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ABSTRACT

Flat electronic bands in moiré and crystalline graphene multilayers showcase emer-
gent correlated phenomena including correlated insulators, superconductivity, topo-
logical orders, etc. This thesis focuses on the electrical transport characterization of
superconductivity in moiré and crystalline graphene, with the proximity of a layer
of tungsten diselenide (WSe2) that induces spin-orbit coupling (SOC). The inter-
play between spontaneous symmetry-breaking and explicit spin-orbit interactions
emerges various unconventional superconducting pairing.

In the case of moiré graphene multilayers, superconductivity in twisted bilayer
graphene persists much far away from the magic angle at which electronic correla-
tions dominate. At the lowest twist angle 0.79°, superconductivity appears despite
the absence of any insulating states. By changing the moiré twist angle, the ratio be-
tween Coulomb interactions and kinetic energy is reduced, and we thus established
a hierarchy of various symmetry-breaking orders. Importantly, superconductivity
is tightly related to the half-filling symmetry-breaking reconstructions. We further
generalize the twisted moiré graphene to trilayer, quadrilayer and pentalayer cases.
Characterizations around their respective magic angle show that superconductivity
is more prominent in filling phase space when the number of layers is increased.

We then investigated the effect of SOC on correlated phases in crystalline Bernal-
stacked bilayer graphene. Surprisingly, placing monolayer WSe2 on bilayer graphene
promotes Cooper pairing to an extraordinary degree: field-induced superconductiv-
ity is stabilized at zero magnetic field, exhibits an order of magnitude enhancement
in critical temperature and occurs over a density range that is wider by a factor of
eight. The superconductivity descends from a broken-symmetry parent state with
two out of the four spin-valley flavors being predominantly populated. Moreover, the
superconductivity arises only for perpendicular electric fields that push hole wave-
functions toward WSe2, indicating that proximity-induced Ising spin-orbit coupling
plays a key role in stabilizing the pairing.

The last part of the thesis focuses on a new degree of freedom: interfacial twist-
ing between graphene and WSe2. We experimentally demonstrate the “moiréless”
tuning of superconductivity in Bernal bilayer graphene proximitized by WSe2. The
precise alignment between the two materials systematically controls the strength
of the induced Ising SOC, profoundly altering the phase diagram. As Ising SOC
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is increased, superconductivity onsets at a higher displacement field and features
a higher critical temperature, reaching up to 0.5K. Within the main superconduct-
ing dome and in the strong Ising SOC limit, we find an unusual phase transition
characterized by a nematic redistribution of holes among trigonally warped Fermi
pockets and enhanced resilience to in-plane magnetic fields. Moreover, we identify
two additional superconducting regions, one of which descends from an inter-valley
coherent normal state and exhibits a Pauli-limit violation ratio exceeding 40, among
the highest for all known superconductors.
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3.11 Phase diagram of various correlated phases focusing on supercon-
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4.5 Twisted graphene multilayers sample uniformity. (a)-(c) Leftmost
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displacement field (𝑛–𝐷) plots shown in the middle are obtained from
electrodes marked with the corresponding colored lines. Rightmost
plots are 𝑅𝑥𝑥 versus carrier density with top-gate voltage fixed at Vtg

= 0 V (gate sweeps are along the grey dashed lines in the 𝑛–𝐷 plots).
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magnetic field dependence of 𝑅𝑥𝑥 versus 𝜈 in TTG. . . . . . . . . . . 79
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continuum-model gap as a function of potential difference 𝑈. Inset,
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4.9 𝐷-tuned superconductivity in the three structures. (a)-(c) 𝑅𝑥𝑥 versus
temperature and 𝐷 (or equivalent potential difference 𝑈 between
layers) for the filling factors indicated by arrows in Fig. 4.8. Critical
temperature 𝑇𝑐 is indicated by a dashed line that delineates 10%
of the normal state resistance. 𝑇𝑐 is maximized at finite 𝐷 fields.
Overall, superconductivity is suppressed more easily with 𝐷 as the
layer number is increased. (e),(f) Theoretical calculations of the
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and pentalayer graphene as a function of 𝐷/𝜖0 (e) and potential
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4.10 Interplay between superconductivity, flavor symmetry-breaking tran-
sitions and van Hove singularities in TTG and TQG. (a),(b) 𝐷 field
and 𝜈 dependence of 𝑅𝑥𝑥 (top) and Hall density (bottom, measured
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eates the evolution of the vHs. (c),(d) 𝐷 field and 𝜈 dependence of
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4.11 Interplay between superconductivity, flavor symmetry-breaking tran-
sitions and van Hove singularities in TPG. (a) 𝐷 field and 𝜈 depen-
dence of Hall density for TPG measured at 𝐵 = 1.5 T. (b) Schematic
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(dark blue), cascade (light blue), and |𝜈flat | = 4 Hall density reset
(light purple). Sketches of the DOS around 𝜈 = +2 for different 𝐷
fields are shown on the right. The middle panel illustrates the flavor
symmetry polarization observed in regions that support supercon-
ductivity. Flavor symmetry is preserved at higher 𝐷 fields, as shown
in the top and bottom panels. . . . . . . . . . . . . . . . . . . . . . 84
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and 𝜈 dependence of 𝑅𝑥𝑥 (a) and Hall density (b), showing the region
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(c) The evolution of 𝑑𝑉/𝑑𝐼 as a function of 𝐼 and 𝐵⊥ measured at
𝜈 = +4.6, 𝐷/𝜖0 = 0.12 V nm−1 (marked by a yellow dot in (a)),
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4.14 Hartree corrections in TPG. (a)-(d) Depiction of different approxi-
mation schemes used to understand the role of interactions in TPG.
The Hartree correction shifts the flat band (purple) up in energy.
Cascaded bands in (c) and (d) are shown in green. (d) corresponds
to a minimum model of Hartree and Fock effects characterized by a
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and a fixed total filling 𝜈 = +5 (f), respectively. (g) Partial filling
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4.15 Van Hove singularities around 𝜈 = +6 in TPG. (a),(b) 𝑅𝑥𝑥 and 𝑅𝑥𝑦
as a function of 𝜈 and 𝐵 field measured at zero 𝐷 field for TPG.
The sign change in 𝑅𝑥𝑦 around 𝜈 = +6 (marked by arrows in (a) and
(b)) indicates vHs. (c),(d) 𝑅𝑥𝑥 (c) and Hall density (d) as a function
of 𝐷 and 𝜈 with gray dashed lines indicating 𝜈 linecuts (at 𝐷 = 0)
where plots in (a) and (b) were taken. (e) Band structure of TPG
calculated using non-interacting model. Arrow indicates the position
where vHs from dispersive TBG-like bands is expected. . . . . . . . 88

4.16 Reset at 𝜈 ≈ +4 in TPG. (a) Line cuts of 𝑅𝑥𝑥 (top) and Hall density
(bottom, measured at 𝑇 = 1.5 K, 𝐵 = 0.5 T) versus 𝜈 for a range of 𝐷
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density). Both the presence of Hall density resets around 𝜈 = +4 and
the development of superconductivity extending from 𝜈 = +2 to +5
are shown to persist for a wide range of 𝐷 fields. (b) 𝑅𝑥𝑥 versus 𝐷
and 𝜈 measured at 𝑇 = 1.5 K, 𝐵 = 0.5 T (line cuts are shown in (c)).
From all the above line cuts, Hall density resets and 𝑅𝑥𝑥 resistive
features consistently exist around 𝜈 = +4. . . . . . . . . . . . . . . . 89

5.1 Spin-polarized superconductivity in intrinsic Bernal bilayer graphene.
(a) Lattice structure of Bernal bilayer graphene. (b) Band structure
calculated within a tight-binding model near the Brillouin zone cor-
ner. (c),(d) 𝑅𝑥𝑥 measured at fixed 𝐵∥ = 0 (c) and 165 mT (d) at a
nominal temperature of 10 mK. (e) 𝐵∥ dependence of linear response
resistivity measured at𝐷/𝜖0 = 1.02 V/nm . (f) Doping dependence of
𝑅𝑥𝑥 measured at fixed 𝐷/𝜖0 = 1.02 V/nm and 𝐵∥ = 165 mT and vari-
able temperatures. Inset measured at doping 𝑛 = −0.57 × 1012 cm−2

and the same 𝐷 field. Reprinted from Ref. [55]; permission from
The American Association for the Advancement of Science. . . . . . 92

5.2 BLG-WSe2 device structure. (a) Schematic of a BLG-WSe2 structure
showing the crystal lattice of Bernal-stacked bilayer graphene (blue
and red) and a WSe2 monolayer (yellow and purple) on top. (b)
Schematic of a dual-gated device. Doping density 𝑛 and 𝐷 field
are controlled by tuning top and bottom gate voltage 𝑣𝑡 and 𝑣𝑏. (c)
Optical image of the investigated device. The scale bar in the panel
corresponds to 10 𝜇m. . . . . . . . . . . . . . . . . . . . . . . . . . 93
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5.3 Non-interacting valence bands of BLG-WSe2. Non-interacting va-
lence bands near the 𝐾 and 𝐾′ points of the Brillouin zone for
𝐷/𝜖0 = −1 V/nm (a) and 1 V/nm (b), calculated by including an
Ising SOC (𝜆𝐼 = 1 meV) on the top layer. Schematics show that
when BLG is hole-doped, electronic wavefunctions are polarized to-
ward the top layer for 𝐷 > 0, and toward the bottom layer for 𝐷 < 0.
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5.4 Asymmetric 𝑛-𝐷 phase diagram of BLG-WSe2. (a) 𝑅𝑥𝑥 versus doping

density 𝑛 and displacement field 𝐷 measured at zero magnetic field.
Flavor-polarized states show strong asymmetry with respect to the
sign of𝐷 field. Superconductivity (delineated by a dashed line) spans
across wide doping and 𝐷 ranges at positive 𝐷 fields (wavefunctions
are strongly polarized toward the WSe2). A competing resistive phase
appears in the middle of the superconducting region, as marked by
the grey arrow. (b),(d) 𝑑𝑉/𝑑𝐼 versus 𝑛 and bias current 𝐼 measured
at 𝐷/𝜖0 = 0.9 V/nm (b) and −1 V/nm (d), respectively. (c) Blue and
orange curves are line cuts from (b) and (d), respectively, with the
densities marked by the colored bars. . . . . . . . . . . . . . . . . . 96

5.5 Estimating different SOC strengths through quantum Hall effect and
quantum oscillations. (a)-(e) 𝑅𝑥𝑥 versus 𝜈 = 2𝜋ℓ2

𝐵
𝑛 (ℓ𝐵 is the Landau

magnetic length) and 𝐷 field at 𝐵⊥ = 1 T, 2 T, 3 T, 5 T, and 7 T,
respectively. Arrows mark the transition of |𝜈 | = 3 quantum Hall
states with 𝐷 field. (f),(g) Δ𝑅𝑥𝑥 versus 1/𝐵⊥ (measured up to 𝐵⊥ =

5 T) at 𝐷/𝜖0 = 0.2 V/nm, 𝑛 = −3.5 × 1011 cm−2 (f) and 𝐷/𝜖0 =

−0.1 V/nm, 𝑛 = −20×1011 cm−2 (g), respectively. The corresponding
FFT data are shown in (h) and (i). Inset of (h) shows the FFT
splitting 𝐵split (marked by black arrows in the main panel) versus
doping density 𝑛 measured at 𝐷/𝜖0 = 0.2 V/nm. Colored lines show
the FFT splitting predicted from band structure calculations for the
same 𝐷 field, using Ising SOC 𝜆𝐼 = 0.7 meV with Rashba SOC
𝜆𝑅 = 0 meV (purple line) and 𝜆𝑅 = 4 meV (yellow line). . . . . . . . 98
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5.6 Temperature dependence of superconductivity. (a)-(c) 𝑅𝑥𝑥 versus
density 𝑛 and temperature for hole doping, showing superconducting
domes in the FP(2, 2)+ phase for 𝐷/𝜖0 = 1 V/nm (a), 0.9 V/nm
(b), and 0.8 V/nm (c), respectively. A competing resistive phase
intersects the superconducting domes at these 𝐷 fields. (d) Line
cuts of 𝑅𝑥𝑥 versus 𝑛 for a range of temperatures (from 28 mK to
1 K) measured at 𝐷/𝜖0 = 1 V/nm. The inset shows the 𝑉-𝐼 plot at
𝑛 = −5.75 × 1011 cm−2 and various temperatures. The green dashed
line marks where𝑉 ∼ 𝐼3, from which we determine 𝑇𝐵𝐾𝑇 = 260 mK.
(e) 𝑅𝑥𝑥 versus temperature measured at 𝑛 = −5.75 × 1011 cm−2

showing a superconducting transition. . . . . . . . . . . . . . . . . 100
5.7 Out-of-plane magnetic field dependence of superconductivity. (a)

Critical current disappearing with 𝐵⊥ field measured at 𝐷/𝜖0 =

0.9 V/nm, 𝑛 = −5.05 × 1011 cm−2. (b) 𝑅𝑥𝑥 versus 𝑛 and 𝐵⊥ field
around the superconducting region for 𝐷/𝜖0 = 1 V/nm. . . . . . . . 101

5.8 Transverse magnetic focusing with an out-of-plane magnetic field.
(a) Non-local resistance 𝑅𝑛𝑙 measured as a function of 𝑛 and 𝐵⊥ at
𝐷/𝜖0 = 0.6 V/nm with the measurement configuration shown in (b). 102

5.9 Band structure and Fermi surfaces for single spin-valley flavor. (a)
Non-interacting valence bands near the 𝐾/𝐾′ point for at large dis-
placement field featuring trigonal warped pockets and a flat portion
of the band. (b) The evolution of Fermi surfaces as a function of
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5.10 Fan diagram and Fermi surfaces at 𝐷/𝜖0 = −1 V/nm. (a) 𝑅𝑥𝑥 versus
𝐵⊥ and doping density 𝑛 for 𝐷/𝜖0 = −1 V/nm. (b) Fourier transform
of 𝑅𝑥𝑥 (1/𝐵⊥) versus 𝑛 and 𝑓𝜈 for 𝐷/𝜖0 = −1 V/nm. The schematics
on top show the corresponding symmetry-breaking Fermi surfaces.
(c) 𝑅𝑥𝑥 versus doping density 𝑛 for the same density range. (d-f) The
same data as the one in (a)-(c), but zoom in certain density ranges. . 104

5.11 Fan diagram and Fermi surfaces at 𝐷/𝜖0 = 1 V/nm. (a) 𝑅𝑥𝑥 versus
𝐵⊥ and doping density 𝑛 for 𝐷/𝜖0 = 1 V/nm. (b) Fourier transform
of 𝑅𝑥𝑥 (1/𝐵⊥) versus 𝑛 and 𝑓𝜈 for 𝐷/𝜖0 = 1 V/nm. The schematics
on top show the corresponding symmetry-breaking Fermi surfaces.
(c) 𝑅𝑥𝑥 versus doping density 𝑛 for the same density range. (d),(e)
Fermi level and Fermi surfaces of the FP(6)+ (d) and the FP(6, 6)+
(e) phase. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
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5.12 Zoomed-in Fan diagram and Fermi surfaces at 𝐷/𝜖0 = 1 V/nm. (a)
𝑅𝑥𝑥 versus 𝐵⊥ and doping density 𝑛 for 𝐷/𝜖0 = 1 V/nm. (b) Fourier
transform of 𝑅𝑥𝑥 (1/𝐵⊥) versus 𝑛 and 𝑓𝜈 for 𝐷/𝜖0 = 1 V/nm. (c) 𝑅𝑥𝑥
versus doping density 𝑛 for the same density range. The schematics
show the corresponding symmetry-breaking Fermi surfaces. . . . . . 106

5.13 Doping-dependent Pauli-limit violation.(a) 𝑅𝑥𝑥 versus in-plane mag-
netic field 𝐵∥ and doping density 𝑛 for𝐷/𝜖0 = 1.1 V/nm. The red line
delineates the 𝑇-dependent superconducting dome, and open circles
indicate the zero-magnetic-field critical temperature𝑇0

𝑐 that is defined
by the temperature at which 𝑅𝑥𝑥 is 50% of the normal state resistance.
(b) The ratio of in-plane critical magnetic field 𝐵𝑐∥ to the Pauli-limit
field 𝐵𝑝 = 1.86 T/K × 𝑇0

𝑐 is plotted as a function of normalized
temperature 𝑇/𝑇0

𝑐 at two doping densities 𝑛 = −6 × 1011 cm−2 and
−7×1011 cm−2. Inset: the same data as in the main panel but plotted
in 𝐵𝑐∥ versus 𝑇 . (c) Pauli violation ratio 𝐵0

𝑐∥/𝐵𝑝 as a function of
density 𝑛. The doping trend of the PVR is well captured by a model
(blue line in the inset) taking into account fixed Ising SOC together
with doping-dependent Rashba SOC and constant orbital depairing. . 107

5.14 Depairing model for doping-dependent Pauli violation ratio. (a),(b)
Pauli violation ratio expected in a system with: Ising 𝑔𝐼 and Rashba
𝑔𝑅𝑘𝐹 coupling (a), Ising 𝑔𝐼 and orbital �̃�orb coupling (b). Note that
�̃�orb is a dimensionless quantity: the corresponding orbital energy
scale is �̃�orb𝜇𝐵𝐵. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.15 Ground state selection by Ising SOC. (a),(b) Fermi surfaces of the
FP(2, 2)+ phase with Ising SOC and nematic order (a), or allowing
for inter-valley coherent order (b). Dashed Fermi pockets correspond
to the condition that nematic order is absent. (c) Schematics of a
proposed scenario where Ising SOC tilts the energy balance toward
IVC order, within which the development of superconductivity is
more favored, at the expense of a state which is not conducive to
pairing, e.g., a valley polarized state. . . . . . . . . . . . . . . . . . 110
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5.16 Additional device with different Ising SOC. (a) 𝑅𝑥𝑥 versus doping
density 𝑛 and displacement field 𝐷 measured at zero magnetic field
for an additional device. (b) 𝑅𝑥𝑥 versus 𝐵⊥ and doping density 𝑛
for 𝐷/𝜖0 = 1.1 V/nm. (c) Fourier transform of 𝑅𝑥𝑥 (1/𝐵⊥) versus
𝑛 and 𝑓𝜈 for 𝐷/𝜖0 = 1.1 V/nm. (d) 𝑅𝑥𝑥 versus 𝑛 at zero magnetic
field for the same 𝐷 field. The superconducting phase possesses a
flavor-polarized normal state with two majority and four minority
Fermi pockets (denoted as FP(2, 4)+). Schematic depicts the pos-
sible Fermi surface structures. (e) Device optical image. (f) 𝑅𝑥𝑥
versus density 𝑛 and temperature showing a superconducting dome
at 𝐷/𝜖0 = 1.15 V/nm. (g) 𝑅𝑥𝑥 versus 𝑛 and 𝐵⊥ around the supercon-
ducting region for 𝐷/𝜖0 = 1.1 V/nm. . . . . . . . . . . . . . . . . . 112

6.1 Schematics for interfacial twisting between BLG and WSe2. (a)
Schematic showing the twisting of the BLG-WSe2 interface; tun-
ing the interfacial twist angle 𝜃 between the two largely lattice-
mismatched materials modifies the Ising SOC strength |𝜆𝐼 | and the
correlated phase diagram. (b),(c) The schematics show the relative
rotation between the BLG and WSe2 Brillouin zones. At 𝜃 ≈ 0°
(b), 𝐾/𝐾′ valleys of BLG couple more effectively to one of the two
WSe2 valleys, resulting in large induced Ising SOC. In contrast, at
𝜃 ≈ 30° (c), inter-valley and intra-valley tunneling between WSe2 and
BLG have the same amplitude by reflection symmetry so that Ising
couplings of opposite sign cancel each other and result in vanishing
proximity coupling. . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.2 Identifying the crystal edges of graphene and WSe2. (a) Optical
image of a WSe2 crystal. (b) Second harmonic generation for the
WSe2 flake shown in (a). (c) Optical image of a large BLG flake.
Straight edges form angles 150° that are consistent with the three
straight edges being along zigzag- or armchair-edge direction. (d)
Zoom-in image of the BLG in (c), showing small BLG pieces that
are separated by atomic-force-microscope-actuated cutting. All the
scale bars correspond to 10𝜇m. . . . . . . . . . . . . . . . . . . . . 116



xxvii

6.3 Fabricating twisting BLG-WSe2 on the same chip. (a)-(c) Flake
transferring processes for the continuous interfacial twisting. The
BLG pieces are sequentially picked up with an angle relative to
WSe2 in increment of 6°, from ∼ 0° to 30°. (d) Optical image of the
twisting stack, clearly showing that the BLG pieces form different
twist angles relative to the WSe2 crystal. (e) Optical image of the
finished device set D1. All the scale bars correspond to 10𝜇m. . . . 117

6.4 Tunable Ising SOC by twisting between BLG and WSe2. (a),(b)
Non-interacting valence bands of BLG near the 𝐾 and 𝐾′ points
of the Brillouin zone at 𝐷/𝜖0 = 0.2 V/nm, with proximitized Ising
SOC |𝜆𝐼 | ≈ 1.6 meV (a) and 0.4 meV (b), respectively. (c),(d) 𝑅𝑥𝑥
versus out-of-plane magnetic field 𝐵⊥ and doping 𝑛 measured at
𝐷/𝜖0 = 0.2 V/nm for devices with |𝜆𝐼 | ≈ 1.6 meV (c) and 0.4 meV
(d), respectively. (e),(f) Fast Fourier transform (FFT) of 𝑅𝑥𝑥 (1/𝐵⊥)
versus 𝑛 and 𝑓𝜈, where 𝑓𝜈 denotes the quantum oscillation frequency
normalized to the Luttinger volume. The arrow-marked FFT split-
tings reflect the Ising-induced Fermi-surface imbalance within each
valley, where larger Ising SOC (e) features a larger splitting than
small Ising SOC (f). . . . . . . . . . . . . . . . . . . . . . . . . . . 118

6.5 Quantifying Ising SOC by quantum oscillations. (a) The same
data as the one in Fig. 6.4e, but without frequency normalization
to show 𝐵split. (b),(c) Experimental (dots) doping-dependent fre-
quency splitting around 𝑓𝜈 = 1/4 measured at different 𝐷 fields for
a large Ising device (b; |𝜆𝐼 | ≈ 1.4 meV) and a small Ising device (c;
|𝜆𝐼 | ≈ 0.4 meV). The dashed lines are 𝐵split calculated from single-
particle band structure using the corresponding Ising SOC values.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
6.6 Ising SOC strength |𝜆𝐼 | versus BLG-WSe2 interfacial twist angle 𝜃;

data were extracted from three sets of devices D1-D3. The schematics
show the relative rotation between the BLG and WSe2 Brillouin
zones. At 𝜃 ≈ 0°, 𝐾/𝐾′ valleys of BLG couple more effectively to
one of the two WSe2 valleys, resulting in large induced Ising SOC. In
contrast, at 𝜃 ≈ 30°, inter-valley and intra-valley tunneling between
WSe2 and BLG have the same amplitude by reflection symmetry so
that Ising couplings of opposite sign cancel each other and result in
vanishing proximity coupling. . . . . . . . . . . . . . . . . . . . . . 120
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6.7 𝑛-𝐷 phase diagrams for devices with various Ising SOC strengths.
(a)-(f) 𝑅𝑥𝑥 versus doping density 𝑛 and displacement field 𝐷 for
devices with Ising SOC strength |𝜆𝐼 | ≈ 0.4 meV (a), 0.7 meV (b),
0.9 meV (c), 1.4 meV (d), 1.5 meV (e), and 1.6 meV (f), respectively. 121

6.8 Superconducting𝑇𝑐 versus Ising SOC and 𝐷 field. (a) Optimal super-
conducting critical temperature𝑇optimal

𝑐 versus |𝜆𝐼 | and 𝐷. (b),(c) 𝑅𝑥𝑥
versus doping 𝑛 and temperature for a device with |𝜆𝐼 | ≈ 0.4 meV,
showing superconducting domes at 𝐷/𝜖0 = 0.4 V/nm (b) and 1 V/nm
(c), respectively. (d),(e) 𝑅𝑥𝑥 versus doping 𝑛 and temperature for a
device with |𝜆𝐼 | ≈ 1.5 meV, showing superconducting domes at
𝐷/𝜖0 = 1.1 V/nm (d) and 1.285 V/nm (e), respectively. (f),(g)
Displacement field 𝐷onset at which superconductivity onsets (f) and
optimal critical temperature 𝑇optimal

𝑐 (g) versus Ising SOC strength
|𝜆𝐼 |. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

6.9 The residual Cooper channel repulsion 𝑣∗TAM versus doping 𝑛 and
interlayer potential difference𝑈 for |𝜆𝐼 | = 0.4 meV (left) and 1.4 meV
(right), respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . 123

6.10 Three superconducting regions SC1, SC2, and SC3. (a) 𝑅𝑥𝑥 versus
doping density 𝑛 and displacement field 𝐷 for a device with Ising
SOC strength |𝜆𝐼 | ≈ 1.5 meV, focusing around the phase space where
the three superconducting regions coexist. . . . . . . . . . . . . . . 124

6.11 Characterization of the three superconducting regions SC1, SC2, and
SC3. (a)-(c) Temperature dependence of the three superconducting
domes SC1 (a), SC2 (b), and SC3 (c), respectively. (d)-(f) Critical
current versus temperature at the corresponding 𝐷 and 𝑛. (g)-(i)
Critical current disappearing with 𝐵⊥ at the same 𝐷 and 𝑛 as in (d)-(f). 125

6.12 Ising symmetry-breaking Fermi surfaces of SC1. (a) 𝑅𝑥𝑥 versus 𝑛
measured at 𝐷/𝜖0 = 0.92 V/nm. The inset shows 𝑅𝑥𝑥 versus 𝑛
and temperature for the superconducting dome SC1. (b) Frequency-
normalized FFT of 𝑅𝑥𝑥 (1/𝐵⊥) over the same doping range as in (a);
schematics show the corresponding flavor symmetry-breaking Fermi
surfaces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
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6.13 SC2 across nematic redistribution and SC3 from inter-valley co-
herence. (a) 𝑅𝑥𝑥 versus 𝐵⊥ and doping density 𝑛 measured at
𝐷/𝜖0 = 1.265 V/nm for a device with |𝜆𝐼 | = 1.5 meV. (b) Frequency-
normalized Fourier transform of 𝑅𝑥𝑥 (1/𝐵⊥) over the same doping
range as in (a). The arrows mark the primary FFT peaks, as shown in
(e). (c) 𝑅𝑥𝑥 versus doping density 𝑛measured at 𝐷/𝜖0 = 1.265 V/nm.
Insets show 𝑅𝑥𝑥 versus 𝑛 and temperature for the superconducting
domes SC2 (left) and SC3 (right), respectively. (d) the same data
as in (b). The green dashed line marks the continuous transition
from FP(2, 2, 2) to FP(2, 4); black dashed lines mark first-order fla-
vor symmetry-breaking transitions. (e) Intensity peaks in 𝑓𝜈 extracted
from (b). The black solid lines around 𝑓𝜈 = 1 indicate the results from
the Luttinger sum rule. Schematics show the possible flavor-polarized
phases, from left to right corresponding to spin-valley locked nematic
FP(2, 4), nematic FP(2, 2, 2) with two sizes (green and orange) of
trigonal-warping pockets, and inter-valley coherent FP(1, 3, 1). . . . 127

6.14 𝐵∥ dependence of SC1. (a) 𝑅𝑥𝑥 versus 𝑛 measured at 𝐷/𝜖0 =

0.92 V/nm. Inset shows 𝑅𝑥𝑥 versus 𝑛 and temperature for the super-
conducting dome SC1. (b) Frequency-normalized FFT of 𝑅𝑥𝑥 (1/𝐵⊥)
over the same doping range as in (a). (c),(d) 𝑛-dependent 𝑅𝑥𝑥 versus
in-plane magnetic field (c) or versus temperature (d), showing the
disappearance of SC1. . . . . . . . . . . . . . . . . . . . . . . . . . 128

6.15 In-plane field dependence of SC2 and SC3. (a) 𝑅𝑥𝑥 versus doping
density 𝑛 and in-plane magnetic field 𝐵∥ at 𝐷/𝜖0 = 1.265 V/nm for
a device with |𝜆𝐼 | = 1.5 meV. (b) 𝑅𝑥𝑥 versus 𝑛 and temperature at
𝐷/𝜖0 = 1.265 V/nm. . . . . . . . . . . . . . . . . . . . . . . . . . . 129

6.16 Temperature dependence of SC3 measured at different in-plane mag-
netic field. (a) 𝑅𝑥𝑥 versus doping density 𝑛 and in-plane magnetic
field 𝐵∥ showing SC3 evolution. (b)-(h) 𝑅𝑥𝑥 versus doping density 𝑛
and temperature measured from 𝐵∥ = 0 T (b) to 6 T (h), 1 T increment
step. (i) Optimal critical temperature 𝑇optimal

𝑐 of SC3 versus 𝐵∥ . The
grey bar marks the Pauli limit 𝐵𝑝. . . . . . . . . . . . . . . . . . . . 130

6.17 In-plane magnetic field dependence of SC2. (a),(b) 𝑅𝑥𝑥 versus tem-
perature and 𝐵∥ at 𝑛 = −8.5 × 1011 cm−2 (a) and −6.9 × 1011 cm−2

(b), respectively for 𝐷/𝜖0 = 1.2 V/nm. The colored dashed lines are
quadratic fitting by 𝑇𝑐 (𝐵∥) = 𝑇𝑐 (0) − 𝛼 × 𝐵2

∥ . . . . . . . . . . . . . . 131
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6.18 Coefficient 𝛼 versus doping for SC2. (a) Coefficient 𝛼 versus dop-
ing 𝑛 within the SC2 dome at 𝐷/𝜖0 = 1.2 V/nm. (b) Normalized
FFT of 𝑅𝑥𝑥 (1/𝐵⊥) over the same 𝑛 and 𝐷 range as in (a), focus-
ing at low frequencies. Green dashed line marks the nematic re-
distribution of holes from FP(2, 4) to FP(2, 2, 2). Schematics in
(a) show the Fermi-surface evolution versus 𝑛, where the smallest
trigonal-warping pockets (green) grow rapidly from low to high dop-
ing (−7.3 ≲ 𝑛 ≲ −6.6 × 1011 cm−2). . . . . . . . . . . . . . . . . . 132

6.19 𝐵∥ dependence of pairing by interband interactions. (a),(b) Theoreti-
cal 𝐵∥ depairing with the prominent interband pairing (a) and the sup-
pressed case by valley polarization (b). (c),(d) Theoretical 𝛼 versus
𝑛 for FP(2, 4) (c) and versus minority imbalance 𝛿𝑛minority/𝑛minority

for FP(2, 2, 2) (d). . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
A.1 𝑅𝑥𝑥 versus temperature and filling factor 𝜈 for a range of TBG-WSe2

devices at different twist angles. . . . . . . . . . . . . . . . . . . . . 161
C.1 Quantum oscillations and FFT measured at𝐷/𝜖0 = 1.2 V/nm. (a) 𝑅𝑥𝑥

versus out-of-plane magnetic field 𝐵⊥ and doping density 𝑛measured
at 𝐷/𝜖0 = 1.2 V/nm for a device with |𝜆𝐼 | ≈ 1.5 meV. (b) Frequency-
normalized Fourier transform of 𝑅𝑥𝑥 (1/𝐵⊥) over the same density
range as in (a). (c) Intensity peaks in 𝑓𝜈 from (b). (d) zoom-in image
at low frequencies from (b). . . . . . . . . . . . . . . . . . . . . . . 165

C.2 Quantum oscillations and FFT measured at 𝐷/𝜖0 = 1.265 V/nm.
(a) 𝑅𝑥𝑥 versus out-of-plane magnetic field 𝐵⊥ and doping density 𝑛
measured at 𝐷/𝜖0 = 1.265 V/nm for a device with |𝜆𝐼 | ≈ 1.5 meV.
(b) Frequency-normalized Fourier transform of 𝑅𝑥𝑥 (1/𝐵⊥) over the
same doping density range as in (a). (c) Intensity peaks in 𝑓𝜈 from (b). 166

C.3 Identifying FP(2, 2, 2) and FP(1, 3, 1) frequencies from the raw data.
(a) 𝑅𝑥𝑥 versus out-of-plane magnetic field 𝐵⊥ and doping density 𝑛
measured at 𝐷/𝜖0 = 1.2 V/nm for a device with |𝜆𝐼 | = 1.5 meV.
(b) The same data as in (a), but plotted as a function of 1/𝐵⊥. The
corresponding frequencies are marked by colored arrows/lines. (c)
Intensity peaks in 𝑓𝜈 extracted from the FFT data. . . . . . . . . . . 168
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C.4 FP(1, 3) and FP(1, 3, 1) at 𝐷/𝜖0 = 0.85 V/nm and 1 V/nm, respec-
tively. (a),(b) 𝑅𝑥𝑥 versus out-of-plane magnetic field 𝐵⊥ and doping
density 𝑛measured at 𝐷/𝜖0 = 0.85 V/nm (a) and 1 V/nm (b), respec-
tively. (c),(d) Frequency-normalized Fourier transform of 𝑅𝑥𝑥 (1/𝐵⊥)
at 𝐷/𝜖0 = 0.85 V/nm (c) and 1 V/nm (d), respectively. (e),(f) Inten-
sity peaks in 𝑓𝜈 extracted from the FFT data in (c) and (d). . . . . . . 169

C.5 FP(1, 3, 1) at 𝐷/𝜖0 = 1.2 V/nm and 1.265 V/nm. (a),(b) 𝑅𝑥𝑥 versus
out-of-plane magnetic field 𝐵⊥ and doping density 𝑛 measured at
𝐷/𝜖0 = 1.2 V/nm (a) and 1.265 V/nm (b), respectively. (c),(d)
Frequency-normalized Fourier transform of 𝑅𝑥𝑥 (1/𝐵⊥) at 𝐷/𝜖0 =

1.2 V/nm (c) and 1.265 V/nm (d), respectively. (e),(f) Intensity
peaks in 𝑓𝜈 extracted from the FFT data in (c) and (d). . . . . . . . . 170

C.6 FFT of FP(1, 3) and FP(1, 3, 1) with data at lower magnetic field.
(a),(c) Frequency-normalized Fourier transform of 𝑅𝑥𝑥 (1/𝐵⊥) at
𝐷/𝜖0 = 0.85 V/nm (a) and 1.2 V/nm (c), respectively. The 𝑅𝑥𝑥
data are used up to 0.23 T and 0.26 T respectively. (b),(d) 𝑅𝑥𝑥 vari-
ation Δ𝑅𝑥𝑥 as a function 1/𝐵⊥ measured at 𝑛 = −3.3 × 1011 cm−2,
𝐷/𝜖0 = 0.85 V/nm (b) and 𝑛 = −6 × 1011 cm−2, 𝐷/𝜖0 = 1.2 V/nm
(d), respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

C.7 Evolution of phase boundaries as a function of 𝐵⊥. (a) 𝑅𝑥𝑥 versus
out-of-plane magnetic field 𝐵⊥ and doping density 𝑛 measured at
𝐷/𝜖0 = 1.2 V/nm for a device with |𝜆𝐼 | ≈ 1.5 meV. Phase boundaries
are marked out in (b). The black arrows and dashed lines mark the
phase boundaries that are not sensitive to 𝐵⊥, suggestive of inter-
valley coherence with little or no net orbital moments. The red line
draws the phase boundary of the spin-valley polarized FP(1); the
boundary grows (orange arrow) with 𝐵⊥ due to large orbital moments. 173

C.8 𝐵∥ dependence of SC2 at 𝐷/𝜖0 = 1.265 V/nm. (a) 𝑅𝑥𝑥 versus doping
and 𝐵∥ focusing around SC2 at 𝐷/𝜖0 = 1.265 V/nm. (b) Fitting
coefficient 𝛼 versus doping density 𝑛 for SC2 at the same 𝐷. (c)
Frequency-normalized Fourier transform of 𝑅𝑥𝑥 (1/𝐵⊥) over the same
doping range as in (b), focusing around low frequencies representing
the two types of trigonal-warping pockets. Bottom panels show 𝑅𝑥𝑥

versus temperature and 𝐵∥ at different doping for 𝐷/𝜖0 = 1.265 V/nm. 174
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C.9 𝐵∥ dependence of SC2 at𝐷/𝜖0 = 1.2 V/nm. (a) 𝑅𝑥𝑥 versus doping and
𝐵∥ focusing around SC2 at 𝐷/𝜖0 = 1.2 V/nm. (b) Fitting coefficient
𝛼 versus doping density 𝑛 for SC2 at the same 𝐷. (c) Frequency-
normalized Fourier transform of 𝑅𝑥𝑥 (1/𝐵⊥) over the same doping
range as in (b), focusing around low frequencies representing the two
types of trigonal-warping pockets. Bottom panels show 𝑅𝑥𝑥 versus
temperature and 𝐵∥ at different doping for 𝐷/𝜖0 = 1.2 V/nm. . . . . 175

C.10 𝐵∥ dependence of SC2 at 𝐷/𝜖0 = 1.07 V/nm. (a) 𝑅𝑥𝑥 versus dop-
ing and 𝐵∥ focusing around SC2 at 𝐷/𝜖0 = 1.07 V/nm. (b) Fitting
coefficient 𝛼 versus doping density 𝑛 for SC2 at the same 𝐷. (c)
Frequency-normalized Fourier transform of 𝑅𝑥𝑥 (1/𝐵⊥) over the same
doping range as in (b), focusing around low frequencies representing
the single type of trigonal-warping pockets without nematic redistri-
bution of holes. Bottom panels show 𝑅𝑥𝑥 versus temperature and 𝐵∥

at different doping at 𝐷/𝜖0 = 1.07 V/nm. At this 𝐷 field, SC2 does
not onset from FP(2, 2, 2). The rapidly changed 𝛼 with diminished
values are accordingly absent. . . . . . . . . . . . . . . . . . . . . . 176



xxxiii

LIST OF ACRONYMS
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ARPES angle-resolved photoemission spectroscopy

BCS refers to the conventional theory of superconductivity and its discoverers,
Bardeen, Cooper, and Schrieffer
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BKT refers to the pinning of Cooper pairs across superconducting transition,
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DOS density of states
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IVC inter-valley coherent
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PC poly(bisphenol A carbonate), a polymer used for flake transfer

PDMS polydimethylsiloxane, a polymer used for flake transfer

PMMA polymethyl methacrylate, electron-beam resist

PPC polypropylene carbonate, a polymer used for flake transfer

PVR Pauli violation ratio

SdH Shubnikov de Haas, referring to resistance quantum oscillations associated
with Landau levels

SHG second harmonic generation
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C h a p t e r 1

INTRODUCTION

1.1 The beauty of many-body electrons
The central theme of modern condensed matter physics is largely defined by the
word emergence [1]. Emergence describes the fact that the behavior of a many-body
interacting system is dramatically different from the behavior and fundamental laws
of each constituting part. Here, the behavior means new quantum phases of matter
or collective modes that arise from the interactions among microscopic degrees of
freedom. The host of these enigmatic phenomena are typically quantum materials
with strong correlations, i.e., electrons in the materials are quantum mechanically
strongly entangled: can be strongly coherent or simply repulse each other, etc. The
interplay between various interactions is complicated and the outcomes can be sig-
nificant: the resulting broken-symmetry ground states are likely unprecedented and
nowhere close to the starting point! Understanding these phases becomes the driv-
ing force behind the development of new theoretical frameworks and experimental
tools.

