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ABSTRACT

Rate-and-state friction formulations have been widely used to reproduce a number
of observations on faulting in the earth’s crust, including earthquake nucleation,
creeping fault segments, dynamic earthquake rupture, aftershock sequences, and
episodic slow slip events. The formulations have also been used to explain the
motion of landslides and glaciers. In this thesis, we use numerical simulations to
study various factors that can affect the stability of fault slip with rate-and-state
friction, including poroelastic bulk properties and dilatation/compaction of the fault
material in the presence of fluids, fault healing, injection rate when there is fluid
injected into the fault, as well as dynamic weakening of the fault gouge. We also seek
to optimize simulations with rate-and-state friction by developing a potential-based
formulation using machine learning.

First, we study the stability of frictional fault slip in the presence of fluids, with a
focus on fault loading due to fluid injection into the fault as done in many field and
laboratory experiments. In Chapter 2, we present a boundary-integral approach on
simulating frictional fault slip in a permeable shear layer surrounded by poroelastic
bulk. The approach is then used to explore the effects of poroelasticity and inelastic
dilatancy on the stability of frictional fault slip in a fluid-injection problem. We
find that the diffusion into and poroelastic properties of the bulk can significantly
stabilize fault slip, with the stabilization by bulk diffusion and poroelastic properties
comparable to the well-known stabilizing effects of the dilatancy mechanism.

In Chapter 3, we further develop the boundary integral code to allow for purely
elastic bulk with the same fluid transport properties as the poroelastic bulk material
and consider the effect of fault healing and fluid injection rate on fault slip. We
show that the poroelastic bulk effects can be very closely captured by using the
undrained value of Poisson’s ratio in an elastic bulk model with the same fluid mass
diffusivity of the bulk. We find that fault healing significantly delays the onset of
dynamic slip events and restricts their spatial extent, making the initial response
of the fault to fluid injection much different than its longer-term response. While
this is an expected conclusion, fault healing is not typically accounted for in fluid-
injection modeling which often uses simpler slip-dependent friction laws. We also
find that faster or intermittent injection rates lead to more frequent but more spatially
constrained dynamic slip events, for the same injected fluid mass, motivating further
investigations into injection strategies that would optimize fault stability.
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Second, in Chapter 4, we numerically simulate a laboratory experiment of sponta-
neous dynamic rupture by developing a 3D finite-element model of the experiment
with rate-and-state friction. In the experiment, a dynamic rupture is initiated on
a Homalite-100 interface and then produces an intermittent slip in the rock gouge
embedded into a part of the interface. Our simulations show that the laboratory
findings are consistent with rock gouge which is rate-strengthening at low slip rates
but dynamically weakening at high slip rates through the mechanism similar to flash
heating. However, to fit the experimental results, the traditional flash-heating for-
mulation needs to be substantially modified, potentially due to effects of localization
and delocalization of slip in the rock gouge.

The third part of the thesis focuses on identifying a potential-based formulation
for the rate-and-state friction laws. Due to their empirical derivation, the rate-and-
state friction laws cannot be written as the gradients of a potential, which leads
to difficulties in implicit solution of dynamic frictional problems. In Chapter 5,
we present a potential-based formulation for the rate-and-state friction law through
Neural Network approximation and training on datasets generated by a one-degree-
of-freedom spring-slider system with the rate-and-state friction law. The learnt
potential is able to reproduce the results with rate-and-state friction law, and indeed
facilitates an implicit solution of dynamic problems. However, the training of the
potential requires a much larger dataset than fitting the original rate-and-state friction
law.

Overall, our modeling significantly advances our understanding of the factors
that control stability of frictional sliding on natural faults and suggests promising
machine-learning directions in replacing the empirical rate-and-state formulations
with the ones based on thermodynamic potentials.
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4.1 Experimental setup and results from [11]. (a) A faulted Homalite-
100 plate with part of the interface containing a rock gouge layer with
the mean particle size less than 5 microns. The measurements of the
response of the gouge layer to the incoming dynamic rupture are done
through dynamic DIC with the indicated field of view. (b) Evolution
of slip rates inferred along the interface within the field of view as
a function of time. After the initial rupture arrives and gets arrested
(40 to 50 𝜇s) at around 𝑥1 = 15 mm, dynamic slip re-nucleates in the
gouge layer at the same location, 𝑡 = 80 𝜇s. (c) Friction coefficient
and slip rate in the gouge layer at the location of 𝑥1 = 8 mm show
the initial strengthening effect as the slip rates increase with rupture
arrival, and then dynamic-weakening effect after the slip rate exceeds
2 m/s, which within a similar range as previous studies on flashing
heating slip rates of fault gouge [11, 13]. . . . . . . . . . . . . . . . 80

4.2 Setup for the numerical modeling of the experiments. (a) 3D finite
element model inspired by the lab experiment in [11]. 2 pieces of
Homalite-100 (Ω) are pressed together by unaxial load 𝑃 = 14.3
MPa via a frictional interface (𝐼). The part of the interface with the
rock gouge layer is modeled with different frictional properties than
Homalite-100. Dynamic rupture is triggered by introducing a normal
stress perturbation along the interface motivated by wire explosion in
the experiment. (b) Schematics of the frictional interface with the lo-
cations of the wire and rock gouge. The Homalite-100 and rock-gouge
portions of the interface are modeled with velocity-weakening (VW)
and velocity-strengthening (VS) rate-and-state friction, respectively.
Region 1 is Homalite-100 only while region 2 has gouge embedded
in Homalite. Note that the gouge zone is surrounded by a thin wall
of Homalite at the front and back surfaces. (c) Normal-stress pertur-
bation as a function of position (𝑥1) along the fault at time 𝑡. The
symmetric trapezoid is centered at the wire position. (d) Peak value
of normal stress perturbation as a function of time 𝑡. The effective
wire explosion time (𝑡 = 0 𝜇s) is modeled as the first time 𝜎𝑝𝑒𝑎𝑘
reaches its maximum. Note that we do not have measured data for
the explosion and,unless specified otherwise, we adjust the explosion
parameters to match the arrivel of the initial rupture arrives at the
edge of the field of view at around 40 𝜇s. . . . . . . . . . . . . . . . 81
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4.3 Case 1: The fault interface has uniform Homalite-100 friction prop-
erties (no fault gouge is involved). Evolution of (a) slip rate and (b)
shear stress. The initial slip rate over the entire interface is set to
be 𝑉𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 10−7 m/s. The interface has uniform friction parameters
and initial condition. Shear, pressure and Rayleigh wave speeds are
marked as 𝑐𝑠, 𝑐𝑝 and 𝑐𝑟 , respectively. Note that the results plotted are
at the front surface 𝑥3 = 0 mm where they are observed in the exper-
iment. We see that rupture propagates over the entire pure Homalite
interface as expected based on prior experiments. The rupture starts
as sub-Rayleigh and then transitions into intersonic rupture speeds
(often called super-shear), with the propagating Rayleigh signature
as the remnant of the original sub-Rayliegh front, consistent with ob-
servations in Figure 4.1(b) of two fronts arriving at the gouge portion
of the interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.4 Case 2: Homalite-100 interface with VS fault gouge (no flash heat-
ing). (a) 𝑥1-Time diagram of slip rate, measured at 𝑥3 = 0 mm (the
surface of the sample). (b) 𝑥1-Time diagram of shear stress, measured
at 𝑥3 = 0 mm. (c) 𝑥1-Time diagram of slip rate differences between
𝑥3 = −5 mm (the center line of the 2D interface) and 𝑥3 = 0 mm,
note that the color scale is changed to [−2, 2] m/s to show that the
difference is small. (d) 𝑥1-Time diagram of shear stress, measured at
𝑥3 = −5 mm. The initial slip rate over the entire interface is set to be
𝑉𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 10−7 m/s. The plot marking are similar to Figure 4.3. The
gouge layer with VS friction arrests the initial rupture upon its arrival.
A secondary rupture arrives at the gouge layer at around 80 𝜇s. We
also notice that the slip-rate difference in 𝑥3 direction is not signifi-
cant compared to its magnitude, while the difference in shear stress
is significant due to the transition from velocity-weakening Homalite
to velocity-strengthening gouge, as 𝑥3 decreases from 0 mm to −5 mm. 86
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4.5 Case 3: Homalite-100 interface with VS and FH fault gouge. (a)
𝑥1-Time diagram of slip rate, measured at 𝑥3 = 0 mm. (b) 𝑥1-
Time diagram of shear stress, measured at 𝑥3 = 0 mm. (c) 𝑥1-Time
diagram of slip rate differences between 𝑥3 = −5 mm and 𝑥3 = 0 mm,
note that the color scale is changed to [−2, 2] m/s to show that the
difference is small. (d) 𝑥1-Time diagram of shear stress, measured at
𝑥3 = −5 mm. The initial slip rate over the entire interface is set to be
𝑉𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 10−7 m/s. The plots have markings similar to Figure 4.4.
We observe that adding flash-heating (FH) dynamic-weakening effect
to the VS region allows for the secondary rupture at around 80 𝜇s to
propagate into the gouge layer.. In (d) we see that the shear resistance
of the gouge layer first strengthens and then dynamically weakens
due to the imposed FH effect, producing the intermittancy in slip. . . 87

4.6 𝑥1-Time diagrams of slip rates along the interface within the field
of View from (left to right) the experiment; Homalite-only interface
(case 1) Homalite with velocity-strengthening (VS) gouge (case 2);
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mental measurements. The simulation of case 2 reproduces several
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seclf-contained event E observed in the experiment. . . . . . . . . . 88

4.7 𝑥1-Time diagrams of shear stress along the interface within the field
of view from the experiment and for case 3 at different 𝑥3. The
experimental measurement is likely some average of the shear stress
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4.9 Comparison between aging and slip law for case 3. (Top row) 𝑥1-Time
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4.12 Self nucleation can be achieved by introducing a more efficient 𝑉𝑤-
slip weakening patch within the gouge layer. We also eliminate the
come-back rupture at 80 microseconds by modifying properties of the
Homalite interface away from the gouge. (a) The Homalite section to
the left of the wire is set to be velocity-strengthening, to impair slip
there that causes a come-back rupture. A patch with variable flash-
heating properties is put in the gouge zone, around 𝑥1 = 15 mm, i.e.,
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of 𝑉𝑤 vs. slip in the patch is piecewise linear, going from values
appropriate for gouge layer to values characteristic of bare surfaces.
(c) The X-T diagrams of slip rate for cases without and with the
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entering the gouge zone at around 90 𝜇s, while the case with the
patch achieves self-nucleation by its more efficient weakening. (d)
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Then adding the Homalite surrounding in 𝑥3 direction (the 3D case)
further fosters higher slip rate, because the Homalite region has lower
shear resistance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.1 Example: spring slider under displacement-control driving force. . . 105
5.2 Training of𝑊, 𝐷† and 𝐷 through fitting 𝑓 𝑁𝑁 to 𝑓 𝑅𝑆. . . . . . . . . . 107
5.3 Examples of velocity jump 𝑉𝑖 (𝑡) (upper, sequence 19), continuous

variation 𝑉𝑖 (𝑡) (lower, sequence 99) and their corresponding 𝑓 𝑅𝑆s in
the synthetic dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.4 Examples of trained 𝑓 𝑁𝑁 vs. 𝑓 𝑅𝑆 for both velocity jump (upper) and
continuous variation (lower) sequences. Loss here refers to relative
𝐿2 error as defined by (5.16). These two sequences are from the test
dataset and are not used for training the potentials. . . . . . . . . . . 111

5.5 A typical fit of rate-and-state friction to experimental data, the relative
𝐿2 error of 𝑓 𝑅𝑆 against 𝑓 𝐸𝑋𝑃 is 0.0015. Data provided by Taeho Kim. 112



xxiv

5.6 Learned𝑊 (𝑥) (left) and𝐷∗( ¤𝑑) (right). 𝑊 is linear in 𝑥 corresponding
to the reference friction coefficient, 𝐷∗ is convex, which complies
with the definition as the Legendre transform of 𝐷. . . . . . . . . . . 113

5.7 Learned 𝐷†( ¤𝑥, 𝝃), 𝐷† is not convex in ( ¤𝑥, 𝜉). The red dots show the
trajectories of velocity-jump dataset, while the green dots show the
trajectories of continuous variation dataset. . . . . . . . . . . . . . . 114

5.8 Linear regression of 𝜉 (3) and 𝜉 (2)s on 𝜉 (1) . Red and green dots are
the data points while the solid lines are the regression result. (0, 0)
should be a fixed point since all sequences start with 𝜉 = 0 as their
initial condition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.9 An example sequence of spring-slider solution with original rate-
and-state friction, NN potentials, and NN potentials further trained
on spring-slider sequences . . . . . . . . . . . . . . . . . . . . . . . 116

5.10 Growth of relative 𝐿2 error in ¤𝑥(𝑡) as Δ𝑡 increases. Note that since
(RS, implicit) cannot solve some of the sequences that the other three
pairs can solve, its error is not plotted here. . . . . . . . . . . . . . . 117

D.1 An example sequence of spring-slider solution with original rate-
and-state friction, NN potentials, and NN potentials further trained
on spring-slider sequences . . . . . . . . . . . . . . . . . . . . . . . 135



xxv

LIST OF TABLES

Number Page
5.1 Training and testing relative 𝐿2 error for dim(𝝃) = 0, 1, 2, averaged

over 160 test sequences. Error decreases significantly after introduc-
ing one hidden variable dim(𝝃) = 1, while introducing more hidden
variables do not further reduce the error. . . . . . . . . . . . . . . . 110

5.2 Testing relative 𝐿2 error for the original potentials only trained on
velocity-jump and continuous variation dataset (NN), updated poten-
tials further trained on 200 spring-slider like dataset (NN’). averaged
over 10 test spring-slider sequences. . . . . . . . . . . . . . . . . . 116

5.3 Ratio of sequences that cannot be solved by NN, RS models with
implicit, explicit solvers. . . . . . . . . . . . . . . . . . . . . . . . . 117

A.1 Parameter values in the study . . . . . . . . . . . . . . . . . . . . . 128
B.1 Linear poroelastic material properties of the bulk material . . . . . . 133
B.2 Friction and diffusivity properties of the fault interface . . . . . . . . 133
C.1 Linear elastic material properties of Homalite-100 . . . . . . . . . . 134
C.2 Rate-and-state friction and flash heating properties of the Homalite-

100 interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
C.3 Rate-and-state friction, flash heating properties and initial condition

of the Fault gouge region vs. Cases. 𝑉𝑖𝑛𝑖𝑡𝑖𝑎𝑙 and 𝜃𝑖𝑛𝑖𝑡𝑖𝑎𝑙 are dependent
on each other so only one should be specified for each case. . . . . . 134

D.1 Mean relative 𝐿2 error in ¤𝑥(𝑡) averaged over 77 sequences, for NN,
RS models with implicit, explicit solvers. . . . . . . . . . . . . . . . 136

D.2 Standard deviation of relative 𝐿2 error in ¤𝑥(𝑡) over 77 sequences, for
NN, RS models with implicit, explicit solvers. . . . . . . . . . . . . . 136



1

C h a p t e r 1

INTRODUCTION

1.1 Numerical modeling of frictional fault slip
Frictional fault slip is the key process of many geological activities, including slow
slip events and dynamic earthquakes. Understanding the underlying physics of
such frictional fault slip is important for predicting seismic hazards and preventing
destructive induced earthquakes during industrial activities. Since it is usually
difficult to conduct direct measurements through probing near geological faults, it
is important to develop numerical modeling tools of frictional fault slip, which will
help scientists verify their hypothesis and conjectures through numerical simulations
with specific physical laws. In this thesis, we focus on two important problems of
frictional fault slip. We first present our numerical modeling for frictional fault
slip in the presence of fluids, which has wide applications in industry. Second, we
focus on developing a numerical modeling method for frictional slip through fault
gouge, a special interface material made up of particles that has significant dynamic
weakening mechanism when undergoing high slip rate frictional sliding. Finally,
we discuss a potential formulation for the original rate-and-state friction law that
facilitates implicit solution of dynamic problems associated.

Frictional fault slip in the presence of fluids
Modeling of frictional fault slip in the presence of fluids has applications in a lot of
geophysical problems, notably in the realms of earthquake mechanics, sequestration
of CO2, and extraction of geothermal energy. Understanding the dynamics of fault
slip is essential for predicting seismic hazards and avoiding destructive induced
seimicities during industrial activities. One key framework for modeling fault slip
behavior is the rate-and-state friction (RSF) law, which characterizes the frictional
resistance of a fault as a function of slip rate and the evolving state of the fault surface
[9, 23, 17, 26]. The RSF law captures the complexities of both the direct effect
once slip rate suddenly changes, and the evolution effect as fault slip accumulates
afterwards, and with four parameters, the RSF law is capable of explaining the
experimental results of stable and unstable frictional fault slip [17, 19].

Fluids play an important role in modulating fault slip by changing the effective
normal stress through pore pressure changes [13, 5, 11]. Elevated pore fluid pressure
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can reduce the effective normal stress, potentially triggering slip on pre-existing
faults. This mechanism is a primary concern in fluid injection activities, such as
hydraulic fracturing, wastewater disposal, and geothermal energy extraction, which
have been associated with induced seismicity [12, 10, 27, 6].

The poroelastic response of the bulk material surrounding a fault is also a critical
factor in determining the slip behavior under fluid injection. Poroelasticity, the
coupling of fluid flow and mechanical deformation, is described by Biot’s theory
[3], and has been applied to various geophysical problems [20, 22]. Poroelastic
effects can lead to complicated interactions between fluid pressure diffusion and
fault slip, influencing both the spatial and temporal patterns of induced seismicity.

In some previous studies, the bulk material surrounding geological faults has been
modeled using linear elasticity, and fluid diffusion is assumed to be within the fault
shear layer only. This approach has been employed to investigate the fundamental
aspects of fault slip and stress transfer [18, 25, 14]. These models provide valuable
insights, but may overlook critical solid-fluid interactions that are significant in
poroelastic surrounding bulk, whose existence is non-negligible around pre-existing
faults with large historic slip.

A previous study by Healy et al. [12] on the Denver earthquakes first highlighted
the potential for fluid injection to induce seismicity. Subsequent studies, such as
Ellsworth [10], have further elucidated the mechanisms by which fluid pressure
changes can trigger fault slip. Laboratory experiments have also contributed sig-
nificantly to our understanding, with Dieterich [9] and Ruina [23] establishing the
foundational rate-and-state friction laws. These laws have been applied to various
fault slip scenarios, including those induced by fluid injection [17, 26].

The interplay between fluid pressure and frictional fault slip has been explored in
numerous studies. Hubbert and Rubey [13] provided early theoretical insights into
the role of fluid pressure in fault mechanics, while Byerlee [5] and Marone [17]
offered empirical evidence from rock friction experiments. More recent work by
Guglielmi et al. [11] has demonstrated the triggering of seismicity by fluid-induced
aseismic slip, underscoring the importance of pore pressure changes in the stability
of fault slip.

Theoretical advancements have been complemented by numerical models that in-
corporate poroelastic effects. Rice and Cleary [20] and Rudnicki [22] provided early
theoretical frameworks for poroelasticity, which have been further developed and
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applied to induced seismicity by Segall [28] and Cappa and Rutqvist [6]. These
models account for the diffusion of pore pressure and its impact on fault slip, offering
insights into the temporal and spatial evolution of induced seismicity.

In summary, the study of frictional fault slip in the presence of fluids involves
a complex interplay of mechanical and hydraulic processes. The rate-and-state
friction framework, combined with poroelastic modeling, provides an approach for
physically understanding and predicting fault slip behavior under fluid injection.

Laboratory earthquakes propagating through fault gouge
Understanding the mechanics of earthquakes and fault slip is vital for mitigating seis-
mic hazards, and laboratory experiments have been instrumental in advancing this
knowledge. In particular, fault gouge, the finely ground rock material found within
fault zones, plays a crucial role in earthquake propagation. The mechanical behavior
of fault gouge is affected by various factors, including pressure, temperature, and
the presence of fluids. Early studies, such as Marone1998, highlighted the frictional
properties of fault gouge and its influence on fault slip stability. Subsequent research
by Beeler et al. [1] demonstrated how higher pressures and temperatures could sta-
bilize fault slip, while Di Toro, Goldsby, and Tullis [7] showed that high-velocity
friction experiments could replicate dynamic weakening mechanisms in fault gouge,
leading to unstable slip and earthquake propagation. Other notable contributions
include the work of Brantut et al. [4], which examined the role of fluid satura-
tion in reducing friction and enhancing slip propagation, and Samuelson, Elsworth,
and Marone [24], which focused on the microstructural evolution of fault gouge
during slip, emphasizing the importance of grain size reduction and comminution
processes.

In this thesis, motivated by the recent study by Rubino, Lapusta, and Rosakis
[21], which provides insightful experimental results of slip rate along the fault
gouge during a laboratory earthquake, through detailed Digital-Image-Correlation
measurement. Building on previous studies, their experimental setup involved a
biaxial shear apparatus designed to replicate fault slip under controlled conditions.
This apparatus allowed for the precise application of normal and shear stresses,
simulating realistic fault conditions. The dynamic fault slip was triggered by bursting
a electronic wire on the frictional interface, mimicking the conditions of dynamic
earthquake rupture. Additionally, high-speed cameras were employed to capture
and analyze the slip over the fault gouge during slip events through DIC, providing
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valuable real-time data on fault slip in the gouge zone.

Rubino et al. (2022) reported several key findings from their experiments. They
observed that dynamic ruptures arrive into the fault gouge at speeds similar to shear
wave speed. Their also found the first rupture of the fault gouge, leading to stress
concentrations. The acoustic emissions recorded during slip events correlated with
the onset and propagation of dynamic ruptures, suggesting a potential method for
real-time monitoring of fault slip in natural settings. Furthermore, they identified
thermal pressurization as a critical weakening mechanism during high-speed slip,
where rapid temperature increases within the fault gouge reduced friction and fa-
cilitated slip propagation. These findings underscore the importance of fault gouge
properties in controlling the dynamics of earthquake rupture and suggest that similar
mechanisms may operate in natural fault zones.

Despite these advancements, there is a continued need for numerical modeling
to complement laboratory experiments in understanding the propagation of earth-
quakes through fault gouge. Numerical models can help simulate a broader range of
conditions and parameters that are challenging to replicate in the laboratory. They
allow researchers to examine their hypothesis and conjectures for the underlying
physics that governs the frictional behavior of the fault gouge. Better understanding
of frictional fault slip over fault gouge with numerical modeling will in the long
term enhance our ability to predict and mitigate the impacts of natural earthquakes,
ultimately contributing to safer and more resilient communities.

Difficulties with implicit solution of rate-and-state friction
Since the rate-and-state friction law was originally derived empirically from labo-
ratory experiments [9, 8, 16], the friction formulation as well as the evolution law
cannot be obtained from taking the gradient of a scalar function, i.e., a potential.
This can lead to difficulties in implicit solution of dynamic problems that involves
rate-and-state friction law. With a potential formulation of rate-and-state friction,
the incremental implicit solution of dynamic problems can be written as convex min-
imization problems, which have unique solutions and are usually computationally
easy to solve.

To find appropriate potentials that behaves similarly enough to the original rate-
and-state friction law, one way is to construct them as Recurrent Neural Operators
(RNOs) [15, 2]. RNOs are fundamentally Neural Networks (NNs) that represent
the right-hand-side of typical Ordinary Differential Equations (ODEs). They are
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powerful tools for modeling of history-dependent time sequences because of their
excellent fitting capabilities and independence of time stepping. By applying the idea
of RNOs, we aim to find the potentials corresponding to the rate-and-state friction
law, which are able to capture the rate-and-state dependent features obserations, and
the same.

1.2 Research objectives
Here we present three major research studies that attempt to solve various numerical
modeling problems of frictional fault slip. In the first study included in Chapters 2
and 3, we focus on developing a Boundary Integral code that can simulate frictional
fault sliding under plane-strain condition, with rate-and-state friction and poroelastic
or elastic permeable bulk material surrounding the fault. we would like to investigate
the effects of poroelastic bulk, inelastic dilatancy of the fault shear layer, extent of
fault healing, or the initial slip rate over the fault, fluid diffusivities both within the
shear layer and the bulk material, injection rate as a function of time on the stability
of frictional fault slip. Moreover, we would like to identify a strategy of controlling
the rate of fluid-injection such that the instability of the fault slip is minimized, and
thus we minimize the destruction potentially caused by the injection.

In the second study presented by Chapter 4, we explore the numerical modeling of
intermittent laboratory earthquakes propagating into fault gouge zone, which has
not only rate-and-state frictional behavior but also dynamic weakening mechanism
associated. We would like to develop a 3D finite element model for the laboratory
experiment, and explore what frictional formulation of the fault gouge can reproduce
the experimental observation of first arresting the rupture, while then allows for the
propagation of another rupture the gouge zone. This study also aims to find a
physical dynamic weakening rate-and-state friction model, such that self nucleation
within the gouge zone can spontaneously occur after the first rupture arrives and
gets arrested.

In the third study included in Chapter 5, we aim to find a potential formulation for the
rate-and-state friction that can transform the incremental implicit solution of a dy-
namic problem into a convex minimization problem. We would like to construct the
potentials using Recurrent Neural Operators and train them on sequences generated
by the original rate-and-state friction law. We testify how well they can capture the
rate-and-state dependencies of friction comparing with the original rate-and-state
friction law, and whether or not the trained potentials actually facilitate implicit
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solution of dynamic problems.

Finally in Chapter 6, we conclude with a summary of results and contributions
toward modeling and studying the stability of frictional fault slip with rate-and-state
friction, as well as a newly proposed potential formulation of rate-and-state friction
that facilitates implicit solution of dynamic problems. Lastly, we provide some
suggestions for future work relevant to the studies we have presented in this thesis.
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C h a p t e r 2

A SPECTRAL BOUNDARY-INTEGRAL METHOD FOR FAULTS
AND FRACTURES IN A POROELASTIC SOLID:

SIMULATIONS OF A RATE-AND-STATE FAULT WITH
DILATANCY, COMPACTION, AND FLUID INJECTION

2.1 Introduction
The role of fluids in seismic and aseismic faulting processes has been of significant
interest in the last few years. Mounting evidence indicates that fluids may play an
important role in a diverse set of mechanisms that alter fault slip behavior ranging
from earthquake triggering to slow slip events.

The most prominent example of fluid and fault interactions is the clear link between
fluid injection and induced seismicity, as originally pointed out by [49, 35] and
remains a critical issue [25]. This phenomenon has a straightforward mechanical
explanation: higher pore pressures, due to injection, reduce the effective normal
stress and thus the frictional resistance of the fault. This causes increased slip rate
on faults and may accelerate the generation of seismic instabilities. This problem
has been frequently modeled with a straightforward implementation of one-way
coupling of pore pressure and frictional strength where pore pressure perturbations
are imposed and slip or number of seismic events are computed.

The coupling injection and fault slip is far from trivial, for example, injection into
faults may also lead to sustained aseismic transients [69, 3, 22], which may trig-
ger microseismicity [29, 71]. The aseismic slip itself may later become seismic
depending on the frictional properties of the fault [38]. A more detailed investiga-
tion of this problem reveals considerable complexity in pore pressure evolution if
heterogeneous permeability structures and poroelasticity are considered [73]

The poroelastic properties of the crust have lately been receiving more interest,
most prominently as a long-ranging and fast-acting mechanism in which faults can
be stressed due to injection or extraction [58]. However, there is also significant
literature on the role of poroelasticity in influencing the nucleation or propagation
of seismic and aseismic ruptures [53, 24, 36, 33, 34]. An effect of particular
importance in regard to the influence of poroelasticity is that, during in-plane sliding,
compression and dilation of the host rock induces pore pressure change in the shear
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zone [33, 34]; this effect is discussed further in Section 4.2. Thus the poroelastic
response of the bulk, induced by an ongoing rupture, may influence the effective
normal stress and hence shear resistance to the rupture, creating a feedback loop.
Poroelasticity also influences and introduces a diffusion-dependent time-evolving
shear stress on the fault plane with significant implications for the stability of sliding
[34].

Processes other than poroelasticity may change pore pressure in an active shear zone
and affect rupture and instability formation on faults. The generation of aseismic
slip transients on faults is believed to be related to pore fluids. For example, transient
slow slip events (SSEs) in subduction zones are thought to be related to high pore
pressure conditions [41, 9]. A primary challenge in explaining the mechanics of
transient slow slip is to understand why it starts, but does not become an earthquake.
One potential mechanism is a geometric restriction, in which the high-pore-pressure
region is large enough to cause slip acceleration, for example, due to rate-and-state
velocity-weakening friction properties, but too small for that slip to become seismic
[40, 41]. Another potential explanation is the change from velocity-weakening to
velocity-strengthening friction with increasing slip rates [63, 30, 39]. Rate-and-
state faults with velocity-strengthening friction and additional destabilizing effects
can also produce SSEs in models with poroelasticity [33] and viscoplasticity [65].
Inelastic dilatancy of granular fault gouge [44, 48] can lead to a reduction in pore
pressure and stabilize fault slip. This is a naturally present fluid-related mechanism
that can explain how slow slip transients do not evolve into seismic events [60, 62].
Modeling of fault slip with inelastic dilatancy can explain many properties of slow
slip events, including their scaling [19]. Dilatant behavior of rocks acts at many
scales and does not just affect fine scale granular gouge, but for example larger
scale brittle rock masses may undergo inelastic deformation [7]. Here we focus on
in-elastic dilatancy of gouge and large scale elastic volumetric changes in the bulk.

Multiple mechanisms may act at a time. Recently, numerical simulations have started
exploring the simultaneous injection and inelastic dilatancy in a diffusive shear zone
[16, 72]. However, these efforts have been limited to a non-diffusive and elastic
bulk. Coupling with a poroelastic bulk introduces another degree of complexity,
where elastic dilation and compression of the bulk generate pore pressure transients.
Further complexity is introduced by field observations indicating that permeability
of the shear zone in a fault core may be very different from the surrounding damage
zone and host rock [70]. In addition, the shearing of gouge material can dramatically
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reduce the permeability perpendicular to the shearing direction and thus result in
the shear zone having a significantly anisotropic permeability [74].

When slip speed becomes high enough in a narrow enough shear layer with small
enough permeability, then thermal pressurization of pore fluids due to shear heating
may also become important, e.g., [52, 6]. While such effects may be critical for seis-
mic rupture evolution [46], they may be negligible or at least much less pronounced
in the nucleation phases of the seismic cycle [61, 59], which are primarily the focus
of this study. Consequently, we do not account for thermal pressurization, although
it can be added to the model and numerical implementation developed here, e.g.,
following the approach of [47].

A number of authors have presented dislocation solutions and boundary integral
formulations for poroelasticity [51, 15, 14, 13, 64]. While these solutions have
useful applications to fracture and faulting problems, they generally have not been
formulated to account for processes where pressure inside the fracture or on the
frictional surface may change. This limits applicability to a certain class of problems.

