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ABSTRACT

Cryogenic photon detectors can be used to make extremely sensitive cameras

for submillimeter astronomy. Current detector technologies already have sensitivities

limited by the noise due to photon arrival statistics. To further improve the sensitiv-

ity and mapping speed of experiments for a wide field survey, focal planes containing

tens of thousands of pixels are required. Unfortunately, the current technologies use

discrete and massive components which are not easy to integrate into large arrays.

This thesis presents a 16-pixel, two-color, submillimeter-wave, prototype camera de-

veloped at Caltech and the Jet Propulsion Laboratory using a novel photon detector

technology. The camera also uses new designs for other constituent elements – the

antenna, transmission line feednetwork, and bandpass filters – to implement the sub-

millimeter pixels. These designs allow integration of the entire camera onto a single

chip and conclusively address the problem of scalability while maintaining the sen-

sitivity and noise performance of the current technologies. This thesis explains the

design of each of these components and presents the results from experiments con-

ducted to test their performance. Results from the ’first light’, obtained by mounting

the prototype camera onto the Caltech Submillimeter Observatory (CSO), are also

presented.

We have also studied the temperature and power dependence of the resonance fre-

quency, quality factor, and frequency noise of the superconducting niobium thin-film

coplanar waveguide (CPW) resonators in order to understand the factors affecting the

noise performance of our photon detectors. These experiments were carried out at

temperatures well below the superconducting transition (Tc = 9.2 K) in an attempt

to understand the source of the excess frequency noise of superconducting resonators
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which form the sensing element of our photon detectors. The noise decreases by nearly

two orders of magnitude as the temperature is increased from 120 to 1200 mK, while

the variation of the resonance frequency with temperature over this range agrees well

with the standard two-level systems (TLS) model for amorphous dielectrics. These

results support the hypothesis that TLS are responsible for the noise in supercon-

ducting microresonators and have important implications for resonator applications

such as qubits and photon detectors.
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CHAPTER I

INTRODUCTION

1.1 Motivation – Submillimeter Astronomy

Gamma 

Rays

< 10nm

X-Rays

0.01 – 10 

nm

Ultra-Violet

10 nm – 0.4 

µm

Visible

0.4 – 0.7 

µm

Infra-Red

0.7 µm – 0.1 

mm

Microwave

1 mm – 0.1 m

Radio-

wave

> 0.1 m

Submm wavelengths: 0.1 – 1 mm (100 GHz – 1 THz)

Figure 1.1: The electromagnetic spectrum

Astronomy has historically been dominated by observations in the optical part of

the electromagnetic spectrum. There are various reasons why the optical frequency

range has been the most extensively studied for centuries [1, 2, 3]. The instrumen-

tation for this band has existed for a long time: The earliest photon detectors were

naked eyes, and Galileo used the optical telescope for astronomy for the first time

in the 17th century. It is easy to do ground-based astronomy in this band since the

Earth’s atmosphere is transmissive at these frequencies. However, a strong case can

be built for submillimeter astronomy as well, since the Earth’s atmosphere is par-

tially transmissive at microwave/radio, submillimeter, and infrared (IR) wavelengths

[2]. Furthermore, the optical frequencies form a small part of the entire electromag-

netic spectrum (Figure 1.1). They extend from 0.4 µm to 0.7 µm which is less than

a decade, while the radio-frequency (RF)/microwave, and submillimeter part of the

frequency spectrum extends over many decades (with the submillimeter part of the

spectrum extending over a decade, from 100 GHz to 1 THz) [1]. In the past it has been
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difficult to do astronomy at submillimeter wavelengths because of the opacity due to

water lines in the Earth’s atmosphere and lack of high-performance instruments. The

problem of opacity due to water lines can be solved by doing ground-based astron-

omy from high altitude (∼ 14,000 ft), dry regions such as Mauna Kea, where the

Caltech Submillimeter Observatory (CSO) is located. The instrumentation and tech-

niques that already exist for the microwave/RF and optical frequency range can not

be readily adapted to the submillimeter band.

Figure 1.2: Concept view of ALMA (Credit: http://www.eso.org/projects/alma/)

However past two decades have seen tremendous progress in the performance of

submillimeter detectors [4, 5] and these changes are ushering in major investments

such as the Atacama Large Millimeter Array (ALMA) (Figure 1.2) interferometer

and the Caltech Cornell Atacama Telescope (CCAT) (Figure 1.3). ALMA is a $1

billion project which will have very high angular and spectral resolution (30” at 1.3

mm) and will be able to make exquisite images of very small fields [6]. CCAT on the

other hand will be a 25 m diameter, high-sensitivity, wide-field-of-view and a broad-

band telescope [7], and will provide capability for deep, multi-color, wide field surveys

which will help choose targets for more detailed follow-ups with ALMA. With these

2



Figure 1.3: Concept view of CCAT at 5600 m on the candidate site near the summit
of Cerro Chajnantor, Chile (Credit: M3Engineering)

new technologies, as past experience has shown us, we should expect new, ground-

breaking science which will further our understanding of the universe.

Scientifically, the submillimeter band is interesting because some very important

astronomical sources radiate strongly at these wavelengths – such as the Cosmic

Microwave Background (CMB) radiation, the probing of which can give us deep

insights into the beginning, structure, and dynamics of the universe. There are various

foreground sources of submillimeter radiation – submillimeter galaxies, regions of

very active star formation, and galaxy clusters that can be studied using Sunyaev-

Zel’dovich Effect (SZE). In the next section we discuss the science objectives for

studying these sources to motivate the development of novel instrumentation at these

frequencies.
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1.2 Scientific Case for Novel Submillimeter In-

strumentation

1.2.1 Submillimeter Galaxies

Figure 1.4 shows an image of the Antennae (NGC 4038/4039) galaxies in the visible,

infrared, and submillimeter. These are two low redshift spiral galaxies colliding with

each other. In general, such a collision triggers a gravitational collapse resulting

in a massive burst of star formation in the region of their interaction. However,

the new stars being formed are deep inside molecular clouds and are enshrouded

in dust which is opaque to optical frequencies. This prevents us from studying the

actual interaction in this band. At longer wavelengths however, the dust becomes

transparent since optical depth depends inversely on the wavelength. This allows

us to observe the interaction at infrared (IR) and submillimeter wavebands (Figure

1.4 b), c)). Further, the dust in the region reprocesses the light in the optical band

– i.e., it absorbs optical wavelengths and re-emits them in IR and submillimeter,

thereby increasing the luminosity in these bands. From Figure 1.5, taken using the

Spitzer satellite [8], it is evident that there is as much energy in the starlight in cosmic

optical background as there is in star light that has been reprocessed by interstellar

dust shown in cosmic infrared background making a strong case for observations in

these bands.

Recent studies have also shown that in general even dust–corrected UV/optical

data do not accurately reflect the bolometric luminosities of the submillimeter galaxies

when compared with RF and submillimeter observations [9]. These luminosities can

be underestimated by a median factor as much as two orders of magnitude [10]. This

has major implications for studying galaxy interactions and star formation models.

Another motivation for doing galaxy surveys in submillimeter bands is that the

surveys done using SCUBA have detected a very large number of submillimeter galax-

ies at very high redshifts [10], hence very early times. This supports a hierachical

4



Visible Infrared Sub-mm

a) b) c)

Figure 1.4: Images of the Antennae (NGC 4038/4039) in the visible (left), infrared
(center), and submillimeter (right) (Credits: visible [HST,WFPC2], infrared [Spitzer,
IRAC], and submillimeter [CSO, SHARC])

model for development of structure in the universe in which galaxy mergers such as

those mentioned above are very important and are a major source of star forma-

tion. The observed luminosity function, which gives number density of galaxies as a

function of luminosity (Figure 1.6), is far larger than what is predicted by the mod-

els tuned to explain the observations in the optical bands. These galaxy formation

models have needed dramatic changes, including changes in treatment of dark matter

halos and galaxy mergers [11], in order to explain the observations in the submil-

limeter band. To further test the new models incisively, it is required that we probe

the high-redshift tail of the galaxy population simultaneously in multiple frequency

bands in the submillimeter part of the spectrum.

A major astronomical challenge that may be addressed by simultaneous multi-

band measurements in the submillimeter is characterization of dust emissivity prop-

erties. The dust emissivity in this band is dominated by large grains in thermal

equilibrium which are characterised by a temperature and spectral dependence of

emissivity modeled simply by an index (β). This characterization is essential to esti-

mate redshifts using radio and submillimeter flux measurements. Since the accuracy
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Figure 1.5: Power spectrum of Cosmic Optical, Infrared, and Microwave Back-
ground from observations using the instrumentation on Spitzer satellite [8]. The
frequency band between the dashed line shows the submillimeter range.

and precision of β are unknown, measuring it for a large sample of galaxies with low

redshifts and varying properties – so that the observations are on the Rayleigh-Jeans

(RJ) side of the thermal spectral emission density (SED) – will yield its intrinsic dis-

persion. This will allow us to assign systematic uncertainties to β, hence quantifying

systematic uncertainties in the dust temperature and redshift.

1.2.2 Milky Way Galactic Plane Survey

Galactic plane surveys have been undertaken by many teams – specifically using the

SCUBAII instrument on the James Clark Maxwell Telescope (JCMT), and Bolocam

on CSO. The science goals of these projects are to measure the galaxy-wide rates of

star formation, efficiency, triggers, evolution, and timescales of young massive stars

[7]. This would obtain the complete inventory of hot and cold dust in the galac-

tic plane. Combining this data with optical, radio, and IR data sets will determine
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a) b)

Figure 1.6: Plots of number density vs luminosity with fits based on models con-
structed (a) without and (b) with submillimeter survey data [11]

Figure 1.7: An image of the galactic plane using Bolocam in the 1.1 mm wavelength
band. The image dimensions are 2◦ × 1◦ with the field of view centered at a Galactic
longitude of l = 0.5◦, latitude b=0◦. It contains the Sgr A complex on the right, and
Sgr B2 star–forming complex in the left half of the image. (Credits: Dr. John Bally
and the Bolocam Galactic Plane Survey Team)

the relative importance of different mechanisms of star formation and their depen-

dence on properties of the inter-stellar medium [7]. Following up these measurements
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across the submillimeter band from 350 µm to 1.4 mm will allow sampling of spec-

tral energy distributions to measure bolometric luminosities, dust temperatures, and

masses robustly. This would allow testing the hypothesis that the long wavelength

spectral emissivity index β can change significantly with temperature. Simultaneous

multi-color data would prove to be invaluable for this science.

1.2.3 Sunyaev-Zel’dovich Effect (SZE) Measurements

CMB photons

T = (1 + z) 2.725K

galaxy cluster

with hot ICM

z ~ 0 - 3

scattered

photons

(hotter)

last scattering

surface

z ~ 1100

observer

z = 0

a) b)

Figure 1.8: a) Original and the shifted spectrum of the CMB photons due to SZ
scattering off of the hot interstellar gas. b) Figure illustrating the SZ effect (Credit:
Dr. Sunil Golwala)

The Cosmic Microwave Background (CMB) radiation was discovered in 1964 by

Wilson and Penzias and is regarded as the most conclusive piece of evidence for the

Big Bang Model. In 1989 the COBE satellite measured the CMB and showed that

it has a blackbody spectrum with temperature of 2.725 K to 1 part in 105 while

measuring its primary anisotropies. In 1970, Sunyaev and Zel’dovich predicted that

the CMB power spectrum would have secondary anisotropies due to what is now

known as Sunyaev-Zel’dovich Effect (SZE). This refers to the Thomson scattering of

Cosmic Microwave Background (CMB) photons by hot electrons in the intracluster
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medium. This transfers some of the energy from the ionized gas to the CMB photons

while conserving the photon number (upscattering). While the effect itself is small

and of low probability (∼ 1%), it leads to a measurable change in the frequency

spectrum of the radiation and makes it non-thermal, so it effectively seems colder at

long wavelengths and hotter at short wavelengths. The temperature shift independent

of redshift is given by:

∆TSZE

TCMB

= f(x)y = f(x)

∫

ne
kTe

mec2
σTdl (1.1)

where ne/me/Te/pe are electron density/mass/temperature/pressure, σT is the Thom-

son scattering cross section, k is the Boltzmann constant, c is the speed of light,

dl = cdt is the distance along the photon path through the cloud, and f(x) is the

spectral dependence with x = hν/kT . The photon energies get boosted by kTe

mec2
,

which for temperatures 108 K can lead to relativistic increase in the energy. Since

the ratio ∆TSZE/TCMB, or equivalently the surface brightness of SZE, is redshift in-

dependent it is a powerful way to detect massive clusters at any redshift as long as

the experiment has sufficient angular resolution. There is also a second-order kinetic

SZE where the CMB photons interact with the electrons that have high energies due

to their bulk motion compared to the rest frame of CMB photons.