A significant portion of experimental efforts have been dedicated to the design of
new quantum materials. An ultimate dream is to have “super” materials that are
robust yet highly tunable. Meanwhile, on-demand control [2] of perturbations to
Hamiltonian will examine the key ingredients for certain quantum phenomena. Yet,
the desire is somewhat contradictory: extreme high-energy robustness means the
lost of low-energy delicate tuning. One may want to find a material playground that
lies between these two extremes, combining the advantages of both.

The focus of this dissertation is on superconductivity originated from the flat bands
of two-dimensional (2D) materials, for both moiré and crystalline cases. By in-
troducing a moiré pattern on twisted 2D materials, an emergent length scale is
engineered, leading to significant renormalization of the original energy scales.
These moiré systems can then be described by the new length and energy scales,
well fit the sweet spot of robust tunability. Similarly, band dispersion is highly tun-
able with simple experimental knobs for crystalline 2D materials. The ultra-clean
nature reduces disorders, thus revealing some brand new finest insights into the
correlated phase diagram. The interplay between explicit spin-orbit coupling and
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spontaneous symmetry-breaking gives surprises of enhanced superconductivity.

1.2 Highly tunable two-dimensional materials
The intrinsic tunability of 2D materials stems from their reduced dimensionality.
The isolation of monolayer graphene [3–5] by mechanical exfoliation marks the
beginning of 2D materials. Following the isolation of monolayer graphene, many
van der Waals (vdW) 2D materials have been exfoliated into monolayer or thin
layers.

Crucially, each of them has its own character. Graphene monolayer is characterized
by massless Dirac fermions [6, 7] with ultra high mobility (Fig. 1.1a). Hexagonal
boron nitride (hBN; Fig. 1.1b), the cousin of graphene whose sublattices are replaced
by boron and nitrogen atoms, is a big band-gap insulator. Transition metal dichalco-
genides (TMDs; Fig. 1.1c), such as tungsten diselenide (WSe2), are direct band
gap semiconductors when thinned down to monolayer [8], and they feature strong
spin-orbit coupling (SOC) that is extremely important for the dissertation. The cat-
egory is not limited to these materials but has been extended to superconductors [9],
magnets [10], charge density wave materials [11], and even high-temperature super-
conductors [12]. The first prominent tunability is electrostatic gating. Monolayer or

Figure 1.1: Different 2D van der Waals materials. The crystal lattice of graphene
(a), hexagonal boron nitride (b), and tungsten diselenide (c).

several layers of 2D materials contain diluted amount of electrons. Additional car-
riers can be introduced or removed from the system by simple capacitance scheme.
The Fermi level is highly tunable by reduced dimension without introducing addi-
tional scattering disorder brought by chemical doping. With two gate electrodes
on top and bottom, the interlayer potential is independently modified. The band
structures of certain systems, such as Bernal bilayer graphene, are highly sensi-
tive to the electrical displacement field. The long-range Coulomb interactions are
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weakly screened in a 2D system. By harnessing the low dimensionality, one can also
change the screening layers to soften the Coulomb repulsion. Further advancement
in the field of 2D materials is the introduction of hexagonal boron nitride (hBN) as
dielectric for encapsulation [13, 14], along with stacking manipulation for complex
vdW heterostructures. What makes these heterostructures unique, compared to syn-

Figure 1.2: Ultra tunability of 2D van der Waals materials. Electrostatic gating
controls the doping level, and multiple gates control the electrical displacement
field. Moiré periodic potential is created by twisting two layers of lattice-matched
materials or simply by putting together two materials with slight lattice mismatch.
Additionally, stacking different materials on top of each other introduces ultra-
clean interfaces for electrical transport measurements or induces proximity effect
on demand.

thesized materials, is that the heterostructure stacking allows vastly different layers
of materials to be on top of each other, forming a sandwich structure and coupled
through vdW interactions. The relatively weak interlayer coupling turns out to be
critical, since it allows arbitrary layer to rotate by an arbitrary angle with respect
to another layer [15, 16], not necessarily the lowest energy structural order. It is
this remarkable property of vdW materials that enables the field of “twistronics” to
thrive.

Moiré structure by a twist is a model “super” material. The moiré pattern renor-
malizes band structure so that the relevant energy scale with strong correlations is
accessible by simple electrostatic gating. For example, gate tuning in moiré systems
is measured in the unit of number of electrons per moiré unit cell. The large in
situ filling change is not easily accessible by chemically-doped bulk materials. As



4

a result, multiple energy bands can be completely populated or depleted simply
by turning a simple gate voltage, a peculiar feature of interacting moiré systems.
Second, the twist angle itself emerges as a new knob. At certain angle ranges,
the Coulomb interactions win over kinetic energy; the angle tunes the relevance of
repulsive Coulomb, thus helping to disentangle various quantum ground states.

Moiré is the case of relatively strong hybridization of the two layers. At the other
end of the spectrum, the stacking of two largely lattice-mismatched materials sig-
nificantly reduces the coupling. Yet, the strong perturbation from the start point of
one material will be imprinted to the adjacent material with reduced energy scale,
matching the correlations. This is the case for explicit spin-orbit interactions (SOI)
to graphene proximitized by TMDs: the proximitized SOC does not dominate over
spontaneously symmetry breaking in the graphene flat bands, delicately promoting
proper parent states for superconductivity. The above unprecedented tunabilities are
highlighted in Fig.1.2.

1.3 The electronic properties of monolayer graphene

Figure 1.3: Crystal structure of monolayer graphene. Carbon atoms form honey-
comb lattice. Red and Blue circles mark the 𝐴 and 𝐵 sublattices.

The dissertation focuses on graphene flat bands. Let us briefly review the electronic
properties of monolayer graphene. Monolayer graphene is carbon atoms arranged
into single-sheet honeycomb lattice. The honeycomb lattice contains two inequiva-
lent sites; thus it can be treated as a triangular lattice with 𝐴 and 𝐵 sublattice sites
(Fig. 1.3). The lattice constant is 𝑎 = 0.246 nm [5]. The basis of Bravais lattice
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vectors can be represented as

𝒂1 =
𝑎

2
(3,

√
3), 𝒂2 =

𝑎

2
(3,−

√
3), (1.1)

and the vectors that connect sublattice 𝐴 and its nearest neighbor are

𝜹1 =
𝑎

2
(1,

√
3), 𝜹2 =

𝑎

2
(1,−

√
3), 𝜹3 = −𝑎(1, 0). (1.2)

Tight-binding Hamiltonian

Considering only nearest-neighbor hopping, the tight-binding Hamiltonian for graphene
is

𝐻0 = −𝑡
∑︁
<𝑖 𝑗>

(�̂�†
𝑖
�̂� 𝑗 + �̂�†𝑗 �̂�𝑖) (1.3)

where 𝑖 ( 𝑗) labels sites in sublattice 𝐴 (𝐵), the fermionic operator �̂�†
𝑖

(�̂�𝑖) creates
(annihilates) an electron at site 𝐴 whose position is 𝒓𝑖, and similarly for �̂�†

𝑖
(�̂�𝑖).

To calculate the dispersion relation, we transform from lattice space to the momen-
tum space by using

�̂�
†
𝑖
=

1
√
𝑁
𝑒𝑖𝒌·𝒓𝑖 �̂�†

𝒌
, �̂�𝑖 =

1
√
𝑁
𝑒𝑖𝒌·𝒓𝑖 �̂�𝒌 , (1.4)

where 𝑁 is total number of unit cells. Substituting Eq. 1.3 to Eq. 1.2, we get:

𝐻0 =

(
�̂�
†
𝒌
�̂�
†
𝒌

) (
0 −𝑡Δ𝒌

−𝑡Δ∗
𝒌 0

) (
�̂�𝒌

�̂�𝒌

)
=

(
�̂�
†
𝒌
�̂�
†
𝒌

)
ℎ(𝒌)

(
�̂�𝒌

�̂�𝒌

)
, (1.5)

where

Δ𝒌 =
∑︁
𝛿

𝑒𝑖𝒌·𝛿 . (1.6)

The dispersion relation can be obtained by diagonalizing ℎ(𝒌), we obtain:

𝐸±(𝒌) = ±𝑡

√︄
1 + 4cos(3

2
𝑘𝑥𝑎)cos(

√
3

2
𝑘𝑦𝑎) + 4cos2(

√
3

2
𝑘𝑦𝑎)) (1.7)
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or, it can be written as

𝐸±(𝒌) = ±𝑡
√︁

3 + 𝑓 (𝒌) (1.8)

where

𝑓 (𝒌) = 2cos(
√

3𝑘𝑦𝑎) + 4cos(3
2
𝑘𝑥𝑎)cos(

√
3

2
𝑘𝑦𝑎). (1.9)

These are two gapless bands that touch at the Dirac points 𝐾 and 𝐾′; as shown in
Fig.1.4. The Dirac points correspond to the points in 𝒌 space where 𝐸 (𝒌) = 0.

Figure 1.4: Band structure of monolayer graphene. (a) Energy band dispersion of
the monolayer graphene calculated from the tight-binding model. (b) First Brillouin
zone of monolayer graphene.

Low energy limit

We care about the behavior around the Dirac points since the Fermi level of intrinsic
graphene lies around there. Let us look at the behavior of Δ𝒌 about the Dirac point
𝐾 . Defining the relative momentum 𝒒 = 𝒌 − 𝑲, we can write Δ𝒌 in terms of 𝒒:

Δ𝑲+𝒒 = 𝑒
−𝑖𝐾𝑥𝑎𝑒−𝑖𝑞𝑥𝑎

[
1 + 2𝑒𝑖3(𝐾𝑥+𝑞𝑥)𝑎/2cos

(√
3(𝐾𝑦 + 𝑞𝑦)𝑎

2

)]
= 𝑒−𝑖𝐾𝑥𝑎𝑒−𝑖𝑞𝑥𝑎

[
1 − 2𝑒𝑖3𝑞𝑥𝑎/2cos

(
𝜋

3
+
√

3𝑎
2
𝑞𝑦

)]
. (1.10)

Now expanding around 𝒒 = 0 to first order, we have:

Δ𝑲+𝒒 = −𝑖𝑒−𝑖𝐾𝑥𝑎
3𝑎
2
(𝑞𝑥 + 𝑖𝑞𝑦). (1.11)
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There is no physical significance for the phase, we thus have

Δ𝑲+𝒒 =
3𝑎
2
(𝑞𝑥 + 𝑖𝑞𝑦). (1.12)

About the Dirac point 𝐾 , we thus have:

ℎ(𝑲 + 𝒒) = 𝑣𝐹

(
0 𝜋†

𝜋 0

)
, (1.13)

where 𝑣𝐹 = 3𝑎𝑡
2 is the Fermi velocity and 𝜋 = 𝑝𝑥 − 𝑖𝑝𝑦, 𝜋† = 𝑝𝑥 + 𝑖𝑝𝑦. From the

above equations, we see that the energy-momentum dispersion is linear, and is given
by:

𝐸±(𝒒) = 𝑣𝐹 |𝒒 |. (1.14)

1.4 Flat electronic bands: Twisted bilayer graphene
In this section, we briefly review how highly tunable flat electronic bands emerge
from the twist of two layers of graphene. A moiré pattern is a long wavelength beating
pattern from the combination of two periodic structures. One way to generate moiré
pattern is by two periodic patterns of similar wavelength nearly aligned in angle.
Two graphene sheets can form a moiré pattern when they are stacked on each other
with a small rotational offset 𝜃; as shown in Fig. 1.5a. Twisted bilayer graphene
(TBG) forms a periodic moiré wavelength 𝐿𝑀 related to angle 𝜃 as

𝐿𝑀 =
𝑎

2sin(𝜃/2) , (1.15)

which gives a unit cell area

𝐴𝑀 =

√
3𝑎2

8sin2(𝜃/2)
. (1.16)

At the so-called magical angle 𝜃magic ≈ 1.1°, the moiré periodicity is 𝐿𝑀 ≈ 13 nm.
The periodicity determines both Coulomb interaction as well as moiré bandwidth.
Coulomb interaction is straightforward—𝑒2/(4𝜋𝜖𝐿𝑀), on the order of 10 meV or
so. The bandwidth is a bit tricky but an intuitive picture is shown in Fig. 1.5b and
c. The Dirac cones of both layers at 𝐾 and 𝐾′ valleys are shifted by momentum
wavevector reciprocal to moiré periodicity (Fig. 1.5b). Interlayer hybridization at
the crossing point of the Dirac cones will open up superlattice gaps and isolate moiré
bands (Fig. 1.5c). When the hybridization 𝑤 and twist angle satisfies the condition
𝑣𝐹 |𝑲 |𝜃 = 𝑤, the bandwidth of isolated bands becomes suppressed because of this
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Figure 1.5: Twisted bilayer graphene. (a) Two layers of graphene are twisted
relative to each other with an angle 𝜃 forming moiré superlattice; moiré wavelength
scales as 𝑎𝑀 ∼ 𝑎/𝜃. (b) The valleys from two layers of graphene strongly hybridize
forming moiré Brillouin zone. (c) Schematic shows band hybridization forming
moiré flat bands.

hybridization, which is known as the magic-angle condition (𝜃magic ≈ 1.1° for
twisted bilayer graphene). Around the magic angle, Coulomb interaction dominates
over or is comparable with kinetic energy, the moiré system prefers to spontaneously
break spin-valley symmetry to lower the total energy (see Section 1.6).

The system has attracted tremendous interest since the first observation of correlated
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insulators and superconductors [16–20], which established TBG and beyond moiré
systems as a new paradigm for twist-engineering strongly correlated physics. Since
then, a plethora of new correlated ground states were observed in the moiré systems
that reflect the rich interplay between interaction, topology, and various symmetry
breaking. These include emergent ferromagnetism and quantum anomalous Hall
insulators in hBN-aligned devices [21, 22], cascade of electronic transitions [23,
24], Pomeranchuk effect [25, 26], flavor symmetry breaking Chern insulators [27–
33], fractional Chern insulators [34–37], strange metal [38], evidence for uncon-
ventional superconductivity [39, 40], inter-valley coherence [41, 42], etc. Soon,
moiré structure is expanded to closely related graphene multilayer systems [43–
49]. The community also innovated methods and material systems for insights and
understanding of unconventional superconductivity in 2D tunable flat bands [50–
58].

Bistritzer and MacDonald [59, 60] were among the first to consider the prob-
lem of twisting two monolayer graphene. They devloped the so-called continuum
model [59, 60], one of the most efficient ways to describe the single particle band
structure of twisted bilayer graphene. The model may be expressed with the Hamil-
tonian of the top and bottom graphene layers along with a tunneling term that couples
the two layers

𝐻cont = 𝐻𝑡 + 𝐻𝑏 + 𝐻tun. (1.17)

It is convenient to express the Hamiltonian in terms of second quantization, where
𝜓𝑡/𝑏 and 𝜓†

𝑡/𝑏 are the annihilation and creation operators for the top/bottom layers,
respectively. The first two terms on the right-hand side of Eq. 1.17 respectively
denote the intralayer Dirac Hamiltonian of the top and bottom layers in the absence
of tunneling, rotated symmetrically in opposite directions by 𝜃/2:

𝐻𝑡/𝑏 =

∫
𝒌
𝜓
†
𝑡/𝑏 (𝒌)ℎ𝑡/𝑏 (𝒌)𝜓𝑡/𝑏 (𝒌), (1.18)

where

ℎ𝑡 (𝒌) = −𝑣𝐹𝑒𝑖𝜃𝜎
𝑧/4𝒌 · 𝝈𝑒−𝑖𝜃𝜎𝑧/4, ℎ𝑏 (𝒌) = −𝑣𝐹𝑒−𝑖𝜃𝜎

𝑧/4𝒌 · 𝝈𝑒𝑖𝜃𝜎𝑧/4. (1.19)

Here 𝝈 corresponds to Pauli matrices acting on sublattice indices. 𝑣𝐹 is the Fermi
velocity of graphene.

Modeling the layers without interlayer tunneling essentially models two Dirac cones
separated by a twist-angle dependent wavevector 𝐾𝜃 ∼ sin(𝜃/2). When considering
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the interlayer tunneling term 𝐻tun, the band crossing points tend to open an energy
gap due to level repulsion. This term effectively energetically separates moiré bands
from the higher energy bands. This term couples operators from top and bottom
layers with offset momenta 𝒒ℓ, corresponding to the reciprocal lattice vectors of the
moiré lattice

𝐻tun =
∑︁
ℓ=1,2,3

∫
𝒌
𝜓
†
𝑡 (𝒌)𝑇ℓ𝜓𝑏 (𝒌 + 𝒒ℓ) + ℎ.𝑐., (1.20)

where

𝒒ℓ = 𝑘𝜃

(
− sin

[
2𝜋
3

(ℓ − 1)
]
�̂� + cos

[
2𝜋
3

(ℓ − 1)
]
�̂�

)
, 𝑘𝜃 =

4𝜋
3𝑎

2 sin(𝜃/2), (1.21)

and using 𝜎± = (𝜎𝑥 ± 𝑖𝜎𝑦)/2, we get

𝑇ℓ = 𝑤0 + 𝑤1

(
𝑒−2𝜋(ℓ−1)𝑖/3𝜎+ + 𝑒2𝜋𝑖(ℓ−1)/3𝜎−

)
. (1.22)

There are two coupling parameters 𝑤0 and 𝑤1, which correspond to interlayer
tunneling at AA and AB sites, respectively. The lattice relaxation of TBG at low
angles results in slightly larger AB-type regions and smaller AA-type regions [61], so
we have generally used 𝑤0 = 55 meV and 𝑤1 = 105 meV. The choice of parameters
results in a magic angle ∼ 1.1° and experimentally matches the gaps between moiré
bands and dispersive bands.

Eventually, we produce a large matrix

𝐻 =
∑︁
𝒌

Ψ†(𝒌)𝐻 (𝒌)Ψ(𝒌) (1.23)

where

𝐻 (𝒌) =
(
𝐻𝑡 (𝒌) 𝐻𝑡𝑢𝑛

𝐻
†
𝑡𝑢𝑛 𝐻𝑏 (𝒌)

)
. (1.24)

The diagonal portion of the theory for the top layer is

𝐻𝑡 (𝒌) = diag (ℎ𝑡 (𝒌 + 𝑮1), ℎ𝑡 (𝒌 + 𝑮2), ℎ𝑡 (𝒌 + 𝑮3), ...) . (1.25)

Here, {𝑮𝑛} is a set of 𝑁grid reciprocal lattice vectors chosen in a symmetric fashion.
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We shall take a look at the resulting band structure of twist bilayer graphene as a
function of twist angle (Fig. 1.6). At certain twist angles, the Fermi velocity becomes
zero, and the low-energy bands flatten considerably. The Fermi velocity can be
approximated based on the dimensionless ratios [59] 𝜂 = 𝑤0/𝑤1 and 𝛼 =

𝑤1
𝑣𝐹 𝑘 𝜃

, 𝑘𝐹
is the original Fermi velocity of monolayer graphene ∼ 106 m/s. The low-energy
continuum model Fermi velocity is approximately

𝑣cont =
1 − 3𝛼2

1 + 3𝛼2(1 + 𝜂2)
𝑣𝐹 . (1.26)

We see that to reduced the value 𝑣cont, 𝛼 needs to be optimized. Essentially, the
twist angle 𝜃 that reduces 𝑣cont is controlled by 𝑤1.

Figure 1.6: Continuum model of TBG band structure for twist angles above, around,
and below the magic angle, showing the flattest near the magic angle.

1.5 Flat electronic bands: Bernal bilayer graphene
It turns out that flat electronic bands are not far away; they naturally emerge from
crystalline graphene multilayers. We start with the simplest multilayer graphene,
Bernal bilayer graphene (BLG; Fig. 1.7a); the results can be generalized to rhom-
bohedral graphene multilayers.

Considering the low-energy continuum model commonly used to describe Bernal-
stacked bilayer graphene [62], a perpendicular displacement field 𝐷 from the top to
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Figure 1.7: Electronic band structure of Bernal bilayer graphene. (a) Crystal
structure of Bernal bilayer graphene. The sublattices on different layers are marked
out. (b),(c) Band structure of BLG at zero displacement field for large (b) and small
(c) energy ranges. (d) Band structure of BLG at a large finite 𝐷 field.

the bottom layer generates a potential difference 𝑢 = −𝑑⊥𝐷/𝜖BLG between the top
and bottom layers. Here 𝑑⊥ = 0.33 nm is the interlayer distance and 𝜖BLG ∼ 4.3 is
the relative permittivity of BLG. A continuum approximation of the band structure
returns a Hamiltonian of the form

𝐻0 =
∑︁
𝜉=±

∑︁
𝒌

𝜓
†
𝜉
(𝒌)ℎ0,𝜉 (𝒌)𝜓𝜉 (𝒌),

ℎ0,𝜉 (𝒌) =
©«
𝑢/2 𝑣0Π

† −𝑣4Π
† −𝑣3Π

𝑣0Π Δ′ + 𝑢/2 𝛾1 −𝑣4Π
†

−𝑣4Π 𝛾1 Δ′ − 𝑢/2 𝑣0Π
†

−𝑣3Π
† −𝑣4Π 𝑣0Π −𝑢/2

ª®®®®®¬
(1.27)

where Π = (𝜉𝑘𝑥 + 𝑖𝑘𝑦) and 𝑣𝑖 ≡
√

3𝑎
2 𝛾𝑖. Here, 𝜉 = ±1 indicates the valley that

has been expanded about: 𝑲, 𝑲′ = (𝜉4𝜋/3𝑎, 0) with 𝑎 = 0.246 nm the lattice
constant of monolayer graphene. The 4 × 4 matrix ℎ𝜉 (𝒌) is expressed in the
sublattice/layer basis corresponding to creation/annihilation operators of the form
𝜓𝜉 (𝒌) =

(
𝜓𝜉,𝐴1(𝒌), 𝜓𝜉,𝐵1(𝒌), 𝜓𝜉,𝐴2(𝒌), 𝜓𝜉,𝐵2(𝒌)

)𝑇 , where 𝐴/𝐵 indicate the sublat-
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tice, 1, 2 indicate the layer, and the momentum 𝒌 is measured relative to 𝑲𝜉 (indices
denoting the spin degrees of freedom have been suppressed). The values for the
parameters entering into Eq. (1.27) are 𝛾0 = 2.61 eV (intralayer nearest-neighbor
tunneling), 𝛾1 = 361 meV (leading interlayer tunneling), 𝛾3 = 283 meV (also known
as trigonal warping term), 𝛾4 = 138 meV, and Δ′ = 15 meV (potential difference
between dimer and non-dimer sites) [63].

In the absence of an applied displacement field and setting 𝑣3 = 𝑣4 = 0, the
conduction and bands touch quadratically at charge neutrality. Two remaining
bands are at significantly higher and lower energies (Fig. 1.7b); their wavefunctions
are dominated by the “dimer sites,” i.e., the A2 and B1 which sit immediately on
top of one another in the bilayer (Fig. 1.7a) and hybridize strongly through the
onsite tunneling parameter 𝛾1. Trigonal warping introduced by the 𝑣3, 𝑣4 associated
hoppings in Eq. (1.27) splits the quadratic band touching (Fig. 1.7c) at charge
neutrality into four distinct Dirac cones separated by van Hove singularities (vHs):
one Dirac cone remains at 𝒌 = 0, while the other three are located at 𝐶3-related
momenta slightly away from the Dirac point. Turning on a displacement field 𝐷, a
gap opens at charge neutrality and the vHs move apart in energy (Fig. 1.7d). Further,
by flattening the band bottom, the applied 𝐷 field also amplifies divergence of the
density of states (DOS) close to the vHs. The low-energy states near 𝑲 and 𝑲′

become strongly layer- and sublattice-polarized; e.g., on 𝐴1 sites for the valence
band and 𝐵2 sites for the conduction band, or vice versa for the other sign of 𝐷.
That is, the low-energy wavefunctions near charge neutrality and under a large 𝐷
field are strongly localized on the “non-dimer sites” of BLG.

1.6 Consequences of flat electronic bands: Stoner ferromagnetism
The above single-particle band structure calculations are great first glance of these
systems. However, flat electronic bands quench the kinetic energy of electrons,
making electron-electron interactions relevant. The interactions between electrons
of different spins or flavors prefer to polarize electrons to specific flavors, whereas
the polarization gains kinetic energy to the system. Eventually, when the band
structure is flat enough, the gain in kinetic energy will be lower than the saving
from the interactions. The system’s total potential is lowered; that is the key idea of
Stoner ferromagnetism.

We start with a Stoner model in the context of graphene flat bands [24, 64]. We
consider the grand potential per unit for graphene systems with four spin-valley
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flavors

ΦMF({𝜇𝛼})
𝐴

=
∑︁
𝛼

𝐸 (𝜇𝛼) +𝑉int − 𝜇
∑︁
𝛼

𝑛(𝜇𝛼). (1.28)

Here 𝐴 is area of the system; or for moiré graphene is number of moié site. Addition-
ally, 𝑛(𝜇𝛼) =

∫ 𝜖

0 𝜌(𝜖) 𝑑𝜖 is the density for a given flavor, 𝐸 (𝜇𝛼) =
∫ 𝜇𝛼

0 𝜖 𝜌(𝜖) 𝑑𝜖 is
the total kinetic energy of a given flavor, and 𝜌(𝜖) is the density of states. The term
𝑉int describes interaction between different flavors, which as a first approximation
takes SU(4) symmetric:

𝑉int =
𝑈

2

∑︁
𝛼≠𝛽

𝑛(𝜇𝛼)𝑛(𝜇𝛽) (1.29)

where 𝑈 is the interaction strength. At fixed total chemical potential, the system
would like to redistribution electrons to lower the total grand potential with respect
to flavor densities. 𝑛(𝜇) is determined by graphene flat band structure. The mini-
mization is in respective to individual flavor chemical potentials 𝜇𝛼 = 𝜇(𝑛𝛼). The
differential equation would reads:

𝜕𝐸

𝜕𝑛𝛼
+𝑈

∑︁
𝛼≠𝛽

𝑛𝛽 − 𝜇 = 0. (1.30)

Solving these four coupled equations gives 𝑛𝛼 (𝜇). We can then differentiate the
equation with respect to 𝜇 and sum over all four flavors, we obtained density of
states or compressibility:

𝑑𝑛

𝑑𝜇
=

�̄�

1 + �̄�𝑈
1
𝑎2 . (1.31)

Here �̄� =
∑
𝛼

𝜌𝛼
1−𝜌𝛼𝑈 and 1/𝜌𝛼 = 𝑑2𝐸/𝑑𝑛2

𝛼 is the inverse single-particle density of
states of flavor 𝛼. When 𝜌𝛼𝑈 = 1, �̄� diverges, corresponding to Stoner criterion.

We take twisted bilayer graphene as an example, shown in Fig. 1.8. Within the filling
factors of the moiré flat bands, instead of filling all four spin-valley flavors equally,
electrons in TBG prefer to filling certain flavors in comparison to other, simply to
reduced the total energy as discussed. At 𝜈 ≳ +1, flat band of one flavor is fully filled
while the other three remain to be filled (Fig. 1.8a); similarly at 𝜈 ≳ +2, flat bands
of two flavors are fully filled while the other two remain to be filled (Fig. 1.8b); so
on and so forth.
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Figure 1.8: Flavor symmetry breaking in moiré graphene flat bands. (a)-(d)
Configuration for flavor polarization at different filling factors; here twist bilayer
graphene as an example.

The consequence of flavor polarization is significant: at different filling factors, the
flavors form different spin-valley “magnets”, some of them break time-reversal sym-
metry, forming true orbital quantum anomalous Hall states. While the other preserve
time-reversal, the delicate ground states dictate the occurrence of superconductivity.

Further lowering the spin-valley symmetry

In reality, interactions in graphene systems do not have perfect SU(4) flavor sym-
metry; rather the symmetry are separate SU(2) symmetry of electron spin and U(1)
symmetry of the two valleys. Interactions may thus exist which introduce additional
scattering channels between the valleys, explicitly breaking the SU(4) symmetry.
One may modify the interaction potential to account for the symmetry breaking:

𝑉int =
𝑈

2

∑︁
𝛼≠𝛽

𝑛(𝜇𝛼)𝑛(𝜇𝛽) + 𝐽 (𝑛1 − 𝑛3) (𝑛2 − 𝑛4). (1.32)

Here, the number indices correspond to spin and valley configurations: 1 = {𝐾, ↑},
2 = {𝐾′, ↑}, 3 = {𝐾, ↓}, 4 = {𝐾′, ↓}. The sign of 𝐽 determines spin and valley
polarizations; 𝐽 < 0 so that the lowest energy two-fold states are spin polarized
and valley unpolarized, or other combinations that favor alternative polarized order.
The 𝐽 term here physically corresponds to a Hund’s rule type anisotropy. Since the
Stoner model calculation is performed on realistic band structure of graphene flat
band, the realized phases are highly dependent on the band structure parameters.
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The origin of above consideration regarding Stone physics and the detailed ad-
ditional symmetry-breaking are consequences of long- and short-range Coulomb
interactions. The screened Coulomb interaction is given by

𝐻c =
1
2

∑︁
𝛼,𝛽,𝑖, 𝑗

∫
𝑈 ( |𝒓 − 𝒓′|)𝜓†

𝑖𝛼
(𝒓)𝜓†

𝑖𝛽
(𝒓′)𝜓 𝑗 𝛽 (𝒓′)𝜓𝑖𝛼 (𝒓) 𝑑2𝑟𝑑2𝑟′ (1.33)

where 𝛼, 𝛽 = 1, ..., 4 runs over the spin and valley indices, and 𝑖, 𝑗 are sublattices
and layers. The interaction is taken to be𝑈 (𝑟) =

∫
𝑑2𝑞

(2𝜋)2𝑈 (𝑞)𝑒𝑖𝒒·𝒓 , where

𝑈 (𝑞) = 2𝜋𝑒2tanh(𝑞𝑑)
𝜖𝑞

(1.34)

corresponding to screening by metallic gates at a distance 𝑑 from the system. The
screened Coulomb potential is assumed to depend only on the local density of
electrons, and does not depend on any of the internal indices (such as spin and
valley). This type of interaction is expected to dominate when the average distance
between charge carriers is much larger than the inter-atomic spacing, and contributes
to the onset of Stoner physics, which is SU(4) symmetric in spin and valley space.

We need to consider interaction terms beyond the long-range Coulomb interaction.
Interactions at ranges of the order of a few lattice constants (either Coulombic or
phonon-mediated) can depend on the spin and valley indices of the electrons, which
give rise to specific types of flavor combinations. The short-range interactions here
(𝐽, etc.) are typically a fraction of the long-range𝑈, but as illustrated being crucial.

Additional perturbation will also changes the ground state of the system. One
famous example is twisted bilayer graphene aligned with hexagonal boron nitride.
The broken 𝐶2 symmetry changes the topological properties of the system and
enables intrinsic integer quantum anomalous Hall state [21, 22]. New explicit
symmetry breaking may have unprecedented effects on correlated phases. Our lab
advances the proximity of WSe2 to graphene flat bands and really alters the ground-
state nature, promoting and enhancing unconventional superconductivity. Below is
a brief introduction to spin-orbit coupling.

1.7 Spin-orbit coupling
Spin-orbit coupling (SOC) is an relativistic coupling interaction between electron
spin and its motions. An example of this phenomenon is the spin–orbit interac-
tion leading to shifts in an electron’s atomic energy levels, due to electromagnetic
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interaction between the electron’s magnetic dipole, its orbital motion, and the elec-
trostatic field of the charged nucleus. In solid states systems, spin-orbit interactions
cause more pronounced effect to the electronic band structure around the Fermi
level. One can think of SOC as a momentum-dependent effective magnetic field:
the energy level of previously degenerate two spins are split in energy, depending on
the specific momentum and the type of spin-orbit interactions. We briefly introduce
some common types of SOC that maybe relevant for our graphene systems.

Rashba SOC
Rashba SOC is a momentum-dependent splitting of spin bands in bulk crystals
and low-dimensional condensed matter systems, typically related to the inversion
symmetry breaking at the interfaces. The splitting is a combined effect of spin–orbit
interaction and asymmetry of the crystal potential, in particular in the direction
perpendicular to the two-dimensional plane. The Rashba SOC Hamiltonian takes
the form as following:

𝐻𝑅 = 𝛼(𝑧 × 𝒑) · 𝜎. (1.35)

Here, 𝛼 is the Rashba coupling strengh, 𝒑 is the momentum and 𝜎 is the Pauli
matrix; this is equivalent to two-dimensional version of Dirac Hamiltonian. In a
two-dimensional system, the momentum is in plane, and there is spin winding (that
is 90 degree rotation relative to the momentum direction) in the plane depending on
the momentum. The Rashba term prefers to pin spins in-plane and encodes in-plane
spin textures to the band structure (Fig. 1.9a,c).

In the case of graphene, due to the spin and valley degree of freedom, Rashba SOC
can be represented as

𝐻𝑅 =
𝜆𝑅

2
(𝜏𝑧𝜎𝑥𝑠𝑦 − 𝜎𝑦𝑠𝑥) (1.36)

with 𝜏𝑖 and 𝜎𝑖 being the Pauli matrices acting on the valley and sublattice degree of
freedom, and 𝜆𝑅 represents the characteristic energy splitting.

Kane-Mele SOC
Another type of SOC term called Kane-Mele SOC is intrinsic to graphene sys-
tem [65]

𝐻Kane−Mele =
𝜆𝐾𝑀

2
𝜏𝑧𝜎𝑧𝑠𝑧 . (1.37)
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Kane-Mele SOC is proposed to realized quantum spin Hall insulator in graphene
at an experimentally accessible low temperature [65]. However, the realization of
quantum spin-Hall insulator is quite difficult since it strongly depends on the effects
of temperature, chemical potential, Rashba SOC, disorder, and symmetry breaking
fields. Recent experiments in mono- and bi-layer graphene suggest that Kane-Mele
SOC falls somewhere in the range 40 to 80 𝜇eV [66–68]. The Kane-Mele term
is relatively small compared to other symmetry breaking fields, such as Rashba,
making it inaccessible to quantum spin Hall state up to now.

Ising SOC
The third type of spin-orbit coupling is call Ising SOC; typically absent in intrinsic
graphene. The term is important for TMDs. Considering monolayer TMD, the
in-plane mirror symmetry is broken and electrons can experience in-plane electric
fields. As a result, the SOC field has the form 𝑆(𝑘)𝜎𝑧 and it pins electron spins
to the out-of-plane directions, where 𝑆(𝑘) is a function that depends on the lattice
structure. It couples out-of-plane spins to valley degree of freedom:

𝐻Ising =
𝜆𝐼

2
𝜏𝑧𝑠𝑧 . (1.38)

The Ising SOC is also called valley Zeeman SOC since the spins in two valleys are
pinned out-of-plane directions and are splitted in a time-reversal fashion, i.e., as if
the two valleys experience magnetic fields of opposite directions (Fig. 1.9b,d).

Probing spin-orbit coupling
One direct evidence of spin-orbit interaction is angle-resolved photoemission spec-
troscopy (ARPES), which maps out the energy and momentum relation and visu-
alizes SOC energy splitting [69]. Famous examples include the discovery of topo-
logical insulator and the direct mapping of the spin textures coming from Rashba
SOC in the system [70–73]. Direct momentum-resolved spectroscopy, however,
requires large energy scale and a large enough sample for beam spots, both of which
are absent in vdW heterostructures. Therefore, one may figure out other sensing
methods for the small energy scale SOC in the system. Of course, even better to
figure out which types.

We shall start with the most commonly used electrical transport technique to identify
the existence of SOC. A well known transport signature that results from spin-
orbit coupling is the weak antilocalization (WAL) effect, manifesting as a distinct
conductance peak at low temperatures and around zero magnetic fields [74]. When
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Figure 1.9: Band structure with Rashba and Ising SOC. (a),(b) Energy and mo-
mentum relation for Rashba- (a) and Ising- (b) type spin-orbit interactions. (c),(d)
Constant energy contour showing the spin winding for the two cases.

electrical current flows in a material, electrons bounce randomly off defects in the
material. In materials with some amounts of defects and at low enough temperatures,
for the electrons to maintain phase coherence, an effect called weak localization
occurs. Electrons that travel in opposite paths (clockwise and counterclockwise),
returning to their origin, tend to constructively interfere (Fig. 1.10). Conductivity,
as a result suffers since it is favorable for electrons to return rather than traveling
through the material. The interference is jumbled, however, by a magnetic field,
resulting in a distinct conductivity dip at zero magnetic field.

In a system with spin–orbit coupling, the spin of electron is coupled to its momentum.
The spin of the carrier rotates as it goes around a self-intersecting path, and the
direction of this rotation is opposite for the two directions about the loop. Because
of this, the two paths along any loop interfere destructively which leads to a lower net
resistivity. The peak is generally on the order of ≲ 𝑒2/ℎ. However, the extraction of
type and the strength of SOC in the system is convoluted, see discussion in Chapter
3.

Alternatively, the SOC-induced spin splitting can be extracted from resonant mi-
crowave measurements [66–68]. Due to the relative low energy scale, GHz range
microwave photon is effective in triggering transitions (Fig. 1.11). The physics is
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Figure 1.10: A depiction showing two time-reversal paths of electrons. Weak
localization and weak anti-localization interference constructively and destructively.
Conductance forms dip and peak at zero magnetic field.

relatively simple. Similar to electron spin resonance, every spin-valley degree of
freedom has its associate spin and orbital moments. Opposite spins and valleys cou-
ple oppositely with magnetic fields. The movement of energy levels with magnetic
field follows:

𝐸 =
∑︁
𝑖

𝑚𝑖𝑔𝑖𝜇0𝐵. (1.39)

Here 𝑖 sums over spin and orbital (valley) index. By tracking the energy splitting as
a function of 𝐵 field, we can extract the corresponding 𝑔 factors. More importantly,
extrapolating to zero magnetic field gives the intrinsic energy splitting, which is
the SOC strength ΔSO. The related methods have been used to extract the intrinsic
Kane-Mele SOC in monolayer/bilayer graphene, yielding ∼ 50 𝜇eV [66–68].

In this dissertation, we focus on electrical transport measurements. In Chapter 3,
the weak antilocalization measurement is used to prove the existence of SOC in our
TBG-WSe2 heterostructure. In Chapters 5 and 6, Ising SOC is precisely quantified
by either counting the carrier imbalance between spin-splitted bands or by energy
crossing from the interplay between magnetic field and Ising SOC.

1.8 Unconventional superconductivity from reduced symmetries
The beauty of superconductivity never fades despite intensive studies over the past
100 years. Onnes first discovered superconductivity in mercury by cooling it to
liquid helium temperature [75]. The signature of zero resistance truly opens up a
new avenue in modern physics research. Other than sharp transition to zero resis-
tance by lowering the temperature, there are several other signatures including an
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Figure 1.11: A depiction showing spin-valley energy levels moving with magnetic
field. Microwave photon probes the transitions that can back track the SOC at zero
magnetic field.

energy gap of the coherent quantum state (observed by various spectroscopic tech-
niques), perfect diamagnetism (cancellation of magnetic fields in the superconductor
by screening current), and the macroscopic phase coherence (electrons condense
into one quantum state). Up to now, there are thousands of material discovered to
exhibit superconductivity, a lot of them fall into the category of conventional su-
perconductivity — a theory proposed by Bardeen, Cooper, and Schrieffer (BCS) in
1957 [76], providing a solid theoretical foundation for these fascinating experimental
signatures. Many conventional metals, including aluminum, lead, niobium, exhibit
superconductivity that is well described by BCS theory. However, the supercon-
ducting transition temperature is typically low, several Kelvin, well captured by the
temperature limit predicted by the BCS theory (∼ 30 − 40 K). More recently, some
unconventional superconductors such as high-temperature superconductors [77, 78]
and exotic-pairing mechanism/symmetry superconductors [79–82] are not in line
with the BCS phenomena. The understanding and discoveries of these unusual
pairing are at the heart of current condensed matter research, potentially leading to
practical applications.

