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ABSTRACT

Understanding quantum gravity remains one of the deepest challenges in modern
physics, as direct experimental access to Planck-scale effects is beyond current
technological reach. However, recent theoretical advances indicate that quantum
fluctuations of spacetime may produce measurable effects in precision experiments,
particularly near causal horizons. This opens new avenues for testing quantum grav-
ity phenomena through high-precision measurement techniques. This dissertation
develops multiple theoretical models to characterize these effects and examines their
potential observational signatures in future gravitational wave interferometers.

We begin by investigating the role of quantum fluctuations in near-horizon geome-
tries through the lens of the AdS/CFT correspondence, which provides a powerful
framework for understanding the interplay between quantum field theory and general
relativity via holographic principles. By modeling stochastic energy-momentum
sources in Rindler-AdS spacetime, we demonstrate that vacuum fluctuations trans-
form the Einstein equations into a Langevin-type stochastic differential equation,
leading to potentially observable fluctuations in photon traversal times. Extend-
ing this approach to Minkowski spacetime, we establish a correspondence between
gravitational shockwaves and fluid dynamics, showing that near-horizon perturba-
tions satisfy an equation analogous to that governing incompressible fluids, thereby
reinforcing the membrane paradigm and hydrodynamic analogies in the context of
the fluid/gravity duality. Furthermore, we construct the covariant phase space of
a spherically symmetric causal diamond in Minkowski spacetime, identifying two
fundamental charges that govern its evolution. These results provide a foundation for
quantizing causal horizons and understanding their microscopic degrees of freedom.

Building upon these theoretical developments, we further examine a related stochas-
tic phenomenon: the gravitational wave memory background arising from the cumu-
lative memory steps produced by supermassive black hole mergers. After reviewing
the standard stochastic gravitational wave background, gravitational memory ef-
fects, and BMS symmetries, we model the stochastic memory background using a
Brownian motion framework. We show that while the cumulative memory back-
ground initially appears above the sensitivity curve of space-based interferometers
like LISA, the realistic subtraction of individually resolvable merger events sub-
stantially suppresses the residual signal, making its detection more challenging.
This highlights the critical importance of source subtraction when evaluating the
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detectability of gravitational memory effects.

By bridging fundamental theory with experimental prospects, this dissertation con-
tributes to the ongoing effort to uncover the quantum nature of spacetime through
precision measurement techniques. Whether through detecting quantum space-
time fluctuations, gravitational memory backgrounds, or probing the symmetries of
causal horizons, the pursuit of observable quantum gravity phenomena continues to
expand the frontiers of both theory and experiment.
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C h a p t e r 1

INTRODUCTION

Understanding quantum gravity, the unification of quantum mechanics and general
relativity, remains one of the most profound open problems in theoretical physics.
Although quantum field theory successfully describes the three other fundamental
forces, it fails to provide an adequate framework for studying spacetime on micro-
scopic scales, at which quantum mechanical effects become dominant. General
relativity, though remarkably accurate to provide a unified description of gravity on
macroscopic scales, remains a classical theory and does not incorporate the quan-
tum fluctuations that characterize other interactions. The non-renormalizability of
perturbative quantum gravity suggests that general relativity is only an effective
low-energy description, requiring a more complete framework to fully capture the
quantum nature of spacetime.

Apart from theoretical challenges, one of the primary obstacles in quantum gravity
research is the lack of direct experimental access to Planck-scale physics, where
quantum gravity effects are expected to be significant. Unlike other fundamental
forces, which can be probed through high-energy particle scattering experiments,
quantum gravity remains largely theoretical because of its extremely weak effects at
observable scales. Traditional approaches, such as string theory [331, 46] and loop
quantum gravity [77, 34, 277], provide some frameworks for quantizing gravity, but
experimental validation of those theories remains elusive. In particular, a heuristic
argument based on effective field theory and dimensional analysis suggests that
quantum gravity fluctuations could induce length fluctuations on the order of Planck
length,

𝛿𝐿 ∼ ℓ𝑝 . (1.1)

Here 𝛿𝐿 is the length fluctuation of some experimental probe, such as an arm of a
laser interferometer and ℓ𝑝 is the Planck length, given by the expression

ℓ𝑝 =

√︂
ℏ𝐺

𝑐3 ≈ 1.6 × 10−35 m. (1.2)

No experiment is expected to reach such extreme length scales in the foreseeable
future due to many technological hurdles and practical constraints. However, recent
developments [314, 313, 328, 41, 329, 174, 312, 219] suggest that certain quantum
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gravity effects may not be confined to the Planck scale but could leave imprints at
macroscopic distances, particularly near causal horizons bounded by light-sheets.

𝛿𝐿 ∼
√︁
ℓ𝑝𝐿, (1.3)

where 𝐿 is the length scale of the experimental probe, which ranges from several
meters to several kilometers depending on specific setup. Although individually
minute, these fluctuations could accumulate over macroscopic distances, poten-
tially becoming detectable in high-precision laser interferometers. This opens the
possibility of testing quantum gravity through precision measurement techniques,
potentially bringing it within the reach of experiments in the near future.

This dissertation explores theoretical models that predict potentially observable
quantum gravity effects, particularly in the context of laser interferometry. The first
part of the dissertation focuses on developing theoretical frameworks that describe
how quantum fluctuations of spacetime might influence near-horizon dynamics.
The second part investigates how these fluctuations could give rise to new signals
in high-precision gravitational wave detectors, raising the intriguing possibility that
next-generation interferometers may offer an experimental window into quantum
gravity. In addition, the second to last chapter presents a complementary classical
study of stochastic gravitational wave backgrounds sourced by memory effects from
supermassive binary black hole mergers, providing further context for the detection
landscape relevant to space-based observatories like LISA.

Chapters 2 through 5 of this dissertation are based on the author’s previously pub-
lished work carried out in collaboration with others. Chapter 6 is based on the
author’s unpublished personal notes and presents ongoing independent work mod-
eling a stochastic gravitational wave background sourced by memory effects from
supermassive binary black hole mergers. The purpose of this introductory chapter
is to provide the necessary background and context for these results. Section 1.1
reviews the theoretical landscape of quantum gravity and summarizes recent devel-
opments relevant to this dissertation. Section 1.2 discusses the state-of-the-art in
gravitational wave detection technology and outlines how upcoming generations of
interferometers may approach the sensitivity required to probe quantum features of
spacetime.

1.1 Theoretical Background
In this section, we provide a review of the classical foundations and modern de-
velopments in quantum gravity research. We begin with an overview of Brownian
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motion and the fluctuation-dissipation theorem, which serve as a fundamental model
for understanding stochastic fluctuations in physical systems. We then transition to
gravitational analogies by exploring the fluid/gravity correspondence, gravitational
shockwaves, and their role in describing near-horizon dynamics. Finally, we discuss
BMS symmetries, covariant phase space formalism, and recent advances in under-
standing quantum gravity fluctuations, emphasizing how these concepts contribute
to our understanding of the emergent physics of vacuum fluctuations in spacetime.

Fluctuation-Dissipation and the Emergence of Stochastic Dynamics
The study of fluctuations in physical systems provides a crucial bridge between
microscopic and macroscopic dynamics. Brownian motion, first described by Robert
Brown and later explained by Einstein [129, 144], serves as a prototypical example of
how microscopic molecular interactions manifest themselves as stochastic behavior
at larger scales. The mathematics behind such stochastic dynamics is encoded in
the Langevin equation [214],

𝑚
dv
d𝑡

= −𝜆v + η(𝑡), (1.4)

where v is the velocity of the particle undergoing Brownian motion, 𝑚 is its mass,
and 𝜆 is its damping coefficient. Here, η(𝑡) is a noise term representing the effect
of random molecular collisions experienced by the particle. The random force η(𝑡)
is assumed to follow a Gaussian probability distribution with correlation function〈

𝜂𝑖 (𝑡)𝜂 𝑗 (𝑡′)
〉
= 2𝜆𝑘𝐵𝑇𝛿𝑖 𝑗𝛿(𝑡 − 𝑡′), (1.5)

where 𝑘𝐵 is the Boltzmann constant and𝑇 is the temperature. This equation captures
the essence of Brownian motion: random thermal fluctuations drive the motion of
the particle (fluctuation), while viscous damping opposes it (dissipation), ensuring
that the system eventually reaches thermal equilibrium. [214, 218]. This framework
has been instrumental in statistical physics, offering a template for understanding
non-equilibrium dynamics in numerous contexts.

A key result in statistical mechanics that formalizes the relationship between fluc-
tuations and dissipations is the fluctuation-dissipation theorem [76, 213]. In this
theorem, the fluctuations of a system around its equilibrium are intrinsically linked to
its response to external perturbations. It quantitatively relates the power spectrum of
spontaneous fluctuations 𝑆𝐴 (𝜔) to the imaginary part of the system’s susceptibility
𝜒(𝜔) via

𝑆𝐴 (𝜔) = −2𝑘𝐵𝑇
𝜔

Im[𝜒(𝜔)] . (1.6)
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Physically, this means that a system exhibiting large fluctuations will also have a
strong dissipative response when it is driven out of equilibrium. The fluctuation-
dissipation theorem underlies many fundamental results, such as the Einstein relation
for Brownian motion𝐷 = 𝑘𝐵𝑇/𝛾 and Nyquist’s theorem for electrical noise 𝑆𝑉 (𝜔) =
2𝑘𝐵𝑇𝑅 [61]. Its implications extend across statistical mechanics, condensed matter
physics, and quantum systems, providing a deep connection between microscopic
noise and macroscopic dissipation.

In the context of gravity, an intriguing question arises: can spacetime itself exhibit
stochastic fluctuations analogous to Brownian motion? The search for such effects
has led to the study of gravitational noise, where quantum fluctuations in spacetime
may introduce fundamental stochasticity in gravitational systems [313, 314, 328,
329, 312, 219]. This idea serves as a motivation for extending fluctuation-dissipation
principles to gravitational physics, particularly in the study of black hole horizons
and causal diamonds.

Holographic Duality
The holographic principle suggests that a gravitational system in a given spacetime
can be fully described by a lower-dimensional field theory living on its boundary.
This idea was first formalized in the AdS/CFT correspondence, which proposes a
precise duality between gravity in anti-de Sitter (AdS) space and conformal field
theories (CFT) living on its asymptotic boundary [228]. In this framework, bulk
gravitational dynamics are encoded in boundary quantum field theory observables,
providing a powerful non-perturbative approach to studying strongly coupled quan-
tum systems. The correspondence has yielded deep insights into black hole ther-
modynamics [172, 173, 65, 22, 278], transport properties of strongly correlated
fluids [266, 266, 211, 212, 289, 51, 271, 139], and quantum information aspects
of spacetime [283, 284, 285, 274, 227, 170], establishing itself as a cornerstone of
modern theoretical physics.

A key insight from holography and black hole thermodynamics is the Bekenstein-
Hawking entropy formula, which states that the entropy of a black hole is propor-
tional to the area of its event horizon rather than its volume. The formula is given
by

𝑆BH =
𝐴

4𝐺𝑁

. (1.7)

This formula suggests that black hole entropy is holographic in nature, meaning
that the fundamental degrees of freedom of the black hole are encoded on its
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boundary rather than in its bulk volume [48, 179]. This observation played a
pivotal role in the development of the holographic principle, which posits that the
information content of a gravitational system can be encoded on a lower-dimensional
surface. Furthermore, in the context of AdS/CFT, black hole entropy is related to
entanglement entropy, where the entanglement between degrees of freedom across a
horizon plays a crucial role in understanding the microscopic origin of gravitational
entropy. The Ryu-Takayanagi formula [278, 91] extends this idea by proposing that
in holographic theories, the entanglement entropy of a boundary region is given
by the area of a minimal bulk surface, reinforcing the deep connection between
geometry, quantum mechanics, and information theories.

Although the AdS/CFT correspondence has been extensively explored, many real-
world physical systems, including our own universe, are not asymptotically AdS,
but instead asymptotically flat. Extending holography to flat spacetime remains a
key open problem in quantum gravity. Unlike AdS, where the negative curvature
naturally provides a well-defined conformal boundary, Minkowski spacetime lacks
such a structure, requiring a new approach to defining the holographic dictionary.
Several proposals have emerged to address this challenge, including the Flat Space
Holography program [257, 256, 295, 32, 123, 253, 255], which suggests that
quantum gravity in asymptotically flat spacetime may be holographically encoded
in a field theory living on null infinity (I+/−), governed by BMS symmetries [64,
279, 297, 294, 298, 188, 183, 189, 244, 35, 25].

A crucial motivation for holography in flat space comes from the study of soft
theorems, gravitational memory effects, and asymptotic symmetries, which hint at
an underlying holographic structure linking bulk gravitational dynamics to boundary
field theories [297, 183, 298, 257]. These connections suggest that key aspects of
quantum gravity in flat space, such as black hole evaporation, information retrieval,
and scattering amplitudes, may be reformulated in terms of lower-dimensional,
nonlocal field theories at null infinity [256, 258, 254, 260, 255]. Moreover, the
recent development of Celestial Holography proposes that gravitational scattering
amplitudes in four-dimensional Minkowski space can be mapped to correlation
functions in a two-dimensional conformal field theory (Celestial CFT) living on
the celestial sphere at null infinity [297, 257, 256, 230, 36, 249]. This perspective
provides an alternative framework for understanding quantum aspects of gravity,
with potential implications for black hole physics and quantum information theory.

Despite significant progress, a complete holographic formulation of quantum gravity
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in flat spacetime remains an ongoing challenge. Future developments may refine our
understanding of bulk reconstruction, quantum information in asymptotically flat
space, and non-AdS gravitational dualities. Given its success in strongly coupled
systems, the continued extension of holography beyond AdS could offer profound
insights into the nature of spacetime, black holes, and the fundamental quantum
structure of gravity.

Fluid/gravity Correspondence
The connection between gravity and hydrodynamics has deep historical roots, dat-
ing back to the membrane paradigm that was first developed in the late 1970s
and 1980s [116, 269, 252]. This framework provided an effective description of
black hole horizons as dynamical, dissipative membranes equipped with proper-
ties in hydrodynamic systems such as shear viscosity and electrical conductivity.
The membrane paradigm suggests that black hole horizons behave analogously to
fluid-like systems, exhibiting dissipative responses to external perturbations. This
perspective, though originally formulated within classical general relativity, laid the
foundation for modern developments in the fluid/gravity correspondence [132, 135,
166].

The emergence of the AdS/CFT correspondence [228] in the late 1990s provided the
foundation for a more rigorous realization of the fluid/gravity correspondence. In
AdS/CFT, black hole solutions to the Einstein equations in anti-de Sitter (AdS) space
correspond to finite-temperature states in a strongly coupled conformal field theory
(CFT) on the boundary [172, 173, 22]. Perturbations of the black hole horizon at long
wavelengths and low frequency regime map directly to hydrodynamic excitations
in the corresponding boundary theory, with the resulting equations reducing to the
Navier-Stokes equations in the appropriate limit [266, 266, 211, 212, 289, 51, 271,
139]. This correspondence has since been extensively explored, leading to precise
computations of transport coefficients such as the universal bound of the ratio of
shear viscosity to entropy density, 𝜂/𝑠 = 1/4𝜋, which characterizes strongly coupled
fluids [266, 211, 212, 114, 57, 56, 59, 58].

The fluid/gravity correspondence has been particularly instrumental in the study of
the quark-gluon plasma (QGP) produced in heavy-ion collisions. The strongly cou-
pled nature of the QGP makes it difficult to analyze using conventional perturbative
techniques, but holography provides a powerful alternative framework. In this ap-
proach, QGP is modeled as a plasma state in the N = 4 supersymmetric Yang-Mills
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(SYM) theory [265, 266, 267, 210], which shares key qualitative characteristics with
QCD in the real world at high temperatures. The behavior of the QGP, including its
near-perfect fluidity, can be understood through its gravitational dual: perturbations
of a black hole horizon in AdS describe the collective motion of the plasma, with
hydrodynamic transport properties emerging naturally from the horizon dynamics.
In particular, the holographic prediction of 𝜂/𝑠 = 1/4𝜋 aligns remarkably well with
experimental measurements of the QGP, which exhibits extremely low viscosity
close to this bound [290].

Extending this analysis beyond AdS backgrounds has remained an important area
of research, particularly in asymptotically flat spacetime, where holography is less
well understood. In such settings, Rindler horizons—associated with uniformly ac-
celerating observers in Minkowski spacetime—offer a natural testbed for applying
the fluid/gravity correspondence in a broader context. Recent studies [71, 70, 108,
109, 224, 264] suggest that near-horizon perturbations in Rindler spacetime obey
fluid-like equations, and in appropriate limits, the dynamics of these perturbations
reduce to those of an incompressible fluid, whose dynamics is governed by the
Navier-Stokes equations. This realization opens the possibility that the hydrody-
namic properties of horizons are not unique to AdS/CFT correspondence, but may
instead be a more universal feature of gravitational systems.

By examining how fluctuations propagate near Rindler horizons, we can explore
whether quantum gravity effects introduce additional dissipative behaviors, similar
to those observed in strongly coupled hydrodynamic systems. Understanding these
effects is crucial for extending the reach of fluid/gravity duality to more general
settings and for identifying potential experimental signatures of quantum gravity
fluctuations in high-precision interferometry.

Gravitational Shockwaves and Horizon Dynamics
A key feature of black hole horizons is their response to high-energy perturbations.
The concept of gravitational shockwaves plays a central role in understanding how
energy and information propagate across horizons. Shockwaves arise as solutions
to the Einstein equations in the presence of localized high-energy matter, leading
to shifts in the causal structure of spacetime [126, 1, 5, 2]. These solutions have
been extensively studied in the context of AdS/CFT, where shockwave geometries
provide a holographic realization of quantum scrambling and chaos [283, 285, 227,
274, 170, 23].
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The Dray-’t Hooft shockwave solution [126], one of the earliest example of this
phenomenon, describes how the geometry of a black hole is modified due to the
passage of a high-energy particle near the horizon of a black hole. To be more
specific, the shockwave solution solves the Einstein equations exactly, and the metric
takes the form

𝑑𝑠2 = −𝑑𝑢𝑑𝑣 + 𝐻𝑢𝑢𝑑𝑢2 + 𝛿𝑖 𝑗𝑑𝑥𝑖𝑑𝑥 𝑗 , (1.8)

where 𝐻𝑢𝑢 is given by

𝐻𝑢𝑢 (𝑢, 𝑥𝑖) = 8𝜋𝐺𝑁 𝑝𝑢𝛿(𝑢 − 𝑢0) 𝑓 (x;x′), (1.9)

where 𝑝𝑢 is the momentum of the shock, and 𝑢0 denotes the wavefront of the
shockwave, and 𝑓 (x;x′) is the Green’s function of the Laplacian operator reduced
from the Einstein equations. Despite its very simple appearance, the Dray-’t Hooft
shockwave possesses rich dynamics and fascinating properties that are sought to
link gravitational physics and quantum chaos together. Recent developments have
focused on exploring the quantum nature of gravitational shockwaves, particularly
in the context of quantum information theory and black hole microstructure [283,
285, 227, 274, 170]. In holographic settings, shockwaves have been linked to out-
of-time-order correlators (OTOCs), providing a diagnostic for quantum chaos and
information scrambling in strongly coupled field theories. Studies of shockwave
amplitudes in flat space and near Rindler horizons suggest that these structures may
encode subtle quantum gravity effects, including shifts in entanglement entropy and
correlations across the horizon [112, 169, 312]. Additionally, recent works [312,
191, 190] have examined the role of quantum fluctuations in modifying classical
shockwave solutions, leading to stochastic deviations in the shifts of photon traversal
time in a causal diamond, which could serve as potential observables. These
investigations provide a deeper understanding of how quantum gravity governs
the response of horizons to high-energy perturbations, offering insight into the
interplay between gravitational dynamics and quantum coherence. If gravitational
shockwaves arising from quantum energy fluctuations lead to measurable effects,
next-generation interferometers could, in principle, provide an indirect probe of such
phenomena, further connecting quantum effects of the spacetime with precision
gravitational wave experiments.

BMS Symmetries and Covariant Phase Space Formalism
Recent advances in theoretical physics have revealed deep connections among
asymptotic symmetries, soft theorems, and celestial holography [297, 294, 298,



9

296, 299, 257, 256, 295]. In particular, the Bondi-Metzner-Sachs (BMS) group,
which describes the asymptotic symmetries of spacetime at null infinity, has emerged
as a powerful tool for understanding gravitational memory effects and soft graviton
dynamics [64, 298, 259, 254, 123, 255, 253]. The realization [85, 86, 82, 84,
83, 120, 121, 80, 124, 81, 122] that black holes exhibit BMS-like symmetries at
their horizons suggests that near-horizon dynamics may be governed by an extended
symmetry structure, potentially constraining quantum microstates of gravity.

The role of covariant phase space formalism in general relativity has also gained
attention as a method to systematically study the phase space of degrees of freedom
of the horizon [201, 200, 82, 84, 244, 79, 93, 94, 95]. The symplectic structure
of gravitational systems encodes fundamental information about their evolution,
providing a bridge between classical and quantum descriptions. By analyzing the
symplectic form of black hole and generic Killing horizons, researchers aim to
uncover the fundamental quantities governing quantum gravity fluctuations [188,
183, 189, 182, 185, 186, 187, 94, 95, 147, 146, 145, 148, 152, 149, 151, 150].

One particularly exciting application of the covariant phase space formalism is the
study of quantum effects in gravity, in particular for a causal diamond in Minkowski
spacetime. If spacetime exhibits quantum fluctuations, these fluctuations could in-
troduce measurable signatures in precision experiments. Recent proposals [328,
329, 219, 191, 190] suggest that gravitational wave interferometers, such as LIGO
and future detectors e.g., the GQuEST experiment [236, 235], could be sensitive
enough to detect such quantum gravity signals. Understanding how quantum fluc-
tuations manifest in spacetime requires a combination of techniques from statistical
physics, symmetry analysis, and general relativity, all of which contribute to the
ongoing search for experimental tests of quantum gravity.

The Verlinde–Zurek Effect: Quantum Fluctuations from Holographic Degrees
of Freedom
The Verlinde–Zurek (VZ) effect refers to a recently proposed phenomenon at the
intersection of quantum gravity and emergent spacetime physics. Erik Verlinde and
Kathryn Zurek initiated the collaboration in 2019 to explore whether quantum grav-
ity could produce observable fluctuations in spacetime at scales much larger than the
Planck length. In their framework [313, 314], spacetime is treated holographically—
meaning gravitational information is encoded on the boundary of a region (often
called a causal diamond or light-sheet). They hypothesized that quantum uncer-
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tainty in these holographic degrees of freedom could lead to measurable metric
fluctuations, even at macroscopic scales.

Expanding on this foundation, the VZ effect posits that vacuum spacetime possesses
an intrinsic jitter” or fluctuation that grows with the size of the region considered.
From the perspective of the effective field theory, one might expect quantum-gravity
effects to occur only at the Planck scale (∼ 10−35 m), far too small to ever be
detected. However, Verlinde and Zurek argue that if one considers a space volume
bounded by a light-like surface (a causal diamond), the quantum uncertainty in the
position of that boundary can accumulate like a random walk over large scales [313,
314, 41, 329, 312]. In technical terms, they suggest that the variance of length
fluctuations grows linearly with the length of the path (

〈
Δ𝐿2〉 ∼ ℓ𝑝𝐿, with ℓ𝑝 the

Planck length) [314, 313, 329, 174]. This scaling (often called the VZ scaling”)
implies that the fluctuation of the root-mean-square in the distance is proportional
to

√︁
ℓ𝑝𝐿. For a macroscopic length 𝐿,

√︁
ℓ𝑝𝐿 is still tiny, but much larger than ℓ𝑝

alone. In other words, quantum gravity might introduce a very small but not utterly
negligible uncertainty in proper distances—an effect that could, in principle, be
observed with extremely sensitive instruments.

An essential feature of the VZ effect is the correlation structure of these fluctua-
tions. Rather than being uncorrelated across space, the model features long-range,
transverse correlations across the entire causal diamond [314, 312]. This ensures
that the spacetime metric does not fluctuate randomly at each point, but rather
undergoes coordinated distortions. Such correlated fluctuations evade constraints
imposed by astrophysical observations that rule out uncorrelated Planck-scale noise.
For instance, a completely uncorrelated noise model would cause blurring in distant
astronomical images, which is not observed. Instead, the VZ model predicts coher-
ent deformations that accumulate subtly over distance, consistent with observational
data [217].

The origin and consistency of this area-scaling behavior are further explored in
Ref. [313], where Verlinde and Zurek perform a detailed computation of the mod-
ular Hamiltonian fluctuations using the gravitational replica trick in the context
of AdS/CFT correspondence. They define the modular Hamiltonian 𝐾 associated
with a causal diamond (see Fig.1.1) in AdS-Rindler spacetime and show that its
expectation value and fluctuations obey the area law:

⟨𝐾⟩ = 𝐴(Σ)
4𝐺

, ⟨Δ𝐾2⟩ = 𝐴(Σ)
4𝐺

, (1.10)
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Figure 1.1: Pictorial depiction of the causal diamond in Rindler-AdS space anchored
at the asymptotic AdS boundary. The red dashed line represents a laser trajectory
traversing from the boundary to a point on the RT surface and then reflected back
to the boundary [313].

where 𝐴(Σ) is the area of the Ryu–Takayanagi (RT) surface anchoring the causal dia-
mond. This result confirms that quantum fluctuations in the modular Hamiltonian—
and hence the metric—scale with the area of the entangling surface. They further
analyze how these fluctuations lead to observable shifts in the location of the Rindler
horizon and in the traversal time of photons propagating between mirrors placed on
the boundary of the causal diamond.

This bridge between quantum information-theoretic quantities and spacetime geom-
etry highlights the novelty of their approach. By embedding modular Hamiltonians
in bulk AdS geometries, they establish a precise relation between entanglement
entropy, modular Hamiltonian, and back-reaction on the spacetime. This lays the
groundwork for treating modular Hamiltonian fluctuations not merely as mathemat-
ical artifacts, but as physically meaningful observables that can induce geometric
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distortions.

Building on this structure, Ref. [41] by Banks and Zurek proposes that near-horizon
vacuum states across a wide range of geometries can be described by conformal field
theories. They extend the modular fluctuation framework to flat space, de Sitter (dS),
and AdS backgrounds, and find that for such causal diamonds, the fluctuations again
obey an area law:

⟨Δ𝐾2⟩ = ⟨𝐾⟩ = 𝐴(Σ)
4𝐺𝑑

, (1.11)

where 𝐺𝑑 is the Newton constant in 𝑑 spacetime dimensions. Their argument is
grounded in a thermodynamic interpretation using the Cardy formula, suggesting
that a 2d CFT-like behavior governs physics near generic horizons.

Furthermore, this interpretation offers a deeper symmetry-based motivation for the
VZ effect. The authors explore possible connections to soft graviton theorems,
the BMS symmetry group, and celestial holography, indicating that these modular
fluctuations might be encoded in the infrared structure of spacetime. This suggests
that VZ-type effects could be a manifestation of a more universal principle in
gravitational theory.

Complementary to these approaches, Gukov, Lee, and Zurek investigate the reduc-
tion of 4D Einstein gravity to 2D Jackiw–Teitelboim (JT) gravity in Ref. [174]. This
dimensional reduction simplifies the analysis of quantum fluctuations near horizons
while retaining key gravitational dynamics. In particular, they model a photon trav-
eling across a causal diamond and relate the uncertainty in its round-trip travel time
to modular Hamiltonian fluctuations. Using the partition function

log 𝑍 = log
(∫

𝑑𝐸 𝑒𝐵
√
𝐸−𝛽𝐸

)
, (1.12)

they derive the same fluctuation-entropy relation:

⟨Δ𝐾2⟩ = ⟨𝐾⟩ = 𝑆, (1.13)

and connect it to physical observables such as photon delay times. They further
show that both UV and IR scales influence the measurement uncertainty:

Δ𝑡 ∼
√︁
𝐿ℓ𝑝, (1.14)

where 𝐿 is the interferometer arm length.

This mapping between Minkowski causal diamonds and AdS2× S2 geometries offers
a powerful framework. JT gravity serves as a tractable model that retains essential
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Figure 1.2: Pictorial depiction of the quantum fluctuations modeled by gravitational
shockwaves near the light-front of a causal diamond. Vacuum fluctuations 𝑇𝑢𝑢 and
𝑇𝑣𝑣 induce light cone time delay in 𝛿𝑣 and 𝛿𝑢, respectively, on the lower and upper
half of the causal diamond [312].

features of near-horizon quantum dynamics, reinforcing the notion that modular
Hamiltonian fluctuations have real, potentially observable consequences.

A further compelling insight comes from Ref.[312], where Verlinde and Zurek
trace the origin of these fluctuations to gravitational shockwaves. They show that
vacuum fluctuations in the stress-energy tensor 𝑇𝑢𝑢 and 𝑇𝑣𝑣 can induce longitudinal
metric perturbations ℎ𝑢𝑢 and ℎ𝑣𝑣. For a pictorial representation, see Fig.1.2. These
perturbations produce coordinate shifts:

𝛿𝑣(𝑢, 𝑦) =
∫ 𝑢

−∞
𝑑𝑢′ ℎ𝑢𝑢 (𝑢′, 𝑦), 𝛿𝑢(𝑣, 𝑦) =

∫ 𝑣

−∞
𝑑𝑣′ ℎ𝑣𝑣 (𝑣′, 𝑦), (1.15)

with uncertainty relations of the form:

Δ𝛿𝑢(𝑦)Δ𝛿𝑣(𝑦′) = ℓ𝑑−2
𝑝 𝑓 (𝑦, 𝑦′), (1.16)

where 𝑓 (𝑦, 𝑦′) is the Green’s function on the transverse plane. These relations
resemble those proposed by ’t Hooft [3, 4, 5, 2], and hint at an underlying quantum
algebra on the lightfront.
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To solidify this connection, they derive the effective action governing shockwave-
induced fluctuations. Remarkably, this action takes the form:

𝐼 =

∫
𝑑𝑑−2𝑦

[
− 1
ℓ𝑑−2
𝑝

∫
𝑑𝜏 𝑋𝑢Δ𝑦

𝑑𝑋𝑣

𝑑𝜏
+

∫
𝑑𝜏(𝑋𝑢𝑇𝑢𝜏 + 𝑋𝑣𝑇𝑣𝜏)

]
, (1.17)

and reduces to the modular Hamiltonian on-shell. This unification of shockwave
dynamics and modular fluctuation theory further strengthens the interpretation of
the VZ effect as a real manifestation of quantum geometry. The authors further
compute the fluctuation ⟨Δ𝐾2⟩ by introducing quantum commutation relations for
the transverse shockwave degrees of freedom 𝑋𝑢 (𝑦, 𝜏) and 𝑋𝑣 (𝑦, 𝜏). These coordi-
nates, which describe the null deformations of the causal diamond boundary, satisfy
the canonical commutation relation

[𝑋𝑢 (𝑦, 𝜏), 𝑋𝑣 (𝑦′, 𝜏)] = 𝑖ℓ𝑑−2
𝑝 𝑓 (𝑦, 𝑦′). (1.18)

Using this structure, they quantize the effective shockwave action and compute the
variance of the modular Hamiltonian, obtaining

⟨Δ𝐾2⟩ = ⟨𝐾⟩ = 𝑆. (1.19)

This result not only corroborates the area-scaling behavior derived in AdS/CFT but
also demonstrates that modular fluctuations arise naturally from quantum gravita-
tional shockwave dynamics, thereby reinforcing the interpretation of the VZ effect
as a manifestation of underlying quantum geometry.

Taken together, these results demonstrate that the Verlinde–Zurek effect unites
several powerful ideas in theoretical physics: holography, conformal field theory,
shockwave dynamics, and experimental quantum gravity. Its area-scaling modular
Hamiltonian fluctuations suggest a universal mechanism by which quantum infor-
mation influences spacetime geometry. Furthermore, the close interplay between
boundary observables and bulk dynamics indicates that causal diamonds serve as
natural laboratories for probing quantum aspects of gravity. In particular, these
insights motivate the design of interferometric setups sensitive to coherent vacuum
fluctuations, and they highlight modular fluctuations as viable candidates towards
observables for experimental signatures of quantum gravity.

The Pixellon Model and Quantum Fluctuations of Spacetime
The Pixellon model [328, 219] is a phenomenological framework designed to de-
scribe vacuum fluctuations in quantum gravity, particularly in relation to interfer-
ometric observables. This model arises from the desire to construct a simple yet
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physically motivated description of metric fluctuations that encapsulate key insights
from the AdS/CFT correspondence and holography. Notably, it captures many im-
portant features of the VZ effect, including the area-scaling of modular Hamiltonian
fluctuations and long-range transverse correlations. However, while the Pixellon
model reproduces several aspects of the VZ effect, their exact equivalence remains
an open question.

We begin our summary with Ref. [314], which presents a concrete microscopic
model based on energy fluctuations in holographic degrees of freedom. In this
work, the authors argue that if Planck-scale energy fluctuations are correlated, they
can accumulate in the longitudinal direction and become observable. A central
result is the prediction of a variance in arm length fluctuations:〈(

Δ𝐿

𝐿

)2
〉
∼
ℓ𝑝

𝐿
, (1.20)

which implies that the root-mean-square displacement grows as
√︁
𝐿ℓ𝑝. They show

that if these fluctuations exhibit white-noise statistics in time but are spatially cor-
related across transverse directions, then the induced strain noise would evade as-
trophysical constraints. Importantly, the paper introduces a holographic description
where the light path of a photon defines a causal diamond, and fluctuations on the
bounding surface give rise to measurable effects inside the diamond.

Building upon this, Zurek introduces the Pixellon model in Ref. [328]. Motivated
by AdS/CFT, where the modular Hamiltonian 𝐾 obeys an area law,

⟨𝐾⟩ = ⟨Δ𝐾2⟩ = 𝐴(Σ)
4𝐺

, (1.21)

Zurek proposes a thermal model for the vacuum state with a density matrix

𝜌 =
𝑒−𝛽𝐾

Tr(𝑒−𝛽𝐾)
, (1.22)

and suggests that the degrees of freedom—"pixellons"—are high-occupation bosonic
excitations associated with each holographic pixel. These excitations couple grav-
itationally to test masses and induce position fluctuations. A key estimate of the
induced gravitational potential is given by

2𝜙 =

√︂
𝛼

𝑁
=

ℓ̄𝑝

4𝜋𝐿
, (1.23)

where 𝑁 = 𝐴/4𝐺 is the number of pixels and ℓ̄𝑝 incorporates an O(1) parameter
𝛼 controlling the strength of modular fluctuations. Through the Feynman-Vernon
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influence functional, Zurek computes the resulting mirror displacements in an inter-
ferometer and finds that they lead to a distinct angular correlation pattern, potentially
measurable in next-generation instruments.

The Snowmass 2021 white paper [329] provides a broader theoretical overview,
contextualizing the Pixellon model and the VZ effect within a range of quantum
gravity frameworks. Drawing on analogies to Brownian motion and the random
walk model, the white paper emphasizes that UV-scale fluctuations can integrate
into IR observables via cumulative processes. For instance, they show that spacetime
uncertainty at a light-sheet horizon behaves as

𝛿𝐿2 ∼ ℓ𝑝𝐿, (1.24)

a result consistent with the predictions of both the VZ and Pixellon models. Fur-
thermore, the white paper presents a "dictionary" equating black hole entropy with
modular fluctuations in causal diamonds, suggesting that the holographic structure
of spacetime near horizons could be a universal feature, independent of background
curvature.

Finally, the most detailed and extended treatment of the Pixellon framework appears
in Ref. [219]. Here, Li, Lee, Chen, and Zurek formulate a full scalar field theory
for the Pixellon, modeling it as a bosonic field 𝜙 with a high occupation number,
coupled to the metric in a spherically symmetric configuration:

d𝑠2 = −d𝑡2 + (1 − 𝜙) (d𝑟2 + 𝑟2dΩ2). (1.25)

They derive the interferometric time-delay correlation function:

⟨𝛿𝑇 (𝑡1, n̂1)𝛿𝑇 (𝑡2, n̂2)⟩ ∝
∫

d3𝑝
𝜎pix(𝑝)
2𝜔(𝑝) 𝐹 (𝑟1, 𝑟2, 𝑝,Δ𝑥), (1.26)

where 𝜎pix(𝑝) is the occupation number of the Pixellon mode and 𝐹 encodes the
interferometer response function.

The authors model 𝜎pix(𝑝) as a thermal distribution:

𝜎pix(𝑝) =
1

𝛽𝜔(𝑝) ≈ 𝑎

ℓ𝑝𝜔(𝑝)
, (1.27)

where 𝑎 is a dimensionless constant and 𝜔(𝑝) ∼ 1/𝐿 sets the IR scale. Crucially,
they show that this thermal distribution reproduces the area-law behavior:

⟨Δ𝐾2⟩ ∼ 𝐴(Σ)
4𝐺

, (1.28)
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and that the resulting metric fluctuations produce angularly correlated background,
a key signature of the VZ effect. In contrast to earlier works, they calculate the
full power spectral density and angular response of the interferometer, including
comparisons to experimental sensitivity. The Pixellon-induced background appears
as a broadband signal with coherence across the transverse plane, aligning with the
theoretical expectations of the VZ framework.

In summary, the Pixellon model provides a versatile, tractable tool for modeling
quantum gravitational fluctuations with concrete experimental consequences. While
inspired by the VZ effect and capable of reproducing many of its central features—
notably the area-scaling of fluctuations and transverse coherence—the Pixellon
framework is formulated independently. Whether the two are equivalent at a deeper
level remains an open question. Nonetheless, their striking overlap highlights a
convergence of ideas around holography, modular Hamiltonian, and interferometric
observables, offering a promising direction for probing the quantum structure of
spacetime.

1.2 Laser Interferometers and Experimental Sensitivity
The advent of gravitational wave interferometry has transformed our ability to probe
fundamental physics. Initially designed to detect spacetime distortions caused by
astrophysical events, modern interferometers have reached unprecedented sensitiv-
ity levels, raising the possibility that they could also reveal previously undetectable
quantum gravity effects. The remarkable precision of these instruments makes
them ideal candidates for testing deviations from classical gravity and searching for
imprints of quantum gravity fluctuations. This section reviews recent advances in
gravitational wave detection and explores potential sources of quantum gravity fluc-
tuations in interferometers, discusses the capabilities of next-generation detectors
such as the upcoming GQuEST experiment [235, 236], Cosmic Explorer (CE) [137,
291], and the Einstein Telescope (ET) [193], and examines how interferometry
connects to theoretical predictions of quantum gravity.

Advances in Gravitational Wave Detection
The direct detection of gravitational waves by the Laser Interferometer Gravitational
Wave Observatory (LIGO) in 2015 marked a milestone in observational physics [13],
confirming a key prediction of general relativity. Since then, the LIGO-Virgo-
KAGRA (LVK) network has detected numerous gravitational wave events [7, 8, 9,
10, 11, 106], including mergers of binary black holes and neutron stars. These
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detections have provided insights into astrophysical processes and tested general
relativity in the strong-field regime.

Gravitational wave interferometers operate by using laser light to measure tiny
changes in the relative lengths of perpendicular arms. A passing gravitational wave
alters the proper distance between test masses, creating a phase shift in the laser
beams traveling along the arms. The remarkable sensitivity of these detectors
has been made possible through advances in quantum optics, seismic isolation,
and mirror coating technology. Squeezed vacuum states have been implemented
to reduce quantum shot noise, while cryogenic cooling and improved suspension
systems continue to push the limits of detection [237, 220, 234, 235, 317, 321].

As current-generation detectors approach their fundamental noise limits, researchers
are beginning to explore whether additional, unexplained sources of noise could be
present, potentially arising from quantum fluctuations of spacetime itself. If such
fluctuations exist, they may introduce a new type of signal in interferometric data,
providing an indirect way to probe quantum gravity.

Detection of Stochastic Gravitational Wave Background
A stochastic gravitational wave background (SGWB) refers to a persistent, random
gravitational-wave signal arising from the superposition of many independent and
unresolved sources. Unlike transient events such as individual black hole mergers,
the SGWB forms a diffuse, continuous background of gravitational radiation that
permeates the Universe. Its detection would not only confirm theoretical predictions
but also provide a unique window into both the population statistics of astrophysical
sources and the high-energy processes of the early Universe [226, 98].

The SGWB can arise from two broad classes of sources: astrophysical and cos-
mological. Astrophysical sources involve gravitational waves emitted throughout
cosmic history by processes such as compact binary coalescences, core-collapse
supernovae, and rapidly rotating neutron stars. Among these, the dominant con-
tribution in the frequency band of current ground-based detectors is expected to
come from the unresolved mergers of binary black holes and binary neutron stars.
While nearby mergers are detected as individual events, the distant and numer-
ous ones blend together into a stochastic signal [276, 15]. At lower frequencies,
supermassive black hole binaries—formed during galaxy mergers—contribute sig-
nificantly to the SGWB and are being actively studied through pulsar timing array
experiments [19].
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Cosmological sources of the SGWB are rooted in the early Universe. These include
relic gravitational waves from inflation, phase transitions such as the electroweak
transition, and the dynamics of hypothetical objects like cosmic strings. Inflation-
ary models predict a background arising from quantum fluctuations of spacetime,
stretched to cosmic scales during rapid expansion [43]. First-order phase transitions,
if they occurred, could have generated gravitational waves through bubble collisions
and turbulence in the primordial plasma [43]. Cosmic strings, if they exist, could
continuously emit gravitational radiation through oscillating loops, contributing to a
broadband SGWB [60]. Detection of a cosmological SGWB would yield profound
insights into high-energy physics and the Universe’s earliest moments [98].

Detecting the SGWB is inherently challenging due to its random and persistent na-
ture. The key strategy involves cross-correlating the outputs of spatially separated
gravitational wave detectors to identify common signals buried in otherwise uncor-
related noise [98]. Ground-based interferometers like LIGO and Virgo operate in
the tens to thousands of hertz range and use this technique to search for an SGWB
primarily from stellar-mass binary mergers [15]. At nanohertz frequencies, pulsar
timing arrays monitor the arrival times of pulses from millisecond pulsars across
the sky, searching for the distinctive correlation pattern indicative of a gravitational-
wave background. Recently, these efforts have yielded the first compelling evidence
for an SGWB, likely sourced by supermassive black hole binaries [19]. In the future,
space-based detectors like LISA will explore intermediate frequency bands and may
uncover both astrophysical and cosmological backgrounds [43, 30].

The stochastic gravitational wave background represents both a challenge and an
opportunity: its detection requires precise instrumentation and long observation
times, but its potential to reveal hidden aspects of our Universe—from the life
cycles of compact objects to the physics of the Big Bang—makes it one of the most
exciting frontiers in gravitational wave astronomy [98].

Detection of Gravitational Wave Memory Effect
The gravitational wave memory effect is a distinctive and lasting prediction of general
relativity: it describes a phenomenon in which spacetime undergoes a permanent
deformation after the passage of a gravitational wave. Unlike the familiar oscillatory
stretching and squeezing caused by standard gravitational waves, the memory effect
leaves a net displacement between freely falling test particles that were initially at
rest relative to each other. This “memory” encodes how the energy and momentum



20

radiated by astrophysical events can leave behind a subtle but permanent imprint on
the geometry of spacetime.

There are two main types of memory: linear memory, arising from the change in
the matter configuration of a system (such as mass ejection in a supernova) [243,
117], and nonlinear (Christodoulou) memory, which is purely gravitational in origin
and results from the self-interaction of gravitational waves themselves [99, 100,
242]. The nonlinear memory effect is a remarkable consequence of the nonlinearity
of Einstein’s equations: gravitational waves carry energy, and that energy flux
generates further curvature, producing a net change in the gravitational field [99,
100]. In compact binary coalescences—such as binary black hole or binary neutron
star mergers—the nonlinear memory effect is expected to accompany the merger
and ringdown phase as a slow, non-oscillatory rise in the strain signal.

Detecting this effect is a frontier goal in gravitational wave astronomy. The amplitude
of memory signals is typically an order of magnitude smaller than the oscillatory
component of the waveform, and their characteristic rise time is much longer, placing
them predominantly at low frequencies, close to or below the sensitivity limits of
current ground-based detectors like LIGO and Virgo [143, 215]. This poses a
significant technical challenge, as these detectors are designed to be most sensitive
in the ∼30–300 Hz range, whereas memory contributes primarily below ∼10 Hz.
Nevertheless, several strategies are being pursued to make detection feasible.

One promising approach is stacking the memory signals from multiple binary merger
events. While the memory from any single merger is small and likely undetectable,
combining the signals coherently from tens or hundreds of events can improve the
signal-to-noise ratio. This method takes advantage of the fact that the memory
waveform is slowly varying and predictable, enabling constructive integration over
a large number of detections [268]. With the increasing catalog of mergers detected
by the LVK network, this technique is becoming increasingly powerful.

In addition, the prospect of next-generation gravitational wave observatories sig-
nificantly enhances the outlook for memory detection. Ground-based detectors
like Cosmic Explorer [137, 291] and the Einstein Telescope [136, 304] are be-
ing designed with improved low-frequency sensitivity, potentially allowing them to
observe the memory effect from individual loud events. Meanwhile, space-based
interferometers such as LISA will be particularly well-suited for detecting memory
from supermassive black hole mergers, where the memory amplitude is expected to
be much larger and more easily separated from instrument noise due to the longer
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timescales involved [196].

Beyond the technical and observational aspects, the gravitational wave memory ef-
fect is deeply intertwined with the asymptotic symmetries of spacetime, specifically
the BMS group, which governs the gravitational field at null infinity. Recent theoret-
ical work has shown that memory can be understood as a classical manifestation of
spontaneously broken BMS supertranslations, with direct links to conserved charges
and soft graviton theorems in quantum field theory [298, 188, 183, 189, 259, 257,
182, 185, 244]. These connections elevate the memory effect from a subtle general
relativity prediction to a central feature of the gravitational infrared structure, with
implications that bridge classical and quantum gravity.

Detection of Potential Quantum Gravity Fluctuations as Noise Sources in In-
terferometers
The possibility that quantum gravity effects manifest as a novel source of background
in interferometric measurements has become an intriguing area of investigation [313,
328, 329, 219]. Some theoretical models [313, 314, 328, 41, 312, 219] propose that
spacetime fluctuations at microscopic scales could accumulate over macroscopic
distances, leading to detectable signals in laser interferometry experiments. Unlike
conventional sources of noise, which can be mitigated through improved engineer-
ing, noise originating from quantum fluctuations in vacuum spacetime would be
an inherent property of spacetime itself, setting a fundamental limit on precision
measurement.

One class of models suggests that vacuum energy fluctuations in quantum gravity
induce metric perturbations that ultimately affect the propagation of light [313, 314,
41, 329, 219]. These fluctuations could alter the interference pattern of laser beams,
producing correlations in detector signals. Another approach considers that metric
fluctuations might introduce non-local correlations in space and time [47, 88, 87,
89], leading to signatures distinguishable from classical noise sources.

Additionally, some theories [41, 329, 324, 39] propose that spacetime itself may
exhibit quantum coherence properties, modifying the way light propagates in in-
terferometers. If spacetime possesses an intrinsic quantum structure at extremely
small scales, it could induce subtle fluctuations that accumulate over the laser beam’s
travel time, ultimately resulting in a measurable phase shift in interferometric mea-
surements. These effects would be encoded in the phase space of causal diamonds,
providing a link between interferometry and quantum gravity predictions.
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Next-Generation Gravitational Wave Detectors
Although current interferometers have already demonstrated remarkable sensitivity,
the next generation of detectors will push these limits further, potentially reaching
the regime necessary to detect quantum gravity fluctuations. The proposed Cosmic
Explorer (CE) and Einstein Telescope (ET) will improve strain sensitivity by more
than an order of magnitude, possibly reaching levels of 10−25 or lower [137, 291,
304]. These improvements will be achieved through increased arm lengths, cryo-
genic cooling of mirrors to reduce thermal noise, and enhanced quantum optical
techniques [237, 220, 317].