Here we present a spectral boundary-integral method (SBIM) and derive novel
analytical spectral boundary integral solutions appropriate for faulting and induced
seismicity problems in a poroelastic bulk where pressure inside a thin shear zone
could be changing. The SBIM allows us to simulate quasi-dynamic slow and fast
slip on a rate-and-state fault with dilatancy/compaction and fluid flow in a plane-
strain poroelastic medium. We take a boundary layer approach where the outer
solution, which is the spectral representation of the poroelastic bulk, treats the
fault as a zero-thickness interface with suitable boundary conditions. However, the
inner solution considers the fault to be a finite-width shear zone. We consider the
frictional properties of the shear zone to be determined by their width-averaged
properties. The bulk is an isotropic standard quasi-static Biot poroelastic solid
with a hydraulic diffusivity 𝑐. The shear zone has frictional strength described by
rate-and-state friction, with inelastic state-dependent dilatancy and compaction and
anisotropic permeability: the permeability across the shear zone is different than
the permeability along the shear zone. The inelastic state-dependent dilatancy and
compaction of the shear zone are implemented using the [60] approach, as explained
later. We frequently refer to this process only as "dilatancy" for the sake of brevity,
and that is also how it is commonly referred to in the fault mechanics community.
However, we remind the reader that the "dilatancy" law also predicts compaction
under certain conditions. The pore pressure in the layer is simplified and assumed
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to be bi-linear where the two linear profiles are continuous at the center of the shear
zone as in [34][see also Section 4.2]. The spectral representation uses analytical
convolution kernels, which are truncated for efficiency similar to [37], but at time
scales relevant for the bulk diffusion at the specific wavenumber.

Heimisson, Rudnicki, and Lapusta [34] presented an analytical and scaling analysis
of a dilatant fault in a poroelastic medium under long terms steady-state loading,
thus exploring the stability of such faults in the context of spontaneous event nu-
cleation at steady-sliding conditions. That analysis was achieved by a linearized
stability analysis around steady state and provided useful first-order insights into
governing parameters of fault stability. Here we solve a much more general problem
numerically, by developing a method that allows us to efficiently simulate the fully
nonlinear response of such faults. For example, we can simulate fault response due
to injection into the fault in a fully coupled manner, where we account for anisotropic
shear zone diffusion, in-elastic dilatancy, coupling of shear zone and bulk, poroe-
lastic response from fault leak-off into the bulk, and pore pressure coupling of slip.
To date, such a multifaceted description of the fluid fault interaction problem has
not been presented in an efficient boundary integral framework.

The paper first discusses the general problem setup (Section 4.2). There we touch
on the general features of the SBIM. In Section 2.3, a more mathematically rigorous
description is presented. In Section 2.3, we provide the analytical spectral boundary-
integral solutions for sliding and opening of an interface in a plane-strain poroelastic
solid. The numerical approach taken to solve the coupled problem with dilatancy,
compaction, and injection in a poroelastic solid is described in Section 2.4, where
we first discuss the inversion of the Fourier transform by introducing a spectral basis
and then convolution truncation. We show an application of the SBIM (Section 2.5),
where we use constraints from a field experiment [29] and a recent numerical study
that modeled the field experiment data [38]. Section 2.6 contains a discussion on
the role of poroelasticity, and other fluid-based mechanisms, in the dynamics of
injection-induced seismic and aseismic slip. Finally the Appendix contains details
on parameters choices (A), the time-stepping algorithm (B), and numerical method
validation (C).

Problem description
The general problem setup can be divided into three domains. Two are isotropic
poroelastic half-spaces, which we call the bulk, one in 𝑦 > 𝜖 region and the other
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in 𝑦 < −𝜖 region. The third is a shear zone made from fault gouge, which separates
the two half-spaces (Figure 2.1a). The two poroelastic half-spaces are assumed to
have the same material properties, which we characterize with the shear modulus𝐺,
Skempton’s coefficient 𝐵, drained Poisson’s ratio 𝜈, undrained Poisson’s ratio 𝜈𝑢, and
hydraulic diffusivity 𝑐 [12, 20, 51]. In some cases, other poroelastic parameters may
be displayed for compactness, legibility, and intuition. However, the implementation
of the method we present uses the aforementioned five.

Between the two poroelastic half-spaces is the third domain that we call the shear
zone (−𝜖 < 𝑦 < 𝜖). We do not consider the shear zone to be specifically a poroelastic
material, but rather fluid-filled frictional elasto-plastic granular gouge. The elastic
behavior of the shear zone is described with various compressibility relationships
that affect the fluid and solid phase mass balance of the gouge. This is elaborated
on in Section 2.2 - Fluid mass balance and 2.2 - Solid gouge constituent mass
balance, as well as in [34]. Similar description was developed by [60]. Here we
present a more complex physical system than [60], which includes total normal
stress changes and fault perpendicular displacements. Thus, a more elaborate de-
scription is needed. This includes considering material compression under uniaxial
normal stress. While defining a uniaxial compressibility is not often done, such
compressiblity has been useful in problems related to stress transfer on faults in
elastic and poroelastic medium [18].

Now we briefly review the most relevant parameters related to the shear zone
description; a more complete mathematical description is provided in Section 2.2.
The shear zone is a thin layer of half-width 𝜖 . Here thin indicates that 𝜖 should be
much smaller than any significant variation in fields, such as slip or pressure, along
the 𝑥-axis. This assumption is fundamental for the accuracy of the boundary-layer
treatment of the shear zone. The properties of the shear zone or fault gouge are
characterized by reference porosity 𝜙0, inelastic dilatancy coefficient 𝛾 [60], and
pore pressure and normal stress dependent void volume compressibilities 𝛽𝑝𝑛 and
𝛽𝜎𝑛 . In addition, the intact gouge material compressibilities are 𝛽𝑝𝑔 and 𝛽𝜎𝑔 , and the
fluid compressibilities are 𝛽𝑝

𝑓
and 𝛽𝜎

𝑓
, where the 𝛽-coefficients represent linearized

relationships between changes in volume and stress and pressure. These relationship
can be considered as representing contribution of elastic or reversible processes, for
example, 𝛽𝑝𝑛 and 𝛽𝜎𝑛 describe the elastic component of the porosity change.

The frictional strength of the shear zone is determined by the reference coefficient of
friction 𝑓0, the characteristic state evolution distance 𝐷𝑅𝑆, the constitutive parameter
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𝑎 that scales the direct rate dependence of friction, and the constitutive parameter 𝑏
that scales the state dependence of friction. A similar description of a shear zone was
developed in [34], but here we include more physical processes that alter shear zone
fluid flow. First, we consider that there may be a source of fluid mass in the layer, for
example by injection, indicated by 𝑄. Second, we include an anisotropic mobilities
𝜅𝑐𝑥 and 𝜅𝑐𝑦 (defined as permeability over dynamic fluid viscosity) assuming Darcy
flow. In particular, the mobility in the 𝑦 direction, 𝜅𝑐𝑦 can be different from the
mobility in the 𝑥 direction 𝜅𝑐𝑥 . Thus, fluids injected into the fault have multiple
migration paths, along the shear zone, perpendicular to the shear zone, and in both
𝑥 and 𝑦 directions in the bulk. Furthermore, an increase in pore pressure in the bulk
can migrate into the shear zone and also to the bulk on the other side (Figure 2.1a).

In terms of geological description of fault-zone permeability structures, our setup
falls best in the category of a localized conduit as identified by [10]. That is a fault
without a significant damage zone or fault core. Such simple faults are particularly
relevant for field-scale fault injection experiments and have been targeted in previous
experiments [29] and will be targeted in future [42] experiments. We suggest,
however, that our problem setup could be reinterpreted and applied to a larger
class of problems with minor modifications. For example, the shear zone could
be interpreted to represent any thin diffusive structure that may undergo shear or
dilatation. Thus our solutions, in particular the spectral boundary integral solutions,
have a wider applicability than presented here and could be applied to problems
related to damage zones or fault cores.

Motivation
A key question in induced seismicity is to understand when so-called runaway
ruptures happen, that is ruptures that propagate well outside a pressurized region.
This is a useful focal point to explain some of the general dynamics that we expect
from the problem described above. When injection into a fault occurs, there are
two important length scales along the 𝑥 dimension (Figure 2.1) that can interact and
explain the dynamics of the slip. First, how far the pressure front from the injection
site has diffused, which we can define as the region of significantly elevated pore
pressure. Second, how far the rupture tip has propagated, which can be understood
as the region of significant fault slip. If a fault has relatively low shear stress,
i.e., its shear stress over initial effective normal stress is significantly below its
reference friction coefficient, or is well-healed, which may be common in injection
experiments, the pore pressure front controls how far the rupture tip can move since
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the frictional resistance is too great outside the pressure front [38]. However, if a
fault is relatively well-stressed, or if the slipping region enters a more well-stressed
portion of the fault or a portion of the fault with lower friction, then the rupture may
become self-sustained and rupture outside the pressure front. Thus the rupture may
initially be contained by the pressure front, but evolve to become a runaway rupture.

The interplay of the rupture tip and pressure front provides a useful qualitative ex-
planation of the transition from a confined to runaway rupture. However, additional
complexity, which is related to the pressure profile across the fault, plays an impor-
tant role in determining the if, when or how such a rupture can happen. If a rupture is
initiated in a shear zone by injection, the pressure profile across the shear zone (i.e.,
pressure change with 𝑦, Figure 2.1b) can be dominated by different mechanisms
depending on whether observing the profile at a 𝑥 coordinate that is ahead of the
rupture, at the tip or behind the tip (Figure 2.1b ). This is particularly prominent
for an in-plane rupture direction due to the volumetric straining of the bulk. If the
pressurized zone is ahead of the rupture, the shear zone central pressure (𝑝𝑐) would
be elevated. The pore pressures adjacent to the shear zone (𝑝+ and 𝑝−) would also
be elevated due to the leak-off into the bulk. Near the tip region, the influence of
dilatancy starts to lower the pore pressure 𝑝𝑐, but furthermore volumetric straining
of the bulk causes an increase in pore pressure on the compressive side (𝑝+) and
decrease on the dilating side (𝑝−) due to poroelastic coupling. Finally, behind the
tip, dilatancy may have further reduced the pressure 𝑝𝑐 and possibly reversed the
sign compared to the background equilibrium pressure and caused flow back into
the shear zone. We thus suggest that, in order to model rupture propagation, earth-
quake nucleation, and understand runaway ruptures in a fluid-saturated medium due
to injection, we must consider coupling that arises from the interplay of several
mechanisms that alter the pore pressure.
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Figure 2.1: Schematic overview of the problems setup and possible pore pressure
profiles scenarios in the shear zone. (a) Injection occurs in a thin shear zone
embedded between two poroelastic halfspaces of the same properties. This injection
causes fluid migration along the shear zone, across the shear zone, and into the
bulk. The evolving pore fluid pressure leads to slip across the shear zone by
reducing effective normal stress. (b) Pore pressure profiles that can occur during
the propagation of a single rupture induced by injection. If the pore pressure
diffusion is ahead of the rupture, then the shear zone has increased pressure compared
to background (right-most profile). However, inelastic dilatancy may reduce the
pressure. We call this a dilatancy dominated pore pressure (left-most profile).
Between the two cases of injection and dilatancy dominated regimes, we expect
at or near the rupture tip the two effects may cancel. However, the compression
and dilation of the host rock induced by the inhomogeneous slip can significantly
change the pore pressures on either side of the shear zone (𝑝+ and 𝑝−). Fluid mass
is introduced in practice as an arbitrary source term 𝑄(𝑥, 𝑡) (see Section 2.2). The
isolated pipe serves only visualization purposes.
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2.2 Governing equations
This section describes the conservation laws, friction laws, and boundary conditions.

Poroelastic bulk
The quasi-static theory of poroelasticity can be described as four coupled partial
differential equations written in terms of displacements 𝑢𝑖 and fluid pressure changes
𝑝 relative to an equilibrium pressure state [20, 12]:

𝐺𝑢𝑖,𝑘 𝑘 +
𝐺

1 − 2𝜈
𝑢𝑘,𝑘𝑖 = 𝛼𝑝,𝑖 (2.1)

and

1
𝑀
𝑝,𝑡 − 𝜅𝑝,𝑘 𝑘 = −𝛼𝑢𝑘,𝑘𝑡 , (2.2)

where the material parameters are as follows: 𝐺: shear modulus, 𝜈: drained
Poisson’s ratio, 𝛼: Biot-Willis parameter, 𝑀: Biot modulus, and 𝜅 is the mobility
(the ratio between the permeability and fluid viscosity). In later expressions, a
different set of poroelastic material parameter may be used for compactness and
increased intuition, in particular Skempton’s coefficient 𝐵 and undrained Poisson’s
ratio 𝜈𝑢. The Biot modulus 𝑀 may not be as well know as the others, but it is defined
as the change in amount of fluid per unit change in pressure at constant volumetric
strain. It is inversely proportional to the storage coefficient. The Biot modulus offers
a simple and useful relationship between mobility and hydraulic diffusivity in the
poroelastic medium by 𝑐 = 𝜅𝑀 . This relationship can also be written without 𝑀 as:

𝑐 = 𝜅
2𝐺𝐵(1 + 𝜈)

3𝛼(1 − 𝛼𝐵) (1 − 2𝜈) . (2.3)

Skempton’s coefficient 𝐵 and undrained Poisson’s ratio 𝜈𝑢 can be related to the other
aforementioned set of 5 parameters via:

𝐵 =
3𝑀𝛼(1 − 2𝜈)

2𝐺 (1 + 𝜈) + 3𝑀𝛼2(1 − 2𝜈)
, (2.4)

𝜈𝑢 =
2𝐺𝜈 + 𝑀𝛼2(1 − 2𝜈)
2𝐺 + 2𝑀𝛼2(1 − 2𝜈)

. (2.5)

Finally, Skempton’s coefficient can then be expressed simply in terms of Poisson’s
ratios and the Biot-Willis parameter:
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𝐵 =
3(𝜈𝑢 − 𝜈)

𝛼(1 − 2𝜈) (1 + 𝜈𝑢)
. (2.6)

In this work, we assume plane strain deformation, in which case the governing
equations can be reduced to three. Further simplification and decoupling of the gov-
erning equations is possible by using the McNamee-Gibson displacement functions
[45, 67]. In obtaining solutions to equations (2.1) and (2.2), we follow the strat-
egy explained in the Appendix of [33] using the McNamee-Gibson displacement
functions but using the boundary conditions listed in the next section.

Boundary conditions

We apply the following boundary conditions at the interface, i.e., the shear zone,
and at infinity.

lim
𝑦→0±

𝑢+𝑥 − 𝑢−𝑥 = 𝛿𝑥 , (2.7)

lim
𝑦→0±

𝑢+𝑦 − 𝑢−𝑦 = 𝛿𝑦, (2.8)

lim
𝑦→±∞

𝑢±𝑥 = 0 and 𝑢±𝑦 = 0, (2.9)

lim
𝑦→±∞

𝑝± = 0, (2.10)

lim
𝑦→0±

𝜎+𝑥𝑦 − 𝜎−𝑥𝑦 = 0, (2.11)

lim
𝑦→0±

𝜎+𝑦𝑦 − 𝜎−𝑦𝑦 = 0, (2.12)

where we have dropped the index notation and used 𝑥 and 𝑦 (as represented in
Figure 2.1a). The first two reflect displacement discontinuities, that is slip 𝛿𝑥 (Mode
II) and opening (or layer dilation) 𝛿𝑦 (Mode I). The third and fourth conditions
require the fields to decay at infinity. The final two conditions enforce continuity of
stresses across the interface or the shear zone.

The pore pressure in the shear zone is assumed to be bi-linear [34]. In other words,
we parameterize the pore pressure as two linear profiles that are fully constrained
by the pore pressure at the center 𝑝𝑐 at 𝑦 = 0 and the pressure at the shear zone
boundaries where the poroelastic bulk meets the shear zone, that is, 𝑝± at 𝑦 = 𝜖±

(Figure 2.1). We can explicitly write out the assumed pore pressure profile as:
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𝑝(𝑦) = 𝑦
𝜖
(𝑝+ − 𝑝𝑐) + 𝑝𝑐 if 0 < 𝑦 < 𝜖

𝑝(𝑦) = 𝑦
𝜖
(𝑝𝑐 − 𝑝−) + 𝑝𝑐 if − 𝜖 < 𝑦 < 0. (2.13)

Equation 2.13 is a generalization of the leaky interface used in the plane strain
dislocation solution of [64]. There are two main benefits of using Equation 2.13
for the pore pressure in the shear zone. First, we can fully reduce the dimension
of the shear zone in a computational sense, meaning that we only need to simulate
a 1D problem, although we incorporate 2D physics. Reducing the dimension of a
computational domain is also achieved with a boundary integral method and we use
a boundary integral method to describe the bulk (the outer solution). Thus, it is also
desirable to extend this dimension reduction to the shear zone physics, which is the
inner solution of the boundary layer treatment. Second, if the layer is indeed thin, we
may expect the across-shear-zone pressure profile to evolve to linear profiles since
such a profile would satisfy the quasi-static limit of a standard diffusion equation.
We can thus expect a more general solution, without a dimensional reduction, to
evolve to the bilinear profile. How fast that evolution occurs would depend on 𝜖
and 𝜅𝑐𝑦 and needs more work to quantify. That being said, we stress that a rigorous
treatment of this problem without dimensional reduction in 2D is a fruitful and
important topic for future work. We suggest that our approach is a good starting
point for accounting for pressure being variable in the shear zone, which is mostly
considered to be a constant in other simplified treatments.

Assuming the bi-linear pressure parameterization and equating the fluid mass flux
into the shear zone and in the bulk, and vice versa, gives rise to a pressure gradient
boundary condition for the bulk:

𝑑𝑝±

𝑑𝑦

����
𝑦=0±

= ±
𝜅𝑐𝑦

𝜅

(𝑝± − 𝑝𝑐)
𝜖

, (2.14)

where 𝜅𝑐𝑦 is the shear zone mobility in the 𝑦 direction and 𝜅 is the poroelastic bulk
mobility related to the bulk hydraulic diffusivity by 𝑐 = 𝑀𝜅.

We highlight that boundary conditions for the bulk are applied at 𝑦 = 0± but, in the
description of the shear zone, we treat it as a finite layer with thickness between
𝑦 = ±𝜖 . This is because we take a boundary layer approach similar to Appendix
B of [54] where the inner solution, the shear zone, is assumed to have a finite
thickness. However, the outer solution, the bulk, approximates the layer as having
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an infinitesimal thickness. Thus the assumption that any variation along the length
of the shear zone occurs over a length scale much smaller than 𝜖 is implicit. In other
words, we always require that 𝜖 𝑘 ≪ 1, with 𝑘 representing the wavenumber (inverse
of a wavelength) of any field that varies along the 𝑥-dimension.

Frictional properties
We represent the frictional strength of the layer in an averaged sense (as in [34]).
We assume that the frictional strength of every point in the layer can be represented
as follows:

𝜏(𝑥, 𝑡)
𝜎(𝑥, 𝑡) − 𝑝(𝑥, 𝑦, 𝑡) = 𝑓 (𝑥, 𝑦, 𝑡) for − 𝜖 < 𝑦 < 𝜖, (2.15)

where 𝜏(𝑥, 𝑡) is the sum of all contributions to the shear stress, both initial back-
ground value and slip contributions. We note that the shear stress is assumed to be
spatially constant across the layer. 𝜎(𝑥, 𝑡) represents background initial effective
normal stress (normal stress minus the ambient pore pressure) plus the slip-induced
changes in normal stress and it is also assumed to be spatially constant across the
layer. However, we separate from 𝜎(𝑥, 𝑡) the perturbation in pore pressure 𝑝(𝑥, 𝑦, 𝑡)
since, as previously discussed, it cannot be assumed to be constant in 𝑦. Using
equation (2.13) and averaging over the layer, we obtain:

𝜏

(𝑝𝑐 − 𝑝+) log
(
𝜎−𝑝−
𝜎−𝑝𝑐

)
+ (𝑝𝑐 − 𝑝−) log

(
𝜎−𝑝+
𝜎−𝑝𝑐

)
2(𝑝𝑐 − 𝑝−) (𝑝𝑐 − 𝑝+)

= ⟨ 𝑓 ⟩, (2.16)

with ⟨ 𝑓 ⟩ representing the frictional coefficient of the layer. We have explored using
the equation above for modeling the interface frictional strength, but we find that it
renders results similar to a linearized approximation valid in the limit of the pore
pressure changes being small compared to the background normal stress:

𝜏 = (𝜎 − ⟨𝑝(𝑡)⟩)⟨ 𝑓 ⟩, (2.17)

where ⟨𝑝(𝑡)⟩ is the average pressure across the layers and can be computed directly

⟨𝑝⟩ = 1
2𝜖

∫ 𝜖

−𝜖
𝑝(𝑦)𝑑𝑦 = 1

2

(
𝑝𝑐 +

𝑝+ + 𝑝−
2

)
. (2.18)

Equation (2.17) further offers a simpler interpretation of the role of the pore pressure
in the effective normal stress compared to equation (2.16), which helps to understand
the simulation results.
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We interpret the averaged friction coefficient ⟨ 𝑓 ⟩ of the shear zone as being repre-
sented by the rate-and-state friction law [21, 56, 43]:

⟨ 𝑓 ⟩ = 1
2𝜖

∫ 𝜖

−𝜖
𝑓 (𝑥, 𝑦, 𝑡)𝑑𝑦 = 𝑎arcsinh

[
𝑉

2𝑉0
exp

(
𝑓0 + 𝑏 log(𝑉0𝜃/𝐷𝑅𝑆)

𝑎

)]
, (2.19)

where we use the regularized form of the friction law that is also valid for slip
speeds 𝑉 much smaller than the reference slip speed 𝑉0 [50, 2, 37]. Here 𝑎 and 𝑏
are constitutive parameters that describe the rate dependence and state dependence
of friction, respectively. Further, 𝑓0 is the reference coefficient and 𝐷𝑅𝑆 is the char-
acteristic slip distance over which the state evolves. The state variable is described
by the aging law [56]:

𝑑𝜃

𝑑𝑡
= 1 − 𝜃𝑉

𝐷𝑅𝑆

. (2.20)

We note that here we introduce a difference to the treatment of the frictional prop-
erties of the shear zone in [34]. Here we represent friction using the regularized
friction law whereas the non-regularized version was discussed by [34]. In the
linearized analysis treated by [34], there is no difference between the two versions.

Shear zone
Here we analyze the fluid and solid constituent mass balance of the shear zone
gouge. Although we offer a complete description of the governing equations, we
highlight that more details may be found in [34]. Note that we build upon the shear
zone description of [34] and introduce several new processes.

Fluid mass balance

Beyond previous work [34], we introduce two additional physical processes to the
fluid mass balance of the shear zone. The two processes incorporate an injection or
source term and allow for lateral diffusion along the shear zone.

Within the shear zone, the fluid mass balance is:

𝜕𝑚

𝜕𝑡
+
𝜕𝑞𝑦

𝜕𝑦
+ 𝜕𝑞𝑥
𝜕𝑥

=
𝜕

𝜕𝑡
(𝑄(𝑥, 𝑡)), (2.21)

where 𝑚 is the fluid mass content, 𝑞𝑦 is fluid mass flux perpendicular to the fault
(y-axis), 𝑞𝑥 is the fluid mass flux parallel to the fault (x-axis), and 𝑄(𝑥, 𝑡) is the
cumulative fluid mass injected per unit volume of the shear zone.
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We note that 𝑚 = 𝜌 𝑓 𝑛, where 𝜌 𝑓 is fluid density, and we follow [60] in assuming
that the total void volume fraction can be described as 𝑛 = 𝑛𝑒 + 𝑛𝑝𝑙 , that is the sum
of elastic and plastic void volume fraction. The rate of change in fluid mass fraction
is then:

¤𝑚 = ¤𝜌 𝑓 𝑛 + 𝜌 𝑓 ¤𝑛. (2.22)

Following [34], we linearize ¤𝑛𝑒 = 𝜙0(𝛽𝑝𝑛 ¤𝑝 − 𝛽𝜎𝑛 ¤𝜎) and ¤𝜌 𝑓 = 𝜌 𝑓 𝑜 (𝛽𝑝𝑓 ¤𝑝 + 𝛽
𝜎
𝑓
¤𝜎),

where 𝛽
𝑝

𝑓
and 𝛽

𝑝
𝑛 are fluid and elastic void compressibilities, respectively, and

𝜎 > 0 means increased compression, also know as “the compression positive”
convention. The compressibilities are mathematically defined in Appendix A. The
reference compressibilities are defined at the reference void volume fraction 𝜙0 and
fluid density 𝜌 𝑓 𝑜. We assume the reference void volume fraction is the same as the
porosity. Similarly, we assume plastic void fraction is equal to the plastic porosity:
𝑛𝑝𝑙 = 𝜙𝑝𝑙 . Thus equation (2.22) becomes:

¤𝑚 = 𝜌 𝑓 𝑜𝜙0(𝛽𝑝𝑓 ¤𝑝 + 𝛽
𝜎
𝑓 ¤𝜎) + 𝜌 𝑓 𝑜𝜙0(𝛽𝑝𝑛 ¤𝑝 − 𝛽𝜎𝑛 ¤𝜎 + ¤𝜙𝑝𝑙/𝜙0). (2.23)

Darcy’s law provides:

𝑞𝑥 = −𝜌 𝑓 𝑜𝜅𝑐𝑥
𝜕𝑝

𝜕𝑥
, (2.24)

where 𝜅𝑐𝑥 is the mobility (permeability over dynamic viscosity) for fluid flux along
the x-axis within the shear zone, which is assumed to be spatially constant with
respect to 𝑥.

Combining equations (2.21), (2.23), and (2.24) and integrating with respect to the
y-axis gives:

2𝜖 𝜌 𝑓 𝑜𝜙0

[
(𝛽𝑝

𝑓
+ 𝛽𝑝𝑛 )⟨ ¤𝑝⟩ + (𝛽𝜎𝑓 − 𝛽

𝜎
𝑛 ) ¤𝜎 + ⟨ ¤𝜙⟩𝑝𝑙/𝜙0)

]
+ 𝑞+𝑦 − 𝑞−𝑦 − 2𝜖 𝜌 𝑓 𝑜𝜅𝑐𝑥

𝜕2⟨𝑝⟩
𝜕𝑥2 = 2𝜖 ¤𝑄(𝑥, 𝑡), (2.25)

where the source term 𝑄 is assumed constant with respect to 𝑦.

Inserting for the fluid mass flux in 𝑦 direction, given the bi-linear pressure distribu-
tion, in the shear zone (equations (2.14) and (2.13)) provides:
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⟨ ¤𝑝⟩ +
𝛽𝜎
𝑓
− 𝛽𝜎𝑛

𝛽
𝑝

𝑓
+ 𝛽𝑝𝑛

¤𝜎 = − ⟨ ¤𝜙⟩𝑝𝑙

𝜙0(𝛽𝑝𝑓 + 𝛽
𝑝
𝑛 )
+

𝜅𝑐𝑦

𝜖2𝜙0(𝛽𝑝𝑓 + 𝛽
𝑝
𝑛 )
(1
2
(𝑝+ + 𝑝−) − 𝑝𝑐)

+ 𝜅𝑐𝑥

𝜙0(𝛽𝑝𝑓 + 𝛽
𝑝
𝑛 )
𝜕2⟨𝑝⟩
𝜕𝑥2 +

¤𝑄(𝑥, 𝑡)
𝜌 𝑓 𝑜𝜙0(𝛽𝑝𝑓 + 𝛽

𝑝
𝑛 )
. (2.26)

We have thus derived an equation that relates average pressure, normal stress,
dilatancy, along shear zone diffusion, and fluid mass injection. The inelastic change
in porosity 𝜙𝑝𝑙 is taken as

⟨𝜙⟩𝑝𝑙 = 𝜙𝑝𝑙0 − 𝛾 log
(
𝑉0𝜃

𝐷𝑅𝑆

)
, (2.27)

where 𝜙𝑝𝑙0 could reflect an initial value of the inelastic porosity change. However,
such a constant could also be interpreted as a part of the reference porosity 𝜙0.
Equation (2.27) is based on [60] and [62], which proposed that the inelastic porosity
is a function of the frictional state variable, 𝜙𝑝𝑙 (𝜃), based on analyzing experimental
data by [44]. We assume here that the frictional state variable 𝜃 is related to the
average porosity change in the shear zone. The other approach is to relate the porosity
change to the instantaneous slip rate 𝜙𝑝𝑙 (𝑉), but both interpretations of the [44] data
are equivalent when linearized around steady-state sliding. Showing the two are the
same at steady state is simple. At steady-state slip rate𝑉𝑠𝑠, one gets 𝜃 = 𝐷𝑅𝑆/𝑉𝑠𝑠, so
equation 2.27 becomes ⟨𝜙⟩𝑝𝑙 = 𝜙𝑝𝑙0 +𝛾 log(𝑉𝑠𝑠/𝑉0), which corresponds to the steady
state of the slip rate dependent formulation of [60]. Equation 2.27 can also be written
directly to represent the rate of change in plastic porosity [59]: ⟨ ¤𝜙⟩𝑝𝑙 = −𝛾 ¤𝜃/𝜃.

The interpretation of linking inelastic dilatancy and state has gained more obser-
vational support recently where experiments by [48] suggest that the state variable
and dilatancy are directly linked. [48] suggest the state could be cast as dilatancy
or vice versa as is reflected by equation (2.27). It is worth noting that although the
experiments by [48] show agreement with the [60] dilatancy relationship based on
the experimental work of [44], more complex behavior emerges at higher veloc-
ity steps. Equation (2.27) does thus not offer a complete description of how fault
gouge dilatancy and compaction evolve, an important question that requires future
experimental and theoretical study.

Before implementing equation (2.26) numerically, we analytically integrate it to
obtain:
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⟨𝑝⟩ +
𝛽𝜎
𝑓
− 𝛽𝜎𝑛

𝛽
𝑝

𝑓
+ 𝛽𝑝𝑛

𝜎 =
1

𝜙0(𝛽𝑝𝑓 + 𝛽
𝑝
𝑛 )

(
𝑄(𝑥, 𝑡)
𝜌 𝑓 𝑜

− ⟨𝜙⟩𝑝𝑙

+
∫ 𝑡

0

𝜅𝑐𝑦

𝜖2 (
1
2
(𝑝+ + 𝑝−) − 𝑝𝑐) + 𝜅𝑐𝑥

𝜕2⟨𝑝⟩
𝜕𝑥2 𝑑𝑡′

)
, (2.28)

where it is assumed that all fields are 0 at 𝑡 = 0.

Solid gouge constituent mass balance

Similar to the fluid mass balance (equation 2.21), we can state the conservation of
solid mass (gouge material) in the shear zone:

𝜕𝑚𝑔

𝜕𝑡
+ 𝜕

𝜕𝑦

(
(1 − 𝑛)𝜌𝑔 ¤𝑢𝑦

)
+ 𝜕

𝜕𝑥

(
(1 − 𝑛)𝜌𝑔 ¤𝑢𝑥

)
= 0, (2.29)

where 𝜌𝑔 is the density of the intact gouge and 𝑢𝑥 and 𝑢𝑦 are the 𝑥 and 𝑦 components
of displacement of the gouge in the shear zone.