Start with the BCS theory. At sufficiently low temperatures, electrons near the Fermi
surface become unstable against the formation of pairs, called Cooper pairs. The
binding will occur in the presence of an attractive potential, no matter how weak.
In conventional superconductors, an attraction is generally attributed to an electron-
lattice interaction, or electron-phonon coupling. An electron moving through a
conductor will attract nearby positive charges in the lattice. This deformation of the



22

lattice causes another electron, with opposite spin, to move into the region of higher
positive charge density. The two electrons then become correlated. The BCS theory
requires only the potential being attractive, regardless of its origin. In the BCS
framework, superconductivity is a macroscopic effect: there are a lot of electron
pairs that overlap strongly and form a collective condensate. The breaking of one
pair will change the energy of the entire condensate. Thus, the energy required to
break any single pair is related to the energy required to break all.

The BCS theory generally considers pairing between spin-up and spin-down elec-
trons and with an 𝑠-wave like isotropic pairing wavefunction. The superconducting
transition temperature 𝑇𝑐 is directly related to the density of states at the Fermi level
𝑁 (𝐸𝐹), and also related to electron-phonon coupling in the system, taking the form:

𝑘𝐵𝑇𝑐 = 1.134ℏ𝜔𝑐𝑒
− 1

𝑁 (𝐸𝐹 )𝑉 . (1.40)

𝑉 is the electron-phonon coupling potential and ℏ𝜔𝑐 is the Debye cutoff energy.
From the formula, it is clear that the onset of superconductivity is related to the
Debye cutoff frequency, determined by the material, and also by the density of
states. Eventually, the theory predicted an upper bound for the transition temperature
of conventional pairing, roughly 40 K. Additionally, for conventional pairing, the
superconducting gap is directly proportional to the transition temperature as [83]

Δ = 1.764𝑘𝐵𝑇𝑐 . (1.41)

The formula is under the assumption that superconducting pairing is at the weak-
coupling region, i.e., 𝑁 (𝐸𝐹)𝑉 ≪ 1 and also spin singlet.

Strongly coupled superconductor
It turns out that twisted bilayer graphene is a superconductor that is at the strongly
coupled regime. There are several quantities that are evidences of strong coupling.
The pairing coherence length from BCS theory is given by 𝜉 =

ℏ𝑣𝐹
𝜋Δ

(𝑣𝐹 is Fermi
velocity). It can be experimentally determined by transport measurement, tracking
the vortex depairing as a function of out-of-plane magnetic field, with an equation
derived from Ginzburg-Landau theory 𝑇𝑐/𝑇𝑐0 = 1 − (2𝜋𝜉2/Φ0)𝐵⊥, where Φ0 =

ℎ/2𝑒. Normally ,we measure superconducting transition temperature as a function
of 𝐵⊥. Empirically, higher the out-of-plane critical field is, smaller the coherence
length is.

Small coherence length in comparison to average carrier distance is a strong indi-
cation of strong coupling. In BCS limit, the Cooper pairs are coherent over long
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distances; the entire system forms a globe coherent order. When approaching the
strongly coupled regime, the Cooper pairs are tightly bounded locally, more like
molecules instead of long-range coherent waves. This limit is called Bose-Einstein
condensate (BEC) regime with large phase space of tightly bounded pairs [84].
There are some other signatures, for example, pre-formed Cooper pairs above 𝑇𝑐
without phase coherence, telling the BEC regime. The coupling strength can also be
estimated from a dimensionless constant Δ/𝐸𝐹 , or comparing 𝑇𝑐 to Fermi temepra-
ture 𝑇𝐹 . The comparison plot is called Uemura plots [85], as shown in Fig. 1.12.
At the right lower corner, we see some conventional BCS superconductors whose
critical temperature is much smaller than Fermi temperature. While we approaches
the opposite diagonal corner, we see more and more unconventional superconduc-
tors including cuprates and graphene moiré superlattices. There is an upper bound
for critical temperature at the BEC limit in the context of Fermi temperature, that is
𝑇𝑐/𝑇𝐹 ∼ 0.1 − 0.2, as marked by the dashed line in Fig. 1.12.

Figure 1.12: Uemura plot showing 𝑇𝑐 compared to 𝑇𝐹 across various superconduc-
tors. Reprinted from [16], with permission from the copyright holder, Springer
Nature.

Other than the strongly coupled nature, pairing symmetry is another characteristic
of unconventional pairing. We want to maintain the total Cooper pair wavefunc-
tions being odd under two-electron exchange due to the fermionic nature. The
total wavefunctions can be separated into spin and orbital configuration: spin sin-
glet configuration 1√

2
( |↑↓⟩ − |↓↑⟩) combines with even parity wavefunctions (𝑠-

and 𝑑-wave; Fig. 1.13a and c) while spin triplet configuration (|↑↑⟩, |↓↓⟩, and
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Figure 1.13: Superconducting pairing wavefunctions showing 𝑠-wave (a), 𝑝-wave
(b), and 𝑑-wave (c).

1√
2
( |↑↓⟩+ |↓↑⟩)) combines with odd parity wavefunctions (𝑝-wave; Fig. 1.13b). Most

well-known superconductors are spin-singlet isotropic 𝑠-wave pairing, i.e., same
sign and momentum-independent gap equation. The overall phenomena are well-
understood. Unconventional pairing here has anisotropic momentum-dependent
wavefunctions, accompanied by sign changes and gapless spectrum. Fully map-
ping out the momentum-dependent gap information is at the heart of understanding
unconventional superconductors and has been quite challenging. Here are two
important examples of unconventional pairing with anisotropic symmetry.

High-temperature superconductor: 𝑑-wave pairing

Figure 1.14: Unconventional pairing in high-temperature superconductor. (a) Tem-
perature versus hole doping level for the copper oxides, indicating where various
phases occur. (b) Superconducting gap and pseudogap amplitude in momentum
space. Reprinted from Ref. [77], with permission from the copyright holder,
Springer Nature.
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The discovery of high-temperature superconductivity in the copper oxide perovskite
La2−𝑥Ba𝑥CuO4 [86] ranks among the major scientific events in modern condensed
matter physics. The main reasoning is that the critical temperature of high-𝑇𝑐 far
exceeds the BCS limit, reaching ∼ 100 K for the famous YBaCuO. The physics of
high-𝑇𝑐 is extremely rich; Fig. 1.14a shows a hole doping versus temperature phase
diagram with a plethora of quantum phases. Zero-doping range is an antiferromag-
netic Mott insulator coming from strong Coulomb repulsion. Slightly hole-doping
onsets the high-temperature superconductivity. Within the superconducting phase,
there is coexistence of spin orders, change orders, etc., depending on the filling
factors. Above the superconducting transition temperature, even more confusing
psudogap and strange metal behavior persist. The competition and incorporation
between various orders make it extreme hard to conclude every details of the phase
diagram.

Nevertheless, given the relatively high temperature scale, the 𝑑-wave pairing sym-
metry (Fig. 1.14b) in high 𝑇𝑐 is the most successfully identified unconventional
pairing. Phase-sensitive measurement [87] identified the sign change; ARPES [88]
and scanning tunneling spectroscopy identify the rotational symmetry as well as the
nodal and antinodal regions.

An intuitive understanding of the pairing mechanism is by approaching the prob-
lem from an unrealistic weak-coupling perspective [89]. For the case of repulsive
interactions, if two-particle vertex function Γ(𝒌) is 𝒌-dependent, a sign-changing
superconducting order parameter (where Δ(𝒌) and Δ(𝒌 + 𝒒) have opposite sign)
results for which interactions involving small momentum transfer are pair breaking,
and those with large momentum transfer near 𝒒 promote pairing. In particular, if
there are antiferromagnetic correlations, this typically implies a peak in Γ at the
antiferromagnetic ordering vector, 𝒒 = 𝒒AF, which is also an ideal vector for scat-
tering between ‘antinodal’ regions of the Fermi surface of the copper oxides shown
in Fig. 1.14. The gap ‘nodes’ along the diagonals of the Brillouin zone are then, in
turn, where the 𝑑-wave gap vanishes.

The above argument suggests that the antiferromagnetic correlation is directly related
to the anisotropic 𝑑-wave like pairing symmetry. However, there remains puzzles
that obscure the full understanding of the high temperature mechanism. Future
efforts may help to fully uncover the mysteries and to push the limit for critical
temperature.
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Spinless 𝑝-wave pairing
Another kind of unconventional pairing is 𝑝-wave pairing, specifically 1D spinless
𝑝-wave superconductor or 2D 𝑝𝑥 ± 𝑖𝑝𝑦 superconductor; or so called topological
superconductivity. The occurrence of such kind of pairing requires the reduction
of symmetry, where spin-orbit coupling can be quite useful. Let us see why such
𝑝-wave pairing is interesting.

Topological superconductivity is interesting because of its quasiparticles Majorana
fermions. Majorana quasiparticles are their own anti-particles, featuring special ex-
change statistics. They are non-abelian anyons [90], meaning that particle exchanges
are nontrivial operations which in general do not commute. Note that any fermions
can be written as a combination of two Majorana quasiparticles and the exchange of
two spatially separated Majoranas lead to the idea of decoherence invariant quantum
computation [91].Thinking of the particle being its own anti-particle means that the
quasiparticle is an equal superpostion of an electron and a hole. It naturally comes
to the excitation in superconducting systems, Boguliubov quasiparticles.

We start by introducing a simple Hamiltonian, describing a spinless 𝑝-wave super-
conductor. It is most intuitive to start from a 1D tight-binding chain (Fig. 1.15a)
with 𝑝-wave superconducting pairing, as first introduced by Kitaev [92, 93]:

𝐻chain = −𝜇
𝑁∑︁
𝑖=1

𝑛𝑖 −
𝑁−1∑︁
𝑖=1

(
𝑡𝑐

†
𝑖
𝑐𝑖+1 + Δ𝑐𝑖𝑐𝑖+1 + ℎ.𝑐.

)
(1.42)

where ℎ.𝑐. means hermitian conjugate, 𝜇 is the chemical potential, 𝑐𝑖 is the electron
annihilation operator for site 𝑖 and 𝑛𝑖 = 𝑐†𝑖 𝑐𝑖 is the number operator. The supercon-
ducting gap Δ and hopping 𝑡 are assumed to be the same for all sites. Note that
time-reversal symmetry is broken since we only consider one spin projection, i.e.,
effectively spinless. The spinless effectively guarantees that wavefunction being
odd parity, 𝑝-wave naturally.

Each fermion operator can be written as the combination of two Majorana operators
at real and imaginary part:

𝑐𝑖 =
1
2
(𝛾𝑖,1 + 𝑖𝛾𝑖,2), (1.43)

𝑐
†
𝑖
=

1
2
(𝛾𝑖,1 − 𝑖𝛾𝑖,2). (1.44)
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We shall consider the simplest case 𝜇 = 0 and 𝑡 = Δ, the Hamiltonian results in

𝐻chain = −𝑖𝑡
𝑁−1∑︁
𝑖=1

𝛾𝑖,2𝛾𝑖+1,1. (1.45)

However, the Majorana operators 𝛾𝑁,2 and 𝛾1,1, which are localized at the two ends
of the wire, are completely missing from Eq, 1.45. These two Majorana operators
can equivalently be described by a single fermionic state with operator

𝑐𝑀 = (𝛾𝑁,2 + 𝑖𝛾1,1)/2. (1.46)

This is a highly non-local state since 𝛾𝑁,2 and 𝛾1,1 are localized on opposite ends of
the chain. Furthermore, since this fermion operator is absent from the Hamiltonian,
occupying the corresponding state requires zero energy. Similarly, in a 2D 𝑝𝑥 ± 𝑖𝑝𝑦-
wave superconductor, Majoranas appear in vortices in the superconducting pairing
potential [94]. The magic of Majorana quasiparticle is the braiding statistics; as

Figure 1.15: Spinless 𝑝-wave pairing. (a) Sketch of Kitaev’s 1D 𝑝-wave supercon-
ducting tight binding chain [93]. (b) Braiding two pairs of Majorana quasiparticles.

illustrated in Fig. 1.15b. Note the braiding that involves Majoranas from different
fermions, produces a superposition state of different number states. However, the
total parity of each state in the superposition must be the same. Also whenever two
exchanges involve some of the same Majoranas, the braid operators do not commute
[𝐵𝑖−1,𝑖, 𝐵𝑖,𝑖+1] = 𝛾𝑖−1𝛾𝑖+1.

The advantage of Majorana-based qubits is encoding the quantum information in
delocalized fermionic states. Therefore, they are expected to be robust against
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most sources of decoherence which do not couple simultaneously to more than one
Majorana mode, i.e., decoherence requires perturbations of the form 𝛾𝑖𝛾 𝑗 , which
are suppressed when Majorana 𝑖 and 𝑗 are spatially separated.

Intrinsic or natural spinless 𝑝-wave pairing/𝑝𝑥 ± 𝑖𝑝𝑦 pairing is rare. In the context
of superconductor, spin-triplet pairing is one of the promising routes. The spins
pair along the same direction, therefore Zeeman field will not flip the spins to break
superconductivity, unlike the spin-singlet case. Typically, large Pauli-limit violation
is a strong indication of triplet pairing. However, to get the superconductivity that
is truly topologically protected, additional constraints on pairing components are
required. The definite evidence of intrinsic topological superconductivity is still an
ongoing effort in condensed matter physics. Another important system is fractional
quantum Hall states, where the even denominator fractional quantum Hall states are
theoretical predicted to conducive to 𝑝-wave pairing hosting putative non-abelian
anyons [94–96]. Further experimental efforts are needed for the demonstration of
non-abelian statistics.

Can we realize Majorana quasiparticles, i.e., get spinless fermions, in an alternative
more engineering approach? When spin degree of freedom is locked with momen-
tum degree of freedom, it is spinless by definition since spin is not an independent
quantum number. It naturally comes to the importance of spin-orbit coupling. To
get a single band with lowest symmetries, we consider an 1D nanowire Hamiltonian
with Rashba SOC and in-plane magnetic field [93]:

𝐻0(𝑥) =
𝑘2
𝑥

2𝑚
− 𝜇 + �̃�𝑘𝑥𝜎𝑦 +

1
2
�̃�𝜎𝑧, (1.47)

where we take ℏ = 1, �̃� = 𝛼𝐸⊥, with 𝐸⊥ being the electric field perpendicular
to the wire direction, is the strength of the Rashba spin-orbit field and �̃� = 𝑔𝜇𝐵𝐵

is the Zeeman field. The schematics for eigenstates of Eq. 1.47 are shown in
Fig. 1.16. Rashba SOC lifts the spin degeneracy, shifting the bands along 𝑘 direction
(Fig. 1.16a). However, at any given energy there is still spin degeneracy since time-
reversal symmetry is not broken. Switching on a small in-plane magnetic field
(Fig. 1.16b), the crossing at zero momentum turns into an anti-crossing. The
Hamiltonian results in:

𝐸±(𝑘𝑥) =
𝑘2
𝑥

2𝑚
− 𝜇 ±

√︃
(�̃�𝑘𝑥)2 + �̃�2. (1.48)

Inside the gap, there is only one effective spin direction (dashed lines in Fig. 1.16).
Therefore, if 𝜇 is placed inside the gap, spinless superconductivity can be induced
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Figure 1.16: Rashba SOC + 𝐵∥ + superconductivity. (a) 1D parabolic bands
with Rashba SOC. (b) With Rashba SOC and in-plane magnetic field. (c) Further
increasing in-plane magnetic field. (d) Inducing superconductivity.

by the proximity effect. A larger magnetic field increases the gap size (Fig. 1.16c).
Next we switch on also the proximity-induced superconducting pairing Δ > 0 in
Fig. 1.16d. The topological region is achieved by fine tuning the strength of all three
quantities: the criteria for topological superconductivity is given by

|�̃� | >
√︃
Δ2 + 𝜇2. (1.49)

Ising superconductivity
For conventional 2D superconductors, the orbital depairing is strongly suppressed,
and the critical in-plane magnetic field is known as the Pauli limit. At the critical
field, spin Zeeman energy is comparable to the superconductivity gap and therefore
destroys superconductivity. For weak-coupling spin-singlet BCS superconductor,
in-plane critical field is related to 𝑇𝑐 as:

𝐵p = 1.86T K−1 × 𝑇0
𝑐 . (1.50)

One way to break the Pauli limit is spin-triplet pairing (pairing spins are aligned in
the same direction); as discussed in the previous section. Here, we introduce the
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Ising superconductivity, where superconductivity is strongly modified by the Ising
SOC, also promotes strong violation of the Pauli limit.

Ising superconductivity stems from the fact that the bands in certain 2D materials
are spin splitted and polarized in the out-of-plane 𝑧 direction (Fig. 1.9b). This type
of band structure comes from two symmetry requirements: (𝑖) the material should
be inversion asymmetric since inversion symmetry combined with time reversal
symmetry ensures that every band is spin degenerate; (𝑖𝑖) the material respects
the out-of-plane mirror symmetry 𝑀𝑧, which forbids the existence of in-plane spin
polarization. Alternatively, such symmetry requirements can be understood from
the SOC Hamiltonian 𝐻SOC ∝ 𝑬 × 𝒑 · 𝒔, where 𝑬 is the internal electric field of
the crystal, 𝒑 is the momentum of electron, and 𝒔 is the spin of electron. The
𝑀𝑧 symmetry of the 2D material guarantees that the internal electric field 𝑬 lies
in-plane. Since the electron momentum p is also confined in the same plane, it is
deduced that 𝐻SOC ∝ 𝑠𝑧, polarizing electron spins to the out-of-plane direction, or
so called Ising SOC [97–99].

Ising SOC reduces the effects of in-plane Zeeman fields on the band structure.
Since the in-plane 𝑠𝑥 and 𝑠𝑦 components are zero, the first-order energy shift by
in-plane field vanishes, i.e., the band structure with Ising SOC is protected against
in-plane Zeeman fields. Alternatively, the spin splittings due to Ising SOC can be
viewed as built-in out-of-plane Zeeman fields which compete with external in-plane
Zeeman fields. Since the first-order shift vanishes, the band energyshift 𝛿𝐸𝑍 ∥ due
to the external in-plane Zeeman field comes from the second-order (and higher
order) effects, which scales as 𝛿𝐸𝑍 ∥ ∝ (𝑔𝜇𝐵𝐵)2/Δising, with Δising being the band
splitting induced by Ising SOC. The Zeeman energy for 10 T magnetic field is
roughly 1 meV, dwarfed by the intrinsic ising SOC in certain 2D materials. Such
protection of superconductivity by Ising SOC against in-plane field is called Ising
superconductivity.

The two symmetry requirements are satisfied by transition metal dichalcogenides
(TMDs) monolayers, such as MoS2 and NbSe2 (Fig. 1.17c): monolayer is inversion
asymmetric and has an out-of-plane mirror symmetry. The band edges of both
valence bands and conduction bands are located at the corners of the Brillouin zone,
𝐾 and 𝐾′ valleys. Superconductivity exists in TMDs like intrinsic NbSe2, TaS2

and ionic gated MoS2. When they are isolated to monolayer limit and at the layer
decoupled limit, the superconductivity is consistent with Ising pairing [9, 100, 101].
Fig. 1.17b shows the experimental data of in-plane critical field 𝐵𝑐2∥ as a function
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Figure 1.17: Ising superconductivity. (a) Ising SOC band splitting. (b) Ising
pairing across 𝐾 and 𝐾′ valley. (c) Side view and top view of monolayer transition
metal dichalcogenides. (d) In-plane field dependence of Ising superconductivity
showing Pauli-limited violation. Reprinted from Ref. [100], with permission from
The American Association for the Advancement of Science.

of the temperature for gated MoS2 thin films. For different devices, 𝐵𝑐2∥ all exceeds
the Pauli limit just slightly below 𝑇𝑐. The Pauli-limit violation ratio exceeds six
at lowest temperature of certain parameters. The eventual in-plane critical field is
complicated by other parameters, such as Rashba SOC, spin-orbit scattering, etc.,
depending on system details.

Normally, superconducting states are either classified as singlet or triplet depending
on whether the total spin quantum number of the Cooper pair is 0 or 1. One
interesting consequence of the Ising superconductivity in the single monolayer
TMDs is that the superconducting state is neither singlet nor triplet but a combination
of singlet and triplet. The probability amplitude of the Cooper pair to be in a
state |𝐾 ↑;𝐾′ ↓⟩ differs for the corresponding amplitude for the state |𝐾 ↓;𝐾′ ↑⟩.
Alternatively, the parity-even singlets |Ψ𝑠⟩ ∝ |𝐾 ↑;𝐾′ ↓⟩−|𝐾 ↓;𝐾′ ↑⟩ and parity-odd
triplets |Ψ𝑡⟩ ∝ |𝐾 ↑;𝐾′ ↓⟩ + |𝐾 ↓;𝐾′ ↑⟩ coexist [102, 103]. Additionally, because
of the strong resilience to in-plane magnetic field, the in-plane field may introduce
extra field-induced triplet pairing channel as |Ψ𝑡𝐵∥ ⟩ ∝ |𝐾 ↑;𝐾′ ↑⟩ + |𝐾 ↓;𝐾′ ↓⟩ that
couples to the singlet states |Ψ𝑠⟩ [104–106]. Experimental progress [107] is working
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toward the identification of different pairing channels and hopefully the evolution
as a function of magnetic field.
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C h a p t e r 2

DEVICE DESIGN AND CHARACTERIZATION

The dissertation largely depends on the electrical transport techniques and ther-
modynamic measurements of graphene vdW heterostructures. Electrical transport
measurement by itself is straightforward. To get the most informative details about
correlated electrons, however, we need (𝑖) on-demand design of 2D materials het-
erostructure and (𝑖𝑖) careful measurement scheme at the lowest electron temperature.
This chapter will go through details regarding vdW heterostructure fabrication, both
moiré and crystalline cases, from exfoliation to flake transfer and cleanroom pro-
tocols. Second, a brief overview of our Oxford Triton dilution refrigerator, details
regarding sensitive electrical measurements and beyond.

2.1 2D materials exfoliation
We are investigating graphene multilayers with proximitized spin-orbit coupling.
The structure is composed of graphene or graphite, hexagonal boron nitride, and
WSe2. Graphene multilayers are the main object. TMD materials adjacent to
graphene induce SOC. Hexagonal boron nitride, also called white graphene, is a
perfect dielectric material. We follow the conventional exfoliation method by scotch
tape to get monolayer crystalline 2D crystals.

We start with some general principles for crystal exfoliation and then go to details
for each type of materials. Apply the desired crystals to scotch tape or blue tape.
Fold the left half of the tape with the right part to scatter bulk crystal around. While
scattering around, the main idea is to have the large big chunk of crystal spread
evenly, thinly (but also not too thin) over the whole tape area. If the spread is
not even, then the tape is not even thickness, which will result in gaps forming air
bubbles when attached to SiO2 surface. If the spread is too thick, there will be less
sticky tape surface exposed, which will make the adhesion to SiO2 surface weak. If
the spread is too thin, the tape is too sticky and overall the bulk materials on tape
are scattered into small pieces, resulting in really tiny flakes.
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Figure 2.1: Exfoliation tapes. Different tapes with bulk crystals of graphite (a),
hBN (b), and WSe2(c).

Graphene and graphite exfoliation

1. Clean up the SiO2/Si chip, dice the whole wafer into small pieces, roughly 2cm
× 2cm for graphene exfoliation. Prepare roughly 15 chips of the same size.
Blow away the small dusts by nitrogen gun. Pre-clean the plasma chamber
with O2 plasma for 10 minutes. Put four to five chips into the plasma chamber
and then clean them with power of 100W, flow rate is 15 cc/min, and the outlet
gauge of the regulator reads 15 ± 5 psi.

2. Prepare a scotch tape that is roughly 15-20 cm long (Fig. 2.1a); fold the two
ends to form two small handles; remember to keep the tape surface clean.
Select a good bulk graphite crystal from the bag. The principle is that the
surface of the bulk graphite being large, flat, and smooth, both sides. Put the
bulk crystal on one end of the scotch tape and fold the tape to overlap the other
end. Have the bulk graphite surface scatters over several areas, not the whole
tape surface.

3. Remove the remaining bulk crystal if it is too thick. With those several flat
areas of graphite on the tape, overlap the two sides of the tape two or three
times to have most area of the tape covered by graphite. Selectively cover
the empty area with thicker graphite area, just to have the whole tape being
uniform with thin flat graphite area (see circled areas in Fig. 2.1a). The best
is to have some grey semi-transparent graphite, they are sticky yet big as a
whole, flat, and thin. If the tape is still too thick, prepare a son tape of the
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same length and overlap with the mother tape. Repeat until the thickness of
graphite on the tape is ideal.

4. The surface with graphite up, fix the scotch tape on the table at the two ends by
additional scotch tapes. Take out the plasma-cleaned chip immediately. With
the SiO2 surface down, put the chips onto the good areas. The good areas are
those grey, semi-transparent, thin, flat area. Have Kimwipes wrapping around
by thumb, press down the chips as hard as one can. Flip the whole tape with
chips down. Put extra tapes on top of the areas with chips, fix the chips on
the table tightly by the extra tapes. Press down the chips as hard as one can.
Repeat the same for all the chips. Have heavy books on top of the tape and
chips to firm the contact between tape and chips. Wait for 15 to 30 minutes.

5. Heat up the hot plate and set it to 110°C. Remove the books and use a razor
blade to cut the graphite scotch tape. Gently remove the tape from the table.
During the removal, keep the firm adhesion between chips and tape. Put the
tape on hot plate. Wipe down the tape with Kimwipe to ensure flat surface of
tape on hot plate; mainly to remove bubbles at the interface between tape and
chips. Heat the tape for 5 minutes.

6. Remove the tape from the hot plates and wait for 5 minutes to cool down.
Slowly and gently remove the chips from the tape.

hBN exfoliation

1. Clean up the SiO2/Si chip, dice the whole wafer into small pieces, roughly
2cm × 2cm for hBN exfoliation. Prepare roughly 16 chips of the same size.
Blow away the small dusts by nitrogen gun. Put the chips on hot plate to heat
at 500°C for an hour or longer.

2. Prepare a narrow blue tape that is roughly 15 cm long (Fig. 2.1b); fold the
two ends to form two small handles; remember to keep the tape surface clean.
Select three or four hBN bulk crystals from Japan and align them in a line;
again keep them flat. Put these crystals at the position roughly one fourth of
the tape length and fold the tape to overlap the other end. Have the bulk hBN
scatters along one line that is perpendicular to the tape length direction, the
length of the bulk hBN line should be roughly the width of SiO2 chips.

3. Then scatter the hBN line along the direction of the tape length. Fold the
tape so that forming two areas at two sides of the blue tape that are roughly
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the same area of the SiO2/Si chips. Then align the two hBN areas, fold and
separate for three times to make hBN denser in the two areas. The two areas
are now the two mother tapes. Cut the tape into half.

4. The two blue tapes are now mother tape. Prepare some scotch tapes that are
the same length as the two mother tapes. Overlap with the mother tapes and
remove so that there are hBN bulk crystal on the son scotch tape.

5. Remove one chip from the hot plate and put on the table for cooling 10
seconds. Put the son scotch tape over the clean chip. Scratch the surface with
soft-tip tweezers to form good contact and also remove all the air in between
the interface. Scratch for three times. Finally, remove the scotch tape as slow
as possible.

6. Each mother tape can be peeled for seven or eight times by scotch tapes. Each
time the yield of hBN has different thicknesses. The later ones overall have
thinner thickness.

WSe2 exfoliation

1. Clean up the SiO2/Si chip, dice two long pieces, each has the width of scotch
tape and the length that is twice the width. Blow away the small dusts by
nitrogen gun. Pre-clean the plasma chamber with O2 plasma for 10 minutes.
Put one long chip at a time into the plasma chamber and then clean it with
power of 100W, flow rate is 15 cc/min, and the outlet gauge of the regulator
reads 15 ± 5 psi.

2. We prepare one scotch tape that is the same length as the chip (Fig. 2.1c). Fold
the two ends to form two small handles; remember to keep the tape surface
clean. Select a good large flat shining WSe2 crystal (from HQ graphene)
from our glovebox. The commercial ones are quite big with diameter being
roughly 1 cm and surface being shining and flat. Put the bulk crystal on the
tape. Similar to graphene, have some relatively thick layers spread over the
scotch tape.

3. Remove the remaining bulk crystal. With those several flat areas of WSe2

bulk on the tape, selectively cover the empty area with thick WSe2 area, just
to have the whole tape being uniform with thin flat WSe2 bulk. After being
uniform, attach another scotch tape that is the same size as the previous one,
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overlap them to have two tapes with equal amount of WSe2 flakes. The best is
to have grey semi-transparent WSe2 bulk; they are sticky yet big as a whole,
flat, and thin. If the tape is still too thick, prepare a son tape of the same length
and overlap with the mother tape. Repeat until the thickness on the tape is
ideal.

4. Take out the plasma-cleaned chip immediately. Put the chip onto a glass slide.
Align the scotch tape with substrate and put it down. similar to hBN, scratch
the surface with a soft-tip tweezers to remove all the air bubbles in between.
Scratch for three times or so; sometimes can press down with thumb.

5. Heat up the hot plate and set it to 110°C. Put the tape together with glass slides
on the hot plate. Wipe down the tape with Kimwipe to ensure flat surface of
tape on hot plate; mainly to remove bubbles at the interface between tape and
chips. Heat the tape for 5 minutes.

6. Remove the tape from the hot plates and wait for 5 minutes to cool down.
Slowly and gently remove the chips from the tape.

Inspect the flakes under the microscope. Some typical images of graphene, graphite,
hBN, and WSe2 are shown in Fig. 2.2. For the microscope in Nadj-Perge lab and SiO2

thickness being 300nm, monolayer graphene would look purple. Thicker graphene
layers look more dark purple. One can identify the thickness through RGB contrast
relative to the bare SiO2. The red scales linearly with thickness. Similarly, WSe2

thickness linearly scales in red or blue. We typically do not need monolayer hBN.
The color of hBN follows: thinnest (10nm or so) are blue, then blue green for 10-20
nm, then green 20-30 nm, green yellow for 30-40 nm, and yellow for more than
40 nm, then to dark yellow. Typically we use hBN that is below 60 nm or so.
For the identification of rhombohedral versus Bernal-stacked graphene multilayers,
optical images solely are not enough. We identify the stacking order by Raman
spectroscopy [108–111]. There are two Raman peaks that are mostly relevant for
graphene multilayers. One of them is at around 1580 cm−1, usually named the
“G-band”. The other is at around 2750 cm−1, named “G-band” or “2D-band”. The
2D-band is the most relevant for us. It is a second-order process that is contributed
by a combination of the transverse optical mode and an inter-valley scattering. The
2D-band contains multiple peaks that have similar energy. In multilayer graphene,
the relative intensity of these peaks is affected by the stacking order. To identify
these domains, a spatial map of the Raman spectrum is necessary. The peak width
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Figure 2.2: Different 2D materials flakes. Optical images of graphene multilayers
(a), thick (top) and thin (bottom) hBN (b), and WSe2 layers (c).

of the 2D band is extracted for each point, and the corresponding width map is
shown in Fig. 2.3b. The brighter part corresponds to the rhombohedral area with
larger width and is later separated by atomic force microscope (AFM) cutting.

Figure 2.3: Raman spectroscpy mapping of trilayer graphene. (a) An optical image
of trilayer graphene multilayers. (b) Raman spectroscpy 2D peak width mapping of
the trilayer graphene area. The rhombohedral (ABC-) trilayer area has a wider 2D
Raman peak in comparison to the Bernal (ABA-) stacked area.
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2.2 Van der Waals heterostructure assembly
Dry transfer polymer preparation

Figure 2.4: PC/PDMS stamps. Optical images of PC/PDMS stamps. From left to
right are PC on flat PDMS stamp, PC on domed PDMS stamp, and also polypropy-
lene carbonate (PPC) on domed PDMS stamp.

To manipulate flakes, we want a supporting structure that can pick up different 2D
materials one by one. Empirically, the first layer of 2D materials to be picked is
hBN, which can serve as both dielectric and supporting layer. The polymer pickup
technique requires a polymer that will reliably pick up the first hBN flake (soft, sticky
to hBN) but will melt at reasonable low temperatures. A thin film of poly(bisphenol
A carbonate) (PC) is supported by polydimethylsiloxane (PDMS) on a glass slide;
see Fig. 2.4. The PDMS is homemade, simply mixing the A and B parts (Sylgard
184 silicone elastomer kit) together with a weight ratio 10:1; typically weight is
3g:0.3g in an one-time petri dish. Mix them together evenly for 5 minutes and let
them dry overnight, typically resulting in a thickness ∼1mm or so. A PC thin film is
produced by dissolving the polymer into a solvent, such as chloroform until forms a
viscous liquid (weight ratio is 6%). The PC/PDMS slides assembly is as following:

1. Clean a glass slide with acetone and Isopropyl alcohol (IPA), blow dry with a
nitrogen gun. Cut a small piece of PDMS with diameter 2mm×3mm and put
it on the glass slide. Punch a hole on double-side tape and put the double side
tape around the PDMS.

2. Prepare two clean glass slides. Put several droplets of PC/chloroform solvent
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onto one of them, slipping another slide across the first slide, and letting the
two slides dry; PC forms a dry thin film.

3. Punch a hole through a scotch tape and put the tape on the glass slide with PC
film. Cut the edges of scotch tape with razor blade so that when removing the
scotch tape, PC films can be picked. Put the scotch tape supporting PC on the
PDMS piece. Press hard around the edge of PC so that it is fixed well onto
double side tape; stretching the PC over the PDMS stamp.

4. After a curing step at 104° C for 9 minutes and wait for half a day or so, we
can use the polymer stamp to pick up the hBN flake.

Figure 2.5: A transfer setup used to make van der Waals heterostructure stacks.

The degrees of freedom required for the assembly are: x-, y-, and z-axis control of the
substrate relative to the polymer stamp slide, independent tuning of the microscope
focus, accurate twist control of the substrate, and (optional but convenient) x- and
y-axis control of the polymer stamp slide. The substrate holder also needs to have
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temperature control up to 180°C. We used a commercially produced transfer stage
(HQ Graphene), shown in Fig. 2.5. By clapping the glass slide, the slide forms
a small tilted angle relative to the substrate holder. When approaching the slide
to the substrate, a small touching point touches first. By further approaching,
the interface between PC and substrate moves. The polymer stamp is used to
subsequently pick up the top hBN (sometimes also top graphite gates and extra top
hBN for dielectric), followed by monolayer WSe2, the two twisted graphene flakes
(or multilayer crystalline graphene flakes), and a bottom hBN flake (30–70 nm thick
to avoid over-etching in further steps) and then back graphite gates depending on
the structure; as shown in Fig. 2.6. As the polymer stamp is lowered over each van
der Waals flake, the polymer contact to the substrate forms a line that propagates as
the polymer stamp is raised or lowered. When the line propagates across the flake
and then retracts, the flake is picked up and added to the stack that adheres to the
bottom of the polymer stamp. Here are the temperatures and other details regarding
different heterostructure transferring:

Moiré graphene transfer procedures

1. Picking up top hBN: glass slide approaches the substrate surface at 30°C.
Increase the temperature to 80°C while keep retracting the interface (due to
thermal expansion) to keep the interface at the same position. Stable the
temperature at 80°C and retract glass slide slowly with hand.

2. WSe2 picking up: set the stage temperature at 40°C and approach, raise the
temperature to 80°C and retract with hand.

3. Picking up graphene: set the temperature stable at 40-50°C, approach with
hand or slightly increase the temperature. For TBG, first the top flake of
graphene is picked up. Then the substrate is rotated to about 1.1-1.3° (over-
shooting the target angle slightly to allow for relaxation), and the second flake
is picked up at the same temperature with the same procedure.

4. Bottom hBN approaches at 40°C. Likely, there are air bubbles or dirty blisters
trapped in between during the encapsulation procedure. Increase temperature
to 90°C. Sometimes the bubbles may spontaneously be pushed away during
the process, resulting in clean moiré area. Do not aggressively move bubbles
since it may likely mess up the angle.
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Figure 2.6: Dry flake transfer process with PC/PDMS stamp. (a)–(e), Critical steps
in the stacking process. (f) Optical images of a typical flake and stacks at different
stages of the fabrication.

5. Finally, to complete the stacking, the stamp containing the finished stamp
is lowered onto a substrate, a doped Si/SiO2 chip pre-patterned with Au
lithography markers for optically designing devices and with a Au gate (2nm
Ti/20nm Au). While lower the stack onto the substrate, the temperature is
set to 150°C. Then, the temperature is raised to 170°C to melt the PC, and
the stamp is lifted. Leftover polymer residue can be removed in a 10-minute
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Nmethyl-2-pyrrolidinone (NMP) bath, 10-minute Acetone bath and 10-minute
Isopropyl alcohol (IPA) bath.

BLG-WSe2 flake transfer procedures

1. Picking up top hBN: glass slide approaches the substrate surface at 40-50°C.
Increase the temperature to 80°C while keep retracting the interface (due to
thermal expansion) to keep the interface at the same position. Stable the
temperature at 80°C and retract glass slide slowly with hand.

2. Top graphite gate and top hBN dielectric picking up: set the stage temperature
at 50°C and approach, raise the temperature to 95°C and retract with hand.
Squeeze to move air bubbles, can result in ultra clean interfaces.

3. WSe2 picking up: set the stage temperature at 50°C and approach, raise the
temperature to 80°C and retract with hand.

4. BLG, graphite contact, and bottom hBN pick up: set the temperature stable at
50°C, approach with hand or slightly increase the temperature. Then all the
way increase temperature to 95-100°C, simply because higher temperature
will reduce the bubbles and move them more flexibly. Squeeze bubbles
forward and backward at high temperature. If last BN encapsulation has
bubbles, consider to pick up graphite back gate at 102°C or so and move
bubbles slowly when retracting.

5. Finally, the stamp is lowered onto a substrate, an undoped Si/SiO2 chip (for
capacitance measurement) pre-patterned with Au lithography markers for
optically designing devices. While lower the stack onto the substrate, the
temperature is set to 150°C. Then, the temperature is raised to 180°C to melt
the PC, and the stamp is lifted. Leftover polymer residue can be removed in
a 10-minute NMP bath, 10-minute Acetone bath and 10-minute IPA bath.

Interfacial twist BLG-WSe2 flake transfer
The basic idea follows the same as BLG-WSe2 flake transfer. Main difference
is that here we use curved (dome-shaped) PDMS to slow down the flake transfer
processes. Making curved PDMS is simple: after cutting a small PDMS square
and putting on the glass slide, mix some new PDMS and put a small droplet of
PDMS liquid onto the PDMS square. The droplet dries in a day or so, and it is a
dome shape. The first top hBN is picked at 40°C and increase the temperature to
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80°C and disengage. The following flakes (except BLG) approach at 70°C or so.
Because of the curving PDMS, the relatively slow moving results in spontaneous
jump of flake onto the stack (because of van der Waals force). Typically, this results
in an ultra-clean interface but the drawback is that the final position of the flake is
sometimes not under control. For BLG picking up, they are cut into several small
pieces by atomic force microscope (AFM) cutting (see below). The picking up is at
50°C and increasing temperature really slow to control the interface moving. When
barely cover the BLG to pick, disengage immediately with hand to avoid the pick
of second flake, so on and so forth. The drop-off process follows the same but can
increase temperature to 180°C to ensure melting of PC (the dropping with curved
PC/PDMS is sometimes tricky; be careful).