The upcoming GQuEST experiment [236] aims to empirically investigate models of
quantum gravity by utilizing an ultra-sensitive tabletop laser interferometer. Build-
ing upon technologies developed for LIGO [107] and the Fermilab Holometer [97],
the GQuEST detector seeks to surpass the standard quantum limit by employing
photon-counting techniques [235]. This approach enables the detection of mi-
nuscule fluctuations in spacetime, potentially revealing quantum gravity effects.
Cosmic Explorer [291], planned for deployment in the United States, will feature
40 km arms, significantly longer than the 4 km arms of LIGO, allowing for greater
sensitivity to high-frequency gravitational waves. The Einstein Telescope [304], to
be built underground in Europe, will adopt a triangular configuration with 10 km
arms, designed to operate in both high-frequency and low-frequency modes. These
detectors will not only enhance our ability to observe astrophysical events but may
also be sensitive enough to reveal subtle signals arising from quantum fluctuations
in spacetime itself.

If quantum gravity introduces an additional stochastic background, next-generation
interferometers could isolate and characterize this signal. The key challenge lies
in distinguishing background signals from quantum spacetime fluctuations amid
instrumental and environmental noise. Nonetheless, if such a signal were detected,
it would open an unprecedented experimental window into the quantum nature of
spacetime, offering insights that enrich and complement theoretical progress.

Connecting Interferometry to Theoretical Predictions of Quantum Gravity
Laser interferometers offer a unique platform for testing certain predictions of quan-
tum gravity. Theoretical models [313, 314, 328, 41, 329, 312, 219, 324, 39] suggest
that quantum fluctuations of spacetime could introduce measurable deviations in
high-precision optical systems, making interferometry a promising avenue for ex-
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perimental tests.

One way to establish this connection is through the study of causal diamonds [313,
41, 324, 75], which provide a framework for analyzing quantum fluctuations in
finite regions of spacetime. If these fluctuations influence the travel time of light
or introduce subtle correlations between distant points, they could leave signatures
in interferometric phase shifts. Moreover, some theories [313, 314, 219, 324, 39]
suggest that spacetime fluctuations at small scales could lead to deviations from the
classical geodesic deviation equation, potentially measurable with next-generation
detectors.

Another key connection arises from the study of soft graviton modes and BMS
symmetries, which suggest that gravitational memory effects in asymptotic infinity
could introduce new, non-local correlations in gravitational wave signals [184, 191,
190]. If these effects are present, they would also be potentially observable in
interferometers operating at low noise levels.

By systematically exploring these ideas, this dissertation aims to develop testable
predictions for how quantum gravity fluctuations might manifest in laser interfer-
ometry. By integrating theoretical modeling with experimental sensitivity analysis,
we aim to pinpoint observables through which fundamental physics can be tested
and explored experimentally.

1.3 Scope and Contributions of This Dissertation
The central goal of this dissertation is to develop theoretical models that describe
how quantum gravity fluctuations may manifest at observable scales and to ex-
plore their potential detectability in next-generation laser interferometers. Although
quantum gravity has traditionally been studied as a purely theoretical endeavor,
the extraordinary sensitivity of modern gravitational wave detectors offers a novel
avenue for experimental investigation. By combining insights from string theory,
general relativity, quantum mechanics, statistical mechanics, and precision interfer-
ometry, this dissertation aims to bridge the gap between fundamental theory and
empirical science.

The first part of this dissertation is dedicated to developing a theoretical frame-
work for understanding quantum fluctuations in gravitational systems. We begin
by exploring how concepts from statistical mechanics, such as Brownian motion
and the fluctuation-dissipation theorem, provide a foundation for studying quantum
fluctuations in spacetime. We then analyze the connection between gravity and fluid
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dynamics, investigating how gravitational shockwaves and near-horizon dynamics
encode information about the quantum structure of spacetime. We also employ the
covariant phase space formalism to investigate the role of asymptotic symmetries—
particularly horizon-type BMS symmetries—in understanding gravitational fluctua-
tions and their associated phase space degrees of freedom. A central contribution of
this dissertation is the development of a quantum mechanical description for causal
diamonds, offering a first-principles approach to studying gravitational degrees of
freedom within quantum mechanics.

The second part of this dissertation investigates how quantum gravity fluctuations
could give rise to detectable signatures in high-precision interferometric experi-
ments. Although existing gravitational-wave detectors such as LIGO and Virgo
have achieved remarkable sensitivity, upcoming next-generation detectors, such as
the GQuEST experiment, the Cosmic Explorer, and the Einstein Telescope, will push
these limits even further. These detectors may be capable of detecting signal sources
that arise from quantum gravity effects, offering empirical evidence of Planck-scale
physics. This dissertation explores the potential of laser interferometers to detect
deviations from classical predictions by examining how quantum fluctuations may
alter light propagation and create novel correlations in detector signals. By devel-
oping a theoretical framework to analyze these effects, we offer testable predictions
that could inform future experimental endeavors.

Finally, the dissertation concludes with a complementary investigation of classical
gravitational wave physics. Chapter 6 introduces a model for the stochastic gravita-
tional wave memory background (SGWMB) sourced by supermassive binary black
hole mergers. Building on the non-linear gravitational wave memory effect and
the structure of BMS symmetries, this chapter develops a statistical framework for
the accumulation of memory signals over cosmic time, characterizing the resulting
background as a Brownian-like process with a 1/ 𝑓 2 strain spectrum. We further
assess the detectability of this SGWMB with future space-based detectors such as
LISA. While distinct in origin from the quantum gravity models discussed earlier,
this classical background highlights the rich variety of gravitational wave signatures
accessible to interferometric observatories and underscores the broader theme of
this dissertation: that gravitational wave experiments can serve as powerful probes
of both classical and quantum gravitational phenomena.

The key contributions of this dissertation are summarized as follows:
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1. Theoretical Models of Quantum Fluctuations in Gravity

• Extend statistical mechanics concepts, such as the fluctuation-dissipation
theorem, to gravitational systems.

• Establish a fluid/gravity correspondence framework for causal diamonds
in AdS and Minkowski spacetimes and analyze hydrodynamical proper-
ties associated with causal horizons in response to quantum fluctuations.

• Investigate gravitational shockwaves as quantum sources of near-horizon
fluctuations.

• Develop a quantum mechanics description of causal diamonds in Minkowski
spacetime and identify conserved charges that govern their time evolu-
tion.

2. Implications for High-Precision Interferometry

• Analyze potential quantum gravity fluctuations as a stochastic back-
ground in interferometers.

• Identify concrete observables from quantum gravity effects that could
be observed in interferometric experiments.

• Evaluate the feasibility of detecting quantum gravity fluctuations in next-
generation detectors.

3. Modeling and Detectability of the Stochastic Gravitational Wave Memory
Background

• Construct a theoretical framework for the SGWMB sourced by super-
massive binary black hole mergers.

• Model the SGWMB as a Brownian-type process composed of step-
function strain profiles, and derive its spectral and energy density char-
acteristics.

• Incorporate astrophysical merger rates and redshift-dependent diffusion
to assess the evolution and accumulation of the memory background
across cosmic time.

• Evaluate the detectability of the SGWMB in the millihertz band with
future space-based interferometers such as LISA, and identify key chal-
lenges related to non-Gaussianity and anisotropies in the source popula-
tion.



26

By synthesizing these contributions, this dissertation aims to provide a compre-
hensive framework for understanding how quantum and classical gravitational phe-
nomena may leave detectable imprints in current and future gravitational wave
experiments. Although direct detection of quantum gravity remains an ambitious
goal, this work lays the groundwork for future theoretical and observational devel-
opments that could bring us closer to uncovering the quantum nature of spacetime,
while also enriching our understanding of classical gravitational memory and its
astrophysical implications.

The remainder of this dissertation is structured as follows.

• Chapter 2: Stochastic Description of Near-Horizon Fluctuations in Rindler-
AdS
We study quantum spacetime fluctuations near light-sheet horizons associated
with a Rindler wedge in AdS spacetime, in the context of AdS/CFT. In par-
ticular, we solve the vacuum Einstein equation near the light-sheet horizon,
augmented with the Ansatz of a quantum source smeared out in a Planckian
width along one of the light-cone directions. Such a source, whose physi-
cal interpretation is of gravitational shockwaves created by vacuum energy
fluctuations, alters the Einstein equation to a stochastic partial differential
equation taking the form of a Langevin equation. By integrating fluctuations
along the light sheet, we find an accumulated effect in the round-trip time of a
photon to traverse the horizon of the Rindler wedge that depends on both the
𝑑-dimensional Newton constant 𝐺 (𝑑)

𝑁
and the AdS curvature 𝐿, in agreement

with previous literature utilizing different methods.

• Chapter 3: Rindler Fluids from Gravitational Shockwaves
We study a correspondence between gravitational shockwave geometry and
its fluid description near a Rindler horizon in Minkowski spacetime. Utilizing
the Petrov classification that describes algebraic symmetries for Lorentzian
spaces, we establish an explicit mapping between a potential fluid and the
shockwave metric perturbation, where the Einstein equation for the shock-
wave geometry is equivalent to the incompressibility condition of the fluid,
augmented by a shockwave source. Then we consider an Ansatz of a stochastic
quantum source for the potential fluid, which has the physical interpretation
of shockwaves created by vacuum energy fluctuations. Under such circum-
stances, the Einstein equation, or equivalently, the incompressibility condition
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for the fluid, becomes a stochastic differential equation. By smearing the
quantum source on a stretched horizon in a Lorentz-invariant manner with a
Planckian width (similarly to the membrane paradigm), we integrate fluctua-
tions near the Rindler horizon to find an accumulated effect of the variance in
the round-trip time of a photon traversing the horizon of a causal diamond.

• Chapter 4: The Quantum Mechanics of a Spherically Symmetric Causal
Diamond in Minkowski Spacetime
We construct the phase space of a spherically symmetric causal diamond
in (𝑑 + 2)-dimensional Minkowski spacetime. Utilizing the covariant phase
space formalism, we identify the relevant degrees of freedom that localize to
the 𝑑-dimensional bifurcate horizon and, upon canonical quantization, deter-
mine their commutators. On this phase space, we find two Iyer-Wald charges.
The first of these charges, proportional to the area of the causal diamond, is
responsible for shifting the null time along the horizon and has been well-
documented in the literature. The second charge is much less understood,
being integrable for 𝑑 ≥ 2 only if we allow for field-dependent diffeomor-
phisms and is responsible for changing the size of the causal diamond.

• Chapter 5: Quantum Gravity Background in Next-Generation Gravita-
tional Wave Detectors
We study the effects of geontropic vacuum fluctuations in quantum gravity on
next-generation terrestrial gravitational wave detectors. If the VZ effect pro-
posed in Ref. [314], as modeled in Refs. [328, 219], appears in the upcoming
GQuEST experiment, we show that it will be a large background for astro-
physical gravitational wave searches in observatories like Cosmic Explorer
and the Einstein Telescope.

• Chapter 6: Stochastic Gravitational Wave Memory Background of Su-
permassive Binary Black Hole Mergers and Its Detection in LISA
We construct a classical model of the SGWMB sourced by supermassive bi-
nary black hole mergers and investigate its potential observability in future
space-based detectors. This chapter begins by reviewing the mathematical
framework of stochastic gravitational wave backgrounds and the gravitational
memory effect, particularly in relation to BMS symmetries. We then derive
the SGWMB as a Brownian-type process composed of step-function mem-
ory signals from individual mergers, leading to a characteristic 1/ 𝑓 2 strain
spectrum and a corresponding 𝑓 -linear energy density. By incorporating cos-
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mological merger rates and redshift-dependent diffusion effects, we analyze
the accumulation of memory across cosmic time. Finally, we assess the de-
tectability of the SGWMB by comparing its predicted energy density to the
sensitivity curve of LISA and discuss challenges such as non-Gaussianity and
anisotropies in the source distribution.

• Chapter 7: Summary and Outlook
We summarize the key results and discuss future directions for testing quantum
gravity through high-precision measurement techniques.
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C h a p t e r 2

STOCHASTIC DESCRIPTION OF NEAR-HORIZON
FLUCTUATIONS IN RINDLER-ADS

2.1 Introduction
The quantum mechanical description of gravity is one of the most elusive questions in
physics. An important tool towards understanding the ultimate theory of quantum
gravity is the AdS/CFT correspondence. In this chapter, we aim to study the
dynamics of gravity in the region of AdS spacetime near light sheets shown in
Fig. 2.1. In particular, we seek to understand how spacetime fluctuations alter the
trajectory of a photon in the 𝑑-dimensional bulk. Ref. [313] found a fluctuation
in the round-trip time, 𝑇r.𝑡., of a photon traveling from the AdS boundary to the
Ryu-Takayanagi (RT) surface Σ𝑑−2 in the bulk having area 𝐴(Σ𝑑−2) and back to the
boundary:

Δ𝑇2
r.𝑡.

𝑇2
r.𝑡.

=
2

(𝑑 − 2)

√︄
4𝐺 (𝑑)

𝑁

𝐴(Σ𝑑−2)
. (2.1)

The boundary of a causal diamond created by light sheets is defined by a Rindler
horizon, which has a non-zero temperature and entropy, similar to a black hole
event horizon. The calculation of Ref. [313] (as well as Refs. [314, 41]) operated
through the analogue between the boundary of the Rindler wedge and a black
hole horizon, utilizing techniques developed in, e.g., [91, 195]. In AdS/CFT, the
modular Hamiltonian 𝐾 and its fluctuations Δ𝐾 obey an area law similar to a black
hole horizon [313, 261, 246, 118]

⟨𝐾⟩ = ⟨Δ𝐾2⟩ = 𝐴(Σ𝑑−2)
4𝐺 (𝑑)

𝑁

= 𝑆e𝑛𝑡., (2.2)

where 𝑆e𝑛𝑡. is the entanglement entropy. Further, the metric, if restricting to only
the part of the spacetime covered by the Rindler wedge shown in Fig. 2.1, can be
parameterized in terms of the topological black hole:

𝑑𝑠2 = − 𝑓 (𝜌)𝑑𝜏2 + 𝑑𝜌2

𝑓 (𝜌) +
𝜌2

𝐿2 𝑑Σ
2
𝑑−2 with 𝑓 (𝜌) = 𝜌2

𝐿2 − 1, (2.3)

where 𝐿 is the AdS radius, the radial coordinate 𝜌 ranges from 𝐿 ≤ 𝜌 < ∞.
Ref. [329], based on the calculations of Ref. [314, 313, 41], proposed a dictionary
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Figure 2.1: Depiction of the causal diamond in AdS space anchored at the boundary.
The red solid line traces out the light signal emitted from the boundary to a point
in the bulk on the Ryu-Takayanagi surface labeled by Σ𝑑−2, while the blue solid
line represents the light reflected from the point in the bulk and received at the
boundary. The dashed lines represents the smearing of the light-sheet horizon. The
red and blue shaded region represents quantum gravity induced fluctuations of the
light trajectory.

between the horizons of causal diamonds (in common spacetimes such as AdS and
Minkowski) and black hole horizons.

It has long been known that black hole horizons have a hydrodynamic descrip-
tion, known as the fluid/gravity correspondence [116, 269, 252]. The fluid/gravity
correspondence was made more precise in the context of AdS/CFT, where the hydro-
dynamics of a strongly interacting fluid (e.g., quark-gluon plasma) on the asymptotic
boundary of a lower-dimensional spacetime is described by gravitational dynamics
on a black brane in the bulk of AdS [266, 267, 211, 212]. These works inspired
an extensive literature studying a hydrodynamic effective description of gravity,
e.g., [51, 271, 62, 59, 251, 114]. Further, Refs. [71, 70] studied the dynamics of
gravity in flat spacetime with a cut-off surface, showing that the Einstein Equation
in vacuum reduces to a Navier-Stokes equation in one lower spacetime dimension.
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Here, we utilize an effective fluid description of gravity at the horizon of the Rindler
Wedge in AdS shown in Fig. 2.1 to understand and re-cast the result Eq. (2.1). In
particular, we will study the Einstein equation near the boundary defined by null
sheets in Fig. 2.1. The hydrodynamic behavior of the metric becomes apparent
when the vacuum Einstein equation in the near-horizon limit is augmented with an
Ansatz that the Einstein equation has a quantum source:(

𝑑 − 2
𝐿2 − ∇2

⊥

) 〈
ℎ𝑢𝑢 (𝑢, x⊥)ℎ𝑢𝑢 (𝑢′, x′⊥)

〉
= 8𝜋𝐺 (𝑑)

𝑁

𝛿(𝑢 − 𝑢′)
2𝜋ℓ̃𝑝

𝛿𝑑−2(x⊥ − x′⊥),(
𝑑 − 2
𝐿2 − ∇2

⊥

) 〈
ℎ𝑣𝑣 (𝑣, x⊥)ℎ𝑣𝑣 (𝑣′, x′⊥)

〉
= 8𝜋𝐺 (𝑑)

𝑁

𝛿(𝑣 − 𝑣′)
2𝜋ℓ̃𝑝

𝛿𝑑−2(x⊥ − x′⊥).
(2.4)

Here, 𝑢, 𝑣 are light-cone coordinates, while x⊥ are the (𝑑 − 2) remaining transverse
spatial directions. The left-hand side is derived from the vacuum Einstein Equation
in AdS in the near-horizon limit, while the right-hand side is a quantum noise term,
an Ansatz motivated by the membrane paradigm. In particular, a gravitationally
coupled ultra-local quantum noise term, 𝛿𝑑 (𝑥 − 𝑥′), is reduced on one of the light-
cone directions by smearing one of the light-cone delta functions with a Planckian
width ℓ̃𝑝 across a membrane (or black-brane) at the light-sheet horizon. This
smearing is depicted as a red/blue band in Fig. 2.1. When we solve this equation
to obtain the fluctuation in the photon round-trip traversal time, we will reproduce
Eq. (2.1), provided that the width of the black-brane ℓ̃𝑝 is the reduced Planck-scale,
which we discuss below.

Note that the quantum source on the right-hand side of Eq. (2.4) now appears like
an energetic particle that creates a gravitational shockwave, as proposed by Dray-
’t Hooft [126]. Such shockwaves were recently shown in Ref. [312] to generate
the modular relations in Eq. (2.2), creating a self-consistent physical picture. The
quantum noise term in Eq. (2.4) turns the Einstein equation into a Langevin-type
equation 〈 ¤𝑋 (𝜏) ¤𝑋 (𝜏′)〉 = ⟨𝐹 (𝜏)𝐹 (𝜏′)⟩ , (2.5)

where ⟨𝐹 (𝜏)𝐹 (𝜏′)⟩ = 2D𝛿(𝜏 − 𝜏′) is a noise term with the diffusion coefficient
D characterizing the scale of interaction, and we have integrated Eq. (2.4) over the
(𝑑 − 2) directions transverse to the lightcone coordinates. Here 𝑋 (𝜏) is a position
variable identified with 𝑋 (𝜏) =

∫ 𝜏
ℎ𝜏𝜏 (𝜏′)𝑑𝜏′, where 𝜏 = 𝑢(𝑣) on the lower (upper)

half of the causal diamond, and the two-point of 𝜂(𝜏) describes a stochastic noise
that drives a random walk. Consequently, the classical Einstein equation becomes a
stochastic differential equation, where the quantum uncertainty in spacetime itself
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undergoes a random walk, with the correlations in the (𝑑 − 2) transverse directions
given by the Green function of the transverse Laplacian.

A “smeared-out” horizon is quite analogous to the notion of a stretched horizon,
which is a time-like hypersurface Planckian separated from the true horizon first
proposed by Damour [116]. Later Refs. [269, 252] showed that the properties of a
black hole horizon can be mapped to those on the stretched horizon. In the present
context, we will smear out the horizon by a “reduced Planck length” previously
identified in Refs. [312, 41, 329]:

ℓ̃2
𝑝 ∼

ℓ𝑑−2
𝑝

𝐿𝑑−4 . (2.6)

In four dimensions, the reduced Planck length corresponds to simply the Planck
length, ℓ̃𝑝 ∼ ℓ𝑝 ≡

√
8𝜋𝐺𝑁 .1 In a general number of dimensions, the length scale

in Eq. (2.6) was identified as the fundamental length scale of ’t Hooft commutation
relations in any number of dimensions [312]. ℓ̃𝑝 ∼ 𝐿/

√
𝑆e𝑛𝑡. in Eq. (2.6) was also

identified in Ref. [41] as the decoherence scale of nested causal diamonds, each of
which have 𝑆e𝑛𝑡 degrees-of-freedom. We will find that positing a causal diamond
with a stretched horizon of width given by Eq. (2.6) allows us to reproduce Eq. (2.1),
the main result of Ref. [313].

Lastly, we comment that while the square-root behavior of the variance Δ𝑇2
r.𝑡. in

Eq. (2.1) is perhaps somewhat perplexing from a scattering amplitude or naïve EFT
perspective, it is, however, characteristic of random walk behavior in hydrodynamics,
where fluctuations take a typical form

Δ𝑇2
r.𝑡. ∼ ℓ̃2

𝑝N , (2.7)

where ℓ̃𝑝 is the UV time scale of the hydrodynamic theory (normally associated to
the diffusion coefficient, as discussed in Ref. [329]), and N = 𝐿/ℓ̃𝑝 is the number
of steps in the random walk over the round-trip time.

The outline of this chapter is as follows. In Sec. 2.2 we set the stage by reviewing
the background geometry. In Sec. 2.3, we study the gravitational perturbations to
the background geometry and show that the Einstein equation in near-horizon limit
reduces to an equation relating metric fluctuations and gravitational shockwaves.
In Sec. 2.4, we solve this equation with a source term derived from the t’Hooft

1In 𝑑 > 4, the Planck length is reduced by the IR scale 𝐿 to a scale smaller than ℓ𝑝 , suggesting
to us that in 𝑑 > 4 there is actually no cumulative IR effect of the quantum fluctuations of spacetime.
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commutation relations. Then we use the solution to calculate the uncertainty in
photon round-trip time. Finally, in Sec. 2.5, we discuss implications of our results
and point to a few future directions. Throughout this chapter, we will use 8𝜋𝐺 (𝑑)

𝑁
=

ℓ𝑑−2
𝑝 for the gravitational constant and Planck length in 𝑑 dimensions.

2.2 Preliminaries: Background Geometry
As discussed in the introduction, we consider the geometric setup in Fig. 2.1. A
photon is emitted from the boundary into the bulk of 𝑑-dimensional AdS space,
reflected by a “mirror” on the RT surface in the bulk, and finally received on
the boundary. We briefly review three coordinates used throughout this chapter,
Poincaré, Eddington-Finkelstein (EF), and Kruskal–Szekeres. The first (and most
standard) will be useful for interpreting the results in terms of the observable time
delay. The EF coordinates are closely related to topological-black hole coordinates
introduced in Eq. (2.3), and are useful as an intermediate step to derive equations
of motion governing the dynamics of near-horizon metric fluctuations. Finally,
the Kruskal–Szekeres coordinates are the curved space analog of the light-cone
metric. The light-cone metric is used extensively to study the effects of spacetime
fluctuations of a causal diamond in Minkowski space in Refs. [314, 312], and a
natural generalization to curved spacetime is provided by the Kruskal–Szekeres
coordinates. We now proceed to briefly summarize these three coordinate systems,
as useful for our discussion.

From Topological Black Hole to Poincaré Metric
While the topological black hole metric described in Sec. 2.1 is suitable to study the
interior of the bulk causal diamond, there is also a causal diamond with spherical
symmetry on the boundary, such that the interferometer could also be viewed as
being on the (suitably regularized) boundary. The Poincaré metric describes the
near boundary region of the 𝑑-dimensional AdS space:

𝑑𝑠2 =
𝐿2

𝑧2 (𝑑𝑧
2 − 𝑑𝑥2

0 + 𝛿𝑎𝑏𝑑𝑥
𝑎𝑑𝑥𝑏) for 𝑎, 𝑏 = 1, . . . , 𝑑 − 2. (2.8)

A causal diamond in AdS is illustrated in Fig. 2.1, in which the blue line denoted
by 𝐵 is the finite spherical entangling surface on the boundary, described by the
inequality

∑
𝑖 𝑥

2
𝑖
≤ 𝐿2. The full interior of the causal diamond satisfies the inequality

[313]
𝐿2 − 𝑧2 −

∑︁
𝑖

𝑥2
𝑖 + 𝑥2

0 ≥ 2𝐿 |𝑥0 |. (2.9)
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The transformation between the Poincaré and topological black hole metrics is given
in Refs. [91, 313], which we do not repeat since the details are not important for the
purpose of this chapter.

From Topological Black Hole to Kruskal–Szekeres Metric
Our interest is in the dynamics of spacetime fluctuations near the light front of
Rindler-AdS space. The light front coincides with the horizon of the topological
black hole metric, where Eq. (2.3) becomes singular, and it becomes desirable to
perform a coordinate transformation to overcome the apparent pathology of Eq. (2.3).
We transform the topological black hole metric into the Eddington-Finkelstein (EF)
metric as an intermediate step, defining the tortoise coordinate 𝜌∗

𝜌∗ ≡
∫ 𝜌 𝑑𝜌′

𝑓 (𝜌′) =
𝐿

2
ln
𝜌 − 𝐿
𝜌 + 𝐿 , (2.10)

where 𝑓 (𝜌) = 𝜌2/𝐿2 − 1. Then we define two new coordinates𝑈 and 𝑉

𝑉 ≡ 𝜏 + 𝜌∗ and 𝑈 ≡ 𝜏 − 𝜌∗. (2.11)

In terms of𝑈 and𝑉 , the original topological black hole metric in Eq. (2.3) becomes

𝑑𝑠2 = − 𝑓 (𝜌)𝑑𝑉2 + 2𝑑𝑉𝑑𝜌 +
( 𝜌
𝐿

)2
𝑑Σ2

𝑑−2, (EF-ingoing) (2.12)

𝑑𝑠2 = − 𝑓 (𝜌)𝑑𝑈2 − 2𝑑𝑈𝑑𝜌 +
( 𝜌
𝐿

)2
𝑑Σ2

𝑑−2. (EF-outgoing) (2.13)

The metric 𝑑Σ2
𝑑−2 in the transverse space is given by

𝑑Σ2
𝑑−2 = 𝑑𝜒2 + sinh2

( 𝜒
𝐿

)
𝑑Ω2

𝑑−3. (2.14)

The form of Eq. (2.14) plays an important role in determining the angular correlation
functions of uncertainty in the photon traversal time. We will discuss angular
correlations in detail in Sec. 2.4. Both metrics above are non-singular at the horizon.
While Eq. (2.12) describes the trajectories of particles on the upper half of the causal
diamond in Fig. 2.1, Eq. (2.13) describes the trajectories of particles on the lower
half.

Following Refs. [23, 241], we define the “light-cone” coordinates in Rindler-AdS
space

𝑢 = −𝐿𝑒−𝑈/𝐿 = −𝐿

√︄
𝜌 − 𝐿
𝜌 + 𝐿 𝑒

−𝜏/𝐿 , 𝑣 = 𝐿𝑒𝑉/𝐿 = 𝐿

√︄
𝜌 − 𝐿
𝜌 + 𝐿 𝑒

𝜏/𝐿 , (2.15)
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where the second equality relates 𝑢 and 𝑣 to the topological black hole coordinates
(𝜏, 𝜌). Rindler-AdS space in the Kruskal-Szekeres metric becomes

𝑑𝑠2 = − 4𝐿4𝑑𝑢𝑑𝑣

(𝐿2 + 𝑢𝑣)2 +
(
𝐿2 − 𝑢𝑣
𝐿2 + 𝑢𝑣

)2

𝑑Σ2
𝑑−2. (2.16)

An advantage of the Kruskal–Szekeres metric is that the “light-cone time” 𝑢 and 𝑣
are proportional to the physical time of a photon traveling inside an interferometer
located on the (regularized) boundary at 𝑧 = 𝑧𝑐. The proportionality constant turns
out to be (𝐿/𝑧𝑐) [313], the conformal factor of the Poincaré metric. In summary,
the elapsed lightcone time in traversing the lower (upper) causal diamond is Δ𝑢 = 𝐿

(Δ𝑣 = 𝐿), and the physical time 𝑇r.𝑡. ≈ 2𝐿2/𝑧𝑐.

Our main task is to determine how spacetime fluctuations would alter the classical
traversal time of the light beams; to do so, we start with studying metric perturbations
about the Rindler-AdS background geometry in the subsequent section.

2.3 Near Horizon Metric Perturbations
Given the background geometry in Sec. 2.2, our goal is to study fluctuations on top
of this background, and how they will give rise to a potentially observable effect
in an interferometer experiment. Spacetime fluctuations are encapsulated by metric
perturbations. Because these fluctuations are small in amplitude, we utilize the
linearized Einstein equations to study the dynamics of the perturbed metric.

The vacuum Einstein equations for AdS𝑑 spacetime reads

𝐺𝑀𝑁 ≡ 𝑅𝑀𝑁 − 1
2
𝑔𝑀𝑁𝑅 + Λ𝑔𝑀𝑁 = 0, (2.17)

where 𝑀, 𝑁 = 1, . . . , 𝑑 are the indices of AdS𝑑 bulk spacetime, and Λ = −(𝑑 −
1) (𝑑 − 2)/2𝐿2 is the cosmological constant. All the metrics in Secs. 2.1 and 2.2 are
solutions to the vacuum Einstein equations.

We are interested in metric fluctuations in the near-horizon region of Rindler-AdS
space, so it is most convenient to use the EF coordinates. Metric perturbations along
the past (future) light front are described by Eq. (2.13) (Eq. (2.12)). We choose to
study metric fluctuations along the past light front, which corresponds to using the
EF-outgoing metric. A completely analogous analysis applies for the future light
front. The perturbed metric along the past light front is given by

𝑑𝑠2 = − 𝑓 (𝜌)𝑑𝑈2 − 2𝑑𝑈𝑑𝜌 +
( 𝜌
𝐿

)2
𝑑Σ2

𝑑−2

+ 𝐻𝑈𝑈𝑑𝑈2 + 2𝐻𝑈𝜌𝑑𝑈𝑑𝜌 + 𝐻𝜌𝜌𝑑𝜌2 + · · · ,
(2.18)
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where (· · · ) denotes 𝐻𝑎𝑏, 𝑎, 𝑏 = 1, . . . , 𝑑 − 2 in the transverse space.

The perturbed metric in Eq. (2.18) solves the linearized Einstein equation for
|𝐻𝑀𝑁 | ≪ 1, which in AdS space is given by [211, 212]

𝛿𝐺
(1)
𝑀𝑁

≡ 𝑅(1)
𝑀𝑁

+ 𝑑 − 1
𝐿2 𝐻𝑀𝑁 = 0, (2.19)

where the perturbed Ricci tensor 𝑅(1)
𝑀𝑁

satisfies [266]

𝑅𝑀𝑁 = 𝑅
(0)
𝑀𝑁

+ 𝑅(1)
𝑀𝑁

+ · · · = − (𝑑 − 1)
𝐿2 (𝑔(0)

𝑀𝑁
+ 𝐻𝑀𝑁 ). (2.20)

Here, 𝑔(0)
𝑀𝑁

denotes the background metric. Next, we expand the perturbations as a
power series in the near-horizon region [23, 58]

𝐻𝑀𝑁 = 𝐻
(0)
𝑀𝑁

+ 𝐻 (1)
𝑀𝑁

(
𝑟 − 𝐿
𝐿

)
+ · · · , (2.21)

and 𝐻 (0)
𝑀𝑁

can be written as

𝐻
(0)
𝑀𝑁

(𝑈, x⊥) =
∫

𝑑𝜔

2𝜋
ℎ𝑀𝑁 (x⊥)𝑒−𝑖𝜔𝑈 , (2.22)

where x⊥ denotes the coordinates in the transverse space, and 𝜔 is the frequency
conjugate to 𝑈. Following the procedure in Refs. [58, 23], one can show that
the 𝑈𝑈-component of the linearized Einstein equation describes the Dray-’t Hooft
shockwave perturbation in Refs. [126, 282]. Substituting Eq. (2.22) into Eq. (2.19),
we find the𝑈𝑈-component of Eq. (2.19) to be [23, 58]

𝑑 − 2
𝐿2

[
1 + 𝐿

(
4𝜋𝑇 − 𝑖𝜔 − 3

𝐿

)]
ℎ
(0)
𝑈𝑈

− ∇2
⊥ℎ

(0)
𝑈𝑈

− 𝑖𝜔 + 2𝜋𝑇
𝐿

𝑋 = 0,
(2.23)

where
𝑇 =

𝑓 ′(𝜌)
4𝜋

����
𝜌=𝐿

=
1

2𝜋𝐿
(2.24)

is the Hawking temperature. The variable 𝑋 denotes all ℎ(0)
𝑀𝑁

coupled to ℎ(0)
𝑈𝑈

via
Eq. (2.19). In general, the exact form of 𝑋 is quite complicated. For instance,
Ref. [23] has computed the form of 𝑋 in AdS4 to be

𝑋
𝑑=4
= 2 coth(𝜒/𝐿)ℎ(0)

𝑈𝜒
+ 𝑖𝜔𝐿

(
csch2(𝜒/𝐿)ℎ(0)

𝜃𝜃
+ ℎ(0)𝜒𝜒

)
+ 2 csch2(𝜒/𝐿)

𝜕ℎ
(0)
𝑈𝜃

𝜕𝜃
+ 2𝐿

𝜕ℎ
(0)
𝑈𝜒

𝜕𝜒
.

(2.25)
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Fortunately, the precise form of 𝑋 will not be relevant for the purposes of this
chapter.

Eq. (2.23) thus imposes a constraint relating ℎ(0)
𝑈𝑈

to other metric perturbation com-
ponents. However, when 𝜔 = 𝜔★ = 𝑖2𝜋𝑇 , the second line of Eq. (2.23) vanishes
altogether. The resulting equation takes on the same form of the partial differen-
tial equation describing metric perturbations due to gravitational shockwaves [126,
282]. As pointed out in Ref. [58], the point 𝜔★ = 𝑖2𝜋𝑇 is very special, as 2𝜋𝑇 is
also known as the Lyapunov exponent: 2𝜋𝑇 = 𝜆m𝑎𝑥 , which characterizes chaotic
behavior in a quantum system [283, 274, 285, 59]. Following the argument of
Refs. [58, 23], one deduces that at the point 𝜔★ = 𝑖2𝜋𝑇 , ℎ(0)

𝑈𝑈
decouples from the

rest of ℎ(0)
𝑀𝑁

and becomes an independent scalar degree of freedom which satisfies
the equation (

𝑑 − 2
𝐿2 − ∇2

⊥

)
ℎ
(0)
𝑈𝑈

= 0. (2.26)

The solution to this equation is readily obtained by setting ∇2
⊥ℎ

(0)
𝑈𝑈

= −𝑘2
⊥ℎ

(0)
𝑈𝑈

, with
𝑘2
⊥ being the eigenvalue of the transversal Laplacian operator. Therefore, Eq. (2.26)

is reduced to an algebraic equation

𝑑 − 2
𝐿2 + 𝑘2

⊥ = 0. (2.27)

We can re-write Eq. (2.27) by substituting 𝜔★ = 𝑖2𝜋𝑇 = 𝐿−1 into the expression

𝜔★ = 𝑖𝐷𝑘2
⊥, 𝐷 =

𝐿

𝑑 − 2
=
𝑣𝐵

2𝜋𝑇
, (2.28)

so it resembles the dispersion relation arising from a diffusive system. The diffusivity
𝐷 characterizes the so-called energy diffusion [58], because the metric perturbation
is in the𝑈𝑈-component. The factor of 1/(𝑑 − 2) = 𝑣𝐵 has been shown [23, 262] to
be the butterfly velocity in Rindler-AdS space. The butterfly velocity characterizes
the speed of information propagating in a system with a horizon (e.g., a black hole),
and it is closely related to the propagation of gravitational shockwaves and quantum
chaos [283, 281, 301, 285]. Furthermore, Ref. [170] studying an AdS5 black-brane
obtained a similar diffusive dispersion with the same Lyapunov exponent, but with
a different 𝑣𝐵. In fact, several recent works [57, 56, 59, 58] have shown that energy
diffusion phenomenon is quite universal in various holographic systems, which all
have the same Lyapunov exponent, but with a geometry-dependent 𝑣𝐵.

So far our discussions have been completely classical. Eq. (2.26) also describes
classical gravitational shockwaves [126, 23, 58, 170] if we add a source, where the
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right-hand side is 8𝜋𝐺𝑁𝑇𝑈𝑈 ∼ ℓ𝑑−2
𝑝

𝛿(𝑈−𝑈0)
2𝜋ℓ̃𝑝

𝛿𝑑−2(x⊥ − x0
⊥) for a classical shockwave

stress-energy tensor propagating at 𝑥0 = (𝑈0, x0
⊥) with momentum 𝑝𝑣 =

1
2𝜋ℓ̃𝑝

. It is,
however, possible to also consider quantum sources. In particular, we focus on a
quantum source from vacuum energy fluctuations, motivated by the ’t Hooft com-
mutation relations [5, 2]. In particular, Ref. [312] showed that vacuum fluctuations
in Minkowski space, fixed by the ’t Hooft commutation relations, give rise to the
modular fluctuations in Eq. (2.2). In the following, we will utilize this result and
apply it to Rindler-AdS space, by adding a quantum source to the vacuum Einstein
equation Eq. (2.26) of size fixed by the ’t Hooft commutation relations. In so do-
ing, we will reproduce quantum fluctuations in the round-trip photon travel time in
Eq. (2.1).

Quantum Sources from the ’t Hooft Commutation Relation
We will ultimately be interested in studying Eq. (2.26) in the presence of shockwaves
from quantum fluctuations. In particular, these quantum fluctuations are motivated
by the commutation relations proposed in Ref. [312], which are written in light-cone
coordinates (𝑢, 𝑣). Thus, we will transform the EF coordinates (𝑈, 𝜌) of Eq. (2.26)
to the light-cone (𝑢, 𝑣) Kruskal–Szekeres metric, taking ℎ𝑈𝑈 → ℎ𝑢𝑢, where we
suppress the superscript henceforth. Because 𝑢 and 𝑈 are related via Eq. (2.15), it
is straightforward to see that in the Kruskal–Szekeres metric, Eq. (2.26) is(

𝑑 − 2
𝐿2 − ∇2

⊥

)
ℎ𝑢𝑢 = 0. (2.29)

Due to vacuum energy fluctuations, the right hand side of Eq. (2.29) is replaced
with some stress-energy tensor 𝑇𝑢𝑢.

Here we will assume that 𝑇𝑢𝑢 captures the quantum nature of the fluctuations. This
is the Ansatz of this chapter that differs from other literature, which further will be
crucial for obtaining the fluctuation in the round-trip photon traversal time obtained
in Ref. [313]. In particular, we make use of a commutation relation (closely related
to those proposed by ’t Hooft) at unequal times [312]

[𝑇𝑢𝑢 (𝑥), ℎ𝑣𝑣 (𝑥′)] = 𝑖𝛿𝑑 (𝑥 − 𝑥′), (2.30)

where 𝑥 denotes the coordinates in Rindler-AdS𝑑 space, written in light-cone coor-
dinates. The 𝑑-dimensional delta function can be factorized into three parts

𝛿𝑑 (𝑥 − 𝑥′) = 1
2
𝛿(𝑢 − 𝑢0)𝛿(𝑣 − 𝑣0)𝛿𝑑−2(x⊥ − x′⊥), (2.31)
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where 𝑢0 and 𝑣0 denote the location of the bifurcate horizon, and 𝛿𝑑−2(x⊥−x′⊥) is the
(𝑑 − 2)-dimensional delta function in the transverse space. Note that the additional
factor of 1/2 comes from the normalization condition for the delta function in the
Kruskal-Szekeres metric. Imposing the commutation relation in Eq. (2.30) implies
that ℎ𝑢𝑢 and ℎ𝑣𝑣 are no longer classical metric perturbations, but have been promoted
to quantum operators. By further imposing the linearized Einstein equation on
Eq. (2.30), we obtain an operator equation(
𝑑 − 2
𝐿2 − ∇2

⊥

) [
ℎ𝑢𝑢 (𝑢, x⊥), ℎ𝑣𝑣 (𝑣, x′⊥)

]
=
𝑖

2
ℓ𝑑−2
𝑝 𝛿(𝑢 − 𝑢0)𝛿(𝑣 − 𝑣0)𝛿𝑑−2(x⊥ − x′⊥).

(2.32)

Note that the transverse Laplacian acts only on ℎ𝑢𝑢 (𝑢, x⊥), and not the coordinates
marked with a prime in ℎ𝑣𝑣 (𝑣, x′⊥). Eq. (2.32) then implies that[

ℎ𝑢𝑢 (𝑢, x⊥), ℎ𝑣𝑣 (𝑣, x′⊥)
]
=
𝑖

2
ℓ𝑑−2
𝑝 𝛿(𝑢 − 𝑢0)𝛿(𝑣 − 𝑣0) 𝑓 (x⊥; x′⊥), (2.33)

where ℓ𝑑−2
𝑝 = 8𝜋𝐺 (𝑑)

𝑁
, and 𝑓 (x⊥; x′⊥) is the Green function that satisfies(
𝑑 − 2
𝐿2 − ∇2

⊥

)
𝑓 (x⊥; x′⊥) = 𝛿𝑑−2(x⊥ − x′⊥). (2.34)

Since 𝑇𝑢𝑢 is a stochastic source in vacuum, this implies that ⟨ℎ𝑢𝑢⟩ and ⟨ℎ𝑣𝑣⟩ vanish,
where ⟨· · ·⟩ denotes the expectation value of any minimum uncertainty state. How-
ever, the variance

〈
ℎ2
𝑢𝑢

〉
and

〈
ℎ2
𝑣𝑣

〉
are non-vanishing by the virtue of the Robertson

uncertainty relation in quantum mechanics

〈
ℎ2
𝑢𝑢

〉 〈
ℎ2
𝑣𝑣

〉
=

���� 1
2𝑖

⟨[ℎ𝑢𝑢, ℎ𝑣𝑣]⟩
����2 =

(
ℓ𝑑−2
𝑝

4

)2 [
𝛿(𝑢 − 𝑢0)𝛿(𝑣 − 𝑣0) 𝑓 (x⊥; x′⊥)

]2
.

(2.35)
Two important comments are in order.

(1) Formally, the ’t Hooft commutation relations were formulated on the horizon
of a black hole. In the present context, that would imply Eq. (2.35) is evaluated
at the bifurcate horizon, which is located at 𝑢0 = 𝑣0 = 0. However, according
to Refs. [41, 329], the light beam in an interferometer system passes through a
series of causal diamonds. Specifically, the maximal causal diamond in Fig. 2.1
is foliated by a sequence of nested causal diamonds. Each of the adjacent causal
diamonds is separated by a length scale, called the decoherence length ℓ̃𝑝, given
in Eq. (2.6). Subsequent causal diamonds separated by a distance larger than
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ℓ̃𝑝 become statistically independent [41]. A schematic of the nested causal
diamonds is shown in Fig. 2.2. Along the past light front, we keep 𝑣 fixed, while
𝑢 varies along the trajectory; along the future light front, the opposite holds.
From the viewpoint of nested causal diamonds, a light beam traveling along the
past light front will experience a series of statistically independent fluctuations.
Along the past (future) null trajectory, where the clock is 𝑢 (𝑣), one can define the
variance

〈
ℎ2
𝑢𝑢

〉
≡

〈
ℎ𝑢𝑢 (𝑢, x⊥)ℎ𝑢𝑢 (𝑢′, x′⊥)

〉
(
〈
ℎ2
𝑣𝑣

〉
≡

〈
ℎ𝑣𝑣 (𝑣, x⊥)ℎ𝑣𝑣 (𝑣′, x′⊥)

〉
),

where 𝑢′ (𝑣′) denotes the location of the bifurcate horizons of each nested causal
diamond.

(2) We postulate the past (future) light front will be smeared out by ℓ̃𝑝, which
operationally means the delta function which localizes the light front at 𝑣0 (𝑢0),
𝛿(𝑣 − 𝑣0) = 𝛿(𝑣) (𝛿(𝑢 − 𝑢0) = 𝛿(𝑢)) will be replaced by a regularized delta
function of Planckian width. This is quite similar to the implementation of a
stretched horizon for a black hole in Refs. [302, 281, 301]. In the present case,
we implement the “smearing” of the light front by regularizing 𝛿(𝑣) with a
Poisson kernel of a Lorentzian width ℓ̃𝑝:

𝛿(𝑣) = lim
ℓ̃𝑝→0

2
𝜋

ℓ̃𝑝

ℓ̃2
𝑝 + 𝑣2

≈ 2
𝜋ℓ̃𝑝

along the past light front 𝑣 → 0. (2.36)

These points are illustrated in Fig. 2.2, where the broadening of the delta function
along the past and future light front is shown as a shaded red/blue gradient. Note
that our final result for the fluctuations in the photon round-trip traversal time may
depend on the precise form of the delta-function regularization by an O(1) number,
but can be absorbed into anO(1) (dimensionless) coefficient by matching the present
hydrodynamic result to the earlier result in Eq. (2.1). The regularization scheme
thus will not impact the overall physical picture since the dimensionful scales match
between the present hydrodynamic calculation and the result of Ref. [313].

In summary, Eq. (2.35) together with Eq. (2.36), at a fixed point on the past or future
null horizon, implies a non-vanishing two-point function of ℎ𝑢𝑢 and ℎ𝑣𝑣 given by〈

ℎ𝑢𝑢 (𝑢, x⊥)ℎ𝑢𝑢 (𝑢′, x′⊥)
〉
=
ℓ𝑑−2
𝑝

2𝜋ℓ̃𝑝
𝛿(𝑢 − 𝑢′) 𝑓 (x⊥; x′⊥), (2.37)

〈
ℎ𝑣𝑣 (𝑣, x⊥)ℎ𝑣𝑣 (𝑣′, x′⊥)

〉
=
ℓ𝑑−2
𝑝

2𝜋ℓ̃𝑝
𝛿(𝑣 − 𝑣′) 𝑓 (x⊥; x′⊥). (2.38)

In the next section, we study how these fundamental commutators can be evolved to
give the integrated uncertainty in the light traversal time.
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Figure 2.2: The causal diamond in Rindler-AdS space is foliated with a series
nested causal diamonds. The separation between two adjacent diamonds is the
decoherence length ℓ̃𝑝. Each nested causal diamond intersects with the past (future)
light front at a bifurcate horizon along the past (future) light front. The highlighted
region corresponds to the near-light-sheet region of spacetime, where quantum
fluctuations cause a probe photon to undergo random walk.

