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Abstract

Control algorithms suitable for online implementation in engineering applications, such as

aerospace and mechanical vehicles, often require adherence to physical state and control

constraints. Additionally, the chosen algorithms must provide robustness to uncertainty

affecting both the system dynamics and the constraints. As further autonomy is built into

these systems, the algorithms must be capable of blending multiple operational modes with-

out violating the intrinsic constraints. Further, for real-time applications, the implemented

control algorithms must be computationally efficient and reliable. The research in this the-

sis approaches these application needs by building upon the framework of MPC (Model

Predictive Control).

The MPC algorithm makes use of a nominal dynamics model to predict and optimize

the response of a system under the application of a feedforward control policy, which is

computed online in a finite-horizon optimization problem. The MPC algorithm is quite

general and can be applied to linear and nonlinear systems and include explicit state and

control constraints. The finite-horizon optimization is advantageous given the finite online

computational capabilities in practical applications. Further, recursively re-solving the

finite-horizon optimization in a compressing- or receding-horizon manner provides a form of

closed-loop control that updates the feedforward control policy by setting the nominal state

at re-solve to the current actual state. However, uncertainty between the nominal model

and the actual system dynamics, along with constraint uncertainty can cause feasibility,

and hence, robustness issues with the traditional MPC algorithm.

In this thesis, an R-MPC (Robust and re-solvable MPC) algorithm is developed for

uncertain nonlinear systems to address uncertainty affecting the dynamics. The R-MPC

control policy consists of two components: the feedforward component that is solved online

as in traditional MPC; and a separate feedback component that is determined offline, based

on a characterization of the uncertainty between the nominal model and actual system.



viii

The addition of the feedback policy generates an invariant tube that ensures the actual

system trajectories remain in the proximity of the nominal feedforward trajectory for all

time. Further, this tube provides a means to theoretically guarantee continued feasibility

and thus re-solvability of the R-MPC algorithm, both of which are required to guarantee

asymptotic stability.

To address uncertainty affecting the state constraints, an SR-MPC (Safety-mode aug-

mented R-MPC) algorithm is developed that blends a reactive safety mode with the R-MPC

algorithm for uncertain nonlinear systems. The SR-MPC algorithm has two separate op-

erational modes: standard mode implements a modified version of the R-MPC algorithm

to ensure asymptotic convergence to the origin; safety mode, if activated, guarantees con-

tainment within an invariant set about a safety reference for all time. The standard mode

modifies the R-MPC algorithm with a special constraint to ensure safety-mode availabil-

ity at any time. The safety-mode control is provided by an offline designed control policy

that can be activated at any time during standard mode. The separate, reactive safety

mode provides robustness to unexpected state-constraint changes; e.g., other vehicles cross-

ing/stopping in the feasible path, or unexpected ground proximity in landing scenarios.

Explicit design methods are provided for implementation of the R-MPC and SR-MPC

algorithms on a class of systems with uncertain nonlinear terms that have norm-bounded

derivatives. Further, a discrete SR-MPC algorithm is developed that is more broadly appli-

cable to real engineering systems. The discrete algorithm is formulated as a second-order

cone program that can be solved online in a computationally efficient manner by using

interior-point algorithms, which provide convergence guarantees in finite time to a pre-

scribed level of accuracy. This discrete SR-MPC algorithm is demonstrated in simulation of

a spacecraft descent toward a small asteroid where there is an uncertain gravity model, as

well as errors in the expected surface altitude. Further, realistic effects such as control-input

uncertainty, sensor noise, and unknown disturbances are included to further demonstrate

the applicability of the discrete SR-MPC algorithm in a realistic implementation.
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Chapter 1

Introduction

The proliferation of autonomy and online decision-making capabilities in engineering sys-

tems, such as robotic ground or air vehicles, has paralleled the advancements of contempo-

rary computation, sensing, and communication resources. What makes possible the coales-

cence of these capabilities and resources? Algorithms. Fundamental research and develop-

ment in algorithms has enabled real-time, online capabilities such as path planning (guid-

ance), sensor fusion, situational awareness, onboard network communication, and many

other tasks that push the limits of contemporary engineering systems. The research in this

thesis focuses on general control algorithms, which include path planning, that are suitable

for online implementation.

Pushing control policy design online provides the benefit of using real-time sensor infor-

mation and onboard situational awareness to provide improvements to system path planning

and operation. Many practical engineering systems are nonlinear, subject to both state and

control constraints, and can have several operational modes and control objectives. Nonlin-

earities arise in the system dynamics, as well as in the physical limitations of real systems

(e.g., actuator stroke/throw, maximum torque, temperature bounds, physical barriers).

Control algorithms utilize models for these nonlinearities and are inherently flawed by un-

certainty in both the actual system dynamics and the constraints. Online re-planning of

control policies can mitigate some of this uncertainty by updating the guidance and control

policies, and even control objectives, based on actual system information not available to

offline designs. These updates can increase efficiency of operation as well as mitigate risks

(provide safety) from unanticipated operational changes.

The complexity of online algorithms is subject to the computational limitations of con-

temporary processors. Online algorithms must be sized appropriately so that available
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computational resources can generate any guidance or control policy updates at a rate ap-

propriate to the operational mode and system dynamics. Additionally, online algorithms

must be robust to the aforementioned uncertainties in actual systems and be capable of

providing feasible control solutions given those uncertainties and the need for safety/risk

mitigation.

The development of general control algorithms that can address the needs of practical

engineering applications requires a framework that is computationally efficient, handles

a diversity of dynamics, incorporates constraints, blends operational modes, and considers

control objectives. The framework of model predictive control provides a suitable candidate.

1.1 The Framework of Model Predictive Control

The framework of MPC (Model Predictive Control) computes control inputs through online

solution of an FHC (Finite-Horizon optimal Control problem) that can enforce explicit state

and control constraints. The FHC utilizes a nominal system model to predict the response of

the actual system dynamics to the control inputs over the finite planning horizon, hence the

origin of the MPC algorithm name. In MPC, the computed control is applied to the actual

system in a feedforward (i.e., open-loop) manner over a specified time interval (shorter

than the FHC planning horizon), followed by a re-solve (re-computation) of the FHC with

the initial nominal state at the re-solve time set to the current state of the actual system.

Recursively re-solving the FHC in this manner provides a form of closed-loop feedback

for the MPC algorithm by incorporating current actual state measurements for computing

current feedforward inputs.

The FHC re-solves are typically performed in a receding-horizon manner, which is why

MPC is also commonly referred to as RHC (Receding Horizon Control). In RHC, the finite

planning horizon is receded forward in time at each FHC re-solve; the planning horizon is

often of fixed length in RHC. In another variant of MPC called compressing-horizon control,

the planning horizon is shortened at each re-solve by the change in time since the prior FHC

solution; thus, the total application time of MPC never exceeds the length of the planning

horizon from the first FHC solution.

The framework for MPC is quite general and can be applied to linear and nonlinear

systems. The MPC algorithm is beneficial in applications where online computation of
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control inputs is necessary; for instance, in applications with evolving control objectives or

applications where state or control constraints might change based on current operating

conditions (i.e., location in state space). Additionally, the finite planning horizon in the

FHC is beneficial in many practical applications given the limitations of online computa-

tion. However, uncertainty between the nominal model and the actual system dynamics,

along with constraint uncertainty can cause feasibility issues during FHC re-solves and thus

robustness problems in the practical application of MPC. The research contributions in

this thesis address these issues.

1.2 A Summary of the MPC Literature

The generality of MPC comes from several decades of research and development of the

framework. The literature on MPC is quite extensive, and the review herein is by no means

exhaustive. Many excellent references are omitted for brevity. Fortunately, survey papers

on MPC highlight many of the contributions; see for example Mayne et al. [31] and Garcia

and Morari [17]. The intent of this review is to familiarize the reader with some of the past

contributions to the theoretical framework for MPC to both clarify the concept of MPC

and to put into context the theoretical framework presented in Chapter 2.

The origin of MPC was in engineering applications from the chemical and process con-

trol industry where system dynamics are nonlinear and subject to both state and control

constraints; the papers by Qin and Badgwell [38] and Richalet [42] provide some examples of

these applications. At inception, no theoretical frameworks were available to suggest MPC

was a stable control method. However, tuning of the control policies for the slow dynamics

of these applications demonstrated empirically that the MPC framework was indeed stable.

Initial proofs of stability for the MPC algorithm focused on unconstrained continuous-

time systems, except for the terminal state fixed at the origin. The dynamics were assumed

linear and perfectly known (i.e., the nominal model used in the FHC was identical to

the actual dynamics being controlled). One of the early stability results for MPC was

formulated by Thomas [49] for linear time-invariant systems with an FHC consisting of

a quadratic cost on the control input, along with the fixed terminal state constraint. A

fixed finite-time horizon allowed for an a priori computation of a single, optimal gain that

provided closed-loop asymptotic stability in application of MPC to these types of systems.
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This early work was extended by Kwon and Pearson [26] to linear time-varying systems

with the FHC incorporating a quadratic cost on both the state and control. The algorithm

required backward integrating a time-varying Riccati equation over a finite interval, from

the horizon length back to the current time, to generate controller gains for each MPC

update. Extensions of this work by Kwon et al. [25] provided a method to update gains in

a computationally-efficient manner that avoided re-integration of the Riccati equation.

Stability of MPC was extended to continuous-time, autonomous nonlinear systems by

Chen and Shaw [12]. This research was also likely the earliest contribution to utilize the

FHC cost function as a Lyapunov function [21] to prove stability of the MPC algorithm.

Unrelated research by Mayne and Michalska [30] for continuous-time, autonomous nonlinear

systems also utilized a Lyapunov approach to prove stability, along with an in-depth analysis

of the continuity of the MPC control policy based on the necessary conditions for optimality

from Pontryagin’s Minimum Principal [22]. The research by Rawlings and Muske [41]

established a stable MPC algorithm for discrete-time, linear time-invariant systems that

could be solved online as a finite-dimension quadratic program, including both state and

control constraints. Research by Keerthi and Gilbert [20] established the stability of MPC

for discrete-time, time-varying nonlinear systems and also incorporated both discrete state

and control constraints.

The early MPC stability results constrained the terminal state to the origin, which can

cause computational difficultly in the FHC optimization with MPC applied to nonlinear

systems. This issue was addressed with the dual-mode receding-horizon MPC developed

by Michalska and Mayne [33]; this method has become a standard approach in many MPC

algorithms. The method proposed a relaxation to the terminal equality constraint, enforcing

instead an inequality constraint in the FHC that created a terminal set about the origin.

The dual-mode approach is required to ensure stability of the algorithm with the relaxation.

Outside the terminal set, control comes from the receding-horizon MPC solutions. Inside

the terminal set, control is switched to a local linear feedback controller that stabilizes

the nonlinear system in a neighborhood of the origin (the local linearized system must be

stabilizable). Extensions of this work by Chen and Allgöwer [13] created a quasi-infinite

horizon MPC where the FHC cost function adds a terminal cost, or cost-to-go, component

that acts like the discarded portion of an infinite-horizon cost function. This terminal cost

further acts as a CLF (Control Lyapunov Function [46, 47, 16]) for the nonlinear system
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within the terminal set. This latter contribution is part of the baseline MPC algorithm

defined in Chapter 2 of this thesis.

Since the computation of the MPC control policy relies on a nominal system model, the

robustness of MPC to system uncertainties is non-trivial to establish. For an overview of

several robust MPC contributions, refer to the survey paper by Jalali and Nadimi [19]. One

approach to robustness is sufficiently reducing the time intervals for re-solving the FHC. The

research by Michalska and Mayne [33] derived explicit upper bounds, which can be very

conservative, for the re-solve time intervals. A game theoretic approach to robust MPC

by Chen et al. [14] combines MPC with H∞ control to formulate an open-loop min-max

MPC method that applies to a class of continuous-time uncertain nonlinear systems with

input constraints and exogenous disturbances. Research by Magni et al. [28] uses a similar

game theoretic and min-max MPC approach for generating closed-loop H∞ control laws

for unconstrained, uncertain nonlinear systems. A drawback of these min-max methods is

a significant online computational demand for re-solves.

For discrete-time, linear time-invariant systems, several robust MPC methods have been

developed. Methods by Kothare et al. [23] design the control policy as a sequence of state-

feedback control laws that at each discrete time step minimize a worst-case infinite-horizon

objective function (as in min-max MPC) that includes state and control constraints. The

optimization requires online solution of LMIs (Linear Matrix Inequalities), which can be

computationally expensive for large-dimension problems. Separate research by Scokaert

and Mayne [44] also used a feedback min-max MPC approach for developing robust control

policies for discrete-time linear time-invariant systems subject to bounded disturbances and

state and control constraints. An LMI-based robust MPC method by Smith [45] combines

the benefits of feedforward- and feedback-based approaches to robust MPC. A simplification

of the online MPC re-solves was provided in the research by Bemporad et al. [6, 7] for

systems with linear state and linear control constraints. For this class of systems, the input

control policy is shown to be a piecewise-affine and continuous function of the state, based

on a polyhedral partition of the feasible state space.

Another concept for robust MPC involves generating invariant tubes about the feed-

forward guidance policy to maintain the actual system in the proximity of the predicted

nominal model response. A tube-based approach for linear discrete-time systems with

bounded disturbances is described by Mayne and Langson [29] and Mayne, Seron, and
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Raković [32]. Time-varying or parameter-uncertain linear discrete-time systems have also

been considered by Langson et al. [27], and computational improvements and optimization

of the invariant-tube cross section are presented by Raković and Mayne [40]. Extensions by

Raković et al. [39] apply the tube-based methods to nonlinear discrete-time systems with

matched nonlinearities, including some special classes of piecewise affine systems.

A common assumption made in asymptotic stability proofs for MPC is that the FHC

terminal set contains the desired target state, which is usually assumed as the origin. Many

practical applications have computational limitations or limited knowledge of nearby state

constraints, which result in an FHC planning horizon that does not include the desired

target state. Thus, the FHC terminal set does not contain the target state for the initial

feasible solution. Subsequent FHC re-solves shift the terminal set toward the desired target

state, but there is no mathematical guarantee that the FHC will remain feasible. To address

the potential for an infeasible re-solve, research by Schouwenaars et al. [43] for discrete,

linear time-invariant systems imposes a constraint in the FHC that ensures each feasible

solution ends in a terminal safety set, which is a control-invariant set. If a subsequent re-

solve is infeasible, the prior feasible solution allows entry into the terminal safety set. This

method is enhanced in the RSBK (Robust Safe But Knowledgeable) algorithm by Kuwata

et al. [24]. These algorithms assume perfect state-constraint knowledge during the current

planning horizon, with the safety mode added to address feasibility issues of FHC re-solves

for a shifted terminal set.

1.3 Thesis Contributions and Organization

The contributions in this thesis are motivated by vehicle control applications requiring

efficient, online guidance and control algorithms capable of robustly maneuvering a system

toward a desired state while simultaneously providing safety from uncertainty in state-

constraint knowledge (e.g., safety from other vehicles unexpectedly blocking the feasible

path or unexpected ground proximity during landing).

A baseline MPC algorithm is presented in Chapter 2 based on traditional methods out-

lined in the extensive MPC literature. This baseline algorithm is valid for general nonlinear

systems and enforces both state and control constraints in the FHC. Further, a terminal set

is enforced rather than a fixed terminal-state constraint. The contributions in this thesis
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build upon this baseline MPC algorithm.

A robust MPC algorithm is developed in Chapter 3 for continuous-time uncertain non-

linear systems. This R-MPC (Robust and re-solvable MPC) algorithm generates online a

nominal feedforward control policy based on a modified FHC. An additional offline-designed

feedback policy is added in R-MPC to generate an invariant tube that ensures the actual

states remain in the proximity of the nominal feedforward trajectory. The tube provides an

explicit characterization of the R-MPC robustness, which can accommodate uncertainties

and disturbances in the actual dynamics up to the level considered in the feedback policy

design. An important contribution of the R-MPC algorithm is the modified FHC, which

puts a relaxation on the initial nominal state for re-solves. The initial nominal state is

allowed to be within the invariant tube rather than fixed to the actual state, as in the base-

line MPC; this relaxation guarantees continued FHC feasibility during re-solves and leads

to robust asymptotic stability of the R-MPC algorithm. The R-MPC algorithm places no

requirements on the re-solve rate, which is useful in online applications with computational

limitations. Additionally, specific design methods are provided for a class of continuous-time

systems with uncertain nonlinear terms that have norm-bounded derivatives. The R-MPC

algorithm development was joint work performed with Behçet Açıkmeşe [1].

The R-MPC algorithm is modified and augmented with a separate, reactive safety mode

in Chapter 4 to handle uncertainty in the state constraints during the planning horizon. The

SR-MPC (Safety-mode augmented R-MPC) algorithm has two operational modes: standard

mode and safety mode. The standard mode implements a modified R-MPC algorithm that

is executed as long as changes in state constraints do not violate the FHC feasibility or

system safety. The safety mode consists of an offline-designed control policy that, if needed,

can maintain the system in an invariant safety set. The R-MPC modification enforces

an additional FHC constraint to ensure safety-mode availability at any time along the

standard-mode planning horizon. This is a significant contribution that also blends the

two operational modes, guaranteeing a mode switch from standard to safety mode will not

violate prescribed state or control constraints. From the safety mode, a higher-level decision

algorithm (which is not a part of this thesis research) would need to establish a new initial

feasible solution, if one exists, or a new control objective to restart standard mode. The

SR-MPC algorithm is applicable to systems with static state constraints that might change

after initial feasibility is established for the standard mode. For example, a vehicle can be
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maintained in safety mode if an object or other vehicle crosses/stops in the feasible path

(outside the invariant safety set), or a spacecraft can be held in safety mode if sensors

detect unexpected proximity (low altitude) relative to the ground. Specific design methods

are provided for the class of continuous-time systems with uncertain nonlinear terms that

have norm-bounded derivatives.

Chapter 5 develops a discrete implementation of the SR-MPC algorithm targeted to

applications such as mechanical or aerospace vehicles. The significant contributions are

the development of discrete versions of the continuous-time algorithms from Chapter 3 and

4. Additionally, the discrete algorithm is formulated as a second-order cone program [9]

that ensures constraint satisfaction and can be solved online in a computationally efficient

manner by using interior-point algorithms, which provide convergence guarantees to within

a specified accuracy in a finite number of steps [36, 48, 50]. The discrete SR-MPC algorithm

maintains the ability to activate the safety mode at any discrete time along the planning

horizon, providing safety to uncertain state constraints along the entire planning horizon.

This is a contribution that adds to similar methods that incorporate safety only at the end

of the planning horizon and assume perfect state-constraint knowledge along the planning

horizon. The feedback policy design and portions of the discrete FHC development were

joint work with Behçet Açıkmeşe [10].

The discrete SR-MPC algorithm is applied to a detailed engineering example in Chapter

6 involving an autonomous spacecraft descending toward the surface of an asteroid. Un-

certainty in the asteroid gravity field and surface topology provide an ideal scenario for

evaluating the framework of the discrete SR-MPC algorithm Additionally, realistic effects

such as control-input uncertainty, sensor noise, and unknown disturbances, which are not

included in the theoretical formulation of SR-MPC, are incorporated into the simulations

to evaluate the performance of the discrete algorithm in a less-academic example.

A concluding chapter summarizes the algorithms developed in this thesis. Additionally,

limitations and potential extensions are discussed for each of the algorithms.
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Chapter 2

Model Predictive Control

In traditional receding- or compressing-horizon implementations of MPC (Model Predictive

Control), control inputs are computed online by solving an FHC (Finite-Horizon optimal

Control problem) over a finite time horizon, subject to state and control constraints, and

with the current state of the system as the initial state. The control is then applied to the

system in a feedforward (i.e., open-loop) manner over a specified time interval, followed by

an update to the current state and a re-solve (re-computation) of the FHC over a compressed

or receded time horizon. The re-solve provides an updated feedforward input, which is then

applied to the system and the cycle repeats.

The intent of this chapter is to define the baseline MPC method that is used for compar-

ison with the contributions in this thesis. The MPC formulation presented herein is based

upon those by Chen and Allgöwer [13], Mayne et al. [31], Jadbabaie [18] and Primbs [37]

where a CLF (Control Lyapunov Function [46, 47, 16]) is imposed on the terminal state as

part of the cost function. The method additionally uses a terminal state constraint, as well

as trajectory state and control constraints. Refer back to Section 1.1 of Chapter 1 for a re-

view of the other relevant literature and contributions to MPC. Proofs for the lemmas and

theorem in this chapter are provided in Appendix A in lieu of external references because

future chapters build upon and extend them.

2.1 System Description and Control Objective

Consider the following nonlinear system as the nominal system for application of MPC:

ż = F (z, uo, t), (2.1)
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with nominal state z ∈ Rn, control input uo ∈ Rm, and F (·) ∈ Rn is perfectly known

(i.e., there are no parametric uncertainties or unknown disturbances). Without a loss of

generality, the origin is considered an equilibrium point for system (2.1), F (0, 0, t) = 0; any

non-zero equilibrium point F (z̄, ūo, t) = 0 can be shifted to the origin.

The control objective is to obtain control input uo that, when applied to nominal system

(2.1), renders the origin (z = 0) asymptotically stable, with a region of attraction Rn ⊆ Zn,

such that

z(t) ∈ Zn and uo(t) ∈ Uo, ∀ t ≥ t0, (2.2)

when z(t0) ∈ Rn. Sets Zn ⊆ Rn and Uo ⊆ Rm define nominal state and control constraints,

respectively: Zn is connected and contains the origin in its interior; Uo is compact and

contains the origin in its interior. The set Rn will be defined based on the architecture of

the MPC algorithm.

2.2 Architecture of MPC Algorithm

The following FHC is typical of the type of constrained optimization solved in an MPC

framework. The FHC finds a control input uo that minimizes an objective function over a

finite time horizon (T ≥ 0), subject to the dynamics of nominal system (2.1), the imposed

state and control constraints, and a terminal state constraint.

FHC (for MPC)

Find J∗ = min
uo

J(z, uo; ti, T, z(ti)) where

J(z, uo; ti, T, z(ti)) =

ti+T∫
ti

h(z(τ), uo(τ))dτ + V (z(ti + T ))

subject to

ż = F (z, uo, t),

z(t) ∈ Zn,

uo(t) ∈ Uo,

 ∀ t ∈ [ti, ti + T ]

z(ti + T ) ∈ Ωo,

where z(ti) is the nominal system (2.1) state at initial time ti.



11

The set Rn will be defined based on feasibility of the FHC:

Rn = {ξ ∈ Zn : FHC is feasible with z(ti) = ξ} . (2.3)

The following conditions on the FHC and the nominal system (2.1) are instrumental for

proving asymptotic stability (e.g., [13, 18]) of the MPC algorithm:

Condition 2.1. Function h(·) is positive definite [21], satisfying

h(z, uo) ≥ a||z||p + b||uo||r, ∀z, uo, (2.4)

with p ≥ 1, r ≥ 0, a and b both positive constants, and h(0, 0) = 0. �

Condition 2.2. Function V (z) is positive definite (V (z) > 0, ∀z 6= 0,with V (0) = 0), and

there exists a control law uo = L(z) such that V defines a Control Lyapunov Function for

(2.1) satisfying

∇V (z)F (z,L(z), t) + h(z,L(z)) ≤ 0, ∀z ∈ Ωo, (2.5)

where Ωo ⊂ Zn is compact, convex, contains the origin in its interior, and is invariant for

dynamics (2.1) under application of control policy L(z). Additionally, L(z) ∈ Uo, ∀z ∈ Ωo.
�

Condition 2.3. There exists closed ball † BR centered at the origin such that set Ωo

satisfies

BR ⊆ Ωo. (2.6)
�

Note that invariance of Ωo under application of control law L(z) implies that if z(t0) ∈

Ωo for some t0, then z(t) ∈ Ωo, ∀t ≥ t0 [21]. Additionally, Conditions 2.1 and 2.2 imply that

cost function J in the FHC is also positive definitive (J(z, uo) > 0,∀z,∀uo,with J(0, 0) = 0).

The following algorithm describes the MPC approach. Note, the superscript k on uko(t)

and zk(t) in the below MPC algorithm denotes the feedforward input and the resulting

nominal trajectory, respectively, associated with a re-solve at time tk.
†Bρ , {z : ‖z‖ ≤ ρ, ρ > 0}.
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MPC Algorithm

Begin at k = 0 with z(t0) ∈ Rn and iterate the following steps over re-solve times

tk for k ∈ Z+:

1. Measure state z(tk) of nominal system (2.1) and solve the FHC at time ti = tk

with z(ti) = z(tk) and T = Tk to obtain uko(t) on t ∈ [tk, tk + Tk].

