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Abstract

Control algorithms suitable for online implementation in engineering applications, such as
aerospace and mechanical vehicles, often require adherence to physical state and control
constraints. Additionally, the chosen algorithms must provide robustness to uncertainty
affecting both the system dynamics and the constraints. As further autonomy is built into
these systems, the algorithms must be capable of blending multiple operational modes with-
out violating the intrinsic constraints. Further, for real-time applications, the implemented
control algorithms must be computationally efficient and reliable. The research in this the-
sis approaches these application needs by building upon the framework of MPC (Model
Predictive Control).

The MPC algorithm makes use of a nominal dynamics model to predict and optimize
the response of a system under the application of a feedforward control policy, which is
computed online in a finite-horizon optimization problem. The MPC algorithm is quite
general and can be applied to linear and nonlinear systems and include explicit state and
control constraints. The finite-horizon optimization is advantageous given the finite online
computational capabilities in practical applications. Further, recursively re-solving the
finite-horizon optimization in a compressing- or receding-horizon manner provides a form of
closed-loop control that updates the feedforward control policy by setting the nominal state
at re-solve to the current actual state. However, uncertainty between the nominal model
and the actual system dynamics, along with constraint uncertainty can cause feasibility,
and hence, robustness issues with the traditional MPC algorithm.

In this thesis, an R-MPC (Robust and re-solvable MPC) algorithm is developed for
uncertain nonlinear systems to address uncertainty affecting the dynamics. The R-MPC
control policy consists of two components: the feedforward component that is solved online
as in traditional MPC; and a separate feedback component that is determined offline, based

on a characterization of the uncertainty between the nominal model and actual system.



vi
The addition of the feedback policy generates an invariant tube that ensures the actual
system trajectories remain in the proximity of the nominal feedforward trajectory for all
time. Further, this tube provides a means to theoretically guarantee continued feasibility
and thus re-solvability of the R-MPC algorithm, both of which are required to guarantee
asymptotic stability.

To address uncertainty affecting the state constraints, an SR-MPC (Safety-mode aug-
mented R-MPC) algorithm is developed that blends a reactive safety mode with the R-MPC
algorithm for uncertain nonlinear systems. The SR-MPC algorithm has two separate op-
erational modes: standard mode implements a modified version of the R-MPC algorithm
to ensure asymptotic convergence to the origin; safety mode, if activated, guarantees con-
tainment within an invariant set about a safety reference for all time. The standard mode
modifies the R-MPC algorithm with a special constraint to ensure safety-mode availabil-
ity at any time. The safety-mode control is provided by an offline designed control policy
that can be activated at any time during standard mode. The separate, reactive safety
mode provides robustness to unexpected state-constraint changes; e.g., other vehicles cross-
ing/stopping in the feasible path, or unexpected ground proximity in landing scenarios.

Explicit design methods are provided for implementation of the R-MPC and SR-MPC
algorithms on a class of systems with uncertain nonlinear terms that have norm-bounded
derivatives. Further, a discrete SR-MPC algorithm is developed that is more broadly appli-
cable to real engineering systems. The discrete algorithm is formulated as a second-order
cone program that can be solved online in a computationally efficient manner by using
interior-point algorithms, which provide convergence guarantees in finite time to a pre-
scribed level of accuracy. This discrete SR-MPC algorithm is demonstrated in simulation of
a spacecraft descent toward a small asteroid where there is an uncertain gravity model, as
well as errors in the expected surface altitude. Further, realistic effects such as control-input
uncertainty, sensor noise, and unknown disturbances are included to further demonstrate

the applicability of the discrete SR-MPC algorithm in a realistic implementation.
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Chapter 1

Introduction

The proliferation of autonomy and online decision-making capabilities in engineering sys-
tems, such as robotic ground or air vehicles, has paralleled the advancements of contempo-
rary computation, sensing, and communication resources. What makes possible the coales-
cence of these capabilities and resources? Algorithms. Fundamental research and develop-
ment in algorithms has enabled real-time, online capabilities such as path planning (guid-
ance), sensor fusion, situational awareness, onboard network communication, and many
other tasks that push the limits of contemporary engineering systems. The research in this
thesis focuses on general control algorithms, which include path planning, that are suitable
for online implementation.

