allen, 1968). In the 1-D method, the subsidence at a point on the 

surface is calculated by a formula of the type; 

(2.10) 11W = 
11P 
E • 6Z , 

where Eis an assumed elastic modulus, 6W is the subsidence, 6Z is the 

combined thickness of the producing zones, and 6P is the average pressure 

reduction in the zones. Applying this formula to the compaction in 

the four upper zones in Figure 2.14 (d), which represents a section 

approximately below the center of subsidence, we obtain (using E = 

A+ 2µ = 4.5 kbar (Table 2.1), 6P=0.09 kbar (a typical value for the 

upper producing zones), 6Z = 0.5 km) a compaction value of 8.5 meters, 

which roughly agrees with Figure 2.14 (aJ . However, when the formula 

is applied to the section i n Figure 2.14 (c), the resulting compaction 

is larger t han the total compaction (of about 4.5 meters) in the 

four upper zones of this figure. This is in spite of the fact that 

inspection of the pressure reduction data has shown that the sections 

in Figure 2.14 (a) and in Figure 2.14 (c) lie in regions with similar 

pressure reduction values. This indicates that the one dimensional 
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calculation can be used only for approximating compaction in the 

vicinity of the center of subsidence, and that three dimensional 

effects become important for points lying away from the center. 

The calculated stresses on horizontal sections at depths of 

75m, 225m, 375m, and 525m are shmm in Figure 2.15 (a) - (d) respec

tively. The stresses at selected points in each layer are represented 

stereographically. The center of each circle is located at the point 

where the stress is calculated, and the radius of each projection 

circle is scaled linearly with the difference between the maximum and 

minimum principal stresses. The complete details of the construction 

of the stereographic stress plots a re given in Appendix F. 

The stresses in the two upper layers of the Finite Element mesh 

(Figure 2.15 (a), (b)), show a general pattern of horizontal compres-

sion pointing towards the point of maximum subsidence in the region 

of the center of the subsidence bowl, and horizontal extension on the 

flanks. The magnitude of the absolute value of the largest difference 

between the maximum principal stress and the minimum princi pal stress 

is 11.8 bar for the first layer (d=75m), and 11.6 bar for the second 

layer (d=225m). The magnitude of the strains which are associated with 

- 3 the stresses is on the order of 10 . It s.hould be noted that whereas 

in the r egion of t he center of the bowl the extension axis i s vertical , 

on its flanks both the ex tension axis and the compressive axis ar e 

horizontal. 

The stresses at depths of 375m and 525m (Figure 2 . 15 (c) and 

Figure 2.15 (d) respectively), show a general pattern wh i ch r esembles 

that of the shallower layers (Figure 15 (a) and (b)). However, in 
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Figure 2.15 Stereographic projection of calculated stresses at different 
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regions corresponding to the Southern and Northern flanks of the 

anticlinal trough of the structure of the field, the stresses essen

tially represent horizontal shear (Figure 2.15 (c) and (d)). These 

regions correspond to the parts of the Wilmington field which gave 

rise to small earthquakes,deduced to be associated also with horizontal 

shear mechanisms. The magnitude of the absolute value of the largest 

difference between the maximum principal stress and the minimum 

principal stress is 14.9 bar for the third layer of the Finite Element 

mesh (d=375m), and 17.4 bar for the fourth layer (d=525m). Thus, 

according to the present model, these values imply that the magnitude 

of the horizontal stress which caused the earthquakes was less than 

ten bars. It is interesting to note that the subsidence earthquakes 

did not take place where the Finite Element calculations predict the 

largest stress differences, but rather in regions where the stresses 

are essentially of horizontal shear. This perhaps can be attributed 

to the fact that the earthquake slip always occurred along thin shale 

beds (e.g . Kovach, 1974) which were more conducive to s lippage than 

any other possible plane in the region above the producing zones. 

In conclusion, the elastic model succeeds in reproducing most 

of the observed phenomena which were associated with subsidence in the 

Wilmington oil field. Its main shortcoming is that the calculations 

produce a wider deformation pattern than was observed .. Also , as 

will be apparent in later sections, the amount of rebound observed in 

the field after the repressurization program was initiated, was much 

smaller than that predicted with the elastic model used in this section. 

To match rebound, it is evident that a different set of elastic constants 
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needs to be employed, a fact which emphasizes the nonlinearity of the 

mechanical response of the material in the Wilmington field. 

2.10 A Need for a More Complete Characterization of Material Response 

As already noted, the linearly elastic subsidence model produces 

a deformation pattern wider than the observed deformation. Further

more, even without going into detailed calculations, it is apparent 

that the type of elastic model used in the previous section gives 

rise to an excessive amount of rebound. This is because the maximum 

observed rebound in 1975 was only on the order of 1-2 feet, whereas 

the pressures at that time in certain areas in the field were above 

the hydrostatic head (Scranton, personal communications, 1977) (i.e. 

higher than at the time of field development). In this section we will 

attempt to demonstrate that the shortcomings of the elastic model 

cannot easily be overcome, and that a more complete characterization 

of material response is required in order to explain the observations. 

The most straightforward explanation for the apparent small extent 

of observed surface deformations, would be to postulate a change in 

material properties as a function of horizontal distance from the 

center of subsidence. If the material were stiffer towards the flanks 

of the oil field, most o f the subsidence would be limited t o the center 

of the field . Unfortunately, field evidence from core samples does not 

support this hypothesis, and there does not appear to be any consistent 

spatial variation in material properties in the field , although on a 

local scale, material properties often vary , depending on the percentage 

of sand in the formations (Allen, personal communications, 1977). 
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Moreover, core samples extracted from formations in the Wilmington 

field, are very similar in appearance to samples from adj acent fields 
' 

and are typical of sediments in the L.A. basin area in general (Allen, 

personal communications, 1977). For these reasons, it does not appear 

that lateral material heterogeneities can explain the confined hori~ 

zontal ex tent of the observed displacement and strain patterns, 

It also does not appear that material anisotropy can be responsible 

for the size of the subsidence bowl . This is because the horizontal 

extent of the pressure reduction zone is much larger than the size of 

the subsidence bowl, and thus anisotropy alone could not confine the 

subsidence to only a limited portion of the area above the region where 

pressure reduction took place. 

Finally, the small amount of observed rebound suggests that the 

material in the Wilmington field behaves differently upon loading and 

unloading. This type of response cannot be reproduced in an entirely 

elastic material, and thus at best , a different set of elas t ic moduli 

would be required for the subsidence and rebound phases respectively. 

The above mentioned shortcomings of the elastic subsidence models 

suggest that a more complete material response characterization is in 

order. The construction of such a model, in the framework of the 

theory of plastic i ty, is t he topic of t he next sec tion . 
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2.11 Construction of a Nonlinear Material Response Model for the 

Formations in the Wilmington Field 

Most of the theoretical and experimental work which has been done 

so far on the mechanical properties of sands and other soils has been 

related to the civil engineering structural problems. Consequently 

the stress levela of interest in these undertakings were on the order 

of a few bars, far below the lithostatic overburden stresses present 

in the earth beyond a few hundred meters of depth. Since most of the 

Wilmington subsidence and related effects appear to be controlled by 

the mechanical properties of the producing zones, most of the results 

of previous work cannot be applied directly to the subsidence problem . 

Therefore, it was necessary to construct the parameters of a nonlinear 

model which would be relevant to the stress range encountered in the 

formations of the Wilmington field. As in previous sections, the 

work of Vesic and Clough (1968) on sands, which did cover a wide range 

of pressure variation , serves as the main laboratory or experimental 

basis for constructing the nonlinear model. The parameters of the 

model are further constrained by field observations. 

The rheological model used in this study is a variant of the cap 

model, elements of which first appeared in Gibson et al. (1957), and 

was further developed by DiMaggio and Sandler (1971 ), and Sandler et 

al., 1976. The model covers important effects in sands which include 

the existence of a failure surface in stress space, and the appearance 

ofnon--recoverable plastic volumetric strains, even under hydrostatic 

compaction conditions . The experimental work of Vesic and Clough,, 

(1968) did not cover stress paths other than hydrostatic loading, 
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triaxial loading, and octahedral shear loading, and therefore phenomena 

such as the appearance of yielding while unloading, or the effect of 

varying the stress trajectories during the experiment could not be 

elucidated. However, it is felt that the material model developed in 

this study covers the most important nonlinear effects in the Wilming-

I 
ton field, which are,the size of the subsidence bowl and the small 

amount of rebound (relative to subsidence) observed after the initiation 

of the repressurization program. The model does, in addition, shed 

light on various internal processes in the deforming zones, which are 

not accessible by direct observation. 

A point which requires attention in plasticity simulations is the 

role of prestress. It may be recalled that in the elastic simulation 

the coordinate system in the calculations refers to the configuration 

of the field prior to production. The subsequent displacements are 

determined by the change in pore fluid pressure during production, and 

there is no need to consider prestress in the field. Conversely, in 

plastic simulations the material response depends on the initial 

stresses, and therefore the prestress,which is caused mainly by gravity 

loading, must be considered. However, the plastic simulations can 

still employ the same coordinate system as used in the elastic simula

tions in which the change in strains and stresses are defined with 

respect to the initial state of the field, prior to production . The 

use of an infinitesimal deformation theory is justified for this choice 

of coordinates, since the maximum strain changes during the subsidence 

are only on the order of one to two percent (see for example Fig. 2.14). 

Thus the initial prestrain (which is finite) does not enter the 
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equations of equilibrium, and only appears as a hardening parameter 

in the stress-strain relations. 

2.12 Properties of the Cap Model 

This section summarizes the main features of the cap model used 

in the present study. Additional details on the fitting of the cap 

model to experimental data are given in appendix G. 

The cap model belongs to the class of isotropic elastic-plastic 

strain hardening material models. The model assumes that nonlinear 

material behavior can be described by the two stress invariants J 1 

and J; which are given by; 

(2.11) Jl = er .. 
1.1. 

' 1 ' er~. J2 = 2 erij 1.J 

~rl1ere, as in previous sections, er'. . denotes the stress deviator . The 
1.J 

model contains two yield surfaces whose equations are given by, (Fig. 

2.16) 

( 2 .12) (a) F 1 - /JI + aJ 1 + S 

and 

(b) 

Equation (2.12a) is a generalization of the Mohr-Coulomb failure 

criterion. 
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w::;;_ _____ --,--_______ ~ -J 
1 

Figure 2.16 
space. 

Sketch of the yield surfaces of the cap model in -J - /IT 
1 2 
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In axial compression and ex tension soil tests for which 0
1 

= 0
2 

, 

the criterion is often writt en in terms of the shea r angle~ which is 

defined by, 

(2.13) sin ~ = 

(e.g. Vesic and Clough, 1968). The experimental work of Vesic and 

Clough indicates that in triaxial and octahedral shear tests, to a 

good approximation, the sample fails at a value of~ between 30°-40°, 

even at confining pressures on the order of one kilobar, and the 

cohesion is very small . This translates in equation (2 . 12)(a) to 

a~0.25 and S ~ 0 . The yield surface in (2.12)(a) differs from the 

yield surface proposed by DiMaggio and Sandler (1971) , in that it does 

not approach a Von-Mises yield surface at large hydrostatic stresses. 

Their claim that sands reach a fluid state at large confining pressures, 

does not seem to be justifiable, at least for pressures on the order 

of one k i lobar or les s (Vesic and Clough , 1968) . 

The second yield surface describes an ellipse in -J1 - /.JI space . 

This surface accounts, among other things, for the irreversible volume 

change due to pore collapse,which is exhibited by sands dur i ng hydro-

s tat ic compres s ion . The yield surfa ce ,F2 , does not r emai n s tat ionary 

for most l oading pat hs, and i ts movement is de termi ned i n a hardening 

law which writes; 

(2 . 14) X = 1 
D 

e 
Q,n ( -f + 1) 
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D and Ware material parameters and e is a measure of plastic p 

volumetric strain which is given by, 

(2.15) 

where v is the initial bulk unit volume of the material, and ~vp 
0 

is the total nonreversible (plastic) volume change undergone during 

the defonnation. According to the choice of the coordinate system 

made in this study, the change of ep from its value at the prestressed 

state, is equal to the (infinitesimal) plastic volumetric strain 

change undergone by the material. 

The rheological model contains material parameters which include 

the elastic bulk modulus and the shear modulus, and the plastic 

parameters a, S, D, and R which appear in (2.12a), (2.12b) and (2.14). 

These parameters are selected in order to produce a response similar 

to the results of Vesic and Clough at the stress levels which exist 

in the producing zones in the Wilmington field. It should be emphasized 

that the comparison is for different types of stress paths, since the 

experimental values are derived from standard triaxial compression 

tests and octahedral shear tests, whereas the theoretical results 

are effective for tests under hydrostatic compression and ~niaxial 

strain (rigid confinement) . Details of the procedure for fitting the 

oap model to the data are given in appendix G. The equations of equi

librium for an elastic plastic material are given by, 

clocr . . 
(2.16) -~lJ_ + 6£. = 0 

cl X. l 
J 
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where oa .. and of. respectively denote the change in stress and change 
1.J 1. 

in body forces from the initial prestressed state. The stresses and 

coordinates x. are measured in the prestressed configuration of the 
J 

body. Equation (2 .16) must be supplied with the customary boundary 

conditions of prescribed displacements or prescribed tractions. 

For the case of an elastic-plastic saturated porous medium, 

equations (2.12), (2.13), (2.14), and (2.16) are still applicable 

when the stresses are replaced by the effective stresses a~.= a .. + 
1] 1] 

a Pf o .. (see equation 2.5). The justification of this assumption, 
1.J 

as in poroelasticity, is empirical. Moreover, some of the evidence 

which is quoted to justify the theory of poroelasticity, deals with 

materials which are similar to the formations in the Wilmington field, 

and thus,in essence,justifies the applicability of the theory for the 

type of nonlinear rheology which this study is attempting to model. 

2.13 Stress Changes During Production in the Wilmington Field on the 

Basis of. the Cap Model 

The Wilmington subsidence and its associated effects originated 

in a medium which was in a prestressed state. The main causes of the 

prestress were the overburden weight of the formations of the field , 

and t he loading of t he r egion by tectonic pro cesses in the vicinity 

of the field. Since the latter, as in most crustal tectonic problems, 

are difficult to evaluate, at first the tectonic prestress will not be 

consider ed here , and will be incorporated only a fter it becomes 

apparent that the observations canno t be explai ned without it. 