2. Monitor z(t) while applying uo(t) = uko(t) to nominal system (2.1) on t ∈

[tk, tk+1], with z(t) = zk(t).

3. Check the following over t ∈ [tk, tk+1]:

if z(t̃) ∈ Ωo for some t̃ ≥ t0, then set uo(t) = L(z),∀t ≥ t̃ and stop iteration.

Lemma 2.1 (Re-solvability of the FHC). Suppose that the FHC is feasible at t0 with horizon

T0, and let tk for k ∈ Z+ be the times that a solution of the FHC is re-solved. Then, the

feasibility of the FHC is guaranteed at tk with Tk ≥ Tk−1 − δk, ∀k ∈ Z+, δk = tk − tk−1,

0 ≤ δk < Tk−1 provided Condition 2.2 holds. �

Proof. See Appendix A.1 for a proof of Lemma 2.1.

For proving stability of the MPC algorithm, a sequence of monotonically increasing

re-solve times is needed:

Definition 2.1 (Re-Solve Times). Let tk (k ∈ Z+) be re-solve times for the FHC satisfying

infk δk ≥ ε for some ε > 0 where δk = tk − tk−1. �

Lemma 2.2 (Shrinking Optimal Cost with Compressing or Receding Horizon). Suppose the

FHC is feasible at some re-solve time tk−1 and Tk−1 with optimal cost J∗k−1, and Conditions

2.1, 2.2, and 2.3 hold. Then, the FHC is feasible at re-solve time tk with Tk ∈ [Tk−1 −

δk, Tk−1] (in fact any Tk ≥ tk−1 − δk), and if zk−1(tk−1) /∈ Ωo and zk−1(tk) /∈ Ωo, then the

optimal cost satisfies

J∗k − J∗k−1 ≤ −β, for some β > 0. (2.7)
�

Proof. See Appendix A.2 for a proof of Lemma 2.2.
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While each solution of the FHC provides a feedforward input uo to drive the nominal

system (2.1) toward the origin, the ability to re-solve the FHC and thus update the feed-

forward input uo based on the current state provides closed-loop feedback. The following

theorem establishes closed-loop asymptotic stability and finite-time convergence of the MPC

algorithm:

Theorem 2.1 (Closed-Loop Asymptotic Stability of MPC). Consider system (2.1) for z

and control input uo described by the MPC algorithm. If Conditions 2.1, 2.2, and 2.3 are

satisfied, then the origin (z = 0) of the resulting closed-loop system is asymptotically stable

with region of attraction Rn. �

Proof. See Appendix A.3 for a proof of Theorem 2.1.

2.3 Implementation and Limitations

Practical implementation of the MPC algorithm can be difficult due to online computational

capability, measurement and computation delay, parametric uncertainty, and unknown ex-

ogenous disturbances. These sources of error can lead to difficulty in maintaining feasibility,

and thus re-solvability, of the FHC. Rather than providing a specific example to demon-

strate the effect of uncertainty, a graphic illustration of the MPC algorithm applied to a

constrained nominal system will be contrasted. A specific example demonstrating these

issues will be given in the next chapter on Robust MPC, where a contrast is made between

the robust method and the baseline MPC method of this chapter.

For applications of the MPC algorithm, the nominal system in (2.1) serves as a model

for the actual system

ẋ = f(x, u, t), (2.8)

where x ∈ Rn and u ∈ Rm. The actual system contains uncertainty in either the parameters

or from unknown, exogenous disturbances, and thus F (·) in (2.1) is a known, idealized model

of f(·) in (2.8).

The asymptotic stability guarantees for the MPC algorithm require the nominal tra-

jectory to remain on the computed trajectory under application of feedforward policy uo

between re-solve times. This provides an initial, feasible nominal state for z(t) at subse-

quent re-solves, as depicted in the left-side sketch in Figure 2.1. However, if there is error
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Zn Ωo0

z(t)

uo = L(z)

Zn Ωo0

z(t)

x(t)

Figure 2.1: Expected MPC trajectories (left) and system uncertainty causing an infeasible
state at re-solve (right).

in the nominal model, and F (·) 6= f(·), then the actual trajectory x(t) will not remain on

the expected trajectory z(t), thus providing no guarantee of an initial, feasible state for

the FHC at the re-solve time. In fact, the actual state x(t) can even violate the nominal

system state constraints Zn, which also renders the MPC algorithm infeasible at a re-solve,

as depicted in the right-side sketch of Figure 2.1.
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Chapter 3

Robust Model Predictive Control
with Guaranteed Re-Solvability

Computation of the feedforward MPC (Model Predictive Control) inputs relies on a nominal

model of the actual system being controlled, and robustness to system uncertainties and

guarantees of re-solvability (i.e., continued FHC feasibility) can be difficult to establish.

The literature review in Section 1.1 of Chapter 1 highlights many significant contributions

toward a robust MPC framework. This chapter presents an R-MPC (Robust and re-solvable

MPC) algorithm for uncertain, nonlinear continuous-time systems and builds upon the

baseline MPC method presented in Chapter 2. The formulation of the R-MPC algorithm

is comprised of my joint work with Behçet Açıkmeşe that appeared in [1].

The R-MPC algorithm developed herein utilizes separate feedforward and feedback in-

put components. The feedback is designed offline as a robust control policy based on a

characterization of the uncertainty between the actual system and nominal model. The

feedforward input is computed online in a compressing- or receding-horizon manner by

solving an FHC-R (Finite Horizon optimal Control problem for R-MPC) that differs from

the standard FHC by including a relaxation on the initial nominal state for the FHC-R re-

solve. The additive feedback policy is applied with the feedforward and forms an invariant

tube that is guaranteed to maintain actual trajectories within the proximity of the nominal

trajectories. Note that no upper bounds are placed on the re-solve time interval with the

R-MPC algorithm.

The generation of an invariant tube for robust MPC has previously been applied to linear

discrete-time systems with bounded disturbances by Mayne et al. [29, 32], with extensions

to time-varying or parameter-uncertain linear discrete-time systems by Langson et al. [27]
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and with improvements to online computation by Raković and Mayne [40]. Extensions by

Raković et al. [39] applied invariant tubes to robust MPC of nonlinear discrete-time systems

with matched nonlinearities, including some special classes of piecewise affine systems.

The approach herein is developed for general continuous-time, uncertain nonlinear sys-

tems, with design methods for a special class of uncertain, nonlinear systems with bounded

derivatives. The invariant tube is prescribed based on specified state constraints in addi-

tion to a characterization of the uncertainty/nonlinearity. The control policies are designed

without any form of feedback linearization or cancellation of nonlinearities through the

control policy.

3.1 Description of the Actual System and Control Objective

Consider the following uncertain, nonlinear dynamical system as the actual system for

application of R-MPC:

ẋ = f(x, u, t), (3.1)

with actual state x ∈ Rn and control input u ∈ Rm. Let a nominal system model of the

actual system (3.1) be given by

ż = F (z, uo, t), (3.2)

with nominal state z ∈ Rn and control input uo ∈ Rm, and where F (·) is a known, ap-

proximate model of f(·) from (3.1). Without a loss of generality, the origin x = z = 0 is

considered an equilibrium point shared by both systems; f(0, 0, t) = F (0, 0, t) = 0.

The control objective is to obtain control input u that, when applied to actual system

(3.1), renders the origin (x = 0) asymptotically stable, with a region of attraction Ra ⊆ X,

such that

x(t) ∈ X and u(t) ∈ U, ∀ t ≥ t0, (3.3)

when x(t0) ∈ Ra. Sets X ⊆ Rn and U ⊆ Rm define actual state and control constraints,

respectively: X is connected and contains the origin in its interior; U is compact and

contains the origin in its interior. The set Ra will be defined based on the architecture of

the R-MPC algorithm.
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3.2 Architecture of the R-MPC Algorithm

The control approach for R-MPC splits the control input u for actual system (3.1) into two

components:

u(t) = uo(t) + uf (t), (3.4)

where uo is a feedforward control input and uf is a feedback control input. The feedforward

component uo of the control input is determined through online solution of an FHC-R that

utilizes the nominal system model (3.2), and the feedback component uf is determined

offline as a control policy to handle a characterization of the uncertainty in the actual

system (3.1).

Sets X and U are given constraints imposed on the overall design of the control input.

The following additional constraint sets (all containing the origin in their interiors†), are

used in constructing the control approach:

Uo + Uf ⊆ U and Zn + Xf ⊆ X. (3.5)

Set Zn is connected and contains the origin in its interior, and sets Xf , Uo, and Uf are

compact and contain the origin in their interiors.

In preview, the R-MPC algorithm uses online solution of the FHC-R to design feed-

forward control input uo ∈ Uo to maintain the nominal states within constraint set Zn.

Additionally, the feedback policy uf ∈ Uf is designed to establish invariant tube Xf about

the nominal trajectory (utilized as a feedforward, guidance trajectory) to maintain the

actual states in the proximity of the nominal states, providing robustness to dynamics un-

certainty and disturbances. The set definitions in (3.5) ensure that the actual constraints

in (3.3) are obeyed.

The following FHC-R is similar to the baseline FHC of Chapter 2 but with a relaxation

on the initial state, which appears as a constraint on the difference between the actual and

nominal state. The initial nominal state for the optimization is not required to be equal to

the current actual state. This relaxation, along with feedback uf , is useful for establishing

robust re-solvability of the FHC-R, which is needed to ensure asymptotic stability of the

R-MPC algorithm.
†For sets A and B, C = A+B implies the following: if a ∈ A and b ∈ B then a+ b ∈ C.
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FHC-R (for Robust and re-solvable MPC)

Find J∗ = min
uo

J(z, uo; ti, T, z(ti)) where

J(z, uo; ti, T, z(ti)) =

ti+T∫
ti

h(z(τ), uo(τ))dτ + V (z(ti + T ))

subject to

ż = F (z, uo, t),

z(t) ∈ Zn,

uo(t) ∈ Uo,

 ∀ t ∈ [ti, ti + T ]

z(ti + T ) ∈ Ωo,

x(ti)− z(ti) ∈ Xf , (3.6)

where x(ti) is the actual system (3.1) state at initial time ti.

The set Ra, which specifies the region of attraction for the control objective in (3.3), is

defined based on feasibility of the FHC-R:

Ra = {ξ ∈ Zn + Xf : FHC-R is feasible with x(ti) = ξ} . (3.7)

The baseline MPC algorithm conditions 2.1, 2.2, and 2.3 are also conditions for proving

asymptotic stability of the R-MPC algorithm. The following additional conditions are

useful in proving stability for the actual system with control determined with the R-MPC

algorithm.

Condition 3.1. There exists a feedback control policy uf = Kf (x, z) ∈ Uf in (3.4) that

renders set Xf invariant for η(t) , x(t)−z(t) ∈ Xf and for all uo(t), ∀t ≥ t0, with dynamics

(3.1) for x and (3.2) for z. �

Note, Condition 3.1 defines set Xf as an invariant tube about the nominal states z: if

η(t0) ∈ Xf for some t0 ≥ 0, then η(t) ∈ Xf , uf (t) ∈ Uf ,∀t ≥ t0.

Condition 3.2. There exists function V and control policy L(·), defined as in Condition

2.2, such that control policy u(t) = L(x) also ensures V is a Control Lyapunov Function
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for (3.1), satisfying

∇V (x)f(x,L(x), t) + h(x,L(x)) ≤ 0, ∀x ∈ Ωo, (3.8)

where Ωo ⊂ Zn is invariant for dynamics (3.1) under application of control policy L(x).

Additionally, L(x) ∈ Uo, ∀x ∈ Ωo. �

Condition 3.3. There exists closed ball Br centered at the origin with radius r < R such

that set Xf satisfies

Xf ⊆ Br ⊂ BR ⊆ Ωo, (3.9)

where BR is defined in Condition 2.3. �

The following algorithm describes the R-MPC approach. Note, the superscript k on

uko(t) and zk(t) in the R-MPC algorithm below denotes the feedforward input and the

resulting nominal trajectory, respectively, associated with a re-solve at time tk.

R-MPC Algorithm

Begin at k = 0 with x(t0) ∈ Ra and iterate the following steps over re-solve times

tk for k ∈ Z+:

1. Measure state x(tk) of actual system (3.1) and solve the FHC-R at time ti = tk

with x(ti) = x(tk) and T = Tk to obtain uko(t) on t ∈ [tk, tk + Tk].

2. Monitor z(t) and x(t) while applying uo(t) = uko(t) to nominal system (3.2) and

u(t) = uko(t) + uf (t) to actual system (3.1) on t ∈ [tk, tk+1], with z(t) = zk(t)

and uf (t) = Kf (x(t), z(t)).

3. Check the following over t ∈ [tk, tk+1]:

(a) if z(t̃) ∈ Ωo for some t̃ ≥ t0, then set uo(t) = L(z(t)), ∀t ≥ t̃ and skip

step 1 in iteration.

(b) if x(t̄) ∈ Ωo for some t̄ ≥ t0, then set u(t) = L(x(t)), ∀t ≥ t̄ and stop

iteration.

The following Lemma ensures re-solvability of the FHC-R. Note, there are no upper

bounds placed on the frequency of re-solves (i.e., the time interval between re-solves) with

the R-MPC algorithm.
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Lemma 3.1 (Re-solvability of the FHC-R). Suppose that the FHC-R is feasible at t0 with

horizon T0, and let tk for k ∈ Z+ be the times that a solution of the FHC-R is re-solved.

Then, the feasibility of the FHC-R is guaranteed at tk with Tk ≥ Tk−1 − δk, ∀k ∈ Z+,

δk = tk − tk−1, 0 ≤ δk < Tk−1 provided Conditions 2.2 and 3.1 hold. �

Proof. The proof follows that of Lemma 2.1 in Appendix A.1 for FHC re-solvability, with

the FHC-R substituted for the FHC. Additionally, since the actual dynamics (3.1) are not

known perfectly, the following addendum is needed for the initial feasible state zk(tk) at

the re-solve time tk for the FHC-R:

Set Xf is invariant due to Condition 3.1 when feedback uf (t) = Kf (x, z) is applied

alongside uk−1
o (t) to actual system (3.1), which ensures x(tk) − zk−1(tk) ∈ Xf ; thus, state

zk(tk) = zk−1(tk) is the initial state of a feasible trajectory.

Remark 3.1 (Relaxation of Initial Nominal State). The nominal trajectory z from solution

of the FHC-R is a guidance trajectory that the actual state x follows under application

of control policy (3.4). The FHC-R constraint (3.6) provides a relaxation on the initial

nominal state z(ti) for each re-solve; the relaxation comes from the invariance of Xf ensured

by the feedback policy in Condition 3.1. The relaxation allows the FHC-R to select a

z(ti) on re-solves that is either connected or disconnected with the prior nominal solution.

Figure 3.1 illustrates these two scenarios. The FHC-R could require the nominal path to

remain connected through an equality constraint (i.e., zk(tk) = zk−1(tk)), but the relaxation

provides the FHC-R a larger solution space in which improved guidance trajectories might

be found. Note, the actual path will remain connected throughout the re-solves. �
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Initial FHC-R Feasible
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X
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z(t) 
z(t) 
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Fixing zk(tk) = zk−1(tk)

Zn

X

Ωo

0

zk(tk ) ≠ zk-1(tk )

x(t) 

z(t) 
z(t) 

x(tk ) - zk(tk ) Xf

Xf

Relaxing x(tk)− zk(tk) ∈ Xf

Figure 3.1: Given a feasible FHC-R (top left), re-solves could fix the nominal initial state
(top right), but the relaxed nominal initial state (bottom) offers more flexibility.

Lemma 2.2 from the baseline MPC also applies to the R-MPC algorithm for providing

a shrinking optimal cost in a compressing- or receding-horizon implementation. The proof

of Lemma 2.2 applied to the R-MPC algorithm follows the baseline MPC with the FHC-R

substituted for the FHC, along with use of the addendum discussed in the above proof of

Lemma 3.1 that allows for the continued feasibility of the FHC-R on a re-solve.
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The following theorem establishes closed-loop asymptotic stability for the R-MPC algo-

rithm. Following the proof, Figure 3.2 presents a pictorial sketch of the R-MPC algorithm.

Theorem 3.1. Consider system (3.1) for x with a control input u described by the R-MPC

algorithm. If Conditions 2.1, 2.2, 3.1, 3.2, and 3.3 are satisfied, then the origin (x = 0) of

the resulting closed-loop system is asymptotically stable with region of attraction Ra. �

Proof. Given the R-MPC algorithm and x(t0) ∈ Ra such that the FHC-R is feasible with

some T0, suppose there exists k ∈ Z+ such that zk−1(tk−1) /∈ Ωo and zk−1(tk) /∈ Ωo. This

implies zk−1(t) /∈ Ωo for t ∈ [tk−1, tk], and thus (2.7) holds: J∗k −J∗k−1 ≤ −β, for some β > 0

(Note, β is independent of k, as established in the proof of Lemma 2.2). Consequently, if

the nominal trajectory z does not enter Ωo in finite time, then there exists k ∈ Z+ such

that J∗k < 0, which is a contradiction. This together with Condition 2.2 imply the existence

of finite time t̃ ≥ t0 such that z(t) ∈ Ωo, ∀t ≥ t̃.

Application of Step 3a in the R-MPC algorithm, uo = L(z) for t ≥ t̃, and use of

Condition 2.2 imply the closed-loop nominal system converges asymptotically to the origin

when x(t0) ∈ Ra. Note, V is a Control Lyapunov Function for nominal system (3.2) with

V̇ (z) < 0,∀z ∈ Ωo, except V̇ (0) = 0.

Since, the closed-loop nominal system converges asymptotically to the origin, there exists

t̄ ≥ t̃ ≥ 0 such that ‖z(t)‖ ≤ R − r for t ≥ t̄, where R > r > 0 are as defined in Condition

3.3. This leads to

‖x(t)‖ ≤ ‖x(t)− z(t)‖+ ‖z(t)‖ ≤ r + (R− r) = R, ∀t ≥ t̄,

which implies that x(t) ∈ Ωo, ∀t ≥ t̄. Application of Step 3b in the R-MPC algorithm,

u = L(x) for t ≥ t̄, and use of Condition 3.2 implies

lim
t→∞
‖x(t)‖ = 0

since V is also a Control Lyapunov Function for actual system (3.1) with V̇ (x) < 0,∀x ∈ Ωo,

except V̇ (0) = 0. Therefore, the closed-loop actual system (3.1) converges asymptotically

to the origin, ∀x(t0) ∈ Ra, with control input u given by the R-MPC algorithm.
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Figure 3.2: Sketch of the R-MPC algorithm, including re-solves (top left), nominal-system
asymptotic convergence (top right), and actual-system asymptotic convergence (bottom).

Remark 3.2 (Asymptotic Stability of the Actual System). If Conditions 3.2 and 3.3 are not

specified, then asymptotic converge of the actual system to the origin is not guaranteed in

the proof of Theorem 3.1. In this case, there is no local control policy u = L(x) to drive the

actual system to the origin. In addition, there is no guarantee that Xf ⊂ Ωo, so x might

not enter Ωo. �

Remark 3.3 (Convergence of Actual System into a Terminal Set Xf ). Conditions 2.2 and

2.3 on the nominal system establish closed-loop asymptotic convergence to the origin for

the nominal system with the R-MPC algorithm. When z = 0, the feedback policy uf =

Kf (x, 0) from Condition 3.1 renders Xf invariant for η = x; the feedforward would remain
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uo = L(z) = L(0) in control input u from (3.4). Thus, invariant tube Xf also generates an

invariant terminal set for the actual system. This terminal convergence would also result

from skipping Step 3b in the R-MPC algorithm, and Conditions 3.2 and 3.3 are unnecessary.

�

3.3 Specialization to a Class of Systems with Derivatives

Contained in Convex Sets

In this section, the R-MPC algorithm is specialized to an important class of systems for

which explicit design methods can be developed that satisfy Conditions 2.1, 2.2, 3.1, 3.2,

and 3.3. The following characterizes the actual system for this special class of systems:

ẋ = Ax+Bu+ Eφ(t, q),

q = Cqx+Dqu,
(3.10)

where φ : R × Rnq → Rnp with φ(t, 0) = 0, ∀t, is a continuously differentiable function

representing the uncertain nonlinear part of the dynamics. This form implies f(x, u, t) =

Ax+Bu+ Eφ(t, q) in (3.1) with q ∈ Rnq , A ∈ Rn×n, B ∈ Rn×m, E ∈ Rn×np , Cq ∈ Rnq×n,

and Dq ∈ Rnq×m.

The nominal model dynamics is assumed to have the following form:

ż = Az +Buo + Eψ(t, qo),

qo = Cqz +Dquo,
(3.11)

where ψ : R×Rnq → Rnp with ψ(t, 0) = 0, ∀t, is an approximation for φ(·) in actual system

(3.10). Thus, F (z, uo, t) = Az +Buo + ψ(t, qo) in (3.2), and qo ∈ Rnq .

Nonlinear functions φ(·) and ψ(·) in (3.10) and (3.11), respectively, are assumed to have

Jacobians in convex sets, along with a bounded mismatch:

Condition 3.4 (Jacobian in Convex Set). Functions φ and ψ are continuously differentiable

and there exists a closed and convex set of matrices Θ ⊆ Rnp×nq such that

∂φ

∂q
(t, q) ∈ Θ and

∂ψ

∂q
(t, q) ∈ Θ, ∀q,∀t. (3.12)

�
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Condition 3.5 (Bounded Mismatch). There exists a scalar γ > 0 such that

‖w(t, z, uo)‖ ≤ γ, ∀t,∀z ∈ Zn, ∀uo ∈ Uo, (3.13)

where w(t, z, uo) = φ(t, qo)− ψ(t, qo) with qo = Cqz +Dquo from (3.11). �

Remark 3.4. Condition 3.5 is satisfied when Zn and Uo are compact sets, and φ and ψ are

continuous in their arguments and bounded in t. For example, suppose there exists a norm

bound on the uncertainty,

‖φ(t, qo)− ψ(t, qo)‖ ≤ ρ‖qo‖ , ∀t,∀qo,

where ρ > 0. Furthermore, suppose there also exist positive scalars ρ1 and ρ2 such that

‖z‖ ≤ ρ1, ∀z ∈ Zn, and ‖uo‖ ≤ ρ2, ∀uo ∈ Uo.

Then, Condition 3.5 is satisfied with γ = ρ(ρ1‖Cq‖+ ρ2‖Dq‖). �

Remark 3.5. When the nominal system (3.11) is LTI (Linear Time Invariant), which occurs

when nonlinearity ψ(t, z) = ψ(t) is an exogenous input, the nominal dynamics provide lin-

ear equality constraints in the FHC-R. Further, when all other state and control constraints

(Zn, Xf , and Uo) define a convex feasible domain, then the FHC-R becomes a convex opti-

mization problem‡, which can be solved in a computationally efficient and reliable manner

by using interior-point methods [36]. Analysis of systems of the form (3.10) that have LTI

nominal models for (3.11) is useful for real-time autonomous control. �

The error dynamics between the actual and nominal states in (3.10) and (3.11), respec-

tively, are

η̇ = Aη +Buf + E [φ(t, q)− ψ(t, qo)] , (3.14)

= Aη +Buf + E [φ(t, q)− φ(t, qo)] + E [φ(t, qo)− ψ(t, qo)] ,

= Aη +Buf + Eπ(t, η, uf ) + Ew(t, z, uo), (3.15)

where η , x − z is the error state, uf , u − uo defines the feedback input, w(t, z, uo) =

φ(t, qo)−ψ(t, qo) is from Condition 3.5, and π(t, η, uf ) = φ(t, Cqx+Dqu)−φ(t, Cqz+Dquo).

‡All equality constraints in a convex optimization problem must be linear equalities.
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The following Lemma is a generalization of the Mean Value Theorem [5, 8] and is used

to obtain an LDI (Linear Differential Inclusion) for the error dynamics in (3.15).

Lemma 3.2. Consider a continuously differentiable function g : Rn1 7→ Rn2 with its Jaco-

bian given by ∂g
∂y (y). Suppose there exists a closed convex set Λ ∈ Rn2×n1 such that

∂g

∂y
(y) ∈ Λ, ∀y ∈ Rn1 .

Then, for every y1, y2 ∈ Rn1 there exists ∆ ∈ Λ such that

g(y2)− g(y1) = ∆(y2 − y1).

�

Applying Lemma 3.2 with Condition 3.4 for function φ provides the following relation-

ship for function π(t, η, uf ) in error dynamics (3.15):

π(t, η, uf ) = θ(t)(Cqη +Dquf ), where θ(t) ∈ Θ,∀ t. (3.16)

This relationship aids in the generation of feedback laws that satisfy Condition 3.1 for the

uncertain nonlinear systems in this section.