The mass of the solid material (gouge) in a control volume within the shear zone is
𝑚𝑔 = (1 − 𝑛)𝜌𝑔 and thus the rate of change in solid mass is given by

¤𝑚𝑔 = −𝜌𝑔 ¤𝑛 + (1 − 𝑛) ¤𝜌𝑔 . (2.30)

Following the same linearization proceedure and integration across the shear zone as
before (see [34] for details on procedure and assumptions), we obtain a constitutive
relationship for fault perpendicular displacements:

¤𝛿𝑦 = 2𝜖
(
𝜙0

1 − 𝜙0
𝛽
𝑝
𝑛 − 𝛽𝑝𝑔

) ⟨ ¤𝑝⟩ −
(
𝜙0

1−𝜙0
𝛽𝜎𝑛 + 𝛽𝜎𝑔

)(
𝜙0

1−𝜙0
𝛽
𝑝
𝑛 − 𝛽𝑝𝑔

) ¤𝜎 + 2𝜖
⟨ ¤𝜙⟩𝑝𝑙

1 − 𝜙0
. (2.31)

Assuming that that all fields are zero at 𝑡 = 0, such that no net dilatancy or compaction
occurs, then the equation can be integrated

𝛿𝑦 = 2𝜖
(
𝜙0

1 − 𝜙0
𝛽
𝑝
𝑛 − 𝛽𝑝𝑔

) ⟨𝑝⟩ −
(
𝜙0

1−𝜙0
𝛽𝜎𝑛 + 𝛽𝜎𝑔

)(
𝜙0

1−𝜙0
𝛽
𝑝
𝑛 − 𝛽𝑝𝑔

) 𝜎 + 2𝜖
⟨𝜙⟩𝑝𝑙

1 − 𝜙0
. (2.32)

The additional compressibilities 𝛽𝑝𝑔 and 𝛽𝜎𝑔 are mathematically defined in Appendix
A. In the parameter regime studied in this paper (Appendix A), we do not expect the
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𝛿𝑦 mode I displacements to be significant, but we include this here for completeness
and because this effect is included in the computational code that accompanies
this paper [31]. More information on the parameter regime when opening mode
contributions can significantly influence fault slip is discussed in [34].

2.3 Solutions for a poroelastic bulk coupled to a shear zone
Let us develop solutions in the Fourier-Laplace domain given the boundary condi-
tions in Section 2.2. We define the joint Fourier-Laplace transform:

¯̂𝛿𝑥 (𝑠, 𝑘) =
∫ ∞

0

∫ ∞

−∞
𝛿𝑥 (𝑡, 𝑥)𝑒−𝑖𝑘𝑥−𝑠𝑡𝑑𝑥𝑑𝑡, (2.33)

applied here on the slip 𝛿𝑥 (𝑥, 𝑡), or displacement discontinuity across the layer in
the 𝑥 direction, where the bar symbol represents the Laplace transform in time and
the hat the Fourier transform along the 𝑥 spatial axis. Some symbols may not carry
the hat symbol if they are explicitly written out in terms of the wavenumber 𝑘 .

We follow the procedure outlined by [33] and derive solutions in the Fourier-Laplace
domain for shear stress, pore pressure, and normal stress change at the slip surface
(𝑦 → 0±). The relationships between change in shear stress ¯̂𝜏′, pore pressure change
on either side of the layer ¯̂𝑝±, and change in total normal stress ¯̂𝜎𝑦𝑦 in terms of ¯̂𝛿𝑥 ,
¯̂𝛿𝑦, and ¯̂𝑝𝑐 are given by the following equations [34]:

¯̂𝜏 = − 𝐺 |𝑘 | ¯̂𝛿𝑥
2(1 − 𝜈𝑢)

�̄�1(𝑠, 𝑘) (2.34)

and

¯̂𝑝± = ∓𝑖𝑘𝐺𝐵
¯̂𝛿𝑥

3
1 + 𝜈𝑢
1 − 𝜈𝑢

�̄�2(𝑠, 𝑘)− ¯̂𝑝𝑐
F
F + 1

(
�̄�2(𝑠, 𝑘) − 1

)
+
|𝑘 |𝐺𝐵 ¯̂𝛿𝑦

3
1 + 𝜈𝑢
1 − 𝜈𝑢

�̄�2(𝑠, 𝑘),
(2.35)

and

¯̂𝜎𝑦𝑦 = ¯̂𝑝𝑐
3

2𝐵(1 + 𝜈𝑢)
F
F + 1

(�̄�1(𝑠, 𝑘) − 1) −
𝐺 |𝑘 | ¯̂𝛿𝑦

2(1 − 𝜈𝑢)
�̄�1(𝑠, 𝑘), (2.36)

where

�̄�1(𝑠, 𝑘) = 1 − 2(𝜈𝑢 − 𝜈)
1 − 𝜈

𝑐𝑘2

𝑠

1 + F
F +

√︁
1 + 𝑠/𝑐𝑘2

(√︁
1 + 𝑠/𝑐𝑘2 − 1

)
, (2.37)
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and

�̄�2(𝑠, 𝑘) =
√︁

1 + 𝑠/𝑐𝑘2 − 1√︁
1 + 𝑠/𝑐𝑘2 + F

. (2.38)

F is a dimensionless group that characterizes the importance of flux across the fault:

F =
𝜅𝑐𝑦

𝜅

1
|𝑘 |𝜖 . (2.39)

In order to obtain the spectral boundary integral solutions, these solutions are not
sufficient since we need to invert the Laplace transform. We begin this process by
defining:

�̄�1 = �̄�1 − 1 and �̄�2 = �̄�2 − 1. (2.40)

As shown by [33], �̄�1 and �̄�2 approach unity in the limit of short time or negligible
diffusion, which reduces Eqs. (2.34), (2.35), and (2.36) to their corresponding
undrained limits. �̄�1 and �̄�2 thus represent the transient changes in shear stress and
pore pressure on the fault that arise due to pore pressure diffusion.

�̄�1 and �̄�2 are related by �̄�1 = 1−2(𝜈𝑢 − 𝜈)/(1− 𝜈) (1+F )(𝑐𝑘2/𝑠)�̄�2. Thus, in the
time domain, the inverse transform of �̄�1 is closely related to the time integral of
the inverse transform of �̄�2. Using the convolution theorem for Laplace transforms,
we find that Eqs. (2.34) and (2.35) take the form:

𝜏′ = − 𝐺 |𝑘 |
2(1 − 𝜈𝑢)

(
𝛿𝑥 +

∫ 𝑡

0
𝛿𝑥 (𝑡′)𝐾1(𝑡 − 𝑡′, 𝑘)𝑑𝑡′

)
, (2.41)

𝑝± = ∓ 𝑖𝑘𝐺𝐵
3

1 + 𝜈𝑢
1 − 𝜈𝑢

(
𝛿𝑥 +

∫ 𝑡

0
𝛿𝑥 (𝑡′)𝐾2(𝑡 − 𝑡′, 𝑘)𝑑𝑡′

)
− F
F + 1

∫ 𝑡

0
𝑝𝑐 (𝑡′)𝐾2(𝑡 − 𝑡′, 𝑘)𝑑𝑡′ (2.42)

+ |𝑘 |𝐺𝐵
3

1 + 𝜈𝑢
1 − 𝜈𝑢

(
𝛿𝑦 +

∫ 𝑡

0
𝛿𝑦 (𝑡′)𝐾2(𝑡 − 𝑡′, 𝑘)𝑑𝑡′

)
,

and equation (2.36) becomes
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�̂�𝑦𝑦 =
3

2𝐵(1 + 𝜈𝑢)
F
F + 1

∫ 𝑡

0
𝑝𝑐 (𝑡′)𝐾1(𝑡 − 𝑡′, 𝑘)𝑑𝑡′

− 𝐺 |𝑘 |
2(1 − 𝜈𝑢)

(
𝛿𝑦 +

∫ 𝑡

0
𝛿𝑦 (𝑡′)𝐾1(𝑡 − 𝑡′, 𝑘)𝑑𝑡′

)
. (2.43)

We have thus separated the undrained response and the transient diffusional behavior.
This behavior is characterized by the convolution kernels 𝐾1 and 𝐾2 that represent
the inverse Laplace transforms of �̄�1 and �̄�2, respectively. In other words, 𝐾1(𝑡) =
L−1 {�̄�1

}
(𝑡) and 𝐾2(𝑡) = L−1 {�̄�2

}
(𝑡).

The convolution kernels for fault slip problems in poroelastic medium can be con-
structed numerically and this may be the only option for more complex bulk rhe-
ology such as accounting for full inertial effects [32]. The numerical inversion of
the Laplace transform is, however, a difficult and numerically intensive task. Here
we derived analytical expressions for 𝐾1 and 𝐾2 through repeated application of the
convolution theorem to separate �̄�1 and �̄�2 into factors of known inverse Laplace
transforms.

𝐾1(𝑡, 𝑘) = −
2(𝜈𝑢 − 𝜈)

1 − 𝜈 𝑐𝑘2(1 + F )(
1 + 1
F − 1

[
F 𝑒(F 2−1)𝑐𝑘2𝑡erfc

(
F
√︁
𝑐𝑘2𝑡

)
− F + erf

(√︁
𝑐𝑘2𝑡

)] )
(2.44)

𝐾2(𝑡, 𝑘) = − 𝑐𝑘2(1 + F )
[
𝑒−𝑐𝑘

2𝑡

√
𝜋𝑐𝑘2𝑡

− F 𝑒(F 2−1)𝑐𝑘2𝑡erfc
(
F
√︁
𝑐𝑘2𝑡

)]
. (2.45)

We note that kernel 𝐾2 is singular when 𝑡 → 0. However, this is an integrable
singularity and the convolution kernel can be integrated in the sense of taking a
Cauchy principal value. 𝐾1 and 𝐾2 reveal directly that fluid transport in and into the
bulk is governed by two characteristic timescales,

𝑡𝑏 =
1
𝑐𝑘2 (2.46)

and

𝑡 𝑓 =
1

F 2𝑐𝑘2 =
𝜅2𝜖2

𝜅2
𝑐𝑐
, (2.47)
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where 𝑡𝑏 can be understood as a traditional length-scale-dependent diffusional time
scale, while 𝑡 𝑓 represents a scale of flux through and from the shear zone and is
independent of the length scale as long as 𝑘𝜖 ≪ 1.

Equations (2.41), (2.42), and (2.43) offer several other interesting insights into how
the bulk couples to the shear zone. We first observe that shear stress only depends
on the slip (2.41). However, pore pressure at the interfaces between the shear zone
and bulk (2.42) has a complex dependence on both slip and opening mode as well
as the shear-zone center pressure 𝑝𝑐. In the limit F → 0, the pressure in the bulk
and shear-zone center decouples. This could happen in the limit of 𝜅𝑐𝑦 → 0 or
when the shear zone is impermeable for flux along the 𝑦 dimension. F depends on
the mobility or permeability contrast of the bulk and shear zone 𝜅𝑐𝑦/𝜅, where bulk
mobility 𝜅 = 𝑐/𝑀 has been previously explained. But the requirement 𝜅𝑐𝑦/𝜅 ≪ 1
is not sufficient for fluids to remain in the shear zone because F ∝ 1/|𝑘 |𝜖 (equation
2.39) and |𝑘 |𝜖 ≪ 1. Equation (2.43) shows an interesting coupling to normal stress.
The relationship between opening mode 𝛿𝑦 and normal stress change is obvious;
however, the coupling of shear zone center pressure 𝑝𝑐 to 𝜎𝑦𝑦 is a poroelastic
response as fluids flow from the shear zone into the bulk. This coupling is removed
if F → 0 and fluids cannot enter the bulk from the shear zone.

In summary, (2.41), (2.42), and (2.43) represent analytical solutions for the shear
stress, pore pressure (at shear zone boundary), and normal stress given a time-
history of slip 𝛿𝑥 , opening 𝛿𝑦 and/or shear zone center pore pressure 𝑝𝑐 which
have been transformed in the wavenumber (Fourier) domain. Alternatively, these
expressions represent analytical solutions for a single plane wave perturbation in slip
𝛿𝑥 , 𝛿𝑦 and/or 𝑝𝑐 of generic form 𝑓 (𝑡) exp(𝑖𝑘𝑥), where 𝑓 (𝑡) is some time-dependent
function. In Section 2.4, we use this property to construct general solutions for
arbitrary histories of slip 𝛿𝑥 , opening 𝛿𝑦 and/or shear zone center pore pressure 𝑝𝑐.

2.4 Numerical method
Fourier series representation of poroelastic relations
We represent 𝛿𝑥 , 𝛿𝑦 and 𝑝𝑐 as Fourier series

𝛿𝑥 (𝑥, 𝑡) =
𝑁/2−1∑︁
𝑛=−𝑁/2

𝐷𝑥,𝑛 (𝑡)𝑒𝑖𝑘𝑛𝑥 , 𝑘𝑛 =
2𝜋𝑛
𝜆
, (2.48)



29

𝛿𝑦 (𝑥, 𝑡) =
𝑁/2−1∑︁
𝑛=−𝑁/2

𝐷𝑦,𝑛 (𝑡)𝑒𝑖𝑘𝑛𝑥 , 𝑘𝑛 =
2𝜋𝑛
𝜆
, (2.49)

and

𝑝𝑐 (𝑥, 𝑡) =
𝑁/2−1∑︁
𝑛=−𝑁/2

𝑃𝑛 (𝑡)𝑒𝑖𝑘𝑛𝑥 , 𝑘𝑛 =
2𝜋𝑛
𝜆
, (2.50)

where 𝑁 is even and equal to the number of points at which 𝛿(𝑥, 𝑡) and 𝑝𝑐 (𝑥, 𝑡)
are evaluated, and 𝜆 represents the length of the simulation domain. The Fourier
transform is given by

𝛿𝑥 (𝑘, 𝑡) =
𝑁/2−1∑︁
𝑛=−𝑁/2

2𝜋𝐷𝑥,𝑛 (𝑡)𝛿𝐷 (𝑘 − 𝑘𝑛), (2.51)

and corresponding relations exist for 𝑝𝑐 and 𝛿𝑦 where 𝛿𝐷 is the Dirac delta func-
tion. Inserting the transformed series into equations (2.41), (2.42) , and (2.43) and
performing the trivial inverse Fourier transforms provide

𝜏′ = − 𝐺

2(1 − 𝜈𝑢)

𝑁/2−1∑︁
𝑛=−𝑁/2

|𝑘𝑛 |
(
𝐷𝑥,𝑛 (𝑡) +

∫ 𝑡

0
𝐷𝑥,𝑛 (𝑡′)𝐾1(𝑡 − 𝑡′, 𝑘𝑛)𝑑𝑡′

)
𝑒𝑖𝑘𝑛𝑥 , (2.52)

𝑝± =
𝑁/2−1∑︁
𝑛=−𝑁/2

(
∓𝑖𝐺𝐵

3
1 + 𝜈𝑢
1 − 𝜈𝑢

𝑘𝑛

[
𝐷𝑥,𝑛 (𝑡) +

∫ 𝑡

0
𝐷𝑥,𝑛 (𝑡′)𝐾2(𝑡 − 𝑡′, 𝑘𝑛)𝑑𝑡′

]
+ . . .

𝐺𝐵

3
1 + 𝜈𝑢
1 − 𝜈𝑢

|𝑘𝑛 |
[
𝐷𝑦,𝑛 (𝑡) +

∫ 𝑡

0
𝐷𝑦,𝑛 (𝑡′)𝐾2(𝑡 − 𝑡′, 𝑘𝑛)𝑑𝑡′

]
− . . .

F (𝑘𝑛)
F (𝑘𝑛) + 1

∫ 𝑡

0
𝑃𝑛 (𝑡′)𝐾2(𝑡 − 𝑡′, 𝑘𝑛)𝑑𝑡′

)
𝑒𝑖𝑘𝑛𝑥 , (2.53)

and

𝜎𝑦𝑦 =
3

2𝐵(1 + 𝜈𝑢)

𝑁/2−1∑︁
𝑛=−𝑁/2

(
F (𝑘𝑛)
F (𝑘𝑛) + 1

∫ 𝑡

0
𝑃𝑛 (𝑡′)𝐾1(𝑡 − 𝑡′, 𝑘𝑛)𝑑𝑡′ − . . .

𝐺

2(1 − 𝜈𝑢)
|𝑘𝑛 |

[
𝐷𝑦,𝑛 (𝑡) +

∫ 𝑡

0
𝐷𝑦,𝑛 (𝑡′)𝐾1(𝑡 − 𝑡′, 𝑘𝑛)𝑑𝑡′

] )
𝑒𝑖𝑘𝑛𝑥 . (2.54)
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Testing and validation of this approach reveals that the first term of the pore pres-
sure (2.53) is prone to developing the Gibbs phenomenon in the presence of steep
gradients. This may stem from how the sign of the pore pressure depends on 𝑘𝑛
and not the absolute value of |𝑘𝑛 | as for other terms. Oscillations, such as the
Gibbs phenomena, are somewhat mitigated by the diffusional nature of the pore
pressure where short-wavelength oscillations diffuse rapidly. However, a much im-
proved convergence of the series in (2.35) and nearly complete removal of the Gibbs
phenomenon can be achieved with a Lanczos sigma factor [23]:

𝑝± =
𝑁/2−1∑︁
𝑛=−𝑁/2

(
∓𝑖𝐺𝐵

3
1 + 𝜈𝑢
1 − 𝜈𝑢

𝑘𝑛 sinc
(
𝑛

𝑁/2

) [
𝐷𝑥,𝑛 (𝑡) +

∫ 𝑡

0
𝐷𝑥,𝑛 (𝑡′)𝐾2(𝑡 − 𝑡′, 𝑘𝑛)𝑑𝑡′

]
+ . . .

𝐺𝐵

3
1 + 𝜈𝑢
1 − 𝜈𝑢

|𝑘𝑛 |
[
𝐷𝑦,𝑛 (𝑡) +

∫ 𝑡

0
𝐷𝑦,𝑛 (𝑡′)𝐾2(𝑡 − 𝑡′, 𝑘𝑛)𝑑𝑡′

]
− . . .

F (𝑘𝑛)
F (𝑘𝑛) + 1

∫ 𝑡

0
𝑃𝑛 (𝑡′)𝐾2(𝑡 − 𝑡′, 𝑘𝑛)𝑑𝑡′

)
𝑒𝑖𝑘𝑛𝑥 , (2.55)

where sinc(𝑥) = sin (𝜋𝑥)/(𝜋𝑥) is the normalized sinc function. It is worth noting
that an inverse FFT of the Fourier coefficients in (2.52, 2.53, 2.54, and 2.55) is an
efficient way to compute the stresses and pore pressure at each value of 𝑥.

Comparison to Song and Rudnicki (2017)

We partially validate the solutions in the previous section by comparing them to
the analytical solution provided for a single edge dislocation on a leaky plane by
[64] (Figure 2.2). In the problem analyzed by [64], 𝛿𝑥 = H(𝑡)H (−𝑥) with H(·)
being the Heaviside step function, 𝛿𝑦 = 0, 𝑝𝑐 = 0, in which case 𝜎𝑦𝑦 = 0. We use
equations (2.52) and (2.55) after retrieving the Fourier series coefficients using a
fast Fourier transform (FFT) algorithm of 𝛿𝑥 = H(𝑡)H (−𝑥) evaluated on a domain
size ranging from 𝑥 = −50 to 𝑥 = 50 m. Comparison in Figure 2.2 reveals excellent
agreement between the two approaches. Further discussion of the method validation
is in Appendix C.

Convolution kernel computation and truncation
Along with time stepping all relevant equations, which is detailed in Appendix B,
we update and calculate the convolution in equations (2.52), (2.54), and (2.55).
In computing the convolution, we first compute kernel values at lag times 𝑡𝑖 for
each wavenumber 𝑘𝑛, i.e., 𝐾1(𝑡𝑖, 𝑘𝑛) and 𝐾2(𝑡𝑖, 𝑘𝑛), where 𝑡𝑖 are selected to span
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Figure 2.2: Comparison of our solution based on equations (2.52) and (2.55) and
the analytical solution (equations (A1) and (72), respectively) for a problem in [64].
Colored lines represent the spectral boundary-integral solution and overlapping
dashed black lines represent the [64] solution. (a) Shear stress normalized by shear
modulus 𝐺 near the dislocation edge (indicated in gray) of unit slip amplitude at
three different times, which span approximately the undrained, drained limits as well
as an intermediate stage. (b) Pore pressure change due to the same edge dislocation.
Results are shown for 𝑐 = 1 m2/s, 𝐵 = 0.5, 𝜅𝑐𝑦/(𝜅𝜖) = 1 m−1, 𝜈 = 0.15, 𝜈𝑢 = 0.45.

a time interval from 𝜁𝑙min(𝑡𝑏, 𝑡 𝑓 ) to 𝜁𝑢min(𝑡𝑏, 𝑡 𝑓 ). In practice we take 𝜁𝑙 = 10−6

and 𝜁𝑢 = 20 and 𝑡𝑏 and 𝑡 𝑓 are the diffusion time-scales of the bulk and of the flux
through the shear zone given by equations (2.46) and (2.47).

We thus evaluate the convolution kernels between a time that is negligible compared
to the diffusional time-scales 𝜁𝑙min(𝑡𝑏, 𝑡 𝑓 ), up to a time that is long compared to the
diffusional time scales 𝜁𝑢min(𝑡𝑏, 𝑡 𝑓 ). Evaluation points 𝑡𝑖 are selected by combining
both points at a linearly equally spaced times, and logarithmically equally spaced
times. Here we use 1024 evaluation points, but we find that in some cases, such as
the benchmarking against the linear stability analysis of [34], much fewer evaluation
points are needed.

Since we pre-compute the convolution kernels, we need to determine the values of
the Fourier coefficients 𝐷𝑥,𝑛, 𝐷𝑦,𝑛, 𝑃𝑛 at times 𝑡 − 𝑡𝑖. This is done by storing the
Fourier coefficients’ values at selected times and then determining their values at
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the convolution times 𝑡𝑖 by linear interpolation.

The criteria for storing a Fourier coefficient value are implemented by setting an
integer 𝑁𝑠𝑡 , which is the maximum number of time-steps that can be taken without
storing the Fourier coefficients. We compute

𝑁𝑠𝑡 =
⌊
min(1 +min(𝑡 𝑓 , 𝑡𝑏)/Δ𝑡; 1 +min(𝑎𝜎0/(𝑝𝑛𝑐 − 𝑝𝑙𝑠𝑡𝑐 ))/20; 𝑁max

𝑠𝑡 )
⌋
, (2.56)

where 𝑝𝑙𝑠𝑡𝑐 is the vector of 𝑝𝑐 values when the Fourier coefficients were last stored
and 𝑁max

𝑠𝑡 is a user-determined value that makes sure the coefficients are sampled
at least every 𝑁max

𝑠𝑡 time-step. The first criterion in the equation makes sure that
the minimum diffusion time is resolved in the stored Fourier coefficients. Testing
has suggested that under-sampling here may not be an issue since the shortest
diffusion times correspond to the largest wavenumbers (shortest wavelengths) and if
the simulation is well resolved, then the influence of these wavelengths is negligible.
The second criterion makes sure that if the pore pressure is changing rapidly, then
the information of these rapid changes is preserved in the stored coefficients. This is
particularly important for injection problems. However, for efficiency, we overwrite
the value above for 𝑁𝑠𝑡 if 𝑡𝑛 − 𝑡𝑙𝑠𝑡 < 𝜁𝑙min(𝑡𝑏, 𝑡 𝑓 ), where 𝑡𝑙𝑠𝑡 is the time when the
coefficients were last stored, in which case we set 𝑁𝑠𝑡 = 𝑁max

𝑠𝑡 . This procedure makes
sure that we do not store coefficients over time scales too short for any diffusional
process to occur, making the seismic phase of the simulations much more efficient.

2.5 Application
Here we show an application of the numerical approach by simulating the [29]
experiment, in which fluid was injected into a shallow fault and slip and pressure
were monitored. The code (available here [31]) uses the spectral boundary integral
solution, shear zone constitutive relationship, and a numerical method to simulate
slow and fast slip on a rate-and-state fault in a poroelastic medium.

The slip and pressure data were previously analyzed by [38] by modeling 1D dif-
fusion in a plane strain linear elastic bulk with rate-and-state friction. We use their
parameter estimates (see also Table A.1) and their simplified pore pressure history
(Figure 2.3a) as input, but we vary some of other processes and parameters that
were not accounted for by [38], or in most comparable studies, including poroelastic
properties, bulk diffusivity, and inelastic dilatancy. Specifically, we explore a set of
parameters where the bulk hydraulic diffusivity is 𝑐 = 4·10−8 or 4·10−7 m2/s; the
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undrained Poisson’s ratio is 𝜈𝑢 =0.262 or 0.35 (while the drained Poisson’s ratio 𝜈
is 0.24); and the dilatancy coefficient takes values 𝛾 =0 , 1.7·10−5, and 1.7·10−4.
We implement the injection by setting 𝑄(𝑥, 𝑡) = 𝑄𝑠 (𝑥)𝑄𝑡 (𝑡), where the spatial part
𝑄𝑠 (𝑥) is a boxcar function between 𝑥 = ±0.5 and 𝑄𝑡 (𝑡) is such that 𝑝𝑐 matches the
simplified pore pressure history (Figure 2.3a). Further discussion of parameters is
given in Appendix A.

We follow the setup and initial conditions as implemented by [38]. However,
some critical differences in the model setup and characterization of fluid flow are
worth mentioning. [38] implemented 1D isotropic diffusion along the shear layer,
corresponding to the pressure in the shear zone spatially constant in 𝑦; there is no
fluid diffusion or coupling of the flow and deformation in the bulk. Here we assume
that the pressure measured in the experiment [29] reflects the shear zone center
pressure 𝑝𝑐, whereas in [38] this would be a constant value along the 𝑦-dimension
at 𝑥 = 0.

We stress that we do not aim either to replicate the simulations and results of [38]
or to model the experiments of [29] explicitly. Our goal is to use these previous
results to guide us in finding the relevant part of the parameter space consistent with
experimental findings. Then we wish to vary other properties that are generally
not tested in comparable studies - such as poroelastic properties of the bulk - to
understand if they significantly affect the slip process and nucleation during fluid
injection.

We take the simulation shown in Figure 2.4a, with 𝛾 = 0, 𝜈𝑢 = 0.262, and 𝑐 = 4·10−8,
as our reference simulation. This simulation has most similarity with previous work
since the poroelastic response is reduced (with 𝜈𝑢 = 0.262 and 𝜈 = 0.24 being close
in value), the diffusivity of the bulk is small, and no inelastic dilatancy occurs.

The importance of leak-off into bulk
Before investigating the details of the slip in each simulation, we first look at the
fluid leakoff in response to pressurization.

Without any dilatancy, the reference case (Figure 2.3b purple) has the least amount
of leakoff into the bulk as expected since we consider this to be the most similar to
elastic simulations with no bulk diffusion. Nevertheless about 23% of the injected
mass is lost. It is curious to compare the 𝜈𝑢 = 0.262, 𝑐 = 4·10−7 m2/s and
𝜈𝑢 = 0.35, 𝑐 = 4·10−8 m2/s (Figure 2.3b yellow and orange, respectively). One
would expect that changing the bulk diffusivity by a factor of 10 would have much
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Figure 2.3: Comparison of (a) imposed pressurization at the fault center (a) and
(b,c,d) fluid leakoff per unit length in the invariant dimension into the bulk. The
numbers in color indicate, at 2000 s, how much net fluid mass had moved into the
bulk compared to the injected amount. Substantial lag is observed between fault
pressurization and onset of significant leak off. We find that different bulk parameter
combinations lead to very different amount of leakage. As dilatancy is introduced
(c,d), the net leakoff decreases due to the dilatancy causing flow back into the shear
zone from the bulk.

greater influence on leakage than changing the undrained Poisson’s ratio, yet the
leakage is similar. Changing 𝜈𝑢 from 0.262 to 0.35 increases 𝑀 by a factor of 2.75,
thus, if 𝑐 is constant, then for consistency 𝜅 = 𝑐/𝑀 is reduced by about 1/2.75.
For reference, 𝜅 = 3.1502 · 10−19 m2/(Pa s) when 𝜈𝑢 = 0.262, 𝑐 = 4·10−8 m2/s and
thus the bulk mobility 𝜅 is about an order of magnitude larger than the mobility
𝜅𝑐𝑦 = 8.7584 · 10−20 m2/(Pa s) across the shear layer. As mentioned previously, and
apparent from inspecting the convolution kernels 𝐾1 and 𝐾2, the flow into the bulk
has two timescales 𝑡𝑏 = 1/𝑐𝑘2 and 𝑡 𝑓 = (𝜅2𝜖2)/(𝜅2

𝑐𝑐). We thus see that 𝑡 𝑓 is reduced
by about 0.13. These considerations explain the observed similar leakoff. Further,
this highlights the importance of multiple time-scales in the simulated problem and
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in real faults where multiple diffusion times undoubtedly exist.

When simulations without and with dilatancy are compared (Figure 2.3b vs. Fig-
ure 2.3c,d), a consistent behavior is revealed but with the leakage universally reduced
as 𝛾 is increased, although to a different degree for different simulations. The reduc-
tion in net leakage occurs because the dilatancy reduces pressure and causes flow
back, or suction, from the bulk into the shear zone.

The following two sections investigate slip behavior as the poroelastic and dilatancy
parameters are varied, making some of the effects discussed here even more apparent.

Effects of poroelasticity and bulk diffusivity on slip evolution
First, we explore the simplest case, and the one most studied in the literature, where
pore pressure change in the shear zone is introduced by injection and evolves through
diffusion, but does not change due to dilatancy. In most cases, this would mean
that the pore pressure change is one-way coupled. In other words, the pore pressure
changes slip by affecting the frictional strength, but the slip does not change the
pore pressure [3, 11, 38]. However, in the case of poroelastic bulk that we are
investigating, there is potential for slip to affect the pore fluid pressure even in
the absence of dilatancy effect, due to the poroelastic coupling. For example, slip
induces changes in pore fluid pressure in the bulk, leading to variations in 𝑝+ and
𝑝− on the boundary between the bulk and the shear layer, affecting both the average
pressure in the layer and, eventually 𝑝𝑐 through diffusion.

The simulations (Figure 2.4) demonstrate a wide spectrum of slip stability due to
variations in two parameters that have not been explored much in the literature:
bulk diffusivity and undrained Poisson’s ratio. First, in the reference simulations, a
smaller undrained Poisson’s ratio 𝜈𝑢 and bulk diffusivity 𝑐 (panel a) results in highly
unstable behavior with four seismic ruptures. In contrast, with larger bulk diffusivity
𝑐 and undrained Poisson’s ratio 𝜈𝑢 (panel d) we observe very limited slip in response
to the injection. Clearly, the fault is not slipping in a seismically unstable manner. In
the two intermediate cases, where one value is larger and the other smaller (panels
b and c), we see somewhat stabilized behavior, with three ruptures instead of four
and later onset of seismic slip. Clearly, neither parameter alone is controlling the
stability characteristics of the fault. We discuss how the undrained parameters can
play a significant role in the stability in Section 2.6.

Figure 2.4 shows that although in all cases the average pore pressure in the shear
zone is similar, lower average values correlate with increased stability. This is also
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Figure 2.4: Simulations of fault fields with time and space for varied bulk diffusivity
𝑐 and undrained Poisson’s ratio 𝜈𝑢 as listed above each panel (and no dilatancy,
𝛾 = 0). Each panel shows the average shear zone pressure ⟨𝑝⟩ and log slip rate
log10𝑉 . 𝑥 indicates location along the length of the fault, but we note that the
simulation domain is 5 times larger (400 m) than shown. The black dashed lines
are the 0.5 MPa pressure contours, which we take as representative of the pressure
front distance. The reference simulation with small difference in 𝜈𝑢 and 𝜈 and low 𝑐

shows highly unstable slip in panel (a) (four seismic events). But we observe highly
stabilized slip in panel (d), where the undrained Poisson’s ratio and bulk diffusivity
are larger.

directly reflected in the leakage reported in Figure 2.3b.