These effects can be used to constrain cosmological models and probe universal

constants in several different ways. Combined with X-ray cluster studies which probe

the emission measure of intracluster gas, SZE studies can be used to precisely deter-

mine the Hubble constant H0 and the deceleration parameter q0 [9, 12]. The SZE

combined with the X-ray estimates of gas temperature can be used to estimate the

baryonic mass fraction in the galaxy cluster [13]. Using SZE to detect distant clusters

allows us to study the large-scale structure and cosmological parameters describing

the universe – and might even be useful in constraining the dark matter equation of

state [12].
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Kinetic SZE can be used to determine the cluster peculiar velocity [13]. These

measurements need to be made in the submillimeter band close to 150 GHz to measure

the SZ decrement or at 275 GHz to measure the SZ increment. Multi-color capabil-

ities in other bands will be useful for removing the atmospheric noise for increased

sensitivity and removing contaminants such as point sources. The next section lists

characteristics required in the instrumentation to meet these science goals.

1.3 Instrumentation

DemoCam

MKIDCam

Figure 1.9: The increase in pixel count of almost background limited bolometric
submillimeter camera technologies over the past 20 years is seen to follow Moore’s
law. Also shown in the dotted red boxes are the DemoCam discussed in this thesis
and future generation MKIDCam that will complement and compete with SCUBAII
using kinetic inductance detector technology [14, 15, 16, 17].

Nearly background limited bolometric submillimeter camera technologies have fol-

lowed Moore’s law (Figure 1.9) and doubled in array size roughly every 20 months

or so. Current state of the art is defined by SCUBA at JCMT and Bolocam and
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SHARCII at CSO (Figures 1.10, 1.11). These cameras have contributed significantly

to our scientific knowledge through galactic plane surveys [18, 19], surveys of submil-

limeter galaxies [20, 10, 21], and SZE observations [22]. However, these cameras have

a few hundred pixels and the technologies being used to implement them are difficult

to scale to larger array sizes. Future scientific missions motivated in Sections 1.2.1,

1.2.2 and 1.2.3 will require cameras with tens of thousands of background limited

multi-color pixels, if not more.

R e d s h ift d is trib u tio n

C h a p m an  e t a l. 2 0 0 5

a)

b)

c)

d)

Figure 1.10: a) SCUBA instrument mounted on JCMT. b) SCUBA focal plane top
view showing the input feedhorn antenna. c) Maps of submillimeter galaxies detected
using SCUBA instrument. d)The redshift histogram of submillimeter galaxy sample
observed using SCUBA [10]

Since it is difficult to scale current technologies to those sizes, new technologies

need to be developed making it feasible to construct large pixel arrays which allow

all the components of a submillimeter camera to be integrable onto a monolithic chip

so that scaling is not an issue.
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a) b) c)

Figure 1.11: a) Bolocam detector b)Bolocam focal plane showing feeds (top) and
detectors (bottom) c) Bolocam camera mounted in the dewar with metal mesh filter
on the top

This thesis presents a 16-pixel, 2-color camera (DemoCam) which we have de-

signed, implemented and tested. This camera uses novel, planar technologies for

pixel components – the antenna, feed network, bandpass filter, and photon detector

that allow for the entire camera to be fabricated on a single chip, thereby conclu-

sively addressing the problem of scalability photolithographically while maintaining

the sensitivity and noise performance of the other current technologies. Data can be

gathered in both the bands simultaneously for all the 16 pixels. The future gener-

ations (MKIDCam) will be able to operate simultaneously in all four submillimeter

bands (Chapter 4), which is essential for attaining future scientific goals. MKIDCam

will be a superior replacement for Bolocam as a facility instrument at the CSO and

will have comparable raw mapping speed to SCUBAII, mounted on JCMT, while

costing about an order of magnitude lesser. SCUBAII will operate with only two

colors, out of which only one will be regularly usable.

Future cameras for CCAT after MKIDCam will have tens of thousands of pixels

that will completely cover the telescope field of view (20’) which is necessary to make

use of its focal plane efficiently. The mapping speed of the instrument increases
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linearly with the pixel count. Consequently, compared to the current rate of 1 or 2

submillimeter galaxy detections per night, with MKIDCam the mapping speed will

increase approximately by a factor of 6 resulting in detection of around 12 galaxies

per night[23] at the CSO. This number will be dramatically higher when the same

instrumentation is used on the upcoming CCAT.

Further, by using multi-color camera technologies it will be possible to ensure that

the detections made are robust, for example by requiring simultaneous detection in

multiple bands to rule out fake detections or omissions. Currently, monochromatic

observations are used which are then followed up in different bands by separate in-

struments. Different instruments typically have different sensitivities and systematics

and consequently lead to non-uniformity in data. This leads to discrepancies like spu-

rious detections and omissions in data sets, especially when working close to the noise

limit. Use of the multicolor cameras for a single survey will overcome this challenge

in multiple ways:

1. It avoids temporal variability – changes in the response due to changes in at-

mospheric conditions or instrument sensitivity – between the observations.

2. Although sensitivity of the intrument may be limited by other factors such as

the atmosphere, telescope quality etc. using a single camera in different bands

will lead to nominally uniform detector sensitivities which will make it possible

to make the survey depth more uniform at different wavelengths.

3. Systematics are easier to understand and remove between different bands from

the same survey.

4. There would be nominally uniform sky coverage while looking at the same

location in the sky which will make data in all bands for every covered spatial

location available except for the difference in beam sizes which would make the

diffraction spot size somewhat different.
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Thus with simultaneous, uniformly calibrated photometry in multiple-frequency

bands, these issues will be addressed robustly, and interesting candidates (e.g., high-

redshift submillimeter galaxies) can be selected from the dataset for more expensive

follow-ups (e.g., making detailed maps using the ALMA interferometer).

1.4 Thesis Outline

This thesis presents a 16-pixel, two-color camera implemented using novel planar

technologies for the pixel subcomponents - the antenna, submillimeter feed networks

and waveguide and the photon detector, that integrate the entire camera on to a

single chip. The design is scalable to large arrays even as it maintains the perfor-

mance metrics of single pixels of current technologies. In Chapter 2 of this thesis

we discuss results of noise, resonance frequency and quality factor measurements of

superconducting resonators as a function of temperature and readout power of these

devices. These are of interest since superconducting microresonators form the sensing

element of the photon detectors used in our pixels and understanding the source and

mechanism of this noise will allow us to optimize our detectors for better perfomance.

Chapter 3 presents the design details of each sub-component (except the bandpass

filter) of a single pixel and discusses the measurement setup and results. Chapter

4 details the design of the on-chip bandpass filters and the details of designing a

multi-color pixel. The measurements performed on the two-color pixel and the design

for the four-color pixel, to be used in future generations of cameras are presented.

Chapter 5 presents integration of the 16 two-color pixels on to a single chip and the

detector design considerations. An overview of electronics and cryogenics which was

used to show the camera its first light on CSO is presented and results from the CSO

run showing maps of Jupiter and G34.3 are presented. The final chapter outlines

some interesting future directions possible for the work that was done for this thesis.
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CHAPTER II

PHYSICS OF SUPERCONDUCTING

MICRORESONATORS

2.1 Introduction

Walraff et. al (Nature, 2004)

Mazin (Caltech Thesis 2004)

http://qt.tn.tudelft.nl/research/fluxqubit/fluxqubit.html

Day et. al (Nature, 2003)

Irwin ( Sci . Am., 2006)Irwin ( Sci . Am., 2006)

4x4 Submm KIDs

a) b) c)

d) e) f )

Figure 2.1: A variety of applications for superconducting microresonators are shown:
a) Multiplexer for array of SQUIDs [24], b) Persistent current qubit using RF SQUIDs
[25], c) Charge qubit coupled to superconducting microwave resonator [26], d) Kinetic
Inductance Strip Detector [27], e) Quarter wave superconducting resonator coupled to
a CPW feedline [28], f) 16-pixel submillimeter test chip made using Kinetic Inductance
Detectors as a presursor to DemoCam

The submillimeter detectors described in this thesis use superconducting microres-

onators as the sensing element. However, the superconducting microresonators are

versatile devices with diverse applications. They have been used for making SQUID

multiplexers [24], qubits [26, 29], photon detection [28, 30, 31], and for studying basic
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physics [32, 33, 34]. As SQUID multiplexers they find applications in making mul-

tiplexed readouts for large pixel count arrays of low-temperature detectors needed

for novel particle and material physics, astronomy, and material science [24] (Figure

2.1a,b). In quantum computing superconducting microresonators have been used for

reading out charge qubits [26], resolving the number states of microwave photons [35],

stabilising flux qubits [36], and reading out RF qubits [29]. There are also propos-

als for making quantum memories [37] (Figure 2.1c) and coupling to polar molecules

[38] using them, and they have also been used to investigate a variety of basic physics

problems from non-linear oscillators [32] and their applications for making parametric

amplifiers and squeezed states [33] to the physics of the Casimir effect [34].

Si

Niobium (200 nm)

Silicon

Interface Amorphous Layer ?

Figure 2.2: a) Cross section of the CPW geometry. The center conductor is made of
superconducting metal (Nb) and is separated from the metallic ground plane through
air slots deposited on a substrate – typically silicon or sapphire. b) HFSS simulation
of the electromagnetic field of CPW line shown in cross section. High field regions are
seen close to the metal edges – TLSs in these regions with dipole moment pointing
in direction of the field and energy splitting resonant with the field will couple to it
most strongly.

The early experiments in our group proceeded by noting that, instead of using

superconductors close to their transition temperature as bolometric detectors [39],

the kinetic inductance effect may be used to readout the change in the quasi-particle

density of a superconducting film produced as a consequence of absorption of pair-

breaking photons. This can be done by fabricating a thin film resonator using the

superconductor and measuring the change in its resonant response to a microwave

probe signal [40, 41, 42]. Indeed, the detector proof of principle was demonstrated
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by energy-resolved detection of a 6 keV X-ray photon [28, 31, 43]. However, the

experiments showed an unexplained excess noise which limited the performance of

our detector [28, 27] and will in general limit the sensitivity of any experiment using

the superconducting resonator as sensing or readout element. This noise has been

measured and is seen to be primarily in the resonator frequency jitter or equivalently,

the phase direction [44]. While the exact source of origin and the mechanism of noise

generation is unknown, a likely possibility is that the noise is produced by two-level

systems (TLS) in the amorphous native oxide layers on the metal films or susbstrate

surfaces [45, 44] that couple to the electromagnetic field of the resonator through

dipole coupling (Figure 2.2).

Indeed, TLS models provide a quantitative explanation for the unusual ther-

mal, ultrasonic, and dielectric properties of amorphous materials at low-temperatures

[46, 47, 48, 49], and recent qubit experiments [45] have focused attention on the im-

portant role of TLS in superconducting microcircuits. The TLS level populations and

relaxation rates should vary strongly with the device temperature T , and the level

populations of near-resonant TLS should saturate [44] for sufficiently strong resonator

excitation power Pµw.