For a saturated medium containing a material with bulk density P , 
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pore fluid density pf,and porosity n, the vertical gravitational 

total stress component at a point below the surface is given by, 

(2.17) CJ 33 = - g (p + n pf) 2 ' 

where z is the vertical depth of the point, and g is the gravitational 

acceleration. It is assumed that the medium is saturated at all 

depths. 

The horizontal total stress components cr 11 and cr 22 are given by, 

(2.18) 

where K is the confinement factor. 
0 

The effective prestress is calculated by algebraically adding 

the pore fluid pressure to the total prestress. As the original pore 

fluid pressure in the field was approximately equal to the hydrostatic 

head (e.g. section 2.7), it can be calculated from, 

(2.19) 

Thus the initial effective stresses in t he field are given by, 

* (2.20a) C533 = -g(p + (n-l)pf)z 

* * * * (2.20b) crll = (522 = K 0 33 0 
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with, 

* K = 
- (p + n p f) Ko + p f 

0 
-(p + (n-1) pf) 

* In general K < K, since the pore fluid pressure causes the effective 
0 - 0 

stress to be farther away from the hydrostatic state. In most cases 

* K varies between unity (hydrostatic state) and one third (rigid 
0 

* confinement of a Poisson solid). For a uniform K at all depths, the 
0 

effective stresses in (2.20a) and (2.20b), plot as a straight line 

through the origin in - J 1 - .IJT space (Fig. 2.17). This line cannot 

lie above the F1 yield surface, which therefore defines the lower 

* bound for K For a shear angle of 30~ this limit is approximately 
0 

one-third. The construction does not determine whether the initial 

effective stresses lie on the cap yield surface or not. If only 

gravitational loading is present, the effective prestress will plot 

on the F2 yield surface, but effects like erosion and ground vibration, 

as well as viscous effects (not included in the plasticity model), 

would tend to put the initial point slightly inside, in the elastic 

region (Fig. 2 .17, point (a)). The subsidence history of the Wilmington 

field indicates that, in the beginning, the subsidence rate was rather 

low, causing the· researchers at the time to underestimate the amount 

of ultimate subsidence. This can perhaps be attributed to the 

possibility that the initial effec tive stress was no t on the yield 

surface so that the first subsidence strain increments were purely 

elastic (line AB in Fig. 2.17). The simulations of this study have 

tested various initial cap surface positions, and, as will be discussed 

later, these positions have a strong effect on the total amount of 
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p· igure 2.17 
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subsidence. 

During the production stage, the effective stresses plot a 

trajectory in -J1 - /JT space. In general, stress paths which 

constantly lie on the yield surface have correspondingly low tangent 

material coefficients (Fig . 2.17, line CD), whereas trajectories which 

lie inside the elastic region (Fig. 2.17, line EF) have corresponding 

material coefficients which are equal to the elastic constants. This 

suggests the explanation, which will be tested later, that during the 

rapid subsidence phase, most of the region in the producing zones 

followed effective stress paths which lay on the yield surface, and 

therefore the subsidence was rather large. During the repressurization 

phase, most of the stress trajectories were progressing in the general 

direction of the origin (Fig. 2.17, line EF), and the material then 

behaved elastically. This explains why there was a relatively small 

amount of rebound after the field was repressurized. By this line of 

reasoning, the observed amount of rebound is used for fitting the 

elastic moduli of the cap model (section 2.14). 

Conceivably, if unloading by repressurization were allowed to 

progress far enough, certain points in the field could experience 

second yielding (Fig. 2.17 line EFGH), and a large rebound would 

suddenly occur . There are indications t hat this may have occurred 

locally in regions surrounding repressurization wells, in which water 

was injected at very high pressures (Allen, 1977, personal communications). 

However, judging by the small amount of observed rebound, it appears 

that on a large scale the rebound is essentially elastic . 

After a specification of the material parameters and the prestress, 
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the data reduction and analysis of results for nonlinear simulations 

follow the same steps as in the elastic case. 

The following section deals with the rebound phase which served 

to establish the elastic parameters of the material in the formations 

on the Wilmington field. The section is followed by sections which 

describe the results of non-linear subsidence simulations. 

2.14 Construction of Elastic Coefficients by Matching Observed Rebound 

The analysis of the previous section shows that, excluding local 

effects, the rebound in the Wilmington field was a result of elastic 

unloading caused by repressurization in the producing zones. This 

enables the calculation of the elastic moduli of the cap model to be 

made by first simulating the rebound with arbitrary coefficients and 

then taking into account the linearity by scaling the moduli in order 

to fit the observed data. 

The nonlinear material approximation which was ad9pted in this 

study contains uniform material coefficients at all points in the 

field. The variation of material response in space is brought about 

through the prestress condition. Thus, mathematically,the rebound 

problem is a problem of deformation in a uniform elastic halfspace . 

The scaling method consists of assigning a fixed value to the Poisson ' s 

ratio, and varying the bulk modulus of the halfspace to produce the 

correct amount of rebound. Ideally, the data should be able to detect 

the value of Poisson's ratio as well, however, it is found from simple 

axi symmetric test models that the deformation pattern is extremely 

insensitive to values of Poisson's ratio in a reasonable range between 
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0.25 and 0.33. Therefore, this study does not attempt to obtain 

Poisson's ratio from the observations, and a value of 0.25 has been 

assigned to that parameter. 

The pressure data for the rebound consist of the difference 

in well pressures in the field between the years 1958 and 1975. 

Unfortunately, the pressure data for 197 5 are not as complete as for 

1958, since production in certain areas of the field had been termi

nated by that time (wells were capped), and some well pressures 

are not available (Scranton, 1977, personal communication). In such 

cases it is assumed that no pressure change took place in the time 

interval under consideration . This assumption is made for lack of 

a better alternative and is likely inaccurate,as it is expected that 

formation pressureswould recover in regions where production has 

ceased. Because of this underestimation of the pressure difference, 

the calculated rebound is expected to be conservative. 

In addition to the above mentioned difficulties, there are the 

uncertainties lis ted i n section 2 . 8 a s to what portion of t he 

measured elevation changes between 1958-1975 is a genuine result of 

the repressurization irt the producing zones. 

For these reasons it is not expected that numerical simulation 

will accurately r eproduce the elevation changes between the year s 

1958-1975 (whose va lues a re not r eadily available a s discus sed i n 

section 2.8) . The main objective of the rebound simulation is to 

obtain a pattern which grossly resembles the observation, and which 

has a maximum rebound of about 40 cm (1.3 feet) . In order to obtain 

a more accurate rebound simulation., pressure values would need to be 
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sampled in nonproductive wells,as well as in active wells. 

The initial elastic moduli selected for the rebound calculation 

were a bulk modulus of 4.73 kbar, and a Poisson's ratio of 0.25. 

The calculated surface elevation changes during the time interval 

1958-1975 are shown in Fig. 2 . 18,in which the contour values are given 

in meters. The maximum surface uplift in the figure is about 2 meters, 

compared to the maximum of 40-50 cm of rebound which was observed. 

This indicates that with a value of 20 kbars for the bulk modulus, 

the measured amount of observed rebound can approximately be reproduced. 

Consequently,this value for the bulk modulus has been adopted for the 

cap model. 

The observed rebound for 1975 is shown in Fig. 2.19. When the 

figure is compared to Fig. 2.18, it becomes apparent that the calcula

tion resembles the observation only in the gross features of the 

rebound pattern. This may be partly due to the limited resolution 

of the FE mesh, but it appears to be primarily due to the limitation 

of the pressure data and surface observations as noted above . In fact, 

the Western rebound 11hill" in Fig. 2.19 could not be reproduced because 

the pressure data was absent there. 

After obtaining the elastic coefficients, the remaining cap model 

parameters are obtained by the procedure ou t lined in appendix G, 
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2.15 An Elastic Plastic Subsidence Model for 1958, I 

The first nonlinear subsidence calculation includes lithostatic 

overburden as prestress, but does not account for possible stresses 

arising from tectonic origins. The initial stresses are taken to be 

slightly inside the yield surface (J1= 0.9x). This is done because 

processes like surface erosion or dynamic ground shaking cause the 

stresses to be lower than yield, although by precisely how much, is 

unknown (a dramatic example of such a situation was reported by Bishop 

et al., 1965; who found in London clay a ratio of 3.4 between the 

lateral stresses and the vertical stress. They attributed this fact 

to the removal of glacial loads). The cap parameters are a Poisson's 

-1 
ratio of 0.25, a bulk modulus of 20 k.bar, and A=0.25, D=0.7143 kbar , 

R=l.227, W=0.27 (see section 2.12 and appendix G for meaning of 

variables). The volumetric stress-volumetric strain curve, and the 

variation of the tangent moduli with confining pressure, for the above 

choice of parameters , are shown respectively in Fig. G. 2 and Figure 

G.3 in appendix G. The remaining input parameters are the same as in 

the elastic model (described in section 2.8). 

The calculated vertical surface displacements are shown in Fig. 

2.20. When the figure is compared to Fig. 2.11 of the elastic calcula

t ion 1 it becomes apparent that this nonlinear model also produces 

too wide a subsidence bowl, and therefore the model does not improve 

significantly on the elastic model in this sense. The maximum calcu

lated subsidence in the present model is slightly more than 7 meters, 

in fair agreement of the observed value of slightly more t han 8 meters. 

The calculated horizontal displacements which are shown in Fig. 
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2. 21 (a), (b), for the depths of 0 and 900 meters respectively, form a 

similar pattern to the one of the elastic simulation. However, the 

displacement magnitude is about two times smaller, with a maximum 

magnitude on the surface of 2-3 meters. When this value is compared 

to the observed magnitude of 14 feet in 1965 (Allen, 1973), (probably 

less in 1958), it is apparent that the present plastic model somewhat 

underestimates the horizontal displacement magnitude, whereas the elas

tic model slightly overestimates it. 

The synthetic collar counts are shown in Fig. 2.32 (a)-(d). The 

noticeable differences between this figure and Fig. 2.14 (a)-(d) for 

the elastic simulation in section 2 . 9, are the smal ler amount of 

compaction in the deep zones, and the smaller amount of stretching 

above the producing zones. The former appears to be in agreement 

with the observation that little compaction took place in the deep 

zones. 

Finally, the stresses at depths of 75m, 225m , 375m and 525m 

are shown in Fig . 2 . 23 (a)-(d) respectively . The general pattern 

is almost identical to the elastic case. However, in the nonlinear 

case, the stress difference magnitude is more than twice as large, with a 

maximum stress difference of 18 . 3, 35.2 , 47., and 51.7 bar respectively 

for the four layers. This i s probably due to the fact tha t the 

region above t he producing zones is i n extension (e. g . Fig. 2. 22 

(a)-(d)), and therefore the material there undergoes unloading and 

behaves elastically. Thus , the nonlinear model with high elastic 

moduli produces high stress differences . This perhaps also explains 

why there is less stretching above t he producing zones i n the present 
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Figure 2. 22 (a) - (d) Synthetic collar counts for elastic-plastic sub
sidence model with horizontally uniform prestress . 
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model, than in the linear model, since the high moduli tend to resist 

deformation. From a physical viewpoint, the nonlinear model appears 

more satisfying, since the linear model behaves in the same manner 

both upon loading and unloading, contradicting both the experimental 

data and common sense. 

In regard to the mechanism responsible for the subsidence earth

quakes, the conclusions reached for the elastic simulation are still 

valid for the nonlinear model, except that the stress differences 

responsible for the events must be scaled upwards. It is instructive 

to compare the calculated stress differences, in both the linear and 

nonlinear models,with experimental results on the strength of shale 

(the type of material which failed in the subsidence earthquakes). 

The experimental work of Peterson et al. (1960) on the strength of 

hard Bearpaw shale indicated that for a normal stress of 55 bars 

(which is the stress at a depth of 550 m with an effective density of 

1 gr/cm3), the shear strength is approximately 32 bars . As the 

maximum shear, in any stress state~ i s equal to half the difference 

between the largest and least principal stresses, the stress differences 

in the nonlinear model are closer in value to the experimental results 

of Peterson et al. (1960), than those in the elai~ic model . Further

more, the work of Peterson et al. ( 1960) showed that the strength of 

the shale could be reduced by as much as 50% when the tests were 

carried out with a total loading time on the order of a year, instead 

of the short loading times commonly used in laboratory tests . If this 

rate dependence is present in the shale formations in the Wilmington 

field, the subsidence earthquakes did not necessarily take place at 
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the time of peak stress differences, but rather they took place after 

moderate stress differences were present for a sufficiently long time 

for the material to fail. 

In conclusion, the present model, though capable of effecting 

some improvements over the elastic model of section 2.9 in a few 

details, is still not capable of reproducing the correct size of the 

subsidence pattern in the Wilmington field. The next section will 

investigate the influence of tectonic prestress on the subsidence 

pattern, and will show that it can explain the discrepancy. 

2.16 An Elastic-Plastic Subsidence Model for 1958, II 

This model examines the role of tectonic prestress in determining 

the size and shape of the subsidence pattern. 

A number of past investigators have raised the question of why 

the subsidence in the Wilmington oil field was much larger than in 

other oil fields. Although part of the answer to the question may 

lie in the fact that the Wilmington oil field is situated in a popu

lated area in the proximity of the coast,where vertical displacements 

are always noticeable, there are other fields which occupy similar 

locations which did not evidence the same degree of subsidence. 

A second important observation is that most of the subsidence 

in the Wilmington field took place above fault blocks III and IV, 

in spite of the fact that the horizontal extent of the region of pres

sure reduction in the field was much larger than the area covered 

by these blocks. This fact is the reason why the numerical simula

tions discussed so far have failed to reproduce the observed size 
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of the subsidence pattern, since the size of the subsidence bowl in 

these simulations has been on the same order as the horizontal extent 

of the pressure reduction zone. 

A mechanism which may explain the above observations invokes a 

horizontal tensile stress component being added to the prestress in 

the region of the producing zones in fault blocks III and IV. The 

tensile stress, according to this explanation, was caused by the 

flexure of the crest of the structural anticline of the Wilmington 

field. As a result of the material being in extension, the region 

of fault block III and IV became weakened, thus causing a large sub

sidence there. The high density of normal faults in fault block 

III (e.g. Fig. 2.4) supports this hypothesis. This explanation has 

been proposed by past investigators (Mayuga, 1970; Allen, personal 

communication, 1977), but has not yet been put into quantitative terms. 