While Figure 2.4 offers a good view of the total fault dynamics, it is hard to see the
seismic slip rates since dynamic events are short-lived, and the components of the
average pressure ⟨𝑝⟩ are hidden. Figure 2.5 shows the slip rate and various pressures
at 𝑥 = 17 m in the reference simulation (Figure 2.4a), where the first seismic rupture
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Figure 2.5: Variability of slip rate (blue, left axis) and pore pressure (other colors,
right axis) at 𝑥 = 17 m in the reference simulation (𝜈𝑢 = 0.262, 𝑐 = 1.7 · 10−8 m2/s,
Figure 2.4a).

approximately arrests. The simulated slip rates vary by orders of magnitude, from
the near-zero initial values corresponding to a locked fault, to significant slow slip
with sustained slip rates of 10−7 to 10−5 m/s, to dynamic slip rates of the order of
0.1 m/s. Note that the first seismic event is arresting at this fault location, with
the peak slip rate of 10−4 m/s. We observe a striking dependence of 𝑝± on the
slip, with the jumps in pressure indicating the poroelastic response associated with
rapidly spreading rupture. Further, even in the absence of any active rupturing,
seen as spikes in slip rate, there are nevertheless substantial differences in the values
of 𝑝+, 𝑝−, and 𝑝𝑐. The shear zone half-width is 𝜖 = 1 mm (Appendix A), and
thus the simulation indicates pressure differences around 1 MPa across this thin
shear zone. Figure 2.5 shows that our choice of using ⟨𝑝⟩ as the relevant pressure
when computing the effective normal stress is quite conservative as it averages out
significant part of the poroelastically induced pressure change, especially during
episodes of rapid slip.

Combined effects of poroelasticity and dilatancy
Here we explore the same parameter combinations, initial conditions, imposed
injection, and overall setup as in the previous section. However, we now include
dilatancy with 𝛾 = 1.7·10−5 first (Figure 2.6) and then 𝛾 = 1.7·10−4. The latter value
was derived by [60] from the experiments of [44]. 𝛾 = 1.7 · 10−4 is typically used
in the literature. We explore a smaller value as well, since it reveals an intermediate
regime and there is no general reason to believe that the dilatancy coefficient could
not vary significantly.
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Figure 2.6: Simulations of fault fields with time and space for varied bulk diffusivity
𝑐 and undrained Poisson’s ratio 𝜈𝑢 as listed above each panel, with dilatancy 𝛾 =

1.7 · 10−5. The panels and simulation setup are the same as in Figure 2.4 but
with dilatancy. We observe highly stabilized slip in panel d, where the undrained
Poisson’s ratio and the bulk diffusivity are larger. Overall, the results are largely
consistent with those of Figure 2.4, where panel (d) shows the most stable behavior,
panel (a) is the least stable, and parameter combinations in panels (b) and (c) show
intermediate stability. However, here all simulations show gradual migration of a
slow slip front and no seismic event. Thus all simulations are substantially stabilized,
as expected from introducing dilatancy. We note negative pore pressure change at
the slip-front in panel (a) (blue colors), and strong overall deviation from the square-
root characteristic growth of the pore pressure front.

Notable in Figure 2.6 are similar effects of slip stabilization due to increasing 𝑐
and 𝜈𝑢, as in Figure 2.4. However, with even relatively mild dilatancy, the style of
slip is very different. We observe no seismic events but slow slip migration, with
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significant stabilization of slip by dilatancy as expected from prior studies [60, 62,
19]. In all cases, except panel (d), the slow slip eventually outpaces the pore pressure
front as indicated by the dashed 0.5 MPa contour. However, the slip closely tracks
the contour, which suggests that a different definition of the pore pressure front - i.e.,
with a lower threshold than 0.5 MPa - may actually lead to slip and pore pressure
front being nearly coincident.

Strikingly, the slip in the presence of dilatancy is drastically altering the pore pressure
front. The influence of dilatancy on the fault pore pressure is most prominent in
panel a, where the average pressure at the rupture tip is decreased compared to
a background value, i.e., negative pore pressure change. Furthermore, the pore
pressure front does not follow the classic square-root-of-time diffusion profile seen in
Figure 2.4 and Figure 2.6d. Rather, the profile is square-root characteristic initially,
but once the slip rate is significant, the dilatancy decreases the pore pressure and
effectively creates suction at the tip, leading to the perturbed pore pressure front.
The resulting shape of the fault pore pressure contour resembles the outline of a
squid’s head. As seen in Figure 2.3, inclusion of a non-zero 𝛾 reduces the net
leak-off into the bulk. Figure 2.6 demonstrates why, with the dilatancy-induced pore
pressure change causing mass transfer into the fault from the bulk. Our simulations
thus show agreement with the theorized flow into the rupture tip from the bulk [8].
Lateral flow from the adjacent shear zone is likely also occurring [16], but it cannot
be the only transfer since that would not affect the net leakoff into the bulk. The
case of Figure 2.6d is already very stabilized by the choices of 𝜈𝑢 and 𝑐 and thus
dilatancy does not play a significant stabilizing role. This explains why the blue
leakage curve in Figure 2.3 is not much influenced by the dilatancy.

Finally, we show simulations using the value of the dilatancy coefficient 𝛾 = 1.7·10−4

as inferred by [60].

For 𝛾 = 1.7 · 10−4, the slip is further stabilized (Figure 2.7). There is no seismic
rupture and the slow slip front is well within the region of the pore pressure increase,
except in the case of panel a where the slow slip catches up with the pore pressure
front towards the end of the simulation. In other words, the rupture is driven by
high pore pressure and thus grows quasi-statically within the pressure front. Com-
pared to Figure 2.6, we observe significant additional dilatancy-induced changes in
pore pressure, with the extent and values of pore pressure in the pressurized zone
significantly modified and generally reduced. Yet the non-monotonic pore-pressure
front features are less prominent in Figure 2.7, with the exception of case (a) where
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Figure 2.7: Simulations of fault fields with time and dilatancy 𝛾 = 1.7 · 10−4.
Otherwise the figures and simulation setup is the same as in Figure 2.4. We observe
highly stabilized slip in all cases. Unlike the previous two cases, the rupture only
grows in a region of significantly elevated pore pressure.

they are similar. This may be somewhat counter-intuitive given that the dilatancy
coefficient is an order of magnitude larger in Figure 2.7. However, the effect of
dilatancy also depends on the slip rates that are able to develop. The case of Fig-
ure 2.7a is still the most unstable due to the choices of 𝜈𝑢 and 𝑐, and hence the
dilatancy has a more pronounced effect on the shape of the rupture front. Since the
dilatancy coefficient is smaller in Figure 2.6, a larger slip patch can develop before
the stabilization becomes significant. This slip patch is less stiff or alternatively
one might state that it produces a higher energy release rate. Thus it is able to
drive rupture propagation at a higher slip rate, which ultimately results in increased
pore pressure response at the front than when the dilatancy coefficient is larger and
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suppresses instability development at an earlier time.

We emphasize that selecting 𝛾 = 1.7 · 10−4 does not generally mean uncondi-
tionally stable ruptures. One could achieve seismic rupture by choosing a more
rate-weakening (and hence instability-promoting) friction properties or by altering
the injection strategy; for example, injecting at a higher rate may lead to a seismic
event [28].

a b c

Figure 2.8: Changes in the coefficient of friction and inelastic dilatancy for 𝜈𝑢 =

0.262 and 𝑐 = 4·10−8 m2/s as 𝛾 is varied. Panel (a) represents the reference
simulation without any dilatancy. We see that the largest change in porosity from
inelastic dilatancy is about 0.004, which is substantially less than the reference value
of 0.068.

For further insight, we explore how the friction coefficient and change in inelastic
dilatancy evolve in space and time for the reference case of poroelastic properties
(Figure 2.8). For cases with inelastic dilatancy, we observe that change in inelastic
dilatancy is occurring nearly uniformly within the ruptured part of the fault (Fig-
ure 2.8bc), in particular in the time span of 1000 s to 1500 s before the pressure
is lowered again. Contrasting Figure 2.8b and 2.6a shows clearly that the average
pore pressure is not uniform and primarily dropping at the rupture tip. Note that the
𝑝𝑐 value is prescribed between 𝑥 = ±0.5 as described in Figure 2.3a, but this does
not mean that ⟨𝑝⟩ (which is plotted) is constant, due to bulk leakoff affecting 𝑝±.
We can deduce that the inflow back from the bulk and through injection maintains
pressure within the ruptured region except at the propagating tip. This suggests
that the propagation of the rupture tip may depend on how fast fluids can diffuse
into the tip region [16, 8]. We suggest that further simulations and analysis that
incorporates rate-and-state effects are needed to fully understand this phenomenon.
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The work by [26] may offer a useful starting point for such analysis, however, our re-
sults indicate that the addition of dilatancy and bulk diffusion significantly affect the
phenomenon. Moreover, such analysis would have to grapple with healing and other
effects of rate-and-state friction that make the evolution of the friction coefficient
qualitatively different from linear slip weakening. For example, consider how the
friction coefficient varies with slip at the center point for one simulation with several
seismic events (Figure 2.9). The initial rupture shows friction behavior analogous
to linear slip-weakening friction, but subsequent ruptures show behavior that cannot
be modeled with the same linear slip-weakening friction since the peak frictional
strength is clearly strongly history-dependent. In this particular case, we observe
non-monotonic peak strength as slip accumulates. This reflects in part differences
in time-dependent healing, with the first event occurring on a well-healed fault, and
then the time between the third and second rupture being larger than between the
second and first ones (Figure 2.9b inset). It also depends on how abrupt the increase
of slip rate is at the rupture front, with sharper increases (as in the third event vs.
the second event) corresponding to a larger direct effect.
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Figure 2.9: Changes in (a) friction coefficient and (b) slip rate as a function of slip
at the mid-point of the fault (𝑥 = 0) with 𝜈𝑢 = 0.262, 𝑐 = 1.7 ·10−7 m2/s, 𝛾 = 0 (also
shown in Figure 2.4c). Insets show the corresponding space-time evaluations, with
the blue line marking the location of the center point, inset scales are the same as
in Figures 2.4 and 2.8. The observed evolution of the friction coefficient suggests
significant differences from a simpler linear slip-weakening model, with a clear
history dependence of the peak frictional strength.

2.6 Discussion
The application of our method has had two main themes. First, how altering the
bulk diffusivity and undrained Poisson’s ratio influences the fault slip response from
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fluid injection. Second, how dilatancy affects the fault response due to injection.
Dilatancy is already understood to be a stabilizing mechanism [55, 60, 62], although
only a limited study of coupled injection and dilatancy has been carried out [16, 72].
Thus our general finding, that fault slip is stabilized and aseismic slip is promoted
when dilatancy is included is not surprising. We have thus chosen to contrast
this well-known stabilizing mechanism with less explored parameters that we are
uniquely positioned to investigate with the method described in this paper. Namely
we vary parameters 𝑐 and 𝜈𝑢. Indeed the latter has meaning only for a poroelastic
solid. A purely elastic solid, as considered in most studies, with some exceptions,
e.g., [36, 66, 33] has only a single Poisson’s ratio.

Our selection of three different 𝛾 values that parameterize dilatancy reveals different
modes of rupture. First, highly unstable response with repeated seismic ruptures of
the same part of the fault. Second, slow, quasi-static slip migration that propagates
at the boundaries and perhaps beyond the pressurized region, depending on its
definition. Finally, quasi-statically growing slip only in regions of high pressure.
This can be observed in Figures 2.4, 2.6, and 2.7, respectively. The [29] experiment
reported primarily aseismic slip and significant dilatant behavior. Some micro-
earthquakes were reported, but they seemed to occur off the main fault and represent
only a small fraction of the moment released. Thus our findings show, given the
experimental constraints and information from a previous modeling study [38], that
inclusion of dilatancy results in behavior qualitatively similar to what was reported
by [29]. However, further study is needed for quantitative matching. We highlight
that the method presented predicts fault opening from dilatancy or pressurization
and thus may provide additional constraints in data application when that is directly
measured [11].

Our reported influence of bulk diffusivity and undrained Poisson’s ratio is more
novel. We observe that increasing the bulk diffusivity by an order of magnitude
significantly stabilizes the fault in the simulations, even in the absence of dilatancy.
It is important to emphasize that this result is also contingent on the shear zone
mobility, which we have not varied. This is due to the time scales of fluid diffusion
in the bulk and shear zone not being independent as discussed by [34]. The bulk
diffusivity has an important control on the stability of the fault as it controls how
rapidly fluids can escape the shear zone. It thus controls the average pressure of
the shear zone even though we maintain a fixed injection pressure. Our parameter
choices (Appendix A) are such that we consider a fault initially far from steady-
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state or, in other words, not critically stressed. Although the changes in average
pressure in Figures 2.4, 2.6, and 2.7 are subtle, they are sufficient to cause significant
stabilization in fault behavior. This can be observed by comparing panels b and d,
or a and c in Figures 2.4, 2.6, and 2.7.

Bulk diffusivity is often considered to be the same as that of the shear zone or
the bulk is simply taken to be impermeable. In this study, we have taken what we
consider to be small values of 𝑐 ∼ 10−8−10−7 m2/s, yet we observe a very significant
effect with significant stabilisation at higher diffusivity. Granites are more likely to
fall into the 𝑐 ∼ 10−5 − 10−6 m2/s and many rocks types are even more diffusive
except shales that can have 𝑐 ∼ 10−7 m2/s [12]. Further, as seen in equation (2.26),
the flux into the bulk scales with 𝜅𝑐𝑦/𝜖2. Since we expect 𝜖 , the shear zone half-
thickness, to be small, we can expect that flux into the bulk occurs rapidly. Indeed,
in this study, we set the 𝜅𝑐𝑥 , along shear zone mobility, to be a factor 109 larger than
𝜅𝑐𝑦 such that the fluid migration along the shear zone is significant compared to the
flux into the bulk. This highlights that how rapidly the bulk can transport fluids is
critical for the fault dynamics. As discussed in [34], and can be seen in the SBI
solutions in this paper, the characteristic time of bulk diffusion is ∼ 1/(𝑐𝑘2). Thus
the bulk fluid transport is highly dependent on the length scale, and idealizations of
an impermeable bulk may only be valid at a certain length scale.

The dependence on the undrained Poisson’s ratio may be surprising, and it may not
be clear why having a pronounced undrained poroelastic response would result in
a greater stabilization. As we discussed in relation to Figure 2.3, changing 𝜈𝑢 but
keeping 𝑐 fixed requires that 𝜅 is reduced. Thus the 𝑡 𝑓 (equation 2.47), the timescale
that fluids can move or flow through the shear zone, is changed but not 𝑡𝑏 (equation
2.46), the time scale of fluid migration in the bulk. Thus by changing 𝜈𝑢 we increase
the speed of fluid flow in the shear zone, which could lead to more rapid leakoff into
the bulk and lower shear zone pressure.

But is this the only influence of changing 𝜈𝑢? The analysis of [34] provides some
insight. The undrained critical wavenumber is

|𝑘𝑢𝑛𝑐𝑟 | ≃
2𝜎0(𝑏 − 𝑎) (1 − 𝜈𝑢)

𝐺𝐷𝑅𝑆

(
1 − 𝑓0𝛾

𝛽𝜎0(𝑏 − 𝑎)
+ O(𝜖)

)
, (2.57)

and the corresponding drained wavenumber is

|𝑘𝑑𝑐𝑟 | ≃
2𝜎0(𝑏 − 𝑎) (1 − 𝜈)

𝐺𝐷𝑅𝑆

(
1 − 𝑓0𝛾

𝛽𝜎0(𝑏 − 𝑎)
+ O(𝜖)

)
, (2.58)
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assuming the shear zone mobility tends to zero. Thus, the ratio of the minimum
unstable wavelengths in the drained and undrained limits is

𝜆𝑑

𝜆𝑢𝑛
=

1 − 𝜈
1 − 𝜈𝑢

. (2.59)

Thus, at most, this ratio can be 2, but more commonly around 1 – 1.5. In simple
terms, it means that a perturbation or a slip patch on the fault of length Δ𝐿 may be
unstable if the bulk responds in a drained manner. However, the patch or perturbation
may need to be up to 2Δ𝐿 to be unstable if the bulk responds in an undrained manner.
There are a few things to note about this stabilization. First, the transition from a
drained to undrained response depends on the characteristic bulk and shear zone
diffusion times 𝑡𝑏 and 𝑡 𝑓 relative to how fast the fault is slipping and the slip patch
length scale (due to the 𝑘2 dependence of 𝑡𝑏). Thus the timing of stabilization by a
transition from drained to undrained response is nontrivial. Second, the drained and
undrained limits are inadequate to characterize the stabilization fully. [34] showed
that, in an intermediate (neither drained nor undrained) regime, the fault could be
more stable than in the undrained regime. Finally, since anti-plane sliding does not
depend on Poisson’s ratio, the same kind of stabilization would not occur in Mode
III. This may lead to interesting directional effects in 3D simulations.

In summary, changing an undrained poroelastic parameter not only influences the
fluid flow and the undrained elastic response but also the timing when the fault slip
can be considered undrained. We suspect that this feedback may sometimes lead
to surprising and even counter-intuitive stability characteristics and needs careful
consideration in future work.

Panels b and c in Figures 2.4, 2.6, and 2.7 consistently show similar rupture propaga-
tion and stabilization. This suggests that, in a certain sense, that setting 𝜈𝑢 = 0.35 is
approximately equally stabilizing as setting 𝑐 = 4·10−7 m2/s relative to the respective
lower values in the simulation setup. Due to the many complexities mentioned in the
previous paragraph, we do not expect this to hold generally. However, simulations
with combined 𝜈𝑢 = 0.35 and 𝑐 = 4 · 10−7 m2/s are nearly identical regardless of the
𝛾 value (panels d in Figures 2.4, 2.6, and 2.7 ). This observation highlights that the
bulk effects, through combined diffusion and poroelasticity, can be so stabilizing
that dilatancy cannot become significant enough to affect the rupture propagation
and nucleation.

While we do not aim to precisely match the fault slip observed in the field experi-
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ment of [29], it is clear that multiple models would be able to reproduce the stable
slip measured in the injection site during the experiment. The study of [38] already
found multiple potential parameter sets that match the observed slip behavior nearly
identically, by varying the friction properties and along-fault diffusivity. Given the
significant stabilizing effects of bulk diffusivity, undrained Poisson’s ratio, and dila-
tancy, none of which were included in [38] - it is clear that many additional models
can be created, for example, by choosing more unstable fault friction properties and
adding one or more of the stabilizing mechanisms discussed in this study. To distin-
guish between different possible models, we need field experiments with multiple
measurement locations of pore fluid pressure and slip/deformation.

For example, one distinguishing characteristic that highlights the interaction of
poroelastic effects with dilatancy is the non-standard, non-monotonic evolution of
the pore-pressure front that we observe, as in Figures 2.6-2.7. Dilatancy, and the
associated reduction in pore fluid pressure, is not uniform along the slipping fault
but rather is strongly affected by the slip-rate spatio-temporal distribution. Hence it
can create local suction that induces pore fluid flow reversals, which in turn would
depend on the transport and poroelastic properties. Additional measurements away
from the injection location would thus help constrain the range of applicable models.

One important observation from our simulations is how a single injection can cause
multiple seismic re-ruptures of the same part of the fault (Figure 2.4). With each
re-rupture, the lateral extent of the rupture increases and the probability of a runaway
rupture, which is not confined to the high pore pressure region, increases as well.
If observed in injection experiment, such re-rupturing pattern may be a precursor
for a runaway rupture and thus may be important to analyze further. We see that
during such repeated rupturing the frictional strength is not well explained by the
simpler linear slip-weakening friction law (Figure 2.9) or other friction laws where
healing is not accounted for. This fact challenges most common analysis strategies
applied to injection induced frictional slip used today [27, 16, 26, 8, 68, 57, 17] if
intended for analyzing repeated ruptures on the same interface. However, the initial
rupture may be well explained by linear slip weakening, provided its parameters are
chosen to account for pre-slip healing (which changes the effective slip-weakening
behavior, e.g., the peak friction), and those methods would work well to understand,
for example, how far the rupture propagates. Note, however, that there are alternative
formulations of rate-and-state friction, with different state-variable evolution laws
such as the slip law [56] as well as various composite laws, and the formulation that
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best describes various laboratory experiments is a topic of ongoing research [4, 5].
The slip law, in particular, results in non-linear effective slip weakening of friction
at the rupture tip [1]. The effect of the alternative rate-and-state formulations on the
fault slip due to fluid injection can be studied by the approach developed in this work
and the code provided (see Data Availability Statement) incorporates both aging and
slip law.

2.7 Conclusions
We have presented novel spectral boundary-integral (SBI) solutions applicable to
frictional and fracture mechanics problems in a plane-strain linear poroelastic solid.
The solutions consider that the interface of two poroelastic half-spaces may undergo
mode I and II displacement discontinuity as well as pressurization. We have applied
the solutions to develop a method and code implementation of a rate-and-state fault
that has simultaneous poroelastic bulk repsonse, inelastic dilatancy, and injection.
We apply this code to data from a field experiment, which has been previously ana-
lyzed by modeling. We explore the role of bulk diffusion and poroelastic properties
of the bulk with and without inelastic dilatancy of the gouge. We find, surprisingly,
that bulk diffusion and poroelastic properties of the bulk, which are parameters
that are rarely explored, can qualitatively affect rupture stability and propagation.
Further, we find the stabilization by bulk diffusion and poroelastic properties can be
comparable to the well-known stabilizing dilatancy mechanism. We find that dila-
tancy can strongly alter the pore presssure distribution on the fault as slip evolves
which, if measured, would help constrain hydrological and mechanical properties
of the fault and bulk. A further numerical and analytical study is needed to fully
characterize the different stability regimes that we have observed. However, our
results show that a rich spectrum of slip behavior can be obtained during injection
into a fault depending on bulk properties that are frequently left out in previous
studies.
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C h a p t e r 3

STABILITY OF FRICTIONAL FAULT SLIP UNDER FLUID
INJECTION: COUPLED EFFECTS OF FAULT HEALING,

POROELASTICITY AND INJECTION RATE

3.1 Introduction
Here, we use and further develop the approach of Chapter 2 to allow for purely
elastic, permeable bulk with the same fluid transport mechanisms and properties.
Building on several examples in Chapter 2, we conduct more systematic parametric
studies on the effects of fault healing, poroelasticity and injection profile on the
stability of fault slip. Understanding the significance of fault healing on stability of
slip is crucial to avoiding large destructive earthquakes during industrial activities
such as underground fluid injection. Though in Chapter 2 we have done some
investigations into the effect of poroelasticity in the bulk, a more direct comparison
with elastic bulk would further confirm the stability effects of poroelastic bulk.
Besides, it is important to understand the effects of injection rates on the stability
of fault slip. In the future, one can potentially optimize the injection rate vs. time
profile, to achieve maximum injection flux with optimal fault stability.

3.2 Methodology
The equations and numerical approach that we use are described in Chapter 2.
Here, we provide some additional comments relevant to our study. The governing
equations for the poroelastic solid bulk are given by (2.1-2.2), repeated here for
convenience:

𝐺𝑢𝑖,𝑘 𝑘 +
𝐺

1 − 2𝜈
𝑢𝑘,𝑘𝑖 = 𝛼𝑝,𝑖 (3.1)

1
𝑀
𝑝,𝑡 − 𝜅𝑝,𝑘 𝑘 = −𝛼𝑢𝑘,𝑘𝑡 , (3.2)

where 𝐺 and 𝜈 are elastic shear modulus and Poisson’s ratio in drained condition.
𝑀 and 𝛼 are poroelastic Biot modulus and Biot coefficient, respectively. 𝜅 is the
mobility of fluid in porous medium. The apparent fluid diffusivity from (3.2) is
𝑐 = 𝑀𝜅. However, since 𝑢 on the right hand side of (3.2) is coupled with 𝑝, the
apparent 𝑐 does not directly reflect the diffusion of fluid content. Through a change
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of variable, the actual fluid diffusion for the fluid mass content 𝜁 is given by [7]

𝜁,𝑡 − 𝑐𝑚𝑎𝑠𝑠𝜁,𝑘 𝑘 = 0, (3.3)

where 𝑐𝑚𝑎𝑠𝑠 is given by

𝑐𝑚𝑎𝑠𝑠 = 𝑐
𝐾𝑑 + 4

3𝐺

𝐾𝑢 + 4
3𝐺

. (3.4)

In (3.4), 𝐾𝑑 and 𝐾𝑢 are drained and undrained bulk modulus, respectively.

In this study, we also consider elastic but permeable bulk, to understand the im-
portance of poroelastic effects in comparison with an elastic problem supplemented
with bulk fluid diffusion. The governing equations for elastic permeable bulk are

𝐺𝑢𝑖,𝑘 𝑘 +
𝐺

1 − 2𝜈
𝑢𝑘,𝑘𝑖 = 0 (3.5)

𝑝,𝑡 − 𝑐𝑝,𝑘 𝑘 = 0, (3.6)

where 𝑐 is the bulk diffusivity associated with the elastic permeable bulk. Note that
for elastic permeable solid, since (3.6) is independent of 𝑢, the apparent diffusivity
coincides with the mass diffusivity, i.e., 𝑐𝑚𝑎𝑠𝑠 = 𝑐. The numerical approach de-
veloped in Chapter 2 could not be directly applied to elastic bulk because directly
setting 𝜈𝑢 = 𝜈 will cause numerical problems in the poroelastic kernels, due to
dividing by 0.

To allow for simulations with elastic bulk, we first verify the existence and then take
the analytical limit of 𝜈𝑢 → 𝜈 for each poroelastic kernel, and get the corresponding
elastic kernel for the spectral boundary integral method. The permeability, diffu-
sivity of the bulk material, as well as the continuity condition of fluid flux from the
shear layer into the bulk are kept unchanged from the poroelastic case.

We aim to study the effect of injection rate and injection-time profile. Since the
total injected volume has been proposed as one of the important controls (Ref),
we switch from the pore-pressure controlled injection studied in Chapter 2 to a
baseline case with the total mass of injected fluid controlled. Motivated by the
pressure-controlled injection in Chapter 2, we take the corresponding averaged flux
over the experimental window (1400 s), and use that as our baseline flux. Figure 3.1
shows the comparison between the evolution of pore fluid pressure and slip rate
over the fault under pressure-control injection and flux-control injection with the
same average flux. The material properties which are kept the same in both cases
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can be found in Table B.1 and B.2. We find that the flux-control injection case has
qualitatively similar response compared with the pressure-control injection, while
the pore fluid pressures 𝑝+, 𝑝− and 𝑝𝑐 increase faster with time upon the start of the
injection. In the following discussion, we refer to the flux-control case with baseline
flux 1 × 10−4 Kg/(m · s) as the baseline case.

Pressure-control injection Flux-control injection

Figure 3.1: Comparison of slip rate and pore pressure evolution under pressure-
control injection (left column) and flux-control injection (right column) with base-
line flux 𝑐𝑏𝑎𝑠𝑒 = 10−4 Kg/(m · s). The evolution of pore pressure (top row) and
fault slip rate (middle row) as functions of time and distance along the fault indi-
cates that both cases result in qualitative similar behavior. The dashed lines indicate
the profile of 𝛿𝑝𝑚 = 0.5 MPa. The near-vertical extension of slip rates indicate
dynamic events. The time history of changes in fluid pressure in the middle of the
shear layer (𝛿𝑝𝑐) and on its top and bottom edge (𝛿𝑝+ and 𝛿𝑝−) are shown in the
bottom row. For our baseline case, the flux is set to be the average flux from the
pressure-controlled injection case of Chapter 2.
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3.3 Results and discussion
In this section, we present and discuss results that reveal the effect of fault healing,
poroelastic coupling between the volumetric deformation and pore fluid pressure,
injection rate and more generally injection-time profile on frictional fault slip under
fluid injection.

Significant effect of fault healing on the stability of fault slip
It is clear that fault stress plays an important role in fault slip due to fluid injection,
an effect well-studied in prior simulations, mostly with the slip-weakening friction
[10, 2, 1]. In the commonly used slip-weakening formulation, there is no slip until
𝜏/(𝜎 − 𝑝) reaches the peak (also often called "static") friction coefficient. The
closer the stress conditions are to failure in such models, the easier it is for the fault
to slip in response to fluid injection of the same properties.

In the rate-and-state formulations, peak friction is a function of the history of fault
slip. In particular, a more healed fault with a larger value of 𝜃 at the initiation of
fluid injection, which should result in a larger peak friction during sliding, should
behave in a more stable manner, for the same initial conditions of 𝜏/(𝜎 − 𝑝).

Let us study the importance of this effect in our model. A larger value of 𝜃 for the
same 𝜏/(𝜎 − 𝑝) results in a lower initial slip rate 𝑉𝑖𝑛𝑖. Let us consider the evolution
of fault slip and friction for 𝑉𝑖𝑛𝑖 = 0.45 × {10−22, 10−19, 10−16, 10−13} m/s under
our base-case flux-controlled injection with a flux of 10−4 Kg/(m · s) constant in
time. The other model properties are listed in Table B.1 and B.2. The initial slip
rate of 10−22 m/s corresponds to the base case shown in Figure 3.1. Note that
these initial slip rates correspond to the initial values of the state variable given
by 2.38 × 1012, 1.85 × 1010, 1.44 × 108, 1.12 × 106 s or 75469, 586, 4.56, 0.0355
years, which, for the aging formulation we use in this work, give the approximate
healing time. Here we parameterize the healing through the decreased initial slip
rate because this is the measurable consequence of healing, as demonstrated by
recent laboratory experiments on PMMA interfaces (Sirorattanakul et al., 2024,
[9]).

We find that for less-healed faults with higher initial slip rate 𝑉𝑖𝑛𝑖, the first dynamic
event happens earlier in time and dynamic events occur more frequently (Figure 3.2).
Furthermore, the events sooner expand farther into the fault (along the 𝑥 direction
in the Figure). For a more quantitative look, let us compare the evolution of the
slip rate and friction coefficient the at the center of the fault, 𝑥 = 0 (Figure 3.3a,
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b). As expected, the peak friction is substantially higher for the more healed faults
with the smaller 𝑉𝑖𝑛𝑖, ranging from more than 0.9 to 0.7. We emphasize that
these values are reached for the same rate-and-state friction properties, including
the reference friction coefficient of 0.55, with the only difference being prior slip
history of the fault (not modeled here but assumed through the initial value of slip
rate). Consistently with higher friction, more healed faults reach significant slow
slip rates and produce dynamic events later in the injection history.

These behaviors can be quantitatively understood by the following considerations
(Larochelle et al., 2021 [5]): At the beginning of the fluid injection, slip rates are
low and both inertial effects and elastic stress transfers are negligible, which means
that the shear stress remains nearly unchanged, i.e.,

𝑓 (𝑉, 𝜃) (𝜎 − 𝑝𝑚 (𝑥, 𝑡)) = 𝜏𝑖𝑛𝑖 . (3.7)

As 𝑝 increases from the injection, 𝑓 has to increase through increasing 𝑉 for (3.7)
to hold, resulting in a balance between the direct frictional effect and changes in
pore pressure. 𝑓 and 𝑝 continue to increase until 𝑉 reaches its significant value
𝑉𝑠 ∼ 10−7 m/s. Once𝑉 reaches𝑉𝑠, within a relevant time scale of 10 s, the local slip
is on the order of 1 𝜇m, which is of the same order as our 𝐷𝑅𝑆 = 16.75 𝜇m. With
this consideration, one can reason that significant slip has occurred once 𝑉 reaches
𝑉𝑠. According to the evolution law (2.20) of the state variable 𝜃, the significant
slip would allow for the decrease of state variable and hence weakening of friction.
Therefore, the onset of this significant slip approximately coincides with when 𝑓

reaches its peak value 𝑓𝑝. 𝑓𝑝 can be approximately calculated by

𝑓𝑝 = 𝑓∗ + 𝑎 log
(
𝑉𝑠

𝑉∗

)
+ 𝑏 log

(
𝑉∗𝜃𝑖𝑛𝑖
𝐷𝑅𝑆

)
. (3.8)

𝜃𝑖𝑛𝑖 is used here in (3.8) because it has not evolved significantly yet due to negligible
slip and short healing time compared to its large initial value. Moreover, from (3.7)
we can also approximate 𝑓𝑝 through

𝑓𝑝 =
𝜏𝑖𝑛𝑖

𝜎 − 𝑝𝑚 (0, 𝑡𝑠)
, (3.9)

assuming 𝜎 has not changed significantly because of negligible slip and thus negli-
gible poroelastic effects.