2.4 Uncertainty in Photon Traversal Time From Near-horizon Quantum Fluc-
tuations

In the previous section, we have argued that vacuum energy fluctuations in the
near-horizon region give rise to non-vanishing variance of the metric perturbations,
Eqs. (2.37) and (2.38). The equations that govern the two-point function of ℎ𝑢𝑢 and
ℎ𝑣𝑣 are shown in Eq. (2.4). Note that the two-point functions of metric perturbations
themselves are not observables in an interferometer system. To connect the equations
above to a quantity more directly connected to the observable, we first define two
“light-ray” operators as in Ref. [312]:

𝑋𝑣 = 𝑣 +
∫ 𝑢

𝑑𝑢′ ℎ𝑢𝑢 (𝑢′, x⊥), (2.39)

𝑋𝑢 = 𝑢 +
∫ 𝑣

𝑑𝑣′ ℎ𝑣𝑣 (𝑣′, x⊥). (2.40)
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Ref. [312] has demonstrated that the ’t Hooft commutation relations in Eq. (2.30)
applied on the bifurcate horizon implies a commutation relation of 𝑋𝑢 and 𝑋𝑣:[

𝑋𝑢 (x⊥), 𝑋𝑣 (x′⊥)
]
= 𝑖ℓ𝑑−2

𝑝 𝑓 (x⊥; x′⊥). (2.41)

Presently, we are interested in obtaining the accumulated uncertainty along the light
sheet. This uncertainty is computed from solving the following equations:(

𝑑 − 2
𝐿2 − ∇2

⊥

) 〈
𝜕𝑢𝑋

𝑣 (𝑢, x⊥)𝜕𝑢′𝑋𝑣 (𝑢′, x′⊥)
〉
=
ℓ𝑑−2
𝑝

2𝜋ℓ̃𝑝
𝛿(𝑢 − 𝑢′)𝛿𝑑−2(x⊥ − x′⊥),

(2.42)(
𝑑 − 2
𝐿2 − ∇2

⊥

) 〈
𝜕𝑣𝑋

𝑢 (𝑣, x⊥)𝜕𝑣′𝑋𝑢 (𝑣′, x′⊥)
〉
=
ℓ𝑑−2
𝑝

2𝜋ℓ̃𝑝
𝛿(𝑣 − 𝑣′)𝛿𝑑−2(x⊥ − x′⊥).

(2.43)

Eqs. (2.42) and (2.43) look similar to a Langevin equation that describes random
motion of a particle suspending in a dissipative fluid [214]. Recall that in statis-
tical mechanics, the one-dimensional Langevin equation is a stochastic differential
equation which takes on the form (for a massless particle) of Eq. (2.5). Besides the
spatial response in the transverse plane, we can clearly identify quantities derived
from gravitational shockwave dynamics in Eqs. (2.42) and (2.43) with the dynamics
of a microscopic particle in a fluid subjected to a random force. In particular, we
find the following identifications:

¤𝑋 (𝜏, x⊥) =

𝜕𝑢𝑋

𝑣 (𝑢, x⊥) past light front,

𝜕𝑣𝑋
𝑢 (𝑣, x⊥) future light front.〈

𝐹 (𝜏, x⊥)𝐹 (𝜏′, x′⊥)
〉
∼


𝛿(𝑢 − 𝑢′) 𝑓 (x⊥ − x′⊥) past light front,

𝛿(𝑣 − 𝑣′) 𝑓 (x⊥ − x′⊥) future light front.

(2.44)

We now compute the observable from Eqs. (2.42) and (2.43). An appropriate
observable in an interferometer is the total time delay of a light beam traversing the
whole causal diamond. This time-delay is measured on the boundary in the Poincaré
metric: 𝑇r.𝑡. = 𝐿𝑥0/𝑧𝑐. To compute the total time delay, we need to integrate over
all local (and statistically uncorrelated at distinct spacetime points) fluctuations
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generated by the quantum uncertainty in Eqs. (2.42) and (2.43):(
𝑑 − 2
𝐿2 − ∇2

⊥

) 〈
𝑋𝑣 (x⊥)𝑋𝑣 (x′⊥)

〉
=
ℓ𝑑−2
𝑝 𝛿𝑑−2(x⊥ − x′⊥)

2𝜋ℓ̃𝑝

∫ 0

𝑢𝑖

𝑑𝑢

∫ 0

𝑢𝑖

𝑑𝑢′ 𝛿(𝑢 − 𝑢′)

= −
ℓ𝑑−2
𝑝

2𝜋ℓ̃𝑝
𝑢𝑖𝛿

𝑑−2(x⊥ − x′⊥), (2.45)(
𝑑 − 2
𝐿2 − ∇2

⊥

) 〈
𝑋𝑢 (x⊥)𝑋𝑢 (x′⊥)

〉
=
ℓ𝑑−2
𝑝 𝛿𝑑−2(x⊥ − x′⊥)

2𝜋ℓ̃𝑝

∫ 𝑣 𝑓

0
𝑑𝑣

∫ 𝑣 𝑓

0
𝑑𝑣′ 𝛿(𝑣 − 𝑣′)

=
ℓ𝑑−2
𝑝

2𝜋ℓ̃𝑝
𝑣 𝑓 𝛿

𝑑−2(x⊥ − x′⊥). (2.46)

The integration limits in Eqs. (2.45) and (2.46) are:

𝑣 𝑓 = −𝑢𝑖 = 𝐿. (2.47)

Notice that these equations already exhibit the random-walk behavior, shown in
Eq. (2.7), proposed in Refs. [314, 41, 329], where the total uncertainty in a length
operator accumulates linearly with the size of the causal diamond (which here is
given by 𝑢𝑖, 𝑣 𝑓 ).

We first consider the case in which the full symmetry of the transverse space
is respected (corresponding to the 𝑠-wave mode), in order to directly compare
with Eq. (2.1). To extract this information from our analysis (which includes the
transverse response), we thus (i) take the operator ∇2

⊥ → 0 in the left-hand side of
Eqs. (2.45), (2.46), and (ii) integrate 𝛿𝑑−2(x⊥ − x′⊥) over the area and then divide by
the area of Σ𝑑−2 in the right-hand side of Eqs. (2.45), (2.46):

(𝑖) :
𝑑 − 2
𝐿2 − ∇2

⊥ → 𝑑 − 2
𝐿2 ,

(𝑖𝑖) : 𝛿𝑑−2(x − x′⊥) →
1

𝐴(Σ𝑑−2)

∫
𝛿𝑑−2(x − x′)𝑑Σ𝑑−2 =

1
𝐴(Σ𝑑−2)

. (2.48)

In an interferometer, the quantity related to the observable is the round-trip time of
a light beam measured by a clock on the boundary located at 𝑧 = 𝑧𝑐 [313]:

𝑇r.𝑡. =
𝐿

𝑧𝑐
(𝑣 𝑓 − 𝑢𝑖) ≈

𝐿

𝑧𝑐
(2𝐿). (2.49)

Fluctuations of 𝑇r.𝑡. are captured by the two-point function in Eqs. (2.45) and (2.46),
which is now found to be:

Δ𝑇2
r.𝑡.

𝑇2
r.𝑡.

≡ 1
𝑇2

r.𝑡.

(〈
𝑋𝑣 (x⊥)𝑋𝑣 (x′⊥)

〉
+

〈
𝑋𝑢 (x⊥)𝑋𝑢 (x′⊥)

〉)
=

1
2(𝑑 − 2)

(
𝐿

ℓ̃𝑝

)
1
𝑆e𝑛𝑡.

.

(2.50)
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Here we have used the definition of the entanglement entropy 𝑆e𝑛𝑡. ≡ 𝐴(Σ𝑑−2)/4𝐺 (𝑑)
𝑁

with 8𝜋𝐺 (𝑑)
𝑁

= ℓ𝑑−2
𝑝 . Comparing our result in Eq. (2.50) with that from Ref. [313]

(shown in Eq. (2.1)) allows us to determine ℓ̃𝑝 as

ℓ̃𝑝 =
𝐿

4
√
𝑆e𝑛𝑡.

. (2.51)

This is the same length scale first identified, through independent and complemen-
tary means, in Refs. [312, 41, 329] and quoted in Eq. (2.6). In particular, Ref. [312]
identified ℓ̃𝑝 as the relevant uncertainty scale appearing in the commutation relation
Eq. (2.41), giving a physical interpretation to the width of the stretched horizon we
have employed here. The dependence of the uncertainty scale on the dimensionful
scales ℓ𝑝, 𝐿 can be parametrically seen by noting that 𝑓 (x⊥, x′⊥) ∼ 𝐿4−𝑑 (as can be
seen from Eq. (2.34) and which we will write out explicitly below), such that that
right-hand side of the uncertainty relation Eq. (2.41) has a dimensionful scaling as
ℓ𝑑−2
𝑝 /𝐿𝑑−4 ∼ ℓ̃2

𝑝. Even more precisely, Eq. (2.51) agrees to a factor of 4 (which can
be attributed to uncertainty due to the regularization procedure employed here) with
that predicted in Refs. [41, 329].

Angular Correlations of Photon Traversal Time Fluctuations
The form of the expressions in Eqs. (2.45) and (2.46) allows us to now also extract the
angular correlations, via 𝑓 (x⊥; x′⊥), which as the Green function of the transversal
Laplacian in (2.34) becomes[
𝑑 − 2
𝐿2 − 𝜕2

𝜕𝜒2 − (𝑑 − 3) coth
( 𝜒
𝐿

) 1
𝐿

𝜕

𝜕𝜒
− 1
𝐿2 sinh2(𝜒/𝐿)

∇2
S𝑑−3

]
𝑓 (x⊥; x′⊥) (2.52)

= 𝛿𝑑−2(x⊥ − x′⊥),

where the Laplacian operator on the transverse space Σ𝑑−2 � H𝑑−2 is given by
Ref. [104] and ∇2

S𝑑−3 denotes the Laplacian on a (𝑑 − 3)-dimensional unit-sphere.
In the following, we consider an interferometer setup in which the two end mirrors
are located at 𝜒 and 𝜒′. In other words, the two interferometer arms pick out
two particular directions in the 𝜒-coordinate of the transverse space, while leaving
the residual subspace S𝑑−3 invariant. Therefore, we can neglect the term ∇2

S𝑑−3 in
Eq. (2.52). Spherical symmetry implies that the solution of Eq. (2.52) depends only
on the geodesic distance in Σ𝑑−2, which is given by [23, 104]

𝜉 (x⊥; x′⊥) ≡ cosh−1
(
cosh

( 𝜒
𝐿

)
cosh

(
𝜒′

𝐿

)
− sinh

( 𝜒
𝐿

)
sinh

(
𝜒′

𝐿

)
cos 𝛾

)
, (2.53)
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where 𝛾 is the polar angle subtended by the two interferometer arms. To further
simplify the problem we consider the case in which 𝐿 is sufficiently large compared
to 𝜉 such that the term (𝑑 − 2)/𝐿2 can be neglected. Eq. (2.52) then reduces to

−
𝜕2 𝑓 (x⊥; x′⊥)

𝜕𝜒2 − (𝑑 − 3)
𝐿

coth
( 𝜒
𝐿

) 𝜕 𝑓 (x⊥; x′⊥)
𝜕𝜒

= 𝛿𝑑−2(x⊥ − x′⊥). (2.54)

The solution to Eq. (2.54) is found in Ref. [104] to be

𝑓 (x⊥; x′⊥) =
1

Ω𝑑−3𝐿𝑑−4 𝑓 (Σ;Σ′). (2.55)

where 𝑓 (Σ;Σ′) is given in terms of the hypergeometric function [104, 23]

𝑓 (Σ;Σ′) = 1
(𝑑 − 3) cosh𝑑−3 𝜉

2𝐹1

(
𝑑 − 3

2
,
𝑑 − 2

2
;
𝑑 − 1

2
;

1
cosh2 𝜉

)
. (2.56)

In the limit where the hyperboloid H𝑑−2 looks locally Euclidean, 𝑓 (Σ;Σ′) reduces
to the familiar result in Euclidean space [104]:

𝑓 (Σ;Σ′) ≈


ln 𝐿
|𝜒−𝜒′ | for 𝑑 = 4,(
𝐿

|𝜒−𝜒′ |

)4−𝑑
for 𝑑 ≥ 5.

(2.57)

Because the Green function 𝑓 (x⊥; x′⊥) ∼ 𝐿4−𝑑 , it receives a conformal rescaling on
the (regularized) boundary at 𝑧 = 𝑧𝑐 in the Poincaré metric

𝑓 (x⊥; x′⊥)
𝑧=𝑧𝑐→

(
𝐿

𝑧𝑐

)4−𝑑
𝑓 (x⊥; x′⊥). (2.58)

Accounting for the conformal factor (𝐿/𝑧𝑐) properly, and using Eq. (2.45) together
with (2.46), we find the fluctuations Δ𝑇2

r.𝑡. to be

Δ𝑇2
r.𝑡. (x⊥; x′⊥) ≡

(
𝐿

𝑧𝑐

)2 (〈
𝑋𝑣 (x⊥)𝑋𝑣 (x′⊥)

〉
+

〈
𝑋𝑢 (x⊥)𝑋𝑢 (x′⊥)

〉)
=

(
𝐿

𝑧𝑐

)2
(

2𝐿3

ℓ̃𝑝

) [
ℓ𝑑−2
𝑝

2𝜋Ω𝑑−3𝐿𝑑−2(𝐿/𝑧𝑐)𝑑−3

]
𝑓 (Σ;Σ′)

=

(
𝐿

𝑧𝑐

)2
8𝐿2 1

√
𝑆e𝑛𝑡.

𝑓 (Σ;Σ′).

(2.59)

In evaluating the second line, we substituted the area of the transverse space
𝐴(Σ𝑑−2) ≈ Ω𝑑−3𝐿

𝑑−2(𝐿/𝑧𝑐)𝑑−3 (for 𝑧𝑐 → 0) and used the definition of the en-
tanglement entropy again, while in the third line we have used the scale precisely
identified in Eq. (2.51). Thus, the relative uncertainty of photon round trip time,
with angular correlations, is

Δ𝑇2
r.𝑡.

𝑇2
r.𝑡.

(x⊥; x′⊥) =
2

√
𝑆e𝑛𝑡.

𝑓 (Σ;Σ′). (2.60)
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2.5 Summary and Discussion
In this chapter, we have shown that vacuum energy fluctuations in AdS space, with
a quantum noise term motivated by commutation relations presented in Ref. [312]
and shown in Eqs. (2.30) and (2.41), give rise to hydrodynamic behavior for the
fluctuations of the spacetime geometry. In particular, we demonstrated that the near-
horizon fluctuations of a finite causal diamond is a diffusive process that captures
“random walk” characteristics in time (but with transverse spatial coorelations) of
quantum spacetime fluctuations. We further analyzed the effect of these fluctuations
on the traversal time of photons traveling from the boundary and reflecting off a
mirror in the bulk, confirming the previous result of Ref. [313] despite taking a
computationally complementary route. An important step in our reasoning was to
focus only on the hydrodynamics on the stretched horizon of a causal diamond,
distinct from the usual fluid/gravity correspondence that proposes a duality between
the bulk gravitational perturbations and boundary hydrodynamics.

There are many interesting future directions to pursue. First, one could carry
out a similar type of analysis in Minkowski space. Second, one could seek to
understand the underlying origins of these vacuum fluctuations from shockwave
geometries. Finally, one could utilize theoretical tools such as out-of-time-order
correlators (OTOCs) that describe fast-scrambling systems and quantum chaos to
study the connection between hydrodynamics and shockwave geometries. We look
forward to further developments in these formal aspects and its groundwork for
future observational tests.
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C h a p t e r 3

RINDLER FLUIDS FROM GRAVITATIONAL SHOCKWAVES

3.1 Introduction
Almost fifty years ago, Damour [115] first connected general relativity to fluid
dynamics by demonstrating that when perturbations fall into a black hole horizon,
the spacetime near the horizon behaves like a fluid. This idea led to the conception
of the membrane paradigm [306, 252, 135, 132, 166], in which the fluid resides
on a stretched horizon, a timelike hypersurface very close to the actual black hole
horizon. Later on, the discovery of the AdS/CFT correspondence formalized a
version of fluid/gravity duality in which the fluid arises as an effective description
in the long distance, low frequency regime of the dual gauge theory on the AdS
boundary [265, 266, 211, 210, 289, 52, 139].

More recently, substantial progress was made in studying fluid/gravity duality on a
cutoff surface in flat Rindler spacetime [71, 70, 108, 109, 224, 264]. The flat space
cutoff approach to fluid/gravity duality formulates the map between the Einstein
and Navier-Stokes equations in a precise manner. In particular, Refs. [70, 108,
264] showed that the fluid is defined in terms of the extrinsic curvature of a cutoff
hypersurface outside of the horizon. This cutoff surface is equipped with a flat
induced metric. As in [70], in the leading order hydrodynamic expansion, the
constraint equation from the Einstein tensor becomes the incompressibility condition

𝜕𝑖𝑣
𝑖 = 0. (3.1)

Here 𝑣𝑖 is the 𝑖-component of the fluid velocity. Furthermore, the next leading
order constraint Einstein equation becomes the incompressible Navier-Stokes equa-
tion [70]

𝜕𝜏𝑣𝑖 − 𝑟𝑐𝜕2𝑣𝑖 + 𝜕𝑖𝑃 + 𝑣 𝑗𝜕𝑗𝑣𝑖 = 0. (3.2)

Thus the cutoff surface fluid/gravity duality relates Einstein gravity, which governs
nonlinear gravitational interactions, to the incompressible Navier-Stokes equations,
which are an effective description of classical fluids.

In this chapter, we aim to study the connection between gravitational shockwave
spacetimes and their fluid descriptions. Gravitational shockwave geometries were
studied first by Dray and ’t Hooft [126] when they considered ultra-relativistic
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matter falling into a black hole. More recently, [112, 169, 312, 191] have studied
shockwaves in flat spacetimes on the quantum level. Rewriting these gravitational
shockwaves on the fluid side of fluid/gravity duality will allow us to consider
quantum shocks as a fluid source.

Technically, we match gravitational shockwaves to their dual fluids by using their
Petrov type. Since the shockwave geometries we consider are Petrov type N, their
fluid dual must correspond to a spacetime of the same type. As shown in [206],
potential fluids with 𝑣𝑖 = ∇𝑖𝜙 have dual geometries of Petrov type N. Since Petrov
Type N spacetimes only allow one degree of freedom, we map between the cutoff
fluid formalism and shockwave geometries by identifying the fluid potential with
the shockwave metric via

𝜙 = 𝛽𝑟𝐻𝑢𝑢 . (3.3)

Here 𝜙 is the fluid potential and 𝐻𝑢𝑢 characterizes the metric fluctuations due to a
shockwave. By choosing 𝛽 carefully, we find an exact mapping such that the Einstein
equation for the shockwave geometries is precisely the incompressibility condition
in Eq. (3.1) with the right hand side replaced by the shockwave stress-energy tensor.
Solving this differential equation allows us to constrain the pressure term in the next
leading order Navier-Stokes equation.

Since we map the shockwaves to potential fluids, the next major goal of our chapter
is to study the effects of quantum fluctuations on potential fluids. In the leading
order hydrodynamic expansion, we keep the left hand side of the incompressibility
equation unchanged, while replacing the right hand side with a quantum noise
term. This Ansatz is motivated by a set of commutation relations first studied by ’t
Hooft [5, 2] in the context of black hole perturbations, and later developed by [312]
and [191] for flat spacetime. Such fluctuations alter the classical fluid (Einstein)
equation to a stochastic differential equation, resembling the form of a first order
Langevin equation, which describes Brownian motion of a massless particle [324].
Quantum uncertainty arises from a Brownian particle undergoing random walk in a
stochastic background [41, 329].

We argue in a similar fashion as in [324] that spacetime fluctuations give rise
to a “smeared out” horizon, analogous to a stretched horizon [115]. However,
our present chapter utilizes the cutoff surface fluid approach to devise a Lorentz
invariant method to smear out the horizon. We will impose the condition that the
cutoff surface intersects with the boundary of a causal diamond at a distance of
the reduced Planck length ℓ̃𝑝 [41, 329, 312]. In four-dimensional spacetime, the
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reduced Planck length is simply the Planck length ℓ̃𝑝 = ℓ𝑝. Positing such a cutoff
surface allows us to compute the variance of photon traversal time measured by a
free-falling observer on the boundary of the causal diamond

Δ𝑇2
r.𝑡. ∼ 2𝐿ℓ𝑝 𝑓 (x,x′). (3.4)

Here 𝑓 (x,x′) is the transverse response function, which is a unique feature to the
shockwave geometries, and is absent in classical Brownian motion. Eq. (3.4) is
consistent with the result from previous calculations [313, 314, 41, 329, 324] done
via different means.

The outline of this chapter is as follows. In Sec. 3.2 we review the cutoff fluid
formalism in flat spacetime. In Sec. 3.3 we compute the Petrov classification for
the shockwave spacetime and the fluid metric, respectively, and we show that the
shockwave metric is mapped to the potential of a potential flow in hydrodynamics.
In Sec. 3.4, we solve the incompressibility equation with a source term posited from
the ’t Hooft commutation relations, and use the solution to compute the uncertainty
in photon traversal time. In Sec. 3.5, we summarize our results and point to some
future directions. Throughout this chapter, we use 8𝜋𝐺𝑁 = ℓ2

𝑝 = 𝜅
2.

3.2 Rindler Fluids in Einstein Gravity
In this section we review the fluid/gravity correspondence on a cutoff surface of
Minkowski space. Following [71, 70, 108, 109], we develop the duality by first
performing coordinate transformations to introduce a constant fluid velocity and
constant pressure. These transformations produce the “seed” metric, which is just
Minkowski space in unusual coordinates. Then, we allow the fluid velocity and
pressure to vary slowly with both the 𝑥𝑖 and 𝜏 coordinates; allowing for higher-order
corrections in the hydrodynamic parameter then produces the true fluid dual metric.
Resolving the Einstein equations for this more general metric, we find the constraint
Einstein equations can be written as conservation equations for the Brown-York stress
tensor. Writing these conservations equations explicitly, the first and second-order
equations become incompressibility and the Navier-Stokes equations, respectively.
Following this review, we additionally review the specific case of potential fluids for
later use.

Geometric Setup
We will work throughout in ingoing Eddington-Finkelstein coordinates

𝑑𝑠2 = −(𝛼𝑟)𝑑𝜏2 + 2𝑑𝜏𝑑𝑟 + 𝛿𝑖 𝑗𝑑𝑥𝑖𝑑𝑥 𝑗 , (3.5)
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where 𝑖, 𝑗 indicate the transverse directions and thus run from 1 . . . 𝑑 − 2 (these
correspond to to the 2 transverse directions in 𝑑 = 4). 𝛼 corresponds to the constant
proper acceleration of a Rindler observer at fixed 𝑟 . Our formulation most closely
follows [108, 109, 133].

Our fluid will live on a timelike hypersurface called Σ𝑐. We choose this surface to
be 𝑟 = 𝑟𝑐; its induced metric 𝛾𝑎𝑏 is

𝑑𝑠2 |Σ𝑐
= 𝛾𝑎𝑏𝑑𝑥

𝑎𝑑𝑥𝑏 = −(𝛼𝑟𝑐)𝑑𝜏2 + 𝛿𝑖 𝑗𝑑𝑥𝑖𝑑𝑥 𝑗 . (3.6)

Here 𝑎, 𝑏 are spacetime indices on Σ𝑐, so they run over 𝜏 as well as 𝑖, 𝑗 . Note that
this metric is flat.

Starting from this background geometry, we introduce a constant pressure by shifting
𝑟; since we want to keep the induced metric fixed, we must also rescale 𝜏. The
transformation is

𝑟 → 𝑟 + 1
𝛼𝑝2 − 𝑟𝑐, 𝜏 → √

𝛼𝑟𝑐𝑝𝜏 . (3.7)

This coordinate transformation shifts the position of the Rindler horizon from 𝑟ℎ = 0
to 𝑟ℎ = 𝑟𝑐 − 1

𝛼𝑝2 .

We then introduce a constant fluid velocity by performing the boost

√
𝛼𝑟𝑐𝜏 → −𝑢𝑎𝑥𝑎, 𝑥𝑖 → 𝑥𝑖 − 𝑢𝑖√𝛼𝑟𝑐𝜏 + (1 + 𝛾)−1𝑢𝑖𝑢 𝑗𝑥

𝑗 , (3.8)

where 𝛾 =
(
1 − 𝑣2/(𝛼𝑟𝑐)

)−1/2, and we set the fluid four-velocity vector 𝑢𝑎 to a
constant.

Thus we arrive at the ‘seed’ metric for a relativistic fluid, given by

𝑑𝑠2 = −2𝑝𝑢𝑎𝑑𝑥𝑎𝑑𝑟 +
[
𝛾𝑎𝑏 − 𝛼𝑝2 (𝑟 − 𝑟𝑐) 𝑢𝑎𝑢𝑏

]
𝑑𝑥𝑎𝑑𝑥𝑏 . (3.9)

As noted above, so far this metric is just a rewriting of Minkowski space in fancy
coordinates. However, we can already begin to study the constant ‘fluid’ on the
cutoff surface. To characterize the physics on the cutoff surface, we introduce the
Brown-York stress-energy tensor [73]

𝜅2𝑇𝑎𝑏 = (𝐾𝛾𝑎𝑏 − 𝐾𝑎𝑏), (3.10)

where 𝜅2 = 8𝜋𝐺𝑁 . Here, 𝐾𝑎𝑏 = 1
2L𝑛𝛾𝑎𝑏 is the extrinsic curvature on Σ𝑐, and

𝐾 = 𝐾𝑎𝑏𝛾
𝑎𝑏 is its trace. Here, L𝑛 is the Lie derivative along the unit normal vector

𝑛𝜇 on the cutoff surface Σ𝑐.
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For the seed metric in Rindler spacetime (3.9), the Brown-York stress tensor on the
cutoff surface has a form of the perfect fluid in equilibrium with a vanishing energy
density:

𝜅2 𝑇𝑎𝑏 = 𝛼𝑝 ℎ𝑎𝑏 , (3.11)

where ℎ𝑎𝑏 = 𝛾𝑎𝑏 + 𝑢𝑎𝑢𝑏 is the metric of a spacelike hypersurface orthogonal to the
velocity vector 𝑢𝑎 but still embedded in Σ𝑐. Since the pressure is constant, there
is no time evolution of the momentum density of the fluid. Due to the vanishing
energy density, the divergence of the momentum density is vanishing as well by the
continuity equation. Thus, the Brown-York stress tensor (3.11) for the seed metric
describes the equilibrium fluid that does not flow as seen by a comoving observer
with 𝑢𝑎. Thus this background seed metric is equivalent to a somewhat boring fluid.

Before we introduce slow variations in order to consider more interesting fluids, we
note that the Brown-York stress-energy tensor 𝑇𝑎𝑏 is not equivalent to the external
matter stress-energy tensor T𝜇𝜈. The matter stress-energy tensor serves the role of
sourcing the geometry, whereas the Brown-York stress-energy tensor describes the
properties of a hypersurface within the geometry. More specifically, the Brown-York
stress tensor provides a useful prescription for computing the energy and momentum
density of a cutoff surface within a gravitational system. In the present case, the
Brown-York stress tensor relates the energy and momentum on a cutoff surface Σ𝑐 to
the energy and moment of a fluid. We also note that for the simple fluid (3.11), the
spacetime stress-energy tensor T𝜇𝜈 is clearly zero, since the spacetime is just empty
Minkowski space. By contrast, the fluid does have a nonzero Brown-York tensor as
we have shown.

The Hydrodynamic Limit and Near-Horizon Expansion
In order to obtain non-constant fluids, the next step is to perturb the seed metric (3.9)
by allowing the fluid degrees of freedom 𝑢𝑎, 𝑝 to depend on (𝜏, 𝑥𝑖), following the
procedure in [108, 109, 264]. Then, near-equilibrium solutions 𝑔(𝑛)𝜇𝜈 (𝑛 = 0, 1, 2 . . . )
can be constructed order-by-order in the relativistic gradient expansion. However,
in this work we are interested in the non-relativistic hydrodynamic limit since it
agrees with the near-horizon expansion [70, 206], and we will be working in the
near-horizon regime for the Rindler shockwaves below.

Accordingly, in terms of the nonrelativistic fluid velocity 𝑣𝑖, and the nonrelativistic
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pressure 𝑃, we have

𝑢𝑎 =
1√︁

𝛼𝑟𝑐 − 𝑣2
(−𝛼𝑟𝑐, 𝑣𝑖) , 𝑝 = (𝛼𝑟𝑐 − 2𝑃)−1/2, (3.12)

where the relativistic velocity is normalized so 𝑢𝑎𝑢𝑎 = −1. The equivalent of the
relativistic gradient expansion becomes explicitly the hydrodynamic scaling

𝑣𝑖 ∼ O(𝜖), 𝑃 ∼ O
(
𝜖2

)
, 𝜕𝑖 ∼ O(𝜖), 𝜕𝜏 ∼ O

(
𝜖2

)
. (3.13)

Using this non-relativistic scaling, and further solving the non-constraint Einstein
equations order-by-order, we construct the non-relativistic fluid metric given in
Appendix (78). Although the full fluid-dual geometry is quite complicated, with
its metric given by (78) up to O

(
𝜀3) , we are mainly interested in the lowest order

expansion of (78):1

𝑑𝑠2 = − (𝛼𝑟)𝑑𝜏2 + 2𝑑𝜏𝑑𝑟 + 𝛿𝑖 𝑗𝑑𝑥𝑖𝑑𝑥 𝑗

− 2
(
1 − 𝑟

𝑟𝑐

)
𝑣𝑖𝑑𝑥

𝑖𝑑𝜏 − 2
𝑣𝑖

𝛼𝑟𝑐
𝑑𝑥𝑖𝑑𝑟 + O

(
𝜀2

)
.

(3.14)

As noted above, the fluid behavior is described via the Brown-York stress ten-
sor (3.10) and its conservation equations. Explicitly in terms of the non-relativistic
fluid metric, we obtain [70]2

𝜅2 𝑇𝑎𝑏𝑑𝑥
𝑎𝑑𝑥𝑏 =

𝛼𝑣2
√
𝛼𝑟𝑐

𝑑𝜏2 − 2𝛼𝑣𝑖√
𝛼𝑟𝑐

𝑑𝑥𝑖𝑑𝜏

+ 𝛼
√
𝛼𝑟𝑐

𝑑𝑥𝑖𝑑𝑥𝑖 +
𝑃𝛿𝑖 𝑗 + 𝑣𝑖𝑣 𝑗
𝑟𝑐
√
𝛼𝑟𝑐

𝑑𝑥𝑖𝑑𝑥 𝑗

−
2𝜕(𝑖𝑣 𝑗)√
𝛼𝑟𝑐

𝑑𝑥𝑖𝑑𝑥 𝑗 + O
(
𝜖3

)
,

(3.15)

where details of the derivation are included in Appendix A1.

Since the constraint Einstein equations on Σ𝑐 match the conservation equations for
the Brown-York tensor, we find3

∇𝑏𝑇𝑎𝑏 |Σ𝑐
= −2𝑛𝜇T𝑎𝜇 . (3.16)

1We ignore O
(
𝜀2) and higher order terms presently because we anticipate the relation between

the fluid-dual metric in just the leading order of hydrodynamic expansion (3.14) and the shockwave
geometry that solves the linearized Einstein equation. This point will become clear in section 3.3.

2We used the symmetrization 𝑋(𝑖𝑌 𝑗 ) =
1
2
(
𝑋𝑖𝑌 𝑗 + 𝑋 𝑗𝑌𝑖

)
.

3This is the Gauss-Codazzi equation including the integration constant in 𝑟 [264]. We set the
integration constant to zero by imposing the Brown-York stress tensor to be conserved when we
consider the source-free situation.
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As before, 𝑛𝜇 is the unit normal vector (79) to the cutoff surface Σ𝑐. The spacetime
stress-energy tensorT𝑎𝜇 provides the nonzero source for Einstein’s equations, and we
again wish to differentiate it from the Brown-York tensor we introduced in Sec. 3.2.

In Section 3.3, we are interested in the spacetime stress-energy tensor T𝜇𝜈 due to an
ultra-relativistic source, also known as the gravitational shockwave. Before turning
on the external sources, we now review the fluid behavior when no source is present,
that is, when T𝜇𝜈 = 0. At O

(
𝜖0) , 𝑇𝑎𝑏 is constant, and the Einstein equations are

satisfied trivially. At O
(
𝜖2) , we obtain the incompressibility condition [70]

∇𝑎𝑇𝜏𝑎 = 0 ⇐⇒ 𝐺𝜏𝜏 =
𝛼

2
𝜕𝑖𝑣𝑖 = 0 . (3.17)

In writing out (3.17), we have identified the conservation of the Brown-York tensor
at O

(
𝜀2) with the Einstein tensor 𝐺𝜏𝜏 at the same order [264]. We note that other

components of the Einstein tensor vanish identically at the current order.

In a similar fashion, we compute the conservation equation of the Brown-York tensor
at O

(
𝜖3) , and we obtain the incompressible Navier-Stokes equation [70]

∇𝑎𝑇𝑖𝑎 = 0 ⇐⇒ 𝐺𝜏𝑖 = − 1
2𝑟𝑐

(
𝜕𝜏𝑣𝑖 − 𝑟𝑐𝜕2𝑣𝑖 + 𝜕𝑖𝑃 + 𝑣 𝑗𝜕 𝑗𝑣𝑖

)
= 0, (3.18)

which is equivalent to the vacuum constraint Einstein equation 𝐺𝜏𝑖 = 0 evaluated at
the same order [264].

Later, when we add sources to the Einstein equations, these constraint equations
will instead become (3.16), adding sources to the fluid equations. In section 3.3, we
will see how a nonzero T𝜇𝜈 coming from gravitational shockwaves influences the
fluid on Σ𝑐.

Potential Fluids Before considering shockwave spacetimes, we review potential
fluids. The class of fluids known as potential fluids satisfies

𝑣𝑖 = 𝜕𝑖𝜙 . (3.19)

These fluids are also known as irrotational, since they have zero vorticity. In our four-
dimensional gravity (dual to a 2+1 dimensional fluid), the vorticity is 𝜕𝑥𝑣𝑦−𝜕𝑦𝑣𝑥 = 0,
since gradients are curl-free.

For a source-free potential fluid, the incompressibility condition (3.17) yields [206]

∇𝑎𝑇0𝑎 = 0 =⇒ 𝜕2𝜙 = 0 . (3.20)
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In this case, the incompressible Navier-Stokes equation (3.18) implies the expression
of the pressure in terms of 𝜙

∇𝑎𝑇𝑖𝑎 = 0 =⇒ 𝜕𝑖𝑃 = −𝜕𝑖𝜕𝜏𝜙 − 𝜕 𝑗𝜙𝜕𝑖𝜕𝑗𝜙 . (3.21)

Rindler to Light Cone Coordinates Lastly, we review the coordinate transfor-
mation between the background to the fluid/gravity dual metrics, and light cone
coordinates. We review this relationship because both the fluid-dual metrics,
and the shockwave metrics we study in the next section, are perturbations away
from Minkowski space. However in the fluid case we work in ingoing Eddington-
Finkelstein coordinates (3.5), while in the shockwave case the background is written
in light cone coordinates.

For the shockwave, the background is Minkowski spacetime in light-cone coordi-
nates 𝑢 = 𝑇 + 𝑍, 𝑣 = 𝑇 − 𝑍 where (𝑇, 𝑍) are Minkowski global coordinates, with
metric

𝑑𝑠2 = −𝑑𝑢𝑑𝑣 + 𝛿𝑖 𝑗𝑑𝑥𝑖𝑑𝑥 𝑗 . (3.22)

Here again 𝑖, 𝑗 indicate the transverse directions. The coordinate transformation

𝑢 =

√︂
𝑟𝑐

𝛼
𝑒𝛼𝜏/2 and 𝑣 = − 4𝑟

√
𝛼𝑟𝑐

𝑒−𝛼𝜏/2 (3.23)

yields the line element of Rindler spacetime (3.5). Thus, Eq. (3.23) is the zeroth
order coordinate transformation between the fluid metric (3.14) and shockwave
metric (3.24). In the next section, we construct the relation at the next order,
between the perturbed geometries.

3.3 Near Horizon Fluids from Gravitational Shockwaves
In this section, we establish the relation between the near-horizon fluids constructed
in section 3.2 and the gravitational shockwaves in [24]. We first briefly review
the shockwave geometry and the external source from the shockwave. Then, we
consider how the fluid equations deforms in the presence of an external source.
With those two setups constructed, we find the connection between the fluids and
shockwaves by using their Petrov classifications.

Gravitational shockwave geometry
The gravitational shockwave geometry was originally proposed by Aichelburg and
Sexl [24] to describe gravitational radiation from a massless point particle. The
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Aichelburg-Sexl metric is given by [126, 312] with Minkowski spacetime in the
light-cone coordinates (3.22).

If we consider a fast particle falling towards the future horizon, the 𝑢𝑢−component
of the metric is perturbed, which produces the shockwave geometry

𝑑𝑠2 = −𝑑𝑢𝑑𝑣 + 𝐻𝑢𝑢𝑑𝑢2 + 𝛿𝑖 𝑗𝑑𝑥𝑖𝑑𝑥 𝑗 . (3.24)

Here 𝐻𝑢𝑢 is given by

𝐻𝑢𝑢 (𝑢, 𝑥𝑖) = 𝑝𝑢𝜅2𝛿(𝑢 − 𝑢0) 𝑓 (x;x′), (3.25)

where 𝑝𝑢 is the constant momentum of the shock, 𝑢0 denotes the location of the
shockwave, and 𝑓 (x;x′) is the Green’s function of the transverse Laplacian operator:

−𝜕2 𝑓 (x;x′) = 𝛿2(x − x′). (3.26)

In fact, Eq. (3.26) is equivalent to the Einstein equation, which is exactly solvable in
this case. Only the 𝑢𝑢 component of the Einstein equation𝐺𝜇𝜈 = 𝜅

2T𝜇𝜈 is nontrivial.
Explicitly, this component becomes

−1
2
𝜕2𝐻𝑢𝑢 = 𝜅

2T𝑢𝑢, (3.27)

where T𝑢𝑢 is the only non-vanishing component of the shockwave stress-energy
tensor. For 𝐻𝑢𝑢 as in (3.25), we have

T𝑢𝑢 =
1
2
𝑝𝑢𝛿(𝑢 − 𝑢0)𝛿2(x − x′). (3.28)

The shockwave geometry can be described in a different gauge, which involves an
off-diagonal component with transverse and longitudinal directions. The metric in
this gauge is

𝑑𝑠2 = −𝑑𝑢𝑑𝑣 + 𝜕𝑖𝑋𝑣𝑑𝑢𝑑𝑥𝑖 + 𝛿𝑖 𝑗𝑑𝑥𝑖𝑑𝑥 𝑗 (3.29)

where we introduced the shockwave degree of freedom 𝑋𝑣

𝑋𝑣 (𝑢, 𝑣, 𝑥𝑖) = 𝑣 +
∫ 𝑢

0
𝑑𝑢′𝐻𝑢𝑢

(
𝑢′, 𝑥𝑖

)
. (3.30)

Now, we have the shockwave geometry sourced by the external matter stress-energy
tensor T𝑢𝑢. In the next section, we will construct a fluid-dual geometry with the
same external source in order to make a connection between shockwaves and fluids.
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Near Horizon Fluids with External Sources
Just as the stress-energy tensor T𝑢𝑢 in (3.28) sources the shockwave geometry with
nonzero𝐻𝑢𝑢, in fluid-dual geometries an external stress-energy tensor can be thought
of as a sourcing the fluid dynamics. We anticipate that in the leading order of
hydrodynamic expansion the fluid-dual metric given by Eq. (3.14) can be mapped
to the shockwave geometry given by Eq. (3.24). In anticipation of this match, we
first add a non-zero external source T𝑢𝑢 to the fluid equations (3.16), generalizing
the fluid/gravity setup in [70] beyond vacuum solutions.

Since the shockwave metric and fluid metric use different coordinate systems, we
need to find the components of T𝜇𝜈 from (3.28) in (𝜏, 𝑟, 𝑥𝑖) coordinates. Since
the only non-vanishing component of T𝜇𝜈 in (𝑢, 𝑣, 𝑥𝑖) coordinates is T𝑢𝑢, under the
background coordinate transformation (3.23) we find that the only non-vanishing
component in (𝜏, 𝑟, 𝑥𝑖) coordinates is T𝜏𝜏, given by

T𝜏𝜏 =
𝛼𝑟𝑐

4
𝑒𝛼𝜏T𝑢𝑢 . (3.31)

In Sec. 3.2, we showed that the conservation Eq. (3.16) of the Brown-York stress
tensor at order O

(
𝜖2) is equivalent to the incompressibility condition of the dual

fluid (3.17). However, in the presence of a gravitational shockwave, the incompress-
ibility condition instead becomes

∇𝑎𝑇𝜏𝑎 |Σ𝑐
= −2𝑛𝜇T𝜏𝜇 =⇒ 𝜕𝑖𝑣𝑖 =

1
2
𝜅2𝑟𝑐𝑒

𝛼𝜏T𝑢𝑢, (3.32)

where we have additionally made use of the unit normal as explicitly given in (79).

At O(𝜀3), the conservation Eq. (3.16) of the Brown-York stress tensor is given by

∇𝑎𝑇𝑖𝑎 |Σ𝑐
= −2𝑛𝜇T𝑖𝜇 =⇒ 𝜕𝜏𝑣𝑖 − 𝑟𝑐𝜕2𝑣𝑖 + 𝑣 𝑗𝜕 𝑗𝑣𝑖 + 𝜕𝑖𝑃 + 𝑣𝑖𝜕 𝑗𝑣 𝑗 − 𝑟𝑐𝜕𝑖𝜕 𝑗𝑣 𝑗 = 0.

(3.33)

There is no contribution from the external source since the only non-vanishing com-
ponent of T𝜇𝜈 in (𝜏, 𝑟, 𝑥𝑖) coordinates is T𝜏𝜏. However, the equation is not equivalent
to the incompressible Navier-Stokes equation (3.18); instead, it has acquired one
further term: 𝑟𝑐𝜕𝑖𝜕 𝑗𝑣 𝑗 , since incompressibility is broken.

Potential Fluids If we assume a potential fluid of the form 𝑣𝑖 = 𝜕𝑖𝜙, the conser-
vation equation of the Brown-York stress tensor in the leading order (3.32) becomes

∇𝑎𝑇𝜏𝑎 |Σ𝑐
= −2𝑛𝜇T𝜏𝜇 =⇒ 𝜕2𝜙 =

1
2
𝜅2𝑟𝑐𝑒

𝛼𝜏T𝑢𝑢 . (3.34)
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Upon examining Eq. (3.34) closely with the Einstein equation of the shockwave
geometry (3.27), we are tempted to believe that the two geometries are equivalent,
at least in the leading order of hydrodynamic expansion. Specifically, we compare
Eqs. (3.34) and (3.27) term by term

𝜕2𝜙 =
1
2
𝜅2𝑟𝑐𝑒

𝛼𝜏T𝑢𝑢
?⇐⇒ −1

2
𝜕2𝐻𝑢𝑢 = 𝜅

2T𝑢𝑢 (3.35)

and deduce a relation between 𝐻𝑢𝑢 and 𝜙 to be

𝜙 = −𝑟𝑐
4
𝑒𝛼𝜏𝐻𝑢𝑢 . (3.36)

While this may suggest a mapping between a potential fluid and the shockwave
metric, it does not guarantee the two metrics are diffeomorphic. The most reas-
suring way to see whether two spacetimes are equivalent is to construct an explicit
diffeomorphism that maps one to the other. However, in our case, finding such a
diffeomorphism is quite difficult (considering the form of the fluid metric (3.14)), if
not impossible. Thankfully, there is a more straightforward method to connect the
shockwave geometry with the potential fluid, because both geometries have Weyl
tensors that exhibit explicit algebraic speciality [293, 206]. In Sec. 3.3, we utilize the
Petrov classification to find a correspondence between the shockwave and potential
fluid geometries, thereby substantiating our claim in Eq. (3.36).

Last but not least, at O(𝜀3), the conservation equation (3.33) becomes

∇𝑎𝑇𝑖𝑎 |Σ𝑐
= −2𝑛𝜇T𝑖𝜇 =⇒ 𝜕𝜏𝜕𝑖𝜙 − 2𝑟𝑐𝜕𝑖𝜕2𝜙 + 𝜕𝑖𝑃 + 𝜕𝑗𝜙 𝜕 𝑗𝜕𝑖𝜙 + 𝜕𝑖𝜙 𝜕2𝜙 = 0.

(3.37)

Eqs. (3.32) and (3.33) determine fluid dynamics on the cutoff surface when we
have added the shockwave stress-energy tensor T𝑢𝑢 as an external source. Since the
shockwave geometry (3.29) and the fluid-dual geometry are both perturbations away
from Minkowski spacetime, when we set them to have the same external source,
we expect that they are two equivalent geometries in different gauges. In the next
section, we establish the explicit connection between the shockwave metric and the
fluid-dual metric.

Petrov Classification Connecting Fluids with Shockwaves
In this section, we derive the relation between the near-horizon fluid metric (3.14)
and the shockwave metric (3.24). Instead of finding the complicated diffeomorphism
between them, we will adopt the virtue of the Newman-Penrose formalism to link the
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shockwave degrees of freedom into the fluid story. We will follow the conventions
of [293] throughout.

The Newman-Penrose formalism will allow us to calculate the Petrov classification
of our spacetimes. The Petrov classification categorizes spacetimes according to
the multiplicities of the principal null directions of the Weyl tensor 𝐶𝑎𝑏𝑐𝑑 . Principal
null directions 𝑘𝜇 are null vectors satisfying

𝑘 [𝜇𝐶𝜈]𝜌𝜎[𝛾𝑘𝛿]𝑘
𝜌𝑘𝜎 = 0 . (3.38)

All four-dimensional spacetimes have four principal null vectors. Spacetimes with
four distinct principal null vectors for the Weyl tensor are not algebraically special;
they are said to be of Petrov type I. If two principal null directions coincide, then
the spacetime is Petrov type II. If the four principal nulls coincide in pairs, then the
spacetime is type D. If all four principal null directions coincide, then the spacetime
is type N.

Moreover, if the spacetime is type N, the geometry is determined by only one degree
of freedom as we will see explicitly in this section. As we will review below, both
the shockwave metric and the metric dual to a potential fluid are type N, so we can
match them by matching the single degree of freedom.

We begin with the shockwave metric, defining the complex coordinates

𝑧 = 𝑥 + 𝑖𝑦, 𝑧 = 𝑥 − 𝑖𝑦, (3.39)

where we are now explicitly restricting to four-dimensional spacetime. Then, the
shockwave metric (3.24) becomes

𝑑𝑠2 = −𝑑𝑢𝑑𝑣 + 𝐻𝑢𝑢 (𝑢, 𝑧, 𝑧)𝑑𝑢2 + 𝑑𝑧𝑑𝑧 . (3.40)

In the Newman-Penrose formalism, the metric is rewritten in terms of a null tetrad,
(𝑘𝜇, 𝑙𝜇, 𝑚𝜇, �̄�𝜇). Explicity, 𝑔𝜇𝜈 = −𝑙(𝜇𝑛𝜈) +𝑚 (𝜇�̄�𝜈) . For the shockwave geometry,
we will use the null tetrad

𝑚𝜇𝜕𝜇 =
√

2𝜕𝑧, �̄�𝜇𝜕𝜇 =
√

2𝜕𝑧, 𝑙𝜇𝜕𝜇 =
√

2𝜕𝑢 −
√

2𝐻𝑢𝑢𝜕𝑣, 𝑘𝜇𝜕𝜇 =
√

2𝜕𝑣 .
(3.41)

Here 𝑘𝜇 is a principal null direction since it satisfies (3.38). Indeed, since 𝑘𝜇 obeys
the condition

𝐶𝜇𝜈𝜌𝜎𝑘
𝜎 = 0, (3.42)
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it is a 4-fold repeated principal null vector, so the shockwave geometry is type N.
Importantly, when the null tetrad is chosen so that the first vector in the null tetrad
is itself a 4-fold repeated principal null, the Weyl scalars Ψ𝑖, 𝑖 = 0, . . . , 4 take on a
special form, namely Ψ0 = Ψ1 = Ψ2 = Ψ3 = 0,Ψ4 ≠ 0.