The following condition gives a design specification for the state and control constraints

in (3.5) that will be satisfied in the forthcoming design framework. The condition provides

a polytopic description of the invariant tube and terminal set and an ellipsoidal description

of the control constraints. More general convex characterizations of the constraint sets are

also possible and can easily be integrated into the design framework.

Condition 3.6 (State and Control Constraints).

Zn ⊇ ZΩ , {z ∈ Rn : aTi z ≤ 1, i = 1, . . . ,mo},

Xf ⊆ Xf , {η ∈ Rn : bTi η ≤ 1, i = 1, . . . ,mf},

Uo ⊆ {uo ∈ Rm : uTo Πouo ≤ 1},

Uf ⊆ {uf ∈ Rm : uTf Πfuf ≤ 1},

where Πo, Πf are symmetric positive-definite matrices, and the design-specification for set

Xf is determined such that Xf + Zn ⊆ X: thus, Xf ⊆ Xf results in additional design
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conservatism to ensure the constraints in (3.5) are satisfied. �

Note, set Zn need not be convex, but terminal set Ωo does need to be convex and will be

constructed so that Ωo ⊆ ZΩ.

The following is a corollary of Theorem 3.1 that describes a design procedure for systems

with norm-bounded derivatives. An extension to this corollary is provided in [1] for systems

with uncertain nonlinear terms that have derivatives contained in polytopes.

Corollary 3.1.1 (Constructive R-MPC Inequalities for a Class of Systems). Consider an

uncertain nonlinear system (3.10) with a nominal model given by (3.11) satisfying Condi-

tions 3.5 and 3.6, and Condition 3.4 with

Θ = {θ ∈ Rnp×nq : ‖θ‖ ≤ 1} . (3.17)

Suppose there exist matrices P = P T > 0, Q = QT > 0, L, Y and positive scalars λ, β, µ,

c1, and c2 satisfying the following matrix inequalities,

 PAT +AP +BL+ LTBT + P/λ+ (β + λγ2)EET PCTq + LTDT
q

CqP +DqL −βI

 ≤ 0 (3.18)


QAT +AQ+BY + Y TBT + µEET QCT + Y TDT QCTq + Y TDT

q

CQ+DY −I 0

CqQ+DqY 0 −µI

 ≤ 0 (3.19)

 P LT

L Π−1
f

 ≥ 0 ,

 Q Y T

Y Π−1
o

 ≥ 0, (3.20)

aTi Qai ≤ 1, i = {1, . . . ,mo}, (3.21)

bTj Pbj ≤ 1, j = {1, . . . ,mf}, (3.22)

Q ≥ c1I > c2I ≥ P , (3.23)

where C and D satisfy CTD = 0. Then, ellipsoids Ωo , {x : xTQ−1x ≤ 1} and

Xf , {η : ηTP−1η ≤ 1} and the R-MPC algorithm with

h(z, uo) = ‖Cz‖2 + ‖Duo‖2 and V (z) = zTQ−1z, (3.24)
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L(z) = Kz , K = Y Q−1 (3.25)

Kf (x, z) = Kf (x− z) , Kf = LP−1 (3.26)

result in an asymptotically stable closed-loop system for (3.10) with region of attraction Ra

given in (3.7) and satisfaction of the constraints in Condition 3.6. �

Proof. See Appendix A.4 for a proof of Corollary 3.1.1. The proof comes from establishing

invariant ellipsoids [2, 8] around both the nominal trajectory z and the origin by using the

matrix inequalities in the corollary and the R-MPC algorithm conditions.

Remark 3.6. All of the matrix inequalities in Corollary 3.1.1 are an LMI (Linear Matrix

Inequality), except for (3.18) which is a BMI (Bilinear Matrix Inequality). However, the

BMI is an LMI for a given λ > 0. Therefore, a simple line search on λ can be applied to

solve the system of matrix inequalities. �

3.4 An Illustrative Example to Contrast R-MPC and MPC

The R-MPC algorithm is contrasted with the baseline MPC algorithm for a simple example

of a 2-D system. A comparison will also be provided to show the effect of how well the

nominal model captures the nonlinearity in the actual system.

Let the actual and nominal system dynamics in (3.10) and (3.11), respectively, have the

following parameters:

ẋ = Ax+Bu+ Eφ(t, q), q = Cqx+Dqu, φ(t, q) = ω(t) sin2 (Cqx), (3.27)

ż = Az +Buo + Eψ(t, qo), qo = Cqz +Dquo, ψ(t, qo) = ω0 sin2 (Cqz), (3.28)

A =

 0 1

0 0

, B =

 0

1

, E =

 0

−0.1

, (3.29)

Cq =
[

1 0
]
, Dq = 0, (3.30)

where x and z are two-dimensional vectors with position and velocity components:

x =

 x1

x2

, z =

 z1

z2

.
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Function ψ is the nominal model for actual system nonlinearity φ, and parameter ω(t) ∈

[0, 0.5] for nonlinearity φ. The value for ω0 in nonlinearity ψ will be set to 0 and 0.2 in sep-

arate simulations to demonstrate the effect of having a good nominal model for application

of baseline MPC.

The nonlinearities satisfy Condition 3.4 with Θ as in (3.17): ‖∂φ∂q ‖ ≤ 1 and ‖∂ψ∂q ‖ ≤ 1.

Further, Condition 3.5 is satisfied with γ = 0.5 when ω0 = 0 and γ = 0.3 when ω0 = 0.2.

The FHC and FHC-R cost function is h(z, uo) from Corollary 3.1.1 with matrices

C =


1 0

0 0.1

0 0

, D =


0

0

1

, (3.31)

the time horizon is fixed at T = 30 seconds, and the initial condition is

x(t0) =

 4

0.4

,
with t0 = 0.

The actual state and control constraints for the example are

X , {x : x1 ∈ [−0.35, 5] , x2 ∈ [−1, 1]},

U , {u : ‖u‖ ≤ 1.4}.

These constraints are partitioned into the design specifications from Condition 3.6 as follows:

ZΩ : ai =


 1

4.95

0

,
− 1

0.3

0

,
 0

1
0.9

,
 0

− 1
0.9

,
Xf : bi =


 1

0.05

0

,
− 1

0.05

0

,
 0

1
0.1

,
 0

− 1
0.1

,
Uo : Πo = 1

1.22 ,

Uf : Πf = 1
0.22 ,

where the ai values define the full Zn as well as ZΩ for the examples, and i = {1, 2, 3, 4}.

Parameters Πo and Πf bound components ‖uo‖ ≤ 1.2 and ‖uf‖ ≤ 0.2, respectively, in

control u from (3.4). Note, the above sets provide design specifications such that Zn+Xf ⊆
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X and Uo + Uf ⊆ U, and control design with Corollary 3.1.1 will ensure that the required

R-MPC control and state constraints are met and satisfy (3.5). For application of the

baseline MPC, the state constraints will be set to Zn and the control constraints to the

full set U since there is no separate feedback input. Utilizing the more-conservative state

constraints Zn builds some conservatism in the MPC design so that infeasible solutions

might recover prior to violation of the full state-constraint set X. This could be important,

for example, if the system modeled a mechanical vehicle with the constraint set X being a

physical barrier.

The LMIs in Corollary 3.1.1 are solved by using SDPT3 [50]. The solution provides

the controller gains that define the feedback controller (Kf ) for invariant tube Xf and the

local controller (K) for terminal set Ωo. The matrices P and Q that define tube Xf and

terminal set Ωo, respectively, are also part of the solution:

Kf =
[
−3.6242 −3.0546

]
, P =

 0.0012 −0.0011

−0.0011 0.0044

,
K =

[
−2.8907 −2.0622

]
, Q =

 0.0755 −0.0498

−0.0498 0.2227

.
A contrast of MPC and R-MPC for a simulation with ω0 = 0 is shown in Figure 3.3; in

these simulations, parameter ω(t) is fixed at 0.5 to provide a worst-case disturbance to the

actual system. Re-solves are performed on a fixed, 2-second interval in both simulations.

The state constraints and markers for each re-solve are included in each plot as well. The

smaller plot with axes η1 and η2, to the lower right of the bottom plot for R-MPC in Figure

3.3, is the error state between the actual and nominal systems.
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Figure 3.3: The baseline MPC algorithm remains infeasible (top), while the R-MPC algo-
rithm converges (bottom) with ω0 = 0 in the nominal model and re-solves every 2 seconds.

In the MPC simulation (top plot in Figure 3.3), the 2-second re-solves occur outside

of feasible nominal state constraints Zn, so no solutions are obtained to update the MPC

control input. One practical approach to the lack of re-solve solutions is to continue appli-

cation of the last feasible input until another feasible solution is obtained. This approach

assumes that the actual trajectory will eventually reenter the feasible constraints Zn. As

seen in the MPC plot, the feasible region is re-entered, but the fixed 2-second re-solve rate

does not occur until the actual trajectory is outside of feasibility again. In fact, the full

state constraint X is violated prior to the third re-solve, and application of the original

MPC control input never drives the actual system into the terminal set. Another practical
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approach is to re-solve the MPC algorithm more frequently in an attempt to maintain the

actual trajectory within the feasible nominal state constraints. However, with more fre-

quent re-solves, there is still no guarantee of continued feasibility, nor is there a general,

explicit measure for how frequently re-solves should occur. In fact, the needed re-solve rate

for some systems could exceed practical computation capabilities.

In contrast, the R-MPC simulation (bottom plot in Figure 3.3) provides asymptotic

stability to the actual system. The separate feedback controller, designed by satisfying the

matrix inequalities in Corollary 3.1.1, maintains the actual trajectory within the tube Xf

about the nominal trajectory, enabling feasible re-solves even when the actual trajectory

leaves the nominal state constraints Zn. Further, the tube provides robust re-solvability

regardless of the rate of the re-solves. The tube cross section and the error state η is shown

to the lower right of the R-MPC simulation. The effect of relaxation constraint (3.6) in

the FHC-R is also noticeable in the tube plot; on re-solves, the optimization chooses to

place the initial nominal state on the boundary of the tube. Once the actual system enters

terminal set Ωo, the error state also goes asymptotically to 0.

Both the MPC and R-MPC simulations enforce the prescribed control constraints, shown

in Figure 3.4. The top plots are for the baseline MPC control and the bottom plots are for

the R-MPC control. Since baseline MPC only utilizes the feedforward uo, the control to the

actual system is identical to the nominal system (i.e., u = uo and feedback uf = 0 in the top

plots). The small jump in the MPC control input at approximately 5 seconds corresponds

to when the nominal system enters terminal set Ωo and the controller is switched to the

local controller L(·). As shown prior in Figure 3.3, the baseline MPC control input does not

drive the actual system to the origin, and since no feasible solutions are found during the

three subsequent re-solves, the original nominal input is utilized for the entire simulation.

In comparison, the bottom plots depict the R-MPC control input u, which does drive the

actual system (3.10) to the origin. The R-MPC control input is made up of the feedforward

uo and feedback uf components. As seen, the components and their sum also satisfy the

prescribed R-MPC control constraints. The bump in the R-MPC control input also near

5 seconds corresponds to the nominal system, followed very closely by the actual system,

entering the terminal set Ωo and the controllers being switched to the local controller L(·).

Note, once the actual system is switched to the local controller, no separate feedback is

utilized and uf = 0 as seen in the figure.
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Figure 3.4: Control inputs from both MPC and R-MPC obey prescribed constraints.

The asymptotic convergence of the actual system to the origin is enabled in part by the

satisfaction of Condition 3.3. Figure 3.5 shows that Corollary 3.1.1 establishes Xf ⊂ Ωo.
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−0.25
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x1

x 2

!o

Xf

Figure 3.5: Feedback state constraints Xf ⊂ Ωo satisfy Condition 3.3.

The asymptotic convergence problem for the MPC algorithm in Figure 3.3 could be

remedied by decreasing the re-solve rate (e.g., re-solve every 1 second) so that a re-solve
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occurs when the actual trajectory reenters the feasible state constraints Zn. A benefit of

the R-MPC algorithm is that invariant tube Xf maintains re-solve feasibility regardless of

the re-solve rate, so no guessing is required on the frequency of re-solves. The quality of the

nominal model also has an effect on the baseline MPC. When ω0 = 0.2, the nominal uncer-

tainty model better captures the actual nonlinearity. Figure 3.6 contrasts the MPC (top)

and R-MPC (bottom) algorithms with this different model; re-solves are still performed

every 2 seconds. Several infeasible MPC re-solves still occur, but the improved model keeps

the nominal and actual trajectory close enough that one of the 2-second re-solves occurs

within feasible nominal state constraints and avoids violation of the actual state constraints.
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Figure 3.6: An improved nominal model with ω0 = 0.2 helps baseline MPC feasibility (top),
while the R-MPC algorithm (bottom) performs well with either model.
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3.5 Summary of the R-MPC Algorithm

The R-MPC algorithm enhances the baseline MPC in Chapter 2 by augmenting the frame-

work with a separate feedback control component that provides robustness to uncertainty

and disturbances affecting the actual dynamics. The feedback component creates an invari-

ant tube about the nominal feedforward trajectory, based on an explicit characterization

of the uncertainty between the actual system and the nominal model. Further, the on-

line optimization for computing the feedforward control component utilizes the existence

of the tube to relax the initial nominal state for each re-solve. This relaxation allows the

initial nominal state to simply be within the tube cross section and not fixed to the actual

state at the re-solve time, which provides robust feasibility and re-solvability to the R-MPC

algorithm.

The R-MPC algorithm assumes that the state constraints imposed in the control ob-

jectives are known perfectly. In cases where uncertainty exists in these constraints, the

R-MPC re-solvability cannot be guaranteed. For instance, if the state constraints change

such that they intersect the invariant tube, the R-MPC algorithm has no means of ensuring

re-solvability or avoidance of the changed constraint. The following chapter augments the

R-MPC algorithm with a reactive safety mode that addresses changes to state constraints

by switching on, if needed, an alternate control policy (called the safety mode) to maintain

the system in an invariant set for all time that ensures avoidance of the changed constraint.
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Chapter 4

A Reactive Safety Mode Blended
into R-MPC

Application of the R-MPC (Robust and re-solvable MPC) algorithm developed in Chapter

3 provides control inputs that ensure re-solvability, robustness, and asymptotic stability for

general classes of uncertain, nonlinear systems. However, the R-MPC algorithm does not

handle uncertainty in static state constraints (or control constraints, which are not consid-

ered herein) and assumes that all state constraints are known perfectly ahead of the time.

This chapter addresses uncertainty in static state constraints by augmenting the R-MPC al-

gorithm with a reactive safety mode. The resultant continuous-time SR-MPC (Safety-mode

augmented R-MPC) algorithm blends two operational modes: (I) standard mode guarantees

re-solvability and asymptotic convergence to the origin in a robust receding-horizon manner;

(II) safety mode, if activated, guarantees containment within an invariant set about a safety

reference for all time. The standard mode is a modified version of the R-MPC algorithm

that provides safety-mode availability at any time, and the safety mode is a separate control

policy computed offline.

An assumption is made that perfect state knowledge is available inside and on the

boundary of the invariant safety set so that any static state-constraint changes outside the

boundary, once realized, can be handled by safety-mode activation. Technically, changes in

static state constraints that do not affect the standard-mode tube trajectory, either current

or on a re-solve, will not violate feasibility and could be disregarded with additional checks

added into the SR-MPC algorithm. However, the most conservative option is to activate the

safety mode for any static state-constraint change. The safety control policy is considered

reactive in the sense that onboard information is not utilized proactively to alter the policy;
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in this sense, the safety policy provides additional conservatism to trajectory generation.

After safety-mode activation, higher-level algorithms can either change the control objective

or re-establish initial feasibility for resumption of standard mode operations; this is not

addressed within this thesis.

As with the R-MPC algorithm, the SR-MPC algorithm is also developed for general

continuous-time, uncertain nonlinear systems, with design methods for a special class of

uncertain, nonlinear systems with derivatives in convex sets. Additionally, the invariant

safety set is prescribed based on specified state constraints in addition to a characterization

of the uncertainty/nonlinearity.

The formulation for the continuous-time SR-MPC algorithm is the primary contribution

of this thesis and will appear in [11]. A discrete version of the algorithm, useful for practical

applications will follow in Chapter 5. The notion of a safety-augmented robust MPC al-

gorithm applied to discrete, linear time-invariant systems was introduced by Schouwenaars

et al. [43] and made part of the RSBK (Robust Safe But Knowledgeable) algorithm by

Kuwata et al. [24]. These algorithms assume perfect state-constraint knowledge during the

current planning horizon and were developed to address the feasibility issue of re-solves with

a shifted terminal set at the end of the planning horizon, which is required in applications

where the planning horizon is shorter than required for the system to reach the intended

target state (e.g., the origin is outside of the planning horizon). If a re-solve is infeasible to a

shifted terminal set, then the prior feasible solution would provide a feedforward trajectory

that ends in a control-invariant safety set about the prior target state.

The objective of the SR-MPC algorithm as stated above is to address state constraint

uncertainty during the planning horizon, which is accomplished by building in safety-mode

availability at any time along the current time horizon, rather than at just the end. The

SR-MPC algorithm essentially adds a safety tube, separate from the feedback invariant tube

inherited from R-MPC, in which the actual system can enter the safety mode. The trade off

is in conservatism during the planning horizon; by addressing state-constraint uncertainty,

the SR-MPC algorithm will select only paths with state corridors that allow reactive safety-

mode activation. In contrast, the RSBK algorithm with perfect state-constraint knowledge

will allow tighter paths provided the planned trajectory ends in a safety set.
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4.1 System Description and Extended Control Objective

The SR-MPC algorithm is developed for the same system definitions as in Chapter 3 for

R-MPC but the control objective differs. The system definitions are repeated here for

completeness of the SR-MPC chapter.

Consider the following uncertain, nonlinear dynamical system as the actual system for

application of SR-MPC:

ẋ = f(x, u, t), (4.1)

with actual state x ∈ Rn and control input u ∈ Rm. Let a nominal system model of the

actual system (4.1) be given by

ż = F (z, uo, t), (4.2)

with nominal state z ∈ Rn and control input uo ∈ Rm, and where F (·) is a known, ap-

proximate model of f(·) from (4.1). Without a loss of generality, the origin x = z = 0 is

considered an equilibrium point shared by both systems; f(0, 0, t) = F (0, 0, t) = 0.

The control objective is to obtain a control input u that, when applied to the actual

system (4.1), achieves the following closed-loop system responses in each mode:

I. standard mode: the actual system origin (x = 0) is asymptotically stable, with a

region of attraction Ra ⊆ X, such that

x(t) ∈ X and u(t) ∈ U , ∀t ≥ t0, (4.3)

when x(t0) ∈ Ra.

II. safety mode: the actual system trajectory x is contained within an invariant set Xs

about a fixed reference rs such that

x̃(t) ∈ Xs, u(t) ∈ U, and x(t) ∈ X, ∀t ≥ ts, (4.4)

where x̃(t) , x(t)− rs, and ts ≥ t0.

Sets X ⊆ Rn and U ⊆ Rm define actual state and control constraints, respectively: X is

connected and contains the origin in its interior; sets Xs and U are compact and contain

the origin in their interiors. Set Xs ⊆ Rn defines the desired safety state constraints for the
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actual system, and reference rs will be defined within the SR-MPC algorithm (basically,

vector rs will be such that {rs}+ Xs ⊆ X). Additionally, set Ra will be redefined based on

the architecture of the SR-MPC algorithm.

4.2 Architecture of the SR-MPC Algorithm

The control approach builds on the R-MPC algorithm from Chapter 3 where control u is

given by

u(t) = uo(t) + uf (t), (4.5)

where uo and uf are feedforward and feedback components, respectively. In standard mode,

the feedforward component uo comes from online solution of an FHC-S (Finite Horizon

optimal Control problem for SR-MPC) that utilizes the nominal system model (4.2), and

like R-MPC the feedback component uf is determined offline as a control policy to handle

a characterization of the uncertainty in the actual system (4.1). In safety mode, the entire

control input is from a policy designed offline.

Sets X, U, and Xs are given constraints imposed on the overall design of the control

input. The following additional constraint sets (all containing the origin in their interiors),

are used in constructing the control approach:

Uo + Uf ⊆ U, Zn + Xs ⊆ X, and Zs + Xf ⊆ Xs. (4.6)

Set Zn is connected and contains the origin in its interior, and sets Zs, Xf , Uo, and Uf are

compact and contain the origin in their interiors.

In preview, for standard mode the SR-MPC algorithm uses online solution of the FHC-S

to design feedforward control input uo ∈ Uo to maintain the nominal states within constraint

set Zn; a special constraint involving Zs in the FHC-S ensures safety-mode availability from

standard mode at any time. Then, feedback policy uf ∈ Uf is designed as in R-MPC to es-

tablish invariant tube Xf about the nominal trajectory (utilized as a feedforward, guidance

trajectory) to maintain the actual states in the proximity of the nominal states (providing

robustness to dynamics uncertainty and disturbances). Finally, the safety-mode control

policy is designed to establish invariant set Xs about any nominal state from the FHC-S

solution so that the actual state remains in Xs after safety-mode activation (providing ro-
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bustness to static state-constraint uncertainty). The set relationships in (4.6) ensure that

the overall design constraints are not violated.

Remark 4.1 (Notation for Nominal State in Standard and Safety Modes). The variable z

denotes the nominal state in both standard and safety modes. To avoid confusion in safety

mode, if a standard-mode nominal state is referenced, that state will be denoted as zFHC,

implying that it comes from a standard-mode solution of the FHC-S. �

4.2.1 Standard-Mode Control

The following FHC-S builds upon the FHC-R of Chapter 3 by adding a constraint on the

nominal trajectory that ensures safety-mode availability at any time. Online solution of the

FHC-S generates feedforward uo for standard mode (Control Objective I).

FHC-S (for Safety-mode augmented R-MPC)

Find J∗ = min
uo

J(z, uo; ti, T, z(ti)) where

J(z, uo; ti, T, z(ti)) =

ti+T∫
ti

h(z(τ), uo(τ))dτ + V (z(ti + T ))

subject to

ż = F (z, uo, t),

z(t) ∈ Zn,

uo(t) ∈ Uo,

z(t)− T (z(t)) ∈ Zs,


∀ t ∈ [ti, ti + T ]

z(ti + T ) ∈ Ωo,

x(ti)− z(ti) ∈ Xf ,

where x(ti) is the actual system (4.1) state at initial time ti.

The set Ra, which specifies the region of attraction for Control Objective I, is defined

based on feasibility of the FHC-S:

Ra = {ξ ∈ Zn + Xf : FHC-S is feasible with x(ti) = ξ} . (4.7)
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The baseline MPC and R-MPC algorithm Conditions 2.1, 2.2, 3.1, 3.2, and 3.3 are

also conditions for proving asymptotic stability of the SR-MPC algorithm. Refer back to

Chapters 2 and 3 for a full explanation of the conditions, which define cost function h(·),

establish set relationships for Xf and Ωo, and establish Control Lyapunov Function V for

both the actual and nominal systems with a local controller inside invariant terminal set

Ωo. Condition 3.1 is restated here for convenience in forthcoming discussions.

Condition 4.1. There exists a feedback control policy uf = Kf (x, z) ∈ Uf in (4.5) that

renders set Xf invariant for η(t) , x(t)−z(t) ∈ Xf and for all uo(t), ∀t ≥ t0, with dynamics

(4.1) for x and (4.2) for z. �

Note, Condition 4.1 defines set Xf as an invariant tube about the nominal states z: if

η(t0) ∈ Xf for some t0 ≥ 0, then η(t) ∈ Xf , uf (t) ∈ Uf ,∀t ≥ t0.

The form of the FHC-S is identical to the FHC-R with the addition of the constraint

z(t)− T (z(t)) ∈ Zs, ∀ t ∈ [ti, ti + T ] (4.8)

where function T : Zn → Zn defines a mapping (T (Zn) ⊆ Zn) that will be used in the safety

subsection to define the safety reference rs. A feasible FHC-S provides nominal trajectories

that satisfy this constraint at all times, which will be used in the proof of safety-mode

availability in the SR-MPC algorithm.

4.2.2 Reactive Safety-Mode Control

Control u(, us) in safety mode (Control Objective II) comes from an offline design that

generates an invariant set Xs to maintain x ∈ Xs about reference rs for all time after

safety activation. Reference rs is defined with function T from the FHC-S that maps the

standard-mode nominal state zFHC(ts) to a desired safety reference state.