Note that these considerations do not predict whether the resulting significant slip
post-peak that results in weakening would be seismic or aseismic. For the parameters
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studied in Larochelle et al., 2021 [6], the induced slip was aseismic throughout the
weakening. In our case, the slip rate at peak friction is of the order 10−7 m/s,
and the peak slip rate of 10−3 ∼ 10−1 m/s is reached further along the weakening
curve, as shown by Figure 3.3 (a-b, e) and 3.4 (a-b). Figure 3.3 (c) and Figure 3.4
(c) further confirm that the state variable 𝜃 has not evolved significantly when
friction reaches its peak and significant slip has just happened. After the onset of
significant slip, 𝜃 starts evolving significantly from 𝜃𝑖𝑛𝑖, and later 𝑉 reaches its peak
of 10−3 ∼ 10−1 m/s in all four cases.

One consideration that may explain the instability happening in cases shown in
Figure 3.2 is through the comparison between local nucleation size and local slip
zone. Through linear stability analysis with rate-and-state friction, previous studies
[8, 4] have shown that the critical length for nucleation of dynamic events is given
by

𝐿𝑛𝑢 (𝑥) =
𝐺𝐷𝑅𝑆

(𝑏 − 𝑎) (𝜎 − 𝑝𝑚) (1 − 𝜈)
. (3.10)

Take the first case in Figure 3.2 which has 𝑉𝑖𝑛𝑖 ∼ 10−22 m/s as an example, the first
dynamic event happens around 𝑡 = 923 s, as shown by Figure 3.5(a). We define
the total slip zone to be the portion along the fault such that ¤𝜃 = 1 − 𝑉𝜃/𝐷𝑅𝑆 ≤ 0,
which gives us a closed interval [𝑥𝐵1, 𝑥𝐵2] as shown by Figure 3.5(b). Let us further
define the local slip zone at 𝑥 𝐿𝑠𝑙𝑖𝑝 (𝑥) to be twice the distance between 𝑥 and the
closer boundary of the total slip zone, i.e.,

𝐿𝑠𝑙𝑖𝑝 (𝑥) = min
𝑖∈{1,2}

2|𝑥 − 𝑥𝐵𝑖 |. (3.11)

For a dynamic event to nucleate at 𝑥, linear stability analysis requires that the
local slip zone 𝐿𝑠𝑙𝑖𝑝 (𝑥) needs to be larger than the critical nucleation size 𝐿𝑛𝑢 (𝑥).
Figure 3.5(c) confirms that before the nucleation of the first dynamic event at
𝑡 = 920 s, everywhere along the fault 𝐿𝑠𝑙𝑖𝑝 < 𝐿𝑛𝑢 while only at 𝑥 = 0 𝐿𝑠𝑙𝑖𝑝 is
approaching and exceeding 𝐿𝑛𝑢. Then a dynamic event nucleates at 𝑥 = 0 and
we have a region along the fault that satisfies 𝐿𝑠𝑙𝑖𝑝 > 𝐿𝑛𝑢 at 𝑡 = 926 s. This
result confirms that it is necessary to have the local slip zone exceeding the local
nucleation size for the nucleation of a dynamic event. In summary, we find that
within the typical notion of "close to zero" initial slip rate, the stability of fault
slip under fluid injection depends significantly on the initial slip rate, and that less
healed faults tend to have earlier, more frequent dynamic events that expand farther
in space.
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Figure 3.2: More healed faults with lower initial slip rate tend to be more stable
under the same flux-controlled injection. Comparison of average pore pressure
change 𝛿𝑝𝑚 (upper row) and slip rate (lower row) vs. time along the fault for
𝑉𝑖𝑛𝑖 ≈ 10−22, 10−19, 10−16, 10−13 m/s. The pressure evolution is similar due to the
same flux-controlled injection process, while the onset of slow slip (yellow color
and the first dynamic event (nearly vertically spreading slip regions) occurs earlier
for larger 𝑉𝑖𝑛𝑖. The spatial extent of the dynamic events also becomes larger earlier
for larger 𝑉𝑖𝑛𝑖.
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Figure 3.3: (a, b, c) Slip rate vs. time, friction vs. time, 𝑡ℎ𝑒𝑡𝑎 vs. time at 𝑥 = 0 m
for the 4 cases. The stars and circles mark the peaks of slip rate 𝑉 and friction in
each case. The friction peak arrives earlier than the peak in slip rate 𝑉 , after which
the evolution of 𝜃 becomes significant. (d) Friction vs. slip at 𝑥 = 0 m for the 4
cases. (e) Slip rate 𝑉 at the first peak of 𝑉 and at the first peak of friction. The peak
slip rate decreases as 𝑉𝑖𝑛𝑖 increases, and is of the order 10−3 ∼ 10−1 m/s. The slip
rate𝑉 at which the friction peaks is of the order 10−7 m/s, close to the𝑉 after which
the state variable 𝜃 starts evolving significantly.
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Figure 3.4: Full time plots of slip rate, friction and state variable 𝜃 vs. time and
friction vs. slip over longer distances. (a, b, c) Slip rate vs. time, friction vs. time,
𝜃 vs. time at 𝑥 = 0 m for the 4 cases. (d) Friction vs. slip at 𝑥 = 0 m for the 4
cases. Note that in all cases, friction reduces to a value that is smaller than the initial
friction.
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Figure 3.5: Dynamic fault slip can nucleate when slip zone exceeds the local
nucleation size. (a) Average pore pressure change and slip rate vs. time along the
fault for 𝑉𝑖𝑛𝑖 10−22 m/s with poroelastic bulk. Note that the first dynamic event
happens around 𝑡 = 923 s. (b) log(𝑉) and ¤𝜃 = 1 − 𝑉𝜃/𝐷𝑅𝑆 along the fault at
𝑡 = 920, 926 s. We define the total slip zone to be the region where ¤𝜃 < 0, and
the local slip zone at 𝑥, 𝐿𝑠𝑙𝑖𝑝 (𝑥) to be twice the distance between 𝑥 and the closer
boundary of the total slip zone. (c) A comparison between 𝐿𝑠𝑙𝑖𝑝 (𝑥) and 𝐿𝑛𝑢 (𝑥) as
defined by (3.10). Before the nucleation of a dynamic event at 𝑡 = 920 s, everywhere
along the fault 𝐿𝑠𝑙𝑖𝑝 < 𝐿𝑛𝑢 while only at 𝑥 = 0 𝐿𝑠𝑙𝑖𝑝 is approaching and exceeding
𝐿𝑛𝑢. Then a dynamic event nucleates at 𝑥 = 0 and we have a region along the fault
that satisfies 𝐿𝑠𝑙𝑖𝑝 > 𝐿𝑛𝑢 at 𝑡 = 926 s.
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Effects of poroelasticity
The work of Heimisson et al.(2022) [3] has shown that fault slip becomes more
unstable as the undrained Poisson’s ratio 𝜈𝑢 decreases and gets closer to drained
Poisson’s ratio 𝜈, under the same fluid injection. And thus it was inferred that
poroelasticicty stabilizes fault slip under fluid injection. However, due to the limi-
tations in the code, that work was not able to achieve the elastic limit, i.e., 𝜈𝑢 = 𝜈.
Here, we implement the elastic kernels such that we can indeed simulate cases with
𝜈𝑢 = 𝜈, which equivalently sets 𝛼 = 0, and results in the poroelastic equations re-
duced to elastic equations as given by (3.5, 3.6). To compare elastic and poroelastic
cases, the governing equations and material properties of the shear layer are kept
the same. The fluid mobility of the bulk 𝜅 is kept the same between elastic and
poroelastic cases, whereas the fluid diffusivity in the bulk is set to either 𝑐 = 𝑀𝜅 or
𝑐𝑚𝑎𝑠𝑠 given by (3.4).

Since there are two end-member Poisson’s ratios in the poroelastic problem, namely
the undrained 𝜈𝑢 and the drained 𝜈, we consider two elastic cases with Poisson’s ratio
set to 𝜈𝑢 and 𝜈, and compare them to the poroelastic case. The material properties
are given in Tables B.1 and B.2.

Let us compare the results of the poroelastic and two elastic cases while keeping the
same apparent bulk diffusivity 𝑐 (Figure 3.6) vs. the same true fluid diffusivity 𝑐𝑚𝑎𝑠𝑠
as given by (3.4) (Figure 3.7. We find that, under the same flux-control injection
and with the same apparent bulk diffusivity, the poroelastic case is more stable than
the elastic, permeable case with 𝜈 = 0.24, and is slightly more stable than, but quite
similar to, the elastic, permeable bulk with 𝜈 = 0.35. This suggests that under such
injection and dynamic fault slip condition, the poroelastic bulk is close to being
undrained. If the elastic case with the Poisson’s ratio 𝜈 = 0.35 corresponding to the
undrained value of the poroelastic case is additionally modified to have bulk fluid
diffusivity incorporate some poroelastic effects through 𝑐𝑚𝑎𝑠𝑠, then the resulting
simulation matches the poroelastic one almost exactly (Figure 3.7). Hence one can
very closely mimic the poroelastic solution by using elastic, permeable bulk with
the 𝑐𝑚𝑎𝑠𝑠, 𝜅, 𝜈𝑢 and 𝐺 from the poroelastic problem.

The results suggest that the poroelastic effects near a slipping fault are always close
to their undrained limit. A simple analysis shows why this would be the case for
realistic properties of the bulk and the frictional interface. The region of the modified
pore fluid pressure due to the poroelastic effect occurs where there are significant slip
gradients that result in transient fault-parallel compression of dilation (Figure 3.8).
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Figure 3.6: Results for elastic permeable vs. fully poroelastic bulk when the apparent
bulk diffusivity 𝑐 is kept unchanged. (a) Comparison of average fluid pore pressure
change 𝛿𝑝𝑚 (upper row) and slip rate 𝑉 (lower row) vs. time along the fault for
elastic bulk with 𝜈 = 0.24 (left column), poroelastic bulk with 𝜈 = 0.24, 𝜈𝑢 = 0.35
(middle column), and elastic bulk with 𝜈 = 0.35 (right column). (b) Slip rate vs.
time at 𝑥 = 0 m for the above 3 cases. (c) Friction vs. slip at 𝑥 = 0 m for the 3
cases. All the three cases develop dynamic events at similar times, with the elastic
case with the lower 𝜈 = 0.24 being the most unstable, both in terms of earlier onset
of seismic slip and in terms of larger spatial extent of seismic events. The case with
poroelastic bulk looks similar to the elastic case with the Poisson’s ratio 𝜈 = 0.35
corresponding to the undrained value.

Let us denote the characteristic length scale of the pressurized region by 𝐿𝑐ℎ, as
shown in Figure 3.8, which is usually a fraction of the fault length. Denote the
propagation speed of the pressure front as 𝑉𝑝𝑟𝑜, which is usually a fraction of the
shear wave speed of the bulk. For any material point adjacent to the fault in the
poroelastic bulk, the time it is affected by the pressure front is 𝑡𝑐ℎ = 𝐷𝑐ℎ/𝑉𝑝𝑟𝑜,
in which time, by 1-D diffusion approximation, the fluid can diffuse a distance
approximated by 𝐷𝑠𝑝 =

√
𝑡𝑐ℎ𝑐 into the bulk. For the poroelastic increases in pore

fluid pressure to be affected by the diffusion processes, one needs 𝐷𝑠𝑝 ≈ 𝐷𝑐ℎ, which
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Figure 3.7: Rseults of elastic permeable vs. fully poroelastic bulk when the bulk
diffusivity for fluid mass content 𝑐𝑚𝑎𝑠𝑠 is kept unchanged. (a) Comparison of average
fluid pore pressure change 𝛿𝑝𝑚 (upper row) and slip rate 𝑉 (lower row) vs. time
along the fault for elastic bulk with 𝜈 = 0.24 (left column), poroelastic bulk with
𝜈 = 0.24, 𝜈𝑢 = 0.35 (middle column), and elastic bulk with 𝜈 = 0.35 (right column).
(b) Slip rate vs. time at 𝑥 = 0 m for the 3 cases. Note that the first dynamic event
nucleates slightly earlier in the case with elastic, 𝜈 = 0.24 bulk than the other two,
but compared with Figure 3.6 (b), the difference is smaller. (c) Friction vs. slip at
𝑥 = 0 m for the 3 cases. When 𝑐𝑚𝑎𝑠𝑠 is kept the same, the poroelastic case looks
nearly identical to the elastic case with the Poisson’s ratio 𝜈 = 0.35 corresponding
to the undrained value. This indicates that one can account for poroelastic effects by
considering the elastic bulk with the fluid diffusivity modified to 𝑐𝑚𝑎𝑠𝑠 and Poisson’s
ratio modified to its undrained value.

requires the hydraulic diffusivity in the bulk to be:

𝐷𝑠𝑝 =
√︁
𝑡𝑐ℎ𝑐𝑟𝑒𝑞 ≈ 𝐷𝑐ℎ

𝑐𝑟𝑒𝑞 ≈ 𝐷𝑐ℎ𝑉𝑝𝑟𝑜, (3.12)

where 𝑐𝑟𝑒𝑞 denotes the required bulk hydraulic diffusivity. If 𝐷𝑐ℎ is 1 m or more,
and 𝑉𝑝𝑟𝑜 is 1 m/s or more (it is usually much faster for dynamic events), then the
required hydraulic diffusivity would be more than 1 m2/s, which is already higher
than typical hydraulic diffusivities for rocks, even under low comfining pressure. In
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the case of our simulation shown in Figure 3.8, 𝐷𝑐ℎ ≈ 6 m and 𝑉𝑝𝑟𝑜 ≈ 100 m/s,
in which case the required bulk diffusivity has to be ≈ 600 m2/s to singificantly
affect the poroelastic pore pressure increases, a clearly unphysical value. In our
simulation, the hydraulic diffusivity is given by 10−8 m2/s.

𝐷!"

Figure 3.8: The propagation of pore pressure changes due to poroelastic effect
during the first dynamic event. (Upper row, left) Evolution of log slip rate along the
fault, where the dashed line marks the pressure profile of 𝛿𝑝𝑚 = 0.5 MPa, and the
solid line indicates the current plotting time. (Lower row) Pore pressure changes
above the shear layer 𝛿𝑝+, in the middle of the shear layer 𝛿𝑝𝑐, and below the shear
layer 𝛿𝑝−, at two times during the dynamic event. Note that the difference between
𝛿𝑝+ and 𝛿𝑝− is a poroelastic effect. Within 0.26 s, the pressure front propagates
25 m. The characteristic length scale of the perturbed pressure front is 𝐷𝑐ℎ ≈ 6 m,
and the propagation speed of the perturbed pressure feature is 𝑉𝑝𝑟𝑜 ≈ 100 m/s.

Effects of injection rate and intermittancy
Let us consider how the injection flux affects the stability of fault slip, for a fixed
mass of injected fluid. We first change the injection rate (flux) while keeping the
flux constant in time. Figure 3.9 shows the comparison of slip rate vs. time along
𝑥 for an injection at baseline flux, 0.75 of the baseline flux and 0.5 of the baseline
flux; note that the injection time changes with the injection flux to result in the same
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injected fluid mass. The surrounding bulk is poroelastic with properties listed in
table B.1. The fault properties are listed in table B.2. We find that a larger injection
rate leads to earlier, more frequent dynamic events but with smaller spatial extent.
In particular, with the smallest injection rate at 0.5 baseline flux, the dynamic event
happens later but expands across the entire simulated fault, while the first dynamic
events of cases with higher injection rates are self-contained, i.e., arrest within the
simulated fault. The dynamic slip rates are similar for all injection rates once a
dynamic event happens (Figure 3.9b) and the friction peak is similar among all three
cases because they start from the same initial slip rate and hence the same level of
fault healing (Figure 3.9c).

The results are qualitatively similar for elastic, permeable bulk (Figures 3.11 and
3.12). which confirms that for a given total injected mass of fluid, larger injection
rate would lead to more frequent but spatially more constrained dynamic slip events.
This is because slower injection rates lead to pore fluid pressure diffusing further
along the fault (Figure 3.10), both reducing the peak pore fluid pressure and hence
slowing down slip at the injection site as well as bringing more of the fault closer to
rapid slip, which allows events to grow larger once they nucleate.

Inspired by the fact that a faster injection rate results in smaller events first and hence
delays the occurrence of a spatially wide-spread dynamic event, we investigate the
effect of intermittent injection rate, while keeping the average injection rate and total
amount of injected fluid mass the same (Figure 3.13a). The intermittent injection
profile results in earlier and more frequent dynamic events, but they are spatially
confined, whereas the constant injection rate results in a later model-spanning event
(Figure 3.13b). Figure 3.13 (d) further confirms that the intermittent injection results
in smaller total slip. This result suggests that it may be possible to optimize the
injection rate-time profile, to achieve more spatially-restricted, smaller dynamic slip
events, with a given average injection flux as the constraint.
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Figure 3.9: The effect of injection rate (flux) on stability of fault slip surrounded
by poroelastic bulk. The total injected mass is kept the same for all cases, and
thus time is adjusted for different injection rates. Baseline flux is set to be 𝑐𝑏𝑎𝑠𝑒 =
1.0 × 10−4 Kg/(m · s). (a) Average pore pressure change 𝛿𝑝𝑚 (upper row) and slip
rate (lower row) vs. time along 𝑥 for baseline flux (left column), 0.75 baseline
flux (middle column) and 0.5 baseline flux (right column). We see that as the flux
(injection rate) decreases, the onset of dynamic events gets delayed more than would
be expected just based on the ratio of the fluxes, and the spatial extent of the dynamic
events becomes larger. (b) Slip rate vs. time at 𝑥 = 0 m for the 3 cases. (c) Friction
vs. slip at 𝑥 = 0 m for the 3 cases.
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Figure 3.10: The effect of injection rate on stability of fault slip surrounded by
poroelastic bulk. (a-b) Slip rate and 𝛿𝑝𝑚 vs. injected mass at 𝑥 = 0 m, for the three
cases in Figure 3.9. The first dynamic event nucleates at a smaller injection mass
for larger injection rates. The average pore pressure at the nucleation of the first
dynamic event decreases as injection rate decreases. (c) 𝛿𝑝𝑚 along the fault right
before the first dynamic event, for the 3 cases. Slower injection rates lead to pore
pressure diffusing further along the fault, both reducing the peak pore pressure and
bring more of the fault closer to rapid slip, which allows events to grow larger once
they nucleate.
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Figure 3.11: The effect of injection rate (flux) on stability of fault slip surrounded
by elastic, permeable bulk with 𝜈 = 0.24. The total injected mass is kept the same
for all cases, and thus time is adjusted for different injection rate. Baseline flux is set
to be 1.0× 10−4 Kg/(m · s). (a) Average pore pressure change 𝛿𝑝𝑚 (upper row) and
slip rate (lower row) vs. time along 𝑥 for baseline flux (left column), 0.75 baseline
flux (middle column) and 0.5 baseline flux (right column). We see that as the flux
(injection rate) decreases, the onset of dynamic events gets more delayed, (b) Slip
rate vs. time at 𝑥 = 0 m for the 3 cases. (c) Friction vs. slip at 𝑥 = 0 m for the 3
cases.
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Figure 3.12: The effect of injection rate (flux) on stability of fault slip surrounded
by elastic, permeable bulk with 𝜈 = 0.35. The total injected mass is kept the same
for all cases, and thus time is adjusted for different injection rate. Baseline flux is set
to be 1.0× 10−4 Kg/(m · s). (a) Average pore pressure change 𝛿𝑝𝑚 (upper row) and
slip rate (lower row) vs. time along 𝑥 for baseline flux (left column), 0.75 baseline
flux (middle column) and 0.5 baseline flux (right column). We see that as the flux
(injection rate) decreases, the onset of dynamic events gets more delayed, but the
spatial extent of the dynamic events become larger. Besides the case with baseline
flux, the other two cases with smaller injection rates both have a dynamic event that
spreads across the entire fault. (b) Slip rate vs. time at 𝑥 = 0 m for the 3 cases. (c)
Friction vs. slip at 𝑥 = 0 m for the 3 cases.
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Figure 3.13: Comparison between constant injection rate and intermittent injection
rate with poroelastic bulk. (a) Constant (upper) and intermittent (lower) injection
rates that we impose as functions of time. (b) Average pore pressure change 𝛿𝑝𝑚
(upper row) and slip rate (lower row) vs. time along the fault for constant (left
column) and intermittent (right column) injection rate. The average injection rate
as well as the total injected mass are kept the same, and thus the simulated time
lengths are the same. One can see that the intermittent injection case has earlier
and more frequent occurrences of dynamic events, but those dynamic events have
much more limited spatial extent. (c) Slip rate vs. time at 𝑥 = 0 m. We see that
the dynamic slip rates are similar between the two cases, but once the injection is
paused, the slip rate reduces rapidly with time in the intermittent case, potentially
contributing to the limited spatial extent of dynamic events. (d) Friction coefficient
vs. slip at 𝑥 = 0 m. The small peaks of friction in the intermittent case reflects the
healing effect when the injection is paused.
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3.4 Conclusions
In this study, we apply and further develop a boundary integral code for simulations
of frictional fault slip, with poroelastic surrounding bulk, to study several relevant
factors that may affect the stability of fault slip under fluid injection. First, we
find that the fault healing, or initial slip rate under rate-and-state friction, affects
the stability of fault slip significantly. A change from 𝑉𝑖𝑛𝑖 = 10−22 m/s to 𝑉𝑖𝑛𝑖 =
10−13 m/s would result in a much earlier nucleation of dynamic events and much
larger spatial expansion of them, under the same fluid injection. Second, we further
develop the code to allow for purely elastic bulk with the same fluid-transport
properties, and confirm that poroelasticity stabilizes fault slip under fluid injection.
We also find that with the typical length scales and properties of natural faults as well
as injection time scale, poroelastic and elastic bulk with undrained Poisson’s ratio
have similar effects on dynamic fault slip. This is because the propagation speed
of the pore pressure front is much faster than the diffusion speed of the pressure
perturbations into the bulk, and thus the bulk s essentially undrained elastic. Finally,
we study the effects of injection flux as a function of time on the stability of fault
slip. We find that for mass-controlled injection at constant injection rate, higher
injection rate leads to earlier and more frequent occurrences of dynamic events.
However, these events have smaller spatial extent. Motivated by that, we further
change the injection rate from constant to intermittent in time, and find that with the
same average injection rate and total injected fluid mass, intermittent injection also
leads to earlier, more frequent but more spatially restricted dynamic events. This
suggests that with an optimized injection rate-time profile, one can possibly achieve
more spatially restricted and less destructive dynamic events at a given average
injection rate. In the future, one can formulate an optimization over injection rate-
time function, to achieve an objective of more stable, less destructive dynamic fault
slip under a given average injection rate.
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C h a p t e r 4

MODELING INTERMITTENT LABORATORY EARTHQUAKES
IN ROCK GOUGE USING RATE-AND-STATE FRICTION WITH

FLASH HEATING

4.1 Introduction
To study complicated dynamic slip processes in geological faults, Rubino et al.
[24] conducted a lab experiment in which a dynamic frictional rupture along a pre-
existing interface in an analog material spontaneously propagated into an interface
region filled with rock gouge. The rupture was triggered along the interface of
two pre-stressed Homalite-100 plates by bursting an electric wire embedded in
the interface. The dynamic rupture experiments in Homalite have an important
advantage over rocks as they allow to minituarize the dynamic phenomena due to
much smaller (about 30 times) critical crack sizes in Homalite compared to rocks.
Hence dynamic ruptures can be obtained in Homalite samples of 0.2 m × 0.2 m,
whereas one would require rock samples of about 6 m to observe similar phenomena.
The experiments feature additional realism in incorporating rock gouge along the
interface, which is a highly granulated rock material found in the core of natural
faults where fault slip occurs.

In the experiment, the dynamic rupture was arrested upon entering the fault gouge
zone, after which intermittent dynamic slip events occurred by both further attempts
of slip to enter the fault gouge zone from outside and by self-nucleation of dynamic
slip from within the fault gouge zone. These experimental observations imply that
the fault gouge exhibits both an initial strengthening effect that allows to arrest
dynamic slip as well as a dynamic-weakening mechanism to allow for eventual slip
acceleration.

Previous laboratory studies have shown that friction on Homalite-100 and fault
gouge interfaces depends on the local slip rate and the slip history, as described
by rate-and-state friction laws [9, 15]. More specifically, rate-and-state velocity-
strengthening interfaces have increasing steady-state friction coefficient as slip rate
increases, which is consistent with the observed initial strengthening effect in the
fault gouge in [24], whereas velocity-weakening interfaces decrease their steady-
state friction resistance as slip rate increases, which allow for runaway earthquakes
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and dynamic rupture propagation [9, 26, 21].

As the slip rate along the fault gouge reaches the dynamic seismic level (around
1 m/s), several dynamic-weakening mechanisms can be potentially activated due
to shear heating, such as flash heating, thermal pressurization of pore fluids in the
ambient gouge and bulk material, as well as melting [30, 7, 4, 29, 18, 10, 11, 8,
13, 6, 17, 5, 22, 20, 16]. The experiment contained no pore fluids and there was
no evidence of macroscopic melting after the experiment. Hence the mechanism
of flash heating, together with the initial strengthening effect due to rate-and-state
velocity-strengthening friction properties, may explain the observed intermittent
dynamic slip processes observed in [24]. During flash heating, the micrometre-
scale tips of contacting asperities heat and weaken for large enough slip rates,
resulting in a marked drop in frictional strength with a pronounced 1/𝑉 dependence
on the slip rate 𝑉 . Owing to the highly local and transient nature of the process,
frictional strength is quickly recovered when the slip rate subsides.

Motivated by the experiment in [24], in this study, we conduct Finite Element (FE)
simulations to model intermittent laboratory earthquakes in rock gouge using rate-
and-state friction with flash heating dynamic-weakening mechanism. We explore the
interface properties and / or loading conditions that can reproduce the experimental
observations.

Section 2 introduces the problem setup and modeling approach we use to simulate
the intermittent earthquakes triggered in the lab experiment. Section 3 presents the
numerical results of several representative cases using our modeling, with different
interface properties as well as loading conditions, and discusses possible explana-
tions of the intermittent dynamic events observed in the lab experiment, including
their arrest and re-nucleation. Finally, section 4 summarizes the main findings of
this study and discussesfuture directions of simulating intermittent lab earthquakes
in fault gouges.

4.2 Problem Setup and Modeling
In the experimental study on intermittent lab earthquakes [24], two pre-cut Homalite-
100 blocks are compressed together at an angle as shown in Figure 4.1(a) and
Figure 4.2(a)(b). Part of the contact interface has fine-particle rock gouge material
inserted into it, to study the response of this fault-relevant material to dynamic
rupture. The gouge particles are contained in a groove made on each of the Homalite-
100 blocks at the gouge region. Therefore there is 1 mm Homalite wall surrounding
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the gouge region, as shown in Figure 4.2(b). Two wires are put on the interface to
trigger dynamic slip events by electrical discharge, as shown in Figure 4.1(a), and
they are used to trigger two ruptures one after the other. In this study, we focus on the
sequence of events after the first rupture initiation, using the wire placed at 85 mm
from the left edge of the interface. The experimental measurements are done using
dynamic DIC within a field of view around the rock gouge portion of the interface.

The evolution of slip rates along the interface with time inferred from experimental
measurements is shown in Figure 4.1(b). The color scale ranges from black at
0 m/s, to red at 1 m/s and finally blue at 2 m/s or higher. We can see dynamic
rupture arriving at the interface at around 40 𝜇s in two branches, one inter-sonic
and one sub-Rayleigh. They both get arrested at around 𝑥1 = 15 mm. Then another
self-contained event nucleates at around 85 𝜇s, 𝑥1 = 15 mm, and is arrested shortly
after. The self-nucleated rupture initiates at where the first ruptures entering from
the Homalite interface get arrested, potentially due to stress concentration formed
locally. In the experiments described in [24], they initiated a second sequence of
ruptures on the same specimen, and they still observed that there is a self-nucleated
rupture starting at where the first ruptures get arrested, even if the exact location of
the self-nucleation is no longer 𝑥1 = 15 mm.

In our simulations, we would like to reproduce the arrival of the two branches of the
initial rupture, their arrest, and the re-nucleation and arrest of the second rupture in
the gouge.

The experiment also reveals first strengthening and then dynamic weakening of
friction in the gouge (Figure 4.1c). At the location of 𝑥1 = 8 mm in the gouge zone,
the friction at the interface first increases as the initial rupture arrives, and then
decreases dramatically as slip rate goes above 2 m/s. This indicates that the friction
of the gouge region first increases as the slip rate increases and then dynamically
weakens as slip rate stays high.

Homalite-100 blocks: Linear elastic material

While Homalite-100 is a viscoelastic strain-rate-dependent material, its response
during dynamic rupture can be well approximated by treating it as a linear elastic
material with appropriately chosen elastic constants [23].
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Figure 4.1: Experimental setup and results from [24]. (a) A faulted Homalite-100
plate with part of the interface containing a rock gouge layer with the mean particle
size less than 5 microns. The measurements of the response of the gouge layer to
the incoming dynamic rupture are done through dynamic DIC with the indicated
field of view. (b) Evolution of slip rates inferred along the interface within the field
of view as a function of time. After the initial rupture arrives and gets arrested (40
to 50 𝜇s) at around 𝑥1 = 15 mm, dynamic slip re-nucleates in the gouge layer at the
same location, 𝑡 = 80 𝜇s. (c) Friction coefficient and slip rate in the gouge layer
at the location of 𝑥1 = 8 mm show the initial strengthening effect as the slip rates
increase with rupture arrival, and then dynamic-weakening effect after the slip rate
exceeds 2 m/s, which within a similar range as previous studies on flashing heating
slip rates of fault gouge [11, 13].

Then the governing equations of the Homalite-100 blocks are:

𝐺∇
2𝒖(𝒙, 𝑡) + 𝐺

1 − 2𝜈
∇(∇ · 𝒖(𝒙, 𝑡)) = 𝜌 𝑑

2𝒖(𝒙, 𝑡)
𝑑𝑡2

, for 𝒙 ∈ Ω, , (4.1)

where 𝒖(𝒙, 𝑡) is the displacement at location 𝒙 and time 𝑡, 𝜌 is the mass density,
𝐺 is the shear modulus, and 𝜈 is the Poisson’s ratio. The parameters we use in the
simulations are listed in Table C.1.