In the tetrad formalism, these Weyl scalars contain all the information in the Weyl
tensor. In general,

Ψ0 ≡ 𝐶𝜇𝜈𝜌𝜎𝑘𝜇𝑚𝜈𝑘 𝜌𝑚𝜎, Ψ1 ≡ 𝐶𝜇𝜈𝜌𝜎𝑘𝜇𝑙𝜈𝑘 𝜌𝑚𝜎, Ψ2 ≡ 𝐶𝜇𝜈𝜌𝜎𝑘𝜇𝑚𝜈�̄�𝜌𝑙𝜎

Ψ3 ≡ 𝐶𝜇𝜈𝜌𝜎𝑘𝜇𝑙𝜈�̄�𝜌𝑙𝜎, Ψ4 ≡ 𝐶𝜇𝜈𝜌𝜎�̄�𝜇𝑙𝜈�̄�𝜌𝑙𝜎 .

(3.43)

These scalars do depend on the choice of null tetrad, but if there is any null tetrad
in which only Ψ4 is nonzero, then the spacetime must be type N.

For fluid dual metrics, the non-relativistic fluid geometry (78) is algebraically spe-
cial, specifically of type II, as first shown in [70]. More recently, [206] showed that
two special types of fluid have higher algebraic speciality. For a constant vorticity
fluid, the fluid-dual metric is type D, while for a potential fluid it is type N.

Since both the fluid-dual metric for a potential fluid, and the shockwave geometry
(3.24), are type N, their Weyl tensors are described by the single degree of freedom
Ψ4 (in a tetrad choice where all other components are zero). Indeed, a potential
fluid is described by only the scalar 𝜙, while a shockwave is described by the single
function 𝐻𝑢𝑢, so we should not be too surprised that they are both type N.

In order to relate the shockwave geometry (3.24) and the fluid metric (3.14), we will
choose a tetrad for each where only Ψ4 is nonzero. If two Petrov type N geometries
actually represent the same spacetime, then if tetrads are chosen so that all other Ψ𝑖
vanish, the Ψ4’s for the two geometries must match up to an overall scaling.

For the shockwave metric (3.24), the non-vanishing Weyl scalar is given by

Ψ4 = 2𝜕𝑧𝜕𝑧𝐻𝑢𝑢 (𝑢, 𝑧, 𝑧) . (3.44)

For the fluid metric (3.14) dual to a potential fluid, the tetrad can be chosen so the
non-vanishing Weyl scalar is given by [206]

Ψ4 =
2
𝑟
𝜕𝑧𝜕𝑧𝜙(𝜏, 𝑧, 𝑧) . (3.45)

Indeed, we find that we can relate the potential fluid 𝜙 to the shockwave metric
component 𝐻𝑢𝑢 by equating these two Ψ4’s, up to an overall scale 𝛽:

𝜙 = 𝛽𝑟𝐻𝑢𝑢 . (3.46)
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Note that we have one more constraint when we relate the fluid degrees of freedom
with the shockwave one: the leading-order conservation equation of the Brown-
York stress tensor (3.32) should be consistent with the Einstein equation (3.27).
This additional constraint enables us to determine the overall scaling ambiguity 𝛽.
Inserting (3.46) into the leading-order fluid equation (3.32), we obtain

𝛽𝑟𝜕2𝐻𝑢𝑢 =
1
2
𝜅2𝑟𝑐𝑒

𝛼𝜏T𝑢𝑢 . (3.47)

By judiciously choosing the value of 𝛽 to be

𝛽 = −𝑟𝑐𝑒
𝛼𝜏

4𝑟
=
𝑢

𝑣
, (3.48)

we discover that O
(
𝜀2) conservation equation in the fluid-dual metric matches

exactly with the shockwave equation of motion (3.27).

In terms of the shockwave degree of freedom 𝑋𝑣 (3.30), the conservation equations
of the Brown-York stress tensor become

O
(
𝜀2

)
: −1

2
𝜕2𝜕𝑢𝑋

𝑣 = 𝜅2T𝑢𝑢 (3.49)

O
(
𝜀3

)
: 𝛼𝑢2𝜕𝑖𝜕

2
𝑢 𝑋

𝑣 + 2𝛼𝑢𝜕𝑖𝜕𝑢𝑋𝑣 − 4𝑟𝑐𝑢𝜕𝑖𝜕𝑢𝜕2𝑋𝑣 ≈ 8
𝛼𝑢
𝜕𝑖𝑃 (3.50)

In the second line, we have used 𝜕𝜏𝐻𝑢𝑢 = 𝛼
2𝑢𝜕𝑢𝐻𝑢𝑢, since 𝜕𝑣𝐻𝑢𝑢 = 0. Additionally,

we have ignored terms with 𝑋𝑣 appearing twice. Regardless, the O(𝜖3) equation
here has no contribution from the stress-energy tensor sourced by the shockwave,
as we already anticipated in (3.37). Note that the O(𝜖2) equation contributes to the
third term in the O(𝜖3) equation, leading to

O
(
𝜀3

)
: 2𝑒−𝛼𝜏/2𝑃 ≈

√︂
𝑟𝑐

𝛼
𝜕2
𝜏 𝑋

𝑣 +
√
𝛼𝑟𝑐

2
𝜕𝜏𝑋

𝑣 + 2(𝜅𝑟𝑐)2𝑒𝛼𝜏/2T𝑢𝑢, (3.51)

where we used (𝜏, 𝑟, 𝑥𝑖) coordinates, and the external source T𝑢𝑢 for the shockwave
(3.40) is given by (3.28). Note that we have omitted nonlinear coupling terms
in (3.50) and (3.51). Because time derivatives do not act on the nonlinear coupling
terms, coordinate transformation from (𝑢, 𝑣, 𝑥𝑖) to (𝜏, 𝑟, 𝑥𝑖) coordinates leave them
invariant.

So far, all of the calculations are performed at the classical level. However, by instead
promoting our source to a quantum operator, we will find a structure quite similar to
[312, 324]. Specifically, we introduce quantum light-ray operators associated with
the shockwave degrees of freedom and impose the t’Hooft commutation relation.
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Our goal is to study the two-point correlation functions on the cutoff hypersurface
Σ𝑐, which is timelike and boost invariant. In the next section, we will thus generalize
the spacetime fluctuations on the null hypersurface [312] to a timelike hypersurface,
by utilizing the cutoff fluid approach that we constructed in the previous sections.

3.4 Spacetime Fluctuations from Quantum Sources
In this section, we explore how spacetime fluctuations from quantum sources influ-
ence the behavior of fluids living on Σ𝑐. In particular, we will utilize the ’t Hooft
commutation relations [5] to modify the classical incompressibility equation to a
stochastic differential equation. Then we follow the procedure in [324] to solve the
differential equation and compute the variance in photon traversal time.

Our critical assumption is that due to vacuum energy fluctuations, T𝑢𝑢 is no longer
the stress-energy tensor of a classical shockwave. Rather, T𝑢𝑢 encapsulates features
of quantum fluctuations. We first utilize a commutation relation between 𝐻𝑣𝑣 and
T𝑢𝑢, in close analogy to those proposed by ’t Hooft [312, 324]:

[T𝑢𝑢 (𝑥), 𝐻𝑣𝑣 (𝑥′)] = 𝑖𝛿4(𝑥 − 𝑥′), (3.52)

where 𝑥 denotes coordinates in full spacetime dimensions. In writing Eq. (3.52) we
have assumed that T𝑢𝑢 and 𝐻𝑣𝑣 are quantum operators.

Here we have introduced an additional degree of freedom 𝐻𝑣𝑣, which classically
lives only on the past horizon. Although it is true that along either the future
or past light front, only 𝐻𝑢𝑢 or 𝐻𝑣𝑣 is non-vanishing classically, in the present
case T𝑢𝑢 and 𝐻𝑣𝑣 act as quantum mechanical conjugate operators, as discussed in
Refs. [312, 191]. Their commutation relation (3.52) is formally evaluated at the
bifurcate horizon. Nevertheless, we can heuristically argue [41, 329, 324] that a
single causal diamond is foliated by a series of nested causal diamonds (see Fig. 3.1),
each separated by a microscopic length scale ℓ̃𝑝, known as the decoherence length.
Beyond this length scale, the subsequent diamonds become uncorrelated [41, 329,
324]. This argument allows us to identify a series of bifurcate horizons along the
future and past light front, enabling us to introduce 𝐻𝑣𝑣 as an ultra local quantum
degree-of-freedom. Crucially, the notion of a nested causal diamond gives rise to
an accumulated quantum uncertainty in the photon traversal time [41, 329, 324].
Next, we proceed to compute this uncertainty in detailed steps.

Applying the commutator (3.52), we immediately discover that the classical shock-
wave equation of motion (3.27), or equivalently, the incompressibility equation for
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Figure 3.1: Minkowski Rindler space that represents a slice of a Minkowski diamond
of size 𝐿. Blue and red dashed lines represent a series of nested causal diamonds
along the past (future) light front. The shaded blue/red region is the “smearing”
of the diamond due to quantum fluctuations modeled by gravitational shockwaves.
This procedure is discussed in detail in Ref. [324]. In this chapter, we aim to
describe the fuzzing of the light front in a Lorentz invariant manner. This leads to a
hyperbolic cutoff surface (green curve), denoted as Σ𝑐. The proper distance between
Σ𝑐 and the bifurcate Rindler horizon is given by the relation −𝑢𝑣 = 4𝑟𝑐/𝛼.

fluids (3.34) is now a differential equation involving quantum commutators

−𝜕2 [𝐻𝑢𝑢 (𝑢,x), 𝐻𝑣𝑣 (𝑣,x′)] = 𝑖ℓ2
𝑝𝛿(𝑢 − 𝑢0)𝛿(𝑣 − 𝑣0)𝛿2(x − x′), (3.53)

where we have expressed 𝛿4(𝑥 − 𝑥′) in the (𝑢, 𝑣, 𝑥𝑖) coordinates and expressed
𝜅2 = ℓ2

𝑝 explicitly. Note that the operator 𝜕2 only acts on the un-primed quantity
𝐻𝑢𝑢. Eq. (3.53) is the Minkowski limit of the AdS spacetime studied in Ref. [324].
By going through an analogous procedure, we obtain the following commutation
relations:

[𝐻𝑢𝑢 (𝑢,x), 𝐻𝑣𝑣 (𝑣,x′)] = 𝑖ℓ2
𝑝𝛿(𝑢 − 𝑢0)𝛿(𝑣 − 𝑣0) 𝑓 (x;x′), (3.54)

where 𝑓 (x,x′) is given by Eq. (3.26).
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Because T𝑢𝑢 is stochastic, it naturally implies that ⟨𝐻𝑢𝑢⟩ and ⟨𝐻𝑣𝑣⟩ vanish. However,
the variance

〈
𝐻2
𝑢𝑢

〉
(similarly for 𝑢 → 𝑣) in general does not vanish. To compute

the variance, we invoke the Robertson uncertainty principle [312, 324]〈
𝐻2
𝑢𝑢

〉 〈
𝐻2
𝑣𝑣

〉
≥

���� 1
2𝑖

⟨[𝐻𝑢𝑢, 𝐻𝑣𝑣]⟩
����2 =

(
ℓ2
𝑝

2

)2

[𝛿(𝑢 − 𝑢0)𝛿(𝑣 − 𝑣0) 𝑓 (x;x′)]2
.

(3.55)
Assuming that both are minimum uncertainty states, then the quantities

〈
𝐻2
𝑢𝑢

〉
and〈

𝐻2
𝑣𝑣

〉
are equal: 〈

𝐻2
𝑢𝑢

〉
=

〈
𝐻2
𝑣𝑣

〉
=
ℓ2
𝑝

2
𝛿(𝑢 − 𝑢0)𝛿(𝑣 − 𝑣0) 𝑓 (x;x′). (3.56)

In order to further evaluate
〈
𝐻2
𝑢𝑢

〉
and

〈
𝐻2
𝑣𝑣

〉
, we follow the heuristic argument

of nested causal diamonds and statistical independence once again. This line of
reasoning follows precisely the logic presented in details in Refs. [41, 324], and we
will not reproduce it in this chapter.

However, one crucial distinction sets our current chapter apart from [324]. With the
help of the cutoff fluid approach, we implement a “smeared-out” horizon (Fig. 3.1),
using Σ𝑐 so we can regularize the appropriate delta function in a manifestly Lorentz
invariant manner. The first step in our regularization procedure is to transform
the lightcone coordinates (𝑢, 𝑣, 𝑥𝑖) into the ingoing coordinates (𝜏, 𝑟, 𝑥𝑖) naturally
adapted to describe Σ𝑐. The two-dimensional delta function in the (𝑢, 𝑣) coordinates
are written explicitly in the (𝜏, 𝑟) coordinates as

𝛿(𝜏(𝑢) − 𝜏0) =
𝛿(𝑢 − 𝑢0)
|𝜏′(𝑢) | =

𝛼𝑢

2
𝛿(𝑢 − 𝑢0), (3.57)

𝛿(𝑟 − 𝑟0) = 𝛿
(
−𝛼𝑢𝑣

4
− 𝑟0

)
= 𝛿(𝛼𝑢𝑣/4 + 𝑟0) =

4
𝛼𝑢
𝛿(𝑣 − 𝑣0), (3.58)

where 𝜏′(𝑢) = 𝜕𝜏/𝜕𝑢 . The function 𝛿(𝜏−𝜏0) keeps track of the causal development
of an observer traversing on Σ𝑐, while 𝛿(𝑟 − 𝑟0) sets the width of the cutoff surface
Σ𝑐. Therefore, we will replace 𝛿(𝑟 − 𝑟0) with a suitably regularized kernel. After
first rescaling the argument of 𝛿(𝑟 − 𝑟0) we obtain

𝛿(𝑟 − 𝑟0) = 𝛿
(𝛼𝑢𝑣

4
+ 𝑟0

)
=

4
𝛼
𝛿

(
𝑢𝑣 + 4𝑟0

𝛼

)
. (3.59)

Next, we regularize the delta function with a Poisson kernel4

𝛿

(
𝑢𝑣 + 4𝑟0

𝛼

)
= lim
𝜖→0

2
𝜋

𝜖

𝜖2 + (𝑢𝑣 + 4𝑟0/𝛼)2 ≈ 2
𝜋

1
𝜖
. (3.60)

4The delta function can be represented by various kernels, but choosing the Poisson kernel allows
us to keep consistency with the previous work [324].
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In obtaining the last quantity, we have evaluated Eq. (3.60) on Σ𝑐, where 𝑟0 = 𝑟𝑐 and
𝑢𝑣 satisfies the relation

𝑢𝑣 |Σ𝑐
= −4𝑟𝑐

𝛼
. (3.61)

The parameter 𝜖 represents the width of 𝛿(𝑢𝑣+4𝑟𝑐/𝛼). In order to satisfy the Lorentz
invariance condition, a particularly convenient candidate5 for 𝜖 is that 𝜖 = 4𝑟𝑐/𝛼.
Setting 𝜖 = 4𝑟𝑐/𝛼 gives us

4
𝛼
𝛿

(
𝑢𝑣 + 4𝑟𝑐

𝛼

)
≈ 2
𝜋𝑟𝑐

. (3.62)

Now we have all the ingredients to evaluate
〈
𝐻2
𝑢𝑢

〉
. First, we apply the defini-

tion of the “light ray” operator (3.30) as in [312, 324], and perform a coordinate
transformation to the ingoing Rindler coordinates (𝜏, 𝑟, 𝑥𝑖)〈

𝐻2
𝑢𝑢

〉
≡ ⟨𝜕𝑢𝑋𝑣 (𝑢,x)𝜕𝑢′𝑋𝑣 (𝑢′,x′)⟩

=

〈(
𝜕𝜏

𝜕𝑢

)
𝜕𝜏𝑋

𝑣 (𝜏,x)
(
𝜕𝜏′

𝜕𝑢′

)
𝜕𝜏′𝑋

𝑣 (𝜏,x′)
〉

=
4
𝛼𝑟𝑐

𝑒−𝛼(𝜏+𝜏
′)/2 ⟨𝜕𝜏𝑋𝑣 (𝜏,x)𝜕𝜏′𝑋𝑣 (𝜏′,x′)⟩ ,

(3.63)

where we have used 𝜕𝜏/𝜕𝑢 = 2/(𝛼𝑢) and the explicit relation between 𝑢 and
𝜏 (3.23).

In the next step, we substitute in the delta function of the ingoing Rindler time
𝜏 (3.57), as well as the regularized delta function of the radial coordinate 𝑟 in terms
of a Poisson kernel of a width 𝜋𝑟𝑐/2 (3.62)

⟨𝜕𝜏𝑋𝑣 (𝜏,x)𝜕𝜏′𝑋𝑣 (𝜏′,x′)⟩ =
ℓ2
𝑝𝛼𝑟𝑐

8𝜋𝑟𝑐
𝑒𝛼(𝜏+𝜏

′)/2𝛿(𝜏 − 𝜏′) 𝑓 (x;x′). (3.64)

Eq. (3.64) takes on the form of a first order Langevin equation. Although the factor
of 𝑟𝑐 seems to cancel out between the chosen delta function regularization scheme
and the coordinate transformation between 𝑢 and 𝜏, we will soon discover that
another hidden factor of 𝑟𝑐 will show up once we relate the ingoing Rindler time 𝜏
back to the Minkowski global time 𝑇 relevant for a laboratory observer.

5There is an O(1) number uncertainty in choosing 𝜖 ; however, this number can be absorbed
into a redefinition of the reduced Planck length ℓ̃𝑝 . Also note that this 𝜖 is independent of the
hydrodynamic expansion parameter 𝜀.
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In order to compute the two-point correlation function of 𝑋𝑣, we integrate both sides
of (3.64) over 𝜏′ and 𝜏 readily to obtain

⟨𝑋𝑣 (x)𝑋𝑣 (x′)⟩ =
ℓ2
𝑝𝛼𝑟𝑐

8𝜋𝑟𝑐
𝑓 (x;x′)

∫ 𝜏 𝑓

𝜏𝑖

𝑑𝜏

∫ 𝜏

−∞
𝑑𝜏′𝑒𝛼(𝜏+𝜏

′)/2𝛿(𝜏 − 𝜏′)

=
ℓ2
𝑝

8𝜋

(
𝛼Δ𝑢2

𝑟𝑐

)
𝑓 (x;x′),

(3.65)

where the Lorentz invariant combination 𝛼/𝑟𝑐 will be fixed in terms of the size of
the causal diamond and the scale of quantum fluctuations shortly. The quantity

Δ𝑢2 ≡ 𝑟𝑐

𝛼
(𝑒𝛼𝜏 𝑓 − 𝑒𝛼𝜏𝑖 ) (3.66)

denotes the square of the total elapsed coordinate time in 𝑢 according to the coor-
dinate transformation (3.23). The light cone coordinate6 𝑢 is related to Minkowski
coordinates (𝑇, 𝑍) via 𝑢 = 𝑇 +𝑍 . We immediately see that the elapsed timeΔ𝑢 = Δ𝑇

for an observer at a fixed location, e.g. 𝑍 = 𝐿. Photon traversal time measured by a
free falling observer on the boundary of a causal diamond of size 𝐿 is

Δ𝑇r.𝑡. = 2𝐿 = Δ𝑢 (3.67)

in the absence of any spacetime fluctuations.

Quantum fluctuations give rise to a “smeared-out” horizon, Σ𝑐, represented by the
green curve Fig. 3.1. This cutoff surface intersects with the boundary of the causal
diamond at a distance ℓ̃𝑝 from either bottom or top of the diamond. As in Refs. [41,
329, 312, 324], ℓ̃𝑝 characterizes the scale of quantum fluctuations. From Fig. 3.1,
it is clear that the Minkowski global time difference between the light front and Σ𝑐

is 𝛿𝑇 = ℓ̃𝑝. This implies that 𝛿𝑢 = ℓ̃𝑝 for 𝑍 = 𝐿. Moreover, 𝛿𝑣 = 𝛿𝑢 = ℓ̃𝑝 by
symmetry. We choose to evaluate the uncertainty at the future tip of the diamond,
at which future light ray intersects with the worldline of a free-falling observer at
𝑍 = 𝐿. These constraints along with Eq. (3.61) imply that

4𝑟𝑐
𝛼

= −(𝑢 𝑓 − 𝛿𝑢) (𝑣 𝑓 − 𝛿𝑣) ≈ 𝑢 𝑓 𝛿𝑣 ≈ 2𝐿ℓ̃𝑝, (3.68)

where (𝑢 𝑓 , 𝑣 𝑓 ) = (2𝐿, 0) corresponds to the location at the top of the diamond.
Putting Eq. (3.68) back into Eq. (3.65) gives us the final answer:

⟨𝑋𝑣 (x)𝑋𝑣 (x′)⟩ =
ℓ2
𝑝

𝜋

(
𝐿

ℓ̃𝑝

)
𝑓 (x;x′). (3.69)

6Note that our convention of the light-cone coordinates differs from [324]. As a result, (𝑢, 𝑣)
directions in Fig. 3.1 are flipped, compared to the corresponding figure in [324].
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Since 𝑋𝑣 and 𝑋𝑢 are related via time-reversal symmetry 𝑋𝑣 ↔ 𝑋𝑢, we immediately
write down the two-point function of ⟨𝑋𝑢 (x)𝑋𝑢 (x′)⟩

⟨𝑋𝑢 (x)𝑋𝑢 (x′)⟩ =
ℓ2
𝑝

𝜋

(
𝐿

ℓ̃𝑝

)
𝑓 (x;x′). (3.70)

The total time delay is the sum of Eqs. (3.69) and (3.70)

Δ𝑇2
r.𝑡. (x;x′) ≡ ⟨𝑋𝑣 (x)𝑋𝑣 (x′)⟩ + ⟨𝑋𝑢 (x)𝑋𝑢 (x′)⟩

= 2
ℓ2
𝑝

𝜋

(
𝐿

ℓ̃𝑝

)
𝑓 (x;x′).

(3.71)

In four dimensions, there is no distinction between ℓ̃𝑝 and ℓ𝑝 [329, 312]; in other
words, ℓ̃𝑝 � ℓ𝑝, and Eq. (3.71) reduces to

Δ𝑇2
r.𝑡. (x;x′) 𝑑=4

=
2ℓ𝑝𝐿
𝜋

𝑓 (x;x′). (3.72)

This equation is the main result of this section, and it is consistent with the findings
from past literature [314, 313, 41, 329, 312, 324] that used different and comple-
mentary means. Note that the variance in the photon traversal time (3.72) has an
overall scaling dependence on both UV (ℓ𝑝) and IR (𝐿) scales. This kind of UV/IR
mixing is most frequently encountered in the context of Brownian motion [144].
The hallmark of Brownian motion is that the variance of a Brownian particle de-
pends on two quantities: 1) a diffusion coefficient 𝐷, an inter-molecular length scale
proportional to the mean free path between collisions, and 2) total time elapsed 𝑡,
usually set by laboratory measurement, takes on a macroscopic scale. In our case,
we have found that quantum fluctuations near the light front of a Minkowski causal
diamond also exhibit Brownian-like behavior. This result offers an exciting new
avenue to test quantum fluctuations in gravity using precise laser interferometer
measurement [313, 74].

3.5 Summary and Outlook
We have studied the relation between fluid and shockwave geometries, showing via
Petrov classification that a potential fluid contains the same physical information as
a shockwave geometry. We then proceeded to add a source to the fluid equation. The
stress energy source is quantum in nature, with an amplitude given by a fundamental
uncertainty in spacetime. We solved the equation of motion for spacetime and found
an uncertainty in light travel time that depends both on the UV scale (a Planck length),
as well as the light-crossing time of the causal diamond.
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We hope the relation between the shockwave and potential fluid dual geometries will
allow for direct calculation in the sourced potential fluid itself, e.g. of the two point
function for the potential fluid, including its dependence on time and transverse
directions. Although technically more difficult, extending beyond the transverse
planar limit should allow for understanding the angular dependence within finite
causal diamonds. Ideally we could also use the fluctuation-dissipation theorem to
compute the fluid diffusion constant from the quantum source. We leave these and
other extensions to future work.

A1 Appendix: Derivation of the Brown-York Stress Tensor
In this appendix, we derive the Brown-York stress tensor in the non-relativistic
hydrodynamic expansion (3.15).

To end up with this result, we first describe the near-equilibrium fluid metric by
allowing the fluid variables 𝑢𝑎, 𝑝 to depend on (𝜏, 𝑥𝑖) [108, 109, 264]. In the
derivative expansion7, the zeroth order seed metric is written as

𝑑𝑠2 = −2𝑝(𝑥)𝑢𝑎 (𝑥)𝑑𝑥𝑎𝑑𝑟 +
[
𝛾𝑎𝑏 − 𝛼𝑝2(𝑥) (𝑟 − 𝑟𝑐) 𝑢𝑎 (𝑥)𝑢𝑏 (𝑥)

]
𝑑𝑥𝑎𝑑𝑥𝑏, (73)

where 𝑥 denote (𝜏, 𝑥𝑖).

In this work, we are interested in the non-relativistic hydrodynamic limit, which
agrees with the near-horizon expansion [70, 206]

𝑣𝑖 ∼ O(𝜖), 𝑃 ∼ O
(
𝜖2

)
, 𝜕𝑖 ∼ O(𝜖), 𝜕𝜏 ∼ O

(
𝜖2

)
. (74)

In order to do that, consider the non-relativistic expansion of the pressure and
four-velocity

𝑝 =
1

√
𝛼𝑟𝑐 − 2𝑃

≈ 1
√
𝛼𝑟𝑐

+ 𝑃

(𝛼𝑟𝑐)3/2 + O
(
𝜖4

)
, (75)

𝑢0 =
−𝛼𝑟𝑐√︁
𝛼𝑟𝑐 − 𝑣2

≈ √
𝛼𝑟𝑐

(
1 + 𝑣2

2𝛼𝑟𝑐

)
+ O

(
𝜖4

)
, (76)

𝑢𝑖 =
𝑣𝑖√︁

𝛼𝑟𝑐 − 𝑣2
≈ 𝑣𝑖√

𝛼𝑟𝑐
+ O

(
𝜖3

)
. (77)

Here, 𝑣𝑖 is the non-relativistic fluid velocity in the transverse direction, and 𝑣2 ≡ 𝑣𝑖𝑣𝑖.
𝑃 is the non-relativistic pressure of the fluid on Σ𝑐. We perform the non-relativistic
hydrodynamic expansion in terms of the parameter 𝜖 , which keeps track of the

7The derivative expansion is defined as an order of different scaling 𝜖 such that 𝜕𝑟 ∼ O(1), 𝜕𝑎 ∼
O(𝜖).
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scaling of various quantities. Combining these and expanding the metric in power
of 𝜖 , the resulting metric becomes [70, 206]

𝑑𝑠2 = − (𝛼𝑟)𝑑𝜏2 + 2𝑑𝜏𝑑𝑟 + 𝛿𝑖 𝑗𝑑𝑥𝑖𝑑𝑥 𝑗

− 2
(
1 − 𝑟

𝑟𝑐

)
𝑣𝑖𝑑𝑥

𝑖𝑑𝜏 − 2
𝑣𝑖

𝛼𝑟𝑐
𝑑𝑥𝑖𝑑𝑟

+
(
1 − 𝑟

𝑟𝑐

) [
(𝑣2 + 2𝑃)𝑑𝜏2 +

𝑣𝑖𝑣 𝑗

𝛼𝑟𝑐
𝑑𝑥𝑖𝑑𝑥 𝑗

]
+

(
𝑣2

𝛼𝑟𝑐
+ 2𝑃
𝛼𝑟𝑐

)
𝑑𝜏𝑑𝑟

−
(
𝑟2 − 𝑟2

𝑐

)
𝛼𝑟𝑐

𝜕2𝑣𝑖𝑑𝑥
𝑖𝑑𝜏 + O

(
𝜖3

)
.

(78)

The unit normal vector on Σ𝑐 is given by [70]

𝑛𝜇𝜕𝜇 =
1

√
𝛼𝑟𝑐

𝜕𝜏 +
√
𝛼𝑟𝑐

(
1 − 𝑃

𝛼𝑟𝑐

)
𝜕𝑟 +

𝑣𝑖
√
𝛼𝑟𝑐

𝜕𝑖 + O
(
𝜖3

)
, (79)

and after a short computation, we obtain the extrinsic curvature 𝐾𝑎𝑏 = 1
2L𝑛𝛾𝑎𝑏 on

Σ𝑐 [70]

𝐾𝑎𝑏𝑑𝑥
𝑎𝑑𝑥𝑏 = −

𝛼
√
𝛼𝑟𝑐

2
𝑑𝜏2 + 𝛼𝑣𝑖√

𝛼𝑟𝑐
𝑑𝑥𝑖𝑑𝜏 − 𝛼(𝑣2 + 𝑃)

2√𝛼𝑟𝑐
𝑑𝜏2

−
𝛼(𝑣𝑖𝑣 𝑗 − 2𝑟𝑐𝜕(𝑖𝑣 𝑗))

2(𝛼𝑟𝑐)3/2 𝑑𝑥𝑖𝑑𝑥 𝑗 + O(𝜖3) .
(80)

Evaluating the Brown-York stress tensor defined in (3.10), we obtain the Eq. (3.15)

𝜅2 𝑇𝑎𝑏𝑑𝑥
𝑎𝑑𝑥𝑏 =

𝛼𝑣2
√
𝛼𝑟𝑐

𝑑𝜏2 − 2𝛼𝑣𝑖√
𝛼𝑟𝑐

𝑑𝑥𝑖𝑑𝜏 + 𝛼
√
𝛼𝑟𝑐

𝑑𝑥𝑖𝑑𝑥𝑖

+
𝑃𝛿𝑖 𝑗 + 𝑣𝑖𝑣 𝑗
𝑟𝑐
√
𝛼𝑟𝑐

𝑑𝑥𝑖𝑑𝑥 𝑗 −
2𝜕(𝑖𝑣 𝑗)√
𝛼𝑟𝑐

𝑑𝑥𝑖𝑑𝑥 𝑗 + O
(
𝜖3

)
.

(81)
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C h a p t e r 4

THE QUANTUM MECHANICS OF A SPHERICALLY
SYMMETRIC CAUSAL DIAMOND IN MINKOWSKI

SPACETIME

4.1 Introduction
Enormous conceptual progress has been made to unite gravity and quantum mechan-
ics, and horizons have played a crucial role in these developments. In the presence
of a horizon, there is a fairly universal notion of entropy, with the covariant entropy
bound stating that the maximal entropy of any quantum state within a horizon is
bounded above by 𝐴/4𝐺𝑁 , where 𝐴 is the area of the horizon. This bound takes
the same form as the Bekenstein-Hawking entropy. These results can be shown for
conformal field theories with a gravity dual [278, 91], and it has been argued that
they apply much more broadly to causal diamonds in maximally symmetric space-
times [203, 313, 41]. However, outside of the context of AdS/CFT, comparatively
few computational tools are available to analyze the quantum mechanics of causal
horizons created by lightsheets.

Despite this difficulty, it is essential to understand the role of quantum mechanics in
the study of causal diamonds in Minkowski spacetime, which serves as an excellent
approximation of the spacetime accessible by laboratory experiments. Fortunately,
there has been much research into the algebra of observables of black hole horizons
and, more generally, Killing horizons [85, 82, 86, 288, 84, 287, 83, 80, 81], and it
has been argued that many of the tools developed are also applicable to the study
of causal horizons [41]. More recently, research along this direction has further
been developed from the perspective of asymptotic symmetries [209, 180, 120, 134,
121, 181, 131, 176, 171, 17, 122, 18, 190], the covariant phase space formalism
[93, 94, 95, 101, 102, 270], and von Neumann algebras [125, 140, 103]. In many
of these works, a Hamiltonian charge corresponding to the area of the horizon has
been obtained [82, 288, 84, 120, 121, 131, 122, 93, 94, 190].

In this chapter, we consider a relatively simple setup involving a spherically symmet-
ric causal diamond in (𝑑+2)-dimensional Minkowski spacetime.1 The simplicity of

1Related analyses similar in spirit, but involving instead Jackiw–Teitelboim gravity, were done
in [178, 174].
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this spacetime allows us to straightforwardly construct the symplectic form, which
we invert to obtain the quantum commutators. Furthermore, we derive the associ-
ated Iyer-Wald Hamiltonian charges [201]. One such charge is the area operator,
which generates shifts in null time along the horizon. This is also the boost genera-
tor, which has been associated with the vacuum modular Hamiltonian of the system,
and has been previously studied in similar contexts [203, 94]. However, we discover
that by allowing for field-dependent diffeomorphisms, a second (integrable) charge
exists, which generates shifts in the global time coordinate and causes the causal
diamond to shrink or expand. This pair of charges fully characterizes the quantum
mechanics of a spherically symmetric causal diamond, and it would be extremely
interesting to explore the observational implications of both charges, as well as their
fluctuations, which we leave for future work.

In this chapter, we first construct a coordinate system that describes a causal dia-
mond in Minkowski spacetime. We then derive the symplectic form and quantum
commutators associated to the causal diamond via the covariant phase space for-
malism. Finally, we compute the two families of Iyer-Wald charges and elaborate
on their physical significance.

4.2 Parametrization of the Causal Diamond
In retarded coordinates, the metric of (𝑑 + 2)-dimensional Minkowski spacetime is
given by2

d𝑠2 = −d�̃�2 − 2 d�̃� d𝑟 + 𝑟2dΩ2
𝑑 , (4.1)

where �̃� = 𝑡 − 𝑟 is the retarded time coordinate and dΩ2
𝑑

is the round metric of the
unit 𝑆𝑑 . We consider a spherically symmetric causal diamond of size 𝐿, defined by
|𝑡 + 𝐿 | + 𝑟 ≤ 𝐿. In retarded coordinates this is given by −2𝐿 ≤ �̃� ≤ −2𝑟. The past
and future null boundaries H± of the diamond are respectively given by �̃� = −2𝐿
and �̃� = −2𝑟. The bifurcate horizon B is given by 𝑟 = 𝐿 and �̃� = −2𝐿, which is the
intersection between H+ and H−. We are interested in fluctuations of the causal
diamond that arise from spherically symmetric (large) diffeomorphisms. To this
end, we consider a coordinate transformation of the form

�̃� = −2Φ0(𝑢), 𝑟 = Φ(𝑢, 𝑟). (4.2)

2Alternatively, we could have worked with advanced time instead. However, as we will see,
the degrees of freedom completely localizes to the bifurcate horizon B, and hence both coordinate
choices are equivalent.
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A diffeomorphism of this form ensures that level sets of 𝑢 are the same as those of �̃�
and, therefore, null. We require 𝑢 to increase to the future and 𝑟 to increase inwards,
so we take 𝜕𝑢Φ0 < 0 and 𝜕𝑟Φ < 0. The new coordinates cover the entire interior
of the diamond as long as Φ ≤ Φ0 ≤ 𝐿. The past horizon H− is given by 𝑢 = 𝑢−

where

Φ0(𝑢−) = 𝐿. (4.3)

We require that the future null boundary H+ of the diamond be given by 𝑟 = 0,
which implies

Φ0(𝑢) = lim
𝑟→0

Φ(𝑢, 𝑟). (4.4)

The bifurcate horizon B is then located at 𝑟 = 0, 𝑢 = 𝑢−. Note that H+ is a Cauchy
slice for the causal diamond, and the following symplectic analysis will be carried
out on this surface.

In the new coordinates, the metric Eq. (4.1) takes the form

d𝑠2 = −2𝜅(𝑢, 𝑟)𝑟𝑒2𝛽(𝑢,𝑟)d𝑢2 + 2𝑒2𝛽(𝑢,𝑟)d𝑢 d𝑟

+Φ(𝑢, 𝑟)2dΩ2
𝑑 ,

(4.5)

where

𝑒2𝛽(𝑢,𝑟) = 2𝜕𝑢Φ0(𝑢)𝜕𝑟Φ(𝑢, 𝑟),

𝜅(𝑢, 𝑟) =
𝜕𝑢

(
Φ0(𝑢) −Φ(𝑢, 𝑟)

)
𝑟𝜕𝑟Φ(𝑢, 𝑟) .

(4.6)

Although this metric resembles the Gaussian null coordinates used near null hyper-
surfaces, Eq. (4.5) describes the entire causal diamond. For reference, a spacetime
diagram of the causal diamond is shown in Fig. 4.1.

4.3 Derivation of the Symplectic Form
We proceed to construct the symplectic form for the spherically symmetric causal
diamond, via the use of the covariant phase space formalism [113, 216, 201, 316].
We vary the Einstein-Hilbert action, isolate the boundary term, and then integrate
the latter over a Cauchy slice Σ to obtain the pre-symplectic potential (e.g., see [90]).
The result is3

Θ̃Σ [𝑔; 𝛿𝑔] = 1
16𝜋𝐺𝑁

∫
Σ

dΣ𝜇 (𝑔𝜈𝜌𝛿Γ𝜇𝜈𝜌 − 𝑔𝜇𝜈𝛿Γ𝜌𝜈𝜌), (4.7)
3The tilde emphasizes that Eq. (4.7) is the pre-symplectic potential rather than the symplectic

potential, as the corresponding pre-symplectic form Ω̃ may not be invertible. The tilde is dropped
once we gauge-fix in Eq. (4.17) and Eq. (4.20), which renders Ω̃ invertible.
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Figure 4.1: A causal diamond of radius 𝐿 with null boundaries shown as solid
red line. The blue dashed ellipse represents the 𝑑-dimensional bifurcation surface,
while the constant 𝑢 hypersurface is represented by the orange line.

where dΣ𝜇 is the surface element on Σ. For the special case where Σ = H+, the
surface element is given by4

dΣ𝜇 = −𝛿𝑟𝜇Φ𝑑𝑒2𝛽 d𝑢 dΩ𝑑 , (4.8)

where dΩ𝑑 is the volume form on 𝑆𝑑 . We derive in the Supplementary Material that
given the definition

𝜑(𝑢, 𝑟) ≡ Φ(𝑢, 𝑟)𝑑 , (4.9)

the pre-symplectic potential is given by

Θ̃H+ [𝑔; 𝛿𝑔] = Ω𝑑

8𝜋𝐺𝑁

(log |𝜕𝑢𝜑 | − 𝛽)𝛿𝜑
��
B + 𝛿( · · · ), (4.10)

4The negative sign in Eq. (4.8) arises from the fact our normal vector is outward-pointing, and
this is in the direction of decreasing 𝑟 , since 𝑟 increases as we move into the causal diamond along
constant 𝑢 rays.
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where Ω𝑑 = 2𝜋
𝑑+1

2

Γ( 𝑑+1
2 ) is the volume of 𝑆𝑑 . We note that the pre-symplectic potential

localizes entirely on the bifurcate horizon B with no contribution from the rest of
H+. The reason is that in our rather simplistic setup, all metric fluctuations arise
due to diffeomorphisms, and it was shown in [201] that such contributions are a
boundary term. The 𝛿( · · · ) denotes the total variational terms that do not contribute
to the pre-symplectic form, and are neglected henceforth.5

The pre-symplectic form is given by

Ω̃[𝑔; 𝛿1𝑔, 𝛿2𝑔] = 𝛿1Θ̃Σ [𝑔; 𝛿2𝑔] − 𝛿2Θ̃Σ [𝑔; 𝛿1𝑔]
− Θ̃Σ [𝑔; [𝛿1, 𝛿2]𝑔],

(4.11)

where we dropped the subscript Σ on Ω̃ since we will eventually see the symplectic
form is independent of Σ. It then follows from Eq. (4.10) that

Ω̃[𝑔; 𝛿1𝑔, 𝛿2𝑔] =
Ω𝑑

8𝜋𝐺𝑁

𝛿(log |𝜕𝑢𝜑 | − 𝛽) ∧ 𝛿𝜑
��
B , (4.12)

where we define the notation 𝛿𝑎 ∧ 𝛿𝑏 ≡ 𝛿1𝑎𝛿2𝑏 − 𝛿2𝑎𝛿1𝑏. Furthermore, observing
that (

log |𝜕𝑢𝜑| − 𝛽
) ��
B =

(
log

Φ𝑑−1
0 𝑑

2
+ 1

2
log

2𝜕𝑢Φ0
𝜕𝑟Φ

)����
B
, (4.13)

we can use the antisymmetry of the wedge product to obtain

Ω̃[𝑔; 𝛿1𝑔, 𝛿2𝑔] =
1

8𝜋𝐺𝑁

𝛿𝜇 ∧ 𝛿𝐴, (4.14)

where

𝐴 ≡ Ω𝑑𝜑
��
B = Ω𝑑Φ

𝑑
��
B , 𝜇 =

1
2

log
2𝜕𝑢Φ
𝜕𝑟Φ

����
B
. (4.15)

To elevate this to the symplectic form, we demand invertibility and therefore need
to perform a small gauge fixing. This is done in the Supplementary Material, and
we obtain

𝛽(𝑢, 𝑟) = 0, 𝜅(𝑢, 𝑟) = 𝜅0, (4.16)

where 𝜅0 is a spacetime constant, and

Φ(𝑢, 𝑟) = 𝐿 − 1
2𝜅0

𝑒𝜅0𝑢+𝛼 − 𝑟𝑒−𝜅0𝑢−𝛼, (4.17)

5The pre-symplectic potential in fact has further ambiguities arising from possible corner terms,
as explained in Section 1.3.3 of [110]. However, due to spherical symmetry, all such local and
covariant corner terms are total variations that do not affect the symplectic form.
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where 𝛼 is another spacetime constant. We also note that in this gauge, 𝑢 is the
proper time for a uniformly accelerating observer at 𝑟 = (2𝜅0)−1, with their proper
acceleration 𝑎 = 𝜅0 and whose future Rindler horizon isH+. The Unruh temperature
experienced by this observer is therefore

𝑇 =
𝜅0
2𝜋
. (4.18)

We now evaluate the symplectic form in this gauge. From the definitions Eq. (4.15),
it follows that

𝐴 = Ω𝑑𝐿
𝑑 , 𝜇 = 𝜅0𝑢− + 𝛼. (4.19)

From Eqs. (4.3), (4.4), and (4.17), it follows that 𝑢− = −∞, which implies that 𝜇, and
therefore Ω̃, is generically formally divergent. In the Supplementary Material, we
show that Ω̃ can be made finite and invertible by assuming that 𝜅0 is non-dynamical
on the phase space and is instead fixed in terms of 𝐿

𝜅0 ≡ 𝜅0(𝐿). (4.20)

With this assumption, the symplectic form reduces to

Ω[𝑔; 𝛿1𝑔, 𝛿2𝑔] =
1

8𝜋𝐺𝑁

𝛿𝛼 ∧ 𝛿𝐴. (4.21)

Inverting Eq. (4.21), we immediately arrive at the Poisson bracket

{𝛼, 𝐴} = −8𝜋𝐺𝑁 . (4.22)

Upon canonical quantization, we promote the Poisson bracket to a quantum com-
mutator so that

[𝛼, 𝐴] = −8𝜋𝑖𝐺𝑁 . (4.23)

4.4 Hamiltonian Charges
We now derive the Iyer-Wald Hamiltonian charges corresponding to horizon-preserving
diffeomorphisms of the causal diamond. Recall that for a generic diffeomorphism
generated by a vector field 𝜉𝜇, the Iyer-Wald Hamiltonian charge 𝐻𝜉 is obtained
from the symplectic form via the variational equation [201]

/𝛿𝐻𝜉 = Ω[𝜙; 𝛿𝜙, 𝛿𝜉𝜙] . (4.24)
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This is merely Hamilton’s equation expressed in terms of the covariant symplectic
form. The slash on the left-hand side indicates that the right-hand side might not
be a total variation, and hence 𝐻𝜉 may not exist. If 𝐻𝜉 does exist, Eq. (4.24) is
integrable, and the charge is obtained by inverting the variation.

We consider diffeomorphisms that preserve the form of our metric Eq. (4.5), with
𝛽 gauge-fixed to 𝛽 = 0 and 𝜅(𝑢, 𝑟) = 𝜅0. This amounts to requiring the following
conditions on the vector field 𝜉𝜇 generating the diffeomorphism:

L𝜉𝑔𝑢𝑢 = O(𝑟), L𝜉𝑔𝑢𝑟 = L𝜉𝑔𝑟𝑟 = 0. (4.25)

Symmetries of this or related forms have been studied numerous times in the litera-
ture, most famously by Bondi, van der Burg, Metzner, and Sachs [64, 280, 279] in
the context of asymptotically flat spacetimes. More recently, asymptotic symmetries
of null surfaces have been the subject of significant study [82, 84, 120, 121, 95,
93, 94, 171, 17, 122, 18, 190]. In our case, we also require that 𝜉𝜇 preserves the
spherical symmetry of the diamond, which significantly simplifies our calculation.
The resultant set of allowed diffeomorphisms is generated by

𝜉𝜇 = ( 𝑓 (𝑢),−𝑟𝜕𝑢 𝑓 (𝑢), ®0), (4.26)

where 𝑓 (𝑢) is any smooth function of 𝑢. Under an infinitesimal diffeomorphism
𝑥𝜇 → 𝑥𝜇 + 𝜉𝜇, we have

𝛿𝜉𝜅0 = −𝜆𝜅 =⇒ 𝜅0𝜕𝑢 𝑓 + 𝜕2
𝑢 𝑓 = 𝜆𝜅

=⇒ 𝑓 (𝑢) = 𝑐1 + 𝑐2𝑒
−𝜅0𝑢−𝛼 + 𝜆𝜅𝑢

𝜅0
,

(4.27)

where 𝑐1, 𝑐2 are some undetermined constants and 𝜆𝜅 is an infinitesimal parameter.
If we further fix

𝑐1 = 𝜆𝛼 −
𝜆𝜅

𝜅2
0
, 𝑐2 = −2𝜆𝐿 , (4.28)

for infinitesimal parameters 𝜆𝛼 and 𝜆𝐿 , then the diffeomorphism generated by 𝜉𝜇

yields

𝛿𝜉𝜅0 = −𝜆𝜅, 𝛿𝜉𝐿 = −𝜆𝐿 , 𝛿𝜉𝛼 = −𝜅0𝜆𝛼 . (4.29)

Recall that we require 𝜅0 ≡ 𝜅0(𝐿) in order for the symplectic form Eq. (4.21) to be
finite, which implies

𝜆𝜅 = 𝜅
′
0(𝐿)𝜆𝐿 . (4.30)
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Comparing this with the field Φ given in Eq. (4.17), we immediately see that 𝜆𝛼
parametrizes the shift in null time 𝑢, whereas 𝜆𝐿 parametrizes the change in the size
of the causal diamond 𝐿. Thus, the most general symmetry preserving the geometry
of a spherically symmetric causal diamond is parametrized by 𝜆𝐿 and 𝜆𝛼. We now
construct the Iyer-Wald charges that correspond to the two diffeomorphisms above.

