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ABSTRACT

Induced seismicity — earthquakes driven by injections of fluids into the subsur-
face — is of growing societal importance in its impact on clean energy technol-
ogy. Advancements central to the world’s transition to a greener economy such as
geothermal energy and long-term geologic storage of CO2 are hampered by a lack
of understanding and control of the associated seismic hazards. In its mechanics,
frictional processes in the presence of fluids is a difficult problem to model given the
challenges of studying frictionally unstable material in a controlled environment.
Unstable gouge material is commonly found along faults in nature, due to pulver-
ization of brittle rock in to granular layers called ‘gouge.’ This thesis approaches
the challenge at two different scales: 1. at the scale of the localized shear layer
along the interface between two faults where we model laboratory earthquakes in
the presence of pressurized fluids, and 2. at the scale of a reservoir where we model
the rate of earthquakes given the injection/extraction schedule.

In order to infer the frictional properties of unstable gouge material from laboratory
experiments, we develop a probabilistic model based on a spring-slider representa-
tion of the experiment along with the rate-and-state friction law. Inversions indicate
that the presence of pressurized pore fluids stabilizes the gouge — by an increase
in the strength of the contacts and a lesser decrease in the grain size with slip
— even under the same effective normal stress. Assuming purely slip-dependent
healing of friction leads to an evolution of parameters with slip that is consistent
with previously established interpretations of rate-and-state parameters. The best
fitting spring-slider model still shows significant discrepancies to the experiment
in the evolution of creep and in the dependence on loading rate. A quasi-static
finite-element model with the same rate-and-state properties suggests that the gouge
in the sample likely slides in a spatially uniform manner. Thus, the discrepancies
between the spring-slider model and the experiment can likely be attributed to flaws
in the rate-and-state formalism and the slip law rather than the idealization of a finite
geometry to a single-degree-of-freedom system. The results prove that quantitative
analysis of frictional processes of gouge in the unstable regime is possible, and that
future development of constitutive relationships for friction should aim to reproduce
key features of stick-slip in detail.

To model seismicity induced by a geothermal well stimulation, we develop phys-
ical and statistical models of the seismicity rate. The physical models are based
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on rate-and-state friction and stress changes due to pore-pressure diffusion. The
statistical model performs a convolution of a kernel function inspired by Omori law
decay with the injection rate. Both models successfully reproduce the seismicity ob-
served during the 2018 enhanced geothermal system (EGS) simulation in Otaniemi,
Finland. We find that the effect of time-dependent nucleation from rate-and-state
friction is crucial in reproducing the temporal and spatial patterns of the observed
seismicity. We also find that the effect of finite nucleation cannot be approximated
well by introducing a stress threshold in the standard Coulomb friction model, at
least in the context of rapid variations of injection rates common in EGS operations.

We highlight the major assumptions of the Dieterich seismicity rate model and
examine how they may bias interpretations of induced seismicity observed in real
reservoirs by comparing it directly to a Discrete Fault Network (DFN) model. The
spatio-temporal pattern of seismicity in the finite setting is not only dependent on
fluid transport properties and its combination with nucleation characteristics but
also the distribution of initial conditions of the fault network. The back-propagation
front, in particular, occurs co-injection if the time to instability for the minimum
slip rate is shorter than the injection duration. The relocated catalogue of the 1993
GPK1 stimulation in Soultz-Sous-Forêts shows such a back-front which can be fit
qualitatively using the time to instability measure. A simple model for the rate
of magnitudes that accounts for the evolution of frictional stability reproduces the
apparent increase in the source radius of induced events in Soultz-Sous-Forêts. The
rate of larger events is overestimated by the model, possibly due to an overestimation
of maximum magnitudes by the volume of stimulation. The comparisons reveal that
parameters of the Dieterich model lack clear physical meaning in the finite analogue
and highlight the importance of using realistic physics, especially in models at large
scales where uncertainty due to assumptions at smaller scales may be amplified.

We end the thesis with the application of rate-and-state friction to dynamic rupture
modeling of seismic data from distributed acoustic sensing (DAS). The modeling
of the high-frequency DAS recordings of a 𝑀𝑤 6.0 earthquake suggests a highly
heterogeneous underlying fault with several prominent asperities and barriers that
may control rupture dynamics. The model demonstrates how the high-stress patches
both inhibit and promote the overall rupture, while also contributing to a significant
amount of the energy release themselves. The successful interpretations of modern
seismological data encourage future development efficient models that can be used
for dynamic inversions.
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of most localized deformation are more granular in nature, due to
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each layer of rock with varying levels of damage poses a complex
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1.4 Examples of Fluid-Rock Interactions in Earthquakes. (Left) Rapid
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significant amount of heat, enough to melt the rock. Heat transfers to
the pore fluids and raises its temperature and pressure. The increase
in pressure reduces the effective normal stress and friction (Noda
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1.5 Mohr-Coulomb Criterion (Yang et al., 2017). The Mohr-Coulomb
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1.6 Non-linear Dependence of Seismicity on Periodicity in the Himalayas
(Ader and Avouac, 2013). (Left) The Main Himalayan Thrust Fault
exhibits a significant amount of natural seismicity that is sensitive to
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Coulomb Friction. (Left) The blue circles plot the observed maxi-
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the top right of plot (with the highest magnitude among all sites). The
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that ruptures can only propagate within the zone around the injection
point source stimulated by fluid diffusion (illustrated in the inset).
Such ideas have tried to explain the observed tapering of the tail of
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2.1 Schematic of Experimental Apparatus. Two parallel steel plates
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background) and 3 µm/s (white background) at intervals of 1 mm
once past the yielding point at 1.5 mm of loading point displacement.
Both experiments show a development of instability with accumu-
lation of slip and a dependence of instability on the loading rate.
Characteristic features of stick-slip events highlighted in the zoom-in
(b) are used for parameter inversion. Instability develops earlier for
the wet experiment which also shows larger amplitudes of stick-slip
than the dry experiment (b). The differences between the two exper-
iments indicate a possible effect of pore pressure on friction beyond
the effective stress principle. . . . . . . . . . . . . . . . . . . . . . . 19
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ter events leading to lower 𝐾𝑚𝑖𝑛 immediately prior to the next events.
This results in a greater amount of creep during the strengthening
phase in the absolute sense on average and in greater curvature in the
evolution of friction (Figure 2.2b). The observed differences between
the two experiments indicate the effect of pore pressure on friction
beyond the effective stress principle. . . . . . . . . . . . . . . . . . . 21
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2.4 Indirect Inference of Event Slip Rate and Dependence of Nucleation
on Loading Rate: A zoom-in of the stick-slip sequence for both
experiments is shown around the velocity step at the loading point
displacement of 7.5 mm. The periods of lower and higher loading
rate at 0.3 µm/s and 3 µm/s are indicated by the grey and white back-
ground, respectively. Dots spaced by 0.1 s show the sampling rate
of 10 Hz. For both experiments, the stress drop phase occasionally
includes a measurement point, indicating an event duration of the
order of 0.1 s. The nucleation process immediately prior to the stress
drop, characterized by a roll-over of the friction curve, has longer
duration at the lower loading rate for both experiments. At the lower
loading rate, a significant portion of the stress drop is consistently
resolved at 0.1 second intervals, while the first drop in friction is often
at least half of the entire stress drop at the higher loading rate. The
nucleation process shows a possible dependence on the loading rate,
although the eventual stress drop is similar. . . . . . . . . . . . . . . 22

2.5 Spring-Slider Model: The simple model idealizes the experiment as
a single-degree-of-freedom system. The spring, which represents
the loading system, pulls the block, which represents the frictionally
sliding material, at a prescribed displacement rate. A confining
stress is applied to the block and rate-and-state friction governs the
resistance of the block to shear displacement. Pore fluid pressure can
act on the base of the block. Dilatant expansion of the pore volume can
decrease pore pressure, increasing the effective stress and stabilizing
the motion of the block. The simplicity of the spring-slider model,
which captures the most essential physics of the experiment, allows
a sampling-based inversion approach that requires many calls of the
forward model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
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2.6 Detrending the Long-Term Evolution of the Friction Coefficient. A
moving average (black curve of the panels on the left) of the raw data
(solid red and blue curves) is subtracted out to give the detrended
friction coefficient (dotted red and blue curves of the panels on the
right). The large oscillations immediately following the velocity step
(happening approximately at 1.5 mm of loading displacement in both
experiments) are likely due to the velocity step and hence should be
modeled as part of rate-and-state effects with constant parameters.
In contrast, more gradual changes in the friction coefficient at longer
time scales are likely not related to velocity steps but are rather caused
by longer-term evolution of the shear layer with slip, an effect that
rate-and-state formulations with constant coefficients are not intended
to capture; such changes can be captured through variations in 𝑓 ∗.
Detrending allows the inference of rate-and-state parameters to focus
more sharply on the frictional properties of a localized shear surface
in the gouge. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
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2.7 Inversions of Synthetic Stable Velocity Step using Bayesian MCMC
Sampling for two representative examples differing in the true values
of 𝐷𝑅𝑆 (1 µm for the yellow curves and 100 µm for the purple curves).
The posterior distributions of 𝑎 and𝐷𝑅𝑆 are shown on the left in terms
of their relative error to the true value. The 2D frequency density
maps between the two inferred parameters are plotted as contour
maps in between the histograms. The posterior mean estimators
(solid colored curves) and parameter sets that are a single standard
deviation away (dotted and dashed curves) produce fits that match
well the reference synthetic data (black curves) for both cases (right
panels). The inversion of the simulation with lower 𝐷𝑅𝑆 has higher
range of relative uncertainty, largely due to the significant amount of
state evolution that occurs during the initial rise in friction. At the
measured spring-stiffness of 90.5 MPa/mm, the direct effect takes
place over a finite amount of slip in the spring-slider model, which
is several multiples of 𝐷𝑅𝑆 = 1 µm while it is only a fraction of 𝐷𝑅𝑆

= 100 µm. The ratio of slip to 𝐷𝑅𝑆 is indicated by the second x-
axis at the top of the plots in the right panels. The trade-off is also
visible in the 2D frequency density map of the posteriors, where an
increase in 𝑎, or an increase in the direct effect, is accommodated by
a decrease in 𝐷𝑅𝑆 to promote state evolution during the direct effect.
In both cases, MCMC inversions of synthetic stable velocity steps
successfully infer the true rate-and-state parameters with less than
10% relative error. . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
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2.8 Relative Error from Inversions of Synthetic Stable Velocity Step Data
by Bayesian MCMC Sampling. The relative error of the posterior
mean estimators from MCMC inversions of synthetic stable velocity
step data are compiled for a wide range of rate-and-state parame-
ters (𝑎: 0.006 ∼ 0.015, 𝐷𝑅𝑆: 1 ∼ 100 µm, 𝑏 − 𝑎: -0.002 ∼ 0.002).
The error bars indicate the first and third quantiles of the posterior
distributions as a measure of uncertainty. The top row shows the in-
versions of the simulations with 𝑎 and 𝑏− 𝑎 fixed to 0.010 and 0.002,
respectively. The yellow and purple dots correspond to the simula-
tions of Figure 2.7. The relative error in both 𝑎 and 𝐷𝑅𝑆 increase
with decreasing 𝐷𝑅𝑆, due to the larger amount of state evolution dur-
ing the direct effect. This trend is consistent across the full range
of tested parameters (bottom row). Overall, both the relative error
of the posterior mean estimators and the standard deviations of the
posteriors rarely exceed 10%, showing that MCMC inversions can
infer rate-and-state parameters from stable velocity step experiments
sufficiently well. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.9 MCMC Inversion of Experimental Stable Velocity Step. The spring
slider models with the rate-and-state parameters given by the posterior
mean estimators produce good fits (the red and blue curves) to the
experimental stable velocity step (black curve) for both state evolution
laws. Assuming steady-state conditions at the beginnings and ends
of the fitting windows, 𝑎 − 𝑏 is fixed to 0.0002 and 0.0001, and 𝜇∗

is fixed to 0.694 and 0.693 at a 𝑉∗ of 3 µm/s for the dry and wet
experiments, respectively. The dotted lines show fits by parameters
that are a single standard deviation of the posterior distributions
away from the mean estimator. The two state evolution laws produce
similar values of 𝑎 while 𝐷𝑅𝑆 is larger for the aging law. The
wet experiment requires higher values of 𝑎 and 𝐷𝑅𝑆 to reproduce the
larger oscillation following the velocity step, highlighting a significant
effect by pressurized fluids on the frictional parameters of the gouge. 33
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2.10 Accounting for Uncertainty in 𝑎 − 𝑏 due to Long-Term Evolution
of Friction: Fixing 𝑎 − 𝑏 to 0.001, instead of 0.0002 as inferred
from assuming steady-state conditions at the beginning and end of
the original fitting window, produces a better match to the second
oscillation. On the other hand, fixing 𝑎 − 𝑏 to -0.001 produces a
poorer fit with large 𝐷𝑅𝑆 such that a gradual evolution of friction
fits through the oscillations by a linear line of best fit. The plots are
produced for the slip law with no qualitative differences for the aging
law. The fits highlight the sensitivity of the inferred parameters
to detrending and the need for care in choosing the most relevant
portions of the data for interpretation by rate-and-state friction in
realistic gouge material with complex deformation structure. . . . . . 35

2.11 Conventional Methods using Non-linear Least Squares with Quasi-
Static Spring-Slider Model Converge to Poorer Fits of Stable Velocity
Step Data. All inversions result in a more stable response than
experimentally observed, with broader first oscillation and poor fit
to the second oscillation, which corresponds to much larger inferred
values of 𝐷𝑅𝑆. For example, 𝐷𝑅𝑆 is nearly 3 times larger for the dry
experiment and slip law compared to the value found by the MCMC
inversion with logarithmic sampling (Figure 2.9), and 𝑎 is slightly
smaller to match the peak given the smaller amount of state evolution
during the friction increase due to greater 𝐷𝑅𝑆. . . . . . . . . . . . . 36
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2.12 ogarithmic Sensitivity of Rate-and-State Response during Stable Ve-
locity Step to 𝐷𝑅𝑆: Friction response with the posterior mean es-
timators of the dry experiment using the slip law (solid lines) and
with increments of 1 µm and 0.002 in 𝐷𝑅𝑆 (top) and a (bottom)
both below and above the mean estimators (dotted and dashed lines).
Changes in the response are largest for decreases in 𝐷𝑅𝑆 which pro-
duce significantly more unstable and oscillatory evolution in friction.
Comparatively, increases in𝐷𝑅𝑆 increase stability, and the qualitative
change in friction evolution is relatively minimal. Higher instability
due to lower 𝐷𝑅𝑆 also increases the normalized mean squared error
(NMSE) more drastically, as indicated in the legend. On the other
hand, changes in 𝑎 produce relatively symmetric changes to the solu-
tion. The NMSE increases at a slightly higher rate for increase in 𝑎,
although to a slower extent than for decrease in 𝐷𝑅𝑆. A logarithmic
transformation of 𝐷𝑅𝑆 in optimization schemes enforces asymmetry
in sampling so that low values of 𝐷𝑅𝑆 where the frictional behavior
is more unstable are sampled at finer resolution. . . . . . . . . . . . . 37
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2.13 Comparison of Convergence by Non-linear Least Square Between
Logarithmic and Standard Sampling: The top row compares the
paths of the minimizers to convergence using logarithmic (left) and
standard (right) sampling of rate-and-state parameters from four dif-
ferent initial guesses represented by four different colors. The paths
increase in darkness with the iteration number, and star symbols
mark the start and end points of the paths. With logarithmic sam-
pling, the minimizer succeeds in converging to the posterior mean
estimators of the MCMC inversion (the intersection of the dotted
lines) regardless of the choice of the initial guess. The variance in
rate-and-state parameters along each path is significantly greater with
standard sampling, especially in 𝐷𝑅𝑆. The bottom row compares the
least square residuals along each path. Logarithmic sampling follows
paths with largely monotonic decrease in the residual while standard
sampling departs significantly from such paths with large peaks in
the residual history, associated with sampling large values of 𝐷𝑅𝑆.
Even when paths of standard sampling converge closely to the true
values (red and blue paths), they do so with an order-of-magnitude
larger number of iterations and with higher final residuals. The su-
perior convergence of logarithmic sampling, both in efficiency and
accuracy, is due to the higher resolution of sampling at lower values
of 𝐷𝑅𝑆 where frictional behavior is more unstable (Figure 2.12). . . . 39

2.14 Comparison of Accuracy Between MCMC and Nonlinear Least-
Squares Inversions: The solid lines plot the histograms of the pos-
terior distributions from MCMC sampling, and the dotted lines plot
Gaussian distributions centered around the non-linear least squares
solution with the associated standard deviation (square roots of the
diagonal entries of the covariance matrix). The 2D frequency density
maps between the two inferred parameters, 𝑎 and 𝐷𝑅𝑆, are plotted
as contour maps in between the histograms. Although both methods
succeed in converging to the true rate-and-state parameters, the range
of uncertainty is larger for the least-squares method, as evidenced by
the wider shapes of the distributions. . . . . . . . . . . . . . . . . . 40
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2.15 Spring-Slider Simulation of a Stick-Slip Sequence: Histories of the
friction coefficient, slip rate, and normalized state variable are shown
for the slip (top) and aging (bottom) laws. The loading rate and
steady state are shown as red dotted lines on the plots for the slip
rate and normalized state variable, respectively. Dots along the curve
indicate 0.1-s intervals in time. The friction parameters are 0.010,
0.013, 1um, 0.7 and 3 µm/s for 𝑎, 𝑏, 𝐷𝑅𝑆, 𝜇∗ and 𝑉∗, respectively.
For the same frictional parameters, the aging law produces a larger
stress drop. The aging law also produces a lower slip rate during
the arrest phase, leading to a large evolution of the slip rate and state
variable leading up to nucleation. Characteristics of stick-slip defined
in Figure 2.2a can be measured from such simulations and serve as
the basis for inversion for rate-and-state parameters. . . . . . . . . . 41

2.16 Slip Law has Higher Creep % than Aging Law. (Bottom left) The
creep % for a range of rate-and-state parameters (𝑎: 0.005 ∼ 0.015,
𝐷𝑅𝑆: 0.5 ∼ 5 µm, 𝐾𝑐𝑟/𝐾𝑚𝑎𝑐ℎ: 1 ∼ 3 & 𝐾𝑚𝑎𝑐ℎ = 90.5MPa/mm) is
plotted for the slip (yellow dots) and the aging (purple dots) laws;
the values inferred from the dry and wet experiments are shown by
red and blue dashed lines. As expected, creep % is lower for more
unstable regimes with greater ratios of 𝐾𝑐𝑟/𝐾𝑚𝑎𝑐ℎ for both laws. For
the same frictional parameters, the slip law produces higher creep
% than the aging law. (Top left and bottom right) Representative
simulations with the lowest and highest ratios of 𝐾𝑐𝑟/𝐾𝑚𝑎𝑐ℎ, respec-
tively. Dots along the curve indicate 0.1-s intervals in time. In both
cases, the aging law produces stick-slip events with characteristics
of greater instability, such as larger stress drops and lower creep %.
The difference in creep is especially visible for the simulations at
critical stability (top left panel), where the slip law exhibits greater
curvature in the evolution of friction during the loading phase. The
set of simulations also indicates that the spring-slider model would
only be able to reproduce a creep % as high as that observed in the
experiments near critical stability. . . . . . . . . . . . . . . . . . . . 42
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2.17 Experimentally Produced Stress Drops and Creep % Can Only Be
Reproduced by Spring-Slider Model Near Critical Stability: The
creep % and stress drop are plotted for a range of rate-and-state
parameters (𝑎: 0.005∼ 0.015, 𝐷𝑅𝑆: 0.5∼ 5 µm) within a narrow band
of the stability ratio around critical stability (𝐾𝑐𝑟/𝐾𝑚𝑎𝑐ℎ: 0.99∼1.01
& 𝐾𝑚𝑎𝑐ℎ = 90.5MPa/mm) for the slip (yellow dots) and the aging
(purple dots) laws. The experimentally observed values of the stress
drop and creep % (dashed horizontal lines for the dry (red) and wet
(blue) experiments) can only be matched for a narrow band of the
stiffness ratio near critical stability. . . . . . . . . . . . . . . . . . . 43

2.18 Shear Induced Dilatancy Decreases Stress Drop and Increases Creep
%: (Left and middle) Stress drop and creep % are plotted as contour
maps for a range of stability and dilatancy ratios (𝑐: 0.001 ∼ 0.1 m2/s
& 𝐾𝑐𝑟/𝐾𝑚𝑎𝑐ℎ: 1 ∼ 3) with 𝑎, 𝐷𝑅𝑆 and 𝜖 fixed at 0.01, 1 µm and 1e-4,
respectively, using the aging law. For all stability ratios, dilatancy
stabilizes all aspects of the stick-slip cycle. Namely, decreasing the
hydraulic diffusivity, which traps the fluid more and increases the
strength of dilatant stabilization, results in higher creep % as well as
lower stress drops. (Right) A representative comparison between two
simulations that only differ in the diffusivity. The model with lower
diffusivity (blue curve) shows greater stability, with smaller stress
drop and higher creep %. Hence, dilatancy effect cannot explain
experimental observations in which the wet experiment results in
higher stress drops while maintaining similar creep %. . . . . . . . . 44
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2.19 Sensitivity of Creep % to Rate-and-State Parameters Near Critical
Stability for Slip Law: The contour maps plot the creep % for a range
of 𝑎, 𝐷𝑅𝑆, and 𝑏 that satisfy (left) 𝐾𝑐𝑟 = 𝐾𝑚𝑎𝑐ℎ and (right) 𝐾𝑐𝑟 =

1.001𝐾𝑚𝑎𝑐ℎ. The red and blue dotted lines indicate the observed
creep % from the dry and wet experiments, respectively. At critical
stability (left column), creep % tends to increase with decreasing 𝑎
(and decreasing 𝑏) and increasing 𝐷𝑅𝑆 (and increasing 𝑏 − 𝑎). A
small change in the stability ratio such that 𝐾𝑐𝑟 = 1.001𝐾𝑚𝑎𝑐ℎ (right
column) flips the sensitivity in terms of 𝐷𝑅𝑆 (and 𝑏 − 𝑎). The upper
left corner of the plot for 𝐾𝑐𝑟 = 1.001𝐾𝑚𝑎𝑐ℎ marks a region where
the numerical procedure fails to resolve events with strong dynamic
overshoot, correlated to high ratios of 𝑏−𝑎

𝑎
. Example simulations

with a relatively low value of 𝑎 = 0.002 and high value of 𝐷𝑅𝑆 =
2 µm show how the regime of slip can change drastically with a slight
change in 𝑏 (Δ𝑏 < 1e-5). . . . . . . . . . . . . . . . . . . . . . . . . 45

2.20 Sensitivity of Creep % to Rate-and-State Parameters Near Critical
Stability for Aging Law: The contour maps plot the creep % for
a range of 𝑎 and 𝐷𝑅𝑆 at the stability ratios indicated at the top
of the respective columns. The red and blue dotted lines indicate
regions along the contours that equal the observed creep % from
the dry and wet experiments, respectively. At slightly below critical
stability where 𝐾𝑐𝑟 = 0.995 𝐾𝑚𝑎𝑐ℎ (left column), creep % tends to
increase with decreasing 𝑎 (and decreasing 𝑏). Exactly at critical
stability (right column), the sensitivity flips in terms of 𝑎 (and 𝑏).
Similarly to the slip law, example simulations with a relatively low
value of 𝑎 = 0.002 and high value of 𝐷𝑅𝑆 = 2 µm show that the
regime of slip changes drastically with slight increase in 𝑏 (Δ𝑏 <
3e-5), from slow slip/low-frequency events to fully seismic events.
The transition occurs at lower values of the stability ratio compared
to the slip law (Figure 2.19). Additionally, parameter sets with high
𝑎 and high 𝐷𝑅𝑆 also produce relatively high creep % unlike the slip
law. The differences to the slip law in the sensitivity of creep % imply
significant differences in the plausible set of rate-and-state parameters
that match the experimental creep % using the two state evolution laws. 46
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2.21 Non-unique Sets of 𝑎, 𝑏, and 𝐷𝑅𝑆 Can Produce Similar Stress Drop,
Peak Stress, and Creep Evolution. (a-d) The relative error of MAP
estimators from MCMC inversions, with all frictional parameters (𝑎,
𝑏, 𝐷𝑅𝑆, and 𝜇∗) treated as free variables, of synthetic simulations
for a range of rate-and-state parameters (𝑎: 0.007 ∼ 0.015, 𝐷𝑅𝑆: 0.5
∼ 1 µm, 𝜇∗ = 0.7 & 𝐾𝑐𝑟/𝐾𝑚𝑎𝑐ℎ: 1 ∼ 3). Aside from 𝜇∗, MCMC
consistently fails to accurately infer the true parameters. Yet, models
with the inverted values generally produce stick-slip events closely
matching the synthetic data as shown by the representative example
in the rightmost panel. Furthermore, parameter sets that are 0.5
standard deviations away from the MAP estimators produce virtually
equal stick-slip cycles even though the rate-and-state parameters vary
by 10% to 50% of the true value. The relatively large variability
in frictional parameters that produce similar events demonstrates the
non-uniqueness of the inverse problem and highlights the need for
stronger constraints from observations for unique inversions. For
the inversion of experiments presented in this study, we utilize the
constraint that the set of frictional parameters must be close to critical
stability. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.22 Quasi-Static Spring-Slider Predicts Singular Slip Rate for Slip Law
at Critical Stability. Solutions in the phase plane of slip rate (x-axis,
normalized in terms of the reference slip rate) and stress (y-axis, de-
viations from the reference value normalized by 𝑎 times the effective
normal stress) of the quasi-static spring-slider system at critical sta-
bility are re-plotted here for reference from previous studies, by Gu
et al. (1984) for the slip law (left) and by Ranjith and Rice (1999)
for the aging law (right). For the slip law, certain initial conditions
or perturbations can lead to singular slip rates in the quasi-static sys-
tem (labeled ’supercritical’). For the aging law, all trajectories are
contained within the quasi-static system. Based on the quasi-static
spring-slider studies, events of dynamic slip rate at critical stability
(or below it) are only possible with the slip law. . . . . . . . . . . . . 50
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2.23 Long-term Behavior of Stick-Slip Sequences in Dynamic Spring-
Slider: Two spring-slider simulations with the slip law, the same
rate-and-state parameters, and the same initial stress but different
initial slip rates are plotted. The simulation with higher initial slip rate
(orange curve) produces a first event that is similar to the long-term
behavior of the simulated sequence. The simulation with significantly
lower initial slip rate (purple curve) produces a first event with a
dramatically higher peak slip rate and a larger stress drop. Thereafter,
both models converge to the same sequence of events. Given that
different initial conditions tend to converge to the same long-term
sequence, we choose ones that avoid large first events that are more
difficult to resolve numerically. . . . . . . . . . . . . . . . . . . . . . 52

2.24 Inversions of Synthetic Stick-Slip at Critical Stability by Bayesian
MCMC Sampling: Two representative examples of MCMC inver-
sions are shown for stick-slip simulations of the spring-slider model
at critical stability, differing in the true values of 𝐷𝑅𝑆 (and 𝑏). The
posterior distributions of 𝑎, 𝐷𝑅𝑆 and 𝜇∗ are shown on the left in
terms of their relative error to the true value. The 2D frequency
density maps between the inferred parameters are plotted as contour
maps in between the histograms. The maximum a posteriori (MAP)
estimators (solid colored curves) and parameter sets that are a single
standard deviation away (dotted and dashed curves) produce fits that
match well the reference synthetic data (black curves) for both 𝐷𝑅𝑆.
The inversion of the simulation with lower 𝐷𝑅𝑆 (and lower 𝑏 − 𝑎)
has higher range of relative uncertainty in 𝑎 and 𝐷𝑅𝑆. A trade-off
is noticeable in the 2D frequency density map of the posteriors of 𝑎
and 𝐷𝑅𝑆, such that an increase in 𝑎 is accompanied by a decrease
in 𝐷𝑅𝑆. In both cases, MCMC inversions successfully infer the true
parameters using the MAP estimators, although with a significant
range of uncertainty represented by the width of the posteriors due to
the non-uniqueness of inverse problem. . . . . . . . . . . . . . . . . 53
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2.25 Relative Error from Inversions of Synthetic Stick-Slip Simulations
at Critical Stability by Bayesian MCMC Sampling: The relative
error of the MAP estimators from MCMC inversions of stick-slip
simulations at critical stability are compiled for a wide range of
rate-and-state parameters (𝑎: 0.006 ∼ 0.015, 𝐷𝑅𝑆: 1 ∼ 100 µm).
The error bars indicate the first and third quantiles of the posterior
distributions as a measure of uncertainty. The top row shows the
inversions of the simulations with 𝑎 fixed to 0.007. The yellow
and purple lines/dots correspond to the simulations of Figure 2.24.
Similarly to the inversion of the stable velocity step data, the relative
error in both 𝑎 and 𝐷𝑅𝑆 increase with decreasing 𝐷𝑅𝑆. This trend
is consistent across the full range of tested parameters (bottom row).
Overall, the MAP estimators successfully infer the true values with
less than 5% error across the range of tested parameters. At the same
time, the posteriors are relatively broad in their range of uncertainty
as quantile values regularly exceed 50% in relative error due to the
non-uniqueness of the inverse problem. . . . . . . . . . . . . . . . . 54

2.26 Likelihood Maps at Plausible Stability Ratios For Slip and Aging
Laws: The in-line legend along the contours indicate the number
of standard deviations away from the mean of the experimentally
observed stress drop (red curves) and creep % (orange curves) for
spring-slider simulations using the slip law (left) and the aging law
(right). The intersecting regions of the closest to mean contours
indicate the plausible sets of rate-and-state parameters that reproduce
most closely the experimentally observed stress drop and creep %.
Different ratios of stability are chosen for the two state evolution laws
such that the intersecting regions are of substantial size relative to the
tested range of rate-and-state parameters. Stability ratios generally
need to be lower for the aging law in order to match the higher creep %
from the slip law (Figure 2.16). 𝑎 of the intersecting region is slightly
higher for the aging law while 𝐷𝑅𝑆 is similar for both laws. We look
for the inversion method to successfully infer the intersecting regions
of the likelihood contours, also taking into account 𝜏𝑝𝑒𝑎𝑘 , 𝐾𝑚𝑎𝑥 and
𝐾𝑚𝑖𝑛 among additional variability in 𝜇∗ and 𝑏. . . . . . . . . . . . . 55
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2.27 Matching Simulations of the Experimental Stick-Slip Events using
the Slip Law: The posterior distributions of the MCMC inversion
are shown as histograms on the left for the dry (red) and wet (blue)
experiments using the slip law and assuming a range of rate-and-state
properties close to the critical stability. The mean estimators from
MCMC inversions of the stable velocity step data are shown in the
same panels as vertical lines. For both the dry and the wet experi-
ments, the peak of the posterior distributions of 𝑎 coincide closely
to the mean estimators of the stable velocity step. The distributions
of the rest of the frictional parameters indicate a high chance of an
increase in 𝑏, a decrease in 𝐷𝑅𝑆, and a decrease in 𝜇∗. The best
matching solutions using the MAP estimators are shown on the right
along with parameter sets that are a single standard deviation of the
posterior distributions away. Although the experiments have greater
variability between each event than the simulations, the models match
well select events of the experimental sequence that are closer to the
average event. Dots are plotted along the curves each 0.1 s, mimick-
ing the measurement frequency of 10 Hz in the experiment. Like in
the experiments, stress drops are often resolved by more than 2 points.
At the same time, the nucleation process of the simulated events lasts
significantly longer both in time and slip. In the simulations, a visible
portion of the stress drop occurs at slip rates close to the loading rate,
while in the experiments, the first 0.1-s drop in friction always marks
a significant increase in the slip rate. Still, MCMC successfully in-
fers a plausible range of rate-and-state parameters from the unstable
phase of the experiment and reveals quantifiable changes in the rate-
and-state properties of the quartz gouge with slip. The increase in
the evolution parameter, 𝑏, and decrease in the characteristic slip dis-
tance 𝐷𝑅𝑆 between the stable step and stick-slip response is likely due
to localization of shear deformation and the comminution of grains
along the principal slip surface. . . . . . . . . . . . . . . . . . . . . 56
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2.28 Matching Simulations of the Experimental Stick Slip Events using
the Aging Law: The posterior distributions of the MCMC inversion
are shown as histograms on the left for the dry (red) and wet (blue)
experiments using the aging law and assuming a range of rate-and-
state properties close to the critical stability. The mean estimators
from MCMC inversions of the stable velocity step data are shown in
the same panels as vertical lines. Unlike the slip law, the peak of the
posterior distributions of 𝑎 increase slightly with respect to the mean
estimators of the stable velocity step. Additionally, the posterior of
𝐷𝑅𝑆 indicates an increase since the stable velocity step. 𝑏 and 𝜇∗

increase and decrease, respectively, since the stable velocity step like
the slip law, although to a greater extent. The best matching solutions
using the MAP estimators are shown on the right along with parameter
sets that are a single standard deviation of the posterior distributions
away. Dots are plotted along the curves each 0.1 s, mimicking the
measurement frequency of 10 Hz in the experiment. The aging law
also matches the experimental stress drop and creep % well like the
slip law. However, stress drops are consistently resolved by more
points than in the experiment, indicating significantly lower slip rates
during the events. The nucleation process of the spring-slider models
last significantly longer both in time and slip than in the experiments,
although this is also the case with the slip law. The fit of the aging
law ultimately features more discrepancies from the experiment than
the fit of the slip law. . . . . . . . . . . . . . . . . . . . . . . . . . . 58



xxxii

2.29 Spring-Slider Simulations Can Match Stress Drop, Creep % and Peak
Stress of Experiments but Cannot Match 𝐾𝑚𝑎𝑥 and 𝐾𝑚𝑖𝑛: Histograms
of the stick-slip characteristics observed from the dry (red cures of
left column) and wet (blue curves of right column) experiments are
plotted along with Gaussian distributions predicted by the MAP es-
timators for the slip (yellow) and aging (purple) laws. The simulated
distributions match well the observed distributions of the stress drop,
creep % and peak stress. The simulated distribution for 𝐾𝑚𝑎𝑥 and
𝐾𝑚𝑖𝑛 are lower and higher than those of the experiment, respectively,
for both state evolution laws. In other words, the experimental stick-
slip consistently shows more creep during the nucleation phase right
before the stress peak and a higher tendency to ’stick’ right after the
event. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

2.30 Influence of Loading Rate on Stick-Slip in the Spring-Slider: The
rate-and-state parameters of the best-matching model of the stick-
slip events in the dry experiment using the slip law (red) is used to
conduct spring-slider simulations at different loading rates. Dots are
plotted every 0.1 s, similar to the measurement sampling at 10 Hz in
the experiments. The dotted lines in the second row demarcate the
loading rate using the same color of the corresponding simulation.
The loading rate has significant effect on both the stress drop of
the event and the evolution of creep during the strengthening phase.
Namely, a decrease in the loading rate lengthens the nucleation phase
while decreasing the creep % and increasing the stress drop and
peak stress. The longer nucleation process with a decrease in the
loading rate is similar to the experiment (Figure 2.4) but the increase
in stress drop and peak stress is not observed in the experiments.
Thus, the spring-slider model with rate-and-state friction produces
extra sensitivity of stick-slip features to the loading rate not observed
in the experiments. . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
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2.31 Quasi-Static Finite-Element Model: The experimental apparatus is
approximated as a single column of constant thickness besides the
location of rubber spacers adjacent to the gouge layer (Figure 1)
which is left vacant, considering the negligible strain energy of rubber
compared to the steel surroundings. A constant displacement rate is
applied at the loading end of the column while the other end is held
fixed. A constant normal stress is applied from along the top surface
of the apparatus above the gouge layer while the displacement in
the vertical direction is fixed along the bottom surface. Plane-strain
conditions are applied and inertia is neglected. The simple 2D finite-
element model simulates a more accurate analogue of the experiment
in terms of the apparatus geometry, accounting for the effect of a
finite loading system and the finite length of the sliding surface. . . . 64

2.32 Finite-Element Model Behaves Similarly to Spring-Slider for Stable
Velocity Step: The evolution of friction in the finite-element model
with the rate-and-state parameters inferred from the spring-slider in-
version using the slip law is plotted (solid red curve) along with the
results from the spring-slider model (dotted red curve) and the dry ex-
periment (black curve) for the stable velocity step. The finite-element
model behaves similarly to the spring-slider model and matches the
experiment well. The comparison shows that the spring-slider model
may serve as an accurate and efficient representation of the finite
experiment for the stable velocity step. . . . . . . . . . . . . . . . . . 65
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2.33 Evolution of Slip and Stress in the Finite-Element Model During the
Loading phase: (a) A single stick-slip event from the event sequence
of the finite-element model is plotted along with the evolution of
stress (b, c) and slip, slip rate and state variable (d, e, f) during the
strengthening phase. The colors on each plot correspond to the same
time scale shown on the far right. Dots along the curves in (a) are
spaced at 0.1-s intervals. The shapes of shear (b) and normal (c) stress
profiles change little during the loading period, due to uniform slip.
The shapes are non-uniform in space due to stress concentrations at
the ends of the frictional layer. During the plotted duration, evolution
of slip, slip-rate and the state variable are largely uniform in space
aside from a slightly higher acceleration at the end further away from
the loading column. This model suggests that differences between
the experiments and spring-slider models during nucleation phase
are not obviously due to finite-fault effects. . . . . . . . . . . . . . . 67

2.34 Evolution of Slip and Stress in FEM Model During the Stress-Drop
Event: (a) A single stick-slip event of the finite-element model is
plotted along with the evolution of stress and slip during the dynamic
phase (b, c, d, e, f). The colors on each plot correspond to the same
time scale shown on the far right. Dots along the curves in (a) are
spaced at 0.1-s intervals. Although slightly higher acceleration of
slip is visible at the edges, the evolution of slip, slip rate and the state
variable are largely uniform across the length of the slipping surface.
The spatially uniform evolution of slip suggests that the discrepancy
between the experiments and spring-slider models are not obviously
due to finite-fault effects. . . . . . . . . . . . . . . . . . . . . . . . . 68

3.1 Well-Stimulation Operation in Otaniemi, Finland (Kwiatek et al.,
2019). The observation well (OTN-2) and stimulation well (OTN-
3) are indicated by lines extending into depth at the center of the
schematic. Locations of various geophones within the area are indi-
cated by the yellow triangles. Locations of stimulation stages S1 to
S5 vary along the length of OTN-3. Basic stimulation parameters are
shown in the inset. . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
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3.2 Earthquake Catalogue in Otaniemi. The complete catalogue of Leon-
hardt et al. (2020) is plotted in dark blue as a histogram. The injection
rate history is plotted in orange. The background colors represent the
timing of the individual injection stages. The seismicity rate shows
a strong direct and roughly linear correlation to the injection rate,
contrary to the non-linearity expected from rate-and-state friction. . . 77

3.3 Relocated Catalogue of Leonhardt et al. (2020). 1986 relocated
events are indicated as black dots according to their distances from
the injection source and time of occurrence (top). The red curve
outlines the theoretical triggering front of Shapiro, Huenges, and
Borm (1997),

√︁
4𝜋𝑐𝑡 𝑓 𝑡, with 𝑐𝑡 𝑓 = 𝑐ℎ𝑜𝑟𝑛𝑒𝑟 = 0.018 m2/s. It is diffi-

cult to assess a level of agreement between the triggering front and
the relocated catalogue given the limited sample size. Clusters of
events far beyond the curve are likely due to leaks in the casing,
as evidenced by their locations close to the well path shown in the
vertical section view (bottom-left). In the map (bottom-right) and
and vertical section views, the well is drawn in black with stimulated
sections of the well and occurrence time of events color-coded cor-
respondingly. 𝑀𝐻𝐸𝐿 refers to the local Helsinki magnitude scale.
The color-coding reveals little correlation in space between events
and stimulation stages. Overall, the

√
𝑡 evolution of the triggering

front and the diffusive structure of the seismicity cluster suggests pore
pressure transport as the main triggering mechanism. . . . . . . . . . 78
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3.4 Omori Law (𝑝=1) Decay During Shut-in. The recorded catalogue in
time is zoomed-in on an interval during which injection has largely
stopped (around 450-hour mark in Figure 2). A Short period prior
to shut-in is shown with a sky blue background. The shut-in period
is indicated with a grey background. The decay pattern in seismicity
rate during the shut-in is matched well with an Omori decay function
(modified Omori-Utsu law with 𝑝=1), plotted in light purple. The
dotted lines and shaded areas in-between indicate the 95% confidence
interval of the fit. The fitted value of 𝑡𝑟 and the bounds of the
confidence interval of the fit are indicated in the legend. Omori
decay may occur due to numerous mechanisms such as the finite
nucleation process, stress relaxation by pore pressure diffusion, or
viscoelastic creep during the posteseismic phase. The nature of
induced seismicity from fluid injections makes a mechanism related
to pressure diffusion a likely candidate for Otaniemi. . . . . . . . . . 79

3.5 Marsan and Lengline (2008) Rate Densities. Rate densities measur-
ing the weight of influence from individual injections onto induced
events are computed through an adaptation of the cascading algo-
rithm from Marsan and Lengline, 2008. The densities follow a 1/𝑡
type of decay in time, consistent with the Omori-law decay observed
during shut-ins (Figure 3.4) and suggestive of the possibility for a
convolution kernel relating injections to induced seismicity. . . . . . 81
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3.6 Model Predictions in Time. Model predictions are plotted in different
colored shading over the observed catalogue in dark blue. The dotted-
lines and shaded areas in-between indicate the 95% confidence inter-
val of the prediction. Posterior distributions of fitted parameters are
shown on the right for applicable models. Rest of the parameters are
as listed in Table 3.1. While the global fit to the observations are com-
parable to other models, it lacks rapid variations of the seismicity rate
in-between injection cycles compared to the rate-and-state models —
evident of qualitative differences in modelling the stress state relative
to failure and delayed nucleation mechanisms. All models (besides
(c)) consistently capture temporal trends of the seismicity rate, such
as the Omori-law decay during shut-ins and build-up periods at the
onset of injections, with the linear convolution model requiring the
fewest parameters and lowest computational cost. Model parameters
and goodness-of-fit metrics are summarized in Table 3.2. . . . . . . . 83

3.7 Well-Pressure Measurements and Modelled Fit. Observed well-
pressure and the modelled fits are plotted in red and blue, respectively.
The top fit corresponds to 𝑐𝑡𝑟𝑢𝑒 = 𝑐ℎ𝑜𝑟𝑛𝑒𝑟 = 0.018 m2/s, effective well
radius, 𝑤𝑟 , of 44m and ambient pore pressure, 𝑝0, of 43.5 MPa while
the bottom fit corresponds to 𝑐𝑡𝑟𝑢𝑒 = 𝑐𝑏𝑢 = 0.044 m2/s, 𝑤𝑟 = 31m and
𝑝0 = 54.9 MPa. The posterior distributions of 𝑤𝑟 and 𝑝0 for 𝑐𝑡𝑟𝑢𝑒 =
𝑐ℎ𝑜𝑟𝑛𝑒𝑟 are shown on the bottom-left and those for 𝑐𝑏𝑢, 𝑤𝑟 and 𝑝0 are
shown on the bottom-right. While both models provide a good global
fit to the data, 𝑐ℎ𝑜𝑟𝑛𝑒𝑟 and 𝑐𝑏𝑢 tend to fit better either the drawdown
of pressure during shut-ins or the build-up of pressure at injection
onsets, respectively. The difference between the fits likely indicates
the changing diffusivity of the injected medium with the injection
pressure. Diffusivity increases at higher pressure due to the creation
of fractures and hydraulic pathways and decreases at lower pressure
due to fracture closure and healing. . . . . . . . . . . . . . . . . . . 88
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3.8 Model Predictions in Space. The synthetic catalogue is plotted as
black dots in space and time with the relocated catalogue of Leonhardt
et al. (2020) superposed as red dots. The red curve outlines

√︁
4𝜋𝑐𝑡 𝑓 𝑡

with 𝑐𝑡 𝑓 = 𝑐𝑡𝑟𝑢𝑒 for each model. Histograms of the observed event
distribution in space is plotted in red along with randomly sampled
distributions of the synthetic catalogues in black. (a) The extension
of the convolution model to space gives a good fit. (b) The rate-
and-state model with 𝑐𝑡𝑟𝑢𝑒 = 𝑐ℎ𝑜𝑟𝑛𝑒𝑟 underpredicts the mean distance
substantially. (c) Rate-and-state model without resetting of stress
history shows manifestations of the Kaiser effect from large regions
of seismic quiescence in stress shadows near the injection source. (d)
The fit to space in the rate-and-state model is significantly improved
with 𝑐𝑡𝑟𝑢𝑒 = 𝑐𝑏𝑢. (e) The Threshold Coulomb model with 𝑐𝑡𝑟𝑢𝑒 =
𝑐𝑏𝑢 significantly overpredicts the distribution of seismicity in space
as does the theoretical triggering front for 𝑐𝑡 𝑓 = 𝑐𝑏𝑢, suggesting that
the role of delayed nucleation on seismicity migration is essential
in reproducing the observed spatio-temporal evolution of seismicity
in Otaniemi given the likely diffusivities. Model parameters and
goodness-of-fit metrics are summarized in Table 3.2. . . . . . . . . . 90

3.9 Sensitivity of Triggering Front to Delayed Nucleation. Synthetic
catalogues for two parameter sets only differing in 𝑎 (0.0001 and
0.001 in top and bottom, respectively) are shown. Lower 𝑎, which
translates to lower 𝑎𝜎, results in a further extent of the triggering
front, due to the role of delayed nucleation that acts proportionally
to a threshold stress for the triggering of events as explained in detail
by Wenzel (2017). Along with the reference triggering front in
red, an additional

√︁
4𝜋𝑐𝑡 𝑓 𝑡 curve is drawn in orange for 𝑎 = 0.001,

with 𝑐𝑡 𝑓 modified by a factor of 0.3 that better matches the apparent
triggering front. The effect of the finite nucleation process on the
spatial pattern of seismicity implies that neglecting rate-and-state
effects can significantly bias the inference of diffusivity from the
triggering front. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
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3.10 Evolution of Spatial Distribution of Seismicity for Rate-and-State
Model. Spatial profiles of the seismicity rate are plotted in blue at
various times for the rate-and-state model in response to a single
boxcar injection. Half-norm distributions, in green, are used to fit
the model-generated distribution. The line style alternates between
solid and dashed between each time step for clarity. The half-norm
distributions evolve with a time-dependent shape parameter, Λ(𝑡),
which closely follows

√
𝑐𝑡𝑟𝑢𝑒𝑡 as shown in the inset of the top figure.

The half-norm approximation of the spatial evolution of seismicity
in the physical model can serve as the spatial component to the
convolution model. . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

3.11 Inference of Diffusivity Accounting for Role of Delayed Nucleation
on Seismicity Migration. An empirical relationship for the multi-
plicative factor, 𝛾ℎ, of Λ(𝑡) =

√
𝛾ℎ𝑐𝑡𝑟𝑢𝑒𝑡 is found in terms of the

non-dimensional ratio 𝑎𝜎/𝑝𝑞 (left). The fit can be used to infer new
uncertainty estimates on the diffusivity of the medium given appar-
ent spreading of the radial distribution of the seismicity in Otaniemi,
i.e., 𝑐ℎ𝑔 = 0.011 m2/s. Contour plot on the right shows the percent
difference between the true diffusivity and the predicted diffusivity
from the functional fit 𝛾ℎ (𝑎𝜎/𝑝𝑞) for a range of 𝑎 and 𝑐𝑡𝑟𝑢𝑒. Con-
siderations of the role of delayed nucleation on seismicity migration
makes higher diffusivities more likely than previously considering
solely the theoretical triggering front of Shapiro, Huenges, and Borm
(1997). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

3.12 Comparison of Rate-and-State and Threshold Coulomb Model For
Varying Time Scale of Injections. The rate-and-state and coulomb
models that produced best fitting predictions of Figure 3.6d&e, re-
spectively, are compared in their response to the injection scenario
of Otaniemi with injection durations lengthened (top) and shortened
(bottom) by 10 times. The injection rate is shown in light orange.
The Threshold Coulomb model shows significant disagreement with
the rate-and-state model for shorter injections, illustrating the differ-
ences in modelling the stress state with respect to failure and delayed
nucleation at shorter time scales. . . . . . . . . . . . . . . . . . . . . 99
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3.13 Dependence of Omori Law Decay on Fluid Transport Properties. 𝑡𝑟
of Omori Law Decay in response to single boxcar injections under
the rate-and-state model are plotted in terms of 𝑡𝑐 and 𝑡𝑎 (left). 𝑡𝑟 ,
shows a stronger dependence on 𝑡𝑐, or the diffusivity, than on 𝑡𝑎.
Namely, longer diffusion times result in longer relaxation times of
the seismicity rate. 𝑡𝑟 also shows strong dependence on injection
duration, 𝑡𝐼 (right). 𝑡𝑟 first increases with increasing seismicity rate at
time of shut-in, before decreasing as steady-state stress conditions are
reached when the seismicity rate decreases as well due to the Kaiser
effect. The strong dependence of the Omori decay in the physical
model to transport properties suggests that the observed decay pattern
in Otaneimi can be sufficiently explained by the diffusion of pressure,
with negligible effects from finite nucleation. . . . . . . . . . . . . . 101

3.14 Partial Forecasting of Induced Seismicity by Physical Model. Ability
of the physical model to forecast induced seismicity is tested by
limiting the portion of the data used for model tuning. The rate-and-
state model with 𝑐𝑡𝑟𝑢𝑒 = 𝑐𝑏𝑢 = 0.044 m2/s is trained using only the
first injection stage. The training results in 𝑎, ¤𝜏𝑟 , and 𝑟𝑏 of 0.00005,
0.1kPa/year, and 0.39 events/day. The pseudo-forecast is comparable
to the hindcast of Figure 6d & 8d, with only a marginally higher KS-
statistic of 0.040 and lower log-likelihood of 169,076, demonstrating
the capability of the physical model to truly forecast seismicity. . . . 103

3.15 Partial Forecasting of Induced Seismicity by Convolution Model.
Ability of the convolution model to forecast induced seismicity is
tested by limiting the portion of the data used for model tuning. The
top two rows compare forecasts using the first one and two injec-
tion stages as training periods where 𝑡𝑟 is estimated to be 2.9 and
10.4 hours, respectively. The forecast using solely the first injection
stage as the training period significantly underestimates 𝑡𝑟 and un-
derpredicts the seismicity rate for the rest of the injection history.
The forecast using the first two injection stages as the training period
is comparable to the hindcast of Figure 3.6a & 3.8a, with only a
marginally higher KS-statistic of 0.047 and lower log-likelihood of
175,430. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
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4.1 The Network of Embedded Fractures in the DFN Model. Discrete
fractures are embedded in an infinite medium along a 10x10x10 grid
with an average spacing of 25m. The fractures share the same size
(10m x 10m) and the same orientation. Boundary element solution
for each fault is coupled to the rest by solutions for quasi-static stress
transfer between dislocations (Okada, 1985). Shear resistance on
each fault is governed by rate-and-state friction, radiation damping,
and inertial forces along the direction of slip. Unlike the Dieterich
model, the DFN model accounts for the finite size of the seismogenic
reservoir, the full evolution of friction from any initial conditions,
and stress interactions between each fault. . . . . . . . . . . . . . . . 116

4.2 Distribution of Initial Conditions for Individual Faults in the DFN
Model. Initial conditions of all faults are plotted in their phase-
plane for the slip rate, 𝑉𝑖𝑛𝑖

𝑉∗ , the normalized state variable, 𝜃𝑖𝑛𝑖𝑉𝑖𝑛𝑖
𝐷𝑅𝑆

, and
friction, 𝑓𝑖𝑛𝑖. To satisfy the no-healing assumption used by Dieterich
(1994), the normalized state variable is ensured to be above 100.
By using analytical solutions for the quasi-static spring-slider, the
initial distribution traces the aseismic period of the lifecycle of a
spring-slider under constant loading. . . . . . . . . . . . . . . . . . . 118

4.3 DFN Catalogues with Different 𝑟𝑏 and the Dieterich Model Predic-
tion. The Dieterich model (contour plot of the background) and two
DFN Models (black and blue scatter plots) are simulated for the same
injection scenario at a constant injection rate of 30 kg/s. The initial
conditions of the DFN model are configured with different values
of 𝑟𝑏 (1 event/hour for the black catalogue and 1 event/year for the
blue catalogue). The catalogue with higher 𝑟𝑏 has steeper triggering
and back-propagation fronts due to shorter times to instability. For
different values of 𝑟𝑏, the normalized seismicity rate of the Dieterich
model does not change. The back-propagation front during the in-
jection only appears for the DFN catalogue due to the exhaustion of
a finite number of sources. Although the Dieterich model does not
predict different densities of seismicity rate for different 𝑟𝑏, the DFN
catalogues differ significantly due to the difference in the range of
initial distribution of times to instability. . . . . . . . . . . . . . . . . 120
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4.4 Long-Term Simulations with Different Fault Spacing: (a) The Di-
eterich model and the DFN model with 𝑟𝑏 = 1 event/hour of Figure
3 is extended in time along with a shut-in of the injection at the half
point of the simulation duration. The DFN catalogue exhibits a long-
term convergence to steady seismicity rates due to source interactions
at constant loading. The increased frictional stability due to increase
in pressure also creates an aseismic region in the DFN model (the
region is traced at its upper boundary by the white dotted line). The
shut-in delays the time to instability for faults close to the injection
source for both the Dieterich and DFN model. Otherwise, the Di-
eterich model predicts a constant seismicity rate for the simulation
period. (b) Fault spacing is increased from 25m to 500m to decrease
the extent of source interactions with slip, which fully eliminates the
convergence of the fault network to a steady seismicity rate. The
long-term simulation reveals the the effect of source interactions in
the redistribution of the stress state across the fault network that is
not accounted for in the Dieterich model. . . . . . . . . . . . . . . . 122

4.5 Dieterich Model Fits to DFN Catalogues with 𝑟𝑏,𝐷𝑖𝑒𝑡𝑒𝑟𝑖𝑐ℎ as a Free
Parameter and 𝑎𝐷𝑖𝑒𝑡𝑒𝑟𝑖𝑐ℎ = 𝑎𝐷𝐹𝑁 . The Dieterich model is matched
to DFN catalogues at different injection rates by adjusting the back-
ground seismicity rate parameter, 𝑟𝑏,𝐷𝑖𝑒𝑡𝑒𝑟𝑖𝑐ℎ to match the total num-
ber of events. 𝑟𝑏,𝐷𝑖𝑒𝑡𝑒𝑟𝑖𝑐ℎ is lower than 𝑟𝑏,𝐷𝐹𝑁 to compensate for
the finite number of faults in the DFN model. 𝑟𝑏,𝐷𝑖𝑒𝑡𝑒𝑟𝑖𝑐ℎ is lower
at higher injection rates where the Dieterich model predicts higher
seismicity rates from accessing the infinite population of sources,
while the total number of events in the DFN model is limited by the
number of embedded fractures. . . . . . . . . . . . . . . . . . . . . 126

4.6 Sensitivity of 𝑟𝑏,𝐷𝑖𝑒𝑡𝑒𝑟𝑖𝑐ℎ to Injection Rate with 𝑎𝐷𝑖𝑒𝑡𝑒𝑟𝑖𝑐ℎ = 𝑎𝐷𝐹𝑁 :
𝑟𝑏,𝐷𝑖𝑒𝑡𝑒𝑟𝑖𝑐ℎ of the best fit to the DFN catalgoues are plotted for all
tested injection rates. 𝑟𝑏,𝐷𝑖𝑒𝑡𝑒𝑟𝑖𝑐ℎ is lower than the value of 𝑟𝑏,𝐷𝐹𝑁
used to configure the initial conditions of the DFN model (dotted
horizontal line) at all injection rates. 𝑟𝑏,𝐷𝑖𝑒𝑡𝑒𝑟𝑖𝑐ℎ decreases with in-
creasing injection rate in order to match the total number of events in
the DFN model which is limited by the number of embedded fractures.127
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4.7 Dieterich Model Fits to DFN Catalogues with 𝑟𝑏,𝐷𝑖𝑒𝑡𝑒𝑟𝑖𝑐ℎ and 𝑎𝐷𝑖𝑒𝑡𝑒𝑟𝑖𝑐ℎ
as Free Parameters. The Dieterich model is matched to DFN cata-
logues at different injection rates by adjusting the background seis-
micity rate parameter, 𝑟𝑏,𝐷𝑖𝑒𝑡𝑒𝑟𝑖𝑐ℎ to match the total number of events,
and adjusting 𝑎𝐷𝑖𝑒𝑡𝑒𝑟𝑖𝑐ℎ to match the evolution of the seismicity rate
with time. The Dieterich model tends to have higher peaks of the
seismicity rate at the onset of injection due to accessing an infinite
population of the nucleation sources, especially close to the injection
source. To dampen the peak and match the DFN catalogue more
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𝐷𝑅𝑆
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C h a p t e r 1

INTRODUCTION

The 2017 𝑀𝑤 5.4 Pohang earthquake was a historic event for a country with minimal
history of seismic activity and an alarm for the industry of geothermal energy
world-wide. The earthquake occurred approximately 3 months after a year and
a half of fluid injection into the subsurface of Pohang, an industrial city on the
eastern coast of South Korea, for the country’s first ever stimulation of a geothermal
energy reservoir. The unexpected earthquake caused nearly 300 million dollars of
damages to nearby infrastructure, and litigation between the government and the
city’s residents for compensation continues to this day. An even greater loss may
be the opportunity cost for the future of geothermal energy in Korea. In March of
2022, the Korean government demolished the geothermal power plant of Pohang.
A permanent asterisk now marks all existing and future plans for the expansion of
geothermal energy in the country (Figure 1.1).