Mathematically, when horizontal extension is added to the over

burden stress system, the difference between the vertical stress and 

the horizontal stresses increases, and therefore the J 2 stress i nvari

ant increases as well. This puts the initial prestress closer to the 

F1 yield surface in comparison with the stress state without the 

tension. The present model attempts to account for this situation by 

assigning a prestress localized on the corner of the yield surfaces 

(point A in Fig. 2. 21+) in elements which are situated beyond a 

depth of 0.6 Km (5th layer and on), and which satisfy the criteria, 

8<1<13 and l 14 - .(J - 4) o 7 /16 j < 1 (for reference see Fig. 2.10). For the 

remaining elements, the assigned prestress lies below the two yield 

surfaces (point B, Fig. 2.24), to satisfy the relation J 1=0.75x. The 
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other parameters are identical to those of the model in the previous 

section. 

The calculated vertical surface displacements for the present 

model are shown in Fig . 2.25. The maximum subsidence is about 6 

meters, which is approximately 25% lower than the observation. How

ever, considering the uncertainties in the material model, it is not 

felt that the discrepancy is fundamental. From a two dimensional 

simple model,it is found that the difference can .be removed 

by increasing the W parameter by about 20%. As regards the size of 

the subsidence pattern, the agreement between observation and calcula

tion is far better than in the previous model (the 4m observed contour 

(dashed li~e), which represents the contour of half the maximum 

subsidence, should be compared with the 3m calculated subsidence 

contour). Thus, this model proves the plausibility of explaining 

the small size of the observed subsidence bowl by the existence of an 

additional tensile stress components at the crest of the structural 

anticline of the field . This tens i onal str ess also provides an 

explanation why the subsidence in the Wilmington field was larger 

than in other fields. Without the tension, all points in the field 

would have a prestress which plots below the yield surfaces. Thus 

a large portion of t h e pressure reducti on would create e l as tic strai ns 

only,until the loading had progressed far enough for those points to 

reach the yield surfaces. 

The remaining figures for this model do not contain major 

features which have not appeared in previous models . However , they 

show, as do the vertical displacements, a narrower deformation pattern 
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than their previous counterparts. For brevity, we chose not to repeat 

the previous discussion, but to merely present the figures for the 

sake of completeness. 

2.17 Conclusion 

The Wilmington subsidence has presented a unique opportunity to 

study a tectonic problem with relatively good data. The numerical 

simulations of the subsidence have provided quantitative explanations 

for the surface displacement observations, as well as for the collar 

count survey data. They have also shed some light on the process 

which was responsible for the subsidence earthquakes. The success of 

this study, which also serves as a reduced scale test case for larger 

tectonic problems, gives confidence in the ability of the numerical 

techniques used to simulate other tectonic processes, whenever good 

data are available. It can also be used as a predictive tool in areas 

evidencing subsidence problems for which a fluid pressure maintenance 

program exists. 
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Chapter 3: FLEXURE OF THE LITHOSPHERE IN THE VICINITY OF 

ISLAND CHAINS AND SUBDUCTION ZONES 

3 .1 Introduction 

The mechanical model of plate tectonics, where strong lithospheric 

plates float on a weak layer asthenosphere, is supported by evidence 

from seismology (Gutenberg, 1960; Anderson, 1962; Kanamori and Press, 

1970), from gravitational observations (e.g. Gunn,1943; Vening 

Meinesz, 1941) and from petrological considerations (Green, 1972). 

3 
The relaxation time on the order of 2 X 10 years for vertical move-

ments in shield areas unloaded by late Quaternary ice sheets (e.g. 

O'Connell, 1971) suggests that the asthenosphere can be modelled as 

an inviscid fluid for loading times exceeding 10
6 

years. The lithosphere 

is often modeled as an elastic sheet (Gunn, 1943; Walcott; 1970a; Hanks, 

1971; Watts and Cochran, 1974; Watts and Talwani, 1974), or as a 

viscoelastic sheet (Walcotts 1970b) to explain the departure from 

isostasy near seamounts and trenches as well as to explain observed 

surface morphology in the vicinity of the structures. 

Such a mechanical model, while capable of obtaining an agreement 

between observed and computed gravity anomalies and between observed and 

computed bathymetry near some trenches , fits only in a general way 

mohQ displacements as well as the surface morphology of mid oceanic sea

mounts and islands, such as those of the Hawaiian archipelago. Some 

other problems are encountered in the employment of such an elastic 

or viscoelastic plate model. These are : 
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(1) Lateral thrustwasnot included in the computations for gravity 

anomalies or for bathymetry in the interior of the Pacific Plate (e.g. 

Watts and Cochran, 1974; Walcott, 1970a). Lateral thrust was included 

in the plate calculations near the trenches by Hanks (1974) but was 

considered to be not essential by Parsons and Molnar (1976). However, 

lateral thrust has a strong influence on the wavelengths of flexure 

and cannot be ignored in most realistic situations (e.g. Le Pichon 

et al., 1973). 

(2) The extreme fibre stress associated with the elastic or visco

elastic plate bending models is on the order of several kilobars in 

fitting the trench or the seamount chain data (e.g. Walcot½ 1976). 

The strength of possible mantle rocks near the base of the lithosphere 

(at about 60 Km depth), on the other hand, is on the order of 50 bars, 

as inferred from laboratory rock deformation experiments on a geologic 

time scale (e.g. Carter, 1976). The high stresses deduced from the 

elastic or visco-elastic plate models therefore cannot be sustained 

by the inferred strength of the rocks in the lower lithosphere. 

(3) The flexure rigidity obtained from an elastic or viscoelastic plate 

model in fitting the trench or seamount chain data implies too thin a 

plate thickness for the lithosphere, even a reasonable difference 

between seismic and static de.formation moduli is allowed for. For 

example, Watts, Talwani, and Cochran (1976), in summarizing their 

earlier work, gave flexure rigidity of 3 X 1029 dyne-cm for the Pacific 

29 
plate near the trenches, and 5 X 10 dyne-cm (for a continuous sheet), 

30 
and 2 X 10 dyne-cm (for a broken half sheet) for the interior of the 

Pacific plate. 
30 

Walcott (1970a) obtained 3.6 X 10 dyne-cm for the 
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interior of the Pacific plate (broken half sheet). If we adopt for 

the relaxed elastic moduli a 10% reduction from their seismic values 

(Liu et al., 1976), the above rigidity values would imply a plate 

thickness of 13 Km, 15 Km, 24 Km, and 29 Km respectively . These values 

are too low compared with plate thickness values obtained from seis

mology (e.g. Kanamori and Press, 1970). Indeed, Watts, Talwani and 

Cochran (1976) emphasized that the flexure rigidity used in the elastic 

plate calculations should be regarded as "effective flexure rigidity" 

and not as the actual flexure rigidity. 

The above discussions suggest that the elastic or viscoelastic 

model, while capable as a first approximation to explain certain 

features of the plate deformation near some trenches and seamount 

chains, leads to some difficulties when compared with the seismological 

and rock deformation data. 

This study attempts to improve on the elastic or viscoelastic 

plate models by presenting a strain rate dependent elastic-perfectly 

plastic plate bending model . The rheol ogical model for the lithosphere 

is deduced from laboratory results on the deformation of Dunite at 

temperatures and pressures which are pertinent to the upper mantle. 

From this material model,the flexural response of the lithosphere as 

whole is derived 5 and put i n a form of moment-curvature r elat i ons. 

These i n turn are combined with a Finit e Element code which is designed 

for solving Von-Karman's plate equation with nonlinear moment curvature 

relations. The complete formulation is finally applied to the f it ting of 

bathymetry and gravity profiles in the vicinity of the Hawaiian island 

chain. 
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3.2 Equilibrium Equations of the Plate Theory Approximation 

The theory of large deflection of plates, due to von Karman, is 

an extension of the theory of small deflection of plates which also 

considers the dominant finite strain effects (e.g. Fung, 1965). 

Implicit in the theory are the following assumptions; 

a) The plate thickness is much smaller than the typical plate dimension. 

b) The magnitude of the deflection w is of the same order as the thick

ness of the plate, but small compared to the typical plate dimension. 

c) The slope is everywhere small, i.e. 1:: l<<l and 1:; I<< 1. 

d) The tangential displacements u, v are infinitesimal. In the 

strai n displacement relation, only those terms which depend on 

and clw 
cly 

are to be retained. 

clw 
clx 

e) Kirchhoff's hypotheses holds, e.g. tractions on surfaces parallel 

to the middle surface of the plate are negligible,while strains vary 

linearly within the plate thickness. 

von Karman's theory uses the Lagrangian description in which 

displacements, strains,and stresses refer to the underformed config

uration . In the following, x,y,z will denote a coordinate system with 

the z axis extending vertically downward, and with the x and y axis 

extending horizontally . w will denote the vertical deflection of the 

n eutral surface and ~ and v will denote t he horizontal dis placements. 

The z coordinate of the top of the plate will be denoted by 

the bottom of the plate by Zb. 

z and of t, 

After combining assumptions (a) - (e) listed above with the 

continuum mechanics equations of f orce balance , the plate theory 

equilibrium equations are obtained (e.g. Fung, 1965);-

( · 
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a2M 2M a2M am am a2
w 

(3 .1) 
X + 2 ~ _z X _J_ + = -q- - N 

ax 2 a xay ay2 ax ay X dX2 

2 
a2w aw 

- 2 N 
a w 

f 
aw + f N + , 

xy axay y ay2 X ax y ay 

where, 
zb 

(3. 2) M = f S Z';dt; , 
X xx 

zt 

zb 

(3.3) M = f S i;di; , xy 
zt 

xy 

zb 

(3.4) M = f S t;dt;, 
y 

zt 
yy 

zb 

(3. 5) N = f s d s , x · X:x 
zt 

(3. 6) N = l s d s , xy 
z 

xy 
t 

zb 

(3. 7) N = f s d s , 
y 

zt 
yy 

zb l (3. 8) (S + s aw + s aw I + Zdt; q = ax ay· , 
zz zx zy 

zt zt 

(z - zt) 
zb 

(szx (zb) - 5zy(zt)) Jsx (3. 9) b + d s , m = 
X 2 zt 



-130-

(z - Zt) 
zb 

(3 .10) 
b 

( szy (zb) S (z )) + f r,Y dz;; my = 
2 zy t 

zt 

zb 

(3.11) f S (zb) - S (zt) + fx d r, ' X zx zx 
zt 

zb 

(3.12) f = S (zb) - S (zt) + f Yd r, . y zy zy 
zt 

X, Y, Z respectively denote the body forces in the x, y, z 

directions, S .. denotes the Kirchhoff stress tensor which, by assumptions 
1J 

(a) to (e) above, is equal, to first order, to the Lagrangian stress 

tensor which is measured in the deformed configuration of the plate. 

For many tectonic problems the horizontal body forces are zero, and 

the plate is overlain by ocean water and underlain by the asthenosphere 

which is considered as an inviscid fluid. 1n such problems, the shear 

stresses S and S are approximately zero . When in addition, flexure xz yz 

occurs only parallel to one vertical plane (as in the case of the 

Hawaiian emperor seamont chain problem discussed in section 3.7), 

equation (3.1) to (3.12) simplify considerably to read, 

(3.13) 

(3.14) M 
X 

= - q - N 
X 

S r,d r, , xx 
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(3.15) 

zb 

N = f s dz , 
X xx 

z 
t 

(3. 16) 

zb 

q = S (zb) - S (zt) + f Zd 1'; • zz zz 
z t 

For a complete posing ofplate bending problems, equations (3.1) to 

(3.12), or (3.13) to (3.16) must be supplemented by appropriate 

boundary conditions at the ends of the plate (see Appendix B) and a 

rheological prescription which relates moments to curvature. The 

latter can be constructed readily once the full continuum theory 

stress-strain relation is known. For the linear elastic plane strain 

case the moment curvature relation writes, 

(3.17) M = 
X 

-D 

where Dis the flexural rigidity (Fung, 1965). By substituting 

equation (3.17) into the plate equation (3.13 ), a fourth order ordinary 

differential equation is obtained, the solutions of which have been 

used in the elastic plate flexure studies by previous investigators 

(Walcott, 1970a; Hanks, 1971; Watts and Cochran, 1974; Watts and 

Talwani, 1974). The main object of this study has been to replace 

(3.17) by a more realistic moment curvature relation,based on rock 

mechanics data,to produce plate models which are capable of explaining 

and matching geodetic,gravimetric , and seismic data. 

The term N in equations (3.13) and (3.15), represents the stress 
X 

resultant across a section of the plate. In tectonic problems, prior 
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to the existence of the flexure causing loads, the variable is equal to 

the integral of the horizontal prestress over the lithosphere thickness. 

After application of the loads, a horizontal fibre stress is added to 

the prestress but, as will be demonstrated in the following sections, 

by reasons of maintaining mechanical equilibrium, the value of N 
X 

remains unchanged after the activation of the flexural loads. 

This study uses the Finite Element method for solving the plate 

equations. In plane strain, this entails the construction of a one 

dimensional grid (see Figure B.1 in Appendix B), in which each node 

possesses two degrees of freedom of the displacement wand the slope 

dw 
dx 

The input consists of (a) nodal boundary conditions on the ends 

of the grid which may include a specification of the deflection or of 

the moment, and a specification of the slope or of the shear traction; 

(b) prestress values, (c) values for the variable q in equation (3.16), 

which in tectonic flexural problems usually consists of bouyancy 

forces from the asthenosphere, and the ocean water load. Details of 

the derivation of the Finite Element method are given in Appendix B. 

3.3 An Elastic Plastic Model for Lithospheric Response Based on 

Experimental Data 

Rock deformation experiments under lithospheric temperature and 

confining pressure have been carried out extensively (e.g. Carter, 1976, 

for a review). The loading stress strain curve for Dun-Mountain dunite 

at 800° C, at a confining pressure of 5 Kb and a strain rate of 5 X 10-
4 

-1 
s is illustrated in Figure 3.1 (after Griggs, Turner and Heard, 1960). 