Pushing control policy design online provides the benefit of using real-time sensor infor-
mation and onboard situational awareness to provide improvements to system path planning
and operation. Many practical engineering systems are nonlinear, subject to both state and
control constraints, and can have several operational modes and control objectives. Nonlin-
earities arise in the system dynamics, as well as in the physical limitations of real systems
(e.g., actuator stroke/throw, maximum torque, temperature bounds, physical barriers).
Control algorithms utilize models for these nonlinearities and are inherently flawed by un-
certainty in both the actual system dynamics and the constraints. Online re-planning of
control policies can mitigate some of this uncertainty by updating the guidance and control
policies, and even control objectives, based on actual system information not available to
offline designs. These updates can increase efficiency of operation as well as mitigate risks
(provide safety) from unanticipated operational changes.

The complexity of online algorithms is subject to the computational limitations of con-

temporary processors. Online algorithms must be sized appropriately so that available
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computational resources can generate any guidance or control policy updates at a rate ap-
propriate to the operational mode and system dynamics. Additionally, online algorithms
must be robust to the aforementioned uncertainties in actual systems and be capable of
providing feasible control solutions given those uncertainties and the need for safety/risk
mitigation.

The development of general control algorithms that can address the needs of practical
engineering applications requires a framework that is computationally efficient, handles
a diversity of dynamics, incorporates constraints, blends operational modes, and considers

control objectives. The framework of model predictive control provides a suitable candidate.

1.1 The Framework of Model Predictive Control

The framework of MPC (Model Predictive Control) computes control inputs through online
solution of an FHC (Finite-Horizon optimal Control problem) that can enforce explicit state
and control constraints. The FHC utilizes a nominal system model to predict the response of
the actual system dynamics to the control inputs over the finite planning horizon, hence the
origin of the MPC algorithm name. In MPC, the computed control is applied to the actual
system in a feedforward (i.e., open-loop) manner over a specified time interval (shorter
than the FHC planning horizon), followed by a re-solve (re-computation) of the FHC with
the initial nominal state at the re-solve time set to the current state of the actual system.
Recursively re-solving the FHC in this manner provides a form of closed-loop feedback
for the MPC algorithm by incorporating current actual state measurements for computing
current feedforward inputs.

The FHC re-solves are typically performed in a receding-horizon manner, which is why
MPC is also commonly referred to as RHC (Receding Horizon Control). In RHC, the finite
planning horizon is receded forward in time at each FHC re-solve; the planning horizon is
often of fixed length in RHC. In another variant of MPC called compressing-horizon control,
the planning horizon is shortened at each re-solve by the change in time since the prior FHC
solution; thus, the total application time of MPC never exceeds the length of the planning
horizon from the first FHC solution.

The framework for MPC is quite general and can be applied to linear and nonlinear

systems. The MPC algorithm is beneficial in applications where online computation of
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control inputs is necessary; for instance, in applications with evolving control objectives or
applications where state or control constraints might change based on current operating
conditions (i.e., location in state space). Additionally, the finite planning horizon in the
FHC is beneficial in many practical applications given the limitations of online computa-
tion. However, uncertainty between the nominal model and the actual system dynamics,
along with constraint uncertainty can cause feasibility issues during FHC re-solves and thus
robustness problems in the practical application of MPC. The research contributions in

this thesis address these issues.

1.2 A Summary of the MPC Literature

The generality of MPC comes from several decades of research and development of the
framework. The literature on MPC is quite extensive, and the review herein is by no means
exhaustive. Many excellent references are omitted for brevity. Fortunately, survey papers
on MPC highlight many of the contributions; see for example Mayne et al. [31] and Garcia
and Morari [17]. The intent of this review is to familiarize the reader with some of the past
contributions to the theoretical framework for MPC to both clarify the concept of MPC
and to put into context the theoretical framework presented in Chapter 2.

The origin of MPC was in engineering applications from the chemical and process con-
trol industry where system dynamics are nonlinear and subject to both state and control
constraints; the papers by Qin and Badgwell [38] and Richalet [42] provide some examples of
these applications. At inception, no theoretical frameworks were available to suggest MPC
was a stable control method. However, tuning of the control policies for the slow dynamics
of these applications demonstrated empirically that the MPC framework was indeed stable.