The Pohang earthquake is only one notable example of an earthquake triggering the
immediate termination of an industrial operation which involved injection of fluid
underground (Ellsworth et al., 2019; Kim et al., 2018). A lack of clear understand-
ing and control of the maximum magnitude event that orders immediate suspension
of all operations (Häring et al., 2008; Schultz et al., 2020) hamper advancements
central to the world’s transition to a greener economy such as geothermal energy
(Gaucher et al., 2015; Majer et al., 2007; Zang et al., 2014) and long-term geo-
logic carbon sequestration (Vilarrasa and Carrera, 2015; White and Foxall, 2016;
Zoback and Gorelick, 2012). At the same time, fluid injections offer a relatively
repeatable and controllable environment to study the complex network of earth-
quake processes, and the collection of seismic and geodetic data accommodating
fluid injections has provided invaluable knowledge regarding earthquake physics. A
better understanding of injection-induced seismicity could therefore help interna-
tional efforts in limiting or offsetting emissions of CO2 (Bertani, 2012; Tester et al.,
2006) and advance our understanding of devastating natural earthquakes that may
pose even greater threat to civil safety.

With respect to geothermal energy, the changing landscape of the global energy
sector poses further challenges. As solar and wind energy increases its capacity to
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Figure 1.1: The 2017 𝑀𝑤5.4 Pohang Earthquake. A 𝑀𝑤5.4 earthquake struck the
coast of Pohang, South Korea (top left) on Nov. 15th, 2017. Nearly 300 million
dollars of damages followed, mostly in the form of infrastructure damage due to the
ground motion (e.g., bottom left - Gwon and Song, 2017). (Top right) Korean news
channel JTBC reports on the earthquake at the time of its occurrence and (bottom
right) the same news agency reports on the demolition of the geothermal plant 5
years after the earthquake in 2022. The earthquake has caused a significant dent in
future expansion of geothermal energy production in the country.

support energy demand, so has the dependence of the power grid on their seasonal
and daily fluctuations. The so-called ‘Duck Curve’ (Figure 1.2), which traces the net
energy demand during the course of a day closely resembling the shape of a duck,
demonstrates the ever increasing demand for energy sources complementary to solar
and wind power. The long-held pride of the geothermal community as a baseline
source of energy has begun to lose its place in modern society. Geothermal energy
must adapt to becoming an on-demand source of power that can be flexible in terms
of its injection and extraction rate of fluids. Introduction of such sudden or oscil-
latory changes in the stress state of the injected medium requires a commensurate
understanding of the physics for safe and optimal operation.

This thesis approaches the problem of induced seismicity from the modeling per-
spective at two different scales: 1. at the scale of the localized shear layer along the
interface between two faults where we model laboratory earthquakes in the presence
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Figure 1.2: The Duck Curve (The Solar Power Duck Curve Explained n.d.): The
colored lines plot the net demand of electricity in California from 2019 to 2022.
The graph begins during nighttime, when energy demand is the lowest. Demand
picks up in the morning before dropping again due to the production of solar energy
during daytime. Net energy demand is the highest during the evening, as solar
energy production decreases while demand stays high. The trough of the net energy
demand during daytime (sometimes referred to as ‘the belly of the duck’ has steadily
decrease with time due to an increase in the construction of solar panels. The curve
marks a shift in the energy sector towards solutions for flattening the peak during the
evening hours with alternative sources of energy that can be produced on-demand.
With regards to geothermal energy, this requires a thorough understanding of the
interplay between frictional instability and fluid injections for optimal operation that
can be flexible in terms of the desired injection/extraction rates.

of pressurized fluids, and 2. at the scale of a reservoir where we model the rate of



4

earthquakes given the injection/extraction schedule. In this introduction, I discuss
present challenges and existing theory in developing such models.

1.1 Multi-Scale Nature of Earthquakes
An earthquake is the culmination of a complex network of mechanisms that spans
multiple scales in both time and space. Prior to the earthquake, a long period of
creep potentially lasting decades precedes the short period of seismic slip that could
last seconds. Neither transition between the two periods happen instantaneously.
The transition from creep to dynamic slip occurs through what is often termed
’nucleation’ whose finite duration has been observed in the lab (McLaskey, 2019)
and numerical simulations (Ampuero and Rubin, 2008; Rubin and Ampuero, 2005).
In fact, the finite nucleation process turns out to be a natural product of an initial
resistance to sliding in response to a sudden increase in the slip rate that is observed
in laboratory experiments. The transition from dynamic slip back to creep, a.k.a.
the arrest process, can also occur gradually, depending on the balance between the
amount of available energy lying ahead of the rupture tip and the energy dissipated
by friction (Ke, McLaskey, and Kammer, 2022; Lambert, Lapusta, and Perry, 2021).
Accurately resolving the two transitions is paramount to modeling the earthquake
process; one determines how an earthquake begins and the other determines how it
stops.

In space, earthquake ruptures on preexisting natural faults that is a plane of weak-
ness embedded between larger bulk media whose damage structure is remarkably
hierarchical (Figure 1.3). At a sufficient distance away from the fault, the bulk is
largely undamaged and unaffected by slip from earthquakes. Gradually, a network
of fractures begins to pervade the rock closer to the fault interface as a result of
shear deformation. The interface that accommodates the majority of slip, some-
times referred to as the Principal Slip Zone (PSZ), is itself a continuum layer of
granular particles . The brittle rock pulverizes under the high level of normal stress
experienced at seismogenic depths to a material called ‘gouge.’ Field studies have
confirmed the granular composition of the PSZ by the presence of incohesive rock
particles with extremely small grain size (Chester and Chester, 1998; Chester et al.,
2004). Other studies have also shown that the PSZ may not always be a single strand
at the length scale of a fault but more likely a web of strands that branch along the
direction of slip (Mitchell and Faulkner, 2009). Damaged rock fills the space be-
tween the branches of gouge, and slip is accommodated in a sharply heterogeneous
manner across the zone that is referred to as the fault core.
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Figure 1.3: Multi-Scale Nature of Earthquakes in Space. (Top) The earthquake
environment in its entirety spans a vast spectrum of length scales, bridged between
the size of grains along the fault interface at the nano-scale and the thickness of
the seismogenic zone at the kilometer scale (Ben-Zion, 2008). (Bottom left) More
zoomed-in around the area immediately adjacent to a fault, a complex damage
structure surrounds a fault core that accommodates a bulk of the shear deformation
(Mitchell and Faulkner, 2009). (Bottom right) Layers of most localized deforma-
tion are more granular in nature, due to the pulverization of the rock under high
compression (Chester and Goldsby, 2003). The complex network of physics that
accommodates each layer of rock with varying levels of damage poses a complex
problem to model and to resolve accurately in numerical simulations.

The multi-scale nature of the earthquake process poses a significant challenge for
who wishes to model it. Resolving the multiple scales in time is equivalent to
solving a stiff ordinary differential equation, a well-known challenge in numerical
mathematics. Lapusta et al. (2000) made a breakthrough in resolving the time scale
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by proposing an adaptive time stepping scheme that is dependent on the maximum
slip rate along a fault. Resolving the multiple scales in space on the other hand,
remains an unsolved problem. The development of hierarchical models aided by
rapid computation of smaller scale processes using machine learning techniques
raises hope for the feasibility of multi-scale models in the future (Karimi and
Bhattacharya, 2024). Yet, the question of what physics is actually present in the
fault core is still up to debate. Granular gouge may exhibit significantly different
and possibly more complex mechanics compared to bare surfaces (Marone, 1998;
Melosh, 1979). In anticipation of a numerical method that can resolve various
length scales simultaneously, the community must first identify and understand the
physics to model and the competitive or cooperative interplay between them.

1.2 Friction in the Presence of Fluids
Even without injections, fluids are already common at seismogenic depths. Water
percolates through the rock pores by diffusive transport. To first order, the gravita-
tional weight of the fluid imposes a fluid pressure to the surrounding rock medium
which reduces the effective stress felt by the poroelastic continuum when subtracted
from the gravitational weight of the solid rock. The decrease in normal stress gen-
erally decreases the shear stress in the media as well. Since frictional resistance is
believed to be directly proportional to the normal stress, the presence of fluid also
decreases shear strength.

In fact, the interplay between fluid and rock can be much more complicated (Fig-
ure 1.4). For example, dissipation of frictional energy into heat during dynamic
slip can cause a rapid increase in temperature along the PSZ, which includes the
pore fluids. The increase in temperature causes a rapid increase in pore pressure
which dramatically decreases frictional resistance. Such dynamic weakening by the
presence of pressurized pore fluids has been proposed as a possible mechanism for
the propagation of slip into a previously stable fault segment during the 2011 𝑀𝑤

9.0 Tohoku-Oki earthquake (Noda and Lapusta, 2013). Additionally, the transfer
of heat to the pore fluids helps explain the ‘heat paradox’ — the question of why
geological evidence of melt is so hard to find along the PSZ in nature despite the ex-
pected increase in temperature far exceeding the melting temperature of rocks (Rice,
2006). Poroelasticity can also destabilize slip. Namely, slip causes compression of
the bulk rock in the propagating direction and expansion in the opposite direction
(Heimisson, Dunham, and Almquist, 2019). Such gradient in pore pressure causes a
transfer of fluids across the PSZ such that friction weakens ahead of the rupture tip.
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Both pore pressurization and poroelastic fluid transfer are positive feedback mech-
anisms; slip promotes both phenomenon that in turn promote more slip, facilitating
the nucleation and propagation of rupture and delaying the arrest process.

Figure 1.4: Examples of Fluid-Rock Interactions in Earthquakes. (Left) Rapid slip
along a localized layer with relatively small thickness produces a significant amount
of heat, enough to melt the rock. Heat transfers to the pore fluids and raises its
temperature and pressure. The increase in pressure reduces the effective normal
stress and friction (Noda and Lapusta, 2010). (Right) Poroelastic deformation
of bulk medium during slip induces fluid transport across the layer of slip such
that frictional resistance weakens ahead of the rupture tip. Both phenomenon create
positive feedback loops that dynamically weakens frictional resistance and promotes
rupture propagation. Such interactions between the pore fluid and the solid rock
matrix highlight the non-linear relationship between the two materials that affects
friction beyond the effective stress principle (Heimisson, Dunham, and Almquist,
2019).

The aforementioned examples are only two of the numerous mechanisms that com-
prise the fluid-rock interaction. Other studies have highlighted the role of adhesion,
mineralization, lubrication, and phase transition, among others (Acosta et al., 2018;
Di Toro et al., 2011; Frye and Marone, 2002; Scuderi, Collettini, and Marone, 2017).
Given the ubiquitous presence of water underground, fluid is sure to play a dominant
role in the earthquake process, although which of the identified mechanisms may be
dominant amongst each other is yet to be fully understood.

1.3 Physical Models of Seismicity Rate and Magnitudes Based on Coulomb
Friction

In its most basic form, friction defines the resistance to motion along an interface
between two materials. In the context of earthquakes, the cumulative resistance to
shear deformation in the finite layer of gouge along the PSZ is most often modelled as
a frictional process. The finite thickness of the gouge is idealized as a mathematical
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plane considering the larger damage structure that surrounds it. Thus, the relevant
constitutive relationship is the friction law to govern the resistance to slip along the
approximately bare surface.

The simplest friction law — which might also be the most commonly used — is
the Mohr-Coulomb friction law (also referred to hereafter as Coulomb friction). In
Coulomb friction, the frictional interface does not slip until the shear stress reaches
the predetermined frictional strength of the material. Once slip commences, the
frictional strength and stress instantaneously drop to the dynamic level of friction,
which is also assumed to be a material property. The Coulomb criterion of instability
can be visualized on a Mohr-Coulomb diagram as a diagonal line with the slope
corresponding to the tangent of the friction coefficient (Figure 1.5). It is common to
impose a vertical shift to the curve such that the x-intercept represents the cohesion
between the interface at zero compression.

Figure 1.5: Mohr-Coulomb Criterion (Yang et al., 2017). The Mohr-Coulomb
diagram plots the state of stress along a plane or arbitrary orientation in 2D. The
Coulomb friction law states that slip occurs when the shear stress equals the frictional
strength, which is a scalar multiple of the normal stress with the coefficient equal
to a predetermined material property. The criterion can be drawn as a diagonal line
whose slope is equal to the inverse tangent of the friction coefficient. Injection of
fluid decreases the effective normal stress and moves the circle to the left on the
plot, bringing closer the state of stress to the failure criterion (the blue transition).
Alternatively, the the stress state of the solid constituent could also change (e.g.,
possibly due to poroelasticity) to increase shear and normal stress (the red transition).
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A simple thought experiment can devise a model for the number of earthquakes per
time, i.e., the seismicity rate, given the Coulomb friction law. Imagine a random
population of faults such that a constant uniform stressing rate to all faults produces a
constant seismicity rate. Then, given the Coulomb criterion for the onset of dynamic
slip, the seismicity rate in response to an arbitrary stressing history is simply a scalar
multiple of the stressing rate. In other words,

𝑅

𝑟𝑏
=

¤𝜏
¤𝜏𝑟

(1.1)

where 𝑅 is the seismicity rate in response to stressing rate ¤𝜏 for the constant seismicity
rate, 𝑟𝑏, observed at the constant stressing rate ¤𝜏𝑟 . Note that the above is only true
in the case of monotonically increasing stress history. If stress ever decreases, the
Kaiser effect (Lavrov, 2003) would suppress seismicity until the previous maximum
stress is reached.

The simple and linear proportionality between seismicity and stressing rate is in fact
not observed in nature. Most notably, the fluctuations of seismicity rate observed
at the Himalayan Main Thrust Fault show a distinctly non-linear dependence on the
periodicity of the applied loading (Ader and Avouac, 2013). The seismicity rate
in the Himalayas consist of a strong periodicity at the cycle of 1 year, in direct
response to the annual monsoon cycle of the region (Figure 1.6). Stress changes
with similar amplitude occur at a daily cycle due to tides. However, Himalayan
seismicity shows almost no sensitivity to the diurnal oscillations. In other words,
the rate-dependence of Equation1.1, or more precisely the lack of rate-dependence
in the Coulomb friction leads to a false prediction of natural seismicity.

Coulomb friction also draws strong statements about the possible magnitude of
earthquakes. In the context of induced seismicity, Coulomb friction states that slip
can only occur in regions where the level of pore pressure has risen sufficiently
from the injection such that there is a drop in the frictional strength. In other
words, ruptures governed by Coulomb friction can only propagate as far as the
volume of fluid stimulation from the injection (Shapiro, Krüger, and Dinske, 2013;
Shapiro et al., 2011). Agnostic to the constitutive relationship of friction, McGarr
(2014) considered the release of all potential energy stored within the reservoir from
the injection through a population of events following typical statistical properties
of naturally observed seismicity. Namely, the statistical relationship follows the
Gutenberg-Richter law (Gutenberg and Richter, 1956; Ogata, 1988), an empirical
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Figure 1.6: Non-linear Dependence of Seismicity on Periodicity in the Himalayas
(Ader and Avouac, 2013). (Left) The Main Himalayan Thrust Fault exhibits a
significant amount of natural seismicity that is sensitive to natural loading in the
region. (Right) A Schuster spectrum delineates the degree of sensitivity with
respect to the periodicity of the applied loading. The spectrum shows a statistically
significant sensitivity to periods of a year which corresponds to the annual monsoon
cycle. Conversely, there is no sensitivity with respect to tides, which occur diurnally
(twice a day) and have similar amplitudes of stress change as monsoons. Thus,
Himalayan seismicity shows evidence that seismicity has a non-linear dependence
to the stressing rate that is not predicted by the Coulomb friction law.

power law distribution with a shape parameter 𝑏 that represents the proportion of
large to small events (for a fixed number of total events, lower the 𝑏-value translates
to higher chances of large events). The number of events, 𝑁 , larger or equal to
magnitude 𝑀 follows

𝑁 = 10𝑎−𝑏𝑀 (1.2)

where 𝑎 is an additional parameter to match to the total number of events. This
gives an estimate for the maximum magnitude of an earthquake event triggered by
the injection, which then must be tapered by the consideration of the volume of
stimulation if assuming Coulomb friction. The Pohang earthquake exceeds this
maximum magnitude estimate by at least one order of magnitude (Figure 1.7). The
occurrence of the Pohang earthquake likely points to the possibility for ruptures to
self-propagate beyond the zone of stimulation. Additionally, the Gutenberg-Richter
law implies that the maximum magnitude increases with the total number of events.
Thus, the seismicity rate model of Equation1.1 based on Coulomb friction would
also incorrectly predict the maximum magnitude observed in the Himalayas by
incorrectly predicting the total number of events.
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Figure 1.7: Prediction of Maximum Magnitude from Earthquake Statistics and
Coulomb Friction. (Left) The blue circles plot the observed maximum magnitude
against the number of total earthquakes at various fluid injection sites. The Pohang
earthquake is labelled ’POK’ near the top right of plot (with the highest magnitude
among all sites). The expected maximum magnitude of induced earthquakes as-
suming the Gutenberg-Richter relationship is plotted as a grey line. A number of
maximum magnitude events exceed the estimate, including Pohang (Van der Elst et
al., 2016). (Right) A common assumption is that ruptures can only propagate within
the zone around the injection point source stimulated by fluid diffusion (illustrated
in the inset). Such ideas have tried to explain the observed tapering of the tail of
the frequency-magnitude distributions (e.g., the distribution observed from the 1993
Soultz geothermal stimulation as plotted from Shapiro et al., 2011). However, such
an explanation would only further under-predict the maximum magnitude observed
at injection sites. Thus, ruptures likely propagate beyond the zone of fluid stimula-
tion during injections, such that the Coulomb friction criterion cannot explain.

1.4 Overview
Accurately modeling seismic hazard from fluid injections requires a faithfulness
to the complex network of physics that governs earthquakes. In this thesis, we
use relatively simple models with a minimalist representation of the subjects while
including the most essential set of physics in the problem. We validate and test these
models against real data, and study closely the points of misfit in order to conclude
the necessary additions to future models.

We start with the modelling of laboratory earthquakes in Chapter 2. We model a
direct-shear sliding experiment of realistic quartz gouge with small grain size under
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the presence of pressurized fluids. We use a simple, single-degree-of-freedom
spring-slider representation governed by rate-and-state friction. Unlike most other
experiments which only model the stable portion of the sliding history, we also model
the unstable phase, utilizing Bayesian inference methods to invert for the evolution
of frictional properties with accumulated slip. We also observe the differences
between the experiments with and without pressurized pore fluids, in order to study
the effect of fluid-rock interactions on the frictional stability of the gouge.

In Chapter 3, we develop models for the seismicity rate in a geothermal reservoir.
We specifically model the 2018 geothermal well stimulation of Otaniemi, Finland
which triggered approximately 60,000 events over the course of 50 days. We model
the seismicity rate using both physical and statistical approaches. For the physical
model, we employ the model of Dieterich (1994) based on rate-and-state friction.
We compare the performance of the model to others based on Coulomb friction to
investigate whether rate-and-state effects are visible in the seismicity catalogue. We
also discuss the inconsistencies between the rate-and-state model and the data.

In Chapter 4 continues the final discussions of chapter 3, particularly with respect
to the assumption of the infinite population of nucleation sources in the model
of Dieterich (1994). We utilize a discrete fracture network model in order to
investigate the effect of the assumption. We connect the bias to real observations,
and demonstrate the importance of considering the finite size effects in developing
physical models of the seismicity rate.

We end the thesis with Chapter 5, where we demonstrate the application of devel-
oping technology in observational seismology, namely distributed acoustic sensing
(DAS), in direct conjunction with computational models to gain valuable insights
into frictional processes in nature. The results of this chapter motivates promising
future directions for practical applications for the models presented in this thesis,
leveraged by state-of-the-art tools in remote sensing and big data.
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C h a p t e r 2

FRICTIONAL STABILITY OF REALISTIC GOUGE IN THE
PRESENCE OF PRESSURIZED FLUIDS: TRACKING THE

EVOLUTION OF FRICTIONAL PARAMETERS WITH SLIP BY
BAYESIAN INFERENCE

2.1 Introduction
The multi-scale nature of earthquake processes is evident through the remarkably
hierarchical structure of the geology that surrounds a fault (Mitchell and Faulkner,
2009). At the largest scale, most of the rock is only elastically deformed as the
much of the deformation takes place in narrower zones of localized shear called the
fault core. A great extent of damage characterizes the rock between the undeformed
bulk and the fault core with significant alteration of rock properties such as reduced
stiffness and increased permeability. At the fault core where the largest displace-
ments are accommodated at the highest slip rates, rocks disintegrate into granular
particles referred to as gouge, whose grain size distribution has a mean value of 1-10
microns and extends to sub-micron scales. Such comminution, is expected under
compression given the brittle nature of rocks (Chester, Chester, and Kronenberg,
2005; Sammis and Ben-Zion, 2008). The principal shear layer that is granular in its
composition has been observed at numerous sites in the field and may be ubiquitous
along mature faults (Chester and Chester, 1998; Chester et al., 2004; Chester and
Goldsby, 2003). Yet, realistic gouge materials with the grain size of 1-10 microns
is often avoided in experimental settings due to their innate instability in frictional
sliding. The results for frictional sliding of unstable materials are generally more
difficult to interpret by existing methods. More commonly, experiments test gouge
material with larger grain sizes of the order of 100 microns.

Another nearly ubiquitous aspect of frictional sliding along natural faults is the
presence of fluids. Fluids pressurize at seismogenic depths under gravitational
load and alter the effective normal stress according to Terzaghi’s effective stress
principle. Since shear stress is directly proportional to the effective normal stress,
the level of pore pressure affects the frictional strength of the fault, to the first order.
Furthermore, laboratory experiments and numerical studies have documented the
role of fluids on frictional sliding beyond the effective stress principle, such as
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the effect of humidity (Frye and Marone, 2002) and dynamic weakening by pore
pressurization from shear heating (Noda and Lapusta, 2010; Rice, 2006).

A constitutive relationship that captures the most essential aspects of frictional
sliding in the laboratory is the rate-and-state friction law (Dieterich, 1979; Marone,
1998; Ruina, 1983). In the rate-and-state formalism, friction is dependent on the
slip rate, 𝑉 , and an auxiliary state variable, 𝜃, that represents the quantity or quality
of contacts along the sliding surface. Namely, friction is expressed as

𝜇(𝑉, 𝜃) = 𝜇∗ + 𝑎 log
(
𝑉

𝑉∗

)
+ 𝑏 log

(
𝑉∗𝜃

𝐷𝑅𝑆

)
(2.1)

where 𝜇∗ is the reference friction coefficient at the reference slip rate 𝑉∗, 𝑎, 𝑏, and
𝐷𝑅𝑆 are rate-and-state parameters. The evolution of the state variable has been
proposed to follow various forms, the two most notable being the aging law,

¤𝜃 (𝑉, 𝜃) = 1 − 𝑉𝜃

𝐷𝑅𝑆

(2.2)

and the slip law,

¤𝜃 (𝑉, 𝜃) = − 𝑉𝜃

𝐷𝑅𝑆

ln
(
𝑉𝜃

𝐷𝑅𝑆

)
(2.3)

where · = 𝑑
𝑑𝑡

.

The two state evolution laws imply significantly different physical interpretations
of the state variable and the origin of frictional healing. The aging law, due to
the first term on the left-hand side of Equation 2.3, allows friction to strengthen at
stationary contact (𝑉 = 0) with healing of the frictional surface with time. Such
time-dependent healing is based upon laboratory observations of stationary surfaces
whose contact area grows under constant compression (Linker and Dieterich, 1992)
and slide-hold-slide experiments where the peak level of friction at reslides after
holding depends on the duration of the hold (Beeler, Tullis, and Weeks, 1994). While
the former experiment provides physical intuition for how friction may strengthen
with time, there is no established relationship between the state variable and the size
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of the contact surface. The latter experiment has been matched directly using the
aging law but recent studies have questioned the basis for time-dependent healing by
pointing to the finite amount of creep during holds. Bhattacharya, Rubin, and Beeler
(2017) re-examined the slide-hold-slide experiments while accounting for slip in the
sample during holds, and showed that the experiments can also be matched using the
slip law. With the slip law, the state variable does not evolve in stationary contact,
and healing can only occur with slip. Bhattacharya et al. (2022) strengthened the
basis of slip dependent healing by imposing low slip rates and velocity jumps as well
as holds and finding that the slip law matched different phases of the experiments
with much greater consistency in rate-and-state parameters than the aging law. Slip-
dependent healing mechanisms favor the view that it is the ‘quality’ of contact rather
than the ‘quantity’ that determines the evolution of friction (Li et al., 2011).Note that
the choice of the state evolution law also has significant impact on the nucleation
and propagation of rupture when extrapolated to the scale of a finite fault (Ampuero
and Rubin, 2008).

Rate-and-state friction allows for both aseismic creep and unstable stick-slip motion
depending on the elastic properties of the bulk medium and frictional properties of
the sliding layer. The logarithmic expression of Equation 2.2 is a direct representa-
tion of the features observed from a stably sliding material following a velocity step.
In the unstable regime, there are no unique relationships between the direct effect,
𝑎 log

(
𝑉
𝑉∗

)
, or the evolution effect, 𝑏 log

(
𝑉∗𝜃
𝐷𝑅𝑆

)
, and features of stick-slip motion

such as the stress drop or the recurrence time. Due to this non-linearity, the use of
the unstable regime of frictional sliding has been largely limited to theoretical and
numerical studies. Scaling relationships to seismologically observable quantities
such as the stress drop and recurrence drop were developed based on numerical
simulations of spring-sliders but mostly with respect to 𝑎 − 𝑏 (Beeler, Hickman,
and Wong, 2001; Gu and Wong, 1991; He, Wong, and Beeler, 2003). Corbi et al.
(2024) used simulated annealing of quasi-dynamic rupture models to invert for rate-
and-state properties of asperities along a foam interface. Due to non-uniqueness,
the problem was also constrained to the inversion of 𝑎 − 𝑏.

Here, we develop methods for inference of rate-and-state parameters (𝑎, 𝑏, 𝐷𝑅𝑆

and 𝜇∗) from both stable and unstable regimes of slip in laboratory experiments by
Bayesian inversion with Monte-Carlo sampling. We test the methods by synthetic
inversions of simulated data before applying them to experimental data of frictional
sliding in unstable quartz gouge with realistic grain sizes. We also study the effect
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of pore fluid pressurization by considering two experiments at the same effective
normal stress but different pore pressure. The inverse framework allows us to
track the changes in rate-and-state frictional properties due to comminution and the
presence of pressurized pore fluids. We discuss the implications of the observed
evolution in rate-and-state parameters on their micro-physical interpretations. We
also compare the performance of the two state evolution laws in fitting the data.

2.2 Velocity-Stepping Frictional Sliding Experiments on Quartz Gouge Under
Different Pore Pressure

We use an ultrafine granular quartz powder as simulated fault gouge in the experi-
ments. The quartz powder is Min-U-Sil 5, a commercially available powder from
US Silica, with a median grain diameter of 1.9 µm and a purity of 99.5% SiO2.
We chose quartz in this study because it is a common crustal material widely found
in fault zones, and it is well studied experimentally with reproducible frictional
behavior (e.g., Bedford and Faulkner (2021)).

Layers of quartz gouge are sheared in a direct-shear geometry (Figure 2.1) within a
triaxial deformation apparatus (Faulkner and Armitage, 2013). The initial thickness
of the gouge layer is ∼1.3 mm. The layer is placed between the steel direct-shear
forcing blocks, with soft silicone spacers positioned at each end to allow shear
displacements to be accommodated without any additional lateral resistance. To
minimize boundary shear at the edges of the gouge layer, the sliding area (50 x 20
mm) on the direct-shear forcing blocks contains grooves (200 µm deep with 400
µm spacing) cut perpendicular to the sliding direction. Once the gouge layer is
constructed, the direct-shear assembly is wrapped in a low-friction polytetrafluo-
roethylene (PTFE) sleeve (0.25 mm thickness) to minimize friction in the vicinity
of the layer; it is then placed into a soft, 3 mm thick, PVC jacket (Nalgene 180
clear tubing). The jacketed assembly is then inserted into the triaxial deformation
apparatus, where normal stress is applied by the hydraulic pressure of the confining
fluid. For experiments with pore fluid pressure, the pore fluid (deionized water) is
introduced to the gouge layer through three porous disks embedded into each direct-
shear forcing block (Figure 2.1). The porous disks are positioned to ensure an even
distribution of pore fluid pressure across the gouge layer. The gouge is sheared by
the axial piston of the triaxial apparatus, and the sliding velocity is stepped between
a lower value of 0.3 µm/s and a higher value of 3 µm/s at intervals of 1mm of the
loading point displacement after the first velocity step at 1.5mm of the load point
displacement. The evolution of shear stress is monitored by an internal force gauge,
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with a measurement resolution better than 0.05 kN. During shearing, the confining
and pore fluid pressures (and hence effective normal stress) are held constant by
servocontrol pumps, with a resolution of better than 0.01 MPa. Experimental data
are logged at a frequency of 10 Hz.

Figure 2.1: Schematic of Experimental Apparatus. Two parallel steel plates sand-
wich the gouge, confined by fluids that apply hydraulic pressure to a PTFE sleeve
that wraps the steel cylinders. Pore pressure, if applied, enters the gouge layer
through adjacent porous discs, and the pressure is regulated by a servo upstream.
Silicone spacers allow horizontal confinement of the gouge between the steel sliders
with negligible additional resistance. Stress is applied via the displacement of the
loading column at the end of one of the cylinders, not pictured in the schematic.

We run two experiments at the same effective normal stress but different levels of
pore pressure. What we hereafter refer to as the ‘dry’ sample slides under 40 MPa
of confining stress and 0 MPa of pore pressure, while what we refer to as the ‘wet’
sample slides under 60 MPa of confining stress and 20 MPa of pore pressure. Thus,
both experiments have the same effective normal stress of 40 MPa. We note that the
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‘dry’ sample is at room humidity and may be wetter than what is referred to as dry
in other studies. We call it ‘dry’ here to easily distinguish it from the experiment
with pressurized fluids.

Both experiments show complex evolution of friction not often seen from frictional
sliding of bare surfaces or more stable gouge material with larger particle size (Figure
2.2a). There is a clear contribution from the accumulation of slip to the development
of instability not initially present in either experiment. The first velocity step at 1.5
mm of loading point displacement increases the loading rate, and the material
still slides stably. After about 0.5mm of additional slip, stick-slip spontaneously
develops in the wet experiment but it is then suppressed by a decrease in the loading
rate at 2.5 mm of loading point displacement. Instability tends to be triggered by an
increase in the loading rate and suppressed by a decrease in the loading rate, until
the loading rate increase at 5.5 mm, after which stick-slip persists in both samples
until the end of the experiment. The average level of friction changes gradually
throughout the entire experiment, both during phases of stable sliding and unstable
stick-slip motion. This is most noticeable in the dry sample past the loading point
displacement of 3.5 mm, where friction initially increases for about 1 mm before
decreasing throughout the rest of the experiment.

Effect of Pressurized Pore Fluids on Stick-Slip
Even while operating at the same effective normal stress, the dry and wet experi-
ments show significant differences in the frictional behavior due to the presence of
pressurized pore fluids. In part, the amplitudes and spacing of the stick-slip signals
from the wet experiment are noticeably larger than those from the dry experiment at
the end of the experiment (Figure 2.2b). Differences between the stick-slip events
can be assessed more quantitatively by defining their characteristic features; we
define four features for each event: the stress drop, Δ𝜏, the peak level of stress,
𝜏𝑝𝑒𝑎𝑘 , the slope of the loading curve immediately following the last event, 𝐾𝑚𝑎𝑥 ,
and the slope immediately prior to the event, 𝐾𝑚𝑖𝑛. If the stiffness of the system
is known, 𝐾𝑚𝑎𝑥 and 𝐾𝑚𝑖𝑛 indicate the amount of slow slip (which we call creep in
the following) in the sample during the strengthening phase at the respective times
during loading. Since the amount of creep relates to the extent of healing in rate-
and-state friction, 𝐾𝑚𝑎𝑥 and 𝐾𝑚𝑖𝑛 also contain information about the evolution of the
state variable, 𝜃. The slope is always the steepest immediately following the stress
drop and flattest during the nucleation phase, hence the subscripts, 𝑚𝑎𝑥 and 𝑚𝑖𝑛.
We also calculate a sense of the average amount of creep in the sample during the
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Figure 2.2: volution of Friction in Granular Quartz Gouge With and Without Pres-
surized Fluids: (a) Two samples with the same effective normal stress (40 MPa)
but different pore pressure (0 MPa for the ‘dry’ sample and 20 MPa for the ‘wet’
sample) are loaded for 8.5 mm of total displacement. The loading rate is switched
between 0.3 µm/s (grey background) and 3 µm/s (white background) at intervals
of 1 mm once past the yielding point at 1.5 mm of loading point displacement.
Both experiments show a development of instability with accumulation of slip and
a dependence of instability on the loading rate. Characteristic features of stick-slip
events highlighted in the zoom-in (b) are used for parameter inversion. Instabil-
ity develops earlier for the wet experiment which also shows larger amplitudes of
stick-slip than the dry experiment (b). The differences between the two experiments
indicate a possible effect of pore pressure on friction beyond the effective stress
principle.

loading stage by taking the difference between the measured stiffness of the system
and the average linear slope of the loading curve. We call this the creep percentage,

Creep % =

(
1 −

(𝜏𝑝𝑒𝑎𝑘 − 𝜏𝑚𝑖𝑛)/(𝛿𝑙 𝑝 (𝜏𝑝𝑒𝑎𝑘 ) − 𝛿𝑙 𝑝 (𝜏𝑚𝑖𝑛))
𝐾𝑚𝑎𝑐ℎ

)
∗ 100 (2.4)
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where 𝜏𝑚𝑖𝑛 is the minimum stress at the onset of the event cycle, 𝛿𝑙 𝑝 is the loading
point displacement at the time of the corresponding stress levels, and 𝐾𝑚𝑎𝑐ℎ =
90.5MPa/mm is the stiffness of the experimental apparatus which is measured by
loading the apparatus with a steel blank sample in place of the quartz gouge. We
note that the creep % as defined here is analogous to the coupling coefficient used
in geodesy, which is one minus the ratio of the slip rate along the fault to the plate
rate during the interseismic periods.

Let us compare the stick-slip features between the dry and wet experiments (Figure
2.3) during the last millimeter of the loading point displacement, to consider as
well-developed slip layer as possible. The comparisons show that the presence of
pressurized pore fluids increases the stress drop to a mean value of 2.00MPa in the
wet experiment compared to 1.63MPa in the dry experiment. This is contrary to
what one would expect from dilatancy, which tends to stabilize frictional motion
(explored in further detail in section 2.5). At the same time, the increase in stress
drop is accompanied by similar levels of creep % with mean values of 24.3 and 24.4
for the wet and dry samples, respectively. Furthermore, 𝐾𝑚𝑎𝑥 tends to be higher in
the wet sample, corresponding to a more ‘stuck’ configuration following the stress
drop, while 𝐾𝑚𝑖𝑛 tends to be lower, suggesting more creep during event nucleation.
The greater evolution in creep is noticeable in the zoom-in of the stick-slip sequence
where the curvature in the friction curve of the wet experiment is noticeably larger
(Figure 2.2b). The higher stress drop with nearly equal creep % translates to more
creep in the absolute sense for the wet experiment. Thus, the wet sample exhibits
features of both greater instability in having a larger event with a larger stress drop
but also greater stability by developing more creep during the loading period. The
differences highlight the effect of pressurized fluids on frictional stability that goes
beyond Terzaghi’s effective stress principle.

Indirect Inference of Event Slip Rate and Dependence of Nucleation on Loading
Rate
Although the slip rate is not directly measured, it can be inferred indirectly from the
measurement sampling rate. Figure 4 shows a zoom-in of the stick-slip sequence
for a 0.2mm interval of loading point displacement surrounding the velocity step
at 7.5mm. Along with connected line plots, individual points of measurement are
indicated by dots, with each measurement spaced at intervals of 0.1 seconds in
time (corresponding to the sampling rate of 10Hz). For both experiments, stress
drops are consistently resolved by more than 2 points, indicating that the events
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Figure 2.3: Dry and Wet Experiments Differ in Characteristics of Stick-Slip Events:
Histograms of stick-slip features from the last millimeter of displacement for the
dry (red) and wet (blue) experiments show differences in the distributions of stress
drop and observed stiffness but similarity in the distribution of creep %. The wet
experiments have generally higher stress drops indicating greater instability. At the
same time, the wet experiment shows greater evolution of creep during the aseismic
period, starting from higher 𝐾𝑚𝑎𝑥 immediately after events leading to lower 𝐾𝑚𝑖𝑛
immediately prior to the next events. This results in a greater amount of creep during
the strengthening phase in the absolute sense on average and in greater curvature
in the evolution of friction (Figure 2.2b). The observed differences between the
two experiments indicate the effect of pore pressure on friction beyond the effective
stress principle.

have durations of the order of 0.1 seconds. Assuming that the amount of slip during
the event is comparable to the increment in loading point displacement leading up
to it (∼ 25 µm), such durations correspond to an average slip rate of 25 µm/0.1s =
0.25 m/s = 0.00025 m/s. Peak slip rates could be higher or much higher than this
average value, the possibility of which we test by modeling later. Hence the stress
drop portion of the response is accompanied by relatively rapid slip.

A closer look at the nucleation phase of the stress-drop events shows that the
nucleation process is different at the lower loading rate than at the higher loading
rate. At the lower loading rate of 0.3 µm/s, the initial stages of the stress drop in
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Figure 2.4: Indirect Inference of Event Slip Rate and Dependence of Nucleation
on Loading Rate: A zoom-in of the stick-slip sequence for both experiments is
shown around the velocity step at the loading point displacement of 7.5 mm. The
periods of lower and higher loading rate at 0.3 µm/s and 3 µm/s are indicated by the
grey and white background, respectively. Dots spaced by 0.1 s show the sampling
rate of 10 Hz. For both experiments, the stress drop phase occasionally includes
a measurement point, indicating an event duration of the order of 0.1 s. The
nucleation process immediately prior to the stress drop, characterized by a roll-
over of the friction curve, has longer duration at the lower loading rate for both
experiments. At the lower loading rate, a significant portion of the stress drop is
consistently resolved at 0.1 second intervals, while the first drop in friction is often at
least half of the entire stress drop at the higher loading rate. The nucleation process
shows a possible dependence on the loading rate, although the eventual stress drop
is similar.

friction are resolved by many (more than 10) closely-spaced points, indicating that
a significant portion of the stress drop occurs at slip rates similar to those of the
loading period. At the higher loading rate of 3 µm/s, much more significant stress
drop occurs in the first 0.1 s after reaching the peak, indicating that the weakening
occurs much more rapidly and over smaller slip. Dependence of nucleation on
the loading rate was also demonstrated in laboratory experiments of polycarbonate
plates by Guérin-Marthe et al. (2019), which showed a decrease in the nucleation
size due to an increase in the loading rate. The shorter and quicker nucleation period
at the higher loading rate from our experiment is consistent with their results.
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2.3 Spring-Slider Model of Experiment with Rate-and-State Friction, Inertia,
and Dilatancy

Spring-slider models have commonly been employed to interpret experiments on
the basis that the frictionally sliding sample is small compared to the portion of
the experimental apparatus that applies loading. Following this approximation, the
dynamics of slip are idealized as a single-degree-of-freedom system (Figure 2.5).
The model consists of a spring, which represents the loading system, moving at a
prescribed displacement rate at one end, with the other end attached to a slider block
that represents the frictionally sliding sample. Normal stress keeps the block under
compression, and friction at the base of the block resists its displacement in shear.
A constitutive relationship for shear resistance closes the system, which in our case
follows the rate-and-state friction law, either with the slip law or the aging law. We
include inertia in the balance of momentum,

𝑀 ¥𝛿𝑏𝑙 = 𝐾𝑚𝑎𝑐ℎ (𝑉𝑙 𝑝 −𝑉𝑏𝑙) − 𝜇(𝜎 − 𝑝) (2.5)

where 𝑀 is the mass of the block in units of mass per area, 𝛿𝑏𝑙 is the slip of the block,
𝑉𝑙 𝑝 is the loading point rate, 𝑉𝑏𝑙 is the slip rate of the block, 𝜎 is the confining stress
and 𝑝 is the pore pressure at the base of the block. The mass is calculated by taking
all moving parts of the experimental apparatus past the loading point and dividing
it by the sliding area, which gives 𝑀 = 7,798 kg/m2. We also account for possible
effects from pore pressure transients that may develop from dilatant expansion of
the pore volume due to shear deformation. We incorporate the formulation of Segall
and Rice (1995) which creates a feedback loop between pressure and slip,

𝑐(𝑝∞ − 𝑝) − ¤𝑝 =
𝜖

𝛽

¤𝜃
𝜃

(2.6)

where 𝑐 is a lumped diffusivity parameter with units of inverse time, 𝛽 is the
storage coefficient, and 𝜖 is the dimensionless dilatancy coefficient which is directly
proportional to the rate of pore volume expansion with slip rate. Here, we use
the formulation where changes in porosity are directly connected to changes in the
state variable, 𝜃, such that changes to 𝜃 act a source term in the diffusion equation.
The system of equations is solved using the Rodas4 solver of Julia’s Differential
Equations package which is a fourth-order implicit Runge-Kutta method for ordinary
differential equations (Rackauckas and Nie, 2017).
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Figure 2.5: Spring-Slider Model: The simple model idealizes the experiment as a
single-degree-of-freedom system. The spring, which represents the loading system,
pulls the block, which represents the frictionally sliding material, at a prescribed
displacement rate. A confining stress is applied to the block and rate-and-state
friction governs the resistance of the block to shear displacement. Pore fluid pressure
can act on the base of the block. Dilatant expansion of the pore volume can decrease
pore pressure, increasing the effective stress and stabilizing the motion of the block.
The simplicity of the spring-slider model, which captures the most essential physics
of the experiment, allows a sampling-based inversion approach that requires many
calls of the forward model.

For the spring-slider model, a linearized stability analysis of the quasi-static sys-
tem in steady-state sliding gives a stability criterion dependent on the frictional
parameters, the stress state, and the stiffness (Rice and Ruina, 1983; Ruina, 1983).
The two state evolution laws behave similarly around steady-state and result in the
same critical stiffness 𝐾𝑐𝑟 for steady-state velocity-weakening friction properties
𝑏 − 𝑎 > 0:

𝐾𝑐𝑟 =
(𝜎 − 𝑝) (𝑏 − 𝑎)

𝐷𝑅𝑆

(2.7)

Infinitesimal perturbations to steady sliding exponentially grow for spring stiff-
nesses larger than 𝐾𝑐𝑟 , indicating that the sliding is unstable in this regime, and
decay for stiffnesses smaller than 𝐾𝑐𝑟 , indicating stable sliding. Friction sliding
with velocity-strengthening properties is unconditionally stable. Gu et al. (1984)
derived the critical stability of the inertial spring-slider which multiplies equation
(7) by a coefficient that is proportional to the mass and slip rate. The inclusion of
dynamic effects increases the critical stiffness, making the system more unstable.
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The difference in critical stiffness is only ∼2.65 MPa/mm for the values of mass and
loading slip rates in this study. Segall and Rice (1995) derived an analogous crite-
rion in the presence of dilatant strengthening, which decreases the critical stiffness,
stabilizing sliding. For continuum settings with faults embedded into an elastic
space, the stability criterion is often formulated in terms of the nucleation size,
which is the size of the slowly slipping patch that spontaneously accelerates into a
dynamic rupture (Ampuero and Rubin, 2008; Dieterich, 1992; Rice, Lapusta, and
Ranjith, 2001; Rice and Ruina, 1983; Rubin and Ampuero, 2005).

2.4 Probabilistic Framework for Bayesian Inversion of Rate-and-State Pa-
rameters from Stable Velocity Step by Monte-Carlo Sampling

We employ a Bayesian probabilistic framework for the inversion of rate-and-state
parameters from a stable velocity step. We find from preliminary tests that dilatancy
is negligible at the low slip rates induced by the stable velocity step and apply
the following inversions with a zero dilatancy coefficient. To pose the inverse
problem in a probabilistic setting, we add a component of stochastic uncertainty
to the deterministic spring-slider model which arises from experimental noise, the
distribution of which can be approximated directly from the data. The differences
from a moving average of the friction curve during the initial strengthening phase
(from 0 to 1.5 mm in loading point displacement) resembles a Gaussian distribution
with a standard deviation of 0.0004 (shown in Appendix A.1). We define the
following probabilistic model of friction observed from the experiment, 𝜇𝑝𝑟𝑜𝑏,

𝜇𝑝𝑟𝑜𝑏
(
𝑡 |Ω𝑅𝑆,𝑠𝑡𝑎𝑏𝑙𝑒

)
∼ 𝜇𝑑𝑒𝑡

(
𝑡 |Ω𝑅𝑆,𝑠𝑡𝑎𝑏𝑙𝑒

)
+ 𝑁 (0, 𝑠𝑒𝑥𝑝) (2.8)

where Ω𝑅𝑆,𝑠𝑡𝑎𝑏𝑙𝑒 is a set of rate-and-state parameters, 𝜇𝑑𝑒𝑡 is the friction coefficient
given by Equation 2.1 for this set, and 𝑁 (0, 𝑠𝑒𝑥𝑝) is the normal distribution of noise
with a mean of zero and standard deviation of 𝑠𝑒𝑥𝑝 = 0.0004. We can then define
the likelihood function of observing a certain evolution of friction, 𝜇𝑒𝑥𝑝, given a set
of rate-and-state parameters, which is the Gaussian likelihood,

IP𝑠𝑡𝑎𝑏𝑙𝑒 (𝜇𝑒𝑥𝑝 |Ω𝑅𝑆,𝑠𝑡𝑎𝑏𝑙𝑒) = (2𝜋𝑠2
𝑒𝑥𝑝)−𝑁/2 exp

(
− 1

2𝑠2
𝑒𝑥𝑝

𝑁∑︁
𝑖=1

(𝜇𝑒𝑥𝑝 (𝑡𝑖) − 𝜇𝑝𝑟𝑜𝑏 (𝑡𝑖))2

)
(2.9)

where IP𝑠𝑡𝑎𝑏𝑙𝑒 (𝜇𝑒𝑥𝑝 |Ω𝑅𝑆,𝑠𝑡𝑎𝑏𝑙𝑒) is the likelihood function and {𝑡𝑖} for 𝑖 ∈ {1...𝑁}
is the set of times corresponding to the set of 𝑁 measurements in the fitting win-
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dow. Bayes’ theorem gives the likelihood of the set of rate-and-state parameters,
Ω𝑅𝑆,𝑠𝑡𝑎𝑏𝑙𝑒, given the observed data, 𝜇𝑒𝑥𝑝, i.e., the posterior,

IP𝑠𝑡𝑎𝑏𝑙𝑒 (Ω𝑅𝑆,𝑠𝑡𝑎𝑏𝑙𝑒 |𝜇𝑒𝑥𝑝) =
IP𝑠𝑡𝑎𝑏𝑙𝑒 (𝜇𝑒𝑥𝑝 |Ω𝑅𝑆,𝑠𝑡𝑎𝑏𝑙𝑒)IP𝑠𝑡𝑎𝑏𝑙𝑒 (Ω𝑅𝑆,𝑠𝑡𝑎𝑏𝑙𝑒)

IP(𝜇𝑒𝑥𝑝)
(2.10)

where IP𝑠𝑡𝑎𝑏𝑙𝑒 (Ω𝑅𝑆,𝑠𝑡𝑎𝑏𝑙𝑒 |𝜇𝑒𝑥𝑝) is the posterior distribution, 𝑃𝑠𝑡𝑎𝑏𝑙𝑒 (Ω𝑅𝑆,𝑠𝑡𝑎𝑏𝑙𝑒) is
the unconditioned likelihood of the rate-and-state parameters (i.e., the prior), and
𝑃𝑠𝑡𝑎𝑏𝑙𝑒 (𝜇𝑒𝑥𝑝) is the unconditioned likelihood of the observed data. In practice,
it is expensive to calculate 𝑃𝑠𝑡𝑎𝑏𝑙𝑒 (𝜇𝑒𝑥𝑝). Markov-Chain Monte-Carlo (MCMC)
sampling methods bypass the task of computing 𝑃𝑠𝑡𝑎𝑏𝑙𝑒 (𝜇𝑒𝑥𝑝) by setting the target
distribution as the numerator of Equation 2.10 since it is directly proportional to the
posterior for a given experiment. The prior 𝑃𝑠𝑡𝑎𝑏𝑙𝑒 (𝜇𝑒𝑥𝑝) must often be assumed. In
our case, we assume a uniform distribution for all rate-and-state parameters within
a plausible region.