This chapter presents the measurements of the temperature and power dependence

of the resonance frequency, quality factor, and frequency noise of superconducting

niobium thin-film coplanar waveguide (CPW) resonators. In order to focus on the

role of the dielectric materials, the measurements were carried out at temperatures

well below the superconducting transition temperature (Tc = 9.2 K). We find that the

frequency noise of the resonators is strongly temperature dependent, decreasing by

nearly two orders of magnitude as the temperature is increased from 120 to 1200 mK,

approximately described by a power law T−1.76. We also find that the resonance

frequency has a significant variation over this temperature range which agrees well

with the standard two-level system (TLS) model for amorphous dielectrics. Hence,
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measurements of the power and temperature variation of resonator frequency and

noise, as presented in this chapter, provide an important test of the TLS hypothesis

and do indeed suggest that the TLS are responsible for the noise in superconducting

microresonators. These results have important implications for optimizing device

design for use as qubits and photon detectors.

2.2 Experimental Introduction

We studied quarter-wavelength resonators made using coplanar waveguide (CPW)

geometry [28, 44]. These have a center metal conductor separated from the ground

plane by two air slots on either side, with most of the electromagnetic field residing

in the slots (Figure 2.2).

Figure 2.3 shows the equivalent circuit and a photograph of an actual device very

similar to the ones that were measured. The resonators are capacitively coupled to

a CPW feedline and are measured using a standard IQ (In-phase and Quadrature-

phase) homodyne mixing technique [28, 27] (Figure 2.4). With proper calibration, the

complex output voltage of the IQ mixer, Z = I + jQ, is proportional to the forward

scattering parameter S21. For excitation frequencies far removed from the resonance

frequency fr, the microwave signal passes unimpeded through the feedline, but close

to fr the resonator loads the feedline resulting in a transmission null. Equivalently,

in the complex plane when the microwave synthesizer’s frequency f is swept through

the resonance, Z(f) follows a circular trajectory [44]. As explained in more detail

below, the resonator’s frequency fr and quality factor Qr may be extracted by fitting

an analytical expression to the measured trajectory Z(f). The combined noise of

the resonator and readout electronics may be measured by setting the synthesizer

frequency f to the resonance frequency fr, then digitizing and analysing the fluctua-

tions δξ(t) = [δI(t), δQ(t)]T [28, 27, 44]. The noise of the readout electronics may be

measured separately by tuning the synthesizer frequency off resonance.
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Figure 2.3: a) Equivalent circuit for superconducting resonator device shown in b).
Transmission line of imepdance Z0 represents the feedline. Resonator is represented
by parallel LCR circuit connected in shunt and capacitively coupled to the through
line. b) Photograph of superconducting resonator [28]. Top view of the device is
shown. White color is the thin film of superconducting metal, Aluminum. Blue is the
substrate, Silicon. Meandered structure open circuited at the top and short circuited
to the ground at the bottom is the quarter-wave transmission line resonator. Also
shown on top is the CPW feedline.

2.3 Device Details

The device we studied was fabricated on a high-resistivity (ρ ≥ 10 kΩ cm) silicon

substrate by patterning a 200 nm thick niobium film using a photoresist mask and

an SF6 inductively-coupled plasma (ICP) etch. The CPW feedline has a 10µm wide

center strip and 6µm gaps between center strip and the ground plane. For the

resonator, these dimensions are 5µm and 1µm respectively. The resonator length is

5.8 mm which results in a resonance frequency of 4.35 GHz. The coupling strength

between the resonator and feedline is set lithographically by the length of the coupling

section, and is characterized by the quality factor Qc that would be measured if no

other losses were present. In general, a number of dissipation mechanisms contribute

to the measured quality factor Qr according to the familiar equation Q−1
r = Q−1

c +

Q−1
sup + Q−1

sub + Q−1
rad + ..., where Qsup is contributed by superconductor loss, Qsub is
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from substrate loss, Qrad describes radiation loss, etc. For the device studied here,

our measurements indicate Qc = 5 × 105.

2.4 Experimental Setup

PID controlled

heater
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(120 mK-1.2K)
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Frequency 
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RT-LNA 

(300 K)
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Power Splitter

Microwave

Frequency 

Synthesizer

Figure 2.4: Block diagram for the experimental setup

The device was cooled to a base temperature of 120 mK using a dilution refrig-

erator [50]. A calibrated RuO2 thermometer [51] was mounted on the copper sample

enclosure and read out using an AC resistance bridge [52]. The temperature accuracy

of this system is quoted to be ± 5 mK. The temperature was controlled using a heater

attached to the mixing chamber of the dilution refrigerator and controlled using the

PID feedback loop of AC resistance bridge[27]. To avoid frequency drifts, the mi-

crowave synthesizer [53] is stabilized using a rubidium standard [54]. The microwave

power level Pµw driving the resonator is adjustable over a wide range by using a pro-

grammable step attenuator A1 before the signal enters the cryostat. After passing
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through the device, the microwave output signal is amplified using a cryogenic HEMT

amplifier which operates at 4 K and has a noise temperature Tn ≃ 4K, followed by

another microwave amplifier at room temperature. The signal level is then adjusted

by a second step attenuator A2; by keeping the sum of the attenuations A1 + A2

constant (in dB), the signal entering the RF port of the IQ mixer is kept near the

optimum level, avoiding both saturation and unnecessary noise. The output voltages

of the IQ mixer are amplified, digitized with 16-bit resolution at a sampling rate of

250 kSa/s, and stored for further analysis.

2.5 Experiment
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Figure 2.5: a) Amplitude vs frequency response of a quarter-wave resonator. b)
Phase vs frequency response of a quarter-wave resonator. c) Response of the quarter-
wave resonator plotted in the complex plane as frequency is swept through resonance.
Red dot shows the on-resonance point. This resonator had a resonance frequency =
4.2924 GHz, Quality factor = 114,300.

21



The frequency sweep data Z(f) and the time series (noise) data δξ(t) were recorded

at device temperatures of 120 to 1200 mK in 40 mK steps, and power levels at the

device of -108 to -72 dBm in 4 dB steps. For each combination of temperature and

power, the freqency sweep data Z(f) were used to determine the resonator frequency

fr and quality factor Qr along with their uncertainties by complex least-squares fitting

to the following nine-parameter model:

Z(model)(f) = (A0 + A1δx) exp[i(φ0+φ1δx)]

[

S
(min)
21 + 2jQrδx

1 + 2jQrδx

]

+A2 exp[iφ2]. (2.1)

Here δx = (f − fr)/fr is the fractional frequency offset, A0 +A1δx allows for a linear

system gain variation over the small frequency interval in the vicinity of the resonance,

φ0 +φ1δx represents a similar linear phase variation (mostly cable delay), and A2 and

φ2 represent the output offset voltages of the IQ mixer in the absence of RF input.

The resonator’s physical response is given by the term in the large square brackets,

which maps to a circle in the complex plane as the frequency offset δx is varied. This

response is characterized by fr and Qr, and has an amplitude of nearly unity away

from resonance but falls to the minimum amplitude S
(min)
21 = 1−Qr/Qc at the center

of the resonance.

The analysis of the time series noise data δξ(t) follows previous work [44] and pro-

ceeds by separating the data into time subintervals and calculating the Fourier trans-

forms δξ(ν) for each subinterval, followed by time (subinterval) averaging in order to

obtain the frequency-domain noise covariance matrix S(ν), defined by
〈

δξ(ν)δξ†(ν ′)
〉

=

S(ν)δ(ν − ν ′). The real part of this matrix is diagonalized at each frequency, which

yields the noise spectra for amplitude (dissipation) and phase (frequency) fluctuations.

In general, the amplitude noise is consistent with the noise floor of the electronics

system as measured off resonance. Therefore, we subtract the amplitude noise spec-

trum from the phase noise spectrum in order to estimate the resonator’s contribution

to the measured phase noise. This subtraction is unimportant at low temperatures
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Figure 2.6: a) Resonator frequency response magnitude showing frequency (phase)
and amplitude noise directions. b) Resonator amplitude and phase noise voltage
spectrum

and high power levels, where the resonator’s phase noise is dominant, but is helpful

when fitting the temperature dependence of the noise in order to avoid introducing

an extra fit parameter representing the level of the noise floor (See Figure 2.7).

2.6 Results

2.6.1 Frequency vs Temperature

The measured resonance frequency fr is plotted as a function of temperature in Figure

2.8. Specifically, we plot the frequency shift δfr(T, Pµw) = fr(T, Pµw) − fr(120 mK,

-72 dBm), for two values of readout power Pµw, -72 dBm and -92 dBm. Note that

the resonance frequency increases with temperature. In contrast, the variation of

the superconductor’s surface reactance with temperature as predicted by the Mattis-

Bardeen theory [55] would cause a frequency shift (dashed curve in Figure 2.8a) that

is several orders of magnitude smaller and opposite in sign. However, the data fits

quite well to the functional form predicted by two-level system (TLS) theory [49].

Above 900 mK, this fit can be further improved by including the Mattis-Bardeen

contribution according to the following model, since effects of superconductivity start
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becoming significant close to Tc/10:

δf
(model)
r (T, Pµw)

fr

= C1(Pµw) + C2(Pµw)

[

Reψ

(

1

2
+

hfr

2πikbT

)

− log

(

hfr

kbT

)]

+
C3

4

[

σ2(T ) − σ2(0)

σ2(0)

]

. (2.2)

This model is specified by three parameters at each power level. The first parameter

C1(Pµw) allows a small power-dependent shift of the resonance frequency fr relative

to fr(120 mK, -72 dBm). The second parameter C2(Pµw) is the coefficient for the

term arising from linear TLS response theory [56] and is allowed to vary with power

to account for possible saturation of TLS whose frequencies are close to the resonator

frequency. The third parameter C3 represents the kinetic inductance fraction of the

CPW line [57] and should be independent of power. The difference plot between the

overall fitted and measured data indicates that the fit matches the data to within the

measurement accuracy of the system. This is set by our temperature readout.
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Figure 2.8: (a) Resonance frequency shift vs temperature for -72 dBm (Red) and
-92 dBm (Blue) readout power. Dashed line shows the prediction of frequency shift
using Mattis-Bardeen theory scaled up by a factor of 100. Solid lines represent fits to
the data using TLS theory and Mattis Bardeen theory. (b) Difference plot between
the data and the fits

The data was fitted for readout power values from -72 dBm to -92 dBm (steps of

-4 dBm) to extract the coefficient values as a function of power. The value of kinetic

inductance fraction was indeed found to be constant (C3 = 0.104±0.021) as a function

of power, in close agreement with the theoretical value [57] C3 = 0.125. Meanwhile,

C1 = 1.948 ± 0.002 × 10−5 at -72 dBm and 1.902 ± 0.002 × 10−5 at -92 dBm, while

C2 = 9.09±0.02×10−6 and 9.39±0.02×10−6 for -72 and -92 dBm, respectively. The

coefficient C2 is a measure of the number of TLS that are coupled to the resonator.
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This relationship may be quantified in terms of the microwave loss tangent δ of the

amorphous TLS material and the | ~E|2-weighted volume filling fraction η (see eq. (2.3),

(2.4)) of that material according to C2 = ηδ. Typical amorphous materials have loss

tangents of order δ ∼ 10−3. Assuming a uniform distribution of TLS on the surface

of the resonator, perhaps due to surface oxides, a reasonable oxide thickness of ∼ 10

nm would be consistent with a filling factor of η ∼ 10−2 which we estimate.

2.6.2 Frequency vs Power

Figure 2.9 shows the power dependence of the resonance frequency shift in more

detail. For a fixed temperature T , we find that the frequency shift δfr scales with

power approximately as P 0.3
int , where Pint = 2Q2

rPµw/(πQc) is the resonator’s internal

microwave power. TLS theory [58] predicts a
√

Pµw dependence for the frequency

shift. However, the resonators have a spatially dependent field which has not been

included in the theory. For a fixed Pµw the temperature dependence of the resonance

frequency shows a peak at about 240 mK, in general agreement with the TLS theory

[58].