Initial proofs of stability for the MPC algorithm focused on unconstrained continuous-
time systems, except for the terminal state fixed at the origin. The dynamics were assumed
linear and perfectly known (i.e., the nominal model used in the FHC was identical to
the actual dynamics being controlled). One of the early stability results for MPC was
formulated by Thomas [49] for linear time-invariant systems with an FHC consisting of
a quadratic cost on the control input, along with the fixed terminal state constraint. A
fixed finite-time horizon allowed for an a priori computation of a single, optimal gain that

provided closed-loop asymptotic stability in application of MPC to these types of systems.
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This early work was extended by Kwon and Pearson [26] to linear time-varying systems
with the FHC incorporating a quadratic cost on both the state and control. The algorithm
required backward integrating a time-varying Riccati equation over a finite interval, from
the horizon length back to the current time, to generate controller gains for each MPC
update. Extensions of this work by Kwon et al. [25] provided a method to update gains in
a computationally-efficient manner that avoided re-integration of the Riccati equation.

Stability of MPC was extended to continuous-time, autonomous nonlinear systems by
Chen and Shaw [12]. This research was also likely the earliest contribution to utilize the
FHC cost function as a Lyapunov function [21] to prove stability of the MPC algorithm.
Unrelated research by Mayne and Michalska [30] for continuous-time, autonomous nonlinear
systems also utilized a Lyapunov approach to prove stability, along with an in-depth analysis
of the continuity of the MPC control policy based on the necessary conditions for optimality
from Pontryagin’s Minimum Principal [22]. The research by Rawlings and Muske [41]
established a stable MPC algorithm for discrete-time, linear time-invariant systems that
could be solved online as a finite-dimension quadratic program, including both state and
control constraints. Research by Keerthi and Gilbert [20] established the stability of MPC
for discrete-time, time-varying nonlinear systems and also incorporated both discrete state
and control constraints.

The early MPC stability results constrained the terminal state to the origin, which can
cause computational difficultly in the FHC optimization with MPC applied to nonlinear
systems. This issue was addressed with the dual-mode receding-horizon MPC developed
by Michalska and Mayne [33]; this method has become a standard approach in many MPC
algorithms. The method proposed a relaxation to the terminal equality constraint, enforcing
instead an inequality constraint in the FHC that created a terminal set about the origin.
The dual-mode approach is required to ensure stability of the algorithm with the relaxation.
Outside the terminal set, control comes from the receding-horizon MPC solutions. Inside
the terminal set, control is switched to a local linear feedback controller that stabilizes
the nonlinear system in a neighborhood of the origin (the local linearized system must be
stabilizable). Extensions of this work by Chen and Allgéwer [13] created a quasi-infinite
horizon MPC where the FHC cost function adds a terminal cost, or cost-to-go, component
that acts like the discarded portion of an infinite-horizon cost function. This terminal cost

further acts as a CLF (Control Lyapunov Function [46, 47, 16]) for the nonlinear system
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within the terminal set. This latter contribution is part of the baseline MPC algorithm
defined in Chapter 2 of this thesis.

Since the computation of the MPC control policy relies on a nominal system model, the
robustness of MPC to system uncertainties is non-trivial to establish. For an overview of
several robust MPC contributions, refer to the survey paper by Jalali and Nadimi [19]. One
approach to robustness is sufficiently reducing the time intervals for re-solving the FHC. The
research by Michalska and Mayne [33] derived explicit upper bounds, which can be very
conservative, for the re-solve time intervals. A game theoretic approach to robust MPC
by Chen et al. [14] combines MPC with Hs, control to formulate an open-loop min-max
MPC method that applies to a class of continuous-time uncertain nonlinear systems with
input constraints and exogenous disturbances. Research by Magni et al. [28] uses a similar
game theoretic and min-max MPC approach for generating closed-loop Ho, control laws
for unconstrained, uncertain nonlinear systems. A drawback of these min-max methods is
a significant online computational demand for re-solves.

For discrete-time, linear time-invariant systems, several robust MPC methods have been
developed. Methods by Kothare et al. [23] design the control policy as a sequence of state-
feedback control laws that at each discrete time step minimize a worst-case infinite-horizon
objective function (as in min-max MPC) that includes state and control constraints. The
optimization requires online solution of LMIs (Linear Matrix Inequalities), which can be
computationally expensive for large-dimension problems. Separate research by Scokaert
and Mayne [44] also used a feedback min-max MPC approach for developing robust control
policies for discrete-time linear time-invariant systems subject to bounded disturbances and
state and control constraints. An LMI-based robust MPC method by Smith [45] combines
the benefits of feedforward- and feedback-based approaches to robust MPC. A simplification
of the online MPC re-solves was provided in the research by Bemporad et al. [6, 7] for
systems with linear state and linear control constraints. For this class of systems, the input
control policy is shown to be a piecewise-affine and continuous function of the state, based
on a polyhedral partition of the feasible state space.