Definition 4.1 (Safety Reference). The safety reference is fixed at safety-activation time

ts such that

rs = T (zFHC(ts)) ∈ Zn (4.9)

where T : Zn → Zn : z(ts) 7→ rs. �

For example, a mechanical system with non-zero position and non-zero velocity at safety

activation ts may desire rs to be rest (zero velocity) at the current non-zero position.
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The following condition is useful for proving the satisfaction of the safety-mode control

objective upon safety-mode activation with the SR-MPC algorithm.

Condition 4.2. There exists control law us = Ks(t, x, rs) ∈ U that renders set Xs invariant

for x̃(t) , x(t)− rs ∈ Xs, ∀t ≥ ts with dynamics (4.1) for x and rs ∈ Zn. �

4.2.3 The SR-MPC Algorithm

The following algorithm describes the SR-MPC approach.

SR-MPC Algorithm

Begin at k = 0 in standard mode with x(t0) ∈ Ra and iterate the following steps over

computation times tk for k ∈ Z+:

standard mode

1. Measure state x(tk) of actual system (4.1).

2. Solve the FHC-S at time ti = tk with T = Tk to obtain uko(t) on t ∈ [tk, tk + Tk].

3. Monitor z(t) and x(t) while applying uo(t) = uko(t) to nominal system (4.2) and

u(t) = uko(t)+uf (t) to actual system (4.1) on t ∈ [tk, tk+1], with z(t) = zFHC(t) =

zk(t) and uf (t) = Kf (x(t), z(t)).

4. Check the following over t ∈ [tk, tk+1]:

(a) If safety event detected at ts ≥ tk, set rs = T (zFHC(ts)), then switch to safety

mode and stop iteration.

(b) if z(t̃) ∈ Ωo for some t̃ ≥ t0, then set uo(t) = L(z(t)), ∀t ≥ t̃ and skip step 2

in iteration.

(c) if x(t̄) ∈ Ωo for some t̄ ≥ t0, then set u(t) = L(x(t)),∀t ≥ t̄ and stop iteration.

safety mode

For t ≥ ts, apply u(t) = us(t) = Ks(t, x(t), rs) to actual system (4.1).

Remark 4.2 (Safety and Terminal Set). An assumption is made that once the terminal set

Ωo is entered by the actual system, then the system will not require safety mode. �
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For proving stability of the standard-mode portion of SR-MPC algorithm, the sequence

of monotonically increasing computation times, as defined in Definition 2.1, for the baseline

MPC algorithm is used. Lemmas 3.1 and 2.2 apply directly to the SR-MPC algorithm

for establishing re-solvability of the FHC-S (Lemma 3.1) and shrinking optimal cost in a

compressing- or receding-horizon implementation (Lemma 2.2). No changes are necessary

for the added FHC-S constraint (4.8) on the nominal trajectory, and proofs of the lemmas

applied to the SR-MPC algorithm follow identically with those from the R-MPC algorithm.

Refer back to the comments in the proof of Lemma 3.1 for application to the FHC-S, along

with the comments prior to the R-MPC algorithm Theorem 3.1 that discusses the minor

modifications to the proof of Lemma 2.2 for R-MPC.

The following theorem establishes closed-loop asymptotic stability for the standard-

mode portion of the SR-MPC algorithm, along with safety-mode availability and invariance.

Following the proof, a pictorial sketch of safety-mode activation with the SR-MPC algorithm

appears in Figure 4.1; a sketch of the SR-MPC standard mode is already provided in Figure

3.2 for R-MPC.

Theorem 4.1. Consider system (4.1) for x with a control input u described by the SR-MPC

algorithm. If Conditions 2.1, 2.2, 3.2, 3.3, 4.1, and 4.2 are satisfied, then the resulting

closed-loop system satisfies Control Objectives I and II. �

Proof. The proof is split into two pieces

I. standard mode: The proof of asymptotic stability with region of attraction Ra from

(4.7) is identical to the proof of Theorem 3.1 for the R-MPC algorithm in Chapter 3.

II. safety mode: The control input in standard mode guarantees that x(ts) − z(ts) ∈

Xf since tube Xf is invariant under application of feedback uf from Condition 4.1.

Further, the FHC-S is satisfied in standard mode, thus constraint (4.8) guarantees

that z(ts) − rs = z(ts) − T (z(ts)) ∈ Zs with rs from (4.9). Thus, x(ts) − rs =

(x(ts) − z(ts)) + (z(ts) − rs) ∈ Xf + Zs ⊆ Xs where the set definition in (4.6) for

Xs is used. Now, by using Condition 4.2, application of safety-mode control input

u = us = Ks(t, x, rs) ensures x̃(t) = x(t) − rs ∈ Xs for all t ≥ ts. Further, since

rs ∈ Zn, then {rs} + Xs ⊆ X and x(t) = rs + x̃(t) ∈ X for all t ≥ ts, which satisfies

Control Objective II.
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X

Ωo

0

x(t) 
z(t) 

Xf

Zs

zk(tk ) ≠ zk-1(tk )x(tk ) - zk(tk ) Xf

Initial SR-MPC re-solve

Zn

X

Ωo

0

x(ts )

x(t) 

z(t) 
z(t) 

Xf
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Standard mode (until safety event detected)

Zn

X

Ωo

0

z(ts )
x(ts )

x(t) 
z(t) 

Xf

Zs

Xs

Safety mode activated

Figure 4.1: Sketch of the SR-MPC algorithm activating safety mode due to a static-
constraint violation.

Figure 4.1 depicts how FHC-S constraint (4.8) involving set Zs provides a second tube

that ensures safety-mode availability from all nominal states. The second tube is arbitrarily

shown larger than tube Xf and containing, but offset from, the nominal trajectory. The

tube for Zs will actually be centered on rs = T (z) ∈ Zn in standard mode, so the sketch

is a representative example for some function T . The idea of the sketch is to illustrate

that when safety mode is activated that the actual system dynamics will be maintained

within invariant set Xs, where Zs + Xf ⊆ Xs per (4.6). Further, from (4.6) the full state

constraints X will not be violated since Zn + Xs ⊆ X.
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4.3 Specialization to a Class of Systems with Derivatives

Contained in Convex Sets

This section enhances the R-MPC specialization in Section 3.3 by adding components for

SR-MPC safe mode. Explicit design methods are developed that satisfy the safety-mode

Condition 4.2 for two further subclasses of the systems considered in Section 3.3. Corollary

3.1.1 for R-MPC applies directly to the SR-MPC standard mode, with the substitution

of ‘SR-MPC algorithm’ in place of ‘R-MPC algorithm’ in the Corollary statement. The

proof of Corollary 3.1.1 when applied to SR-MPC standard mode follows identically, and

the FHC-S feasibility ensures satisfaction of constraint (4.8) for safety-mode availability at

any time.

The form of this special class of systems is repeated here for convenience. The following

characterizes the actual system:

ẋ = Ax+Bu+ Eφ(t, q),

q = Cqx+Dqu,
(4.10)

where φ : R × Rnq → Rnp with φ(t, 0) = 0, ∀t, is a continuously differentiable function

representing the uncertain nonlinear part of the dynamics. This form implies f(x, u, t) =

Ax+Bu+ Eφ(t, q) in (4.1) with q ∈ Rnq , A ∈ Rn×n, B ∈ Rn×m, E ∈ Rn×np , Cq ∈ Rnq×n,

and Dq ∈ Rnq×m.

The nominal model dynamics is assumed to have the following form:

ż = Az +Buo + Eψ(t, qo),

qo = Cqz +Dquo,
(4.11)

where ψ : R×Rnq → Rnp with ψ(t, 0) = 0, ∀t, is an approximation for φ(·) in actual system

(3.10). Thus, F (z, uo, t) = Az +Buo + ψ(t, qo) in (4.2), and qo ∈ Rnq .

The R-MPC conditions of Section 3.3 still apply to nonlinear functions φ(·) and ψ(·) in

(4.10) and (4.11), respectively: the functions are assumed to have Jacobians in convex sets

(Condition 3.4), along with a bounded mismatch (Condition 3.5).

The error dynamics between the actual and nominal states from (4.10) and (4.11),



47

respectively, are

η̇ = Aη +Buf + Eπ(t, η, uf ) + Ew(t, z, uo), (4.12)

where η , x − z is the error state, uf , u − uo defines the feedback input, w(t, z, uo) =

φ(t, qo)−ψ(t, qo) is from Condition 3.5, and π(t, η, uf ) = φ(t, Cqx+Dqu)−φ(t, Cqz+Dquo).

The design specifications for the state and control constraints add onto the specifications

used for R-MPC in Condition 3.6, with an addendum for the safety state specifications

required in SR-MPC. An ellipsoidal description is used to specify the safety state constraints.

Condition 4.3 (State and Control Constraints).

Zn ⊇ ZΩ , {z ∈ Rn : aTi z ≤ 1, i = 1, . . . ,mo},

Xf ⊆ Xf , {η ∈ Rn : bTi η ≤ 1, i = 1, . . . ,mf},

Zs ⊆ Zs , {z̃ : z̃TCTs ΠsCsz̃ ≤ 1},

Uo ⊆ {uo ∈ Rm : uTo Πouo ≤ 1},

Uf ⊆ {uf ∈ Rm : uTf Πfuf ≤ 1},

where Πo, Πf , and Πs are symmetric positive-definite matrices, matrix Cs allows for safety

specification on a linear combination or portion of state z̃, and the design specifications for

sets Xf and Zs are determined such that Zs +Xf ⊆ Xs: thus, Xf ⊆ Xf and Zs ⊆ Zs result

in additional design conservatism to ensure the constraints in (4.6) are satisfied. �

Note, specifying safety constraint Zs in terms of a portion of state z̃ with matrix Cs, as

in Condition 4.3, can be useful in many practical applications; e.g., vehicles with relative-

position sensors may only require safety in terms of relative distance to another object.

The safety mode is now developed for two special subclasses of the actual and nominal

systems in (4.10) and (4.11), respectively. The special cases presented herein are motivated

by practical application of the SR-MPC algorithm. The following form for nominal system

(4.11) in terms of safety state z̃ , z− rs, with z the state of the nominal system, is used in

the design of a nominal control policy uos for safety mode:

˙̃z = Az̃ +Ars +Buos + Eψ(t, qo)

qo = Cq z̃ +Dquos + Cqrs.
(4.13)
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4.3.1 Subclass I (contains velocity-dependent nonlinearity)

The following condition and corollary provide the safety-mode component of Theorem 4.1

that is representative, for example, of mechanical systems that can come to rest at arbitrary

positions and that have velocity-dependent nonlinearities (e.g., hovercraft/road vehicles

with velocity-dependent drag).

Condition 4.4. Safety reference rs satisfies

rs ∈ N (A) ∩N (Cq), (4.14)

where N (X) is the null-space of a matrix X. �

Reminder, safety reference rs is defined in (4.9), based on the mapping T of the nominal

state at safety-activation time. The above condition further implies that T is such that

Ars = 0 and Cqrs = 0 in system (4.13).

Corollary 4.1.1. Consider a class of systems modeled by (4.11) with rs satisfying Condition

4.4. Suppose there exist matrices S = ST > 0 and R and positive scalar β satisfying the

following linear matrix inequalities:

 SAT+AS+BR+RTBT +βEET SCTq +RTDT
q

CqS +DqR −βI

≤0, (4.15)

 S SCTs

CsS Π−1
s

 ≥ 0, and

 S RT

R Π−1
o

 ≥ 0 . (4.16)

If safety-mode control us = Ks(t, x, rs) ∈ U is given by

Ks(t, x, rs) = Ks(z − rs) +Kf (x− z), Ks = RS−1, (4.17)

where rs = T (z(ts)), and Kf and Xf obtained as described in Corollary 3.1.1 applied to SR-

MPC, then Zs = {z̃ : z̃TS−1z̃ ≤ 1} satisfies the constraint in Condition 4.3, {rs}+Zs+Xf

is invariant for actual dynamics (4.10), and Zs + Xf ⊆ Xs. Further, us = Ks(t, x, rs) ∈ U

for all x ∈ {rs}+ Zs + Xf and rs ∈ Zn. �

Proof. Let positive-definite function Vs(z̃) = z̃TS−1z̃ be a Lyapunov function candidate.
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Pre- and post-multiply (4.15) by diag(S−1, I) and use Ks = RS−1 from (4.17)


 (A+BKs)TS−1+S−1(A+BKs)

+βS−1EETS−1

 CTq +KT
s D

T
q

Cq +DqKs −βI

≤0.

Utilize Schur complements, and pre- and post-multiply by ζT and ζ, respectively, where

ζ = (z̃T , ψT )T :

z̃T (ATS−1 + S−1A)z̃ + 2z̃TS−1(Buos + Eψ) + 1
β (qTo qo − ψTψ)≤0,

with uos = Ksz̃ and qo = Cq z̃ +Dquos. Making use of (3.17) and Condition 3.4 gives

qTo qo − ψTψ ≥ 0,

which implies

z̃T (ATS−1 + S−1A)z̃ + 2z̃TS−1(Buos + Eψ)≤0,

and hence V̇s(z̃) ≤ 0. Thus, Zs is an invariant set for z̃ [2, 21].

Pre- and post-multiply the first LMI in (4.16) by matrix diag(S−1, I), use a Schur

complement, and pre- and post-multiply by z̃T and z̃, respectively:

z̃TCTs ΠsCsz̃ ≤ z̃TS−1z̃,

which implies Zs ⊆ Zs from Condition 4.3.

Pre- and post-multiply the second LMI in (4.16) by diag(S−1, I), use a Schur comple-

ment, and pre- and post-multiply by z̃T and z̃, respectively:

uTosΠouos ≤ z̃TS−1z̃

where uos = Ksz̃ and Ks = RS−1. Thus, for z̃ ∈ Zs, uTosΠous ≤ 1, so uos ∈ Uo, with Uo

defined in Condition 4.3. Further, since us = uos +uf , where uf = Kf (x− z), and uf ∈ Uf

for all x− z ∈ Xf (as guaranteed by Corollary 3.1.1), the safety-mode control us ∈ U, with

U defined in (4.6). The remainder of this proof follows that of Theorem 4.1, part II.
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4.3.2 Subclass II (contains position-dependent nonlinearity)

The following conditions and corollary provide the safety-mode component of Theorem 4.1

that is representative, for example, of mechanical systems that have position-dependent

nonlinearities that do not disappear when the system comes to rest at arbitrary positions

(e.g., spacecraft hovering in a gravity field).

Condition 4.5. Safety reference rs satisfies

rs ∈ N (A), (4.18)

where N (X) is the null-space of a matrix X. �

The above condition implies that T , which defines safety reference rs in (4.9), is such that

Ars = 0 in system (4.13).

Condition 4.6. There exists scalar δ > 0 such that

‖ψ(t, z, uo)‖ ≤ δ, ∀t, z ∈ Zn + Zs, uo ∈ Uo, (4.19)

where function ψ(·) is from nominal system (4.13). �

Note, Condition 4.6, along with Condition 3.5, also imposes a bound on actual system

nonlinearity φ; this bound is not necessary to establish the safety control policy.

Corollary 4.1.2. Consider a class of systems modeled by (4.11) with Condition 4.6 bound-

ing the nonlinearity and rs satisfying Condition 4.5. Suppose there exist matrices S = ST >

0 and R and positive scalar α satisfying the following matrix inequalities:

 SAT+AS+BR+RTBT + αS E

ET − α
δ2
I

≤0, (4.20)

 S SCTs

CsS Π−1
s

 ≥ 0, and

 S RT

R Π−1
o

 ≥ 0 .

If safety-mode control us = Ks(t, x, rs) ∈ U is given by

Ks(t, x, rs) = Ks(z − rs) +Kf (x− z), Ks = RS−1, (4.21)
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where rs = T (z(ts)), and Kf and Xf obtained as described in Corollary 3.1.1 applied to SR-

MPC, then Zs = {z̃ : z̃TS−1z̃ ≤ 1} satisfies the constraint in Condition 4.3, {rs}+Zs+Xf

is invariant for actual dynamics (4.10), and Zs + Xf ⊆ Xs. Further, us = Ks(t, x, rs) ∈ U

for all x ∈ {rs}+ Zs + Xf and rs ∈ Zn. �

Proof. Let positive-definite function Vs(z̃) = z̃TS−1z̃ be a Lyapunov function candidate.

Pre- and post-multiply (4.20) by diag(S−1, I), use Ks = RS̄ from (4.21), and then pre- and

post-multiply by ζT and ζ, respectively, where ζ = (z̃T , ψT )T :

z̃T (ATS−1 + S−1A)z̃ + 2z̃TS−1(Buos + Eψ) + α(z̃TS−1z̃ − 1
δ2
ψTψ)≤0,

with uos = Ksz̃. Condition 4.6 ensures

1
δ2
ψTψ ≤ z̃TS−1z̃ when z̃TS−1z̃ ≥ 1,

which implies that when z̃TS−1z̃ ≥ 1,

z̃T (ATS−1 + S−1A)z̃ + 2z̃TS−1(Buos + Eψ)≤0,

and hence V̇s(z̃) ≤ 0 when z̃TS−1z̃ ≥ 1. Thus, Zs is an invariant set for z̃ [2]. The remainder

of the proof follows that of Corollary 4.1.1.

4.4 An Illustrative Example to Compare the SR-MPC and

R-MPC Algorithms

The SR-MPC and R-MPC algorithms are compared with the two-dimensional example from

Section 3.4, which also satisfies Corollary 4.1.2. The actual and nominal system dynamics

(3.10) and (3.11), respectively, for the example are repeated here for convenience:

ẋ = Ax+Bu+ Eφ(t, q), q = Cqx+Dqu, φ(t, q) = ω(t) sin2 (Cqx), (4.22)

ż = Az +Buo + Eψ(t, qo), qo = Cqz +Dquo, ψ(t, qo) = ω0 sin2 (Cqz). (4.23)

The state matrices and FHC-R/FHC-S cost function matrices are provided in (3.29), (3.30),

and (3.31) within Section 3.4. In the simulations of this section, ω(t) ∈ [0, 0.5] and ω0 = 0.2,
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which provides γ = 0.3 in Condition 3.5 for the bounded uncertainty between φ and ψ.

Further, Condition 4.6 is satisfied with δ = 0.2. The time horizon is fixed at T = 30

seconds, and the initial condition with t0 = 0 is

x(t0) =

 4

0.4

.
The actual state and control constraints remain the same, with the addition of the actual

safety-state constraint:

X , {x : x1 ∈ [−0.35, 5] , x2 ∈ [−1, 1]},

U , {u : ‖u‖ ≤ 1.4},

Xs , {x̃1 : x̃1 ∈ [−0.2, 0.2]},

where x̃ = x− rs. The safety reference is chosen as rest at the nominal position at safety-

activation time:

rs = TzFHC(ts) =

 zFHC,1(ts)

0

, T =

 1 0

0 0

, (4.24)

where T (·) = T in (4.9) and zFHC,1(ts) is the first component of zFHC (from standard mode)

at safety activation time ts. Note, rs satisfies Condition 4.5.

The actual state and control constraints are partitioned into the design specifications

from Condition 4.3 as follows:

ZΩ : ai =


 1

4.8

0

,
− 1

0.15

0

,
 0

1
0.9

,
 0

− 1
0.9

,
Xf : bi =


 1

0.05

0

,
− 1

0.05

0

,
 0

1
0.1

,
 0

− 1
0.1

,
Zs : Πs = 1

0.152 , Cs =
[

1 0
]
,

Uo : Πo = 1
1.22 ,

Uf : Πf = 1
0.22 ,

where the ai values define the full Zn as well as ZΩ for the examples, and i = {1, 2, 3, 4}.

Parameters Πo and Πf are identical to those in the prior R-MPC example and bound
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components ‖uo‖ ≤ 1.2 and ‖uf‖ ≤ 0.2, respectively, in control u from (4.5). The above sets

provide design specifications such that Zn+Zs+Xf ⊆ X, Zs+Xf ⊆ Xs, and Uo+Uf ⊆ U.

Control design with Corollaries 3.1.1 and 4.1.2 ensures that the required control and state

constraints are met by application of both R-MPC and SR-MPC algorithms. The LMIs in

both corollaries are solved by using SDPT3 [50]. The solution provides the controller gains

that define the feedback controller (Kf ) for invariant tube Xf , the local controller (K) for

terminal set Ωo, and the control policy (Ks) that is a part of the safety-mode control policy

(Ks from (4.21)) for invariant set Xs. The matrices P , Q, and S that define tube Xf ,

terminal set Ωo, and set Zs, respectively, are also part of the solution:

Kf =
[
−3.5967 −3.0595

]
, P =

 0.0011 −0.0010

−0.0010 0.0041

,
K =

[
−5.4417 −2.8751

]
, Q =

 0.0205 −0.0206

−0.0206 0.1461

,
Ks =

[
−7.8642 −2.8681

]
, S =

 0.0203 −0.0371

−0.0371 0.2050

.
The R-MPC algorithm makes no consideration for uncertainty in static state constraints.

Thus, a useful comparison of the algorithm with SR-MPC involves no safety activation,

so only SR-MPC standard mode is compared (See Figure 4.2 below). The comparison

demonstrates the effect of SR-MPC constraint (4.8) in the FHC-S, which provides safety-

mode availability at any time during standard mode. Re-solves were performed on a fixed,

2-second interval in both simulations. The state constraints and markers for each re-solve

are included in each plot as well.

As seen in Figure 4.2, both R-MPC and SR-MPC are robust to the dynamics uncertainty

and are re-solvable due to application of feedback policy uf to maintain the actual state

within invariant tube Xf about the nominal trajectory. The velocity allowed by the SR-

MPC algorithm (bottom plot) is significantly less than the velocity allowed by the R-MPC

algorithm. This is an intuitive result for the particular system: to keep a system safe

within a desired stopping distance, the maximum allowable velocity must be bounded.

The conservatism of SR-MPC is solely the result of the safety constraint (4.8) built into

the FHC-S. For this simple example, more conservative velocity bounds could have been
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Figure 4.2: Comparison of R-MPC (top) and SR-MPC (bottom) algorithms with 2 second
re-solves.

determined a priori without reliance on the FHC-S safety constraint. However, for more

general examples, the safety constraint is invaluable because determination of appropriate

conservative bounds can be quite difficult.

The slower velocity from applying the SR-MPC algorithm causes the actual system to

take longer to enter terminal set Ωo. This can be seen in the plots of Figure 4.3 that

depict the control policies from the R-MPC (top) and SR-MPC (bottom) algorithms. The

bump in the R-MPC control inputs (top plots) near 5 seconds indicates the switch to the

local controller upon entry into Ωo. The equivalent SR-MPC entry into Ωo occurs near

10 seconds. Note, both the R-MPC and SR-MPC algorithms achieve convergence with the
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control policies obeying the specified control constraints, as seen in the plots.
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Figure 4.3: Control inputs from the R-MPC (top) and SR-MPC (bottom) algorithms.

The conservatism of SR-MPC algorithm slows down the standard-mode convergence

toward set Ωo, but the trade off is beneficial if the static state constraints are uncertain or

an unknown static state constraint appears in the trajectory path during standard mode.

Figure 4.4 shows the response of the SR-MPC algorithm when an unexpected obstacle in

the path is detected just outside the safety constraints for Xs; on a vehicle, this would

assume that onboard sensors can detect just outside of the defined safety set. The SR-MPC

algorithm is able to switch from standard mode into safety mode and maintain the actual

state within the desired safety set, as indicated in the top figure; this is due to constraint

(4.8) in the FHC-S. The safety reference is rs = (1.5493, 0)T , which comes from relationship

(4.24) and the nominal state at safety-mode activation time ts.
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Figure 4.4: The SR-MPC algorithm activating safety mode upon detecting unexpected
obstacle.

The unexpected obstacle is detected at ts = 7 seconds, as seen by the significant jump

in the control signals (bottom plots) at that time. The control inputs remain within the

desired control constraints during standard mode and safety mode, including during the

switch between the modes. This response was expected since it was a part of the SR-MPC

algorithm construction through Corollaries 3.1.1 and 4.1.2. Note, the actual and nominal

nonlinearities φ and ψ, respectively, are not 0 at the safety reference rs, so a non-zero,

although small, control input is required to hold the actual system near the reference; this

is difficult to see in Figure 4.4.



57

4.5 Summary of the SR-MPC Algorithm

The SR-MPC algorithm builds upon the R-MPC algorithm in Chapter 3 by augmenting

the framework with a separate, reactive safety mode that provides robustness (or safety)

to changes in static state constraints. The standard mode implements a modified version

of the R-MPC algorithm that further constrains the nominal states such that the separate

reactive safety mode is available at any time. The safety mode, if needed, provides an

alternate control policy to maintain the system in an invariant set to ensure avoidance of

changed state constraints.