The curve is typical of dunite deformation at t2mperatures greater than 
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Figure 3.1 Stress-strain curve of Dun-Moyntain dunite at 5 Kb con
fining pressure, T = 800°c, e ~5 • 10-4 s- (after Griggs et al., 1960). 
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300 Caswell as for the behavior of Basalts and Pyroxenites (Griggs 

et al., 1960). At low temperatures, dunite exhibits brittle behavior. 

Figure 3.1 represents, therefore, a typical stress-strain curve for 

lithosphere type materials at depths beyond the first few kilometers 

in the crust (Carter, 1976). 

The stress-strain curve of Dunite is both temperature dependent 

and strain rate dependent . For fixed temperature and strain rate the 

stress vs strain curve initially has a sharp slope (Figure 3.1). 

Afterwards the slope approaches a zero value. To a good approximation 

the curve can be replaced by the two dashed straight line segments 

shown in the figure. The material can thus be modeled as elastic

perfectly plastic with the first segment in Figure 3.1 representing 

an elastic (strain rate dependent) loading curve, and the segment 

with zero slope representing yielding at the yield stress value. The 

strain rate dependence of the elastic parameters is generally known 

as visco-elasticity. Unfortunately, reliable values for the elastic 

parameters at low strain rates, are pr esently not available. However, 

as demonstrated by Liu et al. (1976), for a constant Q of 220, the 

material moduli decrease at lower strain rates by 2% per three decades 

of strain rate. Consequently, the elastic parameters in this study are 

chosen at 90% of their seismically determined values. As for the plas-

tic part of the stress-strai n curve, the yield function was taken to 

be a Tresca yield condition of the form, 

(3 .18) 
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where s1 and s3 denote the largest and least principal stresses and 

K is the yield value. Whether or not this yield condition truly 

describes yielding in Dunite for all possible load paths cannot be 

determined by triaxial tests alone. However, the Tresca yield condi

tion has been used extensively to describe yielding in certain metals 

(e.g. Martin, 1974), and since it appears that for the strain rates 

of concern in this study, yielding in rocks, as in metals, is con

trolled by dislocation motion, equation (3.18) seems to be a reasonable 

approximation. 

The dependence of the yield stress on the strain rate and temper

ature fits well an activation energy type formula of the form (Carter, 

1976), 

(3.19) 
. 
e Vn -3 

( A ) exp(Q/RT • 10 n) , 

• -1 
where ~- is the strain rate in s , A is a material constant, n is a 

positive numerical constant, cry is t he yield stress in kb , Q is an 

activation energy in kcal/mole, R is the gas constant and Tis the 

. Ko temperature in . 

confining pressure. 

The yield stress in (3.19) does not depend on the 

The constant n usually has values between two and 

nine for rocks> with a value of about t hree for Dunite (Carter , 1976) " 

The application of equation (3.19) to the modeling of tectonic pro

cesses implies the assumption that laboratory results obtained at 

-6 -7 
strain rates on the order of 10 to 10 or faster, can be extrapo-

lated to the slower geologic rates. 
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· 3.4 State of Stress in the Lithosphere Prior to Flexing 

In plate bending models which contain a nonlinear stress-strain 

prescription for the material response, the state of stress in the 

lithosphere, prior to the existence of the flexure causing forces, 

has a significant influence on the bending properties of the plate. 

Unfortunately, the value of the prestress in the lithosphere is 

presently known only crudely, and as in similar instances in this 

thesis, the recourse has been to a number of assumptions concerning 

its magnitude. 

Consider the portion of the lithosphere shown in Figure 3 .2 which 

contains a crust with density p , a portion of the upper mantle with 
C 

density p. , and which is overlain by ocean water with density p . The 
m w 

vertical overburden stress component at a depth z below the ocean 

surface is given by, 

(3. 20a) S (P) = 
1 

When the vertical stress consists only of the overburden component, 

the horizontal stress is given by, 

(3.20b) 

where S(z) is the confinement factor, and s30 is a stress component 

from tectonic origins . It will be assumed in the following that the 

value of the s2 component lies between the values of s1 and s3 , and 
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Figure 3.2 Sketch of an undeformed portion of lithosphere. 
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that the subsequent plate bending will take place in the xz plane . 

The confinement factor S(z) depends on the manner in which the 

material in the lithosphere is ernplaced, and the amount of stress 

relaxation which the plate has undergone since the emplacement . In the 

parts of the lithosphere which are removed from plate margins and 

which are not undergoing significant deformations, by symmetry, the 

material must be in a state which resembles rigid horizontal confine

ment. As dislocation motion does not involve volume changes, and in the 

absence of horizontal strains, in the rigid confinement case there 

can be no contribution from dislocations to the vertical strain com

ponent . As no strain components from dislocations can exist, it 

appears that the stresses in a material which is rigidly confined, 

either cannot relax in time towards a hydrostatic stress state, or at 

most can relax at a much lower rate than when the material is in a 

state where flow can take place freely. 

For lack of more accurate data, therefore, it will be assumed in the 

following that the S factor is cons t ant a t all dep t hs ~ and t h at its 

value lies between one third (as in uniaxial compression of a Poisson

solid) to unity (total relaxation). 

3 . 5 Construction of A Moment Curvature Relation for the Lithosphere 

According to the fifth postula te of von Karman's plate theory 

(Section 3.2), tractions on planes parallel to the mid-surface of the 

plate are negligible, and strains var y linearly within the pla te 

thickness . Mathematically this statement wri t es, (e.g . Fung , 1965), 
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(3.21a) 

f 
where e

3 
is the horizontal fibre strain, z is the depth to the obser-

vation point, z
3 

is the depth to the neutral surface, and the curvature, K, 

is given by, 

(3.21b) K = 

The plate moment-curvature relation is constructed under the 

assumption that the flexure process takes place at a constant strain 

rate. Accordingly,the flexural str ain rate is given by, 

(3. 22) = 

where tis the loading time of the plate. Although , the accuracy of 

the above assumption is questionable , it will be used only in the yield 

stress vs strain rate relation, a relation very insensitive to inaccur

acies in the strain rate. 

After the plate becomes flexed , certain portions of it will 

undergo plastic deformation whenever the condi t ion ~ 

(3.23) 

o p.Q, 1/:n 
e3 3 

( A ) exp(Q/R · T(z) • 10- n ) 9 

is met . e
3
p .Q. denotes the horizontal plastic strain r ate. Equat i on 

( 3 . 23) i s writ ten as an i nequality r ather than as an equality such as 
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(3.19), as in certain confinement conditions in which material flow 

is restricted, the value of 1s1 s31 can be higher than the yield 

value according to (3.19), which applies to triaxial tests. However, 

except at points along the neutral axis whose length is unchanged by 

the flexure, plastic flow can take place in the plate as the flexure 

progresses and eventually the stresses will adjust to render (3.21) an 

equality. Thus, plastic flow will be excluded from occurring in a very 

narrow strip surrounding the neutral axis, but will be allowed in all 

other regions of the plate whenever the yield condition is met. 

Th 1 • • • Pt b d d • fl 1 e p astic strain rate e
3 

can e ecompose into a exura 

plastic strain rate, and a plastic strain rate which is present prior 

to flexure. For convenience, the subsequent derivations will be for 

the case where the initial plastic strain rate is zero. This situation 

approximately exists when the lithosphere is in a state of rigid 

confinement. The generalization of the equations to other confinement 

conditions is straightforward. 

After substituting (3 . 22) for the plastic strain r ate in (3 . 23), 

one obtains the yield condition, 

(3. 24) 
K( z - Z ) l/n 

3 
At 

-3 exp(Q/R T(z) • 10 n) . 

As the factor n has a numerical value of about 3 (Carter, 1976)~ and as 

the temperature variation in the lower lithosphere is approximately 

linear (Sclater and Francheteau, 1970) , the exponential term varies 

most rapidly on the right side of equation (3.24) . The term K(z - z3) 

can therefore be replaced by its average over the yielded part of the 



plate, K( z - 2
3
), without causing significant error. 

For clarity,we now discuss separately the derivation of the moment

curvature relation for negative plate curvature and positive plate 

curvature. 

(A) Moment-Curvature relation for negative plate curvature. 

According to the convention in which the z axis points from 

the surface of the Earth do,;mwards, the plate curvature is negative 

when the lower part is under tension and the upper part is under 

compression. 

The horizontal stress in the plate can be factorized into, 

(3. 25) 

p f 
where s3 is the horizontal prestress and s

3 
is the fibre stress. 

The yield condition, (3.24), can now be rewritten in terms of a fibre 

yield stress, 

1/n . I p p I > I K(z - 23) 
o, if s1 - s3 I At 

-3 exp(Q/RT(z) • 10 n) 

(3. 26) 

and, 

(3.27) 

Sy 
3 

Sy = 
3 

Is: -

-

and z 

1/ri 
K(z - 23) 3 p p 

At exp(Q/RT(z) • 10- n) + (s 1 - s3 ) , if 

K(:Z - z3) 
1/n 

p ,~ exp(Q/RT • Io-3n), and z > 2
3 S3 At 

1/n 
K(z - 23) 

exp(Q/RT • l0-3n) + p p 
if z < z

3 (S1 - S3 ), . 
At 



-142-
y 

s3 (z) represents the value of the fibre stress at depthz, where 

a transition from purely elastic to plastic behavior takes place. In 

the elastic part of the plate the fibre stresses are given by, 

for z > z
2 

(3. 28) 

- E K(z - Z ) 
C 3 

where Eis Young's modulus for the portion of the lithosphere beneath 

the moho, and E is the crustal Young's modulus. In the portion of 
C 

the plate undergoing plastic deformation, the fibre stresses are 

given by (3.26) or (3.27), depending on the depth. 

Considering the situation shown in Figure 3.4, Pl53. in which plastic 

yielding takes place in the plate only below the neutral axis, the 

value of z 3 and the depth of transition from purely elastic to plastic 

behavior,z4 , are determined by the requirement of stress continuity 

at z 4 , and the static force balance requirement (Timoshenko and Gere, 

1972). These relations read, 

(3. 29) - K(Z - Z )E 
y 

= S3 (Z4) 4 3 

and 

z2 
z . Zb lj. 

(3.30) f KE (Z - z3)dZ + f KE(Z - z3)dZ - J sJ (Z)dZ == 0 . 
Zl 

C 
z2 z4 

After z 3 and z 4 have been determined, the moment acting on the cross 

section of the plate is given by, 
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z2 z4 

(3. 31) M -· KE f (Z z ) 2 dZ - KE .r (Z z ) 2 dZ + 
C 3 3 

z z2 t 

+ lb Sy (Z - z
3

) dZ . 
z4 

3 

The construction of moment curvature relations when yielding in the 

plate takes place above the neutral axis is analogous. A typical stress 

vs depth curve for negative plate curvature is shown in Figure 3.4 

in the next section. 

(B) Moment-curvature relation for positive plate curvature 

According to the coordinate convention which was previously 

adopted, the plate is considered to have positive curvature when the 

upper part is under tension and the lower part is under compression. 

In order for the lower portion of the plate to reach yield, 

elastic unloading must first take place and then the yielding will 

occur at a positive horizontal stress state. Following the same steps 

taken in the derivation for the negative curvature case, the flexural 

yield stress for positive plate curvature reads, 

(3. 32) 

and 

(3. 33) 

s y = 
3 

s y = 
3 

K(z - Z3) 1/n 3 
exp (Q/RT • 10- n) + (Sp - Sp ) 

tA J. 3 ' 

for z > z
3 

, 
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The flexural stresses within the plate are given by (3,32) or 

(3.33) in the plastic region,and by, 

sf 
3 = - KE(z - Z3) for z ~ z3 

and 
sf = - KE (z - Z3) for z < z 2-. z2 ' 3 C t-

in the elastic region. 

As in the negative flexure case, when yielding occurs only in 

the bottom part of the plate, z
3 

and z6 , the depth where yielding first 

occurs, are calculated from the equations, 

(3. 34a) 

and 

(3.34b) 

zz 
J KE (Z 
Z C 

1 

0 . 

A typical fibre stress vs depth curve for positive curvature is 

shown in Figure 3.5 in section 3.7. The moment is calculated from, 

(3 . 35) M = -KE 
C 

Figure 3. 6 section 3.7 shows a moment curvature relation for a 

model of the lithosphere in the vicinity of the Hawaiian islands. 
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3.6 The Plastic Hinge 

When the material has a non-hardening plastic behavior, there is 

a finite limit to the bending moment which the plate can support. This 

limit is reached when a plane has its entire section under yield,except 

the neutral axis. The curvature of the plate at this cross section 

can become arbitrarily large so that unrestricted plastic flow may take 

place. The plate is then said to have developed a plastic hinge (e.g. 

Martin, 1975) . 

3. 7 Application: Flexure of the Lithosphere Underneath The Hawaiian 

Island Chain 

This section describes how the formulation developed 

in the previous sections is applied to the problem of the flexure of 

the lithosphere in the vicinity of the Hawaiian island chain. In 

the model which is adopted in this study, the Hawaiian island chain 

is considered as a two dimensional load on top of a semi-infinite 

lithospheric plate. The plate is assumed to be weakened along the 

axis of the island chain by volcanic activity, and a plastic hinge 

condition is assumed there. The model is therefore , of a semi infinite 

plate , subjected to a distributed normal load , with a plastic hinge 

with zero shear traction condi t i on at t he origin, and a condition 

of zero deflection and slope at infinity . The boundary conditions at 

the origin appear to be more satisfactory than the free end condition 

or the zero slope and shear traction condition (cont inuous symmetric 

plate), adopted by previous investigators (Walco tt, 1970a ; Watts and 

Cochran, 1974). This is because they have either extremely overestimated 
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the plate weakening or have not accounted for it at all. 

The example of this section attempts to fit gravity, bathymetry 

and depth to moho data in a profile between the islands of Oahu and 

Moluki. This profile was deduced by Woollard (1966),and was later 

used by Walcott (1970a) in his flexural model for the Hawaiian 

island chain. 