Another concept for robust MPC involves generating invariant tubes about the feed-
forward guidance policy to maintain the actual system in the proximity of the predicted
nominal model response. A tube-based approach for linear discrete-time systems with

bounded disturbances is described by Mayne and Langson [29] and Mayne, Seron, and
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Rakovié [32]. Time-varying or parameter-uncertain linear discrete-time systems have also
been considered by Langson et al. [27], and computational improvements and optimization
of the invariant-tube cross section are presented by Rakovi¢ and Mayne [40]. Extensions by
Rakovi¢ et al. [39] apply the tube-based methods to nonlinear discrete-time systems with
matched nonlinearities, including some special classes of piecewise affine systems.

A common assumption made in asymptotic stability proofs for MPC is that the FHC
terminal set contains the desired target state, which is usually assumed as the origin. Many
practical applications have computational limitations or limited knowledge of nearby state
constraints, which result in an FHC planning horizon that does not include the desired
target state. Thus, the FHC terminal set does not contain the target state for the initial
feasible solution. Subsequent FHC re-solves shift the terminal set toward the desired target
state, but there is no mathematical guarantee that the FHC will remain feasible. To address
the potential for an infeasible re-solve, research by Schouwenaars et al. [43] for discrete,
linear time-invariant systems imposes a constraint in the FHC that ensures each feasible
solution ends in a terminal safety set, which is a control-invariant set. If a subsequent re-
solve is infeasible, the prior feasible solution allows entry into the terminal safety set. This
method is enhanced in the RSBK (Robust Safe But Knowledgeable) algorithm by Kuwata
et al. [24]. These algorithms assume perfect state-constraint knowledge during the current
planning horizon, with the safety mode added to address feasibility issues of FHC re-solves

for a shifted terminal set.

1.3 Thesis Contributions and Organization

The contributions in this thesis are motivated by vehicle control applications requiring
efficient, online guidance and control algorithms capable of robustly maneuvering a system
toward a desired state while simultaneously providing safety from uncertainty in state-
constraint knowledge (e.g., safety from other vehicles unexpectedly blocking the feasible
path or unexpected ground proximity during landing).

A baseline MPC algorithm is presented in Chapter 2 based on traditional methods out-
lined in the extensive MPC literature. This baseline algorithm is valid for general nonlinear
systems and enforces both state and control constraints in the FHC. Further, a terminal set

is enforced rather than a fixed terminal-state constraint. The contributions in this thesis



build upon this baseline MPC algorithm.

A robust MPC algorithm is developed in Chapter 3 for continuous-time uncertain non-
linear systems. This R-MPC (Robust and re-solvable MPC) algorithm generates online a
nominal feedforward control policy based on a modified FHC. An additional offline-designed
feedback policy is added in R-MPC to generate an invariant tube that ensures the actual
states remain in the proximity of the nominal feedforward trajectory. The tube provides an
explicit characterization of the R-MPC robustness, which can accommodate uncertainties
and disturbances in the actual dynamics up to the level considered in the feedback policy
design. An important contribution of the R-MPC algorithm is the modified FHC, which
puts a relaxation on the initial nominal state for re-solves. The initial nominal state is
allowed to be within the invariant tube rather than fixed to the actual state, as in the base-
line MPC; this relaxation guarantees continued FHC feasibility during re-solves and leads
to robust asymptotic stability of the R-MPC algorithm. The R-MPC algorithm places no
requirements on the re-solve rate, which is useful in online applications with computational
limitations. Additionally, specific design methods are provided for a class of continuous-time
systems with uncertain nonlinear terms that have norm-bounded derivatives. The R-MPC
algorithm development was joint work performed with Behget Acikmese [1].

The R-MPC algorithm is modified and augmented with a separate, reactive safety mode
in Chapter 4 to handle uncertainty in the state constraints during the planning horizon. The
SR-MPC (Safety-mode augmented R-MPC) algorithm has two operational modes: standard
mode and safety mode. The standard mode implements a modified R-MPC algorithm that
is executed as long as changes in state constraints do not violate the FHC feasibility or
system safety. The safety mode consists of an offline-designed control policy that, if needed,
can maintain the system in an invariant safety set. The R-MPC modification enforces
an additional FHC constraint to ensure safety-mode availability at any time along the
standard-mode planning horizon. This is a significant contribution that also blends the
two operational modes, guaranteeing a mode switch from standard to safety mode will not
violate prescribed state or control constraints. From the safety mode, a higher-level decision
algorithm (which is not a part of this thesis research) would need to establish a new initial
feasible solution, if one exists, or a new control objective to restart standard mode. The
SR-MPC algorithm is applicable to systems with static state constraints that might change

after initial feasibility is established for the standard mode. For example, a vehicle can be
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maintained in safety mode if an object or other vehicle crosses/stops in the feasible path
(outside the invariant safety set), or a spacecraft can be held in safety mode if sensors
detect unexpected proximity (low altitude) relative to the ground. Specific design methods
are provided for the class of continuous-time systems with uncertain nonlinear terms that
have norm-bounded derivatives.