Implementation of the continuous-time SR-MPC algorithm in many practical applica-

tions requires the use of a computer. Given the computational limitations of real comput-

ers, implementation of continuous-time control algorithms can be unrealistic. The following

chapter develops a computationally-efficient, discrete version of the SR-MPC algorithm that

incorporates the innovations of both the standard and safety modes from the continuous-

time SR-MPC algorithm.
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Chapter 5

A Discrete SR-MPC Algorithm
Applicable to Vehicle Control

Practical application of the SR-MPC algorithm onboard a robotic vehicle such as a space-

craft or aircraft requires the use of a computer for solving online the standard-mode feedfor-

ward finite-horizon optimal control problem. In addition, implementation on a computer re-

quires some form of approximation of the continuous-time system dynamics and constraints

in the optimization; thus, both accuracy and computational efficiency are important con-

siderations in selecting the method of approximation. The contribution of this chapter is

the development of a discrete SR-MPC algorithm that is well suited for online optimization

onboard mechanical systems where the cost function is only on the control inputs.

The chosen approximation method for standard mode utilizes a combination of zero-

order hold and linearization of the nonlinear functions to provide a convexification of the

governing dynamics and control and state constraints for solving the feedforward optimiza-

tion online; the convexification converts the optimization problem into a SOCP (Second-

Order Cone Program) [9]. The resulting SOCP can be solved with interior-point algorithms

in a computationally efficient manner that provides both constraint guarantees and conver-

gence to within a specified accuracy in polynomial time [36, 48, 50]. This approach was

chosen because it is well suited for the application example in Chapter 6 for autonomous-

spacecraft proximity operations around small celestial bodies such as asteroids and comets.

Other autonomous spacecraft guidance and control research in Mars pinpoint landing and

precision formation flying (e.g., Açıkmeşe et al. [3, 4]) have also used SOCP formulations

for trajectory generation.

Another common approximation method is to use polynomial basis functions to pa-
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rameterize the optimization function, system dynamics, and constraints. For instance,

Milam [34, 35] utilizes computationally-efficient B-splines that have local support (hence

fewer numbers of basis functions) to parameterize the optimization problem and solve for

the feedforward trajectories and control inputs through a nonlinear programming problem.

Chebyshev polynomials [3, 15, 51] are another common choice of polynomial basis function

that provides approximations with a reduced number of basis functions. The use of polyno-

mials for approximation does not preclude the possibility of transforming the standard-mode

optimization into a convex optimization problem; clever formulations for the dynamics and

non-convex control constraints in Açıkmeşe and Ploen [3] transformed the optimization

into a convex optimization problem that made use of Chebyshev polynomials for providing

continuous thrust inputs.

The discrete SR-MPC algorithm will only guarantee satisfaction of state constraints at

discrete times, even though the control policies are intended for application to continuous-

time dynamics. This issue is not resolved within this thesis, however, a common approach

in some applications (e.g., Schouwenaars et al. [43]) is to enforce more-conservative state

constraints on the discrete-time system to help minimize the risk to continuous-time sys-

tem of violating the state constraints. Other applications (e.g., Açıkmeşe et al. [4]) have

dynamics that can be throughly analyzed such that control constraints can be set to ensure

continuous-time state-constraint satisfaction.

The organization of this chapter starts with an overview of the class of systems and

control objectives used for developing the discrete SR-MPC algorithm. The feedback policy

is formulated first, as it is applied to both standard and safety operational modes. The

safety-mode feedforward policy is developed next, followed by the standard-mode feedfor-

ward policy, which incorporates constraints from both the feedback development and the

safety-mode policy (in a manner similar to the continuous-time framework). The standard-

mode optimization in this discrete implementation puts a cost function only on the feedfor-

ward control sequence, which is solved over a finite horizon that connects the current state

to the target state (which might not be the origin). Since the cost function is only on the

control input, convergence properties for the discrete SR-MPC algorithm are only proven in

a compressing-horizon implementation. For a receding-horizon implementation, a cost on

the state would also be needed. As such, the discrete SR-MPC algorithm is not as general

as the continuous-time counterpart in Chapter 4.
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5.1 System and Algorithm Overview

The class of systems for which the discrete SR-MPC algorithm is developed have continuous-

time actual dynamics of the form

ẋ = Ax+Bu+ Eφ (Cqx) + Ed, (5.1)

where φ is a continuously-differentiable, uncertain, nonlinear function of state x, d is a

bounded exogenous disturbance, and control input u is split into separate feedforward (uo)

and feedback (uf ) components: u(t) = uo(t) + uf (t). The continuous-time nominal model

of the system, used in the development of the discrete SR-MPC algorithm, is as follows:

ż = Az +Buo + Eψ (Cqz), (5.2)

where z is the nominal state, uo is the nominal (feedforward) control input, and ψ is a

continuously-differentiable function approximating the actual nonlinearity φ. Note, the

nonlinearities φ and ψ could also include dependence on the inputs u and uo, respectively,

as was done in the continuous-time formulations; this is left out to simplify the discrete

formulation but can be included with minor modifications.

The control policies will be developed based on a discretization of the actual and nominal

systems in (5.1) and (5.2), respectively. The dynamics discretization is based on a fixed

time-step interval ∆t. Depending on the operation mode (standard or safety), slightly

different conditions will govern the discrete dynamics formulation; these models will be

discussed in subsequent sections of this chapter. The discrete SR-MPC algorithm will

only provide guarantees for satisfying the state constraints in the control objectives at

discrete times, as mentioned in the introduction to this chapter. Since the control policy is

discretized with zero-order hold, satisfaction of the control constraints at discrete times also

implies satisfaction in between (i.e., the control input will satisfy the control constraints in

continuous time as well).

The objectives for the discrete SR-MPC algorithm are similar to those of the continuous-

time implementation. Obtain a control input u(t) ∈ U, ∀t, for actual system (5.1) that

achieves the following closed-loop responses in each mode:

I. Standard mode: the actual state x(t) converges into terminal set Ω about the fixed
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target state xF , with a region of attraction Rd ⊆ X, such that when x(t0) ∈ Rd,

x(tk) ∈ X, ∀tk ≥ t0, and x(tk) ∈ {xF }+ Ω, ∀tk ≥ Tf , (5.3)

where Tf is finite, discrete time tk = k ·∆t+ t0, k ∈ Z+
0 , and Ω is invariant for x(t) at

discrete times tk ≥ Tf .

II. Safety mode: the actual state x(t) at discrete times t = t̃l = l ·∆t + ts, ∀l ∈ Z+
0 , is

contained within invariant set Xs about a fixed reference rs such that

x(t̃l) ∈ {rs}+ Xs and x(t̃l) ∈ X, ∀t̃l ≥ ts ≥ t0, (5.4)

where l = 0 corresponds to safety switch-on time t = ts.

The discrete SR-MPC algorithm is developed for systems where both the target state xF

(which might not be the origin) and the safety reference rs satisfy further conditions that

will be specified in Sections 5.2.2 and 5.2.3, respectively. Set Rd will be defined based on

the architecture of the discrete SR-MPC algorithm.

The constraint sets in discrete SR-MPC are specified in the same manner as the continuous-

time algorithm:

Uo + Uf ⊆ U, (5.5)

Zs + Xf ⊆ Xs, (5.6)

Zn + Xs ⊆ X, (5.7)

where each subset contains the origin. The feedback and safety sets Xf and Zs, respectively,

are both convex sets prescribed as design specifications for development of the feedback and

safety control policies. For the discrete algorithm, the nominal state constraints Zn must

also be convex. Additionally, the terminal set Ω is specified as follows in the discrete

implementation:

Ωn + Xf ⊆ Ω (5.8)

where set Ωn ⊂ Zn defines the nominal terminal set and is utilized in the standard-mode

computations for feedforward uo. Sets Ωn and Ω are both compact, convex, and contain

the origin in their interiors.
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Remark 5.1. For implementations of the discrete SR-MPC algorithm with terminal state

xF not at the origin, the sets Zn and X do not actually need to contain the origin. Further,

the origin need not be an equilibrium point for the actual or nominal dynamics in these

cases. Again, xF will be subject to additional conditions to be specified in Section 5.2.3. �

The control components are designed to obey the separate control constraints uo ∈ Uo

and uf ∈ Uf . For the discrete implementation, these constraints are specified by a Euclidean

norm:

Uo , {uo : ‖uo‖ ≤ Umax}, (5.9)

Uf , {uf : ‖uf‖ ≤ Vmax}. (5.10)

General geometric descriptions for the feedback set Xf , the safety set Zs, and the

nominal terminal set Ωn, expressed as the intersection of half planes and ellipsoids, are as

follows. Note, the matrices Cs and Cf in Conditions 5.2 and 5.3, respectively, allow for

specification of the constraints with respect to a subset of the state:

Condition 5.1. Feedback State Constraints Xf :

Xf ⊆ (Γ1 ∩ ... ∩ Γn1) ∩ (Λ1 ∩ ... ∩ Λn2) (5.11)

where Γi = {η : aTi η ≤ 1}, i = 1, ..., n1 (5.12)

Λj = {η : ηTYjη ≤ 1; Yj = Y T
j > 0}, j = 1, ..., n2. (5.13)

�

Condition 5.2. Feedforward State Constraints Zs:

Zs ⊆ (Σ1 ∩ ... ∩ Σm1) ∩ (Υ1 ∩ ... ∩Υm2) (5.14)

where Σi = {z̃ : bTi Csz̃ ≤ 1}, i = 1, ...,m1 (5.15)

Υj = {z̃ : z̃TCTs ΠjCsz̃ ≤ 1; Πj = ΠT
j > 0}, j = 1, ...,m2. (5.16)

�
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Condition 5.3. Nominal Terminal State Constraints Ωn:

Ωn ⊆ (Ψ1 ∩ ... ∩Ψh1) ∩ (Ξ1 ∩ ... ∩ Ξh2) (5.17)

where Ψi = {ẑ : cTi Cf ẑ ≤ 1}, i = 1, ..., h1 (5.18)

Ξj = {ẑ : ẑTCTf WjCf ẑ ≤ 1; Wj = W T
j > 0}, j = 1, ..., h2. (5.19)

�

5.2 Algorithm Construction

5.2.1 Feedback Policy

The feedback policy uf is designed to ensure that the difference between the actual and

nominal states remains bounded inside the state constraint set Xf , which is a given design

specification.

The design of uf utilizes the error dynamics between systems (5.1) and (5.2):

η̇ = Aη +Buf + E(π + w) + Ed, (5.20)

where η = x−z, π = [φ(Cqx)− φ(Cqz)], and w = [φ(Cqz)− ψ(Cqz)]. Variable w represents

the mismatch between actual nonlinearity φ and the nonlinearity model ψ.

Assuming π, w, and d are constant over a time step, and using zero-order hold on input

uf , the following discrete dynamics model approximates system (5.20):

ηk+1 = Adηk +Bduf,k + Ed(πk + wk) + Eddk. (5.21)

Note, disturbance dk will be dropped from the dynamics in (5.21), based on the as-

sumption that it is captured in the mismatch wk, which will be treated like a bounded

disturbance in a forthcoming condition. The revised discrete dynamics are

ηk+1 = Adηk +Bduf,k + Ed(πk + wk). (5.22)

Conservative characterization of πk and wk provides feedback designs valid for the

continuous-time systems. The below conditions are instrumental in characterizing these

terms to prescribe a degree of robustness to the control algorithm.
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Condition 5.4. Function φ is continuously differentiable and there exists a closed and

convex set of matrices G such that

∂φ

∂q
(q) ∈ G, ∀q, (5.23)

where

G = {Θ : ΘTΘ ≤ γ2I}, (5.24)

and γ > 0. �

Condition 5.5. There is a known bound on uncertainty w(q) = φ(q) − ψ(q), i.e., there

exists σ > 0 such that

‖w(q)‖ ≤ σ, ∀q. (5.25)

�

Note, σ can be selected to conservatively bound the exogenous disturbance d as well: if

‖w‖ ≤ σ1 and ‖d‖ ≤ σ2, then ‖w + d‖ ≤ σ1 + σ2 ≤ σ. If this combined bound provides too

much conservatism in feedback policy design, then the forthcoming framework in Theorem

5.1 can be modified to treat the bounds separately.

The discrete feedback uf,k is designed to ensure that ηk ∈ Xf ,∀k.∗ The form of the

feedback policy for a time step t ∈ [tk, tk+1) is

uf,k = Kfηk, (5.26)

with Kf being the constant feedback gain matrix generated offline by satisfying the matrix

inequalities in the following theorem. Note, the theorem also establishes a design for uf,k

that also ensures that when ηk ∈ Xf , the feedback control constraint Uf in (5.10) is not

violated.

Theorem 5.1. Consider the discrete time system (5.22) satisfying Conditions 5.4 and 5.5.

Suppose there exist matrices P = P T > 0 and L and scalars α > 0 and λ ∈ (0, 1) such that
∗There is no guarantee of state bounds between each step k. More in-depth analysis is required in the ∆t

selection to ensure bounds between discrete steps. See reference [4] for a specific consideration of this issue.
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the following set of matrix inequalities are satisfied:



−(1− λ)P 0 0 PATd + LTBT
d PCTq

0 −αI 0 αγETd 0

0 0 −λI σEd 0

AdP +BdL αγEd σEd −P 0

CqP 0 0 0 −αI


≤ 0, (5.27)

aTi Pai ≤ 1, i = 1, . . . , n1, (5.28) P P

P Y −1
j

 ≥ 0, j = 1, . . . , n2, (5.29)

 P LT

L V 2
maxI

 ≥ 0, (5.30)

where Vmax is a bound on the norm of the feedback control. Then, the feedback policy given

by

uf,k = Kfηk, where Kf = LP−1, (5.31)

renders Xf = {η : ηTP−1η ≤ 1} an invariant set for (5.22), i.e., ηk ∈ Xf , k ∈ Z+
0

for any solution of system (5.22) with η0 ∈ Xf . Additionally, Xf satisfies (5.11), and

uf,k ∈ Uf ,∀η̃k ∈ Xf , with Uf from (5.10). �

Proof. See Appendix B.1 for a proof of Theorem 5.1.

Remark 5.2. Most of the matrix inequalities in Theorem 5.1 are an LMI (Linear Matrix

Inequality), except for (5.27) which is a BMI (Bilinear Matrix Inequality). Note, for a fixed

λ, (5.27) is an LMI, and λ ∈ (0, 1) for a feasible solution. This is similar to Remark 3.6 for

the continuous-time Corollary 3.1.1. �

Remark 5.3. An LMI-based design procedure can easily be constructed by using Theorem

5.1 in a line search on λ to maximize the volume of Xf . For a given λ, the volume of Xf
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can be maximized by using the following semi-definite program [8]:

Minimize log(detP−1)

subject to P = P T > 0, α > 0, and equations (5.27)–(5.30).
(5.32)

�

5.2.2 Safety-Mode Feedforward Policy

The feedforward policy uos for safety mode together with the feedback policy uf establishes

safety mode for the actual system (Control Objective II); subscript s is appended to uo here

to clarify safety-mode feedforward from standard-mode feedforward. The feedforward uos

is designed to ensure that the nominal system states z remain in the proximity of safety

reference rs (i.e., z−rs ∈ Zs), and the feedback uf maintains the error state η = x−z ∈ Xf .

Thus, safety-mode control u = uos + uf ensures actual state x − rs ∈ Xf + Zs ⊆ Xs as in

constraint (5.6).

Safety reference rs for the discrete algorithm is defined through a mapping Ts of the

standard-mode nominal position at safety switch-on time so that:

rs = Tszstan(ts), (5.33)

where zstan(ts) ∈ Zn is the nominal state z from standard mode at the safety-activation

time ts. Mapping Ts : Zn → Zn : zstan(ts) 7→ rs such that TsZn ⊆ Zn and rs ∈ TsZn, which

ensures that TsZn + Xs ⊆ X so that Control Objective II is satisfied with the safety-mode

control policy.

The nominal dynamics in (5.2) for safety mode are given by

˙̃z = Az̃ +Buos +Ars + Eψ(Cq z̃ + Cqrs), (5.34)

where z̃ , z − rs.

The following condition is useful in formulating the discrete safety-mode dynamics:

Condition 5.6. There is a gc such that safety reference rs satisfies

Ars = Egc. (5.35)
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�

Note, Condition 5.6 is a weaker (i.e., less restrictive) statement of Condition 4.5 for the

related continuous-time formulation of SR-MPC; for gc = 0, the two conditions are identical.

The application in Chapter 6 will provide one example for which this weaker condition is

advantageous.

Utilizing Condition 5.6, system (5.34) can be rewritten as

˙̃z = Az̃ +Buos + E (gc + ψ (Cq z̃ + Cqrs)), (5.36)

= Az̃ +Buos + Eḡ(z̃, rs). (5.37)

The following additional condition (similar to Condition 4.6 for continuous-time SR-

MPC) is useful in development of the feedforward policy:

Condition 5.7. There is a known bound on ḡ; i.e., there exists δ > 0 such that

||ḡ(z̃, rs)|| ≤ δ, ∀z = z̃ + rs. (5.38)

�

The feedback policy in Section 5.2.1 used a bound on the difference between φ and ψ

(Condition 5.5), so the addition of Condition 5.7 implies a bound on φ as well.

Assuming ḡ is constant over a time step, and using zero-order hold on input uos, the

following discrete dynamics model approximates system (5.37):

z̃l+1 = Adz̃l +Bduos,l + Edḡl, (5.39)

where l = 0 corresponds to t = ts (safety switch-on time), with discrete time in safety mode

defined as t̃l = l ·∆t+ ts, ∀l ∈ Z+
0 . Note, Condition 5.7 also implies that ||ḡl|| ≤ δ, ∀l.

The discrete feedforward uos,l is designed to ensure that z̃l ∈ Zs,∀l. The form of the

safety feedforward policy for a time step t ∈ [t̃l, t̃l+1) is

uos,l = Ksz̃l, (5.40)

with Ks being a constant gain matrix generated offline according to the following theorem.

Note, the theorem also provides the design for uos,l to ensure that when z̃l ∈ Zs, the
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feedforward control constraint Uo in (5.9) is not violated.

Theorem 5.2. Consider the discrete time system (5.39) with ḡl satisfying Condition 5.7.

Suppose there exist matrices S = ST > 0 and R and scalar λ ∈ (0, 1) such that the following

set of matrix inequalities are satisfied:


−(1− λ)S 0 SATd +RTBT

d

0 −λI δETd

AdS +BdR δEd −S

 ≤ 0, (5.41)

bTi CsSCs
T bi ≤ 1, i = 1, . . . ,m1, (5.42) S SCTs

CsS Π−1
j

 ≥ 0, j = 1, . . . ,m2, (5.43)

 S RT

R U2
maxI

 ≥ 0, (5.44)

where Umax is a bound on the norm of the feedforward control. Then, the feedforward policy

given by

uos,l = Ksz̃l where Ks = RS−1 (5.45)

renders Zs = {z̃ : z̃TS−1z̃ ≤ 1} an invariant set for (5.39), i.e., z̃l ∈ Zs, l ∈ Z+
0 for

any solution of system (5.39) with z̃0 ∈ Zs. Additionally, Zs satisfies (5.14), and uos,l ∈

Uo,∀z̃l ∈ Zs, with Uo from (5.9). �

Proof. See Appendix B.2 for a proof of Theorem 5.2.

5.2.3 Standard-Mode Feedforward Policy

The standard-mode feedforward policy uo together with the feedback policy uf achieves

Control Objective I for the actual system and also ensures safety-mode availability if it

is needed. Like the continuous-time SR-MPC algorithm, the discrete SR-MPC algorithm

ensures safety-mode availability at each time step by adding a safety constraint into the

standard-mode algorithm. The feedforward uo from solution of the FHC-D (Finite Horizon

optimal Control problem for Discrete SR-MPC) provides a guidance policy to drive the
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nominal system through a series of waypoints (both position and velocity) generated be-

tween the initial state and the desired target state. The FHC-D is essentially a conversion

of the continuous-time FHC into a SOCP, which requires the nominal state constraints Zn

to be convex in applications of the discrete SR-MPC algorithm. The waypoints satisfy the

nominal state constraints (i.e., z ∈ Zn), and the added feedback uf keeps the actual state

in proximity of the nominal state (i.e., x− z ∈ Xf ) so that overall state constraints are not

violated (x ∈ X); refer back to (5.7).

A linearization of the nominal-system nonlinearity ψ is used in formulating the FHC-D.

The resulting nominal dynamics from (5.2) used in the discrete standard mode are given by

ż = Fkz +Buo + Eψk, with Fk = A+ EGqkCq, (5.46)

where Fk incorporates the linear terms for ψ(·) linearized about a particular reference

qk = Cqz(tk). The linearization is as follows:

ψ(q) ≈ Gqkq + ψk, (5.47)

where q(t) = Cqz(t), qk = Cqz(tk), Gqk = ∂ψ
∂q

∣∣∣
qk

, and ψk = ψ(qk)−Gqkqk. In a discretization

of the dynamics in (5.46), time-varying Fk and ψk can be incorporated by updating them

at each discrete state z(tk) along the trajectory.

Assuming qk is constant (thus ψk and Gqk are constant) over a time step, and using

zero-order hold on input uo, the following discrete dynamics model approximates (5.46):

zk+1 = Akzk +Bkuo,k + Ekψk. (5.48)

The input uo,k comes from solution of the FHC-D, which also enforces the feedforward

control constraint Uo from (5.9).

For the terminal target set Ωn, a slightly different discretization is used for generating a

nominal local controller about the target state xF . This is analogous to the local controller

from the continuous-time algorithms that is switched on once the state enters the terminal

set. As with the safety-mode controller, the local controller about xF is developed for
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nominal dynamics shifted so that xF is at the origin:

˙̂z = Aẑ +Buo +AxF + Eψ(Cq ẑ + CqxF ), (5.49)

where ẑ , z− xF . This form is identical to the nominal dynamics used in the development

of the safety mode control policy. Requiring terminal state xF to satisfy Conditions 5.6

and 5.7 (with rs replaced by xF ) provides a discrete model identical to (5.39) from the

safety-mode formulation. The terminal local controller can then be generated such that

uo,k = Lnẑk, (5.50)

where Ln is a constant gain matrix generated offline by using the matrix inequalities in

Theorem 5.2 for the generation of the invariant terminal set Ωn = {ẑ : ẑTQ−1ẑ ≤ 1}, which

also satisfies 5.17. Note, Theorem 5.2 for the terminal controller swaps the safety-mode

design specification in Condition 5.2 for those of the nominal terminal set in Condition 5.3;

additionally, matrices S and R are replaced by equivalents (e.g., Q and W , respectively)

for clarifying that the theorem is being applied to generate the terminal invariant set and

local controller. Since the theorem is redundant, it is not repeated. Note, the theorem also

guarantees that the local control policy (5.50) satisfies the control constraints in (5.9) for

all ẑk ∈ Ωn.

The FHC-D for the standard-mode feedforward optimization can now be defined. Since

matrices Ak, Bk, and Ek in (5.48) and ψk are time varying, based on the guidance path zk,

an iteration process is needed to find an initial feasible solution. In the FHC-D, a superscript

j will be appended to zjk, A
j
k, B

j
k, E

j
k, and ψjk to denote this iteration, with j = 0, . . . , jmax

set by the designer. Given an initial state x0, a desired target state xF , and a desired

planning horizon TM (such that horizon length N = TM
∆t ∈ Z+), an initial polynomial guess

(iteration j = 0) is made for the nominal guidance path {z0
k} for k = 1, . . . , N such that

z0
0 = x0 and z0

N = xF . From this initial guess, the FHC-D can be applied to produce an

admissible set of inputs uo,k and states zk that satisfy (5.48).



72

FHC-D (for discrete SR-MPC)

Given current state x0 = x(ti), desired final state xF , and initial guess {z0
0 , . . . , z

0
N−1, xF },

iterate the following for j = 0, . . . , jmax − 1:

1. Compute Ajk, B
j
k, E

j
k, and ψk for k = 0, ..., N − 1, by using {zj0, . . . , z

j
N−1}.