Atomic force microscope cutting
As mentioned before, the graphene flakes are separated into pieces, either for moiré
graphene devices or twisting the interface of BLG/WSe2. Additional, one wants
to separate meta-stable rhombohedral-stacked graphene multilayers from the sur-
rounding Bernal-stacked area for manipulation. Samples with domain walls are
more likely to relax to the stable ABA-phase during the fabrication process.

We use a lithography free approach: cut the flake with an atomic force microscope
(AFM) probe. Previously, d.c. voltage is applied between graphene and AFM probe,
which requires electrical contacts to graphene [112–115]. An alternative techniques
have recently been developed to solve this problem, which is to replace the d.c.
voltage with an a.c. voltage [116]. Since the graphene is capacitively coupled to the
doped-silicon substrate, a current can go through the graphene even no electrical
connection is directly made to the graphene flake (Fig. 2.7a).

The actual experiment was performed on a Bruker dimension Icon AFM with probes
from NANO WORLD ARROW-NCPt-20. The front side of the probe is coated
with a platinum/iridium alloy coating layer which is electrically conductive. When
cutting the sample, the tip is engaged to the sample in contact AFM mode. An a.c.
voltage with 10V amplitude and 100kHz frequency is applied on the tip. The a.c.
voltage is generated by an internal oscillator of the AFM controller, but may also
be generated by an external instrument. Since the reaction is between graphene and
water absorbed on the probe apex. A humidity control is optimal; the cleanroom
environment works even without additional control. Usually, higher humidity gives
better results. While cutting, the tip is moving at a speed of 300 nm/s. Although
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the trench can be made with higher speed (> 1𝜇m/s), it may increases the chance
for relaxation. The width of the trench made is usually 50 nm to 100 nm wide. A
representative cutting image is shown in Fig. 2.7b.

Figure 2.7: AFM cutting. (a) Schematic showing d.c. AFM cutting. (b) Optical
image of graphene multilayers by AFM cutting.

2.3 Cleanroom processes
With finished stacks on the Si/SiO2 chips, we take extra images of the stacks for elec-
trode design and etching processes, using AutoCAD. The typical stacks go though
e-beam lithography process, etching through hBN, metal electrode deposition, lift
off, e-beam lithography process forming device geometry, and etching the area. The
steps involve the use of nano-fabrication tools available in the Kavli Nanoscience
Institute (KNI).

1. Electron-beam lithography
Each lithography step starts with first preparing spin-coating polymethyl
methacrylate (PMMA, 950PMMA A4) at 1400 rpm followed by a low-
temperature bake of 110°C for 90 s. When requiring aggressive etching
process, use thicker PMMA layers; say 500nm. We use dedicated electron-
beam lithography machines (Raith EBPG 5000+ or 5200) at 100 kV, beam
currents is either 3 nA or 100 nA, and a dosage of 700–1300 𝜇C/cm2, de-
pending on the substrate and the feature sizes. fine features use small current.
Undoped silicon substrate uses less writing dosage. We construct our lithog-
raphy patterns to avoid feature sizes ≲ 0.6 𝜇m and fillet edges to avoid sharp
corners, which reduces cracks in the PMMA. After lithography, we use a
methyl isobutyl ketone (MIBK)/isopropyl alcohol (IPA) solution to develop
the patterns and remove the PMMA from the exposed area. Additional way to
prevent cracks is by developing using cold mixture of IPA and distilled water
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in the volume ratio 3:1. In IPA:DI water for 30s and then in MIBK/IPA for
60s and finally in IPA:DI water for 30s. In the first lithography step, we set
up a pattern for the contacts and contact pads.

2. Etching
We use an RF reactive ion plasma etch system (Plasmatherm RIE) to etch
our devices made of van der Waals materials since it has a controllable etch
rate, roughly 30nm/minute for hBN. We first use a light O2 etch (30 W, 20
sccm O2 flow rate, 50 mTorr chamber pressure for 30s) to clean off PMMA
residual from the contact area. Then, a CHF3/O2 etch step is used (60 W, 40
sccm CHF3 / 4 sccm O2, 40 mTorr) to remove the top hBN, graphene, and a
little of the bottom hBN from the contact area. We found hBN to etch at a
rate of approximately 30 nm/minute, with graphene and WSe2 areas etching
at a slightly slower rate. We optically checked the etch (every 30s or every 1
minute) to avoid over-etching. Sometimes we only want to etch hBN layers
and stop the etching at graphite layer. Use SF6 plasma at the power 60 W, 15
sccm, 40 mTorr. The etch is really fast in terms of hBN but immediately stops
at carbon-based layers.

3. E-beam evaporation for metal contacts
Immediately after the etching process, we put the stack into our electron-beam
evaporator for metal contacts deposition, which allows for reliable effective
one-dimensional contacts to graphene [13]. As opposed to Ref. [13], we
achieve contacts in one lithography step. This avoids unnecessary lithography
steps and possible solvent-based contamination of the contacts. We use a Kurt
J. Lesker Labline electron-beam evaporator to evaporate metals for contacts
and gates. We deposit 5 nm Ti immediately followed by usually 100 nm of
Au. We found more reliable contacts by depositing only after achieving base
pressures ∼ 5×10−8 torr; achieved by deposit some Ti in the chamber before
the formal disposition.

4. Device geometry etch
After the contacts are deposited, we go through electron-beam lithography
again, shape the device into the desired geometry, e.g., see Fig. 2.8 for two
different devices after the contact deposition and geometry etch steps. Note
that the Hall bar for moiré device is defined in a bubble-free region. After
lithography, both devices are etched using the same CHF3/O2 etch recipe as
before, but for longer to etch down to the SiO2, even longer time for devices
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with all crystalline component since they have thick graphite areas with lower
etching rate.

Figure 2.8: Optical images of different devices. (a) An optical image showing
twisted bilayer graphene with WSe2 Hall bar geometry. (b) An optical image
showing Bernal bilayer graphene with WSe2 dual-gated device in 𝑅𝑥𝑥 geometry.

2.4 Electrical transport measurement
Two types of measurements are applied to the characterization of graphene muilti-
layers with proximitized SOC. The main one is electrical transport measurement and
the other one is penetration field capacitance measurement (briefly in Section 2.5).
The advantage of transport measurement is its simple instrument setup (a lock-in,
a voltage source for gating, and a fridge for cooling). Minimal perturbation around
the Fermi level enables the observation of physical phenomena at the lowest electron
temperature, such as sub-100 mK superconductivity. Only a tiny a.c. current (as low
as 0.5 nA) with low frequency (<50Hz) is driven through the sample and aggressive
low pass filtering can be applied to reduce the electron temperature. This allows
phenomena with very small energy scale to be detected.

The downside of transport measurement is double aspects. First, interpretation
of resistance data is hard. Two condensed matter phenomena are the easiest to
access and explained through transport. One is superconductivity and the other is
quantum Hall effect. Other than that, physical quantities that are directly calculated
by theory, such as density of states, are hard to directly inferred from resistance data.
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There are other ways to indirectly obtain symmetry-breaking features. The second
drawback is that transport is after all a global measurement. Experimental signals
are averaged over the device size, thus render some subtle experimental signatures
when disorders are relevant. Especially in the case of moiré materials, the twist
angle inhomogeneity more or less exists [117]. In that sense, local probe techniques
can easily overcome the problem [118–121].

Transport measurement is performed following the conventional technique: we use
a four-wire configuration to remove the contact resistance. A Stanford SR865A
lock-in amplifier is used to apply small a.c. excitation and acts as a voltmeter. A
Stanford SR560 voltage preamplifier is used to preamplify the voltage signal. The
frequency range used is from 13Hz to 50Hz, usually chosen based on the noise
minimized at the frequency. We normally excite the sample with a constant current,
amplitude of which varies from 0.5nA to 10nA depending on the measurement.

Hall bar device and irregular device shape

Figure 2.9: Transport measurement geometry. (a) A Hall bar geometry. (b)-(e) The
combination of the four configurations can give 𝑉𝑥𝑥 and 𝑉𝑥𝑦 components.

The typical transport geometry Hall bar (Fig. 2.9a) is the easiest to obtain longi-
tudinal and transverse resistance information. This is done by supplying a current
𝐼 and measuring the longitudinal resistance as 𝑅𝑥𝑥 = 𝑉𝑥𝑥/𝐼. Four-point measure-
ment is the most convenient case to measure ultra-low/zero resistance state like
superconductivity, where the contact resistance does not contribute to 𝑉𝑥𝑥 . Under
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an out-of-plane magnetic field, the transverse resistance is generated by 𝐵⊥ field,
with 𝑅𝑥𝑦 = 𝑉𝑥𝑦/𝐼. 𝑅𝑥𝑦 is directly related to Hall density 𝑛Hall as 𝑛Hall =

𝐵⊥
𝑅𝑥𝑦𝑒

, with
𝐵⊥ being low magnetic field. The Hall density measurement is a direct transport
signature telling symmetry-breaking transitions in moiré graphene. 𝑅𝑥𝑦 component
is also directly related to quantum Hall phases and topological orders.

For some devices, all the contacts are on one side of the device (Fig. 2.9b), which
makes direct measurements of transverse component not possible. To address the
problem, one can measure the voltage from the configuration Fig. 2.9d and Fig. 2.9e.
Based on Onsager relation [22], 𝑅𝑥𝑦 is obtained by 𝑅𝑥𝑦 = 𝑅𝑐𝑥𝑦 − 𝑅𝑑𝑥𝑦.

Quantum Hall effect
When 2D electron gas is clean enough, the electrons form cyclotron orbit and are
localized. The bulk is an insulator but there are topologically protected edges that
flow around the boundaries. 𝑅𝑥𝑦 measurement using contacts at the opposite side
gives quantized resistance 𝑅𝑥𝑦 = ℎ

𝜈𝑒2 , where 𝜈 is an integer number representing
the topological index for integer quantum Hall system. The number of edge states
depends on both magnetic field and the density of electrons in the system. Thus,
integer quantum Hall effect is a good phenomenon to calibrate the carrier density.

The electrons for quadratic bands form cyclotron orbits with discrete energy levels

𝐸 = ℏ𝜔𝑐 (𝑁 + 1/2). (2.1)

Here, 𝜔𝑐 = 𝑒𝐵/𝑚∗, 𝑚∗ is the effective mass and 𝑁 is integers. In the case of
monolayer graphene, the equation writes as

𝐸 = ℏ𝜔𝐷sgn(𝑁)
√︁
|𝑁 |, (2.2)

where 𝜔𝐷 = 𝑣𝐹
√︁

2𝑒𝐵/ℏ is the cyclotron frequency of Dirac bands. When tuning
gate voltage to change Fermi level, 𝑅𝑥𝑥 goes through oscillations and 𝑅𝑥𝑦 goes
through quantized gap. Within the Laudau level gap, 𝑅𝑥𝑥 is zero and 𝑅𝑥𝑦 quantized
to 𝑅𝑥𝑦 = ℎ

𝜈𝑒2 . Importantly, the carrier density is related to integer filling 𝜈 as

𝑛2𝐷 = 𝜈
𝑒𝐵

ℎ
. (2.3)

Once identifies the correct index 𝜈, we know the carrier density at certain gate
voltages and the calibration of gate capacitance is achieved. With the conversion
between doping density and gate voltage, one may get the carrier density in crys-
talline graphene and in moiré systems. Specially in moiré graphene at the small
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angle limit, twist angle is related to moiré full filling density as:

𝜃2 ≈
√

3𝑎2

8
𝑛full. (2.4)

Shubnikov de Haas oscillation
For crystalline graphene systems, since there are no integer fillings, we reveal
the Fermi-surface degeneracy to indicate the symmetry-breaking orders. The Fermi
surface degeneracy is obtained by Shubnikov de Haas (SdH) oscillation. we measure
the longitudinal resistance 𝑅𝑥𝑥 as a function of out-of-plane magnetic field (𝐵⊥).
The magneto resistance will show periodic patterns in 1/𝐵⊥. Since the electrons
cycle around the Fermi contours, the area 𝐴 surrounded by the electron’s trajectory
can help to determine the size of the Fermi surface. The area 𝐴 is related to the
oscillation frequency 𝑓 by

𝑓 =
ℎ

2𝜋𝑒
𝐴. (2.5)

When a 2D electron gas has a simple Fermi surface, the frequency of the oscillation
is proportional to the area of the Fermi surface. When complex Fermi surfaces
are present, such as flavor symmetry-breaking orders, the oscillation of magneto
resistance will be a combination of multiple oscillation frequencies. Analyzing the
oscillation components in frequency space by performing Fourier transform will
reveal the Fermi surface geometry.

2.5 Penetration field capacitance measurement
The complex origin of resistance data makes it difficult to directly link to calcu-
lated theoretical models. Penetration field capacitance can be linked to theoretical
calculated quantities by a simple relation

𝐶𝑝 =
1

2𝑐0

𝜕𝜇

𝜕𝑛
=

1
2𝑐0

𝜅 (2.6)

where 𝜅 is the inverse electronic compressibility. 𝜅 characterizes how much chemical
potential changes when unit area of electrons are added into the system. In the non-
interactive picture, 𝜅 is the inverse of density of states at the Fermi level (1/DOS),
which can be directly calculated from theory. Additionally, when first or second
order phase transitions happened as a function of gate voltage, measured penetration
field capacitance typically reflects a strong signature, due to strong Fermi surface
reconstruction imprinted to 𝜕𝜇

𝜕𝑛
. The constant 𝑐0 here is the averaged geometric

capacitance factor

𝑐0 = (𝑐𝑡 + 𝑐𝑏)/2 (2.7)
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where 𝑐𝑡 and 𝑐𝑏 are the top and bottom gate capacitance, respectively.

The capacitance of the sample is usually orders of magnitude smaller than the
parasitic capacitance of the measurement scheme, making it challenging to detect.
To address the problem, the capacitance is measured with an a.c. capacitance bridge
circuit implemented with an 𝑖𝑛 𝑠𝑖𝑡𝑢 amplifier serving as an impedance transformer.
The circuit diagram for capacitance measurement is shown in Fig. 2.10a. One

Figure 2.10: Penetration field capacitance measurement. (a) Electrical circuit of
penetration field capacitance measurement. (b) an optical image of vertical HEMT
mount.

of the gates of the device is connected to one electrode of a reference capacitor
whose capacitance is a constant. Two a.c. voltages with the same frequency and
relative phase locked are applied on the other gate of the sample as well as the
other electrode of the reference capacitor; donated �̃�ex and �̃�ref , respectively. The
voltage between the sample and the reference capacitor is monitored. The module
needs to be separated from external wires with large impedance so that the parasitic
capacitance is minimized. A high electron mobility transistor (HEMT) is mounted
close to the sample to monitor the capacitance bridge without low impedance wires.
The transistor gate voltage is applied through a 100MΩ resistor to again increase
the impedance. In order to drive the HEMT, a source drain bias voltage, 50mV
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to 100mV, is also required. This current contributes a significant amount of Joule
heating, limiting the electron temperature. A slightly different configuration enables
lower electron temperature [122].

The quantity directly measured is 𝑀 =
𝑐p+𝑐parasitic

𝑐ref
. The inverse compressibility 𝜅

is related to 𝑐p as 𝑐p =
𝑐t𝑐b

𝑐t+𝑐b+𝜅−1 ≈ 𝜅𝑐t𝑐b [64, 123]. To obtain 𝜅, 𝑀 is obtained
at two extremes, denoted 𝑀0 and 𝑀∞. 𝑀∞ corresponds to when device is a good
metal and simply the partial filling of a Landau level. While 𝑀0 corresponds to an
incompressible state and is achieved by go to certain band gap. In the case of 𝑀∞,
𝑐p = 0 and therefore 𝑀∞ =

𝑐parasitic
𝑐ref

. In the case of 𝑀0, 𝑐p = (𝑀0 − 𝑀∞)𝑐ref =
𝑐t𝑐b
𝑐t+𝑐b

.
Then we obtained 𝜅 = 1

2𝑐
𝑀−𝑀0
𝑀0−𝑀∞

.

2.6 Dilution refrigerator setup

Figure 2.11: Dilution refrigerator setup. (a) Oxford Triton dilution refrigerator
setup; here showing the fridge, measurement rack, gas handling rack, and magnet
power supply. (b) Inside dilution fridge; from top to bottom are PT1 plate, PT2
plate, still plate, cold plate, and mixing chamber plate with sample loading at the
bottom.

Most of the measurements in the dissertation were performed in our bottom-loading
Oxford Triton dilution fridge (Fig. 2.11). The dilution fridge is a dry system with
multi-stage cooling. The temperature from top to bottom are roughly 50K, 4K,
0.9K, 60mK and base temperature. The final stage utilizing a pumping action on
a mixture of He3 and He4 isotopes to reach a base temperature of about 20–25
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mK. The plate containing the mixture, and thus the lowest temperature stage, is the
mixing chamber plate. The fridge is equipped with 48 DC lines and a vector magnet
that can reach up to 9 T in Z direction and 1T in X and Y direction. Data presented
here are generally taken at the base temperature unless otherwise stated.

Our dilution fridge uses multiple temperature stages, with fully-encapsulating shields
thermally anchored to each stage, to minimize heat transfer through thermal radi-
ation. However, one source of radiation still needs to be suppressed: transmission
through the wires to the device [124]. Unless filtering is applied, the electron
temperature will be significantly higher than the base temperature of the fridge,
which is really detrimental for fragile states such as superconductivity with critical
temperature below 100mK. For d.c. measurements, the general approach involves
repeated thermalization steps and low-temperature passive filtering of frequencies
outside of the range used.

The exact details of filtering are described in Ref. [125]. Our setup has been
thermalized by first installing an extra 5m of constantan (a copper-nickel alloy
with low thermal conductivity) twisted pair cables (in addition to ∼ 2m already
installed), which is wound around and glued with GE varnish onto oxygen-free
copper cylinders that are bolted to each stage of the fridge. The slightly resistive
nature of the constantan wires (∼ 66Ω/m) causes a small amount of attenuation at
each stage. For high-frequency filtering, we first used three different passive 𝜋 filters
in series, which filter out bands of 200 MHz–4 GHz , 2–7 GHz, and 7–18 GHz. We
included two 𝜋 filters of that range for each line. Then, we used a two-pole RC filter,
consisting of 1 kΩ resistors and 1–10 nF ceramic capacitors. Additional VLFX-80+
𝜋 filters were added between the room-temperature electronics and the fridge for
further filtering.

To get the lowest electron temperature, additional care is needed when doing mea-
surement. We use uninterruptible power supply for the measurement instruments to
ensure a cleaner power source. The ground configuration is optimized to reduce the
electronic noise. When doing the measurements at the lowest temperature, all tem-
perature sensors are electrically disconnected to ensure the lowest excitation. The
amount of instruments that are connected to power plugs is minimized to reduce
additional noise introduced.

The sample printed circuit board is loaded into an encapsulated puck, shown in
Fig. 2.12. The main frame is made of oxygen-free copper and coated with gold to
thermalize the sample and position it such that an out-of-plane magnetic field can be
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Figure 2.12: Sample puck. (a),(b) Configuration for out-of-plane magnetic field
measurements. (c) Configuration for large in-plane magnetic field measurements.

applied (Fig. 2.12a,b). An additional piece was constructed for holding the sample
in an in-plane magnetic field orientation (Fig. 2.12c) so that large in-plane magnetic
field can be accessed.
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C h a p t e r 3

SUPERCONDUCTIVITY IN METALLIC TWISTED BILAYER
GRAPHENE STABILIZED BY WSE2

The small angle rotation between two single-sheet of graphene forms moiré super-
lattices that feature flat electronic bands at the magic angle 1.1° (Chapter 1.4). At
the magic angle, Coulomb energy dominates over kinetic energy. The spontaneous
symmetry breaking drives correlated insulators and superconductivity in the sys-
tem, and in principle would be highly susceptible to additional explicit symmetry-
breaking perturbations. The reminiscence of TBG phase diagram compared to
high-temperature superconductor naturally raises the question: How important the
correlated insulating state is with respect to the occurrence of superconductivity?
Are we able to modify the phase diagram to disentangle the relation between different
correlated states?

3.1 Adding WSe2

There are several reasons why we want to introduce SOC to TBG and why to use
WSe2. Superconductivity with reduced symmetry often leads to unconventional
pairing, e.g., combining SOC with time-reversal symmetry breaking by magnetic
field. While graphene is the easiest 2D material to work with, its intrinsic spin-orbit
interactions are considerably small [66–68]. Monolayer transition metal dichalco-

Figure 3.1: The lattice constant of graphene (a) and WSe2 (b). Stacking them
together introduces proximitized SOC to graphene (c).

genides (WSe2, WS2, MoS2, and MoSe2) are direct band gap semiconductors that
host intrinsic Ising SOC on the order of∼ 500meV. They are perfect dielectric materi-
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als [126, 127] and at the same time can introduce proximitized SOC (Fig. 3.1c) [128–
131]. Second, unlike hBN, WSe2 and graphene lattice constants differ significantly
(Fig. 3.1a,b; 0.353 nm for WSe2 and 0.246 nm for graphene). The mismatch implies
that the moiré pattern formed between TBG and WSe2 has a maximum lattice con-
stant ∼ 1 nm when angle-aligned—much smaller than that formed in small-angle
TBG (> 10 nm). Finally, due to hybridization effects, WSe2 may also change both
the Fermi velocity of the proximitized graphene sheet and the system’s phonon
spectrum.

3.2 TBG-WSe2 devices under study
We have studied more than ten TBG-WSe2 devices with twist angles mostly away
from the magic angle to fully map out the correlated phase diagram. The schematic
in Fig. 3.2a well presents the typical structure. A top layer of WSe2 monolayer is put
adjacent to TBG with a twist angle 𝜃. Both graphene and WSe2 are encapsulated
between two hBN crystals (which serve as dielectric) to ensure high quality of the
van der Waals interfaces. The bottom hBN has thickness ranging from ∼ 40−60 nm
while the top hBN has thickness ranging from ∼ 10 − 30 nm. All the devices were
stacked by PDMS/PC stamps and then were placed on pre-defined Au back gates.
A representative device image is shown in Fig. 3.2b (right inset), the yellow area
corresponds to gold electrodes and the gold top gate covering the stack. Orange
region is the thin gold back gate. Surprisingly, we find robust superconductivity in
all the studied TBG-WSe2 structures, as long as some correlated effects are shown.
Additionally by adding WSe2, these TBG devices typically show high twist-angle
homogeneity. For example, the data shown in Fig. 3.2b are 𝑅𝑥𝑥 versus filling factor
𝜈 measured from four pairs of contacts from the same device; the contact pairs
are marked by the corresponding colored bar in the device image. These four gate
curves are almost on top of each other, not only the resistance value but also the
correlated features. The results suggest a highly uniform moiré twist angle in the
area. The uniformity achieved here is not well understood yet, presumably because
of larger friction between the interface of graphene and WSe2 that helps to lock the
local twist angle while going through the flake transfer processes.

3.3 Twist-angle dependent phase diagram
We mainly focus on four superconducting devices; the twist angle of which are
𝜃 = 1.1°, 𝜃 = 0.97°, 𝜃 = 0.87°, and 𝜃 = 0.79°, respectively (Fig. 3.3). We find
robust superconductivity in all studied TBG-WSe2 structures even for twist angles
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Figure 3.2: Bottom-gated WSe2-TBG devices. (a) the typical geometry for TBG-
WSe2 devices, including WSe2 and TBG in between two hBN and a globe gold gate.
(b) 𝑅𝑥𝑥 versus filling factor 𝜈 measured from different contacts with uniform twist
angle 𝜃 = 0.88°. right inset shows the optical image of the device and left inset
shows the gate curve as a function of displacement field.

far away from the magic angle (Fig. 3.3). The twist angle was measured using the
Landau fan diagram, from which we obtain the back gate voltage at charge neutrality
as well as full-filling voltage. Combining with the fact that the slope of the Landau
fan is directly proportional to the capacitance, the electron density at full filling
(𝑛full) can be obtained. From the density, the twist angle is calculated using the
low-angle approximation

𝜃2 ≈
√

3𝑎2𝑛full/8, (3.1)

where 𝑎 = 0.246 nm is the lattice constant of graphene. The electron (hole) full-
filling voltage corresponds to 𝜈 = +(-)4, and accordingly half and quarter filling are
at 𝜈 = +(−)2 and 𝜈 = +(−)1, respectively.
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Figure 3.3: 𝑅𝑥𝑥 versus temperature and filling factor 𝜈 for TBG-WSe2 devices with
twist angle 𝜃 = 1.10° (a), 0.97° (b), 0.87° (c), and 0.79° (d), respectively.

The existence of superconductivity is independently confirmed by Fraunhofer intef-
erence pattern that suggests the superconducting phase coherence. Fig. 3.4 shows
the critical current as a function of out-of-plane magnetic field 𝐵⊥. It is clear that
the supercurrent for all the devices shows pronounced oscillations versus magnetic
field. This is the consequence of Josephson junctions in the system, where at curtain
filling factors, part of the system is not superconducting due to moiré disorder [117]
(possibly some metallic or insulating states). In these devices, we typically see
periodicity of 1.5-3 mT that, interpreted as the effective junction area 𝑆 ∼ 0.67–1.33
𝜇𝑚2, are consistent with the device geometry.

Figure 3.4: Superconducting Fraunhofer pattern measured from devices with twist
angle 𝜃 = 0.97° (a), 0.87° (b), and 0.79° (c), respectively.
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We start to look at the phase diagram of a magic-angle device at 𝜃 = 1.10°. The
device exhibits clear 𝑅𝑥𝑥 peaks at every integer filling 0 < |𝜈 | < 4 (Fig. 3.3a);
including a correlated insulator (CI) develops near 𝜈 = +2. At hole side around half
filling 𝜈 = −2, superconductivity features a maximal transition temperature of 𝑇𝑐 ≈
1.6 K. The observations are in line with previously reported hBN-encapsulated, high-
quality magic-angle TBG devices and also suggest that the magic-angle condition
is not dramatically changed by adding WSe2, i.e., 1.1° remains strong correlation
regime.

Tuning away from the magic angle by reducing the twist angle, the impact of
correlation is strongly reduced: the bandwidth increases rapidly and moreover, the
characteristic correlation energy scale 𝑈 = 𝑒2/4𝜋𝜖𝐿𝑚 also diminishes due to an
increase in the moiré periodicity 𝐿𝑚 = 𝑎/sin(𝜃/2) [18, 59, 118–121]. Coulomb
interaction (𝑈) is reduced while moiré band bandwidth (𝑊) is broaden; reducing
the ratio𝑈/𝑊 between them. The phase diagram qualitatively changes.

Figure 3.3b shows the temperature dependence of resistance at the twist angle
slightly away from the magic angle 𝜃 = 0.97°. A superconducting pocket emerges
on the hole side near 𝜈 = −2 with a maximal transition temperature 𝑇𝑐 ≈ 0.8 K and
another weak superconductivity pocket develops close to 𝜈 = +2. Despite being
away from the magic angle by 0.1°, the observed phase diagram resembles that of
magic angle case except reduced 𝑇𝑐 and reduced correlated insulating behavior. For
filling factors 𝜈 = +2, +3, the activation gaps are Δ+2 = 0.68 meV and Δ+3 = 0.08
meV, respectively (Fig. 3.5). Here, we get the activation gap through the activation
fitting (green lines; 𝜎𝑥𝑥 ∝ 𝑒−Δ/2𝑘𝐵𝑇 ).

3.4 Disappearing insulating gaps
Next, we focus on two devices that are far away from the magic angle, where
correlation effect is significantly reduced. At the twist angle 𝜃 = 0.87°, the correlated
insulating behavior totally disappeared for the 𝜈-𝑇 diagram below 2K, as show
in Fig. 3.3c. However, when raising the temperature to 1K or so, signatures of
correlations do emerge. In Fig. 3.3c, a peak in longitudinal resistance versus density
is visible around 𝜈 = +2 above the superconducting transition (𝑇𝑐 = 600–800 mK).
Data for a larger temperature range (Fig. 3.6a,b) shows that the resistance peak near
𝜈 = +2 survives up to 𝑇 = 30 K, and also reveals a new peak near 𝜈 = +1 in the
temperature range 10-35 K. These observations suggest that electron correlations
remain strong, though the corresponding states at 𝜈 = +1 and 𝜈 = +2 appear to be
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Figure 3.5: Correlated insulating states for TBG-WSe2 device at 𝜃 = 0.97°. 𝜈 = +2
and 𝜈 = +3 show activating behavior.

metallic as the overall resistance increases with temperature (Fig. 3.6f). For this
angle, we measure activation gaps at full filling (i.e., at 𝜈 = ±4) of Δ+4 = 8.3 meV
and Δ−4 = 2.8 meV (Fig. 3.6e) —far smaller than the gaps around the magic angle.

Importantly at the smallest twist angle, the temperature dependence of 𝑅𝑥𝑥 strongly
suggests the independence between superconductivity and insulating behavior. At
the smallest angle 𝜃 = 0.79°, not only insulating behavior is absent in the partial fill-
ing of moiré flat bands, the resistance at full filling is even more reduced (Fig. 3.6c,d).
The relatively low resistances < 2 kΩ, measured at full filling—which are less than
15% of the resistance at the charge neutrality point (CNP)—suggest a semi-metallic
band structure around full filling, consistent with theoretical expectations for TBG
at 𝜃 = 0.79° [132] and the resistivity of a dilute 2D electron gas [133]. Surprisingly,
despite the complete absence of both full-filling band gaps and correlated insula-
tors, the superconducting zero-resistance pocket near 𝜈 = +2 is clearly resolved
(Fig. 3.3d). The behavior has being well reproduced in another device at similar
twist angle, where TBG is encapsulated between two WSe2 on both sides (Fig. 3.7).

Our observations strongly suggest correlated insulator and superconductivity are
likely having different origins [51, 52]. Note also that the close proximity of the
dispersive bands does not seem to have a major impact on the superconducting
phase. Our findings of superconductivity in TBG with metallic band structure put
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Figure 3.6: Large temperature range 𝑅𝑥𝑥 for 𝜃 = 0.87° (a) and 𝜃 = 0.79° (c) devices.
Selective gate curves at different temepratures are shown in (b) and (d). (e) shows
temperature dependence of conductance measured at the filling factors marked by
the corresponding colored arrows in (a) and (c). The green lines correspond to
activation fit. (f) shows metallic behavior around 𝜈 = +1 and 𝜈 = +2 for the
𝜃 = 0.87° devices.

constraints on the proposed theoretical explanations and are the main result of this
chapter. For example, the observations are in contrast with scenarios wherein su-
perconductivity descends from a Mott-like insulating state as in high-temperature
superconductors [78]. We emphasize, however, that electron correlations may still
prove important for the development of superconductivity. For instance, even for
the smallest angle of 𝜃 = 0.79°, the superconducting pocket is seemingly pinned to
the vicinity of 𝜈 = 2. Additionally, as shown in Fig. 3.6c,d, at higher temperatures
residual 𝑅𝑥𝑥 peaks can still appear around half filling despite the absence of gapped
correlated insulating states. It is thus hard to rule out the possibility that supercon-
ductivity arises from correlated metallic states that may be present at smaller angles
and near integer values of 𝜈 in analogy to other exotic superconducting systems [79,
80, 134].

3.5 Evidence for spin-orbit interactions
The complex band structure of TBG makes it intrinsically hard to precisely quantify
the type (Rashba, Ising, Kane-Mele SOC) and the size of spin-orbit interaction by
mapping to single-particle band structure calculations. However, the measurement
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Figure 3.7: Characterizations for a second TBG-WSe2 device at 𝜃 = 0.8°. (a)
𝑅𝑥𝑥 measured as a function of 𝜈 and temperature for a second TBG-WSe2 device
at 𝜃 = 0.8°. (b) Landau Fan diagram for the same device. (c) 𝐼 − 𝑉 charac-
teristic at different temeprature showing a superconducting transition for Berezin-
skii–Kosterlitz–Thouless extraction. (d) Fraunhofer pattern measured from the
device confirming the superconducting phase coherence.

of weak antilocalization serves as a direct evidence of the presence of SOC.

In small out-of-plane magnetic fields, we observe a conductance peak at 𝐵⊥ = 0 mT;
the signal comes from weak antilocalization (WAL) and consequently the presence
of strong SOI (Fig. 3.8). In a system with SOC, the spins of electrons are coupled
to the momentum. The spins rotate as the electrons go around a self-intersecting
path, and the direction of the rotation is opposite for the two directions about the
loop. Because of this, the two paths along the loop interfere destructively, leading
to a lower net resistivity at zero magnetic field.

Previous works established that TMDs can induce large SOC into monolayer/bilayer
graphene [128, 129, 131], and hence the generation of SOI in the proximitized layer
of TBG is expected. In Fig. 3.8b,e show the conductance variation Δ𝜎 measured
as a function of gate voltage from both morié flat bands and higher dispersive
bands. It is obvious that conductance maximum persists regardless of gate voltages,
consistent with the signature of weak antilocalization. The WAL peak developed at
temperature from 700 mK to 25 mK. Here the data shown in Fig. 3.8c,d (dots) are
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averaged over the density range because at low temperature noise mechanism such
as universal conductance fluctuations [135] can be pronounced. Each peak is taken
by averaging over a small range of gate voltages, which averages out the noise due to
mechanisms such as universal conductance fluctuations [135]. However, at higher
temperature ∼ 900 mK, the weak antilocalizaiton peaks disappear, therefore, we use
the data at the temperature as background for subtraction. Data are symmetrized
relative to 0 mT for a better fit to formula.

Figure 3.8: Weak antilocalization signatures. (a) 𝑅𝑥𝑥 versus backgate voltage for
the 𝜃 = 0.8° device. (b),(e) Conductance change, relative to the 0 mT value, versus
out-of-plane magnetic field and backgate voltages. (c),(d) Averaged data from (b) for
different field ranges. The dashed lines are comparison to the weak antilocalization
model used for monolayer graphene/TMD.

We adapted the WAL theory from monolayer graphene on TMDs because here
for TBG, Ditrac cone is still a good approximation around the low energy. only
modification probably needed is just reducing Fermi velocity due to heavier mass
from moiré flat band. The WAL equation is:

Δ𝜎(𝐵) = − 𝑒2

2𝜋ℎ

[
𝐹

(
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− 2𝐹
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𝑠𝑜

)]
(3.2)

where 𝐹 (𝑥) = 𝑙𝑛(𝑥) + 𝜓(0.5 + 𝑥), 𝜓 is the diagamma function, and 𝜏𝐵 = 4𝑒𝐷𝐵/ℏ.
𝐷 = 𝑣2

𝐹
𝜏/2 is the diffusion constant, which is determined by Fermi velocity; here

𝑣𝐹 ≈ 105 m/s is used instead of 𝑣𝐹 ∼ 106 m/s due to the flat band condition. The
Drude scattering time 𝜏 = 𝜇𝑚∗

𝑒
= ℏ𝜎

𝑣𝐹𝑒
2

√︃
𝜋
|𝑛| , here the effective mass 𝑚∗ = ℏ

√︁
𝜋 |𝑛|/𝑣𝐹
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and the mobility estimated from 𝜇 = 𝜎/|𝑛|𝑒 ∼ 1.5 ps. Therefore, the only free
parameters left are 𝜏𝜙,𝜏𝑎𝑠𝑦,𝜏𝑠𝑜. Here, 𝜏𝑎𝑠𝑦 comes from Ising SOC while 𝜏𝑠𝑜 is the
combination of symmetric and asymmetric components 𝜏−1

𝑠𝑜 = (𝜏−1
𝑠𝑦𝑚+𝜏−1

𝑎𝑠𝑦) does not
change with temperature. The 𝜏𝜙 depahse term, however, is temperature dependent.
Thus, the temperature dependence here puts constraint on the 𝜏𝜙 term.

Given the three parameters, it is relatively hard to get a precise estimation of SOC
values, while order-of-magnitude precision can be achieved. For the low-field-range
data Fig. 3.8c, the total spin-orbit scattering time 𝜏𝑠𝑜 ≈ 10 ps can reproduce the data.
Going to higher field range (Fig. 3.8d), 𝜏𝑠𝑜 ≈ 1 − 3 ps capture the saturation trend
at high field with the asymmetric versus symmetric term ratio (𝜏𝑎𝑠𝑦/𝜏𝑠𝑦𝑚) being
around 0.3-3. Importantly, the 𝜏𝑠𝑜 obtained from various fitting is in the range of
0.5 − 1 meV, matches some of the previous studies and also the values from BLG-
WSe2 cases (see Chapters 5 and 6). However, to well capture the WAL analysis
in the case of TBG, a better model taking into account correlation effects, etc. is
necessary. Regardless, the WAL measurement serves as a smoking gun evidence of
the presence of SOC in TBG coupled to WSe2.

Additional experimental evidences that are compatible with SOC is from Landau
Fan diagram (Fig. 3.9). For the low angle devices 0.79° − 0.97° we focus on here,
we find the Laudau level gaps are well developed at 𝐵⊥ ∼ 1 T. Also, the main
Landau level sequences are ±2, ±4, ±6, etc., consistent with a broken four-fold
spin-valley flavor symmetry. In comparison, the previous hBN-encapsulated TBG
normally shows Landau level sequences ±4, ±8, ±12, etc. [16, 19, 20, 51, 52,
117]. In addition to the four-fold degeneracy breaking in 𝑅𝑥𝑥 , we also observed well
quantized quantum Hall plateaus (Fig. 3.9d,e), indicating the high quality of our
devices. Indeed, for all the TBG coupled to WSe2 studied over the years, we found
high success rate hitting around the magic angle with devices demonstrating high
twist-angle uniformity.

3.6 Theory of spin-orbit coupling in TBG
For the vanilla TBG without SOC, the model Hamiltonian may be expressed as

𝐻cont = 𝐻𝑡 + 𝐻𝑏 + 𝐻tun. (3.3)

The first two terms on the right-hand side denote the Dirac Hamiltonian of the top
and bottom layers, respectively, in the absence of interlayer tunneling, while the
third turn corresponds to interlayer tunneling.
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Figure 3.9: Landau fan diagrams for TBG-WSe2. (a)-(c) Landau fan diagrams for
three devices with 𝜃 = 0.97°, 0.87°, and 0.79°, respectively. The main Landau level
sepuences are ±2, ±4, ±6, etc. that break four-fold degeneracy, consistent with the
existence of SOC. (d),(e) quantum Hall conductance measured at different magnetic
field showing quantized plateaus at ±2, ±4, ±6𝑒2/ℎ, suggesting high quality of our
devices.

We consider the effect of adding SOC to TBG. Assuming that TMD resides adjacent
to the top-layer graphene of TBG, the primary modification to the continuum model
presented in Eq. (3.3) then occurs in 𝐻𝑡 :

𝐻𝑡 =

∫
𝒌
𝜓
†
𝑡 (𝒌)

(
ℎ𝑡 (𝒌) + ℎ𝑡,SO

)
𝜓𝑡 (𝒌). (3.4)

Here, ℎ𝑡,SO represents the appropriately rotated projection of 𝐻SO (monolayer
graphene including SOC) onto the +𝑲 valley:

ℎ𝑡,SO = 𝑒𝑖𝜃𝜎
𝑧/4

(
𝜆𝐼

2
𝑠𝑧 + 𝜆𝑅

2
(𝜎𝑥𝑠𝑦 − 𝜎𝑦𝑠𝑥) + 𝜆KM

2
𝜎𝑧𝑠𝑧

)
𝑒−𝑖𝜃𝜎

𝑧/4. (3.5)

The spin-orbit parameters used here Ising (𝜆𝐼), Rashba (𝜆𝑅) and Kane-Mele (𝜆KM)
ranges from below 1meV to 10meV depending on the previous literatures; the results
of which ranging from 𝜆𝐼 ∼ 1−5 meV and 𝜆𝑅 ∼ 1−15 meV. Additionally, Ising and
Kane-Mele contribute symmetric type SOC while Rashba contribute asymmetric
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SOC. Although there was no previous experience on proximitized SOC to TBG, the
results should be relatively similar to monolayer graphene adjacent to TMDs. We
calculate band structures using the various SOC strengths reported before. Fig. 3.10
shows the band structure calculation using 𝜆𝐼 = 3 meV and 𝜆𝑅 = 4 meV. At the two
twist angles 𝜃 = 0.87° and 0.79°, the correlation effect Hartree correction is not
significant. We can clearly observe the breaking of four-fold spin-valley symmetry
by SOC here.