Fault constitutive model: Rate-and-state friction with flash heating effect

Previous studies have determined that Homalite-100 interfaces have rate-and-state
frictional properties with flash-heating dynamic-weakening effect ([31, 14, 20]). In
general, friction laws with rate-and-state dependence can be formulated by

𝜏(𝒙, 𝑡) = 𝑓 (𝑉 (𝒙, 𝑡), 𝜃 (𝒙, 𝑡)) 𝜎(𝒙, 𝑡), for 𝒙 ∈ 𝐼, (4.2)
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(a)

(c)

(d)

Region 1 Region 2 Region 1

VS, 60 mm 10 m
m

VW, 85 mm
VW, 36.6 mm VW, 47.1 mm

Wire GougeHomalite, VW Gouge, VS

(b)

Figure 4.2: Setup for the numerical modeling of the experiments. (a) 3D finite
element model inspired by the lab experiment in [24]. 2 pieces of Homalite-100 (Ω)
are pressed together by unaxial load 𝑃 = 14.3 MPa via a frictional interface (𝐼). The
part of the interface with the rock gouge layer is modeled with different frictional
properties than Homalite-100. Dynamic rupture is triggered by introducing a normal
stress perturbation along the interface motivated by wire explosion in the experiment.
(b) Schematics of the frictional interface with the locations of the wire and rock
gouge. The Homalite-100 and rock-gouge portions of the interface are modeled with
velocity-weakening (VW) and velocity-strengthening (VS) rate-and-state friction,
respectively. Region 1 is Homalite-100 only while region 2 has gouge embedded
in Homalite. Note that the gouge zone is surrounded by a thin wall of Homalite at
the front and back surfaces. (c) Normal-stress perturbation as a function of position
(𝑥1) along the fault at time 𝑡. The symmetric trapezoid is centered at the wire
position. (d) Peak value of normal stress perturbation as a function of time 𝑡. The
effective wire explosion time (𝑡 = 0 𝜇s) is modeled as the first time 𝜎𝑝𝑒𝑎𝑘 reaches
its maximum. Note that we do not have measured data for the explosion and,unless
specified otherwise, we adjust the explosion parameters to match the arrivel of the
initial rupture arrives at the edge of the field of view at around 40 𝜇s.

where 𝜏(𝒙, 𝑡) is the shear stress, 𝜎(𝒙, 𝑡) is the corresponding normal stress, 𝑉 (𝒙, 𝑡)
is the slip rate, and 𝜃 (𝒙, 𝑡) is the state variable at 𝒙 and 𝑡. The friction coefficient
formulation 𝑓 (𝑉, 𝜃) can include both rate-and-state dependence and flash heating
effect. We adopt the formulation of rate-and-state friction by Dieterich [9, 25].

𝑓𝑅𝑆 (𝑉, 𝜃) = 𝑓∗ + 𝑎 log
(
𝑉

𝑉∗

)
+ 𝑏 log

(
𝑉∗𝜃

𝐷𝑅𝑆

)
, (4.3)
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where 𝑓∗, 𝑉∗ are the reference friction coefficient and slip rate, 𝐷𝑅𝑆 is the character-
istic slip distance, 𝑎 and 𝑏 are non-dimensional rate-and-state parameters.

For the evolution law of the state variable 𝜃, we consider boht the aging law [9]:

𝑑𝜃

𝑑𝑡
= 1 − 𝑉𝜃

𝐷𝑅𝑆

(4.4)

and the slip law [25]:

𝑑𝜃

𝑑𝑡
= − 𝑉𝜃

𝐷𝑅𝑆

log
(
𝑉𝜃

𝐷𝑅𝑆

)
. (4.5)

We start by conducting simulations with the aging law and then compare selected
results with those for the slip law, explicitly identifying the simulations with the slip
law. The steady-state friction behavior, i.e., when 𝑑𝜃/𝑑𝑡 = 0, is the same for both
aging and slip law:

𝜃𝑠𝑠 =
𝐷𝑅𝑆

𝑉𝑠𝑠
, (4.6)

𝑓 𝑠𝑠𝑅𝑆 = 𝑓∗ + (𝑎 − 𝑏) log
(
𝑉 𝑠𝑠

𝑉∗

)
. (4.7)

In the steady state, when 𝑎 − 𝑏 > 0, 𝑓 𝑠𝑠
𝑅𝑆

increases with 𝑉 𝑠𝑠, which is known
as velocity-strengthening (VS) friction. Similarly, if 𝑎 − 𝑏 < 0, the steady-state
friction is velocity-weakening (VS). In the following, when refering to VW or VS
rate-and-state properties, steady-state properties are implied.

Flash heating effect dynamically weakens the fault interface when it is slipping
at high enough slip rates to just weaken the tips of contacting asperities without
macroscopic melting [30, 20, 4, 11]. In this study, we use the same flash heating
formulation as in [28]:

𝑓 (𝑉, 𝜃) = 𝑓𝑤 +
𝑓𝑅𝑆 (𝑉, 𝜃) − 𝑓𝑤

1 + 𝐷𝑅𝑆/(𝜃𝑉𝑤)
, (4.8)

where𝑉𝑤 is the slip rate at which flash heating becomes important and 𝑓𝑤 is the limit
of the lowest friction coefficient due to flash heating. The friction parameters used
for Homalite-100 interfaces are listed in Table C.2, while the friction parameters for
the gouge zone are different in different simulated cases and will be discussed in the
Results section.
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Numerical implementation of the physical modeling
We build our finite-element numerical model within the framework of PyLith, an
open source Finite Element Library software with user interface for new material
and interface constitutive models [3, 1, 2]. For the elastic bulk, weak form of (4.1)
is solved explicitly under finite-element spatial discretization, with lumped mass
matrix. The unknown tractions at the fault interface are solved essentially as the
Lagrangian multipliers to ensure both non-penetration condition in the fault-normal
direction and friction constitutive relations in the fault-tangential directions.

Denote the displacement at two sides of the interface of 𝐼 as 𝒖+ and 𝒖−. To advance
the solution from 𝑡𝑛 to 𝑡𝑛+1 = 𝑡𝑛 +Δ𝑡, PyLith uses a prediction-correction scheme to
enforce that the fault constitutive formulation is satisfied along the interface. First,
it makes an initial attempt step with 𝒖∗(𝑡𝑛+1) solved with 𝒖∗+(𝑡𝑛+1) − 𝒖∗−(𝑡𝑛+1) = 0,
i.e., no additional slip happens. That gives the required traction at the interface,
both the shear component 𝜏∗ and the normal component 𝜎∗, if no additional slip
occurs. Then the governing equations of the fault interface, i.e., (5.1, 4.4, 4.8) are
applied to modify the shear stress 𝜏∗, such that it satisfies the friction constitutive
relations of the interface. Next, the displacement field is updated to reconcile the
change in 𝜏∗ due to the modification step. The updated displacement field would
change the required traction at 𝐼 to satisfy balance of linear momentum (4.1), and
also the friction coefficient if the friction coefficient depends on the slip history.
PyLith loops the above process until both (4.1) in Ω and (5.1, 4.3, 4.8) are satisfied
and reports the corresponding displacement field as 𝒖(𝑡𝑛+1) [1, 2].

When the rate-and-state aging law for the evolution of the state variable 𝜃 is used,
PyLith follows the scheme proposed by Kaneko et al. [12, 1] to advance 𝜃 from 𝑡 to
𝑡 + Δ𝑡, :

𝜃 (𝑡𝑛+1) = 𝜃 (𝑡𝑛) exp
(
−𝑉 (𝑡𝑛)Δ𝑡
𝐷𝑅𝑆

)
+ 𝐷𝑅𝑆

𝑉 (𝑡𝑛)

[
1 − exp

(
−𝑉 (𝑡𝑛)Δ𝑡
𝐷𝑅𝑆

)]
, (4.9)

which essentially integrates (4.4) from 𝑡𝑛 to 𝑡𝑛+1 = 𝑡𝑛 + Δ𝑡, assuming that 𝑉 is
constant through the step at 𝑉 (𝑡𝑛).

4.3 Results and discussion
In the simulations, we explore and identify the parameters and conditions of the
fault gouge that would lead to the following experimental observations as shown in
Figure 4.1: Initial super-shear and sub-Rayleigh rupture fronts arrives at the edge
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of the gouge region at around 36, 40 𝜇s, and gets arrested at 𝑥1 ≈ 15 mm; Then, a
secondary dynamic rupture self nucleates at around 85 𝜇s within the gouge region,
and it is self-contained.

We start with a baseline model in which the entire interface has the friction and flash
heating properties of Homalite-100, to verify that our finite element model is working
properly, and that we get the expected rupture propagation within the Homalite-
100 interface. Then, we consider velocity-strengthening friction with flash-heating
parameters in the fault gouge zone, chosen based on point-wise measurements of
slip rate and friction shown in Figure 4.1(b).

Baseline: Through-going rupture for pure Homalite-100 interface with VW
rate-and-state friction and flash heating

(a) (b)

Figure 4.3: Case 1: The fault interface has uniform Homalite-100 friction properties
(no fault gouge is involved). Evolution of (a) slip rate and (b) shear stress. The initial
slip rate over the entire interface is set to be 𝑉𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 10−7 m/s. The interface has
uniform friction parameters and initial condition. Shear, pressure and Rayleigh wave
speeds are marked as 𝑐𝑠, 𝑐𝑝 and 𝑐𝑟 , respectively. Note that the results plotted are at
the front surface 𝑥3 = 0 mm where they are observed in the experiment. We see that
rupture propagates over the entire pure Homalite interface as expected based on prior
experiments. The rupture starts as sub-Rayleigh and then transitions into intersonic
rupture speeds (often called super-shear), with the propagating Rayleigh signature
as the remnant of the original sub-Rayliegh front, consistent with observations in
Figure 4.1(b) of two fronts arriving at the gouge portion of the interface.

As a baseline for further comparison, we first simulate a dynamic rupture on purely
Homalite interface, with no rock gouge, and observe that the initiated rupture
propagates through the entire interface (Figure 4.3) as expected based on prior
experiments [23]. After the rupture is initiated at the location of the wire explosion,
it first propagates in both directions at a sub-Rayleigh wave speed. Then, after
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around 30 𝜇s, the rupture transitions to intersonic rupture speeds. The two rupture
fronts with different wave speeds arrive at the edge of region 2 where the rock gouge
is in the experiment at approximately 36, 40 𝜇s, consistent with events "A" and "B"
in the experiment (Figure 4.1). Eventually, the rupture gets reflected at the two
lateral of the sample in 𝑥1 direction.

In the shear stress plot, we observe that at any location 𝑥1 along the interface,
the shear stress first rises when the rupture arrives, which is consistent with stress
concentration at the rupture front and matches the rate-and-state direct effect [9, 19].
Then the shear stress drops significantly first due to the rate-and-state weakening
and then due to the flash heating (FH) dynamic-weakening mechanism imposed by
(4.8).

Arrest of rupture in the velocity-strengthening rock gouge
To start considering the effect of the gouge zone, we introduce velocity-strengthening
friction (first without flash heating) for Region 2. Experiments on nominally sta-
tionary frictional interfaces loaded in compression and shear [27] suggest that,
depending on how long the Homalite-100 plates have been held together before the
rupture is initiated in the experimental setting, the initial slip rate𝑉𝑖𝑛𝑖𝑡𝑖𝑎𝑙 ranges from
10−9 m/s to 10−7 m/s. Here we set 𝑉𝑖𝑛𝑖𝑡𝑖𝑎𝑙 to be 10−7 m/s. The specific parameters
are listed in Table C.3.

We can see that dynamic rupture gets arrested in the velocity-strengthening region of
the interface that represents rock gouge. Then later at around 80 𝜇s, another rupture
enters the gouge region from the Homalite-100 region and is arrested again by the
fault gouge. This second rupture is caused by the continuing slip away from the
gouge region. The shear stress plot shows that the ruptured region experiences flash-
heating weakening. When the shear stress is plotted at the front surface 𝑥3 = 0 mm,
where the material is Homalite-100 throughout the sample, we see weakening after
the rupture front even in Region 2. To see the effect of the VS properties, we
plot shear stress along the centerline of the fault 𝑥3 = −5 mm, in the middle of
the Homalite plate. Indeed, the stress goes up significantly in that portion of the
interface, arresting the rupture. At the same time, the slip rate does not vary much
in 𝑥3 direction, as expected in this nearly 2D experimental configuration.

We find that the velocity-strengthening fault gouge can indeed arrest the initial
dynamic rupture as expected. However, for the purely VS properties, there is no
re-nucleation of slip. Next, we incorporate flash-heating-like dynamic-weakening
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(a) (b)

Figure 4.4: Case 2: Homalite-100 interface with VS fault gouge (no flash heating).
(a) 𝑥1-Time diagram of slip rate, measured at 𝑥3 = 0 mm (the surface of the sample).
(b) 𝑥1-Time diagram of shear stress, measured at 𝑥3 = 0 mm. (c) 𝑥1-Time diagram
of slip rate differences between 𝑥3 = −5 mm (the center line of the 2D interface)
and 𝑥3 = 0 mm, note that the color scale is changed to [−2, 2] m/s to show that the
difference is small. (d) 𝑥1-Time diagram of shear stress, measured at 𝑥3 = −5 mm.
The initial slip rate over the entire interface is set to be 𝑉𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 10−7 m/s. The plot
marking are similar to Figure 4.3. The gouge layer with VS friction arrests the initial
rupture upon its arrival. A secondary rupture arrives at the gouge layer at around
80 𝜇s. We also notice that the slip-rate difference in 𝑥3 direction is not significant
compared to its magnitude, while the difference in shear stress is significant due to
the transition from velocity-weakening Homalite to velocity-strengthening gouge,
as 𝑥3 decreases from 0 mm to −5 mm.

mechanism into the fault-gouge region.

Velocity-strengthening gouge region with dynamic weakening due to flash heat-
ing
As we further include flash-heating dynamic-weakening effect in the gouge zone
(Figure 4.5), we find that the arrest of the initial rupture can still be reproduced for
the appropriately chosen flash-heating parameters. Note that in (a), we see some
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intermittent increase and decrease in the slip rate, and this is due to the waves
transversing in the 𝑥3 direction, which will clear later from a comparison with a 2D
simulation. The secondary rupture still comes back to the gouge zone at around
80 𝜇s from the Homalite region of the interface, and this time the rupture is not
arrested but rather propagates through due to activated flash heating. Hence this
model succeeds in reproducing some intermittency of slip in the gouge portion of
the interface, but not the kind that occurs in the experiment.

Figure 4.5: Case 3: Homalite-100 interface with VS and FH fault gouge. (a)
𝑥1-Time diagram of slip rate, measured at 𝑥3 = 0 mm. (b) 𝑥1-Time diagram of
shear stress, measured at 𝑥3 = 0 mm. (c) 𝑥1-Time diagram of slip rate differences
between 𝑥3 = −5 mm and 𝑥3 = 0 mm, note that the color scale is changed to
[−2, 2] m/s to show that the difference is small. (d) 𝑥1-Time diagram of shear
stress, measured at 𝑥3 = −5 mm. The initial slip rate over the entire interface is
set to be 𝑉𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 10−7 m/s. The plots have markings similar to Figure 4.4. We
observe that adding flash-heating (FH) dynamic-weakening effect to the VS region
allows for the secondary rupture at around 80 𝜇s to propagate into the gouge layer..
In (d) we see that the shear resistance of the gouge layer first strengthens and then
dynamically weakens due to the imposed FH effect, producing the intermittancy in
slip.

For a more detailed comparison between the experiment and the simulated cases, let
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us consider slip rates within the experimental field of view and at the same slip-rate
scale (Figure 4.6). In the simulation with uniform Homalite interface (no gouge),
the arrival time of the rupture at the edge of the observation window is reproduced.
With gouge modeled as a VS region, we are able to reproduce the arrival and arrest
of the initial rupture around 40 𝜇s; furthermore, we also reproduce a subsequent
attempt for slip to penetrate from Homalite into the gouge (at around 80 𝜇s), but it is
much stronger and somewhat later than the corresponding attempts in the experiment
(events C and D in panel a). Further, with velocity-strengthening plus flash-heating
gouge friction properties, we are able to obtain a secondary rupture in the gouge —
and hence some slip intermittancy — that has the same slip rate as the experiment.
However, the simulated second rupture arrives from the Homalite zone (rather than
nucleates from within the gouge) and it is not self-contained.

(m s-1)

x1 (mm)

t(
m
s)

E: dynamically re-
nucleated rupture

B: arres�ng sub-
Rayleigh rupture

A

D C

cR = 1.19
km/s

cp = 2.61 km/s

cs = 1.29
km/s

Figure 4.6: 𝑥1-Time diagrams of slip rates along the interface within the field of
View from (left to right) the experiment; Homalite-only interface (case 1) Homalite
with velocity-strengthening (VS) gouge (case 2); and Homalite with VS and flash-
heating (FH) gouge (case 3). Note that here, the color scale for slip rates is [0, 2] m/s
as in the experimental measurements. The simulation of case 2 reproduces several
features of the experiment but does not reproduce a self-nucleating seclf-contained
event E observed in the experiment.

As already mentioned, the shear stress on the interface varies significantly with 𝑥3

(the thickness of the plate) because of the transitioning from Homalite to gouge at
𝑥3 = −1 mm. Let us compare shear stress between the experimental measurements
and simulated values at 𝑥3 = {0,−2,−5} mm for case 3 (Figure 4.7). Note that the
initial shear stress is 6.06 MPa. In the simulations, the shear stress changes at at
𝑥3 = 0 mm are largely negative, consistent with weakening in Homalite. The shear
stress changes deeper into the interface are strengthening due to the VS nature of
the interface.
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However, the experimental shear stress measurements indicate both negative and
positive shear stress changesk, despite the measurements being done at 𝑥3 = 0 mm.
This implies that the experimental results of shear stress is some average of the shear
stress through the thickness of the interface. Such averaging can be explained by
the fact that the DIC uses a finite-size pixel set to estimate displacements and that
size is 51 × 51 pixels in the experimental study. Note that the slip rates are nearly
uniform across the thickness, so such averaging is not an issue for them.

Figure 4.7: 𝑥1-Time diagrams of shear stress along the interface within the field
of view from the experiment and for case 3 at different 𝑥3. The experimental
measurement is likely some average of the shear stress at different 𝑥3’s, as a result
of the DIC algorithm used to estimate displacements.

To check the numerical convergence of our simulations, and in particular that the
small-scale oscillations in case 3 (right-most panel in Figure 4.6) are physical rather
than numerical, we simulate case 3 with three different meshes of edge lengths
2, 0.5, 0.1 mm, respectively (Figure 4.8). We see that the results do not appreciably
change with the mesh refinement and that the oscillations in the results are indeed
physical, due to the good mesh convergence shown. The plots also illustrate how
the friction coefficient first increases due to the velocity-strengthening rate-and-state
properties of the gouge, and then decreases due to flash-heating dynamic-weakening
mechanism.

To check whether using slip law for the evolution of state variable 𝜃 would give us
qualitatively different results, we run case 3 with the slip law (4.5) instead of the aging
law of the state variable evolution.. We find that the rupture behavior is qualitatively
similar (Figure 4.12). Note that, under the same explosion condition, the case with
slip law requires much larger 𝐷𝑅𝑆 to result in similar rupture propagation, as also
found by [28].
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Region 1 Region 2 Region 1

VS, 60 mm 10 m
m

VW, 85 mm
VW, 36.6 mm VW, 47.1 mm

Wire GougeHomalite, VW Gouge, VS

Figure 4.8: Friction coefficient, slip rate, and slip vs. time at 𝑥3 = −5mm, three
locations along the field of view, and three meshes with edge lengths of around
2, 0.5, 0.1 mm. The results show convergence with the mesh refinement.

The behavior of the secondary rupture depends on the initial slip rate over the
interface
We test the sensitivity of our simulations results to the initial conditions over the
interface, specifically the initial slip rate that indicates the degree of healing based on
interface-holding experiments ([27]). In addition to case 3 with 𝑉𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 10−7 m/s,
we simulate two more cases with 𝑉𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 10−8 m/s and 𝑉𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 10−9 m/s. From
the rate-and-state formulation (4.3), we can compute the corresponding initial value
for the state variable 𝜃 by

𝜃𝑖𝑛𝑖𝑡𝑖𝑎𝑙 =
𝐷𝑅𝑆

𝑉∗
exp

(
tan(𝛼) − 𝑓∗ − 𝑎 log(𝑉𝑖𝑛𝑖𝑡𝑖𝑎𝑙/𝑉∗)

𝑏

)
. (4.10)

Let us first keep the parameters of the initiation explosion unchanged. With the
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Figure 4.9: Comparison between aging and slip law for case 3. (Top row) 𝑥1-Time
plots of slip rates with the same parameters as case 3, except the value of 𝐷𝑅𝑆

(1.5 𝜇m for the ageing law, 8 𝜇m for the slip law). (Bottom row) Slip rate vs. time
(left) and friction coefficient vs. slip (right) in the Homalite (𝑥1 = −50 mm) and
gouge (𝑥1 = 5 mm) portions of the interface. The results with the two laws are
qualitatively similar.

same explosion, reducing the initial slip rate would significantly delay the arrival
of the initial rupture (Figure 4.10), consistent with the notion that lower initial slip
rates correspond to more healed interface.

Let us now adjust the parameters of the explosion, as we change the initial slip rates
on the interface, to match the first rupture arrival at the gouge layer at around 40 𝜇s
(Figure 4.11).

For both aging and slip laws, the second rupture becomes much less dynamic as the
initial slip rate reduces from 10−7 to 10−9 m/s. The ageing and slip laws produce
qualitatively similar results, with the slip law having more smooth profiles because
of larger𝐷𝑅𝑆. We also notice that even if the second rupture is significantly impaired
by the reduced slip rate, in all the cases it starts re-entering the gouge zone at around
80 𝜇s.
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Figure 4.10: Evolution of slip rates with time over the interface within the field
of view for case 3 (𝑉𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 10−7 m/s), and two more initial slip rates, 𝑉𝑖𝑛𝑖𝑡𝑖𝑎𝑙 =
10−8 m/s, 𝑉𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 10−9 m/s. All the other parameters are the same.. We can see
that under the same explosion, reducing the initial slip rate would delay the arrival
time of the initial rupture, consistent with more healed interfaces.

Self-nucleation by introducing a more efficient weakening patch in the gouge
zone
From the cases shown above, we find that gouge with velocity-strengthening plus
flash heating friction properties is able to arrest the first rupture arriving at the
interface at around 40 𝜇s, and then a second rupture enters from the Homalite region
into the gouge at around 80 𝜇s, and it is never arrested. However, in the experimental
result shown in Figure 4.1, the prominent second rupture self-nucleates within the
gouge zone, and it is arrested shortly after nucleated. We have considered cases with
different explosion parameters, friction parameters, initial conditions, etc., and find
that, with uniform friction properties in the Homalite and gouge zone and with our
formulation of (4.3, 4.8), the second rupture always initiates from the Homalite at
around 80 𝜇s instead of self-nucleating in the gouge. Furthermore, the flash heating
by (4.8) makes the second rupture difficult to be arrested once initiated.

To illustate what kind of feature could nucleate a self-contained second rupture at
where the first ruptures get arrested, i.e., around 𝑥1 = 15 mm, we introduce a patch in
the gouge zone that develops enhanced flash heating with slip and then reverts back
to the original flash-heating properties (Figure 4.12). Specifically, the characteristic
slip rate for flash heating,𝑉𝑤, first reduces with slip from the characteristic value for
gouge of 2 m/s to a much smaller value of 0.1 m/s or 0.01 m/s more appropriate
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Figure 4.11: Evolution of slip rates with time over the interface within the field
of view for case 3 (𝑉𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 10−7 m/s), and two more initial slip rates, 𝑉𝑖𝑛𝑖𝑡𝑖𝑎𝑙 =
10−8 m/s, 𝑉𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 10−9 m/s, for both ageing (a) law and (b) slip law, while tuning
the explosion parameters such that the initial rupture arrives in the gouge zone at
around 30 to 40 𝜇s as in the experiment. Reducing the initial slip rate over the
interface makes the secondary rupture significantly less dynamic. However, the
secondary rupture still enters the field of view at around 80 90 𝜇s in all six cases.
Slip law has more smooth ruptures because the suitable 𝐷𝑅𝑆 is larger.

for bare rock surfaces ([20]) and then recovers back to its original value. Physically,
this would correspond to shear localizing to nearly a single slip surface in the gouge
and then delocalizing to a more finite-width shear layer. Based on the flash-heating
formulation (4.8), such a variation in𝑉𝑤 would first make friction coefficient 𝑓 (𝑉, 𝜃)
decrease to the flash-heating weakened value 𝑓𝑤 for much lower values of slip rate
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but then would remove this feature.

Since the uniform velocity-weakening Homalite interface always result in a strong
coming-back rupture at around 80 𝜇s which would interfere with the self-nucleation
we are trying to reproduce, we further introduce a region in Homalite to the left of
the wire (Figure 4.12a) that has different rate-and-state properties to impair sliding
in Homalite that causes the rupture to come back to the gouge at 80 𝜇s.

With these modifications, we can reproduce the self-nucleation and arrest of an
event in the fault gouge for both aging and slip laws (Figure 4.12c).. The simulated
events are qualitative similar to the experimental result in Figure 4.1(a). The needed
reduction of 𝑉𝑤 is 0.1 m/s for the slip law and 0.01 m/s for the aging law, and the
latter value is potentially too small to be realistic (Rice, 2006 [20]; Goldsby and
Tullis, 2011 [11]); in that sense, the slip law is doing a better job. Figure 4.12(d)
and (e) shows the nucleation and arrest process within the patch for slip law. We
clearly see that a dynamic event nucleates within the thickness of the interface and
then spreads to the lateral surfaces. As the enhanced flash heating disappears, shear
stress recovers and slip rate drops down. This result suggests that a localization-
delocalization process in the gouge region possibly causes the self nucleation and
arrest observed in the experiment. The process occurs at the location of shear stress
concentration left by the arrest of the initial rupture, where there is constant creep
with non-negligible slip rates potentially contributing to this process.

An important remark here is that the Homalite wall surrounding the the gouge
zone is important in the self-nucleation, because for 𝑉𝑤 to decrease to its low
value, the cumulative slip at the location needs to reach several microns, and the
surrounding Homalite region fosters slip in the patch. We have run a case without
the surrounding Homalite region and under the same explosion, initial condition
and friction parameters, and no self-nucleation is achieved.

Comparing 3D and 2D simulations
Since the specimen is 200 mm long and wide, but only 10 mm thick, a natural
question to ask is how much feature we will be able to capture just with a 2D
simulation in plane-stress. We here run a case with the same material parameters
and initial condition as case 3 in 2D. However, in 2D simulation there will be no
Homalite region surrounding the gouge zone as the 3D simulation, since 𝑥3 direction
does not exist. It turns out that the surrounding Homalite region makes it easier for
the rupture to propagate, and the difference is noticable.



95

Figure 4.13 (a) and (b) shows the 𝑥1-Time diagrams of case 3 (3D) and its corre-
sponding 2D case. The 3D case is plotted at 𝑥3 = −5 mm. The initial slip rate
over the interface is set to be 𝑉𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 10−7 m/s. From (a)(b) we see that the 3D
case and 2D case have the same rupture propagation patterns, while the slip rate is
higher. Figure 4.13 (c) shows the friction coefficient vs. time, as well as slip rate
vs. time. We observe that the friction coefficient is similar within the Homalite
(𝑥1 = −5 mm) and the gouge (𝑥1 = 5 mm). However, the slip rate is usually higher
in the 3D case. We conjecture that there are two main factors that causes the slip
rate in 3D simulations to be more dynamic. First, the 3D case has free surfaces at
𝑥3 = −10 mm and 0 mm, while the 2D plane stress case assumes uniform affine
deformation in 𝑥3 direction, which is putting more constraints than the 3D case.
Second, the 3D case has a thin wall of Homalite surrounding the gouge region, and
Homalite is velocity-weakening.

To verify that both factors contribute to more dynamic slip in the 3D case, we run a
3D case but without the Homalite wall surrounding the gouge region. Figure 4.13(d)
shows the 𝑥1-Time diagrams of 3D, 3D without Homalite wall and 2D case. We
see that the 3D case without the Homalite wall has lower slip rate in the “Field of
View", and the second rupture arrives later. This confirms that the Homalite wall
contributes to the more dynamic slip. Comparing the 3D case without the wall to the
2D plane stress case, we see that the first rupture is less dynamic in the 2D case, and
the slip rate between 40 and 80 𝜇s is lower. This signifies that the free surface also
makes the slip more dynamic. To further verify that the free surface fosters more
dynamic slip, Figure 4.13(e) compares the snapshots of slip rates on the interface.
From it we can see that when the slip front is still in the Homalite, the 3D cases,
with or without the Homalite wall, both have a rupture front that is convex, i.e., the
front travels faster close to the boundaries of 𝑥3 = −10 mm and 0 mm. We also
notice that there is a higher peaker slip rate in the 3D cases than in the 2D case.
When the rupture front enters the gouge zone (marked by Region 2 in (e)), Since the
original 3D case has a thin Homalite wall at the boundaries, the front becomes even
more convex. The 3D case without the Homalite wall still has a convex front, while
the 2D case, by construction can only have a flat front. After the rupture enters the
gouge zone, the 2D case has the lowest slip rate, while the original 3D case has
the highest slip rate. This comparison confirms that both the free surface and the
Homalite wall surrounding the Homalite region contribute to the fact that 3D case
has more dynamic rupture propagation. Given the significant difference of the 3D
versus 2D simulations, we conclude that it is necessary to conduct 3D simulations,
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not only so that we do not under estimate the slip rates, but also for slip front that is
non-planar in the 𝑥3 direction.
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(b) (c)

Region 1 Region 2 Region 1

VS, 60 mm 10 m
m

VW, 85 mm
VW, 36.6 mm VW, 47.1 mm

Wire Gouge Homalite, VWGouge, VS

(a)

Homalite, VS

Figure 4.12: Self nucleation can be achieved by introducing a more efficient𝑉𝑤-slip
weakening patch within the gouge layer. We also eliminate the come-back rupture
at 80 microseconds by modifying properties of the Homalite interface away from
the gouge. (a) The Homalite section to the left of the wire is set to be velocity-
strengthening, to impair slip there that causes a come-back rupture. A patch with
variable flash-heating properties is put in the gouge zone, around 𝑥1 = 15 mm,
i.e., where the first ruptures get arrested. (b) The decrease and increase of 𝑉𝑤
vs. slip in the patch is piecewise linear, going from values appropriate for gouge
layer to values characteristic of bare surfaces. (c) The X-T diagrams of slip rate
for cases without and with the slip-weakening patch. The case without the patch
shows that the VS Homalite section is able to prevent the secondary rupture from
entering the gouge zone at around 90 𝜇s, while the case with the patch achieves self-
nucleation by its more efficient weakening. (d) Snapshots of slip rate at the interface
at 78.45, 82.45, 86.45, 90.45 𝜇s, for the case with the slip law, clearly showing the
self-nucleation process and rupture arrest later. (e) Snapshots of shear stress at the
interface at 78.45, 82.45, 86.45, 90.45 𝜇s, for the case with slip law. Shear stress
first decreases in the patch and then recovers, due to the evolution of 𝑉𝑤 with slip as
in (b).
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Figure 4.13: Comparison between 3D and 2D simulations with velocity-
strengthening plus flash-heating gouge. (a-b) 𝑥3-Time diagram of slip rates along
the entire interface with 𝑉𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 10−7 m/s with 3D and 2D simulations. Note
that here the slip rate for the 3D simulations are plotted at 𝑥3 = −5 mm. They
look largely similar. (c) Friction vs. Slip and Slip rate vs. Time for 3D and 2D
simulations at 𝑥1 = −5 mm (in the Homalite) and 𝑥1 = −5 mm (in the gouge). The
friction coefficient is largely similar between 3D and 2D cases, while the 3D case
has in general larger slip rate as the rupture first arrives. (d) 𝑥3-Time diagram of
slip rates in “Field of View" between 3D case, 3D with out the 1 mm Homalite wall
surrounding the gouge in 𝑥3 direction, and 2D case. We see that the first rupture
becomes less and less profound. (e) Snapshots of slip rate over the interface between
3D case, 3D without the 1 mm Homalite wall surrounding the gouge in 𝑥3 direction,
and the 2D case. Notice that The shape of rupture front of the 3D case is the most
convex, and then the 3D case without the wall is also convex. The 2D case has a
straight rupture front. The 3D case without the 1 mm Homalite wall surrounding
the gouge in 𝑥3 direction already has a rupture with higher peak slip rate than the 2D
case, because the rupture propagates more easily at the free surface. Then adding
the Homalite surrounding in 𝑥3 direction (the 3D case) further fosters higher slip
rate, because the Homalite region has lower shear resistance.
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4.4 Conclusions
In this study, we have developed a 3D dynamic finite element (FE) model for
simulating dynamic rupture propagation in pre-existing fault interfaces embedded
in elastic solid. We first implement a modified fault constitutive model with both
rate-and-state friction and flash heating dynamic-weakening mechanism in the open
source finite element software PyLith [2]. The friction formulation can be applied
to non-planar fault interfaces within the finite element framework of PyLith, and
also allows for heterogeneous friction properties along the fault, due to the nature
of finite-element formulations. Then we apply our modeling capability to study
a complicated lab experiment that has intermittent dynamic lab earthquakes on a
non-homogeneous fault interface.