Chapter 5 develops a discrete implementation of the SR-MPC algorithm targeted to
applications such as mechanical or aerospace vehicles. The significant contributions are
the development of discrete versions of the continuous-time algorithms from Chapter 3 and
4. Additionally, the discrete algorithm is formulated as a second-order cone program [9]
that ensures constraint satisfaction and can be solved online in a computationally efficient
manner by using interior-point algorithms, which provide convergence guarantees to within
a specified accuracy in a finite number of steps [36, 48, 50]. The discrete SR-MPC algorithm
maintains the ability to activate the safety mode at any discrete time along the planning
horizon, providing safety to uncertain state constraints along the entire planning horizon.
This is a contribution that adds to similar methods that incorporate safety only at the end
of the planning horizon and assume perfect state-constraint knowledge along the planning
horizon. The feedback policy design and portions of the discrete FHC development were
joint work with Behget Agikmese [10].

The discrete SR-MPC algorithm is applied to a detailed engineering example in Chapter
6 involving an autonomous spacecraft descending toward the surface of an asteroid. Un-
certainty in the asteroid gravity field and surface topology provide an ideal scenario for
evaluating the framework of the discrete SR-MPC algorithm Additionally, realistic effects
such as control-input uncertainty, sensor noise, and unknown disturbances, which are not
included in the theoretical formulation of SR-MPC, are incorporated into the simulations
to evaluate the performance of the discrete algorithm in a less-academic example.

A concluding chapter summarizes the algorithms developed in this thesis. Additionally,

limitations and potential extensions are discussed for each of the algorithms.



Chapter 2

Model Predictive Control

In traditional receding- or compressing-horizon implementations of MPC (Model Predictive
Control), control inputs are computed online by solving an FHC (Finite-Horizon optimal
Control problem) over a finite time horizon, subject to state and control constraints, and
with the current state of the system as the initial state. The control is then applied to the
system in a feedforward (i.e., open-loop) manner over a specified time interval, followed by
an update to the current state and a re-solve (re-computation) of the FHC over a compressed
or receded time horizon. The re-solve provides an updated feedforward input, which is then
applied to the system and the cycle repeats.

The intent of this chapter is to define the baseline MPC method that is used for compar-
ison with the contributions in this thesis. The MPC formulation presented herein is based
upon those by Chen and Allgdwer [13], Mayne et al. [31], Jadbabaie [18] and Primbs [37]
where a CLF (Control Lyapunov Function [46, 47, 16]) is imposed on the terminal state as
part of the cost function. The method additionally uses a terminal state constraint, as well
as trajectory state and control constraints. Refer back to Section 1.1 of Chapter 1 for a re-
view of the other relevant literature and contributions to MPC. Proofs for the lemmas and
theorem in this chapter are provided in Appendix A in lieu of external references because

future chapters build upon and extend them.

2.1 System Description and Control Objective

Consider the following nonlinear system as the nominal system for application of MPC:

zZ = F(z,up,t), (2.1)
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with nominal state z € R", control input u, € R™, and F(-) € R"™ is perfectly known
(i.e., there are no parametric uncertainties or unknown disturbances). Without a loss of
generality, the origin is considered an equilibrium point for system (2.1), F'(0,0,¢) = 0; any
non-zero equilibrium point F(Z, u,,t) = 0 can be shifted to the origin.

The control objective is to obtain control input u, that, when applied to nominal system
(2.1), renders the origin (z = 0) asymptotically stable, with a region of attraction R,, C Z,,
such that

2(t) € Zy, and u,(t) € Uy, Vit > to, (2.2)

when z(ty) € Ry,. Sets Z,, C R™ and U, C R™ define nominal state and control constraints,
respectively: Z, is connected and contains the origin in its interior; U, is compact and
contains the origin in its interior. The set R,, will be defined based on the architecture of

the MPC algorithm.