The out-of-plane projection is largely constant along these surfaces, as can be seen in
Figs. 3.10a,d. The large spin-orbit-induced Fermi-surface deformation visible here
reflects the flatness of the bands near the Fermi energy. We note that the apparent
electron-hole symmetry in the band structure is a consequence of twist angle being
well below the magic-angle value.
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Figure 3.10: Spin–orbit effect on TBG band structure. (a)–(f), Continuum-model
results for valley 𝐾 that include Ising and Rashba spin–orbit coupling at twist
angles of 0.87° (a)–(c) and 0.79° (d)–(f). (a),(d) Band structure along the high-
symmetry directions of the Brillouin zone. The color represents the out-of-plane
spin projection, ⟨𝑆𝑧⟩, and the dotted line denotes the chemical potential at 𝜈 = +2.
(b),(c),(e),(f) Energy of the conduction flat bands with spin–orbit coupling. Colored
line indicates the in-plane spin projection. Black line corresponds to SOC-free case.

Induced SOI can additionally constrain the nature of the TBG phase diagram. Re-
gardless of the details of the SOC, an SOI acts as an explicit symmetry-breaking field
that further promotes instabilities favoring compatible symmetry-breaking patterns



67

and suppressing those that do not. For example, the relative robustness of the half-
filling correlated insulator in our 𝜃 = 0.97° device suggests that interactions favor
re-populating bands [23, 24] in a manner that also satisfies the spin–orbit energy.
Furthermore, the survival of superconductivity with SOI constrains the plausi-
ble pairing channels—particularly given the dramatic spin–orbit-coupling-induced
Fermi-surface deformations that occur at 𝜈 = +2. Superconductivity in our low-
twist-angle devices, for instance, is consistent with Cooper pairing of time-reversed
partners that remain resonant with the SOI. Thus the stability of candidate insulat-
ing and superconducting phases with the added SOI provides additional nontrivial
constraints for theory [136–140]. The integration of monolayer WSe2 demonstrates
the impact of the van der Waals environment and proximity effects on the rich phase
diagram of TBG. In a broader context, this approach opens future prospects for
controlling the range of correlated phases available in TBG and similar structures
by carefully engineering the surrounding layers, and it highlights a key tool for
disentangling the mechanisms driving the different correlated states.

3.7 Connection between superconductivity and Fermi-surface reconstruction
TBG-WSe2 provides an invaluable opportunity for detailed mapping of various
correlated ground states, especially the robustness of superconductivity compared to
other symmetry-breaking phases. The detailed characterization of multiple devices
with twist angles ranging from 𝜃 = 0.79° to 1.23° reveals a hierarchy of different
phases. Here, the twist angle serves as a tuning knob to modify the Coulomb
interactions as we discussed previously. At the magic-angle condition, other than
the strongest superconductivity, there are also correlated insulators, anomalous
Hall effect [141], cascade of symmetry-breaking transition, pomeranchuk effect,
strange metal behavior, etc. By tuning away from the magic angle, we found that
superconductivity is the most robust phase that remains, together with the Fermi-
surface reconstruction around the half filling.

Start with the phase diagram at the magic angle. We observed an abundance of
correlated phases around the magic angle, including but not limited to correlated
insulating states at 𝜈 = ±2 and ±3, anomalous Hall effect/ferromagnetism around
𝜈 = +1. Among them, 𝜈 = +1 ferromagnetism is most sensitive to twist angle that
only emerges for 𝜃 = 1.05° ± 0.05° (Fig. 3.11). Correlated insulating states that
have clear activating gapped behavior also exist in a relatively narrow angle range
𝜃 = 0.97°-1.15°, indicating adding WSe2 primarily does not change the magic-angle
condition.
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The cascade of high temperature symmetry-breaking transitions and superconduc-
tivity near 𝜈 = ±2 persist over a much wider range of twist angles (see Fig. A.1 for
temperature dependence for a range of devices at different twist angles). While all
devices exhibit pronounced electron-hole asymmetry and a peak 𝑇𝑐 on the electron
(hole) side which is shifted toward lower (higher) angles, superconductivity can
be found well above (𝜃 = 1.23°) and below (𝜃 = 0.88°) the magic angle for both
negative and positive filling factors. To the best of our knowledge, this is the largest
reported range of twist angles exhibiting superconductivity for both electron and
hole doping.

Figure 3.11: Phase diagram of various correlated phases focusing on superconduc-
tivity. The main panel plots critical temperature 𝑇𝑐 as a function of twist angle;
electron side (red dots) and hole side (blue dots). For hole side, 𝑇𝑐 peaks around
the magic angle, and for electron side 𝑇𝑐 is somewhat suppressed at the magic angle
due to the competition with correlated insulator at 𝜈 = +2. When tuning away,
electron-side 𝑇𝑐 increases. On top,we show the rough ranges of various correlated
phases, among which correlated insulator and ferromagnetism only appear around
the magic angle. Ultimately, tuning away from the magic angle both electron and
hole side superconductivity diminished together with the cascade of symmetry-
broken transition around the half filling.

Importantly, the occurrence of superconductivity is consistently accompanied by
Fermi surface reconstructions around 𝜈 = ±2, as manifested by a low-temperature
reset in the Hall density marked by arrows in Fig. 3.12. We focus on the devices



69

angle far away from the magic angle, where superconductivity 𝑇𝑐 is much lower
(blue and black curves). For 0.88°, hole-side superconductivity around 𝜈 = −2
has 𝑇𝑐 = 130 mK and is accompanied by the formation of a kink in the Hall
density (black arrow), which is separate from the van Hove singularity. At larger
twist angles, the kink becomes a fully-developed Hall density reset to zero (marked
by colored arrows), corresponding to a more complete flavor symmetry breaking
induced Fermi-surface reconstruction. In contrast, the device with lowest twist angle
0.79° reveals a linear Hall density on the hole side that extends well beyond 𝜈 = −2,
ultimately reaching a van Hove singularity [142]. This signals the absence of an
interaction-driven Fermi surface reconstruction. Interestingly, we also no longer
find hole-side superconductivity for this twist angle. On the electron side, both twist
angles exhibit superconductivity and a kink in the Hall density due to Fermi surface
reconstructions.

Our observations indicate that a fully symmetric (equally populated) spin-valley
flavor state strongly disfavors the formation of superconductivity and thus rules
out the simplest scenario of electron-phonon mechanisms which only rely on the
local density of states [143]. In this context, our results are more in line with spin
(or valley) fluctuation [138] driven superconductivity but other mechanisms such
as the Kohn-Luttinger mechanism [144] may also be relevant. Alternatively, and
independently of the pairing mechanism, in a case of multiflavor (multi-component)
pairing, superconductivity and magnetism (i.e. flavor polarization) can be inherently
connected. The physical manifestation of this connection is through a Δ2𝑀 term,
where Δ is superconducting gap and 𝑀 describes degree of polarization, in the free
energy which is allowed by a U(N) symmetry, as well as lower symmetries. The
interplay implies that strong flavor polarization will generally increase the 𝑇𝑐 of a
multi-flavor superconductor, and, furthermore, that a finite superconducting order
parameter could even induce polarization.

Our results strongly indicate that TBG phases can be roughly divided into two
categories in respect to their robustness on twist angle deviations from the magic-
angle value. The phases exhibiting superconductivity, linear-in-𝑇 dependence,
and Pomeranchuk-like effects generically emerge from interaction-driven symmetry
breaking alone that is robust for a wide range of twist angles. In contrast, correlated
insulating states and orbital ferromagnetism require a more subtle interplay between
strong interaction effects, kinetic energy scales, and possibly breaking of spatial
symmetries. The sensitivity of these phases result in their appearance only in the
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near vicinity of the magic angle, and the close competition of phases can result in
differing behavior between devices at the same twist angle. This hierarchy between
different phases will hopefully guide future theoretical frameworks aiming to explain
the rich phenomenology of TBG and related structures.

Figure 3.12: Hall density reset at different twist angles. Hall density (𝑛Hall) versus
filling factor 𝜈 for TBG-WSe2 devices with angle 𝜃 = 0.79°, 0.88°, 0.97°, 1.04°,
1.1°, 1.23°, respectively. The respect offset Hall density values are indicated by
gray horizontal solid lines.
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C h a p t e r 4

PROMOTION OF SUPERCONDUCTIVITY IN MAGIC-ANGLE
GRAPHENE MULTILAYERS

The previous chapter studied the electronic properties of TBG coupled to WSe2 and
its twist-angle-dependent correlated phase diagram. In the moiré category, TBG is
not the only one that demonstrates robust superconductivity. When three layers of
graphene are twisted in an alternating sequence, so called twisted trilayer graphene
(TTG), and at its corresponding magic angle, TTG also hosts robust superconduc-
tivity that is close to strongly coupled regime [45]. Additionally, it is highly tunable
with displacement fields [44, 45]. Here, we generalized the alternating twisted
graphene to four layers (quadrilayer; TQG) and five layers (pentalayer; TPG). All
of them show flavor symmetry-breaking transitions and robust superconductivity
with 𝑇𝑐 = 1 − 2 K. Despite the coexistence of dispersive bands with the flat bands,
we observed half-filling correlated insulating states in TTG and also single-particle
band gap in TQG. As the number of layers increases, superconductivity emerges
over an enhanced filling-factor range, and in the pentalayer it extends well beyond
the filling of four electrons per moiré unit cell. Our results highlight the role of
the interplay between flat and more dispersive bands in extending superconducting
regions in graphene moiré superlattices.

4.1 Alternating twisted graphene multilayers

Figure 4.1: Schematics of the alternating twisted graphene multilayers. (a)-(c)
schematics of alternating twisted trilayer (a), quadrilayer (b), and pentalayer (c)
graphene, where each successive layer is twisted by an angle ±𝜃 relative to the
previous one in an alternating sequence.

We investigate twisted graphene multilayers where each successive layer is twisted
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by an angle ±𝜃 relative to the previous one in an alternating sequence (Fig. 4.1). For
these structures with multiple alternating twists, the system can be viewed as several
TBG-like subsystems with the addition of monolayer graphene-like (MLG-like)
subsystem (depending on the layer number). For an even number 𝑛 of layers, the
spectrum at zero displacement field 𝐷 is expected to separate into 𝑛/2 independent
TBG-like bands, each characterized by a different effective twist angle. When the
number of layers 𝑛 is odd, in addition to (𝑛 − 1)/2 TBG-like bands, one MLG-like
band (essentially a Dirac cone) is expected (see left column of Fig. 4.2 for examples
when 𝑛 is 3, 4, and 5) [145].

We now comment on the Hamiltonian of the twisted graphene multilayers. The
relevant consideration is the stacking order between different layers. In TTG, it is
has been numerically and experimentally shown that all odd (even) layers are AA
stacked, i.e., stacked directly on top of one another to lower the system’s energy [40].
Starting from a bilayer system, the moiré superlattice is manifest on the microscopic
lattice scale as the periodic variation of the relative interlayer stacking: one has AA
regions at the moiré hexagon centres, while AB and BA stacking regions represent
the moiré hexagon vertices. The AA regions have a relatively high energy compared
to the Bernal-like region and the lattice accordingly responds by relaxing to minimize
their area. Adding a third layer will in principle generate another set of moiré pattern
that is offset from the previous one. However, only when the first and third layers
are aligned will the AA region occur at the same locations and only then can the
system optimize its energy through relaxation.

Given the assumption of AA stacking order, the total Hamiltonian may be written
in matrix form as

𝐻𝑇𝑛layer𝐺 = 𝐻D + 𝐻tun =

𝑛layer∑︁
ℓ,ℓ′=1

∫
𝑑2𝒓 𝜓†

ℓ
(𝒓) [ℎcont(𝒓)]ℓ,ℓ′ 𝜓ℓ′ (𝒓)

ℎ𝑇𝑛layer𝐺 (𝒓) =
©«
ℎD,1(𝒓) 𝑇1,2(𝒓) 0 . . .

𝑇
†
1,2(𝒓) ℎD,2(𝒓) 𝑇2,3(𝒓) . . .

0 𝑇
†
2,3(𝒓) ℎD,3(𝒓) . . .

...
...

...
. . .

ª®®®®®¬
. (4.1)

Here 𝐻D is the intralayer Dirac term and 𝐻tun is the tunneling that occurs between
adjacent layers. As currently written, the diagonal Dirac terms, ℎD,ℓ (𝒓), as well
as the off-diagonal tunneling terms, 𝑇ℓ,ℓ′ (𝒓), depend only on whether ℓ is even or
odd. We can thus simplify the above expression by writing the Dirac terms as
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ℎD,2ℓ−1(𝒓) = ℎD,1(𝒓), ℎD,2ℓ (𝒓) = ℎD,2(𝒓) and the tunneling terms as 𝑇2ℓ−1,2ℓ (𝒓) =
𝑇 (𝒓), 𝑇2ℓ,2ℓ+1(𝒓) = 𝑇†(𝒓).

Providing that the simplest TBG Hamiltonian takes the form:

ℎ𝛼,𝜂,𝜃 (𝒓) ≡ ℎTBG(𝒓) =
(
ℎD,1(𝒓) 𝑇 (𝒓)
𝑇†(𝒓) ℎD,2(𝒓)

)
, (4.2)

we can consider the most complicated structure twisted pentalayer graphene strcture.
In the original layer basis, the Hamiltonian is

ℎTPG(𝒓) =

©«

ℎD,1(𝒓) 𝑇 (𝒓) 0 0 0
𝑇†(𝒓) ℎD,2(𝒓) 𝑇†(𝒓) 0 0

0 𝑇 (𝒓) ℎD,1(𝒓) 𝑇 (𝒓) 0
0 0 𝑇†(𝒓) ℎD,2(𝒓) 𝑇†(𝒓)
0 0 0 𝑇 (𝒓) ℎD,1(𝒓)

ª®®®®®®®¬
. (4.3)

Independent, co-existing TBG- and MLG-like subsystems are revealed with the
appropriate change of basis:

ℎ̃TPG(𝒓) = 𝑉†
TPGℎTPG(𝒓)𝑉TPG =

©«
ℎ√3𝛼,𝜂,𝜃 (𝒓)

ℎD,1(𝒓)
ℎ𝛼,𝜂,𝜃 (𝒓)

ª®®®¬
𝑉TPG =

1
√

6

©«

1 0
√

2
√

3 0
0

√
3 0 0

√
3

2 0 −
√

2 0 0
0

√
3 0 0 −

√
3

1 0
√

2 −
√

3 0

ª®®®®®®®¬
. (4.4)

There are now two independent TBG-like bands characterized by effective twist
angles 𝜃/

√
3 and 𝜃 in addition to a MLG-like Dirac cone.

Applying the same principle to TTG and TQG systems, the band structures of all
the three are shown in Fig. 4.2 left column. The band structure of TTG consists of
one set of TBG-like bands and a MLG-like cone; TQG consists of two sets of TBG-
like bands; TPG consists of two sets of TBG-like bands and a MLG-like cone. The
system may be conveniently modified through the application of a displacement field
𝐷, which controllably hybridizes the different subsystems (Fig. 4.2 right column).
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Figure 4.2: Band structure of twisted trilayer (a), quadrilayer (b), and pentalayer (c)
graphene for angles close to the respective theoretical magic angle at zero 𝐷 field
(left) and 𝐷/𝜖0 ≈ 0.4 V nm−1 (right) for valley 𝐾 .

Magic-angle condition relies on the one set of the flat bands being at the magic-
angle condition, say for the case of TPG, one of the effective twist angle is 𝜃/

√
3.

Given the magic angle of TBG is 𝜃magic
TBG = 1.08°, one of the TPG magic angle

is at 𝜃magic
TPG =

√
3𝜃magic

TBG ≈ 1.87°. The twist angles lie close to the theoretically
predicted “magic” values needed to obtain one set of flat TBG-like bands are
𝜃

magic
TTG =

√
2𝜃magic

TBG ≈ 1.53°, 𝜃magic
TQG = (

√
5 + 1)𝜃magic

TBG /2 ≈ 1.75°. The exact magic-
angle value is essentially determined by the velocity of monolayer graphene 𝑣0 and
the interlayer tunneling amplitude𝑤, which maybe renormalized by lattice relaxation
etc., resulting in slightly deviated magic angle value.

4.2 TTG, TQG, and TPG devices under study
Here, we explore properties of alternating twisted trilayer, quadrilayer, and penta-
layer graphene (TTG, TQG, TPG) structures with 𝜃 = 1.52 ± 0.02° (device D1,
trilayer), 𝜃 = 1.80±0.04° (D2, quadrilayer), and 𝜃 = 1.82±0.05° (D3, pentalayer),
respectively. These angles are all close to the theoretically predicted “magic” values
mentioned above to obtain one set of flat TBG-like bands.

Importantly, we find that the TTG, TQG, and TPG devices all exhibit hallmark



75

signatures of strong correlations (Fig. 4.3), including robust superconductivity at
base temperature (zero resistance region) and flavor symmetry breaking as revealed
by pronounced resistance peaks around certain integer filling factors 𝜈 (number of
electrons per moiré site) at elevated temperature.

Figure 4.3: Line cuts of 𝑅𝑥𝑥 versus filling factor 𝜈 for a range of temperatures (shown
are traces taken first at 25 mK, then every 0.25 K from 0.25 K to 2 K, followed by
every 1 K from 3 K to 7 K), from top to bottom measured at 𝐷/𝜖0 = 0.22 V nm−1

(a), −0.15 V nm−1 (b), and 0 V nm−1 (c), respectively.

The superconducting regions in all three structures extend over significantly larger
filling factor ranges in comparison to TBG [16, 20, 50, 51] where superconduc-
tivity is typically observed within 2 < |𝜈 | < 3. Moreover, superconductivity is
“ascendant” as the layer number is increased, in the sense that it emerges over
successively broader regions of phase space, reaching 𝜈 ≈ +5 on the electron side
for TPG (Fig. 4.3). Along with a zero longitudinal resistance 𝑅𝑥𝑥 observed in the
characteristic 𝜈 vs. 𝑇 dome (Fig. 4.4), the high critical perpendicular magnetic fields
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𝐵𝑐 (typically ∼ 0.8 T) indicate that the corresponding Ginzburg–Landau coherence
lengths 𝜉GL (magenta dots in Fig. 4.4; approximately 10 − 30 nm) are significantly
smaller than those observed in TBG and deviate from the weak-coupling predic-
tion, 𝜉GL ≈ ℏ𝑣𝐹/𝜋Δ with Δ ≈ 1.76𝑘𝐵𝑇𝑐—suggesting a strong-coupling origin of
superconductivity [44, 45]. When combined with other experiments [39, 40, 146],
these observations affirm the unconventional nature of superconductivity within the
entire class of graphene moiré systems. Further, the measurements on three to five
layers indicate that the addition of layers promotes superconductivity over a broader
filling window.

Figure 4.4: 𝑅𝑥𝑥 versus temperature and 𝜈 around half filling, showing superconduct-
ing domes around |𝜈 | = 2 in TTG, TQG, and TPG, respectively. Ginzburg–Landau
coherence lengths 𝜉GL versus 𝜈 for all three devices are superimposed on the 𝑅𝑥𝑥
versus 𝑇 and 𝜈 plots.

All the devices investigated here show a high degree of twist angle homogeneity
as characterized by four-point measurements between different pairs of contacts.
Fig. 4.5 shows 𝑅𝑥𝑥 versus carrier density with fixed top-gate voltage (Vtg = 0 V),
revealing that almost every pair of contacts shows superconductivity. More im-
portantly, superconducting pockets from different pairs significantly overlap in the
filling range, and resistance peaks at |𝜈 | = 4 appear at the same density. Moreover, all
findings related to the extent of the superconducting phase and the occurrence of the
symmetry-breaking transitions in the 𝜈-𝐷 phase diagram are highly reproducible.

We attribute the low level of disorder to the use of monolayer WSe2 during device
stacking, presumably originating from the increased lateral friction between WSe2

and graphene, as mentioned before. We note that this additional layer does not
change the magic-angle condition [27, 50], and the induced spin-orbit interaction
energy scale is ∼ 1 meV in twisted bilayers. Therefore, SOI is likely too small
to significantly affect the overall band structure and directly impact the cascade
physics at the magic angle (though may play a more important role for stabilizing
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Figure 4.5: Twisted graphene multilayers sample uniformity. (a)-(c) Leftmost
optical images of the three twisted graphene multilayers. The scale bar in each
panel corresponds to 5 𝜇m. 𝑅𝑥𝑥 versus density and displacement field (𝑛–𝐷) plots
shown in the middle are obtained from electrodes marked with the corresponding
colored lines. Rightmost plots are 𝑅𝑥𝑥 versus carrier density with top-gate voltage
fixed at Vtg = 0 V (gate sweeps are along the grey dashed lines in the 𝑛–𝐷 plots).
All the three devices have a high degree of homogeneity in twist angle with the
same superconducting filling range and |𝜈 | = 4 carrier density for multiple contacts.
The behavior of superconductivity and other symmetry-breaking features is highly
reproducible for different contacts.

superconductivity far away from the magic angle [50]). Finally, we note that,
in general, SOI is expected to manifest differently when the sign of 𝐷 field is
reversed, a feature that has not been observed in the experiment. The absence of
𝐷-field asymmetry is probably due to the small energy scale of SOI compared to
the interactions and the weak tendency to polarize wavefunctions with 𝐷 field in
magic-angle graphene multilayers.
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4.3 Insulators in TTG and TQG
Looking at the half filling of TTG (Fig. 4.3a), the resistance increases when tem-
perature goes down, suggesting activating behavior. Assignment as an insulator is
based on the activating behavior reflected in exponential suppression of conductance
with 1/𝑇 (Fig. 4.6c), which is not expected from a Dirac semimetal; see Fig. 4.6 for
detailed 𝐷 and 𝜈 dependence. The two-temperature scale in conductance is in line
with the behavior of TBG correlated insulator where transport at higher tempera-
ture and lower temperature is governed by activation and variable-range hopping,
respectively [147] (see blue dashed line in Fig. 4.6c).

Also, the insulating behavior is suppressed by an out-of-plane 𝐵 field of 𝐵⊥ > 0.4 T
but is mostly insensitive to the in-plane 𝐵 field (the weak suppression by the in-
plane 𝐵 field could possibly originate from a non-ideal in-plane-field alignment of
the sample). These experimental observations are highly indicative of a gap that
originates from strong interactions in TTG. We note, however, that formation of
the fully gapped states in TTG requires a mechanism that additionally gaps out the
MLG-like band, which may explain the presence of the gap only at finite 𝐷 fields.
Moreover, suppression of the gap with an out-of-plane magnetic field is at odds
with the 𝐶2 breaking scenario [21, 22] and is more in line with incommensurate
Kekulé spiral [148] or inter-valley-coherent [149–152] orders in the flat bands. The
insensitivity to in-plane field is suggestive of a spin-polarized insulator or otherwise
insensitive to in-plane magnetic field. Finally, we can not rule out that the gap
originates from induced SOI, since it is still possible that SOI promotes instabilities
that favor the formation for certain 𝜈 = +2 insulating states in TTG.

Fig. 4.7 shows the charge-neutrality gap of TQG as a function of 𝐷 field or potential
difference𝑈 (between the top and the bottom graphene layer). From the continuum
model, a gap in TQG is expected when finite 𝐷 field is applied. However, the details
of the gap evolution depend on the precise twist angle. When the twist angle is below
the magic-angle value, a charge-neutrality gap opens as soon as a finite 𝐷 field is
applied. On the other hand, when the twist angle is above the magic-angle value, a
gap opens only at much higher 𝐷 fields. The gap opening at 𝐷/𝜖0 ≈ 1.1 V nm−1

in our TQG structure is consistent with the device being slightly above the magic
angle. Note that the charge-neutrality gap is a good reference for matching the
experimental 𝐷 field with the potential difference 𝑈 used in calculations since the
interaction-driven Hartree correction vanishes at CNP. A good match between the
experimental and the calculated gap is found when converting 𝐷 into 𝑈 with an
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Figure 4.6: Half-filling correlated insulating state in TTG. (a) 𝑅𝑥𝑥 versus temperature
and 𝜈 for the trilayer focusing around 𝜈 = +2 at 𝐷/𝜖0 = 0.26 V nm−1. (b) Line
cuts of 𝑅𝑥𝑥 versus 𝜈 for a range of temperatures on the electron side for TTG. (c)
Conductance versus 𝑇−1 for TTG showing thermal activation behavior. (d) 𝑅𝑥𝑥
versus 𝐷 and temperature at 𝜈 = +1.96 in TTG. Out-of-plane (e) and in-plane (f)
magnetic field dependence of 𝑅𝑥𝑥 versus 𝜈 in TTG.

empirical factor: 𝑈 = 0.1 × (𝑛 − 1) × 0.33 nm × 𝑒𝐷, where 𝑒 is the electron charge
and 𝑛 − 1 is the number of graphene interfaces.

4.4 Electric-field tunable superconductivity
In addition to the pronounced 𝜈 dependence, the observed superconducting pockets
are highly tunable with electric displacement field 𝐷 (Fig. 4.8). A comparison
of the three structures reveals that TQG and TPG are more tunable than TTG.
This is apparent both in the 𝐷-dependent evolution of the filling range where
superconductivity is measured (Fig. 4.8) as well as in the critical temperature 𝑇𝑐
(Fig. 4.9a-c). Notably, superconductivity in TQG and TPG is fully quenched for all
fillings at 𝐷/𝜖0 = 0.75 V nm−1 and 𝐷/𝜖0 = 0.6 V nm−1, respectively. In the case of
TTG, however, superconductivity is present up to the maximum accessible electric
field 𝐷/𝜖0 = 1 V nm−1.

Nevertheless, 𝑅𝑥𝑥 versus 𝐷 and temperature measurements do show that supercon-
ductivity is suppressed at optimal doping in all three structures; further, they reveal
that 𝑇𝑐 forms a 𝐷 symmetric dome maximized at small finite 𝐷 fields (Fig. 4.9a
to c). We also note that TTG, TQG, and TPG all exhibit a similar variation of 𝑇𝑐
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Figure 4.7: Charge-neutrality insulating state in TQG. (a) Line cuts of 𝑅𝑥𝑥 versus
𝜈 for a range of temperatures around charge-neutrality point. (b) 𝑅𝑥𝑥 versus 𝐷 and
temperature around CNP in TQG. (c) Experimental charge-neutrality gap of TQG
as a function of 𝐷 field. (d) The continuum-model gap as a function of potential
difference𝑈. Inset, single-particle band structure of TQG (slightly above the magic
angle) at𝑈 = 0 meV and 150 meV, respectively.

Figure 4.8: TTG, TQG, and TPG 𝑛-𝐷 phase diagrams. (a)-(c) 𝑅𝑥𝑥 versus filling
factor 𝜈 and displacement field 𝐷 for twisted trilayer (a), quadrilayer (b), and pen-
talayer (c) graphene, respectively. All data are taken at 25 mK, and the dark blue
regions signal superconductivity. For electron-doped TTG and TQG, superconduct-
ing regions extend toward 𝜈 = +1 at intermediate 𝐷 field.

when viewed as a function of the potential difference𝑈 between the top and bottom
layers (Fig. 4.9d). This layer-number invariance is consistent with non-interacting
continuum-model calculations tracking the evolution of the inverse of the flat-band
bandwidth with𝑈 (Fig. 4.9f). The dependence of 𝑇𝑐 on 𝐷 in all the devices qualita-
tively matches the predictions of Ref. [153] for TTG with one marked exception: the
observed vanishing of superconductivity and the decay of 𝑇𝑐 appears to be linear in
𝐷 (Fig. 4.9a-c), in line with predictions for multilayer graphene with rhombohedral
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stacking [154] and in contrast to the exponential “tail” typically expected from the
weak-coupling theory (and seen in the model of Ref. [153]).

Figure 4.9: 𝐷-tuned superconductivity in the three structures. (a)-(c) 𝑅𝑥𝑥 versus
temperature and 𝐷 (or equivalent potential difference 𝑈 between layers) for the
filling factors indicated by arrows in Fig. 4.8. Critical temperature 𝑇𝑐 is indicated
by a dashed line that delineates 10% of the normal state resistance. 𝑇𝑐 is maximized
at finite 𝐷 fields. Overall, superconductivity is suppressed more easily with 𝐷 as
the layer number is increased. (e),(f) Theoretical calculations of the inverse of the
flat-band bandwidth for twisted trilayer, quadrilayer, and pentalayer graphene as a
function of 𝐷/𝜖0 (e) and potential difference 𝑈 (f). For a fixed 𝐷, the bandwidth
of the flat bands is larger for systems with more layers, but when expressed as a
function of 𝑈, the flat-band broadening follows a similar trend across the different
structures.

4.5 Interplay between superconductivity, flavor symmetry-breaking transi-
tions, and van Hove singularities

Comparing the location of the superconducting regions with the evolution of the
Hall density as a function of 𝐷 and 𝜈 in TTG, TQG, and TPG provides further
insight into the intricate relationship between the superconducting phase and the
correlation-modified Fermi surface (Fig. 4.10 and Fig. 4.11). As in previous TBG
and TTG measurements, we observe symmetry-breaking electronic transitions (a
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“cascade” of transitions) that are signalled by sudden drops in the Hall density
magnitude (a “reset”) without a change in sign. These resets (see dashed lines in
Fig. 4.10) indicate a rearrangement of spin/valley sub-bands and typically occur
near integer fillings of the flat bands [23, 24]. At low 𝐷 fields, superconducting
pockets onset around the |𝜈 | = 2 resets (purple dashed line), and the filling extent of
superconductivity varies depending on the presence or absence of a |𝜈 | = 3 flavor
symmetry-breaking transition (grey dashed line). For electron- and hole-doped TTG
as well as for electron-doped TQG (Fig. 4.10a,b,d), a flavor symmetry-breaking
transition appears around |𝜈 | = 3 and superconductivity accordingly terminates, as
previously noted in TTG [45]. By contrast, when signatures of the |𝜈 | = 3 reset
are completely absent (for example in hole-doped TQG, Fig. 4.10c, or in TPG),
superconductivity extends much further. Combined, these observations suggest that
superconductivity is favored when only two out of the four flavors are predominantly
populated (|𝜈 | = 2 cascade) and suppressed beyond |𝜈 | = 3 resets. This behavior can
be understood within the simplest iteration of the cascade scenario: resets associated
with |𝜈 | = 3 produce spin- and valley-polarized bands [155] and naturally disfavor
Cooper pairing of time-reversed partners.

At high 𝐷 fields, signatures of the cascade vanish and instead van Hove singularities
(vHs) become more prominent, reflecting qualitative changes in the band structure
(see yellow lines in Fig. 4.10). Consistent with previous TTG measurements [44,
45], the vHs in our TTG sample (as well as in TPG, Fig. 4.11) crudely bound
the superconducting regions. By contrast, the vHs in TQG cross well into the
superconducting pockets—in fact, for electron doping, 𝑇𝑐 reaches its maximum
exactly at the position of the vHs (Fig. 4.10d, orange dot). The interplay between
the vHs and superconducting boundaries, as revealed by Hall density measurements,
is complex: 𝑇𝑐 can be both enhanced and suppressed at the vHs depending on the
layer number and possibly other details such as the precise twist angle.

Pentalayer measurements provide additional signatures that point toward a close rela-
tion between superconductivity and flavor symmetry-breaking cascades (Fig. 4.11).
In contrast to TTG, in TPG we can access 𝐷 fields that are large enough to sti-
fle superconductivity—which occurs simultaneously with the onset of the vHs and
the apparent suppression of the cascade transitions (see red and light blue lines in
Fig. 4.11b that mark the superconducting boundaries and the cascade transitions,
respectively). For example, at low 𝐷 fields (|𝐷 |/𝜖0 < 0.6 V nm−1) around 𝜈 = +2,
the Hall density resets close to zero, in line with a nearly complete flavor symmetry-
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Figure 4.10: Interplay between superconductivity, flavor symmetry-breaking transi-
tions and van Hove singularities in TTG and TQG. (a),(b) 𝐷 field and 𝜈 dependence
of 𝑅𝑥𝑥 (top) and Hall density (bottom, measured at 𝐵 = 0.9 T) for TTG. Purple and
grey dashed lines mark the filling factors where flavor symmetry-breaking transi-
tions associated with |𝜈 | = 2 and |𝜈 | = 3 happen, respectively. The yellow line in (a)
delineates the evolution of the vHs. (c),(d)𝐷 field and 𝜈 dependence of 𝑅𝑥𝑥 (top) and
Hall density (bottom, measured at 𝐵 = 1.5 T) for TQG. Superconducting 𝑇𝑐 reaches
its maximum (orange dot in (d)) exactly at the position of the vHs. When present,
flavor symmetry-breaking transitions around |𝜈 | ≈ 3 coincide with the termination
of superconductivity ((a), (b), (d)). By contrast, superconductivity extends much
further in the absence of a |𝜈 | ≈ 3 reset (c).

breaking polarization. However, at higher 𝐷 fields (|𝐷 |/𝜖0 > 0.6 V nm−1), the
Hall density is dominated by a vHs around 𝜈 = +2, while the cascade signatures
are diminished. Superconductivity accordingly also vanishes. For hole doping, the
disappearance of superconductivity similarly coincides with the weakening of the
cascade. This on/off correspondence between the two phenomena suggests that they
either share a common origin, such as a large DOS, or that the cascade serves as a
prerequisite for robust superconductivity in graphene moiré superlattices.

4.6 Extended superconducting pockets to 𝜈 ≈ +5 in TPG
One remaining puzzle is the unprecedented large superconducting pockets on the
electron side of TPG. As mentioned above, for low 𝐷 fields in TPG, the supercon-
ducting pockets are extraordinarily large, spanning −4 ≲ 𝜈 < −2 for hole doping
and +2 ≲ 𝜈 ≲ +5 for electron doping (Fig. 4.12 and Fig. 4.13a). In particular,
the electron-side range corresponds roughly to a density window of 6 × 1012 cm−2,
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Figure 4.11: Interplay between superconductivity, flavor symmetry-breaking tran-
sitions and van Hove singularities in TPG. (a) 𝐷 field and 𝜈 dependence of Hall
density for TPG measured at 𝐵 = 1.5 T. (b) Schematic of Hall density (a) and 𝑅𝑥𝑥
(Fig. 4.8c) features for the pentalayer, including the boundary of the superconducting
region (red), vHs/“gap” (dark blue), cascade (light blue), and |𝜈flat | = 4 Hall density
reset (light purple). Sketches of the DOS around 𝜈 = +2 for different 𝐷 fields are
shown on the right. The middle panel illustrates the flavor symmetry polarization
observed in regions that support superconductivity. Flavor symmetry is preserved
at higher 𝐷 fields, as shown in the top and bottom panels.

which is the largest filling range so far reported in a graphene-based superconductor.
The observed superconductivity exhibits similar values of 𝑇𝑐 and 𝐵𝑐 as the trilayer
and quadrilayer samples and is likewise accompanied by a weak oscillating pattern
of critical current (Fig. 4.13c), confirming superconducting phase coherence. We
emphasize that the unprecedented persistence of superconductivity across a large
filling factor range in TPG (and also TQG in comparison to TTG or TBG) cannot be
explained in a minimal framework of alternating twisted graphene multilayers [145,
156] without invoking the non-trivial role of the additional bands.

The role of the additional bands in TPG deserves careful consideration due to
the implications for the strength of interactions, such as Hartree effects, and the
types of superconductivity the bands can plausibly support. Explanations for the
enlarged superconducting intervals can generically be organized into three scenarios
depending on the filling of the flat TBG-like bands 𝜈flat, relative to the total filling
𝜈max at which superconductivity terminates (𝜈max = +5 for electron-doped TPG and
|𝜈max | = 4 for TQG and hole-doped TPG).

We present the three scenarios in detail (see also Appendix B). In scenario (𝑖),
𝜈max corresponds to 𝜈flat ≈ +3, the flat-band filling at which superconductivity is



85

Figure 4.12: Temperature dependence of TPG measured at different 𝐷 fields.
(a)-(e) 𝑅𝑥𝑥 versus filling factor 𝜈 and temerature measured at 𝐷/𝜖0 = 0 (a), 0.115
(b), 0.24 (c), 0.32 (d) and 0.44 V nm−1 (e), respectively.

typically suppressed in TBG, suggesting that the superconducting phase space is
largely the same for different multilayer magic-angle structures when considering
just the flattest TBG-like bands. In scenario (𝑖𝑖), 𝜈max coincides with 𝜈flat ≈ +4,
precluding any simple analogy with TBG, although superconductivity can still be
attributed to the flat bands. Finally, scenario (𝑖𝑖𝑖) assumes full filling of the flat
bands before superconductivity is suppressed at 𝜈max. This scenario includes the
possibility that the distinction between the different TBG- and MLG-like bands
breaks down even at 𝐷 = 0 due to hybridization as well as potential multi-band
superconductivity [157–160]. In this case, superconductivity in TPG is a more
general phenomenon than in TBG since it occurs in either mixed bands or new,
more dispersive bands.

From the perspective of the non-interacting band structure, the three scenarios all
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Figure 4.13: Superconductivity at extended filling factors in TPG. (a),(b) 𝐷 field
and 𝜈 dependence of 𝑅𝑥𝑥 (a) and Hall density (b), showing the region around the
electron-side superconducting pocket. The grey line in (a) marks the vHs originating
from the dispersive TBG-like bands. (c) The evolution of 𝑑𝑉/𝑑𝐼 as a function of
𝐼 and 𝐵⊥ measured at 𝜈 = +4.6, 𝐷/𝜖0 = 0.12 V nm−1 (marked by a yellow dot in
(a)), confirming the robustness of superconductivity above 𝜈 = +4.

seem implausible, therefore interactions must play a crucial role. In particular,
although the presence of the dispersive bands implies that |𝜈 | − |𝜈flat | > 0, this
effect is much smaller than needed for either scenario (𝑖) or (𝑖𝑖). Coulomb interac-
tions can significantly enhance |𝜈 | − |𝜈flat |, either by evening out the spatial charge
distribution [137, 161–164] or symmetry breaking [165].

We model the interactions by incorporating three types of corrections: (a) an in-plane
Hartree correction; (b) a two-parameter effective model mimicking generic Hartree-
Fock modifications of band structure; (c) an out-of-plane Hartree correction allowing
for inhomogeneous charge distribution between the layers. The model suggests a
minimal flat-band occupation 𝜈flat ≳ +3.8 at 𝜈 ≈ +5 (Fig. 4.14g,h), diminishing the
plausibility of scenario (𝑖) for electron-doped TPG which has 𝜈max ≈ +5.