The bathymetric features in the vicinity of the Hawaiian island 

chain which include the Hawaiian deep and the Hawaiian arch, or rise, 

have long been recognized as typical features of mathematical solutions 

of problems involving a plate overlying a buoyant fluid (e.g. Gunn, 

1943; Walcott 1970a; Watts and Cochran, 19 7 4). The prominent features 

of the profile considered in this study, as summarized by Walcott 

(1970a), are: 

(1) the distance between the crest of the Hawaiian arch and the 

island axis is about 250 km; 

(2) the amplitude of the rise is 600 + 200 meters; 

(3) the depth to the moho is about 21 km beneath the island axis , 

12 km beneath the trench, and 10 km beneath the rise. The undisturbed 

moho depth away from the Hawaiian structure is 10.5 km; 

(4) the change in free air gravity anomaly values are+ 200 mgal, 

-100 mgal) and+ 30 mgal over the ridge, the trench and the rise 

r espectively. The positive anomaly over the rise reaches a maximum 

of+ 50 mgals in some places. These features comprise the bathymetry 

and gravity data which the plate model has to match . 

It must be emphasized at this point that the assumption of two 

dimensionality is an oversimplification,as bathymetry and depth to 
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moho vary considerably between different profiles along the Hawaiian 

island chain (Watts and Cochran, 1974; Furamoto, 1966; Woollard,1966). 

In particular the depth to the moho of 21 Km under the ridge in the 

profile considered in this study is large in comparison with obser

vations in the vicinity of the island of Hawaii (Woollard,1966; Furamoto 

and Wool.lard,1965). Thus, the flexural model presented in this section 

is not aimed at matching accurately all the features along the island 

chain, but rather it attempts to demonstrate the feasibility of the 

plastic plate model developed in the previous sections by showing 

that it can fit all the data along the chosen profile,and can avoid the 

shortcomings, listed in Section 3.1, of the elastic or viscoelastic 

plate models. 

The first stage of the numerical simulation is of the construction 

of · the input parameters in equatiqn (3.15) and (3.16) in Section 3,2. 

The island load is approximated to be a distribu~ed normal load on 

the plate top,which is equal to the weight of the material between 

the bathymetry and the position of t he plate top plus the weight of 

ocean water between sea level and the bathymetry (See Figure 3.7). 

The bathymetry and the plate top position coincide outside of the 

trench sediments~ but the plate top position is unknown inside the 

sediments and under the ridge . The unknown plate top location is 

constrained only at two places by the condition that the Moho dis 

placement measured under the ridge axis and under the trench, is equal 

to the plate top displacements in the same places respectively. 

To proceed to the solution for the deformed plate profile; first 

a deformed plate top profile is assumed under the trench sediments 



-148-
! 

with the constraints that it pass through the two observed moho depths, 

and that it join smoothly the bathymetry profile outside the trench 

sediments. This profile is the zeroth order approximation to the 

solution. It is used for calculating a density structure for the 

crust and sediments which will fit the free air gravity anomaly data. 

The computed densities are then used to compute the~ertical normal 

load on the plate top. von Karman's plate bending equation with the 

nonlinear moment-curvature relation developed previously, is then 

solved by the Finite Element technique using the Newton-Raphson itera

tion procedure (see Appendix Band Appendix E). The parameters in 

the solution, in addition to those which have been determined by 

matching gravity, are the magnitude of the horizontal prestress and 

the asthenosphere density below the lower boundary of the lithosphere. 

These parameters are chosen so that the solution fits closely the given 

data of lithospheric deformation. The first computed plate profile, 

constrained only to pass through the deflection at two places inside 

the trench sediments and t o match bathymetry outside of the trench 

sediments, differs in detail from the assumed zeroth order approximation 

of the deformed plate profile. The first computed plate profile is 

then used as the input profile for the next series of computations. 

The pro cess is then repeated iteratively unt il it converges to a state 

where the input prof i le. equals the calculated profile to within a 

prescribed accuracy, and also where the gravity, depth to Moho, and 

the bathymetry data . outside the trench region are matched. 

The main steps in each iteration are as follows, 

(A) Determination of island, crust and sediment density from the free 
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air gravity anomaly. 

The free air gravity anomaly is calculated by the polygon method 

of Talwani, Worzel and Landisman (1959). The density model and com

puted free air gravity anomaly are shown in Figures 3.3a and 3.3b 

respectively. 

(B) Calculation of verticalloads from the computed densities. 

The Kirchhoff stress tensor S .. , is approximated to the first 
lJ 

o.rder by the Eulerian stress tensor cr... The traction at the lower 
lJ 

plate boundary arises from the buoyancy forces and is given by, 

where p is the asthenosphere density immediately below the litho
a 

sphere and w is the plate deflection. The normal tractions on the top 

of the plate are given by, 

(3.36) 

where .p is the density of the island load, p is the density of the 
C S 

trench sediments, P is the ocean water density, B (x) is the bathy-
w 

metry, £1 (x) is the vertical distance between the top of nonsediment 

crust and the point considered as t he top of the plate, and i 2(x) is 

the thickness of the sediments. The sum of £ 1 (x) and t 2 (x) is equal 

to the vertical distance between the top of the plate and the 

bathymetry. The term which remains to be specified in equation (3.16) 

is the integral of the body forces over the plate thickness. However~ 

as this is a constant term for all x, it causes a uniform displacement 
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Figure 3.3 (a) Density model (input for the final iteration) for free 
air gravity computation. (b) Free air gravity anomalies computed from 
the density model shown in (a). 
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w(O) and therefore need not be considered. 

(C) Calculation of thrust. 

The thrust of N in (3.15) is given by, 
X 

(3. 37) N 
X 

where s30 is the horizontal prestress from tectonic origins, and 

S (P) 
1 ' the vertical prestress,is given by equation (3.20a) in section 

3.3. 
' f 

The horizontal flexural stress s3 does not enter into (3.37), 

as the force balance conditions require that its integral over the 

plate thickness vanish (see equations 3.30 and 3.34b in section 3.5). 

(D) Finite element solution of von Karman's plate equation with a 

nonlinear moment-curvature relation. 

After all the input parameters have been specified, von -Karman's 

plate equation is solved for the plate deflections, plate slopes, 

curvatures and moments. Details of the solution algorithm are given 

in Appendices B and E. 

The parameters used in the final iteration of the plate deflection 

computation are; 

(1) Elastic parameters; E = 0.8962 Mbar, is the crustal Youngs modulus, 
C 

E = 1. 7171 Mbar, is the average Young's modulus for the lithosphere 

below the Moho. These are 90% of the seismic values in Kanamori's 

(1969) oceanic surface wave model 5.08 M. 

(2) Plastic yield stress parametersj (see equation 3.24); average 

distance from the yielded part of the lithosphere to the neutral axis 

during plate bending by the island load, Z - z3 , is taken to be 23 Km. 



-152-

This value is arrived at after several trial solutions 

with the final solution to within~ 5%. A= 5,l • 10-9 

and it agrees 
-1 

K__-3.3 s n = 
--b ' 

Q = 113.2 kcal/mole, are from dunite deformation data by Carter and 

Ave'Lallemant (1970). The temperature in the lower lithosphere is 

approximated by a linear function of depth, 

T(z) = 178.86 + 17 .868 ° 10-
3 

z , 

where Tis in K
0 

and z is in meters. This equation is constructed 

3.3, 

from the oceanic lithosphere temperature profile by Sclater and 

Francheteau (1970). The loading, time t, is taken to be 1.3 million years 

(3) Density and undeformed plate parameters. The plate bottom depth 

is Zb = 60 km, the plate top depth is Zt = 5.103 km and the Moho 

depth is 10.5 lan. 
• 3 

The ocean water density is P = 1.03 gr/cm, the 
w 

trench sediment density is p = 2.08 gr/cm3 , the crustal density is 
s 

2.68 gr/cm
3

, the average plate density below the Moho is 3.22 gr/cm
3

, 

and the asthenosphere density immediately below the lithosphere is 

3 
3.6 gr/cm. 

(4) Prestress, thrust and moment parameters. The prestress parameters 

in equations (3. 20b) are S = 1/3, s
30 

= -2. 9 kb, the thrust Nx, is 

-4. 983 • 10
13 

N/m. 

4.3.1016 N. 

The plastic hinge per unit width, M ,is M = 
p p 

The variation of fibre stress with depth for specified curvatures, 

and the parameters used in the final calculation is shown in Figure 3.4 

and Figure 3.5. These figures show that the present model does not 

produce the excessive stresses which occur in elastic or viscoelastic 
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Figure 3.7 Input and output profiles in the last iteration of the 
Hawaiian deflection problem as compared with observational data; (a) 
bathymetry and plate top profile ; (b) Moho displacement. 
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models. The complete moment-curvature relation is shown in Figure 

3.6. The input and output profiles for the Hawaiian structure are 

shown in Figure 3.7. They practically coincide with each other. 

3. 8 Conclusion 

A plate deformation model for the lithosphere with a material 

rheology based on rock mechanics data has been presented in this 

study. It is demonstrated that the model is capable of matching to 

within observational accuracy, bathymetry and gravity profiles in a 

profile in the vicinity of the Hawaiian island chain. The type of plate model 

which has been developed herein can be applied to a wide class of 

lithosphere deflection problems along plate margins and island arcs. 

Furthermore, the theory can be extended, if necessary, to solve 

problems involving two dimensional plate and load configurations. 

The considerations which are used in developing the plate rheology 

in this study should also apply to situations where a full continuum 

mechanics theory is more relevant to the problem than the plate theory 

approximation. 
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Appendix A: DERIVATION OF THE QUASISTATIC 

FINITE ELEMENT EQUATIONS 

A.I Equations of Balance of Forces for a Continuum 

For a solid body occupying a volume V, bounded by a surface S, 

and undergoing infinitesimal deformations, the equations of static 

force balance are given by, 

(Al) aaij + 
"' f. =O, . 1 D 
0 x. ]. ]. = • • • , 

J 

where Dis the number of degrees of freedom, f. are the body forces, 
]. 

x. are a set of Cartesian coordinates, and a . . are the components of 
J l.J 

the stress tensor. The summation convention according to which 

repeated indices imply summation is used throughout this appendix. 

Equation (Al) must be supplemented by a set of boundary conditions 

on the surface S which can either be specified displacements or speci

fied tractions, T . = cr . . n. 9 where n(x) is the normal vector to S. 
]. l.J J 

In the following derivations, S will denote the portion of S upon 
u 

which displacements are specified and Sa will denote the portion of S 

upon which tractions are specified . 

A.2 Spatial Discretization 

A spatial region is discretized by subdividing its volume V into 

a total of E elements containing N modal points . The di splacement 

n field U.(x), throughout Vis interpolated from the displacements U., 
]. ]. 
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n = 1 ... N, at the nodes of the elements. The spatial interpolation 

is achieved using piecewise smooth interpolation functions p (x) 
n 

according to, 

N 
(A2) u. (x) = L p (x) Un 

1 - n=l n - i 

The interpolation functions satisfy the relation, 

(A3) p (x:111) = 0 
n - nm 

m th where X is the coordinate of them node. 

Spatial derivatives of the displacement field are expressed in 

terms of nodal displacements by the differentiation of equation (A2), 

au. 
(A4) 1 

ax. 
J 

N 

I: 
n=l 

ap ( x ) 
n · 

ax. 
J 

The variations of the material properties,throughout the volume 

V,are approximated by assigning each element uniform material proper

ties which are close in value to the average material parameters in 

the region of the element. 

A.3 The Galerkin Weak Form of the Force Balance Equations 

For the derivation of the Fini te Element equations, the equations 

of force equilibrium (Al) are replaced by the Galerkin weak form 

equations given by; 

(~ ) 
(5 . • dT 

1J 
= f P (x) f.dT + fa .. n.P (x)dS 

V n 1 S 1J J n -
n = 1 ... N1 
i=l ... D, 
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or, 

(AS) 
V 

ax. 
J 

a . . d-r = f Pn(x)f .dT + f T .P (x)dS 
iJ V - 1 Sa 1 n 

:1=1 ... N1 
1 = 1 ... D 

The nodes which lie on Sa or in the interior of V are numbered from 

1 to N 
1

, and the nodes which lie on Su are numbered from N 
1 

+ 1 to N. 

For interpolation functiomwhich satisfy, 

P (x) = 0, for X t_ S , n- u 

equation (AS) is a less restrictive statement than (Al). This is 

because the solutions of (Al) also satisfy (AS), as becomes evident 

from integrating (AS) by parts. 

The Finite Element equations are obtained from the Galerkin weak 

form (AS), after expressing the strains according to (A4), and 

incorporating a rheological prescription which relates stresses to 

strains. The derivation is carried out in the next section for the 

linear elastic case. The elastic-plastic case is discussed in 

Appendix E.. 

A.4 Finite Element Equilibrium Equations for a Linear Elastic Medium 

For a linear elastic solid, the stress strain relations are given 

by; 

(A6a) i,j-1 ... D 

where Cijki are the elastic coefficients. The symmetry of the Cijki 

coefficients (there are at most 21 independent coefficients) allows 

the substitution of displacement gradients in (A6a) instead of the 
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symmetric strain tensor. For an isotropic material there are two 

independent elastic coefficients and the relation (A6a) becomes; 

(A6b) a = ;.\e a .. + 2µe 
ij kk 1.J ij 

where;.\ andµ denote respectively Lame's constant and the shear 

modulus. The displacement gradients in (A6a) are expressed in terms 

of nodal displacements by (A4). Substituting in this manner (A5) 

and (A6) into (AS) results in, 

[fr f apn 
7 

f p (X) + f T .P (x) dT 
ap 

dTJ 
(A7) cijkQ, 

m um f. dT = ax ax K V n l. Sa 1 n V j Q, 

n = 1 ... N1 
i = 1 ... D . 

These equations can be written as a set of N1 equations in N1 unknowns, 

(A8) = 

where, 

(A9a) = f aPn 
v ax. 

J 

aP 
C. •kn m dT ' l.J Jfv --

axQ, 
i,k=l ... D 
n,m= 1 ... N

1 

and 

f p (x) d-r+ JT.P (x) dS -

N [/ ::; (A9b) F~ = f. I: 
l. V n - l. Sa •1 n - m=N

1
+1 

aP ] C m d-r UKm ' 
ijkQ, ax£, 

i = 1 ... D 

n=l . .. N1 . 
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nm 
The Kik coefficient matrix is termed the stiffness matrix,and 

m 
the vector F. , which is known a priori, is called the generalized 

1 

force vector. 