2.2 Architecture of MPC Algorithm

The following FHC is typical of the type of constrained optimization solved in an MPC
framework. The FHC finds a control input u, that minimizes an objective function over a
finite time horizon (T > 0), subject to the dynamics of nominal system (2.1), the imposed

state and control constraints, and a terminal state constraint.

| FHC (for MPC)
Find J* = min J(z, uo; t;,T, 2(t;)) where

ti+T
T 1T, () = / h(=(7), wo(7))dr + V (2(t; + T))

subject to
Z = F(z,up,t),
2(t) € Zn, Vit e [t ti+T)
uo(t) € U,

z2(t; +T) € Q,,

where z(t;) is the nominal system (2.1) state at initial time ¢;.
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The set R,, will be defined based on feasibility of the FHC:

R, ={{ € Z, : FHC is feasible with z(¢;) = £} . (2.3)

The following conditions on the FHC and the nominal system (2.1) are instrumental for

proving asymptotic stability (e.g., [13, 18]) of the MPC algorithm:

Condition 2.1. Function h(-) is positive definite [21], satisfying
h(z,uo) > al|z||P + blluo||", Vz,uo, (2.4)

with p > 1, 7 > 0, a and b both positive constants, and h(0,0) = 0. o

Condition 2.2. Function V(z) is positive definite (V(z) > 0,Vz # 0, with V' (0) = 0), and
there exists a control law u, = £(z) such that V defines a Control Lyapunov Function for
(2.1) satisfying

VV(2)F(z,L(2),t) + h(z,L(2)) <0, VzeQ,, (2.5)

where 2, C Z, is compact, convex, contains the origin in its interior, and is invariant for

dynamics (2.1) under application of control policy £(z). Additionally, £L(z) € U,, Vz € Q,.
o

Condition 2.3. There exists closed ball’ By centered at the origin such that set €,
satisfies

Br C Q. (2.6)
o

Note that invariance of €2, under application of control law £(z) implies that if z(¢9) €
Q, for some tg, then z(t) € Q,, Vt >ty [21]. Additionally, Conditions 2.1 and 2.2 imply that
cost function J in the FHC is also positive definitive (J(z,u,) > 0,Vz, Vu,, with J(0,0) = 0).
The following algorithm describes the MPC approach. Note, the superscript k on uk(t)
and z¥(t) in the below MPC algorithm denotes the feedforward input and the resulting

nominal trajectory, respectively, associated with a re-solve at time t.

1B, 2 {z: |2l < p, p> 0}
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MPC Algorithm |

Begin at £ = 0 with z(tp) € R,, and iterate the following steps over re-solve times

ty for k€ ZT:

1. Measure state z(t;,) of nominal system (2.1) and solve the FHC at time ¢; = t;,

with z(t;) = z(tx) and T = T}, to obtain u¥(t) on t € [ty, t + Tk).
2. Monitor z(t) while applying u,(t) = uf(t) to nominal system (2.1) on t €

[tr, tra1], with z(t) = 25(t).

3. Check the following over t € [tg, tg+1]:

if 2(t) € Q, for some t > tq, then set u,(t) = £(2),Vt >t and stop iteration.

Lemma 2.1 (Re-solvability of the FHC). Suppose that the FHC'is feasible at ty with horizon
To, and let ty for k € Z* be the times that a solution of the FHC is re-solved. Then, the
feasibility of the FHC is guaranteed at tj, with Ty > Typ_1 — Ok, Vk € ZT, 8, = tg, — tp_1,
0 < 6 < Ty_1 provided Condition 2.2 holds. o

Proof. See Appendix A.1 for a proof of Lemma 2.1. O

For proving stability of the MPC algorithm, a sequence of monotonically increasing

re-solve times is needed:

Definition 2.1 (Re-Solve Times). Let t; (k € Z1) be re-solve times for the FHC satisfying

infy 6, > € for some € > 0 where 6, =t — tr_1. o

Lemma 2.2 (Shrinking Optimal Cost with Compressing or Receding Horizon). Suppose the
FHC is feasible at some re-solve time t_1 and Ty_1 with optimal cost J;,_,, and Conditions
2.1, 2.2, and 2.8 hold. Then, the FHC is feasible at re-solve time ti, with Ty € [Tp—1 —
6k, Th—1] (in fact any Ty > tp_1 — O ), and if 25" 1(tr_1) ¢ Q, and 2"~ (ty) & Q,, then the
optimal cost satisfies

Ji —Jp_1 < =B, for some [(3>0. (2.7)