In order to make the sampling procedure as efficient as possible, we reduce the
dimensionality of the parameter space by utilizing what we know about steady-state
conditions in rate-and-state friction. Namely, we compute 𝑎 − 𝑏 and 𝜇∗ explicitly
by assuming steady-state conditions at the beginning and end of the fitting window.
Given friction levels at the beginning of the window (at the lower loading rate of
𝑉𝑙 𝑝,𝑙𝑜𝑤 = 0.3 µm/s), 𝜇𝑏𝑒𝑔𝑖𝑛, and at the end of the window (at the higher loading rate
of 𝑉𝑙 𝑝,ℎ𝑖𝑔ℎ = 3 µm/s), 𝜇𝑒𝑛𝑑 , we can compute 𝑎 − 𝑏 as,

𝑎 − 𝑏 =
𝜇𝑒𝑛𝑑 − 𝜇𝑏𝑒𝑔𝑖𝑛

ln(𝑉𝑙 𝑝,ℎ𝑖𝑔ℎ/𝑉𝑙 𝑝,𝑙𝑜𝑤)
(2.11)

where the reference slip rate, 𝑉∗, is equal to the higher loading rate, 𝑉𝑙 𝑝,ℎ𝑖𝑔ℎ, for
which it follows that 𝜇∗ equals 𝜇𝑒𝑛𝑑 . Thus Ω𝑅𝑆,𝑠𝑡𝑎𝑏𝑙𝑒 ≡ {𝑎, 𝐷𝑅𝑆}. In later sections,
we account for the uncertainty associated with the determination of steady-state
conditions in the experiment by testing different values of 𝑎 − 𝑏.

One of the advantages of Monte-Carlo sampling is that the final convergence of the
posterior is less sensitive to the initial starting point of the sampler than gradient-
based minimization methods are to initial guesses. At the same time, this is only
true for initial starting points that have non-trivial likelihood. To configure initial
starting points with non-trivial likelihood for the ensemble sampler, we compute
first-order estimates of 𝑎 and 𝐷𝑅𝑆 analytically. Assuming that the initial peak in
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friction due to the velocity step is representative of the ideal direct effect with no
evolution of the state variable and an instantaneous change of the slip rate from
the previous to the new loading rate, equation(2) yields for the starting point of the
chains,

𝑎𝑠𝑝 =
𝜇𝑝𝑒𝑎𝑘 − 𝜇𝑏𝑒𝑔𝑖𝑛

ln(𝑉𝑙 𝑝,ℎ𝑖𝑔ℎ/𝑉𝑙 𝑝,𝑙𝑜𝑤)
(2.12)

where 𝑎𝑠𝑝 is the starting point for 𝑎, 𝜇𝑝𝑒𝑎𝑘 is the peak friction level due to the
direct effect, and 𝜇𝑏𝑒𝑔𝑖𝑛 is the friction level immediately prior to the velocity jump.
Assuming a constant slip rate equal to the new loading rate after friction reaches the
peak value yields an exponential decay of friction,

𝜇(𝛿𝑏𝑙) = 𝜇𝑠𝑠 (𝑉𝑙 𝑝,2) + 𝑒−𝛿𝑏𝑙/𝐷𝑅𝑆,𝑠𝑝
(
𝜇𝑠𝑠 (𝑉𝑙 𝑝,1) − 𝜇𝑠𝑠 (𝑉𝑙 𝑝,2) + 𝑎𝑠𝑝 ln(𝑉𝑙 𝑝,2/𝑉𝑙 𝑝,1))

)
(2.13)

where 𝜇𝑠𝑠 (𝑉) = 𝜇∗ + (𝑎 − 𝑏) ln(𝑉/𝑉∗) is the steady-state friction coefficient at slip
rate 𝑉 . To summarize, Equation 2.12 can be used to find 𝑎𝑠𝑝, which can then be
plugged into Equation 2.13 to find the best fitting 𝐷𝑅𝑆,𝑠𝑝. The set {𝑎𝑠𝑝, 𝐷𝑅𝑆,𝑠𝑝}
defines the starting point of the MCMC sampler.

Although there is no fool-proof method for determining the convergence in MCMC
sampling, a good rule of thumb is based on the ergodicity of the Markov Chain and
utilizes the guaranteed convergence of the mean of the posterior. In this sense, we
compute the mean of the developing Markov chain up to each iteration, and then
compute the difference between the beginning and end of a moving window along
the running mean with a window size of 100 iterations. In other words, we compute
the following quantity,

max
𝑖∈{𝑁𝑐ℎ𝑎𝑖𝑛−100,...,𝑁𝑐ℎ𝑎𝑖𝑛}

©«1
𝑖

𝑖∑︁
𝑗=1
𝑥 𝑗 −

1
𝑖 − 100

𝑖−100∑︁
𝑗=1

𝑥 𝑗
ª®¬ (2.14)

and ensure that it does not exceed a threshold value at the end of 𝑁𝑐ℎ𝑎𝑖𝑛 simulations.
We use the affine invariant Markov-chain Monte-Carlo (MCMC) Ensemble sampler,
the details of which we refer the reader to Goodman and Weare (2010). For the
stable velocity step, we find 32 walkers with chain lengths of 10,000 iterations to
be sufficient to meet the convergence criterion of the quantity of Equation 2.14 to
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stay below 1e-5 at the end of 𝑁𝑐ℎ𝑎𝑖𝑛 = 320, 000 simulations. On a single CPU,
the full procedure takes between 12 ∼ 24 hours. If desired, parallelization of the
ensemble sampler could significantly decrease computational time, and allow longer
chains for further convergence. However, we find the aforementioned criterion to be
more than sufficient for accurate inference of rate-and-state parameters from both
experimental and synthetic data.

A critical choice for sampling rate-and-state parameters is to sample 𝑎 and 𝐷𝑅𝑆

in the logarithmic space. As discussed later along with the results, logarithmic
sampling of rate-and-state parameters — especially 𝐷𝑅𝑆 — helps sample better
small values of 𝐷𝑅𝑆 that have more unstable behavior.

Detrending Long-Term Evolutions of Friction
Both experiments show significant changes in the average level of friction at a
time scale comparable to the experimental duration. The evolution is perhaps most
visible for the dry experiment after 3.5mm of loading point displacement until the
end of the experiment during which the difference in the maximum and minimum
friction coefficient is close to at least 0.05. Such changes are likely attributed to
the deformation of the microstructure at a length scale larger than the localized
shear layer (Bedford, Faulkner, and Lapusta, 2022). A zoom-in around the first
velocity step (Figure 2.6) shows that that such differences can significantly affect
the inversion of the stable velocity step data. Namely, the long-term evolution
affects steady-state conditions which determine 𝑎 − 𝑏 and 𝜇∗. Choosing the point of
convergence to steady-state can be subjective. Former studies have proposed linear
detrending methods to address strain-hardening and strain-weakening mechanisms.
More sophisticated methods with iterative slicing of the data have addressed datasets
with non-linear trends (Giacomel et al., 2024).

We detrend the long-term evolution of the friction coefficient around the stable
velocity step by subtracting a moving average from the raw data (Figure 2.6). Using
a constant window size of 500 points, the detrending renders the evolution of
friction virtually flat aside from the oscillation following the velocity step. The
friction coefficient recorded prior to the stable velocity step is added back to the
detrended data to reset the zero offset from the subtraction of the moving average.
We use the detrended data for the inversions that follow, and discuss in the later
sections the sensitivity of the results to the associated uncertainty in 𝑎 − 𝑏.
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Figure 2.6: Detrending the Long-Term Evolution of the Friction Coefficient. A
moving average (black curve of the panels on the left) of the raw data (solid red and
blue curves) is subtracted out to give the detrended friction coefficient (dotted red and
blue curves of the panels on the right). The large oscillations immediately following
the velocity step (happening approximately at 1.5 mm of loading displacement in
both experiments) are likely due to the velocity step and hence should be modeled
as part of rate-and-state effects with constant parameters. In contrast, more gradual
changes in the friction coefficient at longer time scales are likely not related to
velocity steps but are rather caused by longer-term evolution of the shear layer
with slip, an effect that rate-and-state formulations with constant coefficients are
not intended to capture; such changes can be captured through variations in 𝑓 ∗.
Detrending allows the inference of rate-and-state parameters to focus more sharply
on the frictional properties of a localized shear surface in the gouge.

Inversion of Synthetic Data and Dependence of Uncertainty on Rate-and-State
Parameters
In order to test the Bayesian inversion framework, we perform the inversions on
synthetic data produced by the spring-slider model. We consider relevant ranges
for rate-and-state parameters 𝑎, 𝐷𝑅𝑆, and 𝑎 − 𝑏, namely, 0.006 to 0.015, 1 to
100 µm, and -0.002 to 0.002) for 𝑎, 𝐷𝑅𝑆, and 𝑎 − 𝑏, respectively. The tested ranges
of parameters also correspond to the domain of the prior, which is assumed to
be a uniform distribution in the logarithmic space. Each spring-slider solution is
interpolated at a sampling frequency of 10 Hz as in the experiments, and Gaussian
noise with standard deviation 𝑠𝑒𝑥𝑝 = 0.004 is added to each interpolation point.
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Unlike the experiments, no detrending is necessary, as the spring-slider model with
constant rate-and-state parameters does not produce any long-term evolution of
average friction for the same sliding rates. The fitting windows ensure that steady-
state conditions have been reached. For brevity, we present in the main text the
results for the slip law. The aging law yields no qualitative differences to the slip
law in terms of the performance of the synthetic inversion.

Figure 2.7 shows two representative examples of synthetic data which only differ
in 𝐷𝑅𝑆 and their inversion for the rate-and-state parameters. The responses using
the mean of the posterior distributions for the rate-and-state parameters, a.k.a. the
posterior mean estimators, provide an excellent match to the synthetic data for both
cases. The mean estimators have larger errors relative to the true parameters for the
lower value 𝐷𝑅𝑆 = 1 µm. The posterior distributions are also significantly wider
for the lower 𝐷𝑅𝑆, indicating higher uncertainty. Yet, solutions corresponding to
parameter sets that are a single standard deviation away from the mean estimators
still match well the reference data for both 𝐷𝑅𝑆. The larger range of uncertainty and
lack of accuracy with lower 𝐷𝑅𝑆 arises due to the significant amount of slip (relative
to the small 𝐷𝑅𝑆) that occurs during the direct effect immediately after the velocity
step. The state variable evolves more during the initial increase in friction with lower
𝐷𝑅𝑆, allowing a larger range of 𝑎 to fit the velocity step when accommodated by
the appropriate change in 𝐷𝑅𝑆. The posterior distributions illustrate the necessary
trade-off to conserve the amplitude and period of the oscillations. Namely, an
increase in 𝑎 (larger direct effect) needs to be accompanied by a decrease in 𝐷𝑅𝑆 to
allow greater evolution of the state variable and weakening of friction. On the other
hand, the model with higher 𝐷𝑅𝑆 = 100 µm has relatively little evolution of the state
variable during the direct effect, and the posterior distributions lie tightly around the
true parameters with standard deviations smaller than 1% in relative error.

Figure 2.8 plots together the relative error and the quantiles of the posterior distribu-
tion from all tested synthetic inversions. A clear dependence of uncertainty on 𝐷𝑅𝑆

is visible throughout the whole parameter regime. On average, relative error also
tends to decrease with increasing 𝐷𝑅𝑆. The error of the posterior mean estimators
rarely exceeds 10%, demonstrating that the inversion method can infer rate-and-state
parameters from stable velocity step sufficiently well.
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Figure 2.7: Inversions of Synthetic Stable Velocity Step using Bayesian MCMC
Sampling for two representative examples differing in the true values of 𝐷𝑅𝑆 (1 µm
for the yellow curves and 100 µm for the purple curves). The posterior distributions
of 𝑎 and 𝐷𝑅𝑆 are shown on the left in terms of their relative error to the true value.
The 2D frequency density maps between the two inferred parameters are plotted
as contour maps in between the histograms. The posterior mean estimators (solid
colored curves) and parameter sets that are a single standard deviation away (dotted
and dashed curves) produce fits that match well the reference synthetic data (black
curves) for both cases (right panels). The inversion of the simulation with lower
𝐷𝑅𝑆 has higher range of relative uncertainty, largely due to the significant amount
of state evolution that occurs during the initial rise in friction. At the measured
spring-stiffness of 90.5 MPa/mm, the direct effect takes place over a finite amount
of slip in the spring-slider model, which is several multiples of 𝐷𝑅𝑆 = 1 µm while
it is only a fraction of 𝐷𝑅𝑆 = 100 µm. The ratio of slip to 𝐷𝑅𝑆 is indicated by the
second x-axis at the top of the plots in the right panels. The trade-off is also visible
in the 2D frequency density map of the posteriors, where an increase in 𝑎, or an
increase in the direct effect, is accommodated by a decrease in 𝐷𝑅𝑆 to promote state
evolution during the direct effect. In both cases, MCMC inversions of synthetic
stable velocity steps successfully infer the true rate-and-state parameters with less
than 10% relative error.

Inversion of Experimental Data and Uncertainty Associated with Long-Term
Evolution
We apply the validated inversion method to the experimental data, using both the
slip and the aging law. Assuming steady-state conditions at the beginnings and ends
of the fitting windows, 𝑎 − 𝑏 is fixed to 0.0002 and 0.0001, and 𝜇∗ is fixed to 0.694
and 0.693 at a 𝑉∗ of 3 µm/s for the dry and wet experiments, respectively. The prior
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Figure 2.8: Relative Error from Inversions of Synthetic Stable Velocity Step Data
by Bayesian MCMC Sampling. The relative error of the posterior mean estimators
from MCMC inversions of synthetic stable velocity step data are compiled for a
wide range of rate-and-state parameters (𝑎: 0.006 ∼ 0.015, 𝐷𝑅𝑆: 1 ∼ 100 µm, 𝑏− 𝑎:
-0.002 ∼ 0.002). The error bars indicate the first and third quantiles of the posterior
distributions as a measure of uncertainty. The top row shows the inversions of the
simulations with 𝑎 and 𝑏 − 𝑎 fixed to 0.010 and 0.002, respectively. The yellow and
purple dots correspond to the simulations of Figure 2.7. The relative error in both 𝑎
and 𝐷𝑅𝑆 increase with decreasing 𝐷𝑅𝑆, due to the larger amount of state evolution
during the direct effect. This trend is consistent across the full range of tested
parameters (bottom row). Overall, both the relative error of the posterior mean
estimators and the standard deviations of the posteriors rarely exceed 10%, showing
that MCMC inversions can infer rate-and-state parameters from stable velocity step
experiments sufficiently well.

is assumed to be uniform in the logarithmic space for the domain of (0.002 ∼ 0.040)
and (0.1 ∼ 100 µm) for 𝑎 and 𝐷𝑅𝑆, respectively. Figure 2.9 shows the results for
the posterior mean estimators of the rate-and-state parameters. The spring-slider
models with the inferred parameters match the experimental data quite well, with no
significant differences in the quality of the fit between the dry and wet experiments
or between the slip and aging laws. Both state evolution laws predict an increase
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in 𝑎 and 𝐷𝑅𝑆 in the presence of pressurized pore fluids, from 0.0081 and 2.28 µm
to 0.0113 and 3.13 µm for the slip law and from 0.0085 and 1.45 µm to 0.0118
and 2.04 µm for the aging law. The larger 𝑎 and 𝐷𝑅𝑆 allow the models to fit the
larger oscillation in the wet experiment. The larger oscillation may be mistakenly
interpreted as a characteristic of greater instability in the wet sample, but the larger 𝑎
and 𝐷𝑅𝑆 for nearly the same 𝑎−𝑏 would, in fact, correspond to more stable behavior.
Given that the experiment is displacement-controlled, the larger oscillation in stress
corresponds to the greater amount of energy that must be supplied to displace the
more stable material at the prescribed slip rate. Thus, the inversion reveals that the
presence of pressurized pore fluids increased the stability of the quartz gouge at this
early slip stage.

Figure 2.9: MCMC Inversion of Experimental Stable Velocity Step. The spring
slider models with the rate-and-state parameters given by the posterior mean estima-
tors produce good fits (the red and blue curves) to the experimental stable velocity
step (black curve) for both state evolution laws. Assuming steady-state conditions
at the beginnings and ends of the fitting windows, 𝑎 − 𝑏 is fixed to 0.0002 and
0.0001, and 𝜇∗ is fixed to 0.694 and 0.693 at a 𝑉∗ of 3 µm/s for the dry and wet
experiments, respectively. The dotted lines show fits by parameters that are a single
standard deviation of the posterior distributions away from the mean estimator. The
two state evolution laws produce similar values of 𝑎 while 𝐷𝑅𝑆 is larger for the
aging law. The wet experiment requires higher values of 𝑎 and 𝐷𝑅𝑆 to reproduce
the larger oscillation following the velocity step, highlighting a significant effect by
pressurized fluids on the frictional parameters of the gouge.

The slip law predicts significantly larger 𝐷𝑅𝑆 than the aging law, by a factor of
approximately 1.6 and 1.5 for the dry and wet experiments, respectively. This is
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because the slip law evolves the state variable significantly faster through slip than
the aging law. To achieve a similar amount of evolution in the state variable with
a similar amount of slip, the slip law requires a larger 𝐷𝑅𝑆, or a lower ratio of slip
to 𝐷𝑅𝑆. The two state evolution laws are equally good in fitting the initial velocity
step, and differ slightly in fitting the second oscillation with a longer duration of the
increase in friction for the slip law. For all models, the greatest misfit is during the
second oscillation, with a smaller increase in friction than observed.

Both experiments show nearly velocity-neutral behavior in the detrended data, with
𝑎−𝑏 = 0.0002 and 0.0001 for the dry and wet experiments, respectively. Interestingly,
an inversion of the dry experiment using the slip law with 𝑎− 𝑏 fixed to 0.001 yields
a fit that matches the oscillations significantly better than when 𝑎 − 𝑏 is inferred
from the detrended data (Figure 2.10). The new fit has higher 𝑎 = 0.0110 and
lower 𝐷𝑅𝑆 = 1.31 µm. On the other hand, fixing 𝑎 − 𝑏 to -0.001 yields a fit with a
monotonic decay following a smaller direct effect that resembles a linear line of best
fit through the oscillations, suggesting that the localized shear interface is closer to
velocity-neutral or velocity-strengthening at the time of the stable velocity step. The
superior fit of the oscillation with 𝑎 − 𝑏 fixed to 0.001 has similar 𝑎 and lower 𝐷𝑅𝑆

than the fit of the wet experiment. The stable velocity step of the wet experiment
does not yield a significant improvement in the fit of the oscillation for different
𝑎−𝑏. Thus, the uncertainty associated with 𝑎−𝑏 does not affect the conclusion that
the presence of pressurized pore fluids stabilizes the gouge material by increasing
both 𝑎 and 𝐷𝑅𝑆 for nearly the same 𝑎 − 𝑏. We continue to take into account this
uncertainty as we compare the inferred parameters of the stable phase to those of
the unstable phase in later sections.

Comparison to Conventional Methods using Non-Linear Least Squares
In previous studies, inferences of rate-and-state parameters from stable velocity
steps have more commonly employed non-linear minimization of least-square resid-
uals rather than Bayesian inversion with Monte-Carlo sampling. Such methods also
sample rate-and-state parameters uniformly, as opposed to the logarithmic transfor-
mation employed by our Bayesian framework. Here, we compare the effect of the
two differences on the inversion of the experimental data.

We first perform the inversions of the stable velocity step data using a representative
method of what is conventionally used in the field. We choose RSFit3000 of Skarbek
and Savage (2019) which utilizes the implementation of the Levenberg-Marquardt
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Figure 2.10: Accounting for Uncertainty in 𝑎 − 𝑏 due to Long-Term Evolution of
Friction: Fixing 𝑎 − 𝑏 to 0.001, instead of 0.0002 as inferred from assuming steady-
state conditions at the beginning and end of the original fitting window, produces
a better match to the second oscillation. On the other hand, fixing 𝑎 − 𝑏 to -0.001
produces a poorer fit with large 𝐷𝑅𝑆 such that a gradual evolution of friction fits
through the oscillations by a linear line of best fit. The plots are produced for the
slip law with no qualitative differences for the aging law. The fits highlight the
sensitivity of the inferred parameters to detrending and the need for care in choosing
the most relevant portions of the data for interpretation by rate-and-state friction in
realistic gouge material with complex deformation structure.

algorithm in MATLAB for non-linear minimization of least squares. The program
allows many utilities commonly employed in the inversion, such as linear detrending,
inversion of the stiffness as a free parameter, and applying weights to the calculation
of the residual. Figure 2.11 shows the fit by RSFit3000 using the same initial guess
as that for MCMC. Although the fits are reasonable, all parameter sets determined
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by RSFit3000 are more stable than those of the MCMC inversion, ultimately with a
greater misfit to the real data.

Figure 2.11: Conventional Methods using Non-linear Least Squares with Quasi-
Static Spring-Slider Model Converge to Poorer Fits of Stable Velocity Step Data.
All inversions result in a more stable response than experimentally observed, with
broader first oscillation and poor fit to the second oscillation, which corresponds
to much larger inferred values of 𝐷𝑅𝑆. For example, 𝐷𝑅𝑆 is nearly 3 times larger
for the dry experiment and slip law compared to the value found by the MCMC
inversion with logarithmic sampling (Figure 2.9), and 𝑎 is slightly smaller to match
the peak given the smaller amount of state evolution during the friction increase due
to greater 𝐷𝑅𝑆.

One difference between the two methods is that one is a local minimizer while
the other is a sampler of a global distribution. Additionally, RSFit3000 uses a
quasi-static spring-slider and allows 𝑏 to be a free parameter of the inversion.
We find the most dominant source of the difference between the results to be
that RSFit3000 samples the rate-and-state parameters uniformly while we apply
logarithmic sampling in the MCMC approach. To illustrate this point, Figure 2.12
plots the best fit from the MCMC inversion of the dry experiment, along with
parameter sets that are equal increments of 𝑎 and 𝐷𝑅𝑆 above and below the posterior
mean estimators. The solutions change significantly more for a decrease in 𝐷𝑅𝑆

which makes the material more unstable, compared to an increase in𝐷𝑅𝑆 of the same
magnitude, which makes the material more stable. Since 𝐷𝑅𝑆 of the experimental
gouge is already low, slight decreases in 𝐷𝑅𝑆 result in oscillations of different period
and amplitude. This causes larger changes in the normalized mean squared error
(NMSE) than equal increases in 𝐷𝑅𝑆. Changes in 𝑎 cause relatively symmetric
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changes to the solutions. The apparent tendency for the solutions to become more
unstable for higher 𝑎 is more due to the simultaneous increase in 𝑏 as a consequence
of conserving 𝑏−𝑎. The higher sensitivity to 𝐷𝑅𝑆 is consistent with the logarithmic
dependence of 1/𝐷𝑅𝑆 and the linear dependence of 𝑎 in rate-and-state friction.

Figure 2.12: ogarithmic Sensitivity of Rate-and-State Response during Stable Ve-
locity Step to 𝐷𝑅𝑆: Friction response with the posterior mean estimators of the dry
experiment using the slip law (solid lines) and with increments of 1 µm and 0.002
in 𝐷𝑅𝑆 (top) and a (bottom) both below and above the mean estimators (dotted
and dashed lines). Changes in the response are largest for decreases in 𝐷𝑅𝑆 which
produce significantly more unstable and oscillatory evolution in friction. Compar-
atively, increases in 𝐷𝑅𝑆 increase stability, and the qualitative change in friction
evolution is relatively minimal. Higher instability due to lower 𝐷𝑅𝑆 also increases
the normalized mean squared error (NMSE) more drastically, as indicated in the
legend. On the other hand, changes in 𝑎 produce relatively symmetric changes to the
solution. The NMSE increases at a slightly higher rate for increase in 𝑎, although
to a slower extent than for decrease in 𝐷𝑅𝑆. A logarithmic transformation of 𝐷𝑅𝑆

in optimization schemes enforces asymmetry in sampling so that low values of 𝐷𝑅𝑆

where the frictional behavior is more unstable are sampled at finer resolution.

We take a closer look at the effect of the logarithmic sampling by testing convergence
from different initial guesses. To isolate the effect of the sampling method, we
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implement a non-linear least squares inversion framework that incorporates other
features of our Bayesian framework (i.e., uses the fully dynamic spring-slider and
constrains 𝑏 − 𝑎 and 𝜇∗ from the fitting window). For the non-linear least squares
algorithm, we use the trust-region reflective algorithm implemented by scipy’s
optimization library (Oliphant, 2007). Four different initial guesses are chosen at
the corners of the parameter space defined by the range of (0.005 ∼ 0.015) and (1 ∼
5 µm) for 𝑎 and 𝐷𝑅𝑆, respectively. Figure 2.13 shows the comparison of paths by
the minimizers and the history of the residual along each path. All initial guesses
converge by logarithmic sampling to the posterior mean estimator of the MCMC
inversion. Sampling uniformly converges closely for initial guesses of 𝑎 = 0.005
although with significantly greater variance in 𝐷𝑅𝑆 along the paths, and guesses
with higher values of 𝑎 = 0.015 fail to converge to the posterior mean estimators.
Furthermore, when sampling logarithmically, the minimizers reach the posterior
mean estimator in a fewer number of iterations by at least an order of magnitude.
The residual largely decays monotonically when sampling logarithmically while it
diverges significantly from the minimizing path when sampling uniformly.

The previous results demonstrate that local minimizers can in fact achieve the accu-
racy of Monte-Carlo samplers with far fewer number of iterations when it also sam-
ples the logarithmic transformation of rate-and-state parameters. Now, we compare
the precision of inference between gradient-based minimization and Monte-Carlo
sampling (both uses logarithmic sampling). Figure 2.14 shows the posterior distri-
butions from the MCMC inversion, along with the Gaussian distributions centered
at the convergence of the non-linear least squares algorithms with standard devia-
tions equal to the measure of uncertainty associated with the resultant covariance
matrix (square root of the diagonals). While the peaks of the distributions coincide
quite closely, the distributions are significantly wider for the non-linear least squares
methods. Monte-Carlo approach, due to its wealth of sampling, is able to signifi-
cantly reduce the range of uncertainty associated with the inversion. Although the
reduction in uncertainty comes at the cost of more computations, the total duration
of sampling is far from prohibitive (less than a day on a single CPU) thanks to the
simplicity of the spring-slider model. Especially considering the typical amount of
time required for the preparation and execution of experiments, the gain in precision
outweighs the relatively minimal cost in post-processing time.
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Figure 2.13: Comparison of Convergence by Non-linear Least Square Between Log-
arithmic and Standard Sampling: The top row compares the paths of the minimizers
to convergence using logarithmic (left) and standard (right) sampling of rate-and-
state parameters from four different initial guesses represented by four different
colors. The paths increase in darkness with the iteration number, and star symbols
mark the start and end points of the paths. With logarithmic sampling, the minimizer
succeeds in converging to the posterior mean estimators of the MCMC inversion
(the intersection of the dotted lines) regardless of the choice of the initial guess. The
variance in rate-and-state parameters along each path is significantly greater with
standard sampling, especially in 𝐷𝑅𝑆. The bottom row compares the least square
residuals along each path. Logarithmic sampling follows paths with largely mono-
tonic decrease in the residual while standard sampling departs significantly from
such paths with large peaks in the residual history, associated with sampling large
values of 𝐷𝑅𝑆. Even when paths of standard sampling converge closely to the true
values (red and blue paths), they do so with an order-of-magnitude larger number of
iterations and with higher final residuals. The superior convergence of logarithmic
sampling, both in efficiency and accuracy, is due to the higher resolution of sampling
at lower values of 𝐷𝑅𝑆 where frictional behavior is more unstable (Figure 2.12).
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Figure 2.14: Comparison of Accuracy Between MCMC and Nonlinear Least-
Squares Inversions: The solid lines plot the histograms of the posterior distributions
from MCMC sampling, and the dotted lines plot Gaussian distributions centered
around the non-linear least squares solution with the associated standard deviation
(square roots of the diagonal entries of the covariance matrix). The 2D frequency
density maps between the two inferred parameters, 𝑎 and 𝐷𝑅𝑆, are plotted as contour
maps in between the histograms. Although both methods succeed in converging to
the true rate-and-state parameters, the range of uncertainty is larger for the least-
squares method, as evidenced by the wider shapes of the distributions.

2.5 Sensitivity of Stick-Slip Characteristics to Stability Ratio, State Evolution
Laws, and Dilatancy

An example of stick-slip motion in a spring-slider model with rate-and-state friction
is shown in Figure 2.15, where the friction coefficient, slip rate, and state variable
are plotted vs. the loading point displacements as done in experiments. For a
constant loading rate, the loading point displacement is proportional to time. The
stick-slip cycle consists of two main phases: 1) the “stick” or loading phase with
increasing friction coefficient and slip rate below the loading rate (the “stick” phase)
and 2) the “slip” or stress drop phase where the slip rate increases drastically and the
friction drops rapidly at dynamic (or near-dynamic) slip rates. In a perfect stick-slip
scenario, there would be zero slip and slip rate during the “stick” phase, and the
increase in loading would reflect the stiffness of the apparatus. However, in rate-
and-state models, there is always a non-zero slip rate, and “stick” means slipping
with slip rates lower than the loading rate, which results in a net compression of
the spring (or the loading column in the experiments) and increase in shear stress
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acting on the sample. Once the slip rate reaches the loading rate, the stress increase
stops and the peak friction is reached. Right before that, the slip rate is increasingly
closer to the loading slip rate, resulting in flattening of the loading curve. At the
peak of loading, the slider is already accelerating. Hence, the period right before
and after the peak corresponds to the accelerating nucleation phase. As the slider
starts to slip (much) faster than the loading point, the stress rapidly drops, eventually
resulting in the block slowing down below the loading rate, and the cycle repeats.

Figure 2.15: Spring-Slider Simulation of a Stick-Slip Sequence: Histories of the
friction coefficient, slip rate, and normalized state variable are shown for the slip
(top) and aging (bottom) laws. The loading rate and steady state are shown as red
dotted lines on the plots for the slip rate and normalized state variable, respectively.
Dots along the curve indicate 0.1-s intervals in time. The friction parameters are
0.010, 0.013, 1um, 0.7 and 3 µm/s for 𝑎, 𝑏, 𝐷𝑅𝑆, 𝜇∗ and 𝑉∗, respectively. For
the same frictional parameters, the aging law produces a larger stress drop. The
aging law also produces a lower slip rate during the arrest phase, leading to a large
evolution of the slip rate and state variable leading up to nucleation. Characteristics
of stick-slip defined in Figure 2.2a can be measured from such simulations and serve
as the basis for inversion for rate-and-state parameters.

Before we delve directly into the inverse problem, we run a host of stick-slip simu-
lations to explore the sensitivity of stick-slip characteristics to rate-and-state prop-
erties. We begin with the sensitivity of the creep % (which is the amount of creep
during the loading phase) shown in Figure 2.16. For both state evolution laws, the
creep % decreases for increasing ratios of 𝐾𝑐𝑟/𝐾𝑚𝑎𝑐ℎ. Larger 𝐾𝑐𝑟 represents higher
instability in the system, leading to more dynamic events and less creep during the
strengthening phase. Interestingly, the slip law consistently produces higher creep
% for the same frictional parameters than the aging law. The difference occurs due
to the different healing in the two laws. Since the state variable can only increase
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(“heal”) with slip, the slider must slip to increase friction during the loading phase.
With the aging law, healing can occur under stationary conditions, requiring less
slip. This results in a higher state variable at the time of the event, and events tend
to be larger and more dynamic for the aging law.

Figure 2.16: Slip Law has Higher Creep % than Aging Law. (Bottom left) The creep
% for a range of rate-and-state parameters (𝑎: 0.005 ∼ 0.015, 𝐷𝑅𝑆: 0.5 ∼ 5 µm,
𝐾𝑐𝑟/𝐾𝑚𝑎𝑐ℎ: 1 ∼ 3 & 𝐾𝑚𝑎𝑐ℎ = 90.5MPa/mm) is plotted for the slip (yellow dots) and
the aging (purple dots) laws; the values inferred from the dry and wet experiments
are shown by red and blue dashed lines. As expected, creep % is lower for more
unstable regimes with greater ratios of 𝐾𝑐𝑟/𝐾𝑚𝑎𝑐ℎ for both laws. For the same
frictional parameters, the slip law produces higher creep % than the aging law. (Top
left and bottom right) Representative simulations with the lowest and highest ratios
of 𝐾𝑐𝑟/𝐾𝑚𝑎𝑐ℎ, respectively. Dots along the curve indicate 0.1-s intervals in time. In
both cases, the aging law produces stick-slip events with characteristics of greater
instability, such as larger stress drops and lower creep %. The difference in creep
is especially visible for the simulations at critical stability (top left panel), where
the slip law exhibits greater curvature in the evolution of friction during the loading
phase. The set of simulations also indicates that the spring-slider model would only
be able to reproduce a creep % as high as that observed in the experiments near
critical stability.

The experimentally observed value of the creep % is relatively high compared to
the simulations (Figure 2.16); among the tested range of parameters, it can only
be reproduced at critical stability using the slip law. The time history during the
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simulated events using the slip law at critical stability also indicates that such events
have similar average slip rate to the experiments. Figure 2.17 plots the creep %
and the stress drop along a narrower region surrounding critical stability (0.99 ∼
1.01 of 𝐾𝑐𝑟/𝐾𝑚𝑎𝑐ℎ). Again, plotting the experimentally observed stick-slip features
shows that the experimental events can only be reproduced by a narrow range of
parameters around critical stability for both state evolution laws. The narrow range
of plausible sets of rate-and-state parameters is consistent with theoretical studies
which have identified the stability transition as an abrupt, Hopf bifurcation point in
the spring-slider model (Rice and Ruina, 1983). Leeman, Marone, and Saffer (2018)
observed slow slip in sliding experiments of quartz gouge and found that stability
ratios close to 𝐾𝑐𝑟/𝐾𝑚𝑎𝑐ℎ = 1 were necessary to reproduce the experimental events.
Other studies have proposed additional dependencies of rate-and-state parameters
on the slip rate which widens the range of parameters that produces slow slip (Ikari
and Saffer, 2011; Ikari, Saffer, and Marone, 2009; Im et al., 2020). On the other
hand, simulations of finite faults have shown that relatively wider ranges of the
nucleation to fault size can reproduce slow slip (Cattania and Segall, 2021).

Figure 2.17: Experimentally Produced Stress Drops and Creep % Can Only Be
Reproduced by Spring-Slider Model Near Critical Stability: The creep % and stress
drop are plotted for a range of rate-and-state parameters (𝑎: 0.005 ∼ 0.015, 𝐷𝑅𝑆:
0.5 ∼ 5 µm) within a narrow band of the stability ratio around critical stability
(𝐾𝑐𝑟/𝐾𝑚𝑎𝑐ℎ: 0.99∼1.01 & 𝐾𝑚𝑎𝑐ℎ = 90.5MPa/mm) for the slip (yellow dots) and the
aging (purple dots) laws. The experimentally observed values of the stress drop and
creep % (dashed horizontal lines for the dry (red) and wet (blue) experiments) can
only be matched for a narrow band of the stiffness ratio near critical stability.

Dilatancy is another possible mechanism for slow slip, especially given the presence
of fluids (Segall et al., 2010). Figure 2.18 shows the change in creep % and stress
drop due to dilatancy-induced pore pressure variations at various ratios of stability.
For all parameters, decreasing the hydraulic diffusivity — which increases the rate
of dilatant strengthening due to pore pressure decrease — both decreases the stress
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drop and increases creep %. In other words, dilatancy tends to stabilize all aspects of
stick-slip motion. This is inconsistent with the difference that is observed between the
dry and wet experiments where the presence of pressurized pore fluids increases the
stress drop while maintaining similar levels of creep %. Thus, dilatant strengthening
is unlikely to have affected the stability of the gouge, which is consistent with the
sufficiently high diffusivity of the gouge to disallow this effect (Faulkner et al.,
2018). Hence we conclude that the frictional properties of the gouge indeed need to
be close to critical stability in order to reproduce the relatively high creep % during
the strengthening phase.

Figure 2.18: Shear Induced Dilatancy Decreases Stress Drop and Increases Creep
%: (Left and middle) Stress drop and creep % are plotted as contour maps for a
range of stability and dilatancy ratios (𝑐: 0.001 ∼ 0.1 m2/s & 𝐾𝑐𝑟/𝐾𝑚𝑎𝑐ℎ: 1 ∼ 3)
with 𝑎, 𝐷𝑅𝑆 and 𝜖 fixed at 0.01, 1 µm and 1e-4, respectively, using the aging law.
For all stability ratios, dilatancy stabilizes all aspects of the stick-slip cycle. Namely,
decreasing the hydraulic diffusivity, which traps the fluid more and increases the
strength of dilatant stabilization, results in higher creep % as well as lower stress
drops. (Right) A representative comparison between two simulations that only
differ in the diffusivity. The model with lower diffusivity (blue curve) shows greater
stability, with smaller stress drop and higher creep %. Hence, dilatancy effect
cannot explain experimental observations in which the wet experiment results in
higher stress drops while maintaining similar creep %.

We take a closer look at the sensitivity of creep % to rate-and-state parameters at and
near critical stability by plotting its dependence on 𝑎 and𝐷𝑅𝑆 for ratios of𝐾𝑐𝑟/𝐾𝑚𝑎𝑐ℎ
close to 1. Figure 2.19 shows the plots for the slip law at 𝐾𝑐𝑟/𝐾𝑚𝑎𝑐ℎ = 1 and 1.001
which show nearly opposite sensitivity of creep % to𝐷𝑅𝑆. Example simulations with
relatively high 𝐷𝑅𝑆 show that the regime of slip can change dramatically between
the two stiffness ratios. The simulation at critical stability produces events with peak
slip rates close to 0.1 mm/s = 0.001 m/s. In this regime, the spring-slider produces
high creep % even in the presence of substantial weakening (𝑏 − 𝑎 = 0.004525).
With a small increase in 𝑏 that results in 𝐾𝑐𝑟/𝐾𝑚𝑎𝑐ℎ = 1.001, the spring-slider
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produces events with peak slip rates close to 0.1 m/s and rapid nucleation and arrest
phases. Thus, the opposite sensitivity of creep % to 𝑎 happens across a transition
in the regime of stick-slip, which happens quite abruptly in the spring-slider model.
A similar transition occurs for the aging law as well, although at lower values of the
stability ratio (Figure 2.20). For the aging law, parameter sets at critical stability
already produce fully seismic events.

Figure 2.19: Sensitivity of Creep % to Rate-and-State Parameters Near Critical
Stability for Slip Law: The contour maps plot the creep % for a range of 𝑎, 𝐷𝑅𝑆,
and 𝑏 that satisfy (left) 𝐾𝑐𝑟 = 𝐾𝑚𝑎𝑐ℎ and (right) 𝐾𝑐𝑟 = 1.001𝐾𝑚𝑎𝑐ℎ. The red and
blue dotted lines indicate the observed creep % from the dry and wet experiments,
respectively. At critical stability (left column), creep % tends to increase with
decreasing 𝑎 (and decreasing 𝑏) and increasing 𝐷𝑅𝑆 (and increasing 𝑏 − 𝑎). A
small change in the stability ratio such that 𝐾𝑐𝑟 = 1.001𝐾𝑚𝑎𝑐ℎ (right column) flips
the sensitivity in terms of 𝐷𝑅𝑆 (and 𝑏 − 𝑎). The upper left corner of the plot for
𝐾𝑐𝑟 = 1.001𝐾𝑚𝑎𝑐ℎ marks a region where the numerical procedure fails to resolve
events with strong dynamic overshoot, correlated to high ratios of 𝑏−𝑎

𝑎
. Example

simulations with a relatively low value of 𝑎 = 0.002 and high value of 𝐷𝑅𝑆 = 2 µm
show how the regime of slip can change drastically with a slight change in 𝑏 (Δ𝑏 <
1e-5).
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Figure 2.20: Sensitivity of Creep % to Rate-and-State Parameters Near Critical
Stability for Aging Law: The contour maps plot the creep % for a range of 𝑎 and
𝐷𝑅𝑆 at the stability ratios indicated at the top of the respective columns. The red
and blue dotted lines indicate regions along the contours that equal the observed
creep % from the dry and wet experiments, respectively. At slightly below critical
stability where 𝐾𝑐𝑟 = 0.995 𝐾𝑚𝑎𝑐ℎ (left column), creep % tends to increase with
decreasing 𝑎 (and decreasing 𝑏). Exactly at critical stability (right column), the
sensitivity flips in terms of 𝑎 (and 𝑏). Similarly to the slip law, example simulations
with a relatively low value of 𝑎 = 0.002 and high value of 𝐷𝑅𝑆 = 2 µm show that the
regime of slip changes drastically with slight increase in 𝑏 (Δ𝑏 < 3e-5), from slow
slip/low-frequency events to fully seismic events. The transition occurs at lower
values of the stability ratio compared to the slip law (Figure 2.19). Additionally,
parameter sets with high 𝑎 and high 𝐷𝑅𝑆 also produce relatively high creep %
unlike the slip law. The differences to the slip law in the sensitivity of creep %
imply significant differences in the plausible set of rate-and-state parameters that
match the experimental creep % using the two state evolution laws.

2.6 Inversion of Rate-and-State Parameters from Stick-Slip Data
Similarly to the development of the inversion framework for the stable velocity
step data, we start by formulating a probabilistic forward model for the observed



47

characteristics of stick-slip. Unlike the stable velocity step, we do not match the
friction curves directly, which have variable stick-slip features from one event to
the next. Instead, we treat the observed distribution of stick-slip features (Figure 3)
as a manifestation of stochasticity in the system, centered around the prediction by
the periodic spring-slider model. The observed variability between stick-slip events
within the same experiment could come from a number of factors, such as sensitivity
of the system to the servo control feedback in the presence of experimental noise,
small variations in the average friction properties of the system, or heterogeneity of
rupture along the finite slipping surface. We represent the epistemic noise of the
system as a Gaussian distribution with the standard deviation equal to that observed
from the experiment. All together, we arrive at the following probabilistic model of
stick-slip features, 𝑆𝑆𝑝𝑟𝑜𝑏,

𝑆𝑆𝑝𝑟𝑜𝑏 (Ω𝑅𝑆,𝑑𝑦𝑛𝑎𝑚𝑖𝑐) ∼ 𝑆𝑆𝑑𝑒𝑡 (Ω𝑅𝑆,𝑑𝑦𝑛𝑎𝑚𝑖𝑐) + 𝜂 (2.15)

where Ω𝑅𝑆,𝑑𝑦𝑛𝑎𝑚𝑖𝑐 ≡ {𝑎, 𝑏, 𝐷𝑅𝑆, 𝜇
∗}, 𝑆𝑆𝑑𝑒𝑡 is the set of stick-slip features predicted

by the deterministic spring-slider model, and 𝜂 is a multivariate Gaussian with a
diagonal covaraince matrix whose diagonal entries equal the standard deviations of
the distributions observed in experiment for the stick-slip features of interest. The
likelihood function and the posterior are then defined as:

IP𝑠𝑡𝑖𝑐𝑘−𝑠𝑙𝑖𝑝 (𝑆𝑆𝑒𝑥𝑝 |Ω𝑅𝑆,𝑑𝑦𝑛𝑎𝑚𝑖𝑐) =
𝑀=4∏
𝑗=1

(2𝜋𝑠2
𝑗 )−𝑁/2 exp

(
− 1

2𝑠2
𝑗

𝑁∑︁
𝑖=1

(𝑆𝑆 𝑗𝑒𝑥𝑝 (𝑖) − 𝑆𝑆 𝑗𝑑𝑒𝑡)
2

)

IP𝑠𝑡𝑖𝑐𝑘−𝑠𝑙𝑖𝑝 (Ω𝑅𝑆,𝑑𝑦𝑛𝑎𝑚𝑖𝑐 |𝑆𝑆𝑒𝑥𝑝) =
IP𝑠𝑡𝑖𝑐𝑘−𝑠𝑙𝑖𝑝 (𝑆𝑆𝑒𝑥𝑝 |Ω𝑅𝑆,𝑑𝑦𝑛𝑎𝑚𝑖𝑐)IP𝑠𝑡𝑖𝑐𝑘−𝑠𝑙𝑖𝑝 (Ω𝑅𝑆,𝑑𝑦𝑛𝑎𝑚𝑖𝑐)

IP(Ω𝑅𝑆,𝑑𝑦𝑛𝑎𝑚𝑖𝑐)
(2.16)

where 𝑆𝑆𝑒𝑥𝑝 is the set of observed stick-slip features from the experiment, 𝑁 is
the number of stick-slip events, 𝑗 spanning 1 to 4 corresponds to the index of an
individual feature (out of Δ𝜏, 𝜏𝑝𝑒𝑎𝑘 , 𝐾𝑚𝑎𝑥 and 𝐾𝑚𝑖𝑛), and 𝑠 𝑗 is the standard deviation
of the distribution of the corresponding feature. Similarly to the stable velocity
step, we assume the prior to be uniform and use the affine invariant Markov-chain
Monte-Carlo (MCMC) Ensemble sampler of Goodman and Weare (2010). In order
to find a starting point for the sampler with non-trivial likelihood, we run the inverse
problem under a gradient-descent based minimization method from a grid of initial



48

guesses. The grid of initial guesses is defined as a 5 x 5 x 5 uniform grid within the
domain of the prior for 𝑎, 𝐷𝑅𝑆 and 𝜇∗. Then, we choose for the starting point the
parameter set with the highest likelihood among all converged solutions. Given the
greater extent of non-uniqueness in the unstable regime, we significantly increase the
chain length (in comparison to the inversion of the stable velocity step) to 100,000
simulations among 32 walkers. This ensures the convergence measure of equation
(14) to decrease below 1e-4.

Synthetic Inversions for All Rate-and-State Parameters
We first perform inversions of synthetic data with all rate-and-state parameters (𝑎,
𝑏, 𝐷𝑅𝑆, 𝜇∗) as free variables. We produce synthetic data for a wide range of
parameters, namely, (0.007 ∼ 0.015) with spacing of 0.002, (0.5 ∼ 1.0 µm) with
spacing of 0.1 µm, and (1 ∼ 3) with spacing of 0.5 for 𝑎, 𝐷𝑅𝑆, and 𝐾𝑐𝑟/𝐾𝑚𝑎𝑐ℎ,
respectively, with 𝜇∗ fixed at 0.7. We intentionally avoid parameter sets with high
ratios of 𝑏−𝑎

𝑎
which are difficult to resolve numerically (Figure 2.19). The initial

conditions of the simulations are steady-state at the lower loading rate, inspired by
the observation that instability is often triggered by a velocity step up. To the set of
stick-slip features from each simulation, we add as noise Gaussian distributions with
standard deviations equal to those observed in the dry experiment. We then perform
an inversion for each friction vs. loading point displacement stick-slip sequence
produced.

Unlike for the stable velocity step, we find that that the peak of the posterior
distribution, a.k.a. the maximum a posteriori (MAP) estimator is consistently closer
to the true parameters than the posterior mean estimator. Even so, the relative error
of the MAP estimator is significant, ranging between 0 to around 60% (Figure 2.21)
for 𝑎, 𝑏, and 𝐷𝑅𝑆. Only 𝜇∗ has negligible error from the inversion. The error and the
range of uncertainty also increases with 𝐾𝑐𝑟/𝐾𝑚𝑎𝑐ℎ, indicative of a greater degree
of non-uniqueness for regimes of greater instability. A representative example of
the fit by the MAP estimator shows that the relative error in the characteristics of the
stick-slip event is smaller than the relative error in the inverted parameters. Between
the MAP estimator and parameter sets that are a single standard deviation away, the
resultant stick-slip sequence is nearly identical, despite as great as a 50% relative
difference in rate-and-state parameters. In order to regularize the non-uniqueness
of the inversion of our experimental data, we utilize in the following sections the
observation that stick-slip events with the relatively high creep % of the experiments
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can only be reproduced near critical stability in the spring-slider model, as was
discussed in Section 2.5.

Figure 2.21: Non-unique Sets of 𝑎, 𝑏, and 𝐷𝑅𝑆 Can Produce Similar Stress Drop,
Peak Stress, and Creep Evolution. (a-d) The relative error of MAP estimators from
MCMC inversions, with all frictional parameters (𝑎, 𝑏, 𝐷𝑅𝑆, and 𝜇∗) treated as
free variables, of synthetic simulations for a range of rate-and-state parameters (𝑎:
0.007 ∼ 0.015, 𝐷𝑅𝑆: 0.5 ∼ 1 µm, 𝜇∗ = 0.7 & 𝐾𝑐𝑟/𝐾𝑚𝑎𝑐ℎ: 1 ∼ 3). Aside from 𝜇∗,
MCMC consistently fails to accurately infer the true parameters. Yet, models with
the inverted values generally produce stick-slip events closely matching the synthetic
data as shown by the representative example in the rightmost panel. Furthermore,
parameter sets that are 0.5 standard deviations away from the MAP estimators
produce virtually equal stick-slip cycles even though the rate-and-state parameters
vary by 10% to 50% of the true value. The relatively large variability in frictional
parameters that produce similar events demonstrates the non-uniqueness of the
inverse problem and highlights the need for stronger constraints from observations
for unique inversions. For the inversion of experiments presented in this study, we
utilize the constraint that the set of frictional parameters must be close to critical
stability.

Synthetic Inversions while Assuming Critical Stability
We impose a constraint to the original inverse problem of Equations 2.15 and
2.16 by enforcing the condition that the rate-and-state parameters must form a
combination such that 𝐾𝑐𝑟 = 𝐾𝑚𝑎𝑐ℎ. This in effect reduces the dimensionality of
the parameter space by 1, since 𝑎, 𝑏, and 𝐷𝑅𝑆 are related to each other by Equation
2.7. For the simple reason to maintain similarity to the parameter space of the stable
velocity step data for easier comparison, we choose to eliminate 𝑏 from the inverse



50

problem. In other words, we replace Ω𝑅𝑆,𝑑𝑦𝑛𝑎𝑚𝑖𝑐 of equations 2.15 and 2.16 with
Ω𝑅𝑆,𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 ≡

{
𝑎, 𝑏 =

𝐾𝑚𝑎𝑐ℎ𝐷𝑅𝑆+𝑎
𝜎

, 𝐷𝑅𝑆, 𝜇
∗
}
.