The relevance of this scenario is further undermined with the following experimental
observations. For TBG and TTG, the strongest superconducting pockets normally
start from |𝜈 | = 2 and end around |𝜈 | = 3. Therefore, the scenario would suggest
that TPG could behave in a similar way, i.e., flat TBG-like bands are filled to
𝜈flat = +3 when superconductivity is diminished at 𝜈 = +5. This scenario implies
that the additional two electrons per moiré site are distributed in the dispersive
TBG- and MLG-like bands due to the interaction effects discussed, with a large
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portion of the charge carriers being hosted by the dispersive TBG-like bands. Since
vHs of the dispersive TBG-like bands are normally found around half filling, the
corresponding Hall density signatures are expected to occur at the same filling, i.e.,
𝜈 = +5 in this scenario. However, in the experiment we observe vHs signatures
originating from the dispersive TBG-like bands near 𝜈 ≈ +6 instead (see Fig. 4.15).
This line of reasoning allows us to rule out scenario (𝑖), therefore, we conclude that
superconductivity exceeds flat-band filling 𝜈flat = +3 for electron-doped TPG.

Figure 4.14: Hartree corrections in TPG. (a)-(d) Depiction of different approxi-
mation schemes used to understand the role of interactions in TPG. The Hartree
correction shifts the flat band (purple) up in energy. Cascaded bands in (c) and
(d) are shown in green. (d) corresponds to a minimum model of Hartree and Fock
effects characterized by a Hartree shift and a Fock gap. (e),(f) Partial filling of each
subsystem versus dielectric constant 𝜖 for a fixed flat-band filling 𝜈flat = +2 (e) and a
fixed total filling 𝜈 = +5 (f), respectively. (g) Partial filling of each subsystem versus
total filling 𝜈 for a fixed dielectric constant 𝜖 = 11.15. Here, solid (dashed) lines
correspond to a cascaded (uncascaded) solution with the cascade solution enabling
higher filling of the flat-band subsystem. (h) Similar to (g) but the solid (dashed)
lines correspond to a solution at potential difference𝑈 = 0 meV (𝑈 = 34 meV).

Both scenarios (𝑖𝑖) and (𝑖𝑖𝑖) are indicative of the non-trivial role of additional bands
in stabilizing superconductivity. Assuming well-defined flat and dispersive bands,
in scenario (𝑖𝑖𝑖) the former bands are completely filled, and superconductivity is
supported fully by the latter non-flat bands. This assertion is at odds with the
large dispersion of the remaining TBG- and MLG-like bands. However, while the
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Figure 4.15: Van Hove singularities around 𝜈 = +6 in TPG. (a),(b) 𝑅𝑥𝑥 and 𝑅𝑥𝑦 as
a function of 𝜈 and 𝐵 field measured at zero 𝐷 field for TPG. The sign change in
𝑅𝑥𝑦 around 𝜈 = +6 (marked by arrows in (a) and (b)) indicates vHs. (c),(d) 𝑅𝑥𝑥 (c)
and Hall density (d) as a function of 𝐷 and 𝜈 with gray dashed lines indicating 𝜈
linecuts (at 𝐷 = 0) where plots in (a) and (b) were taken. (e) Band structure of TPG
calculated using non-interacting model. Arrow indicates the position where vHs
from dispersive TBG-like bands is expected.

exact mechanism underlying scenario (𝑖𝑖𝑖) is difficult to pin down, it is not without
experimental support. For instance, a natural interpretation of the Hall density
minimum around 𝜈 ≈ +4 for |𝐷 | ≲ 0.4 V nm−1 is that it marks the complete filling
of the flat bands, 𝜈flat ≈ +4 (Fig. 4.16).

One possible realization of scenario (𝑖𝑖𝑖) consistent with the experimental observa-
tions is that the division of the electronic states into simple TBG- and MLG-like
bands fails—obviating our very definition of 𝜈flat and potentially allowing flavor
polarization, and accompanying superconductivity, to persist well beyond 𝜈 = +4.
While such hybridization is expected for finite 𝐷 fields, mixing between flat, disper-
sive TBG- and MLG-like bands for |𝜈 | < |𝜈max | may occur even at 𝐷 = 0 due to, for
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Figure 4.16: Reset at 𝜈 ≈ +4 in TPG. (a) Line cuts of 𝑅𝑥𝑥 (top) and Hall density
(bottom, measured at 𝑇 = 1.5 K, 𝐵 = 0.5 T) versus 𝜈 for a range of 𝐷 fields (traces
are shown for every 0.05 V nm−1 for both 𝑅𝑥𝑥 and Hall density). Both the presence
of Hall density resets around 𝜈 = +4 and the development of superconductivity
extending from 𝜈 = +2 to +5 are shown to persist for a wide range of 𝐷 fields.
(b) 𝑅𝑥𝑥 versus 𝐷 and 𝜈 measured at 𝑇 = 1.5 K, 𝐵 = 0.5 T (line cuts are shown
in (c)). From all the above line cuts, Hall density resets and 𝑅𝑥𝑥 resistive features
consistently exist around 𝜈 = +4.

example, proximity to WSe2, layer-to-layer charge inhomogeneity or distant-layer
coupling.

Our measurements demonstrate the increasing predominance of superconductiv-
ity in twisted graphene multilayer structures as the number of layers is increased
from three to five and highlight the close relationship between the flavor symmetry-
breaking transitions and superconductivity. Moreover, our findings suggest a sce-
nario in which the symmetry-broken 𝜈 = ±2 state strongly favors the formation of
the superconducting state while the cascade corresponding to 𝜈 = ±3 suppresses it.
Interestingly, this scenario is consistent not only with previous TBG [16, 20, 50–52,
141] and TTG [44, 45, 166] observations but also in part with the ABC trilayers [54]
and Bernal bilayers without [55] and with a WSe2 substrate [56] where supercon-
ductivity is observed near or within phases in which two out of four flavors are pre-
dominantly filled. These common observations suggest that symmetry-broken states
with similar types of polarization underlie superconductivity in all these graphene-
based superconductors. In this context, the discovery of superconductivity in TQG
and TPG together with untwisted bi- and trilayers dramatically expands the scope
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of graphene-based superconductors. This expansion holds promise for resolving
important questions related to the nature of the pairing mechanism in these systems
and provides guidance for developing novel graphene-based superconductors and
their applications.

4.7 Conclusion
In this chapter, we demonstrated that moiré graphene multilayers (twisted relative
to each other in an alternating sequence) all exhibit robust superconductivity with
𝑇𝑐 similar to the TBG case. With increasing number of layers, superconductivity
occupies a significantly larger phase space, especially in the pentalayer case reaching
𝜈 = +5. Despite the coexistence of dispersive bands with moiré flat bands, we
observed correlation-driven half-filling insulating state in TTG and single-particle
charge-neutrality gap in TQG. The 𝐷-field hybridization between dispersive and flat
bands makes the superconductivity in twisted graphene multilayers highly tunable.
Among all three structures and also TBG, superconductivity shows intimate relation
with 𝜈 = +2 symmetry-breaking transitions, establishing an universal rule. We
discussed the occurrence of unprecedented 𝜈 = +5 superconductivity in TPG in three
different scenarios. Combined with theoretical calculations including interaction
effects, we confirm the abundance of superconductivity in the moiré flat bands in
the pentalayer case.
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C h a p t e r 5

ENHANCED SUPERCONDUCTIVITY IN SPIN-ORBIT
PROXIMITIZED BILAYER GRAPHENE

In Chapter 3, we discussed that by adding WSe2 to twisted bilayer graphene, super-
conductivity is stabilized to twist angles much far away from the magic angle. The
results serve as an important tuning knob to disentangle the relevance of various
symmetry-breaking phases. Half-filling flavor symmetry-breaking transition seems
tightly related the occurrence of superconductivity. However, given the complicated
band structure of moiré graphene as well as twist angle inhomogeneity, the exact
role of WSe2 and the type (strength) of induced SOC are hard to quantify. Super-
conducting state at the magic-angle condition seems not modified, i.e., the critical
temperature is not affected by the addition of WSe2.

In this chapter, we couple WSe2 to crystalline graphene: Bernal-stacked bilayer
graphene (BLG). Surprisingly, placing monolayer WSe2 on BLG promotes Cooper
pairing to an extraordinary degree: superconductivity appears at zero magnetic
field, exhibits an order of magnitude enhancement in 𝑇𝑐, and occurs over a density
range that is wider by a factor of eight. By mapping quantum oscillations in BLG-
WSe2 as a function of electric field and doping, we establish that superconductivity
emerges throughout a region whose normal state is polarized, with two out of four
spin-valley flavors predominantly populated. In-plane magnetic field measurements
further reveal that superconductivity in BLG-WSe2 can exhibit striking dependence
of the critical field on doping, with the Chandrasekhar-Clogston (Pauli) limit roughly
obeyed on one end of the superconducting dome yet sharply violated on the other.
Moreover, the superconductivity arises only for perpendicular electric fields that
push BLG hole wavefunctions toward WSe2—suggesting that proximity-induced
Ising spin-orbit coupling plays a key role in stabilizing the pairing. Our results
pave the way for engineering robust, highly tunable, and ultra-clean graphene-based
superconductors.

5.1 The advantages of Bernal bilayer graphene coupled to WSe2

We start with the correlated phenomena in vanilla Bernal bilayer graphene. The flat
electronic bands are enabled by electrical displacement fields (𝐷 fields), which open
a band gap around charge neutrality point and push conduction and valence bands
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edges up and down. The band edges flat, featuring van Hove singularities and high
density of states (Fig. 5.1b). Eventually Coulomb interactions dominate. Measuring
longitudinal resistance and quantum oscillations show resistance peaks and frequen-
cies that suggest the breaking of flavor symmetry [55]. However, superconductivity
is absent at zero magnetic field (Fig. 5.1c), in sharp contrast to the rhombohedral
trilayer graphene, within which superconductivity emerges at 𝐵 = 0 T [54]. Sur-
prisingly, superconductivity in Bernal bilayer graphene shows up when an in-plane
magnetic field is applied (Fig. 5.1d,e). The critical temperature is 𝑇𝑐 ≈ 30 mK
(Fig. 5.1f inset).

Superconductivity that only emerges when an in-plane field is applied in BLG
suggests the spin-polarized nature. Given its susceptibility to spin polarization, one
nature question to ask: how will the system react to other spin perturbations, such
as spin-orbit coupling? Spin-orbit coupling after all is an effectively symmetry-
breaking magnetic field that couples to momentum (valley) degree of freedom. This
is the motivation of coupling BLG to WSe2.

Figure 5.1: Spin-polarized superconductivity in intrinsic Bernal bilayer graphene.
(a) Lattice structure of Bernal bilayer graphene. (b) Band structure calculated within
a tight-binding model near the Brillouin zone corner. (c),(d) 𝑅𝑥𝑥 measured at fixed
𝐵∥ = 0 (c) and 165 mT (d) at a nominal temperature of 10 mK. (e) 𝐵∥ dependence of
linear response resistivity measured at 𝐷/𝜖0 = 1.02 V/nm . (f) Doping dependence
of 𝑅𝑥𝑥 measured at fixed 𝐷/𝜖0 = 1.02 V/nm and 𝐵∥ = 165 mT and variable
temperatures. Inset measured at doping 𝑛 = −0.57 × 1012 cm−2 and the same 𝐷
field. Reprinted from Ref. [55]; permission from The American Association for the
Advancement of Science.
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Fig. 5.2a shows the BLG-WSe2 stack and all the devices have a dual-graphite gate
structure with graphite electrodes (Fig. 5.2b) such that we can tune the doping
density 𝑛 and displacement field independently, simply by changing the top and
bottom gate voltages. The device is entirely made of crystalline 2D material compo-
nents including the BLG-WSe2 channel, the hBN dielectric, graphite gates, graphite
electrodes. Optical image of a typical device is shown in Fig. 5.2c.

Figure 5.2: BLG-WSe2 device structure. (a) Schematic of a BLG-WSe2 structure
showing the crystal lattice of Bernal-stacked bilayer graphene (blue and red) and a
WSe2 monolayer (yellow and purple) on top. (b) Schematic of a dual-gated device.
Doping density 𝑛 and 𝐷 field are controlled by tuning top and bottom gate voltage
𝑣𝑡 and 𝑣𝑏. (c) Optical image of the investigated device. The scale bar in the panel
corresponds to 10 𝜇m.

We shall start with the band structure of Bernal bilayer graphene, just to ask where the
correlation effect comes from and why it is better for figuring out the details of SOC
in comparison to TBG. Unlike monolayer graphene, the low-energy band structure
of which is described by Dirac cones, the low-energy spectrum of Bernal bilayer
graphene is well approximated by quadratic band touching at zero displacement
field. In a finite 𝐷 field, BLG features a band gap at charge neutrality [167, 168],
trigonal warping [62] and prominent van Hove singularities (vHs) near the weakly
dispersive band edge (Fig. 5.3). Due to the large density of states, interactions
between electrons are greatly amplified when the chemical potential crosses the
vHs. The details are below.

Considering the low-energy continuum model commonly used to describe Bernal-
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stacked bilayer graphene [62], a perpendicular displacement field 𝐷 generates a
potential difference 𝑢 = −𝑑⊥𝐷/𝜖BLG between the top and bottom layers. Here
𝑑⊥ = 0.33 nm is the interlayer distance and 𝜖BLG ∼ 4.3 is the relative permittivity
of BLG. A continuum approximation of the band structure returns a Hamiltonian of
the form

𝐻0 =
∑︁
𝜉=±
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𝒌
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†
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where Π = (𝜉𝑘𝑥 + 𝑖𝑘𝑦) and 𝑣𝑖 ≡
√

3𝑎
2 𝛾𝑖. Here, 𝜉 = ±1 indicates the valley that

has been expanded about: 𝑲, 𝑲′ = (𝜉4𝜋/3𝑎, 0) with 𝑎 = 0.246 nm the lattice
constant of monolayer graphene. The 4 × 4 matrix ℎ𝜉 (𝒌) is expressed in the
sublattice/layer basis corresponding to creation/annihilation operators of the form
𝜓𝜉 (𝒌) =

(
𝜓𝜉,𝐴1(𝒌), 𝜓𝜉,𝐵1(𝒌), 𝜓𝜉,𝐴2(𝒌), 𝜓𝜉,𝐵2(𝒌)

)𝑇 , where 𝐴/𝐵 indicate the sublat-
tice, 1, 2 indicate the layer, and the momentum 𝒌 is measured relative to 𝑲𝜉 (indices
denoting the spin degrees of freedom have been suppressed). The values for the
parameters entering into Eq. (5.1) are 𝛾0 = 2.61 eV (intralayer nearest-neighbor
tunneling), 𝛾1 = 361 meV (leading interlayer tunneling), 𝛾3 = 283 meV (also known
as trigonal warping term), 𝛾4 = 138 meV, and Δ′ = 15 meV (potential difference
between dimer and non-dimer sites) [63].

In the absence of SOC and an applied displacement field with 𝑣3 = 𝑣4 = 0, two bands
touch quadratically at charge neutrality. Two remaining bands are at significantly
higher and lower energies; their wavefunction are dominated by the “dimer sites”,
i.e., the A2 and B1 which sit immediately on top of one another in the bilayer and
hybridize strongly through the onsite tunneling parameter 𝛾1. Trigonal warping
introduced by the 𝑣3, 𝑣4 associated hoppings in Eq. (5.1) splits the quadratic band
touching at charge neutrality into four distinct Dirac cones separated by van Hove
singularities: one Dirac cone remains at 𝒌 = 0, while the other three are located at
𝐶3-related momenta slightly away from the Dirac point. Turning on a displacement
field 𝐷, a gap opens at charge neutrality and the vHs move apart in energy. Further,
by flattening the band bottom, the applied 𝐷 field also amplifies divergence of the
DOS close to the vHs.
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Figure 5.3: Non-interacting valence bands of BLG-WSe2. Non-interacting valence
bands near the 𝐾 and 𝐾′ points of the Brillouin zone for 𝐷/𝜖0 = −1 V/nm (a)
and 1 V/nm (b), calculated by including an Ising SOC (𝜆𝐼 = 1 meV) on the top
layer. Schematics show that when BLG is hole-doped, electronic wavefunctions are
polarized toward the top layer for 𝐷 > 0, and toward the bottom layer for 𝐷 < 0.

Importantly, The low-energy states near 𝑲 and 𝑲′ become strongly layer- and
sublattice-polarized; e.g., on 𝐴1 sites for the valence band and 𝐵2 sites for the
conduction band, or vice versa for the other sign of 𝐷. That is, the low-energy
wavefunctions near charge neutrality and under a large 𝐷 field are strongly localized
on the “non-dimer sites” of BLG.

A WSe2 monolayer adjacent to the graphene is known to induce SOC via virtual
tunneling [129, 169, 170]:

𝐻SOC =
∑︁
𝜉=±

∑︁
𝒌

𝜓
†
𝜉
(𝒌)ℎSOC,𝜉𝜓𝜉 (𝒌),

ℎSOC,𝜉 (𝒌) = P1

[
𝜆𝐼

2
𝜉𝑠𝑧 + 𝜆𝑅

2
(
𝜉𝜎𝑥𝑠𝑦 − 𝜎𝑦𝑠𝑥)

]
, (5.2)

where the Pauli matrices 𝜎𝑖 and 𝑠𝑖, 𝑖 = 𝑥, 𝑦, 𝑧, respectively act on sublattice and
spin degrees of freedom. The operator P1 projects onto the top graphene sheet, i.e.,
only the sites A1 and B1: P1 = diag(12×2, 02×2) in the layer/sublattice basis used
to express ℎ0,𝜉 (𝒌) in (5.1). The parameters 𝜆𝐼 and 𝜆𝑅 quantify the strength of the
Ising (also called “valley-Zeeman”) and Rashba SOC. Ab initio-type numerics and
experimental estimates find a range of values𝜆𝐼 ∼ 0−5 meV and𝜆𝑅 ∼ 0−15 meV for
the SOC parameters [169–176], which are also predicted to be strongly twist-angle
dependent [173–175].

The layer- and sublattice polarization of the low-energy wavefunctions near the 𝑲,
𝑲′ points has important consequences for SOC induced by the TMD. Indeed, Rashba
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SOC does not act effectively in the low-energy theory because it is off-diagonal in
the sublattice degree of freedom. It therefore induces a splitting only at second order
in degenerate perturbation theory, with 𝜆eff

𝑅
∼ (𝜆𝑅𝑣0𝑘)2/(𝛾2

1𝑢) with 𝑢 the interlayer
potential [177]. By contrast, the Ising SOC acts effectively in the subspace of
sublattice- and layer-polarized wavefunctions.

5.2 Asymmetry with electrical displacement field

Figure 5.4: Asymmetric 𝑛-𝐷 phase diagram of BLG-WSe2. (a) 𝑅𝑥𝑥 versus doping
density 𝑛 and displacement field𝐷measured at zero magnetic field. Flavor-polarized
states show strong asymmetry with respect to the sign of 𝐷 field. Superconductivity
(delineated by a dashed line) spans across wide doping and 𝐷 ranges at positive
𝐷 fields (wavefunctions are strongly polarized toward the WSe2). A competing
resistive phase appears in the middle of the superconducting region, as marked by the
grey arrow. (b),(d) 𝑑𝑉/𝑑𝐼 versus 𝑛 and bias current 𝐼 measured at 𝐷/𝜖0 = 0.9 V/nm
(b) and −1 V/nm (d), respectively. (c) Blue and orange curves are line cuts from (b)
and (d), respectively, with the densities marked by the colored bars.
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Longitudinal resistance 𝑅𝑥𝑥 measured as a function of carrier density 𝑛 and 𝐷 at
zero magnetic field shows peaks or dips that emerge and separate from each other
as |𝐷 | is increased (Fig. 5.4a). These features can be associated with an interplay
of Lifshitz transitions and breaking of spin and valley symmetries, similar to the
case of hBN-encapsulated BLG [55]. Importantly, the resulting phase diagram
is strongly asymmetric with respect to the sign of 𝐷 field. Focusing on hole
doping, for both signs of 𝐷, the largest resistance peaks (red diagonal regions in
Fig. 5.4a) correspond to phases that possess a single spin-valley flavor-polarized
Fermi surface, which we denote as FP(1)± (FP(𝑛) denotes a flavor-polarized phase
with 𝑛 degenerate Fermi pockets and ± denotes the sign of 𝐷; see section 5.5 for the
identification of spin-valley degeneracy). For positive 𝐷, this resistive feature spans
beyond 𝐷/𝜖0 = +1 V/nm but is suppressed by 𝐷/𝜖0 = −0.75 V/nm for negative 𝐷.

The most striking difference in the BLG-WSe2 phase diagram between positive and
negative 𝐷 fields is the emergence of a broad zero-resistance region correspond-
ing to superconductivity at 𝐷 > 0. No analogous region has been observed in
hBN-encapsulated BLG, where superconductivity only appears in a finite in-plane
magnetic field [55].

The pronounced ±𝐷 asymmetry highlights the role of Ising SOC in defining the
phase diagram of BLG-WSe2. Theoretical calculations [170, 178] (Fig. 5.3b) con-
firm that Ising SOC is induced only on the top layer proximate to WSe2 and that,
correspondingly, the SOC-induced spin splitting in the valence band is largely re-
stricted to 𝐷 > 0—consistent with the 𝐷-asymmetric experimental data (Fig. 5.4a).
In contrast, Rashba SOC is expected to produce splittings that are largely indepen-
dent of the sign of 𝐷, and thus cannot account for the pronounced ±𝐷 asymmetry.

5.3 Estimating SOC strength
In the Sections 5.1 and 5.2, both the theory of proximitized SOC in BLG and the
asymmetric 𝑛–𝐷 phase diagram already provide strong evidence of the important
role of Ising SOC. Here, we try to estimate Ising and Rashba SOC quantitatively.

Quantum Hall measurements around 𝐷 = 0 further support the existence of Ising
SOC (Fig. 5.5a-e). To quantify WSe2-induced Ising SOC, we probe the octet
zeroth Landau level (LL) in BLG, since few-meV-scale Ising SOC can rearrange
the energies of these states. Note that these LL energies are not sensitive to Rashba
SOC [179]. Previous experiments [128, 129] have shown that one can quantify
the Ising SOC 𝐻𝐼 =

1
2𝜆𝐼𝜏𝑧𝑠𝑧 (𝜆𝐼 is the Ising SOC strength) with LLs on opposite
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Figure 5.5: Estimating different SOC strengths through quantum Hall effect and
quantum oscillations. (a)-(e) 𝑅𝑥𝑥 versus 𝜈 = 2𝜋ℓ2

𝐵
𝑛 (ℓ𝐵 is the Landau magnetic

length) and 𝐷 field at 𝐵⊥ = 1 T, 2 T, 3 T, 5 T, and 7 T, respectively. Arrows mark
the transition of |𝜈 | = 3 quantum Hall states with 𝐷 field. (f),(g) Δ𝑅𝑥𝑥 versus 1/𝐵⊥
(measured up to 𝐵⊥ = 5 T) at 𝐷/𝜖0 = 0.2 V/nm, 𝑛 = −3.5 × 1011 cm−2 (f) and
𝐷/𝜖0 = −0.1 V/nm, 𝑛 = −20 × 1011 cm−2 (g), respectively. The corresponding
FFT data are shown in (h) and (i). Inset of (h) shows the FFT splitting 𝐵split
(marked by black arrows in the main panel) versus doping density 𝑛 measured at
𝐷/𝜖0 = 0.2 V/nm. Colored lines show the FFT splitting predicted from band
structure calculations for the same 𝐷 field, using Ising SOC 𝜆𝐼 = 0.7 meV with
Rashba SOC 𝜆𝑅 = 0 meV (purple line) and 𝜆𝑅 = 4 meV (yellow line).

graphene layers: The sets of two Landau levels that cross at 𝜈 = ±3 filling factors
have opposite layer polarization, such that their energy difference (at zero 𝐷 field)
is given by Δ𝐸 = 𝐸𝑍 ±𝜆𝐼/2 (𝐸𝑍 is the Zeeman gap between spin-up and spin-down
LLs)—only one of the two Landau levels (with layer polarization close to the WSe2)
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is affected by the Ising SOC. Therefore, the critical field 𝐵∗
⊥ that makes Δ𝐸 vanish

is 2𝐸𝑍 = 2𝑔𝜇𝐵𝐵∗
⊥ = 𝜆𝐼 . In Fig. 5.5a-e, 𝐵∗

⊥ ≈ 3 T is the magnetic field at which
yellow and green arrows level at the same 𝐷 field, yielding 𝜆𝐼 ≈ 0.7 meV.

Independently, 𝜆𝐼 can also be extracted from the doping-dependent FFT splitting
of quantum oscillations. Fig. 5.5h inset shows the FFT splitting 𝐵split as a function
of doping at 𝐷/𝜖0 = 0.2 V/nm. Ising-type splitting is suppressed with increasing
|𝑛|, in contrast to Rashba-type splitting which increases with increasing |𝑛|. The
observed splitting is consistent with the value of 𝜆𝐼 ≈ 0.7 meV extracted from the
quantum Hall measurements, as shown in the Fig. 5.5h inset by comparing to the
band splitting predicted from the band structure calculations at the same 𝐷 field. In
the Section 5.5, the Fermi-surface structures additionally support explicit symmetry
breaking by Ising SOC.

The effect of Rashba SOC is more subtle in the experiment. Quantum oscillations at
higher 𝐵⊥ field provide an upper bound for the magnitude of Rashba SOC. Fig. 5.5f-i
shows Δ𝑅𝑥𝑥 versus 1/𝐵⊥ and corresponding FFT measured at 𝐷/𝜖0 = 0.2 V/nm
and −0.1 V/nm, respectively. At 𝐷 > 0 (Fig. 5.5h), FFT reveals a frequency
splitting while at 𝐷 < 0 the splitting is absent (Fig. 5.5i). These observations are
consistent with the interpretation that at 𝐷 > 0, the splitting is mainly caused by
Ising SOC; however at 𝐷 < 0, the Ising effect is strongly diminished and Rashba
SOC strength 𝜆𝑅 is not big enough to induce an observable splitting. The FFT peak
at 𝐷 < 0 (Fig. 5.5i) has a full width at half maximum around 0.8 T, which translates
to an upper bound for the bare Rashba SOC strength 𝜆𝑅 ≲ 5 meV by comparing
to the spin splitting predicted from band structure calculations at the same density
𝑛 = −2 × 1012 cm−2 and displacement field 𝐷/𝜖0 = −0.1 V/nm. An upper bound
on Rashba SOC can also be extracted from the observed spin splitting at positive
𝐷/𝜖0 = 0.2 V/nm, assuming Ising SOC 𝜆𝐼 = 0.7 meV (Fig. 5.5h inset). From this
analysis we find an upper bound 𝜆𝑅 ≲ 4 meV, roughly consistent with the bound
from the negative 𝐷 field data.

5.4 Superconductivity at zero magnetic field
After establishing the role of Ising SOC and quantifying the magnitude, we turn to the
characteristics of the broad superconducting region at 𝐷 > 0. No analogous region
has been observed in hBN-encapsulated BLG, where superconductivity only appears
in a finite in-plane magnetic field [55]. The critical current of the zero-magnetic-field
superconductivity in BLG-WSe2 exhibits nontrivial doping dependence (Fig. 5.4b),
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with two distinct maxima (the larger of which reaches 20 nA). By contrast, at𝐷 < 0 a
different phase (Fig. 5.4c,d) exhibiting highly nonlinear current-dependent resistance
is observed for similar values of 𝑛 and |𝐷 | (marked by a green arrow in Fig. 5.4a).
This resistive phase is suppressed by small magnetic fields and is similar to the
zero-magnetic-field phase that has been reported in hBN-encapsulated BLG [55].

Figure 5.6: Temperature dependence of superconductivity. (a)-(c) 𝑅𝑥𝑥 versus density
𝑛 and temperature for hole doping, showing superconducting domes in the FP(2, 2)+
phase for 𝐷/𝜖0 = 1 V/nm (a), 0.9 V/nm (b), and 0.8 V/nm (c), respectively. A
competing resistive phase intersects the superconducting domes at these 𝐷 fields.
(d) Line cuts of 𝑅𝑥𝑥 versus 𝑛 for a range of temperatures (from 28 mK to 1 K)
measured at 𝐷/𝜖0 = 1 V/nm. The inset shows the𝑉-𝐼 plot at 𝑛 = −5.75×1011 cm−2

and various temperatures. The green dashed line marks where 𝑉 ∼ 𝐼3, from
which we determine 𝑇𝐵𝐾𝑇 = 260 mK. (e) 𝑅𝑥𝑥 versus temperature measured at
𝑛 = −5.75 × 1011 cm−2 showing a superconducting transition.

The evolution of critical temperature 𝑇𝑐 with 𝑛 and 𝐷 provides further insights
into the superconducting phase (Fig. 5.6a-c). The superconducting dome occu-
pies a wide range of doping (∼ 2 × 1011 cm−2; see Fig. 5.4a) and features a
maximal 𝑇𝑐 of approximately 300 mK. Figure 5.6d shows 𝑅𝑥𝑥 line cuts at differ-
ent temperatures; insets show nonlinear 𝐼–𝑉 curves at optimal doping, yielding
a Berezinskii–Kosterlitz–Thouless (BKT) transition temperature 𝑇𝐵𝐾𝑇 ≈ 260 mK



101

(estimated by the temperature where 𝑉 ∼ 𝐼3). We emphasize that the supercon-
ducting critical temperature observed here is an order of magnitude larger than the
𝑇𝑐 in hBN-encapsulated BLG. Moreover, the relatively high 𝑇𝑐 does not appear to
be sensitive to minor changes of 𝐷 field, further substantiating the robustness of
the superconducting phase. Fig. 5.7 shows the evolution of the superconducting
phase in the presence of an out-of-plane magnetic field 𝐵⊥. The maximal critical
field 𝐵𝑐⊥ ≈ 15 mT at base temperature yields a corresponding Ginzburg-Landau
coherence length 𝜉GL =

√︁
Φ0/(2𝜋𝐵𝑐⊥) ≈ 150 nm (Φ0 is the superconductor flux

quantum).

Figure 5.7: Out-of-plane magnetic field dependence of superconductivity. (a)
Critical current disappearing with 𝐵⊥ field measured at 𝐷/𝜖0 = 0.9 V/nm, 𝑛 =

−5.05 × 1011 cm−2. (b) 𝑅𝑥𝑥 versus 𝑛 and 𝐵⊥ field around the superconducting
region for 𝐷/𝜖0 = 1 V/nm.

We can estimate the mean free path through the magnetic focusing measurement.
Fig. 5.8a shows non-local resistance 𝑅𝑛𝑙 as a function of 𝑛 and 𝐵⊥ for 𝐷/𝜖0 =

0.6 V/nm measured with the configuration shown in Fig. 5.8b. Data at density
𝑛 = −7 × 1011 cm−2 show a pronounced feature around 𝐵⊥ ≈ 20 mT, which
suggests a transverse magnetic focusing [180] that is comparable with the electrodes
separation of 5 𝜇m, and translates to a mean free path ℓ𝑚 𝑓 ≳ 𝜋𝐿/2 ≈ 7.9 𝜇m. Thus,
superconductivity resides deep in the clean limit, 𝜉GL/ℓ𝑚 𝑓 < 0.02, similar to the
case of hBN-encapsulated Bernal bilayer and rhombohedral trilayer graphene [54,
55].

Another prominent feature of both the 𝑇 and 𝐵⊥ field dependence (Fig. 5.6a-c)
is a resistive peak that intersects the superconducting dome, effectively splitting
it into two regions within a certain range of 𝐷 fields (note by the grey arrow
in Fig. 5.4a). This peak signals the presence of another phase that appears to
compete with superconductivity. Both the doping range where this state occurs
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and its disappearance at relatively low magnetic fields are features shared by the
resistive phase observed for 𝐷 < 0 (see the green arrow in Fig. 5.4a) and in hBN-
encapsulated BLG [55]. Moreover, both the resistive peak and superconductivity
feature a broken-symmetry parent state with two large and emerging small Fermi
pockets (see discussion in the Section 5.5), suggesting that transport in this region
is highly sensitive to the exact details of the spin-valley ground states.

Figure 5.8: Transverse magnetic focusing with an out-of-plane magnetic field. (a)
Non-local resistance 𝑅𝑛𝑙 measured as a function of 𝑛 and 𝐵⊥ at 𝐷/𝜖0 = 0.6 V/nm
with the measurement configuration shown in (b).

5.5 Fermi surfaces of the flavor-polarized states
Upon applying 𝐷 fields, the top portion of the valence bands around 𝐾 and 𝐾′ points
is quite flat (Fig. 5.9a). Coulomb interactions dominate over kinetic energy. To re-
duce the total energy, BLG prefers to unevenly populate different spin-valley flavors,
forming spontaneous flavor-polarized states (flavor ferromagnetism). Additionally,
the top of the valence bands host three trigonally warped pockets (Fig. 5.9b). To
further reduce the total energy, electrons may selectively populate one or two out of
the three trigonally warped pockets within certain flavors, thus forming spontaneous
nematic orders [181]. The interplay between kinetic energy, strong correlations, trig-
onal warping, and explicit Ising SOC gives rise to a plethora of symmetry-breaking
ground states as following.

The 𝐷-field asymmetry discussed in Section 5.2 is also highlighted by low field
(𝐵⊥ < 1 T) quantum oscillations measured at 𝐷/𝜖0 = 1 V/nm and −1 V/nm,
which imply distinct Fermi surface structures within the superconductivity region
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Figure 5.9: Band structure and Fermi surfaces for single spin-valley flavor. (a)
Non-interacting valence bands near the 𝐾/𝐾′ point for at large displacement field
featuring trigonal warped pockets and a flat portion of the band. (b) The evolution
of Fermi surfaces as a function of doping for single spin-valley flavor.

for 𝐷 > 0 (Fig. 5.11) and within the resistive phase for 𝐷 < 0 (Fig. 5.10). The
ultra-clean BLG enables high quality quantum oscillations that quantifies the size
of Fermi surfaces. Fourier transforms of the oscillations—taken with respect to
1/𝐵⊥—reveal the phases in the relevant doping ranges. Because the crystalline
graphene does not have integer filling factors, therefore, we normalize the Fermi
surface sizes relative to the size of total density to see the electron polarization.
The Fourier transform of 𝑅𝑥𝑥 (1/𝐵⊥) at low magnetic fields (0.05 T < 𝐵⊥ < 0.5 T
or so) is normalized by the frequency corresponding to the full doping density,
𝑓norm = 𝑛 × ℎ/𝑒, so that the resulting frequency 𝑓𝜈 reveals the fraction of the total
Fermi surface area enclosed by a cyclotron orbit (Fig. 5.10b,e).

Start with the Fermi surfaces at negative 𝐷 field where the effect of Ising SOC is
small. At 𝐷/𝜖0 = −1 V/nm, the resulting phase diagram is remarkably similar to
that reported on hBN-encapsulated BLG without WSe2 [55]. At the lowest electron
densities (|𝑛| < 3 × 1011 cm−2; Fig. 5.10b), we observe a Fourier transform peak
at 𝑓𝜈 = 1/12 (along with its higher harmonics) corresponding to a spin-valley
symmetric phase with 12 degenerate Fermi pockets produced by trigonal warping
(denoted as Sym(12)−; see schematics on top). Upon further doping, we observed
a Fourier transform peak at 𝑓𝜈 = 1 (−4 < 𝑛 < −3 × 1011 cm−2). It corresponds to
a spin-valley polarized phase to one single flavor; denoted FP(1)−. Then we come
to the spin-valley symmetric phase Sym(12)− again (−6.2 < 𝑛 < −4 × 1011 cm−2).
Further hole doping, BLG transitions into another phase with two frequency peaks
at 𝑓 (1)𝜈 < 1/2 and 𝑓

(2)
𝜈 < 1/12 such that 𝑓 (1)𝜈 + 𝑓

(2)
𝜈 = 1/2. This phase can be

identified as a spin-valley flavor-polarized phase—denoted FP(2, 2)−—with two
majority ( 𝑓 (1)𝜈 < 1/2) and two minority ( 𝑓 (2)𝜈 < 1/12) flavors. The resemblance
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between our 𝐷 < 0 data and hBN-encapsulated BLG [55] suggests that SOC does
not play a major role for 𝐷 < 0.

Figure 5.10: Fan diagram and Fermi surfaces at 𝐷/𝜖0 = −1 V/nm. (a) 𝑅𝑥𝑥 versus
𝐵⊥ and doping density 𝑛 for 𝐷/𝜖0 = −1 V/nm. (b) Fourier transform of 𝑅𝑥𝑥 (1/𝐵⊥)
versus 𝑛 and 𝑓𝜈 for𝐷/𝜖0 = −1 V/nm. The schematics on top show the corresponding
symmetry-breaking Fermi surfaces. (c) 𝑅𝑥𝑥 versus doping density 𝑛 for the same
density range. (d-f) The same data as the one in (a)-(c), but zoom in certain density
ranges.

At 𝐷/𝜖0 = 1 V/nm (Fig. 5.11), where the wavefunctions are strongly polarized
toward WSe2, we see a few notable differences that suggests the presence of Ising
SOC. First, at lowest densities (−2 < 𝑛 < −1×1011 cm−2), we observed a frequency
peak at 𝑓𝜈 = 1/6. The result is consistent with Ising-induced spin imbalance:
within each valley, only three trigonally warped pockets from one flavor are filled,
thus the phase in total has six small equal sized pockets, denoted FP(6)+ (Fig. 5.11d).
Second, at slightly higher densities (−5 < 𝑛 < −4.3×1011 cm−2), one of the Fourier
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frequency peaks clearly appears below 𝑓𝜈 = 1/12, suggesting the existence of Fermi
surfaces whose occupancy is smaller relative to Sym(12)−. As we can identify two
independent frequencies in this region, we denote this phase as FP(6, 6)+, with six
bigger and six smaller Fermi pockets (Fig. 5.11e). The explicit flavor polarization
here of the two phases likely originates from spin-orbit induced band splitting.
Additionally, the transition between the FP(6, 6)+ phase and the adjacent FP(2, 2)+
phase (with two big and two small Fermi pockets) occurs at a lower hole density of
|𝑛| = 5 × 1011 cm−2.

Figure 5.11: Fan diagram and Fermi surfaces at 𝐷/𝜖0 = 1 V/nm. (a) 𝑅𝑥𝑥 versus
𝐵⊥ and doping density 𝑛 for 𝐷/𝜖0 = 1 V/nm. (b) Fourier transform of 𝑅𝑥𝑥 (1/𝐵⊥)
versus 𝑛 and 𝑓𝜈 for 𝐷/𝜖0 = 1 V/nm. The schematics on top show the corresponding
symmetry-breaking Fermi surfaces. (c) 𝑅𝑥𝑥 versus doping density 𝑛 for the same
density range. (d),(e) Fermi level and Fermi surfaces of the FP(6)+ (d) and the
FP(6, 6)+ (e) phase.

Finally, we observe that superconductivity is established throughout the FP(2, 2)+
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phase (except a small region where it competes with the resistive phase) ending
on the high doping side with the onset of another complex flavor-polarized phase
characterized by the occurrence of additional frequency peaks (Fig. 5.12b). Im-
portantly, in FP(2, 2)+, as for FP(2, 2)−, we find that 𝑓 (1)𝜈 + 𝑓

(2)
𝜈 = 1/2. Given the

non-interacting band structure of Fig. 5.9, this observation implies that the carriers
in each minority flavor are spontaneously polarized to one of the trigonally warped
pockets—pointing toward nematic order [181, 182] (schematics in Fig. 5.12c).

Figure 5.12: Zoomed-in Fan diagram and Fermi surfaces at 𝐷/𝜖0 = 1 V/nm. (a)
𝑅𝑥𝑥 versus 𝐵⊥ and doping density 𝑛 for 𝐷/𝜖0 = 1 V/nm. (b) Fourier transform
of 𝑅𝑥𝑥 (1/𝐵⊥) versus 𝑛 and 𝑓𝜈 for 𝐷/𝜖0 = 1 V/nm. (c) 𝑅𝑥𝑥 versus doping density
𝑛 for the same density range. The schematics show the corresponding symmetry-
breaking Fermi surfaces.

