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ABSTRACT

The advent of additive manufacturing has allowed the design and engineering of a new class of
materials known as metamaterials, or structured/architected materials. These metamaterials exhibit
unique functionalities, such as ultrahigh strength-to-density ratios, which their base materials cannot
achieve. Often designed to exhibit near-isotropic behavior, metamaterials derive their special
properties from the distinctive deformation, dynamic motion, and elastic energy distribution of
their micro- and meso-architectures. However, designing metamaterials for anisotropy, despite
their ability to attain unique properties, is challenging. Fully characterizing anisotropic stiffness in
planar loading requires six independent elastic tensor moduli. This high number of independent
elastic stiffness parameters also expands the design space of structured materials and leads to
unusual phenomena, such as materials that can shear under uniaxial compression. This direction-
dependent shear-axial coupling is crucial for many applications such as shape-morphing, elastic
wave manipulation devices and impact redirection.

This thesis aims to understand the fundamental limits of shear-normal coupled deformations in
anisotropic structured materials. Currently, there are no established upper and lower bounds on
anisotropic moduli achieving extreme elastic anisotropy, similar to the Hashin-Shtrikman bounds
in isotropic composites. This range is known as G-closure and provides limits for the achievable
tensors. To date, there are no experimental methods that can measure the stiffness parameters of
fully anisotropic structured materials from a single experiment. To address these challenges, we first
introduce a method to generate two-phase periodic anisotropic unit cell geometries and construct a
database of unit cells with a diverse range of effective elasticity tensors. The constructed database
is compared with the properties achieved by hierarchical laminates and identify the regions where
hierarchical designs are necessary to reach a specific extreme elasticity tensor.

We then propose an experimental methodology to evaluate the anisotropic material properties.
Our technique, which utilizes the virtual fields method, allows for the determination of six separate
stiffness tensor parameters of two-dimensional structured materials using just one tension test. This
method thus eliminates the need for multiple experiments as is typical in traditional methods. We
show the accuracy of our method using synthetic data generated from finite element simulations
as well as by conducting experiments on four additively manufactured specimens. The approach
requires no stress data and uses the full-field displacement data measured using digital image
correlation and global force data.

We present a method for creating functionally graded anisotropic structures that smoothly transition
between unit cells with distinct patterns. Isotropic materials with spatially varying density gradients
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have been shown to exhibit unique characteristics such as superior energy absorption. However,
achieving smooth spatial gradients in the anisotropic mechanical properties while ensuring the con-
nectivity of adjacent meso-architectures is non-trivial. This method allows for independent control
of several functional gradients, such as porosity, anisotropic moduli, and symmetry. We show that
certain nonlinearly graded structures when designed with unit cells positioned at distinct corners
of the property space boundary exhibit novel mechanical behaviors. We conclude by designing
specific functionally graded structures that demonstrate peculiar behaviors such as selective strain
energy localization, localized rotations, compressive strains under tension, and longitudinal-shear
wave mode conversion.
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C h a p t e r 1

INTRODUCTION

1.1 Research objectives
The overarching goal of this thesis is to understand the fundamental limits of shear-normal coupled
deformations in anisotropic structured materials in the quasi-static and dynamic regimes. The
thesis addresses the following questions.

1.2 Motivation
The discovery of new materials throughout history presented a significant shift in the living standards
of human civilization. Metals like bronze (an alloy of copper and tin) and steel (an alloy of iron
and carbon) allowed for the creation of more intricate and tougher tools and weapons compared to
the Stone Age. The semiconductor industry has benefitted from the invention of transistors in 1947
by introducing defects in Silicon, leading to the invention of computers. These breakthroughs have
catalyzed advancements in various domains, such as bridges, railroads, spacecrafts, aircraft, and
automobiles. By unlocking new properties and functionalities, materials have enabled innovations
that enhance our well-being, foster economic growth, and shape the course of progress.

Initially, efforts were directed towards understanding the underlying mechanisms of the intricate
mechanical properties such as ductility that these materials exhibit, rather than engineering those
properties. However, the invention of high-performance carbon fibers from polyacrylonitrile (PAN)
marked a significant shift. This advancement enabled engineers to tailor mechanical properties,
resulting in carbon fiber reinforced polymer matrix composites (CFRPs) with a high strength-to-
weight ratio. The combination of carbon fibers’ high tensile strength and the versatility of the resin
matrix makes carbon fiber composites indispensable especially in the aerospace and automotive
industries.

The advent of additive manufacturing has further allowed the design and engineering of a new class
of materials known as metamaterials, or structured/architected materials. Metamaterials derive
their effective properties from both the micro- and meso-structure and their constitutive material
properties. Metamaterials have been studied in various domains of physics, such as electromag-
netism, leading to the discovery of materials that exhibit unconventional properties like negative
refractive index [7]. These electromagnetic metamaterials have been devised for applications such
as invisibility cloaks, flat lenses, and miniaturized antennas. Mechanical metamaterials are a spe-
cial branch of metamaterials that derive special functionalities from their peculiar deformation,
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dynamic motion and/or elastic energy distribution [8–12]. hey often exhibit mechanical properties
that deviate from those of their constituent materials, showing unusual behaviors, such as negative
Poisson’s ratios [13, 14], vanishing shear moduli [15], and negative refractive indices [16]. Thus,
metamaterials open up a vast design space and enable a plethora of new functionalities that were
previously unattainable with conventional materials. The ability to tailor their electromagnetic, me-
chanical, and optical properties provides engineers and scientists with unprecedented opportunities
to create materials with customized behaviors and functionalities. Metamaterials are an exciting
area of research with immense potential for future technological advancements.

Structured materials are not an entirely new concept. Foams, for example, also derive their
properties from their mostly hollow microstructure. However, due to the stochastic nature of the
foams’ geometries, their elastic properties are mostly dependent on the volume fraction of the
material [17]. In order to obtain more control on the effective materials’ properties of foam-like
composites, scientists have began to explore the design and fabrication of lattice structures (see
Fig. 1.1). Lattice structures are often periodic assemblies of repeating unit cells, which are designed
as a connection of strut elements between nodes distributed along the centers and corners of a cube.
Common geometries that have been extensively studied include kelvin, octet, and diamond unit
cells [18]. Depending on the number of interconnections between different struts, these structures
are either bending dominated and flexible or stretch dominated and rigid. By controlling the
geometry of individual struts, it is possible to tune the elastic properties to a varied degree of
freedom compared to conventional foam structures or other composite materials [1]. In addition
to their tunability, metamaterials have been attracting a lot of attention in engineering because
they are lighter weight than bulk solids and can exhibit unconventional mechanical properties, high
strength-to-weight ratio [19], acoustic bandgaps [20], shock absorption [21], mechanical cloaking
[4, 22], etc. that are otherwise absent in conventional materials.

Among several mechanical properties of the metamaterials, elasticity tensors provide crucial infor-
mation related to the energy density stored in the material, and directions in which the structure is
most stiff or soft to the applied loads. The elastic properties of structured materials are strongly
dependent on the geometry of the material’s internal architecture. By carefully selecting the
geometry of the micro- and meso- structures with varying symmetries beyond lattice structures
[15, 23–27], metamaterial designers can explore novel anisotropy classes in the material responses.
In such structures with direction-dependent mechanical behavior, the number of descriptors of
the elastic properties (e.g., the elasticity constants) will be high (up to 21 independent constants),
compared to the case when the properties are direction-independent (2). In turn, the presence
of rich anisotropy expands the materials’ functionality space, by exploiting coupled-deformation
mechanisms that are non-existent in symmetric structures. Examples include metamaterials that
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twist under compression [24, 28–30], shear under thermal loading [31] and shape-morph [32–34].
In the dynamic regime, anisotropy allows observing phenomena like conical refraction [35] and
control of broadband elastic waves [36–38].

Figure 1.1: An example structured material based on an octet-strut unit cell shown in the inset. The
structured material is fabricated using an aluminum alloy. Adopted from [1].

1.3 Research challenges
The ability to fabricate arbitrarily complex composite materials thus opens the door to a richer,
relatively unexplored range of elastic properties, such as shear-normal coupling. However, sys-
tematic tools for characterizing such properties remain underdeveloped. In engineering design,
our intuition regarding specific architectural patterns and their direct impact on elastic coupling
constants is still limited. Questions arise: Which architectural features directly influence specific
elastic parameters? How can we efficiently evaluate all elastic properties after material fabrication,
minimizing the number of experiments? Additionally, what fundamental bounds exist for these
elastic parameters? Furthermore, how can we engineer architectures to incorporate gradients in
anisotropic properties?

Unit cell design challenges
Recent experimental work has demonstrated shear-normal coupled structures for instance by cre-
ating structures that rotate when compressed [2, 39, 40]. These structures, however exhibit di-
minishing rotations as more unit cells are added Fig. 1.2. Fewer symmetries exist in all of these
structures, leading to such shear-normal (torsion-compression) coupling. While, such simple struc-
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tures provided initial proof-of-concept experimental validation on coupled deformations, much
has not been understood on the fundamental limits of these coupled deformations. Given a vast
selection of materials and designs to print from, are there specific designs that provide the most
coupling that is predicted using theory? On one hand, achieving a complete characterization of the
parameter space in terms of the moduli becomes exceedingly difficult in the absence of a unique
parametrization of the input geometry. On the other hand, defining how close the obtained designs
are to the theoretical bounds is also challenging, as little is known about the theoretical limits of
anisotropic elastic moduli (no known closed-form expressions) [41].

Figure 1.2: Example of a 3D metamaterial undegoing torsion due to compression. The unit cell
exhibits less symmetries compared to an octet-truss shown in Fig. 1.1. Adopted from [2].

Experimental validation challenges
In experiments, characterizing these many independent elastic parameters is quite complex. Indeed,
the presence of shear-normal coupling makes it hard to measure even one of the six parameters
from a single experiment. Prior work suggested different approaches to experimentally measure
the elastic parameters for different anisotropy classes [42–47]. However, most of these approaches
focus on measuring the stiffness tensor components when the off-diagonal, shear-normal coupling,
components are absent. In addition, several of these approaches require multiple experimental
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steps. For example, techniques based on the detection of different acoustic wave speeds along
different material directions involve multiple tests and assume a certain material symmetry in
predicting elastic parameters [48, 49]. To date, there are no experimental methods that can measure
the stiffness parameters of fully anisotropic structured materials from a single experiment.

Functionally graded metamaterial design challenges
Functionally graded structures have been shown to exhibit unique mechanical behavior such as
avoiding shear-banding [50, 51] and, mimicking bone stiffness [52]. To generate such structures, the
parametrization associated with the structure such as truss thickness is often adjusted [53–55] (see
Fig. 1.3. Therefore, these approaches are particularly effective in controlling the isotropic Young’s
Modulus, relative density, and to some extent, the degree of orthotropic elasticity [56, 57]. However,
achieving smooth spatial gradients in the anisotropic mechanical properties while ensuring the
connectivity of adjacent unit cells is challenging. Further, the unique mechanical behaviors explored
by these graded structures, designed with anisotropic unit cells are not well studied.

Figure 1.3: Example of a functionally graded lattice material. The gradients are created by changing
the lattice parameters. Adopted from [3].
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1.4 Thesis outline
In this thesis, the research challenges discussed previously are addressed. The rest of the thesis is
organized as follows. In the following Section 1.5, a case study on the design of mechanical cloaks
is presented from the perspective of anisotropic metamaterials.

In Chapter 2, we first present the theory of linear elasticity relevant to this work. Then, we propose
a method for generating diverse anisotropic unit cell geometries. We then present the details of
the experimental setup used for testing additively manufactured specimens and evaluation of the
mechanical properties of the constituent materials. We also discuss the method of converting
designs to STL files suitable for additive manufacturing. We finally present, the digital image
correlation approach followed in this thesis.

In Chapter 3, we estimate the range of anisotropic stiffness tensors achieved by single-scale two-
dimensional structured materials. We compare the property ranges reached by these single-scale
architected materials with the extensive design space achieved by hierarchical lamiantes. We
identify regions in the property space where hierarchical designs or the use of two anisotropic
constituent phases are necessary to cover a wide property space, particularly focusing on off-axis
shear-normal coupling parameters. The bounds estimated alongside the unit cell database could
serve as a design tool for the design of extremal metamaterials.

In Chapter 4, we present an approach to identify the 6 independent elastic material parameters
of plane anisotropic elasticity from a single experiment, using the virtual fields method. This
approach allows for identifying shear-normal coupling parameters experimentally, a task that has
remained challenging so far. We first demonstrate the effectiveness of our method using numerically
generated data from a single tension test. We then experimentally validate the method on additively
manufactured specimens, by measuring full-field displacement data and traction forces. We show
that our method is effective for materials that include at least 10 repeated unit cells in their structure,
to satisfy homogenization conditions. We calculate the uncertainty in the identification estimation
of the material parameters using Bayesian linear regression.

In Chapter 5, we present a method for creating functionally graded structures that smoothly transition
between unit cells with distinct patterns. When these graded structures are designed with unit cells
positioned at distinct corners of the boundary of the property space, they demonstrate unique
mechanical behaviors. Specific graded designs are numerically studied to observe behaviors such
as selective energy localization, compressive strains under tension, and localized rotations. The
designs exhibiting localized rotations under tensile loading are further experimentally validated
through tensile tests on additively manufactured specimens. We introduce the concept of supercell
designs, which were created by tessellating an entire annular graded structure. Those supercell
designs are observed to undergo non-local interactions leading to their length-scale dependence.
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In Chapter 6, we study the dispersive behavior of the unit cells using dynamic numerical homog-
enization. We first show that the fundamental modes of the anisotropic unit cells are hybridized
between longitudinal and shear modes. Then, we show the shear waves can be converted to
longitudinal waves and vice versa over a broad range of frequencies using functionally graded
structures.

In Chapter 7 possible future extensions of the work in this thesis are discussed. In Appendix A,
assembly, operation and maintenance of selective laser sintering technology-based 3D printer is
discussed.

1.5 Case study: Mechanical cloak design
Mechanical cloaks are materials engineered to control the deformations and the distribution of
forces within and around solids. Mechanical cloaks could be used to protect sensitive and delicate
objects or to make rigid electronic components more comfortable to wear. In several systems, we
observe this need for control of the distribution of forces, stresses, and structural deformations.
For example, ants excavate soil without disturbing the structural integrity of their tunnels by
removing those grains that are only subjected to lower compressive forces. The art in the game of
Jenga involves rearranging blocks in a pile while preserving the pile’s stability. Engineers devise
redundant and alternate load pathways in structures such as bridges, to efficiently and safely direct
forces from their point of application to the bridge’s foundation. Using structured materials to tune
local mechanical properties in mechanical cloaks, it is possible to conceal objects from external
forces and deformations [4, 22].

Mechanical cloaks are the elastic counterparts of optical invisibility cloaks. A simpler example of
a mechanical cloak is an acoustic cloak, which only controls pressure waves (or sound). Just like
optical cloaks that render objects invisible using the laws of refraction, acoustic cloaks render the
sound undetectable to an observer situated inside the cloaked area or prevent reflections of acoustic
waves from an object embedded in the cloak. To design acoustic cloaks, engineers optimize the
distribution of bulk modulus and density. The governing equations in the case of acoustic cloaks
are scalar PDEs. To solve scalar PDEs on complex domains, and in turn to design acoustic cloaks,
a common mathematical technique called conformal mapping, is employed.

In mechanical cloaks, deformations are influenced concurrently by both the hydrostatic and the
deviatoric stresses. As a result, the governing equations for the mechanical cloaks, given by the
equations for the balance of linear and angular momentum, involve both axial and shear stresses
as variables. These variables depend on multiple mechanical parameters in the cloaking region.
Therefore, conformal mapping cannot be used in mechanical cloaks as the governing equations
are not scalar. In one of the first studies of mechanical cloaks, researchers simplified this problem
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while cloaking cylindrical objects using a special class of structures that support only hydrostatic
stresses. However, a fundamental necessity in shielding arbitrarily shaped cloaking objects is
to fill the cloaking region with inhomogeneous, anisotropic mechanical properties. Anisotropic
materials respond differently to different directions of loading. Hence, they exhibit a higher
degree of independent control over axial and shear modes of deformation making them excellent
candidates for the cloak design. By arranging the building blocks with suitable and distinct
anisotropic mechanical properties, the cloaking region is generated Fig. 1.4.

Figure 1.4: A mechanical cloak consists of three distinct regions. A region of the structure that
needs to be shielded is named the cloaking object (A) which in this case is a void; the region
that assists with shielding is named the cloaking region (B); and the region that surrounds the
cloaking region, is named the surrounding region (C). An efficiently designed cloaking region
would make the cloaking object unsusceptible to externally applied forces. The design procedure
entails modifying the mechanical properties spatially within the cloaking region, in a manner
that alters the force distribution around the cloaking object. Consequently, deformations remain
unaltered in the surrounding region as if the cloaking object is absent. This means that an external
observer would not be able to detect the presence of the cloaking object by looking at the boundary
deformations or stresses. Adopted from [4].
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For the mechanical cloak design, in our collaborative work [4], we followed a two-step approach to
design two-dimensional mechanical cloaks. The first step involves determining the distribution of
mechanical stiffness properties in the cloaking region. The second step involves finding the building
blocks from a pre-computed database that possess these same mechanical properties. For the first
step, we discretize the whole structure into several subdomains (building blocks). Each subdomain
is classified into one of the three regions. The mechanical properties in each subdomain within
the cloaking region, are determined using a computational algorithm. The algorithm known as
topology optimization uses computational tools such as finite element analysis to update mechanical
properties iteratively. The algorithm determines these properties while minimizing the distortion
in displacements within the surrounding region with and without the cloaking object. In the second
step, we look for building blocks in our large pre-computed database that match the corresponding
mechanical properties at each subdomain. In the generated designs to cloak the void, the building
blocks are generally stiffer in the vicinity of the void than the surrounding medium. Intuitively, to
cloak a void, we need to make up for the material that is removed as if it is not participating in
carrying any loads. For example, in a plate with a circular hole under tension, stresses concentrate
around the hole. Hence, the material in the vicinity of the void ends up carrying more load. From
our numerical as well as experimental measurements on these designs, we found excellent cloaking
performance. Although the shielding is not perfect it is sufficiently effective.
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C h a p t e r 2

THEORY AND METHODS

2.1 Introduction
This chapter introduces the theory of linear elasticity. We then propose a method for generating
diverse unit cell geometries explored in this thesis. Then the details of the experimental setup used
for testing additively manufactured specimens is discussed. Finally, the digital image correlation
procedure suitable for structured materials is discussed.

2.2 Anisotropic linear elasticity
Under the small strain assumption, the constitutive law for a general anisotropic solid, which relates
the Cauchy stress tensor 𝝈 and the infinitesimal strain tensor 𝜺, is given by the generalized Hooke’s
law [58, 59],

𝝈 = 𝑪𝜺 or (𝜎𝑖 𝑗 = 𝐶𝑖 𝑗 𝑘𝑙𝜀𝑘𝑙), (2.1)

where 𝑪 is a fourth-order tensor, known as the elasticity tensor or the stiffness tensor, and Einstein’s
notation for summation over repeated indices is followed. For a two-dimensional anisotropic solid,
under plane strain conditions, Eq. (2.1) can be written using Voigt notation as

𝜎11

𝜎22

𝜎12

 =


𝐶1111 𝐶1122 𝐶1112

𝐶1122 𝐶2222 𝐶2212

𝐶1112 𝐶2212 𝐶1212



𝜀11

𝜀22

2𝜀12

 , (2.2)

where 𝐶1111, 𝐶1122, 𝐶2222, 𝐶1112, 𝐶2212, 𝐶1212 are the elasticity tensor parameters in a given
reference frame, 𝜀11, 𝜀22 are the axial strains, 𝜀12 is the shear strain, 𝜎11, 𝜎22 are the axial stresses,
and 𝜎12 is the shear stress. For readability, we combine the pair of indices as follows: ()11 →
()1, ()22 → ()2, ()12 → ()6 and write Eq. (2.2) as

𝜎1

𝜎2

𝜎6

 =


𝐶11 𝐶12 𝐶16

𝐶12 𝐶22 𝐶26

𝐶16 𝐶26 𝐶66



𝜀1

𝜀2

2𝜀6

 . (2.3)

From thermodynamic constraints, the elasticity tensor has to be positive definite, which implies

𝐶11 > 0, 𝐶22 > 0, 𝐶66 > 0, (2.4a)

𝐶11𝐶22 − 𝐶2
12 > 0, 𝐶11𝐶66 − 𝐶2

16 > 0, 𝐶22𝐶66 − 𝐶2
26 > 0. (2.4b)
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The stiffness parameter 𝐶11 directly relates the axial stress 𝜎1 with axial strain 𝜀1, while 𝐶16

relates the axial stress 𝜎1 with shear strain 𝜎6, and so on. The off-diagonal moduli 𝐶16, 𝐶26

are also known as shear-normal or extension-shear coupling parameters. The stiffness parameter
𝐶12 represents the extension-to-extension deformation coupling. Shear-normal coupling has been
explored in the context of structured materials by [60, 61]. One of the objectives of this work
is to determine the maximum and minimum values a single parameter can reach relative to the
others, as discussed in the following section. This understanding helps us to evaluate the extent of
shear-normal coupling induced by anisotropy. As a result of these anisotropy-induced couplings,
the experimental identification of the material parameters becomes non-trivial because a constant
state of strain is hard to achieve, even in a standard uniaxial tension test. Therefore, one of the main
objectives of this thesis is to identify these six material parameters𝐶11, 𝐶12, 𝐶22, 𝐶16, 𝐶26, 𝐶66 from
least number of experimental measurements. Note that the parameters 𝐶16 and 𝐶26 will be zero if
the material has symmetry planes along the 𝑥1 and 𝑥2 axes.