Initial conditions of the models are chosen carefully in order to avoid first events
with large stress drop and dynamic overshoot that are difficult to resolve numerically.
Such initial conditions were identified for the slip law at critical stability by Gu et al.
(1984) for the quasi-static spring-slider. The slip rates with such initial conditions
go to infinity in the quasi-static solution; when resolved with inertia, these cases
lead to a large event with large dynamic overshoot. Enough dynamic overshoot can
severely challenge the numerical procedure during rapid arrest, when the slip rate
must decrease dramatically from dynamic to near-zero values. Ranjith and Rice
(1999) showed that such initial conditions do not exist at critical stability for the
aging law, whose trajectories, regardless of the initial condition, all remain in the
quasi-static regime. A representative set of trajectories as published in the studies
are re-plotted here for reference in Figure 2.22.

Figure 2.22: Quasi-Static Spring-Slider Predicts Singular Slip Rate for Slip Law
at Critical Stability. Solutions in the phase plane of slip rate (x-axis, normalized
in terms of the reference slip rate) and stress (y-axis, deviations from the reference
value normalized by 𝑎 times the effective normal stress) of the quasi-static spring-
slider system at critical stability are re-plotted here for reference from previous
studies, by Gu et al. (1984) for the slip law (left) and by Ranjith and Rice (1999) for
the aging law (right). For the slip law, certain initial conditions or perturbations can
lead to singular slip rates in the quasi-static system (labeled ’supercritical’). For the
aging law, all trajectories are contained within the quasi-static system. Based on the
quasi-static spring-slider studies, events of dynamic slip rate at critical stability (or
below it) are only possible with the slip law.

The phase plane solutions derived by Gu et al. (1984) and Ranjith and Rice (1999)
can be used directly in order to find initial conditions that lead to a first event
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closely resembling the events of long-term convergence. We rewrite the phase plane
solutions here for reference in terms of the terminology used here. For the slip and
aging laws, respectively, the phases plane solutions are,

𝑈𝑠𝑙𝑖𝑝 = 𝑒
𝜓

(
𝜓 + (𝛽 − 1) (𝜙 +𝑉∗𝑒−𝜙 − 1) − 1

)
(2.17)

and

𝑈𝑎𝑔𝑖𝑛𝑔 = (𝛽 − 1)𝛽
(
𝑉𝑙 𝑝

𝑉∗ + 𝑒𝜙

𝛽 − 1

)
𝑒

𝜓−𝜙

𝛽 − 𝜓𝛽 (2.18)

where 𝜓 =
𝜇𝑖𝑛𝑖−𝜇∗

𝑎
with 𝜇𝑖𝑛𝑖 being the initial value of friction, 𝜙 = ln 𝑉𝑖𝑛𝑖

𝑉∗ with 𝑉𝑖𝑛𝑖
being the initial slip rate, 𝛽 = 𝑏

𝑎
, and𝑈 is the constant that defines a single solution in

the phase plane with the subscripts corresponding to the names of the state evolution
laws.

Example simulations are plotted for the slip law with 𝑈𝑠𝑙𝑖𝑝 = 0 and 1 in Figure
2.23. While the simulation with 𝑈𝑠𝑙𝑖𝑝 = 1 leads to a large first event with dynamic
overshoot, once the event is fully resolved with inertia, the solution converges exactly
to the initial condition with 𝑈𝑠𝑙𝑖𝑝 = 0. Thus, the stability result of Gu et al. (1984)
only applies to the event immediately following the exponential increase in the slip
rate. After the first event, solutions converge back to a steady-state sequence with a
dramatically lower peak slip rate. The long-term convergence to transitional modes
of slip between stable and unstable regimes in the dynamic spring-slider was also
noted by Gu and Wong (1991). For the aging law, Figure 20 shows that all trajectories
at critical stability have already turned dynamic. This is in fact the behavior that
would be expected if considering the minute increase in critical stability due to
inertia. Interestingly, the slip law allows slow slip/low-frequency events for 𝐾𝑚𝑎𝑐ℎ
smaller than the dynamic critical stiffness. For the following inversions, we set𝑈𝑠𝑙𝑖𝑝
and 𝑈𝑎𝑔𝑖𝑛𝑔 = 0 as we find it to produce first events that are easily resolvable near
critical stability.

Figure 2.24 shows two inversion examples of the synthetic cases that only differ in
the value of 𝐷𝑅𝑆. In both cases, the relative error of the MAP estimator is close
to 0%, and the inversion accurately infers the true parameters. Similarly to the
inversions of stable velocity step, the range of uncertainty is larger for lower 𝐷𝑅𝑆.
Figure 2.25 compiles the relative error and quantiles of the posterior distribution
for all tested sets of parameters. The relative error is close to 0% regardless of
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Figure 2.23: Long-term Behavior of Stick-Slip Sequences in Dynamic Spring-
Slider: Two spring-slider simulations with the slip law, the same rate-and-state
parameters, and the same initial stress but different initial slip rates are plotted.
The simulation with higher initial slip rate (orange curve) produces a first event
that is similar to the long-term behavior of the simulated sequence. The simulation
with significantly lower initial slip rate (purple curve) produces a first event with a
dramatically higher peak slip rate and a larger stress drop. Thereafter, both models
converge to the same sequence of events. Given that different initial conditions tend
to converge to the same long-term sequence, we choose ones that avoid large first
events that are more difficult to resolve numerically.

the variations in 𝑎 or 𝐷𝑅𝑆. The range of uncertainty increases with decreasing
𝐷𝑅𝑆 up to approximately 75%. Despite such range in uncertainty, the inversion
is still able to infer the true parameters by the MAP estimator. The success of the
inversion indicates that fixing the stiffness ratio to the critical value provided enough
regularization of the non-uniqueness in the original formulation.

Inversion of Experimental Stick-Slip Data
To gain a sense of what rate-and-state parameter sets may fit the experimental stick-
slip data, we draw the maps of likelihood of 𝑎 and 𝐷𝑅𝑆 considering the resultant
stress drop and creep % (Figure 2.26) for the slip and aging laws at stability ratios of
1 and 0.995, respectively. The intersections of the narrowest contours for the stress
drop and creep % indicate regions of the highest joint likelihood. The intersecting
region for the slip law has a slightly lower value of 𝑎 around 0.012 compared to
around 0.016 for the aging law. 𝐷𝑅𝑆 is similar for both laws, at around 1.5 µm. Both
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Figure 2.24: Inversions of Synthetic Stick-Slip at Critical Stability by Bayesian
MCMC Sampling: Two representative examples of MCMC inversions are shown
for stick-slip simulations of the spring-slider model at critical stability, differing in
the true values of 𝐷𝑅𝑆 (and 𝑏). The posterior distributions of 𝑎, 𝐷𝑅𝑆 and 𝜇∗ are
shown on the left in terms of their relative error to the true value. The 2D frequency
density maps between the inferred parameters are plotted as contour maps in between
the histograms. The maximum a posteriori (MAP) estimators (solid colored curves)
and parameter sets that are a single standard deviation away (dotted and dashed
curves) produce fits that match well the reference synthetic data (black curves) for
both 𝐷𝑅𝑆. The inversion of the simulation with lower 𝐷𝑅𝑆 (and lower 𝑏 − 𝑎) has
higher range of relative uncertainty in 𝑎 and 𝐷𝑅𝑆. A trade-off is noticeable in the 2D
frequency density map of the posteriors of 𝑎 and 𝐷𝑅𝑆, such that an increase in 𝑎 is
accompanied by a decrease in 𝐷𝑅𝑆. In both cases, MCMC inversions successfully
infer the true parameters using the MAP estimators, although with a significant range
of uncertainty represented by the width of the posteriors due to the non-uniqueness
of inverse problem.

laws show separated contours indicating a degree of non-uniqueness. The narrowest
contour for creep % is compact within the intersecting region but the contours for the
stress drop are separated. The formal inversion also considers 𝐾𝑚𝑎𝑥 and 𝐾𝑚𝑖𝑛, which
makes the region of highest joint likelihood more compact. However, additional
considerations of the evolution of creep with further dependencies of the peak stress
on 𝜇∗, quickly becomes difficult to visualize in a concise manner. We look for the
MCMC inversion to sample the posterior, which corresponds to the joint density of
the likelihood for all inverted parameters.

Given the indications that the experimental stick-slip is close to critical stability (due
to its high creep %) and that well-behaved inversions are possible in that regime,
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Figure 2.25: Relative Error from Inversions of Synthetic Stick-Slip Simulations at
Critical Stability by Bayesian MCMC Sampling: The relative error of the MAP
estimators from MCMC inversions of stick-slip simulations at critical stability are
compiled for a wide range of rate-and-state parameters (𝑎: 0.006 ∼ 0.015, 𝐷𝑅𝑆:
1 ∼ 100 µm). The error bars indicate the first and third quantiles of the posterior
distributions as a measure of uncertainty. The top row shows the inversions of the
simulations with 𝑎 fixed to 0.007. The yellow and purple lines/dots correspond to
the simulations of Figure 2.24. Similarly to the inversion of the stable velocity step
data, the relative error in both 𝑎 and 𝐷𝑅𝑆 increase with decreasing 𝐷𝑅𝑆. This trend
is consistent across the full range of tested parameters (bottom row). Overall, the
MAP estimators successfully infer the true values with less than 5% error across the
range of tested parameters. At the same time, the posteriors are relatively broad in
their range of uncertainty as quantile values regularly exceed 50% in relative error
due to the non-uniqueness of the inverse problem.

we restrict the prior distributions to be non-zero only within the narrow band where
0.99 < 𝐾𝑐𝑟/𝐾𝑚𝑎𝑐ℎ < 1.01. The prior is further assumed to be uniform within the
range of (0.002 ∼ 0.030), (0.1 ∼ 10 µm), and (0.65 ∼ 0.75) for 𝑎, 𝐷𝑅𝑆 , and 𝜇∗,
respectively. Figure 2.27 plots the resultant posterior for the slip law along with
the fit by the MAP estimators. We also indicate on the same plot the posterior
mean estimators from the stable velocity step for comparison. The estimators from
the stable and unstable portions of the experiment coincide well in terms of 𝑎 for
both experiments. On the other hand, the posteriors indicate significant changes to
parameters of the evolution effect, 𝑏 and 𝐷𝑅𝑆. Namely, 𝑏 increases, making the
material more velocity-weakening with higher 𝑏 − 𝑎, and 𝐷𝑅𝑆 decreases, which is
consistent with the shift from the stable velocity step to more unstable stick-slip
behavior.
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Figure 2.26: Likelihood Maps at Plausible Stability Ratios For Slip and Aging Laws:
The in-line legend along the contours indicate the number of standard deviations
away from the mean of the experimentally observed stress drop (red curves) and
creep % (orange curves) for spring-slider simulations using the slip law (left) and
the aging law (right). The intersecting regions of the closest to mean contours
indicate the plausible sets of rate-and-state parameters that reproduce most closely
the experimentally observed stress drop and creep %. Different ratios of stability
are chosen for the two state evolution laws such that the intersecting regions are of
substantial size relative to the tested range of rate-and-state parameters. Stability
ratios generally need to be lower for the aging law in order to match the higher creep
% from the slip law (Figure 2.16). 𝑎 of the intersecting region is slightly higher for
the aging law while 𝐷𝑅𝑆 is similar for both laws. We look for the inversion method
to successfully infer the intersecting regions of the likelihood contours, also taking
into account 𝜏𝑝𝑒𝑎𝑘 , 𝐾𝑚𝑎𝑥 and 𝐾𝑚𝑖𝑛 among additional variability in 𝜇∗ and 𝑏.

The inversions also reveal the effect of pore fluid on rate-and-state parameters. 𝑎,
𝑏, and 𝐷𝑅𝑆 are all larger in the wet sample, similarly to the stable velocity step
conclusions. 𝜇∗ decreases for both cases, but more for the dry sample. While
the larger stress drop in the wet sample may make it appear as if the presence of
pressurized pore fluids destabilized the quartz gouge, the increase in 𝑎 and 𝐷𝑅𝑆 with
relatively little change in 𝑏 − 𝑎 may in fact be interpreted as greater stability. This
is similar to the observation at the stable velocity step, where the larger oscillation
in stress from the wet sample is indicative of the larger amount of energy needed to
apply a rapid change of the slip rate in the more stable material.

The simulated stick-slip sequence by the MAP estimators and single standard devia-
tions away from them match well the stress drop, average amount of creep, and peak
stress. Sampled measurements along the friction history shows that the average
slip rate of the event is also similar. Simulated slip rates reach peak values close
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Figure 2.27: Matching Simulations of the Experimental Stick-Slip Events using
the Slip Law: The posterior distributions of the MCMC inversion are shown as
histograms on the left for the dry (red) and wet (blue) experiments using the slip law
and assuming a range of rate-and-state properties close to the critical stability. The
mean estimators from MCMC inversions of the stable velocity step data are shown
in the same panels as vertical lines. For both the dry and the wet experiments, the
peak of the posterior distributions of 𝑎 coincide closely to the mean estimators of
the stable velocity step. The distributions of the rest of the frictional parameters
indicate a high chance of an increase in 𝑏, a decrease in 𝐷𝑅𝑆, and a decrease in 𝜇∗.
The best matching solutions using the MAP estimators are shown on the right along
with parameter sets that are a single standard deviation of the posterior distributions
away. Although the experiments have greater variability between each event than
the simulations, the models match well select events of the experimental sequence
that are closer to the average event. Dots are plotted along the curves each 0.1
s, mimicking the measurement frequency of 10 Hz in the experiment. Like in the
experiments, stress drops are often resolved by more than 2 points. At the same time,
the nucleation process of the simulated events lasts significantly longer both in time
and slip. In the simulations, a visible portion of the stress drop occurs at slip rates
close to the loading rate, while in the experiments, the first 0.1-s drop in friction
always marks a significant increase in the slip rate. Still, MCMC successfully
infers a plausible range of rate-and-state parameters from the unstable phase of the
experiment and reveals quantifiable changes in the rate-and-state properties of the
quartz gouge with slip. The increase in the evolution parameter, 𝑏, and decrease in
the characteristic slip distance 𝐷𝑅𝑆 between the stable step and stick-slip response is
likely due to localization of shear deformation and the comminution of grains along
the principal slip surface.
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to a 1 mm/s. Such slip rates are not high enough to trigger dynamic weakening
mechanisms such as flash heating or shear-induced pore pressurization and justifies
the use of the canonical rate-and-state friction law. A visible difference between the
model and the experiment is that the nucleation process appears to be significantly
longer in slip and time in the simulation. In the experiment, the first drop in friction
consistently marks the beginning of the stick-slip event and a significant increase
in the slip rate. In the simulated events, a considerable amount of the friction drop
happens at slip rates close to the loading rate. Thus, the models show a significant
qualitative discrepancy to the experiments in that the simulated stress drop has a
significant initial slow phase not observed in the experiments.

The results of the inversion for the aging law show several qualitative differences to
those for the slip law (Figure 2.28). First, the posterior distributions of 𝑎 and 𝐷𝑅𝑆

indicate their increase since the stable velocity step. 𝑏 increases and 𝜇∗ decreases
since the stable velocity like the slip law, but to greater extent. Similarly to the slip
law, the simulated stick-slip events match well the stress drop, amount of creep and
the peak stress. Unlike the slip law, the models do not reproduce similar slip rates
of the event. The models predict significantly slower slip rates. In order to match
the creep % of the experiment during the loading phase, the stability ratio of the
best-matching fit by the aging law is lower than that of the slip law, and that results in
lower slip rates during the stress-drop phase that no longer match the experiments.

For both state evolution laws, the sequence of simulated stick-slip events only
matches the experimental sequence in parts, as there is variability between individual
events in the experiments that does not exist in the periodic sequence of the spring-
slider model. To better evaluate the quality of the match, let us compare the
Gaussian distribution predicted by the probabilistic model (Equation 2.15 with the
experimentally observed distributions (Figure 2.29). For both state evolution laws,
the models fit well the stress drop, peak stress and the average amount of creep. The
models do not match well the distributions of 𝐾𝑚𝑎𝑥 and 𝐾𝑚𝑖𝑛, which are higher and
lower in the experiment, respectively. In other words, the experimental stick-slip
events ’stick’ more following the stress-dropping events and slip more right before
the friction peak (during nucleation).
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Figure 2.28: Matching Simulations of the Experimental Stick Slip Events using
the Aging Law: The posterior distributions of the MCMC inversion are shown as
histograms on the left for the dry (red) and wet (blue) experiments using the aging
law and assuming a range of rate-and-state properties close to the critical stability.
The mean estimators from MCMC inversions of the stable velocity step data are
shown in the same panels as vertical lines. Unlike the slip law, the peak of the
posterior distributions of 𝑎 increase slightly with respect to the mean estimators of
the stable velocity step. Additionally, the posterior of 𝐷𝑅𝑆 indicates an increase
since the stable velocity step. 𝑏 and 𝜇∗ increase and decrease, respectively, since the
stable velocity step like the slip law, although to a greater extent. The best matching
solutions using the MAP estimators are shown on the right along with parameter
sets that are a single standard deviation of the posterior distributions away. Dots are
plotted along the curves each 0.1 s, mimicking the measurement frequency of 10
Hz in the experiment. The aging law also matches the experimental stress drop and
creep % well like the slip law. However, stress drops are consistently resolved by
more points than in the experiment, indicating significantly lower slip rates during
the events. The nucleation process of the spring-slider models last significantly
longer both in time and slip than in the experiments, although this is also the case
with the slip law. The fit of the aging law ultimately features more discrepancies
from the experiment than the fit of the slip law.

2.7 Micro-physical Interpretations of Changes in Rate-and-State Parameters
with Slip and Pore Pressure

When using the slip law, there is minimal difference between the values of 𝑎
that match the stable velocity step and the stick-slip events. At the same time, 𝑏
increases and 𝐷𝑅𝑆 decreases during the transition period. Similar evolution of rate-
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Figure 2.29: Spring-Slider Simulations Can Match Stress Drop, Creep % and Peak
Stress of Experiments but Cannot Match 𝐾𝑚𝑎𝑥 and 𝐾𝑚𝑖𝑛: Histograms of the stick-
slip characteristics observed from the dry (red cures of left column) and wet (blue
curves of right column) experiments are plotted along with Gaussian distributions
predicted by the MAP estimators for the slip (yellow) and aging (purple) laws. The
simulated distributions match well the observed distributions of the stress drop,
creep % and peak stress. The simulated distribution for 𝐾𝑚𝑎𝑥 and 𝐾𝑚𝑖𝑛 are lower
and higher than those of the experiment, respectively, for both state evolution laws.
In other words, the experimental stick-slip consistently shows more creep during the
nucleation phase right before the stress peak and a higher tendency to ’stick’ right
after the event.
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and-state parameters with slip was observed in other experiments of quartz gouge
(Noël et al., 2023, 2024) although their inference of frictional parameters did not
extend into the unstable regime of stick-slip. Here, we verify that the evolution
continues into the stick-slip regime. The relatively small change in 𝑎 with slip
is consistent with existing interpretations of its physical origin that it represents
the strength of the contact asperities. In this sense, the strength of the asperities,
whose length scale is comparable to the size of the smallest grains with minimal
defects, should not change significantly due to comminution or shear localization.
𝐷𝑅𝑆 has been compared directly to the size of granular particles in gouge material
(Rathbun and Marone, 2013), consistent with the notion that the evolution of the
state variable should happen over distances of slip comparable to the grain size. The
decrease in 𝐷𝑅𝑆 with comminution and localization due to slip is consistent with this
logic. It is also possible that 𝐷𝑅𝑆 is rather proportional to the ‘quality’ of contact
rather than the grain size which might directly translate to the ‘quantity’ of contact.
Notably, clay has small particle size (∼ < 2 µm) but also tends to slide stably with
larger 𝐷𝑅𝑆. Clay has stronger inter-particle surface charge than quartz that leads to
agglomeration and possibly a larger ‘effective’ particle size. Whether such changes
in surface properties could also affect the ‘quality’ of frictional contact is not yet
clearly understood. Physical interpretations of 𝑏 are not as clear as they are for 𝑎
and 𝐷𝑅𝑆. It has been proposed that 𝑏 may be representative of the rate of change
in contact area due to shear-induced dilatation and compaction (Hulikal, Lapusta,
and Bhattacharya, 2018). One may expect the rate of dilatation to be dependent on
the grain size distribution at the localized layer, which could explain the change in
𝑏 with comminution. Other studies have also related 𝑏 to the rate of healing from
slide-hold-slide experiments (Noël et al., 2024).

When using the aging law, the evolution of rate-and-state effects with slip is not con-
sistent with the physical interpretations of the parameters just discussed. First, the
increase in 𝑎 reflects a change in the contact strength of the asperities through shear
localization and comminution. For a significant change in 𝑎 to be physical, 𝑎 likely
requires a different physical interpretation, possibly linked to an initial resistance to
motion by locking of grains to sudden perturbations. Secondly, 𝐷𝑅𝑆 increases since
the velocity step, which is inconsistent with the notion that it is directly proportional
to the grain size which reduces with slip. Notably, the constancy of 𝑎 and decrease in
𝐷𝑅𝑆 with slip that was also observed by Noël et al. (2024) were inferred by matching
the stable velocity using the aging law. However, the stable velocity step is close
to steady-state conditions with smaller differences between the two state evolution
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laws, and applying the slip law to the data of Noël et al. (2024) most likely would
not result in any qualitative changes to the conclusions.

Regardless of the choice of the state evolution law, the presence of pressurized pore
fluids tends to increase 𝑎, 𝑏, and 𝐷𝑅𝑆 in both the stable and unstable phases. The
results imply higher contact strength, higher rate of healing and state evolution,
and larger grain size or higher quality contact in the wet sample. How the contact
strength of the asperities would increase by the presence of pressurized pore fluids
is unclear. However, an increase in the contact strength would be consistent with
the larger grain size or higher quality contact, such that the grains would comminute
less or experience smaller decrease in contact quality under the same wear process.
Previous studies have noted the role of humidity in assisting adsorption along
contact surfaces which increases the rate of healing in slide-hold-slide experiments,
correlated to an increase in 𝑏 (Frye and Marone, 2002). However, the water content
is significantly greater in our experiment where the pore fluid is pressurized to 20
MPa. The ‘dry’ sample of our experiment corresponds more closely to ‘wet’ samples
in studies of the effect of humidity as our ‘dry’ sample is at room conditions. Given
the relatively large difference in pore pressure, it may be that the origin of difference
between the ‘dry’ and the ‘wet’ gouge in our experiment is more mechanical than
chemical.

2.8 Discrepancy Between Model and Experiment in the Dependence of Nu-
cleation on the Loading Rate

The simulations with both the slip and aging laws have nucleation processes that
are longer in time and slip than the experiments. We further test the extent of this
discrepancy by running the simulations at different loading rates. The simulations
using the slip law with the lower loading rate of 𝑉𝑝𝑙 = 0.3 µm/s and a higher loading
rate of 𝑉𝑝𝑙 = 30 µm/s are shown along with the original fit at 𝑉𝑝𝑙 = 3 µm/s in Figure
2.30. Interestingly, the nucleation process lengthens even further with a decrease
in the loading rate like in the experiments. However, this is accompanied by a
significant increase in the stress drop and peak stress and a decrease in the creep %.
As seen in Figure 2.4 and more broadly in Figure 2.2, the amplitudes of the stick-slip
signals nor their peaks do not change significantly at the different loading rates in
the experiment. Applying the hypothetical loading rate of 𝑉𝑝𝑙 = 30 µm/s further
decreases the stress drop and peak stress and shortens the nucleation process. The
duration of the nucleation process is more like the experiments at 𝑉𝑝𝑙 = 30 µm/s,
but with a significantly higher creep %. The inverse proportionality between the
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loading rate and stress drop in the dynamic spring-slider with rate-and-state friction
was also observed by Gu and Wong (1991).

Noël et al. (2024) noticed a dependence of stress drop on the loading rate - namely,
an increase in the stress drop with a decrease in the loading rate - which was
attributed to localization and de-localization by a sudden ’kick’ in the loading rate.
Such phenomenon would extend beyond the mechanisms of shear resistance along a
localized sliding surface as captured by rate-and-state friction. Thus, the fact that the
dynamic spring-slider with rate-and-state friction produces a stress drop dependence
consistent to what was observed by Noël et al. (2024) does not necessarily mean that
the physical mechanisms are represented accurately. Our experimental observations
are opposite to those of Noël et al. (2024) in that instability is often triggered and
suppressed by a step increase and decrease in the loading rate, respectively. We also
do not observe a significant dependence of the stress drop on the loading rate once
instability has fully developed.

The more rapid nucleation process in the experiments is interesting when considering
that 𝐾𝑚𝑖𝑛 of the experiment is already smaller than in the model. In other words, the
quartz gouge slips more during the nucleation phase prior to the stress-drop event,
implying more stable properties, but has a more abrupt transition to the event phase,
implying more unstable properties. The abrupt increase in the slip rate is followed
by an abrupt decrease during the arrest phase, resulting in higher experimental 𝐾𝑚𝑎𝑥
than that in simulations. This is an apparent combination of both more stable and
unstable behavior that is difficult to recreate with the spring-slider model and rate-
and-state friction using either the slip or aging laws. In the following section, we
explore whether this discrepancy could arise due to the approximation of the finite
experiment with a single-degree-of-freedom system.

2.9 Quasi-Static Finite-Element Model of Experiment
We develop an approximate Finite-Element Model (FEM) of the experiment, which
is still idealized but captures the finite extent of the sliding surface and the experi-
mental apparatus (Figure 2.31). Our main goal is to see whether the experimental
deviations from the spring-slider response could be caused by non-uniform slip
along the experimental surface. The model is 2D and plane strain, with the finite
dimension resolved in the direction of loading. The entire experimental apparatus
is approximated as a single column of constant thickness (20 mm), asides from the
location of the rubber spacers which are left vacant with a width of 10 mm due to
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Figure 2.30: Influence of Loading Rate on Stick-Slip in the Spring-Slider: The
rate-and-state parameters of the best-matching model of the stick-slip events in the
dry experiment using the slip law (red) is used to conduct spring-slider simulations
at different loading rates. Dots are plotted every 0.1 s, similar to the measurement
sampling at 10 Hz in the experiments. The dotted lines in the second row demarcate
the loading rate using the same color of the corresponding simulation. The loading
rate has significant effect on both the stress drop of the event and the evolution
of creep during the strengthening phase. Namely, a decrease in the loading rate
lengthens the nucleation phase while decreasing the creep % and increasing the
stress drop and peak stress. The longer nucleation process with a decrease in the
loading rate is similar to the experiment (Figure 2.4) but the increase in stress drop
and peak stress is not observed in the experiments. Thus, the spring-slider model
with rate-and-state friction produces extra sensitivity of stick-slip features to the
loading rate not observed in the experiments.
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their negligible strength compared to the steel surrounding. The elastic properties
of the apparatus are those of 17-4 stainless steel, heat treated to the H900 condi-
tion with shear modulus, density and Poisson’s ratio of 76 GPa, 7800 kg/m3 and
0.262, respectively. The length of the loading column, 𝐿𝑐𝑜𝑙 = 790 mm, is adjusted
to match the stiffness of the loading system measured from the experiment (90.5
MPa/mm). Thus, the total length of the model is 𝐿𝑡𝑜𝑡𝑎𝑙 = 𝐿𝑐𝑜𝑙 + 2*10mm + 50
mm = 860 mm. Although the experimental boundary condition in the direction
perpendicular to loading is technically a constant confining stress, strictly Neumann
boundary conditions lead to a singular stiffness matrix in the finite element method.
As a similar scenario, we apply a constant normal stress only to the top surface
and enforce a zero displacement boundary condition on the bottom surface. A 50
mm interface between the two steel sliders is designated as the frictional interface
with rate-and-state friction. The loading end of the column is pushed at a desired
displacement rate while the other end is fixed.

Figure 2.31: Quasi-Static Finite-Element Model: The experimental apparatus is
approximated as a single column of constant thickness besides the location of rubber
spacers adjacent to the gouge layer (Figure 1) which is left vacant, considering the
negligible strain energy of rubber compared to the steel surroundings. A constant
displacement rate is applied at the loading end of the column while the other end
is held fixed. A constant normal stress is applied from along the top surface of the
apparatus above the gouge layer while the displacement in the vertical direction is
fixed along the bottom surface. Plane-strain conditions are applied and inertia is
neglected. The simple 2D finite-element model simulates a more accurate analogue
of the experiment in terms of the apparatus geometry, accounting for the effect of a
finite loading system and the finite length of the sliding surface.

We first simulate the response of the finite-element model to the stable velocity step.
For brevity, we present the results using the slip law, the conclusions remain qual-
itatively the same using the aging law. The frictional parameters are the posterior
mean estimators from the inversion of the dry experiment using the spring-slider
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model. Figure 2.32 shows the comparison of the spring-slider fit along with the
finite-element model simulation. The two solutions are quite similar. The finite-
element model exhibits a slightly larger oscillation, with a higher peak in friction
and a lower trough afterwards. Overall, the finite model also matches the exper-
imental data quite well, and suggests that a spring-slider model can serve as an
accurate representation in the case of largely quasi-static slip where departure from
steady-state sliding is relatively brief. Interestingly, the measurement of the friction
coefficient in the finite-element model, which divides the cumulative force at the
loading end by the area of the sliding layer and the normal stress, is offset from the
experimental data by around 0.0645. The difference likely occurs from geometric
effects of the loading column and the sharp geometry at the ends of the sliding layer.

Figure 2.32: Finite-Element Model Behaves Similarly to Spring-Slider for Stable
Velocity Step: The evolution of friction in the finite-element model with the rate-
and-state parameters inferred from the spring-slider inversion using the slip law is
plotted (solid red curve) along with the results from the spring-slider model (dotted
red curve) and the dry experiment (black curve) for the stable velocity step. The
finite-element model behaves similarly to the spring-slider model and matches the
experiment well. The comparison shows that the spring-slider model may serve
as an accurate and efficient representation of the finite experiment for the stable
velocity step.

Next, we simulate a quasi-static solution with friction parameters given by the
MAP estimators derived for the dry experimental stick-slip data. Again, we use
the slip law. We enforce a constant step size of 0.01 s, which allows a stick-slip
sequence to be resolved. The solution is not necessarily correct, as it neglects inertia
and dynamic slip during the event. However, the quasi-static finite-element model
provides valuable insight into the evolution of slip in the finite setting for the inferred
frictional parameters, especially for the nucleation phase which is quasi-static.



66

We divide the plots of the evolution of slip and stress between the loading phase
and the stress-drop event phase. The nucleation phase and the arrest phase slightly
overlap between the two figures. Figure 2.33 shows the slip and stress history during
the loading phase. Slip evolves in a mostly uniform manner, with slightly higher
accelerations at the end of the sample further away from the loading column. The
stress profile is non-uniform in space, where the sharp geometry at the end of the
frictional layer creates stress concentrations. Due to the earlier onset of slip at
the edges of the sample prior to the plotted duration, accumulated slip is higher
towards the edges than in the center. Through time, the non-uniformity of the stress
profile changes minimally given the nearly uniform profile of slip, although the
shear stress does increase by about 1.5 MPa during the loading phase. Figure 2.34
shows the subsequent event phase. Even in the event phase, slip is also uniform in
space. The event is significantly slower than the experiments, due to the absence of
inertial effects. The largely uniform profile of slip is not surprising given that the
experimental surface is close to the critical stability as established in our spring-
slider modeling.

This modeling supports the notion that the main discrepancies between the spring-
slider model and the experiment are due to differences in the constitutive behavior
and not due to finite-fault effects. However, the possibility remains that the slip
in experiments is non-uniform in space, e.g., due to some heterogeneity of friction
properties along the sliding surface. We will investigate the continuum representa-
tions of the experiments more fully in future work.

2.10 Conclusions
In this chapter, we track the evolution of rate-and-state friction parameters in granular
quartz gouge with slip, starting from the stable phase using stable velocity steps to the
unstable phase using characteristic features of stick-slip events. We also analyze the
effect of pore pressure, by comparing two experiments with different pore pressure
but the same effective normal stress. The fine granular gouge considered in this work
exhibits a deformation history that is quite complex, including the development of
instability with slip, a dependence of stability and nucleation on the loading rate,
and long-term changes in the average friction coefficient. At the stable velocity step,
the wet sample shows slightly larger oscillations than the dry sample. In stick-slip,
the wet sample has both larger stress drops and larger changes in creep during the
aseismic period, transitioning from a more ‘stuck’ configuration during arrest to one
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Figure 2.33: Evolution of Slip and Stress in the Finite-Element Model During the
Loading phase: (a) A single stick-slip event from the event sequence of the finite-
element model is plotted along with the evolution of stress (b, c) and slip, slip rate
and state variable (d, e, f) during the strengthening phase. The colors on each plot
correspond to the same time scale shown on the far right. Dots along the curves
in (a) are spaced at 0.1-s intervals. The shapes of shear (b) and normal (c) stress
profiles change little during the loading period, due to uniform slip. The shapes are
non-uniform in space due to stress concentrations at the ends of the frictional layer.
During the plotted duration, evolution of slip, slip-rate and the state variable are
largely uniform in space aside from a slightly higher acceleration at the end further
away from the loading column. This model suggests that differences between the
experiments and spring-slider models during nucleation phase are not obviously due
to finite-fault effects.

that creeps more during nucleation. The differences show an effect of pressurized
fluids on friction beyond what can be explained by the effective stress principle.

We develop a Bayesian probabilistic framework with MCMC sampling to infer rate-
and-state parameters from both stable velocity step and stick-slip data. Synthetic
inversions show that the method can accurately and precisely infer rate-and-state
parameters from stable velocity step data with uncertainty range smaller than those
achieved by local minimization of nonlinear least-squares residuals. An important
observation with regards to the inversion method is that it is better to do the sampling
of rate-and-state parameters logarithmically, due to the logarithmic dependence of
friction on rate-and-state parameters such as 𝐷𝑅𝑆. The inversions of experimental
data indicate that the presence of pressurized pore fluids simultaneously stabilizes
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Figure 2.34: Evolution of Slip and Stress in FEM Model During the Stress-Drop
Event: (a) A single stick-slip event of the finite-element model is plotted along with
the evolution of stress and slip during the dynamic phase (b, c, d, e, f). The colors
on each plot correspond to the same time scale shown on the far right. Dots along
the curves in (a) are spaced at 0.1-s intervals. Although slightly higher acceleration
of slip is visible at the edges, the evolution of slip, slip rate and the state variable
are largely uniform across the length of the slipping surface. The spatially uniform
evolution of slip suggests that the discrepancy between the experiments and spring-
slider models are not obviously due to finite-fault effects.

and destabilizes the gouge, as the wet sample has higher 𝑎 and 𝐷𝑅𝑆 that corresponds
to more stability as well as higher 𝑏 that corresponds to more unstable behavior.

Forward simulations of the spring-slider model in the unstable regime show that
the slip law generally produces more creep than the aging law. The aging law
is able to heal and evolve the state variable more at lower slip rates which leads
to higher state variable values during loading and more dynamic events. The
different dependence of creep to rate-and-state properties near critical stability leads
to qualitatively different inversion results for the two state evolution laws. Although
dilatancy increases creep %, it also decreases the stress drop, making it an unlikely
explanation for the observed changes between the dry and wet experiments during
the unstable phase. Thus, both the development of instability with slip and the
differences between the dry and wet experiments are likely due to changes in rate-
and-state friction parameters.

Synthetic inversions of rate-and-state parameters reveal a large degree of non-
uniqueness when all frictional parameters are treated as free variables. Assuming
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critical stability regularizes the non-uniqueness, allowing accurate inference of rate-
and-state parameters from slow-slip events. Inversions of experimental data while
assuming the responses are close to critical stability allow us to track the evolution
of frictional parameters with slip since the stable velocity step. For the slip law,
both experiments show minimal change in 𝑎 along with an increase in 𝑏, decrease
in 𝐷𝑅𝑆, and decrease in 𝜇∗. The constancy of 𝑎 and decrease in 𝐷𝑅𝑆 are consistent
with previously established interpretations related to the strength of the asperity
contacts and the comminution of grains at the localized plane of shear, respectively.
The reduction in 𝐷𝑅𝑆 could also represent a reduction in the ‘quality’ of contact.
Distinguishing between the possibilities is difficult without detailed examination of
the grain structure and surface chemistry. The aging law shows an increase in 𝑎,
along with an increase in 𝑏 and increase in 𝐷𝑅𝑆. The changes to 𝑎 and 𝐷𝑅𝑆 are not
consistent with the micro-physical interpretations of rate-and-state effects for the
aging law. Furthermore, the best fitting model with the aging law has slip rates of
the event phase that are significantly lower than those of the experiment. Overall,
the slip law produces a closer fit to the experimental events while also demonstrat-
ing greater consistency in the evolution of rate-and-state parameters with respect to
established interpretations of their micro-physical origin.

The best fitting spring-slider model with the slip law still shows significant discrep-
ancies to the experiments in the evolution of creep during the strengthening phase
and in the dependence of stick-slip dynamics on the loading rate. The spring-slider
model has lower𝐾𝑚𝑎𝑥 and higher𝐾𝑚𝑖𝑛 than the experiment, indicating that the exper-
iments both stick more after an event and creep more prior to an event. Additionally,
the nucleation process is significantly more abrupt in the experiment. The spring-
slider model also cannot reproduce the (lack of) dependence of stress drop on the
loading rate that is observed in the experiment. A quasi-static finite-element model
with the same rate-and-state properties suggests that the gouge in the sample likely
slides in a spatially uniform matter. The same model also successfully reproduces
the fit of the stable velocity step by the spring-slider model. Thus, the discrepancies
between the spring-slider model and the experiment can likely be attributed to flaws
in the rate-and-state formalism rather than the idealization of a finite geometry to a
single-degree-of-freedom system.

Although the inversion of stick-slip observed in the experiments using spring-slider
models is relatively successful, it is only possible assuming regimes close to critical
stability in the spring-slider model, as substantiated by the significant creep percent-
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age observed during the loading phase. Inversions of more dynamic events using the
proposed approach would run into difficulties with non-uniqueness. Furthermore,
more dynamic events may involve dynamic weakening mechanisms such as flash
heating and pore pressurization, which may make inversions even more non-unique.
Thus, an interesting question to ask is what observations and data could further
constrain the inverse problem. In the experimental setting, one could submit the
sample to different regimes of sliding by slide-hold-slide tests during the stick-slip
events. Such tests may better constrain the effect of healing which in conjunction
with stick-slip characteristics could make the inverse problem more unique. The
task might be more difficult in the field setting where one rarely has control on
the type of loading. A case where control may be possible is in the context of
induced seismicity, where one can inject or extract at desired rates. Additionally,
developing technologies in observational seismology such as Distributed Acoustic
Sensing (DAS) could provide stronger constraints on the spatial profile of dynamic
properties (Li et al., 2023).
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C h a p t e r 3

PHYSICAL AND STATISTICAL MODEL OF SEISMICITY RATE
OBSERVED DURING GEOTHERMAL WELL STIMULATION

IN OTANIEMI, FINLAND

This chapter has been adapted from

Kim, Taeho and Jean-Philippe Avouac (2023). “Stress-based and convolutional fore-
casting of injection-induced seismicity: application to the Otaniemi geothermal
reservoir stimulation.” In: Journal of Geophysical Research: Solid Earth 128.4,
e2022JB024960.

3.1 Introduction
Induced seismicity is of particular relevance to geothermal energy production. Con-
trolled hydraulic stimulation could unlock the vast geothermal resources that could
be drawn from deep crustal reservoirs with no natural hydrothermal activity. Hy-
draulic stimulation is used to enhance the heat exchange between the circulating
fluids and the reservoir by creating or reactivating fractures which are hydraulically
conductive. Induced seismicity is an undesirable by-product of this process, and
a number of such Enhanced Geothermal Systems (EGS) has been stopped due to
earthquakes felt by local residents. (Häring et al., 2008; Kwiatek et al., 2019;
Schultz et al., 2020). The development of Enhanced Geothermal Systems (EGS)
would therefore benefit from better methods to forecast injection-induced seismicity.

It has long been known that injection of fluids in the subsurface can induce seismicity
(e.g., Healy et al., 1968; Raleigh, Healy, and Bredehoeft, 1976). Injection-induced
seismicity can result from either a stress or strength change on a fracture or fault.
The effect of injection is generally assessed by considering pore pressure diffusion in
the medium and the consequent decrease in the effective normal stress as according
to Terzaghi’s principle (Skempton, 1984). This first-order description of the stress
state has been effective in explaining various aspects of induced seismicity, including
the

√
𝑡 evolution of the seismicity front (Shapiro et al., 2006; Shapiro, Huenges, and

Borm, 1997) and general spatio-temporal patterns of induced seismicity (Elmar
and Shapiro, 2002; Shapiro et al., 2002; Shapiro and Müller, 1999) as early as the
pioneering study at the Rangely oil field (Raleigh, Healy, and Bredehoeft, 1976).
An additional step in the description of stress changes due to a fluid injection
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is the theory of poroelasticity which describes the coupling between fluid flow
and deformation of the solid skeleton. Poroelasticity has been shown to play a
role in triggering earthquakes in addition to pore pressure evolution (Segall, 1989;
Segall, Grasso, and Mossop, 1994; Segall and Lu, 2015), particularly outside the
characteristic pore pressure diffusion length (Goebel and Brodsky, 2018; Zbinden
et al., 2020). Although the magnitude of stress changes from poroelasticity is
estimated to account for typically only about a tenth of that from pore pressure
diffusion (Zhai and Shirzaei, 2018), its consideration is often required for complete
explanations of the observed seismicity in space and time.

A fluid injection can result in ‘hydrofractures’ (Mode-I opening fractures) or shear
fractures (Mode-II or Mode-III). Induced earthquakes generally result from shear
failure. While linear elastic fracture mechanics is commonly employed in modeling
the growth of cracks in Mode-I and the consequent stress changes, modeling shear
failure requires an appropriate friction law. One kind of models is based on the
Mohr-Coulomb failure criterion in which slip occurs once the ratio of the shear stress
to the normal stress on a fault reaches a pre-defined threshold, the static friction
coefficient, and drops to the dynamic friction coefficient either at the immediate
onset of slip or gradually with fault slip. However, there is ample evidence from
laboratory studies and natural observations that the initiation of slip involves in
fact a gradual decrease of friction associated with asesimic slip, often referred to
as the nucleation process. Such an evolution of friction is commonly described
using the rate-and-state friction law derived from frictional sliding experiments in
the laboratory (Ampuero and Rubin, 2008; Dieterich, 1994; Marone, 1998; Ruina,
1983).

The non-instantaneous nucleation process implied by rate-and-state friction can
explain a number of phenomenological observations such as the Omori decay of
seismicity rate during aftershocks (Dieterich, 1994) or the low sensitivity of seis-
micity to solid-earth tides (e.g., Beeler and Lockner, 2003). The rate-and-state
formalism has also shown success in explaining the relationship between stress and
seismicity rate due to diking (e.g., Toda, Stein, and Sagiya, 2002) and aseismic
slip (e.g., Segall et al., 2006). In the context of induced seismicity, rate-and-state
friction has been applied to explain certain non-linear features such as the time
lag between induced seismicity and stress perturbations (e.g., Candela et al., 2019;
Dempsey and Riffault, 2019; Norbeck and Rubinstein, 2018; Richter et al., 2020).
It is important to note that, in principle, the activation of a fault by a pore pressure
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increase doesn’t necessarily imply seismic slip (e.g., Guglielmi et al., 2015). In
fact, there is observational evidence that injection-induced fault slip is mostly con-
ditionally stable (Bourouis and Bernard, 2007; Calò et al., 2011; Goodfellow et al.,
2015; Scotti and Cornet, 1994), as is expected from the nucleation model based on
rate-and-state friction and that seismicity is in fact occurring outside the zones of
high pore pressure (Cappa et al., 2019; De Barros et al., 2018; Wei et al., 2015).

More specifically with regards to hydraulic stimulation of geothermal wells, im-
portant questions arise regarding the differences between the Mohr-Coulomb and
rate-and-state friction-based models considering the rapid stressing rate that is com-
mon in such operations. Mohr-Coulomb models coupled with linear slip weakening
can result in realistic simulations of seismic ruptures while accounting for the nu-
cleation process (Olsen, Madariaga, and Archuleta, 1997). This is not the case
for single-degree-of-freedom spring-slider systems often employed for modelling
induced seismicity. The commonly used model of Dieterich (1994) based on rate-
and-state friction can converge to models based on the Mohr-Coulomb criterion at
the rapid equilibrium limit. It is also possible that rate-and-state effects on nucle-
ation may be significant at the relatively short timescale of intense injection cycles
during stimulation.

A hysteresis effect, often referred to as the Kaiser effect, is also commonly observed
in induced seismicity. The Kaiser effect refers to the observation when a material
submitted to a series of loading cycles of increasing amplitude fails gradually, further
failure generally occurs at a stress level exceeding the maximum stress reached
in previous cycles. This effect explains the observation that acoustic emissions
during rock failure stop if the stress decreases and do not resume until the medium
is loaded to its previous maximum (Lavrov, 2003). How a nucleation source
“remembers” its loading history has proven to be essential in reproducing various
observations in induced seismicity, such as time delays of the seismicity rate in
response to perturbations of the injection rate and regions of seismic quiescence
behind triggering fronts (Baisch et al., 2006, 2010; Dempsey and Riffault, 2019).

Numerous physical models have been developed to incorporate stress changes, pore-
pressure changes and failure mechanisms in a single framework (Gaucher et al.,
2015; Grigoli et al., 2018). A notable example of physical models that accounts
for rate-and-state friction in particular, is presented by Segall and Lu (2015), where
changes in stresses by fluid injections into an infinite poro-elastic medium were used
as input to the model of Dieterich (1994), relating seismicity and stress rates among
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a population of nucleation sources. Although the framework was originally used to
investigate poroelastic effects during shut-in and to address the common observation
that maximum magnitude events often occur after injections cease (Grigoli et al.,
2018; Häring et al., 2008), it can be used more generally to study induced seismicity
in response to various injection scenarios (e.g., Zhai and Shirzaei, 2018). Finite-
fault and fracture network models accounting for rate-and-state friction have also
been developed (Almakari et al., 2019; Dublanchet, 2018; Larochelle et al., 2021;
McClure and Horne, 2011) to examine rupture properties and the effect of hetero-
geneous fault properties on the seismicity rate. Numerous factors make it difficult,
however, to resort to such models in practice, such as the high computational cost
of solvers and poor resolution of pre-existing heterogeneities in the sub-surface - in
particular, the distribution of stress and strength - with a level of detail that cannot
be constrained with observation. Some representations of heterogeneities are essen-
tial in reproducing well-established statistical properties of earthquakes (Dempsey,
Suckale, and Huang, 2016; Zöller, Holschneider, and Ben-Zion, 2005) such as the
Gutenberg-Richter law which describes the magnitude-frequency distribution of
earthquakes (Gutenberg and Richter, 1956; Ogata, 1988).

Due to the complexity of stress-based models along with the difficulty to calibrate
the model parameters, a number of studies have alternatively explored data-driven
statistical modeling. Such models often hinge on the Gutenberg-Richter law and
the assumption that earthquakes follow a Poisson process. Additionally, they of-
ten model earthquake triggering as a cascading process based on the Omori law
(Utsu, 2002) which fits commonly observed patterns of the decay of seismicity rate
during aftershock sequences. A popular example is the epidemic type aftershock
model (ETAS) (e.g., Ogata, 1988), which represents the total seismicity as a linear
superposition of homogeneous Poisson processes, to represent mainshock and af-
tershock sequences (e.g., Bachmann et al., 2011; Lei et al., 2008; Mena, Wiemer,
and Bachmann, 2013). Such models have the advantage of resulting in very realistic
synthetic catalogs since they incorporate statistical properties directly derived from
observations. However, statistical approaches are in principle less transportable
from one reservoir to another as they lack explicit connections to the mechanical
and hydro-geological properties of the medium. The development of hybrid models
that account for the complex network of physical mechanisms while being general-
izable and applicable to various injection sites and scenarios is therefore an active
area of research (Gaucher et al., 2015).
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In this chapter, we develop and test physical and statistical models of induced
seismicity against a seismological dataset acquired by the Finnish company St1
Deep Heat Ltd. during an EGS operation at the Aalto University’s Otaniemi campus
near Helsinki (Hillers et al., 2020; Kwiatek et al., 2019; Leonhardt et al., 2020).
A large catalogue produced with Machine Learning techniques (Ross, Meier, and
Hauksson, 2018; Ross et al., 2018) revealed that the time evolution of seismicity can
be predicted well based on a simple convolution model (Avouac et al., 2020). An
enhanced catalogue was also recently produced by Leonhardt et al. (2020). Building
on this previous work, we present and assess physical and statistical models to
forecast the spatio-temporal evolution of seismicity induced by the Otaniemi EGS
stimulation.

3.2 Data Presentation And Analysis
The seismic catalogue comes from a geothermal well stimulation project operated by
St1 Deep Heat Ltd. near the campus of Aalto University in Otaniemi, Finland and is
compiled by Leonhardt et al. (2020). The injection well (OTN-3 in Figure 3.1) was
drilled to a depth of 6.1 km into Precambrian crystalline (gneiss and granite) rocks.
Approximately 18,000m3 of water was injected over the course of 49 days from June
4th to July 22nd in 2018. The injection history was divided into five successive
stages moving upward from the bottom of the well (Figure 3.1). Pumping parameters
of the injection such as the injection rate and well-head pressure were tuned as part
of a Traffic Light System (TLS), the details of which are presented in Ader et al.
(2020) and Kwiatek et al. (2019). The stimulation consisted of numerous cycles
of injections and pauses of varying duration. The injection history also included
periods of bleed-off’s where injection was stopped and backflow out of the well was
allowed.

The stimulations were monitored with surface and borehole seismometers providing
excellent detection and location of the induced earthquake (Hillers et al., 2020;
Kwiatek et al., 2019). Namely, the monitoring network consisted of a seismometer
array at 2.20-2.65km depth in a separate well (OTN-2), located around 400 m from
OTN-3, in addition to a 12-station network installed in 0.3-1.15 km deep wells
(Figure 3.1). The catalogue consists of 61,150 events in total (Figure 3.2) and 1986
relocated events with spatial uncertainty of ±52m (Figure 3.3). The magnitude of
completeness is estimated to be 𝑀𝑐 = -1.1.
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Figure 3.1: Well-Stimulation Operation in Otaniemi, Finland (Kwiatek et al., 2019).
The observation well (OTN-2) and stimulation well (OTN-3) are indicated by lines
extending into depth at the center of the schematic. Locations of various geophones
within the area are indicated by the yellow triangles. Locations of stimulation stages
S1 to S5 vary along the length of OTN-3. Basic stimulation parameters are shown
in the inset.

A few salient features of the observed seismicity guide our modeling. First, the
seismicity rate has a positive correlation to the injection rate in time, accompanied
by finite periods over which it increases and decreases in response to injections
and shut-ins, respectively. We indeed note that the seismicity rate reaches a similar
magnitude for injections far apart in time but equal in the flow rate. Second, the
decay pattern in the seismicity rate, 𝑅, during injection pauses is well-matched by
the Omori law

𝑅(𝑡) = 𝑅0

1 + 𝑡/𝑡𝑟
, (3.1)

where 𝑡 is time, 𝑡𝑟 is the time it takes for the seismicity rate to halve, and 𝑅0 is the
seismicity rate at the onset of decay. A fit to one of the injection pause periods is
shown in Figure 3.4. Note that the more general ‘modified Omori law’ (Utsu, 2002)
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Figure 3.2: Earthquake Catalogue in Otaniemi. The complete catalogue of Leon-
hardt et al. (2020) is plotted in dark blue as a histogram. The injection rate history
is plotted in orange. The background colors represent the timing of the individual
injection stages. The seismicity rate shows a strong direct and roughly linear corre-
lation to the injection rate, contrary to the non-linearity expected from rate-and-state
friction.

allows a 1/𝑡 𝑝 decay of seismicity rate; here the 𝑝-value is close to 1. The close
match to the Omori law is consistent with observations of the decay rate in induced
seismicity following shut-ins reported in a number of previous studies (Almakari
et al., 2019; Bachmann et al., 2011, 2012; Langenbruch and Shapiro, 2010). Lastly,
the relocated catalogue (Figure 3.3) shows a rather diffuse distribution of seismicity,
suggesting that the injection stimulated fractures were distributed within a relatively
large volume (∼ 1km3) around the open sections of the well by diffusion of pore
pressure.