In most finite element schemes the integrations in (A9a) and 

(A9b) are carried out element by element and are often calculated by 

numerical quadrature . In the FE scheme which was used in this thesis 

for continuum mechanics calculations , a one quadrature point integra

tion rule, combined with an additional bending term, was used. Further 

details on integration procedure and the solution method used for 

equations (A8) are described in Appendices C and D. 
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Appendix B: DERIVATION OF THE PLATE FINITE ELEMENT EQUATIONS 

B.l The One Dimensional Plate Equilibrium Equation 

The equation of equilibrium for a plate which is being bent in 

one direction only is given by, 

(3.13) 
= - q - N 

X 

(see section 3. 2 for the meaning of the variables). In order to com

pletely define the solution, equation (3.13) must be supplied with 

appropriate boundary conditions at the ends of the plate which may 

include a fixed displacement or a prescribed shear traction, and a fixed slope 

or a prescribed moment. In the problem of the flexure of the lithosphere 

under the Hawaiian island chain, NX is a constant and q is a sum of a 

constant term and a term proportional to the deflection w (see Section 

3.7). Thus, the equation to be solved for the Hawaiian plate calcu

lation in Section 3.7 is of the fonu, 

(Bl) 
= - a - bw - c 

where a, b, care constants. 

B.2 Galerkin Weak Fam of the Plate Equation 

(B2) 

The plate deflection is approximated by a series, 
N 

w(x) = L 
n=l 
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are expansion coefficients, and is a set 

of as yet unspecified interpolation functions. The Galerkin weak 

form is obtained by premultiplying equation (Bl) by <j> and integrating 
n 

over the length of the plate. After integrating by parts and sub-

stituting values for w(x) from (B2),one obtains, 

(B3) <j>" M 
Il X 

N 

dx + 

LA <I> II dx + <l>n . m m 
m=l 

dM 
X 

dx 

X2 

dx + b J<I> 
1 

n 

<j>' M 
n X 

where x1 and x
2 

denote the limits of the plate. 

B.3 Construction of Interpolation Functions 

N 
LA <j> (x) dx 

m=l m m 

= 0 , n= 1, ... N 

The plate is discretized by subdividing its length t into 

elements containing a to t al of E + 1 nodes (Figure B. la) . Fo r con.-

venience , t he i nterpolati on f unctions are constructed element by 

element with a local coordinate system for each element, which from now 

on will be termed the Z system, extending from z = -1 to z = 1. The 

two nodes in ea ch element are given local numbers f rom one to two as 

i n Figure B.lb . The de f lect ions a t t he i nterior of a given e l ement E 

a r e approximated f rom the values of t he nodal defl ections {wil i =l , 2 

and the nodal deflection derivatives , according to 

( e . g . Zienki ewi cz, 1971) , i =l,2 
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Figure B.l (_a) A Finite Element 1-D plate grid containing E elements 
and E+l nodes . (b) The Z coordinate system for a plate element. 
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(B4) w(z) ¢ 1 ( z) Wl + ¢2(z) dW1 
+ ¢ 3 (z) 

2 dW2 
= W + ¢ 

4 
( z) dz dz 7...- ' 

where ¢. are given by, 
l. 

cpl 
1 (2 - Jz + 3 

= 4 z ) ' 

1 
(1 - z - 22 + 3 

¢ 2 = z ) , 
4 

(B5) 

c/>3 
1 

(2 + Jz -
3 

= z L, 
4 

c/> 4 
1 

(1 - z + 22 - z3). = 
4 

These interpolation functions satisfy the relations, 

¢. (Zm) = 0 ~+2(m-1) when i is odd, 
l. l. 

¢. (Zm) = 0 when i is even, 
l. 

(B6) 

d¢. (Zm) = 0 when i is odd, l. ll 

dz 

d¢. 
l. (Zm) = o:m when i is even. 

dz l. 

Zm is the Z coordinate of the rn
th node in element E and can assume 

-values of+ 1. In addition, the local interpolation functions are 

defined to be identically zero outside of the element E. The deriva

tives of the deflection with respect to z can be calculated from the 

nodal slopes by a chain rule according to, 

(B7) 
dw 
dz = dw 

dx 
dx 
dz = dw 

dx 
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where Xi denote the global coordinates of the nodes surrounding element 

E. 

After the interpolation functions have been defined in each element 

they are assembled globally by a summation over elements, 

= L<l>E 
E n 

n=l, ... 2 ·E , 

where, 
<I>. for odd n and i which refer to the same node, 

], 

E 
<I> = n x2 -xl 

2 
for even n and i which refer to the 

same node. 

The A coefficients in equation (B2) can now be written in terms 
n 

of nodal deflections and slopes,and the equation can then be rewritten 

as, 

(B8) 

E+l 

w(x) = L 
n=l 

dwn 
dx <l>2n (x) • 

B.4 The Finite Element Plate Equations 

The Finite Element plate equations are obtained from the Galerkin 

weak form (B3) by interpreting the A coefficients according to (B8). 
m 

After some algebra one obtains , 

X Nl [ X2 

12 <I>'' M dx + L [ (b <I> <1>2 -1 
v n x _1 . n m 
L~l m- 1 

C <I> ' cf> ' ) dx ] dw m == 
n 2m-l dx 

(B9) 

x2 

- j a <pn dx 

1 



-171- . 

x2 x2 E+l 
dM 

I I -r: [(b •n •2m-1 <I> ~rn-1) ax] w111 - <I> 
X I 

<1>' 
dx + <I> M - C 

n 
Xl 

n X n x
1 

rn-N
1 

N1 is the total number of nodes with free deflections, N2 is the total 

number of nodes with free slopes, E + 1 - N1 is the total number of nodes 

with prescribed displacements, and E + 1 - N2 is the total number of 

nodes with prescribed slopes. All the terms on the right side of 

(B9) are known a priori and together they comprise the generalized 

force vector. 

For an elastic plate the moment M is linearly related to the 
X 

curvature or equivalently to the second derivative of the slope . In 

that case (B9) comprises a set of N1 + N2 non-homogeneous linear equa

tions in the N
1 

+ N2 unknowns. In the elastic- plastic case, (B9) 

becomes a set of N1 + N2 nonlinear equation which, as a rule, cannot 

be solved in one step. The procedure which is used in this thesis 

for solving (B9) in the non-linear case is outlined in Appendix E. 
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Appendix C: SOLUTION OF STATIC LINEAR ELASTIC FINITE 

ELEMENT EQUATIONS BY THE CONJUGATE GRADIENT METHOD 

C.l Introduction 

The Conjugate Gradient method enables the solution of full 3-D 

continuum Finite Element problems involving 104 or more linear 

equations. It appears that such large systems cannot be feasibly 

solved, with the present day computer technology, by the often used 
I 

direct factorization methods,because computing time and computer 

storage then become prohibitively large. 

This appendix briefly reviews the Conjugate Gradient method and 

its implementation in solving the FE equations. It also presents a 

number of explanations to the apparent success of the method. 

C.2 The Conjugate Gradient Method 

The basic Conjugate Gradient method is designed to s olve linear 

equations of the type, 

(Cl) AU = b 

in which A is a square and positive definite symmetric matrix,~ is a 

vector of unknowns,and bis the force vec tor . The solution procedure 

consists of a linear expansion of t he solution by a set of A-orthogonal 

vectors which are generated one by one in a series of repeated steps. 

th n denote the solution vector after the n step, V denote the 

th b • • h • f h 1 • n d h n asis vector int e expansion o t e so ution, r enote t e 

residual vector, b - A~n, after n steps, and let AVn denote the product 
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of the A matrix by J__n. A typical step of the CG method consists of the 

following calculations (e.g. Ralston, 1965) , 

T T 
(C2) a = (Vn _£n) / (~n AVn) 

n 
, 

(C3) Un+l 
= Un + vn 

an -

(C4) n+l AUn+l n n 
r = b - = r - a AV 

n 

( n+l 
T 

(CS) 8 = - .£ ' 
AVn) / (Vn AVn) 

(C6) Vn+l n+l 
+ 8Vn = r 

Two vectors which are separated by a comma and enclosed within 

brackets denote the scalar product between the vectors, and a super

script T denotes the transpose. The method is initialized by setting, 

Vo= 0 
r = b 

and 
Uo = 0 . 

It can be shown that the expansion vectors,Vn,fulfill the A 

orthogonality relation, 

.T 
(vi AJ_j) -- O, for 1· ..L J. ( R 1 t lq6rc) _ .,.. e . g . a s on , _ ::i • 

In applying the Conj ugate Gradient method to solve the Finite 

Element equations, there is no need to store the stiffness matrix. 

Rather, the inner product of the stiffness matrix by the basis vectors 

is calculated by sequentially using (A4), (A6) , and (AS) , af ter 
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replacing the nodal displacement vector,U., in (A4) by the expansion 
1 

n 
vector, V., (here, unlike in the rest of this appendix, the index n denotes 

1 

the node number and not the step number). Although in effect this 

amounts to recalculating the stiffness matrix repeatedly in every 

step, a large savings in computer storage is encountered. Further-

more, the calculations in equations (C2)-(C6) can be performed efficiently 

by using the hourglass scheme described in Appendix D. 

C.3 Convergence Properties of the Conjugate Gradient Method 

Since the Conjugate Gradient method forms an expansion of the 

solution vector in terms of A-orthogonal basis vectors, it is not an 

iterative procedure in the strict sense. This is because the maximum 

number of A-orthogonal basis vectors which can be generated is equal 

to the number of linear equations. Therefore, in the absence of 

roundoff, the method will converge to the exact solution in at most 

that many steps . 

Our exper ience has shown t hat fo r the t ype of three dimensiona l 

problems encountered in the first two chapters of this thesis the 

Conjugate Gradient method converged in a number of steps between 

five to ten times the number of elements in the grid dimension con

taining the l a r gest number of el ements . This number of s t eps i s 

always much smaller than the bound placed by the number of equa tions. 

For example, the 3-D Long Beach subsidence simulations described in 

Chapter 2 used a 24 X 19 X 12 element gri d with 6500 nodes and. 

approximately 18000 degrees of freedom , and less t han 200 steps were 

required to reach convergence . 



-176-

~ L I I I I I I I I I. 1 ~ 6u 

Figure C.l Two statically equivalent beam problems. 
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Another observation is that for a given grid, the number of 

steps required for convergence varies according to the type of 

boundary conditions and element material parameters. This point is 

illustrated in the example of the two equivalent beam problems shown 

in Figure C.l. The second beam problem,in which the beam is displaced 

equally from both ends, converges in half the number of steps as the 

first problem,in which the beam is displaced from one side only with 

the other side held fixed. This observation has practical aspects; 

. whenever possible it is advantageous to load a problem symmetri

cally, rather than from one side only. 

In most problems roundoff has not been a problem with computers 

like the CDC 7600 which use a long word length. For computers which 

use a shorter word length, like the IBM 370, or for problems which 

involve materials with Poisson's ratios close to 0.5, the residuals 

sometimes lose accuracy. This obstacle can be remedied by calculating 

the residuals, after every certain number of steps, according to the 

c entral part of formula (C4) instead of accor ding t o the normally 

used r i ght hand side of that equation. 

The fast convergence of the CG method for 3-D problems can be 

explained by arguments on the dimensionality of the space spanned 

by the basis vectors. It is apparent from equations (C4) and (C6 ) s 

n that the set of expansion vectors (V) belongs to the vector space 

spanned by b, Ab, A2.Q., ... A~ ... which, from now on, will be termed 

the B space. The number of A-orthogonal expansion vectors which can 

be gene~ated is equal to the dimension of the B space and is also, 

in the absence of roundoff, equal to the maximum number of steps 
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which are required to achieve convergence. The dimension of the B 

space is bounded by the number of linear equations and obviously 

depends on the force vector b . When E_ is proportional to one of the 

eigenvectors of the A matrix, the dimension of the B space is one, and 

therefore the CG method will converge in one iteration only . In 

general, the dimension of the B space is less or equal to the smallest 

number of terms required to expand the E_ vector in terms of eigen

vectors of A. This is a result of the fact that the space spanned 

by these eigenvectors is closed under a left hand multiplication by 

the A matrix. 

In most problems, the load case vector b can be expanded with many 

fewer eigenvectors than the number of equations. Therefore, the 

Conjugate Gradient method will converge in many fewer iterations than 

this number. This also explains why, for a given grid, the number of 

required steps depends on the load case vector, since different vectors 

require a different number of terms in an eigenvector expansion . 
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Appendix D: A ONE QUADRATURE POINT INTEGRATION SCHEME 

WHICH ELIMINATES HOURGLASS IN LOW ORDER 

FINITE ELEMENT CODES 

D.l Introduction 

In addition to the rigid body and constant strain degrees of 

freedom, the two dimensional four node quadrilateral element and the 

three dimensional hexahedral element possess degrees of freedom which 

correspond to non-constant strains in the element interior. The two 

dimensional quadrilateral possess t~o ,such degrees of freedom, and 

the three dimensional hexahedron possesses twelve (Figure D.l (a), (b)) 

These degrees of freedom are often termed hourglass modes, because of 

their shape in plane strain or plane stress configurations. 

The hourglass modes are often a nuisance in numerical codes in 

which the stiffness matrix is calculated by a one point quadrature 

integration rule . This is because the stiffness matrix is singular 

with respect to the hourglass patterns and is nonsingular only with 

respect to the constant strain modes. In dynamic codes this often 

leads to hourglass instability in which displacements become unbounded 

in the hourglass mode. The obvious way to overcome this problem is 

to use a two point quadrature rule. A l arge increase in computational 

effort is entailed, however, especially i n codes in which the stiffnes s 

matrix is not stored but rather recalculated repeatedly, as is often 

the case in dynamic explicit codes and static iterative codes. In 

addition, it was pointed out by Wi lson et al. (1973) that th e 
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(a) 

~ 
~ 

(b) 

Figure D.1 (a) Hourglass patterns for 2-D quadrilateral elements . 
(b) Hourglass patterns for 3-D hexahedral elements. 
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isoparametric element with two point quadrature, does not accurately 

represent flexural modes of deformation , 

In this appendix we describe a simple scheme to control hourglass 

instabilities by adding an hourglass response term to a one point 

quadrature stiffness matrix. Although the method of derivation is 

totally different, and at first this scheme does not appear to evolve 

from a variational principle, it is shown in Section D.3, that for 

two dimensional rectilinear elements the element is identical to the 

incompatible element introduced by Wilson et al. (1973). For non

rectilinear geometry the scheme has to be slightly modified, as was 

the case with the incompatible element (Taylor et al., 1976). This 

is to ensure that it will pass the patch test and not adversely affect 

rigid body and constant strain patterns. 