The general equilibrium equation(s) for an arbitrary anisotropic linear elastic solid is given by

𝐶𝑖 𝑗 𝑘𝑙
𝜕2𝑢𝑘
𝜕𝑥𝑖𝜕𝑥𝑙

= 0. (2.5)

Under plane-strain conditions, the displacement is of the form 𝒖(𝑥1, 𝑥2) = 𝑢1(𝑥1, 𝑥2)𝒆1+𝑢2(𝑥1, 𝑥2)𝒆2,
where 𝒆1, 𝒆2 are the unit vectors aligned with the coordinate axes. Then Eq. (2.5) changes as

𝐶11
𝜕2𝑢1

𝜕𝑥2
1
+ 𝐶66

𝜕2𝑢1

𝜕𝑥2
2
+ 2𝐶16

𝜕2𝑢1
𝜕𝑥1𝜕𝑥2

+ 𝐶16
𝜕2𝑢2

𝜕𝑥2
1
+ 𝐶26

𝜕2𝑢2

𝜕𝑥2
2
+ (𝐶12 + 𝐶66)

𝜕2𝑢2
𝜕𝑥1𝜕𝑥2

= 0, (2.6a)

𝐶16
𝜕2𝑢1

𝜕𝑥2
1
+ 𝐶26

𝜕2𝑢1

𝜕𝑥2
2
+ (𝐶12 + 𝐶66)

𝜕2𝑢1
𝜕𝑥1𝜕𝑥2

+ 𝐶66
𝜕2𝑢2

𝜕𝑥2
1
+ 𝐶22

𝜕2𝑢2

𝜕𝑥2
2
+ 2𝐶26

𝜕2𝑢2
𝜕𝑥1𝜕𝑥2

= 0. (2.6b)

Thus multiple parameters directly affect the deformation of the solid.

Symmetries of the elasticity tensor
The existence of shear-normal coupling and the maximum number of independent stiffness tensor
parameters depend on the symmetries associated with the material microscopic topology [59, 62].
In plane elasticity, stiffness tensors are categorized into four symmetry classes. They are denoted
as𝑂 (2) for Isotropic, 𝐷4 for Tetragonal, 𝐷2 for Orthotropic, and 𝑍2 for Digonal (fully anisotropic)
with 2, 3, 4, and 6 independent parameters, respectively. This categorization is based on the
invariants of the stiffness tensor [63, 64].

Eigen values are another important parameters of the elasticity tensors [23]. They show that it is
possible to decompose elasticity using its eigen values and basis matrices, as shown in Eq. (2.7),
with each basis representing a mode of deformation:
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Figure 2.1: Anisotropic materials can be classified into 8 different classes based on the number of
mirror plane of symmetries present within the geometry. Adopted from [5].

𝐶𝑖 𝑗 𝑘𝑙 =

6∑︁
𝑎=1

𝜆𝑎𝑣
(𝑎)
𝑖 𝑗
𝑣
(𝑎)
𝑘𝑙

in which
6∑︁

𝑖, 𝑗=1
𝑣
(𝑎)
𝑖 𝑗
𝑣
(𝑎)
𝑖 𝑗

= 1, 𝜆𝑎 > 0. (2.7)

Coordinate transformation of the elasticity tensor
Let us assume that the unit cell is rotated by an angle 𝜃 counter-clockwise. According to Sadd [65],
the components of the elasticity tensor (𝐶′

𝑝𝑞𝑟𝑠) in the original coordinate system after the rotation
of the unit cell is related to the components of the elasticity tensor (𝐶𝑖 𝑗 𝑘𝑙) as,

𝐶′
𝑝𝑞𝑟𝑠 = 𝐶𝑖 𝑗 𝑘𝑙𝑄𝑝𝑖𝑄𝑞 𝑗𝑄𝑟𝑘𝑄𝑠𝑙 , (2.8)

where 𝑄 is the transformation matrix given by,

𝑄 =


cos 𝜃 − sin 𝜃 0
sin 𝜃 cos 𝜃 0
0 0 1

 . (2.9)
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Expanding Eq. (2.8) for each individual stiffness tensor component we get,

𝐶′
11 = 𝐶11 cos4 𝜃 − 4𝐶16 cos3 𝜃 sin 𝜃 + 2(𝐶12 + 2𝐶66) cos2 𝜃 sin2 𝜃

− 4𝐶26 cos 𝜃 sin3 𝜃 + 𝐶22 sin4 𝜃 (2.10a)

𝐶′
12 = 𝐶12 cos4 𝜃 + 2(𝐶16 − 𝐶26) cos3 𝜃 sin 𝜃 + (𝐶11 + 𝐶22 − 4𝐶66) cos2 𝜃 sin 𝜃2

+ 2(−𝐶16 + 𝐶26) cos 𝜃 sin3 𝜃 + 𝐶12 sin4 𝜃 (2.10b)

𝐶′
22 = 𝐶22 cos4 𝜃 + 4𝐶26 cos3 𝜃 sin 𝜃 + 2(𝐶12 + 2𝐶66) cos2 𝜃 sin2 𝜃

+ 4𝐶16 cos 𝜃 sin3 𝜃 + 𝐶11 sin4 𝜃 (2.10c)

𝐶′
16 = 𝐶16 cos4 𝜃 + (𝐶11 − 𝐶12 − 2𝐶66) cos3 𝜃 sin 𝜃 + 3(−𝐶16 + 𝐶26) cos2 𝜃 sin2 𝜃

+ (𝐶12 − 𝐶22 + 2𝐶66) cos 𝜃 sin3 𝜃 − 𝐶26 sin4 𝜃 (2.10d)

𝐶′
26 = 𝐶26 cos4 𝜃 + (𝐶12 − 𝐶22 + 2𝐶66) cos3 𝜃 sin 𝜃 + 3(𝐶16 − 𝐶26) cos2 𝜃 sin2 𝜃

+ (𝐶11 − 𝐶12 − 2𝐶66) cos 𝜃 sin3 𝜃 − 𝐶16 sin4 𝜃 (2.10e)

𝐶′
66 = 𝐶66 cos4 𝜃 + 2(𝐶16 − 𝐶26) cos3 𝜃 sin 𝜃 + (𝐶11 − 2𝐶12 + 𝐶22 − 2𝐶66) cos2 𝜃 sin2 𝜃

+ 2(−𝐶16 + 𝐶26) cos 𝜃 sin3 𝜃 + 𝐶66 sin4 𝜃. (2.10f)

Invariants of the elasticity tensor
Using harmonic decomposition [63], the strain energy density (𝑊) can be decomposed as,

2𝑊 = 𝜎𝑠𝑖 𝑗𝜀
𝑠
𝑖 𝑗 + 𝜎𝑑𝑖 𝑗𝜀𝑑𝑖 𝑗 , (2.11a)

= 𝐷𝑖 𝑗 𝑘𝑙𝜀
𝑑
𝑖 𝑗𝜀

𝑑
𝑘𝑙 + 2𝜇𝜀𝑑𝑝𝑞𝜀𝑑𝑝𝑞 + 𝑎𝑝𝑞𝜀𝑑𝑝𝑞𝜀𝑟𝑟 + 𝜅𝜀𝑝𝑝𝜀𝑞𝑞, (2.11b)

where 𝜎𝑠
𝑖 𝑗

, 𝜎𝑑
𝑖 𝑗

, 𝜀𝑠
𝑖 𝑗

,𝜀𝑑
𝑖 𝑗

are the spherical and deviatoric part of the stress and strain tensors respec-
tively. Here Einstein’s notation of summation over repeated indices is used. 𝜎𝑠

𝑖 𝑗
, 𝜎𝑑

𝑖 𝑗
are defined as

𝜎𝑠𝑖 𝑗 =

(
1
2
𝑎𝑝𝑞𝜀

𝑑
𝑝𝑞 + 𝑘𝜀𝑝𝑝

)
𝛿𝑖 𝑗 , (2.12a)

𝜎𝑑𝑖 𝑗 = 𝐷𝑖 𝑗 𝑘𝑙𝜀
𝑑
𝑘𝑙 + 2𝜇𝜀𝑖 𝑗 +

1
2
𝜀𝑝𝑝𝑎𝑖 𝑗 , (2.12b)

where 𝐷𝑖 𝑗 𝑘𝑙 , 𝑎𝑖 𝑗 , 𝜆, 𝜇 are the parameters obtained from harmonic decomposition of the elasticity
tensor as

𝐶𝑖 𝑗 𝑘𝑙 = 𝐷𝑖 𝑗 𝑘𝑙 +
1
6

(
𝛿𝑖 𝑗𝑎𝑘𝑙 + 𝛿𝑘𝑙𝑎𝑖 𝑗 + 𝛿𝑖𝑘𝑎 𝑗 𝑙 + 𝛿 𝑗 𝑙𝑎𝑖𝑘 + 𝛿𝑖𝑙𝑎 𝑗 𝑘 + 𝛿 𝑗 𝑘𝑎𝑖𝑙

)
+𝜆𝛿𝑖 𝑗𝛿𝑘𝑙 + 𝜇

(
𝛿𝑖𝑘𝛿 𝑗 𝑙 + 𝛿𝑖𝑙𝛿 𝑗 𝑘

)
,

(2.13)
where 𝐷𝑖 𝑗 𝑘𝑙 , 𝑎𝑖 𝑗 , 𝜆, 𝜇 are all linear combinations of the elasticity tensor parameters.
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𝜆 is defined as

𝜆 =
1
8

(
3𝐶𝑝𝑝𝑞𝑞 − 2𝐶𝑝𝑞𝑝𝑞

)
with 𝑝, 𝑞 ∈ [1, 2],

=
1
8
(3 (𝐶1111 + 𝐶1122 + 𝐶2211 + 𝐶2222) − 2 (𝐶1111 + 𝐶1212 + 𝐶2121 + 𝐶2222)) ,

=
1
8
(𝐶11 + 𝐶22 + 6𝐶12 − 4𝐶66) . (2.14)

𝜇 is defined as

𝜇 =
1
8

(
2𝐶𝑝𝑞𝑝𝑞 − 𝐶𝑝𝑝𝑞𝑞

)
,

=
1
8
(2 (𝐶1111 + 𝐶1212 + 𝐶2121 + 𝐶2222) − (𝐶1111 + 𝐶1122 + 𝐶2211 + 𝐶2222)) ,

=
1
8
(𝐶11 + 𝐶22 + 4𝐶66 − 2𝐶12) . (2.15)

𝑎𝑖 𝑗 is defined as

𝑎𝑖 𝑗 =
1
12

(
2𝐶𝑖𝑝 𝑗 𝑝 − 𝐶𝑝𝑞𝑝𝑞𝛿𝑖 𝑗

)
,

𝑎11 = − 𝑎22 =
1

12
(2 (𝐶1111 + 𝐶1212) − (𝐶1111 + 𝐶1212 + 𝐶2121 + 𝐶2222) =

1
12

(𝐶11 − 𝐶22) ,

𝑎12 =𝑎21 =
1

12
(2 (𝐶1121 + 𝐶1222)) =

1
12

(2 (𝐶16 + 𝐶26)) =
1
6
(𝐶16 + 𝐶26) . (2.16)

𝐷𝑖 𝑗 𝑘𝑙 is defined as

𝐷1111 =
1
8
(𝐶11 + 𝐶22 − 2𝐶12 − 4𝐶66) ,

𝐷1112 =
1
2
(𝐶16 − 𝐶26) ,

𝐷1111 = − 𝐷2211 = −𝐷1221 = −𝐷2121 = −𝐷1212 = −𝐷2112 = −𝐷1122 = 𝐷2222, (2.17)

𝐷1211 =𝐷2111 = 𝐷1121 = −𝐷2221 = 𝐷1112 = −𝐷2212 = −𝐷1222 = −𝐷2122. (2.18)

Based on this decomposition, four invariants, that do not depend on the choice of the coordinate
system of the material, 𝐼1, 𝐽1, 𝐼2, 𝐽2 are defined as follows.

𝐼1 is a measure of the sphericity of the material and is defined as

𝐼1 = 𝜅 = 𝜆 + 𝜇,

=
1
4
(𝐶11 + 𝐶22 + 2𝐶12) . (2.19)
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𝐽1 is a measure of the isotropic part of the deviatoricity of the material and is defined as

𝐽1 = 𝜇 =
1
8
(𝐶11 + 𝐶22 + 4𝐶66 − 2𝐶12) . (2.20)

𝐼2 is the square of a norm that measures the amount of coupling energy in the material and is
defined as

𝐼2 =
√
𝑎𝑖 𝑗𝑎𝑖 𝑗 ,

=

√︃
2(𝑎2

11 + 𝑎
2
12),

=
1

6
√

2

√︁
(𝐶11 − 𝐶22)2 + 4(𝐶16 + 𝐶26)2. (2.21)

𝐽2 measures the squared norm of the anisotropic part of the deviatoricity of the material and is
defined as

𝐽2 =
√︁
𝐷𝑖 𝑗 𝑘𝑙𝐷𝑖 𝑗 𝑘𝑙 ,

=
1

2
√

2

√︁
(𝐶11 + 𝐶22 − 2𝐶12 − 4𝐶66)2 + 16(𝐶16 − 𝐶26)2. (2.22)

In the case of isotropic material, the invariants 𝐼2, 𝐽2 would be zero. Also note that, the shear-normal
coupling parameters are not involved in 𝐼1, 𝐽1. Several observations on the trends in the property
plots described in Section 3.4 can be understood from the invariant perspective.

Homogenization
Each unit cell’s effective material properties are then computed using a numerical homogenization
scheme [66, 67]. The homogenization scheme is based on length scale separation and follows a
two-scale asymptotic expansion of stress equilibrium equation. The resulting effective properties
are equivalent in the average energy stored in the unit cell for all possible loading conditions. In
computing the effective properties, we fix the pixel resolution at 100. For the gray phase, we use a
stiffer material DM8530 (𝐸 = 1 GPa, 𝜈 = 0.3) and for black phase, we use a softer material Tango
Black (𝐸 = 0.7 MPa, 𝜈 = 0.49), representative of materials from commercial multi-material Connex
3D printer. The material properties are experimentally determined following the ASTM D638-14
standard test method. It should be noted that in the limit, the Young’s modulus of the soft phase
goes to zero, does not completely describe a hole or a void. In the case of void, both bulk and
shear moduli are zero. However for a really soft phase, the bulk modulus does not go to zero. For
computational purposes, we limit our study to the case of two phases with contrasting moduli, but
not a stiff-phase with voids.
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2.3 Unit cell database generation
To design unit cells, we use a pixelated representation for the unit cell geometry parametrization.
Exploring all possible combinations of two phases in this pixelated representation is computationally
NP-hard1. Therefore, to sample periodic diverse anisotropic unit cells efficiently with lower degrees
of symmetry, we follow an approach inspired by Cahn’s method of generating Gaussian random
fields [52, 68, 69]. Additionally, this method is inspired by the observation that the power spectral
density of microstructures in metallic systems tends to be sparse and has peaks highly concentrated
at lower spatial frequencies, [70, 71], explained in detail in Fig. 2.4. We first define a periodic
function 𝑓 (𝑥1, 𝑥2), as a linear combination of cosine functions:

𝑓 (𝑥1, 𝑥2) =
∑︁
𝑚,𝑛

𝐴𝑚𝑛 cos (2𝜋(𝑚𝑥1 + 𝑛𝑥2)) , ∀(𝑥1, 𝑥2) ∈ [−0.5, 0.5], ∀𝑚, 𝑛 ∈ Z, (2.23)

where 𝑚, 𝑛 are spatial frequencies, and 𝐴𝑚𝑛 are the corresponding cosine function weights. The
function is then thresholded at a value 𝜉, to generate a binary image which represents a unit cell, as
shown in Fig. 2.2A-B.

Figure 2.2: Design of an anisotropic unit cell geometry by thresholding a periodic function. (A)
An example periodic function 𝑓 (𝑥1, 𝑥2). (B) A two-phase unit cell geometry consisting of a stiffer
(gray) and a softer phase (black). (C) A two-dimensional anisotropic metamaterial created by
tessellating the unit cell geometry (shown in the inset) ten times along both 𝑥1- and 𝑥2- axes.

There are several notable observations for this approach. Firstly, the periodicity in the unit cells
is ensured by directly selecting cosine functions. Interestingly, choosing between sine and cosine
as the fundamental periodic function does not affect the distribution of the resulting properties.
By controlling the symmetries in the weights, we can control the symmetries in the unit cell. For
instance, if 𝐴𝑚𝑛 = 𝐴𝑛𝑚, the result is diagonally symmetric unit cells. Adjusting the pixel density
allows us to generate unit cells with arbitrary resolutions as need-based.

1For example, a 100 × 100 periodic pixelated representation requires the computation of mechanical properties of
299×99 = 29801 unit cells.
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By increasing the threshold value of the function Eq. (2.23), the fill fraction of the stiff phase
increases monotonically. Each function exhibits a different rate of monotonic increase in the fill
fraction, as illustrated in the top inset of Fig. 2.3B. The number of spatial modes is a hyperparameter
2𝜁+1, with 𝜁 = max(𝑚, 𝑛). In Fig. 2.3C, the variation of typical feature sizes is shown when the
number of spatial modes is varied. Increasing the number of spatial modes leads to smaller feature
sizes and increased randomness, resulting in unit cells that tend to be less anisotropic. The shape
of the unit cell is also an important factor for achieving anisotropic properties and is a design
choice that is often overlooked. By modifying the directions of periodicity in the proposed periodic
function definition Eq. (2.23), we can also generate non-square unit cells as shown in Fig. 2.3D.

In a 2D periodic system, the unit cells can be rectangular, square, parallelogram-shaped, or ir-
regularly hexagonal. Using the concepts of Bravais lattices and Brillouin zone, it is sufficient to
consider an arbitrary parallelogram-shaped unit cell defined by the side lengths 𝑎, 𝑏 and the angle
between the edges 90◦ − 𝜃, to describe all possible unit cell shapes completely [62]. The values
for parallelogram 𝑎 = 1, 𝑏 = 1, 𝜃 = 30◦ would give an equivalent regular hexagonal unit cell.
Therefore, to generate non-square unit cell data, we considered several non-square oblique unit
cells when the angle parameter is varied such that −45◦ < 𝜃 < 45◦, while the ratio of side length
is varied such that 0.3 ≤ 𝑎

𝑏
≤ 3.

Overall, this method allows us to systematically explore a large property space and identify structures
that exhibit the desired anisotropic elasticity tensors and suitable for estimating theoretical bounds
on the anisotropic moduli, as discussed in Section 4.5. This approach also enables interpolation
between different unit cell shapes, leading to the generation of functionally graded structures, as
discussed further in Section 5.2.

We further provide a justification on the selection of the cosines functions as basis functions for
unit cell generation. Two unit cells are included for this discussion, the first one is an arbitrary one
with no distinctive patterns and almost noisy. Second one is a unit cell obtained from the method
described in Section 2.3. The Fourier spectrum of both the unit cells is obtained after Gaussian
filtering and is shown in Fig. 2.4. Note that the zero-frequency component, which represents the
image’s mean value and has the highest magnitude, is removed from the plots to better illustrate the
distribution of the other frequencies. For the almost noisy unit cell, the (real) spectrum consisted
of peaks from a wide range of spatial frequencies. For the second unit cell, the spectrum is
concentrated at the lower spatial frequencies. Therefore we chose the described representation to
generate unit cells studied in this paper.
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Figure 2.3: Various anisotropic unit cells can be sampled by thresholding periodic functions
composed of several cosine spatial modes. (A) An example periodic function, (B) Variation of unit
cell patterns with the fill fraction of stiff phase as the threshold value is changed from 0 to 1 for a
particular periodic function, elastic properties of a unit cell normalized with the Young’s modulus of
the stiff phase (bottom-inset), variation of the threshold–fill fraction curve for different realizations
of the periodic function (top-inset). (C) As the number of spatial modes is increased, finer patterns
arise in the designs and unit cells tend to be less anisotropic, (D) To generate non-square unit cells,
the directions along which the function is periodic can be varied. Rectangular, parallelepiped, and
oblique shaped unit cells are shown for a fixed unit cell pattern.

2.4 Experimental data acquisition
Fabrication: We fabricate the specimens using a commercial multi-material polyjet technology-
based 3D printer, the Stratasys Objet500 Connex. The specimens measure 75 × 75 × 5 mm, not
including the portion inserted into the grips. For the stiff phase, we use Stratasys’ proprietary
material DM8530, and for the soft phase, TangoBlack. The specimen fabrication is detailed in
Fig. 2.5. The material properties are experimentally determined following the ASTM D638-14
standard test method: DM8530 has a Young’s modulus (E) of 1000 ± 90 MPa and a Poisson’s ratio
(𝜈) of 0.35, while TangoBlack has a Young’s modulus (E) of 0.7 MPa and a Poisson’s ratio (𝜈) of
0.49 (See Fig. 2.6).