The exact origin of Omori law decay remains poorly understood; it could be due to
the finite nucleation process governed by rate-and-state friction (Dieterich, 1994)
or by instantaneous nucleation and postseismic creep that predict a p-value of
approximately 1 (Perfettini and Avouac, 2004). This process was suggested to
have occurred during a 10 MPa stimulation of a geothermal well at ∼ 3km depth at
Soultz-sous-Forêt (Bourouis and Bernard, 2007). Similarly, stress relaxation by pore
pressure diffusion (Nur and Booker, 1972) predicts a seismicity decay also closely
resembling the Omori law with a p-value typically between 1 and 2 (Langenbruch
and Shapiro, 2010; Miller, 2020). Studying the properties of the Omori-like decay
provides a valuable opportunity to re-examine its mechanical origins and the physical
mechanisms that drive induced seismicity.
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Figure 3.3: Relocated Catalogue of Leonhardt et al. (2020). 1986 relocated events
are indicated as black dots according to their distances from the injection source and
time of occurrence (top). The red curve outlines the theoretical triggering front of
Shapiro, Huenges, and Borm (1997),

√︁
4𝜋𝑐𝑡 𝑓 𝑡, with 𝑐𝑡 𝑓 = 𝑐ℎ𝑜𝑟𝑛𝑒𝑟 = 0.018 m2/s. It is

difficult to assess a level of agreement between the triggering front and the relocated
catalogue given the limited sample size. Clusters of events far beyond the curve are
likely due to leaks in the casing, as evidenced by their locations close to the well
path shown in the vertical section view (bottom-left). In the map (bottom-right) and
and vertical section views, the well is drawn in black with stimulated sections of
the well and occurrence time of events color-coded correspondingly. 𝑀𝐻𝐸𝐿 refers
to the local Helsinki magnitude scale. The color-coding reveals little correlation
in space between events and stimulation stages. Overall, the

√
𝑡 evolution of the

triggering front and the diffusive structure of the seismicity cluster suggests pore
pressure transport as the main triggering mechanism.

3.3 The Statistical Model: Convolution of a Linear Transfer Function In-
ferred from Data

The direct relationship between the injection and observed seismicity rate suggests
that it may be represented by a linear transfer function of the injection history
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Figure 3.4: Omori Law (𝑝=1) Decay During Shut-in. The recorded catalogue in
time is zoomed-in on an interval during which injection has largely stopped (around
450-hour mark in Figure 2). A Short period prior to shut-in is shown with a sky blue
background. The shut-in period is indicated with a grey background. The decay
pattern in seismicity rate during the shut-in is matched well with an Omori decay
function (modified Omori-Utsu law with 𝑝=1), plotted in light purple. The dotted
lines and shaded areas in-between indicate the 95% confidence interval of the fit.
The fitted value of 𝑡𝑟 and the bounds of the confidence interval of the fit are indicated
in the legend. Omori decay may occur due to numerous mechanisms such as the
finite nucleation process, stress relaxation by pore pressure diffusion, or viscoelastic
creep during the posteseismic phase. The nature of induced seismicity from fluid
injections makes a mechanism related to pressure diffusion a likely candidate for
Otaniemi.

(Avouac et al., 2020). To quantify this relationship, we use the algorithm of Marsan
and Lengline (2008) which was originally designed to determine the kernels char-
acterizing how earthquakes trigger other earthquakes. The algorithm estimates
weights as a function of distance and time which, after normalization, represent
the probability that any earthquake was triggered by any previous earthquake. We
adapted the algorithm here to determine the weight relating earthquakes to injections
as the source of trigger. As justified later on, secondary triggering is ignored (i.e.,
aftershocks of triggered events are ignored). We assume that the observed seismicity
rate density, 𝜆(𝑥, 𝑡), or the number of earthquakes in unit time can be modelled by
a linear superposition of the influence from all previous injections such that

𝜆(𝑡) = 𝜆0 +
∑︁
𝑡𝑖<𝑡

𝜆𝑖 (𝑡), (3.2)
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where 𝜆0 is the uniform background rate density, and 𝜆𝑖 (𝑡) represents the rate
density at time 𝑡 incurred by injection 𝑖. A non-linear behaviour may in reality arise
from the possible coupling between fluid pressure and permeability, and from the
seismicity model. Rate-and-state friction and the Kaiser effect are indeed sources
of non-linearity, as we discuss in greater detail below.

The kernel 𝜆(Δ𝑡) (referred to as the bare rates) that defines 𝜆𝑖 (𝑡) is found through
an iterative process: First, we begin with an initial guess for 𝜆(Δ𝑡) and compute
the triggering weights between injection 𝑖 and event 𝑗 , 𝑤𝑖, 𝑗 = 𝛼 𝑗𝜆(𝑡 𝑗 − 𝑡𝑖) and the
background weight 𝑤0, 𝑗 = 𝛼 𝑗𝜆0 where 𝛼 𝑗 is a normalization coefficient to satisfy
that

∑ 𝑗−1
𝑖=0 𝑤𝑖. 𝑗 = 1. Here, 𝑤𝑖, 𝑗 = 0 if 𝑡𝑖 > 𝑡 𝑗 (earthquakes cannot be triggered by

future injections). Secondly, 𝜆(Δ𝑡) is updated as follows

𝜆(Δ𝑡) = 1
𝑁 · 𝛿𝑡

∑︁
𝑖, 𝑗∈𝐴

𝑤𝑖, 𝑗 , (3.3)

where 𝐴 is the set of pairs such that |𝑡 𝑗 − 𝑡𝑖 | ≤ 𝛿𝑡, and 𝑁 is the number of total
earthquakes. Thus, 𝛿𝑡 becomes the discretization parameter of the algorithm. The
two main assumptions of the model are linearity of the rate density that allows
superposition of 𝜆𝑖 and the existence of a mean-field response to injections that is
independent of event magnitude or injection volume. Demonstration of the algo-
rithm on a simple synthetic catalogue and its sensitivity to discretization parameters
are illustrated in Appendix B.1.

Injections are divided into individual cycles by binning them into regular 10-minute
intervals. The result reveals a time decay proportional to 1/𝑡 (Figure 3.5). This is
consistent with the observed Omori law decay following shut-ins and also with the
period of build-up in seismicity at the beginning of injections. It is also possible to
use this approach to estimate spatial kernels. The results are not presented here as
we found the size of the dataset and the quality of the locations to be insufficient to
get well constrained kernels.

The observation that the response to step-like decrease of injection rate leads to a
1/𝑡 Omori law decay can be used to estimate a Green’s function, 𝑔(𝑡) (Avouac et al.,
2020). Since the derivative of a step function is a Dirac delta function, 𝑔(𝑡) can be
found by simply differentiating the Omori law in time

𝑔(𝑡) = − 𝑑
𝑑𝑡

(
𝑅0

1 + 𝑡/𝑡𝑟

)
=

𝑅0/𝑡𝑟
(1 + 𝑡/𝑡𝑟)2 . (3.4)
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Figure 3.5: Marsan and Lengline (2008) Rate Densities. Rate densities measuring
the weight of influence from individual injections onto induced events are computed
through an adaptation of the cascading algorithm from Marsan and Lengline, 2008.
The densities follow a 1/𝑡 type of decay in time, consistent with the Omori-law
decay observed during shut-ins (Figure 3.4) and suggestive of the possibility for a
convolution kernel relating injections to induced seismicity.

The predicted seismicity rate can then obtained from a simple convolution

𝑅(𝑡) = 𝑢(𝑡) ∗ 𝑔(𝑡) =
∫ ∞

−∞
𝑢(𝜏)𝑔(𝑡 − 𝜏) 𝑑𝜏, (3.5)

where 𝑅 and 𝑢 are the seismicity and injection rate, respectively. Bleed-off’s are
implemented as negative injection rates. To construct the kernel for the specific
case of Otaniemi, 𝑡𝑟 is chosen by fitting the Omori law to the last of the injection
pauses of durations significantly longer than the average injection cycle (about 20
hours). Then, 𝑅0 is determined so as to yield a total number of events equal to the
number of earthquakes in the catalog. 𝑡𝑟 and 𝑅0 are found to be 24.1 hours and
208.9 events per hour, respectively. Although (Avouac et al., 2020) reported that
the data suggests a systematic increase of 𝑡𝑟 during the stimulation likely due to the
increasing volume of the domain of increased pore pressure, we use a constant value
of 𝑡𝑟 as the resulting difference to the fit is minor.

The model result is displayed with the observed catalogue in Figure 3.6a. It fol-
lows remarkably well the observed seismicity rate variations; bulk of the observed
seismicity is included within the 95% confidence interval, calculated by assuming
events are governed by an non-homogeneous Poisson process following the mod-
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elled seismicity rate. The model also closely matches the decay rate during injection
pauses and the build-up rate at the onset of injection cycles.
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Figure 3.6: Model Predictions in Time. Model predictions are plotted in different
colored shading over the observed catalogue in dark blue. The dotted-lines and
shaded areas in-between indicate the 95% confidence interval of the prediction.
Posterior distributions of fitted parameters are shown on the right for applicable
models. Rest of the parameters are as listed in Table 3.1. While the global fit to
the observations are comparable to other models, it lacks rapid variations of the
seismicity rate in-between injection cycles compared to the rate-and-state models
— evident of qualitative differences in modelling the stress state relative to failure
and delayed nucleation mechanisms. All models (besides (c)) consistently capture
temporal trends of the seismicity rate, such as the Omori-law decay during shut-ins
and build-up periods at the onset of injections, with the linear convolution model
requiring the fewest parameters and lowest computational cost. Model parameters
and goodness-of-fit metrics are summarized in Table 3.2.
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To quantify the goodness of fit, we use both the Kolmogorov-Smirnov test (Massey
Jr, 1951) and the Poisson log-likelihood (Dempsey and Suckale, 2017). The
Kolmogorov-Smirnov test returns the KS-statistic, which is the maximum differ-
ence between the cumulative distribution functions given by the prediction and the
observation. The Poisson log-likelihood is the appropriate metric if earthquakes
are assumed to result from a Poisson process, even if inhomogeneous in the case
the rate varies in time and space. So the metric is valid as long as secondary after-
shocks can be ignored. This assumption is tested by analyzing the distribution of
interevent distances in space and time using the method of Zaliapin and Ben-Zion
(2013). The result is shown in Appendix B.3, which displays a uni-modal distribu-
tion instead of the bi-modal distribution that would be expected in case of clustering
due to aftershock sequences. This is consistent with the analysis by Kwiatek et al.
(2019) which shows that aftershocks account for no more than 10% of the events in
their seismicity catalogue and the observation that aftershock sequences are rarely
observed in seismicity induced by hydraulic stimulations (e.g., Baisch and Harjes,
2003). One advantage of the Poisson log-likelihood and the Kolmogorov-Smirnov
test is also that the metrics do not require binning of the point process (Dempsey
and Suckale, 2017). Binning is used in the figures only for convenience to represent
the data. The log-likelihood function is given by

IP(𝜃 |{𝑡 𝑗 }) =
𝑛∑︁
𝑗=1

log 𝑅(𝜃; 𝑡 𝑗 ) −
∫ 𝑡𝑛

0
𝑅(𝜃; 𝑡′)𝑑𝑡′, (3.6)

where 𝜃 is the set of model parameters and 𝑡 𝑗 is the occurrence time of event
𝑗 = {1, 2, ..., 𝑛}. We report the KS-statistic here, preferred to the log-likelihood
which is sensitive to the choice of units for 𝑅, but we see good qualitative agreement
between the two measures as summarized in Table 3.2. The KS-statistic for the
convolution model returns 0.036. The quality of the fit is impressive considering
the simplicity of the model – which involves only two parameters. It also contradicts
the premise that various non-linear mechanisms driving induced seismicity, such
as the non-linearity of rate-and-state friction, the Kaiser effect, and changes in
permeability due to high pore pressure and the development of hydraulic fractures,
should result in a nonlinear response overall. It may be that non-linear effects in
Otaniemi are in fact small despite the relatively large stress variations induced by
hydraulic stimulation, the possibility of which we explore with our physical models
later on and in the appendix.
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3.4 The Physical Model: Rate-and-State Friction and Finite Nucleation
We now present a physical model based on stress evolution from pore pressure
diffusion and poroelasticity along with shear failure criterion following rate-and-
state friction. The medium is treated to be infinite, homogeneous and isotropic.
Neglecting the effect of the free surface is justified by the relatively large depth of
the injections compared to the dimensions of the seismicity cloud (Figure 3.3). The
induced stresses can then be calculated using the analytical solutions for a point
source from Rudnicki (1986)

𝑝(𝑟, 𝑡) = 𝑞

4𝜋𝜌0𝑟

𝜂

𝑘𝑡𝑟𝑢𝑒
erfc

(1
2
𝜉

)
, (3.7)

𝜎𝑖 𝑗 (𝑟, 𝑡) = − 𝑞(𝜆𝑢 − 𝜆)𝜇
4𝜋𝜌0𝑐𝑡𝑟𝑢𝑒𝑟𝛼(𝜆𝑢 + 2𝜇)

{
𝛿𝑖 𝑗

[
erfc

(
1
2𝜉

)
− 2𝜉−2 𝑓 (𝜉)

]
(3.8)

+ 𝑥𝑖𝑥 𝑗
𝑟2

[
erfc

(
1
2𝜉

)
+ 6𝜉−2 𝑓 (𝜉)

]}
,

𝑓 (𝜉) = erf( 1
2𝜉) −

𝜉√
𝜋

exp(−1
4𝜉

2),

𝜉 =
𝑟

√
𝑐𝑡𝑟𝑢𝑒𝑡

,

𝑐𝑡𝑟𝑢𝑒 =
𝑘𝑡𝑟𝑢𝑒

𝜂

(𝜆𝑢 − 𝜆) (𝜆 + 2𝜇)
𝛼2(𝜆𝑢 + 2𝜇)

,

where 𝑝 and 𝜎𝑖 𝑗 are the pore pressure and stress tensor, and 𝑟 and 𝑡 the distance
from injection source and time, respectively; 𝜆𝑢 = 2𝜇𝜈𝑢/(1 − 2𝜈𝑢) is the undrained
Lamé parameter and the drained Lamé parameter without the subscript 𝑢; 𝑐 is the
hydraulic diffusivity which depends on permeability, 𝑘 and viscosity, 𝜂. Here we
add the subscript "true" to 𝑘 and 𝑐 to distinguish between the true and apparent
values of the diffusivity, the notions of which are explored in greater detail by our
following analysis. We assume the point source is a good approximation of the
injections in Otaniemi given the length of the stimulated wells relative to the size
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of the total stimulated volume. The model is nearly identical to that introduced by
Segall and Lu (2015). Poroelastic properties which lack constraints from the field,
along with a fixed fault-orientation are chosen as those in Segall and Lu (2015) to
represent a general case. Ambient normal stress of 155 MPa is approximated using
the average depth of the injection. All fixed parameters and their dimensions are
listed in Table 3.1.

Stress changes become the input to the ODE formulation of Dieterich (1994), to
solve for seismicity rate in space and time. The alternative integral formulation of
Heimisson and Segall (2018) is used here as it is more tractable numerically for
injection scenarios such as in Otaniemi that consist of abrupt onsets and shut-ins of
injections

𝑅

𝑟𝑏
=

𝐾 (𝑡)
1 + 1

𝑡𝑎

∫ 𝑡

0 𝐾 (𝑡′) 𝑑𝑡′
, (3.9)

𝐾 (𝑡) = exp
(
𝜏(𝑡)
𝑎𝜎(𝑡) −

𝜏0

𝜎0

)
,

𝑡𝑎 =
𝑎𝜎0

¤𝜏𝑟
,

𝜎 = 𝜎 − 𝑝,

where 𝑟𝑏 is the background seismicity rate, ¤𝜏𝑟 the background stressing rate, 𝑎 the
rate-and-state friction parameter, 𝜎 the normal stress, 𝜎0 and 𝜏0 the initial effective
normal and shear stress, and 𝜎 and 𝜏 the applied effective normal and shear stress,
respectively. Synthetic catalogues are produced by sampling events from a non-
homogeneous Poisson process using the acceptance-rejection method.

The Kaiser effect is inherent in the formulation of Dieterich (1994) and Heimisson
and Segall (2018). This results from the fact that the nucleation process is delayed if
the stress decreases and resumes once the stress gets back to its previous peak level.
The Kaiser effect is clearly demonstrated if we use the model to compute the response
of the seismicity rate to a sinusoidal stressing history (Appendix B.4). The different
injection locations must stimulate new volumes of rock and lead to new hydraulic
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pathways. So we might expect the Kaiser effect to be significant within a single
stage but to be less relevant from one stage to the other. The impact of the Kaiser
effect may be more appropriately represented by resetting the stressing history at the
onset of each stage. To this effect, we start a new simulation with the same initial
conditions and compound the results for the final catalogue. This model is hereafter
referred to as the rate-and-state model. Note that the validity of resetting the stress
history could be questioned given that the seismicity clouds during the different
stages largely overlap (Figure 3.3) suggesting overlapping stimulated volumes.

We use the measured flow rates and pressure to estimate hydraulic diffusivity.
An estimate of the diffusivity that fits the rate of pressure decay during injection
pauses is made by the Horner analysis. Since the analytical solutions of the present
model are derived for spherical flow in a 3-D medium, the conventional Horner
analysis originally derived for 2-D flow into a vertically confined aquifer (Horne,
1995; Zimmerman, 2018) is adapted to be consistent with equations 4.7 and 4.8 .
Details on the adaptation and fitting process are presented in Appendix B.2. The
analysis gives a diffusivity of 𝑐ℎ𝑜𝑟𝑛𝑒𝑟 = 0.018 m2/s, and a global fit to the entire
pressure history using a Gaussian likelihood function gives an effective well radius
and ambient pore pressure of 44m and 43.5MPa, respectively. The model fits the
measured pressure history well during the entire stimulation, especially during the
injection pauses (Figure 3.7a). A fit to the pressure history with diffusivity as a
free parameter, however, gives a higher value of 𝑐𝑏𝑢 = 0.044 m2/s (subscript ‘𝑏𝑢’
standing for "build-up") that better matches the rate of pressure build-up at the onset
of injection cycles with an effective radius and ambient pore pressure of 31m and
54.9MPa, respectively (Figure 3.7b). 𝑐𝑏𝑢 also over predicts the rate of pressure
decay during injection pauses. While constraints on the effective radius - a measure
of the damage zone surrounding the well that causes pressure drops - are difficult to
quantify, ambient pore pressure in either cases are close to its bounds considering
the temperature-dependence of fluid density at injection depth. When comparing
the theoretical triggering front derived by Shapiro, Huenges, and Borm (1997), i.e.,
𝑟 =

√︁
4𝜋𝑐𝑡 𝑓 𝑡 where 𝑐𝑡 𝑓 is the diffusivity chosen to draw the triggering front, 𝑐ℎ𝑜𝑟𝑛𝑒𝑟

appears to fit the spatial extent of near-field events better (Figure 3.3). We therefore
use 𝑐ℎ𝑜𝑟𝑛𝑒𝑟 = 𝑐𝑡𝑟𝑢𝑒 as a starting point for the models and refer to its theoretical
triggering front as the ‘reference triggering front.’ We revise this assumption later
and note that the diffusivity derived from the Horner analysis fits the pressure drop
at shut-ins, as should be the case by design, but does not match the pressure build-up
when injections start again.
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Figure 3.7: Well-Pressure Measurements and Modelled Fit. Observed well-pressure
and the modelled fits are plotted in red and blue, respectively. The top fit corresponds
to 𝑐𝑡𝑟𝑢𝑒 = 𝑐ℎ𝑜𝑟𝑛𝑒𝑟 = 0.018 m2/s, effective well radius, 𝑤𝑟 , of 44m and ambient pore
pressure, 𝑝0, of 43.5 MPa while the bottom fit corresponds to 𝑐𝑡𝑟𝑢𝑒 = 𝑐𝑏𝑢 = 0.044
m2/s, 𝑤𝑟 = 31m and 𝑝0 = 54.9 MPa. The posterior distributions of 𝑤𝑟 and 𝑝0 for
𝑐𝑡𝑟𝑢𝑒 = 𝑐ℎ𝑜𝑟𝑛𝑒𝑟 are shown on the bottom-left and those for 𝑐𝑏𝑢, 𝑤𝑟 and 𝑝0 are shown
on the bottom-right. While both models provide a good global fit to the data, 𝑐ℎ𝑜𝑟𝑛𝑒𝑟
and 𝑐𝑏𝑢 tend to fit better either the drawdown of pressure during shut-ins or the
build-up of pressure at injection onsets, respectively. The difference between the fits
likely indicates the changing diffusivity of the injected medium with the injection
pressure. Diffusivity increases at higher pressure due to the creation of fractures
and hydraulic pathways and decreases at lower pressure due to fracture closure and
healing.

The posterior distribution on the set of parameters associated to the seismicity model
𝑎, ¤𝜏𝑟 , and 𝑟𝑏 is found using the affine invariant Markov chain Monte Carlo (MCMC)



89

Ensemble sampler of Goodman and Weare (2010) maximizing the log-likelihood
given by Equation 3.6. In order to simplify the sampling process, the sampler
computes the posterior of 𝑎 and ¤𝜏𝑟 given that 𝑟𝑏 - which is a simple multiplicative
factor to the normalized seismicity rate - is adjusted for each pair of 𝑎 and ¤𝜏𝑟 to
match the total number of observed events (61,150 events). The sampler conducts
2000 ∼ 5000 iterations of 32 walkers with the chain length made to be longer 50
times the auto-correlation length in order to ensure full exploration of the posterior
distribution. The prior is assumed to be uniform for both variables between the
range of 10-5 ∼ 10-2 and 0.1 kPa/yr. ∼ 5 kPa/yr. for 𝑎 and ¤𝜏𝑟 , respectively, although
the shape of the prior is seen to have little effect on the posterior given the large
sample size.

𝑎, ¤𝜏𝑟 , and 𝑟𝑏 of maximum likelihood is found to be 0.0002, 3.05 kPa/yr. and 12.1
events/days, respectively, and the resulting model is shown in Figure 3.6b. The
model follows the observations quite well in time, with a KS-statistic of 0.029,
slightly lower than the value of 0.036 obtained with the convolution model. The
model succeeds in reproducing the main temporal features of the observed catalogue:
1. direct correlation between the injection and seismicity rate and 2. Omori-law
decay during shut-ins. In space, the fit is much less compelling (Figure 3.8b).
The triggering front lags significantly behind the reference triggering front with a
much smaller mean of the distribution. Yet in both time and space, resetting of
the stress history at each injection stage turns out to be essential in reproducing
important features of the observation. The best fit using the model without resetting
of the stress history (𝑎 = 0.0001, ¤𝜏𝑟 = 4.89 kPa/year, and 𝑟𝑏 = 25.9 events/day)
as shown in Figure 3.6c has relatively minimal seismicity rate during the second
half of the injection history due to the Kaiser effect. In space, it is completely
devoid of any seismicity close to the injection well during this period (Figure 3.8c).
Far-field seismicity much beyond the reference triggering front is largely attributed
to background stressing as poroelastic stress perturbations are small relative to pore
pressure changes.

3.5 Inference of Diffusivity from Spatio-temporal Distribution of Seismicity
Accounting for Finite Nucleation

Given that the rate-and-state model fails to match the observations in space assuming
the diffusivity inferred from Horner analysis, we now examine the possible under-
estimation of the diffusivity by the Horner analysis. Following the seminal study of
Shapiro, Huenges, and Borm (1997), it has become common practice to infer the
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Figure 3.8: Model Predictions in Space. The synthetic catalogue is plotted as black
dots in space and time with the relocated catalogue of Leonhardt et al. (2020) super-
posed as red dots. The red curve outlines

√︁
4𝜋𝑐𝑡 𝑓 𝑡 with 𝑐𝑡 𝑓 = 𝑐𝑡𝑟𝑢𝑒 for each model.

Histograms of the observed event distribution in space is plotted in red along with
randomly sampled distributions of the synthetic catalogues in black. (a) The exten-
sion of the convolution model to space gives a good fit. (b) The rate-and-state model
with 𝑐𝑡𝑟𝑢𝑒 = 𝑐ℎ𝑜𝑟𝑛𝑒𝑟 underpredicts the mean distance substantially. (c) Rate-and-state
model without resetting of stress history shows manifestations of the Kaiser effect
from large regions of seismic quiescence in stress shadows near the injection source.
(d) The fit to space in the rate-and-state model is significantly improved with 𝑐𝑡𝑟𝑢𝑒 =
𝑐𝑏𝑢. (e) The Threshold Coulomb model with 𝑐𝑡𝑟𝑢𝑒 = 𝑐𝑏𝑢 significantly overpredicts
the distribution of seismicity in space as does the theoretical triggering front for
𝑐𝑡 𝑓 = 𝑐𝑏𝑢, suggesting that the role of delayed nucleation on seismicity migration
is essential in reproducing the observed spatio-temporal evolution of seismicity in
Otaniemi given the likely diffusivities. Model parameters and goodness-of-fit met-
rics are summarized in Table 3.2.
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diffusivity from fitting 𝑟 =
√︁

4𝜋𝑐𝑡 𝑓 𝑡 to the propagation of the seismicity front, or
the triggering front - defined by the outline of the outermost events of the seismicity
cloud extending from the well. However, we note that 𝑐𝑡 𝑓 of the rate-and-state model
shows a significant mismatch by a factor of ∼3 from 𝑐𝑡𝑟𝑢𝑒 = 𝑐ℎ𝑜𝑟𝑛𝑒𝑟 prescribed in the
model (Figure 8b). This discrepancy is due to the role of delayed nucleation repre-
sented by 𝑎𝜎. As shown by Wenzel (2017), the parameter 𝑎𝜎 of the rate-and-state
model acts as a threshold triggering stress that restricts the extent of the triggering
front. The sensitivity of the triggering front to 𝑎𝜎 is clearly visible in Figure 3.9
which compares two synthetic catalogues that only differ in the prescribed values of
𝑎. In the scope of the rate-and-state model or stress thresholds as commonly used
in Mohr-Coulomb models, inference of the diffusivity from the apparent migration
of seismicity requires considerations of both 𝑐 and 𝑎. Additionally, the method of
inferring the diffusivity from the triggering front may depend on the earthquake
detection thresholds. A higher detection threshold may give a more poorly resolved
catalogue in space that could lead to a different estimation of the triggering front.
Furthermore, the position of the triggering front can be obscured even more by
background seismicity and far-field events triggered by poroelastic effects. Fitting
the seismicity front represented by the envelope of the seismicity cloud, places a lot
of weight on potentially biased and not particularly well-defined features.

In consideration of such complications, one would wish for a definition of the
seismicity front that is independent of the number of events in the catalogue and
robust to factors of discrepancy between observations and model predictions. We
therefore propose an approach to infer 𝑐𝑡𝑟𝑢𝑒 from the spatial distribution of the
seismicity as opposed to the triggering front. A simple way is to fit the distribution
as a function of distance and time from the point of injection with a known analytical
expression. We recall that the half-norm distribution is the solution to the diffusion
equation in response to a Dirac point source in a 3-D medium where the standard
deviation of the distribution, Λ(𝑡), is a function of time such that

𝑓𝑌 (𝑦;Λ(𝑡)) =
√

2
Λ(𝑡)

√
𝜋

exp
(
− 𝑦2

2Λ(𝑡)2

)
, 𝑦 ≥ 0. (3.10)

This inspires our approach to fit Equation 3.10 to the rate-and-state model in response
to a constant injection scenario. The half-norm distribution indeed turns out to
provide a relatively good fit (Figure 3.10); it matches well the bulk of the distribution
but tends to slightly overestimate seismicity rate at larger distances. Indeed, we
do not make the claim that the half-norm distribution is the best possible fit and
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Figure 3.9: Sensitivity of Triggering Front to Delayed Nucleation. Synthetic cat-
alogues for two parameter sets only differing in 𝑎 (0.0001 and 0.001 in top and
bottom, respectively) are shown. Lower 𝑎, which translates to lower 𝑎𝜎, results in a
further extent of the triggering front, due to the role of delayed nucleation that acts
proportionally to a threshold stress for the triggering of events as explained in detail
by Wenzel (2017). Along with the reference triggering front in red, an additional√︁

4𝜋𝑐𝑡 𝑓 𝑡 curve is drawn in orange for 𝑎 = 0.001, with 𝑐𝑡 𝑓 modified by a factor of 0.3
that better matches the apparent triggering front. The effect of the finite nucleation
process on the spatial pattern of seismicity implies that neglecting rate-and-state
effects can significantly bias the inference of diffusivity from the triggering front.

acknowledge there may be other distributions that could better match the rate-and-
state model although they are not explored further here. Furthermore, plotting
the evolution of Λ versus time reveals that it follows closely

√
𝑐𝑡𝑟𝑢𝑒𝑡. We make

the assumption that the remaining discrepancy can be modelled as a multiplicative
factor such that

Λ(𝑡) =
√︁
𝑐ℎ𝑔𝑡 =

√︁
𝛾({𝑙})𝑐𝑡𝑟𝑢𝑒𝑡, (3.11)

where {𝑙} is a set of non-dimensional parameters. Thus, 𝑐ℎ𝑔 is a measure of the
radial spreading of the seismicity relative to the point of injection (‘ℎ𝑔’ standing for
half-Gaussian distribution). In order to apply this method to Otaniemi, we attempt
to estimate 𝑐ℎ𝑔 from the relocated catalogue. One disadvantage of the method is
that it requires a set of relocated events large enough to constrain the evolution of
𝑐ℎ𝑔 with confidence. As detailed in appendix B.5, we can indirectly estimate from
the cumulative relocated catalogue giving 𝑐ℎ𝑔 = 0.011 m2/s.
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Figure 3.10: Evolution of Spatial Distribution of Seismicity for Rate-and-State
Model. Spatial profiles of the seismicity rate are plotted in blue at various times
for the rate-and-state model in response to a single boxcar injection. Half-norm
distributions, in green, are used to fit the model-generated distribution. The line
style alternates between solid and dashed between each time step for clarity. The
half-norm distributions evolve with a time-dependent shape parameter, Λ(𝑡), which
closely follows

√
𝑐𝑡𝑟𝑢𝑒𝑡 as shown in the inset of the top figure. The half-norm

approximation of the spatial evolution of seismicity in the physical model can serve
as the spatial component to the convolution model.

We find the relationship 𝛾ℎ (𝑙) empirically by observing the systematic dependence
of 𝛾ℎ on 𝑙 as reproduced by the rate-and-state model. We assume 𝑙 depends not
only on pore fluid transport properties but also rate-and-state properties such as 𝑎.
We find to be relevant the ratio 𝑙 = 𝑎𝜎/𝑝𝑞, where 𝑝𝑞 = 𝑞𝜂

4𝜋𝜌0𝑘𝐿
is the characteristic

pore pressure for given injection rate 𝑞, and 𝐿 is the size of the computational
domain. Higher values of 𝑎𝜎would produce a stronger threshold effect and suppress
seismicity migration, the extent of which would depend on its strength relative to
the induced pressure, 𝑝𝑞. A series of single boxcar injections are simulated for a
range of 𝑐 and 𝑎. We find a rational function of 𝑎𝜎/𝑝𝑞 that fits 𝛾ℎ as shown in
Figure 3.11. Although the reason for the exact functional form of the relationship
is not obvious, the quality of the fit is compelling. The observed trend is also
consistent with the known role of 𝑎𝜎: higher values of 𝑎 suppresses seismicity at
further distances, decreasing 𝑐ℎ𝑔 and consequentially 𝛾ℎ. The functional fit allows
new uncertainty estimates of the diffusivity in Otaniemi. Figure 3.11 shows the
difference between the predicted and true values of diffusivity for a range of 𝑐𝑡𝑟𝑢𝑒
and 𝑎, given the estimated value of 𝑐ℎ𝑔 = 0.011 m2/s and an injection rate, 𝑞 =
10L/min. Although this is a much lower injection rate than the average in Otaniemi
there are also significant differences between the idealized boxcar injections used to
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produce Figure 11 and the much more complex schedule in Otaniemi. One can see
that accounting for the role of delayed nucleation significantly widens the possible
range of diffusivity in Otaniemi. Namely, the functional fit considers equally likely
much higher values of 𝑐𝑡𝑟𝑢𝑒 than would be predicted by the triggering front observed
in Otaniemi given sufficient rate-and-state effects.

Figure 3.11: Inference of Diffusivity Accounting for Role of Delayed Nucleation on
Seismicity Migration. An empirical relationship for the multiplicative factor, 𝛾ℎ, of
Λ(𝑡) =

√
𝛾ℎ𝑐𝑡𝑟𝑢𝑒𝑡 is found in terms of the non-dimensional ratio 𝑎𝜎/𝑝𝑞 (left). The

fit can be used to infer new uncertainty estimates on the diffusivity of the medium
given apparent spreading of the radial distribution of the seismicity in Otaniemi, i.e.,
𝑐ℎ𝑔 = 0.011 m2/s. Contour plot on the right shows the percent difference between the
true diffusivity and the predicted diffusivity from the functional fit 𝛾ℎ (𝑎𝜎/𝑝𝑞) for a
range of 𝑎 and 𝑐𝑡𝑟𝑢𝑒. Considerations of the role of delayed nucleation on seismicity
migration makes higher diffusivities more likely than previously considering solely
the theoretical triggering front of Shapiro, Huenges, and Borm (1997).

In light of this finding, we test the possibility that 𝑐𝑏𝑢 = 0.044 m2/s is in fact closer
to 𝑐𝑡𝑟𝑢𝑒 in Otaniemi than 𝑐ℎ𝑜𝑟𝑛𝑒𝑟 as the inconsistency between the triggering front
using 𝑐𝑏𝑢 = 𝑐𝑡 𝑓 and the relocated catalogue are borne due to rate-and-state effects.
We test this hypothesis by finding the best fit of the rate-and-state model using
𝑐𝑏𝑢 = 𝑐𝑡𝑟𝑢𝑒. The effective radius and ambient pore pressure are adjusted to 31.1m
and 54.9MPa, respectively, to best fit the well pressure measurements. The resulting
fit for the seismicity rate in time is shown in Figure 3.6d, and the corresponding
synthetic catalogue in space is shown in Figure 3.8d. 𝑎, ¤𝜏𝑟 , and 𝑟𝑏 are found to
be 0.00006, 1.29 kPa/yr and 4.7 events/day, respectively. The fit in time bears no
significant improvement from the fit using 𝑐ℎ𝑜𝑟𝑛𝑒𝑟 = 𝑐𝑡𝑟𝑢𝑒, although the KS-statistic
is slightly lower at 0.025. The fit in space is much improved with a higher mean of the
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distribution and cluster of events that encompasses greater portions of the relocated
catalogue. One region the model performs rather poorly on is capturing the the back-
propagation front starting around the 500-hour mark. It’s possible that the back-
propagation fronts, whose occurrence in time would correspond to the drawdown
periods used for the Horner analysis, is still governed by the lower diffusivity 𝑐ℎ𝑜𝑟𝑛𝑒𝑟 .
It could be that the back-propagation consists of two separate migration patterns,
based on the observation that the initial portions of the back-propagation front are
predicted quite well by the model (starting at around the 450-hour mark). This
could be due to a propagation of the seismicity governed by different mechanisms
than pore pressure diffusion, such as stress transfer by aseismic slip (Dublanchet
and De Barros, 2021), although it is difficult to constrain the exact mechanism of
seismicity migration given their possibly similar characteristics (𝑟 ∼

√
𝑡).

The differences between 𝑐𝑏𝑢 and 𝑐ℎ𝑜𝑟𝑛𝑒𝑟 may be indications of distinct hydraulic
processes that govern the well-head pressure and the spatial distribution of seismic-
ity. One could imagine that the well-head pressure is more representative of the
diffusivity of the medium immediately surrounding the well. On the other hand,
the spatial distribution of seismicity may be more dependent on the path of highest
hydraulic conductivity within the entire stimulated volume. The abrupt cessation of
seismic activity close to the injection well following shut-in could be associated to
a decrease in the diffusivity due to fracture healing, leading to the lower estimate of
𝑐ℎ𝑜𝑟𝑛𝑒𝑟 . It is also important to note that the two diffusivities require different values
of 𝑎, ¤𝜏𝑟 , and 𝑟𝑏, such that their independent measurements would provide stricter
constraints on 𝑐𝑡𝑟𝑢𝑒. We see that the higher estimate 𝑐𝑏𝑢 inferred from this analysis
yields synthetic catalogues in better agreement with the observed seismicity in time
and space. We conclude using the triggering front to infer the diffusivity may yield
a significantly biased estimate if the effect of earthquake nucleation is ignored.

3.6 Incorporation of a Spatial Component to the Convolution Kernel
We now use the physical model as a basis to extend the temporal convolution model
to space. We look for a new kernel with spatial dependence such that the convolution
is as follows

𝑅(𝑡, 𝑥) = 𝑢(𝑡) ∗ 𝑔(𝑡, 𝑥) =
∫ ∞

−∞
𝑢(𝜏)𝑔(𝑡 − 𝜏, 𝑥) 𝑑𝜏. (3.12)

The spatial component of the kernel is constructed by using the half-norm distri-
bution, as identified in Section 3.6, with a shape parameter increasing as √

𝑐ℎ𝑔𝑡.
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Combining with the Omori law as the temporal component as previously gives the
integral of the kernel

∫ 𝑡

−∞
𝑔(𝑟, 𝑡′) 𝑑𝑡′ =

√
2

√
𝜋𝑐ℎ𝑔𝑡

exp
(
− 𝑟2

2𝑐ℎ𝑔𝑡

)
·
(

𝑅0

1 + 𝑡/𝑡𝑟

)
, (3.13)

which is differentiated in time to obtain the response to Dirac forcing

𝑔(𝑟, 𝑡) =
√

2
2
√
𝜋𝑡 (𝑐ℎ𝑔𝑡)3/2

exp
(
− 𝑟2

2𝑐ℎ𝑔𝑡

)
·
(−2𝑐ℎ𝑔𝑡2 − 𝑐ℎ𝑔𝑡 (𝑡 + 𝑡𝑟) + 𝑟2(𝑡 + 𝑡𝑟))𝑅0

𝑡𝑟 (1 + 𝑡
𝑡𝑟
)2 .

(3.14)

The three parameters of the model are 𝑐ℎ𝑔 = 0.011 m2/s, 𝑅0 = 213.5 events/hr.,
and 𝑡𝑟 = 28.5 hours, as estimated from the data. The fit to the temporal evolution
of seismicity is, by design, identical to the fit obtained with the kernel in time
introduced earlier (Figure 3.6a). The model provides now in addition a good match
to the observations in space, especially with regards to the triggering and back-
propagation fronts (Figure 3.8a). Overall, the convolution method approximates the
physical model and fit the observations quite well, albeit with a drastically shorter
computing time — by at least an order of magnitude — thanks to the use of the
fast Fourier transform (the convolution is transformed into a simple product in the
Fourier domain).

3.7 Comparison of Physical Models Based on Finite and Instantaneous Nu-
cleation

Both rate-and-state and Mohr-Coulomb models are widely used in modelling in-
duced seismicity. The standard Coulomb model assumes a population of faults with
a uniform distribution of initial stress up to the maximum shear stress allowed by
static friction (e.g., Ader et al., 2014). We show in appendix B.6 that this simplest
version of the Coulomb model does not fit the observations neither in time nor in
space. A number of studies which have tested the applicability of the Coulomb
model to induced seismicity found it necessary to introduce a stress threshold that
needs to be exceeded for earthquake triggering (e.g., Bourne, Oates, and Van Elk,
2018; Dempsey and Riffault, 2019; Dempsey and Suckale, 2017; Langenbruch and
Shapiro, 2010). The physical justification for the inclusion of the threshold, here-
after referred to as𝐶𝑐𝑝𝑡 , is to account for the population of faults activated during the
stimulation that were initially in a relaxed state of stress, not close to failure. In this
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case, triggering would be delayed due to their initial strength excess rather than due
to the nucleation process. The explanation is probably relevant in stable tectonic ar-
eas (e.g., Bourne, Oates, and Van Elk, 2018; Dempsey and Riffault, 2019; Dempsey
and Suckale, 2017; Langenbruch and Shapiro, 2010). Wenzel, 2017 demonstrates
the response of the Dieterich, 1994 rate-and-state model, which assumes a popu-
lation of faults above steady-state (initially already on their way to failure), can be
approximated with such a threshold Coulomb model due to the tendency of 𝑎𝜎 to act
as a stress threshold. On the other end, the application of the rate-and-state model
to a population of faults below the steady-state regime also results in introducing a
threshold in the rate-and-state model as well (Heimisson et al., 2022), accounting for
the population of earthquake sources that are initially far from instability which is
assumed negligible by Dieterich (1994). In this case, the question remains whether
𝐶𝑐𝑝𝑡 is indeed solely representing the initial stress state, or rather acting as a proxy
variable that also encompasses effects of time-dependent nucleation.

To address these questions, we consider a Coulomb model with a stress threshold
representing the initial strength excess on the triggered faults. The Coulomb model
is formulated as follows

𝑅(𝑡) = 1
𝛼𝑐

∫
𝑉

𝑓𝑐

(
𝑝(𝑟, 𝑡)

)
· 𝜕𝑝
𝜕𝑡

(𝑟, 𝑡) 𝑑𝑉, (3.15)

𝜕𝑝

𝜕𝑡
(𝑟, 𝑡) = 𝑞(𝜆𝑢 − 𝜆) (𝜆 + 2𝜇)

8𝜋
3
2 𝜌0𝑟3𝛼2(𝜆𝑢 + 2𝜇)

𝜉3 exp
(
−1

4
𝜉2

)
, (3.16)

where 𝑉 is the representative volume over which seismicity is recorded, 𝛼𝑐 is a
scaling factor defined as the change in pore pressure per slip event per unit volume
(Nur and Booker, 1972), and 𝑓𝑐 is the probability density function representing the
distribution of threshold triggering pressure needed for the Coulomb stress change to
exceed the initial strength excess. Following the observation that poroelastic stress
changes are minimal compared to pore pressure changes, they are ignored hereafter
for simplicity. The derivation of Equation 3.16, which is the time derivative of
Equation 3.7, is given in Appendix A of Segall and Lu (2015). The integral is
restricted to where stress changes are positive, and to account for the Kaiser effect,
the integral is further limited to where the past maximum pore pressure has been
exceeded. Following Bourne, Oates, and Van Elk (2018) and Smith et al. (2020), we
next assume a population of faults with randomly distributed strength excess using a
formulation that has been found to provide a good model of seismicity induced by gas
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extraction from the Groningen gas field. Seismicity starts once the Coulomb stress
change exceeds the lowest value of the initial strength distribution. According to the
extreme value theory, the tail of the distribution can be represented by a Generalized
Pareto distribution, leading to an exponential increase of seismicity for a constant
loading rate (Bourne, Oates, and Van Elk, 2018). This general formulation is valid
to simulate the onset of seismicity but it does not allow the transition to a steady
state regime where seismicity rate would be proportional to the loading rate. We
therefore assume a Gaussian distribution of initial strength to allow for the transition
to steady-state (Smith et al., 2020), and express it in term of the distribution of
threshold pressure

𝑓𝑐 (𝑝) =
1

𝜙2
√

2𝜋
exp

(
− 1

2

(
𝑝 − 𝜙1

𝜙2

)2
)
, (3.17)

where 𝜙1 and 𝜙2 are the mean and standard deviation of the distribution, respectively.
The best fitting model is found with respect to 𝜙1 and 𝜙2 within the range of 0.01
∼ 5 MPa for both parameters. 𝛼𝑐 is adjusted to match the total number of events,
much like 𝑟𝑏 of the rate-and-state model. This model is hereafter referred to as the
Threshold Coulomb model.

The model fit in time and space are shown in Figure 3.6e and 3.8e, respectively,
with 𝜙1 = 0.66 MPa, 𝜙2 = 0.28 MPa, and 𝛼𝑐 = 14.3 kPa/event · m3. The model
fits the observations well in time, with a KS-statistic of 0.029 but significantly
overestimates the extent of seismicity in space, which was also a main issue with the
standard Coulomb failure mode (Appendix B.6). The model is also less sensitive
to rapid variations of the injection rate compared to the rate-and-state models, with
relatively muted changes in the seismicity rate in-between injection cycles. Such
sensitivity is seen to grow with the time scale of stressing rates; Figure 3.12 shows
the response of the both the Coulomb and rate-and-state models with the duration
of injections and pauses multiplied by factors of 0.1 and 10 (parameters are fixed to
those that produced figures 6d&e). While both models show more rapid variations
of the seismicity rate relative to the injection rate for longer injection duration,
the tendency is significantly greater in the Threshold Coulomb model. For longer
injection duration, the models show rather good agreement between each other
although the Threshold Coulomb model predicts lower 𝑡𝑟 with increasing time.
Similar sensitivities may be observed with respect to the choice of 𝜙1. While both
the Coulomb and rate-and-state models may provide sufficient hindcasting tools
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for the same observation, the calibrated models produce very different forecasts
for injection scenarios with duration of injection different from those used for
calibration. In addition, they may produce different predictions in space for similar
predictions in time. The comparisons suggest that the stress state with respect to
failure and nucleation effects must be modelled separately, as done for example in
the threshold rate-and-state model of Heimisson et al. (2022), especially for fast
injection cycles commonly employed in EGS operations where the effect of delayed
nucleation may not be appropriately represented by the inclusion of a stress threshold
in Coulomb models.

Figure 3.12: Comparison of Rate-and-State and Threshold Coulomb Model For
Varying Time Scale of Injections. The rate-and-state and coulomb models that pro-
duced best fitting predictions of Figure 3.6d&e, respectively, are compared in their
response to the injection scenario of Otaniemi with injection durations lengthened
(top) and shortened (bottom) by 10 times. The injection rate is shown in light
orange. The Threshold Coulomb model shows significant disagreement with the
rate-and-state model for shorter injections, illustrating the differences in modelling
the stress state with respect to failure and delayed nucleation at shorter time scales.

We remark that our modeling allows estimation of the best fitting values of 𝑎 to
between 0.00006 and 0.0002, which is significantly lower than the values inferred
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from laboratory measurements, generally ranging between 0.01 and 0.001 (Marone,
1998). Yet, the importance of rate-and-state effects in matching the observations in
both space and time suggest that even such low values do not yield, for the injection
schedule studied here, the rate-independent behavior that could be matched with
a Threshold Coulomb model. The reconciliation of field-inferred values of 𝑎𝜎
and laboratory measurements is still paramount for eventual application of such
models towards seismicity forecasting. One possible explanation is that spatial
heterogeneities lead to elastic interactions that produce globally inferred values lower
than that in a homogeneous equivalent (Dublanchet, Bernard, and Favreau, 2013).
It is also important to note that the model of Dieterich (1994) is a rather limited
representation of the full complexity of rate-and-state friction. For example, the
model simulates a population of spring-slider nucleation sources, whose qualitative
differences in their behavior to more realistic finite fault models have been displayed
for numerous aspects of rupture characteristics. Additionally, the model neglects
the effect of variable effective normal stress on nucleation size, as the number
of active nucleation sources remains constant throughout (Alghannam and Juanes,
2020). Further development of the model with a more holistic representation of
rate-and-state friction would prove valuable for induced seismicity forecasting.

3.8 Mechanical Origin of Omori-Law Decay Following Shut-Ins
The rate-and-state model reveals that the post shut-in Omori-law decay at Otaniemi
depends strongly on the stress relaxation process by pore-fluid diffusion and can-
not be explained solely by nucleation effects. The dependence on both nucleation
and stress relaxation can be demonstrated by a sensitivity analysis of the relaxation
timescale of the Omori law, 𝑡𝑟 , to parameters 𝑎, the rate-and-state friction parameter
and 𝑘 , the permeability. We find the most direct relationship to be that between
the ratios of 𝑡𝑟 and the characteristic diffusion time, 𝑡𝑐 = 𝐿2

𝑐
, to 𝑡𝑎 as shown in

Figure 3.13 where 𝑡𝑟 is measured by fitting the Omori law to shut-ins following
single boxcar injections under the rate-and-state model. Thus, 𝑡𝑟 is more strongly
dependent on 𝑡𝑐. The positive relationship 𝑡𝑟 and 𝑡𝑐 follows the intuitive reasoning
that higher diffusivity would result in more rapid relaxation of induced pressure and
consequently a faster decay of the seismicity rate. Our observations are consistent
with the suggestion that the empirical Omori-law would be a result of stress relax-
ation by pore pressure diffusion (Almakari et al., 2019; Langenbruch and Shapiro,
2010; Miller, 2013). This explanation seems certainly reasonable in the context of
EGS stimulations where pore pressure variations are particularly large.
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Figure 3.13: Dependence of Omori Law Decay on Fluid Transport Properties. 𝑡𝑟 of
Omori Law Decay in response to single boxcar injections under the rate-and-state
model are plotted in terms of 𝑡𝑐 and 𝑡𝑎 (left). 𝑡𝑟 , shows a stronger dependence on 𝑡𝑐, or
the diffusivity, than on 𝑡𝑎. Namely, longer diffusion times result in longer relaxation
times of the seismicity rate. 𝑡𝑟 also shows strong dependence on injection duration,
𝑡𝐼 (right). 𝑡𝑟 first increases with increasing seismicity rate at time of shut-in, before
decreasing as steady-state stress conditions are reached when the seismicity rate
decreases as well due to the Kaiser effect. The strong dependence of the Omori
decay in the physical model to transport properties suggests that the observed decay
pattern in Otaneimi can be sufficiently explained by the diffusion of pressure, with
negligible effects from finite nucleation.

The dependence on stress relaxation implies that 𝑡𝑟 also depends on injection duration
(Figure 13). where the sensitivity analysis is performed with 𝑎 and 𝑘 fixed at 0.001
and 10−16 m2, respectively, while the injection duration varies between factors of 0.1
to 100 of 𝑡𝑐. The plot shows a non-linear relationship between 𝑡𝑟 and the injection
duration, 𝑡𝐼 , with an initial increase followed by a decrease. The trend exhibits
a strong correlation with the seismicity rate at the time of shut-in. For shorter
injections, the seismicity rate continuously increases prior to shut-in, increasing
the time to relax to background levels. This is until the seismicity rate begins to
decrease for continued injection, as pore pressure reaches steady-state conditions,
and further nucleation is suppressed by the Kaiser effect. Consequently, 𝑡𝑟 decreases
as well, as it takes less time to relax the lower seismicity rate. A similar effect arises
due to the finiteness of the computational domain — the further distances where the
seismicity rate would continue to increase at later times are cut-off. The sensitivity
of 𝑡𝑟 to the total injected volume is consistent with the observation that the Omori
law relaxation time at shut-in increases with time during the EGS stimulation at
Otaniemi (Avouac et al., 2020).
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3.9 Presence of the Kaiser Effect in Otaniemi
We have seen that the fit to the temporal evolution of seismicity is improved when
the Kaiser effect is reset at each new stimulation stage. Although the clouds of
seismicity generated during each stimulation stage overlap largely (Figure 3.3), this
reset is justified as each new stage implied the stimulation of a new volume near the
wellbore. Without such an adaptation, the seismicity rate is predicted to significantly
lower during the second half of the injection history (Figure 3.6c) along with large
regions of seismic quiescence near the injection well (Figure 3.8c). This also implies
that the efficacy of the convolution model — which does not account for the Kaiser
effect at all — depends strongly on the apparent absence of the Kaiser effect in
Otaniemi.

The physical mechanism behind the activation of new volumes is unclear given
the diffuse and rather random structure of the relocated catalogue (Figure 3.6).
If this argument is dismissed based on relocation uncertainties, one could pose
that a low diffusivity stimulated non-overlapping volumes from one stage to the
other. However, such a low diffusivity should manifest in inconsistencies with the
observed catalogue in time, for instance a longer apparent relaxation time during
shut-ins. Rather, the need to reset the stressing history for the models to reproduce the
observations in Otaniemi more likely implies the creation of new hydraulic pathways
due to the fracturing nature of the stimulation that activated new nucleation sources
(Cladouhos et al., 2016). Such phenomenon would depend on both the physical
properties of the injected medium such as its fluid transport properties and fracture
toughness, and the injection scenario, especially any spatial variation of the injection
location.