2. Solve the following SOCP problem for {zj+1
0 , . . . , zj+1

N } and {uj+1
o,0 , . . . , u

j+1
o,N−1}:

Minimize
N−1∑
k=0

(
α‖uj+1

o,k ‖+ β‖uj+1
o,k ‖

2
)

subject to

zj+1
k+1 = Ajkz

j+1
k +Bj

ku
j+1
o,k + Ejkψ

j
k, k = 0, . . . , N − 1

uj+1
o,k ∈ Uo, k = 0, . . . , N − 1

zj+1
k ∈ Zn, k = 1, . . . , N − 1

(zj+1
0 − x0)TP−1(zj+1

0 − x0) ≤ 1 (FHC − 1)

(zj+1
k )TDT

s S
−1Dsz

j+1
k ≤ 1, k = 0, . . . , N − 1 (FHC − 2)

(zj+1
N − xF )TQ−1(zj+1

N − xF ) ≤ 1 (FHC − 3)

where ε ≥ 0, Ds = I − Ts, with Ts from (5.33), and (α, β) = (1, 0) or (0, 1).

Variables α and β in the FHC-D provide cost options: for example, in mechanical vehicle

applications, (α, β) = (1, 0) would minimize fuel, and (α, β) = (0, 1) would minimize input

energy. Feasibility of the FHC-D is used to define set Rd from Control Objective I:

Definition 5.1 (Feasibility Region Rd).

Rd = {ξ ∈ Zn + Xf : the FHC-D is feasible with xF and x(ti) = ξ} . (5.51)

�

The three inequality constraints (FHC-1), (FHC-2), and (FHC-3) in step 2 of the FHC-

D are contributions from the feedback policy design, the feedforward safety-mode policy

design, and the nominal terminal-set local-control-policy design, respectively. The feed-

back constraint in (FHC-1) comes directly from the definition of constraint set Xf =

{η : ηTP−1η ≤ 1} from Theorem 5.1. Inequality (FHC-1) on the initial state ensures

that the actual state remains in the proximity of the nominal guidance states when feed-

back uf,k is simultaneously applied with the feedforward policy uo,k,∀k. Further, the con-

straint (FHC-1) is useful in guaranteeing re-solvability for the FHC-D (discussed in the
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next section). Similarly, terminal-set constraint (FHC-3) comes directly from constraint set

Ωn = {ẑ : ẑTQ−1ẑ ≤ 1} by using Theorem 5.2 for the local control policy design. Inequality

(FHC-3) on the terminal nominal zN ensures that the trajectory ends in control-invariant

terminal set Ωn.

For safety-mode availability at any time step k, the nominal states are constrained in

the FHC-D so that zk − Tszk ∈ Zs,∀k. If safety mode is activated at step k, then ts = tk,

safety reference rs is fixed to rs = Tszk as in (5.33), and thus, z̃0 = zk − rs ∈ Zs. The

safety-mode feedforward uos designed with Theorem 5.2 is then assured to provide safety.

Incorporation of constraint zk−Tszk ∈ Zs in the FHC-D is accomplished by using matrix

S generated from the inequalities of Theorem 5.2. Matrix S defines the safety state set

Zs = {z̃ : z̃TS−1z̃ ≤ 1}. Utilizing this definition, along with z̃ = zk−rs = zk−Tszk ∈ Zs, ∀k

as discussed above, provides the safety constraint (FHC-2) in the FHC-D:

z̃TS−1z̃ ≤ 1 =⇒ (zk − Tszk)TS−1(zk − Tszk)T ≤ 1 =⇒ zTkD
T
s S
−1Dszk ≤ 1

where Ds = I − Ts.

Remark 5.4. In general there is no guarantee that the initial set of FHC-D iterations will

converge to a solution trajectory, even for a feasible problem. This has not been an observed

issue in applications such as Chapter 6 where a small, finite number of iterations generates

a solution to the FHC-D. �

5.3 Discrete SR-MPC Algorithm

The discrete SR-MPC algorithm propagates forward in discrete time tk with a fixed time

interval tk+1− tk = ∆t,∀k ∈ Z+
0 . The following definition for re-solve times and the horizon

lengths used in the FHC-D allows for re-solves at intervals that are variable multiples of

the discrete time step ∆t.

Definition 5.2 (Re-solve Times and Horizon Lengths). Define the following:

• r = 0, 1, . . . , rmax as the index number of re-solves.

• {mr} ∈ Z+
0 as the monotonically increasing sequence of re-solve steps with m0 = 0

and δr = mr −mr−1, 1 ≤ δr < Nr−1, ∀r ≥ 1.
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• {Nr} ∈ Z+ as the sequence of horizon lengths with Nr ≥ Nr−1 − δr when r ≥ 1.

Re-solve times coincide with tk ∈ {tmr}; i.e., when a step k in the discrete SR-MPC algo-

rithm coincides with an element of {mr}. �

Since sequence {mr} is monotonically increasing there are no repeated re-solve times,

and the initial computation coincides with k = m0 = 0 for r = 0. The constraints on the

horizon Nr require that each re-solve (∀r ≥ 1) occurs before the end of the prior horizon, and

the constraints also imply that Nr ≥ 1, ∀r. Note, for a compressing-horizon implementation,

only a finite number of re-solves of the FHC-D would be implemented, resulting in a finite

rmax ≤ N0 − 1.

The following algorithm describes the Discrete SR-MPC approach.

Discrete SR-MPC Algorithm

Begin at k = m0 = 0 in standard mode with x(t0) ∈ Rd and iterate the following steps over

re-solve times {tmr}, ∀r:

standard mode

1. Measure state x(tmr) of actual system (5.1).

2. Solve the FHC-D at time ti = tmr with N = Nr to obtain {zk} = {zjmaxk } for

k = mr, . . . ,mr +Nr and {uo,k} = {ujmaxo,k } for k = mr, . . . ,mr +Nr − 1.

3. Monitor x(t) while applying u(t) = uo(t) + uf (t) to actual system (5.1) where

uo(t) = uo,k and uf (t) = uf,k = Kf (x(tk)− zk) on t ∈ [tk, tk+1).

4. Check the following at each tk:

(a) If safety event detected at ts = tk, set rs = Tszk and z̃0 = zk − rs, with t̃0 = ts,

then switch to safety mode and stop iteration.

(b) If ẑk = zk − xF ∈ Ωn, then set uo(t) = uo,k = Lnẑk, ∀t ≥ tk and skip step 2 in

iteration.

safety mode

For t ≥ ts, apply u(t) = uo(t)+uf (t) to actual system (5.1) where uo(t) = uos,l = Ksz̃l

and uf (t) = uf,l = Kf (x(t̃l)− zl) on t ∈ [t̃l, t̃l+1), l ∈ Z+
0 , with zl = z̃l+ rs and z̃l from

discrete nominal system (5.39).



75

The ability to re-solve the FHC-D in standard mode allows for model updating and

improvements to the feedforward uo and guidance trajectory based on current actual states

and parameters. Re-solvability implies that once initial feasibility is established for the

FHC-D, than future re-computations remain feasible.

Lemma 5.1 (Re-solvability of FHC-D). Suppose the FHC-D is feasible at t0 (k = 0) with

horizon N0. Then, feasibility of the FHC-D is guaranteed at re-solve times {tmr} with

horizon lengths {Nr}, ∀r, from Definition 5.2 provided that feedback uf,k = Kf (xk − zk) is

applied, ∀k ∈ Z+
0 , with Kf from Theorem 5.1 and xk = x(tk). �

Proof. (by induction) Suppose at tmr−1 (i.e., k = mr−1) the FHC-D is feasible with horizon

Nr−1. The solution trajectory is {zk}r−1 = {zjmaxk }r−1 for k = mr−1, . . . ,mr−1 + Nr−1

with element k = mr−1 + Nr−1 being zjmaxk − xF ∈ Ωn. The solution feedforward input is

{uo,k}r−1 = {ujmaxo,k }r−1 for k = mr−1, . . . ,mr−1 +Nr−1 − 1.

Propagate discrete time tk forward δr time steps and re-solve the FHC-D at tmr (i.e.,

k = mr, mr = mr−1 + δr) with horizon Nr. Consider the following candidate solution for

the re-solve, which starts the new FHC-D iteration cycle with a feasible solution:

{z0
k}r =

 {zk}r−1, k = mr, . . . ,mr−1 +Nr−1,

xF , k = mr−1 +Nr−1 + 1, . . . ,mr +Nr,

{u0
o,k}r =

 {uo,k}r−1, k = mr, . . . ,mr−1 +Nr−1 − 1,

Ln({z0
k}r − xF ), k = mr−1 +Nr−1, . . . ,mr +Nr − 1.

(5.52)

Since Nr ≥ Nr−1− δr > 0 (per Definition 5.2), then mr +Nr ≥ mr−1 +Nr−1. Additionally,

since {zk}r−1 at k = mr−1 +Nr−1 satisfies inequality (FHC-3) (i.e., {zk}r−1− xF ∈ Ωn for

k = mr−1 +Nr−1), then {u0
o,k}r = Ln({z0

k}r−xF ),∀k ≥ mr−1 +Nr−1 implies {z0
k}r satisfies

(FHC-3), ∀k ≥ mr−1 +Nr−1.

Feedforward {uo,k}r−1 and Lnẑk (with ẑk = {z0
k}r − xF ,∀k ≥ mr−1 + Nr−1) satisfy

all control constraints, and thus {u0
o,k}r does too. Waypoints {zk}r−1 satisfy all nominal

state constraints, including constraint (FHC-2), and thus {z0
k}r does as well. Further, since

feedback uf,k maintains xk − zk ∈ Xf for k = mr−1, . . . ,mr, then xmr − zmr ∈ Xf is a

feasible initial condition satisfying constraint (FHC-1) at re-solve time tmr .

Thus, candidate solution (5.52) is a feasible solution for the FHC-D re-solve at time
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tmr with horizon Nr once a prior feasible solution is established at time tmr−1 with horizon

Nr−1. The proof concludes by induction.

Theorem 5.3 (Compressing-Horizon Satisfaction of Discrete SR-MPC Control Objectives).

Consider actual system (5.1) for x satisfying Conditions 5.4, 5.5, 5.6, and 5.7 with a

control input u described by a compressing-horizon implementation of the Discrete SR-MPC

algorithm. If Theorems 5.1 and 5.2 are also satisfied, then the resulting closed-loop system

has discrete states and discrete control inputs that satisfy Control Objectives I and II for

standard and safety modes, respectively. �

Proof. The proof is split into two pieces

I. standard mode: Given the Discrete SR-MPC algorithm and x(t0) ∈ Rd, the FHC-D

is initially feasible with some initial horizon N0 = TM
∆t ∈ Z+ and Lemma 5.1 is valid.

Since the number of re-solves rmax from Definition 5.2 is finite in a compressing-

horizon implementation (rmax ≤ N0 − 1), there exists a final feedforward nominal

trajectory zk and feedforward input uo,k generated from a re-solve of the FHC-D.

This nominal trajectory will end in nominal terminal set Ωn, so there exists some

finite time Tf ≤ TM such that zk − xF ∈ Ωn, ∀tk ≥ Tf , corresponding to step 4b in

the Discrete SR-MPC algorithm with nominal local controller (5.50).

Feedback uf,k = Kf (x(tk)− zk) ∈ Uf with Kf from Theorem 5.1 guarantees tracking

of the feedforward trajectory such that ηk = x(tk) − zk ∈ Xf ,∀k. Since the FHC-D

remains feasible, the feedforward trajectory zk ∈ Zn,∀k, and the feedforward control

input uo,k ∈ Uo, ∀k. Then, the actual trajectory will satisfy x(tk) = zk + ηk ∈

Zn+ Xf ⊆ Zn+ Xs ⊆ X, ∀tk ≥ t0 where the sets in (5.6) and (5.7) are used. Further,

the actual trajectory will also satisfy x(tk)−xF = (x(tk)−zk)+(zk−xF ) ∈ Xf +Ωn ⊆

Ω, ∀tk ≥ Tf , where the set addition in (5.8) is used.

Since uo,k ∈ Uo and uf,k ∈ Uf ,∀k, then input u(t) = uo(t) + uf (t) defined in step 3

in the Discrete SR-MPC algorithm satisfies u(t) ∈ Uo + Uf ⊆ U,∀t, where the set

addition in (5.5) is used. Thus, Control Objective I is satisfied.

II. safety mode: The feedback input uf,k ∈ Uf applied during standard mode guarantees

that x(ts) − zk ∈ Xf at k corresponding to t̃0 = ts = tk (safety activation time).

Further, since the FHC-D is satisfied in standard mode, constraint (FHC-2) guarantees
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that zk − rs = zk − Tszk ∈ Zs at t̃0 with rs ∈ TsZn ⊆ Zn from (5.33). Thus,

x(ts)− rs = (x(ts)− zk) + (zk − rs) ∈ Xf + Zs ⊆ Xs at t̃0, where the set definition in

(5.6) for Xs is used.

Feedforward input uos,l = Ksz̃l ∈ Uo with Ks from Theorem 5.2 applied to nominal

system (5.34) guarantees z̃l = zl − rs ∈ Zs,∀l ∈ Z+
0 , where z0 has been re-set to the

standard-mode zk at safety activation time t̃0 = ts = tk. Thus, applying feedforward

uos,l = Ksz̃l ∈ Uo and feedback uf,l = Kf (x(t̃l) − zl) ∈ Uf to actual system (5.1)

ensures x(t̃l)− rs = (x(t̃l)−zl)+ (zl− rs) ∈ Xf +Zs ⊆ Xs,∀t̃l, where t̃l ≥ ts, ∀l ∈ Z+
0 .

Further, since rs ∈ TsZn ⊆ Zn, then x(t̃l) = rs + (x(t̃l) − rs) ∈ Zn + Xs ⊆ X, ∀t̃l,

where the set definition in (5.7) is used.

Since uos,l ∈ Uo and uf,l ∈ Uf ,∀l, then input u(t) = uo(t)+uf (t) defined in the safety

mode stage of the Discrete SR-MPC algorithm satisfies u(t) ∈ Uo + Uf ⊆ U,∀t ≥ ts,

where the set addition in (5.5) is used. Thus, Control Objective II is satisfied.

5.4 Summary of the Discrete SR-MPC Algorithm

The discrete SR-MPC algorithm provides a practical means of applying the general continuous-

time theory from Chapter 4 to applications that require a computer both to solve online the

standard-mode finite-horizon optimization and to implement the standard- and safety-mode

control policies. The discrete standard-mode finite-horizon optimization is formulated as

a second-order cone program that can be solved online in a computationally efficient and

accurate manner by using interior-point algorithms. Further, the discrete algorithm retains

the innovations of the continuous-time SR-MPC algorithm: the feedback policy guarantees

re-solvability of discrete SR-MPC and maintains the actual state in the proximity of the

nominal discrete state at all discrete times; and, the safety-mode policy guarantees the

actual state is within the desired safety set at all discrete times. The following chapter

presents a detailed spacecraft example that implements the compressing-horizon version of

the discrete SR-MPC algorithm.
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Chapter 6

Application of SR-MPC to
Spacecraft Proximity Operations

The objective of this chapter is to apply the theoretical SR-MPC framework developed in

the proceeding chapters to a realistic engineering example requiring significantly more detail

than that of the earlier, more-academic examples. Realistic effects such as control-input

uncertainty, sensor noise, and unknown disturbances are included to further demonstrate the

applicability of the discrete SR-MPC algorithm in a realistic implementation. The chosen

application example is a robotic spacecraft conducting an autonomous descent toward the

surface of a small celestial body (e.g., asteroid or comet). An assumption is made that

onboard computational capability is sufficient to solve the standard-mode optimization and

apply the resultant feedforward control policy with insignificant delay. This assumption is

reasonable given that the optimization in discrete SR-MPC has a computationally-efficient

formulation; refer back to Chapter 5 for the details.

Robotic spacecraft missions to small celestial bodies require a degree of onboard G&C

(Guidance and Control) autonomy due to the long light-time delays for ground-based com-

munication and a need for rapid, online decision making to mitigate risk from unexpected

disturbances (e.g., comet outgassing) or unexpected obstacles. Proximity operations (e.g.,

descent, contact, ascent, hopping, etc.) in particular require G&C methods that are robust

to model uncertainty (e.g., gravity model errors) and incorporate state and control con-

straints to ensure that the proximity operation can be conducted with available thrust and

also minimize risk to the mission, such as keep the spacecraft from impacting the small body.

These algorithms must further be computationally robust, providing some form of guaran-

teed G&C solution in real time. The discrete SR-MPC algorithm developed in Chapter 5
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is well suited to address these G&C requirements.

The two operational modes in the SR-MPC algorithm provide an autonomous G&C

capability for robotic spacecraft that addresses the mission requirements for small-body

proximity operations. The standard mode maneuvers the spacecraft toward the target state

in a robust and re-solvable model-predictive manner, and the safety mode provides a means

of maintaining the spacecraft in a safe hover region if required. The safety mode would be

triggered in the event that onboard sensors detect unexpected static state constraints (e.g.,

the surface is closer than expected) during the G&C planning and maneuver horizon.

Figure 6.1 provides a graphic illustration of the operational modes developed in Chapter

5. On the left is a sketch of a spacecraft in standard mode being maneuvered from an initial

state x0 to a desired target state xF based on the expected small-body surface location. On

the right is a sketch of the spacecraft being held in a safety state to avoid surface impact

once onboard sensors (e.g., an altimeter) detect that the actual surface is much closer than

originally expected and a switch is made from standard mode into safety mode. From

a safety or target state, higher-level mission algorithms or ground-based commands (i.e.,

remote flight operators communicating with the spacecraft from Earth) can determine and

instruct a new course of action for the spacecraft G&C. For example, once the spacecraft

is in the proximity of the target state, a local contact controller could be switched on to

guide the spacecraft to the surface for sample acquisition.

ZS

ZS

XS

XS

Figure 6.1: Operational modes of the guidance and control algorithm: standard mode (left)
and safety mode (right)

Mathematical details on the G&C design for tube Xf , sets Zs and Xs, and rs from Figure

6.1 are provided in Chapter 5. The spacecraft sensors are assumed to have a measurement
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range beyond the safety-mode region Xs. The remaining state constraints X and Zn (not

shown in the figure) that define the discrete SR-MPC algorithm in Chapter 5 are as follows:

constraint set X on the actual system would be all positions above the expected surface;

and, constraint set Zn on the nominal system would be more-conservative position and

velocity constraints defined such that Zn + Xs ⊆ X.

6.1 Formulation for Applying Discrete SR-MPC Algorithm

Application of the discrete SR-MPC algorithm to small-body proximity operations requires

formulating the governing dynamics in the framework of SR-MPC. Additionally, specific

requirements on the control inputs and the cost function need to be cast appropriately.

6.1.1 Spacecraft Dynamics

The equations of motion for the actual spacecraft dynamics are expressed in the form of

(5.1) from Chapter 5. The dynamics are formulated in a rotating frame and represent the

spacecraft in orbit about a small celestial body with a constant rotation rate:

ẋ = Ax+Bu+Bφ (Cqx) +Bd, x =

 r

ṙ

, (6.1)

where

A =

 0 I

−ω̂2 −2ω̂

, B =

 0

I

, Cq =
[
I 0

]
,

r, ṙ ∈ R3 are spacecraft position and velocity relative to the small-body center of mass,

φ(·) ∈ R3 is gravitational acceleration as a function of spacecraft position, u ∈ R3 is the

spacecraft thrust-acceleration input, and d ∈ R3 lumps other bounded exogenous distur-

bances. Variable ω̂ ∈ R3×3 is a matrix representation of the vector cross product ω × (·),

where ω ∈ R3 is the constant small-body rotation rate (ω̇ = 0).

The nominal model of the spacecraft dynamics is expressed in the form of (5.2):

ż = Az +Buo +Bψ (Cqz) , z =

 p

ṗ

, (6.2)
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where z ∈ R6 is the nominal position p and velocity ṗ, uo ∈ R3 is the nominal control input,

and ψ(·) ∈ R3 is a model approximating the actual gravity φ.

6.1.2 Control Input Requirements

From the architecture of the SR-MPC algorithm, the control input to actual system (6.1)

is split into separate feedforward and feedback components:

u(t) = uo(t) + uf (t) (6.3)

where the feedforward uo(t) is designed for each mode, standard and safety, by using the

known nominal system (6.2), and feedback uf (t) is designed to maintain the uncertain

actual system (6.1) states within the proximity of the feedforward nominal states. The

specific details of the design for each component are provided in Chapter 5.

The optimization criteria for the standard mode is to reach the target state with a

minimal fuel usage, which in the FHC-D in Chapter 5 sets (α, β) = (1, 0) to minimize

the 1-norm of the nominal input uo; in contrast, (α, β) = (0, 1) would minimize input

thrust-acceleration energy.

For small-body proximity operations, a design requirement for thruster silence time is

placed on the development of the control inputs in (6.3) [10]. After each finite burn time of

δf seconds, a minimum thruster silence period of δs seconds is required. This specification

provides thruster silence for other online algorithms (e.g., estimators, image sensors) that

benefit from minimal operation interruptions. The following input profile is used for each

time step (where tk+1 − tk = ∆t) in the discrete SR-MPC algorithm:

u(t) =

 uk, t ∈ [tk, tk + δf ]

0, t ∈ (tk + δf , tk+1)
, k ∈ Z+

0 , (6.4)

where δf is the fixed firing time and uk ∈ R3 is constant (but may differ for each k).

Note, ∆t ≥ δf + δs by design. Since the control is split into two components (feedforward

and feedback), uk in (6.4) is made up of two components as well: in standard mode,

uk = uo,k + uf,k; in safety mode uk = uos,k + uf,k.

The discrete SR-MPC algorithm formulation in Chapter 5 assumes a zero-order hold

per time step for the inputs and nonlinearities. The input profile from (6.4) is not fixed for
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the entire time step but its form is readily incorporated in the existing discrete SR-MPC

algorithm formulation in Chapter 5 for both feedforward and feedback components. To

explain this, the derivation of the standard-mode discrete nominal model (5.48) will be

provided, starting with the continuous-time model in (5.46):

ż = Fkz +Buo +Bψk. (6.5)

Refer back to Section 5.2.3 in Chapter 5 for an full explanation of time-step varying matrix

Fk and gravity vector ψk; they essentially incorporate a linearization of gravity model ψ(·)

to improve the nominal trajectory computations in standard mode. The general continuous-

time solution to (6.5) for t ≥ t0 has the form

z(t) = eFk(t−t0)z(t0) +
∫ t

t0

eFk(t−τ)B(uo(τ) + ψk)dτ. (6.6)

During the thrusting portion of a time step, t ∈ [tk, tk+δf ], the general solution at t = tk+δf

can be written as

z(tk + δf ) = eFkδf z(tk) +
∫ δf

0
eFk(δf−τ)Bdτ · (uo,k + ψk), (6.7)

where vectors ψk and uo,k are constant and removed from the integral. Note, uo(t) = uo,k

per the formulation in (6.4). During the silence portion of a time step, t ∈ [tk + δf , tk+1],

the general solution at t = tk+1 can be written as

z(tk+1) = eFk(∆t−δf )z(tk + δf ) +
∫ ∆t

δf

eFk(∆t−τ)Bdτ · ψk, (6.8)

where ∆t = tk+1 − tk, ψk remains the same constant as in (6.7), and uo(t) = 0 per the

formulation in (6.4). Combining (6.7) and (6.8) produces

z(tk+1) = eFk∆tz(tk) + eFk(∆t−δf )

∫ δf

0
eFk(δf−τ)Bdτ · uo,k +

∫ ∆t

0
eFk(∆t−τ)Bdτ · ψk, (6.9)

or

zk+1 = Akzk +Bkuo,k + Ekψk, (6.10)

which is the desired form of (5.48), with matrix Bk capturing the silent-time requirement
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on the input as given in (6.4).

6.1.3 Other Application-Specific Implementation Issues

The algorithm formulation for standard mode incorporates Conditions 5.4 and 5.5. For

small-body proximity operations, these conditions bound the gradient of the gravity model

ψ(·) and bound the difference between that model and the actual gravity φ(·), respectively.

In reality, these conditions cannot be satisfied everywhere in position-space. This is easily

seen by considering a typical point-mass gravity field model (e.g., ψ = µ
r2

with µ the

small-body gravity constant) that tends toward infinity in the closed neighborhood around

the origin. In actuality, close to the origin, this particular gravity model is invalid. The

justification of these conditions comes from the idea that proximity operations take place in a

restricted region of position-space specified by the constraints X and Zn that the feedforward

standard mode enforces to maintain the spacecraft away from the center-of-mass and from

collision with the small body. Thus, the gravity field is bounded and Conditions 5.4 and

5.5 can be satisfied.

The safety reference rs for this application is defined as a state of rest/hover (zero

velocity) at the standard-mode nominal position at safety switch-on time:

rs = Tszstan(ts) =

 ps

0

, Ts =

 1 0

0 0

, (6.11)

where zstan implies the nominal state z during standard mode, which is the operation mode

of the system prior to safety switch-on at time ts, and ps = p(ts) from (6.2).