We find that velocity-strengthening fault gouge equipped with flash-heating dynamic
weakening mechanism can first arrest the initial rupture as it arrives at the interface,
and later allows for a second rupture to propagate in the gouge zone at dynamic
slip rates. However, the typical formulation of flash-heating with uniform friction
properties in the gouge cannot reproduce the self-nucleation at the specific spot
observed in the experiment. By further introducing a patch of variable dynamic
weakening at the specific spot, we are able to get a self-nucleated and then self-
contained event. The variation in dynamic weakening corresponds to parameters
changing from the ones appropriate to distributed sliding in gouge to the ones
appropriate for localized slip on a surface, suggestion that the self-nucleating event
could be due to shear-localization and then de-localization processes in the rock
gouge. .

We also find that the rupture behavior depends on the initial slip rate of the interface,
and the rupture becomes much less dynamic or even not cannot nucleate under the
same explosion when the initial slip rate decreases from 10−7 m/s to 10−9 m/s. To
further constrain future experiments and modeling, it would be important to conduct
holding experiments before triggering the lab earthquakes ([27]) to measure the
initial conditions over the fault.

Finally we compare 3D with 2D plane-stress simulations. The results show that
3D simulations have more dynamic ruptures and higher slip rates under the same
explosion, due to free surfaces and Homalite wallaround the gouge zone in the
3D simulations. Also 3D simulations allow for non-uniform rupture front in the
thickness direction, which is important for ruptures nucleating in the middle of the
thickness direction. We conclude that 3D simulations are necessary to reproduce
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the full set of experimental observations and study the rupture behavior as well as
nucleation processes in detail.

In the future, the FE model we have developed can be extended to study other
complicated dynamic rupture propagation problems happening at pre-existing fault
interfaces, to better understand the underlying physics of lab and natural earth-
quakes.
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C h a p t e r 5

LEARNING A POTENTIAL FORMULATION FOR
RATE-AND-STATE FRICTION WITH RECURRENT NEURAL

OPERATORS (RNOS)

5.1 Introduction
In this study, we adopt the Coulomb friction formulation, where the shear traction
𝜏 over a point of a frictional interface 𝑋 is related to the applied normal traction 𝜎
through friction coefficient 𝑓 . The friction coefficient, in a general setting, would
depend on the slip history of that location {𝑥(𝑋, 𝑡′) : 𝑡′ ∈ [0, 𝑡]}, i.e.,

𝜏(𝑡, 𝑋) = 𝜎(𝑡, 𝑋) 𝑓 ({𝑥(𝑋, 𝑡′) : 𝑡′ ∈ [0, 𝑡]}) . (5.1)

Rate-and-state friction
Building on the general friction formulation given by (5.1), rate-and-state friction
further assumes that the dependency on slip history {𝑥(𝑋, 𝑡′) : 𝑡′ ∈ [0, 𝑡]} is re-
stricted to dependencies on the current slip rate, 𝑉 = ¤𝑥(𝑋, 𝑡) and a state variable
𝜃 (𝑋, 𝑡). Inspired by experimental observations [4, 7, 10], rate-and-state friction law
postulates that the friction coefficient

𝑓 𝑅𝑆 (𝑋, 𝑡) = 𝑓∗ + 𝑎 log
(
𝑉 (𝑋, 𝑡)
𝑉∗

)
+ 𝑏 log

(
𝑉∗𝜃 (𝑋, 𝑡)
𝐷𝑅𝑆

)
, (5.2)

where 𝑓∗ is reference friction coefficient, 𝑉∗ is reference slip rate, 𝐷𝑅𝑆 is character-
istic slip distance and 𝑎, 𝑏 are dimensionless rate-and-state parameters, and 𝜃 is a
state variable that evolves with time. The evolution of 𝜃 is given by the Dieterich
ageing law [4, 10]:

𝜃 (𝑋, 𝑡) = 1 − 𝑉 (𝑋, 𝑡)𝜃 (𝑋, 𝑡)
𝐷𝑅𝑆

. (5.3)

Since the formulation of rate-and-state friction only has local dependency on 𝑋 , i.e.,
no ∇𝑋 involved, the computation of 𝑓𝑅𝑆 is local and point-wise, and thus usually 𝑋
is omitted without ambiguity. Further, at steady state ( ¤𝜃 = ¤𝑉 = 0), one can further
get

𝑓 𝑅𝑆𝑠𝑠 = 𝑓∗ + (𝑎 − 𝑏) log
(
𝑉𝑠𝑠

𝑉∗

)
. (5.4)
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If 𝑎 − 𝑏 > 0, steady rate-and-state friction coefficient 𝑓 𝑅𝑆 increases as slip rate
increase, and the friction is rate-strengthening. If 𝑎 − 𝑏 < 0, the friction is rate-
weakening. Rate-weakening rate-and-state friction has been widely applied to
the modeling of dynamic earthquakes, since it can potentially be unstable under
perturbations in slip rate [4, 7, 10, 9, 11].

It can be checked that there is no potential associated with the original rate-and-state
formulation, i.e., we cannot find scalar potential functions whose gradients would
yield both the friction coefficient 𝑓 𝑅𝑆 and the evolution law of 𝜃. This property raises
challenges in numerically solving dynamic boundary value problems with rate-and-
state friction law. While if the friction formulation has associated potentials, the
implicit solving process will be equivalent to a minimization problem, which can
be easier and more robust to solve implicitly. The goal of this study is thus to find
a friction law with a potential that not only has similar rate-and-state behaviors, but
also facilitates the fast and stable numerical solution of dynamic friction problems
in application.

5.2 Formulation
Following the formulation of general history-dependent given by (5.1), we still
further assume that the dependence on the slip history can be modeled as dependence
on hidden variables 𝝃 ∈ R𝑑 . We introduce three potentials, 𝑊 (𝑥), 𝐷†( ¤𝑥, 𝝃) and
𝐷 ( ¤𝝃), whose derivatives give rise to the friction coefficient and evolution law of 𝝃,
i.e.,

𝑓 𝑃 ( ¤𝑥, 𝝃) = 𝑑𝑊

𝑑𝑥
(𝑥) + 𝜕𝐷

†

𝜕 ¤𝑥 ( ¤𝑥, 𝝃), (5.5)

𝑑𝐷

𝑑 ¤𝝃
( ¤𝝃) + 𝜕𝐷

†

𝜕𝝃
( ¤𝑥, 𝝃) = 0, (5.6)

where 𝑓 𝑃 is the potential formulation friction coefficient. 𝑥 is local slip and 𝑉 = ¤𝑥
is local slip rate, 𝝃 ∈ R is a 𝑑 dimensional vector of internal variables that encodes
the local slip history.

The advantage of this potential formulation is that the solution of an incremental
problem with such friction are equivalent to the stationary point of a scalar function
𝐽 (𝑥, 𝝃). Take an example of the spring slider configuration under displacement-
control as shown in Figure 5.1. The system is driven by prescribing 𝑥𝑝 (𝑡), and the
force of the spring is linearly dependent on its elongation with spring constant 𝑘 .
There is history-dependent friction between the mass block and the ground, gravity
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Figure 5.1: Example: spring slider under displacement-control driving force.

acceleration is 𝑔. Assuming that the history-dependent friction can be represented
in the above potential form, the equations of motion of the system is

𝑚 ¥𝑥 − 𝑘 (𝑥𝑝 (𝑡) − 𝑥(𝑡)) + 𝑚𝑔
(
𝑑𝑊

𝑑𝑥
+ 𝜕𝐷

†

𝜕 ¤𝑥

)
= 0 (5.7)

𝑑𝐷

𝑑 ¤𝝃
( ¤𝝃) + 𝜕𝐷

†

𝜕𝝃
( ¤𝑥, 𝝃) = 0.

Given the solution at current time 𝑥𝑛, 𝝃𝑛, and the time increment Δ𝑡 = 𝑡𝑛+1 − 𝑡𝑛,
define

𝐸 𝑠𝑝 (𝑥) = 1
2
(
𝑥(𝑡) − 𝑥𝑝 (𝑡)

)2 (5.8)

𝐸 𝑖𝑛 (𝑥) = 1
2

(
𝑥 − 2𝑥𝑛 + 𝑥𝑛−1

Δ𝑡

)2
, (5.9)

as the spring potential and the inertia potential, and

𝐽 (𝑥, 𝝃;Δ𝑡, 𝑥𝑛, 𝝃𝑛) = 𝐸 𝑠𝑝 (𝑥) + 𝐸 𝑖𝑛 (𝑥) +𝑊 (𝑥) + Δ𝑡𝐷†
(𝑥 − 𝑥𝑛

Δ𝑡
, 𝝃

)
+ Δ𝑡2𝐷

(
𝝃 − 𝝃𝑛
Δ𝑡

)
(5.10)

as the system potential. Then it is straight-forward too see that the backward Euler
implicit update is

𝑥𝑛+1, 𝝃𝑛+1 = arg min𝑥,𝝃 𝐽 (𝑥, 𝝃;Δ𝑡, 𝑥𝑛, 𝝃𝑛). (5.11)

This is well-posed if 𝐽 is convex in (𝑥, 𝝃). Convexity of 𝐽 is trivial if𝑊, 𝐷†, 𝐷 are
all convex in (𝑥, 𝝃). However, usually not all of 𝑊, 𝐷†, 𝐷 are convex, especially
𝐷†, since if friction coefficient decreases with slip rate, i.e.,

𝜕 𝑓

𝜕 ¤𝑥 =
𝜕2𝐷†

𝜕 ¤𝑥2 < 0. (5.12)

In such cases, one needs to adjust Δ𝑡 such that 𝐸 𝑖𝑛 dominates and 𝐽 is convex.

In summary, by developing such a potential formulated friction, the implicit solv-
ing process of dynamic problems are turned into a convex optimization problem,
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which would guarantee us the existence of a unique solution for (𝑥𝑛+1, 𝝃𝑛+1). This
would facilitate implicit solution which is usually difficult with the original rate-
and-state friction. Since the original rate-and-state friction given by (5.2) is able to
fit experimental data well with 4 parameters, it is crucial to verify that the potential-
formulated friction specified by (5.5) can replicate rate-and-state friction sequences,
with some selected𝑊, 𝐷† and 𝐷.

In practice, it is useful to work with the dual formulation. Let 𝐷∗( ¤𝒅) be the Legendre
transform of 𝐷 ( ¤𝝃),

𝐷∗
( ¤𝒅) = sup

¤𝝃∈R𝑑

{〈
¤𝒅, ¤𝝃

〉
− 𝐷 ( ¤𝝃)

}
. (5.13)

The advantage of using 𝐷∗ instead of 𝐷 is that instead of solving the non-linear
equation for ¤𝝃 given by (5.6), it is equivalent to computing ¤𝝃 by

¤𝝃 =
𝑑�̃�∗

𝑑 ¤𝒅

(
−𝜕�̃�

†

𝜕𝝃

)
, (5.14)

if 𝐷
(
¤𝝃
)

is convex in ¤𝝃.

5.3 Neural Network and training
We use Neural Networks to approximate the above potentials within the deeping
learning environment PyTorch [8], i.e.,

𝑊 (𝑥) ≈ 𝑊𝑁𝑁 (𝑥;𝑤𝑊 ), 𝐷†( ¤𝑥, 𝝃) ≈ 𝐷†𝑁𝑁 ( ¤𝑥, 𝝃;𝑤𝐷†), 𝐷∗
( ¤𝒅) ≈ 𝐷∗𝑁𝑁 ( ¤𝒅, 𝑤𝐷∗ ) ,

(5.15)

and we call the resulting architecture a Recurrent Neural Operator (RNO) following
[6, 2].

To find proper 𝑊, 𝐷† and 𝐷 that give 𝑓 𝑁𝑁 similar enough to 𝑓 𝑅𝑆 under a set of
rate-and-state parameters, we generate a synthetic dataset of 𝑓 𝑅𝑆’s by prescribing
the slip histories {𝑉 = ¤𝑥(𝑡) : 𝑡 ∈ [0, 𝑇]}. We then fit 𝑓 𝑁𝑁 ’s to 𝑓 𝑅𝑆’s by optimizing
over the parameters of 𝑊𝑁𝑁 , 𝐷

†
𝑁𝑁

and 𝐷𝑁𝑁 , as shown in Figure 5.2. And the loss
function we use for training of the potentials is relative 𝐿𝑝 error, i.e.,

𝑤∗𝑊 , 𝑤
∗
𝐷†
, 𝑤∗𝐷 = arg min𝑤𝑊 ,𝑤𝐷† ,𝑤𝐷

1
𝑁

𝑁∑︁
𝑖=1

∥ 𝑓 𝑁𝑁
𝑖
(𝑡) − 𝑓 𝑅𝑆

𝑖
(𝑡)∥𝐿𝑝

∥ 𝑓 𝑅𝑆
𝑖
(𝑡)∥𝐿𝑝

. (5.16)
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Rate and state friction: 

𝑓!" = 𝑓∗ + 𝑎 log
𝑉
𝑉∗

+ 𝑏 log
𝑉∗𝜃
𝐷!"

𝑉! 𝑡 , 𝑡 ∈ 0, 𝑇 ′s

Potential-formulated friction:

𝑓$$ =
𝜕𝑊$$ 𝑥;𝑤%

𝜕𝑥
+
𝜕𝐷$$

& �̇�, 𝝃; 𝑤'!
𝜕�̇�

𝑓!"# 𝑡 , 𝑡 ∈ 0, 𝑇 ′s 𝑓!$$ 𝑡 , 𝑡 ∈ 0, 𝑇 ′s

Figure 5.2: Training of𝑊, 𝐷† and 𝐷 through fitting 𝑓 𝑁𝑁 to 𝑓 𝑅𝑆.

In this study, the rate-and-state friction parameters are chosen to be

𝑎 = 0.011,

𝑏 = 0.016,

𝑉∗ = 1 × 10−6 m/s,
𝐷𝑅𝑆 = 1 × 10−8 m,

𝑓∗ = 0.5109,

such that we do examine the ability of potential formulated friction to fit rate-
weakening (𝑎 − 𝑏 < 0) rate-and-state friction, which is more challenging to solve
numerically. Regarding the specific choices of𝑉𝑖 (𝑡)’s, we take inspiration from both
velocity jump tests for rate-and-state friction [10], as well as continuous variation
sequences from the previous studies of RNO [6, 2]. For the velocity jump sequences,
𝑉𝑖 (𝑡)’s are simple functions, i.e., the sum of a finite number of Heaviside functions,
as shown by the first example in Figure 5.3. Note that the prescribed velocity
jumps have to be on the log scale to cause significant changes in 𝑓 𝑅𝑆. While for
the continuous variation sequences, 𝑉𝑖 (𝑡)’s vary continuously with 𝑡 and change
their monotonicity at randomly-sampled times, as shown by the second example in
Figure 5.3. The range of prescribed 𝑉𝑖 (𝑡)’s is set such that 𝑉𝑖 (𝑡)/𝑉∗ ∈ [10−3, 101]
for both types of sequences. For easier plotting of displacements, we define

𝐷∗ = 𝑉∗ · 1 s = 1 × 10−6 m.

Within the training process, we apply Optuna [1] optimization package for hyper-
parameter tuning of the Recurrent Neural Operators (RNO). Those hyper-parameters
include learning rate, depth of the Neural Network, number of neurons within each
layer, 𝑝 value for the 𝐿𝑝 norm, as well as the batch size in the training dataset.
Detailed algorithm regarding the training process can be found in Algorithm 1.
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Figure 5.3: Examples of velocity jump 𝑉𝑖 (𝑡) (upper, sequence 19), continuous
variation 𝑉𝑖 (𝑡) (lower, sequence 99) and their corresponding 𝑓 𝑅𝑆s in the synthetic
dataset.
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Algorithm 1 Training𝑊𝑁𝑁 (𝑥;𝑤𝑊 ), 𝐷†𝑁𝑁 ( ¤𝑥, 𝝃;𝑤𝐷†) and 𝐷∗
𝑁𝑁
( ¤𝒅;𝑤𝐷)

Require: training sequences
{
¤𝑥𝑖 = 𝑉𝑖 (𝑡), 𝑓 𝑅𝑆𝑖 (𝑡) : 𝑡 ∈ [0, 𝑇]

}𝑁
𝑖=0.

Require: 𝑁𝑒𝑝𝑜𝑐ℎ𝑠
𝑒𝑝𝑜𝑐ℎ = 0
while 𝑒𝑝𝑜𝑐ℎ < 𝑁𝑒𝑝𝑜𝑐ℎ𝑠 do

for 𝑖 ∈ {0, 1, ..., 𝑁} do ⊲ In practical sequences are passed in batches.
Fix 𝑤𝑊 , 𝑤𝐷† , 𝑤𝐷
for 𝑛 = 1, 2, ..., 𝑁 (𝑖) do ⊲ 𝑁 (𝑖) is number of time steps of sequence 𝑖.

𝜉𝑛 ← 𝜉𝑛−1 + (𝑡𝑛 − 𝑡𝑛−1) ¤𝝃𝑛−1

𝑓 𝑁𝑁𝑛 ← 𝜕𝑊𝑁𝑁

𝜕𝑥
(𝑥𝑛) +

𝜕𝐷
†
𝑁
𝑁

𝜕 ¤𝑥 ( ¤𝑥𝑛, 𝝃𝑛)
¤𝝃𝑛 ← solution of 𝑑𝐷𝑁𝑁

𝑑 ¤𝝃 ( ¤𝝃) +
𝜕𝐷
†
𝑁𝑁

𝜕𝝃 ( ¤𝑥𝑛, 𝝃𝑛) = 0 ⊲ In practical

¤𝝃𝑛 =
𝑑𝐷∗

𝑁𝑁

𝑑 ¤𝒅

(
− 𝜕𝐷

†
𝑁𝑁

𝜕𝝃 ( ¤𝑥𝑛, 𝝃𝑛)
)

end for
Compute Loss 𝐿 (𝑤𝑊 , 𝑤𝐷† , 𝑤𝐷) = ∥ 𝑓 𝑅𝑆 −

𝑓 𝑁𝑁 (𝑤𝑊 , 𝑤𝐷† , 𝑤𝐷)∥𝐿𝑝/∥ 𝑓 𝑅𝑆∥𝐿𝑝

Update 𝑤𝑊 , 𝑤𝐷† , 𝑤𝐷 based on the gradient of 𝐿 w.r.t. 𝑤𝑊 , 𝑤𝐷† , 𝑤𝐷
end for
𝑒𝑝𝑜𝑐ℎ← 𝑒𝑝𝑜𝑐ℎ + 1

end while
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5.4 Results and discussion
In this section, we present how well the proposed RNO based potential formulated
friction can fit the original rate-and-state friction, and also whether or not it facilitates
implicit solution of dynamic problems through solving the spring slider example.

Fitting results to original rate-and-state friction
After 100 epochs of training under the optimal Neural Network structure given by
OPTUNA, the RNO potentials are able to fit the original rate-and-state sequences
well. Figure 5.4 shows the fitting results of the two example sequences early
mentioned in Figure 5.3. Note that these two sequences are in the test dataset
and have not been used for training the potentials. After training of the potentials
𝑊𝑁𝑁 , 𝐷

†
𝑁𝑁

and 𝐷∗
𝑁𝑁

, we can obtain 𝑓 𝑁𝑁s that are fairly close to 𝑓 𝑅𝑆s. Table 5.1
confirms that the error between 𝑓 𝑁𝑁 and 𝑓 𝑅𝑆 is small, and that there needs to be
at least 1 hidden variable (dim(𝝃)) to achieve small error. Since further increasing
the number of hidden variables does not reduce the error, the results shown next are
all based on dim(𝝃) = 1. The fact that it suffices to use dim(𝝃) = 1 makes intuitive
sense since the original rate-and-state friction has only one state variable 𝜃.

Due to limited access to experimental data with the same rate-and-state friction
properties, we cannot compare the error of 𝑓 𝑅𝑆 and 𝑓 𝑁𝑁 both fitted to experimen-
tal sequences 𝑓 𝐸𝑋𝑃. We here include a typical rate-and-state fitted experimental
sequence from (Kim et al., in preparation, 2024), which is shown by Figure 5.5.
The best fit rate-and-state sequence achieves an relative 𝐿2 error of 0.0015, which
is two orders of magnitude higher than the average relative 𝐿2 of fitting 𝑓 𝑁𝑁 to 𝑓 𝑅𝑆.
This implies that the fitting error between 𝑓 𝑁𝑁 and 𝑓 𝑅𝑆 is negligible compared with
fitting 𝑓 𝑅𝑆 to noisier 𝑓 𝐸𝑋𝑃, and thus 𝑓 𝑁𝑁 has comparable ability to explain the
history dependencies in the empirical observations.

dim(𝝃) 0 1 2
Training error (𝐿2) 0.18 ± 0.01 0.0004 ± 0.0004 0.0007 ± 0.0006
Testing error (𝐿2) 0.18 ± 0.01 0.0005 ± 0.0004 0.0007 ± 0.0006

Table 5.1: Training and testing relative 𝐿2 error for dim(𝝃) = 0, 1, 2, averaged
over 160 test sequences. Error decreases significantly after introducing one hidden
variable dim(𝝃) = 1, while introducing more hidden variables do not further reduce
the error.
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Figure 5.4: Examples of trained 𝑓 𝑁𝑁 vs. 𝑓 𝑅𝑆 for both velocity jump (upper) and
continuous variation (lower) sequences. Loss here refers to relative 𝐿2 error as
defined by (5.16). These two sequences are from the test dataset and are not used
for training the potentials.

The trained potentials𝑊, 𝐷† and 𝐷∗

To make (5.11) a convex minimization problem, we need to confirm convexity of
𝐽 in (𝑥, 𝜉). Figure 5.6 shows that the learnt 𝑊 is linear in 𝑥, and thus also convex.
The fact that𝑊 is linear makes sense because of material frame indifference. 𝐷∗ is
convex in ¤𝑑, which is consistent with its definition as the Legendre transform of 𝐷.
Figure 5.7 plots 𝐷†( ¤𝑥, 𝜉), and it is not convex because 𝜕2𝐷†/𝜕 ¤𝑥2 < 0. To ensure
convexity of 𝐽 in (𝑥, 𝜉), we need the Hessian of 𝐽 to be positive semi-definite for all
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Figure 5.5: A typical fit of rate-and-state friction to experimental data, the relative
𝐿2 error of 𝑓 𝑅𝑆 against 𝑓 𝐸𝑋𝑃 is 0.0015. Data provided by Taeho Kim.

(𝑥, 𝜉), which ends up posing a constraint on Δ𝑡:

1 · 𝑚 + Δ𝑡
(
𝜕2𝐷†

𝜕 ¤𝑥2

)
+𝑂 (Δ𝑡2) ≥ 0, (5.17)

1 · 𝑚𝑑
2𝐷

𝑑 ¤𝜉2 + Δ𝑡
(
𝜕2𝐷†

𝜕 ¤𝑥2
𝑑2𝐷

𝑑 ¤𝜉2 + 𝑚
𝜕2𝐷†

𝜕𝜉2

)
+ Δ𝑡2

[(
𝑘 + 𝑑

2𝑊

𝑑𝑥2

)
𝑑2𝐷

𝑑 ¤𝜉2 +
𝜕2𝐷†

𝜕 ¤𝑥2
𝜕2𝐷†

𝜕𝜉2 −
𝜕2𝐷†

𝜕 ¤𝑥𝜕𝜉

]
+ Δ𝑡3

[(
𝑘 + 𝑑

2𝑊

𝑑𝑥2

)
𝜕2𝐷†

𝜕𝜉2

]
≥ 0. (5.18)

Equation (5.17) can be satisfied with Δ𝑡 smaller than an upper bound, since then the
𝑚 term will dominate even if 𝜕2𝐷†/𝜕 ¤𝑥2 < 0. (5.18) also reduces to an upper bound
constraint on Δ𝑡, since 𝑑2𝐷/𝑑 ¤𝜉2 > 0 based on the assumption. In practical it is also
convex because it is the Legendre transform of the learnt 𝐷∗( ¤𝑑).

In summary, we find that of the three learnt potentials, 𝑊 is linear in 𝑥, consistent
with material-frame indifference; 𝐷∗ is convex in ¤𝑑, consistent with its definition
by Legendre transform; while 𝐷† is not convex in ( ¤𝑥, 𝜉). However, one can still
achieve convexity of 𝐽 (𝑥, 𝜉) in (5.10) with an upper bound constraint on Δ𝑡, and
thus it is legitimate to write (5.11) as a convex minimization problem.

Uniqueness of the hidden variable 𝜉
One important property of the hidden variable 𝜉 is that since we cannot attach a
concrete physical meaning to it, it is possibly non-unique. In practice, even different
training runs can possibly lead to different 𝜉’s that all fit the training dataset well.
However, in our potential formulation an underlying assumption is that 𝐷 is only a
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Figure 5.6: Learned𝑊 (𝑥) (left) and 𝐷∗( ¤𝑑) (right). 𝑊 is linear in 𝑥 corresponding to
the reference friction coefficient, 𝐷∗ is convex, which complies with the definition
as the Legendre transform of 𝐷.

function of ¤𝜉. Then if there exists 𝜂 = 𝑓 (𝜉) as a different hidden variable with 𝑓

and 𝑓 −1 being smooth, we have

𝐷𝜂 ( ¤𝜂) = 𝐷𝜂
(
𝑓 ′(𝜉) ¤𝜉

)
= 𝐷𝜉

( ¤𝜉) , (5.19)

which implies that 𝑓 ′(𝜉) is a constant, and thus 𝜉 is unique up to affine transforma-
tions.

We verify the above-discussed uniqueness of 𝜉 by training three different models on
three datasets generated similarly using the same rate-and-state friction model. Then
we obtain the trajectories of 𝜉s of the three trained model on the same test dataset.
After performing linear regression of 𝜉 (3) and 𝜉 (2)s on 𝜉 (1) , i.e. the hidden variable
from the first trained model, we check their regression coefficient as a reflection of
how linearly correlated the 𝜉s are.

Figure 5.8 shows that the regression coefficient is > 0.98 and thus the different 𝜉s
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115

are indeed unique up to linear transform.

Example: solving spring slider under displacement control loading
As stated above, the potential formulated friction should facilitate implicit solution
of dynamic initial value problems, because advancing the solution to the next time
step can be written as a convex minimization problem given by (5.11). Here we try
to verify that by considering the spring-slider problem with displacement-control
loading. As shown by Figure 5.1, friction between the mass block and the ground
is modeled with either original rate-and-state friction or trained potentials with the
same rate-and-state properties. We testify the two friction formulations with both
explicit (4th order Runge Kutta) and implicit (Adams) solvers trying to solve the
same spring-slider problem. The solvers are imported from a standard ODE solver
package torchdiffeq [3]. Spring constant 𝑘 is randomly sampled within a range that
covers both 𝑘 < 𝑘𝑐𝑟𝑖𝑡 and 𝑘 > 𝑘𝑐𝑟𝑖𝑡 , where 𝑘𝑐𝑟𝑖𝑡 is the critical stiffness for unstable
stick-slip events to happen under constant loading speed ¤𝑥𝑝 (𝑡) [9, 5]. and we create
a dataset of 77 loading sequences with different velocity-jump-like 𝑥𝑝 (𝑡)s.

We first notice that since the training dataset of the potentials does not include
these spring-slider sequences of 𝑉 (𝑡), 𝑓 (𝑡), the error between the potential friction
and the original rate-and-state friction is large. To resolve this, we generate 200
sequences from solving the spring-slider problem with rate-and-state friction and
different loadings, and further train our potentials on these 200 sequences for 400
epochs. Indeed the further-trained NN potentials (denoted as NN’) reduce the error
between 𝑓 𝑁𝑁

′ and 𝑓 𝑅𝑆 when solving spring-slider sequences.

Table 5.2 shows that after further training the potentials on spring-slider solutions
by rate-and-state friction, the relative 𝐿2 error on 𝑥(𝑡), ¤𝑥(𝑡), 𝑓 (𝑡) decreases by more
than 50%. Figure 5.9 plots an example spring-slider sequence. It is clear that
further trained NN’ agrees better with the solution obtained by the original rate-
and-state friction. Another example sequence is shown by Figure D.1. The results
and discussions next will all be based on the solution of NN’.

The potential formulated friction is that it can solve all the sequences, with either
explicit or implicit solver. In contrast the original rate-and-state friction fails to
solve over 60% of the sequences at even the finest Δ𝑡 with the implicit solver, and
over 40% with the explicit solver. Table 5.3 lists the ratio of sequences that cannot
be solved by each (NN/RS, ex/implicit) pair.

The fact that rate-and-state friction does not converge with the implicit solver is
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Figure 5.9: An example sequence of spring-slider solution with original rate-and-
state friction, NN potentials, and NN potentials further trained on spring-slider
sequences

Solution term NN NN’
𝑥(𝑡) (1.9 ± 1.8) × 10−5 (5.4 ± 4.4) × 10−6

¤𝑥(𝑡) (2.7 ± 3.6) × 10−4 (1.6 ± 2.2) × 10−4

𝑓 (𝑡) 0.030 ± 0.024 0.016 ± 0.016

Table 5.2: Testing relative 𝐿2 error for the original potentials only trained on
velocity-jump and continuous variation dataset (NN), updated potentials further
trained on 200 spring-slider like dataset (NN’). averaged over 10 test spring-slider
sequences.

non-surprising given that it does not have an associated energy formulation. The
fact that the potential formulated friction works well with the implicit solver is
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Δ𝑡 [s] 2−13.5 2−13.0 2−12.5 2−12.0 2−11.5 2−11.0

NN, implicit 0.000 0.000 0.000 0.000 0.000 0.000
NN, explicit 0.000 0.000 0.000 0.000 0.000 0.000
RS, implicit 0.506 0.571 0.623 0.623 0.675 0.727
RS, explicit 0.455 0.455 0.455 0.455 0.455 0.455

Table 5.3: Ratio of sequences that cannot be solved by NN, RS models with implicit,
explicit solvers.
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Figure 5.10: Growth of relative 𝐿2 error in ¤𝑥(𝑡) as Δ𝑡 increases. Note that since (RS,
implicit) cannot solve some of the sequences that the other three pairs can solve, its
error is not plotted here.

consistent with (5.11) being a convex minimization problem.