3.10 Demonstration of Forecasting Capability of the Models through Pseudo-
Forecasting

The models so far have only been applied in a hindcasting sense such that the data
has been used in its entirety in order to tune the model parameters. We test the
ability of the models to truly forecast induced seismicity in Otaniemi by limiting
the range of the data used for training the models. Forecasts from the best fitting
physical model (rate-and-state model with 𝑐𝑡𝑟𝑢𝑒 = 𝑐𝑏𝑢 - Figure 3.6d & 3.8d) and the
spatio-temporal convolution model are shown in Figure 3.14 & 3.15, respectively.
The rate-and-state model is able to produce a forecast comparable to the hindcast
using just the first injection stage as the training period with a similar value of 𝑎 =
0.00005 although with significantly lower ¤𝜏𝑟 = 0.1kPa/year and 𝑟𝑏 = 0.39 events/day.
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With the same training period, the convolution model performs rather poorly, largely
due to the estimation of 𝑡𝑟 at the end of first injection stage substantially lower (2.9
hours) than the average value throughout the entire injection schedule. The forecast
is significantly improved by including the second injection stage within the training
period, which now consists of the Omori decay observed during the injection pause
at around the 450-hour mark that significantly increases the estimated value of 𝑡𝑟 to
10.4 hours.

Figure 3.14: Partial Forecasting of Induced Seismicity by Physical Model. Ability
of the physical model to forecast induced seismicity is tested by limiting the portion
of the data used for model tuning. The rate-and-state model with 𝑐𝑡𝑟𝑢𝑒 = 𝑐𝑏𝑢 = 0.044
m2/s is trained using only the first injection stage. The training results in 𝑎, ¤𝜏𝑟 , and 𝑟𝑏
of 0.00005, 0.1kPa/year, and 0.39 events/day. The pseudo-forecast is comparable to
the hindcast of Figure 6d & 8d, with only a marginally higher KS-statistic of 0.040
and lower log-likelihood of 169,076, demonstrating the capability of the physical
model to truly forecast seismicity.

It is likely that the rate-and-state model is more robust to the length of the training
period than the convolution model due the fact that 𝑐𝑡𝑟𝑢𝑒 is fixed at 𝑐𝑏𝑢 which
matches the pressure history of Otaniemi in its entirety (Figure 3.7b). As discussed
in Section 3.8, diffusivity plays a significantly stronger role in governing the rate
of Omori decay than the tuning parameters of the rate-and-state model, namely 𝑎
and ¤𝜏𝑟 . Thus, the rate-and-state model seems suited to perform well in forecasting
applications given an accurate estimation of the diffusivity. Forecasts from the
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Figure 3.15: Partial Forecasting of Induced Seismicity by Convolution Model.
Ability of the convolution model to forecast induced seismicity is tested by limiting
the portion of the data used for model tuning. The top two rows compare forecasts
using the first one and two injection stages as training periods where 𝑡𝑟 is estimated
to be 2.9 and 10.4 hours, respectively. The forecast using solely the first injection
stage as the training period significantly underestimates 𝑡𝑟 and underpredicts the
seismicity rate for the rest of the injection history. The forecast using the first two
injection stages as the training period is comparable to the hindcast of Figure 3.6a
& 3.8a, with only a marginally higher KS-statistic of 0.047 and lower log-likelihood
of 175,430.

convolution model could also be improved by accounting for the increase in 𝑡𝑟 with
cumulative injected volume as observed in Otaniemi (Avouac et al., 2020).
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3.11 Conclusion
Physical models based on rate-and-state friction and stress changes due to pore-
pressure diffusion and poroelasticity can successfully reproduce the seismicity ob-
served during the EGS simulation which were carried out on the Otaniemi campus
near Helsinki, Finland. While pore pressure measurements at the well indicate two
possible diffusivities that fit either the build-up of pressure or its drawdown, the
physical model suggests that the diffusivity of the medium is likely closer to the
higher diffusivity fitting the build-up. We find that the effect of time-dependent
nucleation is crucial in reconciling the higher diffusivity with the spatio-temporal
distribution of triggered seismicity. Namely, the tendency of the parameter 𝑎𝜎 to
act proportionally to a triggering threshold significantly affects the apparent diffu-
sivity inferred from the triggering front in Otaniemi. However, the effect of finite
nucleation cannot be approximated well by introducing a stress threshold in the stan-
dard Coulomb friction model, at least in the context of rapid variations of injection
rates common in EGS operations. We remark that there are significant portions
of the relocated catalogue that the models do not fully capture in space, such as
the back-propagation front or far-field seismicity, although a significant portion of
the observed far-field seismicity may have been due to leaks in the well casing.
The Omori law decay observed in Otaniemi is seen to depend strongly on fluid
transport properties in the physical model. Lastly, the physical model indicates that
the Kaiser effect is present in Otaniemi, weakened by the successive variation of
injection locations between different stages.

We show that a statistical model whereby the seismicity rate is predicted in time
and space by convolution of a kernel function inspired by Omori law decay with
the injection rate can provide a good match to the seismicity observed in Otaniemi.
The existence of such linear convolution kernels is consistent with the identification
of systematic decay patterns in the rate densities calculated by adaptation of the
cascading algorithm of Marsan and Lengline (2008) to induced seismicity. The
statistical model is extended to space by incorporation of a half-norm distribution
component to the kernel mimicking the behavior of the physical model. We find
that the validity of the method, which assumes a linear relationship between the
injection history and the induced seismicity rate, depends strongly on the presence
of the Kaiser effect. The convolution model would be applicable towards injection
schedules that minimize the impact of the Kaiser effect by decreasing injection
durations relative to the local diffusion time or by variation of injection locations in
space.
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The physical model makes a number of assumptions. One assumption is that it is
appropriate to use Darcy’s Law, which was established for a homogeneous porous
medium, to model the flow in the fractured crystalline bedrock. Although the
assumptions largely stem from the lack of data on local heterogeneities or anisotropy,
neglecting presence of vertical or horizontal geological layers may be appropriate
for Otaniemi where the objective is to fracture a largely crystalline medium. The
model also ignores the effect of pore-pressure change on permeability. This is
clearly an oversimplification as, in the case of fractured flow, the permeability
increases substantially with pore pressure (Acosta and Violay, 2020; Cappa et al.,
2006; Cornet and Jianmin, 1995; Evans et al., 2005). Common values of in-tact
granite under comparable pressure are documented to be closer to 10−21 m2 (Brace,
Walsh, and Frangos, 1968), several orders of magnitude lower than that of the best
fitting model (10−16 m2). Indeed, there are indications of changes in the diffusivity
from the evolution of the injectivity index, or the ratio of injection rate to the well-
head pressure (Appendix B.9). Periods of heightened injectivity are well-correlated
with periods of high seismicity rates, likely due to seismicity-induced increase in
permeability. Reconciling the full scope of pressure variations at the well and the
spatio-temporal patterns of observed seismicity would probably require an explicit
account for the role of fractures and seismicity on permeability. Lastly, stress
perturbations due to thermoelasticity can also be significant for EGS operations
where temperature gradients between the injected fluid and surrounding medium
are large (e.g., Gens et al., 2011; Im et al., 2017; Rutqvist and Oldenburg, 2008).

The modeling methods presented here could be useful in designing EGS operations
or to interpret induced seismicity observations in terms of transport properties within
the stimulated volume. They could additionally serve as a basis for a probabilistic
traffic light system (TLS) or be incorporated in a control and optimization framework
such as the one presented by Stefanou (2019). At the moment, TLS are deterministic
and based entirely on the observed maximum magnitude (Ader et al., 2020; Bommer
et al., 2006; Kwiatek et al., 2019; Majer et al., 2007). As such, a red light
event can be triggered by the occurrence of a rare event, with improbably large
magnitude, that might not necessarily reflect an increased hazard level. In addition,
such TLS do not provide a way to anticipate the response to possible mitigation
strategies. This is important as many operations have been terminated as the original
TLS design proved to be insufficient in preventing "red-light" incurring events
(Grigoli et al., 2017; Majer et al., 2007). To alleviate that issue, our forecasting
methods could for example be incorporated in "Adaptive Traffic Light Systems"
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(ATLS) (Hirschberg, Wiemer, and Burgherr, 2014), which are based in a real-time
assessment of probabilistic hazard.
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Parameter Variable Value and Unit
Poroelastic Properties

Shear modulus 𝜇 20 GPa
Drained Poisson’s ratio 𝜈 0.25

Undrained Poisson’s ratio 𝜈𝑢 0.3
Skempton’s coefficient 𝐵 0.75

Biot’s coefficient 𝛼 0.31
Transport Properties

Fluid viscosity 𝜂 0.4 x 10−3 Pa· s
Reference fluid density 𝜌0 103 kg/m3

Fault Orientation & Stress State
Fault normal �̂� [-0.866, 0, 0.5]

Fault slip 𝑠 [-0.5, 0, -0.866]
Normal stress 𝜎 155 MPa

Table 3.1: Constant Parameters.

Figure # Model Parameters Goodness of Fit
KS-statistic LLK

Time Space Time
Convolution Model

𝑐ℎ𝑔 (m2/s) 𝑡𝑟 (hours) 𝑅0 (events/hour)
Rate-and-State Model
Figures 3.6a and 3.8a 0.011 24.1 208.9 0.040 0.122 177,558

𝑐𝑡𝑟𝑢𝑒 (m2/s) 𝑎 ¤𝜏𝑟 (kPa/year) 𝑟𝑏 (events/day)
Figures 3.6b and 3.8b 0.018 0.0002 3.05 12.1 0.029 0.335 173,375
Figures 3.6c and 3.8c 0.018 0.0001 4.89 25.9 0.090 0.136 165,532
Figures 3.6d and 3.8d 0.044 0.00006 1.29 4.7 0.025 0.110 173,429

Coulomb Model
𝑐𝑡𝑟𝑢𝑒 (m2/s) 𝜙1 (MPa) 𝜙2 (MPa) 𝛼𝑐 (kPa/event· m3)

Figures 3.6e and 3.8e 0.044 0.66 0.28 14.3 0.029 0.392 173,035

Table 3.2: Variable Parameters for Each Model.
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C h a p t e r 4

DIETERICH 1994 REVISITED: EFFECTS OF FINITE SIZE ON
INDUCED SEISMICITY

4.1 Introduction
Although to forecast the rate of earthquakes is a difficult task, the seismicity rate
model of Dieterich (1994) — hereafter referred to as the Dieterich model — has
provided a relatively simple method for simulating the response of a population
of nucleation sources with realistic frictional behavior in both natural and anthro-
pogenic settings. An immediate advantage of the Dieterich model in comparison to
most other physics-based models of seismicity rate is that it considers the rate- and
state- dependence of friction (Linker and Dieterich, 1992; Marone, 1998; Ruina,
1983) that gives rise to a nucleation process of finite duration in shear failure (Rubin
and Ampuero, 2005). Under the rate-and-state formalism, the friction coefficient 𝑓 ,
is a function of the slip rate, 𝑉 , and the state variable, 𝜃, which is associated with
the quality and/or quantity of the contact points. A commonly used logarithmic
formulation (Marone, 1998) along with the aging law to govern the evolution of the
state variable is,

𝑓 (𝑉, 𝜃) = 𝑓 ∗ + 𝑎 log
(
𝑉

𝑉∗

)
+ 𝑏 log

(
𝑉∗𝜃

𝐷𝑅𝑆

)
¤𝜃 (𝑉, 𝜃) = 1 − 𝑉𝜃

𝐷𝑅𝑆

(4.1)

where 𝑓 ∗ is the reference friction coefficient at the reference slip rate 𝑉∗, 𝑎, 𝑏, and
𝐷𝑅𝑆 are material parameters, and · = 𝑑

𝑑𝑡
. In particular, 𝑎 is attached to the logarithmic

dependence on slip rate and is directly proportional to what is called the ‘direct
effect,’ a nearly instantaneous increase in frictional resistance to a sudden increase
in the slip rate. The direct effect, along with others, induces the nucleation process of
finite duration in a fault governed by rate-and-state friction (Heimisson and Segall,
2018). The Dieterich model translates the nucleation period to a time to instability,
𝑡𝑖𝑛𝑠𝑡 , which can be used to calculate the seismicity rate among a population of faults
represented as single-degree-of-freedom spring-sliders. Perhaps most notably, the
Dieterich model reproduces the Omori decay of aftershocks following a sudden
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change in stress induced by a large earthquake as a result of the relaxation time scale
of the seismicity rate that is proportional to the time to instability.

One of the most prominent applications of the model outside the naturally tectonic
setting in recent years has been induced seismicity. Assuming one-way coupling
from stress change to seismicity rate allows flexibility in the physical mechanisms
one can consider to be responsible for the stress state. The distribution of stress
perturbations in time and space due to an injection — presumably solved for in a sep-
arate, independent framework that may regard complex physics with heterogeneities
— becomes input to an ODE to be solved for at each point in space (Segall and Lu,
2015). Such framework has proven to be successful in reproducing the observed rate
of induced seismicity at various injection settings (Acosta et al., 2023; Heimisson
et al., 2022; Kim and Avouac, 2023; Zhai and Shirzaei, 2018). The studies have
highlighted the importance of considering the finite duration of nucleation, as it may
affect characteristic features of induced seismicity such as its spatial extent of the
triggering front (Kim and Avouac, 2023) and its periodicity in response to seasonal
loading (Acosta et al., 2023).

The impressive level of success by the Dieterich model in explaining and reproducing
both natural and induced seismicity warrant a closer look at the significance — or
possibly the lack thereof — of the number of assumptions made in the model
derivation. Three main assumptions are highlighted here:

1. All nucleation sources are already close to instability, distributed at even
intervals away from the timing of the dynamic event such that a constant
seismicity rate would result from a constant stressing rate.

2. Stress interactions between sources are negligible.

3. Frictional stability of sources do not change with respect to the stress state.

Assumption 1 is a question of initial conditions. Heimisson et al. (2022) accounted
for nucleation sources far from instability through a stress threshold that must be
passed prior to observing seismicity. The threshold formulation still assumes the
existence of a steady seismicity rate under steady stressing rate which in fact requires
a rather particular distribution of initial slip rates due to the nonlinearity of rate-and-
state friction. Additionally, an important and implicit statement of assumption 1 is
that the population of nucleation sources is infinite, which results from the lack of a
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length scale in the point-wise consideration of the region containing the population.
Assumption 2 is perhaps the most widely cited assumption of the model although
incorporation of source interactions into the model by Heimisson (2019) showed that
it may only manifest itself as a difference in the total number of events. Assumption 3
is unphysical considering the known inverse relationship between frictional stability
and normal stress. Namely, a linear stability analysis of a spring-slider system under
steady-state conditions gives the critical stiffness (Ruina, 1983),

𝜅𝑐𝑟 =
(𝑏 − 𝑎)�̄�
𝐷𝑅𝑆

�̄� = 𝜎 − 𝑝

(4.2)

where �̄� and 𝜎 are the effective and ambient normal stress, respectively, and 𝑝 is
the pore pressure experienced by the slider. For springs of stiffness higher than 𝜅𝑐𝑟 ,
the slider is unconditionally stable to all perturbations for a constant loading rate
(Ranjith and Rice, 1999). In a finite fault, the stability condition is determined by
the nucleation size - the minimum size that a slipping patch must reach to grow
dynamic - which is inversely proportional to the normal stress (Ampuero and Rubin,
2008; Rubin and Ampuero, 2005). A decrease in the effective normal stress due
to an injection therefore increases the stability of a fault which may increase its
time to instability, possibly to infinity in the case of an unconditionally stable fault.
Furthermore, both experiments (Guérin-Marthe et al., 2019) and theoretical studies
(Alghannam and Juanes, 2020) have shown that the stressing rate can also affect
stability characteristics. In the context of fluid injections, the effect of increased
stability from an increase in pore pressure on the seismicity distribution has not yet
been explored.

An immediate advantage of the Dieterich model in comparison to most other physics-
based models of seismicity rate is that it considers the rate- and state- dependence of
friction (Linker and Dieterich, 1992; Marone, 1998; Ruina, 1983) that gives rise to
a nucleation process of finite duration in shear failure (Rubin and Ampuero, 2005).
In particular, 𝑎 of rate-and-state friction is attached to the logarithmic dependence
on slip rate and is directly proportional to what is called the ‘direct effect’, a nearly
instantaneous increase in frictional resistance to a sudden increase in the slip rate.
The direct effect, along with others, induces the nucleation process of finite duration
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in a fault governed by rate-and-state friction (Heimisson and Segall, 2018). The
Dieterich model translates the nucleation period to a time to instability, 𝑡𝑖𝑛𝑠𝑡 , which
can be used to calculate the seismicity rate among a population of faults represented
as single-degree-of-freedom spring-sliders. Perhaps most notably, the Dieterich
model reproduces the Omori decay of aftershocks following a sudden change in
stress induced by a large earthquake as a result of the relaxation time scale of
the seismicity rate that is proportional to the time to instability. Yet, a number
of studies have cited inconsistencies between inferred parameters of the Dieterich
model and what one would expect based on geological considerations and laboratory
experiments. Relatively low values of 𝑎�̄� have required either values of 𝑎 that are
orders of magnitude lower than those measured in the laboratory or near-lithostatic
pore pressure such that �̄� would be low (Bettinelli et al., 2008; Gross and Bürgmann,
1998; Gross and Kisslinger, 1997; Toda et al., 1998, 2012). Matching the Dieterich
model to induced seismicity catalogues from different geothermal stimulation sites
showed that 𝑟𝑏 can be orders of magnitude apart, beyond the differences in levels of
natural seismicity (Kim and Avouac, 2023).

Addressing the assumptions of the model is a non-trivial task given that the most
straightforward approach is to deal with the system of equations in their full, original
formulation without the simplifications allowed by the assumptions that make the
Dieterich model a much more computationally tractable problem. Initial conditions
close to nucleation (assumption 1) corresponds to what is called the no-healing
limit, at which the ODE for state evolution admits an analytical solution (due to
𝑉𝜃
𝐷𝑅𝑆

being large enough to ignore the 1 term in the aging law). For the general case
with arbitrary initial conditions, a closed form for the seismicity rate is not possible.
Similarly, solving the friction law in its entirety addresses assumption 3, where the
change in stability would naturally arise from the friction evolution. Assumption
2 requires solving for the stress transfer between each fault. Addressing source
interactions rigorously significantly departs from the formulation of the Dieterich
model which does not explicitly specify the spatial distribution and orientation of
the population of nucleation sources. Including dynamic stress changes and wave
propagation in an arbitrary network of faults is not yet computationally feasible at
the time scale meaningful to most fluid injection settings.

Here, we address the assumptions and investigate their effect on the seismicity rate
through a Discrete Fault Network (DFN) model (Im & Avouac, 2024). The DFN
model addresses assumptions 1 and 3 in their full, by solving the friction law in
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the non-simplified form. The model addresses assumption 2 in the quasi-dynamic
sense, by accounting for the quasi-static stress transfer between individual faults and
the dynamic radiation of stress away from each fault into the bulk medium. We
use the DFN model to consider various initial conditions among a finite number of
faults as in a realistic injection medium for direct comparison to the Dieterich model
as an objective test for the significance of the aforementioned assumptions.

4.2 The Dieterich Model and the Finite Discrete Fault Network Model
The Dieterich model simulates the seismicity rate among a (infinite) population of
nucleation sources by computing their times to instability. The analytical treatment
of this problem is possible thanks to the simplification of the state evolution law in
rate-and-state friction under the assumption that the nucleation sources are acceler-
ating towards instability. In the context of Equation 4.1, this corresponds to large
values of 𝑉𝜃

𝐷𝑅𝑆
such that the 1 term of the aging can be ignored. This leads to the

equation for the time to instability, 𝑡𝑖𝑛𝑠𝑡 , given an arbitrary stressing history,

∫ 𝑡𝑖𝑛𝑠𝑡

0
𝐾 (𝑟, 𝑡′) 𝑑𝑡′ = 𝑎

𝐻𝑉𝑖𝑛𝑖

𝐾 (𝑟, 𝑡) = exp
(
𝜏(𝑟, 𝑡)
𝑎�̄�(𝑟, 𝑡) −

𝜏𝑖𝑛𝑖 (𝑟)
𝑎�̄�𝑖𝑛𝑖 (𝑟)

)

𝐻 =
𝑏

𝐷𝑅𝑆

−
𝜅 𝑓 𝑎𝑢𝑙𝑡

�̄�𝑖𝑛𝑖

(4.3)

where 𝑟 and 𝑡 are the radial distance and time, 𝑉𝑖𝑛𝑖 is the initial slip rate of the
nucleation source, 𝜏 and �̄� are the applied shear and effective normal stress, 𝜏𝑖𝑛𝑖
and �̄�𝑖𝑛𝑖 are the initial shear and effective normal stress, and 𝜅 𝑓 𝑎𝑢𝑙𝑡 is the spring
stiffness of the fault represented by a spring-slider. Next, the initial conditions of the
nucleation sources are solved for by assuming the existence of a steady seismicity
rate 𝑟𝑏 under a steady stressing rate ¤𝜏𝑟 . Rearranging equation (14) of Heimisson &
Segall (2018) gives the distribution of initial slip rate,

𝑉𝑛𝑖𝑛𝑖 =
¤𝜏𝑟

𝐻�̄�𝑖𝑛𝑖

(
exp

(
𝑛
𝑟𝑏

¤𝜏𝑟
𝑎�̄�𝑖𝑛𝑖

)
− 1

) , 𝑛 ∈ N (4.4)
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for the 𝑛th nucleation source. Note that 𝑛 ranges from 1 to infinity in the Dieterich
model, allowing infinitesimal values of 𝑉𝑖𝑛𝑖 such that 𝑡𝑖𝑛𝑠𝑡 is infinitely large. For the
seismicity rate, 𝑅𝐷𝑖𝑒𝑡𝑒𝑟𝑖𝑐ℎ, we opt to use the integral formulation of Heimisson and
Segall (2018) in place of the original ODE formulation,

�̂�𝐷𝑖𝑒𝑡𝑒𝑟𝑖𝑐ℎ (𝑟, 𝑡) =
𝑅𝐷𝑖𝑒𝑡𝑒𝑟𝑖𝑐ℎ (𝑟, 𝑡)

𝑟𝑏
=

𝐾 (𝑟, 𝑡)
1 + 1

𝑡𝑎

∫ 𝑡

0 𝐾 (𝑟, 𝑡′) 𝑑𝑡′
,

𝑡𝑎 =
𝑎𝜎𝑖𝑛𝑖

¤𝜏𝑟

(4.5)

where �̂�𝐷𝑖𝑒𝑡𝑒𝑟𝑖𝑐ℎ (𝑟, 𝑡) is the normalized seismicity rate with respect to the back-
ground seismicity rate. The integral formulation explicitly accounts for changes in
normal stress without resorting to the often used Coulomb stress approximation.
Computing the fraction of exponentials in Equation 4.5 can be difficult for large
changes in stress such that a large argument of the exponential in Equation 4.3 for
𝐾 (𝑟, 𝑡) causes overflow. To avoid computing the exponential explicitly, we derive
a numerical algorithm for computing the log of the seismicity rate in increments
such that the overflow can always be avoided for small enough time steps (Appendix
C.1).

The Discrete Fault Network (DFN) model solves for the frictional motion and stress
transfer by connecting a number of boundary integral solutions for slip along discrete
and planar, embedded fractures in an infinite, homogeneous and elastic medium (Im
& Avouac, 2024). Thus, the number of faults in the model is inherently finite, unlike
the Dieterich model. Quasi-static stress transfer between the faults is resolved by the
Okada solutions for slip along dislocations (Okada, 1985). Along the direction of
slip, inertia is only accounted for in the form of radiation damping. While dynamic
stress tress transfer between faults and wave propagation along slip are neglected,
a lumped mass per area term is attached to acceleration. Such a parameter has
been shown to be necessary to reproduce simulations closely matching community
benchmark problems for quasi-dynamic rupture of a single fault (Im & Avouac,
2024). Combined all together, the system of equations comprise of a number of
PDE’s equal to the number of 2D cells that discretize the embedded fractures,
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𝑀 ¥𝛿𝑛 =
∑︁
𝑚

𝐾𝜏𝑛𝑚 (𝛿𝑚 (𝑡 = 0) − 𝛿𝑚 (𝑡))

− 𝑓𝑖 (𝑉𝑛 (𝑡), 𝜃𝑛 (𝑡)) ·
(
�̄�𝑛 (𝑡 = 0) +

∑︁
𝑚

𝐾𝜎𝑛𝑚𝛿𝑚 (𝑡)
)
− 𝐺

2𝑐𝑠
¤𝛿𝑛 (𝑡)

𝑛 ∈ 1, ...., 𝑁 𝑓 𝑎𝑢𝑙𝑡

(4.6)

where 𝑀 is the lumped mass per area, 𝛿𝑛 is the slip along the 𝑛th cell, 𝐾𝜏 and 𝐾𝜎

are the shear and normal stiffness matrices that results from the Okada solutions for
stress transfer between discrete dislocations, 𝐺 is the shear modulus of the medium,
and 𝑐𝑠 is the shear wave speed. 𝑓 , the coefficient of friction is given by the rate-and-
state friction law of Equation 4.1 as a function of the slip rate and the state variable.
In the models presented here, we discretize all faults by a single cell such that 𝑁 𝑓 𝑎𝑢𝑙𝑡

is equal to the number of cells in the simulation for computational efficiency. In other
words, we also approximate the faults as single-degree-of-freedom systems, and we
do not consider here the effects of finite nucleation sources with rupture dynamics.
The finite quality of the model enters through the effect of the fault size on the
effective stiffness of each fault (the diagonal elements of the shear stiffness matrix,
𝐾𝜏), the effect of fault size on stress transfer to the surroundings, and the finite
number of faults in the model. At the same time, we emphasize that to discretize
the faults with multiple cells and to resolve rupture dynamics on individual faults is
fully possible in the DFN model.

To apply stress perturbations from injections, analytical solutions for the pressure
due to a point source injection in a poroelastic medium (Rudnicki, 1986) are pre-
computed,

𝑝(𝑟, 𝑡) = 𝑞

4𝜋𝜌0𝑟

𝜂

𝑘 𝑝𝑒𝑟𝑚
erfc

(
1
2
𝜉

)

𝜉 =
𝑟

√
𝑐𝑑𝑖 𝑓 𝑓 𝑡

𝑐𝑑𝑖 𝑓 𝑓 =
𝑘 𝑝𝑒𝑟𝑚

𝜂

(𝜆𝑢 − 𝜆) (𝜆 + 2𝐺)
𝛼2(𝜆𝑢 + 2𝐺)

(4.7)
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Figure 4.1: The Network of Embedded Fractures in the DFN Model. Discrete
fractures are embedded in an infinite medium along a 10x10x10 grid with an average
spacing of 25m. The fractures share the same size (10m x 10m) and the same
orientation. Boundary element solution for each fault is coupled to the rest by
solutions for quasi-static stress transfer between dislocations (Okada, 1985). Shear
resistance on each fault is governed by rate-and-state friction, radiation damping,
and inertial forces along the direction of slip. Unlike the Dieterich model, the DFN
model accounts for the finite size of the seismogenic reservoir, the full evolution of
friction from any initial conditions, and stress interactions between each fault.

where 𝜆𝑢 = 2𝐺𝜈𝑢/(1 − 2𝜈𝑢) is the undrained Lamé parameter and the drained
Lamé parameter without the subscript 𝑢 for shear modulus, 𝐺, and the drained
and undrained Poisson’s ratio 𝜈 and 𝜈𝑢, 𝛼 =

3(𝜈𝑢−𝜈)
𝐵(1+𝜈𝑢) (1−2𝜈) is the Biot coefficient

for Skempton’s coefficient 𝐵, 𝑐𝑑𝑖 𝑓 𝑓 is the hydraulic diffusivity which depends on
permeability, 𝑘 𝑝𝑒𝑟𝑚 and viscosity, 𝜂, 𝑞 is the mass injection rate and 𝜌0 is the
reference fluid density. Interpolations of the pre-computed analytical solutions are
superposed to the current stress state at each time step. In general, the model allows
any arbitrary stress conditions to be provided as input, regardless of how they have
been computed, similarly to the Dieterich model.
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The initial conditions emulate the assumptions of the Dieterich model as closely
as possible by following the derivation for the initial slip rate distribution that is at
even intervals of the time to instability at constant loading. To ensure that all faults
are accelerating towards instability and are at the no-healing limit, we choose initial
states such that 𝑉𝑖𝑛𝑖𝜃𝑖𝑛𝑖

𝐷𝑅𝑆
is greater than 100. The exact values of 𝜃𝑖 are computed using

the phase-plane solutions of quasi-static spring-sliders driven by constant loading
as derived in Ranjith and Rice (1999),

𝑈𝑅𝑅 = (𝛽 − 1)𝛽
(
𝑉𝑙 𝑝

𝑉∗ + 𝑒𝜙

𝛽 − 1

)
𝑒

𝜓−𝜙

𝛽 − 𝜓𝛽

𝜓 =
𝑓𝑖𝑛𝑖 − 𝑓 ∗

𝑎

𝜙 = ln
𝑉𝑖𝑛𝑖

𝑉∗

𝛽 =
𝑏

𝑎

(4.8)

where 𝑉𝑙 𝑝 =
¤𝜏𝑟

𝜅 𝑓 𝑎𝑢𝑙𝑡
is the constant velocity of the loading point and 𝑈𝑅𝑅 is the

constant that defines a single solution in the phase plane. We note that Equation
4.8 is derived for the special case that 𝜅 𝑓 𝑎𝑢𝑙𝑡 = 𝜅𝑐𝑟 (analytical solutions for the more
general case are not possible) and that we use it to solve approximately for 𝜃𝑖𝑛𝑖
that arises naturally from long-term loading. In summary, we use Equation 4.4 to
compute𝑉𝑖𝑛𝑖, then use Equation 4.8 to compute 𝜃𝑖𝑛𝑖 with𝑈𝑅𝑅 large enough to ensure
that 𝑉𝑖𝑛𝑖𝜃𝑖𝑛𝑖

𝐷𝑅𝑆
is greater than 100 for all faults. Equation 4.1 then uniquely defines the

initial friction, 𝑓𝑖𝑛𝑖, for the given initial slip rate and state variable. This procedure
generates a network of faults with initial conditions that approximately draw from
points along the same seismic trajectory that would naturally arise from long-term
steady loading.

The DFN models presented here all share the same geometry in terms of the fault
size and their spacing, unless explicitly stated to be otherwise. 10m x 10m faults
are spaced in a 10 x 10 x 10 interval with 25m spacing in-between (Figure 1).
The initial conditions for the slip rate, stress and the state variable are distributed
randomly among the faults with no consideration of their relative location along
the grid. Rate-and-state properties are fixed at constant values for all faults. Initial
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normal stress is distributed uniformly at 100MPa,and a constant stressing rate of
1kPa/year is applied to all faults.. The physical and computational parameters of
the model are summarized in Table 4.1. The initial distribution for the parameters
of Table 4.1 with 𝑟𝑏 = 1 event/year and 𝑈𝑅𝑅 = 10,000 is shown in Figure 4.2. The
distribution traces out a path along the portion of a typical seismic trajectory of a
spring-slider under rate-and-state friction that satisfies the no-healing assumption.

Figure 4.2: Distribution of Initial Conditions for Individual Faults in the DFN Model.
Initial conditions of all faults are plotted in their phase-plane for the slip rate, 𝑉𝑖𝑛𝑖

𝑉∗ ,
the normalized state variable, 𝜃𝑖𝑛𝑖𝑉𝑖𝑛𝑖

𝐷𝑅𝑆
, and friction, 𝑓𝑖𝑛𝑖. To satisfy the no-healing

assumption used by Dieterich (1994), the normalized state variable is ensured to
be above 100. By using analytical solutions for the quasi-static spring-slider, the
initial distribution traces the aseismic period of the lifecycle of a spring-slider under
constant loading.

4.3 Spatio-Temporal Pattern of Induced Seismicity in a Reservoir with Finite
Number of Faults

To illustrate how the assumption of the infinite population of nucleation sources in
the Dieterich model may manifest itself in the finite analogue, we run two simulations
of the DFN model for the same injection scenario with different values of 𝑟𝑏 used
to configure the initial conditions — one higher at 𝑟𝑏 = 1 event/hour and one lower
at 𝑟𝑏 = 1 event/year. We emphasize that the Dieterich model would not predict any
differences in the spatio-temporal pattern of the seismicity rate for different values
of 𝑟𝑏. Since 𝑟𝑏 is a simple scalar multiplier to the normalized seismicity rate, the
only difference between the two catalogues would be the total number of events
by the ratio of one hour to one year. The injection rate is fixed at 30kg/s for both
simulations.

Figure 4.3 shows the resulting catalogues on top of a contour plot of the log seismicity
rate predicted by the Dieterich model (𝑅𝐷𝑖𝑒𝑡𝑒𝑟𝑖𝑐ℎ). Configuring the initial conditions
with higher 𝑟𝑏 results in both steeper triggering and back-propagation fronts as the
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initial slip rates are generally higher and the times to instability are shorter. Events
of the simulation with lower 𝑟𝑏 are spread out noticeably further in time. The shapes
of the seismicity fronts can in fact be predicted by considering the time to instability
as a function of distance,

∫ 𝑡𝑖𝑛𝑠𝑡 (𝑟 |𝑉 𝑓 𝑟𝑜𝑛𝑡 )

0
𝐾 (𝑟, 𝑡′) 𝑑𝑡′ = 𝑎

𝐻𝑉 𝑓 𝑟𝑜𝑛𝑡
(4.9)

where 𝑉 𝑓 𝑟𝑜𝑛𝑡 is the characteristic slip rate of the initial distribution that traces the
seismicity front of interest. For the general stress history, closed form solutions of the
integral on the left hand side of Equation 4.9 are not possible. We solve numerically
for 𝑡𝑖𝑛𝑠𝑡 (𝑟) given the simulated injection scenario and find that the average slip rate
of the distribution, 𝑉𝑚𝑒𝑎𝑛, and the minimum slip rate of the distribution, 𝑉𝑚𝑖𝑛, as
𝑉 𝑓 𝑟𝑜𝑛𝑡 trace excellently the triggering and back-propagation fronts, respectively. In
previous studies, the triggering front has been associated with a pressure diffusion
process (Shapiro, Huenges, and Borm, 1997) or its combination with the delay to
nucleation from rate-and-state characteristics of friction (Kim and Avouac, 2023).
Most commonly, the diffusivity of the injected medium is inferred by matching the
curve 𝑟𝑡 𝑓 (𝑡) =

√︁
4𝜋𝑐𝑡 𝑓 𝑡 where 𝑟𝑡 𝑓 (𝑡) is the triggering front and 𝑐𝑡 𝑓 is the inferred

diffusivity of the injected medium (Shapiro, Huenges, and Borm, 1997). It is
important to distinguish that 𝑐𝑡 𝑓 does not necessarily equal the true diffusivity of
the medium. In the DFN catalogues, 𝑐𝑡 𝑓 can be expressed as,

𝑐𝑡 𝑓 =
𝑟2
𝑡 𝑓

4𝜋𝑡𝑖𝑛𝑠𝑡 (𝑟𝑡 𝑓 |𝑉 𝑓 𝑟𝑜𝑛𝑡 = 𝑉𝑚𝑒𝑎𝑛)
. (4.10)

In summary, the shape of the seismicity front in the DFN model is a function of three
main factors: 1. the transport characteristics of pressure diffusion (𝑐𝑑𝑖 𝑓 𝑓 ); 2. the
delay to nucleation in rate-and-state friction (or the magnitude of the direct-effect,
𝑎); and 3. the initial distribution of the time to instability (𝑉𝑚𝑒𝑎𝑛 and 𝑉𝑚𝑖𝑛).

Interestingly, the back-propagation that appears midst injection in the DFN catalogue
is qualitatively different from those more commonly discussed in observations of
field data which only appear after shut-in. Such phenomenon has been associated
with the back front of pressure diffusion that propagates negative stressing rates
from the injection point once an injection stops (Langenbruch and Shapiro, 2010).
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Figure 4.3: DFN Catalogues with Different 𝑟𝑏 and the Dieterich Model Prediction.
The Dieterich model (contour plot of the background) and two DFN Models (black
and blue scatter plots) are simulated for the same injection scenario at a constant
injection rate of 30 kg/s. The initial conditions of the DFN model are configured
with different values of 𝑟𝑏 (1 event/hour for the black catalogue and 1 event/year
for the blue catalogue). The catalogue with higher 𝑟𝑏 has steeper triggering and
back-propagation fronts due to shorter times to instability. For different values of
𝑟𝑏, the normalized seismicity rate of the Dieterich model does not change. The
back-propagation front during the injection only appears for the DFN catalogue due
to the exhaustion of a finite number of sources. Although the Dieterich model does
not predict different densities of seismicity rate for different 𝑟𝑏, the DFN catalogues
differ significantly due to the difference in the range of initial distribution of times
to instability.

A similar back-propagation front is predicted by the Dieterich model, additionally
considering delayed nucleation. There is no back-propagation front for a continuous
injection in the Dieterich model, as the infinite pool of nucleation sources accom-
modates sources with infinitely small initial slip rates and infinitely large times to
instability (equivalent to plugging in 𝑉 𝑓 𝑟𝑜𝑛𝑡 = 𝑉𝑚𝑖𝑛 = −∞ in Equation 4.9). In the
DFN catalogue, the back-propagation front for a continuous injection occurs by the
sequential exhaustion of available nucleation sources at further distances.
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4.4 Long-Term Source-to-Source Interactions and Normal Stress Dependent
Frictional Stability

We highlight two additional differences between the Dieterich and DFN model
regarding source-to-source interactions and the dependence of frictional stability
on normal stress through a long-term simulation driven by both tectonics and fluid
injections. An injection rate of 30kg/s is applied for ∼ 68,500 years (25e6 days)
before a shut-in of equal duration. The initial conditions of the faults are distributed
using 𝑟𝑏 of 1 event/hour. The resulting catalogue in space and time, superposed on
top of the Dieterich model prediction is shown in Figure 4.4.

The injection first produces the seismicity rate profile of Figure 4.3, although the
particular characteristics at the time scale of pressure diffusion discussed in the
previous section are not distinguishable at the time scale of the long-term simulation
(the earliest set of events of the DFN catalogue shows as a nearly vertical line at 𝑡
= 0). Thereafter, the DFN catalogue exhibits long periods of quiescence separating
compact periods of steady seismicity with rates much lower than the prescribed rate
of 𝑟𝑏 = 1 event/hour. With increasing time (or more precisely slip), the average
interevent duration between events within a compact seismic period increases while
maintaining the natural return period of each fault. As a result, more and more
seismic events begin to fill the quiescent gaps. By the end of the simulation,
events further away from the injection point, whose stress histories are dominated
by constant shear loading, appear to converge to a steady state with roughly constant
interevent duration. The steady seismicity at the end of the simulation is around
66 events/millenium, accommodating both the number of faults in the reservoir
and their natural return period. The convergence reveals a self-organizing nature
of source-to-source interactions that leads to a steady seismicity rate at a constant
stressing rate. To affirm that the gradual convergence to steady seismicity rate is due
to source interactions, we run the same simulation with the distance between each
fault increased to 500m. Decreasing the stress transfer between each fault maintains
the alternating sequence between quiescence and steady seismicity for the entire
simulation. Additionally, the interevent duration remains equal to the intervals of
time to instability initially prescribed (1 hour). The Dieterich model maintains a
constant seismicity rate for constant injection rate without such quiescent gaps, as
it continues to draw from the infinite population of nucleation sources. Apart from
the relatively short periods at the onset of injection and shut-in, the total seismicity
rate is exactly 𝑟𝑏 = 1 event/hour as prescribed.
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Figure 4.4: Long-Term Simulations with Different Fault Spacing: (a) The Dieterich
model and the DFN model with 𝑟𝑏 = 1 event/hour of Figure 3 is extended in time
along with a shut-in of the injection at the half point of the simulation duration.
The DFN catalogue exhibits a long-term convergence to steady seismicity rates due
to source interactions at constant loading. The increased frictional stability due to
increase in pressure also creates an aseismic region in the DFN model (the region is
traced at its upper boundary by the white dotted line). The shut-in delays the time
to instability for faults close to the injection source for both the Dieterich and DFN
model. Otherwise, the Dieterich model predicts a constant seismicity rate for the
simulation period. (b) Fault spacing is increased from 25m to 500m to decrease the
extent of source interactions with slip, which fully eliminates the convergence of the
fault network to a steady seismicity rate. The long-term simulation reveals the the
effect of source interactions in the redistribution of the stress state across the fault
network that is not accounted for in the Dieterich model.

Prior to shut-in, the DFN catalogue exhibits a strictly aseismic region ∼ 100m in
radial distance from the injection point. The long-term absence of seismicity close to
the injection point is due to the increased frictional stability as a result of a decrease
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in the effective normal stress. As long as the injection continues, the rise in pore
pressure is maintained until shut-in, and the consequent decrease in effective normal
stress decreases the critical stiffness of the faults, 𝜅𝑐𝑟 . The contour line along the
transition points in time and space at which the stiffness of the fault, 𝜅 𝑓 𝑎𝑢𝑙𝑡 , equals
the critical stiffness, 𝜅𝑐𝑟 , traces excellently the distance until which the faults are
aseismic. Faults under the stable condition such that 𝜅 𝑓 𝑎𝑢𝑙𝑡 > 𝜅𝑐𝑟 steadily creep in
the DFN model. The Dieterich model continues to predict stick-slip motion of all
nucleation sources as according to assumption 3, resulting in an unaltered, steady
seismicity rate near the injection point.

The Dieterich and DFN model coincide well qualitatively in the predictions of the
delay in time to instability caused by the shut-in. The shut-in induces an abrupt
and negative stressing rate, which ’sets back’ the faults in time with respect to
their current position in their respective seismic life cycles. This delay in time
to instability is largest for faults closest to the injection source which experience
the largest negative stressing rates, causing the curved shape of the first seismicity
front observed after the shut-in. The qualitative match between the Dieterich and
DFN model is not obviously intuitive given that the nucleation sources in the two
cases have different initial conditions. Unlike the beginning of the simulation where
the initial states of the faults in the DFN model were also configured to be at the
no-healing limit, the majority of the faults of the DFN model are far from this
condition by the time of the shut-in. The faults that were creeping in the previously
linearly stable region are at steady-state ( ¤𝜃 = 0), whereas the majority, if not all of
the rest of the faults are below healing ( 𝑉𝜃

𝐷𝑅𝑆
< 1) as the interseismic loading period

dominates (in time) the life cycle of a seismic fault. In an absolute sense, the times
to instability following the shut-in differ significantly between the two models, to the
order of a 1000 years. Thus, the matching shape of the seismicity front following
shut-in does not necessarily suggest the applicability of the Dieterich model to more
general initial conditions not constrained to assumption 1, but moreso that both
models correctly predict a delay in time to instability in response to a negative stress
change. Once the effective normal stress of the medium has equilibriated to initial
levels prior to injection, the previously aseismic faults resume stick-slip motion and
converge to a steady seismicity rate along with the rest of the faults due to source
interactions.



124

4.5 Inference of Dieterich Model Parameters from DFN Catalogues
Given the qualitative differences between the Dieterich model and a model of a
finite number of faults such as in a real reservoir, it is interesting to consider the
implications to the meaning of the Dieterich model parameters that have been
inferred from real data. In fact, a number of studies have cited inconsistencies
between inferred parameters of the Dieterich model and what one would expect
based on geological considerations and laboratory experiments. Relatively low
values of 𝑎�̄� have required either values of 𝑎 that are orders of magnitude lower
than those measured in the laboratory or near-lithostatic pore pressure such that �̄�
would be low (Acosta et al., 2023; Bettinelli et al., 2008; Gross and Bürgmann,
1998; Gross and Kisslinger, 1997; Toda et al., 1998, 2012). Matching the Dieterich
model to induced seismicity catalogues from different geothermal stimulation sites
showed that 𝑟𝑏 can be orders of magnitude apart, beyond the differences in levels of
natural seismicity Kim and Avouac, 2023.

We examine the possible origin of these inconsistencies and the meaning of the
Dieterich model parameters in a finite setting by inferring them directly from cata-
logues produced by the DFN model. The injection rate is varied between 0, 1, 2, 3,
4, 5, 10, 15, and 30 kg/s for an otherwise equal configuration with the same initial
conditions, physical parameters and geometry. The Dieterich model is adjusted to
fit the resulting DFN catalogues in two different ways to better isolate the effect of
parameters 𝑟𝑏 and 𝑎. At this point, we differentiate between the parameters used
to configure the DFN model (𝑟𝑏,𝐷𝐹𝑁 & 𝑎𝐷𝐹𝑁 ) and those inferred by matching the
Dieterich model (𝑟𝑏,𝐷𝑖𝑒𝑡𝑒𝑟𝑖𝑐ℎ & 𝑎𝐷𝑖𝑒𝑡𝑒𝑟𝑖𝑐ℎ). In the first approach, 𝑎𝐷𝑖𝑒𝑡𝑒𝑟𝑖𝑐ℎ is fixed
to 𝑎𝐷𝐹𝑁 and only 𝑟𝑏,𝐷𝑖𝑒𝑡𝑒𝑟𝑖𝑐ℎ is adjusted to match the total number of events of the
DFN catlaogue. In the second approach, the best matching value of 𝑎𝐷𝑖𝑒𝑡𝑒𝑟𝑖𝑐ℎ is
inferred by minimizing the mismatch between the seismicity rates. Namely, the
Poisson likelihood of the DFN catalogue for the given prediction from the Dieterich
model is maximized (Dempsey and Suckale, 2017), i.e., the best matching value of
𝑎𝐷𝑖𝑒𝑡𝑒𝑟𝑖𝑐ℎ is defined as

arg max
𝑎𝐷𝑖𝑒𝑡𝑒𝑟𝑖𝑐ℎ

𝑁𝑒𝑣𝑒𝑛𝑡𝑠∑︁
𝑗=1

log 𝑅𝐷𝑖𝑒𝑡𝑒𝑟𝑖𝑐ℎ (𝑎𝐷𝑖𝑒𝑡𝑒𝑟𝑖𝑐ℎ; 𝑡 𝑗 ) −
∫ 𝑡𝑁𝑒𝑣𝑒𝑛𝑡𝑠

0
𝑅𝐷𝑖𝑒𝑡𝑒𝑟𝑖𝑐ℎ (𝑎𝐷𝑖𝑒𝑡𝑒𝑟𝑖𝑐ℎ; 𝑡′)𝑑𝑡′,

(4.11)

where 𝑡 𝑗 for 𝑗 ∈ 1, ..., 𝑁𝑒𝑣𝑒𝑛𝑡𝑠 is the timing of the 𝑗 th event of the DFN catalogue.
Then, 𝑟𝑏,𝐷𝑖𝑒𝑡𝑒𝑟𝑖𝑐ℎ is scaled to fit 𝑁𝑒𝑣𝑒𝑛𝑡𝑠.
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Figure 4.5 shows select examples of the comparisons between the DFN catalogue and
the prediction of the Dieterich model where only 𝑟𝑏 is inferred as a free parameter.
For all injection rates, 𝑟𝑏,𝐷𝑖𝑒𝑡𝑒𝑟𝑖𝑐ℎ underpredicts 𝑟𝑏,𝐷𝐹𝑁 , and the underprediction
is greater at higher injection rates (Figure 4.6). 𝑟𝑏,𝐷𝑖𝑒𝑡𝑒𝑟𝑖𝑐ℎ most closely matches
𝑟𝑏,𝐷𝐹𝑁 for the zero injection case, where the DFN model produces close to the
prescribed constant seismicity rate in the beginning before all faults have triggered
their first event. Afterwards, the total seismicity is close to zero as the faults must
be loaded for their natural return period in order to nucleate again. For the fitting
period that is longer than 𝑡𝑁𝑒𝑣𝑒𝑛𝑡𝑠

, 𝑟𝑏,𝐷𝑖𝑒𝑡𝑒𝑟𝑖𝑐ℎ must be lower than 𝑟𝑏,𝐷𝐹𝑁 to match
𝑁𝑒𝑣𝑒𝑛𝑡𝑠. At higher injection rates, more events from the infinite pool of nucleation
sources are triggered in the Dieterich model by the higher stressing rates. In the
DFN catalogues, 𝑁𝑒𝑣𝑒𝑛𝑡𝑠 meanders closely to 𝑁 𝑓 𝑎𝑢𝑙𝑡 for all injection rates. This
exhaustion of nucleation sources in a finite reservoir can only be matched with the
Dieterich model by further decreasing 𝑟𝑏,𝐷𝑖𝑒𝑡𝑒𝑟𝑖𝑐ℎ at higher injection rates.

When 𝑎𝐷𝑖𝑒𝑡𝑒𝑟𝑖𝑐ℎ = 𝑎𝐷𝐹𝑁 , the predictions of the seismicity rate in time and space differ
significantly between the two models. In space, the Dieterich catalogue generally
samples a seismicity cloud significantly closer to the injection point than the DFN
catalogue which has steeper triggering and back-propagation fronts. The seismicity
cloud closer to the injection point in the Dieterich model results from sampling a
continuous distribution of the seismicity rate that rapidly decays with distance. The
higher seismicity rate closer to the injection point is accommodated in the DFN
model through a finite, uniformly distributed grid of faults. Rather, the shape of the
seismicity cloud in the DFN catalogue are determined by the average and maximum
time to instability of the available population of nucleation sources (Section 4.3).
The triggering fronts of the DFN catalogues do not necessarily follow the

√
𝑡 curve

assuming instantaneous nucleation and pressure diffusion (Shapiro, Huenges, and
Borm, 1997), or the logarithmic curve accounting for delayed nucleation (Kim
and Avouac, 2023). For low injection rates where the background stressing rate
dominates, the triggering and back fronts can become nearly vertical (Figure 4.5b),
converging more closely to the zero injection case where the time to instability is
no longer a function of distance. With higher injection rates, the seismicity cloud
assumes more closely the

√
𝑡 shape dominated by pressure diffusion (Figure 4.5d).

At intermediary injection rates, a noticeable transition in the shape of the triggering
front can occur, from the

√
𝑡 shape close to the injection source to a more linear

curve at greater distances (Figure 4.5c). In this case, Equation 4.10 is in fact not
applicable and 𝑐𝑡 𝑓 cannot be meaningfully inferred from the full catalogue. The
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Figure 4.5: Dieterich Model Fits to DFN Catalogues with 𝑟𝑏,𝐷𝑖𝑒𝑡𝑒𝑟𝑖𝑐ℎ as a Free Pa-
rameter and 𝑎𝐷𝑖𝑒𝑡𝑒𝑟𝑖𝑐ℎ = 𝑎𝐷𝐹𝑁 . The Dieterich model is matched to DFN catalogues
at different injection rates by adjusting the background seismicity rate parameter,
𝑟𝑏,𝐷𝑖𝑒𝑡𝑒𝑟𝑖𝑐ℎ to match the total number of events. 𝑟𝑏,𝐷𝑖𝑒𝑡𝑒𝑟𝑖𝑐ℎ is lower than 𝑟𝑏,𝐷𝐹𝑁 to
compensate for the finite number of faults in the DFN model. 𝑟𝑏,𝐷𝑖𝑒𝑡𝑒𝑟𝑖𝑐ℎ is lower
at higher injection rates where the Dieterich model predicts higher seismicity rates
from accessing the infinite population of sources, while the total number of events
in the DFN model is limited by the number of embedded fractures.
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Figure 4.6: Sensitivity of 𝑟𝑏,𝐷𝑖𝑒𝑡𝑒𝑟𝑖𝑐ℎ to Injection Rate with 𝑎𝐷𝑖𝑒𝑡𝑒𝑟𝑖𝑐ℎ = 𝑎𝐷𝐹𝑁 :
𝑟𝑏,𝐷𝑖𝑒𝑡𝑒𝑟𝑖𝑐ℎ of the best fit to the DFN catalgoues are plotted for all tested injection
rates. 𝑟𝑏,𝐷𝑖𝑒𝑡𝑒𝑟𝑖𝑐ℎ is lower than the value of 𝑟𝑏,𝐷𝐹𝑁 used to configure the initial
conditions of the DFN model (dotted horizontal line) at all injection rates. 𝑟𝑏,𝐷𝑖𝑒𝑡𝑒𝑟𝑖𝑐ℎ
decreases with increasing injection rate in order to match the total number of events
in the DFN model which is limited by the number of embedded fractures.

continuous integration of the seismicity rate in space for the Dieterich model also
results in a stronger peak of the seismicity rate in time at the onset of the injection
followed by a more rapid decay. The comparatively muted peak of the DFN model is
limited by the finite number of faults that experience the higher stressing rates closer
to the injection source. The deviation of the finite fault network from the theoretical
setting of continuously distributed nucleation sources is mitigated at later times, as
the stressing rate decays to zero and the spatial gradient of the Dieterich seismicity
rate decreases.