Tension testing: We subject the additively manufactured specimens to displacement-controlled
tension tests using a universal testing machine, Instron E3000 (as shown in Fig. 2.7 and Fig. 2.8).
We apply a vertical displacement of 1.5 mm at the top boundary at a rate of 0.5 mm/min resulting in
a global axial strain of 𝜀22 = 0.02 and a global strain rate of 1.1× 10−4 s−1. We use the same strain
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Figure 2.4: Fourier spectrum comparison of two different type of unit cells. A) Inset shows a unit
cell obtained as a random binary image with its corresponding real part of the Fourier spectrum. B)
Inset shows a unit cell obtained from the method described in Section 2.3 with it’s corresponding
real part of the fourier spectrum. Both the unit cells are chosen such that they have same fill fraction
of the stiff phase.

rate while measuring the constitutive material properties of the individual phases. We repeated
the experiments on three different specimens for the same design. All the specimens showed little
variation in the observed global behavior.

Custom-designed aluminum grips, serrated to firmly hold specimens and prevent lateral slipping,
were fabricated. The effect of slip at the grips was further investigated using various surface
roughness conditions, as discussed in Fig. 2.9. Initially, the grips had a smooth surface finish.
The tolerances in the screws holding the sample were close to 0.5 mm (4.5 mm holes with M4
screws). Due to these tolerances and the smooth surface finish, the anisotropic specimen slipped
laterally, leading to discrepancies between experiments and simulations in the observed load and
full-field displacement data. Several combinations of surface roughness on the specimen were
tested, including roughening the specimen that goes into the grips and reducing the hole diameter.
Despite using 4 mm holes, the specimen still slipped. The 3D printed material, being softer than
the screws, allowed the screws to enlarge the holes upon loading. Metal inserts were then used
in the holes, pushed into the specimen with a hot solder gun. The difference in results between
(A) and (C) was minimal when using the serrated grips shown in (E). Finally, 100 grit sandpaper
was glued onto the sample, but this method provided the least successful results as the sandpaper
contributed to machine compliance and eventually leading to a decrease in the observed loads.

Image acquisition: We use DIC, an image-based optical technique, to measure the full-field
displacements [72, 73]. We capture images at a frequency of 1 Hz using a Nikon D750 camera
equipped with a Nikon AF-S NIKKOR 24-120mm f/4G ED VR zoom lens. We use manual mode
at an exposure rate of 1/640 sec, an ISO setting of 1250, and an aperture setting of F8. We use
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Figure 2.5: Anisotropic metamaterial sample design and fabrication for digital-image correlation
(DIC) experiments. The first step involves converting a drawing into STLs for stiff and soft phases
separately. The sequence of steps are as follows. (A) Import drawing as ‘mm’ scale. (B) Extrude
3D model of hard part. (C) Boolean operation (‘Cut’ in Fusion). (D) 3D model of soft part. Then
the two STLs are used in conjunction in Stratasys Object 500 printer’s software to fabricate the
specimen as shown Fig. 2.7. (Credit: Jihoon Ahn)

the global DIC approach, and perform DIC using piece-wise linear shape functions defined on a
triangular mesh with an edge length of ≈ 0.35 mm, to compute the displacements (as in Agnelli
et al. [47]).

Simulations: We use synthetic data generated using the FEM to verify our methods and aid our
analysis before performing the experiments.
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Figure 2.6: ASTM D638-14 type V specimen used for the evaluation of the material properties
of the constitutive materials. The Poisson’s ratio is measured from the average lateral and axial
strains, evaluated in the non-varying region of the cross-section of the specimen. The stress-strain
data obtained load-displacement data is used to infer Young’s Modulus. The hysteresis in the data
after unloading is ignored and only the loading part slope is used to estimate the Young’s modulus.
Each color refers to different samples tested.

2.5 Digital image correlation
Given a reference image 𝑓 and and a deformed image 𝑔, the correlation algorithm aims at minimizing
the sum of squared differences over the considered domain Ω

T =

∫
Ω

(𝑔(𝒙 + 𝒖(𝒙)) − 𝑓 (𝒙))2 𝑑𝒙, (2.24)

where 𝒙 is the position in the reference image and 𝒖(𝒙) is the displacement field which is interpolated
as

𝒖(𝒙) =
∑︁

𝑢𝑛𝝓𝑛 (𝒙), (2.25)

where 𝝓𝑛 are a set of shape functions and 𝑢𝑛 the associated degrees of freedom. There are two
approaches to determine the unknowns 𝑢𝑛, local DIC and global DIC [73]. In the local approach,
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the region of interest (Ω) is divided into several sub-images known as subsets and the mean
displacement of each subset is computed independently while minimizing the objective Eq. (2.24).

Figure 2.7: Experimental setup for displacement-controlled uniaxial testing of an anisotropic
metamaterial.

Figure 2.8: Digital rendering of the designed experimental setup. The grips move laterally in-plane
using the straight guided slots. This setup allows for clamping specimens of varied thicknesses.
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Figure 2.9: To ensure accurate measurement of both shear and axial forces, it is crucial that there
is no slip at the grips. The impact of grip slip in the custom-designed setup shown in Fig. 2.7
is investigated using various designs. (A) Original specimen with 4.5 mm hole diameter, (B)
Specimen with 4 mm holes with gripping region roughened using a sand paper, (C) Specimen with
4 mm hole with metal inserts, (D) Specimen with 4 mm hole with a sand paper attached to the
gripping region. (E) Serrated grips provided consistent and the best results.
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In the global approach, shape functions defined through a finite element mesh over the whole region
of interest are used [74]. The global approach assumes continuity of displacements over the entire
region of interest which is well suited when the structure is heterogeneous. Moreover, the global
approach provides the displacement information at the boundaries, which is hard to obtain using
the local approach. The displacement data at the boundaries are an important input for the full-field
measurement based parameter identification techniques. Hence, we follow the global approach to
perform the correlation in this thesis.

We perform DIC using piece-wise linear shape functions defined on a triangular mesh to compute
the displacements (as in Agnelli et al. [47]). We choose an edge length of 18 pixels (∼ 0.44 mm) to
construct the triangular mesh. We observe a noise floor of the order of 0.04 mm in the displacement
data which is obtained from correlation performed on static images. In the future, experimental
errors may be further reduced using the global DIC technique with quadratic interpolation [75].
The data provided by the DIC correspond to the nodes that might not always align with the unit cell
corners. To obtain the displacements of the unit cell corners, we further average the displacement
data from the nodes that fall within a 1 mm radius of a unit cell corner. The whole process is
detailed in Fig. 2.10, Fig. 2.11, and Fig. 2.12. The signed distance function is especially useful
when trying to construct mesh in the ROI when there are a lot of holes. This is a problem that
traditional subset-based local approaches find hard to perform DIC. In this case, the grayscale
intensity at the interface can be hard to distinguish if it is a boundary or a hole, and special care
must be taken.

It is important to note that embedding constitutive materials with contrasting moduli in a planar
metamaterial plate (as shown in Fig. 2.7) does not restrict deformations to being strictly planar.
We visually observed that the soft phase exhibits a non-zero out-of-plane deformation, which
introduces some noise in the DIC measurements. However, for our method discussed in Chapter 4,
we ensured that the unit cell corners, where displacements are extracted for parameter identification,
are occupied by a strict phase.
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Figure 2.10: Sequence of steps while performing DIC using global approach. (A) The region of
interest is defined selected as those pixels with a certain gray scale intensity within the selected
region of interest. (B) A signed distance function is constructed in MATLAB which extends
beyond the region of interest. The value of the function is positive outside the ROI. (C) Triangular
mesh constructed using distmesh function in MATLAB. The mesh density or side length is a
hyperparameter, which is chosen to be about 18 pixels. (D) Computed displacements (𝑈2) at the
nodes of the mesh are linearly interpolated to get the full-field displacement field.
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Figure 2.11: Sequence of steps while performing DIC using global approach in a structure with a
lot of holes. (A) The speckled specimen under consideration for DIC is acquired using a Nikon
D750 Camera equipped with a Nikkor 200 mm f/4D IF-ED lens. Such a setup prevents out-of-plane
walls from being captured in the image. (B) The region of interest is defined selected as those
pixels with a certain gray scale intensity within the selected region of interest. (C) Triangular mesh
constructed using distmesh function in MATLAB with the help of signed distance function that
distinguishes boundaries clearly. The mesh density or side length is a hyperparameter, which is
chosen to be about 18 pixels. (D) Computed displacements (𝑈2) at the nodes of the mesh are
linearly interpolated to get the full-field displacement field.

Figure 2.12: The 3D-printed structures were spray-painted white using regular off-the-shelf white
paint and dried for about 30 minutes. For DIC, speckles should be finer than the features. In order
to achieve finer black speckles, an airbrush was used. Airbrush was kept at a distance of about 3 cm
from the surface of printed structures and sprayed at an angle of about 45◦ until sufficient speckle
density is obtained.
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C h a p t e r 3

ESTIMATING THE BOUNDS ON ANISOTROPIC ELASTIC MODULI IN
TWO-DIMENSIONAL STRUCTURED MATERIALS

Jagannadh Boddapati and Chiara Daraio. Planar structured materials with extreme elastic
anisotropy. Under Review, July 2024.

3.1 Introduction
Designing metamaterials for anisotropy, despite their ability to attain unique properties, is a chal-
lenging task. Besides the fact that fewer or no symmetries in the unit cell design lead to a higher
degree of anisotropic properties, the factors that contribute to strong anisotropic behavior with cou-
pled deformations remain largely unexplored. Inverse techniques, such as topology optimization,
are frequently used to obtain unit cells that possess desirable elasticity tensor [76, 77]. However,
such inverse design techniques may not always be the best approach, as it is not known a priori
whether the prescribed elasticity tensor is compatible with the provided geometric parameteriza-
tion. An alternative design approach involves predefined parameterization for the unit cell. This
parameterization is then used to compute pre-computed databases, enabling the derivation of use-
ful structure-property relationships [78–83]. These data-driven methods generate databases that
function as quick reference tables, such as for identifying extremal structures at the boundary of the
property space, and can serve as initial guesses for topology optimization [84]. They also provide
robust datasets for machine learning-based design algorithms [85, 86]. For example, using the
latent space provided by variational autoencoders (VAEs), Wang et al. [87] demonstrated how to
obtain complex topological and mechanical interpolations in various unit cells. Similarly, Mao et al.
[88] used generative adversarial networks (GANs) to discover new unit cells beyond the training
data. By leveraging the gradients provided by artificial neural network models, it is now possible to
perform inverse designs customized to specific anisotropic elasticity tensors [27, 52, 89] and further
to tailor nonlinear mechanical behavior [90–92]. While these unique approaches can identify unit
cells with diverse elasticity tensors beyond the isotropic class, the range of achievable properties
is primarily constrained by the selected input design representation. Additionally, most of these
approaches are restricted to orthotropic elasticity, where coupled deformations are absent. There is
limited knowledge about the range of elasticity tensors, especially concerning the extent to which
shear-normal deformations can be coupled in two-dimensional single-scale structured materials.

On one hand, achieving a complete characterization of the parameter space in terms of the moduli
becomes exceedingly difficult in the absence of a unique parametrization of the input geometry.

https://arxiv.org/abs/2407.19136
https://arxiv.org/abs/2407.19136
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On the other hand, defining how close the obtained designs are to the theoretical bounds is also
challenging, as little is known about the theoretical limits of anisotropic elastic moduli (no known
closed-form expressions) [41]. This range of all possible effective tensors is mathematically known
as G-closure. In classical studies on isotropic composites, [93, 94] present a variational approach
to determine the upper and lower bounds on the effective bulk and shear moduli (𝜅∗ and 𝜇∗) by
decomposing the elastic energy into hydrostatic and deviatoric parts. Hence, the bulk and shear
moduli directly represent the energy that can be stored in the composites under hydrostatic and
deviatoric loading respectively. However, individual parameters in the fully anisotropic case do
not hold such straightforward interpretations. Even in the isotropic case, there are areas in the
property space of 𝜇∗ defined by theoretical bounds where composites are yet to be discovered
[41]. Willis [95], Milton and Kohn [96], Cherkaev and Gibiansky [97], Allaire and Kohn [98]
extended the theory of Hashin-Shtrikman bounds to orthotropic elasticity tensors, by introducing
“trace-bounds”. These trace bounds, categorized as ’bulk modulus type’ and ’shear moduli type’,
are derived by bounding the trace of the inverse stiffness tensor (compliance tensor) projected onto
specific tensor subspaces. These calculations establish bounds on a certain combination of elastic
moduli. However, extending this method to fully anisotropic media with shear-normal coupling is
non-trivial. This is because the energy cannot be decomposed into simple tensor components but
involves a combination of them for any type of loading.

To bridge this gap, Milton and Camar-Eddine [99] expanded upon the theories proposed by [95, 98]
on isotropic composites to explore bounds on arbitrary stress-strain pairs in the anisotropic com-
posites. The key finding from this work is that sequentially layered laminates are shown to achieve
these bounds on stress-strain pairs. By examining the sum of energy and complementary ener-
gies, they show that integrating a rank-deficient pentamode material within hierarchical laminates
enables the attainment of extremality in the stress-strain space. Pentamode materials were first in-
troduced by Milton and Cherkaev [23], suggesting that using pentamode materials as fundamental
building blocks allows for the achievement of arbitrary effective anisotropic properties. Generally,
elasticity tensors of extremal materials exhibit rank deficiency [100, 101], a characteristic shared by
pentamode materials and hierarchical laminates. Additionally, hierarchical laminates also emerge
as energy-minimizing optimal structures in various microstructure evolution problems [102–105],
as they are shown to achieve constant stress or strain in one of the phases and leading to the
optimization of the translation bounds [106].

While hierarchical structures and other rank-deficient materials could serve as a design guide
in realizing extreme elastic anisotropy, physically realizing such structures demands advanced
fabrication techniques that are still in development. There is limited knowledge about the elasticity
tensors achievable with single-scale fabrication techniques. In this paper, we address this gap
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by sampling a diverse database of anisotropic unit cells created by combining periodic cosine
functions of varied spatial frequencies, as discussed in Section 2.3. The database properties are
then compared with the properties of hierarchical laminates in for the first time (to the best of our
knowledge) which are considered as theoretical bounds. This comparison helps identify the regions
in the property space where hierarchical design is necessary to achieve extreme elastic anisotropy.

3.2 Theory of bounds on anisotropic elasticity tensors
For isotropic composites, Hashin and Shtrikman [93, 94] introduced a variational approach to
determine the upper and lower bounds on the effective bulk and shear moduli (𝜅∗ and 𝜇∗) by
decomposing the elastic energy into hydrostatic and deviatoric parts. However, the elastic energy
cannot be decomposed to get variational bounds on the independent moduli in the anisotropic
case. Recently Milton and Camar-Eddine [99], Milton et al. [107] addressed this problem in terms
of the stress and strain energy pairs and establishing bounds on the sum of the elastic and the
complementary energies. Let the four energy functions 𝑊 𝑘

𝑓
, 𝑘 = 0, 1, . . . , 3, that characterize the

set 𝐺𝑈 𝑓 of possible elastic tensors C∗ be defined by
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Each energy function 𝑊 𝑘
𝑓
, 𝑘 = 0, 1, . . . , 3, here represents the sum of three elastic energies, each

obtained from an experiment where the composite, with effective tensor C∗, is either subject to
an applied stress 𝝈0

𝑖
or an applied strain 𝜺0

𝑖
. A total of three stresses 𝝈0

𝑖
and 𝜺0

𝑖
are applied

simultaneously on the composite. The optimization of these energies to find 𝑪∗ for the applied
stresses and strains is non-trivial. However, applying the key conclusions from [95, 98, 108],
Milton and Camar-Eddine [99], Milton et al. [107] discuss how sequentially layered laminates (or
hierarchical laminates) minimize the sum of energies and complementary energies. In other words,
G-closure can be seen as the G-closure of hierarchical laminates which is explained in Fig. 3.1.
In two-dimensions, it is sufficient to consider laminates up to rank-3, if the constituent phases are
isotropic. It is also worth noting that hierarchical laminates, with isotropic type effective elasticity
tensor, simultaneously achieve Hashin-Shtrikman bulk and shear bounds [66].
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Construction of hierarchical laminates
Multiple-rank laminate materials are hierarchical materials created through an iterative lamination
process at increasingly larger length scales. A rank-one laminate consists of two isotropic phases,
which can be viewed as rank-zero laminates. A rank-(𝑚) laminate is formed by layering a rank-
(𝑚 − 1) laminate with a laminate of rank-(𝑚 − 1) or lower, as shown in Fig. 3.1. In two dimensions,
it is sufficient to consider laminates up to rank-3 to estimate theoretical bounds, especially when
the constituent materials are isotropic, as the 2D elasticity tensor has only three eigenvalues.
Rank-1 laminates typically have one very high non-zero eigenvalue and two near-zero eigenvalues,
while rank-2 laminates have two very high non-zero eigenvalues and one near-zero eigenvalue. To
compute the effective properties of a higher rank-𝑚 laminate, the constituent phases are replaced
from isotropic to the relevant anisotropic phases of rank-(𝑚 − 1) laminates (See Figs. 3.7 to 3.9).
A rank-1 laminate is strictly defined by two parameters, the fill fraction of the stiff phase and the
angle of orientation of the lamination. A rank-2 laminate is defined by four extra parameters the fill
fraction of the stiff phase and the angle of orientation of each of the phases of the previous rank-1
laminate. Similarly, a rank-3 laminate is defined by eight extra parameters. Suppose, there are 11
different fill fractions and 18 different laminate orientations. This results in a total of 11×18 = 198
elasticity tensors for rank-1 laminates. For rank-2 laminates, the total number of possible elasticity
tensors is (11 × 18)3 = 7762392. For rank-3 laminates, the number increases to (11 × 18)7. First,
the effective properties of all the rank-1 laminates are obtained by using two isotropic constituent
phases for homogenization. To compute the effective properties of higher rank-𝑚 laminates, the
constituent phases are replaced from isotropic to the relevant anisotropic phases of lower rank (see
Figs. 3.7 to 3.9). To reduce the number of computations for the rank-3 laminates database, a subset
of randomly chosen rank-2 elasticity tensors (about 1%) are used.



31

Figure 3.1: Hierachical laminates: (A,B,C) Construction of hierarchical laminates of rank-1, rank-
2 and rank-3 respectively. For rank-2 laminates, the stiff and soft phases of rank-1 are further
laminated in an arbitrarily chosen direction, not necessarily identical to the lamination direction of
the rank-1 laminate. Similarly for rank-3 laminates, each rank-1 lamination in rank-2 laminate is
laminated again in arbitrary directions. The fill fraction and relative orientation in each sequence of
hierarchy are fixed to show the distinction of hierarchy. (D) G-closures are defined by the minimum
values of sums of energies and complementary energies. The coordinates represent components
of the elasticity tensor. The convexity of the G-closure ensures that the surfaces of energies and
complementary energies touch every point tangentially on its boundary (adapted from Figure 30.1
in [6]). Further, it has been shown that the composites that lie on the boundary of this G-closure
are usually hierarchical laminates.
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3.3 Stiffness matrix derivation for rank-2 and rank-3 laminate homogenization
Initial discussion on the homogenization involving two isotropic phases is adopted from Andreassen
and Andreasen [67] and is included here only for completeness. Later, we describe the modifications
necessary to account for the anisotropy of the individual phases.

According to the theory of homogenization [67], the macroscopic elasticity tensor𝐶𝐻
𝑖 𝑗 𝑘𝑙

of a periodic
composite can be computed by considering the first-order terms in the asymptotic expansion of the
displacement field as

𝐶𝐻𝑖 𝑗 𝑘𝑙 =
1
|𝑉 |

∫
𝑉

𝐶𝑝𝑞𝑟𝑠

(
𝜀

0(𝑖 𝑗)
𝑝𝑞 − 𝜀(𝑖 𝑗)𝑝𝑞

) (
𝜀

0(𝑘𝑙)
𝑟𝑠 − 𝜀(𝑘𝑙)𝑟𝑠

)
d𝑉, (3.2)

where |𝑉 | denotes the volume of the unit cell, 𝐶𝑝𝑞𝑟𝑠 is the locally varying stiffness tensor, 𝜀0(𝑖 𝑗)
𝑝𝑞

are prescribed macroscopic strain fields (in 2D there are three; e.g. unit strain in the horizontal
direction (11), unit strain in the vertical direction (22), and unit shear strain (12 or 21)), while the
locally varying strain fields 𝜀(𝑖 𝑗)𝑝𝑞 are defined as

𝜀
(𝑖 𝑗)
𝑝𝑞 = 𝜀𝑝𝑞

(
𝜒𝑖 𝑗

)
=

1
2

(
𝜒
𝑖 𝑗
𝑝,𝑞 + 𝜒𝑖 𝑗𝑞,𝑝

)
, (3.3)

based on the displacement fields 𝜒𝑘𝑙 found by solving the elasticity equations with a prescribed
macroscopic strain∫

𝑉

𝐶𝑖 𝑗 𝑝𝑞𝜀𝑖 𝑗 (𝑣)𝜀𝑝𝑞
(
𝜒𝑘𝑙

)
d𝑉 =

∫
𝑉

𝐶𝑖 𝑗 𝑝𝑞𝜀𝑖 𝑗 (𝑣)𝜀0(𝑘𝑙)
𝑝𝑞 d𝑉 ∀𝑣 ∈ 𝑉, (3.4)

where 𝑣 is a virtual displacement.