5.6 Doping-dependent Pauli-limit violation
In-plane magnetic field measurements further illuminate the unconventional nature
of superconductivity in BLG-WSe2 (Fig. 5.13). Figure 5.13a shows 𝑅𝑥𝑥 as a function
of density 𝑛 and in-plane magnetic field 𝐵∥ for the superconducting region (dark
blue) at 𝐷/𝜖0 = 1.1 V/nm. When approaching the superconductivity from low
densities |𝑛|, the in-plane critical field 𝐵𝑐∥ quickly reaches a maximum near the
phase boundary separating FP(2, 2)+ and FP(6, 6)+, and then slowly decreases with
further hole doping. Conversely, the critical temperature measured at zero 𝐵∥ field,
𝑇0
𝑐 (red open circles), shows a more symmetric dome shape with a maximum at

higher |𝑛|. The interplay between 𝐵𝑐∥ and 𝑇0
𝑐 suggests that the violation of the Pauli

limit (𝐵𝑝 = 1.86 T/K × 𝑇0
𝑐 for a weak-coupling spin-singlet BCS superconductor

with 𝑔-factor 𝑔 = 2) varies with doping.
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Figure 5.13: Doping-dependent Pauli-limit violation.(a) 𝑅𝑥𝑥 versus in-plane mag-
netic field 𝐵∥ and doping density 𝑛 for 𝐷/𝜖0 = 1.1 V/nm. The red line delineates the
𝑇-dependent superconducting dome, and open circles indicate the zero-magnetic-
field critical temperature 𝑇0

𝑐 that is defined by the temperature at which 𝑅𝑥𝑥 is 50%
of the normal state resistance. (b) The ratio of in-plane critical magnetic field 𝐵𝑐∥
to the Pauli-limit field 𝐵𝑝 = 1.86 T/K × 𝑇0

𝑐 is plotted as a function of normalized
temperature 𝑇/𝑇0

𝑐 at two doping densities 𝑛 = −6 × 1011 cm−2 and −7 × 1011 cm−2.
Inset: the same data as in the main panel but plotted in 𝐵𝑐∥ versus 𝑇 . (c) Pauli
violation ratio 𝐵0

𝑐∥/𝐵𝑝 as a function of density 𝑛. The doping trend of the PVR is
well captured by a model (blue line in the inset) taking into account fixed Ising SOC
together with doping-dependent Rashba SOC and constant orbital depairing.

As an example, Fig. 5.13b shows 𝐵𝑐∥/𝐵𝑝 as a function of temperature (𝑇 normalized
to𝑇0

𝑐 ) at two representative densities. Both curves are well-fit by the phenomenolog-
ical relation 𝑇/𝑇0

𝑐 = 1− (𝐵𝑐∥/𝐵0
𝑐∥)

2 (solid lines; 𝐵0
𝑐∥ denotes the critical field at zero

temperature). However, they show distinct Pauli violation ratios (PVR) 𝐵0
𝑐∥/𝐵𝑝: for
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high |𝑛| (orange curve, 𝑛 = −7×1011 cm−2), 𝐵0
𝑐∥/𝐵𝑝 ≈ 1.5 which is close to the ratio

expected from weak coupling BCS theory. The purple curve (𝑛 = −6 × 1011 cm−2),
however, shows 𝐵0

𝑐∥/𝐵𝑝 ≈ 5, strongly violating the Pauli limit. Overall the PVR
changes from roughly six to one as the doping is increased (Figure 5.13c). Note
that the PVR values at the phase boundaries represent a lower limit due to possible
imperfect in-plane alignment of the sample during the measurement.

The large PVR of 𝐵𝑐∥/𝐵𝑝 ∼ 6 on the low hole doping side of the superconducting
dome evokes the phenomenology of Ising superconductivity observed in transition
metal dichalcogenides [9, 100, 101]. Ising superconductivity refers to a scenario
in which pairing connects time-reversed states, e.g., |𝒌, ↑⟩ and |−𝒌, ↓⟩, with spins
oriented along a fixed quantization axis selected by Ising SOC. Here 𝜆𝐼 ≈ 0.7 meV—
estimated in the Section 5.3—far exceeds Δ = 1.76𝑘𝐵𝑇𝑐 ≈ 0.02 meV estimated from
weak-coupling BCS scaling. The resulting Cooper pairs enjoy resilience against in-
plane fields that rotate the spins away from this preferred axis, naturally leading
to significant Pauli-limit violation as measured on the low hole doping side of the
dome. The substantial PVR reduction for higher hole doping is more puzzling and
implies that the ground state cannot evolve into a predominantly spin or spin-valley
polarized phase. This reduction could emerge from a doping-dependent change in
the flavor polarization of the parent FP(2, 2)+ state or in-plane depairing effects (or
the interplay between the two).

As proof of concept, we consider a simple model that incorporates two depairing
mechanisms: Rashba SOC (which favors in-plane spin orientation) and orbital
in-plane magnetic field effects—both of which compete with the Ising SOC and
suppress the PVR. A final form of the a self-consistent superconducting gap equation
is:

ln
(
𝑇𝑐

𝑇0
𝑐

)
+Φ(𝜌−, �̃�0) +Φ(𝜌+, �̃�0) −

�̃�+ · �̃�−
| �̃�+ | | �̃�− |

[Φ(𝜌−, �̃�0) −Φ(𝜌+, �̃�0)] = 0, (5.3)

where �̃�0 = −�̃�orb𝜇𝐵𝐵∥/2𝜋𝑇𝑐 (�̃�orb ≡ 𝑔orb(𝑘𝐹 + 𝑘0,𝑦) denotes a characteristic scale
for the orbital depairing), �̃�± = (±𝑔𝑅𝑘𝐹/2 + 𝜇𝐵𝐵∥ ,∓𝑔𝑅𝑘𝐹/2,±𝑔𝐼/2), and 𝜌± =

( | �̃�+ | ± | �̃�− |)/2𝜋𝑇𝑐. The function Φ(𝜌, �̃�0) is defined in terms of the digamma
function 𝜓(𝑧) as
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(5.4)
We plotted the solution either with only Rashba term or with only orbital deparing
term in Fig. 5.14. The in-plane critical field is suppressed by either of them. The
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solution to the model Eq. 5.3 can capture the observed PVR evolution (Fig. 5.13c
inset) provided that the effective Rashba spin splitting increases with hole density,
which may be expected if superconductivity arises from minority Fermi pockets
that grow with hole doping and the Rashba term follows 𝑔𝑅𝑘𝐹 , with 𝑘𝐹 increasing
accordingly.

Figure 5.14: Depairing model for doping-dependent Pauli violation ratio. (a),(b)
Pauli violation ratio expected in a system with: Ising 𝑔𝐼 and Rashba 𝑔𝑅𝑘𝐹 coupling
(a), Ising 𝑔𝐼 and orbital �̃�orb coupling (b). Note that �̃�orb is a dimensionless quantity:
the corresponding orbital energy scale is �̃�orb𝜇𝐵𝐵.

5.7 Discussion
The extended superconducting phase space in BLG-WSe2 clearly contrasts observa-
tions in hBN-encapsulated bilayer and trilayer graphene [54, 55], where supercon-
ductivity occurs only within a narrow density range around the symmetry-broken
phase boundaries. Moreover, the coincidence of the doping range exhibiting su-
perconductivity with the FP(2, 2)+ phase (Fig. 5.12) at 𝐷 > 0 strongly hints that
(𝑖) superconductivity descends from the latter broken-symmetry parent state and
(𝑖𝑖) SOC plays a key role in selecting a symmetry-breaking order conducive to
pairing. These observations constrain the possible mechanisms that can lead to 𝑇𝑐
enhancement [183, 184]. Figure 5.15c depicts a phenomenologically motivated sce-
nario wherein multiple nearly degenerate broken-symmetry orders compete. If the
FP(2, 2)+ phase is, e.g., valley polarized in the absence of SOC, then broken inver-
sion and time-reversal symmetries would heavily disfavor pairing—consistent with
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the absence of superconductivity in BLG-WSe2 at 𝐷 < 0 and hBN-encapsulated
BLG at zero magnetic field [55]. Turning on Ising SOC could then tip the balance
in favor of orders that facilitate Cooper pairing. One candidate for this parent state
is a primarily spin-valley polarized phase arising due to an interaction-enhanced
Ising SOC strength (Fig. 5.15a); however, superconductivity emerging from such a
state would exhibit a much larger Pauli-limit violation, which would vary far less
with doping. We suggest instead that Ising SOC can promote inter-valley coherent
(IVC) order that is also amenable to pairing while maintaining compatibility with
observed trends (Fig. 5.15b).

Figure 5.15: Ground state selection by Ising SOC. (a),(b) Fermi surfaces of the
FP(2, 2)+ phase with Ising SOC and nematic order (a), or allowing for inter-valley
coherent order (b). Dashed Fermi pockets correspond to the condition that nematic
order is absent. (c) Schematics of a proposed scenario where Ising SOC tilts the en-
ergy balance toward IVC order, within which the development of superconductivity
is more favored, at the expense of a state which is not conducive to pairing, e.g., a
valley polarized state.

The crystalline nature of BLG offers high reproducibility of superconductivity at
zero-magnetic field. We made multiple devices showing similar behaviors, an exam-
ple of which is in Fig. 5.16. Similar to the previous study, the new device also shows
zero-magnetic-field enhanced superconductivity (𝑇𝑐 ∼ 200 mK; can be higher, see
Chapter 6) in a wide density range. Key differences are that superconductivity
onsets at larger 𝐷 fields (𝐷/𝜖0 ≳ 0.9 V/nm) and the flavor-polarized phase hosting
superconductivity appears to have multiple (four) minority Fermi pockets together
with two majority pockets (denoted as FP(2, 4)+). The variations of the corre-
lated phases among different devices could originate from ground state selection
by Ising SOC of different magnitudes, i.e., the second device here has Ising SOC
𝜆𝐼 ≈ 1.6 meV, stronger than 𝜆𝐼 = 0.7 meV for the previous device. The variation of
SOC for different devices originates from the alignment between BLG and WSe2;
see Chapter 6 for the tunability of Ising SOC by interfacial angle twisting.
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The nature of superconductivity in graphene-based systems—both moiré and crys-
talline [185–191]—presents an ongoing puzzle. The enticing general similarity
between BLG-WSe2 and moiré graphene superlattices [16, 44, 45, 48, 49] can be
noticed, as in both systems superconductivity appears intimately connected to the
symmetry-broken state in which two out of four spin-valley flavors are predomi-
nately populated. Future efforts are needed to address the origin of apparent striking
distinctions between different superconducting phases in graphene systems. Finally,
induced SOC [173–175] along with other parameters such as virtual tunneling [184]
depends on the relative orientation of WSe2 (or other TMDs) and graphene, and is
thus tunable—providing a rich landscape for further explorations.
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Figure 5.16: Additional device with different Ising SOC. (a) 𝑅𝑥𝑥 versus doping
density 𝑛 and displacement field 𝐷 measured at zero magnetic field for an additional
device. (b) 𝑅𝑥𝑥 versus 𝐵⊥ and doping density 𝑛 for 𝐷/𝜖0 = 1.1 V/nm. (c) Fourier
transform of 𝑅𝑥𝑥 (1/𝐵⊥) versus 𝑛 and 𝑓𝜈 for 𝐷/𝜖0 = 1.1 V/nm. (d) 𝑅𝑥𝑥 versus 𝑛
at zero magnetic field for the same 𝐷 field. The superconducting phase possesses
a flavor-polarized normal state with two majority and four minority Fermi pockets
(denoted as FP(2, 4)+). Schematic depicts the possible Fermi surface structures.
(e) Device optical image. (f) 𝑅𝑥𝑥 versus density 𝑛 and temperature showing a
superconducting dome at 𝐷/𝜖0 = 1.15 V/nm. (g) 𝑅𝑥𝑥 versus 𝑛 and 𝐵⊥ around the
superconducting region for 𝐷/𝜖0 = 1.1 V/nm.
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C h a p t e r 6

TWIST-PROGRAMMABLE SUPERCONDUCTIVITY IN
SPIN-ORBIT COUPLED BILAYER GRAPHENE

We established that by placing WSe2 adjacent to BLG, the system exhibits a 𝐷-
asymmetric phase diagram, suggesting the important role of Ising SOC in defining
the correlated phase diagram. More importantly, superconductivity is stabilized at
zero magnetic field, and the critical temperature of which is an order of magnitude
enhanced to 𝑇𝑐 ≈ 300 mK. We were only focusing on one BLG-WSe2 device with
Ising SOC strengh of |𝜆𝐼 | = 0.7 meV.

In this chapter, we employ a new fabrication technique: cut a large BLG flake
into multiple pieces and sequentially twist them relative to the WSe2 flake, form-
ing different BLG-WSe2 interfacial twist angles. The “moiréless” twist tunes the
superconductivity together with other correlated orders in BLG-WSe2. The pre-
cise alignment between the two materials systematically controls the strength of the
induced Ising SOC, profoundly influencing the phase diagram.

As Ising SOC is increased, superconductivity onsets at a higher displacement field
and features a higher critical temperature, reaching up to 0.5 K. Within the main
superconducting dome and in the strong Ising SOC limit, we find an unusual phase
transition characterized by a nematic redistribution of holes among trigonally warped
Fermi pockets and enhanced resilience to in-plane magnetic fields. The behavior
of the superconducting phase is well captured by our theoretical model, which
emphasizes the prominent role of interband interactions between Fermi pockets
arising due to interaction-enhanced symmetry breaking. Moreover, we identify two
additional superconducting regions, one of which descends from an inter-valley
coherent normal state and exhibits a Pauli-limit violation ratio exceeding 40, among
the highest for all known superconductors. Our results provide essential insights into
ultra-clean graphene-based superconductors and underscore the potential of utilizing
moiréless-twist engineering across a wide range of van der Waals heterostructures.

6.1 Programmable Ising SOC by interfacial twisting between BLG and WSe2

Theoretically, the induced SOC is predicted to depend on the relative twist angle 𝜃
between WSe2 and graphene [173–175, 184, 192] (Fig. 6.1a).
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Figure 6.1: Schematics for interfacial twisting between BLG and WSe2. (a)
Schematic showing the twisting of the BLG-WSe2 interface; tuning the interfa-
cial twist angle 𝜃 between the two largely lattice-mismatched materials modifies the
Ising SOC strength |𝜆𝐼 | and the correlated phase diagram. (b),(c) The schematics
show the relative rotation between the BLG and WSe2 Brillouin zones. At 𝜃 ≈ 0°
(b), 𝐾/𝐾′ valleys of BLG couple more effectively to one of the two WSe2 valleys,
resulting in large induced Ising SOC. In contrast, at 𝜃 ≈ 30° (c), inter-valley and
intra-valley tunneling between WSe2 and BLG have the same amplitude by reflec-
tion symmetry so that Ising couplings of opposite sign cancel each other and result
in vanishing proximity coupling.

Naively, graphene grabs SOC from WSe2 from so called interlayer tunneling pro-
cess [173, 184]. One can compute proximitized Ising SOC based on second-order
perturbation theory of the microscopic interlayer tunneling and derive that:

𝜆𝐼 =
|𝑉 𝐴+↑ |

2 − |�̄� 𝐴+↑ |
2

𝑊
−
|𝑉 𝐴+↓ |

2 − |�̄� 𝐴+↓ |
2

𝑊 + 𝛿 . (6.1)

Here, 𝑊 denotes the energy difference between the BLG and WSe2 valence band
edge differences, while 𝛿 denotes the Ising SOC splitting strength in WSe2, in the
range of ∼500 meV. 𝑉𝜎𝜏𝑠 is the tunneling strength for the intra-valley process (i.e.,
graphene 𝐾 valley to WSe2 𝐾 valley), and �̄�𝜎𝜏𝑠 is the tunneling strength for the
inter-valley process (i.e., graphene 𝐾 valley to WSe2 𝐾

′ valley). We shall see from
Eq. 6.1, to boost the proximitized Ising SOC, less energy difference 𝑊 between
the band edges of graphene and TMD would favor stronger Ising SOC; obviously
stronger intrinsic Ising 𝛿 would also serve the role. The two parameters are fixed
by the material like WSe2. However, by tuning the twist angle between graphene
and WSe2 (Fig. 6.1a), the proximitized Ising SOC is in principle tunable. Recall
that the proximitized Ising (Eq. 6.1) depends on the interplay between intra-valley
and inter-valley process 𝑉𝜎𝜏𝑠 and �̄�𝜎𝜏𝑠. Starting with a special twist angle 𝜃 = 30°
(Fig. 6.1c), the graphene 𝐾/𝐾′ valley is in the middle of 𝐾 and 𝐾′ valley of WSe2,
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i.e., the graphene valleys are equal momentum distance to the WSe2 valleys. Due
to the reflection symmetry 𝑅𝑦: (𝑥, 𝑦, 𝑧) → (𝑥,−𝑦, 𝑧), the |�̄�𝜎𝜏𝑠 | is the same as |𝑉𝜎𝜏𝑠 |,
which yields 𝜆𝐼 = 0 from Eq. 6.1; the result simply comes from symmetry. In
contrast, for 𝜃 = 0° (Fig. 6.1b), the inter-valley and intra-valley tunneling strengths
are clearly asymmetric, which yields finite proximitized Ising SOC.

This angle dependence, however, has not been experimentally studied or utilized
with systematic control. Here we employ this novel tuning knob to explore how
Ising SOC modifies the correlated phases and emerging superconductivity in BLG.
This approach offers several unique opportunities for exploring the properties of
ultra-clean and highly tunable superconductors: (𝑖) the strength of the induced
Ising SOC in BLG can be precisely quantified, essential for developing theoretical
understanding; (𝑖𝑖) the induced SOC is much less sensitive to twist-angle variations
compared to moiré systems, allowing for fine control of SOC; and (𝑖𝑖𝑖) the proximity
to WSe2 does not induce additional disorder, making experimental insights highly
reproducible.

We invented a new twisting scheme, where multiple devices with different twist
angles are formed between the graphene/WSe2 interface. Large flakes of BLG and
WSe2 are exfoliated on SiO2/Si chips. The crystal orientation of WSe2 can be iden-
tified by second harmonic generation [193] (SHG; Fig. 6.2b), where the directions
with maximized SHG signal correspond to the in-plane crystal orientations along
the W-Se direction. BLG is somewhat trickier. We identify flakes with long straight
edges forming angles that are multiple of 30°, e.g., three edges form two angles
of 150° in Fig. 6.2c. The configuration is consistent with the assignment that the
straight edges are along the zigzag- or armchair-edge direction of graphene.

After the identification of crystal edges, we attempt to form multiple continuous
twisting devices from the same BLG and WSe2 crystal. We cut the large BLG flake
into small pieces [116]; Fig. 6.2d. First, pick up topmost hBN, top graphite gate, top
hBN dielectric, and the large WSe2 flake using PC film on a PDMS. Then, align the
straight edge of BLG with the crystal orientation of WSe2 and control the approach
of PC/PDMS stamp so that only one BLG piece is picked up. SiO2/Si chip was
manually rotated by an angle 𝜃 ∼ 6°, and a second piece of BLG was picked up
but not overlapping with the first one. Repeat the same processes for the remaining
BLG pieces (Fig. 6.3b,c). Depending on whether the BLG straight edge used for
alignment is along the zigzag or armchair direction, the crystal axes of the six BLG
pieces are rotated relative to the WSe2 axis by an angle 𝜃 ∼ 0°, 6°, 12°, 18°, 24°, and
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Figure 6.2: Identifying the crystal edges of graphene and WSe2. (a) Optical image
of a WSe2 crystal. (b) Second harmonic generation for the WSe2 flake shown in
(a). (c) Optical image of a large BLG flake. Straight edges form angles 150°
that are consistent with the three straight edges being along zigzag- or armchair-
edge direction. (d) Zoom-in image of the BLG in (c), showing small BLG pieces
that are separated by atomic-force-microscope-actuated cutting. All the scale bars
correspond to 10𝜇m.

30° (armchair direction), or vice versa (zigzag direction). The two configurations
can be distinguished by measuring the Ising SOC strength of the devices at the
two ends. The large (small) Ising device corresponds to ∼ 0° (∼ 30°) alignment
due to the reflection symmetry [173–175, 184]. A typical finished stack is shown
in Fig. 6.3d; a series of different rotation angles between BLG and WSe2 can be
clearly seen from the optical image. The stack went through standard lithographic
and etching processes for final device preparation (Fig. 6.3e).

To characterize the SOC in our devices, we first perform high-resolution measure-
ments of Shubnikov–de Haas oscillations (Fig. 6.4c,d) in regions of the 𝑛-𝐷 phase
diagram (𝑛 is the doping density, 𝐷 is the electrical displacement field) that are well-
described by non-interacting theory. When a positive 𝐷 field 𝐷/𝜖0 = 0.2 V/nm
is applied, the hole-carrier wavefunctions are strongly polarized toward the top
graphene layer adjacent to WSe2, which in turn induces Ising SOC in BLG [56,
122, 129, 194]. For this 𝐷 field, Ising SOC is already maximal, i.e., larger 𝐷 values
do not further increase the Ising SOC strength (see Fig. 6.5 for further discus-
sion). In this regime, we observe a clear beating pattern in longitudinal resistance
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Figure 6.3: Fabricating twisting BLG-WSe2 on the same chip. (a)-(c) Flake trans-
ferring processes for the continuous interfacial twisting. The BLG pieces are se-
quentially picked up with an angle relative to WSe2 in increment of 6°, from ∼ 0°
to 30°. (d) Optical image of the twisting stack, clearly showing that the BLG pieces
form different twist angles relative to the WSe2 crystal. (e) Optical image of the
finished device set D1. All the scale bars correspond to 10𝜇m.

𝑅𝑥𝑥 as a function of out-of-plane magnetic field (𝐵⊥) at higher doping densities
(Fig. 6.4c), indicating two close oscillation frequencies originating from Fermi
pockets of slightly different sizes. To quantitatively analyze this Fermi-surface im-
balance, we normalize the oscillation frequencies of 𝑅𝑥𝑥 (1/𝐵⊥) to the Luttinger
volume corresponding to the total doping density. The resulting normalized fre-
quency 𝑓𝜈 reveals the fraction of the total Fermi surface area enclosed by a cyclotron
orbit. Figures 6.4e,f show an example comparison of the density-dependent fre-
quencies 𝑓𝜈 from two devices with twist angles 𝜃 ≈ 0° and 30°, respectively. In
both cases, two frequencies ( 𝑓 (1)𝜈 and 𝑓

(2)
𝜈 ) are found satisfying 𝑓

(1)
𝜈 + 𝑓

(2)
𝜈 = 1/2.

These frequencies can be understood as a splitting from 𝑓𝜈 = 1/4, which signals the
broken four-fold spin-valley symmetry, and are a direct measure of how the Ising
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SOC modifies the single-particle band structure (Fig. 6.4a,b). Due to Ising SOC,
nominally four-fold degenerate bands separate into two pairs of spin-valley locked
bands with slightly different Fermi-surface areas (illustrated in insets of Fig. 6.4e,f).

Figure 6.4: Tunable Ising SOC by twisting between BLG and WSe2. (a),(b) Non-
interacting valence bands of BLG near the 𝐾 and 𝐾′ points of the Brillouin zone at
𝐷/𝜖0 = 0.2 V/nm, with proximitized Ising SOC |𝜆𝐼 | ≈ 1.6 meV (a) and 0.4 meV
(b), respectively. (c),(d) 𝑅𝑥𝑥 versus out-of-plane magnetic field 𝐵⊥ and doping 𝑛
measured at 𝐷/𝜖0 = 0.2 V/nm for devices with |𝜆𝐼 | ≈ 1.6 meV (c) and 0.4 meV
(d), respectively. (e),(f) Fast Fourier transform (FFT) of 𝑅𝑥𝑥 (1/𝐵⊥) versus 𝑛 and
𝑓𝜈, where 𝑓𝜈 denotes the quantum oscillation frequency normalized to the Luttinger
volume. The arrow-marked FFT splittings reflect the Ising-induced Fermi-surface
imbalance within each valley, where larger Ising SOC (e) features a larger splitting
than small Ising SOC (f).

We can now confirm experimentally that the induced Ising SOC is modulated by the
twist angle 𝜃 between WSe2 and BLG. This is evident from the more pronounced
splitting shown in Fig. 6.4e compared to the one in Fig. 6.4f. Fig. 6.5b,c shows the
doping-dependent FFT splitting 𝐵split measured at different 𝐷 fields within the non-
interacting phase (schematics in Fig. 6.4e,f). Ising-type splitting is suppressed with
increasing |𝑛|, in contrast to Rashba-type splitting which increases with increasing
|𝑛| [56]. The detailed mapping of 𝐵split as a function of 𝑛 and 𝐷 enables comparison
to single-particle band structure calculation that quantifies Ising-induced Fermi
surface imbalance. The dashed lines in Fig. 6.5b,c are calculated frequency splittings
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for |𝜆𝐼 | ≈ 1.4 meV (Fig. 6.5b) and |𝜆𝐼 | ≈ 0.4 meV (Fig. 6.5c), respectively. Both
cases roughly match the experimental data. The overall trend is that (𝑖) at constant
|𝜆𝐼 |, higher 𝐷 features larger 𝐵split and (𝑖𝑖) at constant 𝐷, higher |𝜆𝐼 | features larger
𝐵split. The observed trends put strong constraints on the estimates of the Ising SOC
strength. Note that a single Ising SOC strength provides a good fit of the data at
different 𝐷 fields (from 𝐷/𝜖0 = 0.2 V/nm to 1 V/nm; Fig. 6.5b), suggesting that
Ising SOC is already maximal at 𝐷/𝜖0 = 0.2 V/nm and larger 𝐷 values do not
further increase the Ising SOC strength. Thus we established that twisting BLG
relative to WSe2 indeed modifies the Ising SOC strength.

Figure 6.5: Quantifying Ising SOC by quantum oscillations. (a) The same data as
the one in Fig. 6.4e, but without frequency normalization to show 𝐵split. (b),(c) Ex-
perimental (dots) doping-dependent frequency splitting around 𝑓𝜈 = 1/4 measured
at different 𝐷 fields for a large Ising device (b; |𝜆𝐼 | ≈ 1.4 meV) and a small Ising de-
vice (c; |𝜆𝐼 | ≈ 0.4 meV). The dashed lines are 𝐵split calculated from single-particle
band structure using the corresponding Ising SOC values.

Figure 6.6 summarizes systematic measurements across three sets of moiréless
twisting BLG-WSe2 devices (D1-D3), all of which demonstrate robust 𝜃-modulated
Ising SOC strengths. Our results are consistent with the picture that virtual interlayer
tunneling is responsible for the induced SOC. When the lattices of BLG and WSe2 are
angle-aligned, i.e., 𝜃 ≈ 0°, the 𝐾/𝐾′ valleys of BLG couple more effectively to one
of the two valleys of WSe2 (left schematic in Fig. 6.6), resulting in a large induced
Ising SOC. In contrast, for 𝜃 ≈ 30°, the inter-valley and intra-valley tunneling
between WSe2 and BLG have the same amplitude due to reflection symmetry (right
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schematic in Fig. 6.6). The induced Ising SOC in BLG vanishes accordingly. The
overall twist-angle dependence and the magnitude of Ising SOC are qualitatively
consistent with predictions [173–175, 184, 192].

Figure 6.6: Ising SOC strength |𝜆𝐼 | versus BLG-WSe2 interfacial twist angle 𝜃;
data were extracted from three sets of devices D1-D3. The schematics show the
relative rotation between the BLG and WSe2 Brillouin zones. At 𝜃 ≈ 0°, 𝐾/𝐾′

valleys of BLG couple more effectively to one of the two WSe2 valleys, resulting
in large induced Ising SOC. In contrast, at 𝜃 ≈ 30°, inter-valley and intra-valley
tunneling between WSe2 and BLG have the same amplitude by reflection symmetry
so that Ising couplings of opposite sign cancel each other and result in vanishing
proximity coupling.

6.2 Twist-programmable superconducting phase diagram
Using the exquisite twist-angle control of the Ising SOC strength, we explore the
SOC-dependent correlated phase diagrams occurring at large 𝐷 fields. Devices
with various Ising strengths all show characteristic 𝑅𝑥𝑥 features that are associated
with strong correlations and superconductivity stabilized at zero magnetic field [56,
122, 194] (see Fig. 6.7 for all six 𝑛-𝐷 phase diagrams). Importantly, the main
superconducting pocket, which emerges from a polarized state with a dominant
population of two out of the four spin-valley flavors [56, 122], shows a strong
dependence on the Ising SOC strength. For low Ising SOC (|𝜆𝐼 | ≈ 0.4 meV;
Fig. 6.7a), the superconducting region occupies a large 𝐷 field range, starting from
𝐷/𝜖0 ≈ 0.3 V/nm and extending up to 𝐷/𝜖0 ≈ 1.25 V/nm. For large Ising SOC
(|𝜆𝐼 | ≈ 1.5 meV; Fig. 6.7e,f), however, superconductivity onsets only at 𝐷/𝜖0 ≈
0.9 V/nm. Overall, the value 𝐷onset marking the onset of the superconducting pocket
grows with increasing |𝜆𝐼 | (Fig. 6.8f).

This trend of 𝐷onset can be understood as a consequence of interband interactions
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Figure 6.7: 𝑛-𝐷 phase diagrams for devices with various Ising SOC strengths. (a)-
(f) 𝑅𝑥𝑥 versus doping density 𝑛 and displacement field 𝐷 for devices with Ising SOC
strength |𝜆𝐼 | ≈ 0.4 meV (a), 0.7 meV (b), 0.9 meV (c), 1.4 meV (d), 1.5 meV (e),
and 1.6 meV (f), respectively.

between the majority (𝐾 ↑, 𝐾′ ↓) and the minority (𝐾 ↓, 𝐾′ ↑) spin-valley flavors.
The difference in hole populations between the majority and minority bands scales
with |𝜆𝐼 | and is further enhanced by Coulomb interactions. Consequently, the region
in the phase diagram where both bands have a large density of states (DOS) near the
Fermi level is pushed toward higher values of𝐷 and 𝑛 as Ising SOC is increased. The
experimentally observed trend is well reproduced by a simple model that takes into
account the pairing between majority and minority bands. We perform multiband-
superconductivity calculations with polarized normal state and find that the residual
Cooper-channel repulsion [195] (𝑣∗TAM) grows with increasing |𝜆𝐼 | and decreases
at higher 𝐷 fields (see Fig. 6.9). The majority-minority interactions that scatter
electron pairs between the pair of bands, greatly enhance the screening of the bare
repulsion compared to the single-band case. A larger density imbalance between the
bands effectively suppresses this interaction, shifting 𝐷onset to higher values. Note
that the significant role of interband interactions in BLG-WSe2 is in stark contrast to
the case of moiré graphene [16, 44, 45, 48, 49], where superconductivity emerges
from a polarized phase in the absence of majority and minority carriers.



122

Figure 6.8: Superconducting 𝑇𝑐 versus Ising SOC and 𝐷 field. (a) Optimal super-
conducting critical temperature 𝑇optimal

𝑐 versus |𝜆𝐼 | and 𝐷. (b),(c) 𝑅𝑥𝑥 versus doping
𝑛 and temperature for a device with |𝜆𝐼 | ≈ 0.4 meV, showing superconducting domes
at 𝐷/𝜖0 = 0.4 V/nm (b) and 1 V/nm (c), respectively. (d),(e) 𝑅𝑥𝑥 versus doping 𝑛
and temperature for a device with |𝜆𝐼 | ≈ 1.5 meV, showing superconducting domes
at 𝐷/𝜖0 = 1.1 V/nm (d) and 1.285 V/nm (e), respectively. (f),(g) Displacement
field 𝐷onset at which superconductivity onsets (f) and optimal critical temperature
𝑇

optimal
𝑐 (g) versus Ising SOC strength |𝜆𝐼 |.

Intriguingly, the superconducting critical temperature 𝑇𝑐 also shows a striking de-
pendence on |𝜆𝐼 |. While 𝐷onset is smaller and superconductivity persists over a wide
range of 𝐷 fields for small Ising SOC, the superconducting critical temperature re-
mains low throughout and saturates at 𝑇𝑐 ≈ 150 mK (Fig. 6.8b,c). In contrast, for
large Ising SOC, superconductivity onsets only at higher 𝐷 fields, but 𝑇𝑐 quickly
increases, reaching 𝑇𝑐 ≈ 500 mK at the optimal 𝐷 (Fig. 6.8d,e). This is the highest
𝑇𝑐 reported for crystalline (untwisted) graphene systems. Thus, the optimal crit-
ical temperature also shows an increasing trend with |𝜆𝐼 | (Fig. 6.8g). A detailed
three-dimensional map of the optimal critical temperature 𝑇optimal

𝑐 versus 𝐷 field
and |𝜆𝐼 | extracted from multiple devices is plotted in Fig. 6.8a. These observations
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Figure 6.9: The residual Cooper channel repulsion 𝑣∗TAM versus doping 𝑛 and
interlayer potential difference 𝑈 for |𝜆𝐼 | = 0.4 meV (left) and 1.4 meV (right),
respectively.

motivate further investigations of the phase diagram with even stronger Ising SOC,
e.g., through proximity to other transition metal dichalcogenides or the application
of pressure [20, 196].

6.3 Superconductivity across nematic redistribution and from inter-valley
coherence

The case for investigating devices with large Ising SOC is further emphasized by
the observation of two additional superconducting regions in this regime (1.4 meV
≲ |𝜆𝐼 | ≲ 1.6 meV; see Fig. 6.10 and Fig. 6.7d-f). We refer to the observed
superconducting regions as SC1, SC2, and SC3, enumerated from higher to lower
hole doping, respectively (with the main superconducting region discussed above
being SC2; see Fig. 6.11 for additional temperature and 𝐵⊥ characterizations). Each
superconducting pocket descends from a distinct flavor-symmetry-breaking normal
state (Fig. 6.12 and Fig. 6.13) and is terminated by a first-order symmetry-breaking
phase transition (marked by black dashed lines in Fig. 6.12 and Fig. 6.13) on the
low-doping side. Region SC1 features an optimal critical temperature 𝑇𝑐 ≈ 60 mK
(Fig. 6.12a inset), while the critical temperatures for SC2 and SC3 are 𝑇𝑐 ≈ 500 mK
and 100 mK, respectively (Fig. 6.13c).

The normal state of SC1 is the only one that can be directly related to the non-
interacting band structure. Quantum oscillations in this regime (−9 ≲ 𝑛 ≲ −7.6 ×
1011 cm−2, Fig. 6.12b) show two main frequencies (marked by blue and orange
arrows) obeying 2 · 𝑓 (1)𝜈 + 6 · 𝑓 (2)𝜈 ≈ 1. This indicates two large Fermi pockets
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Figure 6.10: Three superconducting regions SC1, SC2, and SC3. (a) 𝑅𝑥𝑥 versus
doping density 𝑛 and displacement field 𝐷 for a device with Ising SOC strength
|𝜆𝐼 | ≈ 1.5 meV, focusing around the phase space where the three superconducting
regions coexist.

from the two majority Ising flavors and six small pockets originating from trigonal
warping [62] of the two minority Ising flavors [122] (Fig. 6.12b left schematic); we
denote the flavor-polarized phase as FP(2, 6) (FP(𝑛, 𝑚) denotes a flavor-polarized
phase with 𝑛 and 𝑚 degenerate-sized Fermi pockets, from large to small).

Ultrahigh-resolution quantum oscillations reveal the unusual features of the Fermi
surfaces in the correlated normal states forming SC2 and SC3. In the higher-doping
region of SC2 (𝑛 ≲ −8.25 × 1011 cm−2, Fig. 6.13b), we observe two dominant
oscillation frequencies marked by blue ( 𝑓 (1)𝜈 ) and orange ( 𝑓 (2)𝜈 ) lines in Fig. 6.13e,
satisfying 2 · 𝑓 (1)𝜈 + 4 · 𝑓 (2)𝜈 ≈ 1 (black line). Thus, the normal state, denoted
as FP(2, 4), is a flavor-polarized phase hosting two majority and four minority
Fermi pockets. The occupation of two out of the three trigonal-warping pockets
for both the minority spin-valley flavors implies a nematic normal state that breaks
the 𝐶3 rotational symmetry [122] (Fig. 6.13e left schematic). Remarkably, we
observe a different Fermi-pocket configuration in the doping range −8.25 ≲ 𝑛 ≲
−7.1 × 1011 cm−2 within the same superconducting pocket. Here, the lowest third
frequency 𝑓

(3)
𝜈 (Fig. 6.13e) can be clearly resolved (see Appendix C and Fig. C.1

to C.3 for frequency extraction). Starting from the same value as 𝑓 (2)𝜈 , the value
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Figure 6.11: Characterization of the three superconducting regions SC1, SC2, and
SC3. (a)-(c) Temperature dependence of the three superconducting domes SC1 (a),
SC2 (b), and SC3 (c), respectively. (d)-(f) Critical current versus temperature at the
corresponding 𝐷 and 𝑛. (g)-(i) Critical current disappearing with 𝐵⊥ at the same 𝐷
and 𝑛 as in (d)-(f).

of 𝑓 (3)𝜈 rapidly decreases to zero at the low-doping phase boundary, implying that
two out of four small Fermi pockets shrink considerably in this density range.
We denote this phase as FP(2, 2, 2) in view of the relation 2 · 𝑓 (1)𝜈 + 2 · 𝑓 (2)𝜈 +
2 · 𝑓 (3)𝜈 ≈ 1. Here, the second and third numbers (2 and 2) imply an additional
broken symmetry within the trigonal-warping pockets [181, 197] (orange and green
pockets of the middle schematic in Fig. 6.13e), signaling a nematic redistribution
of holes. This remarkable continuous transition from FP(2, 2, 2) to FP(2, 4) within
the superconducting dome has a significant impact on the in-plane magnetic field
response of SC2 (see Section 6.5).

A rather exceptional correlated phase denoted FP(1, 3, 1) emerges upon further
decreasing the doping (−7.1 ≲ 𝑛 ≲ −5.7 × 1011 cm−2; Fig. 6.13b,e). The
Fermi-surface configuration is reflected in three oscillation frequencies obeying
𝑓
(4)
𝜈 + 3 · 𝑓 (5)𝜈 + 𝑓

(6)
𝜈 ≈ 1, with 𝑓

(4)
𝜈 being larger than 1/2, ensuring that the largest

Fermi pocket is non-degenerate (see Appendix C and Fig. C.4 to C.6 for further
discussion). Remarkably, this normal state supports the superconducting region
SC3, although all Fermi pockets have odd multiplicities. The combination of super-
conductivity and odd Fermi pocket multiplicities strongly points at an inter-valley
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Figure 6.12: Ising symmetry-breaking Fermi surfaces of SC1. (a) 𝑅𝑥𝑥 versus 𝑛
measured at 𝐷/𝜖0 = 0.92 V/nm. The inset shows 𝑅𝑥𝑥 versus 𝑛 and temperature
for the superconducting dome SC1. (b) Frequency-normalized FFT of 𝑅𝑥𝑥 (1/𝐵⊥)
over the same doping range as in (a); schematics show the corresponding flavor
symmetry-breaking Fermi surfaces.

coherent state [41, 42, 198–201] (purple schematic of Fig. 6.13e). This is fur-
ther corroborated by an analysis of the response of the phase boundaries to a 𝐵⊥

field [199] (see Appendix C and Fig. C.7). The odd multiplicity of all Fermi pockets
excludes the possibility of conventional 𝑠-wave pairing, suggesting unconventional
superconductivity. Moreover, provided that the pockets are intrinsically supercon-
ducting, the number of three mid-size Fermi pockets ( 𝑓 (5)𝜈 ) implies time-reversal
symmetry breaking regardless of the inter-valley coherent nature [200, 202–204].
It is interesting that SC3 only develops in a multi-band situation and not from one
of the IVC-ordered normal states at lower hole doping with a single or a smaller
number of Fermi pockets (see Fig. C.7).