2.6.3 Effects of TLS on Resonator Frequency and Quality Factor

Using basic electro-magnetic theory and considerations for energy stored and lost in

the resonator in one cycle we have the expression for frequency shift and resonator

quality factor as:

δfr

fr

=
2frε0Z0L

V 2(0)

∫

dx

∫

dy
∣

∣Ē(x, y)
∣

∣

2
Re[δεd(x, y)] (2.3)

1

Q
=

2frε0Z0L

V 2(0)

∫

dx

∫

dy
∣

∣Ē(x, y)
∣

∣

2
Im[δεd(x, y)]. (2.4)

Here fr is the resonance frequency, ε0 is the free space permittivity, Z0 is the char-

acteristic impedance, L is the resonator length, V (0) is the voltage at open circuited

end of CPW, Ē(x, y) is the electric field distribution in x-y plane - perpendicular to
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Figure 2.9: Resonance frequency shift (δfr(T, Pint)) vs resonator’s internal mi-
crowave power (Pint) at constant temperature. The frequency shift (f(T, Pint) −
f(T, Pmin

int )) is plotted on the y-axis where Pmin
int is the minimum internal microwave

power of the resonator.

direction of wave propagation in the resonator, and δεd is the change in dielectric

constant with temperature due to changes in TLS dynamics.

From the TLS theory we have [49]

δεd(x, y) =
4δl(x, y)εd

π

[

ψ

(

1

2
+

hfr

2πikbT

)

− ln

(

hfr

2πkbT

)]

(2.5)

where ψ is the digamma function, δl is the material loss tangent purely dependent on

material parameters as:

δl(x, y) =
d2

0P̄ (x, y)K0π

2ε0εd

(2.6)

where d0 is the dipole moment of the TLS, P (x, y) is the position dependent density

of states, and K0 is a material dependent parameter.

Using the expressions Z0 =
√

L
C and fr = vp

4L
= 1

4L
√
LC , where L and C are
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inductance and capacitance per unit length, vp phase velocity, and defining normalised

electric field Ēn(x, y) = Ē(x, y)/V (0)

1

Q
=
ε0

C

∫

dx

∫

dyεd(x, y)Ē
2
n(x, y)δl(x, y) tanh

(

hfr

2kbT

)

. (2.7)

Similarly the TLS contribution to the frequency shift can be written as:

δfr

fr

=
2ε0

πC

∫

dx

∫

dyεd(x, y)Ē
2
n(x, y)δl(x, y)

[

ψ

(

1

2
+

hfr

2πikbT

)

− ln

(

hfr

2kbT

)]

.

(2.8)

By comparing the second term in expression equation (2.2), (2.7), and (2.8), and

accounting for saturation of the TLSs due to microwave power [56] we can write the

relation between frequency shift coefficient C2 and QTLS as:

QTLS = Q0 coth

(

hfr

2kbT

)

√

1 +
Pµw

Pcritical(T )
(2.9)

where Q0 = 2fr/πC2 and Pcritical ∼ coth
(

hfr

2kbT

)

T β. Figure 2.10 indicates that this

formula does not describe the data well; it does however, capture the decrease in Qr

as the temperature is increased, especially at low temperatures.

The interpretation of this data in the context of a TLS model is made difficult

by the fact that the microwave readout power levels used in our experiment are

sufficiently high to saturate the dissipation [44, 45, 58]. In contrast, the resonance

frequency is much less susceptible to TLS saturation [58] and can still provide a

robust technique for probing TLS effects. Although microwave power could have

been reduced to avoid TLS saturation, at these low powers the resonator noise drops

below the HEMT amplifier noise floor. Measuring the temperature dependence of

frequency noise is a key result of this chapter.
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2.6.4 Frequency Noise vs Temperature

The temperature and power dependence of the resonator was quantified by first cal-

culating the fractional frequency noise spectrum [44], Sδfr
(ν)/f2

r , which was then

averaged over the range 200–300 Hz, a clean portion of the spectrum well above the

HEMT noise floor at low temperatures. The resulting values are plotted in Figure

2.11. This demonstrates the very strong temperature dependence of the noise; as the

temperature is increased from 120 mK to 1200 mK the noise decreases by almost two

orders of magnitude. The overall trend is reasonably well described by the following

power law form:

S̄δfr
(ν)

f 2
r

= ATαP β
µw (2.10)

with the indices α = −1.73 ± 0.02, β = −0.46 ± 0.005 consistent with previous work

[44]. An equivalently good fit is obtained by using a functional form motivated by

using the TLS theory [58]:

S̄δfr
(ν)

f 2
r

= ATαP β
µw tanh2

(

~ω

2kbT

)

(2.11)

with α = 0.14±0.02 and β = −0.46±0.005. The values for these coefficients are con-

sistent with the values obtained for power law coefficients, since at high temperatures

tanh2
(

hfr

2kbT

)

scales as 1/T 2.

2.7 Conclusion

In conclusion, both the resonance frequency and resonator noise show substantial

variation at temperatures far below the superconducting critical temperature. Fur-

thermore, the variation of the resonance frequency is well described by TLS theory

with plausible values for loss tangent and filling factor. Combined together, these

results strongly suggest that the resonator noise is also due to TLS and not related to

30



the superconductor. The temperature dependence of this noise has important prac-

tical implications. For instance, if the TLS origin of the noise is correct, designing

resonators to operate in the regime fr << 2kT/h could result in lower noise and

improved performance.
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CHAPTER III

PIXEL DESIGN

3.1 Introduction
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Figure 3.1: Schematic of a submillimeter detector system showing its constituent
components

Figure 3.1 shows the schematic for a system used for submillimeter astronomy.

The telescope collects the radiation from a distant source and illuminates the detector

array which is readout by electronics that together with the array forms the camera.

The photon detectors and a part of their readout circuitry typically work at cryogenic

temperatures due to the stringent performance requirements. For our devices the

operating temperature is close to 220 mK and the camera, along with a part of

the readout circuitry, is housed inside a cryostat. This chapter concentrates on the

design of a submillimeter camera pixel with the aim of finally designing the 16-pixel,

two-color camera discussed in Chapter 5.

A submillimeter pixel is comprised of 4 sub-components:
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1. Antenna – To efficiently couple the broadband submillimeter radiation coming

from the telescope to the detector,

2. Bandpass filters (BPF) – To reduce the bandwidth of light to frequencies of

interest before transmitting it to the detector. Its primary purpose is to remove

the frequencies at which the atmosphere is opaque (see Chapter 4) so that they

do not load the detector and degrade its performance,

3. Submillimeter transmission line – To transmit the filtered radiation from the

bandpass filters to the photon detector,

4. Photon detector – To act as a sensor for submillimeter radiation.

Each of the above components can be designed using different technologies. Figure

3.2 compares two different implementations of a 16-pixel camera. The top image

shows Arcminute Cosmology Bolometer Array Receiver (ACBAR) [59] which is an

extremely sensitive multifrequency, millimeter-wave receiver that has been used for

measurements of the temperature anisotropies of the CMB and SZE in galaxy clusters.

This instrument has been extremely successful in generating a wealth of data which

has been used to investigate the cosmological parameters by measuring both, the

primary anisotropies from the big bang and secondary anisotropies generated by the

SZE [60, 61]. The bottom image shows a demonstration camera (DemoCam) whose

future generations will be used for observing submillimeter galaxies, undertaking

galactic plane surveys and measuring SZE.

The remainder of this section discusses the possible alternate designs for the sub-

millimeter pixel components that are typically used in current instruments and inspite

of excellent performance prevent a scalable architecture which is required for future

cameras.

Figure 3.2 shows that one of the designs that can be used for implementing an

antenna is by using metal feedhorns. While these have excellent performance, they
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are massive, large, and add to the thermal mass of the focal plane. Further, they

directly focus the submillimeter light on to the detector, which limits the absorption

area of the detector to λ2 due to diffraction limits. DemoCam implements antenna

on chip using multi-slot, planar geometry [62]. This results in a small thermal mass.

Further, it has a narrow beam since it combines light from multiple slots, resulting

in a large effective area (Aeff ) for the antenna, as explained in Section 3.2. This

allows us to couple the light from the telescope directly to the device without any

interceding on-chip optics (e.g. fly’s-eye lenses [63]) and greatly enhances scalability.

Another major advantage of the antenna design is its multi-octave bandwidth.

The band pass filters can be implemented using metal-mesh filters in conjunction

with IR blocking materials such as flurogold and teflon [64]. We have implemented

on-chip, lumped-element, superconducting band-pass filters for the DemoCam. The

advantages and disadvantages of the two approaches are discussed in Chapter 4.

ACBAR uses hollow metal waveguides as submillimeter transmission lines, which

may be replaced by low-loss, superconducting microstrips [65] implemented on the

same substrate as the rest of the pixel. These microstrips pass submillimeter signal

below 700 GHz with high efficiency, but are lossy for higher frequencies and can be

used for filtering out infrared (IR) wavelengths.

The photon detectors used in ACBAR are bolometers made from gold-plated sil-

icon nitride micro-mesh absorbers with neutron transmutation doped (NTD) germa-

nium thermistors [66]. These are very sensitive but require separate JFET preamps

and readout wiring for each detector, which rapidly becomes impractical for large

arrays. It is possible to make multiplexed readouts for bolometers that use supercon-

ducting Transition Edge Sensor (TES) thermistors [39], but the multiplexing chips

are fabricated separately and then bump bonded to the camera chip making it ex-

pensive, complicated, and lowering the yield [24]. We use a novel superconducting

photon detector technology - Microwave Kinetic Inductance Detectors (MKIDs) [27]
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which is a powerful new approach to making large arrays. These arrays can be easily

read out using just two microwave coax cables by frequency division multiplexing.

The fabrication process for our devices is relatively simple compared to bolometers

both in terms of being monolithic and requiring fewer mask layers allowing for higher

yields, lower costs and greater scalability.

1.78”

1
.6

1
” 16 Pixel, Two-color

Camera Array

(DemoCam)

16 Pixel, Camera Array

(ACBAR)

Figure 3.2: Comparing 16-pixel cameras made using two different technologies for
constituent elements

The next few sections discuss the designs of each of these components.
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3.2 Multi-slot Antenna

Sf

Ss

La

Ls
W

To BPF/detector

Antenna Slot

Nb Ground Plane

Radial Capacitor

Feednetwork

Figure 3.3: Schematic of multi-slot antenna. Blue regions are where the niobium
metal is deposited. White regions are where a slot has been etched into the niobium
and the substrate can be seen. Grey color shows the wiring (top) layer of the mi-
crostrip structure, also made out of niobium. The drawing shows 8 slots and 8 taps
on each slot for clarity, the actual antenna has 16 slots and 16 taps on each slot.
The parameters defining the antenna geometry are slot length Ls, array length La,
number of slots N , and number of taps on each slot M . These are related to distance
between slots Ss and distance between taps Sf as Ss = La/(N − 1) and Sf = Ls/M ,
respectively. t is the slot width. The values of these parameters for our antenna
design are tabulated in Table 3.1

This section briefly presents the antenna design which is detailed in [62]. The

antenna has a design beam width of 19◦ full width half maximum (FWHM) at 250

GHz. Frequencies in the range 200 - 400 GHz are of interest since they coincide with

one of the atmospheric passbands (Chapter 4).

The antenna is implemented by etching 16 slots in a 2000 A thick niobium film

deposited on a high-dielectric-constant substrate, e.g., Si (εd = 11.9). Each of the slots

is bridged by 16 microstrip taps (Figures 3.3, 3.4). The microstrip design is presented
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Figure 3.4: Side view of the antenna

in the next section. When electromagnetic radiation impinges on this structure it

excites currents in the ground plane and electric fields in each of the slots. The

submillimeter power from the slots is collected by the microstrip taps bridging them.