Further details on the scheme and numerical examples can be found 

in Kosloff and Frazier (1977). 

D.2 Derivation of the Scheme for Rectilinear Elements 

For an isotropic elastic body occupying a volume V and bounded 

by surface S, the FE approximation to the equations of equilibrium 

are given by, 

(Dl) 

where {uj} denotes the column vector of nodal displacements, [Kij] is 

the stiffness matrix, [Mij] is the mass matrix, {fi} is the column 

vector of nodal forces, dots above variables denote time differentiation 
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and repeated indices imply summation from 1 to the number of degrees 

of freedom of the problem under consideration . In most explicit 

dynamic codes, the stiffness matrix is not stored, but rather the 

nodal restoring forces are calculated by an element by element inte

gration (e.g. Frazier et al., 1974). Although the following derivations 

are written in terms of stiffness matrices, for dynamic explicit codes 

they should be interpreted in this sense. In static problems the 

second term on the left hand side of equation(Dl) is omitted (e.g. 

Zienkiewicz, 1971, Gallagher, 1975). 

The stiffness matrix is conveniently constructed element by 

element by a summation; 

= L [KiJ.] e 
elements 

For the quadrilateral plane strain element or the eight node 

hexahedral element, 

[Kij e]nm = 0 . . >.. { 1L apm 
dv + µe !v apn apm 

lJ e ax. ax. ax ax 
l l. e e e 

(D2) + µe { 
clpm ~ dv 9 clX. clX . 

l J 

dv 

where >.. andµ e e denote r espectively La.roe' s constant and t he shear 

n 
modulus of the element, p denotes t he four or ei ght nodal interpolati on 

functions of the element, X. are the Cartesian coordinates used thr ough-
1 2µ >.. 

e e 
out the volume V. In plane stress>.. 

e 
is replaced by The 

calculat ion of (D2) fo r isoparametric elements is done in the element 
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"natural" coordinate system z. (-1 < z. < 1 
J.. - J.. 

i=l.,.D) where D denotes 

the number of space dimensions of the problem and the coordinate values 

X. are approximated by; 
J.. 

(D3) X. 
J.. =L 

nodes 

m 
where X. are the coordinates of the nodes of the element, In the 

J.. 

natural coordinate system, the interpolation functions of the isopara-

metric element become, 

(D4) m = 
p (_~) 

When equations (D3) and (D4) are substituted in (D2) and the 

integrations are carried out exactly or by a 2 point Gaussian quadra

ture rule, the standard isoparametric element is obtained. In this 

case the element stiffness matrix is singular only with respect to 

rigid body displacements and its product by each of the displa cement 

patterns of Figure D .1 is nonzero. However, when these integrations are 

performed by a one point quadrature rule, resulting for plane strain 

in the matrix shown in TableD.1,the stiffness matrix is singular with 

respect to all t he patterns cf Figure D.L It is nonsingular only 

with respect to constant strain terms. In the scheme of this paper an 

hourglass stiffness matrix, which is nonsingular with respect to all 

the patterns of Figurefilbut is singular with respect to rigid body 

and constant strain patterns, is added to the one point quadrature 

stiffness matrix . 
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Considering the 2-D rectilinear element of Figure D.2 (a), with a linear 

varying fraction a 
11 

= er 
0

y applied on its sides x =±a, the exact 

stress and displacement solutions are given by, 

cr22 = 0 , 

all = (J • y 
0 

(DS) crl2 
:::: 0 , 

-1 
Ul = E ao x•y , 

u2 
1 -1 

(a 2 2 = -E ao - X ) , 
2 

where a .. denotes the components of the stress tensor, U. denote the 
1] 1 

displacement components, Eis equal to Young's modulus for plane stress 

and to 
4µ (\+µ) 
\ + 2µ 

for plane strain. 

At the four nodes, the displacement in the X direction can be 

written as 

(D6) = E-l • a O • ab {1} , 

where {1f is the vector (1, -1, -1 , 1). 

Conversely cr
0 

can be expressed as a function of nodal displacements 

by 

(D7) 
E 

4ab 

a nd from now On the term A_ -- J 1 }T { } • 11 b 11 d h h 1 --b 1 u1 , wi e ca e t e ourg ass 

amplitude. 
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(a) l 

y 

3 4 

i 
_Q 

N X 

l 
1 2 
I ◄ 2a --1 

( b) ~ " 

+ 6~ "-\ 

y 

Figure D.2 (a) A 2-D rectilinear element oriented parallel to the 
coordinate axes with linear varying tractions applied at the sides 
X ;:: ±a • (b) The same element as in Figure D.2(a) but oriented at an 
angle t o the coordinate axes (X Y). 
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The nodal restoring fo-i::-ces for the element of Fig.D2(a),which 

define the product of the hourglass stiffness matrix by the displace

ments, is calculated by viewing the stresses in (DS) as tractions on 

the element sides +a,and calculating the restoring forces according 

to the formula for the nodal forces (Zienkiewicz, 1971), 

(D8) = 

m = 1, ... 2D, i = 1, ... D; 

+ T. dS , 
1 

where hi are the body forces (in this case equal to zero) 5 and S
0 

is 

the portion of Son which the fractions T . are specified. After 
1 

substituting (D4), (DS), and (D7) into (D8) we obtain; 

(D9) 
1 

12 
b 
a 

where {Ri} denotes the column vector of the element restoring forces . 

By using the natural coordinate sys t em and writing out¾ explicitly 

we obtain; 

(DlOa) 
E 
12 Vol 

where Vol denotes the element area i n 2-D)or volume in 3-,-D , The same 

derivation used to obtain (DlOa) can be performed for displacements in 

they direction to give; 

(DlOb) E 
12 
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Equations (DlOa) and (DlOb) serve as the definition of the hour-

glass stiffness matrix for 2-D elements oriented parallel to the 

coordinate arises. It should be noted that when {UJ form a rigid 

body or constant strain displacement pattern, the hourglass amplitude 

{1}'1: {uJ is zero and thus the hourglass matrix is singular with respect 

to these patterns as it should be. 

When the rectilinear element is not oriented parallel to the coor

dinate system the stiffness matrix is derived by writing equations 

' (DlOa) and (DlOb) in a primed coordinate system X. which is parallel 
1 

to the element and has its origin at the element center (FigureD.2(b)) 

The relations are then translated and rotated to the unprimed system. 

After some algebra the following formula is obtained for an arbitrary 

element orientation, 

(Dll) {1} - _ _J_ - • Vol {1} U (
clz az . )(E ) T{ } 
clxi axt 12 2 

and thus the hourglass stiffness matrix is given by, 

(Dl2) 
E 
12 

In practice, when the stiffness matrix is not stored , it usually 

is most economical to calculate (Dll) from right to left. The 

entries of [Kijrg for the orientation of Figure D. 2(a) in plane strain 

are listed in Table D. 2. 

In three dimensions there are four 8 component vector operators 

similar to the single {1} operator of the 2-D case which are given by; 
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{1}\ == (1, -1, -1, 1, 1, -1, -1 
' 

1) , 

{l}T 2 == (1, 1, -1, -1, -1, -1, 1, 1) , 

(D13) 

{1V 3 == (1, -1, 1, -1, -1, 1, -1, l) , 

{l}T 4 (1, -1, -1, 1, -1, 1, 1, -1) 

and each operator is associated with a matrix which is calculated by 

(Dl2). The hourglass stiffness matrix is the sum of these four 

matrices. The choice of a value for the constant E depends on whether 

the problem to be solved is closer to a plane strain problem or a 

plane stress problem. For E, the difference between the two cases is 

usually not large. Whereas in the two dimensional case the hourglass 

modes are associated with bending, in the three dimensional cases 

this is true of only six of the twelve modes. 

In summary, this scheme achieves the goal of controlling hourglass 

in all modes . It is also expected to give an accurate response for 

problems with a large amount of flexure. 

D.3 Comparison with the Incompatible Modes Element for Rectilinear 

Element Geometry 

In the two dimensional incompatible element formulation of Wilson 

et al. (1973)s two interpolation functions are added to the four inter

polation functions of the four node 2-D isoparametric quadrilateral 

element. In the natural coordinate system they are given by, 
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the result is a 12 x 12 element stiffness matrix , [Kij]nm (i, j=l , 2, 

n, m=l, . . . 6), the entries of which can be calculated from (D2) . By 

a static condensation operation on the four additional element degrees 

of freedom, an 8 x 8 stiffness matrix is obtained and the int erior 
-

degrees of freedom are eliminated from the system of FE equations. 

The condensation is done after partitioning the 12 x 12 stiffness 

matrix i n the f orm of , 

[

K . _bb 
l.J 

K " _ab 
J..J 

K ba ] ij 

aa 
K .. . 

l.J 

In this sti ffness matr i x t he superscri pt a refers t o the fo ur n·ew 

degrees of freedom and b refers to t he eight degrees of f reedom of 

t he quadrilateral isoparametric element . The 8 x 8 incompat i ble mode 

stiffness matrix is given by: 

(DIS) 

(Wilson et al. , 1973 ; Gallagher, 1975; Taylor et al. 1976) . 

·when t he entries of (Dl3 ) a r e ca lculated explicitly for a recti·

l inear element using ( D2) ~ ( D3), (D4) and (Dl4), and compar ed to t he 

sum of Tables D. land D. 2, whichcomprises the stiffness matrix for the 
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scheme of this thesis, it turns out that they are identical (e.g. see 

Gallagher, p. 277 for plane stress). Thus for 2-D, the scheme pre

sented in this thesis is essentially an alternative method to derive 

the incompatible mode stiffness matrix. This fact is not surprising 

since it can be shown (Gallagher, 1975), that the incompatible element 

can be derived directly by requiring that the stress variation inside 

the element be of the form, 

all= CO+ Clx2 

cr22 = c2 + C3xl 

and then by calculating strains and displacements and by expressing 

displacements in the interior as a function of displacement values at 

the nodes. Similarly, in the presented scheme, the constant strain 

(stress) stiffness matrix is first calculated and the linear varying 

stress terms are added afterwards. The main point of the method 

derived here is the large savings in computational effort which can 

be encountered by constructing the stiffness matrix in two stages. 

Only a one point quadrature rule is needed, and t he additional linear 

stress tenn can be calculated directly according to (D11). 

D.4 Modification of the Scheme for Non-Rectilinear Element Geometry 

As was pointed out by Taylor et al. (1976), t he incompatible model 

scheme needs to be modified for nonrectilinear elements in order to 
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pass the patch test. The same holds true for the scheme of this 

appendix since the inner product of the {if operator of Section D2 

with a constant strain or rigid body displacement pattern is no longer 

always zero. The modification of the scheme consists of redefining 

the {1f operator to make it orthogonal to constant strain and rigid 

body displacement patterns in the element, and of requiring that it 

degenerate to its previous definition in the case of rectilinear 

element geometry. 

In two dimensions, the eight degrees of freedom of the quadri

lateral element can be separated into two groups of four for each 

displacement component . Each group consists of one r igid body pattern , 

two constant displacement gradient patterns (::~ , ::~) and one 

hourglass pattern (this separation was preferred to the more common 

division to three strains, two rigid body displacements , one rotation 

and two hourglass modes, because each of its members involves only 

one displacement component). 

In order to s a t isfy t he orthogonality relat ions stated above, 

t he components o f t he new {if operator . (a1 , a 2 , a 3 , a4) must satisfy 

the following relations, 

(a , a 2 a 3 aJ(i) - 0 (rigid body ) ; 
l 

(al a2 a3 
X l = 0 (displacement gradient in 

1 the x 1 direction) ; 2 
Xl 

x3 
1 

x 4 
1 
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and 

0 (displacement gradient 
in the x2 direction) 

comprising a set of three homogeneous equations in four unknowns. The 

X. are the global nodal coordinates of the quadrilateral element. 
l. 

Thus the ratio between each of the components of the{l}T operator 

can be calculated , and the {1}T operator is obtained by normalizing 

these components so that they become equal to their previous definition 

in the case of rectilinear element geometry. As was the case of 

rectilinear elernents,the modified {1}T vector operator is the same 

l for the two displacement components . 

For the three dimensional hexahedral element, the twenty-four 

degrees of freedom can be divided in t o t hr ee groups corresponding 

to the three displacement components. Then each group will consist 

of one translation, three displacement gradients and four "hourglass" 

T 
patterns . The {l}i operators consist of eight quantities 

(i = 1 . .. 8) which must satisfy the relations , 

1 
1 
1 
1 
1 
1 
1 
1 

0 

T 
(a.) 

l. 
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xl 
1 

2 
Xl 

x8 
1 

Xl 
2 

x2 
2 

x8 
2 

Xl 
3 

x2 
3 

x8 
3 

0 

= 0 

0 

Equations (D17) comprise a set of fo ur homogeneous equations in 

eight unknowns a1 ... a8. The four {1}! vector operators span the 

remaining four dimensional solution space , and four basis vectors in 

this space (not necessarily orthogonal t o each other) can be found 

which degenerate to the operators in Section D.2 for the rectilinear 

case. 
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Appendix E: SOLUTION OF THE FINITE ELEMENT EQUATIONS 

FOR AN ELASTIC-PLASTIC MEDIUM 

E. l Introduction 

In both the continuum mechanics case and in the plate theory 

case, the Finite Element equilibrium equations have the form; 

(El) = b. 
J 

j = 1 ... N 

where U9, is an unknown nodal vector, Fj (U9,) is a set of nonlinear 

functions of U9,, bj is the load case vector,and N is the dimension of 

U
0 

F. and b.,or equivalently, the number of unknowns (see equations 
x-' J' J 

(AS) and (B9)). The functional dependence of Fj on U9, is not- given 

in a closed form but rather the equilibrium equations are written 

in terms of stresses (or moments in the plate theory case), and the 

stresses (moments) are related to the nodal displacements (deflections 

and slopes) by a rheological prescription relating stresses to strains 

(moments to curvatures). This appendix describes the implementation of 

the Newton-Raphsm method to the solution of equations of the type of 

(El), which arose in the problems in Chapter 2. and Chapter 3 in this 

thesis. For t he sake of brevity,fr om now on we will discus s the 

derivations in terms of stresses and strains, which for the plate 

theory equations should be interpreted as moments and curvatures 

respectively . 
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Figure E.l Example of a one dimensional Newton-Raphson iteration. 
Solid lines denote the steps of the method with exact derivatives of 
F, whereas dashed lines denote the steps with approximate derivatives 
of F. 
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E.2 The Newton-Raphson Method 

In each step of the Newton-Raphsonprocedure, an approximation to 

the solution of the nonlinear equation (El) is obtained from the 

previous solution by a linear extrapolation along the slope of the 

equations at the previous approximation point. The procedure is 

illustrated for a single nonlinear equation in FigureE.l. Mathe

matically, each step can be written as a set of linear equations 

given by, 

(E2) = -

j=l, .... N. 