First, let us construct the charge where 𝜆𝛼 ≠ 0 but 𝜆𝐿 = 0. This is the charge
that generates null time shifts in 𝑢 but keeps 𝐿 fixed. Using Eq. (4.24) with the
symplectic form Eq. (4.21), we obtain

/𝛿𝐻𝛼 = − 1
8𝜋𝐺𝑁

𝛿𝜉𝛼𝛿𝐴

= 𝛿

(
𝜆𝛼Ω𝑑𝑑

8𝜋𝐺𝑁

∫ 𝐿

0
d𝐿′ 𝜅0(𝐿′)𝐿′𝑑−1

)
,

(4.31)

where we used Eq. (4.19) and Eq. (4.29). We conclude that the first charge is

𝐻𝛼 =
Ω𝑑𝑑

8𝜋𝐺𝑁

∫ 𝐿

0
d𝐿′ 𝜅0(𝐿′)𝐿′𝑑−1, (4.32)

where we normalized the charge 𝐻𝛼 to exclude 𝜆𝛼. When there are no other length
scales in the theory, dimensional analysis implies that 𝜅0 takes the form 𝜅0(𝐿) = 𝐶/𝐿
for some dimensionless constant 𝐶 independent of 𝐿. In this case, the charge above
is given by6

𝐻𝛼 =
𝑑

𝑑 − 1
Ω𝑑

8𝜋𝐺𝑁

𝐶𝐿𝑑−1 =
𝑑

𝑑 − 1
𝜅0(𝐿)

2𝜋
𝐴

4𝐺𝑁

. (4.33)

Identifying 𝜅0(𝐿)/2𝜋 with the Unruh temperature of an accelerating observer (see
Eq. (4.18)) and associating an entropy 𝑆 = 𝐴/4𝐺𝑁 to the causal diamond, we find
a version of the Smarr formula for causal diamonds:

𝑑 − 1
𝑑

𝐻𝛼 = 𝑇𝑆. (4.34)

From Eq. (4.32), we can also reproduce a version of the first law for causal diamonds,
namely7

𝛿𝐻𝛼 =
Ω𝑑𝑑

8𝜋𝐺𝑁

𝜅0(𝐿)𝐿𝑑−1𝛿𝐿 =
𝜅0(𝐿)

2𝜋
𝛿

(
𝐴

4𝐺𝑁

)
= 𝑇𝛿𝑆. (4.35)

6In three dimensions (𝑑 = 1), we have 𝐻𝛼 = 𝐶
4𝐺𝑁

log 𝐿.
7Notice that because the vector generating shifts in 𝑢 is timelike, the energy measured by the

accelerating observer is 𝐸 = −𝐻𝛼, which implies that the temperature associated to causal diamonds
is negative. This is consistent with the results of [203, 94].
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Note that𝐻𝛼 generates time translations in 𝑢, which is the proper time of a uniformly
accelerating observer. Therefore, we conclude that 𝐻𝛼 is in fact the generator of
boosts that preserve the causal diamond and is also the vacuum modular Hamiltonian
of the causal diamond (see e.g., [54, 55]).

Next, we construct the second charge where 𝜆𝛼 = 0 but 𝜆𝐿 ≠ 0. Using Eq. (4.24)
with the symplectic form Eq. (4.21), we obtain

/𝛿𝐻𝐿 =
1

8𝜋𝐺𝑁

𝛿𝛼𝛿𝜉𝐴 = −𝜆𝐿Ω𝑑𝑑

8𝜋𝐺𝑁

𝐿𝑑−1𝛿𝛼, (4.36)

where we again used Eq. (4.19) and Eq. (4.29). Because 𝛿𝐿 ≠ 0 in general, the above
equation is not a total variation, which implies that the charge is not integrable.8

However, for the special case where we consider a field-dependent diffeomorphism
and fix

𝜆𝐿 =
𝐺𝑁𝜖

𝐿𝑑−1 , (4.37)

where 𝜖 is an infinitesimal parameter, 𝜆𝐿𝐿𝑑−1 becomes a constant on phase space.
Thus, the charge becomes integrable and is given by

𝐻𝐿 = −Ω𝑑𝑑

8𝜋
𝛼, (4.38)

where we normalized the charge to exclude 𝜖 . As we previously mentioned, this
charge generates a shift in the size of the causal diamond 𝐿, but the shifts are field-
dependent, given by Eq. (4.37). However, the change in the area of the diamond is
field-independent and is given by

𝛿𝜉𝐴 = −Ω𝑑𝐿
𝑑−1𝜆𝐿𝑑 = −Ω𝑑𝐺𝑁𝑑, (4.39)

where we used (4.37).

There are some interesting observations regarding 𝐻𝐿 . We note that while 𝐻𝐿
generates shifts in the size of the causal diamond, it additionally generates shifts
in the global Minkowski time 𝑡. To see this, note that under the diffeomorphism
generated by 𝜉𝜇 with 𝜆𝛼 = 0, we have

Φ → Φ + 𝛿𝜉Φ = 𝐿 − 𝜆𝐿 −
1

2(𝜅0 − 𝜆𝜅)
𝑒(𝜅0−𝜆𝜅 )𝑢+𝛼

− 𝑟𝑒−(𝜅0−𝜆𝜅 )𝑢−𝛼 .

(4.40)

8The exception to this is if 𝑑 = 1 and we are in a three-dimensional spacetime, which was
observed in [121]. In that case 𝐿𝑑−1 = 1 and there are no obstructions to writing down the charge.
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Recalling that Minkowski time is given by 𝑡 = �̃� + 𝑟, we have to linear order in the
variation using Eq. (4.2)

𝑡 → 𝑡 + 𝜆𝐿 + 𝜆𝜅
(

1
2𝜅2

0
𝑒𝜅0𝑢+𝛼 (1 − 𝜅0𝑢) − 𝑟𝑢𝑒−𝜅0𝑢−𝛼

)
, (4.41)

implying that 𝑡 indeed shifts under the action by 𝐻𝐿 . In fact, at the bifurcate horizon
B, the second term in the above expression vanishes as 𝑢 = −∞ and 𝑟 = 0, and we
have 𝑡 → 𝑡 + 𝜆𝐿 . Furthermore, recalling that the future boundary H+ is located at
�̃� + 2𝑟 = 0, it is straightforward to check that H+ remains invariant under the action
by 𝐻𝐿 . On the other hand, the past horizon H− is located at �̃� = −2𝐿, and this shifts
under H− to �̃� = −2𝐿 + 2𝜆𝐿 . In practice, this occurs by shifting the location of
the bifurcation surface while keeping the top of the diamond fixed, thereby creating
a “nesting” of causal diamonds (see Fig. 4.2) [41, 329, 324, 39]. Thus, while 𝐻𝛼
generates null time translations, 𝐻𝐿 acts like a dilatation operator (while keeping
H+ invariant). We can easily compute the commutation relation of the two charges
using Eq. (4.23) to obtain

[𝐻𝛼, 𝐻𝐿] = − 𝑖

8𝜋
𝜅0(𝐿)Ω𝑑𝑑. (4.42)

4.5 Conclusion
In this chapter, we considered the quantum mechanics of a spherically symmetric
causal diamond in (𝑑 + 2)-dimensional spacetime. We constructed the symplectic
form associated with the causal diamond, which localizes to the codimension-2
bifurcate horizon at the corner and also derived two physically relevant Hamiltonian
charges using the Iyer-Wald prescription. The first charge 𝐻𝛼 shifts the null time 𝑢
and is proportional to the area of the causal diamond. This is the vacuum modular
Hamiltonian and has been extensively studied in the literature in a variety of contexts
[54, 55, 91, 41, 312, 202, 203]. However, there is an interesting second charge 𝐻𝐿 ,
which changes the size of the causal diamond, and it exists only if field-dependent
diffeomorphisms (for 𝑑 ≥ 2) are allowed. Because our setup is simple enough to
directly relate the original Minkowski spacetime to our Gaussian null coordinates,
we can deduce that 𝐻𝐿 equivalently shifts the global Minkowski time.

There are many natural future directions to explore. Perhaps first and foremost is
to relax the spherical symmetry assumption. Many previous works have considered
the full asymptotic symmetry algebra of generic null surfaces [82, 84, 120, 121, 95,
93, 94, 171, 122, 17, 18, 270, 190], but have obtained differing results due to the
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Figure 4.2: Pictorial depiction of a series of “nested” causal diamonds. Charge
𝐻𝛼 generates translation in null time 𝑢 ↦→ 𝑢 + 𝜆𝛼, whereas charge 𝐻𝐿 generates
shift in the size of the diamond, which corresponds to, at the bifurcate horizon B, a
translation in Minkowski time 𝑡 ↦→ 𝑡 + 𝜆𝐿 .

choice of boundary conditions, charge integrability, and a variety of other challenges.
Moreover, many of these works did not allow for field-dependent diffeomorphisms
(notable exceptions are [171, 18, 270, 190] and references therein), which we have
shown are essential for the existence of the second charge that generates shifts in the
area of the bifurcation surface. To our knowledge, no analysis has been carried out
to study this charge or its higher modes in a more general environment. It would
be extremely interesting to understand whether the algebra of these higher modes
admits a central extension, as well as to explore the observational consequences of
the two charges.

B1 Appendix: Derivation of the Pre-symplectic Potential
In this section, our goal is to derive the pre-symplectic potential for the metric
Eq. (4.5) and obtain Eq. (4.10). We begin by recalling Eq. (4.7) and Eq. (4.8), which
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immediately implies

Θ̃H+ [𝑔; 𝛿𝑔] = − 1
16𝜋𝐺𝑁

∫
H+

d𝑢 dΩ𝑑 𝑒
2𝛽Φ𝑑

[
𝑔𝜇𝜈 (𝛿Γ𝑟𝜇𝜈) − 𝑔𝜇𝑟 (𝛿Γ𝜆𝜆𝜇)

]
= − 1

16𝜋𝐺𝑁

∫
H+

d𝑢 dΩ𝑑 𝜑

[
2𝛿Γ𝑟𝑢𝑟 +

𝑒2𝛽

𝜑
2
𝑑

𝛾𝑎𝑏𝛿Γ𝑟𝑎𝑏 − 𝛿Γ
𝜆
𝜆𝑢

]
,

(43)

where we defined

𝜑(𝑢, 𝑟) ≡ Φ(𝑢, 𝑟)𝑑 . (44)

Evaluating the variations of the Christoffel symbols, the integrand of Eq. (43)
becomes

𝜑

[
2𝛿Γ𝑟𝑢𝑟 +

𝑒2𝛽

𝜑
2
𝑑

𝛾𝑎𝑏𝛿Γ𝑟𝑎𝑏 − 𝛿Γ
𝜆
𝜆𝑢

]
= − 2𝜑𝛿𝜅 + 2𝜕𝑢𝜑𝛿𝛽 − 2

(
1
𝑑
− 1

)
1
𝜑
𝜕𝑢𝜑𝛿𝜑

− 2𝜕𝑢𝛿𝜑 − 2𝜑𝜕𝑢𝛿𝛽 + O(𝑟).
(45)

Now, recall that the pre-symplectic form is defined as

Ω̃[𝑔; 𝛿1𝑔, 𝛿2𝑔] = 𝛿1Θ̃Σ [𝑔; 𝛿2𝑔] − 𝛿2Θ̃Σ [𝑔; 𝛿1𝑔] − Θ̃Σ [𝑔; [𝛿1, 𝛿2]𝑔], (46)

so by the antisymmetry of 𝛿1 and 𝛿2, terms that are total variations in the pre-
symplectic potential will not contribute to the pre-symplectic form, thereby allowing
us to ignore such terms. Thus, we can rewrite Eq. (45) as

𝜑

[
2𝛿Γ𝑟𝑢𝑟 +

𝑒2𝛽

𝜑
2
𝑑

𝛾𝑎𝑏𝛿Γ𝑟𝑎𝑏 − 𝛿Γ
𝜆
𝜆𝑢

]
=

[
2𝜅 + 4𝜕𝑢𝛽 − 2

(
1
𝑑
− 1

)
1
𝜑
𝜕𝑢𝜑

]
𝛿𝜑

− 2𝜕𝑢
(
𝛿𝜑𝛽

)
+ 𝛿(· · · ) + O(𝑟),

(47)

where 𝛿(· · · ) indicate terms that are total variations. Substituting this back into
Eq. (43) and dropping the O(𝑟) terms since 𝑟 → 0 on H+, we see that the pre-
symplectic potential is given by

Θ̃H+ [𝑔; 𝛿𝑔] = − Ω𝑑

16𝜋𝐺𝑁

∫ 𝑢+

𝑢−

d𝑢
{[

2𝜅 + 4𝜕𝑢𝛽 − 2
(

1
𝑑
− 1

)
1
𝜑
𝜕𝑢𝜑

]
𝛿𝜑 − 2𝜕𝑢

(
𝛿𝜑𝛽

)}
+ 𝛿(· · · ),

(48)

where we integrated over the angular directions to obtain the volume of the unit
𝑑-sphere Ω𝑑 , and 𝑢± indicates the integration limits of the future horizon H+. We
can further simplify this by substituting it in Eq. (4.6) to obtain

Θ̃H+ [𝑔; 𝛿𝑔] = − Ω𝑑

8𝜋𝐺𝑁

∫ 𝑢+

𝑢−

d𝑢
[
𝜕𝑢 log |𝜕𝑢𝜑 |𝛿𝜑 − 𝜕𝑢

(
𝛿𝜑𝛽

) ]
+ 𝛿(· · · ). (49)
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We now note the first term in the integrand of Eq. (49) can be written as

𝜕𝑢 log |𝜕𝑢𝜑 |𝛿𝜑 = 𝜕𝑢
(
log |𝜕𝑢𝜑 |𝛿𝜑

)
− log |𝜕𝑢𝜑 |𝜕𝑢𝛿𝜑

= 𝜕𝑢
(
log |𝜕𝑢𝜑 |𝛿𝜑

)
+ 𝛿(· · · ),

(50)

which means we can further simplify Eq. (49) to be

Θ̃H+ [𝑔; 𝛿𝑔] = Ω𝑑

8𝜋𝐺𝑁

(
log |𝜕𝑢𝜑 | − 𝛽

)
𝛿𝜑

����
𝑢=𝑢−

+ 𝛿(· · · ), (51)

where we carried out the 𝑢 integral, and noted that 𝜑(𝑢+) = Φ(𝑢+, 0)𝑑 = 0 since
by definition (𝑢 = 𝑢+, 𝑟 = 0) is at the top of causal diamond, which corresponds to
𝑟 = 0, and hence Φ(𝑢+, 0) = 0 by Eq. (4.2). This is precisely Eq. (4.10).

B2 Appendix: Promotion of the Pre-symplectic Form to Symplectic Form
In this section, we show how to gauge-fix so that the pre-symplectic form Eq. (4.14),
reproduced here for convenience as

Ω̃[𝑔; 𝛿1𝑔, 𝛿2𝑔] =
1

8𝜋𝐺𝑁

𝛿𝜇 ∧ 𝛿𝐴, (52)

becomes invertible and hence the symplectic form Eq. (4.21). First, note that the pre-
symplectic form written in the form Eq. (4.12) does not depend on 𝛽 independently,
but rather depend on the linear combination log |𝜕𝑢𝜑 | − 𝛽 at B. Hence, we can
choose to gauge-fix 𝛽, and since the symplectic form is independent of the value of
𝛽 away from B, we choose the simplest choice, namely

𝛽 = 0. (53)

Recalling from Eq. (4.6) the definition of 𝛽, and we have upon setting 𝛽 = 0 in
Eq. (4.6) the equality

Φ(𝑢, 𝑟) = Φ0(𝑢) +
𝑟

2𝜕𝑢Φ0(𝑢)
. (54)

Using Eq. (4.6) and Eq. (54), we similarly derive

𝜅(𝑢, 𝑟) =
𝜕2
𝑢Φ0(𝑢)
𝜕𝑢Φ0(𝑢)

. (55)

Next, we note that the pre-symplectic form only depends on 𝜅(𝑢−, 0), which means
it does not matter how 𝜅 changes as a function of 𝑢 and 𝑟 . This allows to further
gauge-fix so that 𝜅(𝑢, 𝑟) ≡ 𝜅0 is independent of 𝑢 and 𝑟 and therefore a spacetime
constant. In this case, we solve Eq. (55) to obtain

Φ(𝑢, 𝑟) = 𝐿 − 1
2𝜅0

𝑒𝜅0𝑢+𝛼 − 𝑟𝑒−𝜅0𝑢−𝛼, (56)
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where 𝐿 is the radius of the causal diamond, and 𝛼 an arbitrary spacetime constant.
Note that in our original Bondi coordinates Eq. (4.1), the bifurcate horizon B is
located at �̃� = −2𝐿 and 𝑟 = 𝐿, or equivalently at 𝑢 = 𝑢− and 𝑟 = 0. The coordinate
transformation Eq. (4.2) suggests that B is located at

𝑟 = 𝐿 = Φ(𝑢−, 0) = Φ0(𝑢−). (57)

Comparing this to Eq. (56), we see that B, which also corresponds to the past
boundary of H+, is located at 𝑢− = −∞. We can also determine 𝑢+ by using
Φ(𝑢+, 0) = 0, which yields

𝑢+ =
1
𝜅0

(
log(2𝜅0𝐿) − 𝛼

)
. (58)

Recalling Eq. (4.15), we see from Eq. (56) that

𝐴 = Ω𝑑𝐿
𝑑 , 𝜇 = lim

𝑢→𝑢−

(
𝛼 + 𝜅0𝑢

)
= 𝛼 + 𝜅0𝑢−. (59)

Because 𝑢− = −∞, 𝜇 is formally divergent. Furthermore, from (59), it appears that
there are three degrees of freedom, namely 𝐿, 𝛼, and 𝜅0. Since the phase space
is even-dimensional, it must be the case that not all three degrees of freedom are
independent. We can resolve both issues if we assume 𝜅0 = 𝜅0(𝐿), so that 𝜅0

depends purely on 𝐿 and is not an independent degree of freedom. In this case, 𝜅0

is still a spacetime constant as it is independent of 𝑢, 𝑟, and we have 𝛿𝜅0 = 𝜅′(𝐿)𝛿𝐿.
By the antisymmetry of the wedge product, the divergent term vanishes, and we are
left with9

Ω[𝑔; 𝛿1𝑔, 𝛿2𝑔] =
1

8𝜋𝐺𝑁

𝛿𝛼 ∧ 𝛿𝐴. (60)

We have dropped the tilde on Ω as the above expression is invertible, and this is
precisely Eq. (4.21).

9Another common choice in the literature has been to take 𝜅0 to be a fixed constant on the phase
space, such that 𝛿𝜅0 = 0 (e.g., see [120, 121, 131, 134]), which corresponds to the case of an isolated
horizon.
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C h a p t e r 5

QUANTUM GRAVITY BACKGROUND IN NEXT-GENERATION
GRAVITATIONAL WAVE DETECTORS

5.1 Introduction
Bridging the gap between theory and experiment in the study of quantum gravity
is at the forefront of research in physics. Although the effects of quantum gravity
are ordinarily expected to appear on unobservably-small scales of order the Planck
length, 𝑙𝑝 =

√︁
8𝜋𝐺ℏ/𝑐3 ∼ 10−34 m, recent works [313, 314, 328, 41, 174, 312, 324]

have shown that this naive effective field theory (EFT) reasoning may not capture
the complete physical picture. Instead, Refs. [313, 314] showed, using standard
holographic techniques, that spacetime fluctuations accumulate from the UV into
the IR to produce an effect that scales with the size 𝐿 of the physical system. In
particular, in flat spacetime, the trajectories of photons in an interferometer of length
𝐿 enclose a finite spacetime region known as a causal diamond. The geometric fluc-
tuations induced by entropic fluctuations within the causal diamond, or “geontropic
fluctuations,” manifest as uncertainty in the arm length of the interferometer, as
measured by the photon travel time, with a variance that scales as

⟨Δ𝐿2⟩ ∼ 𝑙𝑝𝐿. (5.1)

Additionally, these fluctuations exhibit long-range transverse correlations which
enable observation. This result has proven to be theoretically robust, having been
confirmed with several distinct theoretical approaches in Refs. [328, 41, 174, 312,
324], such that the geontropic fluctuations are observed in flat Minkowski, dS, and
AdS spacetimes. For a summary of all of these works, see Ref. [329].

More recently, Ref. [219], building upon the work of Ref. [328], developed a model
of these geontropic fluctuations in terms of bosonic degrees of freedom coupled
to the metric. The model is designed to capture the most prominent features of
the theory developed in Refs. [313, 314, 41, 174, 324, 312], while being local and
allowing for the explicit computation of the gauge-invariant interferometer observ-
able. It features a scalar field 𝜙, the “pixellon”, a breathing mode corresponding to
spacetime fluctuations of the (spherically symmetric) volume of spacetime under ob-
servation. This model allows for the calculation of the power spectral density (PSD)
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of geontropic fluctuations in spherically-symmetric configurations, in particular for
traditional L-shaped interferometers such as LIGO [234] and LISA [37].

Ref. [219] also compared the PSD of the pixellon model to the strain sensitiv-
ities of several current and future gravitational wave (GW) detectors, namely
LIGO/Virgo [234], Holometer [96], GEO600 [305], and LISA [37]. These ex-
periments either produced modest constraints on the pixellon model (in the cases of
LIGO and Holometer) or were not sensitive to the model (in the cases of GEO600
and LISA). There are several general reasons for this. For large instruments such as
LISA, we expect a reduced signal as the geontropic strain scales parametrically as

ℎ = Δ𝐿
𝐿

∼
√︃
𝑙𝑝
𝐿

. On the other hand, existing terrestrial experiments typically have
poorer strain sensitivities near the relatively high frequency 𝜔peak ∼ 1

𝐿
at which

the pixellon signal achieves its peak. In this chapter, we build upon this previous
work and survey the landscape of next-generation GW detectors, characterizing
their sensitivity to geontropic fluctuations as modeled by the pixellon. We also con-
sider these experiments in the context of the upcoming GQuEST experiment [236],
which explicitly seeks to measure the geontropic signal. Note that in this chapter
we assume the pixellon is a good physically equivalent description of the geontropic
fluctuations predicted by the VZ effect [313, 314, 41, 174, 324, 329, 312]. As dis-
cussed above, while it has been shown that the pixellon model reproduces important
features of the VZ effect (such as the angular correlations), the physical equivalence
in all aspects of the interferometer observable has not been shown, and is the subject
of ongoing, first-principles calculations. We plan to update observational signatures
as the theoretical modeling captures more aspects of the first-principles calculations.

With this caveat in mind, the chapter is organized as follows. In Sec. 5.2, we briefly
summarize the pixellon model of Refs. [328, 219]. In Sec. 5.3, we review a variety
of proposed GW detectors following Ref. [20], and discuss their potential sensitivity
to the geontropic signal. In Sec. 5.4, we extend the calculation of the pixellon PSD
in Ref. [219] to more general interferometer-like experiments, particularly for those
with geometries other than the traditional L-shape, and for optically-levitated sen-
sors. In Sec. 5.5, we then apply the results to specific experiments and compare the
geontropic signal to the expected strain sensitivities of these experiments. Finally,
in Sec. 5.6, we collect our results and discuss their implications for the future of
GW observation.

In anticipation of our main result, in Fig. 5.1, we plot the predicted pixellon signal
alongside the strain sensitivities of two prominent next-generation GW detectors:
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Figure 5.1: Pixellon strain (dashed and dotted lines) overlaid with the strain sen-
sitivities for CE [291] and ET [193] (solid lines). For CE, we have included both
designs with arm lengths 𝐿 = 20 km (orange lines) and 𝐿 = 40 km (blue lines). The
dotted lines give the pixellon strain from Eq. (5.35) computed without an IR cutoff,
and the dashed lines give the same quantity including the IR cutoff from Eq. (5.28).
The pixellon strain is computed with the benchmark value 𝛼 = 1.

Cosmic Explorer (CE) [137, 291] and the Einstein Telescope (ET) [193]. From
these plots, we find a typical geontropic signal exceeds the strain sensitivities of
these detectors by two orders of magnitude over a wide range of frequencies. As
such, the signal represents a large stochastic background which, if present, would
imply a reevaluation of the future of GW astronomy. Moreover, we will show that
of the experiments considered in this chapter, only CE and ET will have better
sensitivity to the geontropic signal than GQuEST, which is a nearer-term apparatus
than CE and ET.

5.2 Pixellon Model
In this section, we review the pixellon model proposed in Refs. [328, 219] to
model the geontropic fluctuations of the spherical entangling surface bounding
an interferometer, which is also a specialization of the dilaton model studied in
Refs. [41, 174] to causal diamonds in 4-d flat spacetime. Before proceeding, we
emphasize that while we expect the pixellon model to reproduce a number of the
salient features of the effect proposed in Refs. [313, 314, 312, 41], the physical
equivalence between the model and the complete theory remains to be shown.
Demonstrating this physical equivalence will be crucial for claiming a decisive test
of the VZ effect. More specifically, Ref. [219] considered a breathing mode of the
metric associated with the spacetime volume probed by the interferometer,

𝑑𝑠2 = −𝑑𝑡2 + (1 − 𝜙) (𝑑𝑟2 + 𝑟2𝑑Ω2) , (5.2)
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where 𝜙 is a bosonic scalar field,

𝜙(𝑥) = 𝑙𝑝
∫

𝑑3p
(2𝜋)3

1√︁
2𝜔(p)

(
𝑎p𝑒

𝑖𝑝·𝑥 + 𝑎†p𝑒−𝑖𝑝·𝑥
)
, (5.3)

and satisfies the dispersion relation of a sound mode,

𝜔 = 𝑐𝑠 |p| , 𝑐𝑠 =

√︂
1
3
. (5.4)

The dispersion relation in Eq. (5.4) and the normalization factor 𝑙𝑝 in Eq. (5.3) were
derived from plugging the metric in Eq. (5.2) into the linearized Einstein-Hilbert
action [219]. The creation and annihilation operators (𝑎†p, 𝑎p) satisfy the standard
commutation relation, [

𝑎p1 , 𝑎
†
p2

]
= (2𝜋)3𝛿(3) (p1 − p2) . (5.5)

Instead of being a vacuum state, 𝜙 is thermal with a nontrivial thermal density
matrix 𝜌p𝑖𝑥 [328, 219]:

𝜌p𝑖𝑥 =
1
Z exp

[
−𝛽

∫
𝑑3p
(2𝜋)3 (𝜖p − 𝜇)𝑎

†
p𝑎p

]
, (5.6)

Z =
∏

p

1
1 − 𝑒−𝛽(𝜖p−𝜇)

, (5.7)

where 𝜖p is the energy of the pixellon mode of momentum p, and 𝜇 is the chemical
potential counting the background degrees of freedom. In this case, the pixellon
modes 𝜙 have an occupation number given by the standard bosonic statistics, i.e.,

Tr
(
𝜌p𝑖𝑥𝑎

†
p1𝑎p2

)
= (2𝜋)3𝜎p𝑖𝑥 (p1)𝛿(3) (p1 − p2) ,

𝜎p𝑖𝑥 (p) =
1

𝑒𝛽(𝜖p−𝜇) − 1
. (5.8)

To further simplify the occupation number 𝜎p𝑖𝑥 (p), Refs. [328, 219] used that in flat
spacetime, the modular Hamiltonian 𝐾 inside a causal diamond satisfies [313, 41]

⟨𝐾⟩ ∼ ⟨Δ𝐾2⟩ ∼ 𝐴(Σ)
𝑙2𝑝

, (5.9)

and similar results in AdS were found in Refs. [314, 118, 246]. Since the number
of gravitational degrees of freedom N inside the causal diamond is given by

N ≡ ⟨𝐾⟩ , (5.10)
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the energy fluctuation per degree of freedom is given by [328, 219]

𝛽(𝜖p − 𝜇) ≡ 𝛽𝜔(p) ∼
√︁
⟨Δ𝐾2⟩
⟨𝐾⟩ ∼

𝑙𝑝

𝐿
. (5.11)

If one uses Eq. (5.11), identifies 𝜔(p) ∼ 1
𝐿
, and expands 𝜎p𝑖𝑥 (p) in Eq. (5.8) to

leading order in 𝑙𝑝
𝐿

, one finds

𝜎p𝑖𝑥 (p) =
𝑎

𝑙𝑝𝜔(p)
, (5.12)

where 𝑎 is a dimensionless number, to be fixed by experiment. In Eq. (5.11),
𝛽 ∼ 𝑙𝑝 corresponds to the local temperature of the near-horizon region probed by
the light beams. Comparing the pixellon model here to Refs. [313, 314, 328] and
incorporating 𝜙 as a sound mode [i.e., Eq. (5.4)], Ref. [219] fixed 𝑎 = 𝑐2

𝑠/(2𝜋),
which corresponds to 𝛽 = 2𝜋𝑙𝑝/𝑐2

𝑠 . Defining

𝛼 ≡ 2𝜋
𝑐2
𝑠

𝑎 , (5.13)

we obtain the theory-motivated benchmark for detection 𝛼 ∼ 1.

In Ref. [219], the pixellon model was used to compute the auto-correlation func-
tion of length fluctuations of a single Michelson interferometer with length 𝐿 and
separation angle 𝜃. It was found that the peak of the signal is at 𝜔𝐿 ∼ 1 with an
overall amplitude

√︁
⟨Δ𝐿2⟩ ∼

√︁
𝑙𝑝𝐿. Moreover, the angular correlations from the

pixellon model match well with the predictions of Refs. [313, 312] from shockwave
geometry. The peak frequency 𝜔peak ∼ 1

𝐿
is consistent with both the identifica-

tion 𝜔(p) ∼ 1
𝐿

made by Eq. (5.12) and the pixellon mode being a breathing mode
controlling the size of the spherical entangling surface bounding the interferometer.
From this typical frequency and the strain’s amplitude, one can directly see that for
a general detector probing a causal diamond of size 𝐿, we need a strain sensitivity√︁
𝑆ℎ ( 𝑓 ) ≲

√︁
𝜔peak⟨Δ𝐿2⟩ ∼

√︁
𝑙𝑝 ∼ 10−23 Hz−1/2 near the frequency 𝜔peak ∼ 1

𝐿
,

where 𝑆ℎ ( 𝑓 ) is the one-sided noise strain defined in Eq. (5.34). Most current inter-
ferometers, especially those aiming for GW detection, do not have such good strain
sensitivity near the free spectral range, which is a higher frequency than is probed by
many interferometers. Thus, we would first like to investigate whether other types
of high-frequency GW detectors, besides the next-generation interferometers, can
potentially detect geontropic signals.

5.3 High-Frequency GW Detectors
This section follows the review in Ref. [20] to investigate a broad class of high-
frequency GW detectors with various operating principles. To understand how
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the detection of geontropic fluctuations fits in this landscape, we first discuss the
proposed scientific goals of these high-frequency GW detectors. Most current
proposals intend to probe astrophysical objects in unexplored limits, or test quantum
gravity near highly curved spacetime. In contrast, the effect considered in Refs. [313,
314, 328, 41, 174, 312, 329, 219, 324] and this work fills the gap of examining
quantum gravity in flat spacetime. Moreover, the necessary sensitivity and frequency
range are within the same regime as other science cases, so utilizing these detectors
for geontropic signals is natural. In the second half of this section, we examine
these detectors’ suitabilities for measuring geontropic fluctuations and argue that
interferometer-like experiments are the most optimal.

Sources of High-frequency GWs
Since the successful detection of GWs by the LIGO-Virgo collaboration [13], there
have been continuous efforts to improve the sensitivity of GW detectors at higher
frequencies. One direct motivation for this is to study extreme astrophysical objects
in limits or environments which cannot be reached by current GW detectors. For
example, the merger of sub-solar mass primordial BHs of 10−9–10−1 𝑀⊙ can emit
GWs with frequencies of 10–109 kHz [20]. For neutron stars (NSs), the remnant hot,
high-density matter after their merger can generate GWs at either∼ 1–4 kHz [128] for
a BH remnant or ≳ 6 kHz [286, 38] for an NS remnant [16]. These high-frequency
GWs provide opportunities to study different phases of matter predicted by quantum
chromodynamics in a high-density finite-temperature environment [45]. At larger
scales, high-frequency GW detectors will assist in learning about GWs emitted by
the thermal plasma of the early universe [157] (1–100 GHz), the stochastic GW
background generated by primordial BHs [31] (10–1010 THz), cosmic strings [207]
(1–106 kHz), and other events at cosmological scales [20].

One vital application of these high-frequency GW detectors is to explore quantum
gravity, the central focus of this work. Standard tests of quantum gravity using
GWs focus on examining the properties of quantum BHs against their classical
counterparts. For example, GW detections have been used to test the no-hair theorem
[197], stating that any classical stationary BH (a solution to the Einstein-Maxwell
equation) is characterized only by its mass, charge, and angular momentum [241].
Still, quantum gravity might dress BHs with hair [163, 50]. The spectrum of GWs
can also serve as a test of the horizon’s existence [231, 127], where quantum gravity
can modify the structure of the near-horizon geometry [162], either drastically via
a “firewall" hiding all quantum effects [29], or smoothly with the quantum effects
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extending over some distance around the BH [161].

Unlike these standard tests, the series of works in Refs. [313, 314, 328, 41, 174,
312, 329, 219, 324] instead focus on perturbations of the near-horizon geometry
of causal diamonds in flat spacetime due to quantum gravity, which the pixellon
models as an effective description. As introduced in Secs. 2.1 and 5.2 and shown
in detail in Sec. 5.5, the length fluctuations induced by the pixellon in an L-shaped
interferometer of length 𝐿 have a size of

√︁
⟨Δ𝐿2⟩ ∼

√︁
𝑙𝑝𝐿 and a peak frequency at

𝜔𝐿 ∼ 1, corresponding to a PSD with an amplitude of∼
√︁
𝑐𝑙𝑝. For an interferometer,

or, more generally, a causal diamond with characteristic size 𝐿 ∼ 10 m–10 km, we
need a strain sensitivity of∼ 10−23 Hz−1/2 at the peak frequencies of 1

𝐿
∼ kHz–MHz,

which is within the target sensitivity of many high-frequency GW detectors. Thus,
these high-frequency GW detectors planned for various purposes can also be used to
test quantum gravity in flat spacetime, which motivates our following investigation.

Detectors for High-frequency GWs
Interferometers

The most natural GW detectors to consider are the next-generation interferometers,
such as CE [137, 291], ET [136], and NEMO [16], for which the pixellon model
was designed to describe the geontropic fluctuations. Although CE and ET are not
usually considered high-frequency detectors but instead broadband detectors, they
can access frequencies of a few kHz, which are near their free spectral range. For
a single interferometer, the causal diamond is naturally defined by the light beams
traveling between the mirrors, with its size equal to the interferometer’s arm length.
Perturbations to the spherical entangling surface bounding the interferometer are
then controlled by the pixellon mode. Although the metric in Eq. (5.2) is not
spherically symmetric due to the nontrivial angular dependence of 𝜙(𝑥), its spatial
part is conformal to the metric of a 3-ball, adapting to the spherical symmetry of an
interferometer.

The pixellon model and the procedure to compute length fluctuations can be extended
to alternative configurations of Michelson interferometers, such as the triangular
configuration of ET. In Ref. [219], the PSD and the angular correlations of a single
L-shaped interferometer with an arbitrary separation angle were computed. In
Sec. 5.4, we further show that the previous results can be extended to multiple
interferometers if we consistently correlate pixellons in different causal diamonds.
The cross-correlations of different interferometers can then be studied, becoming
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a smoking gun signature of geontropic signals. Another advantage of studying
cross-correlations between detectors is that the cross spectrum of a correlated noise
background between different detectors can be detected at a level much lower than
their individual independent noise spectra [28].

One fundamental barrier for an interferometer to reach the high-frequency regime
is the quantum shot noise of lasers (or the high uncertainty of the laser’s phase
quadrature). The most direct solution to this limitation is to increase the laser power
𝑃arm, since the PSD of the quantum noise at high frequencies is proportional to
𝑃
−1/2
arm [232], which is the approach adopted by NEMO [16]. However, increasing

laser power is technically challenging, with issues such as the parametric instability
of the mirrors’ motion due to energy transfer from the light beams [138] or the
thermal deformation of the mirrors [137, 72].

Besides increasing laser power, one can also inject squeezed vacuum into the dark
port of the interferometer, leading to a reduced phase uncertainty at the cost of
sacrificing the sensitivity at low frequencies [137]. Nonetheless, Refs. [220, 317]
recently proposed that one can connect a quantum parametric amplifier to the in-
terferometer to stabilize the “white-light cavity” design in Ref. [237], such that the
sensitivity at kHz frequencies can be increased without sacrificing the bandwidth.

In addition, for detecting a stochastic background like the geontropic signal, which
is spatially correlated for two physically overlapping interferometers, a cross-
correlation method can be established for each individual detector to dig under
shot noise [233]. This allows us to achieve a better sensitivity than each detector’s
noise budget for detecting gravitational waves.

Another way to circumvent quantum shot noise is using photon counting instead
of the standard homodyne readout [235]. Such a readout will be implemented in a
proposed 5 m tabletop interferometer being commissioned by Caltech and Fermilab
under the Gravity from the Quantum Entanglement of Space-Time (GQuEST) col-
laboration [236], which will explicitly target geontropic fluctuations. By employing
photon counting and thereby beating the standard quantum limit, GQuEST will be
able to place constraints on 𝛼 substantially more efficiently in terms of integration
time than it would with only a homodyne readout. For a detailed examination of
the advantages of photon counting, see Ref. [235]. As GQuEST is a tabletop-sized
experiment, it will also be capable of probing the angular correlations of the geon-
tropic fluctuations by adjusting its arm angle. Moreover, it is conceived to be a
nearer-term instrument than third generation GW detectors such as CE and ET. As
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such, should the geontropic signal be detected with GQuEST, this information can
be incorporated into the design and planning of future GW detectors, whose strain
sensitivities to astrophysical signals might be limited by a geontropic background.

Optically-levitated Sensors

Besides interferometers, there are other high-frequency GW detectors that operate
like an interferometer, such as the optically-levitated sensor described in Refs. [33,
21]. The optically-levitated sensor functions by trapping a dielectric sphere or
microdisk in an anti-node of an optical cavity (see Fig. 5.6) [33]. One can also build
a Michelson interferometer from optically-levitated sensors by inserting the sensors
in each arm’s cavity (see Fig. 5.7) [21]. As illustrated in Sec. 5.5, one optically-
levitated sensor can be effectively treated as two aligned interferometer arms, where
the longer arm has the same length ℓ𝑚 as the cavity. The shorter arm has length
𝑥𝑠, the distance to a chosen anti-node of the trapping field. The optically-levitated
sensor measures the differential distance change 𝛿ℓ𝑚−𝛿𝑥𝑠, the correlations of which
are similar to an interferometer of length 𝐿 = ℓ𝑚 − 𝑥𝑠, but not identical since the two
arms have to be treated separately. Moreover, as depicted in Fig. 5.7, there are two
causal diamonds enclosing the shorter and longer arms, respectively. In Sec. 5.4,
we show how to consistently correlate these multiple causal diamonds.

Levitated sensors achieve their gain in sensitivity by making the test masses re-
spond resonantly to gravitational waves whose frequencies match the test masses’
natural oscillation frequency in the trapping potential. In the devices considered
by Refs. [33, 21], sensitivities are mainly constrained by the thermal noise due to
heating of the sensor by the scattering light [21]. The development of techniques to
reduce the thermal noise of an optically-trapped object in many other contexts thus
allows a better strain sensitivity for the optically-levitated sensor at high frequencies
compared to an interferometer [33]. It was further found in Ref. [21] that by using
stacked disks as the sensor, the thermal noise due to photon recoiling can be further
reduced. In addition, the high-frequency performance of the levitated sensor is
further enhanced by its tunability. Indeed, the experiment achieves its peak strain
sensitivity when the trapped object is resonantly excited at the trapping frequency,
which is widely tunable via laser intensity [21]. In Sec. 5.5, we will compare the
PSD of length fluctuations measured by the optically-levitated sensor to its predicted
strain sensitivity from Ref. [21].
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Inverse-Gertsenshtein Effect and Other Experiments

Apart from interferometer-like experiments, there are other high-frequency GW
detectors with different working principles. One major class of such experiments
uses the inverse-Gertsenshtein effect, which converts gravitons to electromagnetic
(EM) waves [156]. For most of these experiments, strong static magnetic fields
of several Tesla are used to convert gravitons into photons [20]. Many of these
experiments have been designed to detect ultralight axion dark matter, which can
also couple to the EM fields, such as the ones using microwave cavities (e.g., ADMX
[44], HAYSTAC [326], and SQMS [160]) or pickup circuits (e.g., ABRACADABRA
[205] and SHAFT [167]) to receive the signal. Refs. [130, 49, 119] found that some
of these experiments might be sensitive to high-frequency GWs, especially when
the geometry of the detector reflects the spin-2 nature of gravitons. For example,
Ref. [119] found that a figure-8 pickup circuit has a much larger sensitivity than a
circular loop. For microwave cavities, if the resonant cavity modes have the same
spatial profile as the effective current generated by the inverse-Gertsenshtein effect,
there is also a boost of the signal [49].

The pixellon model considered in Refs. [328, 219] and this work can be, in principle,
used to compute the inverse-Gertsenshtein effect since geontropic fluctuations mani-
fest themselves as metric fluctuations, i.e., Eq. (5.2). However, in most available cal-
culations, the response to GWs has only been calculated in the transverse-traceless
(TT) gauge or the proper detector frame. Moreover, some of these calculations
were not careful with gauge invariance. It was recently shown in Ref. [49] that
if one incorporates all the physical effects (such as circuits’ motion due to coordi-
nate transformation), the observables, such as current density, are gauge invariant.
Nonetheless, this proof was done by explicitly computing the observables in these
two specific frames without incorporating all possible coordinate transformations.

Such a calculation is usually sufficient for GW detections, but not geontropic fluctu-
ations. First, since geontropic fluctuations have a typical wavelength of the system’s
size, the long wavelength assumption of the expansion used in the proper detec-
tor frame doesn’t apply. Second, geontropic fluctuations are not solutions to the
vacuum linearized Einstein equations. They cannot be transformed into the TT
gauge, despite Eq. (5.2) being similar to TT gauge, where only light propagation
needs to be considered. Thus, one has to be more generous with the frame choices
and show that the observables in this type of experiment are invariant under all
possible gauge transformations, as Ref. [219] demonstrated for length fluctuations
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in interferometers.

A more fundamental question is whether the pixellon model is appropriate for
describing this type of experiment, especially those using microwave cavities. The
pixellon model was designed to effectively describe gravitational perturbations of
the spherical entangling surface bounding the interferometer, a spatial slice of the
causal diamond defined by the light beams. Within the cavity, there is no freely
propagating photon, so the detector doesn’t probe the near-horizon geometry of any
causal diamond. In this case, the pixellon model might not be a good effective
description, and geontropic fluctuations might be negligible since they are driven by
near-horizon dynamics [41]. Note that the photon counting technique in Ref. [235]
also detects the excess photons generated by gravitational perturbations. However,
this readout is still embedded in a Michelson interferometer, so there is a well-defined
causal diamond.

Besides the experiments above, other types of high-frequency GW detectors are
discussed in Ref. [20], such as the bulk acoustic wave devices [165], which operate
like a resonant mass bar [319] and measure the vibration of piezoelectric materials
due to passing GWs. Similarly, GWs can also deform microwave cavities, which
couple different resonant cavity modes and can be detected [92]. There are also
experiments utilizing the coupling between GWs and electron spin, where the col-
lective electron spin excitations or magnons of ferromagnetic crystals due to GWs
are measured [198, 199]. Since no causal diamond is being probed in all of these
experiments, geontropic signals might be minimal. For this reason, for the rest
of this work, we focus on these interferometer-like experiments and calculate their
sensitivity to the pixellon model.

5.4 Extension of the Pixellon Model to Multiple Interferometers
In this section, we extend the calculation in Ref. [219] of the auto-correlation
of a single interferometer’s length fluctuations to the cross-correlation of two
interferometer-like detectors, which may have different arm lengths and origins.

As shown in Ref. [219], for the metric in Eq. (5.2), the only nonzero component in
the 𝑡 − 𝑟 sector of the metric is ℎ𝑟𝑟 , so we only need to consider light propagation
when computing length fluctuations. For a light beam sent at time 𝑡 − 𝐿 from the
origin x along the direction n, the total time delay 𝑇 (𝑡, n) of a round trip is given
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(a) A single light beam. The
beam of length 𝐿 is sent from
x1 at 𝑡 = −𝐿 to x2 and then
reflected by the end mirror.

(b) Two light beams. The beam
of length 𝐿1 is sent from x1 at
𝑡1 − 𝐿1 along the direction n1
and reflected by the end mirror.
Similarly, the beam of length 𝐿2
is sent from x2 at 𝑡2 − 𝐿2 along
the direction n2 and then gets
reflected.

(c) A web of light beams tiling
the entire spacetime.

Figure 5.2: Plots of spherical entangling surfaces or spatial slices of the causal
diamonds bounding different configurations of light beams. The shaded circles
represent entangling surfaces, each of which is associated with a pixellon model.
For all the figures above, we have projected the spherical entangling surface to the
plane of the light beams.

by 1

𝑇 (𝑡, x, n) = 2𝐿 − 1
2

∫ 𝐿

0
𝑑𝑟 [𝜙(𝑥) + 𝜙(𝑥′)] ,

𝑥 ≡ (𝑡 − 𝐿 + 𝑟, x + 𝑟n) , 𝑥′ ≡ (𝑡 + 𝐿 − 𝑟, x + 𝑟n) . (5.14)

Notice that although Eq. (5.14) has an explicit dependence on the origin x, the
auto-correlation function of 𝑇 or its fluctuations doesn’t depend on x, as shown in
Ref. [219] and Eq. (5.32). This indicates that geontropic fluctuations are physical,
since they don’t depend on the choice of coordinates.

Next, let us consider two light beams sent at times 𝑡1 − 𝐿1 and 𝑡2 − 𝐿2 from positions
x1 and x2 along directions n1 and n2, respectively, as depicted in Fig. 5.2b. We also
assume the lengths of the two beams without any geontropic fluctuations to be 𝐿1

and 𝐿2, respectively. Then the correlation function of the length fluctuations 𝛿𝑇 of
these two beams is

𝐶 (Δ𝑡,Δx, n1,2) ≡
〈
𝛿𝑇 (𝑡1, x1, n1)𝛿𝑇 (𝑡2, x2, n2)

4𝐿1𝐿2

〉
,

Δ𝑡 ≡ 𝑡1 − 𝑡2 , Δx ≡ x1 − x2 , (5.15)

1We have corrected a typo in Ref. [219], where the sign before the integral should be minus.
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where we have defined 𝛿𝑇 (𝑡, x, n) = 𝑇 (𝑡, x, n)−2𝐿with𝑇 (𝑡, x, n) given in Eq. (5.14).
Here, we have assumed that the origins of the light beams enter the cross-correlation
function only via their differenceΔx, so it is independent of the choice of coordinates.
We will see this assumption is true in Eq. (5.27).

Since these two light beams are enclosed by two different causal diamonds as shown
in Fig. 5.2b, their length fluctuations are separately described by two pixellon models
with the metric in Eq. (5.2) centered at x1 and x2, respectively. To distinguish these
two pixellon models, we assign 𝜙1(𝑥) and 𝜙2(𝑥) to the first and the second beams,
respectively. Within each pixellon model, the length fluctuations are still described
by Eq. (5.14), so

𝐶 (Δ𝑡,Δx, n1,2) =
1

16𝐿1𝐿2

∫ 𝐿1

0
𝑑𝑟1

∫ 𝐿2

0
𝑑𝑟2

⟨
(
𝜙1(𝑥1) + 𝜙1(𝑥′1)

) (
𝜙2(𝑥2) + 𝜙2(𝑥′2)

)
⟩ ,

(5.16)

which is in a similar form as Eq. (32) of Ref. [219]. For convenience, let us define

C(𝑥1, 𝑥2) = ⟨(𝜙1(𝑥1) + 𝜙1(𝑥′1)) (𝜙2(𝑥2) + 𝜙2(𝑥′2))⟩ . (5.17)

To evaluate C(𝑥1, 𝑥2), we first need to compute ⟨𝜙1(𝑥1)𝜙2(𝑥2)⟩, where 𝑥1 and
𝑥2 are in two different causal diamonds. From Eqs. (5.3) and (5.4), we notice
that both 𝜙1 and 𝜙2 satisfy the wave equation, as constrained by the linearized
Einstein-Hilbert action [219]. Thus, 𝜙1 has translational symmetry, i.e., 𝜙1(𝑦) =

𝑒−𝑖𝑝·(𝑥−𝑦)𝜙1(𝑥) classically, and similarly for 𝜙2. This implies that although the metric
in Eq. (5.2) effectively describes the length fluctuations of a finite-size interferometer,
nothing prevents us from propagating the pixellon field 𝜙(𝑥) to places outside the
interferometer. This is also consistent with the fact that 𝜙 has modes with long
wavelengths, as imposed by Eq. (5.12). Thus, 𝜙1 is well-defined in the causal
diamond of 𝜙2, and vice versa.