The broadband short (shown as the radial capacitor on top of the taps in Figure 3.3)

forces the power to flow in the direction of binary tree power combining network.

Figure 3.4 shows the sideview of the antenna. It shows that the antenna is illumi-

nated from the substrate side. This results in a higher coupling efficiency since most

of the the antenna beam resides in the substrate since it has a higher dielectric con-

stant than vacuum. The front-to-back ratio, the ratio of the integrated beam power

on the substrate side to the vacuum side, is given by
√
εd, for a narrow beam antenna

[62]. The antenna efficiency for a silicon substrate, assuming a perfect anti-reflection

(AR) coating is:

ηf =

√
εd

1 +
√
εd

= 78% (3.1)

The material used for the antireflection coating between vacuum and substrate to

increase the antenna efficiency should ideally have a dielectric constant εAR =
√
εd =

3.4. A convenient choice of material for this purpose is quartz, with εAR = 3.8. The

ideal thickness for the AR coating can be calculated using the quarter-wave resonance
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condition ta =
λ0

4
√
εAR

= 154 µm, where λ0 is the wavelength of interest in free space

(1200 µm at 250 GHz).

θin

θout

Vacuum, ε = 1

Si, ε = 11.5

Vacuum

ts

Ss≈ Sf

Antenna

Main Beam

Gra"ng Lobes
Reverse Lobe

Figure 3.5: Antenna beam pattern using a diffraction grating model

The antenna was designed to couple efficiently to the telescope optics. This is

done by ensuring that the beam from the telescope optics matches the antenna beam

pattern well. A convenient way to characterize the beam angle is the F -number,

defined as F = 1/2 tan θout where θout is FWHM beam angle outside the substrate

(Figure 3.5). For the first on-telescope demonstration of our camera the coupling

optics from the Bolocam instrument [15] were used and the antenna was designed for

an F = 3 beam at 250 GHz.

The beam width is determined by the overall size of the antenna, and the beam

matching condition translates to antenna size Ls,a ∼ Fλoptics. More precisely, note

that if the array of slots and taps is dense compared to wavelength of interest, for

uniform slot excitation the far-field beam pattern of the slot array is expected to be

same as the far field diffraction pattern of a uniformly lit aperture given by [62]:

dP

dΩ
∝ sinc2

(

πLs

λ0

sin θ cosφ

)

sinc2

(

πLa

λ0

sin θ sinφ

)

(3.2)
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Antenna Parameters

Slot length (Ls) 3.2 mm

Array Length (La) 3.2 mm

Number of slots (N) 16

Number of feeds (M) 16

Slot Width (W) 20 µm

Slot Spacing (Ss) 200 µm

Feed Spacing (Sf) 187.5 µm

Substrate Si, Dielectric 

Constant (εd)

11.5

Substrate thickness (ts) 500 µm

AR coating, Dielectric 

Constant (εAR)

3.8

Quartz thickness (ta) 154

Frequency range 100 – 416 GHz

Beam angle (2θout) @ 

300 GHz, FWHM

16.8o

Table 3.1: Dimensions for the antenna layout

where Ω = (θ, φ) are the usual polar co-ordinates, and λ0 is the free space wavelength.

Combining this expression with definition for the F -number the antenna length is

given by [62]:

Ls,a = 0.886F−3dBλ0 (3.3)

where F−3dB = 3 defines the FWHM beam size. We get a slot and array length of

3.2 mm. The final value used for slot length was 3 mm due to layout considerations.

The array slot and tap spacing is determined using high-frequency response of the

antenna. At high frequencies the discreteness of elements constituting the antenna

leads to a diffraction grating-like behavior (Figure 3.5). This results in the formation

of grating sidelobes, which cause power to be lost into the substrate modes, reducing
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the antenna efficiency. The antenna beam pattern in the plane perpendicular to the

slots depends on the array factor given by [62]:

A(Ω) =
sin(Nt/2)

sin(t/2)
(3.4)

where

t = 2π
√
εdSs sin θout/λ0 (3.5)

and Ss is the slot spacing. The array factor has a strong peak as θout → 0, A(Ω) → N .

It also has peaks at t = ±2nπ where n is a positive integer. These are the grating

sidelobes and to prevent their formation, accounting for the finite beam width, the

required condition is given by [62]:

Ss ≤
λ0√
εd

(

1 − 1

N

)

(3.6)

which gives the expression for minimum number of slots to prevent appearance of

sidelobes as [62]:

N ≃ Ls,a
√
εd

λ0,min

+ 2. (3.7)

A similar expression can be obtained for the minimum number of taps required [62].

To satisfy these conditions using a binary tree feed network we need 16 slots and 16

taps on each slot for our antenna design for λ0,min = 721 µm (fmax ∼ 416 GHz).

Equation (3.5) can be used to calculate the upper cutoff frequency of the antenna

based on its beam pattern. The lower cutoff frequency for the antenna can be cal-

culated by using the fact that at long wavelengths the beam becomes broader until

finally it violates the condition for total internal reflection. The main beam does not

reach its null before critical angle for λmax = Ls,a, as may be checked by substituting

sin θ = 1/
√
εd in expression for t. This gives us 100 GHz as the antenna lower cutoff
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frequency. Finally, the approximate width for each of the slots was determined using

a method of moments calculation. The antenna has an impedance of ≃ 20 Ω for a

slot width of 20 µm at 250 GHz [62]. These numbers, along with other dimensions

for our antenna design, are tabulated in Table 3.1.

3.3 Microstrip and feed network Design

d
1

d
2

d
3

d
4

d
0

Figure 3.6: Feed network schematic with 16 taps

This section explains the design of binary tree feednetwork which combines the

submillimeter power from each of the taps and the slots of the antenna and brings it

out into a single output microstrip.

Figures 3.6 and 3.7 show schematics of the layout for the microstrips used to im-

plement the feednetwork. The power from the 16 taps on a single slot are combined in

a 4-level binary tree. To ensure in-phase power combination, the network is designed

so that the distance from output microstrip to each of the taps on any slot is equal.

The microstrips are implemented using a 4000 A thick SiO2 dielectric and a 2000

A thick niobium wiring layer. The antenna taps were simulated using SUPERMIX

[67], a software that simulates superconducting circuit elements and a width of 2.5

µm was chosen to obtain an impedance of 20 Ω at 250 GHz. This value is close to

the antenna impedance as is needed to optimise the coupling of the millimeter signal.

The SiO2 dielectric constant value for the SUPERMIX simulations was assumed to be

εd = 4. This value is close to the bulk value and is well corroborated by the bandpass

filter measurements (Chapter 4). The niobium bandgap is 700 GHz which allows us
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Figure 3.7: a) Feed network schematic. Blue shows the niobium deposited on the
silicon substrate which is seen in white in the antenna slot. Black shows the niobium
wiring layer and the geometry of the feednetwork. b) Schematic of chamfered corner
of the microstrip
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Figure 3.8: Optical image of the antenna slot and the feednetwork taken under the
microscope
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Tap Power Combining Network

t 26.5

w 2.5

Length Start Width Stop Width

d0 95 2.5 2.5

d1 170 5.8 4.8

d2 360 4.8 2.5

d3 372 5.8 2.5

d4 744 5.8 2.5

d5 1632 5.8 2.5

Slot Power Combining Network

t 20

w 2.5

Length Start Width Stop Width

d0 101.5 2.5 2.5

d1 170 5.8 4.8

d2 377 4.8 2.5

d3 397 5.8 2.5

d4 797 5.8 2.5

Table 3.2: Table with dimensions for the feednetwork corresponding to Figures 3.6
and 3.7

to transmit signals up to 700 GHz with low loss. However, higher-frequency signals

would make niobium lossy and degrade the antenna efficiency.

At each level of the binary tree, two microstrips merge to form a single microstrip

and summing the submillimeter power carried by them in the procees. The width

of the resultant microstrip is increased from original value of L1 (= 2.5 µm) to a

new value L2 (= 5.8 µm) (see Figure 3.7) so that the admittance of the combined

microstrip section is equal to the sum of the admittance of individual sections. The

width of the new microstrip is then adiabatically linearly reduced to the original

value of L1 to ensure that the final microstrip width at the taps remains within the

43



lithographic limits and to keep the impedance of the output microstrip the same as

the impedance of the antenna taps.

All microstrip corners are chamfered to reduce added reflections due to the extra

corner capacitance [68]. The chamfer is a made at 45◦ and the geometry is shown in

Figure 3.7b. Also, visible in Figures 3.6 and 3.7 the first binary tree level is made

with an added microstrip section instead of directly combining the two microstrips

as is done at higher levels. This is seen as an extra, u-shaped microstrip section that

allows us to taper down the microstrip over 530 µm. If the microstrips were directly

joined as in the remaining sections, this distance would be reduced to ∼ 180 µm

resulting in added reflections and poor coupling of the submillimeter signal [69].

The microstrip loss is dominated by the dielectric loss tangent which, for SiO

dielectric mictrostrip feednetwork, has been measured to be around 10−3 [65]. The

loss was found to be almost constant ∼ 0.5% per guide wavelength (λg) at 1.5 K

[65]. We expect similar loss tangents for for the SiO2 dielectric films used in our

feednetwork. The total length of the feednetwork and output microstrip is ∼ 18λg

which should result in loss of around 10% from the feednetwork.

Figure 3.8 shows an image of the feednetwork implemented on the camera pixel.

Table 3.2 gives the actual dimensions of the feednetwork that was finally used.

3.4 Beam Map Measurement

The antenna and the feednetwork were characterised by measuring the antenna beam

pattern. This was done using the optical setup whose schematic is shown in Figure

3.9. The pixels were illuminated using a 400 C blackbody source mounted on an x-y

stage. The blackbody source was raster scanned in front of the dewar windows and

the detector response was readout for the measurement. A combination of polyte-

trafluoroethylene (PTFE) and fluorogold windows was used in the optical chain for

blocking the out-of-band infrared radiation.
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Figure 3.9: Optical chain used to measure the beam maps

The figure also shows a lens was used in the optical chain. The cryostat used

to measure the beam maps was adapted from an existing setup and had windows

smaller than the beam size. The lens was needed to ensure that the main beam was

not blocked by the dewar winows. This arrangement will reduce the efficiency of

coupling to the telescope optics due to beam mismatch and will be rectified for future

cryostat designs. The lens has a diameter 3.67” and a radius of curvature of 75 mm

for the parabola on both sides. The maximum thickness was 32.45 mm. PTFE has

a refractive index of 1.44. The distance between Lyot stop and the pixel was twice

the lens focal length, such that the location of the antenna beam waist is at the same

location as the Lyot stop. The Lyot stop is a cold surface (4 K) with an aperture in

45



-2

0

2

-2

0

2

0

0.5

1

X (inches)Y (inches)

N
o

rm
al

is
ed

 R
es

p
o

n
se

-2 -1 0 1 2
-2

-1

0

1

2

X (inches)

Y
 (

in
ch

es
)

-2 -1 0 1 2
-2

-1

0

1

2

X (inches)
Y

 (
in

ch
es

)

a)

b)

c)

d)

e)

f)

BPF 1 (209 - 265 GHz) BPF 2 (335 - 361 GHz)

−1.5 −1 −0.5 0 0.5 1 1.5
0

0.1

0.2

0.3
0.4

0.5

0.6
0.7

0.8
0.9

1

Radius (Inches)

N
o

rm
al

is
ed

 R
es

p
o

n
se

-2

0

2

-2

0

2

0

0.5

1

X (inches)Y (inches)

N
o

rm
al

is
ed

 R
es

p
o

n
se

−1 0 1 2

0.5

0.6

0.7

0.8

0.9

1

Radius (inches)

N
o
rm

al
is

ed
 R

es
p
o
n
se

Figure 3.10: a), b), d), e) show 3D (top) and 2D (bottom) contour maps for the
antenna beams. x and y axes show the location on the antenna beam and z axis
(color in the 2D map) shows the normalised antenna response at the location. c), f)
show ZEMAX simulations for the same. All the plots are at a distance of 13.9” from
the Lyot stop. The plots in the left column are for the 209-265 GHz band and in the
right column are for 335-361 GHz band.

the center, which terminates the antenna diffraction sidelobes but lets the antenna

main beam pass through the aperture.