The safety-mode nominal dynamics in Chapter 5 are given in (5.34) as

˙̃z = Az̃ +Buos +Ars +Bψ(Cq z̃ + Cqrs), (6.12)

where z̃ , z − rs. The term Ars in the small-body application represents the centripetal

acceleration gc that affects holding the spacecraft in a fixed position in a rotating frame;

the term also arises from shifting the origin of (6.2) to z = rs. The form of matrix A and

vector rs for this spacecraft application fits Condition 5.6, which allows for the subsequent

bounding argument of Condition 5.7 to combine gravity and centripetal acceleration (ḡ =

gc+ψ(Cq z̃+Cqrs)) under a common, worst-case bound δ. Refer back to these conditions for
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specifics of the formulation. Note, δ can be selected as follows: if ||ψ(·)|| ≤ δ1 and ||gc|| ≤ δ2

over the region of the proximity operation, then ||ḡ|| ≤ ||ψ(·)||+ ||gc|| ≤ δ1 + δ2 ≤ δ.

Re-solvability of the discrete SR-MPC algorithm is best performed in a compressing-

horizon implementation. The convexification of the discrete SR-MPC algorithm imposes a

discrete number of steps N to drive the system to the target state, with a cost function

only on the control input. With the objective being to minimize fuel over the N steps,

the algorithm logically chooses to maintain the spacecraft away from the target state for

as long as possible, which corresponds to a lower gravitational force and thus lower fuel

expenditure. Descent to the target state occurs only toward the end of the planning horizon.

Thus, compressing-horizon provides a means of minimizing overall fuel usage and maneuver

time while also obtaining the benefits of model predictive control by using current state

measurements on re-solves to improve the remaining control inputs.

6.2 Simulation of Asteroid Landing

The SR-MPC algorithm is demonstrated for a spacecraft descent toward an asteroid in

preparation for landing. The asteroid gravity and rotation rate are based on data from

asteroid Eros [52]. This section will provide a comparison of the algorithm performance

with and without safety mode; this comparison is between the discrete SR-MPC algorithm

in this thesis and an earlier version [10] without the safety mode available. The results will

show that incorporation of the safety mode enables autonomous spacecraft response and

mitigation of risk posed by an altitude error in the state constraints

To provide additional realism to the scenario, the spacecraft mass changes with thruster

firing, the thrusters are given thruster-execution error (up to 10% error from commanded

thrust), the assumed sensors (inertial measurement unit and altimeter) have added random

noise, and a random disturbance is also imparted to simulate solar radiation pressure,

outgassing (from the spacecraft or asteroid), and other small forces that can affect the

spacecraft. To handle these noise sources, a Kalman filter is implemented to provide inertial

state estimates that are used for the actual states in the G&C algorithm.

The safety-mode is triggered on the altimeter, which is smoothed independently through

a low-pass filter as a proof of concept for the algorithm. Triggering off of noisy measurements

can lead to early or late safety-mode switch on, the later of which could pose unrecoverable
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mission risk. Note, a similar delay in safety-mode switch on can occur from the discrete-

time measurement interval, which can delay detection of a changed state constraint. An

assumption in the SR-MPC algorithm is that the sensors have perfect knowledge within

the specified safety constraints. To handle the additional sensor noise and discretization-

induced delay, the detection range of the sensor is chosen larger than the specified safety

constraints.

Knowledge of the surface is assumed to be in error by 100 meters, which causes an

incorrect state constraint to be imposed in the standard-mode guidance planning. The

gravity model of the asteroid is assumed to be accurate to within 5%. The navigation error

is assumed to be within ±5 m and ±2 cm/s in position and velocity, respectively, relative

to the small-body coordinate frame. The altimeter error is modeled as random noise with

a standard deviation of ±40 m (perhaps excessive, but utilized to test the safety mode).

The altimeter range capability is 200 meters (i.e., the range at which altimeter data is

considered useful for triggering safety). These values are arbitrarily chosen for the sake of

demonstrating the SR-MPC algorithm in an example; real altimeters can have significantly

different range capabilities.

The simulations were written in Matlab, with SDPT3 [50] used to efficiently re-solve

the second-order cone program that generates the standard-mode feedforward control policy

in discrete SR-MPC; these re-solves took less than 0.8 seconds. The maneuver simulation

has a desired completion time that is accomplished by applying the SR-MPC algorithm

in a compressing-horizon manner, with re-solves every two time steps. The simulation

parameters and a depiction of the coordinate system (in Figure 6.2) are as follows:

Parameter Value
Spacecraft mass (m) 400 kg
Specific impulse (Isp) 300 sec
Max. feedforward (Umax) 125

m m/s2

Max. feedback (Vmax) 20
m m/s2

Silence time (δs) 15 sec
Firing time (δf ) 15 sec
Maneuver time (TM ) 300 sec

Figure 6.2: Parameters and coordinate system for simulation.
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The maximum feedforward thrust acceleration (Umax) and maximum feedback thrust accel-

eration (Vmax) define the control constraint sets from (5.9) and (5.10), respectively. Based

on the parameters above, the simulation time step is ∆t = δf + δs = 30 sec. The maneuver

initial state x0 and desired target state xF are

x0 = ( 8950, 100, 0, 1.5, 2, 0 )T and xF = ( 8450, 0, 0, 0, 0, 0 )T ,

(6.13)

in units of (m, m/s). These states specify a descent maneuver toward the asteroid surface,

along the x(1) radius coordinate. The surface position along this coordinate is x(1) = 8340

m. The standard-mode nominal state constraints Zn and the feedback position constraints

Xf are defined so that the combined position states keep the spacecraft from impacting the

surface: z(1) ≥ 8350 m for Zn and {η(1), η(2), η(3)} ≤ 1
3 m for Xf . Further, the feedback

constrains the actual velocity around the nominal guidance to within 1
20 m/s. The target

state xF is far enough from the surface so that safety can be activated to keep the spacecraft

nominal state within a 70 m offset from the activation altitude once the altimeter picks up

the surface error (from 200 m away).

In set notation, these are

Zn = {z : cT1 z(t) ≥ 1}, with c1 = ( 1/8350, 0, 0, 0, 0, 0 )T

Xf = {η : aT1 η(t) ≤ 1}, with a1 = ( 1/3, 1/3, 1/3, 1/20, 1/20, 1/20 )T

Zs = {z̃ : bT1 Csz̃(t) ≤ 1}, with b1 = ( 1/70, 0, 0 )T

where Cs =
[
I 0

]
, which allows safety to be specified for the position states alone. Note,

the nominal terminal state set was specified as Ωn = Zs.

Offline design of gains Ks and Kf for safety and feedback, respectively, are based on the

discrete SR-MPC theorems in Chapter 5. With respect to the safety gain Ks, satisfaction

of the inequalities in Theorem 5.2 is part of the design process for simultaneously selecting

the design parameters for firing time δf , silence time δs, and the safety state constraints

in Zs. If a desired set of constraints cannot satisfy the inequalities, then the inequalities

themselves can be used in the design process. The same is true for feedback gain Kf and

the firing and silence times, along with the feedback constraint definition for Xf . The final

design settings for the constraints then influence the nominal state constraints in Zn that
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will influence how close to the surface the target state xF in Figure 6.2 can be so that safety

can still be guaranteed.

Consideration must also be given to the fact that the algorithm is based on a discretiza-

tion of the dynamics, so additional conservatism is necessary in specifying the target state

since thruster firings only occur on a discrete interval yet the spacecraft continues to drift

due to gravity in between the discrete time steps. This can be handled through shorter time

steps, changes to the maneuver time TM , or putting a constraint on the nominal descent

velocity through Zn to provide more conservatism so that the spacecraft does not move too

quickly toward the surface between discrete time steps.

Figure 6.3 depicts the descent scenario where safety mode is activated at 210 seconds

due to an error in the constraints specifying where the asteroid surface is located. Since the

altimeter range readings come online at 200 m from the surface, once the error is discovered

in the surface position, safety-mode is instantly activated. The immediate activation is a

conservative design decision to aid with the discrete time steps governing the algorithm and

thruster firings.
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Figure 6.3: Safety mode activated upon altimeter identifying incorrect surface constraint.

The altitude profile (upper left plot in Figure 6.3) shows the safety constraint Zs turned

on at a safety-activation time of 210 seconds. This corresponds to the altimeter identifying

that the actual surface is 100 m closer to the spacecraft than the expected surface utilized

in the state constraints Zn for the standard-mode guidance policy. The safety constraint in
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Zs tells the safety-mode control to maintain the spacecraft within 70 meters of the actual

altitude (approximately 175 m) at safety-activation time; thus, the spacecraft is held above

an altitude of 105 meters as seen in the plot.

The velocity profiles (upper right plot in Figure 6.3) are driven toward rest, which is

the velocity reference state in safety reference rs (Refer back to (6.11)). The spacecraft

velocity cannot be held exactly at rest due to the thruster silence requirement, so instead

the algorithm has the velocity oscillate about rest. Additionally, the thrust profile has the

firing at the start of the time step, followed by silence until the next time step. Thus, the

guidance waypoints for velocity predict what spacecraft velocity is expected after gravity

causes the spacecraft to drift back toward the surface by the next thruster firing. The

saw-tooth velocity is also indicative of the spacecraft being modeled as a double integrator

with a constant on or off thrust acceleration, along with very weak gravity. Note, the thrust

profile can also have the firing at the end of the time step (with silence first), which would

switch the order of the thrust input profile in (6.4). The form of the integral that produces

the Bk matrix in discrete dynamics (6.9) would also change.

The bottom plot in Figure 6.3 shows the safety constraint from the standard-mode

FHC-D in Chapter 5, Section 5.2.3, that ensures safety mode is always available. Since the

constraint remains less than 1, the safety feedforward controller can be activated at 210

seconds and ensure that the spacecraft remains near an altitude that is safe from surface

impact.

The overall maneuver profile from the starting location x0 through the maneuver time

TM is depicted in Figure 6.4. During standard mode, the feedforward uo is recomputed

every two time steps, in a compressing-horizon manner. The figure provides the spacecraft

position and velocity (top two plots) in the asteroid coordinates from Figure 6.2, with the

positions translated relative to the target position in xF . The plots show that standard

mode maneuvers the spacecraft toward the target state until the altimeter detects the

surface location error in the constraints and activates safety mode (which is zoomed in

on in Figure 6.3). A comparison of the actual trajectory with the guidance waypoints

indicates the benefit of the FHC-D for standard mode and the improvement to guidance

from incorporating a linearization of the gravity model and solving for waypoints in both

position and velocity.
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Figure 6.4: Maneuver profile for standard mode through safety-mode activation.

The bottom two plots in Figure 6.4 show the thrust profiles for the feedforward and

feedback components, also along the asteroid coordinate directions. The feedforward profile

shows that standard mode does not implement a thruster firing at each time step, which

again indicates the benefit of the FHC-D waypoints and the conservation of fuel. Neither the

feedforward nor the feedback components exceed the maximum thruster firings, mUmax =

125 N and mVmax = 20 N, respectively. Even at safety-mode activation the constraints are

obeyed. Notice that the feedforward thrust increases significantly at safety-activation time

(210 sec), indicating the G&C algorithm brings the spacecraft into the safety hover mode

at the current altitude.

As a means of comparison, a descent scenario is shown in Figure 6.5 where the FHC-D

without the safety mode constraint (FHC-2) provides a guidance policy to maneuver the

spacecraft to the target xF . This algorithm assumes the expected surface position is correct,

and there are no alternative operational modes considered in the algorithm architecture.

As a result, the spacecraft impacts the asteroid surface near 270 seconds. In this particular

example, the ground is placed right at the desired target state, so the surface impact occurs

in between the discrete waypoints.
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Figure 6.5: Standard-mode algorithm (without safety) causes surface impact due to incor-
rect surface constraint.

The bottom plot in Figure 6.5 shows the equivalent values of the safety constraint

along the descent trajectory. The constraint is significantly violated during the descent

between 160 − 260 seconds because it has been removed from this implementation of the

FHC-D. The constraint violation further indicates that the nominal guidance states are

not inside the safety set Zs, so even if the safety mode feedforward policy were switched

on, there is no guarantee that the controller could keep the spacecraft safe from impacting

the ground. In fact, Figure 6.6 shows this very scenario, utilizing the same altimeter as

in the prior example to trigger safety mode. The descent speed of the spacecraft is such

that safety is switched on at 240 seconds, since the prior waypoint is above 200 m altitude

and outside the altimeter measurement range. In order for the safety feedforward policy to

keep the spacecraft from impacting the surface and maintaining the desired safety mode,

the feedforward thrust constraint of 125 N (bottom-left plot in Figure 6.6) is significantly

violated. If this constraint were the maximum thrust available from the onboard engines,

then the spacecraft would likely impact the surface.
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Figure 6.6: Feedforward thrust limit violated on safety activation if safety constraint is not
enforced in standard mode.

The results from Figure 6.3 clearly indicate that implementation of the safety constraint

(FHC-2) in the FHC-D for SR-MPC provides a better method for mission risk mitigation

during autonomous proximity operations. The trade off with the active safety constraint

(FHC-2) in the standard mode is that the algorithm must begin the spacecraft descent

sooner, resulting in slightly higher fuel consumption with SR-MPC compared to R-MPC.

Figure 6.7 juxtaposes the spacecraft trajectories (without a safety event occurring) resulting

from descent scenarios that use the R-MPC and SR-MPC algorithm. The upper two plots in

Figure 6.7 contrast the altitude and velocity profiles from R-MPC and SR-MPC, indicating

that SR-MPC descends the spacecraft sooner and has a smaller maximum velocity than R-

MPC. The more-conservative velocity in SR-MPC results from the enforced safety constraint

(third plot from top). By descending sooner, the spacecraft experiences higher gravity and

uses slightly more fuel, as seen in the bottom plot of Figure 6.7.
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Figure 6.7: Comparison of R-MPC and SR-MPC performance.

6.3 Summary of Discrete SR-MPC Applied to Spacecraft

Proximity Operations

The discrete SR-MPC algorithm has been applied to a detailed spacecraft application that

incorporates a state estimator, noisy sensor measurements, external disturbances, and thrust

magnitude errors. The simulations show that the algorithm maneuvers the spacecraft to-

ward the desired target in a robust, safe, and re-solvable manner, providing some risk

mitigation during proximity operations. The algorithm handles model uncertainty and

disturbances, minimizes fuel or thrust-energy usage (in standard mode), and incorporates

desired thruster silence times. Further, the maximum-thrust constraints are obeyed in both

modes, as are the prescribed state constraints (i.e., maintain the spacecraft away from the

expected surface location). As shown in the simulations, if sensor information from the al-

timeter invalidates the expected standard-mode state constraints (i.e., the surface is closer

in proximity than expected), the SR-MPC safety mode maintains the spacecraft in a safety

state that avoids impact with the surface.
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Chapter 7

Conclusions

The motivation for this thesis research was the development of control algorithms suitable

for online implementation in engineering applications (e.g., aerospace and mechanical ve-

hicles) that require adherence to state and control constraints, as well as robustness to

uncertainty affecting both the system dynamics and the prescribed state constraints. The

research builds upon the MPC (Model Predictive Control) algorithm, which makes use of

a nominal dynamics model in a finite-horizon optimization that enforces both state and

control constraints and generates a feedforward control policy. The finite-horizon optimiza-

tion is advantageous given the finite online computational capabilities in practical applica-

tions. Additionally, recursively re-solving the finite-horizon optimization in a compressing-

or receding-horizon manner provides a form of closed-loop control by setting the nominal

state at re-solve to the current actual state.

Uncertainty between the nominal model and the actual system dynamics, along with

constraint uncertainty can cause feasibility issues during the re-solves and, thus, robustness

problems with the MPC algorithm. The chapters of this thesis successively build upon a

baseline MPC algorithm outlined in Chapter 2. The contributions, by chapter, are summa-

rized below, followed by a discussion of further research directions that can improve upon

the MPC framework and the algorithms presented in this thesis.

7.1 Summary of Algorithms

7.1.1 R-MPC Algorithm

The R-MPC (Robust and re-solvable MPC) algorithm developed in Chapter 3 for continuous-

time systems enhances the baseline MPC by augmenting the framework with a separate
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feedback control component that provides robustness to uncertainty and disturbances af-

fecting the actual dynamics. The feedback component creates an invariant tube about the

nominal feedforward trajectory, based on an explicit characterization of the uncertainty

between the actual system and the nominal model. The feedback tube maintains the actual

state in the proximity of the nominal feedforward trajectory for all time. Additionally, the

online optimization for computing the feedforward control component utilizes the tube to

relax the initial nominal state for each re-solve. This relaxation allows the initial nominal

state to simply be within the tube cross section and not fixed to the actual state at the

re-solve time, which provides robust feasibility and guaranteed re-solvability to the R-MPC

algorithm. This is an advantage over the baseline MPC algorithm in Chapter 2, which

requires the nominal state to be identical to the actual state at the re-solve time.

7.1.2 SR-MPC Algorithm

The continuous-time SR-MPC algorithm in Chapter 4 augments the R-MPC algorithm

with a separate, reactive, safety control policy that provides robustness (or safety) to un-

certainty/changes in static state constraints. The improved algorithm incorporates two

operation modes. The primary mode, standard mode, implements a modified version of the

R-MPC algorithm that incorporates a nominal state constraint that ensures the secondary

mode availability at any time along the planning horizon. The secondary mode, safety mode,

provides an alternate control policy, if needed, to maintain the system in an invariant set

to ensure avoidance of changed state constraints. The SR-MPC safety mode provides an

improvement over both the baseline MPC and R-MPC algorithms, which assume that the

state constraints imposed in the control objectives are static and known perfectly ahead of

the time. In cases where uncertainty exists in these constraints, avoidance of the changed

constraint cannot be guaranteed in either MPC or R-MPC but can be in SR-MPC.

7.1.3 Discrete SR-MPC Algorithm

The discrete-time SR-MPC algorithm in Chapter 5 is based on the continuous-time SR-

MPC algorithm. The discrete version is developed for practical applications that require a

computer both to solve online the standard-mode finite-horizon optimization and to imple-

ment the standard-mode and safety-mode control policies.
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The finite-horizon optimization is formulated in discrete SR-MPC as a second-order cone

program that can be solved online in a computationally efficient and accurate manner by

using interior-point algorithms. The optimization additionally incorporates the constraints

from continuous-time R-MPC and SR-MPC that relax the initial state and ensure safety-

mode availability, respectively. The discrete feedback policy, similar to that in continuous-

time SR-MPC, guarantees resolvability of the discrete finite-horizon optimization problem

and is formulated to ensure the actual state is within a specified set about the nominal

discrete states at all discrete times. Additionally, the discrete safety control policy is for-

mulated to guarantee the actual state remains within the prescribed safety set at all discrete

times upon safety-mode activation.

7.2 Summary of Autonomous Spacecraft Application

An application of the discrete SR-MPC algorithm was demonstrated in Chapter 6 for an

autonomous spacecraft descending toward the surface of an asteroid with an uncertain

gravity field and an uncertain surface topography. The formulation of the discrete SR-

MPC algorithm assumes perfect state knowledge. To exercise the algorithm in a more

realistic implementation, noisy sensor measurements were implemented, along with process

noise affecting the dynamics and thrust inputs. These noise sources were then filtered to

provide state estimates.

The simulations demonstrate that the discrete SR-MPC algorithm provides thrust in-

puts that maneuver the spacecraft toward the desired target in a robust, safe, and re-solvable

manner, providing some risk mitigation during proximity operations such as descent. Per

the formulation, the algorithm handles model uncertainty and disturbances, minimizes fuel

or thrust-energy usage, and incorporates desired thruster silence times as specified for the

application. Additionally, the maximum-thrust constraints and the prescribed state con-

straints (i.e., maintain the spacecraft away from the expected surface location) imposed on

the algorithm design were obeyed in both modes of the SR-MPC algorithm. As shown in

the simulations, if sensor information from the altimeter invalidates the expected standard-

mode state constraints (i.e., the surface is closer in proximity than expected), the SR-MPC

safety mode maintains the spacecraft in a safety state that avoids impact with the surface.
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7.3 Some Limitations and Potential Extensions

The theoretical development of the continuous-time R-MPC algorithm (and standard mode

of the SR-MPC algorithm) is focused on proving the origin is asymptotically stable under

application of the control input. As such, the origin is within the planning horizon of the

FHC (Finite-Horizon optimal Control problem), whereas for many practical applications

this may not be realizable. Computational limitations or limited state-constraint knowledge

in practical applications can necessitate a shorter planning horizon such that the FHC does

not include the desired target state during the initial feasible solution. Subsequent FHC

re-solves shift the terminal set toward the desired target state, but there is no mathematical

feasibility guarantee. The lack of this guarantee is well known and research inroads toward

resolving this issue would be valuable to the MPC community. Regardless, applying the

R-MPC and SR-MPC algorithms in this type of scenario is a natural application extension.

In fact, the safety mode in SR-MPC could also be used as a backup control policy to ensure

system safety if a subsequent re-solve is infeasible, which is the function of safety in the

RSBK (Robust Safe But Knowledgeable) algorithm by Kuwata et al. [24].

The splitting of the control policy and control constraints in R-MPC and SR-MPC into

the separate feedforward and feedback segments poses conservatism in the FHC feedforward

optimization. The cross section of the feedback-generated invariant tube is fixed; for the

specialized systems of Section 3.3, the cross section is essentially set by the worst-case bound

on the model mismatch with the actual system. The capability to trade control authority

between the feedforward and feedback components (allowing the tube cross section to vary)

would be advantageous, especially if additional structure is known about the uncertainty

or disturbances in different feasible operating states. For instance, when uncertainty or

disturbances are smaller, less feedback is required to follow the feedforward trajectory.

The feedforward control policy could then be more aggressive (and perhaps more optimal)

if some of the feedback control authority could shift and relax the feedforward control

constraints. Further work is necessary to develop mathematical frameworks that might

allow this extension.

The reactive safety mode in the SR-MPC algorithm is defined through a safety set that

also has a fixed cross section. This safety set essentially creates an additional tube about

the feedforward trajectory generated in the SR-MPC standard mode that can be overly
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conservative due to the fixed cross section. This safety tube must fit within any state

corridor chosen in the FHC feedforward optimization, which can limit the choices for path

planning. Allowing the safety-set cross section to vary (i.e., proactive safety based on the

current state) would alleviate this limitation. For instance, in mechanical vehicles with the

safety set defined by position constraints that ensure a maximum stopping distance, the SR-

MPC algorithm would implicitly bound the maximum velocity. The safety tube would have

a fixed cross section requiring any corridor chosen by the FHC feedforward path planning

to be traversable at the maximum velocity. This is excessively restrictive, particularly if a

vehicle can traverse a more optimal corridor at a slower velocity, at which the vehicle can be

safely stopped within a shorter distance. The development of a proactive safety mode than

can allow the safety-tube cross section to vary based on the current state (e.g., perform a

trade between the feedforward velocity and the safe stopping distance) would add to the

number of potential corridors.

Some of the remaining implementation issues for application of R-MPC and SR-MPC

in practical engineering systems include the following: incorporating measurement uncer-

tainty, safety from dynamically changing state constraints, restarting standard mode after

safety activation, and reliability of optimization software for generating FHC solutions.

The feedback and safety-mode control policies in this research assume full-state knowledge.

Presumably, the feedback-invariant tubes can be extended to also incorporate knowledge

uncertainty, however, this was not considered in the research. Extensions might be aided

by the literature on output-feedback methods. Regarding dynamically changing state con-

straints, the issue is potential violation of the invariant safety set (e.g., adversarial vehicles

entering the safety set). This sort of extension could consider blending additional opera-

tional modes into the SR-MPC framework. The additional modes could add various evasive

maneuvers that, after execution, reconnect to the prior feedforward trajectory, thus main-

taining future re-solve feasibility. These extra modes would add further conservatism to the

feedforward optimization but provide some additional capabilities.

Methods for restarting the SR-MPC algorithm after activation of safety mode were also

not considered in this thesis. Essentially, a new feasible solution to the feedforward op-

timization is required. If the prior standard-mode solution becomes feasible again (e.g.,

another vehicle temporarily blocked the standard-mode path), then some SR-MPC applica-

tions with mechanical systems can restart standard mode by bringing the actual state back
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into the feedback invariant tube centered on the standard-mode state at safety-activation

time. This is not a part of the current SR-MPC algorithm, and a general framework for

this type of restart is not straight forward for all systems, primarily because the safety-set

center is generally offset from the standard-mode state at safety-activation time.