To derive a precise relation between 𝜙1 and 𝜙2, let us consider a single light beam
sent from x1 at 𝑡 = −𝐿 to x2, as depicted in Fig. 5.2a. To compute the round-trip
time delay, one can either use the pixellon model centered at x1 with the pixellon
𝜙1, or the one centered at x2 with the pixellon 𝜙2. For the former case, we set the
origin of the coordinates at x1 and align the 𝑥-axis with the outgoing light beam, so
the shift of the round-trip time delay 𝛿𝑇1 is given by Eq. (5.14),

𝛿𝑇1 = −1
2

∫ 𝐿

0
𝑑𝑟 [𝜙1(𝑥) + 𝜙1(𝑥′)] ,

𝑥1 = (−𝐿 + 𝑟, 𝑟x̂) , 𝑥′1 = (𝐿 − 𝑟, 𝑟x̂) , (5.18)
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where the first and second terms correspond to the time delay of the outgoing and
ingoing light beams, respectively.

For the latter case, we set the origin at x2 and align the 𝑥-axis with the ingoing light
beam. Notice the ingoing beam here is the outgoing beam for the pixellon model at
x1, and vice versa. Then, 𝛿𝑇2 is given by

𝛿𝑇2 = −1
2

∫ 0

−𝐿
𝑑𝑟 [𝜙2(𝑥) + 𝜙2(𝑥′)] ,

𝑥2 = (𝑟, 𝑟x̂) , 𝑥′2 = (−𝑟, 𝑟x̂) , (5.19)

where the first and second terms correspond to the time delay of the ingoing and
outgoing light beams, respectively. One can further make a change of variables
𝑟 = 𝑟 + 𝐿 and shift the coordinates, x → x + 𝐿x̂, such that

𝛿𝑇2 = −1
2

∫ 𝐿

0
𝑑𝑟 [𝜙2(𝑥) + 𝜙2(𝑥)] ,

𝑥2 = (−𝐿 + 𝑟, 𝑟x̂) , 𝑥′2 = (𝐿 − 𝑟, 𝑟x̂) , (5.20)

where we have replaced the symbol 𝑟 with 𝑟 at the end. Since 𝛿𝑇1 = 𝛿𝑇2, Eqs. (5.18)
and (5.20) indicate that 𝜙1 = 𝜙2.

This relation between 𝜙1,2 does not hold only for these two causal diamonds, but
rather the entire spacetime. One can easily see this by tiling the entire spacetime
with light beams of the same length 𝐿 as depicted in Fig. 5.2c. One can repeat
the same argument above for every segment of this web of null rays to relate the
pixellon models centered at any two adjacent endpoints. Since all of these null
rays are connected, one can easily show a universal 𝜙 across the entire spacetime
within the pixellon model. Thus, there is no need to distinguish 𝜙 in different causal
diamonds.

On the other hand, this does not indicate that we can avoid using separate pixellon
models for different light beams. The metric in Eq. (5.2) is designed to effectively
describe the geontropic fluctuations of any causal diamond located at the origin of the
local coordinates picked out by the metric. Thus, the light beams not propagating in
the radial direction in these local coordinates cannot be described by the associated
pixellon model. Furthermore, the argument of gauge invariance of the calculations
in Ref. [219] does not hold for these non-radial light beams, since the angular
directions of the metric were ignored in the proof. Nonetheless, one can always
find another causal diamond in which the originally non-radial light beam becomes
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radial, e.g., the causal diamond located at the endpoints of this beam. For example,
in Fig. 5.2c, the beams 𝐿1 and 𝐿2 can be described by the pixellon model centered
at x1, but not the beam 𝐿3, although it is in the same causal diamond of the beams
𝐿1,2. Instead, one should compute the length fluctuations of the beam 𝐿3 using the
pixellon models at x2 or x3.

One might also worry, in this case, whether the length fluctuations at x1 have multiple
inconsistent descriptions dependent on the causal diamond we choose, particularly
with respect to their angular correlations. For example, since the dominant modes of
pixellons are low-𝑙 modes [219], the pixellon model at x2 constrains the fluctuations
at x1 to be mostly along n. However, if one uses the pixellon model at x3, the
fluctuations at x1 are mainly along n′. This is not a contradiction in the pixellon
model since light beams in different directions are probing different “polarizations"
of pixellons, which control different local entangling surfaces. If one goes to the
causal diamond at x1, the pixellon model consistently predicts that most fluctuations
are along the radial direction, so fluctuations along both n and n′ can potentially be
excited. When the light beam is sent along one of these directions, the spherical
symmetry is broken by exciting fluctuations mainly in this specific direction.

In this case, to compute the correlation of any two beams as depicted in Fig. 5.2b,
we use the metric in Eq. (5.2) centered at x1 for beam 𝐿1 and the one at x2 for beam
𝐿2, but do not distinguish 𝜙 in these two metrics. Thus, Eq. (5.17) becomes

C(𝑥1, 𝑥2) = ⟨(𝜙(𝑥1) + 𝜙(𝑥′1)) (𝜙(𝑥2) + 𝜙(𝑥′2))⟩ . (5.21)

Using Eq. (5.3), we get

C(𝑥1, 𝑥2) = 4𝑙2𝑝
∫

𝑑3p1

(2𝜋)3

∫
𝑑3p2

(2𝜋)3
1√︁

4𝜔1(p1)𝜔2(p2)
cos[𝜔1(𝐿1 − 𝑟1)] cos[𝜔2(𝐿2 − 𝑟2)]

[
⟨𝑎p1𝑎

†
p2⟩

𝑒−𝑖[𝜔1𝑡1−𝜔2𝑡2−p1·(x1+𝑟1n1)+p2·(x2+𝑟2n2)] + 𝑐.𝑐.
]
,

= 4𝑙2𝑝
∫

𝑑3p
(2𝜋)3

𝜎p𝑖𝑥 (p)
2𝜔(p) cos[𝜔(𝐿1 − 𝑟1)]

cos[𝜔(𝐿2 − 𝑟2)]
[
𝑒−𝑖𝜔Δ𝑡+𝑖p·𝛿x + 𝑐.𝑐.

]
, (5.22)

where we have defined
𝛿x ≡ Δx + 𝑟1n1 − 𝑟2n2 . (5.23)
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Plugging the occupation number in Eq. (5.12), the correlation function of the length
fluctuations is given by

𝐶 (Δ𝑡,Δx, n1,2)

=
𝑎𝑙𝑝

8𝐿1𝐿2

∫ 𝐿1

0
𝑑𝑟1

∫ 𝐿2

0
𝑑𝑟2

∫
𝑑3p
(2𝜋)3

1
𝜔2(p)

cos [𝜔(𝐿1 − 𝑟1)] cos [𝜔(𝐿2 − 𝑟2)]𝑒−𝑖𝜔Δ𝑡+𝑖p·𝛿x ,

(5.24)

where we have dropped the 𝑐.𝑐. term and hereafter assume for simplicity that the
complex conjugate is included implicitly.

Eq. (5.24) is very similar to Eq. (41) of Ref. [219], except that 𝛿x also contains the
difference between the origins of the two light beams. Evaluating the angular part
of the momentum integral, we have

𝐶 (Δ𝑡,Δx, n1,2)

=
𝑎𝑙𝑝

16𝜋2𝑐3
𝑠𝐿1𝐿2

∫ 𝐿1

0
𝑑𝑟1

∫ 𝐿2

0
𝑑𝑟2

∫ ∞

0
𝑑𝜔

cos [𝜔(𝐿1 − 𝑟1)] cos [𝜔(𝐿2 − 𝑟2)]
sinc

[
𝜔D(𝑟1,2,Δx, n1,2)/𝑐𝑠

]
𝑒−𝑖𝜔Δ𝑡 ,

(5.25)

with
D(𝑟1,2,Δx, n1,2) = |𝛿x| . (5.26)

The PSD �̃� (𝜔,Δx, n1,2) is then given by

�̃� (𝜔,Δx, n1,2)

=
𝑎𝑙𝑝

8𝜋𝑐3
𝑠𝑁

∫ 𝐿1

0
𝑑𝑟1

∫ 𝐿2

0
𝑑𝑟2 cos [𝜔(𝐿1 − 𝑟1)]

cos [𝜔(𝐿2 − 𝑟2)] sinc
[
𝜔D(𝑟1,2,Δx, n1,2)/𝑐𝑠

]
,

(5.27)

where we have absorbed the normalization 𝐿1𝐿2 into 𝑁 . We make this redef-
inition for convenience since in certain experiments discussed later, PSDs sim-
ilar to Eq. (5.27) appear but with 𝑁 ≠ 𝐿1𝐿2. If we also insert an IR cutoff
𝜔2(p) → 𝜔2(p) +𝜔2

IR in Eq. (5.24) similar to Ref. [313], it was found in Ref. [219]
that

�̃� (𝜔,Δx, n1,2) →
𝜔2

𝜔2 + 𝜔2
IR

�̃� (𝜔,Δx, n1,2) . (5.28)

In the case that the two arms have the same length 𝐿, Ref. [219] fixed 𝜔IR = 1
𝐿
,

which gave a better agreement with the angular correlations predicted in Refs. [313,
312].
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One direct application of the results above is to compute the cross-correlation of
length fluctuations across two different interferometers. Let the origins of two
interferometers be at x𝐼,𝐼 𝐼 , respectively. For the interferometer at x𝐼 , let its two
arms be along the directions n1,2 with length 𝐿 𝐼 . Similarly, let the two arms of the
interferometer at x𝐼 𝐼 be along the directions n3,4 with length 𝐿 𝐼 𝐼 . Define T (x, 𝑡) to
be the difference of length fluctuations of two arms within a single interferometer
at position x, the light beams of which are sent at time 𝑡. Then the cross-correlation
of the time difference across two arms is

𝐶T (Δ𝑡,Δx, n𝐼,𝐼 𝐼) ≡
〈
T𝐼 (x𝐼 , 𝑡1)T𝐼 𝐼 (x2, 𝑡2)

4𝐿 𝐼𝐿 𝐼 𝐼

〉
,

T𝐼 (x𝐼 , 𝑡1) = 𝛿𝑇 (𝑡𝐼 , x𝐼 , n2) − 𝛿𝑇 (𝑡𝐼 , x𝐼 , n1) ,
T𝐼 𝐼 (x𝐼 𝐼 , 𝑡2) = 𝛿𝑇 (𝑡𝐼 𝐼 , x𝐼 𝐼 , n4) − 𝛿𝑇 (𝑡𝐼 𝐼 , x𝐼 𝐼 , n3) , (5.29)

where n𝐼 = (n1, n2), n𝐼 𝐼 = (n3, n4), and Δx = x𝐼 − x𝐼 𝐼 such that

�̃�T (𝜔,Δx, n𝐼,𝐼 𝐼)
= �̃� (𝜔,Δx, n1,3) + �̃� (𝜔,Δx, n2,4)

− �̃� (𝜔,Δx, n1,4) − �̃� (𝜔,Δx, n2,3) .

(5.30)

The equation above generally contains complicated geometric factors, and the inte-
gral within Eq. (5.25) cannot be easily evaluated for a generic geometry. Thus, we
consider several specific configurations in the next section.

5.5 Interferometer-like Experiments
In this section, we apply the results of Sec. 5.4 to several types of interferometer-like
experiments: a single L-shaped interferometer (e.g., LIGO [234], CE [137, 291],
NEMO [16]), the equilateral triangle configuration of multiple interferometers (e.g.,
LISA [37], ET [193]), and optically-levitated sensors [33, 21].

Single L-shaped Interferometer
Ref. [219] calculated the auto-correlation of length fluctuations in an L-shaped
interferometer due to geontropic fluctuations. In this case, we have x𝐼 = x𝐼 𝐼 and
n𝐼 = n𝐼 𝐼 , so we can set the origin of the coordinates to coincide with the beam
splitter of the interferometer. Furthermore, we can align the 𝑥–𝑦 plane with the
plane of the interferometer and choose the 𝑥-axis to be along the first arm of the
interferometer. Then the whole configuration is determined by the separation angle
𝜃 between two arms. In this case, the first two terms are the same in Eq. (5.30) and
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Figure 5.3: Pixellon strain (dashed and dotted lines) overlaid with the strain sensi-
tivities for LIGO [234] and NEMO [222] (solid lines). The LIGO data was obtained
from the Livingston detector, and the NEMO data omits suspension thermal noise.
The dotted lines give the pixellon strain from Eq. (5.35) computed without an IR
cutoff, and the dashed lines give the same quantity including the IR cutoff from
Eq. (5.28). We again compute the pixellon strain with 𝛼 = 1.

similarly for the last two terms, so Eq. (5.30) reduces to

�̃�T (𝜔, 𝜃) = 2�̃� (𝜔, 0) − 2�̃� (𝜔, 𝜃) , (5.31)

which is consistent with Eq. (45) of Ref. [219]. The spectrum �̃� (𝜔, 𝜃) is given by
Eq. (5.27) after setting 𝐿1 = 𝐿2 = 𝐿, where 𝐿 is the length of the interferometer,
i.e.,

�̃� (𝜔, 𝜃) =
𝑎𝑙𝑝

8𝜋𝑐3
𝑠𝐿

2

∫ 𝐿

0
𝑑𝑟1

∫ 𝐿

0
𝑑𝑟2 sinc [𝜔D(𝑟1, 𝑟2, 𝜃)/𝑐𝑠]

cos [𝜔(𝐿 − 𝑟1)] cos [𝜔(𝐿 − 𝑟2)] ,
(5.32)

where the distance factor D is now completely determined by 𝑟1, 𝑟2, and 𝜃,

D(𝑟1, 𝑟2, 𝜃) =
√︃
𝑟2

1 + 𝑟
2
2 − 2𝑟1𝑟2 cos 𝜃 . (5.33)

To compare against the strain sensitivity of real experiments, one needs to first
convert Eq. (5.32) to the one-sided noise strain 𝑆ℎ defined by Refs. [245, 96]

√︁
𝑆ℎ ( 𝑓 ) =

√︄
2
∫ ∞

−∞

〈
Δ𝐿 (𝜏)
𝐿

Δ𝐿 (0)
𝐿

〉
𝑒−2𝜋𝑖 𝑓 𝜏𝑑𝜏 , (5.34)

which has units of Hz−1/2. In many of these interferometers, Fabry-Pérot cavities
are used to increase the sensitivity, in which light travels multiple round trips. By
converting the strain sensitivity to the phase sensitivity, Ref. [219] showed that the
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geontropic signal does accumulate in Fabry-Pérot cavities since the output is linear
in the phase shift of the light. Thus, it is legitimate to compare our PSD to the strain
sensitivity of these experiments. From Eqs. (5.29) and (5.34), Ref. [219] found that√︁

𝑆ℎ ( 𝑓 ) =
√︃

2�̃�T (𝜔, 𝜃) . (5.35)

Nonetheless, the signal’s shape is determined by the geometry of one light-crossing.
For example, we expect that the signal peak is at𝜔𝐿 ∼ 1, where 𝐿 is the length of the
interferometer instead of the total distance traveled across multiple light-crossings.

Using Eqs. (5.31)–(5.32), Ref. [219] computed the PSD of the pixellon model in sev-
eral L-shaped interferometers (Holometer [96], GEO-600 [305], and LIGO [234])
and one set of interferometers in LISA [37], and compared the signal to their strain
sensitivities. It was found that GEO-600 and LISA are unlikely to detect geontropic
fluctuations due to their relatively low peak sensitivity (at𝜔𝐿 ∼ 1), while LIGO and
Holometer respectively constrain the 𝛼-parameter to be 𝛼 ≲ 3 and 𝛼 ≲ 0.7 (with
an IR cutoff), and 𝛼 ≲ 0.1 and 𝛼 ≲ 0.6 (without an IR cutoff) at 3𝜎 significance.
Note that the LIGO sensitivity data that we have used here and in Ref. [219] is that
from Ref. [234] with the quantum shot noise removed (i.e., the gray curve in Fig. 2
of Ref. [234]) by the quantum-correlation technique in Ref. [233]. Nonetheless, this
technique only removes the expectation value of the shot noise but not its variance
[321], limiting the extent to which we can dig under the shot noise. More specifi-
cally, with a frequency band of Γ and an integration time of 𝑇 , we expect the noise
suppression factor to be ∼ (Γ𝑇)1/4 in amplitude—or until the next underlying noise
is revealed. In the particular case of LIGO, that underlying noise includes coating
and suspension thermal noise at low frequencies, and laser noise at high frequencies.
Further studying these underlying noise sources in LIGO can in principle put more
stringent upper limits on the geontropic noise.

Besides the GW detectors above, there are other future L-shaped interferometers
to be considered but not included in Ref. [219]. The most important ones are the
third-generation GW detectors: CE [137, 291] and ET [193]. CE is a ground-based
broadband GW detector using dual-recycled Fabry-Pérot Michelson interferometers
with perpendicular arms. CE will have two sites with several potential designs: a
20 km interferometer paired with a 40 km interferometer, or a pair of 20 km or
40 km interferometers. As largely a scale-up of Advanced LIGO [137], CE will
operate at room temperature with a fused-silica coating of mirrors to reduce thermal
noise, and degenerate optical parametric amplifiers injecting squeezed light with
low phase uncertainty to reduce quantum noise (shot noise) at high frequency [310].
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ET is an equilateral triangle configuration of three independent nested detectors, each
of which contains two dual-recycled Fabry-Pérot Michelson interferometers with
arms of length 10 km (plotted in Fig. 5.4) for low- and high-frequency detections,
respectively. ET will be built underground to reduce seismic noise. Cryogenic
systems are used to reduce thermal noise by cooling the optical systems to 10–20 K
at low frequency, while squeezed light (frequency-dependent) is also inserted to
reduce quantum noise at high frequency [136].

As briefly discussed in Sec. 2.1 and shown in Fig. 5.1, for the benchmark value
𝛼 = 1, the PSD of the geontropic signal overwhelms the strain sensitivity of CE and
ET by about two orders of magnitude for 𝑓 ∼ 1 kHz. For CE, we have considered
both the interferometers of length 20 km and 40 km. For ET, we have computed the
auto-correlation of a single interferometer within the entire configuration. A study
of the cross-correlation of different interferometers is carried out in Sec. 5.5.

Besides ET and CE, another next-generation GW detector is NEMO [16], a Michel-
son interferometer with perpendicular Fabry-Pérot arms of length 4 km. Although
with less sensitivity than the full third-generation detectors in general, NEMO is
important for testing technological developments to be used in the third-generation
detectors while making interesting scientific discoveries, such as understanding the
compositions of NSs. Due to its interest in binary NS mergers, NEMO specializes
in high-frequency events with its optimal sensitivity at 𝑓 ∼ 1–4 kHz [16]. As
plotted in Fig. 5.3, within the optimal sensitivity of NEMO, the geontropic signal
exceeds the strain sensitivity by about one order of magnitude. Thus, the geontropic
signal must be constrained before these next-generation GW detectors can detect
other high-frequency events. For future detectors, we have compared the geontropic
signal with their design sensitivities, without considering removal of shot noise via
the quantum-correlation approach—even though at high frequencies, where the con-
straints for geontropic noise are the best, these detectors are limited by shot noise.
It can be anticipated that at these frequencies, these detectors’ shot noise dominates
over other types of noise by a significant factor. In this way, these detectors are
capable of putting much more stringent bounds on the geontropic 𝛼 parameter.

Equilateral Triangle Configurations
In this subsection, we consider configurations of multiple interferometers with
certain geometries. For GW detections, these different geometries are helpful in
retrieving the polarization of GWs. One important configuration is the equilateral
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Figure 5.4: Setup of ET. The red, blue, and purple rays correspond to the three
detectors in ET, where we have only shown one of the two interferometers within
each detector. We choose not to plot the mirrors at the endpoints of the light beams
for simplicity.

triangle configuration of three interferometer arms, such as LISA [37], or three
partially overlapping independent detectors, such as ET [193], as shown in Fig. 5.4.
For LISA, the signals of different arms can be time shifted and linearly combined
to form virtual Michelson interferometers [153, 30]. Nonetheless, as found in
Ref. [219] and discussed in Sec. 5.5, LISA is not promising for detecting geontropic
signals, so we will focus on the specific configuration of ET.

In this subsection, we will study the cross-correlation of multiple detectors of ET. For
stochastic wave backgrounds with completely random radiation, a single detector
cannot distinguish the background from random instrumental noise within a short
observing time unless the sources distribute anisotropically [304]. However, since
the ET detectors occupy the same spatial region, geontropic fluctuations modeled by
the pixellons are correlated between them. Assuming that the noises of different ET
detectors are largely uncorrelated, cross-correlating multiple ET detectors allows
us to dig under the noise with a suppression factor ∼ (Γ𝑇)1/4, or until a correlated
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noise background is reached [276, 304]. By contrast, the single-detector quantum-
correlation technique discussed in Sec. 5.5 only allows us to dig under the shot
noise, and it will be limited by non-quantum noise sources of a single detector.
This motivates the calculation of cross-correlations of different detectors within
configurations of interferometers, such as ET.

Let us consider one set of two interferometers across different detectors within ET,
e.g., the red and blue detectors in Fig. 5.4, and pick the origin of coordinates at the
origin of the red detector x1. Let us also pick the 𝑥–𝑦 plane to be the plane of the
interferometers, with the 𝑥-axis along n1. In this case,

x𝐼 = 0 , x𝐼 𝐼 = 𝐿x̂ , n1 = x̂ , n2 =
1
2

x̂ +
√

3
2

ŷ ,

n3 = −x̂ , n4 = −1
2

x̂ +
√

3
2

ŷ . (5.36)

Here, we have assumed that the arms along the same line completely overlap with
each other (i.e., the arms along n1 and n3). In reality, there is a finite separation
between these arms, which can be dealt with via the general procedure in Sec. 5.4.
Then one can compute D(𝑟𝑖, 𝑗 ,Δx, n𝑖, 𝑗 ) for all the combinations in Eq. (5.30), i.e.,

D13(𝑟1, 𝑟2) = |𝑟1 + 𝑟2 − 𝐿 | ,

D24(𝑟1, 𝑟2) =
1
2
√︁
(2𝐿 − 𝑟1 − 𝑟2)2 + 3(𝑟1 − 𝑟2)2 ,

D14(𝑟1, 𝑟2) =
1
2

√︃
(2𝐿 − 2𝑟1 − 𝑟2)2 + 3𝑟2

2 ,

D32(𝑟1, 𝑟2) = D14(𝑟1, 𝑟2) . (5.37)

Here, we have defined D𝑖 𝑗 (𝑟1, 𝑟2) such that 𝑟1 is the integration variable along the
arm with direction n𝑖, and 𝑟2 is the integration variable along the arm with direction
n 𝑗 . Plugging Eq. (5.37) into Eq. (5.30), we get

�̃�T (𝜔) =
𝑎𝑙𝑝

8𝜋𝑐3
𝑠𝐿

∫ 𝐿

0
𝑑𝑟1

∫ 𝐿

0
𝑑𝑟2

cos [𝜔(𝐿 − 𝑟1)] cos [𝜔(𝐿 − 𝑟2)]
{sinc [𝜔D13(𝑟1, 𝑟2)/𝑐𝑠] + sinc [𝜔D24(𝑟1, 𝑟2)/𝑐𝑠]
−2 sinc [𝜔D14(𝑟1, 𝑟2)/𝑐𝑠]} ,

(5.38)

the result of which is plotted in Fig. 5.5.

Besides the equilateral triangle configuration of ET, one can compute the response
of other geometries of interferometers to the pixellon model following the procedure
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Figure 5.5: The PSD �̃�T (𝜔) of the cross-correlation function of two sets of interfer-
ometers within a triangular configuration like ET [Eq. (5.38), solid lines], together
with the corresponding auto-correlation �̃�T (𝜔, 𝜃 = 𝜋

3 ) of a single interferometer
within this configuration [Eq. (5.31), dashed lines].

in Sec. 5.4. For example, one can consider two or multiple interferometers with the
same length located at the same origin but rotated from each other by certain angles
as depicted in Ref. [153]. There are even more complicated geometries, such as the
twin 3D interferometers that will be built at Cardiff University [315]. The authors
in Ref. [315] claimed that the angular correlations of geontropic fluctuations, as dis-
cussed in detail in Refs. [313, 328, 312, 219], especially the transverse correlations
due to the low-ℓ modes, can be probed by this geometry. While, in principle, the
geontropic signal can be computed for such a complicated interferometer geometry,
the pixellon model may not adequately encapsulate the underlying physics of the
VZ effect. Further, first-principles calculations of geontropic fluctuations assume a
simple causal diamond radiating outward from a beam splitter. One major feature
of the twin 3D interferometers in Ref. [315] is that the interferometer arms are bent
at mirrors MMA and MMB (see Fig. 1 of Ref. [315]), so the causal diamond of the
whole apparatus is distorted. The bent-arm configuration explicitly breaks spherical
symmetry, which the previous calculations [328, 219] relied on. Specifically, the
pixellon metric in Eq. (5.2) captures metric fluctuations only along interferometer
arms that extend radially outward from a beam splitter. One can decompose the
bent interferometer arms into segments of straight arms, and, assuming the pixellon
model pertains to such a causal diamond, attempt to apply the pixellon model to
each segment by choosing local coordinates centered at the beam splitter, MMA, and
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Figure 5.6: Schematic diagram of the optically-levitated sensor as described in
Refs. [33, 21]. A dielectric sphere or microdisk is trapped in an anti-node of an
optical cavity (solid orange). A second laser (dashed blue) is used to cool the sensor
and read out its position. Transverse motion is cooled by additional lasers (not
shown).

MMB, respectively. However, the major obstacle for this procedure is that at MMA

(or MMB) there does not exist a closed causal diamond, because light continues to
traverse past MMA (or MMB) until it reaches EMA (or EMB) or the beam splitter.
Since the calculations in Refs. [328, 219] require a closed causal diamond such that
the observable computed is manifestly gauge invariant, one first needs to ascertain
whether the procedures in Ref. [219] for computing gauge-invariant quantities are
still valid when piecing together these non-closed causal diamonds. Due to these
complications, we do not attempt to apply the pixellon model to the Cardiff exper-
iment, as we believe that an accurate prediction for such bent-arm configurations
will require a more direct, first-principles calculation requiring better theoretical
control than current technology allows. In the next subsection, we focus on another
interferometer-like experiment, the optically-levitated sensor.

Optically-levitated Sensor
In this subsection, we study the response of the optically-levitated sensor in Refs. [33,
21] to geontropic fluctuations described by the pixellon model. To understand the
working principle of the optically-levitated sensor, let us first consider its response
to GWs following Ref. [33], working in the local Lorentz frame with origin at the
input mirror. Let the unperturbed distance between the optical cavity mirrors be ℓ𝑚,
and the unperturbed distance from the input mirror to the sensor in its trap minimum
be 𝑥𝑠. Under a passing GW perpendicular to the cavity with strain ℎ, the proper
distances to the mirror and sensor are both shifted,

𝛿𝑥𝑠 =
1
2
ℎ𝑥𝑠 , 𝛿ℓ𝑚 =

1
2
ℎℓ𝑚 . (5.39)
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The new position of the trap minimum can be found from the condition

𝑘𝑡 (ℓ′𝑚 − 𝑥′min) = 𝑘𝑡 (ℓ𝑚 − 𝑥min) =
(
𝑛 + 1

2

)
𝜋 , (5.40)

where 𝑛 is an integer, and 𝑘𝑡 is the wavenumber of the trapping laser. The shift of
the trap minimum is then given by 𝛿𝑥min = ℓ′𝑚 − ℓ𝑚 = 𝛿ℓ𝑚. Here, we have assumed
that the trapping laser has a constant frequency inside the cavity. Thus, the sensor
is displaced from its trap minimum by an amount given in Ref. [33] as

Δ𝑋 ≡ 𝛿𝑥𝑠 − 𝛿𝑥min =
1
2
ℎ(𝑥𝑠 − ℓ𝑚) + O(ℎ2) . (5.41)

This displacement will result in an oscillatory driving force on the sensor. If the GW
frequency matches the trapping frequency 𝜔0 of the sensor, the driving force will
resonantly excite the sensor. The corresponding oscillations can then be measured.
When 𝑥𝑠 ≪ ℓ𝑚, the effect of the GW is maximized.

For the pixellon model, the response of the optically-levitated sensor can be calcu-
lated similarly. In our case, 𝛿𝑥𝑠 and 𝛿ℓ𝑚 are given by

𝛿𝑥𝑠 = −1
4

∫ 𝑥𝑠

0
𝑑𝑟 [𝜙(𝑥) + 𝜙(𝑥′)] , (5.42)

𝛿ℓ𝑚 = −1
4

∫ ℓ𝑚

0
𝑑𝑟 [𝜙(𝑦) + 𝜙(𝑦′)] , (5.43)

where
𝑥 = (𝑡𝑥 − 𝑥𝑠 + 𝑟, 𝑟n) , 𝑥′ = (𝑡𝑥 + 𝑥𝑠 − 𝑟, 𝑟n) ,
𝑦 = (𝑡ℓ − ℓ𝑚 + 𝑟, 𝑟n) , 𝑦′ = (𝑡ℓ + ℓ𝑚 − 𝑟, 𝑟n) ,

(5.44)

and the start times of each beam are chosen to be 𝑡𝑥 − 𝑥𝑠 and 𝑡ℓ − ℓ𝑚. Note the
additional factor of 1

2 as compared to Eq. (5.14), since the lengths ℓ𝑚 and 𝑥𝑠 are
one-half of the corresponding round-trip time delays when there are no geontropic
fluctuations. Within a single arm, since there is only a single beam measuring the
position of the sensor, we can choose

𝑡𝑥 = 𝑡 + 𝑥𝑠 , 𝑡ℓ = 𝑡 + ℓ𝑚 (5.45)

such that the start times of the beam probing the sensor and the end mirror are the
same. Notice that, in general, two independent pixellon models should be used for
the shorter and longer arms. Nevertheless, since both spherical entangling surfaces
are located at the same origin, as depicted in Fig. 5.7, and the pixellon fields 𝜙 are
universal across these two causal diamonds as discussed in Sec. 5.4, the forms of
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Laser

Photodetector

Figure 5.7: Two levitated sensors inserted into the Fabry-Pérot cavities of a Michel-
son interferometer, as described in Ref. [21]. The entangling surfaces corresponding
to the two arms of length 𝑥𝑠 and ℓ𝑚 are marked by the blue and green shaded circles,
respectively. Note that this diagram ignores the distances between the beam splitter
and the input mirrors of the two cavities.

Eqs. (5.42) and (5.43) are very similar. This is consistent with the fact that the
metric in Eq. (5.2) is spatially conformal.

The displacement of the levitated sensor from its trap minimum is then given by

Δ𝑋 = − 1
4

∫ 𝑥𝑠

0
𝑑𝑟 [𝜙(𝑥) + 𝜙(𝑥′)] + 1

4

∫ ℓ𝑚

0
𝑑𝑟 [𝜙(𝑦) + 𝜙(𝑦′)] . (5.46)

Note that Eq. (5.46) is similar, but not identical to, the round-trip time of a photon
traveling from position 𝑥𝑠 to ℓ𝑚, i.e.,

Δ𝑋 |𝑥𝑠↔ℓ𝑚 =
1
4

∫ ℓ𝑚

𝑥𝑠

𝑑𝑟 [𝜙(𝑦) + 𝜙(𝑦′)] ,

𝑦 = (𝑡 − ℓ𝑚 + 𝑟, 𝑟n) , 𝑦′ = (𝑡 + ℓ𝑚 − 𝑟, 𝑟n).
(5.47)

Using Eq. (5.47) instead of Eq. (5.46) would give a PSD identical to Eq. (5.32) with
length 𝐿 = ℓ𝑚 − 𝑥𝑠.
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We can then define the correlation function of Δ𝑋 as

𝐶Δ𝑋 (Δ𝑡, 𝜃) ≡
〈
Δ𝑋 (𝑡1, n1)Δ𝑋 (𝑡2, n2)

(ℓ𝑚 − 𝑥𝑠)2

〉
, (5.48)

where the unit vectors n𝑖 parameterize the orientations of the two levitated sensor
arms, and the angle 𝜃 between them is given by cos(𝜃) = n1 · n2. The difference
between the beam start times is Δ𝑡 ≡ 𝑡1 − 𝑡2. Note that the normalization of 𝐶Δ𝑋

assumes that the characteristic length of the system is ℓ𝑚 − 𝑥𝑠, as per the above
discussion. Using Eq. (5.46), we find that

𝐶Δ𝑋 (Δ𝑡, 𝜃) (5.49)

=
1

16(ℓ𝑚 − 𝑥𝑠)2

[ ∫ 𝑥𝑠

0
𝑑𝑟1

∫ 𝑥𝑠

0
𝑑𝑟2 C(𝑥1, 𝑥2)

−
∫ 𝑥𝑠

0
𝑑𝑟1

∫ ℓ𝑚

0
𝑑𝑟2 C(𝑥1, 𝑦2) −

∫ ℓ𝑚

0
𝑑𝑟1

∫ 𝑥𝑠

0
𝑑𝑟2 C(𝑦1, 𝑥2)

+
∫ ℓ𝑚

0
𝑑𝑟1

∫ ℓ𝑚

0
𝑑𝑟2 C(𝑦1, 𝑦2)

]
, (5.50)

where C(𝑥, 𝑦) is defined in Eq. (5.21). The first and last terms above are correlations
between the arms with the same length (either 𝐿 = 𝑥𝑠 or 𝐿 = ℓ𝑚). In contrast, the
second and third terms correlate arms with different lengths, i.e., the arm of 𝐿 = 𝑥𝑠

with the arm of 𝐿 = ℓ𝑚.

Following a similar calculation as the one to obtain Eq. (5.27), we find the two-sided
PSD �̃�Δ𝑋 (𝜔, 𝜃) as

�̃�Δ𝑋 (𝜔, 𝜃) =
[
�̃�Δ𝑋 (𝜔, 𝑥1, 𝑥2) + �̃�Δ𝑋 (𝜔, 𝑦1, 𝑦2)
−2�̃�Δ𝑋 (𝜔, 𝑥1, 𝑦2)

]
,

(5.51)

where the first two terms are given by Eq. (5.27) with 𝑁 = (ℓ𝑚 − 𝑥𝑠)2 and
D(𝑟1, 𝑟2, 𝜃) =

√︃
𝑟2

1 + 𝑟
2
2 − 2𝑟1𝑟2 cos(𝜃). The last term, which corresponds to the

correlation between the arms of length 𝐿 = 𝑥𝑠 and 𝐿 = ℓ𝑚, carries an additional
geometrical factor of cos [𝜔(ℓ𝑚 − 𝑥𝑠)] due to the difference in the sizes of the causal
diamonds, i.e.,

�̃�Δ𝑋 (𝜔, 𝑥1, 𝑦2)

=
𝑎𝑙𝑝

8𝜋𝑐3
𝑠 (ℓ𝑚 − 𝑥𝑠)2

∫ 𝑥𝑠

0
𝑑𝑟1

∫ ℓ𝑚

0
𝑑𝑟2 cos [𝜔(𝑥𝑠 − 𝑟1)]

cos [𝜔(ℓ𝑚 − 𝑟2)] cos [𝜔(ℓ𝑚 − 𝑥𝑠)] sinc [𝜔D(𝑟1, 𝑟2, 𝜃)/𝑐𝑠] .

(5.52)

We can also define �̃�Δ𝑋
T (𝜔, 𝜃) as in Eq. (5.31) via

�̃�Δ𝑋
T (𝜔, 𝜃) = 2

[
�̃�Δ𝑋 (𝜔, 0) − �̃�Δ𝑋 (𝜔, 𝜃)

]
. (5.53)
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(a) Pixellon PSD with 𝑥𝑠 = ℓ𝑚/50.
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(b) Pixellon PSD with 𝑥𝑠 = ℓ𝑚/10.

Figure 5.8: Pixellon PSD �̃�Δ𝑋
T (𝜔, 𝜃) as it would appear in an optically-levitated

sensor [Eq. (5.53), solid lines] shown alongside the PSD of an ordinary L-shaped
interferometer �̃�T (𝜔, 𝜃) [Eq. (5.31), dashed lines]. We take the length of the L-
shaped interferometer to be 𝐿 = ℓ𝑚 − 𝑥𝑠. All PSDs are computed without an IR
cutoff.

In the limit 𝑥𝑠 → 0, only the second term in Eq. (5.51) is nonzero, corresponding
to the length fluctuations of an interferometer of size 𝐿 = ℓ𝑚. Thus, the levitated
sensor can be treated as an ordinary interferometer when 𝑥𝑠 is sufficiently small.
This is confirmed by Fig. 5.8a, where we plot the interferometer PSD from Eq. (5.32)
against the levitated sensor PSD from Eq. (5.51), setting 𝑥𝑠 = ℓ𝑚/50 and neglecting
the IR cutoff for the purpose of demonstration. The interferometer PSD is given by
the dashed lines, whereas the levitated sensor PSD is given by the solid lines. We
can see that, as expected, the PSDs of these two different types of experiments are
very similar in the limit of small 𝑥𝑠. In Fig. 5.8b, we show a similar comparison
but instead pessimistically set 𝑥𝑠 = ℓ𝑚/10. For this larger value of 𝑥𝑠, the PSD for
the levitated sensor becomes somewhat larger in magnitude compared to that of the
ordinary interferometer, but retains a similar shape. In the limit of 𝜔 −→ 0, we have

�̃�Δ𝑋
T (𝜔, 𝜃) =

𝑎𝑙𝑝

48𝜋𝑐5
𝑠

𝜔2(𝑙𝑚 + 𝑥𝑠)2(1 − cos 𝜃) + O(𝜔4). (5.54)

From the scaling �̃�Δ𝑋
T (𝜔, 𝜃) ∝ (𝑙𝑚 + 𝑥𝑠)2, one can see the increase of signal as 𝑥𝑠

increases, which is a result of treating the system as two sets of causal diamonds.
However, we expect the above treatment to break down beyond the limit of 𝑥𝑠 ≪ 𝑙𝑚.
We emphasize that this calculation is not intended to be fully rigorous, but rather
seeks to provide a heuristic description of the pixellon model in a levitated sensor
experiment. Nevertheless, we continue to expect that the levitated sensor will behave
similarly to an L-shaped interferometer in the limit of small 𝑥𝑠.
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Next, let us compare the PSD found above to the predicted strain sensitivity of
optically-levitated sensor experiments. The thermal-noise-limited minimum de-
tectable strain of the optically-levitated sensor at temperature 𝑇CM is given by
Refs. [33, 21] as

ℎlimit =
4

𝜔2
0ℓ𝑚

√︄
𝑘𝐵𝑇CM𝛾𝑔𝑏

𝑀

[
1 + 𝛾sc + 𝑅+

𝑁𝑖𝛾𝑔

]
𝐻 (𝜔0) , (5.55)

where 𝜔0 is the trapping frequency, 𝛾𝑔 is the gas-damping coefficient, 𝛾sc is the
scattered photon-recoil heating rate, 𝑏 is the bandwidth, 𝑀 is the mass of the sensor,
and 𝑁𝑖 = 𝑘𝐵𝑇CM/ℏ𝜔0 is the mean initial phonon occupation number. The cavity
response function is 𝐻 (𝜔) =

√︁
1 + (2F/𝜋)2 sin2(𝜔ℓ𝑚/𝑐), where F is the finesse of

the cavity. Detailed expressions for all of these quantities can be found in Refs. [33,
21].

The peak frequency response of the experiment occurs at the trapping frequency𝜔0,
at which oscillations of the levitated sensor are resonantly enhanced. The trapping
frequency can be widely tuned via the laser intensity [21]. Thus, the sensitivity
curve for the levitated sensor can be obtained by continuously varying the locus of
the sensitivity curve for each fixed value of 𝜔0, as given by Eq. (5.55).

In Fig. 5.9, we plot the strain sensitivity of the levitated sensor experiment from
Ref. [21] (with a sensor consisting of a stack of dielectric disks) against the PSD of
the pixellon model from Eqs. (5.51)–(5.53). In Fig. 5.9b, we additionally include
an IR cutoff 𝜔IR = 1/𝐿 as in Eq. (5.28), where we take the characteristic length
of the system to be 𝐿 = ℓ𝑚 − 𝑥𝑠. This choice comes from the comparison of the
displacement Δ𝑋 with the length fluctuations of an interferometer of size ℓ𝑚 − 𝑥𝑠,
as discussed with relation to Eq. (5.47). Note that Ref. [21] uses a 300 kHz upper
bound for their sensitivity curves, citing limitations of power absorption by the
suspended sensor. From these plots, we observe that the levitated sensor would only
be competitive for detecting the geontropic signal at ℓ𝑚 ≳ 100 m. At the time of
writing, a 1 m prototype of this experiment is under construction, and a 100 m device
is at the concept stage [20, 21]. That these proposed levitated sensor experiments
are not competitive for constraining the pixellon model is expected: their reach in
frequency is such that 𝜔ℓ𝑚 ≪ 1, whereas the pixellon signal is expected to peak
at 𝜔ℓ𝑚 ∼ 1. Finally, let us note that, although the levitated sensors do not move
along geodesics, but instead have amplified non-geodesic movements, the same
amplification factors are applied to motion induced by the noisy thermal force. In
this way, because the device is limited by thermal noise [20, 21], comparing the
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(a) Strain without an IR cutoff.
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(b) Strain with an IR cutoff 𝜔IR = 1/(ℓ𝑚 − 𝑥𝑠).

Figure 5.9: The pixellon strain (dashed lines) overlaid with the predicted strain
sensitivity for a stacked-disk levitated sensor (solid lines), as given by Fig. 3 of
Ref. [21]. The color coding corresponds to the size ℓ𝑚 of the levitated sensor. The
pixellon strain is computed from Eq. (5.53), and we set 𝑥𝑠 = ℓ𝑚/10 throughout.

displacement (5.46) and the thermal strain (5.55), as if there were no trapping, still
leads to the correct thermal-noise-limited sensitivity.

5.6 Conclusions
We have considered the effect of the geontropic signal, from the VZ effect pro-
posed in Refs. [313, 314, 41, 174, 312], specifically as modeled in Refs. [328, 219],
on next-generation terrestrial GW detectors. We have found that if GQuEST ob-
serves spacetime fluctuations from the pixellon, Cosmic Explorer and the Einstein
Telescope will have a large background to astrophysical sources from vacuum fluctu-
ations in quantum gravity with which to contend. On the other hand, LISA and other
lower-frequency devices are insensitive to this signal. Note that in making these
predictions we have assumed the physical equivalence of the pixellon model with
the VZ effect for interferometer observables, the proof of which is still the subject
of ongoing first-principles calculations. Even so, given how large the geontropic
signal is expected to be in future GW observatories, our results may inform optimal
designs for GW observatories, whether searching for quantum or classical sources
of GWs.
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C h a p t e r 6

STOCHASTIC GRAVITATIONAL WAVE MEMORY
BACKGROUND OF SUPERMASSIVE BINARY BLACK HOLE

MERGERS AND ITS DETECTION IN LISA

6.1 Introduction
Gravitational waves (GWs) were first predicted by Einstein in 1916 as ripples in
spacetime emanating from accelerating masses. For decades they eluded direct
detection due to their tiny effects. Indirect evidence emerged in the 1970s with
the Hulse-Taylor binary pulsar, whose shrinking orbit matched energy loss to GWs
as predicted by general relativity [248]. A century after Einstein’s prediction,
advanced laser interferometers achieved the first direct GW observation in 2015:
the LIGO detectors recorded the inspiral and merger of two ∼ 30𝑀⊙ black holes
(event GW150914), heralded as “the first direct detection of gravitational waves and
the first observation of a binary black hole merger” [13]. This discovery opened
the era of gravitational-wave astronomy, soon confirmed by additional binary black
hole and neutron star merger detections in subsequent years [7, 105, 8, 9, 10, 11].
These successful observations established GWs as a powerful new messenger for
astrophysics and cosmology.

Beyond discrete events, one expects a persistent stochastic gravitational wave back-
ground (SGWB) formed by the superposition of countless unresolved sources across
the universe [14]. In essence, the SGWB is a gravitational-wave analog of a dif-
fuse background noise, with contributions from myriad processes: e.g., mergers of
compact binaries at high redshift, core-collapse supernovae, rapidly spinning neu-
tron stars, cosmic strings, and even quantum fluctuations from the early universe’s
inflationary epoch [14]. By definition, individual waves in a SGWB cannot be dis-
tinguished; instead the background is described statistically. Typically, the SGWB
is assumed to be isotropic (the same intensity coming from all sky directions),
stationary (statistical properties constant in time), and Gaussian (signal amplitudes
following a normal distribution due to many independent overlaps) [26, 98]. Under
these assumptions (also usually taking it to be unpolarized), the SGWB can be char-
acterized by a power spectrum or energy density spectrum Ωgw( 𝑓 ), and searched for
via cross-correlation of detector signals [26, 28]. Detecting a SGWB would have
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profound implications: it would reveal the integrated history of GW sources and
potentially reveal new physics (e.g., relic GWs from the early universe) beyond what
is accessible with individual events. In fact, the worldwide network of ground-based
detectors has placed stringent upper limits on an isotropic SGWB in the 10–1000 Hz
band, while very recently the nanohertz frequency realm has yielded the first exciting
hints of a stochastic background signal. In particular, pulsar timing array exper-
iments have reported evidence for a common-spectrum low-frequency stochastic
background consistent with GWs from a cosmological population of merging su-
permassive black hole binaries [19]. This development strongly suggests that an
astrophysical SGWB exists, and motivates searches in other frequency bands for
analogous signals.

Another subtle prediction of general relativity, and one especially relevant to this
work, is the gravitational wave memory effect. Gravitational-wave memory refers
to the permanent displacement or relative velocity change left in test masses after a
burst of gravitational radiation has passed. Unlike the oscillatory “strain” of a typical
GW, the memory is a non-oscillatory DC offset – a lasting imprint on spacetime.
Early theoretical work by Zel’dovich and Polnarev [322] pointed out the possibility
of such one-time shifts from gravitational radiation. Later, Christodoulou demon-
strated that GR’s nonlinear dynamics in fact predict a significant memory effect:
gravitational waves from astronomical sources have a nonlinear effect on laser inter-
ferometers, with the signature being a permanent displacement of test masses after
the passage of a GW [99, 100]. This so-called “nonlinear memory” (also known as
the Christodoulou memory) adds to the smaller linear memory contributions from
emitted mass or momentum flux. Fundamentally, GW memory is tied to the chang-
ing flux of energy–momentum carried by the waves: as a system emits gravitational
waves, it can undergo a net recoil, and the spacetime metric does not return to
exactly its pre-wave state. In modern understanding, memory is deeply connected to
the symmetries of asymptotically flat spacetime. In particular, the permanent offset
is associated with a Bondi-Metzner-Sachs (BMS) supertranslation—an asymptotic
symmetry transformation—induced by the passage of waves. Equivalently, the
memory effect can be viewed as the sourcing of very low-frequency (“soft”) gravi-
tons that carry information about the total energy radiated [64, 298, 295, 243, 242].
This connection, elucidated through studies of infrared gravitational physics, under-
scores that GW memory is rooted in conserved quantities and symmetry principles
of GR.
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Experimentally, detecting the GW memory effect is challenging because the mem-
ory’s strain amplitude is typically much smaller than the main oscillatory waveform
of a given event [215, 194, 168, 300, 196]. To date, no direct observation of memory
has been achieved. The first LIGO/Virgo detections of stellar-mass binary merg-
ers were not sensitive enough to confidently measure the tiny permanent shift left
behind by those events. Advanced data analyzes [215, 194, 300, 196] have been
developed to search for memory by stacking multiple signals or looking for subtle
low-frequency trends, but with current detectors, it is expected that single event
memory is at or below the noise floor [168]. In the pulsar timing domain, a passing
GW burst with memory would produce a characteristic change in pulsar pulse arrival
times; though PTA projects have sought this signature from potential supermassive
black hole mergers, the event rates for such dramatic “memory bursts” are estimated
to be very low [175, 111, 318]. In short, observing memory likely requires either
an extremely nearby or catastrophic event or the accumulation of many events. This
latter approach leads naturally to the idea of a stochastic background of memory
signals, wherein numerous memory-producing events over cosmic time superpose
to yield a persistent random metric perturbation. Just as the incoherent sum of
many small GW bursts can form a SGWB, so too many memory steps could form a
stochastic gravitational wave memory background (SGWMB).