Figure 3.10 shows the beam maps for the antenna in the two frequency bands (209-

265 GHz, 335-361 GHz). The contour plots are the actual data with the blackbody

source 13.9” away from the Lyot stop. The bottom two plots are the simulations for
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the same optical configuration as used to take the beam maps using ZEMAX [70]. The

near-field simulations done using ZEMAX result in fringes in the calculated response

which have been smoothed using a box car function. Residues of these smoothed out

fringes are still visible as, for example, the dip at the center of the 335-361 GHz band

(Figure 3.10 f)). However, the beams are seen to be well defined with sharp skirts.

The measured FWHM value of the beam matches the ZEMAX simulations well, with

a beam diameter of 2.45” (2θout = 10◦).

We notice a slight dip at the center of the beam for the first BPF band (209-265

GHz) and a small hump for the second BPF band (335-361 GHz) in the measured

response. These features may be a result of making the beam map measurements in

the near field. The far field is 40” away and at that distance a 400 C blackbody gives

a poor signal-to-noise ratio, which results in poor quality beam maps. A stronger

source (1000 C) will be used in the far field for further studies. But the results for

simulations and measured beam maps are seen to be in good agreement, and the

quality of beam maps was good enough to use the pixel for first demonstration of the

camera on the sky (Chapter 5).

3.5 Photon Detector Design

The photon detectors used to detect the submillimeter wave signal were implemented

using Kinetic Inductance Detector (KIDs) technology [27] developed in our group at

Caltech and JPL. This section outline the physics and operating principles of these

devices.

3.5.1 Physics of Microwave Kinetic Inductance Detectors

KIDs are pair-breaking, superconducting photon detectors. Electrons in the ground

state of a superconductor are bound together to form Cooper pairs. This results in an

energy gap in the electronic density of states, similar to semiconductors. The energy

gap is typically a couple of meV and falls in the submillimeter frequency range. The

47



table 3.3 lists the values for some typical superconductors. When photons with energy

higher than the Cooper pair binding energy (2∆) are absorbed in a superconductor,

the Cooper pairs are broken resulting in the formation of single electron quasi-particles

(Figure 3.11). This quasi-particle density perturbation causes a measurable change

in the surface impedance of the superconductor, which can be used to make a photon

detector.

Figure 3.11: Schematic to explain Cooper Pair breaking in superconductors due to
photon absorption. Cooper pairs at the Fermi energy break into quasi-particles when
struck by a photon with energy hν > 2∆.

Figure 3.12 plots the change in surface reactance (δXs), surface resistance (Rs),

and quasi-particle density (nqp) of the superconductor as a function of the temper-

ature. The dependence of the thermal quasi-particle density on temperature can be

Superconductor Energy Gap (meV) Energy Gap (GHz)

Aluminum 0.375 90

Tantalum 1.45 350

Niobium 2.9 700

Table 3.3: Energy gaps of some typical superconductors in meV and GHz
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Figure 3.12: A plot showing surface resistance, change in surface reactance, and
quasi-particle density in aluminum as a function of temperature at 10 GHz (Credit:
Prof. Jonas Zmuidzinas)

calculated using:

nqp(T ) = 2N0

√

2πkBT∆(0)e−∆(0)/kBT (3.8)

where N0 is the single spin density of states at the Fermi energy, kB is the Boltzmann’s

constant, ∆(0) is the energy gap at 0 K and T is the temperature. For Aluminum

N0 = 1.72 × 1010/eV/µm3 including the electron-phonon enhancement factor [27].

The surface impedance change with temperature can be calculated using the

Mattis-Bardeen theory [55]. The figure shows that the δXs, Rs and nqp, all de-

crease exponentially with the temperature which indicates that the responsivity of

the detector remains constant so long as it is operated well below critical temperature

of the superconductor. This can shown more rigorously as follows. The response of

the superconductor to pair breaking submillimeter radiation may be quantified by

change in surface impedance per change in quasi-particle density as:
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Rnqp =
δLs

δnqp

(3.9)

For thin films the fractional change in surface inductance depends on fraction change

in imaginary part of conductivity (σ2) as:

δLs

Ls

= −δσ2

σ2

(3.10)

Rnqp can then be written as:

Rnqp = −Ls

σ2

δσ2

δnqp

(3.11)

Using Mattis-Bardeen theory we have, assuming temperature much lower than su-

perconductor’s transition temperature:

δσ2

δnqp

= − σ2

2N0∆(0)

(

1 +

√

2∆(0)

π2~ω

)

(3.12)

Using Ls =
1

σ2t
, for thin films, t being the film thickness, we get the final expression

for Rnqp as:

Rnqp =
δLs

δnqp

=
1

2N0∆(0)σ2t

(

1 +

√

2∆(0)

π2~ω

)

(3.13)

which is nearly independent of the temperature so long as the film is well below its

superconducting transition temperature implying the same for the responsivity of the

photon detector.

Small changes in Zs of the superconductor (e.g., Al) can be sensitively measured

by fabricating a transmission line resonantor out of it. The transmission line resonator

is made using the coplanar waveguide geometry similar to that discussed in Chapter 2

and are readout using a similar homodyne measurement scheme. The ideal resonator

response is given by (Figure 3.13):
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S21(δx) =

[

1 − Qr

Qc

1

1 + 2jQrδx

]

(3.14)

where δx =
f − fr

fr

, where f is the microwave readout frequency and fr is the reso-

nance frequency, Qr and Qc are the resonator total quality factor and coupling quality

factor, respectively.

1

cQ
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Figure 3.13: a) Polar plot of S21 data (thick blue line) and the fit (thin green line).
The resonator has a resonance fr = 5.334 GHz and Qr = 9866. b) A schematic of
the S21 plotted in complex plane

The magnitude of the complex response is seen as a dip in the microwave forward

scattering parameter (S21) at the resonance frequency (Figure 3.14). The figure also

shows change in the response of the resonator as it is exposed to the submillimeter

radiation of increasing intensity. The submillimeter radiation for this experiment was

generated using a blackbody source whose temperature can be varied from 4 to 20 K

in steps of 2 K. As the temperature of blackbody is changed the resonance frequency

of the device changes by approximately 30 KHz for every 2 K change in blackbody

temperature. The total change in the device resonance frequency and quality factor

is 300 KHz and 1400 over the temperature sweep range starting with initial values
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of 5.334 GHz and 9866, a fractional change of 5.6×10−5 and 0.1419, respectively.

This happens due to the increase in surface impedance and quasi-particle number

consistent with the trend in Figure 3.12. The total bandwidth of the resonator is

close to 500 KHz and the above changes in Qr and fr are easily discernible.

The responsivity of the resonator can then be calculated as change in S21 per

change in submillimeter power (Popt) and can be written as:

R =
δS21

δx

δx

δLs

δLs

δnqp

δnqp

δPopt

(3.15)

where
δLs

δnqp

is given by equation 3.13 and
δnqp

δPopt

defines the efficiency of the optical

chain. Differentiating equation 3.14 we have

dS21

dδx
=
Q2

r

Qc

[

d(1/Qr)

dδx
+ 2j

]

(3.16)

The total quality factor of the resonator is given by the usual formula 1/Qr = 1/Qc +

1/Qi where the power lost to the outside world through the coupler limits Qc and

the resonator internal losses limit Qi (See Table 3.4). The expression for Qr is Qr =

QcQi

Qc +Qi

and the responsivity scales as R ∼ QcQ
2
i

(Qc +Qi)2
which for small values of Qc

scales as R ∼ Qc and for large values of Qc scales as R ∼ 1/Qc. It is easily shown

that the responsivity maxima occurs at Qc = Qi by checking for the extremum of

Q2
r/Qc with respect to Qc where Qi is the internal quality factor of the resonator

under loaded conditions (See Table 3.4). The differential term inside the brackett

in equation 3.16 is the change in the Qr with the change in fr due to change in the

quasi-particle density due to the photon absorption and can be calculated using the

Mattis-Bardeen theory.

3.5.2 Resonator Design

Figure 3.15 shows the photon detector. A hybrid design is used for the resonator

where most of the coplanar waveguide is made using niobium superconductor but the
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Figure 3.14: The forward transmission |S21| with change in submillimeter signal
power. a) shows the change in magnitude of the response while b) plots the response
change in the complex plane (similar to Figure 2.5). Blue lines and dots show the
change in the complex response at a constant readout frequency. The measurement
was performed using the circuit shown in Figure 2.4. As the submillimeter power
is increased by raising the illuminating blackbody temperature from 4 to 20 K the
curves are shown in color changing from black to red. The data shown is for a hybrid
resonator (see Section 3.5.2) made using a 20 nm thick film of aluminum on sapphire
substrate. The total length of the resonator is 3.5 mm

Mechanism Approx.Q

Substrate loss 1,000,000

CPW radia!on 1,000,000

Submm Microstrip Coupling 100,000

300 K Op!cal loading 15,000

Coupler length (150 μm on Si) 15,000

Table 3.4: Table for effects limiting resonator Q

sensitive short-circuited end of the resonator where the photons are absorbed is made

out aluminum. Thickness of the niobium film is 2000 Å while that of aluminum
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Figure 3.15: Schematic of a hybrid coplanar waveguide resonator used as a photon
detector

Microstrip 

Wiring

CPW Slots

Niobium 

Plug/Ground
CPW Center

Conductorb)

a)

Figure 3.16: a) Picture of the submillimeter coupling section of the MKIDs with
microstrip from the bandpass filter running over the aluminum part of CPW center
strip. b) Schematic close up (not to scale) of submillimeter coupling end of the
MKIDs. niobium ground plane is shown in blue. Aluminum layer is shown in orange,
while the niobium wiring layer is shown in grey

54



Geometry

(Center-Slot)

(µm)

Coupling 

Constant

(µm/GHz)2

6-4 3.5x1010

6-3 3.57x1010

6-2 3.79x1010

7-1 4.55x1010

5-0.5 5.67x1010

5-1 6.6x1010

Table 3.5: Table for coupling strength for different CPW geometries

film is 200 Å. This design is necessary since making the entire coplanar waveguide

using aluminum would cause the sub-mm radiation to couple to the resonator directly

instead of through the antenna, feed network and bandpass filter channel since the

thin aluminum film impedance matches the free space impedance well. This design

also allows us to separate the two functionalities of photon absorption and detection

in to two separate parts of the resonator allowing more freedom for design.

In addition to the coplanar waveguide geometry (i.e., the center conductor width

and the slot spacing), the resonator design is completely specified by its resonance

frequency, coupling quality factor, and length of the aluminum section. The total

length of the resonator determines its resonance frequency. The resonator Q may

be limited by multiple effects listed in Figure 3.4. We empirically know that the

best substrates have given us internal Qs of close to 1 million. Coplanar waveguide

radiative losses limit Qs to about the same order of magnitude [71], depending on the

geomtery. Q limitations due to coupling to the submillimeter circuit can be estimated

using SUPERMIX to be close to a 100,000. Calculations show, however, [72] that

optical loading due to 300 K atmospheric emission will limit the Q to about 15,000.

The coupling quality factor governed by the coupler length should match this value

for maximum responsivity.
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3.5.2.1 Total Length

Once the resonance frequency of the resonator has been specified the length of the

resonator can be calculated using:

L =
c

4fr
√
εeff

(3.17)

where c is the speed of light and εeff is the effective dielectric constant seen by the

electro-magnetic wave travelling in the CPW and ideally includes effects of super-

conductivity as well [57]. εeff can be estimated as εeff = (εd + 1)/2 where εd is the

substrate dielectric constant.