The superscripts (new) and (old) refer respect_ively to the values at 
clF. 

the current and previous iteration. The term ___J_ is often called 
auQ, 

the tangent stiffness matrix,and in the elastic case it reduces to 

the usual stiffness matrix (then the Newton-Raphronmethod converges 

in one iteration). In the type of problems which have been solved in this 

thesis, the tangent stiffness matrix cannot be obtained easily in 

closed form (if at all), and it is therefore approximated numerically 

at the end of each step according to (Figure E.l)t 

F~new)_ F . (old) 

U(new)_ U (old) 
Q, Q, 

For continuum mechanics problems, equation (E2) is solved by 

the conjugate Gradient method. The tangent stiffness matrix does not 
I 

need to be stored but rather,in effect,it is recalculated repeatedly 
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in every iteration by performing the numerical integration in (AS) 

in combination with (A4) and the scheme described in Appendix D, 

with the elastic moduli replaced by the tangent bulk and shear 

moduli given respectively by, 

Ktan = 

and, 

1 
3 

(new) (old) 
(5.. - CJ •• 

1.1 11 

(new) (old) 
e.. - e .. 
11 11 

(e'(new)_ e'(old))(e'(new) _ e:~old) ) 
ij ij l.J ij 

CJ •• denotes the stress tensor, CJ . • denotes the stress deviator, e .. 
D ~ D 

denotes the strain and e .. deno t es the strain deviator. 
1J 

The problems which have been solved in this thesis by the Newton-Rapson 

solution scheme converged in at most six iterations. 
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Appendix F: STEREOGRAJ.'HIC PROJECTION OF STRESSES 

The Stereographic stress projection_ plot, displays the orientati·on 

in space of the principal stress axes, at given points in a horizontal 

cross section. The projection also gives the magnitudes of the dif

ferences between the maximum and minumum principal stresses (or 

alternatively of any other selected scalar function of the stress 

tensor). 

of the stresses cr .. , ij = 1,3 
l.J 

The input data consist at N 

selected points in a cross section, and a coordinate system XYZ, 

to which the stresses are referred . 

The calculation sequence begins by calculating the first stress 

invariant at each point according to: 

(Fl) 0 .. 
l.l. 

where the summation convention is used for repeated indices . 

Then the second and third deviatovic stress invariants are 

calculated according to (Malvern, 1969); 

(F2) ITT = 1/2 0 .. (J •• • 1.J l.J 

and, 

I 

(F3) IIIT = det (J •• 
l.J 
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where cr .. denotes the deviatovic stresses which are given by, 
1J 

In the next step the three roots of the equation , 

(F4) 

are found in order to calculate the three principal deviatoric stresses 

according to (Malvern, 1969), 

(F5) ' a 
K 

= 2 cos a • 
K 

1/3 

K = 1. .. 3 

After obtaining the three principal deviatoric stresses in (5), 

the axes of which coincide with the axes of the stress tensor a .. , the 
1J 

nine direction cosines naS of the angles between the XYZ coordinate 

system and t he principal s tress axes are calculated by solving the 

homogeneous system of equations ; 

(F6) i c/. - o . . cr ;) == 0 
J 1J l.J µ 

i = 1 ... 3 

for f.3 -· 1 ... 3 , and normalizing the solution each time by , 
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The direction cosines are then used to find the two normals 

to the maximum shear planes of the stress tensor (which are 

parallel to the intermediate stress axis and inclined at 45° to the 

maximum stress axis) by a rotation operation; 

(F7) 

and 

(F8) 

1 
t. 

1-

2 
t. 

1-

= 

= rz 
2 

f2 
2 

fi 
2 

i=l ... 3. 

Next the dip and strike of the two maximum shear planes are 

calculated from their normals according to the formula, 

(F9) dip 
Ct 

a= 1,2 , 

and, 

(FlO) strike0 = arctan ( :D a = 1,2 . 

In the final stage, the maximum shear planes are projected 

stereographically (lower hemisphere) and plotted on the horizontal 

section in which the center of each projection circle is at the point 

to which the stress tensor is related . The radius is scaled according 

to; 

(Fll) R = C (a 1 

-max 
' ) a . 

Tulll 
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where C is a suitable constant scale factor for all points of the 

cross section. 
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Appendix G: PROCEDURE FOR OBTAINING THE CAP MODEL PARAMETERS 

This appendix briefly summarizes the equations arising in the cap 

model, and outlines the procedure which is used for assigning numerical 

values to its parameters. For completeness, basic elements of plas

ticity theory relevant to the derivations are included. A more com

plete presentation on this topic can be found in standard texts dealing 

with plasticity (e.g. Fung, 1965). 

For a given volume of cap plastic material in a prestressed 

state, the change in strain tie .. during a deformation increment is 
J.J 

separated into an elastic part b.e: . and a plastic part t1/. which 
J.J J.J 

are related by; 

D. e .. 
J.J 

= e 
b.e .. 

J.J 
+ 

p 
tie .. 

J.J 

In (Gl), as well as in all the subsequent derivations, the strain 

increments and stress increments refer to the prestressed configuration 

of the given volume, and it is assumed that all strain increments from 

this state are infinitesimal. The stress increment b.cr .. , which cor-
J.J 

responds to the strain increment b. eij, i s given by~ 

(G2) b:.a . . 
J.J 

= 
e 

MeKK o . . + 
J.J 

e 
21-t6 e .. 

J.J 

where A andµ respectively denote Lame's constant and the shear 

modulus of the cap material. 
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The cap material is characterized by two yield functions whose 

equations write, 

(G3) 

and 

(G4) 

= ~ 2 + + s , 

where J 1 and J2 respectively denote the first and second stress 

invariants, and a,S, and Rare material parameters. The first yield 

surface,F1, plots as a straight line in J 1 - /JI space, whereas the 

second yield surface F2 plots as an ellipse (FigureG.1). The F1 yield 

surface does not change during the deformation of the cap material, 

but on the other hand, the second yield function F
2 

moves during 

loading according to a hardening equation which writes, 

(GS) X = 1 
D 

1) 0 

Wand Dare material parameters and ep is a measure of volumetric 

strain (e.g. section 2.12). For infinitesimal deformations, the 

change in ep is equal to the change in volumetric strain, 

(G6) 

The relation between x and tis obtained by noting that at the 

intersection of the two yield surfaces (point A in Figure G. l); the 



\ 
_Figure G .1 I, 

' I 
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;· 
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following relations must hold, 

Jl = JI, ' 

I?"+ a Jl + s = 0 
' 2 

R~ = 
2 

JI, - X 
' 

therefore, 

(G7) J/, X - RS 
= 

1 + aR 

To complete the Cap rheological description, a relation for 
p 

obtaining ~e .. for a specified ~e . . is required. 
1.J . l.J 

When the final 

stress state of the material is within the elastic zone (line BC in 

Figure G.1), then the strain change is totally elastic and 6e~. = 
J.J 

o. 

If the initial and final stress points lie on one of the two yield 

surfaces, the change in plastic strain is given by an associated flow 

rule which reads, 

(GS) 
p 

6e .. = A 
l.J 

where A is a f actor whose value is obtained from the requirement that 

during loading the initial and final stress points must lie on the 

yield surface (e.g. Fung, 1965). For the cap model, the relation for 

A reads, 
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3F .c)F a .. 
3 KdeKK +µ-=;- _]J_ de .. 

cU
1 a ✓J2 ✓-Tz 1J 

(G9) A = 
9K( ~ l 3F 2 

3~ c)F 
+µ(-) - p 3Jl a/J! 3Jl cle 2 

By means of equations (Gl), (G2), (G3), (G4), (GS), (G6) ~ (G7), (GS) and (G9) • 

the stress increment 6cr . can be calculated for a specified increment 
iJ 

of strain 6e . . , both for loading and unloading. 
1J 

The first step in obtaining the parameters of the cap model 

involves the fitting of the elastic constants from the observed 

rebound. The results of section (2.14) indicate a value of 12 kbar 

for the shear modulus and a Poisson 9 s ratio of 0.2.5. 

The parameters of the F1 yield function are obtained from the 

experimentally determined failure envelope. The results of Vesif 

et al. indicate a shear angle between 30° -40°, and very little cohesion 

(e.g. equation 2.13 in section 2.12). This translates in equation (G3) 

to values of B '~ 0 and a ,: ~ 0. 25. 

The remaining parameters are obtained by matching the experi

mentally determined tangent moduli. Considering first hydrostatic 

loading, equation (G2), in combination with (G8), can then be 

:rewritten as, 

(G10 ) clF 
3a . . 

lJ 
0 ij) • 

For hydrostatic loading, J 1 = x ; and clF A and-~-.- are respectively 
J(J •• 

1J 
given by , 

aF2 
(Gll) 

clF 8 
2(Jl -·i) 0 .. = ij = 

clcr .. 3Jl 1J 
1J 
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(Cl 2) fl. = 

where, 

(Gl 3) = 
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(x - 2) KdE\z.K 

2 a F2 
6K(x - t) - (x - t) -. p 

ae 

-2(x-2) 

D(ep + W) 

With the aid of (Gll), equation (GlO)can be rewritten in the form, 

(Gl4) ti = 3K ( 1 - 3Q ££_ ) ti 0 KK 3J
1 

ekk ' 

where Q is defined by, 

Equation (G14) can be recognized as a relation between volumetric 

stress change, and volumetric strain change. The two variables are 

connected by the tangent bulk modulus which is given by, 

(GlS) 

or after substitution from (GS) , (Gll), (G12) and (Gl3), 

(GlS) K 

1 + 3KDWeDx 
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This relation satisfies the condition that Keff .. K , 
+x-+ - co 

which means that at large confining pressures after the pores have 

been collapsed out, the tangent modulus approaches the elastic 

modulus. 

The parameters D and Ware obtained from the data of Vesic et. al 

(1968) as well as by comparison with core samples taken from the 

Wilmington field (Scranton, 1976, personal communications). The W 

parameter represents the maximum value of ep which can be obtained, 

which occurs in a state of total pore collapse. It therefore can be 

related to the porosity n by, 

(Gl 7) W = in(l + n) . 

The porosities of the dense samples of Vesic et al., and in the 

upper layers in the Wilmington field are on the order of 30-40%, and 

therefore Wis assigned values between 2.6 to 3.5. The value of D 

is obtained by noting the good agreement between the calculated 

maximmn subsidence of the elastic simulation and the observed maximum 

subsidence, and thus requiring that the tangent bulk modulus of the 

cap model,at the depths of the producing zones, be similar to th~ 

tangent bulk modulus obtained by Vesic et. al for that depth. This 

requires that the values of D be in the vicinity of 0.7. It must be 

emphasized that the hardening law (equation (GS)) used in this study 

appears oversimplified, and therefore the cap model is only capable 
/\ 

of matching the data of Vesic et . al. in the stress variation range 

which is relevant to the Wilmington subsidence. However, it is felt 
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that introducing more parameters at this stage without further 

experimental data is premature considering the uncertainties in the 

observations and the non-uniformity of the material in the formations 

in the Wilmington field . 

The next stage involves calculating the tangent shear modulus. 

Vesic et al. used the triaxial stress test for this purpose but, unfortunately, 

they tlid not specify the size of their loading increment, and since the 

tangent shear moduli is highly variable at different points in stress 

space, (primarily depending on the slope of the yield surface) their 

results cannot be used directly. Therefore,we have chosen to calculate 

the tangent modulus from uniaxial strain tests by requiring t hat the 

Poisson ' s ratio be between 1/4 and 1/3. 

In a uniaxial strain test, only the uniaxial strain increment L'le
3 

is present, and Ae 1 = L'le
2 

= 0. Equation (G2), in combination with 

(G8), can then be rewritten in terms of the change in the axial str ess 

' deviator /J.o 
3 

as, 

(G18) 

The A fac t or 

(Gl9) A 

2µ ( 2 
3 

takes the form (e . g . Sandler, 
I 

( 3K l[__ + clF 
2cr3 

µ 
a13z 13 clJ 1 

1°31 
= 

clF 2 aF 9K( 
c)Jl 

) + µ ( ) - 3 
a/JT 

2 

et a l. , 1976) , 

) de 
3 

c) F clF 

clJ 1 p 
ae 

By defining A= Q de
3 

in (Gl9) and (G18), we obtain for the tangent 

shear modulus , 
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2 
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Substituting the cap model equations for Q results in, 

(G21) 
6K(J1 - e) + 2 I 2µR a

3 
Q = 

36K(J1 -,0 2 + 3µ R4 '2 - 6 (J - ·£) 
clF 

(J3 1 aep 

The material constant R is obtained by assigning a numerical value to 

* µeff at a chosen point in stress space. It was found that with a value 

of R = 1 a Poisson's ratio between 0.25 and 0.3 is maintained during 

loading at all stress levels (Figure G.3(b)). 

The volumetric strain vs confining pressure curves for hydrostatic 

and uniaxial loading are shown in Figure G.2 for the material parameters: 

-1 
u= 0.25 , K = 20 Kbar, A= 0.25, D = 0 . 7143 Kbar , R = 1 .227 , and W = 

0.27. Figure G.3 (a) shows the relation between the tangent shear 

modulus and confining pressure in a uniaxial strain test , and Figure 

G.3 (b) shows the variation of the tangent Poisson's ratio with 

confining pressure. 
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Pressure Vs Volumetric Strain 

0.1 

Hydrostatic 

Uniaxial 

0.2 
-tiv /Vo 

0.3 0.4 

Figure G.2 Pressure vs volume change for hydrostatic compression 
and uniaxial strain tests on cap material. 
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Figure G.3 (a) Bulk modulus vs confining pressure for a uniaxial strain 
test of cap model material . (b) Poisson's ratio vs confining pressure 
for uniaxial strain test of cap model material. 
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