The elasticity equation from Eq. (3.4) can be discretized using the finite element method. The left
hand side, i.e., the stiffness matrix, yields:

K =

𝑁∑︁
𝑒=1

∫
𝑉𝑒

B𝑇𝑒C𝑒B𝑒 d𝑉𝑒 . (3.5)

The discretization of the right hand side of Eq. (3.4) is the loads f which correspond to macroscopic
volumetric straining

f𝑖 =
∑︁
𝑒

∫
𝑉𝑒

B𝑇𝑒C𝑒𝜀
𝑖 d𝑉𝑒 . (3.6)

In computing the effective properties of rank-2 and rank-3 laminates, each of the constituent phases
used for homogenization are anisotropic. Therefore, the stiffness matrix described in Eq. (3.4),
should be modified to account for the anisotropy of the individual phases.
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This is done by changing the definition of the stiffness matrix for a completely anisotropic Q4 finite
element, defined as K′

K′ = 𝐶11 × 𝐾11 + 𝐶12 × 𝐾12 + 𝐶22 × 𝐾22 + 𝐶16 × 𝐾16 + 𝐶26 × 𝐾26 + 𝐶66 × 𝐾66, (3.7)

where 𝐶𝑖 𝑗 are the anisotropic moduli of the material occupying the Q4 element.

Here 𝐾11, 𝐾12, 𝐾22, 𝐾16, 𝐾26, 𝐾66 are obtained upon integration in Eq. (3.5), assuming plane-strain
condition as

𝐾11 =
1
6

©«

2 0 −2 0 −1 0 1 0
0 0 0 0 0 0 0 0
−2 0 2 0 1 0 −1 0
0 0 0 0 0 0 0 0
−1 0 1 0 2 0 −2 0
0 0 0 0 0 0 0 0
1 0 −1 0 −2 0 2 0
0 0 0 0 0 0 0 0

ª®®®®®®®®®®®®®®®¬

, (3.8)

𝐾12 =
1
12

©«

0 3 0 3 0 −3 0 −3
3 0 −3 0 −3 0 3 0
0 −3 0 −3 0 3 0 3
3 0 −3 0 −3 0 3 0
0 −3 0 −3 0 3 0 3
−3 0 3 0 3 0 −3 0
0 3 0 3 0 −3 0 −3
−3 0 3 0 3 0 −3 0

ª®®®®®®®®®®®®®®®¬

, (3.9)

𝐾22 =
1
6

©«

0 0 0 0 0 0 0 0
0 2 0 1 0 −1 0 −2
0 0 0 0 0 0 0 0
0 1 0 2 0 −2 0 −1
0 0 0 0 0 0 0 0
0 −1 0 −2 0 2 0 1
0 0 0 0 0 0 0 0
0 −2 0 −1 0 1 0 2

ª®®®®®®®®®®®®®®®¬

(3.10)
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𝐾16 =
1
6

©«

3 2 0 −2 −3 −1 0 1
2 0 −2 0 −1 0 1 0
0 −2 −3 2 0 1 3 −1
−2 0 2 0 1 0 −1 0
−3 −1 0 1 3 2 0 −2
−1 0 1 0 2 0 −2 0
0 1 3 −1 0 −2 −3 2
1 0 −1 0 −2 0 2 0

ª®®®®®®®®®®®®®®®¬

(3.11)

𝐾26 =
1
6

©«

0 2 0 1 0 −1 0 −2
2 3 1 0 −1 −3 −2 0
0 1 0 2 0 −2 0 −1
1 0 2 −3 −2 0 −1 3
0 −1 0 −2 0 2 0 1
−1 −3 −2 0 2 3 1 0
0 −2 0 −1 0 1 0 2
−2 0 −1 3 1 0 2 −3

ª®®®®®®®®®®®®®®®¬

, (3.12)

𝐾66 =
1

12

©«

4 3 2 −3 −2 −3 −4 3
3 4 3 −4 −3 −2 −3 2
2 3 4 −3 −4 −3 −2 3
−3 −4 −3 4 3 2 3 −2
−2 −3 −4 3 4 3 2 −3
−3 −2 −3 2 3 4 3 −4
−4 −3 −2 3 2 3 4 −3
3 2 3 −2 −3 −4 −3 4

ª®®®®®®®®®®®®®®®¬

. (3.13)

3.4 Data visualizations
Our goal is to identify the range of effective anisotropic elasticity tensors that can be achieved from
periodic single-scale unit-cells composed of two isotropic phases. Further to build a database, the
coefficients 𝐴𝑚𝑛 are sampled randomly to generate 2000 different functions and the threshold is
varied for 100 increments resulting in a database size of 200000 unit cells.

Volume fraction plots
In Fig. 3.2, the data of material properties 𝐶11, 𝐶12, 𝐶16 is plotted as a function of the fill fraction
of the stiff phase. All the parameters are normalized with Young’s Modulus of the stiff phase. Note
that 𝐶22, 𝐶66 have similar property distribution as that of 𝐶11 while 𝐶26 property distribution is
similar to 𝐶16 and hence these parameters are not plotted for brevity. As there are no closed-form
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expressions for the theoretical bounds on anisotropic moduli, the range of properties achieved by
hierarchical laminates upto rank-3 is used as a substitute and indicated in the same plots. Please
refer to Section 3.2 for a discussion on theoretical bounds and Section 3.2 and Fig. 3.1 for the
construction and computation of the effective properties of the hierarchical laminates. First, we
observe that in all property plots, rank-2 laminates (shown in green) significantly expand the
property range compared to rank-1 laminates (shown in magenta). However, the transition from
rank-2 to rank-3 laminates (shown in orange) shows minimal improvement across all moduli except
for 𝐶12. For 𝐶12, the negative region is only accessible with rank-3 laminates, and this range shows
minimal dependence on the fill fraction beyond 25%. Both rank-2 and rank-3 laminates reduce
the strong dependence on achieving higher values for specific moduli, allowing stiffer anisotropic
properties beyond linear scaling with a low fraction of the stiff phase. Additionally, hierarchical
laminates demonstrate that using anisotropic constituent phases can significantly enhance the range
of achievable properties in single-scale two-phase composites.

Figure 3.2: Plots of fill fraction of stiff phase vs. (A) 𝐶11, (B) 𝐶12, (C) 𝐶16 from this database. All
the plots are normalized with the Young’s modulus of the stiff material. Properties of hierarchical
laminates are used as theoretical bounds. Rank-1 laminates are indicated with magenta color, rank-
2 laminates are indicated with green color and rank-3 laminates are indicated with orange color.
Representative unit cells at the boundary are pointed out using arrows. The unit cells away from
the bounds contain non-trivial patterns and some of them are displayed in the subsequent figures.

Our database consisted of unit cells achieving the bounds predicted by rank-1 laminates, specifically
in the fill fraction ranging between 30%–80%. To understand the effect of spatial frequencies, the
same plots are plotted in different colors with data constructed from adding a specific number of
spatial frequencies (Fig. 3.3). It is observed that adding higher spatial modes does not necessarily
increase the reach in the property space. In fact, adding higher spatial modes is detrimental to
producing anisotropic structures beyond spatial modes of order 3. While square unit cells were
sufficient to explore the extremes of the diagonal moduli, the range of the off-diagonal moduli is
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enhanced with the use of non-square unit cells (Fig. 3.4). For 𝐶11, the structures at the upper
bound are laminate-like structures aligned along the 𝑥1 direction, while those at the lower bound
are laminates aligned along the 𝑥2. For 𝐶12, the unit cells at the upper and lower bounds are
non-laminate-like. In the negative 𝐶12, the discovered unit cells do not approach the bounds of
rank-3 laminates and feature chiral patterns and/or orthogonally aligned thin features. For 𝐶16, the
upper bound unit cells are skew laminates tilted towards right, while those at the lower (negative)
bound are the same skew laminates, but flipped.

Figure 3.3: Plots of fill fraction of stiff phase vs 𝐶11, 𝐶12, 𝐶16 from this database as the maximum
number of spatial modes is varied. All the plots are normalized with the Young’s modulus of the
stiff material. Adding higher spatial modes does not increase the span in the material properties.
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Figure 3.4: Comparison of the properties from square and non-square unit cells. Non-square
unit cells contain patterns that are periodic along non-orthogonal directions. The span in the off-
diagonal properties is enhanced by non-square unit cells, especially 𝐶16, 𝐶26. Off-diagonal moduli
𝐶16, 𝐶26 have high dependence on the unit cell shape and symmetries.

Hierarchical architectures play a significant role in structural integrity and functionality across
systems of various length scales (e.g., spider silk) [109]. This hierarchy is often present in non-
rectangular coordinate systems. For example, wire ropes used in structural engineering contain
helical strands arranged in a hierarchical manner, enhancing efficient load transfer and their strength
by distributing tensile forces uniformly throughout the cross-section, regardless of the bending
direction [110]. In biological systems, spinal discs, which are annular cylinders surrounding the
spine in the vertebrae, provide shock absorption, support, and flexibility to the spine. Their load-
bearing protein, collagen, is distributed in a multi-layered laminar fashion [111]. Similarly, the
tympanic membrane of the human ear, which is responsible for efficient sound transmission and
protecting the delicate structures within the ear, is conical in shape and features collagen structured
in a trilaminar fashion with radial and circumferential patterns [112]. These observations along
with findings from our work further emphasize the importance of incorporating hierarchical designs
to enhance the design capabilities.
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Pair property plots
Often, multiple components of the elasticity tensor contribute to the overall mechanical behavior.
Therefore, we also examine the pair property plots. For a total of 6 material parameters, there
are a total of

(6
2
)

= 15 distinct pair property plots. However, due to the symmetry nature of the
property plots, it is sufficient to consider only a subset of the plots. For example, the property plot
of 𝐶11 vs 𝐶16 would be the same as 𝐶22 vs 𝐶26. As the goal of this paper is to identify anisotropic
structure-property relations, specifically shear-normal coupling, the property plots associated with
the off-diagonal parameters of the elasticity tensor are discussed in detail. Therefore, the property
plots corresponding to 𝐶16 vs. 𝐶26, 𝐶16 vs. 𝐶12, 𝐶11 vs. 𝐶22, 𝐶66 . 𝐶12 are shown in Fig. 3.5.
Please refer to Fig. 3.6 for the rest of the pair-property plots. In the same plots, as discussed earlier,
the range of properties achieved by hierarchical laminates are used as a substitute for theoretical
bounds (which are plotted separately in Figs. 3.7 to 3.9 to indicate their distinction).

In the property plot of 𝐶16 vs. 𝐶26 shown in Fig. 3.5A, we observe that there is a strong correlation
along the line inclined at 45◦. This means for many of the unit cells, both 𝐶16 and 𝐶26 have the
same sign. Hierarchical laminates uncorrelated this behavior and achieved unit cells with opposing
signs for 𝐶16 and 𝐶26. The unit cells identified on the boundary of this property space resemble
rank-1 laminates. However extremal strict low rank-1are not allowed in the ansatz for database
construction. As discussed in Forte and Vianello [63], 𝐶16 +𝐶26 and 𝐶16 −𝐶26 are components of
the invariants of the elasticity tensor under coordinate transformation. Each of these sums signifies
a different contribution to the stored elastic energy (see Eqs. (2.21) and (2.22) in Section 2.2). In
the property plots of 𝐶66 vs. 𝐶12 and 𝐶11 vs. 𝐶12 shown in Fig. 3.5E-F, there are generally very
few data points with a negative value of 𝐶12, especially at high values of 𝐶66. Again, the negative
region for𝐶12 is only accessible with rank-3 laminates. The combination 𝜅 = 1

4 (𝐶11 + 𝐶22 + 2𝐶12),
known as the bulk modulus, is an invariant. This imposes a restriction on the negative bound
of 𝐶12 to ensure that 𝜅 remains positive. The parameter 𝐶66 − 𝐶12 is invariant under coordinate
transformation. Therefore, 𝐶66 vs. 𝐶12 plot for rank-1 laminates is strictly a single linear line. 𝐶66

vs. 𝐶12 plot for rank-2 and rank-3 laminates is composed of several such lines with different slopes,
which is clearly observed in Fig. 3.8.

In Fig. 3.10 and Fig. 3.11, the data of the eigen values (𝜆1, 𝜆2, 𝜆3 in descending order) of all the
elasticity tensors computed are plotted. For rank-1 laminates, 𝜆2, 𝜆3 are very close to zero, while
for rank-3 laminates, only 𝜆3 is very close to zero. Rank-3 laminates exhibited a broad spectrum of
eigenvalues, with notably high eigenvalues observed at low fill fractions. In the fill fraction ranging
between 30% - 80%, the eigen value data from the unit cell database In Fig. 3.12, pair-property plots
of the invariants discussed in Chapter 2 are plotted. The invariant data for just rank-2 laminates is
plotted in Fig. 3.13. Rank-1 laminate data for all the plots (invariant data and eigen value data) is
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observed to lie on a single curve. There are regions in the plots associated with 𝐽2 that are accessible
only with rank-2 and rank-3 laminates. 𝐽2 is a measure of the squared norm of the anisotropic part
of the deviatoricity of the material. Therefore, invariants could serve as more effective metrics for
designing and quantifying anisotropy.

3.5 Conclusion
In this chapter, we estimate the range of anisotropic elasticity tensors by creating a database of
two-dimensional unit cells consisting of two isotropic phases with contrasting moduli. We compare
the property ranges achieved by these single-scale architected materials with the extensive design
space achieved by hierarchical materials, which reach bounds predicted by theoretical calculations
for these parameters. We identify regions in the property space where hierarchical designs or
the use of two anisotropic constituents are necessary to cover a wide property space, particularly
focusing on off-axis parameters. The bounds provided alongside the unit cells serve as a design
tool for the design of extremal metamaterials. In the next chapter, we discuss the experimental
evaluation of the mechanical parameters tested on four different specimens.

Figure 3.5: Plots of (A) 𝐶16 vs. 𝐶26, (B) 𝐶16 vs. 𝐶12, (C) 𝐶16 vs. 𝐶66, (D) 𝐶22 vs. 𝐶16 (E) 𝐶66
vs. 𝐶12 and (F) 𝐶11 vs. 𝐶12 from this database. All the plots are normalized with the Young’s
modulus of the stiff phase shown in gray color. Rank-1 laminates are indicated with magenta color,
rank-2 laminates are indicated with green color and rank-3 laminates are indicated with orange
color. Representative unit cells at the boundary are pointed out using arrows.
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Figure 3.6: Plots of (A) 𝐶11 vs. 𝐶22, (B) 𝐶26 vs. 𝐶12, (C) 𝐶26 vs. 𝐶66, (D) 𝐶11 vs. 𝐶26, (E) 𝐶11
vs. 𝐶16, (F) 𝐶22 vs. 𝐶12, (G) 𝐶11 vs. 𝐶66, (H) 𝐶22 vs. 𝐶66 and (I) 𝐶22 vs. 𝐶26 from this database.
All the plots are normalized with the Young’s modulus of the stiff material shown in gray color in
the unit cells displayed. Rank-1 laminates are indicated with magenta color, rank-2 laminates are
indicated with green color and rank-3 laminates are indicated with orange color.
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Figure 3.7: Pair property plots for rank-1 laminates. First, the properties of the laminates whose
normal direction is aligned with 𝑥1 direction are computed, as the fill fraction of stiff phase is
incremented in intervals of 0.04 upto 0.96. Then, a co-ordinate transformation is applied on these
tensors to obtain the properties of the laminates whose normal is not aligned with the co-ordinate
axes.
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Figure 3.8: Pair property plots for rank-2 laminates including co-ordinate transformations. Note
that the reach in the properties is increased from rank-1 laminates to rank-2 laminates. This can be
clearly observed in the plots of 𝐶16 vs 𝐶26, 𝐶11 vs 𝐶22, 𝐶66 vs 𝐶12.
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Figure 3.9: Pair property plots for rank-3 laminates including co-ordinate transformations.
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Figure 3.10: Eigen value vs. fill fraction plots. All the stiffness tensors are normalized with the
Young’s modulus of the stiff phase. Rank-1 laminates are indicated with magenta color, rank-2
laminates are indicated with green color and rank-3 laminates are indicated with orange color.

Figure 3.11: Pair property plots for the eigen value data. All the stiffness tensors are normalized
with the Young’s modulus of the stiff phase. Rank-1 laminates are indicated with magenta color,
rank-2 laminates are indicated with green color and rank-3 laminates are indicated with orange
color.
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Figure 3.12: Pair property plots for the invariant data. All the stiffness tensors are normalized with
the Young’s modulus of the stiff phase. Rank-1 laminates are indicated with magenta color, rank-2
laminates are indicated with green color and rank-3 laminates are indicated with orange color.

Figure 3.13: Pair property plots for the invariant data of just rank-2 laminates. All the stiffness
tensors are normalized with the Young’s modulus of the stiff phase.
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C h a p t e r 4

SINGLE-TEST EVALUATION OF DIRECTIONAL ELASTIC PROPERTIES
OF STRUCTURED MATERIALS

Jagannadh Boddapati, Moritz Flaschel, Siddhant Kumar, Laura De Lorenzis, and Chiara Daraio.
Single-test evaluation of directional elastic properties of anisotropic structured materials. Journal
of the Mechanics and Physics of Solids, 181:105471, December 2023.

4.1 Introduction
In this chapter, our objective is to identify these six material parameters 𝐶11, 𝐶12, 𝐶22, 𝐶16, 𝐶26, 𝐶66

from experimental measurements with least number of experiments. Traditional material parameter
identification methods rely on single-load experimental setups with homogeneous (constant) strain
distributions within the tested specimen, which allow the derivation of closed-form stress-strain
relations. However, the amount of data that can be acquired through a one dimensional tension test,
for example, is limited (e.g., one stress-strain data pair for each measurement). When characterizing
complex materials, multiple experimental setups with different loading conditions are needed. Full-
field identification methods allow extracting additional information from single-load experiments.
Measuring the full displacement field, e.g., through Digital Image Correlation (DIC), of arbitrarily
shaped specimens under loading maximizes the amount of data generated from a single experimental
test. Such data can then be used to characterize the material by applying inverse identification
methods such as, among others, Finite Element Model Updating, the Equilibrium Gap Method or
the Virtual Fields Method (VFM), see [113–115] for a review.

These methods have in common that they are used to calibrate the parameters of an a priori chosen
material model, i.e., the mathematical functions and operations that describe the material response
need to be fixed by means of the intuition or modeling experience of the user. However, the
selection of inappropriate a priori assumptions about the model and its underlying mathematical
structure can introduce errors. Recent research used full-field data to train machine-learning-
models, whose versatile ansatz spaces promise to mitigate modeling errors. Flaschel et al. [116],
for example, proposed the method EUCLID (Efficient Unsupervised Constitutive Law Identification
and Discovery) that uses sparse regression [117] informed by full-field displacement data and net
reaction force data, to automatically select interpretable material models from a potentially large
predefined set of candidate material models. EUCLID has been applied to hyperelasticity [116],
elastoplasticity [118], viscoelasticity [119], and generalized standard materials [120], see [121] for
an overview. Further, EUCLID was formulated in a Bayesian setting by [122] to simultaneously

10.1016/j.jmps.2023.105471
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perform model selection and quantification of uncertainty in the material parameters. In contrast
to selecting interpretable material models through sparse regression, full-field data may also be
used to train black-box material model surrogates like neural networks, as shown by [123–125] for
small strain elasticity and by Thakolkaran et al. [126] for hyperelasticity. In the present work, it
is assumed that the material response does not leave the realm of elasticity at infinitesimal strains.
Thus, the material model can be assumed to be known a priori, and its parameters are calibrated
with the VFM.

The VFM, originally proposed by [127] (see also [128, 129]), employs the balance of linear
momentum in its weak form, to identify unknown material parameters. The VFM method assumes
that the kinematic fields in the specimen, as well as the reaction forces at the boundaries, are
known from experiments. As such, material parameters remain the only unknowns in the balance
equations and can be calculated using standard linear or nonlinear solvers. In essence, the VFM
describes the inverse problem to the classical Finite Element Method (FEM). The method has been
applied in various cases, such as small-strain elasticity, elasto-plasticity [130], and hyperelasticity
[131], among others.

The accuracy of the VFM in identifying unknown material parameters and its sensitivity to noise
is highly dependent on the choice of the functions for which the weak linear momentum balance
is tested, also known as the virtual displacement fields. A distinction can be made between global
virtual fields that are defined over the whole specimen domain, such as polynomials, and local
virtual fields with compact support, such as in the Bubnov-Galerkin discretization with piecewise
polynomial shape functions. As the choice of the virtual fields is arbitrary and user-dependent,
several attempts have been made to automate and optimize it [132–134].