3.5.2.2 Coupler Length

The coupler length can be ascertained by calculating the coupling capacitance between

the feedline and coupling section of the resonator. The feedline geometery used was

10 µm center strip and 6 µm slots. The resonators used had a center strip of 6 µm and

2 µm slot width. Both the co-planar waveguides were separated by a 2 µm ground

plane. In order to calculate the resonator Qc the feedline and coupling section of the

resonator can be simulated as a 3-port network (Figure 3.17) with coupling between

port 1 and 3 defined by scattering parameter S31 related to the resonator Qc as:

Qc =
π

2 |S31|2
. (3.18)

Using the layout shown in Figure 3.17 the 3-port network may be simulated using

SONNET to calculate the scattering parameter for different coupler lengths (Lc) and

fr. Assuming a linear dependence of transmission parameter S31 on fr and Lc, which

physically corresponds to a capacitive coupling between the resonator and the feedline

it can be written as [73]:

S31 = AfrLc +Bfr + CLc +D. (3.19)
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Figure 3.17: Three port network with ports 1 and 2 feedline input and output ports
and port 3 the end of coupling section of the resonator

The data is fitted to the model in equation 3.19 to extract parameters A, B, C,

and D [73]. Since the coupling is primarily capacitive for our design (Chapter 5),

AfrLc >> Bfr, CLc, D. Lc for a given Qc can then be calculated using:

Lc(µm) =
1

fr(GHz)

√

A

Qc

. (3.20)

Values for A are tabulated for different CPW geometries in Figure 3.5. Using these

values and resonance frequency in GHz gives coupler lengths in µm.

3.5.2.3 Resonator-microstrip Submillimeter Overlap

The submillimeter radiation is coupled to the resonator by running the microstrip

line over the CPW center strip as shown in Figure 3.16. The bottom layer for the

microstrip is made using the aluminum part of CPW while the top layer remains nio-

bium, with SiO2 dielectric in between. The length of the aluminum section is decided

by the length of overlap required to dump most of the submillimeter power from the
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Device Parameters Inputs

Frequency (GHz) 200

Temperature (K) 0.22

Characteristic Impedance (Ω) 24

Niobium Film Parameters Inputs

Gap Voltage (mV) 2.9

Critical Temperature (K) 9.2

Resistivity (µΩ-cm) 2.5

Thickness (A) 2000

Aluminum Film Parameters Inputs

Resistivity (µΩ-cm) 2.82

Thickness (A) 200

SiO2 Dielectric Parameters Inputs

Dielectric Constant 4

Loss Tangent 0.0001

Microstrip Properties Outputs

Characteristic Impedance (Ω) 27.81

Propagation Constant (/mm) 5.03+j 9.6

Power  Fraction Absorbed

Outputs

Length 

(mm)

0.9 0.297

0.95 0.368

0.99 0.53

0.999 0.76

Table 3.6: Design parameters for the submillimeter coupler

microstrip to the CPW. This was calculated using SUPERMIX, and the length of

CPW and microstrip overlap required to dump close to 100% of the submillimeter

power at 200 GHz was determined to be 1 mm. The table 3.6 shows the parameter

values used for the SUPERMIX simulations and the corresponding outputs.

Making the submillimeter coupling section long will result in microwave (4-12
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GHz) readout signal to leak out from the coupler and lower the quality factor of the

resonator, but for the low coupling quality factors close to 15,000 used in our designs

this is not a major issue.

Also it is essential that the section of aluminum under the ground plane and the

CPW resonator be electrically connected using niobium and not aluminum to prevent

the quasi-particles in the center strip from escaping into the ground and lowering the

response of the device. The details of the ’niobium plug’ which prevents this from

happening are as shown in Figure 3.16b.

3.6 Fabrication Steps

Substrate 

(Si/Sapphire)

Microstrip 

layer Antenna

Aluminum 

Sensor Layer

Niobium Ground 

Plane

SiO2

Figure 3.18: Schematic of pixel showing the various layers required for pixel fabri-
cation

Figure 3.18 shows the various layers of material used to fabricate the pixel. The

aluminum sensor layer is first deposited on the silicon (or sapphire) substrate using

DC magnetron sputtering. The sensor layer is then patterned using photoresist and

BCl3/Cl2 inductively coupled plasma (ICP) etching. The niobium ground plane is

deposited using DC magnetron sputtering. The ground plane is patterned using
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photoresist and SF6 ICP etching. SiO2 is deposited by RF magnetron sputtering

with a substrate bias. The vias on the niobium ground plane are patterned using

photoresist and CHF3/O2 ICP etching. The wiring layer of the niobium microstrip

is deposited using DC magnetron sputtering and is patterned using BCl3/Cl2 ICP

etching. The dielectric is removed using photoresist and CHF3/O2 ICP etching.

Finally, CPW is patterned using photoresist and BCl3/Cl2 ICP etching.

3.7 Conclusions

We have designed and tested various components necessary to implement a submil-

limeter pixel on chip. The antenna was implemented using a multi-slot structure on

chip. The antenna has a narrow beam and does not require any extra on-chip optics to

couple the light from the telescope. The submillimeter power from the antenna slots

is combined using binary tree feednetwork which brings it out into a single output

microstrip which then passes it through inline BPFs (see Chapter 4). The antenna

and the microstrip were implemented using niobium and SiO2 dielectric. The photon

detectors were implemented using microwave kinetic inductance detectors. The sub-

millimeter power is coupled from the output microstrip to the detector by running

the microstrip over the shorted end of MKIDs made out of aluminum. The detector

response is measured as change in the transmitted readout microwave signal using a

through line capacitively coupled to the resonator. The complete layout of the single

pixel schematic is shown in Figure 3.19. Figure 3.20 shows a photograph of an actual

pixel taken using the optical microscope.
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Nb resonator , with shorted end made from Al

  (Photon Detector)

Multi-slot antenna,

Binary tree networkBandpass Filters 

Figure 3.19: Schematic of the final pixel with all the sub-components put together.
It shows 8 slots and 8 taps on each slot making up the antenna for clarity, the actual
number is 16 for both (Figure 3.20).
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Nb resonator , with shorted end made 

from Al (Photon Detector)

Bandpass Filters Multi-slot antenna,

Binary tree network

Figure 3.20: Picture of the two-color pixel taken under an optical microscope
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CHAPTER IV

BANDPASS FILTER DESIGN

4.1 Introduction
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Figure 4.1: Atmospheric transmission spectrum (solid line) at CSO overlaid on the
ideal filter responses (dotted lines) calculated using the inductor and capacitor values
given in Table 4.1. The atmospheric spectrum was generated using the program
atm cso [74] (http://www.submillimeter.caltech.edu/cso/weather/atplot.shtml).

The opacity of the Earth’s atmosphere obscures portions of the sub-THz sky to

ground-based astronomical observation. This requires that band-defining filters be

used in conjunction with broad-band antenna and detectors to construct pixels work-

ing at mm-submillimeter wavelengths to reduce the loading on the detectors from the

Earth’s atmosphere. This chapter presents the design and testing of superconducting,

lumped-element, on-chip bandpass filters (BPFs), placed inline with the microstrip
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connecting the antenna and the detector, covering the frequency range from 209-416

GHz. Four filters (BPF 1, 2, 3, and 4) were designed with passbands of 209-265 GHz,

274-315 GHz, 335-361 GHz and 397-416 GHz, corresponding to the atmospheric trans-

mission windows shown in Figure 4.1. The first atmospheric window extends from

200-320 GHz and is divided into two roughly equal parts by BPFs 1 and 2. Fourier

transform spectroscopy (FTS) was used to verify that the spectral response of the

BPFs is well predicted by the computer simulations. Two-color operation of the

pixels was demonstrated by connecting two detectors to a single broadband antenna

through two BPFs. A new pixel design allowing four-color operation is also discussed.

There are various existing designs for defining the passbands of mm-submillimeter-

wave pixels. Metal-mesh filters [64] have been used in conjunction with IR block-

ing materials such as teflon and fluorogold to make quasi-optical filters that can be

mounted on the dewar windows or device box. This approach, however, has the disad-

vantage of preventing multi-color pixel operation, since the entire array is irradiated

by the same frequency band. Multi-color pixel operation is desirable for upcoming

camera designs [75] to increase the overall throughput for a wide field survey by cap-

turing more photons in different frequency bands. This has many advantages, as

listed in Chapter 1, and additionally uses the focal plane more efficiently. Further,

the quasi-optical mesh filters are optimally designed for normally incident radiation.

Obliquely incident radation may leak through and load the detector. Since these

filters are mounted on the dewar windows they need to be carefully heat sunk to

prevent detector loading due to radiation emitted by the filters themselves. Multiple

filters and IR blockers in the optical chain also need to be coated with anti-reflection

(AR) films to prevent non-uniform transmission as a function of frequency in the filter

passband, due to standing waves present because of the refractive index mismatch at

the interfaces of adjacent optical components.

Although we chose to use lumped-element designs, on-chip bandpass filters may
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also be implemented using distributed circuit elements [39]. However, using dis-

tributed circuit elements causes the bandpass filters to leak at higher harmonic fre-

quencies requiring a cascaded lowpass filter. This adds to the complexity of the

circuit and takes up precious real estate on the chip. The lowpass filter may also be

implemented using a metal mesh filter again leading to some of the issues mentioned

above.

The lumped-element, on-chip bandpass filters presented in this chapter circumvent

all the above problems.

4.2 Bandpass Filter Design

4.2.1 Lumped–Element Circuit Design
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Figure 4.2: Steps for lumped-element bandpass filter circuit design: a) 3-pole But-
terworth low-pass filter prototype. Ln and Cn are normalised inductor and capacitor,
respectively. b) Bandpass filter with series LC and shunt parallel LC resulting from
the prototype low-pass filter. c) Bandpass filter with impedance inverter blocks and
no shunt inductors. d) Final lumped-element bandpass filter circuit with no shunt
inductors

We use a three-element Butterworth lowpass filter prototype (Figure 4.2a) with

cutoff at ωc = 1 and terminated in a 1 Ω load as a basis for design of our bandpass

filters. Using a Butterworth prototype should minimise any ripples in the filter pass

or stop bands. This normalised lowpass filter has element values Ln = 1, Cn = 2
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Element 

values

BPF1

209–265

GHz 

BPF2

274–315

GHz

BPF3

335–361 

GHz

BPF4

395–416 

GHz

Lser (pH) 75 123.2 146.91 201.04

Cser1 (fF) 7.37 2.48 1.50 0.79

Cser2 (fF) 9.01 2.69 1.59 0.82

Cshunt (fF) 40.23 31.36 26.97 23.1

Table 4.1: Circuit element values for Figure 4.2 d) for the BPFs corresponding to
the atmospheric transmission windows

(Figure 4.2a). It is converted to a lumped-element bandpass filter using the usual

transformations [68], and replacing the series inductor by a series combination of

inductor (L1 =
Z0Ln

ω0∆
) and capacitor (C1 =

∆

Z0Lnω0

), and shunt capacitor by a

parallel combination of inductor (L2 =
Z0∆

Cnω0

) and capacitor (C2 =
Cn

Z0∆ω0

) (Figure

4.2b). Z0 is the embedding impedance set by the characteristic impedance of the

microstrip transmission line which brings submillimeter power from the antenna and is

equal to 20 Ω. ∆ (= ωc2−ωc1) is the design bandwidth of the BPF and ω0 (=
√
ωc1ωc2)

is the center frequency of the BPF given by the geometric mean of the 3 dB cutoff

frequencies of the BPF. ωc1 and ωc2 are the upper and lower cutoff frequencies of the

bandpass filter, respectively.