The feedback and safety-mode control policies are developed offline, so only the standard-

mode feedforward FHC requires significant online computational resources. To address

computational demand, the discrete SR-MPC algorithm in Chapter 5 was formulated as

a second-order cone program, which can be solved efficiently online with interior-point

algorithms. For many practical applications, reliability of the software that implements

interior-point algorithms is essential. For instance, in spacecraft applications, unreliable

software poses unacceptable risk to generally expensive and one-of-a-kind missions. Thus,

some practical applications would be concerned with verification and validation of the op-

timization software prior to implementation of R-MPC or SR-MPC.

The framework for discrete SR-MPC guarantees satisfaction of the standard- and safety-

mode state constraints only at discrete times. In between the discrete time steps, a

continuous-time trajectory may actually violate these constraints. This is a known problem

in applying discrete-system-based control policies to continuous-time systems. A common

approach is to further restrict state constraints in the discrete algorithms so that applying

the discrete control policies to continuous-time systems does not violate the state con-

straints. This approach is used in the spacecraft example of Chapter 6 where establish-

ing more conservative state constraints for the discrete SR-MPC algorithm was relatively

straight forward. However, more complicated applications might not be as straight for-

ward. Research developments that provide a more-constructive method for discretization

with guarantees on continuous-time state-constraint satisfaction (and potentially specifica-

tion of the discrete input format) would be a significant contribution.

Lastly, the discrete SR-MPC algorithm imposes a cost function only on the control

input, and resulting proofs of completion of the control objectives are only provided for a

compressing-horizon implementation. As such, the discrete algorithm is not as general as

the continuous-time counterparts in this thesis. A more general discrete framework could

be developed and provide stability guarantees in a receding-horizon manner.
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Appendix A

Relevant Proofs for
Continuous-Time Algorithms

A.1 Proof of Lemma 2.1: Re-Solvability of the FHC

Proof. (by induction) Suppose at tk−1 the FHC is feasible with Tk−1 and provides uk−1
o (t)

for t ∈ [tk−1, tk−1 + Tk−1]. Let zk−1(t) be the trajectory of nominal system (2.1) for t ∈

[tk−1, tk−1 + Tk−1] corresponding to control input uko(t).

Let tk = tk−1 + δk and re-solve the FHC with Tk. Since F (·) in nominal system (2.1)

is known perfectly, the resulting nominal state z(t) is exactly zk−1(t) from application of

uk−1
o (t) for t ∈ [tk, tk−1]; thus, state zk(tk) = zk−1(tk) remains the initial state of a feasible

trajectory. Then, the following control input provides a feasible solution to the FHC re-

solve:

uko(t) =

 uk−1
o (t), t ∈ [tk, tk−1 + Tk−1]

L(z(t)), t ∈ [tk−1 + Tk−1, tk + Tk] ,
(A.1)

where Tk ≥ Tk−1− δk, and thus tk +Tk ≥ tk−1 +Tk−1. Input uko(t) = uk−1
o (t) ∈ Uo provides

zk(t) = zk−1(t) ∈ Zn for t ∈ [tk, tk−1 + Tk−1] . Since zk(tk−1 +Tk−1) = zk−1(tk−1 +Tk−1) ∈

Ωo and Condition 2.2 holds, then Ωo is invariant and z(t) ∈ Ωo with uk(t) = L(z(t)) ∈

Uo, ∀t ∈ [tk−1 + Tk−1, tk + Tk].

Thus, control policy (A.1) provides a feasible solution to the FHC re-solve at tk for any

Tk ≥ Tk−1 − δk once the FHC is feasible at tk−1 with Tk−1.
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A.2 Proof of Lemma 2.2: Shrinking Optimal Cost with Re-

ceding Horizon

Proof. Since the FHC is feasible at tk−1 with Tk−1 and uk−1
o (t) provides the optimal cost

J∗k−1, then uk−1
o (t) can also be used to provide a feasible solution for the FHC at tk with

Tk ∈ [Tk−1 − δk, Tk−1] (or any Tk ≥ tk−1 − δk) by using uko(t) in (A.1) from the proof of

Lemma 2.1. So, zk(t) = zk−1(t) is a feasible trajectory for t ∈ [tk, tk−1 + Tk−1].

From Definition 2.1 for the computation times, tk − tk−1 = δk ≥ ε > 0. Thus, tk + Tk ≥

tk−1 +Tk−1 when Tk ≥ Tk−1−δk. Note, Tk ∈ [Tk−1−δk, Tk−1] covers standard compressing-

and receding-horizon implementations of MPC.

The cost at tk with control input (A.1) can be written as

Jk =

tk−1+Tk−1∫
tk

h
(
zk−1(τ), uk−1

o (τ)
)
dτ +

tk+Tk∫
tk−1+Tk−1

h
(
zk(τ), uko(τ)

)
dτ + V

(
zk(tk + Tk−1)

)
.

Note, the second integral (with limits tk−1 +Tk−1 to tk +Tk) is over a non-negative interval

since tk + Tk ≥ tk−1 + Tk−1 as shown. At tk−1, the optimal cost can be written as

J∗k−1 =

tk∫
tk−1

h
(
zk−1(τ), uk−1

o (τ)
)
dτ +

tk−1+Tk−1∫
tk

h
(
zk−1(τ), uk−1

o (τ)
)
dτ + V

(
zk−1(tk−1 + Tk−1)

)
,

and thus Jk − J∗k−1 =

tk+Tk∫
tk−1+Tk−1

h
(
zk(τ), uko(τ)

)
dτ −

tk∫
tk−1

h
(
zk−1(τ), uk−1

o (τ)
)
dτ + V

(
zk(tk + Tk)

)
−V
(
zk−1(tk−1 + Tk−1)︸ ︷︷ ︸
= zk(tk−1 + Tk−1)

)
.

Condition 2.2 implies the following with uko(t) = L(zk(t)) on t ∈ [tk−1 + Tk−1, tk + Tk]:

tk+Tk∫
tk−1+Tk−1

V̇
(
zk(τ)

)
dτ +

tk+Tk∫
tk−1+Tk−1

h
(
zk(τ), uko(τ)

)
dτ ≤ 0

and

V
(
zk(tk + Tk)

)
− V

(
zk(tk−1 + Tk−1)

)
+

tk+Tk∫
tk−1+Tk−1

h
(
zk(τ), uko(τ)

)
dτ ≤ 0.
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This implies that

Jk − J∗k−1 ≤ −
tk∫

tk−1

h
(
zk−1(τ), uk−1

o (τ)
)
dτ. (A.2)

Given Conditions 2.1 and 2.3, if ||z|| ≥ R, then h(z, uo) = ρ > 0. Since tk−tk−1 = δk ≥ ε > 0

by Definition 2.1 for the computation times, then

tk∫
tk−1

h(zk−1(τ), uo,k−1(τ))dτ ≥ ρε︸︷︷︸
β

> 0, (A.3)

where β > 0 is independent of k.

Combining inequalities (A.2) and (A.3) shows that Jk−J∗k−1 ≤ −β < 0, and since J∗k ≤ Jk,

then

J∗k − J∗k−1 ≤ −β < 0.

A.3 Proof of Theorem 2.1: Closed-Loop Asymptotic Stabil-

ity of MPC

Proof. Given the MPC algorithm and z(t0) ∈ Rn such that the FHC is feasible with some

T = T0, suppose there exists k ∈ Z+ such that zk−1(tk−1) /∈ Ωo and zk−1(tk) /∈ Ωo. Then,

zk−1(t) /∈ Ωo for t ∈ [tk−1, tk], and (2.7) holds. Consequently, if the nominal trajectory z

does not enter Ωo in finite time, then there exists k ∈ Z+ such that J∗k < 0, which is a

contradiction. This, together with Condition 2.2, imply the existence of finite time t̃ ≥ t0

such that z(t) ∈ Ωo, ∀t ≥ t̃.

Application of Step 3 in the MPC algorithm, uo = L(z) for t ≥ t̃, and use of Condition

2.2 imply

lim
t→∞
‖z(t)‖ = 0

since V is a Control Lyapunov Function for nominal system (3.2) with V̇ (z) < 0, ∀z, except

V̇ (0) = 0. Therefore, the closed-loop nominal system (2.1) converges asymptotically to the

origin, ∀z(t0) ∈ Rn, with control input uo given by the MPC algorithm.
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A.4 Proof of Corollary 3.1.1: Constructive R-MPC Inequal-

ities for a Class of Systems

Proof.

Establish Ωo Invariance for System (3.10) when x ∈ Ωo:

Pre- and post-multiplying (3.19) by diag(Q−1, I, I) and utilizing K = Y Q−1 from (3.25)

gives


ATQ−1+Q−1A+Q−1BK+KTBTQ−1 +µQ−1EETQ−1 CT+KTDT CTq +KTDT

q

C+DK −I 0

Cq+DqK 0 −µI

≤0.

(A.4)

Utilizing multiple Schur complements [8] and CTD = 0, this matrix inequality can be

written as
 ATQ−1+Q−1A+Q−1BK+KTBTQ−1 + CTC

+KTDTDK + 1
µ(Cq+DqK)T (Cq+DqK)

 Q−1E

ETQ−1 − 1
µI

 ≤ 0. (A.5)

For ζ = (xT , φT )T , corresponding to the state x and nonlinearity φ for the actual system

(3.10), taking ζTMζ, where M is the matrix in the preceding inequality, gives

xT
(
ATQ−1+Q−1A

)
x+ 2xTQ−1(Bu+Eφ) + ‖Cx‖2 + ‖Du‖2 + 1

µ

(
qT q − φTφ

)
≤ 0, (A.6)

where u = L(x) = Kx from (3.25) and q = Cqx+Dqu have been utilized.

Applying Lemma 3.2 with Condition 3.4, and making use of (3.17) and φ(0, t) = 0 ∀t,

gives

qT q − φTφ ≥ 0. (A.7)

Further, h(x, u) = ‖Cx‖2 + ‖Du‖2 ≥ 0 (which satisfies Condition 2.1). These inequalities

imply

xT
(
ATQ−1+Q−1A

)
x+ 2xTQ−1(Bu+ Eφ) ≤ 0, (A.8)

which gives V̇ (x) ≤ 0 for V (x) = xTQ−1x as defined in (3.24). Thus, V (x) is a Lyapunov

function for the actual system (3.10) and establishes the invariance of Ωo = {x : xTQ−1x ≤
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1} with control policy u = Kx from (3.25). Further, inequality (3.21) ensures Ωo ⊆ ZΩ

(with ZΩ ⊆ Zn as defined in Condition 3.6) [8].

Establish Bounded Input u ∈ Uo when x ∈ Ωo:

Pre- and post-multiplying the second LMI in (3.20) by diag(Q−1, I) and utilizing a Schur

complement gives Q−1 −KTΠoK ≥ 0, which is equivalent to

uTΠou ≤ xTQ−1x (A.9)

after pre- and post-multiplying with xT and x, respectively, and utilizing the feedback policy

u = Kx from (3.25). Thus, for x ∈ Ωo, uTΠou ≤ 1, so u ∈ Uo from Condition 3.6. Thus,

Corollary 3.1.1 establishes a framework and feedback policy satisfying Conditions 2.1 and

3.2 for system (3.10).

Establish Ωo Invariance for System (3.11) and Bounded Input uo ∈ Uo when

z ∈ Ωo:

The above results apply identically to the nominal system (3.11) when z ∈ Ωo through

the substitution of ζ = (zT , ψT )T , with ψ corresponding to the nonlinearity for the nominal

system (3.11), uo = L(z) = Kz, and qo = Cqz + Dquo. Thus, Corollary 3.1.1 establishes a

framework and feedback policy satisfying Conditions 2.1 and 2.2 for system (3.11).

Establish Xf invariance:

Let positive-definite function V (η) = ηTP−1η be a Lyapunov function candidate. Pre-

and post-multiplying (3.18) by diag(P−1, I) and utilizing Kf = LP−1 from (3.26) gives

ATP−1+P−1A+P−1BKf+KT
fB

TP−1 +P−1/λ+(β + λγ2)P−1EETP−1 CTq +KT
fD

T
q

Cq+DqKf −βI

≤0.

(A.10)

Using multiple Schur complements, this matrix inequality can be written as



 ATP−1 + P−1A+ P−1BKf +KT
f B

TP−1

+ 1
β (Cq+DqKf )T (Cq+DqKf ) + P−1/λ

 P−1E P−1E

ETP−1 − 1
β I 0

ETP−1 0 − 1
λ

1
γ2 I

≤ 0. (A.11)
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For ζ = (ηT , πT , wT )T , taking ζTMζ, where M is the matrix in the preceding inequality,

gives

ηT (ATP−1 + P−1A)η + 2ηTP−1(Buf + Eπ + Ew)

+ 1
β

(
(Cqη+Dquf )T (Cqη+Dquf )− πTπ

)
+ 1

λ

(
ηTP−1η − 1

γ2w
Tw
)
≤ 0, (A.12)

where uf = Kfη from (3.26) has been utilized for the error dynamics in system (3.15).

Making use of relationship (3.16) for π and the properties of θ in (3.17) gives

(Cqη+Dquf )T (Cqη+Dquf )− πTπ ≥ 0, (A.13)

thus

ηT (ATP−1 + P−1A)η + 2ηTP−1(Buf + Eπ + Ew) + 1
λ

(
ηTP−1η − 1

γ2w
Tw
)
≤ 0. (A.14)

From (3.13), 1
γ2w

Tw ≤ 1, thus

1
γ2w

Tw ≤ ηTP−1η when ηTP−1η ≥ 1, (A.15)

which implies

ηT (ATP−1 + P−1A)η + 2ηTP−1(Buf + Eπ + Ew) ≤ 0 when ηTP−1η ≥ 1, (A.16)

and thus V̇ (η) ≤ 0 when ηTP−1η ≥ 1. Thus, Xf = {η : ηTP−1η ≤ 1} is an invariant set

for η [2]. Additionally, inequality (3.22) ensures Xf ⊆ Xf (with Xf defined as in Condition

3.6) [8].

Establish Bounded Feedback uf ∈ Uf when η ∈ Xf :

Pre- and post-multiplying the first LMI in (3.20) by diag(P−1, I) and utilizing a Schur

complement gives P−1 −KT
f ΠfKf ≥ 0, which is equivalent to

uTf Πfuf ≤ ηTP−1η (A.17)

after pre- and post-multiplying with ηT and η, respectively, and utilizing the feedback policy
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uf = Kfη from (3.26). Thus, for η ∈ Xf , uTf Πfuf ≤ 1, so uf ∈ Uf from Condition 3.6.

Thus, Corollary 3.1.1 establishes a framework and feedback policy satisfying Condition

3.1 for the error dynamics in system (3.15).

Establish Xf Contained in Ωo:

Inequality (3.23) implies P−1 ≥ 1
c2
I > 1

c1
I ≥ Q−1. Then, for x ∈ Xf ,

1 ≥ xTP−1x ≥ 1
c2
xTx > 1

c1
xTx ≥ xTQ−1x. (A.18)

Thus, an x ∈ Xf is also x ∈ Br, x ∈ BR, and x ∈ Ωo with r =
√
c2 and R =

√
c1 for Br

and BR, respectively. The inequality establishes Condition 3.3 such that Xf ⊂ Ωo.
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Appendix B

Relevant Proofs for Discrete-Time
Algorithms

B.1 Proof of Theorem 5.1: Feedback Policy for Discrete SR-

MPC

The following Lemma is useful in the proof of Theorem 5.1.

Lemma B.1. Consider the discrete time system (5.22) satisfying Condition 5.4 and Con-

dition 5.5. Suppose that there exists some P = P T > 0 and associated Lyapunov function

Vk = ηTk P
−1ηk such that

Vk+1 − Vk + λ

(
Vk −

wTk wk
σ2

)
+ β(γ2ηTk C

T
q Cqηk − πTk πk) ≤ 0 , ∀ ηk, ∀wk, ∀πk, (B.1)

with some λ ∈ (0 , 1), σ > 0, and β > 0. Then Xf = {η : ηTP−1η ≤ 1} is an invariant

set for (5.22), i.e., if η0 ∈ Xf , then ηk ∈ Xf ,∀k ∈ Z+. �

Proof. Since G is a closed and convex set (Condition 5.4), and making use of Lemma 3.2,

then for any π there exists η and G ∈ G such that

πk = GCqηk.

This implies that

πTk πk = ηTk C
T
q G

TGCqηk ≤ γ2ηTk C
T
q Cqηk
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by use of (5.24). Set Xf is an invariant set for (5.22) if

Vk+1 ≤ 1, ∀Vk ≤ 1,∀wTk wk ≤ σ2, and ∀γ2ηTk C
T
q Cqηk ≥ πTk πk. (B.2)

Note, Condition 5.5 implies wTk wk ≤ σ2, ∀k. Making use of the S-procedure [8], the existence

of positive scalars c1, c2, and c3 satisfying the following inequality is sufficient for the

satisfaction of the inequalities in (B.2):

Vk+1 − 1 + c1(1− Vk) + c2(σ2 − wTk wk) + c3(γ2ηTk C
T
q Cqηk − πTk πk) ≤ 0, ∀ηk, ∀wk, ∀πk.

This inequality can be rewritten as

Vk+1− c1Vk − c2w
T
k wk − (1− c1− c2σ

2) + c3(γ2ηTk C
T
q Cqηk − πTk πk) ≤ 0 , ∀ ηk, ∀wk, ∀πk .

(B.3)

Similarly, inequality (B.1) can be rewritten as

Vk+1 − (1− λ)Vk −
λ

σ2
wTk wk + β(γ2ηkC

T
q Cqηk − πTk πk) ≤ 0 , ∀ ηk, ∀wk, ∀πk . (B.4)

Since λ ∈ (0, 1), letting c1 = 1 − λ, c2 = λ
σ2 , and c3 = β provides positive scalars that

establish the equivalence between inequalities (B.3) and (B.4), which completes the proof.

Proof of Theorem 5.1

Proof.

Establish Xf Invariance for System (5.22) when ηk ∈ Xf :

Let positive-definite function Vk = ηTk P
−1ηk be a Lyapunov function candidate. Pre-
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and post-multiply (5.27) by diag
([
P−1, 1

αγ I,
1
σ I, I, I

])
and let Kf = LP−1:



−(1− λ)P−1 0 0 ATd +KT
f B

T
d CTq

0 − 1
αγ2 I 0 ETd 0

0 0 − λ
σ2 I ETd 0

Ad +BdKf Ed Ed −P 0

Cq 0 0 0 −αI


≤ 0. (B.5)

Utilizing two Schur complements [8] on the above inequality, and letting β = 1
αγ2 , gives


−(1− λ)P−1 + βγ2CTq Cq 0 0

0 −βI 0

0 0 − λ
σ2 I

+


ATd +KT

f B
T
d

ETd

ETd

P−1
[
Ad +BdKf Ed Ed

]
≤ 0.

(B.6)

Pre- and post-multiply this inequality by ζT and ζ, respectively, where ζ =
(
ηTk , π

T
k , w

T
k

)T :

− (1− λ)Vk −
λ

σ2
wTk wk + β(γ2ηTk C

T
q Cqηk − πTk πk)

+ (ηTk A
T
d + uTf,kB

T
d + πTk E

T
d + wTk E

T
d )P−1(Adηk +Bduf,k + Edπk + Edwk) ≤ 0, (B.7)

where uf,k = Kfηk and Vk = ηTk P
−1ηk are utilized. From the relationship for ηk+1 in (5.22)

and Vk+1 = ηTk+1P
−1ηk+1, the above inequality is equivalent to (B.1). Thus, by Lemma

B.1, Vk is a Lyapunov function and Xf = {η : ηTP−1η ≤ 1} is an invariant set for (5.22).

Establish Xf Contained in Geometric Constraints of (5.11):

The ellipsoid Xf is contained in the polytope described by (5.12), if and only if (5.28)

holds [8]. Further, Xf is also contained within the region described by (5.13): pre- and post-

multiply (5.29) by diag
([
P−1, I

])
, use a Schur complement, and pre- and post-multiply by

ηTk and ηk, respectively, to obtain

ηTk Yjηk ≤ ηTk P−1ηk, (B.8)

which implies Xf ⊆ Λj since Xf = {η : ηTP−1η ≤ 1}. Thus, satisfaction of inequalities

(5.28) and (5.29) ensures satisfaction of (5.11) in Definition 5.1.
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Establish Bounded Feedback uf,k when ηk ∈ Xf :

Pre- and post-multiply (5.30) by diag
([
P−1, I

])
, use a Schur complement, and pre- and

post-multiply by ηTk and ηk, respectively, to obtain

uTf,kuf,k ≤ V 2
maxη

T
k P
−1ηk, (B.9)

where uf,k = Kfηk with Kf = LP−1. This inequality implies ||uf,k|| ≤ Vmax, and thus

uf,k ∈ Uf , when ηk ∈ Xf .

B.2 Proof of Theorem 5.2: Safety-Mode Feedforward Policy

for Discrete SR-MPC

The following Lemma is useful in the proof of Theorem 5.2.

Lemma B.2. Consider the discrete time system (5.39) satisfying Condition 5.7. Suppose

that there exists some S = ST > 0 and associated Lyapunov function[21] Vl = z̃Tl S
−1z̃l such

that

Vl+1 − Vl + λ

(
Vl −

ḡTl ḡl
δ2

)
≤ 0 , ∀ ḡl, (B.10)

with some λ ∈ (0 , 1) and δ > 0. Then Zs = {z̃ : z̃TS−1z̃ ≤ 1} is an invariant set for

(5.39), i.e., if z̃0 ∈ Zs, then z̃l ∈ Zs,∀l ∈ Z+. �

Proof. Lemma B.1 is more general and contains this Lemma as a special case. The proof

follows similarly and makes use of Condition 5.7, which implies ḡTl ḡl ≤ δ2,∀l.

Proof of Theorem 5.2

Proof.

Establish Zs Invariance for System (5.39) when z̃l ∈ Zs:

Let positive-definite function Vl = z̃Tl S
−1z̃l be a Lyapunov function candidate. Pre- and
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post-multiply (5.41) by diag
([
S−1, 1

δ I, I
])

and let Ks = RS−1:


−(1− λ)S−1 0 ATd +KT

s B
T
d

0 − λ
δ2
I ETd

Ad +BdKs Ed −S

 ≤ 0. (B.11)

Utilizing a Schur complement [8] on the above inequality gives

 −(1− λ)S−1 0

0 − λ
δ2
I

+

 ATd +KT
s B

T
d

ETd

S−1
[
Ad +BdKs Ed

]
≤ 0. (B.12)

Pre- and post-multiply this inequality by ζT and ζ, respectively, where ζ =
(
z̃Tl , ḡ

T
l

)T :

− (1− λ)Vl −
λ

δ2
ḡTl ḡl + (z̃Tl A

T
d + uTos,lB

T
d + ḡTl E

T
d )S−1(Adz̃l +Bduos,l +Edḡl) ≤ 0, (B.13)

where uos,l = Ksz̃l and Vl = z̃Tl S
−1z̃l are utilized. From the relationship for z̃l+1 in (5.39)

and Vl+1 = z̃Tl+1S
−1z̃l+1, the above inequality is equivalent to (B.10). Thus, by Lemma B.2,

Vl is a Lyapunov function and Zs = {z̃ : z̃TS−1z̃ ≤ 1} is an invariant set for (5.39).

Establish Zs Contained in Geometric Constraints of (5.14):

The ellipsoid Zs is contained in the polytope described by (5.15), if and only if (5.42)

holds [8]. Further, Zs is also contained within the region described by (5.16): pre- and post-

multiply (5.43) by diag
([
S−1, I

])
, use a Schur complement, and pre- and post-multiply by

z̃Tl and z̃l, respectively, to obtain

z̃Tl C
T
s ΠjCsz̃l ≤ z̃Tl S−1z̃l, (B.14)

which implies Zs ⊆ Υj since Zs = {z̃ : z̃TS−1z̃ ≤ 1}. Thus, satisfaction of inequalities

(5.42) and (5.43) ensures satisfaction of (5.14) in Definition 5.2.

Establish Bounded Feedforward uos,l when z̃l ∈ Zs:

Pre- and post-multiply (5.44) by diag
([
S−1, I

])
, use a Schur complement, and pre- and
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post-multiply by z̃Tl and z̃l, respectively, to obtain

uTos,luos,l ≤ U2
maxz̃

T
l S
−1z̃l, (B.15)

where uos,l = Ksz̃l with Ks = RS−1. This inequality implies ||uos,l|| ≤ Umax, and thus

uos,l ∈ Uo, when z̃l ∈ Zs.
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[13] H. Chen and F. Allgöwer. A quasi-infinite horizon nonlinear model predictive control

scheme with guaranteed stability. Automatica, 34(10):1205–1217, 1998.
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