In this article, full-field measurement based identification, and in particular the VFM, is explored in
the context of anisotropic structured materials and compared to traditional identification methods.
We focus in particular on the identification of shear-normal coupling parameters, notoriously
complex to extract from conventional experiments.

4.2 Virtual fields method for anisotropic metamaterials
Many parameter identification methods rely on conducting multiple experiments, which are time
consuming, complex and require specialized equipment. To circumvent these drawbacks, we
explore a material characterization method based on the VFM that solely relies on full-field
displacements and net reaction force measurements from a single experimental test. In this section,
after discussing the assumptions underlying the adoption of the VFM for metamaterials, we outline
all the components of the proposed method.
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Basic assumptions
The VFM [127–129] exploits the weak formulation of linear momentum balance, i.e., the principle
of virtual work, as a constraint on the material parameter space. Since the full displacement field
over the specimen and the net reaction forces at the specimen boundaries are known, testing the
weak formulation for a suitable set of test functions (also known as virtual fields) results in a
system of equations that can be solved for the unknown material parameters. By choosing the test
functions as not constant in space, the linear momentum balance is tested in different regions of
the considered specimen domain. As such, the VFM takes advantage of the local strain data, as
opposed to global methods for parameter identification.

In the following, the VFM is used to characterize the mechanical behavior of metamaterials.
However, it should be noted that, due to the non-homogeneous nature of the metamaterials, the
application of identification methods based on full-field measurements is not trivial. Full-field
measurement techniques such as DIC measure the kinematic fields locally, i.e., at several points on
the considered specimen surface. The studied metamaterials are not expected to behave at these
local points as their homogenized counterparts, especially when the number of repeating unit cells is
low in comparison to the size of the specimen. To give an example, in Section 4.5 the deformation
of a heterogeneous metamaterial specimen will be compared to that of an equally-dimensioned
homogeneous body, whose stiffness is set to the homogenized stiffness of the metamaterial. Under
the same loading conditions, the two specimens exhibit different local displacements, which is
likely caused by local size effects and the different boundary conditions that are assumed during
the loading of the macroscopic structure and the homogenization of the microscopic unit cell. It
is observed that deviations between the kinematic fields are predominant at the boundary and in
particular at the corners of the domain. This agrees with theoretical studies on heterogeneous
metamaterials, which suggest the usage of non-local theories (e.g., higher-order strain-gradient
based) as proposed by Mindlin and Eshel [135], to model size effects and wedge forces appearing
at corners of non-homogeneous bodies [136–138]. Within this work, such theories are avoided for
the sake of simplicity and to keep a reasonably low number of material parameters. Hence, the
assumption is made that the global material behavior of the metamaterials can be characterized
based on local kinematic measurements within a local constitutive theory. As we will see later,
this assumption will introduce errors in the identification procedure, which are, however, below a
practically relevant level. During the development of the VFM, we found that the locally measured
kinematic data must be treated with care, especially at the boundary and the corners of the specimen.
We will later introduce specifically designed virtual fields that reduce the influence of data acquired
at the specimen boundary and corners (see Section 4.2 for details).1

1We note at this point that reducing the influence of data acquired at the specimen boundary and corners may
be beneficial not only when studying heterogeneous materials. Even for homogeneous specimens, the acquisition of
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Required data
To identify the unknown parameters, the VFM needs diverse local strain data, i.e., strain fields that
are not homogeneous. Therefore, data that serve as input for the VFM are usually generated by
testing complex specimen geometries under complex loading conditions [139, 140]. However, for
the structured materials considered in this study, generating complex specimen geometries (e.g., a
plate with holes or notches) and studying their behavior under complex loading conditions is not
trivial. Local features like holes or notches may lead to stress concentrations or singularities and
hence more complex geometries may be prone to behave locally inelastic or even fail. Further, we
will show later that the VFM performs best if we do not feed the method with data at the boundary
of the specimen. Introducing more features like holes or notches to the geometry would increase
the boundary and thus reduce the amount of data suitable to be used by the VFM.

For our purposes we will show that, due to the anisotropy of the material, a clamped square plate
under uniaxial tension produces a sufficiently heterogeneous strain field. We hence consider a
displacement-controlled uniaxial tension experiment of a square-shaped specimen that consists of
𝑛𝑐 × 𝑛𝑐 repeating square unit cells of the considered metamaterial (Fig. 2.2). At the fixed boundary
of the specimen, a load cell measures the net reaction force. Further, the full-field deformation
of the specimen is tracked through DIC, which measures the local displacements of the solid
material. After preprocessing the data, the VFM takes as input the displacement measurements at
the (𝑛𝑐 + 1) × (𝑛𝑐 + 1) unit cell corners and the net reaction forces. A quadrilateral finite element
mesh is generated such that each of the 𝑛𝑐 × 𝑛𝑐 elements corresponds to one unit cell and the
element nodes correspond to the unit cell corners with experimentally known displacement values.
The continuous displacement field 𝒖(𝒙) is hence approximated by

𝒖(𝒙) =
𝑛𝑛∑︁
𝑎=1

𝑁𝑎 (𝒙)𝒖𝑎, (4.1)

where 𝑛𝑛 = (𝑛𝑐 + 1)2 denotes the number of nodes in the finite element mesh and 𝒖𝑎 are the
known nodal displacements, while 𝑁𝑎 (𝒙) are the standard ansatz functions of bilinear quadrilateral
finite elements. The infinitesimal strain field is then obtained as the symmetric gradient of the
displacement field, i.e., 𝜺(𝒙) = 1

2

(
∇𝒖(𝒙) + (∇𝒖(𝒙))𝑇

)
.

kinematic data at the specimen boundary via DIC is known to be difficult.
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Weak formulation of linear momentum balance
We denote the specimen domain and its boundary as Ω and 𝜕Ω, respectively, and the surface
traction force acting on 𝜕Ω as 𝒕. Assuming no inertia and body forces, the weak form of linear
momentum balance reads ∫

Ω

𝝈(𝒙) : ∇𝒗(𝒙) d𝐴 −
∫
𝜕Ω

𝒕 · 𝒗(𝒙) d𝑠 = 0, (4.2)

which has to hold true for all admissible, i.e., sufficiently regular, test functions 𝒗(𝒙). Note that
we are not introducing the classical distinction between Dirichlet and Neumann portions of the
boundary; accordingly, we are not requiring admissible test functions to vanish anywhere.

Discretization
The weak form of linear momentum balance has to hold true for any chosen set of admissible test
functions. Here, we adopt the standard (Bubnov-Galerkin) approach and express the test functions
as a linear combination of the same shape functions 𝑁𝑎 (𝒙) used to interpolate the displacement
data

𝒗(𝒙) =
𝑛𝑛∑︁
𝑎=1

𝑁𝑎 (𝒙)𝒗𝑎 . (4.3)

Inserting the test function ansatz into the weak form of linear momentum balance results in

𝑛𝑛∑︁
𝑎=1

𝒗𝑎 ·


∫
Ω

𝝈∇𝑁𝑎 (𝒙) d𝐴︸               ︷︷               ︸
𝑭𝑎

int

−
∫
𝜕Ω

𝒕𝑁𝑎 (𝒙) d𝑆︸             ︷︷             ︸
𝑭𝑎

ext


= 0, (4.4)

where the first and second integral are the nodal internal forces 𝑭𝑎int and nodal external forces 𝑭𝑎ext,
respectively. By employing the constitutive relation Eq. (2.3), the nodal internal forces may be
written as

𝑭𝑎int =

∫
Ω

𝝈∇𝑁𝑎 d𝐴,

=

∫
Ω

[
𝜎1𝑁

𝑎
,𝑥 + 𝜎6𝑁

𝑎
,𝑦

𝜎6𝑁
𝑎
,𝑥 + 𝜎2𝑁

𝑎
,𝑦

]
d𝐴,

=

∫
Ω

[
𝐶11𝜀1𝑁

𝑎
,𝑥 + 𝐶12𝜀2𝑁

𝑎
,𝑥 + 2𝐶16𝜀6𝑁

𝑎
,𝑥 + 𝐶16𝜀1𝑁

𝑎
,𝑦 + 𝐶26𝜀2𝑁

𝑎
,𝑦 + 2𝐶66𝜀6𝑁

𝑎
,𝑦

𝐶16𝜀1𝑁
𝑎
,𝑥 + 𝐶26𝜀2𝑁

𝑎
,𝑥 + 2𝐶66𝜀6𝑁

𝑎
,𝑥 + 𝐶12𝜀1𝑁

𝑎
,𝑦 + 𝐶22𝜀2𝑁

𝑎
,𝑦 + 2𝐶26𝜀6𝑁

𝑎
,𝑦

]
d𝐴,

=

∫
Ω

[
𝜀1𝑁

𝑎
,𝑥 𝜀2𝑁

𝑎
,𝑥 0 2𝜀6𝑁

𝑎
,𝑥 + 𝜀1𝑁

𝑎
,𝑦 𝜀2𝑁

𝑎
,𝑦 2𝜀6𝑁

𝑎
,𝑦

0 𝜀1𝑁
𝑎
,𝑦 𝜀2𝑁

𝑎
,𝑦 𝜀1𝑁

𝑎
,𝑥 𝜀2𝑁

𝑎
,𝑥 + 2𝜀6𝑁

𝑎
,𝑦 2𝜀6𝑁

𝑎
,𝑥

]
d𝐴 𝑪vec, (4.5)

where the elasticity tensor parameters 𝑪vec = [𝐶11 𝐶12 𝐶22 𝐶16 𝐶26 𝐶66]𝑇 are assumed to be
constant in space.
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Choice of test functions
Choosing a test function in the form of (4.3) and evaluating (4.4) results in two linear equations
with the material parameters as unknowns. As the weak linear momentum balance has to hold true
for any test function this provides an infinite supply of linear equations. Hence, the problem at
hand is overdetermined and different choices of test functions will yield different solutions for the
unknown material parameters.

As discussed in Section 4.2, the deformation of a heterogeneous specimen and that of its homog-
enized counterpart under the same loading conditions are locally different, a phenomenon that is
best observed at the boundary and at the corners of the specimen where local effects are especially
pronounced. In the following, this special characteristic of the problem at hand motivates a special
choice of the test functions that avoids evaluations of the linear momentum balance in the boundary
regions of the specimen.

First, we define test functions that are constant at the nodes corresponding to one finite element,
i.e., one unit cell, and zero at all other nodes. To this end, we define C = {1, . . . , 𝑛2

𝑐} as the set of
all unit cells and D𝑐 as the set of all nodes corresponding to the unit cell 𝑐 ∈ C, and define a set of
test functions as

V =

{
𝒗(𝒙) = 1

𝑛𝑛𝑐

∑︁
𝑎∈D𝑐

𝑁𝑎 (𝒙)𝒆𝑖 | 𝑐 ∈ C, 𝑖 ∈ {1, 2}
}
, (4.6)

where 𝒆𝑖 are the unit vectors in the corresponding 𝑥- and 𝑦-direction. Note that the test functions
are normalized by dividing by the number of nodes corresponding to the unit cell 𝑛𝑛𝑐 (equal to 4 in
our case).

Using the test functions in V to test weak linear momentum balance would cause two problems.
First, at elements adjacent to the loaded and to the restrained portions of the boundary, the external
force contributions 𝑭𝑎ext in (4.4) are unknown, leading to equations that could not be solved for the
unknown material parameters. And second, we want to avoid using data at the specimen boundary
due to the reasons discussed earlier. Therefore, we modify (4.6) such that

V int =

{
𝒗(𝒙) = 1

𝑛𝑛𝑐

∑︁
𝑎∈D𝑐

𝑁𝑎 (𝒙)𝒆𝑖 | 𝑐 ∈ Cint, 𝑖 ∈ {1, 2}
}
, (4.7)

where Cint ⊂ C denotes a reduced set of unit cells that does not include unit cells close to the
boundary. We found that ignoring two rows of unit cells at the top and bottom boundary as well
as two columns of unit cells at the left and right boundary are a good compromise, and we kept
this choice constant throughout all tests. As the fields in V int depend on 𝒆𝑖, each field is zero in
either 𝑥- or 𝑦-direction. The non-zero component of an exemplary virtual field in V int is shown in
Fig. 4.1 (left).
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Evaluating Eq. (4.4) for this set of functions leads to

1
𝑛𝑛𝑐

∑︁
𝑎∈D𝑐

𝑭𝑎int = 0, ∀𝑐 ∈ Cint. (4.8)

Hence, this choice of virtual fields can be interpreted physically as enforcing that the sum of internal
forces over one unit cell should vanish.

Figure 4.1: Non-zero component of a virtual field inV int (left) and non-zero component of a virtual
field in Vcenter (right).

Equations (4.8) are not sufficient to identify the unknown material parameters, as the trivial solution
𝑪vec = 0 fulfills (4.8). To obtain a well-posed problem, the measured reaction forces need to be
incorporated. At the same time, we want to avoid using displacement data at the specimen boundary.
Therefore, we consider the free-body diagram of the lower half of the domain as depicted in Fig. 4.1
(right). Denoting the half-body domain as Ω∗ = {𝒙 | 0 ≤ 𝑥1 ≤ 𝐿, 0 ≤ 𝑥2 ≤ 𝐿

2 } and its boundary
as 𝜕Ω∗, the weak form of linear momentum balance for this domain reads∫

Ω∗
𝝈(𝒙) : ∇𝒗(𝒙) d𝐴 −

∫
𝜕Ω∗

𝒕 · 𝒗(𝒙) d𝑠 = 0. (4.9)

Inserting the test function ansatz leads to

𝑛𝑛∑︁
𝑎=1

𝒗𝑎 ·


∫
Ω∗

𝝈∇𝑁𝑎 (𝒙) d𝐴︸                ︷︷                ︸
𝑭∗𝑎

int

−
∫
𝜕Ω∗

𝒕𝑁𝑎 (𝒙) d𝑆︸              ︷︷              ︸
𝑭∗𝑎

ext


= 0. (4.10)

We define Dcenter = {𝑎 | 𝑦𝑎 = 𝐿
2 } as the set of nodes in the center of the specimen. If the tessellated

geometry consists of an odd number of unit cells in each spatial direction, i.e., there are no nodes at
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𝑦𝑎 = 𝐿
2 , we consider instead Dcenter = {𝑎 | 𝑦𝑎 = 𝐿

2 + 𝐿
2𝑛𝑐 }. We choose a set of virtual fields Vcenter

that are constant along Dcenter and zero at all other nodes

Vcenter =

{
𝒗(𝒙) = 1

𝑛𝑛𝑐

∑︁
𝑎∈Dcenter

𝑁𝑎 (𝒙)𝒆𝑖 | 𝑖 ∈ {1, 2}
}
. (4.11)

Evaluating (4.10) for these particularly chosen test functions results in∑︁
𝑎∈Dcenter

𝑭∗𝑎
int =

∫
𝜕Ωcenter

𝒕 d𝑆 = 𝑹, (4.12)

where 𝜕Ωcenter is the top boundary of Ω∗. Note that due to the specific choice of the test functions,
the surface integral simplifies in such a way that it equals the global reaction force 𝑹, meaning that
the sum of the internal forces at 𝜕Ωcenter must equal the net reaction force.

Deterministic parameter identification
After choosing the virtual fields and considering (4.5), the linear equations in (4.8) can be assembled
in a system of equations

𝑨int𝑪vec = 0, (4.13)

and the linear equations in (4.12) can be rewritten as

𝑨center𝑪vec = 𝑹, (4.14)

where 𝑨int and 𝑨center are in general non-symmetric matrices. The system formed by the linear
equations (4.13) and (4.14) is overdetermined, i.e., it consists of more equations than unknown
parameters. Assuming that the equations in the overdetermined system are not linearly dependent
(which is a valid assumption as every equation is perturbed by noise when considering experimental
data), there is no unique solution that satisfies all equations. Instead, we obtain an approximate
solution of the overdetermined system by minimizing the sum of squared residuals

𝑪
opt
vec = arg min

𝑪vec

(
∥𝑨int𝑪vec∥2 + 𝜆𝑟 ∥𝑨center𝑪vec − 𝑹∥2

)
, (4.15)

where ∥ · ∥ is the Euclidean norm and 𝜆𝑟 > 0 is a weighting parameter that scales the different
contributions to the minimization problem. As there are less equations in the system (4.14) than in
(4.13), the weighting parameter should be chosen sufficiently larger than one (𝜆𝑟 >> 1). Following
previous works [116, 118, 120], we choose 𝜆𝑟 = 100 and keep it constant throughout this work.
Based on our experience, the choice of 𝜆𝑟 is not crucial for the success of the method (see also
[119, 122, 126]). The necessary condition for a minimum is

�̄�𝑪
opt
vec = �̄�, with �̄� =

(
𝑨int

)𝑇
𝑨int + 𝜆𝑟

(
𝑨center)𝑇 𝑨center, �̄� = 𝜆𝑟

(
𝑨center)𝑇 𝑹, (4.16)
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which leads to a determined system of equations that can be solved for 𝑪opt
vec. The minimization

problem in Eq. (4.15) can alternatively be written as

𝑪
opt
vec = arg min

𝑪vec

∥𝑨𝑪vec − 𝑩∥2, (4.17)

where we have defined

𝑨 =

[
𝑨int

√
𝜆𝑟𝑨

center

]
, 𝑩 =

[
0

√
𝜆𝑟𝑹

]
. (4.18)

The necessary condition for a minimum then reads

𝑨𝑇 𝑨𝑪
opt
vec = 𝑨𝑇𝑩. (4.19)

Bayesian inference
Besides the previously introduced deterministic approach, we further study the problem from a
stochastic perspective. To this end, we construct a Bayesian linear regression model, for which we
assume no intercept and a diffuse prior, as implemented in the Matlab ® built-in function bayeslm.

We denote the number of rows in 𝑨 as 𝑛𝑒𝑞 and we define 𝑨𝑖 with 𝑖 ∈ {1, . . . , 𝑛𝑒𝑞} as the 𝑖th row
of 𝑨. For each equation in the overdetermined system of equations 𝑨𝑪vec = 𝑩, we assume the
likelihood of obtaining 𝐵𝑖 as a Gaussian likelihood with mean 𝑨𝑖 · 𝑪vec and standard deviation
𝜎 > 0, i.e.,

𝑝(𝐵𝑖 |𝑨𝑖,𝑪vec, 𝜎
2) = 1

√
2𝜋𝜎2

exp
[
− (𝐵𝑖 − 𝑨𝑖 · 𝑪vec)2

2𝜎2

]
, (4.20)

where 𝑪vec and 𝜎2 are treated as random variables. Assuming further that the likelihoods are
conditionally independent, we define the joint likelihood as

𝑝(𝑩 |𝑨,𝑪vec, 𝜎
2) =

𝑛𝑒𝑞∏
𝑖=1

𝑝𝑖 (𝐵𝑖 |𝑨𝑖,𝑪vec, 𝜎
2). (4.21)

Assuming here a diffuse prior for the joint prior distribution of 𝑪vec and 𝜎2, i.e.,

𝑝(𝑪vec, 𝜎
2) ∝ 1

𝜎2 , (4.22)

the marginal posterior distributions of 𝑪vec and 𝜎2 are analytically tractable and implemented in
the Matlab ® function bayeslm.

4.3 Parameter identification based on multiple tests
In this section, we explore a method of parameter identification that involves multiple tests (as in
the conventional approach) in the context of anisotropic metamaterials.
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Parameter identification with multiple tests without unit cell rotation
We subject the metamaterial to three different tests namely Test A, Test B, and Test C as shown in
Fig. 4.2. Test A and Test C are tension tests along 𝑥2 and 𝑥1 axis respectively, and Test B is a simple
shear test. We assume that the average strains �̃�𝐴,𝐵,𝐶

𝑖 𝑗
are known experimentally from full-field

measurements. In addition, the reaction forces at the fixed end are known experimentally from
load sensor measurements. We will show that the material parameters can be identified from the
average strains and the net reaction forces from these three tests.

From Gauss’ divergence theorem, the average stresses �̃� are related to the tractions 𝒕 at the fixed
end as

𝑡𝑖 = �̃�𝑖 𝑗𝑛 𝑗 , (4.23)

where 𝒏 is the unit outward normal. For Test A, the unit outward normal 𝒏 at the fixed end is
[0,−1]𝑇 . Using Eqs. (2.3) and (4.23), and assuming homogenized effective continuum behavior
for the structured solid, we get

𝐹𝐴1 /A = �̃�𝐴6 = 𝐶16𝜀
𝐴
11 + 𝐶26𝜀

𝐴
2 + 𝐶66

(
2𝜀𝐴6

)
, (4.24a)

𝐹𝐴2 /A = �̃�𝐴2 = 𝐶12𝜀
𝐴
1 + 𝐶22𝜀

𝐴
2 + 𝐶26

(
2𝜀𝐴6

)
, (4.24b)

where �̃�𝐴12, �̃�
𝐴
22 are the average stress components, 𝐹𝐴1 , 𝐹

𝐴
2 are the reaction force components at the

fixed end from Test A and A is the cross sectional area of the fixed end.