O

Proof. See Appendix A.2 for a proof of Lemma 2.2. O
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While each solution of the FHC provides a feedforward input u, to drive the nominal
system (2.1) toward the origin, the ability to re-solve the FHC and thus update the feed-
forward input u, based on the current state provides closed-loop feedback. The following
theorem establishes closed-loop asymptotic stability and finite-time convergence of the MPC

algorithm:

Theorem 2.1 (Closed-Loop Asymptotic Stability of MPC). Consider system (2.1) for z
and control input u, described by the MPC algorithm. If Conditions 2.1, 2.2, and 2.3 are
satisfied, then the origin (z = 0) of the resulting closed-loop system is asymptotically stable

with region of attraction R,. o

Proof. See Appendix A.3 for a proof of Theorem 2.1. O

2.3 Implementation and Limitations

Practical implementation of the MPC algorithm can be difficult due to online computational
capability, measurement and computation delay, parametric uncertainty, and unknown ex-
ogenous disturbances. These sources of error can lead to difficulty in maintaining feasibility,
and thus re-solvability, of the FHC. Rather than providing a specific example to demon-
strate the effect of uncertainty, a graphic illustration of the MPC algorithm applied to a
constrained nominal system will be contrasted. A specific example demonstrating these
issues will be given in the next chapter on Robust MPC, where a contrast is made between
the robust method and the baseline MPC method of this chapter.

For applications of the MPC algorithm, the nominal system in (2.1) serves as a model
for the actual system

= f(z,u,t), (2.8)

where x € R™ and u € R™. The actual system contains uncertainty in either the parameters
or from unknown, exogenous disturbances, and thus F(+) in (2.1) is a known, idealized model
of f(-) in (2.8).

The asymptotic stability guarantees for the MPC algorithm require the nominal tra-
jectory to remain on the computed trajectory under application of feedforward policy u,
between re-solve times. This provides an initial, feasible nominal state for z(¢) at subse-

quent re-solves, as depicted in the left-side sketch in Figure 2.1. However, if there is error
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Trajectory z(?) Expected Trajectory z(?)

e Resolve Times e Expected Resolve
Past Solutions Actual Trajectory x(z)
Application of u, = £(z) e Failed Resolve

Resolve
Iterations

Figure 2.1: Expected MPC trajectories (left) and system uncertainty causing an infeasible
state at re-solve (right).

in the nominal model, and F(-) # f(-), then the actual trajectory z(¢) will not remain on
the expected trajectory z(t), thus providing no guarantee of an initial, feasible state for
the FHC at the re-solve time. In fact, the actual state z(t) can even violate the nominal
system state constraints Z,, which also renders the MPC algorithm infeasible at a re-solve,

as depicted in the right-side sketch of Figure 2.1.
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Chapter 3

Robust Model Predictive Control
with Guaranteed Re-Solvability

Computation of the feedforward MPC (Model Predictive Control) inputs relies on a nominal
model of the actual system being controlled, and robustness to system uncertainties and
guarantees of re-solvability (i.e., continued FHC feasibility) can be difficult to establish.
The literature review in Section 1.1 of Chapter 1 highlights many significant contributions
toward a robust MPC framework. This chapter presents an R-MPC (Robust and re-solvable
MPC) algorithm for uncertain, nonlinear continuous-time systems and builds upon the
baseline MPC method presented in Chapter 2. The formulation of the R-MPC algorithm
is comprised of my joint work with Behget Ac¢ikmese that appeared in [1].

The R-MPC algorithm developed herein utilizes separate feedforward and feedback in-
put components. The feedback is designed offline as a robust control policy based on a
characterization of the uncertainty between the actual system and nominal model. The
feedforward input is computed online in a compressing- or receding-horizon manner by
solving an FHC-R (Finite Horizon optimal Control problem for R-MPC) that differs from
the standard FHC by including a relaxation on the initial nominal state for the FHC-R re-
solve. The additive feedback policy is applied with the feedforward and forms an invariant
tube that is guaranteed to maintain actual trajectories within the proximity of the nominal
trajectories. Note that no upper bounds are placed on the re-solve time interval with the
R-MPC algorithm.

The generation of an invariant tube for robust MPC has previously been applied to linear
discrete-time systems with bounded disturbances by Mayne et al. [29, 32], with extensions

to time-varying or parameter-uncertain linear discrete-time systems by Langson et al. [27]
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and with improvements to online computation by Rakovié¢ and Mayne [40]. Extensions by
Rakovié et al. [39] applied invariant tubes to robust MPC of nonlinear discrete-time systems
with matched nonlinearities, including some special classes of piecewise affine systems.