The concept of a SGWMB arising especially from frequent supermassive black
hole binary (SMBH) coalescences has recently gained attention [78, 66]. Each
time a massive binary black hole merges, it emits a burst of gravitational waves
and a non-reversible memory step in the spacetime metric. Over the history of the
universe, countless SMBH mergers (especially at high redshift) would cumulatively
generate a random series of these metric steps. The resulting SGWMB can be
thought of as a sort of “random walk” or Brownian motion in the GW strain: suc-
cessive memory jumps add up in a diffusive manner [325, 78, 330, 66]. Theoretical
work by Zhao and Cao [325] provided the first detailed analysis of such a memory-
generated background, showing that it has a distinctive spectral character. In the
limit that many memory events overlap, the SGWMB strain power spectral density
scales inversely with frequency (approximately 𝑆ℎ ( 𝑓 ) ∝ 1/ 𝑓 2), corresponding to
a red-colored noise spectrum. Equivalently, the fractional energy density Ωgw( 𝑓 )
of the memory background grows with frequency, since memory contributes more
power at lower frequencies. Notably, the amplitude of this memory background is
determined predominantly by the global merger rate of black holes [325, 66]. This
implies that measuring the SGWMB could directly inform us about the population
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of merging SMBHs in the universe. Moreover, because the memory signals accu-
mulate linearly, rather than oscillating and averaging down, the SGWMB provides
a new avenue to detect the memory effect statistically. It has been argued that a
SGWMB provides a new means to detect gravitational wave memory [325]. In other
words, even if individual memory bursts are too weak to detect on their own, their
collective imprint might be observable as a low-frequency stochastic signal, offering
both a confirmation of the memory effect and a probe of cosmological BH merger
dynamics. One caveat is that a memory background may violate some of the usual
SGWB assumptions (e.g., it may be non-Gaussian or anisotropic if only a limited
number of sources contribute at a given time), complicating detection strategies.
These issues, as well as the expected magnitude of the SGWMB relative to other
backgrounds, are active areas of research.

Given these theoretical developments, the impending launch of next-generation GW
observatories adds timely urgency to the study of the SGWMB. In particular, the
Laser Interferometer Space Antenna (LISA)—a space-based GW detector scheduled
for the 2030s—will be sensitive in the millihertz frequency band, perfectly suited
for observing signals from ∼ 104–108𝑀⊙ black hole binaries [30]. LISA consists
of three spacecraft in a triangular formation with millions of kilometers arm-length,
designed to detect GWs in the 0.1 mHz to 0.1 Hz range. This mHz band is expected
to be richly populated with sources: massive black hole mergers, extreme mass-
ratio inspirals, galactic binaries, and possibly a stochastic background from the early
universe [40]. Importantly, LISA should individually observe many SMBH merger
events which are of significant interest for GW memory production. It will also have
the capability to search for a diffuse background in its band. A memory background
from numerous SMBH mergers, if it exists at a detectable level, would manifest
as an additional low-frequency noise component in LISA’s data. Being a space
mission, LISA offers long observation times and is free from terrestrial seismic
noise at low frequencies, making it ideal for capturing the slowly accumulating
memory effect. Indeed, studies indicate that space-based detectors are ideal to
detect the gravitational wave memory background corresponding to supermassive
binary black holes [30, 196]. A detection, or even a constraint of the SGWMB by
LISA would be profoundly informative: it would confirm a novel general relativistic
effect on cosmic scales, test the BMS symmetry predictions, and provide insight
into the cosmic merger history and environments of SMBHs. Given that pulsar
timing arrays are now observing a stochastic signal at nHz frequencies and ground-
based interferometers continue to improve at ∼ 100 Hz and above, LISA will fill
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the crucial mHz gap—potentially allowing us to piece together a full spectrum of
gravitational wave backgrounds across 12 orders of magnitude in frequency. In this
context, understanding the expected SGWMB from SMBH mergers is both timely
and necessary for maximizing LISA’s scientific return.

This chapter is organized as follows. In Sec. 6.2, we present the mathematical foun-
dation of the SGWB. In addition, we review the techniques employed to detect the
SGWB. In Sec. 6.3, we give an overview of the BMS symmetry group and explores
how it underlies the gravitational wave memory effect through nonlinear dynamics
and asymptotic charges. Furhermore, we focus on the gravitational memory effect
from a single binary black hole merger, detailing the strain contributions, multipolar
decomposition, and numerical relativity results. In Sec. 6.4, we extend this discus-
sion to the SGWMB, treating it as a Brownian accumulation of individual memory
steps from numerous supermassive black hole mergers. We derive its spectral den-
sity and discuss its deviation from standard SGWB assumptions. In Sec. 6.5, we
evaluate the detectability of the SGWMB with LISA, including its expected signal
strength and the impact of source resolvability. Finally, in Sec. 6.6, we summarize
key findings and outline future directions for theory, modeling, and observational
strategies relevant to detecting the memory background in forthcoming gravitational
wave missions.

6.2 Stochastic Gravitational Wave Backgrounds: An Overview
In this section, we provide a comprehensive overview of the SGWB, including
both its theoretical underpinnings and the techniques used to detect it. We begin
with a mathematical description of the SGWB, including its standard statistical
assumptions and formal definitions of key quantities such as the strain power spectral
density, characteristic strain, and spectral energy density. We then review the
primary methods used across different gravitational wave observatories to search
for a SGWB, focusing on ground-based interferometers, PTAs, and space-based
detectors. Finally, we briefly introduce the concept of anisotropies in the SGWB and
how directional dependence can be probed using spherical harmonic decomposition.
This overview sets the stage for deeper analysis of memory-induced backgrounds
and their observational prospects in subsequent sections.

Mathematical Foundations of the SGWB
Gravitational wave backgrounds are described as small metric perturbations ℎ𝑖 𝑗 (𝑡, x)
superposed from many independent sources. We work in the transverse-traceless
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(TT) gauge, where the metric perturbation has only spatial components and is
traceless. In this gauge one can expand ℎ𝑖 𝑗 as a superposition of plane waves
traveling in various directions. For a wave propagating from direction �̂� (a unit
vector on the sky) with polarization 𝐴 (where 𝐴 = +,× in general relativity), we
write the plane-wave expansion as [26, 28, 98]

ℎ𝑖 𝑗 (𝑡, x) =
∑︁
𝐴=+,×

∫ ∞

−∞
𝑑𝑓

∫
𝑆2
𝑑2�̂� ℎ𝐴 ( 𝑓 , �̂�)𝑒𝐴𝑖 𝑗 (�̂�)𝑒2𝜋𝑖 𝑓

(
𝑡−�̂�·x/𝑐

)
, (6.1)

where 𝑒𝐴
𝑖 𝑗
(�̂�) are the polarization basis tensors for plus and cross modes, defined with

respect to two unit vectors m̂, n̂ orthogonal to �̂� so that �̂�, m̂, n̂ form an orthonormal
triad [26, 98]. For example, one convenient choice is 𝑒+

𝑖 𝑗
(�̂�) = m̂𝑖m̂ 𝑗 − n̂𝑖n̂ 𝑗 and

𝑒×
𝑖 𝑗
(�̂�) = m̂𝑖n̂ 𝑗 + n̂𝑖m̂ 𝑗 . With this choice of the basis, 𝑒𝐴

𝑖 𝑗
𝑒𝐴

′,𝑖 𝑗 = 2𝛿𝐴𝐴′ .

Because a SGWB results from an incoherent superposition of many independent
sources, it is typically modeled as a stationary, Gaussian random process that
is isotropic on the sky and unpolarized on average [28, 276, 98, 208]. These
assumptions mean, respectively, that the statistical properties of ℎ𝑖 𝑗 (𝑡) do not change
in time, the Fourier components follow a Gaussian distribution (by the central limit
theorem, if many random sources contribute) [308, 311, 327], the background has
no preferred direction, and equal power is carried in the two polarization states.
Under these standard assumptions, one can characterize the SGWB by the ensemble
averages of the Fourier mode amplitudes ℎ𝐴 ( 𝑓 , �̂�). In particular, the power spectral
density 𝑆ℎ ( 𝑓 ) of the background is defined by the ensemble correlation of these
Fourier components [26, 28, 98, 240]:〈

ℎ∗𝐴 ( 𝑓 , �̂�)ℎ𝐴′ ( 𝑓 ′, �̂�
′)
〉
=
𝛿2(�̂�, �̂�′)

4𝜋
𝛿𝐴𝐴′

2
𝛿( 𝑓 − 𝑓 ′)𝑆ℎ ( 𝑓 ), (6.2)

where ⟨·⟩ denotes an ensemble (or time) average, and we use Dirac delta functions
to enforce that the only nonzero correlations are for the same frequency ( 𝑓 = 𝑓 ′),
same sky direction (�̂� = �̂�

′
), and same polarization 𝐴 = 𝐴′. The normalization

is chosen such that 𝑆ℎ ( 𝑓 ) is the double-sided power spectral density (PSD) of the
gravitational-wave strain field with units of Hz−1 [28, 276]. Intuitively, 𝑆ℎ ( 𝑓 )
encodes the spectral distribution of strain power in the SGWB: for any frequency
band, 𝑆ℎ ( 𝑓 ) 𝑑𝑓 is proportional to the mean squared strain contributed by that band.

Given 𝑆ℎ ( 𝑓 ), we can derive the energy density carried by the SGWB. Gravitational
waves carry energy and momentum as a form of radiation. In the weak-field limit,
the stress-energy tensor of gravitational waves (averaged over many wavelengths) is
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given by Isaacson’s formula [28, 276, 98, 240],

𝑇
gw
𝜇𝜈 =

𝑐4

32𝜋𝐺
⟨𝜕𝜇ℎ𝑖 𝑗𝜕𝜈ℎ𝑖 𝑗 ⟩. (6.3)

In particular, the energy density (energy per unit volume) in GWs is,

𝜌gw = 𝑇
gw
00 =

𝑐4

32𝜋𝐺
⟨ ¤ℎ𝑖 𝑗 ¤ℎ𝑖 𝑗 ⟩ (6.4)

where overdots denote time derivatives. Using the plane-wave expansion and the
statistical properties above, one can show that [225, 240]〈

ℎ𝑖 𝑗 (𝑡)ℎ𝑖 𝑗 (𝑡)
〉
= 2

∫ ∞

−∞
𝑑𝑓 𝑆ℎ ( 𝑓 ) = 4

∫ 𝑓=∞

𝑓=0
𝑑 (ln 𝑓 ) 𝑆ℎ ( 𝑓 ), (6.5)

i.e. the total mean-squared strain rate is an integral over frequency of 𝑆ℎ ( 𝑓 ) weighted
by 𝑓 2. Inserting this into the expression for 𝜌gw and converting the integration
variable to 𝑑 ln 𝑓 , we obtain the spectral energy density of the SGWB. It is convenient
to express this as a dimensionless fraction of the Universe’s critical energy density
𝜌𝑐, also known as the energy density needed to close the universe [28, 225, 98]. We
define Ωgw( 𝑓 ) as the fraction of energy density in GWs per logarithmic frequency
interval [225, 98, 240]:

Ωgw( 𝑓 ) ≡
1
𝜌𝑐

d𝜌gw

d ln 𝑓
, (6.6)

so thatΩg𝑤 ( 𝑓 ) 𝑑 ln 𝑓 is the GW energy density (in units of 𝜌𝑐) in the band [ 𝑓 , 𝑓 +𝑑𝑓 ].
Using 𝜌𝑐 =

3𝐻2
0

8𝜋𝐺 , where 𝐻0 is the Hubble expansion rate today, we find the relation
between Ωgw and the strain PSD [225, 240]:

Ωgw( 𝑓 ) =
4𝜋2

3𝐻2
0
𝑓 3𝑆ℎ ( 𝑓 ), (6.7)

which is a fundamental quantity describing a SGWB. This Ωgw( 𝑓 ) is dimension-
less; it directly measures the GW energy content of the universe at frequency 𝑓 ,
normalized to the critical density [240]. Often, one also defines the characteristic
strain ℎ𝑐 ( 𝑓 ) of the background as a dimensionless amplitude representing the strain
per unit frequency. A common definition is [225]

ℎ𝑐 ( 𝑓 ) ≡
√︁

2 𝑓 𝑆ℎ ( 𝑓 ). (6.8)

The factor of two arises from converting the double-sided power spectral density
𝑆ℎ into its one-sided form, which is the convention used for comparison with the
LISA sensitivity curve.In terms of ℎ𝑐 ( 𝑓 ), the energy density spectrum takes the
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form Ωgw( 𝑓 ) = 2𝜋2 𝑓 2ℎ2
𝑐/(3𝐻2

0). All three quantities 𝑆ℎ ( 𝑓 ), ℎ𝑐 ( 𝑓 ), and Ωgw( 𝑓 )
are used in the literature to characterize stochastic backgrounds; given one of them,
the others can be obtained via the above relations.

In summary, 𝑆ℎ ( 𝑓 ) describes the strain power spectrum of the SGWB, ℎ𝑐 ( 𝑓 ) gives an
effective strain amplitude per frequency band, andΩgw( 𝑓 ) describes the contribution
of GWs to the universe’s energy density at each frequency. For a sense of typical
values, a flat spectrum with Ωgw( 𝑓 ) ∼ 10−9 would correspond to an extremely
faint dimensionless strain ℎ𝑐 ( 𝑓 ) ∼ 10−24 in the ∼ 100 Hz band of ground-based
detectors [28, 98, 208].

Detection Strategies and Experiments
A SGWB does not produce a distinct “chirp” or signal in a single detector, but rather
a persistent, random strain noise present in the data. Detecting it requires careful
statistical analysis to distinguish the SGWB from instrumental noise. Different types
of experiments probe the SGWB over a wide range of frequencies, from nanohertz
up to kilohertz, using different techniques [26, 28, 276, 240]. We outline the main
detection methods used by ground-based interferometers, pulsar timing arrays, and
space-based detectors, as well as the cross-correlation techniques that maximize the
signal-to-noise ratio (SNR).

Ground-based Interferometers

Ground-based laser interferometers like LIGO and Virgo operate in the high-
frequency band and have detected transient GWs from individual astrophysical
events [13, 6, 7, 8, 9, 10, 11]. To search for an SGWB, these observatories use
multiple detectors and exploit the fact that a stochastic signal would be a common
random strain present in all detectors, whereas instrumental noises are largely inde-
pendent. The basic strategy is to cross-correlate the strain data from two or more
spatially separated detectors and look for a correlated signal hidden in the noise [14,
308, 208]. By integrating correlations over long observation times, one can detect
an SGWB that is far below the noise level of any single detector.

In practice, if 𝑠1(𝑡) and 𝑠2(𝑡) are the strain time series in two detectors, with 𝑠𝑖 (𝑡) =
ℎ(𝑡) + 𝑛𝑖 (𝑡) being the sum of GW signal and instrument noise, one constructs an
estimator𝑌 for the GW energy density by cross-correlating their Fourier components
with an optimal filter𝑄( 𝑓 ) [308]. The optimal filter is chosen to maximize the SNR
by weighting each frequency according to the expected SGWB spectrum and the
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detectors’ noise spectra [28, 229]. For an assumed target spectrum Ωgw( 𝑓 ), the
optimal filter in frequency space is 𝑄( 𝑓 ) ∝ 𝛾12 ( 𝑓 )Ωgw ( | 𝑓 |)

| 𝑓 |3𝑃1 (| 𝑓 |)𝑃2 (| 𝑓 |)
[229], where 𝑃1( | 𝑓 |)

and 𝑃2( | 𝑓 |) are the noise power spectral densities of the two detectors, and 𝛾12( | 𝑓 |)
is the overlap reduction function. The function 𝛾12( | 𝑓 |), which is dimensionless
and bounded between ±1, encodes the relative alignment and separation of the two
detectors: it is essentially the normalized scalar product of the detector antenna
response patterns as a function of GW frequency [308]. For co-located, co-aligned
interferometers 𝛾12( | 𝑓 |) = 1 at all 𝑓 , but for separated detectors 𝛾12( | 𝑓 |) can be
less than one or even negative at certain frequencies, reducing sensitivity [308].
For example, LIGO’s Hanford–Livingston detector pair has 𝛾H𝐿 ( 𝑓 ) ≈ 0.8 at low
frequencies dropping to negative values above ∼ 60 Hz due to their 3000 km
separation and relative orientation [308, 14].

After applying the optimal filter, the output cross-correlation statistic 𝑌 is an esti-
mator for the amplitude of Ωgw( 𝑓 ). One can derive the expected signal-to-noise
ratio for a given background spectrum by comparing the expected cross-correlation
signal to the variance contributed by noise. For a Gaussian, stationary background
and uncorrelated detector noise, the SNR after an observation time 𝑇 is

SNR =
3𝐻2

0
10𝜋2

√
𝑇

(∫ ∞

−∞
𝑑𝑓

𝛾2
12( 𝑓 )Ω

2
gw( | 𝑓 |)

| 𝑓 |6𝑃1( | 𝑓 |)𝑃2( | 𝑓 |)

)1/2

, (6.9)

where we have assumed Ωgw( 𝑓 ) is the target spectrum being searched for [229].
This expression makes clear that the sensitivity improves with

√
𝑇 and that fre-

quencies at which the detectors have high noise 𝑃𝑖 ( 𝑓 ) or poor overlap, meaning
𝛾12( 𝑓 ) ≈ 0 contribute little to the SNR [229]. In practice, ground-based SGWB
searches integrate the cross-correlation over months or years of data to build up
sensitivity [276, 276, 229]. No SGWB has yet been detected in the LIGO–Virgo
band; instead, the result of such analyses is typically an upper limit on Ωgw( 𝑓 ). For
instance, the latest LIGO/Virgo limit is of order Ωgw < 10−9 in the ∼ 20–100 Hz
band set by the non-observation of a cross-correlation signal above the noise [208].
These limits already constrain some models of cosmological backgrounds and as-
trophysical populations [240]. In the future, as the detector sensitivities improve
and new detectors join the network, there is hope to either detect an astrophysical
SGWB or push upper limits low enough to test early-universe models [208, 240].
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Pulsar Timing Arrays

At much lower frequencies (10−9 to 10−7 Hz, corresponding to periods of years
to decades), pulsar timing arrays employ a conceptually similar strategy to detect
an SGWB, using millisecond pulsars as a galaxy-scale gravitational wave detector.
An array of pulsars distributed across the sky is monitored for tiny fluctuations
in their pulse arrival times. A passing gravitational wave stretches or shrinks the
spacetime between Earth and each pulsar, inducing a characteristic pattern of timing
residuals, which deviate from the expected pulse arrival times. While the timing
data from a single pulsar contains a stochastic residual that could be due to a GW
background or various noise processes, a real SGWB will imprint a distinctive spatial
correlation between the timing residuals of different pulsar pairs. This correlation
as a function of the angle 𝜉𝑎𝑏 between pulsar 𝑎 and 𝑏 on the sky was first derived
by Hellings and Downs [192] and given by a curve known as the Hellings–Downs
curve that depends only on 𝜉𝑎𝑏 [303, 272, 275]. In the ideal case of an isotropic,
unpolarized GW background in general relativity, the correlation between pulsar
timing residuals has a monopole and quadrupole angular dependence: it is positive
for pulsars separated by large angles and decreases to a small negative value for
pulsars nearly coincident on the sky [204, 19]. PTA data analysis searches for this
correlated signature in the timing data of many pulsars. Practically, this involves
computing the pairwise correlation of timing residual time-series for all pulsar
pairs and comparing the measured angular correlation function to the theoretical
Hellings–Downs curve. Since each pulsar has various intrinsic noise contributions
such as measurement errors, irregularities in pulsar spin, interstellar medium effects,
a significant detection requires averaging over a network of many pulsars, analogous
to cross-correlating multiple detectors in the LIGO case [247, 19]. The signal is
exceedingly small—fractional variations in pulse arrival times of order 10−15—
and builds up slowly over years of data. In the past few years, PTA experiments
have reported the first strong evidence of a common-spectrum stochastic process
with Hellings–Downs spatial correlations, consistent with an SGWB signal [240].
Notably, in 2023 the North American Nanohertz Observatory for Gravitational
Waves (NANOGrav) and other PTA collaborations announced the detection of a
stochastic common process in pulsar timing data with the expected Hellings–Downs
correlation at the 3–4𝜎 level [240, 19]. In the coming years, extended observations
as well as adding more pulsars will refine these measurements, aiming to confirm
the GW nature of the signal unambiguously and potentially begin characterizing the
frequency spectrum Ωgw( 𝑓 ) in the nHz band.
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Figure 6.1: Expected Hellings–Downs correlation (purple dashed line) of timing
residuals as a function of the angle between two pulsars, compared to recent observa-
tions (blue points with error bars) from a pulsar timing array. The green line at zero
represents the no-GW hypothesis. A SGWB produces the distinctive quadrupolar
correlation pattern shown by the dashed curve [247].

Methodologically, PTAs also use cross-correlation estimators and optimal filtering,
but in a somewhat different statistical framework than ground-based interferome-
ters. Rather than a continuous Fourier integration, as done in LIGO analysis, PTA
analyses often work with the covariance matrix of pulsar timing residuals across the
array and perform a Bayesian or frequentist search for the common cross-correlation
pattern [320, 42]. The end result, however, is analogous: by combining many pulsar
pair correlations, the analyses strengthen the common SGWB signal and suppress
uncorrelated noise. The recent PTA results are an exciting confirmation that the
cross-correlation approach—applied now on Galactic scales—can successfully de-
tect a stochastic background.

Space-based Detectors

In the millihertz band (10−4–10−1 Hz), the planned Laser Interferometer Space
Antenna (LISA) will open another window onto stochastic backgrounds. LISA,
scheduled for launch in the 2030s, will consist of a triangular constellation of
spacecraft forming a 2.5-million-km arm-length interferometer in space [30]. This
instrument is designed to detect GWs in a frequency range inaccessible from Earth
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due to seismic noise and gravity gradient noise at low frequencies [43, 40]. Many
cosmological models predict a stochastic background in the millihertz band, for
instance, from processes in the early Universe such as phase transitions, cosmic
strings, or inflationary relics, and a key science goal of LISA is to search for such
signals [43, 30, 40, 240]. Astrophysical backgrounds are also expected, for example
from the unresolved confusion noise of many millions of compact binaries in our
galaxy and beyond [240].

Detecting a SGWB with LISA will also rely on cross-correlation techniques, al-
though the implementation differs because LISA is a single multi-arm detector
rather than multiple independent detectors. However, LISA’s time-delay interfer-
ometry (TDI) will produce multiple data streams, sometimes called 𝑋 , 𝑌 , 𝑍 or
𝐴, 𝐸 , 𝑇 channels, that have different response patterns to GWs and noise. By
forming appropriate pairs or linear combinations of these TDI channels, one can
effectively obtain “synthetic” detectors and apply cross-correlation methods sim-
ilar to the ground-based case [30]. In fact, analyses have shown that a network
of cross-correlated LISA channels, or even a joint analysis of LISA with possible
future space detectors, can achieve high sensitivity to isotropic or even anisotropic
SGWBs in the mHz band [273, 42]. The formalism developed for ground detectors
such as optimal filters, overlap reduction functions, and likelihood analyses has been
generalized to the LISA configuration [276, 320]. For example, one can define a
noise-orthogonal TDI channel known as the “T” channel that is largely insensitive
to GWs and use it as a null stream to check instrument noise, while cross-correlating
the others such as “A” and “E” to search for a SGWB [320].

In addition to LISA, other future detectors are being considered. Space-based
pulsar timing could one day extend PTA sensitivity by placing radio telescopes
in orbit or on the Moon for longer baselines. Even sooner, Doppler tracking of
spacecraft (using radio links between Earth and a spacecraft) has been used to
probe SGWBs in the microhertz range – for instance, the Cassini mission was
used to set limits on an SGWB around 10−6-10−3 Hz [276]. Meanwhile, next-
generation ground interferometers such as Einstein Telescope [136] and Cosmic
Explorer [137] will dramatically improve sensitivity in the audio band, and combined
with LIGO/Virgo/KAGRA they will form a network that could either detect an
astrophysical background or constrain it to very low levels. The synergy of all
these approaches—ground, space, and pulsar timing—means that the SGWB will
be probed over an enormous frequency span, ∼ 20 orders of magnitude from nHz
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to kHz, in the coming decades [240]. Each window has the potential to reveal
different sources from supermassive black hole binaries to inflationary GWs, making
SGWB searches a rich interdisciplinary target in gravitational wave astronomy and
cosmology.

Directional Dependence and Anisotropies
Gravitational-wave backgrounds need not be perfectly isotropic. In fact, there is
strong motivation to study anisotropies in the SGWB – irregularities in the intensity
of the background across the sky – because they can carry information about the
distribution and motion of GW sources. For example, a stochastic background
arising from a foreground of Galactic binaries would be brighter along the Milky
Way plane than in other directions [27]. Such anisotropies would cause the correlated
signal between detectors to vary with time as the Earth rotates [27]. By observing
these modulation patterns, one can infer the multipole moments that characterize
the sky distribution of the SGWB [27]. In other words, measuring the directional
dependence of a SGWB provides a way to map its angular power distribution,
analogous to how anisotropies of the cosmic microwave background are analyzed.

To quantify anisotropy, we define a directional GW energy-density spectrumΩgw( 𝑓 , �̂�).
This function gives the energy density of the background per unit logarithmic fre-
quency 𝑓 and per unit solid angle in direction �̂� on the sky, normalized by the
critical density 𝜌𝑐 of the Universe. In analogy with the isotropic case, one can write:

Ωgw( 𝑓 , �̂�) ≡ 1
𝜌𝑐

𝑑3𝜌gw

𝑑 ln 𝑓 𝑑2Ω
. (6.10)

Here 𝑑3𝜌gw is the energy density in GWs in the frequency interval 𝑑𝑓 about 𝑓 coming
from an infinitesimal solid angle 𝑑2Ω around direction �̂� [27, 271]. Integrating
Ωgw( 𝑓 , �̂�) over all directions recovers the usual (all-sky average) spectrum Ωgw( 𝑓 ).
If the background is isotropic, Ωgw( 𝑓 , �̂�) is independent of �̂�; anisotropies are
present when Ωgw varies across the sky.

It is convenient to expand the directional spectrum in spherical harmonics 𝑌ℓ𝑚 (�̂�),
which form an orthonormal basis on the sky. Thus, one writes the multipole
expansion:

Ωgw( 𝑓 , �̂�) =
∞∑︁
ℓ=0

ℓ∑︁
𝑚=−ℓ

𝑎ℓ𝑚 ( 𝑓 )𝑌ℓ𝑚 (�̂�). (6.11)

The coefficients 𝑎ℓ𝑚 ( 𝑓 ) represent the anisotropy multipole moments of the back-
ground at frequency 𝑓 . The monopole term ℓ = 0 corresponds to the all-sky average,
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and higher ℓ terms encode anisotropic structure on angular scales roughly ∼ 180◦/ℓ.
In stochastic terms, one often assumes these multipole coefficients are random
variables with some angular power spectrum 𝐶ℓ defined by ⟨𝑎ℓ𝑚 ( 𝑓 )𝑎∗ℓ′𝑚′ ( 𝑓 )⟩ =

𝐶ℓ ( 𝑓 )𝛿ℓℓ′𝛿𝑚𝑚′ . An angular power spectrum can be estimated as

𝐶ℓ ( 𝑓 ) =
1

2ℓ + 1

ℓ∑︁
𝑚=−ℓ

|𝑎ℓ𝑚 ( 𝑓 ) |2, (6.12)

which quantifies the amplitude of anisotropy at multipole ℓ. The set 𝐶ℓ thus char-
acterizes how power in the SGWB is distributed over different angular scales, anal-
ogous to the 𝐶ℓ spectrum used for CMB anisotropies. In particular, 𝐶0 is related to
the mean background level, 𝐶1 to any dipole, 𝐶2 to quadrupolar structure, and so
on.

An anisotropic background influences the cross-correlation signals of detector pairs
in a direction-dependent way. The measured correlation between two detectors
𝐼 and 𝐽, which are at locations x𝐼 , x𝐽 with respective antenna response patterns
𝐹𝐼 (�̂�, 𝐹𝐽 (�̂�)) can be expressed as an integral over the sky weighted by Ωgw( 𝑓 , �̂�).
In the frequency domain, the cross-correlation spectral density 𝑆𝐼𝐽 ( 𝑓 ) is propor-
tional to [27]:

𝑆𝐼𝐽 ( 𝑓 ) ∝
∫
𝑆2
𝑑2Ω Ωgw( 𝑓 , �̂�) 𝐹𝐼 (�̂�) 𝐹𝐽 (�̂�) 𝑒𝑖2𝜋 𝑓 �̂�·(x𝐼−x𝐽 )/𝑐 . (6.13)

For an isotropic background, Ωgw( 𝑓 , �̂�) = Ωgw( 𝑓 ) is constant over the sky, and the
above integral simplifies. In that case one defines the usual overlap reduction func-
tion (ORF) 𝛾𝐼𝐽 ( 𝑓 ), which encapsulates the geometrical sensitivity of the detector
pair to a monopole SGWB. The ORF is a known function determined by the base-
line separation and detector orientations [27]. If the SGWB is anisotropic, however,
different spherical-harmonic components of Ωgw contribute to the correlation. By
inserting the expansion forΩgw( 𝑓 , �̂�) into the integral, one finds that each multipole
(ℓ, 𝑚) produces a term proportional to 𝑎ℓ𝑚 ( 𝑓 ), with a corresponding generalized
overlap reduction function 𝛾ℓ𝑚

𝐼𝐽
( 𝑓 ) serving as the coupling coefficient [27]. In other

words, 𝛾ℓ𝑚
𝐼𝐽
( 𝑓 ) is the response of the 𝐼-𝐽 baseline to a unit spherical harmonic 𝑌ℓ𝑚

distribution on the sky. It can be written as the sky integral of the detectors’ antenna
patterns against the 𝑌ℓ𝑚 mode [27]:

𝛾ℓ𝑚𝐼𝐽 ( 𝑓 ) =
1

4𝜋

∫
𝑆2
𝑑2Ω 𝑌 ∗

ℓ𝑚 (�̂�) 𝐹𝐼 (�̂�) 𝐹𝐽 (�̂�) 𝑒𝑖2𝜋 𝑓 �̂�·(x𝐼−x𝐽 )/𝑐 . (6.14)

This reduces to the standard 𝛾𝐼𝐽 ( 𝑓 ) for ℓ = 0, since𝑌00 = 1/
√

4𝜋 is constant. The set
of functions 𝛾ℓ𝑚

𝐼𝐽
( 𝑓 ) thus generalizes the overlap reduction function to an anisotropic



127

background. In practical analyses, one expands the data from correlated detectors
in this spherical-harmonic basis, estimating or constraining the coefficients 𝑎ℓ𝑚 ( 𝑓 )
by projecting out each mode’s contribution via the known 𝛾ℓ𝑚

𝐼𝐽
( 𝑓 ) [309].

Anisotropic searches for the SGWB are implemented across ground-based interfer-
ometers, PTAs, and space-based detectors, each exploiting how time-varying de-
tector orientations or spatial configurations modulate the observed signal. Ground-
based interferometers rotate with the Earth, producing sidereal modulations in the
cross-correlation signal if anisotropies are present [309, 308, 208]. These mod-
ulations are analyzed using spherical harmonic decomposition to reconstruct the
directional GW energy distribution. The resulting sky maps allow constraints on
angular multipoles 𝑎ℓ𝑚 ( 𝑓 ) and corresponding power spectra 𝐶ℓ ( 𝑓 ).

PTAs use the angular correlation of pulse arrival times across a distributed ar-
ray of pulsars to probe anisotropy in the nanohertz band. Deviations from the
expected Hellings–Downs curve indicate directional structure in the background,
which can be expanded in spherical harmonics or Legendre polynomials [154,
303]. Similarly, space-based detectors like LISA exploit orbital motion and mul-
tiple interferometry channels to gain directional sensitivity [42, 221]. Across all
platforms, anisotropic searches generalize the standard isotropic formalism by in-
cluding direction-dependent GW energy density Ωgw( 𝑓 , �̂�) and its coupling to
detector baselines via generalized overlap reduction functions 𝛾ℓ𝑚

𝐼𝐽
( 𝑓 ).

6.3 Gravitational Memory and the BMS Symmetry
The gravitational wave memory effect was first predicted in the 1970s as a subtle
permanent distortion of spacetime caused by a burst of gravitational radiation. In
1974, Zel’dovich and Polnarev computed the gravitational waves from two masses
on hyperbolic flyby orbits and found that the strain ℎ𝑖 𝑗 does not return to zero
at late times—instead, there is a net change in the waveform between the distant
past and future [322, 298, 295, 242]. This effect arises because the stress-energy
distribution of the system is different after the encounter than before, leading to
a different asymptotic gravitational field. Braginsky and Grishchuk later termed
this the “memory effect” and clarified its observational meaning as a lasting offset
in the separation of test masses after a gravitational wave passes [242]. By 1987,
Braginsky and Thorne had derived an explicit formula for the memory produced by
a scattering of 𝑁 particles, showing that the net change in the transverse-traceless
strain ℎ𝑇𝑇

𝑖 𝑗
is proportional to the total change in the system’s relativistic momentum
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distribution between the incoming and outgoing state [67, 68, 307]. For example,
in a simple case of particles with mass 𝑀𝐴 and velocity 𝑣𝐴 deflected by a collision,
they found:

Δℎ𝑇𝑇𝑖 𝑗 =
4
𝑟
Δ

𝑁∑︁
𝐴=1

𝑀𝐴

√︃
1 − 𝑣2

𝐴

(
𝑣𝑖
𝐴
𝑣
𝑗

𝐴

1 − 𝑣𝐴 cos 𝜃𝐴

)𝑇𝑇
, (6.15)

where 𝑟 is the distance to the observer and 𝜃𝐴 is the angle of each particle’s velocity
relative to the observer [242]. This “linear” memory effect is now often called the
ordinary displacement memory, as it causes a lasting displacement of test particles.

It was long assumed that this linear memory, arising from a change in matter
distribution or radiation escaping to infinity, was the full story, until Demetrios
Christodoulou made a groundbreaking discovery in 1991. Christodoulou showed
that even in the absence of any net mass ejected, gravitational waves themselves carry
energy and momentum and can induce an additional nonlinear memory effect [99,
100]. In other words, the spacetime curvature produced by the gravitational wave
feed-back on itself, causing a permanent strain offset—a phenomenon now known
as the nonlinear memory or null memory [242]. This revealed that gravitational
memory is an inherent prediction of full General Relativity, not just an artifact
of linearized theory. Subsequent work in the 1990s and 2000s [67, 68, 307, 53]
further explored and confirmed the memory effect in various contexts, solidifying
that any burst of gravitational radiation – such as from binary black hole mergers
or supernovae – should leave behind a small but permanent distortion in the fabric
of spacetime. In recent years, attention has also turned to new forms of memory in
gravitational theory: notably, a “spin memory” effect was predicted around 2015-
2016 [250, 168, 243], arising from the angular momentum carried by gravitational
waves.

Physically, the gravitational wave memory effect can be understood as a permanent
displacement or relative velocity change of free-falling test masses after a gravi-
tational wave has passed. Imagine a ring of inertial detectors at rest relative to
each other far from a source. As a burst of gravitational waves sweeps through,
it will distort the ring – stretching and squeezing it—and typically, after the wave
has passed, the ring does not return exactly to its original configuration. In the
simplest case, the distances between the particles are permanently shifted by a tiny
amount. This lasting offset is the hallmark of the memory effect: the spacetime has
been “warped” in a way that persists even after the transient gravitational waves are
gone. Unlike the oscillatory oscillations of a gravitational wave, which cause an AC
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strain, the memory is like a DC offset—a non-oscillatory change in the gravitational
field. The effect is extremely small for typical astrophysical sources, with fractional
displacements of order 10−21 or less for LIGO-accessible events, but it is in principle
measurable given sufficiently sensitive detectors or clever measurement techniques.
Crucially, this permanent distortion is a genuine physical observable and not merely
a gauge artifact. In General Relativity, the memory effect encodes the cumulative
momentum flux carried away by the gravitational waves: essentially, the detectors
remember the passage of a wave because the spacetime has been left in a different
state from it was originally.

There are several distinct types of gravitational memory, characterized by how the
relative motion of test particles is affected after the wave passes:

• Displacement memory: This is the classic memory effect described above,
in which initially co-moving inertial observers end up with a lasting displace-
ment between them but no relative motion at late times. The wave causes
a permanent shift in their positions while their relative velocity returns to
zero after the wave. This occurs, for example, when a burst of gravitational
radiation carries away energy—the remaining field has a lower monopole
or different multipole configuration, leading to a net change in the strain
field [242]. Displacement memory is sourced by any net change in the stress-
energy distribution, including both ordinary memory (from mass motions or
ejecta) and nonlinear memory (from gravitational radiation itself) [99, 100,
298]. It manifests as a step-like change in the gravitational wave strain ℎ(𝑡)
as 𝑡 → ∞. In practical terms, two test masses initially at rest are permanently
repositioned relative to each other after the wave.

• Velocity memory: In some scenarios, gravitational waves can impart a lasting
velocity to test particles, rather than a mere offset. In a velocity memory effect,
freely falling particles that start at rest acquire a constant relative velocity after
the wave has passed, causing their separation to grow linearly with time [323].
This was noted in analyses of idealized plane-fronted gravitational waves:
instead of a permanent displacement, the particles continue drifting apart
indefinitely at a small constant speed. Early works by [67, 68, 69] considered
this possibility, highlighting that an asymptotic relative velocity change is an
alternative signature of memory. Whether displacement or velocity memory
occurs depends on the nature of the source and the spacetime geometry of the
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wave. For typical bounded sources such as binary mergers that become quiet
after the burst, one expects displacement-type memory. On the other hand, an
impulsive plane wave or a situation without a return to stationary conditions
can produce a velocity memory effect, where the strain asymptotes to zero but
with a “kick” imparted to the test masses [323].

• Spin memory: The spin memory effect is a more recently recognized type of
memory associated with gravitational waves carrying angular momentum. It
is related to the magnetic-parity part of the gravitational field perturbation. In
technical terms, spin memory is tied to a nonzero change in the time-integral
of the magnetic (𝐵-mode) component of the strain, as opposed to the electric
(𝐸-mode) component that governs displacement memory [250, 168, 243].
Physically, one way to interpret spin memory is by considering observers
with an initial relative motion: unlike displacement memory, which affects
observers initially at rest relative to each other, spin memory affects observers
that have some initial relative velocity or null separation [242].

Connecting Gravitational Memory with the Bondi–Sachs Framework
To formalize gravitational memory, it is helpful to work in the Bondi–Sachs frame-
work, which provides a convenient description of asymptotically flat spacetimes at
null infinity. In Bondi–Sachs coordinates, one uses retarded time 𝑢, a radial coor-
dinate 𝑟, and angles (𝜃, 𝜙) on the sky. The metric is chosen such that as 𝑟 → ∞
one approaches flat Minkowski space, with the coordinates adapted to outgoing
radiation. A key feature of this framework is the asymptotic expansion of the metric
at large 𝑟. For example, the angular part of the metric on a surface of constant 𝑢 and
𝑟 can be written as [298]:

𝑔𝐴𝐵 (𝑢, 𝑟, 𝜃, 𝜙) = 𝑟2 𝑞𝐴𝐵 (𝜃, 𝜙) + 𝑟 𝐶𝐴𝐵 (𝑢, 𝜃, 𝜙) + · · · , (6.16)

where 𝑞𝐴𝐵 is the metric of the unit two-sphere and 𝐶𝐴𝐵 (𝑢, 𝜃, 𝜙) is the Bondi shear
tensor. The shear 𝐶𝐴𝐵 represents the leading O(1/𝑟) deviation of the metric from
exact spherical symmetry—essentially it encodes the outgoing gravitational waves
at infinity. One often decomposes𝐶𝐴𝐵 into radiative modes via spherical harmonics
of spin-weight 2, which correspond to the two polarization states of gravitational
waves. The Bondi news tensor 𝑁𝐴𝐵 (𝑢, 𝜃, 𝜙) is then defined as the retarded time
derivative of the shear:

𝑁𝐴𝐵 (𝑢, 𝜃, 𝜙) ≡ 𝜕𝑢𝐶𝐴𝐵 (𝑢, 𝜃, 𝜙). (6.17)
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This 𝑁𝐴𝐵 is essentially the gravitational wave strain rate observed at infinity. Im-
portantly, 𝑁𝐴𝐵 (𝑢) vanishes in stationary regions of spacetime—if the source is not
emitting gravitational waves, the shear is constant in time. If a burst of radiation is
emitted, 𝑁𝐴𝐵 will be non-zero during the transient, and will return to zero after the
source has settled down. Einstein’s field equations impose constraint conditions at
null infinity relating these quantities to conserved charges. For instance, the Bondi
mass aspect 𝑚(𝑢, 𝜃, 𝜙) evolves according to an energy conservation law:

𝜕𝑢𝑚 = −1
8
𝑁𝐴𝐵𝑁

𝐴𝐵 + · · · . (6.18)

This equation shows that energy carried away by gravitational waves reduces the
mass of the system: it is the Bondi mass-loss formula. Similarly, angular momentum
aspects are related to angular integrals of 𝑁𝐴𝐵 and its angular moments [242]. The
main point is that in the Bondi–Sachs picture, all the information about outgoing
gravitational radiation is encoded in the news 𝑁𝐴𝐵, and any permanent effect of that
radiation will be encoded in the changes of the shear 𝐶𝐴𝐵.

Given these definitions, we can formally define the gravitational memory in this
context as the difference in the shear tensor between the final and initial states
(before and after the burst of waves). If the spacetime is stationary (no news) in
the remote past 𝑢 → −∞ and becomes stationary again at 𝑢 → +∞ after the waves
have passed, one can compare the shear in the two regions. The memory is then
quantified by

Δ𝐶𝐴𝐵 ≡ 𝐶𝐴𝐵 (𝑢 → +∞, 𝜃, 𝜙) − 𝐶𝐴𝐵 (𝑢 → −∞, 𝜃, 𝜙). (6.19)

Equivalently, since 𝑁𝐴𝐵 = 𝜕𝑢𝐶𝐴𝐵, the memory can be expressed as the time-integral
of the news during the burst:

Δ𝐶𝐴𝐵 =

∫ +∞

−∞
𝑁𝐴𝐵 (𝑢, 𝜃, 𝜙) 𝑑𝑢. (6.20)

This gauge-invariant quantity Δ𝐶𝐴𝐵 encapsulates the permanent strain offset pro-
duced by the gravitational waves [298, 295, 242]. In regions where there was no
incoming radiation initially and no outgoing radiation finally, Δ𝐶𝐴𝐵 completely
characterizes the memory effect on the spacetime geometry. For example, for a
binary black hole merger, one would find that 𝐶𝐴𝐵, which is related to the gravita-
tional waveform, approaches zero as 𝑢 → −∞ and approaches some constant 𝐶 (∞)

𝐴𝐵

as 𝑢 → +∞ after the merger—this constant shear at late time is the gravitational
memory encoded in the waveform [242]. In practice, Δ𝐶𝐴𝐵 corresponds to the
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permanent strain that would be measured by an idealized detector: if one computes
the metric perturbation ℎ𝑖 𝑗 in transverse-traceless gauge far from the source, Δ𝐶𝐴𝐵
is directly related to the change in ℎ𝑖 𝑗 projected onto a sphere’s basis between the
initial and final states:

ℎ ≡ 1
2
𝑞𝐴𝑞𝐵𝐶𝐴𝐵 =

∞∑︁
ℓ=2

ℓ∑︁
𝑚=−ℓ

ℎℓ𝑚 (𝑢)𝑌 (−2)
ℓ𝑚

(𝜃, 𝜙). (6.21)

Here, (𝑞𝐴, 𝑞𝐵) define the dyads on the two-sphere, and 𝑌 (−2)
ℓ𝑚

(𝜃, 𝜙) is the spin-
weighted spherical harmonics. Thus, the Bondi–Sachs formalism provides a precise
way to calculate memory from the radiative degrees of freedom of the spacetime.

The BMS Symmetry Group and Supertranslations
When studying asymptotically flat spacetimes at null infinity, one finds that the
symmetry group of this boundary—the group of transformations that preserve the
asymptotic form of the metric—is larger than the familiar Poincaré group of special
relativity. Instead, it is the BMS group, first described by Bondi, van der Burg,
and Metzner, and independently by Sachs, in 1962 [64, 280, 279]. The BMS group
consists of the usual Lorentz transformations together with an infinite-dimensional
family of angle-dependent translations, known as supertranslations [298, 295, 242].
In intuitive terms, a supertranslation is a shift of the retarded time coordinate 𝑢 by
an arbitrary function of the angular coordinates:

𝑢 → 𝑢′ = 𝑢 + 𝑓 (𝜃, 𝜙), (6.22)

for some smooth function 𝑓 on the sphere. Unlike a constant time translation, this
allows different time offsets in different angular directions. Such transformations
preserve the asymptotic flatness of the metric, but they change the labeling of null
rays and instantaneous slices of ℐ

+. The existence of supertranslations implies
that even after one fixes a convenient coordinate system at infinity, there remains a
residual coordinate freedom corresponding to these angle-dependent shifts [242].
Physically, the BMS group is the symmetry group of isolated radiating systems: any
two such systems that are related by a BMS transformation are indistinguishable as
far as the asymptotic gravitational field is concerned, except for the transformation
in coordinates [298, 295].

An important consequence of the BMS symmetry is the concept of degenerate vacua
in general relativity. In classical field theory without gravity, one expects a unique
vacuum state such as Minkowski space which is invariant under the Poincaré group.
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However, once supertranslations are included, Minkowski spacetime is no longer
invariant under all BMS transformations—applying a non-trivial supertranslation
to flat Minkowski space yields a physically equivalent spacetime, but one described
in a different coordinate frame that does not globally coincide with the original
Minkowski frame [298]. In technical terms, Minkowski space, and more generally
any stationary vacuum spacetime at null infinity, can be labeled by a function 𝐶𝐴𝐵
on the sphere that is pure gauge. A supertranslation with parameter 𝑓 (𝜃, 𝜙) induces
a shift in the shear: 𝐶𝐴𝐵 → 𝐶𝐴𝐵 + 𝛿 𝑓𝐶𝐴𝐵, where

𝛿 𝑓𝐶𝐴𝐵 = 2𝐷𝐴𝐷𝐵 𝑓 − 𝑞𝐴𝐵 𝐷2 𝑓 , (6.23)

which is precisely the form of a memory-like strain1. Thus, one can think of each
function 𝑓 (𝜃, 𝜙) as labeling a distinct “vacuum” configuration of the gravitational
field at infinity. All these vacua are physically empty and flat, but they differ by a
BMS frame—essentially, the relative orientation of the coordinate grid at infinity.
They are sometimes described as an infinite degeneracy of Minkowski vacuum
states, related by BMS supertranslation symmetries [297, 298, 177, 295].