Similarly, from Test B and Test C, we get

𝐹𝐵1 /A = �̃�𝐵6 = 𝐶16𝜀
𝐵
1 + 𝐶26𝜀

𝐵
2 + 𝐶66

(
2𝜀𝐵6

)
, (4.25a)

𝐹𝐵2 /A = �̃�𝐵2 = 𝐶12𝜀
𝐵
1 + 𝐶22𝜀

𝐵
2 + 𝐶26

(
2𝜀𝐵6

)
, (4.25b)

𝐹𝐶1 /A = �̃�𝐶1 = 𝐶11𝜀
𝐶
1 + 𝐶12𝜀

𝐶
2 + 𝐶16

(
2𝜀𝐶6

)
, (4.25c)

𝐹𝐶2 /A = �̃�𝐶6 = 𝐶16𝜀
𝐶
1 + 𝐶26𝜀

𝐶
2 + 𝐶66

(
2𝜀𝐶6

)
. (4.25d)

Rearranging Eqs. (4.24a), (4.24b) and (4.25a) to (4.25d) into a matrix form, we obtain a system of
linear equations, 

0 0 2𝜀𝐴6 𝜀𝐴1 𝜀𝐴2 0
0 𝜀𝐴2 0 0 2𝜀𝐴6 𝜀𝐴1
0 0 2𝜀𝐵6 𝜀𝐵1 𝜀𝐵2 0
0 𝜀𝐵2 0 0 2𝜀𝐵6 𝜀𝐵1
𝜀𝐶1 0 0 2𝜀𝐶6 0 𝜀𝐶2
0 0 2𝜀𝐶6 𝜀𝐶1 𝜀2 0





𝐶11

𝐶22

𝐶66

𝐶16

𝐶26

𝐶12


=

1
A



𝐹𝐴1
𝐹𝐴2
𝐹𝐵1
𝐹𝐵2
𝐹𝐶1
𝐹𝐶2


. (4.26)
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For readability, Eq. (4.26) is written as

A�̃�𝑪vec = 𝑭vec, (4.27)

where �̃� is a non-symmetric square matrix of size 6 containing average strain components from
all of the tests and 𝑭vec is a vector containing net reaction force components from all of the tests.
Then the material parameters 𝑪opt

vec can be obtained as a solution to the least squares minimization
problem,

𝑪
opt
vec = arg min

𝑪vec

∥A�̃�𝑪vec − 𝑭vec∥2. (4.28)

It should be noted that we use this method for material parameter identification, only using the
numerical data. We did not experimentally validate this method, since shear testing is non-trivial
and requires dedicated setups, such as a hexapod machine [141].

Figure 4.2: Parameter identification of an anisotropic metamaterial by performing three different
tests.

Parameter identification with rotation of frame of reference
To avoid applying shear displacement and limit the testing to a single boundary condition type (like
tension), we try to rotate the unit cell instead. For this we reorient the unit cell topology along a
new coordinate system. This transforms the stiffness tensor components into different coordinate
frame of reference while keeping the testing setup constant.

We subject the structures constructed by tessellating unit cells oriented at different angles as shown
in Fig. 4.3. We tested {0◦, 45◦, 135◦}, and {0◦, 45◦, 90◦} combinations of unit cell rotation angles.
We pick the first set as it yielded better results.
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Using, Eq. (2.8), the components of the stiffness tensor when the unit cell is rotated by 90◦ are
given by,

𝐶90◦ =


𝐶22 𝐶12 −𝐶26

𝐶12 𝐶11 −𝐶16

−𝐶26 −𝐶16 𝐶66

 . (4.29)

The components of the stiffness tensor when the unit cell is rotated by 45◦ are given by,

𝐶45◦ =


𝐶11
4 + 𝐶12

2 + 𝐶16 + 𝐶22
4 + 𝐶26 + 𝐶66

𝐶11
4 + 𝐶12

2 + 𝐶22
4 − 𝐶66

𝐶22
4 − 𝐶16

2 − 𝐶11
4 + 𝐶26

2
𝐶11
4 + 𝐶12

2 + 𝐶22
4 − 𝐶66

𝐶11
4 + 𝐶12

2 − 𝐶16 + 𝐶22
4 − 𝐶26 + 𝐶66

𝐶16
2 − 𝐶11

4 + 𝐶22
4 − 𝐶26

2
𝐶22
4 − 𝐶16

2 − 𝐶11
4 + 𝐶26

2
𝐶16
2 − 𝐶11

4 + 𝐶22
4 − 𝐶26

2
𝐶11
4 − 𝐶12

2 + 𝐶22
4

 .
(4.30)

Similarly, the components of the stiffness tensor when the unit cell is rotated by 135◦ are given by

𝐶135◦ =
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2
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4

 .
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We construct a system of linear equations by equating average strains with the effective tensors
from these different orientations as,
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It is important to note that, while theoretically all angles are possible, not all rotation angles
guarantee periodicity when we perform rotations of unit cells on a finite-sized structure instead of
a continuum sample, see Fig. 4.4. The system of linear equations Eq. (4.32) are solved to obtain
the material parameters.

Although a complicated shear test is avoided in this method, three different testing specimens need
to be manufactured. Hence we do not consider both of these methods that involve multiple tests for
the experimental validation.
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Figure 4.3: Material parameter identification by subjecting the structured solid to three different
tension tests by changing the orientation of the unit cell.

Figure 4.4: Possible rotation angles that ensure periodicity change as the number of unit cells in
the tessellation increase. Highlighted squares in the left figure show some of the orientations in
which periodicity is ensured.
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4.4 Choice of unit cell geometries for experimental validation
We pick four unit cells with distinct/diverse effective stiffness tensor parameters (all with six non-
zero stiffness parameters). Table 4.1 shows the unit cells along with their symmetry class and
homogenized stiffness tensor. Geometry #1 has 𝐶22 as the largest stiffness parameter with 𝐶16

almost comparable to 𝐶12 and 𝐶26 > 𝐶16. While geometry #2 has 𝐶11 as the largest stiffness
parameter with 𝐶16 > 𝐶26, geometry #3 has negative values for all of the off-diagonal parameters.
Geometry #4 has four independent stiffness parameters with 𝐶66 as one of the largest values among
other stiffness parameters, along with 𝐶11 = 𝐶22 and 𝐶16 = 𝐶26. The fill fraction of the stiff phase
for all the unit cells lies between 60 and 70 %. Further, 10×10 tessellation of all the four geometries
are shown in Fig. 4.5. It can be observed that all the structures are periodic and the stiff-phase is
connected all throughout suitable for single material additive manufacturing.

Unit Cell
Geometry Name Homogenized Stiffness

Tensor (𝑪H) [MPa]

Elastic
Symmetry

Class

Geometry #1


131.62 61.98 63.58
61.98 198.38 83.87
63.58 83.87 95.30

 𝑍2

Geometry #2


127.14 59.50 73.42
59.50 105.83 55.16
73.42 55.16 110.15

 𝑍2

Geometry #3


44.70 −9.42 −12.52
−9.42 107.19 −20.71

−12.52 −20.71 105.35

 𝑍2

Geometry #4


65.74 40.36 18.95
40.36 65.74 18.95
18.95 18.95 86.47

 𝐷2

Table 4.1: Unit cell geometries considered in this study along with their mechanical and symmetry
properties.

Further, in Fig. 4.6, the role of mesh density (or the number of pixels) in affecting the effective
properties is studied from a mesh convergence perspective. As mentioned in Section 2.3, the pixel
density of the function is altered to generate unit cells with increasing pixel density from 100 to
300 with an increment of 20. The results show that parameters increase as the pixel density is
increased, however, the change is not substantial (≈ 1 MPa) in all the parameters. Similar trends
hold true for the rest of the three geometries.



60

Figure 4.5: 10 × 10 tessellation of all the four geometries considered in for experimental validation
of the effective properties estimated by homogenization theory.

4.5 Results and discussion
In this section, we discuss the data generation from both numerical simulations and experiments.
Afterward, we apply the proposed deterministic parameter identification method based on VFM
and multiple test to the data and discuss the results. Finally, at the end of the section, we apply the
Bayesian method to the data in the context of VFM.
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Figure 4.6: Effect of number of pixels on the effective properties of the geometry #1. Pixel density
played a minimal role in the effective properties beyond the chosen pixel density of 100.

Generation of full-field displacement data
In the following, we investigate the synthetically generated displacement data for a heterogeneous
structure in comparison to the computed displacement field of a homogeneous body, whose stiffness
is equal to the homogenized stiffness of the heterogeneous structure. To simulate the displacement
of a homogeneous body, we assume a 10 × 10 bilinear quadrilateral finite element mesh. The
displacement of the heterogeneous body is computed on a much finer mesh with 1000 × 1000
elements. To allow for a comparison with the displacement field of the homogeneous body, the
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computed displacements at the unit cell corners of the heterogeneous body (i.e., the data of interest
for the VFM) are extracted and interpolated with a bilinear polynomial for each unit cell. It can
be seen in Fig. 4.7 that there is a good qualitative agreement between the two displacement fields
for geometry #1 (see Fig. 4.14, Fig. 4.15, and Fig. 4.16 for the other geometries). However, there
are quantitative differences due to local effects in the heterogeneous structure, which appear to be
dominant at the boundary and corners of the specimen.

Figure 4.7: Comparison between the displacement fields obtained from finite element simulations
of a homogeneous specimen (left) and a heterogeneous structure made of geometry #1 (center).
For the homogeneous specimen a finite element simulation using 10 × 10 bilinear quadrilateral
elements was executed. The heterogeneous specimen was simulated using 1000 × 1000 bilinear
quadrilateral elements. Afterwards, the displacement data at the unit cell corners were extracted
and interpolated with a bilinear polynomial for each unit cell, to allow for a comparison with the
homogeneous specimen. The difference between the fields is shown on the right.

Comparison between experimental and synthetic data

In Fig. 4.8, we compare the full-field displacement and strain fields between the numerical and
experimental data on the heterogeneous structure for geometry #1. (See Figs. 4.17 to 4.19 for the
other geometries). We observe very good agreement between the numerical and experimental data,
especially for the variables 𝑢2, 𝜀22. However, the experimentally measured 𝑢1 appears to be slightly
higher than the numerical data, by about 0.1 mm, for all the geometries. Also the two 𝜀11 fields
are in good qualitative agreement, but experimental strains are larger. As expected, most of the
strain is localized in the softer phase, although the applied global strain (𝜀22) is 0.02. This causes
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the deformations in the soft phase deformations to enter the nonlinear regime, which is a deviation
from our linear elasticity assumption. This discrepancy introduces a source of error in the final
experimentally measured parameters.

Figure 4.8: Comparison between numerical (top) and experimentally measured (bottom) full-field
displacement and strain field data for the 10 unit cell tessellation of geometry #1 subjected to
displacement-controlled uniaxial tension test.

Further, a comparison of the displacement fields after postprocessing the synthetic and experimental
data, i.e., after extracting and interpolating the displacements at the unit cell corners for all the
geometries are shown in Fig. 4.20, Fig. 4.21, Fig. 4.22, and Fig. 4.23. All displacements are in good
agreement. An exception is observed for geometry #3 (see Fig. 4.18 and Fig. 4.22), for which the
experimentally measured horizontal displacement 𝑢1 does not compare well to the corresponding
finite element results. The unit cell architecture of geometry #3 leads to highly nonlinear mechanical
behavior (see Fig. 4.13), which is not captured well in the simulations.

Parameter identification based on synthetic data
Since the homogenization theory assumes length scale separation and periodic boundary conditions
in identifying the effective material parameters, it is important to understand the continuum behavior
of the heterogeneous structures as the number of unit cells changes. For this, we apply the VFM
described in Section 4.2 on the synthetic data to identify material parameters as the number of unit
cells in each direction are varied simultaneously. Further, we also use synthetic data to identify
parameters using multiple tests (as in the conventional approach). A discussion on this conventional
approach is provided in 4.3. The relative error is defined as

LSE∥·∥2 =

𝑪H
vec − 𝑪M

vec


2𝑪H
vec


2

with 𝑪vec ∈ R6, (4.33)
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where 𝑪H
vec is the vectorized homogenized stiffness tensor obtained from computational homoge-

nization and 𝑪M
vec is the vectorized stiffness tensor identified using the VFM and the conventional

methods.

We compare the relative error in parameter identification when performing multiple tests (as in
the conventional approach) and when using the VFM (Fig. 4.9). Since we exclude two rows and
columns of boundary unit cells in the proposed VFM, the number of unit cells available to form
the system of equations is guaranteed only when there are at least 7 unit cells in each direction
and the results are shown starting with this number. For geometry #1, as the number of unit
cells increases, the error calculated for the conventional method based on multiple tests decreases
monotonically from 13.4% at 5 unit cell tessellation to 2.3% at 25 unit cell tessellation. Similarly,
the error for the VFM decreases monotonically from 13.1% at 7 unit cell tessellation to 2.4% at
25 unit cell tessellation. This shows that the parameters identified using our VFM are as good as
those obtained by performing multiple tests, as long as there are at least ten repeated unit cells
in the domain of interest. We found this general conclusion to hold for most of the considered
geometries. The only exception is geometry #3, for which the error remains at 7.0% (for multiple
tests) and 11.8% (for the VFM) even beyond 10 unit cell tessellation. The comparatively large
relative error, however, does not mean that all material parameters are inaccurately identified. By
taking a closer look at the individual components of the stiffness tensor, it is observed that many
of the parameters are identified with satisfactory accuracy. We show in Figs. 4.24 and 4.25 in the
Supplementary Information the convergence behavior of all individual parameters for geometry #1
and geometry #3 as the number of unit cells for tessellation is varied, where we excluded the other
geometries for brevity. While for geometry #1 all parameters are satisfactorily identified, in the
case of geometry #3 a major portion of the error lies in just two of the parameters, i.e., 𝐶12 for
multiple tests and 𝐶16 and 𝐶66 for the VFM. Parameters 𝐶12 and 𝐶16 are quite small relative to the
rest of the parameters and hence, they are hard to accurately estimate in comparison to the others.
It can further be observed in Figs. 4.24 and 4.25 that for some of the parameters, the method of
multiple tests outperforms the VFM, but for other parameters the VFM is superior. These results
indicate that the parameters for geometry #3 are difficult to identify independently of the choice of
the parameter identification method.

As the number of unit cells increases, the ratio of the number of unit cells along the boundary
to the number of unit cells in the interior decreases. As a result, the boundary effects described
in Section 4.5 diminish and the behavior of the structure approaches the continuum equivalent.
In Table 4.2, we summarize the parameters identified for geometry #1 from both the methods
against homogenization for 25 unit cell tessellation (see Table 4.3, Table 4.4, Table 4.5 for the
other geometries). We also perform by changing the discretization elements in the unit cell, the
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Figure 4.9: Variation of least square error between homogenized stiffness tensor and stiffness tensor
identified using the VFM and the conventional methods as the number of unit cells in each direction
are varied.

results of which are shown in Table 4.6. For a fixed 10 × 10 tessellation, mesh convergence is
studied by varying the RVE size between 50 to 300 pixels for the tension test. Mesh convergence
is estimated through reaction forces in the whole structure, minimum and maximum values for 𝑈1

displacements, and average strains in the stiff phase. The following table summarizes [min max]
for U1, strains, and reaction forces. The results indicate that an RVE size of 100 pixels is good
enough to capture all the details.

Method 𝐶11 (MPa) 𝐶12 (MPa) 𝐶22 (MPa) 𝐶16 (MPa) 𝐶26 (MPa) 𝐶66 (MPa)
Homogenization 131.62 61.98 198.38 63.58 83.87 95.30
VFM 125.97 62.57 196.15 61.35 82.39 93.48
Multiple tests 129.86 67.93 199.37 64.01 85.47 95.54

Table 4.2: Comparison of stiffness tensor parameters identified for geometry #1 with 25 unit
cell tessellation based on synthetic data using the VFM and the conventional methods against the
computational homogenization.
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Method 𝐶11 (MPa) 𝐶12 (MPa) 𝐶22 (MPa) 𝐶16 (MPa) 𝐶26 (MPa) 𝐶66 (MPa)
Homogenization 127.14 59.50 105.83 73.42 55.16 110.15
VFM 129.92 58.84 102.72 77.43 55.25 113.73
Multiple tests 123.82 57.44 102.35 72.74 54.68 110.12

Table 4.3: Comparison of stiffness tensor parameters identified for geometry #2 with 25 unit
cell tessellation based on synthetic data using the VFM and the conventional methods against the
computational homogenization.

Method 𝐶11 (MPa) 𝐶12 (MPa) 𝐶22 (MPa) 𝐶16 (MPa) 𝐶26 (MPa) 𝐶66 (MPa)
Homogenization 44.70 -9.42 107.19 -12.52 -20.71 105.35
VFM 33.95 -5.84 106.48 -4.44 -20.78 92.65
Multiple tests 45.78 -19.27 112.01 -11.30 -20.30 105.65

Table 4.4: Comparison of stiffness tensor parameters identified for geometry #3 with 25 unit
cell tessellation based on synthetic data using the VFM and the conventional methods against the
computational homogenization.

Method 𝐶11 (MPa) 𝐶12 (MPa) 𝐶22 (MPa) 𝐶16 (MPa) 𝐶26 (MPa) 𝐶66 (MPa)
Homogenization 65.74 40.36 65.74 18.95 18.95 86.47
VFM 65.45 40.94 65.43 17.93 17.76 82.19
Multiple tests 66.66 41.58 66.66 18.75 18.75 86.86

Table 4.5: Comparison of stiffness tensor parameters identified for geometry #4 with 25 unit
cell tessellation based on synthetic data using the VFM and the conventional methods against the
computational homogenization.

Size Nodes 𝑈1 (mm) 𝜀1 (max) 𝜀2 (max) 𝜀6 (max) 𝐹𝑥 (N) 𝐹𝑦 (𝑁)
50 251001 0.2195 0.0402 0.0402 0.1303 185 668
100 1002001 0.2251 0.0252 0.0716 0.0792 192 704
150 2253001 0.2440 0.0190 0.0515 0.0570 193 718
200 4004001 0.2227 0.0146 0.0415 0.0418 194 727
300 9006001 0.2217 0.0106 0.0280 0.0288 195 730

Table 4.6: Mesh convergence study for a structured material made with 10 × 10 tessellation. The
unit cell discretization is increased from 50 pixels to 300 pixels along one axis. There is a strong
convergence in the displacement and force quantities, which are crucial for this analysis.

Parameter identification based on experimental data
Fig. 4.10 summarizes the material parameters identified by the VFM using the simulated and
experimental data for 10 unit cell tessellations in comparison to the homogenized stiffness. The
parameters identified using synthetic data compare well with the homogenized properties for all the
geometries. Further, a good qualitative agreement is observed for the parameters identified using
experimental data. For some of the parameters, such as 𝐶12, 𝐶22, 𝐶16, 𝐶26, the experimentally
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determined parameters match the expectations quantitatively. In contrast, there is a larger discrep-
ancy in the values of 𝐶11, 𝐶66, for almost all the geometries. These discrepancies are related to the
fact that the experimentally measured displacement 𝑢1 appears higher than in the simulations, i.e.,
about 0.1 mm, leading to an under-prediction of the stiffness in the lateral directions. An interesting
observation is made for geometry #4. Based on the numerical data, we know that 𝐶11 = 𝐶22 and
𝐶16 = 𝐶26. However, we observe experimentally that 𝐶11 < 𝐶22 and 𝐶16 < 𝐶26. Geometry #3
has thin and sharp features in the softer phase. The presence of these sharp features inducing local
stress singularities likely led to local material damage, which was subsequently observed as non-
linear load-displacement behavior (see Fig. 4.13). As it is well known, the behavior of materials in
the vicinity of such sharp discontinuities markedly deviates from a two-dimensional linear elastic
continuum [142]. Therefore, we attribute such non-linear behavior to the architecture of geometry
#3 itself. In such micro-structures, our linear elastic model assumption fails.

Figure 4.10: Comparison of material parameters identified using the VFM from numerical and
experimental data of 10 unit cell tessellations.

We finalize the study by applying the Bayesian method described in Section 4.2 to the experimental
data. The resulting marginal posterior probability distributions of the material parameters are
shown in Fig. 4.11. It is observed that the computed mean values of the marginal posteriors are
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similar to the deterministic results shown in Fig. 4.10. Beyond that, the standard deviations of the
marginal posteriors indicate (un)certainty in the parameter predictions. Matching our expectations,
the parameter 𝐶22 is identified with the highest certainty, while for example, the identification of
the parameter 𝐶11 shows a high uncertainty. An interesting observation is made for geometry #3.
The parameters identified using synthetic data with the largest error are also the same parameters
identified using experimental data with the largest standard deviation in the marginal posterior
distribution. Additionally, it is noteworthy that the marginal posteriors of the parameters identified
when the Bayesian method is applied to the numerical data show low standard deviations as the
data is not affected by the experimental noise (see Fig. 4.12).

Figure 4.11: Marginal posterior probability distributions of the material parameters obtained
through Bayesian linear regression on the experimental data. The red lines indicate the mean of
the marginal posterior distributions. The blue boxes indicate the standard deviation from the mean,
i.e., the 68% probability interval. The black intervals indicate three times the standard deviation
from the mean, i.e., the 99% probability interval.