6.4 Ultra-strong Pauli-limit violation: SC1 and SC3

All the three superconducting pockets show extraordinary resilience to in-plane
magnetic field 𝐵∥ . SC1 is characterized by an in-plane critical field 𝐵𝑐∥ ≈ 2.5 T,
significantly higher than observed previously [122] (Fig. 6.14). SC2 and SC3 show
distinct features in the 𝐵∥ response, reflecting the highly unusual intertwining with
the underlying normal states. Fig. 6.15a,b shows the dependence of 𝑅𝑥𝑥 on in-
plane magnetic field 𝐵∥ (Fig. 6.15a) and temperature (Fig. 6.15b) measured at
𝐷/𝜖0 ≈ 1.265 V/nm. SC2 occupies a significantly larger doping range, and its
optimal 𝑇𝑐 is roughly five times that of SC3 (Fig. 6.15b). In comparison, the
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Figure 6.13: SC2 across nematic redistribution and SC3 from inter-valley coherence.
(a) 𝑅𝑥𝑥 versus 𝐵⊥ and doping density 𝑛measured at 𝐷/𝜖0 = 1.265 V/nm for a device
with |𝜆𝐼 | = 1.5 meV. (b) Frequency-normalized Fourier transform of 𝑅𝑥𝑥 (1/𝐵⊥) over
the same doping range as in (a). The arrows mark the primary FFT peaks, as shown
in (e). (c) 𝑅𝑥𝑥 versus doping density 𝑛 measured at 𝐷/𝜖0 = 1.265 V/nm. Insets
show 𝑅𝑥𝑥 versus 𝑛 and temperature for the superconducting domes SC2 (left) and
SC3 (right), respectively. (d) the same data as in (b). The green dashed line marks
the continuous transition from FP(2, 2, 2) to FP(2, 4); black dashed lines mark first-
order flavor symmetry-breaking transitions. (e) Intensity peaks in 𝑓𝜈 extracted from
(b). The black solid lines around 𝑓𝜈 = 1 indicate the results from the Luttinger
sum rule. Schematics show the possible flavor-polarized phases, from left to right
corresponding to spin-valley locked nematic FP(2, 4), nematic FP(2, 2, 2) with two
sizes (green and orange) of trigonal-warping pockets, and inter-valley coherent
FP(1, 3, 1).

two superconducting regions show a striking response to 𝐵∥ . While SC2 is fully
suppressed by 𝐵∥ ≈ 3 T, SC3 persists up to 𝐵∥ = 7 T (Fig. 6.15a) at the phase
boundary. Crucially, the optimal critical temperature 𝑇optimal

𝑐 of SC3 appears to
be insensitive to 𝐵∥ (Fig. 6.16), with the superconducting domes at 𝐵∥ = 0 T and
𝐵∥ = 3 T being almost the same (Fig. 6.16b,e). For a weak-coupling spin-singlet
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Figure 6.14: 𝐵∥ dependence of SC1. (a) 𝑅𝑥𝑥 versus 𝑛measured at𝐷/𝜖0 = 0.92 V/nm.
Inset shows 𝑅𝑥𝑥 versus 𝑛 and temperature for the superconducting dome SC1. (b)
Frequency-normalized FFT of 𝑅𝑥𝑥 (1/𝐵⊥) over the same doping range as in (a).
(c),(d) 𝑛-dependent 𝑅𝑥𝑥 versus in-plane magnetic field (c) or versus temperature (d),
showing the disappearance of SC1.

Bardeen–Cooper–Schrieffer (BCS) superconductor, the Pauli limit 𝐵𝑝 is related
to the zero-magnetic-field critical temperature 𝑇𝑐 (0) as 𝐵𝑝 = 1.86 T/K × 𝑇𝑐 (0).
𝑇𝑐 (0) = 100 mK for SC3 would produce 𝐵𝑝 = 0.186 T. Thus, the observed in-plane
critical field 𝐵𝑐∥ = 7 T yields a Pauli-limit violation ratio (PVR) 𝐵𝑐∥/𝐵𝑝 ∼ 40,
placing SC3 among the superconducting phases with the highest Pauli-limit violation
ratios [55, 205–207]. Note that the exceedingly large PVR is not present in the other
two superconducting regions where Fermi pockets of the same size appear in pairs,
further reflecting the remarkable nature of SC3.

6.5 Nematicity-intertwined 𝐵∥ depairing: SC2

While overall having significantly lower PVR, the analysis of SC2 provides further
insights into the pairing scenarios. SC2 features two doping regions with distinct 𝐵∥

responses (Fig. 6.17a,b) that are directly intertwined with the continuous transition
from FP(2, 2, 2) to FP(2, 4) (Fig. 6.18). Fig. 6.17a,b shows representative 𝑅𝑥𝑥
versus temperature and 𝐵∥ measured in the overdoped and underdoped regions
(𝑛 = −8.5 and 6.9 × 1011 cm−2, respectively) for 𝐷/𝜖0 = 1.2 V/nm. SC2 exhibits
the same 𝑇𝑐 (0) ≈ 200 mK at both doping densities, but the 𝐵∥ responses are
distinct. The overdoped 𝑇𝑐 is quickly suppressed by 𝐵∥ following a conventional
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Figure 6.15: In-plane field dependence of SC2 and SC3. (a) 𝑅𝑥𝑥 versus doping
density 𝑛 and in-plane magnetic field 𝐵∥ at 𝐷/𝜖0 = 1.265 V/nm for a device with
|𝜆𝐼 | = 1.5 meV. (b) 𝑅𝑥𝑥 versus 𝑛 and temperature at 𝐷/𝜖0 = 1.265 V/nm.

quadratic scaling (Fig. 6.17a). The underdoped 𝑇𝑐, however, is insensitive to 𝐵∥ for
𝐵∥ ≤ 1 T (Fig. 6.17b), with the depairing at higher fields 𝐵∥ > 1.5 T likely due to
the Fermi-surface changes induced by 𝐵∥ .

To quantify the 𝐵∥-induced suppression of SC2, we fit 𝑇𝑐 versus 𝐵∥ by 𝑇𝑐 (𝐵∥) =

𝑇𝑐 (0) − 𝛼 · 𝐵2
∥ , where 𝛼 quantifies the pair-breaking tendency of 𝐵∥ . The result-

ing 𝛼 shows a striking dependence on doping (Fig. 6.18a). At higher doping, 𝛼
plateaus around 0.08 K/T2. At lower doping, 𝛼 approaches zero, indicating van-
ishing sensitivity to 𝐵∥ . Importantly, the qualitative change in 𝛼 coincides with the
redistribution of the trigonal-warping pockets (Fig. 6.18a,b). The region with the
plateau (−8.8 ≲ 𝑛 ≲ −7.3 × 1011 cm−2) and the region with the rapidly changing 𝛼
(−7.3 ≲ 𝑛 ≲ −6.6 × 1011 cm−2) correspond to the FP(2, 4) and FP(2, 2, 2) phases,
respectively. Within the FP(2, 2, 2), both the value of 𝛼 and the size of the smallest
Fermi pockets (green pockets of the schematics in Fig. 6.18a) approach zero at the
phase boundary (𝑛 ≈ −6.6×1011 cm−2). These observations suggest that the small-
est Fermi pockets determine the 𝐵∥ response (see Fig. C.8 to C.10 for additional
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Figure 6.16: Temperature dependence of SC3 measured at different in-plane mag-
netic field. (a) 𝑅𝑥𝑥 versus doping density 𝑛 and in-plane magnetic field 𝐵∥ showing
SC3 evolution. (b)-(h) 𝑅𝑥𝑥 versus doping density 𝑛 and temperature measured from
𝐵∥ = 0 T (b) to 6 T (h), 1 T increment step. (i) Optimal critical temperature 𝑇optimal

𝑐

of SC3 versus 𝐵∥ . The grey bar marks the Pauli limit 𝐵𝑝.

data).

The disparity in the response of the two SC2 regions to 𝐵∥ invites an analysis of
possible microscopic mechanisms. We propose that this disparity may be attributed
to the prominence of majority-minority interband interactions, so that the in-plane
magnetic field response and the trend observed in 𝐷onset (Fig. 6.8f) share a common
origin. Due to strong interactions, a modest 𝐵∥ (compared to |𝜆𝐼 |) may lead to signif-
icant spin canting, where majority- (minority-) band spins cant toward (away from)
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Figure 6.17: In-plane magnetic field dependence of SC2. (a),(b) 𝑅𝑥𝑥 versus tem-
perature and 𝐵∥ at 𝑛 = −8.5 × 1011 cm−2 (a) and −6.9 × 1011 cm−2 (b), respec-
tively for 𝐷/𝜖0 = 1.2 V/nm. The colored dashed lines are quadratic fitting by
𝑇𝑐 (𝐵∥) = 𝑇𝑐 (0) − 𝛼 × 𝐵2

∥ .

the magnetic field direction. In the spin-canted normal state [200, 208], the interband
(intraband) Cooper-channel interactions are naturally suppressed (enhanced) due to
the in-plane spin projection of the scattered Copper pairs. As a consequence, since
interband scattering is beneficial to pairing, one expects an appreciable decrease in
𝑇𝑐 with applied 𝐵∥ (Fig. 6.19a,c). On the other hand, further symmetry breaking in
the minority bands (e.g., spin or valley polarization) may critically suppress pairing
between minority carriers and thus decouple them completely from the majority
band in the Cooper channel. In such a scenario provided that the minority bands
of FP(2, 2, 2) are valley-polarized (right schematic in Fig. 6.19b), one expects the
adverse magnetic field effects on the interband interaction to gradually disappear,
making the superconductor less field-sensitive (Fig. 6.19b,d). This coincides with
the experimental trend in Fig. 6.17 and 6.18. Note that the same interband 𝐵∥-
suppression mechanism is consistent with the hierarchy of PVR between SC1, SC2,
and SC3.

Unprecedented control over the strength of Ising SOC in BLG allowed us to explore
its rich set of superconducting regions systematically. Superconductivity occurs
for a diverse set of Fermi-pocket configurations, including for Fermi pockets with
odd multiplicity pointing at unconventional superconductivity. Remarkably, all
the superconductors exhibit distinctive resilience to in-plane magnetic field. A
newly discovered inter-valley coherent Fermi-pocket configuration exhibits a PVR
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Figure 6.18: Coefficient 𝛼 versus doping for SC2. (a) Coefficient 𝛼 versus doping 𝑛
within the SC2 dome at 𝐷/𝜖0 = 1.2 V/nm. (b) Normalized FFT of 𝑅𝑥𝑥 (1/𝐵⊥) over
the same 𝑛 and 𝐷 range as in (a), focusing at low frequencies. Green dashed line
marks the nematic redistribution of holes from FP(2, 4) to FP(2, 2, 2). Schematics
in (a) show the Fermi-surface evolution versus 𝑛, where the smallest trigonal-
warping pockets (green) grow rapidly from low to high doping (−7.3 ≲ 𝑛 ≲ −6.6×
1011 cm−2).

value, which reaches one of the highest values for any superconductor to date. All
the superconducting regions are multiband superconductors, which we argue to
explain differences in their resilience to in-plane fields and their dependence on the
displacement field. More generally, the approach of inducing tunable symmetry-
breaking fields via moiréless-twist engineering, can be applied to a broad family of
van der Waals materials and extended beyond SOC to include magnetism, charge
orders, etc. This opens promising avenues toward tailoring desired perturbations
and realizing exotic phases of matter on demand.
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Figure 6.19: 𝐵∥ dependence of pairing by interband interactions. (a),(b) Theoretical
𝐵∥ depairing with the prominent interband pairing (a) and the suppressed case by
valley polarization (b). (c),(d) Theoretical 𝛼 versus 𝑛 for FP(2, 4) (c) and versus
minority imbalance 𝛿𝑛minority/𝑛minority for FP(2, 2, 2) (d).
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C h a p t e r 7

DISCUSSION AND OUTLOOK

The dissertation focuses on the superconductivity originated from the flat elec-
tronic bands of carefully engineered graphene van der Waals heterostructures. The
proximity of WSe2 induces spin-orbit coupling to both moiré graphene and Bernal
bilayer graphene. Importantly, superconductivity is stabilized and even an order-
of-magnitude enhanced: (𝑖) superconductivity is stabilized in TBG with metallic
band structure, i.e., far away from the magic angle; (𝑖𝑖) alternating twisted graphene
multilayers is a highly tunable family of strongly coupled superconductors; (𝑖𝑖𝑖)
proximitized Ising SOC stabilizes and boosts the critical temperature of fragile
superconductivity in BLG; and (𝑖𝑣) the moiréless twisting between graphene and
WSe2 demonstrates a new tuning knob and showcases a plethora of exotic supercon-
ducting pairing. The interplay between high density of states, strong Coulomb inter-
actions, and explicit spin-orbit coupling offers unique insights and properties, such
as intimate connection between superconductivity and flavor symemtry-breaking
transitions, the unprecedented superconducting filling ranges in moiré graphene
multilayers, Ising-modified nematicity in BLG-WSe2, and superconductivity from
inter-valley coherence and intertwining with nematic redistribution. There are still
countless exciting open questions for further exploration.

7.1 Twisted moiré graphene
Over the past few years of extensive studies, there have been numerous twisted moiré
systems demonstrated strong correlations, including alternating twisted graphene
multilayers [16, 18, 44, 45, 48, 49], twisted bilayer-bilayer graphene [43, 46], twisted
monolayer-bilayer graphene [47, 209], helical twisted trilayer graphene [210],
twisted graphitic thin films [211] with various combinations. There are also various
twisted TMD homobilayers [212] and heterobilayers [213]. However, the strongest
superconductivity, i.e., superconducting transition temperature being ∼ 2 K, is still
exclusive to alternating twisted graphene multilayers. Recently, by adding WSe2

to twisted bilayer-bilayer graphene, the previously non-superconducting system be-
comes superconducting [214]; twisted homobilayer TMDs also shows robust super-
conductivity with better engineered contacts [57, 58]. The critical temperature of
both, however, is considerably lower in comparison to alternating twisted graphene
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multilayers. Addressing the discrepancy between these systems would guide us to
the nature of pairing mechanism. The pairing strength could be specifically related to
the crystal symmetry, e.g., 𝐶2𝑧 symmetry is only present in TBG while absent in the
other structures [215]. While superconductivity in BLG is strongly enhanced with
the presence of Ising SOC, the critical temperature for magic angle moiré graphene
is not sensitive to the presence of WSe2. One possible scenario is that SOC strength
is relatively low in compared to the other spontaneous symmetry-breaking terms at
the magic-angle condition, while the SOC term might be large enough to change
the condition away from the magic angle, where spontaneous correlations are weak-
ened. It is desirable to increase the proximitized SOC by either changing the TMD
materials or by apply pressure to increase interlayer coupling [20, 216]. The re-
sults will shed light on the limit of critical temperature in moiré graphene. The
adding of SOC, for instance, combines with the unique symmetry-broken states in
TBG potentially leading to Majorana bound states [202], and further topological
superconducting states could be realized by considering moiré patterns with other
materials.

There are increasing evidences indicating that superconductivity in moiré graphene
is unconventional, including strongly coupled nature [16, 45, 48, 49], nodal tunneling
spectrum, coexistence of pseudogap phase, and a larger superconducting gap relative
to the critical temperature [39, 40]. It is natural to expect anisotropic pairing
symmetries. In high-temperature superconductors, the corner junction geometry
is a crucial signature for 𝑑 wave pairing [87]. Similar ideas maybe adopted to
moiré graphene systems, the gate tunability here may help further narrow down
the origin. Indeed, planar Josephson junctions [217, 218] and superconducting
quantum interference device [219] (SQUID) have been made and show highly
tunable Josephson current. However, controllable destructive interference of phases
is hard because of the difficulty in identifying pairing symmetry directions of the
system. Also the existence of twist-angle inhomogeneity may nucleate various
domains [117] that hinder the interpretation of data. Further understanding lies in
the improvement of fabrication processes that yield samples with high twist angle
homogeneity. The homogeneous sample might be crucial for disentangle the relation
between various correlated orders. For example, uniform samples with open surface
are suitable for simultaneously measuring electrical transport and scanning probe
techniques (specifically scanning tunneling microscopy; STM) together. The result
may yield microscopic understanding of certain correlated orders (such as imaging
inter-valley coherence) with one-to-one correspondence to global transport. The
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𝑖𝑛 𝑠𝑖𝑡𝑢 control of interfacial twist angle is also an exciting avenue toward twistronic
engineering [220, 221].

7.2 Crystalline graphene multilayers
The adventure of crystalline graphene multilayers is also double aspects: mate-
rial/quantum phase discoveries and understanding the observed phenomena. The
order-of-magnitude 𝑇𝑐 enhancement is quite satisfying; we want to ask: to what
extent proximitized SOC by WSe2 favors the formation of superconductivity. Is it
simply related to high density of states? Measuring superconducting critical tem-
perature as a function of layer number of crystalline (rhombohedral) graphene may
give the answer, since the density of states is monotonically increasing as the layer
number is increase. Or the critical temperature is simply related to certain band
structure details, such as trigonal warping pockets, and is thus material specific.
What is the largest SOC that one can proximitize to graphene system? From the
virtual tunneling perspective [184], the value depends on the alignment of graphene
and TMD bands, smaller band offsets gives larger values. Changing to another
TMD material with smaller band offset may yield a strong SOC value. Applying
pressure will increase the interlayer coupling between the two materials [20, 216],
and the SOC strength will certainly be boosted. Crystalline graphene multilayers are
truly ultra-clean systems where band structure details on the order of sub-Kelvin are
clearly resolved and the boundaries between different symmetry-breaking phases
are extremely sharp. The sharpness is ideal for microwave low-energy dynamics
to probe delicate ground state competitions. Microwave photon can be easily im-
plemented to dilution fridge setup; the photon shining may force the system into
different ground states or simply melt the existing orders. The resulting dynamics
from the perturbations would be fruitful, regardless. On a side note, the recent
discovery of zero-field fractional quantum anomalous Hall effect in rhombohedral
graphene aligned with hBN is a closely related system [222]. Combining WSe2 on
one side and align the graphene/hBN moiré on the other side would be potentially
interesting.

Other than the exploration of new phase diagram, there are still open questions
regarding the existing phenomena urge to be addressed. The advantage of these
crystalline graphene multilayers is the ultra-cleanliness, while the drawback is that
dual-gate geometry is required to access the correlated phase diagram, detrimental
for several scanning probe techniques. The tunneling spectrum would be interesting
for several superconductors observed in BLG-WSe2, especially SC3 with strong



137

Pauli-limit violation could be potentially multiple components. Measuring the
tunneling spectrum as a function of doping and in-plane magnetic field would be
informative for narrowing down the pairing symmetries. One way to get around the
dual-gate problem is by fabricating gate-defined quantum point contact that is made
by all crystalline components [223]. The crystalline nature of all layers would yield
reliable and clean data of subtle phenomena. Scanning probe techniques, such as
STM, may work for rhombohedral graphene multilayers: due to the thicker layers,
single-gate geometry may cut through a big portion of the correlated phase diagram.
Spatial modulation of the parent states, such as inter-valley coherent orders, might
be reviewed by the geometry in thick layers. Gate-defined junction geometry [224]
may also work here, where the junction region is open surfaced. The junction two
sides are dual gated to tune to desired correlated states. Order parameters may leak
inside the junction region due to proximity, and scanning probe techniques are thus
accessible.
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Figure A.1: 𝑅𝑥𝑥 versus temperature and filling factor 𝜈 for a range of TBG-WSe2
devices at different twist angles.
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Possible origins of the extended superconducting pocket in TPG

Here we present several scenarios that can result in the superconductivity of TPG
extending to 𝜈 ≈ +5, and discuss these scenarios in the context of experimental
observations. We note that in the discussion below, 𝜈 denotes the total number of
electrons per moiré site, and 𝜈flat denotes the number of electrons per moiré site
added to the flat TBG-like bands.

Scenario (𝑖): flat TBG-like bands are filled to 𝜈flat = +3 at 𝜈 = +5
For TBG and TTG, the strongest superconducting pockets normally start from |𝜈 | = 2
and end around |𝜈 | = 3. Therefore, a conventional scenario would suggest that TPG
could behave in a similar way, i.e., flat TBG-like bands are filled to 𝜈flat = +3
when superconductivity is diminished at 𝜈 = +5. This scenario implies that the
additional two electrons per moiré site are distributed in the dispersive TBG- and
MLG-like bands due to the interaction effects, with a large portion of the charge
carriers being hosted by the dispersive TBG-like bands. Since vHs of the dispersive
TBG-like bands are normally found around half filling, the corresponding Hall
density signatures are expected to occur at the same filling, i.e., 𝜈 = +5 in this
scenario. However, in the experiment we observe vHs signatures originating from
the dispersive TBG-like bands near 𝜈 ≈ +6 instead (see Fig. 4.15). This line of
reasoning allows us to completely rule out scenario (𝑖), therefore, we conclude that
superconductivity exceeds flat-band filling 𝜈flat = +3 for electron-doped TPG.

Scenario (𝑖𝑖): flat TBG-like bands are filled close to 𝜈flat = +4 at 𝜈 = +5
As a result of interactions, a fraction of electrons are preferentially distributed in
the dispersive TBG- and MLG- like bands [165]. It is therefore possible that for
total filling of 𝜈 ≈ +5, the flat TBG-like bands are filled close to 𝜈flat ≈ +4, with
the extra one electron per moiré site being distributed in the other bands. We shows
the filling correspondence between 𝜈flat and 𝜈 for various interaction terms and
dielectric constants (see Fig. 4.14). In this scenario, the modeling suggests that the
filling of the flat bands is nearly four (𝜈flat > +3.8), which is well outside typical
TBG behavior.
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Scenario (𝑖𝑖𝑖): flat TBG-like bands are fully filled to 𝜈flat = +4 before 𝜈 = +5 or
hybridization of different bands obscures the distinction between them
The last scenario suggests either that the flat TBG-like bands are fully filled before
the suppression of superconductivity, in which case superconductivity would exist
in the more dispersive bands, or that the distinction between the different TBG- and
MLG-like bands breaks down due to hybridization (i.e. mixing), even at 𝐷 = 0.
As discussed in previous sections, such mixing between flat, dispersive TBG- and
MLG-like bands can happen when mirror symmetry is broken. Moreover, layer-to-
layer charge inhomogeneity or distant-layer coupling allow for band hybridization
even in the presence of mirror symmetry.

In the context of scenario (𝑖𝑖𝑖), we speculate on the polarized or un-polarized nature
of the active bands in the regime +4 < 𝜈 < +5. One simple possibility is that
the dispersive TBG-like bands spontaneously break the flavor symmetries on its
own, with the flat bands playing relatively little role. Another possibility is that
hybridization obviates the distinction between flat and dispersive bands such that
flvor polarization is allowed to persist far beyond. Further experiments will be
needed to help ascertain the extent of flavor polarization that persists to 𝜈 = +5.

Experimental signatures in electron-doped TPG
Experimentally, starting from low 𝐷 fields, we observe a drop in Hall density at
𝜈 ≈ +4 which surprisingly does not affect superconductivity in any abrupt way
(superconductivity continuously evolves and is present until 𝜈 ≈ +5). As the 𝐷 field
is increased, this Hall density drop is gradually replaced by a transition where Hall
density changes sign (Fig. 4.16a lower panel). The high 𝐷-field transition can be
interpreted as a “gap” feature emerging in the band structure similar to TTG [45].
Further measurements of 𝑅𝑥𝑥 show that the corresponding 𝜈 ≈ +4 feature does not
shift with temperature (Fig. 4.16a upper panel) and is significantly broadened at high
𝐵 fields, resembling the feature associated with the flat-band gap in TTG. These
observations indicate that the 𝜈 = +4 feature is naturally explained as either marking
the end of the flat bands or resulting from band details due to hybridization, which is
in line with the scenario (𝑖𝑖𝑖). In this context, the alternative possibility that 𝜈 = +4
corresponds to a flavor-polarization reset at 𝜈flat = +3 is highly unlikely. Finally, we
note that this line of argument cannot fully rule out scenario (𝑖𝑖) due to the potential
presence of small dispersive pockets in the flat bands that may remain unfilled near
𝜈 = +4.
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Identification of FP(2, 2, 2) phase by quantum oscillations
Ultrahigh-resolution quantum oscillations at high 𝐷 fields allow for resolving subtle
symmetry-breaking Fermi pockets. Looking carefully at the FFT frequency 𝑓

(2)
𝜈 in

Fig. C.2b and Fig. C.1b,d, 𝑓 (2)𝜈 decreases monotonically with lowering doping until
reaching 𝑛 = −8.25 × 1011 cm−2 for 𝐷/𝜖0 = 1.265 V/nm (𝑛 = −7.2 × 1011 cm−2

for 𝐷/𝜖0 = 1.2 V/nm), beyond which the dependence of 𝑓 (2)𝜈 is flattened while
𝑓
(1)
𝜈 keeps increasing throughout. This indicates that the sum rule 2 · 𝑓 (1)𝜈 + 4 ·
𝑓
(2)
𝜈 ≈ 1 of the FP(2, 4) phase at higher doping is no longer satisfied for lower

dopings, suggesting an altered Fermi-surface structure. Indeed, measuring quantum
oscillations to higher 𝐵⊥ field reveals the emergence of a third very low frequency
around the phase boundary as marked by the green arrows in Fig. C.3. FFT data
shown in Fig. C.2b and Fig. C.1b,d clearly reveal the third frequency 𝑓

(3)
𝜈 growing

rapidly from zero at the phase boundary to a value matching 𝑓
(2)
𝜈 at slightly higher

doping. The frequencies obey 2 · 𝑓 (1)𝜈 + 2 · 𝑓 (2)𝜈 + 2 · 𝑓 (3)𝜈 ≈ 1, as discussed in the
main text corresponding to an additonal symmetry breaking with trigonally warped
pockets of two sizes 𝑓 (2)𝜈 and 𝑓

(3)
𝜈 .

Identification of FP(1, 3, 1) phase by quantum oscillations
The identification of FP(1, 3, 1) phase is more subtle, involving extensive quantum
oscillation measurements. The raw data (Fig. C.3a,b; 𝑛 ≈ −6.6 × 1011 cm−2 to
−5.3×1011 cm−2 taken at 𝐷/𝜖0 ≈ 1.2 V/nm) reveal three oscillation frequencies. A
high frequency marked 𝑓

(4)
𝜈 appears clearly. At really low 𝐵⊥ ∼ 0.05 T, a relatively

low frequency called 𝑓
(6)
𝜈 onsets. Further increasing 𝐵⊥, each 𝑓

(6)
𝜈 period splits

into four, giving rise to 𝑓
(5)
𝜈 which is indeed roughly four times the frequency 𝑓

(6)
𝜈

(Fig. C.3c).

It is natural to ask whether 𝑓
(5)
𝜈 is simply a higher (fourth) harmonic of 𝑓

(6)
𝜈 .

This can be answered by the measurements at low 𝐷 fields in the same phase
region (Fig. C.4 and C.5). Frequencies are marked by arrows. When lowering
the 𝐷 fields, 𝑓 (4)𝜈 gradually increases, while 𝑓

(5)
𝜈 and 𝑓

(6)
𝜈 gradually decrease. At

𝐷/𝜖0 = 1 V/nm (Fig. C.4b,d,f), 𝑓 (5)𝜈 already deviates from being four times the
value of 𝑓 (6)𝜈 . Eventually at 𝐷/𝜖0 = 0.85 V/nm (Fig. C.4a,c,e), the frequency 𝑓

(6)
𝜈
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Figure C.1: Quantum oscillations and FFT measured at 𝐷/𝜖0 = 1.2 V/nm. (a) 𝑅𝑥𝑥
versus out-of-plane magnetic field 𝐵⊥ and doping density 𝑛 measured at 𝐷/𝜖0 =

1.2 V/nm for a device with |𝜆𝐼 | ≈ 1.5 meV. (b) Frequency-normalized Fourier
transform of 𝑅𝑥𝑥 (1/𝐵⊥) over the same density range as in (a). (c) Intensity peaks in
𝑓𝜈 from (b). (d) zoom-in image at low frequencies from (b).

completely disappears while 𝑓
(5)
𝜈 independently survives. This 𝐷 evolution of the

two frequencies ( 𝑓 (5)𝜈 and 𝑓
(6)
𝜈 ) supports their independence. Meanwhile at 𝐷/𝜖0 =

0.85 V/nm, the existing two frequencies ( 𝑓 (4)𝜈 and 𝑓
(5)
𝜈 ) obey 𝑓

(4)
𝜈 + 3 · 𝑓 (5)𝜈 ≈ 1;

we denote the flavor-polarized phase at this 𝐷 field as FP(1, 3). The above 𝐷-field
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Figure C.2: Quantum oscillations and FFT measured at 𝐷/𝜖0 = 1.265 V/nm.
(a) 𝑅𝑥𝑥 versus out-of-plane magnetic field 𝐵⊥ and doping density 𝑛 measured at
𝐷/𝜖0 = 1.265 V/nm for a device with |𝜆𝐼 | ≈ 1.5 meV. (b) Frequency-normalized
Fourier transform of 𝑅𝑥𝑥 (1/𝐵⊥) over the same doping density range as in (a). (c)
Intensity peaks in 𝑓𝜈 from (b).

evolution indicates that the FP(1, 3, 1) phase at high 𝐷 develops from the FP(1, 3)
phase at low 𝐷 as 𝐷 is increased.

After establishing the existence of three frequencies, we comment on the num-
ber of pockets for each type. This relies on the correct identification of intrinsic
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Fermi-surface frequencies and their harmonics. At slightly higher 𝐵⊥, magnetic
breakdown kicks in as 𝐵⊥-assisted electron tunneling between different Fermi sur-
faces. Consequently, the pronounced frequencies might be a sum (or difference) of
two base frequencies instead of the intrinsic ones. This is the case for FP(1, 3) and
FP(1, 3, 1) phase. Fig. C.4c shows the normalized FFT from quantum oscillations
going up to 𝐵⊥ = 0.45 T. The frequency peak at 𝑓𝜈 ∼ 0.75 is stronger than the
one at 𝑓𝜈 ∼ 0.6 (marked by the arrow). However, the relative intensity changes by
reducing the 𝐵⊥ range to 0.23T (Fig. C.6a). At this condition, the peak at 𝑓𝜈 ∼ 0.6
is stronger than the one at 𝑓𝜈 ∼ 0.75, suggesting that the one marked by the arrow
( 𝑓𝜈 ∼ 0.6 in Fig. C.6a) is the intrinsic frequency; the one at 𝑓𝜈 ∼ 0.75 is instead a sum
harmonic 𝑓 (4)𝜈 + 𝑓

(5)
𝜈 . By identifying the intrinsic high frequency 𝑓

(4)
𝜈 , one obtains

𝑓
(4)
𝜈 +3 · 𝑓 (5)𝜈 ≈ 1, indicating one large and three small Fermi surfaces, i.e., FP(1, 3).

A similar situation holds for the other 𝐷 fields, such as at 𝐷/𝜖0 = 1.2 V/nm (see
Fig. C.5c and Fig. C.6c), where we find 𝑓

(4)
𝜈 + 3 · 𝑓 (5)𝜈 + 𝑓

(6)
𝜈 ≈ 1.
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Figure C.3: Identifying FP(2, 2, 2) and FP(1, 3, 1) frequencies from the raw data.
(a) 𝑅𝑥𝑥 versus out-of-plane magnetic field 𝐵⊥ and doping density 𝑛 measured at
𝐷/𝜖0 = 1.2 V/nm for a device with |𝜆𝐼 | = 1.5 meV. (b) The same data as in (a),
but plotted as a function of 1/𝐵⊥. The corresponding frequencies are marked by
colored arrows/lines. (c) Intensity peaks in 𝑓𝜈 extracted from the FFT data.
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Figure C.4: FP(1, 3) and FP(1, 3, 1) at𝐷/𝜖0 = 0.85 V/nm and 1 V/nm, respectively.
(a),(b) 𝑅𝑥𝑥 versus out-of-plane magnetic field 𝐵⊥ and doping density 𝑛 measured at
𝐷/𝜖0 = 0.85 V/nm (a) and 1 V/nm (b), respectively. (c),(d) Frequency-normalized
Fourier transform of 𝑅𝑥𝑥 (1/𝐵⊥) at 𝐷/𝜖0 = 0.85 V/nm (c) and 1 V/nm (d), respec-
tively. (e),(f) Intensity peaks in 𝑓𝜈 extracted from the FFT data in (c) and (d).
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Figure C.5: FP(1, 3, 1) at𝐷/𝜖0 = 1.2 V/nm and 1.265 V/nm. (a),(b) 𝑅𝑥𝑥 versus out-
of-plane magnetic field 𝐵⊥ and doping density 𝑛 measured at 𝐷/𝜖0 = 1.2 V/nm (a)
and 1.265 V/nm (b), respectively. (c),(d) Frequency-normalized Fourier transform
of 𝑅𝑥𝑥 (1/𝐵⊥) at 𝐷/𝜖0 = 1.2 V/nm (c) and 1.265 V/nm (d), respectively. (e),(f)
Intensity peaks in 𝑓𝜈 extracted from the FFT data in (c) and (d).
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Figure C.6: FFT of FP(1, 3) and FP(1, 3, 1) with data at lower magnetic field. (a),(c)
Frequency-normalized Fourier transform of 𝑅𝑥𝑥 (1/𝐵⊥) at𝐷/𝜖0 = 0.85 V/nm (a) and
1.2 V/nm (c), respectively. The 𝑅𝑥𝑥 data are used up to 0.23 T and 0.26 T respectively.
(b),(d) 𝑅𝑥𝑥 variation Δ𝑅𝑥𝑥 as a function 1/𝐵⊥ measured at 𝑛 = −3.3 × 1011 cm−2,
𝐷/𝜖0 = 0.85 V/nm (b) and 𝑛 = −6× 1011 cm−2, 𝐷/𝜖0 = 1.2 V/nm (d), respectively.
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Inter-valley coherence
The occurrence of superconducting state SC3 in the symmetry-breaking state FP(1, 3, 1)
strongly indicates the inter-valley coherent nature of FP(1, 3, 1). Focusing on the
single largest Fermi pocket ( 𝑓 (4)𝜈 ) that is non-degenerate, there are two options: it
is either valley-polarized and therefore breaks time-reversal symmetry, or it is inter-
valley coherent. Coherence between the𝐾 and𝐾′ valleys would restore time reversal
symmetry for the largest Fermi pocket, naturally more susceptible to pairing. Note
that in moiré graphene cases, it is established that superconductivity originates from
an inter-valley-coherent order [41, 42].

Independent evidence for inter-valley coherence comes from analyzing the evolution
of phase boundaries as a function of 𝐵⊥. An out-of-plane magnetic field 𝐵⊥ favors
valley-polarized states that are characterized by large orbital moments. As 𝐵⊥

field is increased, valley-polarized states with large orbital moments are expected to
take over more of the phase space compared to valley-balanced states [199]. The
evolution of the phase boundaries with 𝐵⊥ can be clearly identified from quantum
oscillations (Fig. C.7). Here, the lowest doping density range (𝑛 > −3× 1011 cm−2)
corresponds to a spin-valley locked FP(6) phase [56]. Within this phase, the 𝐾 and
𝐾′ valleys are equally populated with opposite spins, resulting in zero net orbital
moment. At the doping density −3 > 𝑛 > −4.3 × 1011 cm−2, the oscillation
frequency peaks at 𝑓𝜈 = 1 indicating FP(1) phase. The phase space shows a rich
evolution: a phase transition develops with increasing 𝐵⊥, consistent with a spin-
valley polarized FP(1) (red line) emerges when 𝐵⊥ is applied. Importantly, at
the lowest 𝐵⊥ (𝐵⊥ ∼ 0 T), the phase boundary between FP(1) and FP(6) (black
dashed line at 𝑛 ≈ −3 × 1011 cm−2) does not move with 𝐵⊥, suggesting that
the FP(1) at 𝐵⊥ ∼ 0 T is characterized by coherence of the two valleys (over
spin-valley polarized phase), so that the orbital moments cancel. The same logic
applies to other symmetry-breaking phases at slightly higher doping. A large FFT
frequency dominates at 𝑓𝜈 > 1/2 while the phase boundaries persist in doping
without moving when 𝐵⊥ is applied, suggesting the existence of one large Fermi
pocket with diminished or no orbital moments and hence inter-valley coherence for
FP(1, 3, 1).
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Figure C.7: Evolution of phase boundaries as a function of 𝐵⊥. (a) 𝑅𝑥𝑥 versus
out-of-plane magnetic field 𝐵⊥ and doping density 𝑛 measured at 𝐷/𝜖0 = 1.2 V/nm
for a device with |𝜆𝐼 | ≈ 1.5 meV. Phase boundaries are marked out in (b). The
black arrows and dashed lines mark the phase boundaries that are not sensitive to
𝐵⊥, suggestive of inter-valley coherence with little or no net orbital moments. The
red line draws the phase boundary of the spin-valley polarized FP(1); the boundary
grows (orange arrow) with 𝐵⊥ due to large orbital moments.
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Figure C.8: 𝐵∥ dependence of SC2 at 𝐷/𝜖0 = 1.265 V/nm. (a) 𝑅𝑥𝑥 versus doping
and 𝐵∥ focusing around SC2 at 𝐷/𝜖0 = 1.265 V/nm. (b) Fitting coefficient 𝛼
versus doping density 𝑛 for SC2 at the same 𝐷. (c) Frequency-normalized Fourier
transform of 𝑅𝑥𝑥 (1/𝐵⊥) over the same doping range as in (b), focusing around low
frequencies representing the two types of trigonal-warping pockets. Bottom panels
show 𝑅𝑥𝑥 versus temperature and 𝐵∥ at different doping for 𝐷/𝜖0 = 1.265 V/nm.



175

Figure C.9: 𝐵∥ dependence of SC2 at 𝐷/𝜖0 = 1.2 V/nm. (a) 𝑅𝑥𝑥 versus doping and
𝐵∥ focusing around SC2 at 𝐷/𝜖0 = 1.2 V/nm. (b) Fitting coefficient 𝛼 versus doping
density 𝑛 for SC2 at the same 𝐷. (c) Frequency-normalized Fourier transform of
𝑅𝑥𝑥 (1/𝐵⊥) over the same doping range as in (b), focusing around low frequencies
representing the two types of trigonal-warping pockets. Bottom panels show 𝑅𝑥𝑥
versus temperature and 𝐵∥ at different doping for 𝐷/𝜖0 = 1.2 V/nm.
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Figure C.10: 𝐵∥ dependence of SC2 at 𝐷/𝜖0 = 1.07 V/nm. (a) 𝑅𝑥𝑥 versus
doping and 𝐵∥ focusing around SC2 at 𝐷/𝜖0 = 1.07 V/nm. (b) Fitting coefficient 𝛼
versus doping density 𝑛 for SC2 at the same 𝐷. (c) Frequency-normalized Fourier
transform of 𝑅𝑥𝑥 (1/𝐵⊥) over the same doping range as in (b), focusing around
low frequencies representing the single type of trigonal-warping pockets without
nematic redistribution of holes. Bottom panels show 𝑅𝑥𝑥 versus temperature and 𝐵∥
at different doping at 𝐷/𝜖0 = 1.07 V/nm. At this 𝐷 field, SC2 does not onset from
FP(2, 2, 2). The rapidly changed 𝛼 with diminished values are accordingly absent.
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