The approach herein is developed for general continuous-time, uncertain nonlinear sys-
tems, with design methods for a special class of uncertain, nonlinear systems with bounded
derivatives. The invariant tube is prescribed based on specified state constraints in addi-
tion to a characterization of the uncertainty/nonlinearity. The control policies are designed
without any form of feedback linearization or cancellation of nonlinearities through the

control policy.

3.1 Description of the Actual System and Control Objective

Consider the following uncertain, nonlinear dynamical system as the actual system for
application of R-MPC:
T = f(x,u,t), (3.1)

with actual state z € R™ and control input u € R™. Let a nominal system model of the
actual system (3.1) be given by
Z = F(z,up,t), (3.2)

with nominal state z € R™ and control input u, € R™, and where F(-) is a known, ap-
proximate model of f(-) from (3.1). Without a loss of generality, the origin z = z = 0 is
considered an equilibrium point shared by both systems; f(0,0,t) = F(0,0,t) = 0.

The control objective is to obtain control input u that, when applied to actual system
(3.1), renders the origin (x = 0) asymptotically stable, with a region of attraction R, C X,
such that

x(t) € X and u(t) € U, Vit > o, (3.3)

when z(tp) € Rq. Sets X C R™ and U C R™ define actual state and control constraints,
respectively: X is connected and contains the origin in its interior; U is compact and
contains the origin in its interior. The set R, will be defined based on the architecture of

the R-MPC algorithm.
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3.2 Architecture of the R-MPC Algorithm

The control approach for R-MPC splits the control input u for actual system (3.1) into two

components:

ult) = () + uy (), (3.4)

where u, is a feedforward control input and uy is a feedback control input. The feedforward
component u, of the control input is determined through online solution of an FHC-R that
utilizes the nominal system model (3.2), and the feedback component us is determined
offline as a control policy to handle a characterization of the uncertainty in the actual
system (3.1).

Sets X and U are given constraints imposed on the overall design of the control input.
The following additional constraint sets (all containing the origin in their interiors'), are

used in constructing the control approach:
U,+U;CU and Z,+X;CX. (3.5)

Set Z,, is connected and contains the origin in its interior, and sets X, U,, and Uy are
compact and contain the origin in their interiors.

In preview, the R-MPC algorithm uses online solution of the FHC-R to design feed-
forward control input u, € U, to maintain the nominal states within constraint set Z,,.
Additionally, the feedback policy uy € Uy is designed to establish invariant tube X about
the nominal trajectory (utilized as a feedforward, guidance trajectory) to maintain the
actual states in the proximity of the nominal states, providing robustness to dynamics un-
certainty and disturbances. The set definitions in (3.5) ensure that the actual constraints
in (3.3) are obeyed.

The following FHC-R is similar to the baseline FHC of Chapter 2 but with a relaxation
on the initial state, which appears as a constraint on the difference between the actual and
nominal state. The initial nominal state for the optimization is not required to be equal to
the current actual state. This relaxation, along with feedback uy, is useful for establishing
robust re-solvability of the FHC-R, which is needed to ensure asymptotic stability of the
R-MPC algorithm.

TFor sets A and B, C = A + B implies the following: if a € A and b € B then a+b € C.
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’FHC—R (for Robust and re-solvable MPC) ‘
Find J* = min J(z, uo; t;,T, 2(t;)) where

ti4+T
(2o 1, T 2(1:)) = / h(2(7), ug(7))dr + V (2(t; + T))

subject to
Z = F(z,up,t),
2(t) € Zp, Vit e [t ti + T
uo(t) € Uy,
2(ti +T) € Q,,

{L‘(tl) — Z(ti) € Xf, (36)

where z(t;) is the actual system (3.1) state at initial time ¢;.

The set R, which specifies the region of attraction for the control objective in (3.3), is

defined based on feasibility of the FHC-R:
Ro=1{{€Z,+X;: FHC-R is feasible with x(¢;) = &} . (3.7)

The baseline MPC algorithm conditions 2.1, 2.2, and 2.3 are also conditions for proving
asymptotic stability of the R-MPC algorithm. The following additional conditions are
useful in proving stability for the actual system with control determined with the R-MPC

algorithm.

Condition 3.1. There exists a feedback control policy uy = K¢(z,2) € Uy in (3.4) that
renders set X ¢ invariant for n(t) £ z(t) —2(t) € Xy and for all u,(t