We note that, for geometry #3, the marginal posterior probability distributions of the parameters
exceed the thermodynamically admissible range, e.g., the marginal posterior of 𝐶11 is partially
negative. This must be considered when interpreting the results. In this work, no measure was
taken to enforce thermodynamic admissibility in the Bayesian method, which thus remains a future
objective.
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Figure 4.12: Marginal posterior probability distributions of the material parameters obtained
through Bayesian linear regression on the numerical data. The red lines indicate the mean of the
marginal posterior distributions. The blue boxes indicate the standard deviation from the mean,
i.e., the 68% probability interval. The black intervals indicate three times the standard deviation
from the mean, i.e., the 99% probability interval.

4.6 Conclusion
In this chapter, we present an approach to identify the 6 independent elastic material parameters
of plane anisotropic elasticity from a single experiment, using the virtual fields method. This
approach allows for identifying shear-normal coupling parameters experimentally, a task that has
remained challenging so far. We first demonstrate the effectiveness of our method using numerically
generated data from a single tension test. We then experimentally validate the method on additively
manufactured specimens, by measuring full-field displacement data and traction forces. We show
that our method is effective for materials that include at least 10 repeated unit cells in their structure,
to satisfy homogenization conditions. We calculate the uncertainty in the identification estimation
of the material parameters using Bayesian linear regression. In the future, to further refine the
experimental parameter identification, it is necessary to optimize the shape of the specimens to
ensure strong contributions of strains from different stiffness tensor components. The proposed
approach has the potential for measurements of elasticity parameters of complex, anisotropic, three-
dimensional structured materials and composites with shear-shear couplings, and for the study of
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their nonlinear behavior. A further potential application of the method could be for parameter
identification of constitutive tensors corresponding to different types of coupled behavior, such as
generalized piezoelectric, flexoelectric, and piezomagnetic tensors.

4.7 Additional figures

Figure 4.13: Axial and shear load-displacement data for all the experimentally tested specimens.
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Figure 4.14: Comparison between the displacement fields obtained from finite element simulations
of a homogeneous specimen (left) and a heterogeneous structure made of geometry #2 (center).
The data is generated and post-processed akin to Fig. 4.7.

Figure 4.15: Comparison between the displacement fields obtained from finite element simulations
of a homogeneous specimen (left) and a heterogeneous structure made of geometry #3 (center).
The data is generated and post-processed akin to Fig. 4.7.
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Figure 4.16: Comparison between the displacement fields obtained from finite element simulations
of a homogeneous specimen (left) and a heterogeneous structure made of geometry #4 (center).
The data is generated and post-processed akin to Fig. 4.7.

Figure 4.17: Comparison between numerical (top) and experimentally measured(bottom) full-field
displacement and strain field data for the 10 × 10 tessellation of unit cell geometry #2 subjected to
displacement-controlled uniaxial tension test.
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Figure 4.18: Comparison between numerical (top) and experimentally measured (bottom) full-field
displacement and strain field data for the 10 × 10 tessellation of unit cell geometry #3 subjected to
displacement-controlled uniaxial tension test.

Figure 4.19: Comparison between numerical (top) and experimentally measured (bottom) full-field
displacement and strain field data for the 10 × 10 tessellation of unit cell geometry #4 subjected to
displacement-controlled uniaxial tension test.



74

Figure 4.20: Comparison between numerical (top) and experimentally measured (bottom) full-field
displacement and strain field data for the 10 × 10 tessellation of unit cell geometry #1 subjected to
displacement-controlled uniaxial tension.
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Figure 4.21: Comparison between the synthetic (left) and experimentally measured (right) displace-
ment fields of the heterogeneous structure made of geometry #2. Note that bilinear polynomials
are used to interpolate the displacement data at the unit cell corners.
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Figure 4.22: Comparison between the synthetic (left) and experimentally measured (right) displace-
ment fields of the heterogeneous structure made of geometry 3. Note that bilinear polynomials are
used to interpolate the displacement data at the unit cell corners.
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Figure 4.23: Comparison between the synthetic (left) and experimentally measured (right) displace-
ment fields of the heterogeneous structure made of geometry 4. Note that bilinear polynomials are
used to interpolate the displacement data at the unit cell corners.
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Figure 4.24: Variation of individual material parameters identified using synthetic data as the
number of unit cells for tessellation is varied for geometry #1.
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Figure 4.25: Variation of individual material parameters identified using synthetic data as the
number of unit cells for tessellation is varied for geometry #3.
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C h a p t e r 5

DESIGN OF FUNCTIONALLY GRADED ANISOTROPIC STRUCTURES
AND THEIR ANOMALOUS MECHANICAL BEHAVIOR

Jagannadh Boddapati and Chiara Daraio. Planar structured materials with extreme elastic
anisotropy. Under Review, July 2024.

5.1 Introduction
Functionally graded structures have been shown to exhibit unique mechanical behavior such as
avoiding shear-banding [50, 51] and, mimicking bone stiffness [52]. To generate such structures,
often the parametrization associated with the structure such as truss thickness is adjusted [53–55].
Therefore, these approaches are particularly effective in controlling the isotropic Young’s Modulus,
relative density, and to some extent, the degree of orthotropic elasticity [56, 57]. However, achieving
smooth spatial gradients in the anisotropic mechanical properties while ensuring the connectivity
of adjacent unit cells is challenging. Here, we illustrate the construction of functionally graded
anisotropic structures with seamless transition between unit cells with distinct patterns.

5.2 Method of generation of functionally graded structures
For this purpose, we use the proposed functional representation used to generate unit cells in
Section 2.3. We introduce the local variables 𝑥1, 𝑥2 as well as the global variables 𝑋1, 𝑋2. The
global variables are defined only on a coarser grid, while the local variables are defined on a finer
grid. In a graded structure with 𝑝 × 𝑞 unit cells, with 𝑝, 𝑞 ∈ Z+, the global variables change at
discrete locations given by the unit cell centers, while the local variables 𝑋1, 𝑋2 change at each
pixel location within the unit cell at a given 𝑥1, 𝑥2. The function that is required to generate the
graded structure ℎ(𝑥1, 𝑥2, 𝑋1, 𝑋2) is thus given by

ℎ(𝑥1, 𝑥2, 𝑋1, 𝑋2) = 𝛽(𝑋1, 𝑋2) 𝑓1(𝑥1, 𝑥2) + 𝛼(𝑋1, 𝑋2) 𝑓2(𝑥1, 𝑥2), (5.1a)

= 𝛽(𝑋1, 𝑋2)
∑︁
𝑚,𝑛

𝐴𝑚𝑛 cos (2𝜋(𝑚𝑥1 + 𝑛𝑥2))

+ 𝛼(𝑋1, 𝑋2)
∑︁
𝑚,𝑛

𝐵𝑚𝑛 cos (2𝜋(𝑚𝑥1 + 𝑛𝑥2)) , (5.1b)

where 𝛼(𝑋1, 𝑋2), 𝛽(𝑋1, 𝑋2) ∈ [0, 1] are weighing parameters such that 𝛼(𝑋1, 𝑋2) + 𝛽(𝑋1, 𝑋2) = 1.
An increase in 𝛼 signifies the increase in the contribution of second function 𝑓2(𝑥1, 𝑥2) in the
interpolated unit cell. The threshold to generate graded structure from the function is subsequently
set by a bilinear interpolation determined by the thresholds set for the unit cells at the ends.

https://arxiv.org/abs/2407.19136
https://arxiv.org/abs/2407.19136
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This method allows for independent control of several functional gradients, such as porosity,
anisotropic moduli, and symmetry. In Fig. 5.1A-D, various functionally graded structures are
shown with different gradients along the 𝑋1-axis using Eq. (5.1a) while maintaining periodicity
along the 𝑋2-axis. Fig. 5.1E-F shows the bilinear interpolation between four unit cells with different
anisotropic behavior at four corners of the boundary. By using nonlinearly interpolated weighing
parameters, various graded designs such as spiral, star, elliptical, radial and many more can be
created as shown in Fig. 5.2. More examples on the graded designs are shown in Fig. 5.3, Fig. 5.4,
Fig. 5.5, Fig. 5.6, Fig. 5.7. Further, the interpolation can be extended to construct other conformally
mapped strucutres such as radially graded designs as shown in Fig. 5.8. In the next sections, we
further investigate the mechanical behavior in two gradient structures with nonlinear interpolations
in eliciting atypical mechanical behavior.

5.3 Selective elastic energy localization in radially graded structures
Energy localization refers to the phenomenon where strain energy in a material or structure is
concentrated in specific regions. Energy localization finds use in applications such as mechanical
sensing [143], and energy harvesting [144]. Here we show that graded structures with anisotropic
unit cells achieve selective energy localization, i.e., different localization behavior under different
loadings. we achieve this using functionally graded structures with strategically selected unit cells
in a radially interpolated design. The unit cells are chosen such that unit cell #1 at the boundary is
obtained by a 90◦ rotation of the unit cell #2 at the interior. The fill fraction of the stiff phase of
both the unit cells is 80% respectively. Therefore, this choice makes most of the unit cells in the 20
× 20 interpolated structure also have uniform fill fractions close to 80%. A uniform fill fraction is
selected in the graded design to isolate the impact of differences in stiffness parameters from unit
cells that may also be affected by varying fill fractions. The (vectorized) stiffness tensor of the unit
cell #1 at the boundary is [0.698 0.131 0.221 0.138 0.095 0.150]𝑇 1. Therefore, the (vectorized)
stiffness tensor of the unit cell #2 is [0.221 0.131 0.698 0.095 0.138 0.150]𝑇 .

We subject this graded structure to three different loading conditions namely, tension along 𝑥2

direction, simple shear along applied on the top edge towards 𝑥1 direction, and a biaxial tensile
loading by prescribing a displacement of 1.5 mm. In Fig. 5.9, the elastic energy density stored
in the structure, defined as 𝑊 = 1

2𝝈 : 𝜺 is obtained from finite element analysis (FEA). Here we
have used the Einstein summation convention, assuming summation over repeated indices, and
the double dot “:” indicates a double contraction of indices. The energy density is plotted first
just in the stiff phase, then as areal (volumetric) average at each unit cell while including both the
phases. The energy distribution is then compared with an effective isotropic medium. The isotropic
equivalent is calculated by replacing unit cell with a material whose bulk and shear moduli are

1In the vectorized format, the stiffness components are ordered as [𝐶11, 𝐶12, 𝐶22, 𝐶16, 𝐶26, 𝐶66]𝑇 .
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that of Hashin-Shtrikman upper bound for the corresponding fill fraction. We observe that under
tensile loading the energy distribution becomes significantly localized in a few unit cells in the
central region. In contrast, for the simple-shear boundary condition, the energy is localized in
the diagonal region. For the biaxial loading condition, energy is distributed in the region exterior
to the center 2. The unit cell #2 in the interior has a higher 𝐶22 compared to the unit cell #1 at

2It should be noted that the maximum value of the energy density for three loading cases is different. We are

Figure 5.1: Functionally graded metamaterial generation between two unit-cells with different
spatial characteristics: (A) increasing volume fraction of the stiff phase while using the same
periodic function (B) interpolation from asymmetric to symmetric unit-cells by changing the
symmetry in the function weights (C) interpolation between two asymmetric structures with distinct
anisotropic properties (D) interpolation between unit-cells with increasing number of spatial modes
in the periodic function. (E,F) Interpolation between four unit cells with different anisotropic
behavior at four corners of the boundary.
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Figure 5.2: Functionally graded metamaterials with various nonlinear interpolations (A) diagonal
(B) circular (C) semi-circular (D) hyperbolic (E) annular (F) parabolic (G) star (H) spiral (I) orbital.
The colormap transitions from red to blue, illustrating how the interpolation parameter 𝛼(𝑋1, 𝑋2)
changes from one unit cell to another. The tessellation contains 30 × 30 unit cells.

the boundary. Therefore, under tensile loading along 𝑥2 direction, the interior region acts stiffer
compared to the exterior region. This geometric frustration results in increased stresses in the

interested in the distribution over the exact values of the energy density distribution.
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Figure 5.3: Examples of functionally graded structures with increase in fill fraction from left to
right. Each of these gradients are generated from a fixed function while increasing the threshold
value of the function.

interior region. Subsequently, the energy is significantly localized in the center. As for shear
loading, the shear-normal coupling in the unit cells distributes the stresses along the identified
diagonal region. In the biaxial loading condition, although the fill fraction of all the unit cells is
almost same, the interior region is under relatively lower stresses. If both the unit cells were to be
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Figure 5.4: Examples of functionally graded structures with interpolation between unit cells that
transition from p2 to p4 symmetry from left to right.

isotropic, this distinctive energy localization is not seen. The gradient structures can thus localize
energy which can be programmed to have a specific failure mode and/or localize stresses and strains
in a preprogrammed location. We further demonstrate the general applicability of this effect when
tested with two other unit cells (see Fig. 5.10).
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Figure 5.5: Examples of functionally graded structures with interpolation between two unit cells
of p2 symmetry.

While plotting the energy density distribution provides valuable insights, localization occurs due
to all stress and strain components. To delve deeper into this, we select unit cells where the interior
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Figure 5.6: Examples of functionally graded structures with interpolation between unit cells that
whose number of spatial frequencies increase from left to right.
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Figure 5.7: Examples of functionally graded structures with bilinear interpolation between four
unit cells with distinct patterns.
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Figure 5.8: Conformally mapped structures along an annular disc using a single unit cell. (A)
Mapping with 1 unit cell radially and 24 unit cells along the circumference. (B) Mapping with 4
unit cells radially with 12 unit cells along the circumference. (C) Interpolation with 4 unit cells
radially and 24 unit cells along the circumference. 1D gradients shown in Fig. 5.1 could be further
incorporated into these conformally mapped designs radially and/or along the circumference.

region contains those with negative values for 𝐶12, while the exterior region contains positive
values for 𝐶12, as depicted in Fig. 5.11. The (vectorized) stiffness tensor of the unit cell #1 (UC1)
at the boundary is [0.134 0.082 0.370 -0.050 -0.120 0.107]𝑇 . Similarly, the (vectorized) stiffness
tensor of the unit cell #2 (UC2) in the interior is [0.171 -0.009 0.096 0.001 -0.017 0.248]𝑇 . The
fill fraction of the stiff phase for the unit cells is [73.7%, 59.2%], respectively. The behavior of
this design under tensile loading is studied. In this specific scenario, we observe that unit cells
in the interior exhibit chiral characteristics, resulting in lateral expansion akin to auxetic behavior.
Conversely, unit cells in the exterior, lacking chirality, contract laterally under tensile loading. This
geometric mismatch compels interior unit cells to experience compression despite their inherent
tendency to expand. Consequently, the region with softer-like properties bears greater stresses and
strains, leading to a concentration of energy in the center.

5.4 Non-affine deformations in structures with annular interpolation
Non-affine deformations refer to deformations of a material where the local strain or displacement
of the material points does not follow the global deformation applied to the material. Often soft
materials such as polymers, biological tissues, and granular systems exhibit non-affine deforma-
tions due to the rearrangement of molecules, particles and/or grains [145, 146]. Such non-affine
deformations play a crucial role in energy dissipation.

Here, we present an example of inducing non-affine deformations in metamaterials on a global
scale by utilizing functionally graded structures with strategically selected unit cells. The two
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unit cells selected for interpolation are chosen such that their off-diagonal shear-normal coupling
moduli are opposite in sign while the other moduli and fill fraction are comparably close. We then
create an annular interpolated structure as discussed in Fig. 5.2C with 20 unit cells along each axis.
Please refer to Fig. 5.12 for more details on the selection of unit cells and their interpolation. The
(vectorized) stiffness tensor of the unit cell in the boundary upon normalization is [0.374, 0.101,
0.108, 0.134, 0.066, 0.110]𝑇 . The (vectorized) stiffness tensor of the unit cell in the annular region
upon normalization is [0.115, 0.121, 0.494, -0.084, -0.147, 0.138]𝑇 . The fill fraction of the stiff
phase for the unit cells is [62.7%, 69.5%], respectively. As a result, most of the unit cells in the 20
x 20 interpolated structure have fill fractions close to 65%.

Figure 5.9: Demonstration of selective energy localization: (A) Unit cell selection based on the
extremity in the property space plot of 𝐶11 vs. 𝐶22. (B) Radially graded design with 20 × 20
tessellation from the chosen unit cells named UC1, UC2. The inset color map shows the variation
of interpolation parameter 𝛼(𝑋1, 𝑋2). (C) Distribution of (normalized) elastic energy stored in the
circularly interpolated structure for tensile, shear, and biaxial loading displaying selective energy
localization arising from anisotropy of the unit cells. The first row shows the energy distribution
in just the stiff phase, the second row shows the energy averaged over each unit cell, the third row
shows the energy distribution in a continuum-isotropic equivalent.
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Figure 5.10: Another demonstration of selective energy localization in radially graded structure
akin to Fig. 5.9. (A) Unit cell selection based on the extremity in the property space plot of 𝐶11
vs. 𝐶22. The elasticity tensor of the unit cell (named UC 1) at the boundary is [0.378, 0.066,
0.068, -0.083, -0.041, 0.067]𝑇 . The elasticity tensor of the unit cell (named UC 2) at the interior
is [0.116, 0.086, 0.479, -0.077, -0.078, 0.097]𝑇 . The fill fractions of the stiff phase in the unit
cells are [59.9%, 59.3%], respectively. (B) Radially graded design with 20 × 20 tessellation from
the chosen unit cells UC 1, UC 2. (C) Distribution of (normalized) elastic energy stored in the
circularly interpolated structure for tensile, shear, and biaxial loading displaying selective energy
localization arising from anisotropy of the unit cells. Although the fill fractions of the two unit cells
are almost the same, the radial interpolation resulted in unit cells with higher fill fractions in the
interface part of the graded region. Therefore, an approximate annular region filled with a stiffer
isotropic medium is used when calculating the isotropic equivalence.

This structure is subjected to a tensile loading along 𝑥2 direction by prescribing a displacement of
1.5 mm at the top end. In Fig. 7.1, the numerical simulations (assuming linear elasticity) reveal
that the horizontal displacements exhibit a rotation-like characteristic under this tensile loading.
We further experimentally corroborate the same behavior using full-field measurements obtained
using digital image correlation (DIC). More details on the experimental procedure can be found
in Section 2.4. This non-affine deformation behavior seems to arise from the incompatibilities in
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the off-diagonal shear-normal coupling moduli (𝐶16, 𝐶26) between the two selected unit cells. The
unit cells with positive shear-normal coupling moduli have a preferential direction to shear under
tension, which is opposite to the preferential direction of the unit cells with negative shear-normal
coupling moduli. Therefore this incompatibility in the preferential direction to shear under tension
creates internal torque and directs the annular region to rotate while extending in the 𝑥2 direction.
In Fig. 5.14, we demonstrate that the observed behavior can also be seen in other pairs of unit
cells with opposing shear-normal coupling moduli. Additionally, experimentally measured strains
are presented for this example in Fig. 5.15, indicating the localization of strain around the annular
region.

Figure 5.11: Compressive strains under tensile loading: (A) Unit cell selection based on the
extremity in the property space plot of 𝐶26 vs. 𝐶12, such that (B) the radially graded design
from the selected unit cells that can be additively manufactured using only the stiff phase. (C)
Normalized energy distribution in the stiff phase under tensile loading applied along 𝑥2 direction.
(D) The plot of the sum of principal strains (compressive part only) in the stiff phase which shows
compressive strains in the interior region of the radially graded design under the applied tensile
loading. Due to geometric incompatibility, the unit cells in the interior undergo compressive strains
and compressive stresses under tensile loading.
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Figure 5.12: The selection of unit cells used for annular interpolation is based on the extremity of
the property plot of𝐶16 vs. 𝐶26. The annular interpolations in examples 1 and 2 illustrate non-affine
rotation-like deformation under tension in Figs. 5.14 and 7.1. Note that in example 2, the unit cell
in the annular region is obtained by a 90◦ rotation of the unit cell at the boundary. Additionally, it
is important to mention that these designs can be fabricated using only the stiff phase.

5.5 Supercell tessellations and their scale-dependent behavior
Here, we explore the mechanical behavior of a tessellation obtained by repeating the supercell 4
× 4 times. We define the supercell as the entire annular interpolated structure shown in Fig. 7.1
with 20 × 20 unit cells. In Fig. 5.16, we plot the displacement and strain contours from the
FEA on this supercell tessellation subjected to tensile loading by prescribing a displacement of
1.5 mm. Due to computational limitations, we limit our study to a 4 × 4 tessellation and reduce
the unit cell size to 50 pixels from 100 pixels. For this 4 × 4 supercell tessellation, therefore,
there are a total of 4 × 4 × 20 × 20 = 6400 unit cells resulting in a finite element mesh with
6400× 50× 50 = 16, 000, 000 elements. We observe that the non-affine rotation-like deformations
induced by geometric frustration are present in this supercell tessellation at all the annular regions.
Additionally, there is an observed gradient in this non-affine behavior in the horizontal displacement
component (𝑈1). However, the magnitude of the horizontal displacement is reduced compared to
the single supercell. There are non-local interactions from the neighboring annular regions. Similar
behavior is observed in the case of supercell tessellation of example #2, as shown in Fig. 5.17. This
suggests that the length scale as well as the separation between the annular regions play a significant
role in affecting this rotation-like behavior, indicating the need to utilize micropolar elasticity in
the context of such non-affine deformations in mechanical metamaterials [147].