Figure 4.7 shows the comparisons between the two models when 𝑎𝐷𝑖𝑒𝑡𝑒𝑟𝑖𝑐ℎ is no
longer constrained to equal 𝑎𝐷𝐹𝑁 but is inferred as a free parameter. With respect
to 𝑎𝐷𝐹𝑁 , 𝑎𝐷𝑖𝑒𝑡𝑒𝑟𝑖𝑐ℎ decreases significantly for all injection rates in order to dampen
the peak seismicity rate at the onset of the injection. Physically, lower values of
𝑎 in rate-and-state friction represent lower initial resistance to sudden increases in
the slip rate. The weakened resistance translates to lower times to instability in the
Dieterich model such that seismicity is more easily observed at further distances
experiencing lower stressing rates (Wenzel, 2017). This results in a seismicity rate
distribution that varies less rapidly in space as the seismicity rate responding to
slower stressing rates at further distances (containing larger volume fractions of the
reservoir) are now higher than before. When integrated in space, the evolution of
the seismicity rate in time is more gradual as in the DFN catalogue. Incidentally, the
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greater radial distance of seismicity in the Dieterich model with lower values of 𝑎
match better the spatial distribution of the DFN catalogue, although the fit in terms
of the spatial location of events was not directly taken into account for the inversion.
𝑟𝑏 is lowered further than when 𝑎𝐷𝑖𝑒𝑡𝑒𝑟𝑖𝑐ℎ = 𝑎𝐷𝐹𝑁 in order to match 𝑁𝑒𝑣𝑒𝑛𝑡𝑠 as lower
values of 𝑎𝐷𝑖𝑒𝑡𝑒𝑟𝑖𝑐ℎ increases the total seismicity rate (Figure 4.8).

To match the faster rate of decay in the seismicity rate at higher injection rates,
𝑎𝐷𝑖𝑒𝑡𝑒𝑟𝑖𝑐ℎ initially increases with the injection rate (Figure 4.8). At higher injection
rates, the Dieterich models consist of discontinuities in the convexity of the seis-
micity rate history in time (e.g., Figure 4.7c&d). The visible bump near the onset of
injection occurs due to the truncation of the singular pressure field. In order to avoid
the singularity of the pressure profile at the origin, the Dieterich model is computed
in space starting at the minimum radial distance of the faults in the DFN model.
The effect of the truncation of the pressure field on the seismicity rate is amplified
at lower values of 𝑎 which increases the argument of the exponential in Equation
4.3. This causes a decrease in 𝑎𝐷𝑖𝑒𝑡𝑒𝑟𝑖𝑐ℎ at higher injection rates. The DFN model
is independent to truncation effects given that the fault closest to the origin avoids
levels of pressure that are higher than the ambient normal stress.

4.6 Finite Size Effects Observed in Stimulation of GPK1 in Soultz-Sous-Forêts
We refer to the stimulation of the GPK1 injection well in Soultz-Sous-Forêts for
evidence in real catalogues of physical effects we have highlighted thus far from
considering reservoirs and faults of finite size. We focus in particular on the
injection schedule lasting a period of about 400 hours between September 1 to
September 18 of 1993. In the radial distribution of events of the relocated catalogue
in Soultz-Sous-Forêts, a back-propagation front of the seismicity cloud during the
injection period is visible (Figure 4.9) as in the DFN catalogues. The co-injection
back-front was noted and studied in detail by De Barros et al. (2024) along with
similar observations from a number of other injection sites and natural swarms.
Particularly with respect to Soultz-Sous-Forêts, De Barros et al. (2024) noted an
increase in the minimum magnitude close to the back-front as an indication that
the back-front occurs due to the increase in nucleation size. The back-front of the
DFN simulations could also occur due to the increase in nucleation size for initial
distributions of time to instability such that the maximum time to instability of
the system is large. With increasing maximum time to instability, the back-front
predicted by the exhaustion of nucleation sources would converge more closely to
the x-axis in the distance-time plot, and the nucleation length would become the
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Figure 4.7: Dieterich Model Fits to DFN Catalogues with 𝑟𝑏,𝐷𝑖𝑒𝑡𝑒𝑟𝑖𝑐ℎ and 𝑎𝐷𝑖𝑒𝑡𝑒𝑟𝑖𝑐ℎ
as Free Parameters. The Dieterich model is matched to DFN catalogues at different
injection rates by adjusting the background seismicity rate parameter, 𝑟𝑏,𝐷𝑖𝑒𝑡𝑒𝑟𝑖𝑐ℎ to
match the total number of events, and adjusting 𝑎𝐷𝑖𝑒𝑡𝑒𝑟𝑖𝑐ℎ to match the evolution of
the seismicity rate with time. The Dieterich model tends to have higher peaks of
the seismicity rate at the onset of injection due to accessing an infinite population
of the nucleation sources, especially close to the injection source. To dampen the
peak and match the DFN catalogue more closely, 𝑎𝐷𝑖𝑒𝑡𝑒𝑟𝑖𝑐ℎ is lowered with respect
to 𝑎𝐷𝐹𝑁 . The peak is stronger at higher injection rates in the DFN catalogue, and
𝑎𝐷𝑖𝑒𝑡𝑒𝑟𝑖𝑐ℎ increases slightly. Lower values of 𝑎𝐷𝑖𝑒𝑡𝑒𝑟𝑖𝑐ℎ increase the seismicity rate
at further distances and matches more closely the spatial distribution of events in
the DFN catalogue.
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Figure 4.8: Sensitivity of Matching 𝑟𝑏,𝐷𝑖𝑒𝑡𝑒𝑟𝑖𝑐ℎ and 𝑎𝐷𝑖𝑒𝑡𝑒𝑟𝑖𝑐ℎ to Injection Rate.
𝑟𝑏,𝐷𝑖𝑒𝑡𝑒𝑟𝑖𝑐ℎ and 𝑎𝐷𝑖𝑒𝑡𝑒𝑟𝑖𝑐ℎ of the best fit to the DFN catalgoues are plotted for all
tested injection rates. Both 𝑟𝑏,𝐷𝑖𝑒𝑡𝑒𝑟𝑖𝑐ℎ and 𝑎𝐷𝑖𝑒𝑡𝑒𝑟𝑖𝑐ℎ are lower than 𝑟𝑏,𝐷𝐹𝑁 and 𝑎𝐷𝐹𝑁
at all injection rates. Compared to when 𝑎𝐷𝑖𝑒𝑡𝑒𝑟𝑖𝑐ℎ=𝑎𝐷𝐹𝑁 (Figure 6), 𝑟𝑏,𝐷𝑖𝑒𝑡𝑒𝑟𝑖𝑐ℎ is
lowered even further as lower values of 𝑎𝐷𝑖𝑒𝑡𝑒𝑟𝑖𝑐ℎ tends to increase the normalized
seismicity rate. 𝑎𝐷𝑖𝑒𝑡𝑒𝑟𝑖𝑐ℎ initially increases with the injection rate in order to match
higher peaks of the seismicity rate evolution at the onset of injection, until around
5-10 kg/s where it begins to decrease due to effects of truncation of the singular
pressure field. The systematic decrease in 𝑎𝐷𝑖𝑒𝑡𝑒𝑟𝑖𝑐ℎ compared to 𝑎𝐷𝐹𝑁 reveals that
the underestimate of 𝑎𝐷𝑖𝑒𝑡𝑒𝑟𝑖𝑐ℎ can be attributed to the exhaustion of a finite number
of nucleation sources in real reservoirs.

limiting factor for the observed back-front. A qualitative difference between the
two mechanisms would be that the minimum magnitude along the back-front for
the case of source exhaustion should be more random as opposed to a systematic
increase for the case of increasing nucleation size. As noted by De Barros et al.
(2024), however, observational analysis of minimum magnitude is sensitive to noise,
and those measured in Soultz were in fact below the magnitude of completeness.
Here, we test the hypothesis that the co-injection back-front could occur due to the
exhaustion of a finite fault network.

We match the temporal the recession of the seismicity cloud using Equation 4.9. A
minimum slip rate of the initial distribution,𝑉𝑚𝑖𝑛 = 2.0e-15 m/s as𝑉 𝑓 𝑟𝑜𝑛𝑡 traces well
the back front of the observed catalogue. Similarly, 𝑉𝑚𝑒𝑎𝑛 = 2.1e-12 m/s as 𝑉 𝑓 𝑟𝑜𝑛𝑡
also follows the triggering front of the seismicity cloud. The fit to the triggering
front does especially well in catching the transition from the

√
𝑡 shape to a more

linear curve that visibly occurs in the relocated catalogue at a period of about 150
hours. As discussed in Section 4.5, this transition may mark the point at which stress
perturbations by the background tectonic loading and the initial time to instability
of the nucleation sources become significant with respect to perturbations from
the injection. The two values for 𝑉𝑚𝑖𝑛 and 𝑉𝑚𝑒𝑎𝑛 would define the distribution of
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Figure 4.9: Matching of Triggering and Co-injection Back Fronts in the Relocated
Catalogue of Soultz-Sous-Forêts: A transition in the shape of the triggering front
from a

√
𝑡 to linear curve and a co-injection back-propagation front are both observed

in the relocated catalogue of the Soultz-Sous-Forêts stimulation. Both seismicity
fronts are matched considering the time to instability (Equation 4.9 for the pressure
history with an average and minimum initial slip rates of 𝑉𝑚𝑒𝑎𝑛 = 2.1e-12 m/s and
𝑉𝑚𝑖𝑛 = 2.0e-15 m/s. The quality of the match shows that the spatial pattern of
seismicity in Soultz can be explained by the exhaustion of nucleation sources in a
finite fault network. The parameters of the model are summarized in Table 4.2.

initial slip rates for the fault network in Soultz-Sous-Forêts. For seismic sources
that undergo stick-slip motion, the initial slip rates make sense that they would be
significantly lower than the typical tectonic loading rate (∼ 1e-9 m/s). The sources
spend the most time during the aseismic loading period, or the ’stick’ phase, and the
slip rates should be orders of magnitude lower than the rate of loading.

Another interesting observation from the Soultz stimulation was by Cauchie, Lengliné,
and Schmittbuhl (2020) observed that the source radii distribution both increased
in the frequency of larger events and decreased in the frequency of smaller events
during continuous injection (Figure 4.10a), possibly due to the initiation of new
fractures. The increase in frequency of larger events with injection can also be
explained by the notion that propagation of fluid-induced ruptures is limited by
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the extent of fluid stimulation in space (Shapiro, Krüger, and Dinske, 2013). The
decrease in frequency of smaller events may be due to the increase in frictional
stability that drives smaller nucleation sources to be aseismic. For a finite setting,
the stability criterion based on the spring stiffness translates to the nucleation size,
ℎ∗, or the minimum dimension of slip that a source must reach for it to grow unstable
(Chen and Lapusta, 2009; Rubin and Ampuero, 2005),

ℎ∗ =
𝜋

2
𝐺𝑏𝐷𝑅𝑆

�̄�(𝑏 − 𝑎)2 . (4.12)

A decrease in the effective normal stress due to injection would increase the nucle-
ation size, possibly transitioning previously seismic faults to be aseismic depending
on the size of the fault.

Figure 4.10: Evolution of Source Radii with Time in Soultz-Sous-Forêts and Rep-
resentative Model of Rate of Event Magnitudes. (a) The event frequency density
of source radii distribution due to the stimulation of the GPK1 injection well in
Soultz-Sous-Forêts in 1993 is plotted at increasing time (catalogue developed by
Cauchie, Lengliné, and Schmittbuhl (2020)). (b) The distribution is reproduced by
a model of the rate of magnitudes (Equation 4.13 considering both the effect of
stimulated volume on rupture propagation and the dependence of nucleation size on
effective normal stress. The increase in nucleation size due to injection reproduces
both the Gaussian shape of the distribution along with the decreasing frequency of
smaller events with time. (c) Without consideration of the normal stress dependence
of nucleation size, the events of the highest frequency have the smallest detectable
size for all time. The parameters of the model are summarized in Table 4.2.

To test whether the injection-induced change in frictional stability can reproduce a
qualitative match to the observation of Soultz-Sous-Forêts, we simulate a represen-
tative injection scenario and model the evolution of event magnitudes. Hydraulic
properties are taken from the direct estimates from the GPK1 stimulation by Au-
digane, Royer, and Kaieda (2002). Initial normal stress conditions are linearly
interpolated to the average injection depth of 2925m from that estimated for the
GPK2 stimulation by Baisch et al. (2010). Initial shear stress is set to the product
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of the Byerlee friction coefficient (0.6) and the initial normal stress, and the initial
pore pressure is calculated as the hydrostatic pressure at the injection depth. A
pressure source is defined at the origin of an infinite, homogeneous, isotropic, and
elastic medium for which the injection pressure increases logarithmically as an ap-
proximation to the sequence of step-wise increase imposed at Soultz-Sous-Forêts.
To account for the high extent of damage induced by the injection to the area sur-
rounding the the well (Baria et al., 1999), the singular pressure field is offset by an
effective well radius of 25m.

We compute the rate of individual magnitudes by an adaptation of the formalism
introduced by Segall and Lu (2015). Restricting all ruptures to be contained within
the stimulated region — a sphere of radius that grows as

√
4𝑐𝑡 —, the rate of events

with magnitude, 𝑀𝑤, is a product of the rate of all events, 𝑅, the probability of the
magnitude (assumed stationary as Gutenberg-Richter), 𝑃𝐺𝑅 (𝑀𝑤), and the probabil-
ity that a circular rupture is fully contained in the stimulated region, 𝑃𝑖𝑛 (𝑟𝑠 (𝑀𝑤))
(derived in Appendix B of Segall and Lu, 2015). Here, we add the condition that
the event only occurs if the rupture area is larger than the nucleation size. We
account for the possible heterogeneity of the nucleation size from heterogeneity of
rate-and-state parameters and stress conditions. Assuming the heterogeneity follows
a Gaussian distribution, the rate of events with radius 𝑟𝑠 follows

𝑅(𝑟𝑠, 𝑡) ≡
∫

𝑅𝐷𝑖𝑒𝑡𝑒𝑟𝑖𝑐ℎ (𝒙, 𝑡)𝑃𝐺𝑅 (𝑟𝑠)𝑃𝑖𝑛
(
𝑟𝑠√
4𝑐𝑡

)
Φ𝑡𝑟 (𝑟𝑠 − ℎ∗(𝑟, 𝑡)) 𝑑𝑉 (4.13)

where Φ𝑡𝑟 is the cumulative density of the standard normal distribution, truncated
at the lower end by ℎ∗ > 0. 𝑟𝑠 relates to magnitudes by Δ𝜏 = 7

16
101.5𝑀𝑤+9.1

𝑟3
𝑠

assuming
a circular rupture area (Eshelby, 1957) with stress drop, Δ𝜏 = 3MPa. For rate-
and-state parameters, we choose 𝑎 and 𝐷𝑅𝑆 of 0.01 and 10𝜇m, respectively, and
𝑏 − 𝑎 proportional to the stress drop such that 𝜎(𝑏 − 𝑎) ln

(
𝑉𝑑𝑦𝑛
𝑉𝑖𝑛𝑖

)
= 3MPa, with

𝑉𝑑𝑦𝑛 = 0.1 m/s and 𝑉𝑖𝑛𝑖 = 1e-9 m/s. Note that the value of 𝑎𝐷𝑖𝑒𝑡𝑒𝑟𝑖𝑐ℎ used to
compute the seismicity rate 𝑅 is different from the more physical value of 𝑎 used
to calculate the nucleation size ℎ∗. 𝑎𝐷𝑖𝑒𝑡𝑒𝑟𝑖𝑐ℎ is chosen to be orders of magnitude
lower than physically observed values of 𝑎 from laboratory experiments to account
for the infinite population effect (Section 5). The parameters of the simulation are
summarized in Table 4.2.

The resulting evolution of the source radii distribution with time is shown in Figure
4.10b. As in Segall and Lu (2015), the rate of larger magnitudes increases with
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time, as the limit for the maximum magnitude increases with injection duration.
When accounting for the change in nucleation size, the rate of smaller magnitudes
decrease as the nucleation size closer to the injection source (where there are more
events) increases and events smaller than the nucleation size no longer occur. The
rate-and-state parameters chosen for the simulation significantly decrease the rate
of small events such that the peak of the initial distribution is around 𝑀𝑤 = 2.5. The
result is an evolution of a relatively Gaussian source radii distribution similar to that
observed in Soultz-Sous-Forêts. The model significantly overpredicts the rate of
larger events, which indicates that the

√
4𝑐𝑡 evolution of the stimulated sphere may

overestimate the maximum size of the allowable rupture. Without accounting for
aseismic nucleation sources, the peak of the distribution is the smallest detectable
radius for all time.

4.7 Implications for Induced Seismicity Forecasting Through Physical Mod-
eling

The differences documented here between the DFN and Dieterich models demon-
strate that the assumptions of the Dieterich model pose strong biases when applied
to reservoirs containing a finite number of faults. The reduction in 𝑎𝐷𝑖𝑒𝑡𝑒𝑟𝑖𝑐ℎ that
is needed to match 𝑎𝐷𝐹𝑁 is consistent with the generally low values of 𝑎�̄� that is
inferred from field observations. The DFN model suggests that the underestimation
comes from the compensation for a more gradual decay of the seismicity rate in
time (which in fact results from an exhaustion of a finite fault network), through a
reduction of the the direct effect of rate-and-state friction. As a brief case study, we
take the value of 𝑎𝐷𝑖𝑒𝑡𝑒𝑟𝑖𝑐ℎ = 6e-5 inferred from the 2018 geothermal well stimula-
tion of Otaniemi (Kim and Avouac, 2023). The ratio of 𝑎𝐷𝐹𝑁 to 𝑎𝐷𝑖𝑒𝑡𝑒𝑟𝑖𝑐ℎ for the
highest injection rate of 30kg/s (Figure 7d) which produces maximum pore pressure
similar to that measured in Otaniemi is 227, which multiplied to 𝑎𝐷𝑖𝑒𝑡𝑒𝑟𝑖𝑐ℎ = 6e-5 of
Otaniemi gives 0.014 — a typical value measured in laboratory experiments. Thus,
the values of 𝑎𝐷𝑖𝑒𝑡𝑒𝑟𝑖𝑐ℎ inferred from field data may be consistent with laboratory
measurements if properly considering the bias of the infinite population effect.

Laboratory measurements of the direct effect and more generally, the consideration
of rate-and-state effects in friction is still paramount even in the presence of the bias
on 𝑎𝐷𝑖𝑒𝑡𝑒𝑟𝑖𝑐ℎ from assuming an infinite fault network. To illustrate this point, we
compare the response of two fault networks to a common injection scenario, where
the networks share the same distribution of times to instability for the constant
stressing rate, but with different values of 𝑎𝐷𝐹𝑁 (0.003 and 0.013). Figure 4.11
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shows the radial distributions and the seismicity rate history in time for the two
catalogues. Even though the two fault networks would produce the same constant
seismicity rate for a constant stressing rate, the two have noticeable differences for
the evolution of pressure caused by the injection. Namely, seismicity of the network
with the lower value of 𝑎𝐷𝐹𝑁 = 0.003, which has a lower value of 𝑎𝜎, extends further
in space. Additionally, the lower value of 𝑎 which decreases 𝑡𝑎 causes a more rapid
decay in the seismicity rate during the injection period. Both results are consistent
with what is predicted by the Dieterich model. The lower value of 𝑎𝜎 acts like a
threshold stress in space that allows further propagation of the seismicity in space
while the lower value of 𝑡𝑎 corresponds directly to a faster relaxation time of the
seismicity rate in response to a sudden change in stress. Thus, the effect of a finite
fault network and finite nucleation from rate-and-state effects must be considered
together in forecasts of induced seismicity.

Figure 4.11: Effect of Finite Nucleation on Seismicity Rate in a Finite Fault Network:
An injection triggers seismicity in two finite fault networks with the same distribution
of times to instability under constant stressing but different values of 𝑎𝐷𝐹𝑁 (0.003
and 0.013). The network with lower value of 𝑎𝐷𝐹𝑁 = 0.003 produces both a
seismicity pattern that extends further in space and a more rapid decay of seismicity
rate in time. The two features are consistent with the dependence of seismicity on
𝑎𝜎 and 𝑡𝑎 in the Dieterich model. A lower value of 𝑎𝜎 acts like a lower threshold
value that allows further propagation of seismicity in space while a lower value of 𝑡𝑎
corresponds directly to faster decay of seismicity rate for a sudden change in stress.
Thus, the finite nucleation process in rate-and-state friction still has a significant
impact on the seismicity rate of a finite fault network.

𝑟𝑏 of the Dieterich model lacks physical meaning in the finite setting. The orders
of magnitude difference in the inferred values of 𝑟𝑏 between the 2018 Otaniemi
geothermal stimulation and the Basel Deep Heat Mining project (Kim and Avouac,
2023) may in fact be due to numerous factors not limited to differences in the fault
density, the natural return period of the faults, and their initial conditions. The
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dependence of 𝑟𝑏 on the stressing rate indicates a possible difficulty in calibrating
the Dieterich model to natural seismicity such as swarms (Sirorattanakul et al.,
2022) and tidal loads (Ader et al., 2014), prior to applying the calibrated model to
injection settings with higher stresses. Such features all highlight the importance
of considering specific initial conditions among a finite network of faults when
interpreting characteristics of induced seismicity through physical modeling.

The natural evolution of the fault network in the DFN models to steady conditions
of constant seismicity rate driven by source to source interactions may be a useful
mechanism to constrain initial conditions of a previously unmonitored reservoir. The
convergence to steady seismicity rate as a result of interactive loading is supportive
of the implicit statement of assumption 1 that such a steady seismicity rate exists.
However, the steady seismicity rate is achieved differently in the DFN and Dieterich
models. In the Dieterich model, steady seismicity rate is only possible for an
indefinite period of time from having an infinite population of faults that continue
to supply nucleation sources with infinitely low initial slip rates. In the DFN model,
steady seismicity is reached by source interactions that even out the interevent
duration to be roughly constant. Thus, the steady seismicity rate in the DFN model
includes re-rupturing of the same nucleation source. This leads to a vastly different
distribution of initial conditions that would be drawn from a single snapshot of
a random instance in time from the two models. Since the life cycle of a single
nucleation source is dominated in time by the aseismic and nucleation period, the
overwhelming majority of the faults in the DFN model would be far from instability,
thereby violating the ‘no-healing’ assumption of the Dieterich model. Figure 4.12
shows the final distribution of the long-term simulation of section 4.4 without the
injection. Such a snapshot could in fact be used as a more realistic initial distribution
for an injection setting. A systematic study of the long-term convergence of stress and
slip rate conditions in more complex fault networks (e.g., with heterogeneity in fault
size and frictional parameters) could allow better constraints of initial conditions
that naturally arise from tectonic loading prior to injections.

4.8 Conclusions
In this chapter, we highlight the major assumptions of the Dieterich (1994) seismicity
rate model and examine how they may bias interpretations of induced seismicity
observed in real reservoirs by comparing it directly to a Discrete Fault Network
(DFN) model. The comparisons reveal that parameters of the Dieterich model
lack clear physical meaning in the finite analogue. The background seismicity
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Figure 4.12: Steady-State Conditions of a Fault Network Under Constant Loading.
The final distribution of the slip rate, 𝑉 𝑓 𝑖𝑛𝑎𝑙

𝑉∗ , the normalized state variable, 𝜃 𝑓 𝑖𝑛𝑎𝑙𝑉 𝑓 𝑖𝑛𝑎𝑙

𝐷𝑅𝑆

and friction, 𝑓 𝑓 𝑖𝑛𝑎𝑙 , of all faults at the end of a long-term simulation with constant
loading are plotted in their phase planes. The plotted distribution produces a
roughly constant seismicity rate with the majority of the faults being below-healing
( 𝜃 𝑓 𝑖𝑛𝑎𝑙𝑉 𝑓 𝑖𝑛𝑎𝑙

𝐷𝑅𝑆
< 1). The numerical simulation provides a possible candidate for more

accurate initial conditions of an unstimulated reservoir prior to injections.

rate parameter, 𝑟𝑏, shows a dependence on the stressing rate when inferred from
catalogues of the DFN model due to the fact that 𝑟𝑏 in the Dieterich model is
based upon an infinite population of nucleation sources. Additionally, the direct
effect parameter of rate-and-state friction, 𝑎, needs to decrease significantly in order
to match the more gradual decay of the seismicity rate due to the exhaustion of
nucleation sources. This decrease in 𝑎 is consistent with the underestimates of 𝑎�̄�
commonly encountered in matching the Dieterich model to real seismicity (Acosta
et al., 2023; Bettinelli et al., 2008; Gross and Bürgmann, 1998; Gross and Kisslinger,
1997; Kim and Avouac, 2023; Toda et al., 1998, 2012). The comparisons to the DFN
model confirm that the underestimates are due to the biases posed by the assumptions
of the model rather than near-lithostatic levels of pore pressure. The authors do not
discount the use of the Dieterich model entirely — its elegance and ease-of-use
provide a valuable tool for simulating the response of a large population of faults
— but emphasize that its parameters must be interpreted with care, especially in
transferring a specific calibration to a new setting with different stressing rates or
initial conditions (e.g., a new stimulation in a nearby well, a subsequent injection at
the same location some time after the previous one, etc.).

The spatio-temporal pattern of seismicity in the finite setting, or specifically the
triggering and back-propagation fronts are predicted excellently by the analytical
estimate of the time to instability given an initial slip rate equal to the mean and the
minimum of the initial distribution, respectively. Thus, the triggering front is not
only dependent on fluid transport properties (Shapiro, Huenges, and Borm, 1997) or
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its combination with nucleation characteristics (Kim and Avouac, 2023) but also the
distribution of initial conditions of the fault network. The back-propagation front, in
particular, occurs co-injection if the time to instability for the minimum slip rate is
shorter than the injection duration. This is in contrast to the more common context
in which the back front occurs immediately following shut-in due to the propagation
of negative pressure rates. The Dieterich model does not predict a back front during
injection as the maximum time to instability in an infinite population of sources is
infinitely large. The relocated catalogue of the 1993 GPK1 stimulation in Soultz-
Sous-Forêts shows such a back-front which can be fit qualitatively using the time
to instability measure for 𝑉𝑚𝑖𝑛 = 2.0e-15m/s. The co-injection back-propagation
front may be the most salient characteristic of finite effects in an induced seismicity
catalogue.

The change in frictional stability due to changes in the effective normal stress
during injections is fully accounted for in the DFN model where the rate-and-
state friction law is solved in its entirety without the no-healing assumption. The
changes in the critical stiffness, 𝜅𝑐𝑟 (for a single cell), or the nucleation size, ℎ∗

(for a fault discretized by multiple cells), allow previously seismic faults to become
aseismic with a sufficient increase in pore pressure. Such faults tend to creep
stably under loading, unlike in the Dieterich model where all nucleation sources
that are initially unstable remain so regardless of changes to the local stress state. A
simple model for the rate of magnitudes that accounts for the evolution of frictional
stability reproduces the apparent increase in the source radius of induced events in
Soultz-Sous-Forêts. The source radii distribution shifts at both the lower and upper
ends of the distribution, from the elimination of smaller events that cannot reach
the increased nucleation size, and the growth of the stimulated region that limits
rupture propagation, respectively. The rate of larger events is overestimated by the
model, possibly due to an overestimation of maximum magnitudes by the volume
of stimulation, or due to a statistical manifestation of the low probability of larger
events (Van der Elst et al., 2016).

An aspect of the assumptions of the Dieterich model not fully addressed here is the
no-healing assumption. Both the prediction of the triggering and back-propagation
fronts using Equation 4.9 still depend on the population of nucleation sources that are
already accelerating towards failure to be the dominating initial condition of a fault
network. In particular, the back front using Equation 4.9 may be overestimated (in
the sense that it would be estimated to be further out in space at earlier times) without
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accounting for faults below healing that would also be triggered by the injection.
Such faults would have longer times to instability than predicted by Equation 4.3,
and would drag the back front to be closer to the injection source. Thus, the fit
to the co-injection back front in Soultz-Sous-Forêts may be an underestimation of
the minimum slip rate. Additionally, the transition from a

√
𝑡 to a linear evolution

of the triggering front in Soultz-Sous-Forêts that is fit with Equation 4.9 has also
been explained in terms of the propagation of aseismic slip although the rigorous
analysis is limited to the case of a single fault (Sáez, 2023). In accounting for the full
spectrum of possible initial states, long-term convergence of DFN simulations due
to source interactions may serve as more accurate initial conditions for an injection
setting. Source-to-source interactions in the DFN model lead to a self-organization
of the fault network to steady-state conditions in terms of the seismicity rate under
constant loading. The long-term condition of the fault network may be taken as
the initial condition prior to injections as it represents a snapshot from the natural
evolution of a fault network. The majority of the faults would be far from instability,
making up initial conditions that are also below-healing ( 𝑉𝜃

𝐷𝑅𝑆
< 1) or steady-state

( ¤𝜃 = 0).

Both the DFN and Dieterich models use the aging law for the evolution of the
state variable in rate-and-state friction, although recent studies have shown that the
slip law may better match experiments (Bhattacharya, Rubin, and Beeler, 2017;
Bhattacharya et al., 2022). The slip law is more nonlinear than the aging law such
that an analytical treatment comparable to which was done by Dieterich (1994) may
not be possible. Thus, the only way to test the slip law may be to use physical models
such as the DFN model where the equations of motion are solved in their entirety.
Similarly, recent experiments of gouge in the presence of fluids have revealed that
rate-and-state parameters themselves may be depend on pore pressure (Bedford et
al., 2021). Such physical complexities that may be important in the process of shear
failure with fluids warrant a further look to determine the merit of their incorporation
into constitutive relationships of future models.
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Parameter Variable Value and Unit
Poroelastic Properties

Shear modulus 𝜇 20 GPa
Drained Poisson’s ratio 𝜈 0.25

Undrained Poisson’s ratio 𝜈𝑢 0.3
Skempton’s coefficient 𝐵 0.75

Biot’s coefficient 𝛼 0.31
Transport Properties

Permeability 𝑘 𝑝𝑒𝑟𝑚 1.0e-15 m2

Fluid viscosity 𝜂 0.4 x 10−3 Pa· s
Reference fluid density 𝜌0 103 kg/m3

Stress State
Initial pore pressure 𝑝𝑖𝑛𝑖 0 MPa
Initial normal stress 𝜎𝑖𝑛𝑖 100 MPa
Initial shear stress 𝜏𝑖𝑛𝑖 60 MPa
Seismicity Rate Parameters

Direct effect parameter 𝑎 0.003
Evolution effect parameter 𝑏 0.006

State evolution distance 𝐷𝑅𝑆 1 µm
Background stressing rate ¤𝜏𝑟 1.0 kPa/year

Table 4.1: Constant Parameters.

Parameter Value and Unit
Permeability 6e-17 m2/s

Storage coefficient 5e-9
Fluid viscosity 1.1 x 10−4 Pa· s

Reference fluid density 103 kg/m3

Initial normal stress 48.1 MPa
Initial pore pressure 28.7 MPa
Initial shear stress 11.7 MPa

Direct effect parameter, 𝑎 0.010
Evolution effect parameter, 𝑏 0.018
State evolution distance, 𝐷𝑅𝑆 5 µm

𝑎𝐷𝑖𝑒𝑡𝑒𝑟𝑖𝑐ℎ 1e-5
Background stressing rate 1kPa/year

Table 4.2: Parameters for Simulation of Soultz-Sous-Forêts Stimulation.
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C h a p t e r 5

MODELING HIGH-FREQUENCY SEISMIC SIGNALS FROM
DISTRIBUTED ACOUSTIC SENSING (DAS) AS ASPERITIES

AND BARRIERS OF A HETEROGENEOUS FAULT

This chapter has been adapted from

Li, Jiaxuan et al. (2023). “The break of earthquake asperities imaged by distributed
acoustic sensing.” In: Nature 620.7975, pp. 800–806.

5.1 Introduction
Improvements in earthquake imaging - a challenging remote-sensing problem - have
the potential to aid significantly towards a better understanding of earthquake rupture
and fault physics. In particular, back-projection of far-field (teleseismic) waves using
dense seismic arrays has enabled detailed examination of complex rupture processes
during great earthquakes (𝑀𝑤 > 7) (Avouac et al., 2015; Ishii et al., 2005; Simons
et al., 2011; Xu et al., 2009). Such studies have revealed that sources of high-
frequency radiation during large megathrust earthquakes are often offset from the
areas of high slip (Lay et al., 2012; Simons et al., 2011; Yao, Shearer, and Gerstoft,
2013; Yin and Denolle, 2021). Yet, the origin of high-frequency radiation during
earthquakes is a topic of contentious debate in the seismological and geophysical
community. Some argue that they originate from the breakage of smaller high-stress
patches on the fault plane with higher fracture energy, possibly from heterogeneity
of the stress state or material properties (Fan and Shearer, 2015; Koper et al., 2012;
Meng, Inbal, and Ampuero, 2011). Others have proposed the possibility of elastic
impact among a complex network of fault structure in the fault core and the damage
zone (Tsai and Hirth, 2020; Tsai et al., 2021).

One of the challenges resides in the fact that high-frequency information is often
lost in far-field recordings of smaller (and more frequent) earthquakes. Additionally,
near-field imaging is challenging due to complex seismic waveforms. Recently,
ultra-dense seismic arrays have enabled back-projection imaging of smaller features
in moderately sized earthquakes (𝑀𝑤 ∼ 5, 6) (Allmann and Shearer, 2007; Mesimeri,
Zhang, and Pankow, 2021). Back-projection of the 2004 Parkfield, California with
moment magnitude (𝑀𝑤) 6.0 was able to identify the location of a high-frequency
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radiator near an area of high slip gradient (Allmann and Shearer, 2007). Such
observations are rare given the high cost and difficulty of installing ultra-dense
seismic arrays. It remains relatively unknown how common such high-frequency
radiators are in crustal earthquakes and whether and how they may affect the larger-
scale rupture.

Distributed acousting sensing (DAS) is an increasingly promising technique in ob-
servational seismology where deformation of pre-existing fiber optic cables induced
by seismic waves record high-frequency response across relatively long distances.
DAS often leverages the existence of ‘dark fiber’ — underground telecommunica-
tion cables that are no longer in use — which solely requires the installation of a
single interrogator at the end of the fiber network. The vast span of existing dark
fiber networks in modern society often gives DAS superior azimuthal coverage at a
fraction of the cost of conventional seismometer arrays. Recent highlights of DAS
includes the identification of cap-rock above a magma chamber (Biondi et al., 2023)
and improved detection of fluid-induced earthquakes from geothermal reservoirs (Li
and Zhan, 2018).

A major caveat of DAS is coincidentally what also gives its biggest strength: the
sheer amount of data. A typical DAS interrogator may record terabytes of data dur-
ing a single day of recording (Dong et al., 2022). Such size of data poses challenges
in storage but also in its interpretation. Computational models provide a possible
bridge between the wealth of data and our understanding of the physical problem.
In the field of earthquake physics, development in theory and its implementation in
computational models have advanced, unimpeded by the practical difficulty in sub-
surface imaging. Efficient computational models enable us to answer the questions
posed by better data, especially from high-volume sources such as DAS.

In this chapter, we model high-frequency recordings from an ultra-dense distributed
acoustic sensing (DAS) array of a 𝑀𝑤 6.0 crustal earthquake (Lindsey and Martin,
2021; Zhan, 2020). A direct comparison of the models and observations suggests
that the imaged subevents are due to the breaking of fault asperities and barriers
– patches of lower and higher frictional resistance along a heterogeneous fault,
respectively. The model also reveals how such asperities and barriers impact the
larger-scale rupture pattern, providing an unprecedented level of detail in the imaging
of a real fault rupture.
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5.2 Identification of High-Frequency Radiators from The 2021 𝑀𝑤 6.0 Ante-
lope Valley Earthquake

The Antelope Valley 𝑀𝑤 6.0 crustal earthquake occurred on July 8th, 2021, at a
depth of 7.5 km in the Antelope Valley of northern California, close to the California-
Nevada border (Figure 5.1). It was the fourth earthquake of the past two decades that
was greater than 𝑀𝑤 6 in the Walker Lane, an approximately 100-mile-wide fault
zone between the Sierra Nevada Geomorphic Province and the Basin and Range
Province. The focal mechanism and early aftershocks of the Antelope Valley event
indicate a north-striking normal faulting plane dipping to the east (Fig. 5.1).

The earthquake was recorded by the 100-km-long Long Valley DAS array, which
consists of two 50-km sections of telecom dark fiber to the north and south of
the town of Old Mammoth (Figure 5.1). The 10,000 channels of the array are
continuously sampled at 200Hz and distributed in 10-meter spacing between Mono
Lake and Crowley Lake, mostly along the US-395 Highway. The DAS recording
of the 𝑀𝑤 6.0 mainshock shows mostly unsaturated P and S wavefields (Fig. 5.2a).
This rare dataset allowed, for the first time, the back-projection of high-frequency
radiators during a moderate-sized earthquake using a DAS array (Fig. 5.2b). The
details of the back-projection method specifically adapted for DAS data is beyond
the scope of this thesis, and we refer the reader to Li et al. (2023) for more details.
Conventional seismograms nearby — specifically, the timing of S-wave arrivals at
five local strong-motion stations opearted by the USGS within an epicentral distance
of 70 km (Fig. 5.1) — helped validate the DAS recordings. Long-period waveforms
of the conventional seismograms also produced the moment-rate function - the time
history of the rate of slip integrated over the rupture area. The moment-rate function
has a duration of about 10 seconds which is relatively long, and is complex compared
to other earthquakes of similar magnitude and depth (Vallée et al., 2011; Yin and
Denolle, 2021).

The DAS imaging reveals four high-frequency subevents during the 𝑀𝑤 6.0 earth-
quake, hereafter referred to as subevents S0, S1, S2, and S3, according to their
chronological order. The relatively weak first subevent, S0, has a similar origin time
and location as the hypocenter of the 𝑀𝑤 6.0 mainshock as observed in the USGS
catalog (Figure 5.3). Subevents S1, S2 and S3 occur approximately 0.6, 1.8, and 4.2
seconds after S0, respectively. The location and timing of the subevents identified
by DAS can be validated independently by the recordings of S-wave arrivals by the
conventional seismograms; the tangential components of the velocity seismograms,
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Figure 5.1: 100-km Fiber-Optic Cable as a Dense DAS array for Imaging a Crustal
Earthquake. The 2021 Antelope Valley 𝑀𝑤 6.0 earthquake (red circle; focal mecha-
nism shown by the red-and-white ball) occurred to the northwest of the DAS systems,
within the central part of the Walker Lane fault zone hosting numerous faults (solid
purple lines). The North DAS system (red line) starts from Old Mammoth and ex-
tends towards the northwest. The South system (blue line) extends to the east on the
fringe of the Long Valley Caldera (LVC, indicated by the black closed curve). Five
strong motion stations (green triangles) recorded unclipped data of the mainshock
within a 70-kilometer epicentral distance. The 100-km fiber-optic cable used in this
study represents a small portion of the currently proposed telecommunication fiber
network (e.g., the 10,000-mile State of California Middle-Mile Broadband Initiative
indicated by orange lines in the upper-right inset.)

which highlight high-frequency energy more than the displacement seismograms,
show several strong pulses of S waves (Figure 5.3c). At each station, we find re-
markable agreement between the arrival times of subevents S1-S3 predicted by the
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Figure 5.2: Seismic Recordings on Thousands of Closely Spaced Channels of
the DAS Array Reveal Subevents in the 𝑀𝑤 6.0 Earthquake. (a) Seismic records
(microstrain) of the 𝑀𝑤 6.0 event by DAS are plotted in shades of blue and red for
negative and positive values, respectively. Channel number 0 is the location of the
two DAS interrogators hosted at Old Mammoth. The predicted P and S arrival times
(black and green lines) using a local 1D velocity model (Lee et al., 2014) match the
onset of seismic energy consistently across all channels. The inset shows a zoomed-
in view of the seismogram from a single channel, indicated by the black box. (b)
The schematics of the 3D imaging technique using back-projection of both P and
S correlograms are illustrated. Examples of S-phase correlograms averaged over
1000 channels are shown in green along the yellow ray paths. The back-projected
correlograms stack coherently at the subevent location, resulting in a bright spot
with high cross-correlation values (CC) in the 3D volume (yellow regions in the left
block).

DAS back-projection and the timing of the tangential peak amplitudes (Figure 5.1
and Figure 5.3c). A simple scaling method along with strong-motion recordings of
past earthquakes estimate individual magnitudes of M4.3, M4.6, M5.2, and M5.4,
for subevents S0-S4, respectively (Li et al., 2023). The cumulative seismic mo-
ment of the subevents contributes to about 20% of the total moment of the 𝑀𝑤 6.0
earthquake.
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Figure 5.3: The Imaged Subevents in Relation to the Low-Frequency Finite-Fault
Inversions and Recordings from Regional Seismic Stations. (a) The timing of the
imaged subevents (colored vertical bars) with respect to the moment release history
as captured by the USGS (grey curve) and SCARDEC methods (blue curve) indicates
that the subevents occur within the first half of the earthquake. The last subevent
appears to delay the release of moment release initially, before being followed by
the highest peak in the moment release history. The relationship between the timing
of the subevents and the shape of the low-frequency moment rate history provides
valuable insights regarding the physical effect of the subevents on the overall rupture.
(b) Locations of the subevents as inferred from back-projection with respect to the
USGS finite-fault inversion of total slip (background colour) are indicated as the
colored circles along with the contours of 70%, 80% and 90% of the peak correlation
(colored contours). The inset displays the fault-plane view of the subevent locations.
(c) The predicted arrival times of the S phase of the subevents (vertical lines) at five
local strong-motion stations are indicated on top of the tangential components of
the velocity seismograms (black curves), along with 70% of the peak correlations
(shaded boxes). The clear match between the occurrence time of the subevents with
peaks in the velocity seismograms support the accuracy of the DAS back-projection
method.
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5.3 Relationship Between the Subevents and the Overall Rupture
Several characteristics of the subevents offer clues to their physical origin. The
subevents represent splashes of high-energy radiation as imaged by DAS, indicating
abrupt local changes in the rupture process (Dunham, Favreau, and Carlson, 2003;
Huang, Meng, and Ampuero, 2012; Madariaga, 1983). Such high-frequency ra-
diation can be caused by several kinds of fault heterogeneity such as in frictional
properties and fault geometry. Synthetic studies indicate that the exact origin of the
high-frequency radiation is difficult to elucidate using back-projection results only
(Li et al., 2022).

To gain further insight, we compare the high-frequency DAS back-projection with
the low-frequency features of the moment rate history. First, the subevents occur
when the overall moment release rate – which corresponds to the rate of slip in-
tegrated over the fault – is increasing, indicating that they promote the release of
energy in the overall rupture. Second, the largest subevent S3 occurs after a marked
decrease in the moment release rate. Third, subevent S3 is also preceded by a
reduction in the earthquake rupture speed (Li et al., 2023): the rupture slows down
to approximately 30% of the shear wave velocity before S3, despite propagating
with the apparent speed of approximately 70-80% of the shear wave velocity be-
tween subevents S0 and S1 as well as between S0 and S2. Fourth, subevent S3 is
followed by the second — and much larger — peak of the moment release. These
observations suggest that the subevents occur as the breakage of stronger patches.
The patches may act as an asperity or a barrier, defined by their tendencies to either
promote or delay rupture propagation, respectively (Dunham, Favreau, and Carlson,
2003). The eventual failure of both types of patches result in a sudden release of
energy and a general increase in the rupture speed. In particular, the fourth and
largest subevent (S3) appears to delay rupture propagation initially, resulting in
lower apparent rupture speed, before its failure leads to higher rupture speeds and
larger slip. Such features make subevent S3 characteristic of a barrier.

The patches could originate from fault non-planarity, where compression of “bumps”
lead to to locally higher fault-normal stress and hence higher frictional resistance.
Patches of higher normal stress have been linked to supershear transitions (Dun-
ham, Favreau, and Carlson, 2003), high-frequency radiation in subduction-zone
earthquakes (Huang, Meng, and Ampuero, 2012), and foreshock-like seismicity
in laboratory experiments (McLaskey and Kilgore, 2013) and numerical models
(Schaal and Lapusta, 2019). Heterogeneity in fluid pressure due to hetereogeneous
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fluid transport properties could also result in patches of high or low effective normal
stress. Alternatively, stronger patches could comprise of different rock material
with higher friction. In the following section, we test the hypothesis of frictional
heterogeneity and the stress state using a computational model of a dynamic rupture.

5.4 A Dynamic Rupture Model of a Heterogeneous Fault with Asperities and
Barriers

To illustrate how a fault with locally stronger patches can lead to rupture dynamics
with subevents as captured by the DAS observations and the low-frequency proper-
ties of the overall event, we perform dynamic rupture simulations on a rate-and-state
fault (Lapusta and Liu, 2009). Our simulations consider the slip on a 2-D fault em-
bedded into a 3-D uniform, isotropic, and elastic medium. To conduct simulations
of dynamic rupture, we utilize a spectral boundary integral method, which solves
the evolution of slip rate and other variables along the fault by equating the evolving
fault shear stress to its shear resistance (Geubelle and Rice, 1995). The evolution of
shear stress on each discretized cell of the fault depends, in part, on slip elsewhere
on the fault through wave-mediated dynamic stress transfers which, in part, depend
on the bulk properties. We assign rock properties typical at seismogenic depths
(Table 5.1).

The shear resistance along the fault follows the laboratory-derived Dieterich-Ruina
rate-and-state friction law with the state evolution governed by the aging formulation
Dieterich, 1979; Marone, 1998; Ruina, 1983:

𝜏 = �̄� 𝑓 (𝑉, 𝜃) = 𝜎
(
𝑓 ∗ + 𝑎 log

(
𝑉

𝑉∗

)
+ 𝑏 log

(
𝑉∗𝜃

𝐷𝑅𝑆

))

¤𝜃 (𝑉, 𝜃) = 1 − 𝑉𝜃

𝐷𝑅𝑆

(5.1)

where 𝜏 is the shear resistance, �̄� is the effective normal stress, 𝑓 ∗ is the reference
steady-state friction coefficient at reference sliding rate𝑉∗, 𝐷𝑅𝑆 is the characteristic
slip distance, and 𝑎 and 𝑏 are the direct effect and evolution effect parameters,
respectively. We use the version of the Equation 5.1 regularized for zero and
negative slip rates (Noda and Lapusta, 2010). Dynamic slip can nucleate only if the
region with velocity-weakening friction properties, (𝑎 − 𝑏) < 0, is larger than the
nucleation size ℎ∗

𝑅𝐴
, which can be estimated as (Chen and Lapusta, 2009; Rubin

and Ampuero, 2005):
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ℎ∗𝑅𝐴 =
𝜋

2
𝐺𝑏𝐷𝑅𝑆

(𝑏 − 𝑎)2𝜎
(5.2)

where 𝐺 is the shear modulus. We choose our spatial discretization to resolve both
this nucleation length scale as well as the rapid evolution of shear resistance and slip
rate at the rupture front that occurs over the spatial length scale – the cohesive-like
zone – which can be estimated as (Day et al., 2005; Lapusta et al., 2000; Palmer and
Rice, 1973):

Λ0 = 𝐶1
𝐺

𝑊
(5.3)

where 𝐶1 = 9𝜋
32 is a constant and𝑊 = 𝑏𝜎

𝐷𝑅𝑆
is the weakening rate.

Our simulation methodology allows us to resolve earthquake sequences in their
entirety, including spontaneous nucleation, dynamic rupture propagation, postseis-
mic slip, and interseismic creep. However, here we use it to simulate a single
instance of nucleation and dynamic rupture propagation on a fault segment with
velocity-weakening steady-state properties of rate-and-state friction, with the initial
conditions motivated by earthquake sequence simulations in models with similar
fault properties. The initial conditions are then further tuned to produce the high-
frequency features of the DAS back-projection and the low-frequency features of
the final slip inversion and moment rate history.

Adjustable parameters in the model include the rate-and-state properties of the fault
( 𝑓 ∗, 𝑎, 𝑏, 𝐷𝑅𝑆), the initial conditions, and the size and properties of the high-stress
patches. We tune these parameters simultaneously to fit the observed moment rate,
duration of rupture, magnitude, and occurrence times of the individual subevents,
assisted by known relationships between frictional properties and the resulting rup-
ture dynamics from prior modeling (Barbot, Lapusta, and Avouac, 2012; Lapusta
et al., 2000; Schaal and Lapusta, 2019). The relative locations of the high-stress
patches, which are modeled as areas of higher effective normal stress (Figure 5.5),
correspond exactly to the correlation peaks of the back-projection (Figure 5.3) with
only minor differences for S3 within the range of high correlation to match its
occurrence time.

The initial shear stress level is assigned with respect to 𝜏𝑑𝑦𝑛, the dynamic shear
resistance to which a given point on the fault converges as the rupture propagates
through it, given by the steady-state shear resistance at a dynamic slip rate, 𝑉𝑑𝑦𝑛:
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Figure 5.4: Schematic of the Dynamic Rupture Model. The spectral boundary-
integral method simulates frictional slip between two infinite, homogeneous and
elastic bodies in continuum and fully accounts for the effect of inertia. The compu-
tational domain consists of an outer region (colored in grey) with a prescribed rate
of slip (at an approximate plate rate of 1e-9 m/s) to mimic tectonic loading on the
seismogenic portion of the fault (colored in blue). The seismogenic portion consists
of four circular patches (colored in yellow) with relatively high initial stress and fric-
tional properties that match the observed behavior of the high-frequency radiators.
The model provides an efficient method to rigorously test the hypothesis that the
high-frequency radiation originates from patches of high stress on a heterogeneous
fault.

𝜏𝑑𝑦𝑛 = 𝜎

(
𝑓 ∗ + (𝑎 − 𝑏) ln

𝑉𝑑𝑦𝑛

𝑉∗

)
. (5.4)

To select the initial stresses, 𝑉𝑑𝑦𝑛 is approximated to be 0.1 m/s. The sustained slip
rate behind the rupture front may vary from 0.1m/s to several meters per second,
but the exact value of 𝑉𝑑𝑦𝑛 does not change 𝜏𝑑𝑦𝑛 much due to the weak dependence
through the natural log (Equation 5.1). Initial stress levels sufficiently above 𝜏𝑑𝑦𝑛
present favorable conditions for rupture propagation, as they allow for positive stress
drop. Initial stress levels below 𝜏𝑑𝑦𝑛 present unfavorable conditions for rupture
propagation. Thus, shear stress level is prescribed to be above 𝜏𝑑𝑦𝑛 over the desired
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Figure 5.5: Distribution of Initial Conditions and Final Stress Drop Across the
Fault. Contour plots show the distribution of (a) initial normal stress, (b), slip rate,
(c) shear stress above the dynamic level, 𝜏𝑑𝑦𝑛, (d) the normalized state variable, 𝑉

∗𝜃
𝐷𝑅𝑆

,
an (e) the distribution of the final stress drop after rupture arrest. The distribution of
initial conditions are inspired by typical development of prestress profiles observed
in long-term simulations. Patches of high normal stress have smaller nucleation size
and are more inherently unstable than the surroundings, leading to lower slip rate
and higher shear stress. When the rupture passes through the entire fault, the patches
experience higher stress drop as they release the greater amount of stored energy
The average stress drop across the fault is 1.4 MPa while the stress drop within
the high-stress patches ranges from 5.0 to 6.1 MPa. The particular set of initial
conditions and fault properties (which are non-unique) reproduce the timing of the
subevents and the low-frequency moment rate history inferred from the Antelope
Valley earthquake.

rupture region and to decrease towards its edges, with the boundary of the region
coinciding with the region of slip as inferred from the USGS finite-fault inversion
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(Figure 5.3). Based on long-term simulations, the initial stress level is chosen to
be at maximum 1.5 MPa above the local 𝜏𝑑𝑦𝑛 near the nucleating region. The state
variable is prescribed similarly to create a region of low 𝜃 near the nucleating region
that increases gradually to a uniform value of 50 years. Given fault healing in
the interseismic period with 𝜃 growing with the time, this serves as an appropriate
initial condition for the region of the Antelope Valley earthquake which had not
recorded an event at the scale of 𝑀𝑤 6.0 for at least such time. Once the shear stress
and 𝜃 are prescribed, the slip rate is uniquely defined by Equation 5.1, resulting
in a region of relatively low slip rate in the nucleation region (∼1e-7 m/s) that
decreases monotonically to a much lower rate corresponding to locked conditions
at interseismic timescales (∼1e-17 m/s, which is roughly less than a nanometer per
year).