One of the most important insights about the gravitational memory effect is that
it corresponds to a transition between different BMS vacua—in other words, the
memory is essentially a BMS supertranslation [298]. This can be understood as
follows: consider an isolated system that starts in a stationary configuration at
early times, and ends in another stationary configuration at late times after emitting
gravitational waves. The initial state can be characterized by some shear 𝐶(ini.)

𝐴𝐵
,

which can be taken to zero by an appropriate choice of coordinates, and the final state
by some𝐶(fin.)

𝐴𝐵
. If there is a non-zero memory Δ𝐶𝐴𝐵 = 𝐶

(fin.)
𝐴𝐵

−𝐶(ini.)
𝐴𝐵

, this difference
is a stationary shear configuration on the sphere. As noted above, any static shear
configuration can be viewed as a pure gauge associated with a supertranslation [242].
This means that the effect of the gravitational wave burst has been to change the
spacetime from one BMS frame to another. The gravitational wave has essentially
applied a supertranslation to the spacetime.

In concrete terms, if one were to compare the metric of the spacetime before
and after the radiation, one could find a coordinate transformation, a particular
supertranslation 𝑓 on the sphere, that relates the two metrics. That supertranslation

1The expression 𝛿 𝑓𝐶𝐴𝐵 = 2𝐷𝐴𝐷𝐵 𝑓 − 𝑞𝐴𝐵𝐷2 𝑓 is the leading-order effect of an infinitesimal
supertranslation on the shear. This comes from how the Bondi metric transforms: since 𝑢 is shifted
by 𝑓 (𝜃, 𝜙), the shear gains a gradient term. Any such pure-gauge 𝐶𝐴𝐵, coming from some 𝑓 , is
often called a soft mode of the gravitational field.
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is precisely what Δ𝐶𝐴𝐵 encodes. Therefore, the memory effect is equivalent to a
BMS supertranslation imparted to the system by the passage of radiation [298, 295,
177, 243, 242]. Another way to say this is that the gravitational wave memory
is the imprint of the gravitational waves’ energy-momentum on the spacetime,
manifesting as a shift in the zero of the Bondi coordinate 𝑢 as a function of angle.
This connection was made explicit by Strominger and others in the mid-2010s: they
showed that the traditional memory formula can be derived as a consequence of BMS
supertranslation symmetry and associated conservation laws at null infinity [297,
188, 183, 189, 298, 244, 177]. In particular, every burst of gravitational waves
carries a certain “soft graviton” component, which is associated with a shift in the
classical field—the memory—and this is precisely the soft mode associated with
a broken BMS symmetry. The initial and final vacua differ by that soft graviton
insertion.

This perspective places memory in the context of conservation laws and symmetries.
For example, energy conservation at null infinity implies that if energy 𝐸 is radiated
away, the Bondi mass at infinity decreases by 𝐸 . But in a theory with the BMS
group, there is an associated balance law for the supertranslation charge. The
supertranslation charge can be thought of as the “net displacement” of the center-
of-mass frame at infinity. The memory effect ensures that this balance law is
satisfied: the change in the supertranslation charge between the initial and final state
is provided exactly by the flux of energy-momentum carried by the news 𝑁𝐴𝐵 [298,
295].

Observational Prospect
The detection of gravitational memory would have significant implications for both
astrophysics and fundamental physics. From an observational standpoint, measuring
the memory effect would provide a direct validation of General Relativity’s nonlinear
dynamics. In particular, observing the Christodoulou memory [99] would confirm
that gravity gravitates—i.e., gravitational waves themselves produce a gravitational
field—a quintessentially general relativistic phenomenon. It would also test the BMS
symmetry of spacetime: a positive detection could be viewed as evidence that the
BMS conservation laws (associated with supertranslations) hold in nature, and that
the vacuum of gravity is indeed degenerate and can be shaken by radiation. Detecting
memory would thus probe the infrared structure of gravity—the realm of long-
wavelength (near-zero-frequency) gravitons and their associated symmetries [188,
183, 189, 295, 182, 244].
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Experimentally, the memory effect is subtle, because it involves zero-frequency or
very low-frequency gravitational strain. Traditional laser interferometric detectors
like LIGO and Virgo are AC-coupled and cannot easily measure a direct DC offset
in the interferometer arm lengths. Moreover, after a burst passes, the interferometer
components tend to gradually drift back to equilibrium due to seismic and suspension
damping, potentially masking a small permanent shift. These factors make directly
detecting memory with ground-based detectors challenging [107]. Indeed, so far no
definitive memory signal has been observed in LIGO/Virgo data. However, novel
methods are being pursued: for example, one can look for an effective low-frequency
“tail” in the gravitational wave signal or stack the results of many events to boost the
signal-to-noise of memory [63]. By statistically combining multiple binary merger
events, researchers hope the cumulative memory effect could emerge [325, 66].

Looking ahead, the prospects for detecting memory improve dramatically with
planned space-based interferometers. The proposed LISA mission [30], operating in
the millihertz band, will observe long-lived signals from massive black hole mergers
and other slow, powerful sources. Crucially, LISA will be sensitive to much lower
frequencies and will essentially be in free fall, which makes them well-suited to
observe the memory effect [196]. Simulations [159, 196] suggest that LISA should
detect the displacement memory from massive black hole mergers: the memory
step for such events can be a significant fraction of the peak strain, and LISA’s long
observation time of the inspiral allows one to measure the wave’s non-zero baseline
shift [196]. In addition, LISA might detect memory from the cumulative effect of
many smaller sources [325] or even nonlinear gravitational memory from extreme
mass-ratio inspirals and bursts [159]. There is also the possibility of observing
the spin memory in the waveform of certain events or by networking multiple
detectors [158]. Efforts are underway to forecast how a network of next-generation
ground detectors such as the Einstein Telescope or Cosmic Explorer and LISA
together could measure both the displacement and spin memory effects [242].

6.4 Stochastic Gravitational Wave Memory Background
Although individual GW memory events may be extremely challenging to detect
directly, the cumulative effect of many such events over cosmic time can produce
a stochastic gravitational-wave memory background (SGWMB). This SGWMB
is formed by the superposition of countless memory steps from distant mergers
and can be described statistically as a random-walk accumulation of strain in the
universe [325, 66]. Each memory-generating merger adds a tiny permanent tensor
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perturbation; over billions of years and many sources, these add up in random
directions. The result is analogous to Brownian motion: the metric undergoes a
slow diffusive evolution as successive memory “kicks” build up. Importantly, this
memory background is expected to be subdominant in amplitude compared to the
ordinary oscillatory SGWB produced by the inspiral and ringdown waves of the
same sources [325]. Nevertheless, the SGWMB represents a unique signal with
distinct characteristics that make it worth investigating, especially since detecting it
would confirm a fundamental prediction of general relativity’s radiative structure.

Statistical Model and Spectral Characteristics
We model the SGWMB as the sum of discrete step-like strain contributions. Let
Δℎ𝑖 (𝑡) represent the memory strain from the 𝑖-th merger event, which for simplicity
can be idealized as a Heaviside step function Θ(𝑡 − 𝑡𝑖) scaled by the memory ampli-
tude Δℎ𝑖. The total strain from memory at time 𝑡 is then ℎmem(𝑡) =

∑
𝑖 Δℎ𝑖,Θ(𝑡− 𝑡𝑖),

where 𝑡𝑖 are the random occurrence times of mergers. If the merger events occur
as a Poisson process with an average rate 𝑅, one can show that ℎmem(𝑡) behaves
like a stochastic process with unbounded variance (a random walk). The mean
squared strain grows linearly in time, ⟨[ℎmem(𝑡) − ℎmem(0)]2⟩ = 2𝐷𝑡 for large 𝑡,
where 𝐷 is an effective diffusion constant proportional to the merger rate and the
typical squared memory kick amplitude [325, 66]. In the frequency domain, this
leads to a characteristic PSD 𝑆ℎ ( 𝑓 ) that falls off as the inverse square of frequency.
Quantitively, one can derive the PSD for one-dimenisonal Brownian motion by using
the Wiener–Khinchin theorem [155]. First, recall that the white noise is a purely
random, non-correlated noise which satisfy the following condition:

⟨𝜉 (𝑡1)𝜉 (𝑡2)⟩ = 2𝐷𝛿(𝑡1 − 𝑡2), (6.24)

where 𝜉 is a white noise, and ⟨·⟩ denotes averaging over different time moments.
Note that such signal has no trends, its spectral density is constant, and depends
only on the standard deviation of the particular white noise. A Brownian motion,
also known as a Wiener process, on the other hand, arises from the accumulation
of many white noise perturbations [155]. Mathematically, we let 𝑊 (𝑡) denote a
Brownian motion, which is a sum of the white noise:

𝑑𝑊 (𝑡) = 𝑊 (𝑡 + 𝑑𝑡) −𝑊 (𝑡) = 𝜉 (𝑡)𝑑𝑡, (6.25)

and
𝑊 (𝑡) =

∫ 𝑡

0
𝑑𝑊 (𝑡′) =

∫ 𝑡

0
𝜉 (𝑡′)𝑑𝑡′. (6.26)
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Since𝑊 (𝑡) is a Brownian motion, it satisfies the following important properties

⟨𝑊 (𝑡)⟩ = 0 and
〈
[𝑊 (𝑡) −𝑊 (0)]2〉 = 2𝐷𝑡. (6.27)

In other words, 𝑊 (𝑡) has a probability density function of the normal distribution
with mean zero and variance 2𝐷𝑡. Another important property for Brownian motion
is that

⟨𝑊 (𝑡)𝑊 (𝑠)⟩ = 2𝐷min(𝑡, 𝑠). (6.28)

This property can be readily proved by using (6.27) as well as the fact that 𝑊 (𝑡) −
𝑊 (𝑠) is independent of𝑊 (𝑠). Putting everything together, we compute the double-
sided PSD of a Brownian motion

𝑆mem
ℎ ( 𝑓 ) ≡ lim

𝑇→∞

1
𝑇

∫ 𝑇

0
𝑑𝑡1

∫ 𝑇

0
𝑑𝑡2𝑒

𝑖2𝜋 𝑓 (𝑡1−𝑡2) ⟨𝑊 (𝑡1)𝑊 (𝑡2)⟩︸           ︷︷           ︸
2𝐷min(𝑡1,𝑡2)

= lim
𝑇→∞

{
2𝐷
𝑇

∫ 𝑇

0
𝑑𝑡1

∫ 𝑡1

0
𝑑𝑡2𝑒

𝑖2𝜋 𝑓 (𝑡1−𝑡2)𝑡2 +
∫ 𝑇

0
𝑑𝑡1

∫ 𝑇

𝑡1

𝑑𝑡2 𝑒
𝑖2𝜋 𝑓 (𝑡1−𝑡2)𝑡1

}
= lim
𝑇→∞

𝐷

(𝜋 𝑓 )2

[
1 − sin(2𝜋 𝑓𝑇)

2𝜋 𝑓𝑇

]
=

𝐷

(𝜋 𝑓 )2 .

(6.29)

The hallmark of a 1/ 𝑓 2 power-law spectrum expected from a Brownian motion
process is fundamentally different from the nearly white-noise ( 𝑓 0) spectrum that
would come from a memory-like burst rate that is uncorrelated, because here each
event’s effect persists indefinitely. Eq. (6.29) can be understood intuitively: the time
derivative ¤ℎmem(𝑡) is a train of delta-function impulses (each memory event induces
an impulse in ¤ℎ), which has a flat spectrum at low frequencies; integrating ¤ℎ to get
ℎ then divides the spectrum by 𝑓 2, yielding 𝑆mem

ℎ
∝ 1/ 𝑓 2. In such a scenario, the

power-law index of the memory background PSD is −2, independent of the details
of the source population [325, 66]. This result is robust and in fact is expected to
hold as a generic feature of any SGWMB in general relativity.

From the PSD, one can derive the corresponding characteristic strain spectrum ℎ𝑐 ( 𝑓 )
and energy density spectrum Ωmem( 𝑓 ). The characteristic strain ℎ𝑐 ( 𝑓 ), defined
in Eq. (6.8), represents the strain amplitude per logarithmic frequency interval.
Substituting 𝑆mem

ℎ
( 𝑓 ) from Eq. (6.29) and converting it to the one-sided PSD by
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multiplying a factor of two, we obtain:

ℎmem
𝑐 ( 𝑓 ) =

√︁
2 𝑓 𝑆ℎ =

√︄
2𝐷
𝜋2 𝑓

. (6.30)

Thus ℎ𝑐 ( 𝑓 ) of the memory background rises toward lower frequencies as 𝑓 −1/2,
indicating a very strong low-frequency contribution [325, 66]. In other words, the
memory-induced background has a much larger strain at the lowest frequencies
than at higher frequencies—a direct consequence of the permanent nature of the
memory strain. However, it’s important to recognize that in any finite observation,
frequencies below about 1/𝑇obs, with𝑇obs the observation time, cannot be measured,
so the ℎ𝑐 ∝ 𝑓 −1/2 growth will eventually saturate in practice.

Recall that the energy density Ωgw for SGWB is given by Eq. (6.6). Furthermore,
for a generic SGWB, Ωgw is related to the PSD (6.7), so when we substitute the PSD
of a Brownian motion (6.29), we obtain the energy density for SGWMB:

Ωmem =
4𝐷 𝑓
3𝐻2

0
. (6.31)

Thus, in the low-frequency regime where the memory approximation holds,Ωmem( 𝑓 )
grows linearly with frequency [325, 66]. At the lowest accessible frequencies, Ωmem

will be suppressed, which reflects the fact that memory carries only a finite total
energy—there is no divergent pile-up of energy at zero frequency even though the
strain variance grows without bound. The slope Ωmem( 𝑓 ) ∝ 𝑓 is shallower than
that of the standard astrophysical SGWB from inspiraling compact binaries, which
typically scales as Ωgw( 𝑓 ) ∝ 𝑓 2/3 at low frequencies [225, 325, 78]. This means
that the memory background is subdominant at low frequencies, but may become
relatively more significant at higher frequencies where its steeper rise begins to
catch up. In fact, at sufficiently low frequencies within the observation band, one
can anticipate that Ωmem( 𝑓 ) will eventually overtake the rising inspiral background,
which grows as 𝑓 2/3 more slowly than 𝑓—except that the inspiral background itself
ceases to grow once binaries start merging. In practice, there will be a transition
frequency around the merger regime of the binaries: above this frequency, the ordi-
nary GW background from inspiral/merger waves dominates, while below a certain
cutoff frequency, related to the typical merger time scale, the memory-induced 𝑓 −2

spectrum dominates [325]. For supermassive binary black holes (SMBHs), this tran-
sition lies in the millihertz range (the boundary between the inspiral-dominated and
merger-dominated spectrum for a ∼ 106–108𝑀⊙ binary is on the order of 10−2–10−3
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Hz) [325, 66]. Crucially, the amplitude of the memory background, the constant
diffusion coefficient 𝐷, in the above formulas, is set by the cosmic merger rate and
typical memory kick size. In fact, detailed calculations find that the strength of
the SGWMB is determined entirely by the binary black hole merger rate, largely
independent of other astrophysical details [325]. In simple terms, more frequent
mergers lead to a higher diffusion constant 𝐷 and thus a stronger memory back-
ground. This implies that an observed Ωmem( 𝑓 ) directly encodes information about
the population merger rate—a point of great interest for astrophysics.

6.5 Toward Detectability with LISA
Detecting the SGWMB is a formidable challenge, but Ref. [325] claims that near-
future space-based interferometers such as LISA offer an excellent opportunity to
observe this background. These detectors are sensitive in the low-frequency band
(∼ 10−4 to 1 Hz) where the memory background is expected to be significant [30,
325, 37, 42]. Moreover, the target sources for these missions are precisely SMBH
mergers, which produce the largest memory jumps. In contrast, current ground-
based detectors (LIGO, Virgo, KAGRA) operate at higher frequencies (≳ 10 Hz)
and have shorter observation times, making them ill-suited to detect a slowly ac-
cumulating memory background. The quasi-DC nature of memory signals means
that ground detectors would see them as an almost step-like offset, which is very
hard to extract from instrumental drifts and low-frequency noise. Indeed, it has
been estimated that a single memory event in LIGO is undetectable without spe-
cial analysis techniques, and a statistical memory background in the audio-band
would require an impractically large number of merger events. PTAs, on the other
hand, probe ultra-low frequencies (∼ 10−9–10−7 Hz) and could in principle observe
memory from the most massive black hole mergers as a one-time pulse in pulsar
signals. However, such events are exceedingly rare; PTAs might need to wait much
longer than a human lifetime to catch a single, sufficiently nearby SMBH memory
burst. The stochastic memory background from many smaller events is likely to
be buried under the louder ordinary nanohertz GW background and intrinsic pulsar
noise [325]. Therefore, neither current ground detectors nor PTAs are expected to
detect a SGWMB under realistic scenarios.

Space-based GW observatories fill the sweet spot for SGWMB detection. Their
frequency band is low enough that memory signals from SMBH mergers accu-
mulate power, since ℎ𝑐 ∼ 𝑓 −1/2 grows toward this band, yet high enough that a
large number of such mergers have occurred over cosmic history to contribute to
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a detectable background. Furthermore, missions like LISA will operate for years,
enabling integration over a long time to build up sensitivity at the lowest frequen-
cies. The anticipated approach to detect a SGWMB is analogous to that for any
stochastic background: one would use cross-correlation or auto-correlation analysis
of the detector data, looking for the characteristic spectral shape of a SGWMB. Be-
cause LISA is essentially a single-detector system with multiple laser links forming
one or a few independent data channels, the standard strategy is to use the instru-
ment’s multiple channels or pair different detectors to cross-correlate and cancel out
instrumental noise. The unique spectral signature of the memory background—a
power-law of index −2 in 𝑆ℎ ( 𝑓 )—helps in distinguishing it from other stochastic
signals. In practice, one would search for an Ωgw( 𝑓 ) that rises ∝ 𝑓 1 at the lowest
frequencies, in contrast to, say, a relic cosmological background that might be flat
or decreasing toward low 𝑓 [325, 78, 66].

Specifically, current estimates [325] suggest that a SGWMB from SMBH mergers
could be within reach of LISA and its contemporaries. Using fiducial SMBH
merger rates from models, on the order of a few per year out to high redshift,
the predicted memory background characteristic strain ℎ𝑐 ( 𝑓 ) in the LISA band is
around 10−16–10−17 at 𝑓 ∼ 10−3 Hz, rising toward ∼ 10−15 at 10−4 Hz [325]. These
levels are comparable to or somewhat below the projected LISA sensitivity to a
stochastic background after 𝑇 ∼ 4–10 years of integration. In a detailed analysis,
Ref. [325] find that for a range of plausible SMBH merger rates, the memory
background is actually stronger than the corresponding non-memory background in
the LISA band. This is because many of the inspiral signals at mHz frequencies will
eventually merge, thereby removing power from the stochastic background as those
sources become individually resolvable, whereas the memory from all those mergers
accumulates in the low-frequency background. Moreover, the power-law integrated
sensitivity curves for LISA, Taiji, and TianQin indicate that a 1/ 𝑓 2 spectrum at
the expected amplitude would be detectable with a favorable SNR [325]. In fact,
taking optimistic merger rate models, the predicted SGWMB could yield SNR ≫ 1;
Ref. [325] reports SNR values ranging from order unity in pessimistic cases up to
hundreds or thousands in the most optimistic scenarios.

It is worth noting that separating the SGWMB from the ordinary gravitational wave
background requires careful data analysis. Since LISA is expected to individually
resolve the loudest inspiral and merger events, particularly from SMBH, standard
practice would involve subtracting the modeled waveforms of these events from the
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data. This subtraction necessarily removes not only the oscillatory inspiral-merger-
ringdown signal but also the associated memory step, insofar as it is captured by
the waveform model. However, residual memory contributions from unresolved
or distant mergers—too weak or too numerous to be subtracted individually—will
persist, forming a diffuse memory background. Therefore, the SGWMB to be
detected by LISA will predominantly consist of memory signals originating from
nonresolvable sources.

In the following analysis, we aim to quantitatively assess the claim of Ref. [325] that
the SGWMB remains a pronounced background well above LISA’s sensitivity curve.
To this end, we first subtract the waveforms of all individually resolvable mergers,
thereby removing their associated memory contributions. We then recompute the
diffusion coefficient that characterizes the cumulative memory strain from the re-
maining unresolved events. Using this updated diffusion coefficient, we calculate
the revised SGWMB spectrum and plot it against LISA’s sensitivity curve. This
procedure allows us to evaluate whether the residual memory background—after
accounting for source subtraction—remains detectable by LISA.

Derivation of the Diffusion Coefficient
The goal of this section is to derive the analytical expression for the diffusion
coefficient 𝐷 of the SGWMB, which directly determines the characteristic strain
ℎ𝑐 ( 𝑓 ), the power spectral density 𝑆ℎ ( 𝑓 ), and the energy spectrum density Ωmem( 𝑓 )
via Eqs. (6.30), (6.29), and (6.31), respectively. To begin, we first specify the
memory strain produced by a single merger event.

Refs. [141, 142, 143] derived an analytical expression for the memory waveform—
known as the minimal waveform model—that agrees with numerical relativity sim-
ulations [243, 242]. However, due to its complexity and computational cost, we
instead adopt the step function model [268, 223, 325, 66], which approximates the
memory as an instantaneous strain jump at the merger time:

ℎdet(𝑡) = Θ(𝑡 − 𝑡0)𝐹+(𝜃, 𝜙, 𝜓)ℎmem
+ (𝑧, 𝑀, 𝜃), (6.32)

where Θ(𝑡 − 𝑡0) is the Heaviside step function centered at the merger time 𝑡0, 𝐹+ is
the detector antenna response to the + polarization, and ℎmem

+ is the memory strain
amplitude. This approximation assumes that the merger timescale is much shorter
than the observation timescale.
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The antenna pattern 𝐹+ is given by [325]

𝐹+(𝜃, 𝜙, 𝜓) = −1
2
(1 + cos2 𝜃) cos 2𝜙 cos 2𝜓 − cos 𝜃 sin 2𝜙 sin 2𝜓, (6.33)

and its sky- and polarization-averaged value for LISA is [30]〈
𝐹2
+
〉
=

1
4𝜋2

∫ 2𝜋

0
𝑑𝜙

∫ 𝜋

0
sin 𝜃 𝑑𝜃

∫ 𝜋

0
𝑑𝜓 𝐹2

+ =
1
5
. (6.34)

Since the memory signal predominantly arises from the + polarization for compact
binary mergers [141, 325, 66], it suffices to model the memory strain for the + mode.
Specifically, for SMBH mergers, we write

ℎmem
+ = 𝑌

(−2)
20 (𝜃, 𝜙)ℎ20, (6.35)

where the spin-weighted spherical harmonic 𝑌 (−2)
20 (𝜃, 𝜙) is [164]

𝑌
(−2)
20 (𝜃, 𝜙) =

√︂
15

32𝜋
sin2 𝜃, (6.36)

with the normalization convention as
∫
𝑑Ω

���𝑌 (−2)
20

���2 = 1. The amplitude ℎ20 is given
by [268, 223, 325]

ℎ20 =
𝐺𝑀

𝑐2𝑟

(
0.0969 + 0.0562𝜒eff + 0.0340𝜒2

eff + 0.0296𝜒3
eff + 0.0206𝜒4

eff

)
, (6.37)

where 𝑀 is the total mass of the binary, 𝑟 is the luminosity distance, and 𝜒eff ≡
(𝑚1𝜒1𝑧 + 𝑚2𝜒2𝑧)/𝑀 is the effective spin parameter.

For simplicity, we restrict to the case of nonspinning SMBHs, for which 𝜒eff = 0
and Eq. (6.37) reduces to

ℎ20 =
𝐺𝑀

𝑐2𝑟
× 0.0969. (6.38)

In Fig. 6.2, we compare the step-function model with a full numerical relativity
memory waveform [242] for a nonspinning equal-mass binary of total mass 𝑀 =

60𝑀⊙ at a distance 𝑟 = 10 Mpc, showing that the step-function approximation
captures the key features of the memory signal.

Having established the memory waveform model, we now compute the total gravitational-
wave energy density spectrum using the standard formula [12]:

Ωmem( 𝑓 ) =
𝑓

𝜌𝑐𝐻0

∫ ∞

0
𝑑𝑧

𝑅SMBH(𝑧) ⟨𝑑𝐸mem/𝑑𝑓 ⟩
(1 + 𝑧)

√︁
ΩΛ +Ω𝑀 (1 + 𝑧)3

. (6.39)
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Figure 6.2: Comparison between the numerical relativity waveform ℎ20 (blue
curve) [242] and the step function model (red dashed line, Eq. (6.38)). Param-
eters: 𝜒𝐴 = 𝜒𝐵 = 0, 𝑚𝐴 = 𝑚𝐵, 𝑀 = 60𝑀⊙, 𝑟 = 10 Mpc, incl. angle = 0, 𝜙ref = 0.

Here Ω𝑀 = 0.3 and ΩΛ = 0.7 are the matter and dark energy density parameters,
respectively. 𝑅SMBH(𝑧) denotes the redshift-dependent SMBH merger rate, which
we will specify shortly. The ensemble average ⟨·⟩ involves integration over the mass
and angular distributions: ⟨·⟩ =

∫
𝑑𝜃 sin 𝜃

∫
𝑑𝑀 𝑔SMBH(𝑀), where 𝑔SMBH(𝑀) is

the SMBH mass distribution function, which we will also specify shortly.

Another advantage of employing the step function model is the simplicity of its
Fourier transform. Specifically, the Fourier transform of ℎ(𝑡) is

F [Θ(𝑡)] = 1
2�

��*0
𝛿( 𝑓 ) + 1

2𝜋𝑖 𝑓
. (6.40)

Since gravitational wave detectors are insensitive to the extremely low-frequency
regime, we can safely neglect the 𝛿-function contribution in the analysis of ℎ̃( 𝑓 ).

The GWM energy spectrum per unit frequency is given by [263, 66],

d𝐸mem
d 𝑓

=
𝜋2𝑐3

𝐺
𝑑2(𝑧) (1 + 𝑧)2 𝑓 2��ℎ̃[ 𝑓 (1 + 𝑧)]

��2, (6.41)

where 𝑑 (𝑧) is the comoving distance to the source, expressed as

𝑑 (𝑧) = 𝑐

𝐻0

∫ 𝑧

0

𝑑𝑧′√︁
ΩΛ +Ω𝑀 (1 + 𝑧′)3

. (6.42)
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Substituting Eqs. (6.32)–(6.42) into the expression for Ωmem, we arrive at an analyt-
ical formula for the memory energy density of SGWMB,

Ωmem( 𝑓 ) =
(

2𝜋𝐺2N2𝜎2
𝜃

3𝐻3
0𝑐

3

)
𝑓

∫
𝑑𝑀 𝑀2𝑔SMBH(𝑀)

∫ ∞

0
𝑑𝑧

𝑅SMBH(𝑧)
(1 + 𝑧)

√︁
ΩΛ +Ω𝑀 (1 + 𝑧)3

,

(6.43)
where N = 0.0969 from Eq. (6.38), and the angular factor 𝜎2

𝜃
is defined as

𝜎2
𝜃 =

∫ 𝜋

0
𝑑𝜃 sin 𝜃

[
𝑌
(−2)
20

]2
=

1
2𝜋
. (6.44)

Be equating (6.43) with the earlier expression for Ωmem in Eq. (6.31), we can
immediately extract the diffusion coefficient 𝐷 as

𝐷 =
𝜋𝐺2N2𝜎2

𝜃

2𝐻0𝑐3

∫
𝑑𝑀 𝑀2𝑔SMBH(𝑀)

∫ ∞

0
𝑑𝑧

𝑅SMBH(𝑧)
(1 + 𝑧)

√︁
ΩΛ +Ω𝑀 (1 + 𝑧)3

. (6.45)

In the following section, we will adopt a specific SMBH population model from
Ref. [66] to numerically evaluate 𝐷, and subsequently determine the corresponding
characteristic strain ℎ𝑐 ( 𝑓 ) and energy density spectrum Ωmem( 𝑓 ). We will then
implement a SNR cutoff to exclude individually resolvable merger events from the
computation of𝐷, and assess the resulting impact on the residual SGWMB spectrum
after resolved sources have been subtracted.

Implementation of the SMBH Population Model
There are several SMBH population model available in the literature. In this work,
we adopt the model proposed in [66], as its parameters are clearly specified and its
predictions are consistent with the results of Ref. [325].

Table 6.1: SMBH Model Parameters. We use N(𝜇, 𝜎) to denote normal distribu-
tion, and U[𝑎,𝑏] to denote the uniform distribution [66].

Parameter Distribution Mean Value
log10

¤𝑛0
(Mpc−3Gyr−1) N(−3, 1) −3
𝛼𝑀 U[−2,2] 0

log10
𝑀∗
𝑀⊙

U[6.5,8.5] 7.5
𝛽𝑧 U[0,7] 3.5
𝑧𝑐 U[0,5] 2.5

The population model used in [66] was first outlined in Refs. [239, 238, 292],
capturing the key astrophysical features of SMBH mergers while maintaining com-
putational simplicity. In this framework, the redshift-dependent merger rate 𝑅SMBH
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Figure 6.3: Mass probability density function and merger rate for SMBH population
model using Eqs. (6.47) and (6.46)are shown. The shaded region denotes the 1-𝜎
confidence interval [66].

follows a modified Schechter-like function:

𝑅SMBH(𝑧) = ¤𝑛0(1 + 𝑧)𝛽𝑧𝑒−𝑧/𝑧𝑐 , (6.46)

where ¤𝑛0 is the local merger density rate measured per unit comoving volume and
rest-frame time. The corresponding mass probability distribution 𝑔SMBH(𝑀) is
given by

𝑔SMBH(𝑀) = 1
𝑀

(
𝑀

107𝑀⊙

)−𝛼𝑀

𝑒−𝑀/𝑀∗ , (6.47)

describing a power law with an exponential cutoff.

A plot of 𝑔SMBH and 𝑅SMBH with 1-𝜎 confidence interval is shown in Fig. 6.4. In this
model, the parameters 𝛼𝑀 and 𝑀∗ characterize the shape of the mass distribution
𝑔SMBH(𝑀), while 𝛽𝑧 and 𝑧𝑐 determine the redshift evolution of the merger rate
𝑅SMBH(𝑧).

By substituting the expressions for the merger rate 𝑅SMBH(𝑧) from Eq. (6.46) and the
mass distribution 𝑔SMBH(𝑀) from Eq. (6.47) into the diffusion coefficient formula
Eq. (6.45), we compute the resulting SGWMB energy density spectrum Ωmem( 𝑓 ).
The resulting spectrum is shown in Fig.6.4a.

Using Eq. (6.30), we also derive the corresponding characteristic strain spectrum
ℎmem
𝑐 ( 𝑓 ), which is plotted in Fig. 6.4b.

Both plots reveal substantial variance in the amplitude of Ωmem( 𝑓 ) and ℎmem
𝑐 ( 𝑓 )

even within a single population model, suggesting that the SGWMB from SMBH
mergers could exhibit significant amplitude fluctuations. This variability indicates
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Figure 6.4: Left: SGWMB energy spectrum densityΩmem as a function of frequency
along with its 1-𝜎 confidence interval. Right: SGWMB characteristic strain ℎmem

𝑐

as a function of frequency along with its 1-𝜎 confidence interval.

that, in favorable scenarios, the SGWMB could constitute a prominent background
for space-based detectors such as LISA [30, 37, 42].

Recall that LISA achieves peak sensitivity around 𝑓peak ∼ 10−2 Hz, with a charac-
teristic strain sensitivity approximately ℎ(min)

𝑐 ∼ 10−20 [37]. From Fig. 6.4b, it is
evident that the predicted SGWMB lies well above LISA’s sensitivity threshold in
a substantial fraction of the parameter space, suggesting promising prospects for
detection.

However, it is important to note that the analysis above does not account for the
subtraction of individually resolvable merger events. In the next section, we incor-
porate this effect by excluding resolvable sources from the SGWMB computation,
recalculating the diffusion coefficient, and reassessing the resulting power spectrum,
energy density, and characteristic strain to reevaluate the detectability prospects with
LISA.

Subtraction of Individually Memory Resolvable Merger Events
In this section, our objective is to compute the SNR of individual memory jumps
from a population of SMBH merger events detectable by LISA. To maintain com-
putational tractability, we adopt the step function model (6.32) rather than the full
numerical relativity waveforms.

As a further simplification, we evaluate the merger rate 𝑅SMBH(𝑧) (6.46) and mass
distribution 𝑔SMBH(𝑀) (6.47) using the mean values of the parameters listed in
the third column of Table 6.1. The resulting distributions, based on these average
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Figure 6.5: Left: SMBH mass distribution 𝑔SMBH(𝑀) computed using the mean
parameter values from Table 6.1. Right: SMBH merger rate 𝑅SMBH(𝑧) evaluated
using the same set of mean parameters.
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Figure 6.6: Left: SGWMB energy density spectrum (red dashed line) computed
using the mean values from the SMBH population model parameters in Table 6.1,
shown alongside LISA’s sensitivity curve (black solid line). Right: SGWMB char-
acteristic strain (red dashed line) based on the same mean parameter values, plotted
against LISA’s characteristic noise curve (black solid line).

parameters, are shown in Fig. 6.5.

Using these distributions, we compute the diffusion coefficient 𝐷 via Eq. (6.45).
The corresponding SGWMB energy density spectrum Ωmem( 𝑓 ) and characteristic
strain ℎmem

𝑐 ( 𝑓 ) are then obtained and plotted against LISA’s sensitivity curve, taken
from Ref. [30], as shown in Fig. 6.6.

As shown in Fig. 6.6, the SGWMB, under optimistic assumptions, lies well above the
sensitivity threshold of LISA in its optimal frequency range. However, since LISA
is specifically designed to resolve and detect individual SMBH merger events [37,
42], it is crucial to account for the subtraction of these resolvable events. Af-
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ter subtraction, only the residual memory contributions from unresolved or distant
mergers—too faint or too numerous to be individually detected—will remain, form-
ing a diffuse memory background.

We now assess whether the residual SGWMB remains detectable by LISA after
subtracting individually resolvable sources. As a first step, we recall the SNR
formula for a single memory event [141, 142, 143]:

SNR =

[∫ ∞

0

ℎ2
𝑐 ( 𝑓 )
ℎ2
𝑛 ( 𝑓 )

𝑑𝑓

𝑓

]1/2

. (6.48)

Here, ℎ𝑛 ( 𝑓 ) denotes the sky-averaged root-mean-square (rms) noise amplitude for
LISA [141, 30], which is given by

ℎ𝑛 ( 𝑓 ) =
√︂

20
3
𝑓 𝑆𝑛 ( 𝑓 ), (6.49)

where 𝑆𝑛 ( 𝑓 ) is the one-sided noise power spectral density.

The memory characteristic strain ℎmem
𝑐 ( 𝑓 ) is defined as [141, 142, 143]

ℎmem
𝑐 ( 𝑓 ) = 2(1 + 𝑧) 𝑓

〈��ℎ̃mem
+ [(1 + 𝑧) 𝑓 ]

��2〉1/2
|𝑟→𝑑 (𝑧) , (6.50)

where ℎ̃mem
+ is the Fourier transform of the memory waveform. Using Eqs. (6.35)–(6.37)

together with the Fourier transform of the step function (6.40), we obtain

ℎ̃mem
+ ( 𝑓 ) = 𝑌 (−2)

20 (𝜃)
(
𝐺𝑀

𝑐2𝑟
× 0.0969

) (
1

2𝜋𝑖 𝑓

)
. (6.51)

The bracket in Eq. (6.50) denotes an average over sky position and polarization
angles. We adopt a step-function model for the memory waveform, whose Fourier
transform scales as 𝑓 −1. While this approximation is simple and analytically
tractable (see Fig. 6.2), it assumes an instantaneous memory jump and neglects
finer features of the waveform. In more realistic scenarios, the memory builds up
over a short but finite time and is followed by damped oscillations before settling
into a constant value. Incorporating a more accurate analytical model, such as those
in Refs. [141, 142, 143], would introduce higher-order corrections to the frequency
dependence and modify the resulting SNR estimates.

With these expressions, we numerically compute the SNR as a function of the
total mass of SMBH 𝑀 and redshift 𝑧. Specifically, we generate a grid of SMBH
masses spanning [105, 1010] 𝑀⊙ and evaluate the SNR for selected redshifts 𝑧 =

0.1, 1, 2, 5, 10. The resulting SNR curves are shown in Fig. 6.7.
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Figure 6.7: Sky- and polarization-averaged SNR of the memory signal for equal-
mass, non-spining SMBHs as a function of the total mass 𝑀 and redshift 𝑧.

To compute the effective diffusion coefficient 𝐷eff, we first construct a table of
(𝑀, 𝑧, SNR(𝑀, 𝑧)) values, where 𝑀 spans a grid from 105 𝑀⊙ to 1010 𝑀⊙, and 𝑧
ranges from 0.1 to 10. We then assess the impact of selectively removing resolvable
merger events based on their SNR by imposing various thresholds. Specifically, we
assume that LISA can resolve events with SNR > 1000, SNR > 100, and SNR > 10,
respectively, and examine how these criteria affect 𝐷eff.

In practice, we implement an SNR cut-off by introducing a threshold Γ𝑐 that sepa-
rates resolvable from nonresolvable events, and recalculate 𝐷eff using the modified
expression:

𝐷eff =
𝜋𝐺2N2𝜎2

𝜃

2𝐻0𝑐3

∫ ∞

0
𝑑𝑧

∫
𝑑𝑀 𝑀2 𝑔SMBH(𝑀)𝑅SMBH(𝑧)

(1 + 𝑧)
√︁
ΩΛ +Ω𝑀 (1 + 𝑧)3

Θ(Γ𝑐−SNR(𝑀, 𝑧)),

(6.52)
where Γ𝑐 denotes the SNR threshold, sequentially set to 1000, 100, and 10.

Since SNR(𝑀, 𝑧) is a complicated function of the SMBH mass and redshift, we
evaluate the integrals in Eq. (6.52) by discretely summing over the grid of (𝑀, 𝑧) val-
ues generated earlier. The resulting effective diffusion coefficients 𝐷eff for different
SNR thresholds are summarized in Table 6.2.

Using the values of 𝐷eff from Table 6.2, we recompute the SGWMB energy density
spectrum Ωmem( 𝑓 ) and characteristic strain ℎmem

𝑐 ( 𝑓 ), retaining only contributions
from merger events below the corresponding SNR thresholds Γ𝑐. These unresolved
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Table 6.2: Effective diffusion coefficient 𝐷eff under different GW memory SNR
thresholds.

𝐷eff (sec−1) GWM SNR Threshold
9.5 × 10−42 None subtracted
3.2 × 10−43 SNR < 1000
3.9 × 10−45 SNR < 100
1.4 × 10−47 SNR < 10
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Figure 6.8: Left: SGWMB energy density spectrum under different SNR subtraction
thresholds compared to the LISA sensitivity curve (black). The curves correspond
to no subtraction (red), and SNR cuts at SNR < 1000 (green), SNR < 100 (orange),
and SNR < 10 (magenta), respectively. Right: SGWMB characteristic strain under
different SNR subtraction thresholds compared to the LISA sensitivity curve (black).
The curves correspond to no subtraction (red), and SNR cuts at SNR < 1000 (green),
SNR < 100 (orange), and SNR < 10 (magenta), respectively.

events form a diffuse stochastic background. The resulting spectra are shown in
Fig. 6.8.

From Fig. 6.8a and Fig. 6.8b, we find that the detectability of the SGWMB is highly
sensitive to the treatment of individually resolvable merger events. Although the
background appears prominent if no subtraction is applied, or even if only events
with SNR > 1000 are excluded, its amplitude remains above LISA’s sensitivity
curve. However, applying a more restrictive threshold of SNR < 100 reduces the
background to a level below LISA’s sensitivity, and for SNR < 10, the residual SG-
WMB becomes well below the detection limit. This indicates that, once high-SNR
memory events are properly identified and removed, the remaining nonresolvable
background is effectively undetectable by LISA.

These findings revise the conclusions drawn in prior work such as Ref. [325], which
predicted that the SGWMB from SMBH mergers would be well above LISA’s sen-
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sitivity. Crucially, those studies did not account for the subtraction of individually
resolvable memory bursts, and therefore overestimated the amplitude of the residual
background. Our analysis shows that although GW memory events from SMBH
mergers may statistically resemble a Gaussian process, they do not overlap suffi-
ciently in time to form a truly diffuse background. Instead, these memory bursts
are sparse and typically resolvable as individual events in LISA. Once these are
subtracted, the remaining SGWMB lies far below the reach of current or foreseeable
detector technologies. This underscores the need for careful subtraction modeling
when forecasting the observability of stochastic gravitational wave memory signals
in future space-based detectors.

6.6 Conclusion and Future Directions
In this chapter, we have investigated the SGWMB arising from SMBH mergers, with
a focus on its detectability by future space-based observatories such as LISA. We be-
gan by reviewing the necessary theoretical background, including the mathematical
foundations of the standard SGWB, the gravitational memory effect, and the role of
BMS symmetries in encoding memory in asymptotically flat spacetimes. Building
on this foundation, we then focused on the SGWMB, highlighting its origin as a
cumulative effect of gravitational memory steps from individual merger events, and
deriving its expected 𝑓 −2 PSD characteristics based on a Brownian motion model.

Using a step function approximation for the memory waveform, we modeled the
memory strain from individual mergers and computed the energy density spectrum
Ωmem( 𝑓 ) and characteristic strain ℎmem

𝑐 ( 𝑓 ) associated with the SGWMB. Adopting
an SMBH population model from Ref. [66], we explored the distribution of SMBH
masses and merger rates across cosmic time, and calculated the diffusion coefficient
𝐷 that governs the cumulative memory background.

In the absence of source subtraction, the SGWMB from supermassive black hole
mergers appears well above LISA’s sensitivity curve in the millihertz band, initially
suggesting favorable prospects for detection. However, a more realistic treatment
must account for the fact that LISA is capable of resolving and subtracting loud indi-
vidual events. To model this, we computed the SNR of memory bursts across a broad
range of SMBH masses and redshifts, and applied thresholds at SNR > 1000, 100,
and 10 to remove the contributions of resolvable events. We then recalculated the
effective diffusion coefficient 𝐷eff for the residual population of unresolved mergers.
This subtraction significantly alters the predicted SGWMB amplitude and plays a
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critical role in evaluating its observability in future detectors.

The results show that applying a lenient threshold of SNR > 1000 leads to only
modest suppression of the SGWMB, which remains above LISA’s sensitivity curve.
With a stricter cut at SNR > 100, the background is significantly reduced and falls
just below LISA’s sensitivity curve throughout its entire frequency band. Finally,
under the most conservative condition, excluding all events with SNR > 10, the
residual SGWMB falls well below the detection threshold. These results refine
earlier highly optimistic projections [325, 66], which did not incorporate a care-
ful subtraction of resolvable memory bursts and consequently overestimated the
magnitude of the diffuse background.

Although the detectability of the SGWMB appears limited under these more realistic
assumptions, several avenues for future research may alter this conclusion:

• Improved Source Population Models: Refining SMBH population models,
especially better constraints on merger rates and mass distributions at high
redshifts, could modify the expected background amplitude. For instance, a
higher-than-expected merger rate or a population of more massive binaries
could enhance the SGWMB signal.

• Waveform Modeling Enhancements: Incorporating more detailed memory
waveform models beyond the step function approximation, including spin
effects and higher harmonics, could slightly alter the characteristic strain
predictions and might reveal additional detectable features.

• Detector Design Optimizations: Future detector designs that enhance low-
frequency sensitivity or multi-detector cross-correlation techniques could
lower the effective noise floor at millihertz frequencies, improving prospects
for detecting a suppressed SGWMB.

In summary, while the SGWMB from nonresolvable SMBH mergers lies below the
sensitivity of current-generation space-based detectors, its theoretical importance
remains profound. Continued improvements in astrophysical modeling, data analysis
techniques, and detector sensitivity technology will be essential to eventually probe
this elusive manifestation of gravitational wave memory effect.
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C h a p t e r 7

CONCLUSION AND OUTLOOK

The study of quantum gravity remains one of the most fundamental challenges in
theoretical physics, requiring a deep integration of quantum mechanics and general
relativity. While direct experimental access to Planck-scale physics remains elusive,
this dissertation has explored how quantum gravity fluctuations may manifest at
observable scales and how they could be probed using next-generation laser inter-
ferometers. By developing theoretical models that describe spacetime fluctuations
near light-sheet horizons and connecting them to potential experimental signatures,
this work contributes to the growing effort to bridge fundamental quantum gravity
research with high-precision measurement techniques.

A central theme of this dissertation is the use of hydrodynamic analogies, sym-
metry principles, gravitational shockwave modeling, and near-horizon dynamics to
describe quantum fluctuations in gravity. Through the study of causal diamonds,
shockwaves, and horizon BMS-like symmetries, this work offers new insights into
the microscopic structure of spacetime and the quantum properties of light-sheet
horizons. Additionally, the covariant phase space construction for causal diamonds
in Minkowski space presents a first-principles framework for studying quantum de-
grees of freedom in flat spacetime gravity, providing a promising foundation for
future exploration.

Building upon these theoretical developments, this dissertation has also investigated
a related experimental phenomenon: the SGWMB arising from the cumulative
memory effect of supermassive black hole mergers. After reviewing the standard
SGWB, gravitational memory effects, and BMS symmetries, the SGWMB was
modeled using a Brownian motion framework. Careful analysis showed that while
the SGWMB initially appears above the sensitivity curve of detectors such as LISA,
realistic subtraction of individually resolvable merger events significantly suppresses
the residual memory background, pushing it below the detection threshold of LISA.
This highlights the importance of accounting for source subtraction when assessing
the detectability of subtle gravitational phenomena and underscores the need for
refined data analysis techniques in future experiments.

The experimental implications of this work suggest that quantum gravity fluctuations—
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and memory-induced backgrounds—could introduce fundamental noise sources in
interferometric measurements, potentially confounding signals from astrophysical
sources in next-generation detectors such as Cosmic Explorer, the Einstein Tele-
scope, and LISA. If such fluctuations or backgrounds are detected, they would
offer an unprecedented experimental window into quantum gravity phenomena. Al-
though significant challenges remain in isolating these signatures from instrumental
and environmental noise, the potential for interferometry to probe new physics
beyond classical general relativity continues to inspire new lines of inquiry.

Moving forward, several directions remain open for exploration. The interplay
between gravitational shockwaves, entanglement structures, and stochastic mem-
ory effects could offer deeper insights into the information flow across horizons.
Additionally, further developing the connection between BMS symmetries, causal
diamonds, gravitational memory, and experimental observables may lead to re-
fined predictions for how quantum fluctuations influence spacetime at macroscopic
scales. On the experimental side, future technological advances in quantum-limited
precision measurements, enhanced gravitational wave detector networks, and novel
statistical techniques may improve sensitivity to these elusive signals.

Ultimately, this dissertation takes a step toward making quantum gravity experi-
mentally accessible by identifying potentially observable signatures, proposing new
theoretical frameworks, and assessing realistic detectability prospects. Whether
through interferometry, holography, or emergent spacetime paradigms, the pursuit
of quantum gravity phenomena continues to expand the frontiers of both theory and
experiment. As precision gravitational wave detectors advance, they may open an
unprecedented window into the quantum nature of spacetime, bringing us closer to
uncovering the fundamental principles that govern the universe.
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