Next, we check the growth of error as Δ𝑡 increases for those sequences that (NN,
implicit), (NN, explicit) and (RS, explicit) can all solve. Since we do not have
analytical solutions for the sequences, Error is computed against the solve with the
finest 𝛿𝑡 = 2−14 s, for each (model, ex/implicit) pair. Figure 5.10 shows that the
error in ¤𝑥(𝑡) is on the order of 10−5, while further increasing Δ𝑡 would result in (RS,
explicit) not solving some of the sequences listed here. We conclude that within this
range of Δ𝑡 such that all the three pairs can solve these sequences, their error growth
is comparable and small, since the fitting error between potential formulated friction
and rate-and-state friction is already on the order of 10−4. For the sequences that
(RS, explicit) cannot solve, further decreasing the time step to Δ𝑡 = 2−19 ≈ 10−6 s
still will not solve them, while further decreasing Δ𝑡 is of little practical value since
that is close to the precision of float tensors on GPUs.

Detailed error can be found in Table D.1 and D.2.
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5.5 Conclusions
In this study, we have developed a potential-formulated friction that resembles the
widely-used rate-and-state friction law. By constructing the potentials using Re-
current Neural Operators (RNOs) and training them on generated rate-and-state
slip-friction sequences, we have verified that the potential friction formulation can
capture the history dependencies well in rate-and-state friction, which is widely ob-
served from experimental data. This suggests that there exists a potential-formulated
friction law of our specific form that approximates the empirical rate-and-state fric-
tion well, with a relative 𝐿2 error in friction coefficient of 2 × 10−4. This is 2
orders of magnitude lower than the error between the best rate-and-state friction fit
to real experimental data, which implies that they likely will fit the experimental
data similarly well. We testify through different training runs that in our potential
formulation, hidden variable 𝜉 is unique up to affine transformations.

We have also confirmed by solving spring-slider systems that the potential friction
formulation can facilitate implicit solution of initial value problems with rate-and-
state frictional interfaces, since the propagation of solution to the next time step can
be written as a convex minimization problem. We test whether or not the proposed
potential formulation facilitates implicit solution of initial value problems by solving
spring-slider dynamic problems under displacement-control loading. We sample
77 sequences with different spring constants and loading, and out of them rate-and-
state friction cannot solve over 50% of the sequences with implicit solver, 46% of
the sequences with explicit solver. While potential-formulated friction can solve all
of these sequences, with either implicit or explicit solver. For the explicit solver,
rate-and-state friction still cannot solve those sequences with a time step 1/256 of
that of the potential-formulated friction. (2−19 vs 2−11 s). Within the sequences that
both explicit rate-and-state and implicit potential friction can solve, they achieve
similar accuracy as time step increases.

With all the advantages of the potential formulation for rate-and-state friction,
there is one drawback worth mentioning. The potentials require a large number of
sequences in the training dataset to achieve good test error. Since compared to the
original rate-and-state friction law, there are much more parameters in the potentials
from their Neural Network structure, hundreds of sequences are required to avoid
over-fitting and achieve good test error. In practice, it is sometimes difficult to obtain
hundreds of sequences from experiments done on the same frictional interface, while
the original rate-and-state friction law in general requires a handful of sequences to
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fit the four parameters.

In the future, we would work on finding closed-form approximations to the learnt
potentials, such that taking their gradients can be done more time-efficiently. Right
now since the potentials are still neural networks, the differentiation process is
time consuming. We would work on fitting the potential formulations directly to
experimental measurements and compare the fitting error with the original rate-and-
state formulation.
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C h a p t e r 6

CONCLUSIONS AND FUTURE WORK

6.1 Summary of findings
Rate-and-state friction has been widely used In this thesis, we investigate various
factors that affect the stability of frictional fault slip, under different scenarios such
as fluid injection and laboratory earthquakes, with different numerical methods of
Boundary Integral method and Finite Element method. In Chapter 2 we present a
Boundary Integral method applicable to frictional problems over a fault embedded
in plane-strain linear poroelastic solid. We develop a code implementation of a rate-
and-state frictional fault that also incorporates inelastic dilatancy and fluid transport
both within the fault shear layer and outside into the surrounding poroelastic bulk.
We apply the code to model a fluid injection problem motivated by injection data
from a previous field experiment. We explore the role of poroelastic and diffusion
properties of the bulk both with and without inelastic dilatancy of the fault shear
layer. We find that the diffusion and poroelastic properties can qualitatively affect
the stability and propagation of fault slip. Furthermore, the stabilization by bulk
diffusion and poroelastic properties can be comparable to the stabilizing dilatancy
mechanism. In Chapter 3 we apply and further develop the boundary integral code
for frictional fault slip to allow for the comparison between poroelastic bulk and
purely elastic, permeable bulk with the same fluid transport properties. We find
that poroelastic bulk stabilizes fault slip under fluid injection, when compared with
elastic bulk with the drained Poisson’s ratio. We also find that with typical length
scales and properties of natural faults, as well as typical injection scale, poroelastic
and elastic bulk with undrained Poisson’s ratio have similar effects on the stability
of dynamic fault slip. Besides, we find that the fault healing extent, or initial slip
rate under rate-and-state friction affects the stability of fault slip significantly, which
is consistent with previous studies. We also find that for mass-controlled injection
at constant injection rate, higher injection rate leads to earlier and more frequent
occurrences of dynamic events. However, these events have smaller spatial extent.
Motivated by that, we further modify the injection rate from constant to intermittent
in time, and find that with the same average injection rate and total injected mass
of fluid, intermittent injection also leads to earlier, more frequent but more spatially
restricted dynamic events.
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In Chapter 4, we develop a 3D dynamic finite element model for simulating rupture
propagation in pre-existing fault interfaces embedded in elastic bulk. We implement
a modified fault constitutive model with both rate-and-state friction and flash heating
dynamic weakening mechanism. Through modeling of the laboratory earthquake
in a previous experimental study, we find that velocity-strengthening fault gouge
equipped with flash-heating mechanism can reproduce qualitatively the observations
in the experiment, in which the first rupture is arrested and later a second rupture
can propagate in the gouge zone at dynamic slip rates. However, to achieve the
experimentally observed self-nucleation at the specific spot, we have to introduce a
weakening-healing patch locally there. Physically this suggests that at the nucleation
spot there is possibly shear-localization and de-localization processes due to the
complicated behavior of gouge particles Besides, we also find that the rupture
behavior is significantly dependent on the initial slip rate of the fault.

After noticing the difficulties in implicit solution of dynamic problems with rate-
and-state friction, in Chapter 5 we present a potential formulation for rate-and-
state friction, under with the incremental implicit solution is equivalent to a convex
minimization problem, which is easier to solve. By constructing the potentials using
Re- current Neural Operators (RNOs) and training them on generated rate-and-state
slip-friction sequences, we have verified that the potential friction formulation can
capture the history dependencies well in rate-and-state friction, which is widely ob-
served from experimental data. This suggests that there exists a potential-formulated
friction law of our specific form that approximates the empirical rate-and-state
friction well, with a relative 𝐿2 error in friction coefficient of 2 × 10−4. This is 2
orders of magnitude lower than the error between the best rate-and-state friction fit
to real experimental data, which implies that they likely will fit the experimental data
similarly well. We have also confirmed by solving spring-slider systems that the
potential friction formulation can facilitate implicit solution of initial value problems
with rate-and- state frictional interfaces. The one major drawback of the potential
formulation is that it requires a large number of sequences in the training dataset to
achieve good test error.

6.2 Future directions
This thesis presents numerical modeling of frictional fault slip with rate-and-state
friction in various scenarios, including fluid injection into fault embedded in poroe-
lastic solid and laboratory earthquakes propagating into fault gouge, and have dis-
cussed a series of factors that affects the stability of dynamic frictional fault slip.



123

However, there are still several areas where continued development is necessary.
For the developed Boundary Integral method of frictional fault slip in poroelas-
tic solid, still a further numerical parametric study is needed to fully characterize
the different stability regimes, especially on the poroelastic properties of the bulk
material, as well as different configurations of the relationship between bulk and
fault diffusivities, both with and without inelastic dilatancy in the fault shear layer.
Besides, alternative representations of the fault shear layer that assumes localization
of slip instead of distributive slip along the thickness are also worth exploring. For
a given average injection flux, it is worth exploring the optimal injection flux - time
profile, to achieve an objective of more stable, less destructive dynamic fault slip.

For modeling laboratory earthquakes over frictional interfaces, a more complicated
fault constitutive model with flash heating and rate-and-state parameters evolving
with the slip history will be more likely to capture the shear-localization phenomenon
and also re-nucleate a dynamic rupture.

To better apply the potential formulation for rate-and-state friction, it is necessary
to find closed-form approximations to the learnt potentials, such that taking their
gradients can be done more time-efficiently. The closed-form potentials should
have fewer parameters to fit than the RNOs, and thus require fewer sequences for
the training or fitting process. Another direction worth exploring is to directly fit
the potential formulation to experimental data, and compare the fitting results with
those from the original rate-and-state friction.
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A p p e n d i x A

APPENDIX FOR CHAPTER 2

A.1 Parameter values
Here we briefly explain how the parameter values, listed in the table below, are set.
Parameters 𝐺, 𝜈, and all friction and loading parameters in Table A.1 are from [9].
Compressibilities 𝛽𝑝

𝑓
, 𝛽𝜎

𝑓
, 𝛽

𝑝
𝑛 , 𝛽

𝜎
𝑛 , 𝛽

𝑝
𝑔 , 𝛽

𝜎
𝑔 in addition to 𝜙0 and 𝜖 are selected as in

[6] and listed in Table A.1. The compressibilities quantify the change in densities
and void volume around a reference state. For example in Equation (2.22), we use
𝜌 𝑓 , but we wish to understand how the density changes with pressure and normal
stress, so we expand the fluid density around a reference state 𝜌 𝑓 = 𝜌 𝑓 0 and 𝜎 = 𝜎0.
We write 𝜌 𝑓 = 𝜌 𝑓 0 + 𝜌 𝑓 0(𝛽𝑝𝑓 𝑝 + 𝛽

𝜎
𝑓
𝜎) where 𝛽𝑝

𝑓
= 1

𝜌 𝑓 0
( 𝜕𝜌 𝑓

𝜕𝑝
) |𝜌 𝑓 =𝜌 𝑓 0,𝜎=𝜎0 and thus

represents normalized change in fluid density when pore-fluid pressure is changed
at the reference state but at fixed normal stress. Similarly 𝛽𝜎

𝑓
= 1

𝜌 𝑓 0
( 𝜕𝜌 𝑓

𝜕𝜎
) |𝜌 𝑓 =𝜌 𝑓 0,𝑝=𝑝0

represents change in fluid density from uniaxial normal stress change, but at the fixed
equilibrium background pore pressure 𝑝0. We note that fluid density is changed by
normal stress because the normal stress changes the pressure. This can be seen in
poroelasticity in the so-called Terzaghi’s Consolidation Problem, e.g., [1]. Thus an
alternative way here would be to relate pressure change to change in normal stress
and work only with 𝛽𝑝

𝑓
but introduce another equation for how ¤𝑝 depends on𝜎. After

linearizing, the two approaches lead to a mathematically identical model. Through
equivalent linearization as for the fluid density, we can obtain the compressibilities
of the void volume as 𝛽𝑝𝑛 = 1

𝜙0
( 𝜕𝑛
𝜕𝑝
) |𝑛=𝜙0,𝜎=𝜎0 and 𝛽𝜎𝑛 = 1

𝜙0
( 𝜕𝑛
𝜕𝜎
) |𝑛=𝜙0,𝑝=𝑝0 . Again

through equivalent linearization, the compressibilities of the intact gouge material
are 𝛽𝑝

𝑓
= 1

𝜌𝑔0
( 𝜕𝜌𝑔
𝜕𝑝
) |𝜌𝑔=𝜌𝑔0,𝑝=𝑝0 and 𝛽𝜎

𝑓
= 1

𝜌𝑔0
( 𝜕𝜌𝑔
𝜕𝜎
) |𝜌𝑔=𝜌𝑔0,𝜎=𝜎0 .

We compute uniaxial compressibilities by multiplying the isotropic compressibilities
by a factor of 5/9, which is only true for linear elastic material. As the stability
analysis of [6] indicated, the uniaxial compressibilities become important for much
thicker shear zones than we explored here. This is seen in how they only show up
in correction factors to the stability metrics that scale with layer thickness. Thus,
in application to problems with thick shear zones, a more careful determination of
these compressibilities might be warranted.

Skempton’s coefficient 𝐵 is fixed and set to 0.85. This value is representative
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of Westerly granite as well as certain types of sandstone and other rocks. The
undrained Poisson’s ratio is, on one hand, set to 0.35 to reflect the approximate
value of Westerly granite and on the other hand to 0.262 to represent the undrained
value of Charcoal granite. We note that Charcoal granite has 𝜈 = 0.270 and
𝜈𝑢 = 0.292 [1]. However, we wish to fix 𝜈 such that we do not have multiple
parameters varying each simulation. Thus only the range 𝜈𝑢 − 𝜈 is the same as for
Charcoal granite albeit the Poisson’s ratios are similar in absolute terms. Further,
Charcoal granite has a substantially lower Skempton’s coefficient 𝐵 = 0.454, but we
still use 𝐵 = 0.85 again to limit the number of varying parameters. We, therefore,
do not recommend using this paper as a reference for poroelastic parameters, but
rather look at the overview of [2, 1], which we used, and references therein for more
information on error and methods for measuring. Here we simply want to explore
two cases where 𝜈𝑢 − 𝜈 are small and large, but at the same time make sure that the
ranges reflect real values measured in rocks.

As explained in the main text, the range of the dilatancy coefficient is selected to
reflect three different styles of ruptures. First we set 𝛾 = 0 and 𝛾 = 1.7 · 10−4 as
trial values where the latter is the standard value used and was identified by [12].
We observe that the two values would typically render either highly unstable or very
stable slip. Thus the value of 𝛾 = 1.7 · 10−5 is used to consider an intermediate
regime, and shown to produce sustained slow slip migration.

The two mobilities 𝜅𝑐𝑥 , 𝜅𝑐𝑦 and the bulk hydraulic diffusivity 𝑐 are determined
by trial and error to approximately match the pore pressure evolution in [9]. We
highlight that due to the heterogeneous permeability structure, the fact that we treat
the pore pressure as non-constant in the shear zone, and other coupling mechanisms
that alter the pore pressure, we cannot simply select parameters that give exactly the
same pore pressure evolution as in [9].
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Table A.1: Parameter values in the study

Symbol Description Value
Bulk and gouge material properties
𝐺 Shear modulus 10 GPa
𝐵 Skempton’s coefficient 0.85
𝜈 Drained Poisson’s ratio 0.24
𝜈𝑢 Undrained Poisson’s ratio 0.35, 0.262
𝛽
𝑝

𝑓
,𝛽𝜎
𝑓

Isotropic and uniaxial fluid compressibility 0.44 · 10−9 Pa−1, 0.24 · 10−9 Pa−1,
𝛽
𝑝
𝑛 ,𝛽𝜎𝑛 Isotropic and uniaxial pore volume compressibility 6.0 · 10−9 Pa−1, 3.3 · 10−9 Pa−1,
𝛽
𝑝
𝑔 ,𝛽𝜎𝑔 Isotropic and uniaxial solid gouge compressibility 0.020 · 10−9 Pa−1, 0.011 · 10−9 Pa−1,
𝜙0 Reference porosity 0.068
𝛾 Diltancy coefficient [12] 0, 1.7·10−5, 1.7·10−4

𝜖 Shear-zone half thickness 1.0 mm
𝑐 Bulk hydraulic diffusivity 4·10−8, 4·10−7 m2/s
𝜅𝑐𝑥 Along shear-zone mobility 8.7584·10−11 m2/(Pa s)
𝜅𝑐𝑦 Across shear-zone mobility 8.7584·10−20 m2/(Pa s)
Friction and loading parameters
𝐷𝑅𝑆 Characteristic state evolution distance 16.75 𝜇m
𝑎 Direct rate dependence of friction 0.01125
𝑏 State dependence of friction 0.016
𝛼𝐿𝐷 [10] constant 0.0
𝑉0 reference slip rate 10−6 m/s
𝑓0 reference friction 0.55
𝜏0 Initial shear stress 2.15 MPa
𝜎0 Initial effective normal stress 4 MPa

A.2 Time-stepping
Here we describe the time-stepping scheme to simulate slow and fast slip with
dilatancy and fluid injection into the faults. The scheme builds on the predictor-
corrector schemes of [8] and [3]. However, several significant modifications have
been introduced to resolve fluid diffusion. Below we shall describe the stages of a
single time-step by the algorithm. We also refer the reader to the source code [4]
for a more explicit implementation of the time-stepping scheme.

1. Initial explicit Euler prediction is made for time 𝑡𝑛+1 = 𝑡𝑛 + Δ𝑡 for 𝛿∗𝑥 , 𝛿∗𝑦, 𝑝∗𝑐,
𝑉∗, where the asterisk represents the prediction of the next time-step.

2. Fourier coefficients are computed corresponding to the prediction values 𝛿∗𝑥 ,
𝛿∗𝑦, 𝑝∗𝑐, that is 𝐷∗𝑥,𝑛, 𝐷∗𝑦,𝑛, 𝑃∗𝑛 using a Fast-Fourier Transform (FFT).

3. Using equations (2.52), (2.54), and (2.55) the Fourier coefficients for changes
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in shear stress, normal stress and boundary pore pressure are computed and
an inverse FFT is used to sum all Fourier modes.

4. Prediction for shear stress 𝜏∗ and effective normal stress (𝜎− 𝑝)∗ is computed.
In the results, we use the average pore pressure ⟨𝑝⟩; however, we note that
𝑝 could here represent any number of pore pressure values, e.g. 𝑝± or 𝑝𝑐,
depending on what assumptions are made about the relevant pore pressure in
the shear localization region. In our numerical implementation [4], the user
sets which pore pressure to use.

5. Prediction of the updated state-variable is computed using the analytical inte-
gration of the aging law by [7] which assumes constant slip speed from 𝑡 to
𝑡 + Δ𝑡

𝜃∗ = 𝜃𝑝 exp
(
− Δ𝑡

2𝐷𝑅𝑆

(𝑉𝑛 +𝑉∗)
)
+ 2𝐷𝑅𝑆

(𝑉𝑛 +𝑉∗)

(
1 − exp

(
− Δ𝑡

2𝐷𝑅𝑆

(𝑉𝑛 +𝑉∗)
))
,

(A.1)
where we have taken the slip speed as the average (𝑉 𝑝 + 𝑉∗)/2 between the
slip speed at time 𝑡𝑛 and 𝑡𝑛+1 = 𝑡𝑛 + Δ𝑡. Here we use the superscript 𝑛 to
represent the fields at the previous time step, that is at time 𝑡𝑛.

6. Via an algebraic manipulation of the rate-and-state friction law (2.17) and
(2.19) a correction for the slip speed is computed

𝑉∗∗ = 2𝑉0 sinh
(
𝜏∗ − 𝜂𝑉∗
𝑎(𝜎 − 𝑝)∗ exp

(
− 𝑓0/𝑎 −

𝑏

𝑎
log(𝑉0𝜃

∗/𝐷𝑅𝑆)
))
. (A.2)

However, for locations along the fault where the slip speed exceeds a threshold
value (here set to 1 cm/s) the previous expression is found to lead to numerical
dispersion and the slip speed is obtained by solving the following non-linear
equation as done by [3]:

����𝑉∗∗ − 2𝑉0 sinh
(
𝜏∗ − 𝜂𝑉∗
𝑎(𝜎 − 𝑝)∗ exp

(
− 𝑓0/𝑎 −

𝑏

𝑎
log(𝑉0𝜃

∗/𝐷𝑅𝑆)
))���� = 0. (A.3)

7. Using the new slip speed correction 𝑉∗∗ the state variable is also updated

𝜃∗∗ = 𝜃𝑝 exp
(
− Δ𝑡

2𝐷𝑅𝑆

(𝑉𝑛 +𝑉∗∗)
)
+ 2𝐷𝑅𝑆

(𝑉𝑛 +𝑉∗∗)

(
1 − exp

(
− Δ𝑡

2𝐷𝑅𝑆

(𝑉𝑛 +𝑉∗∗)
))
,

(A.4)
and from equation (2.27) ⟨𝜙⟩∗∗

𝑝𝑙
is computed using 𝜃∗∗.
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8. Updating 𝑝𝑐: for the sake of brevity, we will only refer to the code [4], see
also data availability statement, for a detailed implementation of this time-step,
but a summary follows. In equation (2.28) (after substituting with equation
(2.18) for ⟨𝑝⟩) we approximate the 𝜕2/𝜕𝑥2 derivative with second-order finite
difference approximation. The time-integral is discretized using a trapezoidal
rule. Predictions from step 1 and 3 are used to compute the various fields at
time 𝑡𝑛+1 except we solve for 𝑝∗∗𝑐 (the prediction of 𝑝𝑐 for time 𝑡𝑛+1) implicitly
by solving a system of linear equations.

9. Finally 𝑝∗∗𝑐 is used to update 𝛿∗∗𝑦 , ⟨𝑝⟩∗∗, and 𝛿∗∗𝑥 = 𝛿𝑛𝑥 + Δ𝑡 (𝑉𝑛 +𝑉∗∗)/2.

After the steps above, the algorithm determines if it will proceed to the next time-step
or reiterate following these rules.

• A minimum of one iteration is used. If the algorithm finishes the aforemen-
tioned steps for the first time at the current time then it must iterate again.
The algorithm moves back to step 1, but instead of explicit guesses for the
new time step it uses previous updates. That is 𝛿∗∗𝑥 → 𝛿∗𝑥 , 𝛿∗∗𝑦 → 𝛿∗𝑦, and
𝑝∗∗𝑐 → 𝑝∗𝑐.

• If a minimum one iteration has been done, the algorithm checks for absolute
and relative error in the estimate of 𝑝𝑐. That is if max( |𝑝∗∗𝑐 − 𝑝∗𝑐 |)/(𝑎𝜎0) >
𝜉/10 (where 𝑎 is the direct effect parameter) or | |𝑝∗∗𝑐 − 𝑝∗𝑐 | |1/| |𝑝𝑐 | |1 > 𝜉/10
is violated then a new time-step is selected Δ𝑡 → Δ𝑡/2 and the algorithm
proceeds to step 1 using the following initial predictions (𝛿∗∗𝑥 + 𝛿𝑛𝑥 )/2 → 𝛿∗𝑥 ,
(𝛿∗∗𝑦 + 𝛿𝑛𝑦)/2 → 𝛿∗𝑦, and (𝑝∗∗𝑐 + 𝑝𝑛𝑐)/2 → 𝑝∗𝑐. Here 𝜉 is a factor that controls
the accuracy of the solution, in simulations shown later this is set to 𝜉 = 1/32,
see Appendix C for more discussion of 𝜉.

• If both a minimum of one iteration has been carried out and the error tolerances
are satisfied, the algorithm proceeds to a new time step and ∗∗ predictions are
assigned as field values are time 𝑡𝑛+1. Finally, the new initial time-step is
selected Δ𝑡 → min(𝜉𝑉𝑛+1/𝐷𝑅𝑆, 1.1 · Δ𝑡) where first we make sure that the
state evolution is well resolved, by picking 𝜉 sufficiently small. Second, we
make sure not to grow the time-step too much if the pore pressure evolution
requires a smaller time-step than indicated by 𝜉𝑉𝑛+1/𝐷𝑅𝑆.
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A.3 Method validation
The spectral boundary-integral method, in addition to the rate-and-state fault slip
simulations, couples together several physical processes that could not be simulated
with another individual code. Further, no analytical solutions are available that also
couple all these processes. It is, therefore, nearly impossible to benchmark and test
all capabilities of the code and implementation simultaneously. However, here we
list to provide an overview of the tests and validation we carried out.

• As was reported in Figure 2.2 the SBI solutions for 𝜏′ and 𝑝± were tested
against the solutions of [13].

• The analytical inversion of the Laplace transform was in all cases tested by
also numerically inverting the Laplace transform numerically using the Talbot
method [14]

• Using 𝑝+ as the relevant pore pressure when computing the effective normal
stress, we reproduced the results of [5], which were done with a different code
[15]. We, for example, reproduced the spontaneously occurring instabilities
at mildly rate-strengthening friction that give rise to slow-slip pulses, which
only occur in a limited parameter regime. Our results were consistent with
the spatial dimension of the instabilities and the pulse propagation speeds as
reported by [5].

• Using the linearized stability analysis of [6] we identified the critical wavenum-
ber for many different regimes, such as high diffusivity, low diffusivity, in-
termediate diffusivity as well as thicker and thinner shear zones. In the
code, a fully non-linear implementation, we induced a critical wavelength
perturbation, as determined by the linearized analysis, by introducing a small
perturbation in the initial state around steady-state sliding. We found in all
cases that the perturbation in the slip speed oscillated without growing or
decaying.

The tests and benchmarking above do validate most aspects of the implementation
and method we have introduced in this paper. However, none test the injection
into the fault and fluid propagation as a result of the injection. In order to check
the robustness of the algorithm in this regard, we set up a problem with injec-
tion and delayed nucleation with dilatancy. The simulations are run until the slip
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speed reaches 1 cm/s, which we take as the instability time. This setup thus tests
how well the pore pressure injection and subsequent diffusion is resolved as it pro-
motes instability. We generate a manufactured solution with the error tolerance
and state integration parameter set to 𝜉 = 1/4096 (see section A.2). Then setting
𝜉 ∈ {1/4, 1/8, 1/16, 1/32, 1/64} and investigating the 𝐿1 norm error of the manu-
factured solution and the less accurate solutions plotted against the total number of
iterations (which scales with the computational time) we see a second-order con-
vergence. Where we look at the time of instability, the slip speed profile at the
instability time, the 𝑝𝑐 value at the instability time, and the slip profile at that time.
𝜉 = 1/32 roughly correspond to a relative error of 10−3 in all the fields we looked at,
but we stress that the magnitude of the relative error depends on the problem and the
simulation time. For simulations we favor using 𝜉 = 1/32 and one minimum itera-
tion (see section A.2 for discussion on iterations). If smaller values than 𝜉 = 1/64
are compared to the manufactured solution, the convergence gets more complicated
but tends to improve to the first order with the iteration number. Using no minimum
iteration or 2 minimum iterations also works and gives consistent results. We sug-
gest 1 minimum iteration is most efficient in terms of obtaining a stable convergent
solution at the fewest total iterations.

Finally, we note that Figure 2.4c demonstrates, by chance, that the simulations are
well resolved and accurate. A careful inspection of the figures shows that the last
event is not one event but two events nucleating at exactly the same time around
𝑥 ≈ ±30 m and then coalescing. While such a high degree of symmetry is not
physically realistic, it is a strong indication of well-resolved simulations in time
and space, especially when it occurs not at the first simulated event. The same
phenomenon also occurs in Figure 2.4b, but it is not as clear.
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A p p e n d i x B

APPENDIX FOR CHAPTER 3

B.1 Values of material properties used in the simulations

𝐺 [GPa] 𝜈 𝛼 𝑀 [GPa] 𝜅 [m2/(Pa · s)] 𝑐[m2/s]
10 0.24 0.5530 0.35 2.1688 × 10−19 1.0 × 10−8

Table B.1: Linear poroelastic material properties of the bulk material

𝑓∗ 𝑉∗ [m/s] 𝑎 𝑏 𝐷𝑅𝑆 [m] 𝜅𝑐𝑥 [m2/(Pa · s)] 𝜅𝑐𝑦 [m2/(Pa · s)]
0.55 1.0 × 10−6 0.0112 0.0160 16.75 × 10−6 8.75834 × 10−11 8.75834 × 10−20

Table B.2: Friction and diffusivity properties of the fault interface
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A p p e n d i x C

APPENDIX FOR CHAPTER 4

C.1 Values of material properties used in the simulations

𝜌 [Kg/m3] 𝐺 [GPa] 𝜈

1200 1.963 0.35

Table C.1: Linear elastic material properties of Homalite-100

𝑓∗ 𝑉∗ [m/s] 𝑎 𝑏 𝐷𝑅𝑆 [m] 𝑉𝑤 [m/s] 𝑓𝑤

0.58 1.0 × 10−6 0.003 0.008 1.5 × 10−6 0.2 0.33

Table C.2: Rate-and-state friction and flash heating properties of the Homalite-100
interface

Case 𝑓∗ 𝑉∗ [m/s] 𝑎 𝑏 𝐷𝑅𝑆 [m] 𝑉𝑤 [m/s] 𝑓𝑤 𝑉𝑖𝑛𝑖𝑡𝑖𝑎𝑙 [m/s] 𝜃𝑖𝑛𝑖𝑡𝑖𝑎𝑙 [s]
1 0.58 1.0 × 10−6 0.003 0.008 1.5 × 10−6 0.2 0.33 − 0.006
2 0.58 1.0 × 10−6 0.016 0.002 1.5 × 10−6 2.0 0.1 10−12 −
3 0.58 1.0 × 10−6 0.016 0.002 1.5 × 10−6 2.0 0.1 10−11 −
4 0.58 1.0 × 10−6 0.016 0.002 1.5 × 10−6 2.0 0.1 10−10 −
5 0.58 1.0 × 10−6 0.016 0.002 1.5 × 10−6 2.0 0.1 10−9 −
6 0.58 1.0 × 10−6 0.016 0.002 1.5 × 10−6 − − 10−9 −
7 0.58 1.0 × 10−6 0.016 0.002 1.5 × 10−6 2.0 0.1 − 106

8 0.58 1.0 × 10−6 0.016 0.002 1.5 × 10−6 2.0 0.1 − 106

Table C.3: Rate-and-state friction, flash heating properties and initial condition of
the Fault gouge region vs. Cases. 𝑉𝑖𝑛𝑖𝑡𝑖𝑎𝑙 and 𝜃𝑖𝑛𝑖𝑡𝑖𝑎𝑙 are dependent on each other so
only one should be specified for each case.
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A p p e n d i x D

APPENDIX FOR CHAPTER 5

D.1 Supplementary figures and tables
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Figure D.1: An example sequence of spring-slider solution with original rate-and-
state friction, NN potentials, and NN potentials further trained on spring-slider
sequences
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Δ𝑡 [s] 2−13.5 2−13.0 2−12.5 2−12.0 2−11.5 2−11.0

NN, implicit 5.993e-06 3.636e-06 4.807e-06 4.716e-06 6.282e-06 8.508e-06
NN, explicit 6.130e-06 3.808e-06 4.786e-06 4.397e-06 5.968e-06 7.795e-06
RS, implicit nan nan nan nan nan nan
RS, explicit 7.321e-06 4.447e-06 5.267e-06 4.426e-06 6.464e-06 8.069e-06

Table D.1: Mean relative 𝐿2 error in ¤𝑥(𝑡) averaged over 77 sequences, for NN, RS
models with implicit, explicit solvers.

Δ𝑡 [s] 2−13.5 2−13.0 2−12.5 2−12.0 2−11.5 2−11.0

NN, implicit 5.799e-06 5.390e-06 5.575e-06 7.069e-06 6.384e-06 1.033e-05
NN, explicit 6.241e-06 5.766e-06 5.844e-06 6.887e-06 6.572e-06 9.639e-06
RS, implicit nan nan nan nan nan nan
RS, explicit 9.601e-06 6.886e-06 5.541e-06 5.597e-06 6.845e-06 1.017e-05

Table D.2: Standard deviation of relative 𝐿2 error in ¤𝑥(𝑡) over 77 sequences, for
NN, RS models with implicit, explicit solvers.
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POCKET MATERIAL: MAP OF CASE STUDY SOLAR
SYSTEMS
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