Initial conditions and frictional properties of the high-stress patches are configured in
conjunction with the given properties of the background fault to match the observed
data (Table 5.1). The level of initial shear stress above 𝜏𝑑𝑦𝑛 and the size of the
high-stress patches are selected so that the event reproduces the estimated moment
magnitude of each subevent. Since the static stress drop increases with larger initial
stress, initial stress is in fact proportional to slip and the amount of moment released
from breaking the high-stress patches. The patch sizes are chosen to be smaller
than the local nucleation size given their higher normal stress, in order to mimic
conditions that would promote the build-up of shear stress on the patches during
interseismic loading without nucleating dynamic slip. The relative differences in
the sizes of the patches are chosen to reflect the differences in the magnitudes of the
subevents inferred from the scaling analysis (Li et al., 2023).

The initial conditions and frictional parameters of the high-stress patches are further
tuned to illustrate how they can either impede or promote the rupture, in order
to achieve the desired fit to the moment release rate in time. To understand how
such properties could be selected systematically, it is useful to consider the friction-
displacement history of a single point on the fault as a rupture passes through it.
At the dynamic rupture front, the rate-and-state formulation yields an evolution of
shear stress closely mimicking the linear slip-weakening law (Bizzarri and Cocco,
2003; Lapusta et al., 2000). Under these conditions, the initial friction,

(
𝜏
𝜎

)
𝑖𝑛𝑖

, peak
friction,

(
𝜏
𝜎

)
𝑝𝑒𝑎𝑘

, and dynamic friction,
(
𝜏
𝜎

)
𝑑𝑦𝑛

are given by:
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)
(5.5)

where 𝜃∗ =
𝐷𝑅𝑆

𝑉∗ . The expression for the peak friction is an approximation that
assumes that the peak friction is reached with negligible slip such that no evolution
of the state variable has occurred; simulations show that this is a good assumption
at the rupture tip. To break the high-stress patch, the incoming rupture has to
dynamically supply the stress needed to make up the difference between the initial
and peak friction, Δ

(
𝜏
𝜎

)
𝑑𝑓

, given by:

( 𝜏
𝜎

)
𝑑𝑦𝑛

−
( 𝜏
𝜎

)
𝑖𝑛𝑖

≡ Δ

( 𝜏
𝜎

)
𝑑𝑓

= 𝑎 ln
(
𝑉𝑑𝑦𝑛

𝑉𝑖𝑛𝑖

)
. (5.6)

This relation shows that either a lower initial slip rate, 𝑉𝑖𝑛𝑖, or higher value of the
rate-and-state parameter, 𝑎, can increase the distance to failure by increasing the
amount of dynamic loading it requires to rupture. Making Δ

(
𝜏
𝜎

)
𝑑𝑓

large enough
can temporarily stall the rupture, as dynamic slip surrounding the high-stress patch
loads it to the needed peak stress. Increasing 𝑎 also has the compounding effect
of increasing the nucleation size of the patch, making it more inherently stable and
unfavorable for dynamic rupture. Such an effect on the nucleation size could also
be achieved by increasing 𝐷𝑅𝑆, independent of changes to Δ

(
𝜏
𝜎

)
𝑑𝑓

. An increase
in 𝐷𝑅𝑆 would also reduce the weakening rate, 𝑊 , post-peak, another unfavorable
factor for dynamic rupture.

On the flip side, the tendency of the patch to further promote the rupture can be
enhanced by increasing

(
𝜏
𝜎

)
𝑖𝑛𝑖

. This would both decrease Δ
(
𝜏
𝜎

)
𝑑𝑓

and increase the
dynamic and static stress drop, giving the rupture a bigger push. Increasing the
weakening rate 𝑊 , by increasing 𝑏 and/or decreasing 𝐷𝑅𝑆 would make the rupture
more dynamic as well as additionally decrease the nucleation size, making the patch
more inherently unstable and favorable for dynamic rupture.
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We refer to the best matching model as Model 1. It reproduces several key observa-
tions: the breaking of high stress patches radiate high-frequency slip perturbations
with matching times of occurrence (Figures 5.6a, b); the rupture is delayed by
subevent S3 causing an apparent slow-down in rupture speed and a drop in the mo-
ment rate function; the eventual breaking of S3 generates a significant acceleration
of the rupture front, the momentum of which extends the original rupture further
out and produces a larger second peak in the moment rate function (Figures 5.6b,
g). The physical parameters of the model are summarized by Table 5.1 and 5.2).

Changing the characteristic behavior of patches between asperities and barriers
illustrates their ability to control rupture propagation and seismic moment release.
In Model 1, the patch corresponding to subevent S3 has higher 𝑎 and lower 𝑉𝑖𝑛𝑖
than the surroundings, allowing it to initially impede the rupture (Figure 5.6g). This
manifests in the apparent low rupture speed between S0 and S3. When the fourth
patch ruptures, the moment released results in the second, larger peak of the moment-
rate function (Figure 5.6b). If the patch is removed from the model (Model 2 in
Figures 5.6c, d, h), the second peak is largely absent (Figures 5.6d). Alternatively,
decreasing the value of 𝑎 lowers the peak resistance of the patch in Model 3. The
patch no longer impedes the rupture in Model 3, eliminating the observed delay in
rupture speed and moment release (Figures 5.6e, f, ii). The moment rate history
loses its two-peak shape, and consists of a largely monotonic increase followed by
monotonic decay.

5.5 Conclusions
This first joint application of DAS and dynamic rupture modeling, coupled with
traditional low-frequency seismic analysis, suggests a highly heterogeneous under-
lying fault with several prominent asperities and barriers that may control rupture
dynamics. Such modulation of rupture behavior by patches of locally high stress
may be ubiquitous since numerous other moderate-sized crustal earthquakes demon-
strate similar or even longer duration and complex moment-release patterns in low-
frequency observations. Only a handful has been resolved by local dense arrays
(Allmann and Shearer, 2007). The DAS imaging produces a resolution similar to
the dense Parkfield network of broad-band seismometers at a much lower cost. With
the extensive existing/proposed network of onshore telecommunication fiber cables
(e.g., the California Middle-Mile Initiative; Figure 5.1) (Ajo-Franklin et al., 2019;
State of California Middle-Mile Broadband Initiative n.d.), DAS, aided by physics-
based computational modeling, could provide a critical dataset for systematically
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Figure 5.6: Subevents as Breakage of Stronger Fault Patches and Their Effect on
Rupture Illustrated by Dynamic Rupture Modelling. a–f, Final slip (indicated by
color gradient, a,c,e) and moment-rate evolution (black lines with grey shading,
b,d,f) for three models: Model 1 with four patches that mimic the rupture process of
the𝑀𝑤 6.0 Antelope Valley event (a,b); Model 2 with the fourth patch removed (c,d);
and Model 3 with a weaker fourth patch (e,f); the location of the patches are shown
by blue circles (a,c,e). The simulated moment rate (grey-shaded black curves) for
the preferred Model 1 (b) matches the main features of the SCARDEC (blue curve)
and USGS finite-fault solutions (grey curve). The simulated times of the rupture
breaking each high-stress patch (colored vertical lines, with colored boxes indicating
the time range that the rupture front passes the patches) match the occurrence time
of subevents from back-projection imaging (filled circles). g–i, Snapshots of slip
rate on the fault illuminating the rupture process for Model 1 (g), Model 2 (h) and
Model 3 (i). Eliminating or changing the fourth patch substantially affects total
moment release and reveals the prominent role that the high-stress patches play in
the propagation of the overall rupture.
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investigating the rupture dynamics of moderate-sized and large crustal earthquakes.
The continuation of the workflow demonstrated by this study could form a unique in-
sight into the role of geometrical, stress, and material heterogeneities in earthquake
ruptures.

It is important to note that the choices of the modeling parameters that match
the observations are non-unique; the effects illustrated by the modeling and the
observations can be achieved by other combinations of background fault and as-
perity/barrier parameters and initial conditions. A systematic exploration of how
particular asperities and barriers manifest themselves in advanced seismological
recordings would help interpret the physical origin of the heterogeneous patches
more uniquely. Additionally, other physical mechanisms such as complex fault
geometry provide alternative explanations. Future work consists of thorough ex-
amination of potential explanations by synthetic tests using dynamic simulations of
physical mechanisms other than frictional heterogeneity such as the effect of damage
zones and complex fault networks.
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Parameter Symbol Value and Unit
Bulk Properties

Shear wave speed 𝑐𝑠 3.7 km/s
Shear modulus 𝐺 38.2 GPa

Dilatational wave speed 𝑐𝑝 6.4 km/s
Effective normal stress �̄� 50 MPa

Rate and State Parameters Outside of High-Stress Patches
Reference slip velocity 𝑉∗ 1 µm/s

Reference friction coefficient 𝑓 ∗ 0.6
Direct effect parameter 𝑎 0.003

Evolution effect parameter 𝑏 0.00455
State evolution distance 𝐷𝑅𝑆 1.6 mm

Length Scales Outside of High-Stress Patches
Quasi-static cohesive-zone Λ0 237 m

Nucleation size ℎ∗ 3636 m
Cell size Δ𝑧 25 m

Table 5.1: Constant Parameters.

Parameter Patch ID
S0 S1 S2 S3

Model 1 Model 3
Effective normal stress (MPa) 70

Patch radius (km) 0.15 0.2 0.4 1.0
Direct effect parameter, 𝑎 0.003 0.003 0.003 0.0049 0.003

Evolution effect parameter, 𝑏 0.010
Initial slip rate (log10 m/s) -5.9 -5.9 -10 -20

Nucleation size, ℎ∗ (m) 280 280 280 527 280
Quasi-static cohesive zone, Λ0 (m) 77

Table 5.2: Variable Parameters within High-Stress Patches.
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C h a p t e r 6

CONCLUSIONS AND FUTURE DIRECTIONS

In this thesis, we have used computational models to better understand frictional
processes in the presence of fluids at a variety of scales. In the laboratory, we
used spring-slider representations to infer the frictional properties of unstable gouge
material. At the scale of a geothermal reservoir, we used a seismicity rate model for
a population of spring-slider nucleation sources. Finally, we also used a dynamic
rupture model to reproduce the rupture process as imaged by distributed acoustic
sensing (DAS), a novel technology in earthquake imaging. This chapter summarizes
the main findings of each study and delves into possible future directions of research.

6.1 Conclusions
The Bayesian probabilistic framework with MCMC sampling provides valuable
insights into the frictional properties of unstable and realistic gouge material that
is commonly found in the fault core. Synthetic inversions of stable velocity step
experiments show that the method can accurately and precisely infer rate-and-state
parameters with uncertainty range smaller than those achieved by local minimization
of nonlinear least-squares residuals. An important observation with regards to the
inversion method is that the sampling of rate-and-state parameters is better done
logarithmically, due to the logarithmic dependence of friction on rate-and-state
parameters such as 𝐷𝑅𝑆. This is a significant improvement to the current state-of-
the-art in the inversion for frictional parameters from stable velocity step experiments
- the most common experiment for inference of rate-and-state parameters. The
inversions of experimental data indicate that the presence of pressurized pore fluids
stabilized the gouge during the stable phase, as the wet sample has higher 𝑎 and
𝐷𝑅𝑆.

Inversions of stick-slip data while assuming the material is close to critical stability
allowed us to track the evolution of frictional parameters with slip since the stable
velocity step. For the slip law, both experiments show minimal change in 𝑎 along
with an increase in 𝑏, decrease in 𝐷𝑅𝑆, and decrease in 𝜇∗. The constancy of 𝑎 and
decrease in 𝐷𝑅𝑆 are consistent with previously established interpretations related to
the strength of the asperity contacts and the comminution of grains at the localized
plane of shear, respectively. The reduction in 𝐷𝑅𝑆 could also represent a reduction
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in the ‘quality’ of contact. Meanwhile, the aging law shows an increase in 𝑎, along
with an increase in 𝑏 and increase in 𝐷𝑅𝑆. The changes to 𝑎 and 𝐷𝑅𝑆 are less
consistent with micro-physical interpretations of rate-and-state effects than when
using the slip law. Furthermore, the best fitting model with the aging law has slip
rates of the event phase that are significantly lower than those of the experiment.
Overall, the slip law produces a closer fit to the experimental events while also
demonstrating greater consistency in the evolution of rate-and-state parameters with
respect to established interpretations of their micro-physical origin. A comparison
between wet and dry experiments indicate that the presence of pressurized fluids led
to an increase in the strength of the contacts, and a lesser decrease in the grain size
with slip.

The best fitting spring-slider model with the slip law still shows significant discrep-
ancies to the experiment in the evolution of creep during the strengthening phase
and in the dependence of stick-slip dynamics on the loading rate. The spring-slider
model has lower 𝐾𝑚𝑎𝑥 and higher 𝐾𝑚𝑖𝑛 and than the experiment, indicating the
experiment both sticks more after an event and creeps more prior to an event. Addi-
tionally, the nucleation process is significantly more abrupt in the experiment. The
spring-slider model also cannot reproduce the (lack of) dependence of stress drop
on the loading rate that is observed in the experiment. A quasi-static finite-element
model with the same rate-and-state properties suggests that the gouge in the sam-
ple likely slides in a spatially uniform manner. The same model also successfully
reproduces the fit of the stable velocity step by the spring-slider model. Thus, the
discrepancies between the spring-slider model and the experiment can likely be
attributed to flaws in the rate-and-state formalism and the slip law rather than the
idealization of a finite geometry to a single-degree-of-freedom system.

Physical models of the seismicity rate based on rate-and-state friction and stress
changes due to pore-pressure diffusion successfully reproduce the seismicity ob-
served during the EGS simulation of Otaniemi, Finland. While pore pressure
measurements at the well indicate two possible diffusivities that fit either the build-
up of pressure or its drawdown, the physical model suggests that the diffusivity
of the medium is likely closer to the higher diffusivity fitting the build-up. We
find that the effect of time-dependent nucleation is crucial in reconciling the higher
diffusivity with the spatio-temporal distribution of triggered seismicity. Namely,
the tendency of the parameter 𝑎𝜎 to act proportionally to a triggering threshold
significantly affects the apparent diffusivity inferred from the triggering front in
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Otaniemi. However, the effect of finite nucleation cannot be approximated well by
introducing a stress threshold in the standard Coulomb friction model, at least in
the context of rapid variations of injection rates common in EGS operations. The
Omori law decay observed in Otaniemi is seen to depend strongly on fluid transport
properties in the physical model. The physical model indicates that the Kaiser effect
is present in Otaniemi, weakened by the successive variation of injection locations
between different stages.

We show that a statistical model where the seismicity rate is predicted in time and
space by convolution of a kernel function inspired by Omori law decay with the
injection rate can provide a good match to the seismicity observed in Otaniemi.
The existence of such linear convolution kernels is consistent with the identification
of systematic decay patterns in the rate densities calculated by adaptation of the
cascading algorithm of Marsan and Lengline (2008) to induced seismicity. The
statistical model is extended to space by incorporation of a half-norm distribution
component to the kernel mimicking the behavior of the physical model. We find
that the validity of the method, which assumes a linear relationship between the
injection history and the induced seismicity rate, depends strongly on the presence
of the Kaiser effect. The convolution model would be applicable towards injection
schedules that minimize the impact of the Kaiser effect by decreasing injection
durations relative to the local diffusion time or by variation of injection locations in
space.

We highlight the major assumptions of the Dieterich (1994) seismicity rate model
and examine how they may bias interpretations of induced seismicity observed in
real reservoirs by comparing it directly to a Discrete Fault Network (DFN) model.
The comparisons reveal that parameters of the Dieterich model lack clear physical
meaning in the finite analogue. The background seismicity rate parameter, 𝑟𝑏, shows
a dependence on the stressing rate when inferred from catalogues of the DFN model
due to the fact that 𝑟𝑏 in the Dieterich model is based upon an infinite population
of nucleation sources. Additionally, the direct effect parameter of rate-and-state
friction, 𝑎, needs to decrease significantly in order to match the more gradual decay
of the seismicity rate due to the exhaustion of nucleation sources. This decrease in
𝑎 is consistent with the underestimates of 𝑎�̄� commonly encountered in matching
the Dieterich model to real seismicity (Acosta et al., 2023; Bettinelli et al., 2008;
Gross and Bürgmann, 1998; Gross and Kisslinger, 1997; Kim and Avouac, 2023;
Toda et al., 1998, 2012). The comparisons to the DFN model confirm that the
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underestimates are due to the biases posed by the assumptions of the model rather
than near-lithostatic levels of pore pressure.

The spatio-temporal pattern of seismicity in the finite setting, or specifically the
triggering and back-propagation fronts are predicted excellently by the analytical
estimate of the time to instability given an initial slip rate equal to the mean and the
minimum of the initial distribution, respectively. Thus, the triggering front is not
only dependent on fluid transport properties (Shapiro, Huenges, and Borm, 1997) or
its combination with nucleation characteristics (Kim and Avouac, 2023) but also the
distribution of initial conditions of the fault network. The back-propagation front, in
particular, occurs co-injection if the time to instability for the minimum slip rate is
shorter than the injection duration. This is in contrast to the more common context
in which the back front occurs immediately following shut-in due to the propagation
of negative pressure rates. The Dieterich model does not predict a back front during
injection as the maximum time to instability in an infinite population of sources is
infinitely large. The relocated catalogue of the 1993 GPK1 stimulation in Soultz-
Sous-Forêts shows such a back-front which can be fit qualitatively using the time
to instability measure for 𝑉𝑚𝑖𝑛 = 2.0e-15m/s. The co-injection back-propagation
front may be the most salient characteristic of finite effects in an induced seismicity
catalogue.

The change in frictional stability due to changes in the effective normal stress
during injections is fully accounted for in the DFN model where the rate-and-
state friction law is solved in its entirety without the no-healing assumption. The
changes in the critical stiffness, 𝜅𝑐𝑟 (for a single cell), or the nucleation size, ℎ∗

(for a fault discretized by multiple cells), allow previously seismic faults to become
aseismic with a sufficient increase in pore pressure. Such faults tend to creep
stably under loading, unlike in the Dieterich model where all nucleation sources
that are initially unstable remain so regardless of changes to the local stress state. A
simple model for the rate of magnitudes that accounts for the evolution of frictional
stability reproduces the apparent increase in the source radius of induced events in
Soultz-Sous-Forêts. The source radii distribution shifts at both the lower and upper
ends of the distribution, from the elimination of smaller events that cannot reach
the increased nucleation size, and the growth of the stimulated region that limits
rupture propagation, respectively. The rate of larger events is overestimated by the
model, possibly due to an overestimation of maximum magnitudes by the volume
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of stimulation, or due to a statistical manifestation of the low probability of larger
events (Van der Elst et al., 2016).

The modeling of the high-frequency DAS recordings of a 𝑀𝑤 6.0 earthquake sug-
gests a highly heterogeneous underlying fault with several prominent asperities and
barriers that may control rupture dynamics. The model demonstrates how the high-
stress patches both inhibit and promote the overall rupture, while also contributing
to a significant amount of the energy release themselves. The particular dependence
of the quality of the high-stress patch — namely, whether they act as an asperity or a
barrier — is expressed through a series of relationships between the initial, peak and
dynamic stress at a single point on the fault governed by rate-and-state friction. In
particular, the direct effect represented by 𝑎 is directly proportional to the tendency
for the point to delay the rupture by increasing the peak stress. On the other hand, an
increase in 𝑏 or decrease in 𝐷𝑅𝑆 tends to promote rupture propagation by increasing
instability and the rate of weakening.

6.2 Future Directions
The work presented in this thesis suggest a number of future directions for further
research. Direct application of the rate-and-state friction law and detailed examina-
tion of how well they match experiments and seismicity catalogues reveal possible
areas of improvement to the state-of-the-art formulation of the constitutive relation-
ship. The development of forecasting tools for induced seismicity questions whether
they could be used to control seismicity and design optimization injection/extraction
schedules. The successful application of the friction law to interpretation of DAS
data encourages the use of big data and demands efficient methods to model such
data. The following sections delve more deeply into theses ideas in greater detail.

Modeling Constitutive Laws of Shear Resistance for Gouge in Continuum from
Experimental Stick-Slip with High Resolution of Slip History
The rate-and-state friction law as it is used today (Dieterich, 1979; Marone, 1998;
Ruina, 1983) has been derived from experiments of stably sliding material that
does not go under stick-slip motion spontaneously. The quality of the rate-and-state
friction law to produce stick-slip is in fact an extrapolation of the experimentally
validated region. Chapter 2 reveals in detail aspects of stick-slip motion that the
friction law is not able to reproduce. Yet, unstable phase of frictional slip is possibly
more relevant to civil safety as it is the regime of slip for the most devastating
earthquakes. Various state evolution laws have been proposed to improve upon the
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slip and aging laws (Kato and Tullis, 2001; Nagata, Nakatani, and Yoshida, 2012).
Such laws still aim to reproduce the experimental observations from the stable
regime of frictional slip. Significant improvements to the constitutive relationship
could be made by efforts to better reproduce the unstable regime of slip.

The outstanding challenge to the modeling of unstable slip in experiments is that
it is more difficult and non-unqiue than stable slip. Chapter 2.6 discusses in detail
the non-uniqueness of the inversion for frictional parameters given the experimental
observations of friction-displacement history. Thus, meaningful efforts to model
unstable slip likely require further constraints from experimental observations. This
could include high-resolution measurements of the slip history closer to the sliding
sample. Notable examples include direct image correlation (DIC) at the surface
of the sliding layer (Rubino, Rosakis, and Lapusta, 2017) and back-projection of
acoustic emission sensors surrounding the sliding sample (Marty et al., 2019 and
Figure 6.1). Such measurements provide detailed information about the rupture
process at a finite scale. They also provide valuable scalar quantities such as the
peak and minimum slip rate during and after the rupture.

Figure 6.1: Back-Projection of Acoustic Emissions from Partial Rupture along
Saw-Cut of Granite by Marty et al. (2019). The colors indicate the value of the
coherency function from back-projection of acoustic emissions measured around
the circumference of the sample. The coherency function tracks the evolution of
rupture and reveals that the event consists of a nucleation region close to the edges,
followed by dynamic slip through a portion of the frictional surface. The detailed
documentation of the rupture process provides additional constraints on the friction
law.

Another key aspect of the origin of rate-and-state friction that may not be appropriate
for gouge material in unstable slip is that it was derived based on experiments of bare
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surfaces. Bare surfaces can develop fine particles due to breakage of contact points
after slip. However, such particles amount to negligible thickness, comparable to
the height of the contact asperities. On the contrary, gouge may be better treated
as a continuum material with varying levels localization and delocalization. Shear
resistance is finite across the sliding portion of the gouge, which can vary in its
thickness based on the strain rate. Additionally, detailed microstructure images
during the initial loading stages of gouge material have documented the complex
deformation structure that exists prior to the localization of shear that is parallel to
the loading direction (Bedford and Faulkner, 2021 and Figure 6.2). The long-term
evolution of friction observed in the experiments of Chapter 2 is a clear indication
of how such processes significantly affect shear resistance within the gouge.

Figure 6.2: Backscatter Electron (BSE) Images of Complex Evolution of Deforma-
tion Structure in Gouge from Shear Loading by Bedford and Faulkner (2021). (a, b)
After the sample has yielded, R1 Riedel shears crosscut the layer. (c, d) At the onset
of stick-slip instabilities, R1 Riedel shears and incipient B-shears are observed. (e,
f) At the end of the experiment after multiple stick-slip events, well-developed B-
shears are observed at the top and bottom of the layer, with discrete Y-shear planes
found within the main boundary shears (inset). (g) Schematic illustration of the
microstructural evolution. The deformation history of the gouge is more complex
and finite (in the direction perpendicular to loading) than that of a bare surface, and
it is possible that continuum models may be better-suited to describe gouge.
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A number of continuum models have been developed with the main goal of repro-
ducing the complex deformation structure that leads to shear localization. Notable
examples involve shear transformation zone (STZ) theory (Elbanna and Carlson,
2014) and cosserat continuum theory (Stathas and Stefanou, 2023). Earlier work
points to how strain localization may be modelled in continuum based on plasticity
(Rudnicki and Rice, 1975). Discrete element methods have also been used to model
rate-and-state friction experiments (Ferdowsi and Rubin, 2020). These models are
yet to be tested for the unstable regime of slip as observed in experiments. Future
developments of continuum models should consider both the stable and unstable
regime of frictional slip, aided by high-resolution experiments.

Control & Optimization of Induced Seismicity (Magnitudes)
Chapters 3 and 4 offer promising ways to forecast seismicity induced by fluid
injections. In practicality, forecasting is not enough for industrial operations. An
even more valuable framework could be to leverage accurate forecasts for control
of induced seismicity and optimization of the underlying industrial process. In
the scenario of geothermal well stimulation, the goal of the operation would be to
achieve a certain level of pressure in a region around the injection source to cause
permanent change of the rock permeability, while working under the constraint of
triggering earthquakes of magnitudes smaller than a threshold value.

The discussion of the possibility to control induced seismicity highlights the im-
portance of understanding the factors that affect induced earthquake magnitudes.
Indeed, even an infinite number of induced earthquakes is tolerable, given that the
magnitudes fall below a threshold value that represents the event with real potential
of causing damage to civil safety. The argument that induced earthquakes follow
statistical properties of natural earthquakes (Van der Elst et al., 2016) imply that
controlling magnitudes is not possible; the probability of the threshold event is di-
rectly proportional to the number of earthquakes. Assumptions that the magnitude
is bound in its upper limit by the volume of stimulation (Shapiro et al., 2011) provide
more promise for a setting that can be controlled and optimized. However, such as-
sumptions lack physical reasoning and already underestimate maximum magnitude
events that have been observed (Van der Elst et al., 2016). Effects of pressure on
frictional stability in gouge as revealed by Chapter 2 elucidate additional physical
mechanisms that are currently unaccounted for in the friction law.
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The development of control and optimization framework around induced seismicity
has been demonstrated for the case of simple models, similar to those presented
in Chapter 3 (Gutiérrez-Oribio and Stefanou, 2024; Stefanou, 2019). As Chapter
4 demonstrates, such models lack integral aspects of the physics that significantly
affect the forecast. Additionally, they control the seismicity rate, rather than the total
number of events (Figure 6.3). An accurate understanding of how injections are
physically related to the magnitudes of the induced events is essential in developing
a framework for control and optimization.

Figure 6.3: Control and Optimization of a 2D Reservoir by Gutiérrez-Oribio and
Stefanou (2024). (Top left) Seismicity rate (solid black and orange curves) in
regions, 𝑉1 (the entire domain in bottom row) and 𝑉2 (dotted domain in bottom
row), follow the prescribed values (shaded lines). (Top right) Injection flux of the
fixed well (blue) and injection fluxes of the control wells (red) follow the constraint
of intermittent demand (black curve in bottom right panel). (Bottom left) . Fluid
pressure distribution in the reservoir at the end of the simulation. The control strategy
ensures the steady state of the pressure solution after approximately 24 months. Such
framework allows the addition of more physics and harsher constraints on seismicity
(such as on the total number of events rather than a fixed seismicity rate for indefinite
time).
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Surrogate Models of High-Fidelity Models for Dynamic Inversion
All models presented in this thesis employ assumptions that significantly reduce
computational cost. In the case of the spring-slider model of Chapter 2, the finite
system is reduced to a single-degree-of-freedom system. This assumption neglects
the finite dimension of rupture propagation, the finite geometry of the experimental
apparatus, and wave propagation across finite length scales. The seismicity rate
model of Chapter 3 neglects source interactions and the full evolution of rate-and-
state friction. The discrete fault network model of Chapter 4 assumes homogeneous
and elastic bulk and neglects inertially driven wave propagation. Finally, the dy-
namic rupture model of Chapter 5 simulates a single fault that is perfectly planar,
embedded in a homogeneous and infinite, elastic medium.

The assumptions give the significant advantage to the models that they are com-
putationally efficient. This allows the Bayesian inversion with MCMC sampling
of Chapters 2 and 3 and the manual tuning of parameters in Chapter 5. However,
physical mechanisms that the models cannot consider (e.g., structural heterogeneity
due to damage, non-linear deformation of the bulk and transport of fluids) are not
negligible. Volume-based methods can simulate more complex sets of physics (Jia
et al., 2023; Taufiqurrahman et al., 2023) (Figure 6.4). However, such models are
computationally expensive, making inversion schemes unfeasible.

The advent of machine-learning in recent years has also entered the field of scientific
computing in the form of surrogate modeling. Surrogate models form digital twins
of high-fidelity models with drastically lower computational cost, often with the use
of artificial neural networks (Cai et al., 2021). The development of accurate and
efficient surrogate models for frictional processes could make formal inversions as
presented in Chapters 2 and 5 with higher-fidelity models feasible. In the context
of Chapter 2, this could allow an accurate representation of the finite apparatus
geometry and the radiated energy within the finite bulk. In the context of Chapter 5,
dynamic inversions could provide quantitative analysis of the level of non-uniqueness
and uncertainty for the inversion.
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Figure 6.4: High-Fidelity Modeling of the 2019 Ridgecrest Earthquake Sequence
by Taufiqurrahman et al. (2023). Slip along the Ridgecrest fault system is indicated
in by the yellow-red colorbar while displacement rates in the bulk are represented
by the white-green-yellow-red colorbar. The fully dynamic simulation with realistic
topology requires great computational expense. Surrogate models provide a possible
avenue towards the leverage of high-fidelity models in inversion schemes.
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A p p e n d i x A

APPENDIX FOR CHAPTER 2

A.1 Estimate of Experimental Noise as a Gaussian Distribution

Figure A.1: Estimate of Experimental Noise as a Gaussian Distribution. (Left) A
moving average of the friction measurement from the dry experiment is subtracted
from the raw data in the first 1.5mm of loading point displacement. (Right) The
difference between the raw data and the moving average is plotted as a histogram.
The distribution closely resembles a Gaussian distribution. The standard deviation
of 0.0004 is used as the standard deviation of Gaussian noise in the probabilistic
model of Equation 2.8.
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A p p e n d i x B

APPENDIX FOR CHAPTER 3

B.1 Demonstration of Marsan and Lengline (2008) Adaptation on Synthetic
Catalogue

The adaptation of the Marsan and Lengline (2008) algorithm presented in Section 3.4
is demonstrated on a simple synthetic catalogue. We consider a stepwise injection
scenario and a seismicity rate history that exhibits 1/𝑡 type of response to discretized
injection cycles. Such a seismicity rate history can be computed as the convolution
product of the injection rate history with a kernel that is the derivative of the Omori
law decay function. Here, 𝑡𝑟 is chosen to be 20 hours for an injection duration of
333.3 hours. The seismicity rate is computed for a total duration of 1000 hours.
The resulting injection rate and seismicity rate are shown in Figure B.1.

Figure B.1: Seismicity and injection rate for the demonstration of Marsan and
Lengline (2008) adaptation. The seismicity rate is produced by convolution of
the step-wise injection history with a kernel derived from the differentiation of the
Omori law. The rates are normalized by their maximum values.

The Marsan and Lengline (2008) adaptation is performed on synthetic catalogues of
the seismicity rate history and injection cycles that discretize the constant injection
period. Figure B.2 shows the sensitivity of the bare rates to 𝛿𝑡 and the ratio of the
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width of injection cycles, 𝑡𝐼𝑐. Both plots show that the algorithm identifies a 1/𝑡
type of decay in the bare rates as prescribed in the synthetic catalogue with minor
sensitivity to 𝛿𝑡 and 𝑡𝑟/𝑡𝐼𝑐.

Figure B.2: Sensitivity of the bare rates to discretization of 𝛿𝑡 (left) and injection
cycles by ratios of 𝑡𝑟 to the duration of binned injection cycles, 𝑡𝐼𝑐 (right). 𝑁

represents the number of 𝛿𝑡 intervals used to discretize the interval of 1 to 100 hours
in log space. Both plots show 1/𝑡 type of decay for all hyperparameters, with the
exception of 𝑡𝑟/𝑡𝐼𝑐 = 4 for earlier times which represents cases of poor resolution of
the injection history.

B.2 Horner Analysis of Spherical Well in Infinite Medium and MCMC Inver-
sion of Fluid Transport Properties

The traditional Horner analysis for inference of diffusivity from well pressure mea-
surements is adapted here for a spherical well in an infinite medium. Starting with
the analytical solution of Equation 3.7, the erfc

(
1
2𝜉

)
term is expanded in a Taylor

series with truncation up to the first term

𝑝(𝑟, 𝑡) = 𝑞

4𝜋𝜌0𝑟

𝜂

𝑘

(
1 − 𝑟

√
𝜋𝑐𝑡

)
(B.1)

This approximation is valid for large 𝑡 and small 𝑟, i.e., at later times close to the
injection well.

Pore pressure due to a boxcar injection scenario in which a step-wise injection with
mass injection rate 𝑞 is introduced at 𝑡 = 0 and abruptly stops at 𝑡 = 𝑡𝑝 can be found
by superposition of two solutions

𝑝(𝑟,Δ𝑡) = 1
𝑘

𝑞𝜂3/2

4𝜋3/2𝜌0

√︄
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(𝜆𝑢 − 𝜆) (𝜆 + 2𝜇)
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𝑡𝑝 + Δ𝑡 −

√
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Δ𝑡 (𝑡𝑝 + Δ𝑡)

)
, (B.2)
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where Δ𝑡 is the time since the injection shut-ins at 𝑡 = 𝑡𝑝. The fraction in the
parentheses may be referred to as the modified Horner time which decreases with
increasing Δ𝑡 asymptotically to 0. If one plots the pore pressure during shut-in
against the modified Horner time, 𝑘 may be found in terms of the slope 𝑚 as follows

𝑘 =
𝜂

𝜋

(
𝑞

4𝜌0𝑚

√︄
𝛼2(𝜆𝑢 + 2𝜇)

(𝜆𝑢 − 𝜆) (𝜆 + 2𝜇)

)2/3

(B.3)

To match as best as possible the underlying assumptions of the Horner analysis
which is based on an idealized scenario of a single boxcar injection starting from
steady-state conditions, the injection pause beginning at about the 260-hour mark
of Figure 3.2 is taken as it has the smallest number of cyclic injections since the last
significant shut-in at around the 190-hour mark. 𝑡𝑝 is taken to be the duration of
the last injection cycle prior to shut-in. Plotting the well pressure measurement for
a duration of 6.65 hours since shut-in against the modified Horner time results in
Figure B.3.

Figure B.3: Well pressure against modified Horner time during shut-in. Measure-
ments of well pressure during a shut-in period is shown as a scatter plot against the
modified Horner time in black. For later times during the shut-in period (earlier in
terms of modified Horner time), the pressure evolution follows a linear relationship
as predicted by Horner analysis. The red dashed line indicates the line of best fit
through the linear portion of the curve, the slope of which results in a diffusivity of
0.018 m2/s.
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MCMC inversions are run to estimate the effective well radius 𝑤𝑟 , and the ambient
pore pressure 𝑝0. The effective well radius is a measure of the damage surrounding
the injection source that causes drops in the pressure. The effective well radius is
added to the radius for computation of pore pressure. 𝑝0 is simply added to the pore
pressure variation due to injection. The final pressure profile is computed as follows

𝑝(𝑟, 𝑡) = 𝑞

4𝜋𝜌0(𝑟 + 𝑤𝑟)
𝜂

𝑘𝑡𝑟𝑢𝑒
erfc

(1
2
𝜉

)
+ 𝑝0 (B.4)

𝜉 =
𝑟 + 𝑤𝑟√
𝑐𝑡𝑟𝑢𝑒𝑡

The MCMC algorithm aims to maximize the Gaussian log-likelihood between the
measured and simulated pore pressure

IP(𝜃) = −1
2

𝑁∑︁
𝑖=1

(𝑝0
𝑖 − 𝑝(𝑡 = 𝑡𝑖, 𝑟 = 𝑤𝑟 , 𝜃))2, (B.5)

where 𝑝0
𝑖

is the observed well pressure at 𝑡 = 𝑡𝑖, 𝜃 are model parameters and
𝑖 = {1, 2, ..., 𝑁} for 𝑁 measurements. The sampler conducts 2000 iterations of 32
walkers with the chain length made to be longer than 50 times the auto-correlation
length in order to ensure full exploration of the posterior distribution. The prior is
assumed to be uniform for both variables between the ranges of 20 ∼ 80m and 40 ∼
60 MPa. Interestingly, a global fit to the well pressure history with diffusivity also
as a free parameter returns a value different from that inferred by Horner analysis.
The prior on 𝑐 is assumed to be uniform in the range of 0.01 ∼ 0.1 m2/s.

B.3 Zaliapin and Ben-Zion (2013) Cluster Analysis.
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Figure B.4: Zaliapin and Ben-Zion (2013) cluster analysis. The contour plot (left)
shows the distribution of the nearest-neighboring distance of all events in terms of
their rescaled inter-occurrence time and distances. Following Zaliapin and Ben-Zion
(2013), rescaled time, 𝑇𝑖 𝑗 = 𝑡𝑖 𝑗10−𝑞𝑏𝑚𝑖 and rescaled distance, 𝑅𝑖 𝑗 = 𝑟

𝑑 𝑓

𝑖 𝑗
10−(1−𝑞)𝑏𝑚𝑖

where 𝑡𝑖 𝑗 and 𝑟𝑖 𝑗 are the interevent times and distances, respectively, between events
𝑖 and 𝑗 , 𝑏 is the b-value of the Gutenberg-Richter distribution, 𝑚𝑖 is the magnitude
of event 𝑖, 𝑑 𝑓 is the dimension of the earthquake hypocenter distribution, and 𝑞 is
a multiplicative factor. The histogram (right) plots the frequency distribution of
the nearest-neighboring distances. Both plots exhibit strong uni-modal behavior,
characteristic of absence of aftershock sequences.

B.4 Kaiser Effect in Heimisson and Segall (2018)

Figure B.5: Kaiser Effect in Heimisson and Segall (2018). Seismicity rate (purple)
following the Heimisson & Segall (2018) formulation is plotted in response to a
sinusoidal stress history (orange). The dotted lines track the previous maximum
shear stress until it is superseded, during which the induced seismicity rate remains
close to zero.
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B.5 Sensitivity Analysis of 𝛾ℎ on Physical Parameters and Estimating 𝑐ℎ𝑔 in
Otaniemi

To identify an empirical relationship between 𝛾ℎ and the non-dimensional param-
eters, we simulated boxcar injection scenarios using the rate-and-state model for a
range of values of 𝑎 an 𝑘 . The injection rate, 𝑞, is varied for the characteristic pore
pressure, 𝑝𝑞 = 𝑞𝜂

4𝜋𝜌0𝑘𝑤𝑟
, to reach 0.1 of the ambient pore pressure, 𝑝0, and 𝑤𝑟 = 31m

as from the MCMC inversion for 𝑐𝑏𝑢. 𝑐 and 𝑎 are varied between [0.01 ∼ 0.1 m2/s]
and [10−5 ∼ 10−3], respectively.

For estimating 𝑐ℎ𝑔 in Otaniemi, we infer from the cumulative relocated catalogue as
opposed to binning discretized intervals to directly measure 𝑐ℎ𝑔 given the relatively
small sample size. We note that integrating the spherical integrand of the half-norm
distribution in time has an analytical form as follows

∫ 𝑡𝑁

0
4𝜋𝑟2

√︄
2

𝜋𝑐ℎ𝑔𝑡
exp

(
− 𝑟2

2𝑐ℎ𝑔𝑡

)
𝑑𝑡 =

4
√
𝜋𝑟3

𝑐ℎ𝑔
Γ

(
− 0.5,

𝑟2

2𝑐ℎ𝑔𝑡𝑁

)
(B.6)

where 𝑡𝑁 is the occurrence time of the last event and Γ is the upper incomplete
gamma function. Equation B.6 corresponds to the cumulative radial distribution of
seismicity of a catalogue that follows the half-norm distribution in space with no
decrease of the total seismicity rate in time. Fitting Equation B.6 to the distribution
of the relocated catalogue is shown in Figure S6 with 𝑐ℎ𝑔 = 0.011 m2/s. The fit also
serves well for the spatio-temporal convolution model of Section 3.7 of the main
text.

B.6 Standard Coulomb Model without Thresholds
To examine the effects of the nucleation process more closely, we compare the rate-
and-state model with one that assumes instantaneous nucleation once the Coulomb
criterion for failure is reached. In this case, the seismicity rate is directly proportional
to the stressing rate. In relation to equation (15), the critical distribution assumes
a constant value. The result from the Coulomb model with the Kaiser effect and
resetting of the stress history with new injection stages is shown in Figure B.7. 𝛼𝑐
is found to be 47250MPa/event/m3. In time, decay during shut-ins resembles the
Omori law although with slightly longer 𝑡𝑟 . The seismicity rate also tends to be
overestimated at the onset of injections. In space, the mean distance and triggering
front are significantly overestimated. The threshold model presented in the main text
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Figure B.6: Estimation of 𝑐ℎ𝑔 in Otaniemi. The cumulative radial distribution of
the relocated catalogue (red) is compared to Equation B.6 with 𝑐ℎ𝑔 = 0.011 m2/s
(black). The estimated value of 𝑐ℎ𝑔 also gives a good fit to the observed catalogue
when used to construct the spatio-temporal convolution kernel.

is seen to improve the temporal fit significantly but has relatively minimal impact
on the spatial distribution of events.

B.7 Sensitivity Analysis of 𝑡𝑟 on Physical Parameters
The dependence if 𝑡𝑟 on both nucleation and stress relaxation can be demonstrated
by an analysis of its sensitivity to parameters 𝑎, the rate-and-state friction parameter
and 𝑘 , the permeability. Single boxcar injection scenarios are tested under the
rate-and-state model and 𝑡𝑟 of the Omori law fit following shut-in is measured. 𝑘
and 𝑎 are varied between [10−16 ∼ 10−14 m2] and [10−4 ∼ 10−2], respectively. The
duration of the boxcar injections are chosen to be equal to the characteristic diffusion
time, 𝑡𝑐 = 𝐿2

𝑐
, to ensure all simulations reach steady-state stress prior to shut-in. The

injection rate, 𝑞, is also varied for the characteristic pore pressure at the boundary of
the modelled domain, 𝑝𝑞 = 𝑞𝜂

4𝜋𝜌0𝑘𝐿
, to reach 10−6 of the ambient pore pressure, 𝑝0,

so that near-lithostatic pore pressure is avoided. The size of the domain, 𝐿, is chosen
to be 2000m as in previous models. All other parameters are identical to those listed
in Table 3.1. Example simulations for two parameter sets that only differ in the
value of 𝑎 or 𝑘 are showing in Figure B.8. One can see that there is significantly
greater difference in 𝑡𝑟 for a smaller change in the diffusivity than in 𝑎. Namely,
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Figure B.7: Seismicity rate in time and space for standard Coulomb model without
thresholds. 𝑐𝑡𝑟𝑢𝑒 = 𝑐𝑏𝑢 = 0.044 m2/s and 𝛼𝑐 = 47250MPa/event/m3. In time, the
KS-statistic returns 0.08, higher than the rate-and-state model (KS-statistic=0.025)
with the same diffusivity. In space, the mean distance and triggering front are
significantly overestimated, reaching further than the theoretical triggering front in
red.

higher diffusivity leads to faster relaxation of pore pressure, faster relaxation of the
seismicity rate, and lower 𝑡𝑟 .

B.8 Validity Region of the Linear Convolution Method
The success of the linear convolution method in matching the observed seismicity
rate in Otaniemi and the spatio-temporal variation of the seismicity predicted by
the rate-and-state model is unexpected given the nonlinear mechanisms governing
stress variations and earthquake triggering. Notably, the Kaiser effect predicts that
the seismicity rate should lose its linearity to the forcing history with time, and
nonlinear dependence on slip-rate of rate-and-state friction predicts a phase shift
between seismic and stressing periodicities (Ader et al., 2014). The absence of a
strong Kaiser effect is thus probably one factor that explains the success of the con-
volution model at fitting the observations from the Otaniemi EGS stimulations. If
one interprets Coulomb friction as a limiting case of rate-and-state friction as 𝑎 ap-
proaches zero (and nucleation becomes instantaneous), one may expect increasingly
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Figure B.8: Seismicity rates due to boxcar injections using the rate-and-state model.
Top and bottom plots show two parameter sets that only differ by 𝑐 and 𝑎, respectively.
𝑎 and 𝑐 are fixed at 0.0005 and 0.01 m2/s for the top and bottom plots, respectively. 𝑡𝑟
generally shows stronger dependence on fluid transport properties than on frictional
parameter, 𝑎.

linear behavior to surface with decreasing values of 𝑎. It is thus hypothesized that
the linear convolution model is valid if rate-dependence of friction and the Kaiser
effect are relatively small.

To test this hypothesis, we assess the performance of the convolution model to
approximate predictions from the rate-and-state model by varying systematically
the importance of these effects. We simulate generic injection scenarios consisting
of repeated boxcar injections under the rate-and-state model and measure the root
mean squared error (MSE) of its approximation by the convolution model. The
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number of boxcar injection cycles is chosen to be twenty as this is close to the
average number of cycles within a single stage at Otaniemi. The seismicity rate
is normalized to range from 0 to 1 for all scenarios. In this sensitivity analysis,
the convolution kernel is not limited to the Omori-law with 𝑝 = 1, which does not
provide sufficiently accurate fits to all decay patterns across the tested parameter
regimes; the decay pattern is often observed to be better matched with higher values
of 𝑝 depending on the physical parameters. In this regard, the linear convolution
prediction is produced by taking the response of the model due to a constant injection
scenario as the integral of a numerical convolution kernel. The duration of injections,
𝑡𝐼 , is altered to be fractions of the characteristic diffusion time with the shut-ins held
for equal time. The injection rate, 𝑞, is adjusted so that the characteristic pore
pressure, 𝑝𝑞 =

𝑞𝜂

4𝜋𝜌0𝑘𝐿
, is 10% of the ambient pore pressure, 𝑝0, as is the case for

the Otaniemi injection scenario given the average injection rate and the diffusivity
from Horner analysis. 𝐿 is chosen to be 2000m to match the parameters of previous
models. Two non-dimensional variables are chosen as follows: the Kaiser effect
is expected to be more significant for systems with higher diffusivity that allows
locations further away to reach its maximum value in shorter time. The satisfaction
of the maximum stress condition should also depend on the injection duration, where
longer injections would subject regions in space to below their maximum stress for
longer time. Thus, the ratio 𝑡𝐼/𝑡𝑐 is taken to be the representative parameter where a
higher value would correspond to a stronger Kaiser effect. For delayed nucleation,
we take 𝑎𝜎/𝑝𝑞. Since 𝑝𝑞 is constant across all simulations, the ratio measures
the direct dependence on 𝑎. 𝑘 , 𝑎, and 𝑡𝐼/𝑡𝑐 are varied between [10−18 ∼ 10−12

m2], [0.0001 ∼ 0.02], and [10−5 ∼ 10−0.5], respectively, to reflect a wide range of
diffusivity, frictional parameters, and injection scenarios. All other parameters are
held constant as listed in Table 3.1.

The MSE is shown as a contour plot in Figure B.9. The contours exhibit a largely
vertical structure, indicating stronger dependence on 𝑡𝐼/𝑡𝑐 than on 𝑎𝜎/𝑝𝑞. MSE
generally increases moving to the right, as expected by stronger Kaiser effect. Across
most of the parameter regime, dependence on 𝑎 is relatively minimal. The effect of
the Kaiser effect seems to be amplified by stronger nucleation effects as MSE tends
to increase moving upward. Given lower ratios of 𝑡𝐼/𝑡𝑐, the convolution model does
an excellent job, even with stronger nucleation effects.

We locate the possible region in the contour plot that may correspond to the Otaniemi
scenario. We take the a relatively wide range of permeability and 𝑎 surrounding the
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Figure B.9: Validity region of linear convolution model. The root mean squared
error (MSE) of the linear convolution model to the rate-and-state model is shown
as a contour plot. The contours have a mostly vertical structure, showing stronger
dependence on the ratio 𝑡𝐼/𝑡𝑐 , or stress evolution from pore pressure diffusion.
Higher values of the ratio correspond to stronger Kaiser effect which break linearity
of the seismicity rate to injection cycles. Plotting a range of values that may corre-
spond to the Otaniemi scenario in pink dots illustrates that Otaniemi may have had
favourable conditions for linearity in the stress evolution process by avoiding strong
impact from the Kaiser-effect. The parameter regime for Otaniemi is estimated by
the range of permeability and rate-and-state parameter, 𝑎, inferred from this study,
along with the average injection rate, injection duration and parameters of Table 3.1.
Dependence on 𝑎𝜎/𝑝𝑞 is relatively minimal showing that non-linearity of delayed
nucleation may be sufficiently subsumed in the convolution model.

values inferred from Horner analysis and modelling, which is [7 ∗ 10−17 ∼ 2 ∗ 10−16

m2] and [0.0001 ∼ 0.0005], respectively. We also take an average injection rate
of 600 L/min. and injection durations in the range of [1 ∼ 30 hours] given the
average duration of 13 hours at Otaniemi with a standard deviation of 15 hours. The
resulting parameter regime is plotted by pink dots in Figure B.9, illustrating that the
Otaniemi scenario may well have had favourable ratios of 𝑡𝐼/𝑡𝑐 for the convolution
model by avoiding the Kaiser effect. The result is consistent with the evidence so
far that the Kaiser effect may have been muted in Otaniemi. The result also implies



199

that the convolution model would not have been as successful given changes to the
system that would increase 𝑡𝐼/𝑡𝑐, e.g., by injecting for longer durations within a
single stage.
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B.9 Evolution of Injectivity in Otaniemi

Figure B.10: Evolution of injectivity in Otaniemi. The injectivity index is plotted as
a scatter plot in red over the observed catalogue of Leonhardt et al. (2020). Periods
of high injectivity are often correlated with periods of high seismicity rate, likely
due to increases in permeability from seismic activity.
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A p p e n d i x C

APPENDIX FOR CHAPTER 4

C.1 Numerical Integration of Equation 4.5
We aim to solve for the normalized seismicity rate, �̂� = 𝑅

𝑅𝑏
:

�̂� =
𝐾 (𝑡)

1 + 1
𝑡𝑎

∫ 𝑡

0 𝐾 (𝑡′) 𝑑𝑡

𝐾 (𝑡) = exp
(
𝜏(𝑡)
𝑎�̄�(𝑡) −

𝜏0

𝑎�̄�0

)

𝑔 ≡ 𝜏(𝑡)
𝑎�̄�(𝑡) −

𝜏0

𝑎�̄�0

where 𝜏 is the applied shear stress, 𝑝 is pore pressure, �̄� = 𝜎 − 𝑝 is the effective
normal stress, ¤𝜏𝑟 is the background stressing rate that produces background seis-
micity rate 𝑅𝑏, and 𝑎 is the rate-and-state direct-effect parameter. The subscript 𝑜
represents the initial value of the variable.

To avoid computing the exponential of the stress history which may cause overflow,
we first solve for the log of the seismicity rate:

ℎ̂ = log �̂� = log𝐾 (𝑡) − log
(
1 + 1

𝑡𝑎

∫ 𝑡

0
𝐾 (𝑡′) 𝑑𝑡

)
(C.1)

Next, we work in an incremental system where we store information about the
integral up to time 𝑡𝑛−1:

𝑑𝑛 ≡ log
(
1 + 1

𝑡𝑎

∫ 𝑡𝑛

0
𝐾 (𝑡′) 𝑑𝑡

)
= log

(
1 + 1

𝑡𝑎

∫ 𝑡𝑛−1

0
𝐾 (𝑡′) 𝑑𝑡 + 1

𝑡𝑎

∫ 𝑡𝑛

𝑡𝑛−1

𝐾 (𝑡′) 𝑑𝑡
)

= log
(
1 + 1

𝑡𝑎

∫ 𝑡𝑛−1

0
𝐾 (𝑡′) 𝑑𝑡

)
︸                              ︷︷                              ︸

𝑑𝑛−1

+Δ𝑑𝑛

(C.2)
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Δ𝑑𝑛 = log
(
1 + 𝑡𝑛 − 𝑡𝑛−1

𝑡𝑎
· (exp(𝑔𝑛 − 𝑑𝑛−1) + exp(𝑔𝑛−1 − 𝑑𝑛−1))

)
(C.3)

Plugging equations C.3 and C.2 into Equation C.1 and taking the exponential returns
the seismicity rate at time 𝑡.
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