In the future, a detailed investigation into this scale dependence could be conducted using a
multi-scale homogenization approach. Further, it is interesting to note that when this structure
is subjected to simple shear loading no distinct non-affine deformation is observed, as the unit
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cells do not differ in the shear-modulus like parameter 𝐶66. Therefore, investigations on the role
of incompatibilities in other moduli may unveil new insights into graded structures experiencing
geometric frustration under other complex loading conditions. Finally, exploring other choices of
unit cells with contrasting moduli interpolated non-linearly could reveal unseen atypical mechanical
behavior, which we leave for future work. In metallic materials with microstructure, defects such
as grains and grain boundaries serve as strengthening mechanisms by creating incompatibilities
that obstruct simple deformation paths. For example, twin boundaries that arise when a sufficiently
high shear load is applied, act as an energy dissipation mechanism contributing to the plasticity of
various metals. Therefore, the nonlinear interpolations introduced in this work could be utilized
to design strengthening mechanisms in metamaterials, notably for energy dissipation and impact
loading, extending beyond lattice materials as discussed further in [148].

Figure 5.13: Rotation-like deformation under tensile loading in a gradient structure made with
annular interpolation. The prescribed displacement is 1.5 mm. The unit cell selection is discussed
in Fig. 5.12. The geometric incompatibility between two unit cells with opposing shear-normal
coupling behavior leads to non-affine deformation. The top row shows finite element simulation
results while the bottom row shows the displacement contours measured using the digital image
correlation (DIC) on an additively manufactured specimen.
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Figure 5.14: Rotation-like deformation under tensile loading in the gradient structure named exam-
ple 2 as shown in Fig. 5.12 made with annular interpolation. The geometric incompatibility between
two unit cells with opposing shear-normal coupling behavior leads to non-affine deformation. The
top row shows finite element simulation results while the bottom row compares the displacement
contours measured using the digital image correlation (DIC) on an additively manufactured speci-
men.

5.6 Conclusion
In this chapter, by utilizing the unit cells with extreme anisotropy that lie on the property gamut
boundary, we design and fabricate functionally graded metamaterials. These graded metamaterials
exhibit behaviors such as energy localization and localized rotations, which are atypical of the
corresponding boundary conditions. In the future, investigations on the role of incompatibilities in
other moduli could reveal newer information regarding geometric frustration under other complex
loading conditions. In supercell designs, which were created by tessellating an entire annular
graded structure, we observed that the annular regions displayed non-local interactions leading
to length-scale dependent behavior. Furthermore, the exploration of other supercell tessellations
incorporating different interpolation schemes could potentially open up new avenues in the design
of multi-scale metamaterials.
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Figure 5.15: Experimentally measured strains obtained using DIC for example 1 shown in Fig. 7.1
and for example 2 shown in Fig. 5.14 that discuss non-affine deformations. In both examples,
the strain contours indicate strain localization in the annular region which is different from the
strain observed in the rest of the structure. Stresses are not plotted as they are difficult to obtain
experimentally.
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Figure 5.16: Mechanical behavior in a 4 × 4 supercell tessellation design subjected to tensile
loading. The supercell consists of unit cells with opposing shear-normal coupling arranged in an
annular interpolation scheme, which is the entire specimen considered in Fig. 7.1. The displacement
contour𝑈1 displays multiple regions of rotation-like deformation arising from incompatibilities in
the deformation modes of the unit cells. 𝜎11, 𝜎22 contours (in units of MPa) display how these
incompatibilities in 𝐶16, 𝐶26 lead to alternative regions of compressive and tensile stresses in the
tessellated supercell undergoing tensile loading. 𝜎12 contour shows the rotation-induced shear
stress localization. All the strain contours further corroborate the localization of the strains around
the annular interface.
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Figure 5.17: Mechanical behavior in a 4×4 supercell tessellation design subjected to tensile loading.
The supercell consists of unit cells with opposing shear-normal coupling arranged in an annular
interpolation scheme, which is the entire specimen considered in Fig. 5.14. The displacement
contour𝑈1 displays multiple regions of rotation-like deformation arising from incompatibilities in
the deformation modes of the unit cells. 𝜎11, 𝜎22 contours (in units of MPa) display how these
incompatibilities in 𝐶16, 𝐶26 lead to alternative regions of compressive and tensile stresses in the
tessellated supercell undergoing tensile loading. 𝜎12 contour shows the rotation-induced shear
stress localization. All the strain contours further corroborate the localization of the strains around
the annular interface.
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C h a p t e r 6

SHEAR-LONGITUDINAL WAVE MODE CONVERSION THROUGH
GRADED ANISOTROPIC METAMATERIALS

Jagannadh Boddapati, Alexander Ogren, Jihoon Ahn, Gunho Kim, Chiara Daraio. (2024). “Shear-
longitudinal wave mode conversion through functionally graded anisotropic metamaterials.”
In Preparation.

This chapter is temporarily embargoed.
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C h a p t e r 7

FUTURE OUTLOOK

7.1 Conclusion
In conclusion, this thesis extends our understanding of anisotropy elasticity tensors and shear-
normal coupled deformations from theory to realizable structured materials. By changing the
patterning in the unit cells with two simple isotropic phases, it is demonstrated that one could
explore a very diverse range of anisotropic material properties. Theoretical calculations from the
literature indicate the need for hierarchical materials to explore a diverse range of properties beyond
these single-scale unit cells. Consequently, when the base properties of the phases are anisotropic,
the range of achievable properties surpasses those of isotropic phases.

Anisotropy allows for very unique mechanical behavior such as (non-affine) rotational deformations
under a simple tensile loading. Such non-affine deformations arise when there are incompatibilites
in the effective anisotropic elastic moduli of the unit cells, especially the off-diagonal parameters of
the elasticity tensors. Anisotropy also allows for hybridization of deformation modes as observed
dispersion relations calculated from dynamic homogenization. We used the knowledge from
designing functionally graded materials under static loading and utilized them to engineer wave
propagation and convert waves from one polarization mode to the other.

These demonstrations using anisotropy open several interesting avenues such as multi-scale meta-
materials with supercell tessellations. On the experimental side, characterizing full anisotropy
always required use of multiple experiments. We demonstrated a method that uses the entire
data available from a single tension experiment to measure all six stiffness parameters. These
experiments further corroborated our designs exhibiting shear-normal coupling.

This fundamental understanding of shear-normal coupled deformations in structured materials
further lays foundation for design of advanced transducers enabling complex mechanical character-
ization. In the dynamic domain, this study will be valuable for structures aimed at impact mitigation
and redirection (such as helmets), vibration and noise control, wearable and haptic devices. The
heterogeneous distribution of unit cells with contrasting anisotropic behavior could play a signif-
icant role in enhancing the strength of structured materials beyond simple periodic tessellations.
Some of these ideas are outlined in the next section.
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7.2 Future outlook
The tools thus developed in this thesis open door for several exciting future directions.

Design approaches
2D structured materials: By using the structures with extreme shear-normal coupling embedded in a
nanoindenter, nano-architected materials could be characterized under complex loading conditions
beyond tension and compression. One could also study the range of possible anisotropic behaviors
in nonlinear hyperelastic materials and the time-dependent viscoelastic two-phase composites with
directional response. For example, with viscoelastic composites, one could elicit fast response in
one direction and a really low response in another direction. Machine learning techniques such
as diffusion model-based generative modeling could be used to enhance the existing database to
discover new unit cells beyond user represenation especially at low fill fractions.

2.5D structured materials: By embedding the unit cell patterns, either periodic or functionally
graded, onto plates and shells with arbitrary curvatures, one could study and engineer their direc-
tional response.

3D structured materials: In three dimensions, the elasticity tensor has 21 independent parameters.
This anisotropy allows for shear-shear coupling: shear strains in one direction affect shear stresses in
orthogonal directions. Extending the cosine function representation to generate 3D microstructures,
one could study the limits of shear-shear coupling.

Multi-physics extensions: Another interesting avenue is in estimating bounds when there is multiple
domains of physics controlling the deformation such as piezoelectric, flexoelectric tensors. Using
inks with magnetically particles embedded in them, nonlinear nonlocal directional responses could
be elicited.

Experimental methods
Parameter identification: The proposed parameter identification approach based on the Virtual
fields method has the potential for measurements of elasticity parameters of complex, anisotropic,
three-dimensional structured materials and composites with shear-shear couplings, and for the study
of their nonlinear behavior. A further potential application of the method could be for parameter
identification of constitutive tensors corresponding to different types of coupled behavior, such
as generalized piezoelectric, flexoelectric, and piezomagnetic tensors. Fabrication of hierarchical
structures: State-of-the-art printers such as Markforged Mark Two printers are capable of printing
carbon-fiber reinforced parts with detailed control of the layup of the fibers. Therefore, this printing
technique could be used to realize near-hierarchical-laminates-like structured materials.
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Dynamic behavior
High-strain rate behavior: While graded designs exhibit phenomena like selective energy local-
ization and strain localization, their behavior under dynamic loading at high strains has not been
studied in this work. One could investigate the role of the heterogeneous defects introduced through
gradients leading to energy dissipation and energy absorption. Computational modeling of these
multi-scale structures requires efficient reduced order models much like in the design and analysis
of multiscale modeling of metallic materials.

Mode conversion: In this work, a 1D graded design is used for the conversion of the shear-
longitudinal waves. The dispersion behavior can be further expanded with the addition of nonlinear
interactions by adding magnets, leading to nonlinear interactions. Mode-conversion in 2D and 3D
strucutres open up new avenues for steering waves in complex paths.

Figure 7.1: Potential future extensions of this thesis work include anisotropic metamaterial plates
and shells, as well as three-dimensional anisotropic and hierarchical structures. (The images were
generated using Microsoft Copilot image generator.)
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A p p e n d i x A

ASSEMBLY, OPERATION, AND MAINTENANCE OF SELECTIVE LASER
SINTERING TECHNOLOGY-BASED 3D PRINTER

A.1 Introduction
Additive manufacturing, also known as 3D printing, is the process of creating objects layer by layer.
Unlike subtractive manufacturing, where the material is removed from a solid block, additive
manufacturing builds up the object. Additive manufacturing allows for rapid prototyping of
complex geometries. Additive manufacturing encompasses a variety of techniques, including
extrusion-based methods like Fused Deposition Modeling (FDM), vat polymerization techniques
such as Stereolithography (SLA), digital light projection (DLP) technologies, and Selective Laser
Sintering (SLS), which uses a laser to sinter powdered material, binding it together to create a solid
structure.

Selective Laser Sintering (SLS) technology has revolutionized the field of additive manufacturing,
as it allows 3D printing of metallic components. In SLS, the powder itself serves as the support
material, making part cleaning easier. Unlike other 3D printing methods where separate support
structures are needed, SLS parts can be removed from the powder bed without additional steps.
The Sintratec Kit is the world’s first and only assembly kit for Selective Laser Sintering (SLS)
technology. Developed by Swiss SLS experts, it is designed for productive prototyping and is
especially suitable for creating functional prototypes. The kit is easy to operate and comes with
open parameters, allowing users to adjust settings such as laser speed and temperature for research
purposes. It supports multiple materials, including standard Nylon (PA12) and flexible TPE, and
offers open parameters for research purposes. Its features include a print volume of 110 x 110 x
110 mm (recommended: 90 x 90 x 90 mm), laser speed of 5 – 600 mm/s, layer height of 100 – 150
𝜇m, dimensions of 520 x 520 x 360 mm, weight of 36 kg, chamber temperature range of 30 – 145
°C, and a surface temperature range of 80 – 180 °C.

In this section of the thesis, we delve into the intricate process of assembling a Sintratec Kit 3D
printer. The assembly took place primarily during June and July of 2020, during the COVID-19
lockdown at Caltech. We then cover the printer’s operation, from powder loading to part cleaning.
Finally, we discuss the essential maintenance practices essential to ensure that the printer functions
effectively.
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A.2 Assembling the Sintratec Kit 3D Printer
The assembly of the Sintratec Kit printer involves several meticulous steps, which are explained in
detail in this section.

1. Frame Construction: The initial step in assembling the 3D printer involves building the
frame. The frame provides the necessary structural support, and thermal insulation for the
entire system. The frame is primarily supported by 20 × 20 aluminum extrusions of various
lengths. This step is indicated in Fig. A.1 (top row) with some crucial parts highlighted. The
door assembly contains a laser-safe glass window to monitor the print chambers. The door
also contains an insulation pad embedded inside it.

2. Print Chamber Assembly: The build chamber, where the actual printing occurs, is then
assembled. This includes installing the build platform, powder coater, heating elements, and

Figure A.1: Assembly sequence of the frame (top) and the print chamber (bottom).
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temperature sensors. Accurate temperature control ensures proper sintering and prevents
warping or other defects in the printed parts. The lead screws play a crucial role in the
movement and positioning of the print beds. They are responsible for converting rotational
motion from the stepper motors into linear motion, allowing precise vertical movement of
the print bed during the printing process. The reed switches are used as sensors to detect
the position of the powder beds, the coater, and the door. These switches are activated by a
magnetic field, allowing them to provide precise feedback on the position and movement of
the parts they monitor. These steps are indicated in Fig. A.1 (bottom row). Powder Handling
System: The print chamber also contains the powder handling system, including the powder
supply and recycling units, which is installed next. roper sealing and calibration are essential
to prevent powder leakage and ensure efficient material usage. The sealing of powder beds
is highlighted in Fig. A.4.

3. Hat Assembly and Electronics: The control electronics, including the main control board,
motor drivers, heating lamps, and sensors, are then installed and connected to the core hat
part of the printer. The hat part that faces the powder chamber also contains insulating pads.
These steps are highlighted in the top two rows of Fig. A.2.

4. Installation of Laser System: Electronics also includes the galvanometer laser scanner
system. The core component of the printer is its laser system. This step involves mounting
the diode laser (2.3 W) and aligning it precisely with the optical path. Proper alignment
is crucial as any deviation can result in inaccurate sintering and poor-quality prints. laser
system also contains an IR sensor which measures the surface temperature directly. This is
indicated in Fig. A.3. Certain subassemblies are highlighted further in Fig. A.4.

5. Calibration and Testing: Once all components are assembled, the printer undergoes a
thorough calibration process. The screws on the Galvo scanners had to be adjusted manually
first so that the laser fits the print bed precisely. Then a test part is printed. After printing a
test part, its dimensions are input into the computer for precise calibration of the laser system.
Then, the printer’s firmware and software are configured to manage the printing process,
control the laser, and monitor various parameters. This is indicated in Fig. A.5.
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Figure A.2: Hat assembly sequence (top two rows) containing the electronics, stepper motors,
power supply units, and laser. Final installation (last row).
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A.3 Printing a part with the Sintratec Kit 3D Printer
Printing Instructions

1. The minimum resolution in the z-direction is 0.15 mm, determined by powder diameter and
layer height. The resolution along the x-y direction is 0.2 mm, determined by the laser focus
size. It is advisable to ensure that your minimum features are above 1 mm. If you require
smaller sizes, be mindful of the cleaning process after printing.

2. Refer to the operation manual for detailed instructions on the recommended orientation of the
STLs for efficient printing. For optimal results, consider orienting the part during printing to
avoid having a single layer with an excessive sintering area.

3. There is a lead time of 100 minutes for the print chamber to reach the required chamber
temperature (≈ 180◦). Ensure this in your planning and schedule accordingly.

4. Clean the laser glass before each print. Over time, soot and dust accumulate on the laser gas

Figure A.3: Laser and galvo set installation.
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during each print cycle. This buildup can impact the printer’s performance and the quality
of printed parts. It is also advisable to clean the laser glass immediately after completing a
print.

5. Add an extra 30 mm of powder material to the reservoir chamber beyond the required print
height. Ensure that both the reservoir and the print bed have powder evenly distributed before
starting the print. Check for any anomalies such as powder leakage or lamp malfunctioning.

6. Turn the laser key clockwise before starting the print.

7. Do not open the printer door while printing is in progress. Opening the door will shut off the
laser and disrupt the print.

8. Avoid placing your hands into the printer immediately after the print is completed, as the
print chamber will be very hot. Allow the printer to cool down before handling.

Figure A.4: Detailed look at some crucial sections of the printer.
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9. Wear gloves whenever handling the powder or cleaning the printed parts. It is highly
recommended to wear an N95 mask whenever the printer is in operation or while handling
the powder.

Figure A.5: Print chamber and print bed during the printing. The temperatures inside the chamber
go as high as 150◦ C, while the sintering area that is exposed to the laser gets as hot as 210◦ C.



124

10. Vacuum the print bed and the left chamber that contains excessive powder after retrieving
your printed part. Carefully sieve the cleaned powder and store it for reuse. It is recommended
to not use the powder that went into the heating cycle inside the lamps again without mixing
it with new powder. Otherwise, sintered parts tend to be very brittle and also often result in
failed prints.

11. The part often requires removing the powder that acted as support during the printing process.
Therefore, first, the part is cleaned using fine filing tools. Then the part is sandblasted using
gsandblaster located in the GALCIT machine shop. Sandbalster containers very fine glass
beads that are impinged at very high speeds on to the part. They erode the weak non-sintered
hardened powder that acted as support material. This ensures a smooth surface finish for the
part.

Figure A.6: Laser calibration and test print (top row). Printed part cleaning (bottom row).
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A.4 Maintenance and troubleshooting of the Sintratec Kit 3D Printer
Regular maintenance is essential to keep the 3D printer in optimal working condition and to extend
its lifespan.

Maintenance:

1. Cleaning: The build chamber, laser optics, and powder handling system require regular
cleaning to prevent powder buildup and ensure accurate printing as shown in Fig. A.8.
Special care must be taken to clean the laser lens and mirrors, as any contamination can affect
the laser’s performance. It is recommended to clean them atleast once every 5–10 prints.

2. Inspection and Replacement of Wear Parts: Components such as the laser, build platform,
and heating elements are subject to wear and tear. Regular inspection and timely replacement
of these parts are necessary to maintain the printer’s performance. For instance, the laser
tube might need replacement after a certain number of operating hours.

Figure A.7: Exemplary printed parts with distinct interlocked shapes and fine features.
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Figure A.8: Maintenance and cleaning of the printer.

Troubleshooting:
Several issues arose with various components during the operation and the maintenance of the
printer, as shown in Fig. 2.9. The reasons include

1. High-power cables from power supply units interfered with the stepper motors, necessitating
the rerouting of the cables due to EMC issues.

2. The heat break sensor was positioned too close to the copper heater, resulting in incorrect
readings. Its position had to be manually adjusted.

3. The accumulation of dust on the laser glass led to poor-quality prints or missing features in
the parts.

4. The mechanical coupler that connects the motor to the lead screw, which moves the print
chambers vertically, failed. This caused the print chambers to remain stationary while the
software assumed they were moving, leading to homing issues with the powder print axis.
Replacing the coupler screws was quite challenging due to their difficult-to-reach location.

5. The cable that moves the coater blade malfunctioned, resulting in the spring slipping over
the pulley. The coater receded to the right during printing, causing a pileup of powder on the
left, which reduced the build volume and hampered build time. Replacing the reed switch
resolved the issue.

6. Despite proper sealing, powder leaked into the back of the print chambers. Over time, the
screws securing the guiding rails to the back of the print chamber walls became loose, causing
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this issue to recur approximately every 20 prints. It is recommended to tighten these screws
during maintenance to prevent this problem.

7. The power supply and emergency stop switch experienced failures and required replacement.
It was noted that these components are prone to failure with regular use. Higher-quality
components would have been included in the kit to prevent such issues.

8. It was believed that software updates once caused unusual scaling of the STL files.

9. Failures in the reed switches led to homing issues with both the reservoir and coater axes,
causing prints to abort midway. To prevent future faults, the reed switches were later re-
positioned slightly away from their original positions. The reed switches contain magnetic
components that were prone to easy failure.

10. Nuts in crucial functional areas with significant vibration became loose. It would have been
beneficial to apply a small amount of thread locker during assembly. Additionally, a torque
wrench would have been useful to apply proper and uniform torque to all the screws.

11. Improper installation of the lamp shades led to overheating in certain areas. Additionally,
reusing powder from the print chamber that had not been exposed to the laser caused warping
of parts during subsequent prints.

A.5 Conclusion
Working on this project has been an invaluable experience, exposing me to a diverse range of
engineering principles and significantly broadening my knowledge and skills. I gained a deeper un-
derstanding of heat transfer, which was crucial for managing the thermal aspects of the 3D printing
process. Certain improvisations had to be made as the pictures shown in the initial manual were not
up to date with the updated version of the printer design that was shipped. This experience enlight-
ened me on the importance of modularity in product design, especially useful when troubleshooting
and accessing intricate corners once everything is assembled. Additionally, I worked with optics
for laser calibration, allowing me to fine-tune the laser’s focus and ensure precise sintering. I also
encountered and addressed challenges related to electromagnetic interference, ensuring the smooth
operation of the printer’s electronic components. This comprehensive experience has significantly
broadened my engineering knowledge and skills. This accomplishment would not have been pos-
sible without the incredible help of Julian Cecil (from 3D Chimera), Petros Arakelian, and Alex
Ogren.
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Figure A.9: Troubleshooting the printer during regular operation.
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