For the ease of fabrication of the circuit it cannot have any shunt inductors to

ground. For sufficiently narrow bandwidth (10−20%) impedance inverters can be used

to replace a parallel shunt admittance (Yp) by a series impedance (Zs) for two-port

networks [76] (Figure 4.2c). Using the identity Zs = K2Yp, where Zs = jωL1 +
1

jωC ′
2

,

Yp = jωC2 +
1

jωL2

, and K is the impedance inverter, we get the value for K and

series capacitance K2 = L1/C2 and C ′
2 = L2C2/L1.

The impedance invertor is implemented using a two-port T network with the series
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branches containing capacitors −C and shunt branch containing capacitor C where

C = 1/ω0K (Figure 4.2c). The negative capacitance in the series branches can be

absorbed into C1 and C ′
2 to give the final circuit (Figure 4.2d). Here Lser = L1,

Cshunt = C, Cser1 =
CC1

C − C1

, and Cser2 =
CC ′

2

C − 2C ′
2

.

The lumped circuit element values are then further optimised using HP-ADS [77],

a circuit simulation software package, to give a power transmission of at most 10−4

in stop band, unity transmission in passband with sharpest possible rolloff. These

optimised values for various lumped components for the four bandpass filters are

listed in Table 4.1.

4.2.2 Circuit Layout and Fabrication

The schematic of the filter layout is shown in Figure 4.3. The integrated inline BPF

circuit was fabricated on chip with the other pixel components using photolithography.

The inductors were implemented using spiral geometry and the capacitors in the

parallel plate configuration. The bottom layer is 200 nm thick niobium film deposited

on the silicon substrate using DC magnetron sputtering. The ground plane, spiral

inductors (Figure 4.3 shown in blue) and lower plate of the parallel plate capacitors

(not visible in Figure 4.3) are patterned on this layer using photoresist and SF6

Inductively Coupled Plasma (ICP) etching. Following this, a 400 nm thick SiO2

dielectric layer is deposited on the bottom layer by RF magnetron sputtering with

substrate bias. Subsequently, a 200 nm thick layer of niobium is deposited using DC

magnetron sputtering and patterned using BCl3/Cl2 ICP etch to form the wiring layer

of microstrip geometry (Figure 4.3, shown in pink). The dielectric is then removed

using a CHF3/O2 ICP etch.

The input microstrip brings the broadband submillimeter power from the slot

antenna to the filter (Figure 3.20). In order to avoid making a via between the

bottom niobium layer and the top, the first series capacitor is divided into two series
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capacitors each having double the design capacitance (CLSer1 = 2 Cser1) and placed on

either side of the spiral inductor as shown in Figure 4.3a. The microstrip line connects

the second series capacitor to the shunt capacitor. This design is then repeated for

the remaining two series capacitor-inductor sections. Finally, the output microstrip

takes the band limited submillimeter power to the detector.

Nb Ground 

Plane

Si Substrate

(Ground Plane 

Hole) 

Series 

Capacitor

(C       = 2 C     )

Series 
Inductor

L

Shunt 

Capacitor

C

Silicon

Nb Wiring layer

(200 nm)

SiO2 (400 nm)
Nb Ground Plane

(200 nm)

a)

b)

Output 

Microstrip
Input 

Microstrip

LSer1 Ser1

1

Series 
Inductor

L
2 s

Shunt 

Capacitor

Cs

Series 
Inductor

L
1

Series 

Capacitor

(C       = 2 C     )
LSer2 Ser2

Series 

Capacitor

(C       = 2 C     )
LSer1 Ser1

Figure 4.3: SONNET layout for the bandpass filters: (a) top view, b) side view.
The top microstrip is made of niobium (pink). Below it is a layer of SiO2 (grey, not
visible in the top view), then niobium ground plane (blue). The series inductors and
capacitors are fabricated on top of the sapphire substrate (white) directly in holes in
the ground plane.
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Figure 4.4: Spiral inductor schematic detailing the dimensions used in the inductor
design. Rn is the length of the nth arm of the spiral inductor with n = 1 for the
outermost arm. dout and din are the outermost and innermost dimension of the
inductor, respectively. t is the trace width.

4.2.3 Component Design

4.2.3.1 Spiral Inductor Design

Correct design of the inductor is critical for the optimal performance of the bandpass

filter. The inductor may either be implemented using the CPW geometry which is

simpler to layout but can provide relatively smaller inductance values, or a spiral

geometry, which was finally used for our design. To make the design choice we

calculated the length of CPW required to provide the minimum required inductance

of 75 pH, as follows.

Let Z0 (= 20 Ω), Zc (= 50 Ω), εd (= 10.5), f (= 250 GHz) be the characteristic

embedding impedance of the external circuit, characterstic impedance of CPW used

to implement the lumped inductor, substrate (sapphire) dielectric constant and the

filter center frequency, respectively. The effective dielectric constant seen by the EM

wave is close to εeff = (εd + 1)/2 = 5.75. This may be calculated more accurately

using SONNET simulations.

Using equations for transmission line characteristic impedance and propagation
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BPF 1 BPF 2 BPF 3 BPF 4

L1 L2 L1 L2 L1 L2 L1 L2

R1 3.5 2.5 5.5 5 7 7 7.5 7.5

R2 19.5 20 17.5 17.5 15.5 15.5 15.5 15.5

R3 21 21 21 21 17 17 16.5 16

R4 12 10 14.5 14.5 12.5 12.5 12.5 12.5

R5 4.5 2.5 8 8.5 13 13 12.5 12

R6 0 0 2.5 2.5 5 5.5 9.5 9.5

R7 0 0 0 0 3 3 8 8

R8 0 0 0 0 0 0 3.5 3

t 1 1 1 1 1 1 1 1

Table 4.2: Spiral inductor dimensions for all the bandpass filters with schematic
shown in Figure 4.4. L1 and L2 are shown in the SONNET layout for the BPF, in
Figure 4.3a. The values for L1 and L2 are nominally equal (Table 4.1) and their
dimensions are close to each other. However, they end up with slightly different
dimensions while tweaking the layout in SONNET due to the small difference in
geometry of the capacitors CLSer1 and CLSer2. All the dimensions are in microns.

constant we can get the inductance per unit length:

Zc =

√

L
C , β = ω

√
LC (4.1)

L =
βZc

ω
=

√
εeffZc

c
(4.2)

where L, C are inductance and capacitance per unit length, c is the speed of light, β

is the propagation constant, and ω is the frequency in radians/sec. The wavelength

of the EM wave in sapphire at 250 GHz is 500 µm. Using equation (4.2) the length

of CPW line required to implement inductance (L = 75) pH lumped inductor is

l =
Lc

√
εeffZc

= 187.67 µm, which is a significant fraction of the wavelength. Hence,

a 75 pH inductor implemented using CPW with the above Zc will behave like a

distributed element. This will cause the filter to leak at integral multiples of the

transmission line fundamental mode.
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Following [76] we can calculate the maximum inductance we can extract from

CPW geometry with the above characteristic impedance at frequencies of interest

(≃ 250 GHz) for a given error, as follows: The input impedance for the lumped

element is given by:

Zin = Zc
Z0 + jZct

Zc + jZ0t
(4.3)

where t = tan(βl). Since we want to use sections of CPW much shorter than the

wavelength and use high characteristic impedance sections to emulate inductors we

can use the approximation Z2
0 t

2 << Z2
c . This gives us:

Zin = Z0 + Z0t
2

(

1 − Z2
0

Z2
c

)

+ jZct

(

1 − Z2
0

Z2
c

)

. (4.4)

Comparing the real and imaginary parts of equation (4.4) to expression for input

impedance of ideal lumped inductor Zin = Z0 + jXl we get Xl = Zct
(

1 − Z2

0

Z2
c

)

.

To have the real part of the impedance match closely with the ideal case we need

t2
(

1 − Z2

0

Z2
c

)

→ 0. Assuming, a 5% error in real part of the imepdance (i.e., t2
(

1 − Z2

0

Z2
c

)

=

0.05) we get βl = 0.26. Using equation (4.2) we get maximum value for lumped-

element inductance using this scheme L = 8.28 pH, which is much less than the value

needed.

A spiral geometry for the inductor can instead be used to provide the high values

of the inductance needed for the bandpass filters. The rectangular spiral (Figure 4.4)

was chosen for layout convenience and the geometry was guessed by calculating the

inductance using the formulae available in the literature [78]:

L =
µn2davgc1

2
(ln(c2/ρ) + c3ρ+ c4ρ

2) (4.5)

ρ =
dout − din

dout + din

(4.6)

davg =
dout + din

2
(4.7)
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Here L is the inductance and c1, c2, c3, and c4 are geometry dependent co-efficients

with values 1.27, 2.07, 0.18, and 0.13, respectively, for rectangular spiral geometry. ρ

is the filling fraction, with din and dout the innermost and the outermost dimensions

of the inductor (Figure 4.4), µ is the magnetic permeability, and n is the number of

turns. This formula is not very accurate for large values of s/w where s is spacing

between the traces and w is the trace width, but exhibits maximum error of ∼ 8%

when s ≤ 3w for regular spirals [78]. s is typically 2-4 µm, while w is 1 µm, and the

formula works well as a zeroth order approximation since, in the final design, the s

changes from one turn to the next. The final inductor geometry is obtained by laying

it out in SONNET [79], simulating its impedance, and re-optimising the geometry

to give the desired inductance value. The optimization is done keeping in mind the

trends that decreasing the spacing between adjacent traces increases their coupling

and hence the mutual inductance, and vice versa, and that the orthogonal traces are

decoupled from one another. The trends suggested by the formulae in equation (4.5),

such as dependence on the number of turns are also used. The exact final dimensions

of each of the inductors finally used to implement the BPFs are tabulated in Table

4.2.

4.2.3.2 Capacitor Design

The dimensions for the capacitor with capacitance values tabulated in Table 4.1 can

be estimated using parallel plate formula C = ε0εdA/d, where ε0 is the free space

permittivity, εd (= 4) is the dielectric constant of SiO2, A is area of the parallel

plates, and d is the thickness of SiO2 (which is same as distance between the plates).

The capacitor dimensions were further optimised by laying out capacitor-inductor

series combinations in SONNET and optimizing the dimensions of the layout so that

it has a resonance at the same frequency as the series combination of lumped LC with

values in the table 4.1.

72



The final dimensions of the capacitors for each of the filters are tabulated in Table

4.3. As can be seen, the values calculated using the parallel plate formula can be

significantly different from the values finally obtained through simulations.

BPF 1 BPF 2 BPF 3 BPF 4

CLser1 CLser2 Cshunt CLser1 CLser2 Cshunt CLser1 CLser2 Cshunt CLser1 CLser2 Cshunt

Length 11.5 14.5 10.5 8 5 10.5 7 4.5 11.5 3.5 4.5 10

Width 13 15 23 9 7.5 19.5 6 7.5 17.5 5 5 10

Table 4.3: Dimensions of the capacitors in Figure 4.3a in microns assuming a 4000
Å thick SiO2 dielectric (εd = 4). The actual capacitance value of these capacitors
CLSer1,2 = 2CSer1,2, since two equal value series capacitors are being used to imple-
ment the series capacitor shown in circuit schematic Figure 4.2d. The dimensions
of the parallel plate capacitors used to implement first and third series capacitor in
Figure 4.2d are exactly the same. Length direction is assumed to be the direction of
propagation of submillimeter radiation.

4.2.3.3 SONNET Simulations

The response of each of the circuit elements, and subsequently the entire layout, was

simulated using SONNET [79] – a planar 3D electromagnetic simulator. The soft-

ware uses method of moments calculation to compute the response of the circuit.

The SONNET layout of the BPF is seen in Figure 4.3. Initial simulations assumed

the niobium ground plane and wiring layers (seen in blue and pink respectively) to

be perfectly conducting 2D sheets (zero thickness) with 400 nm SiO2 dielectric be-

tween them. The lumped-element geometries were optimised to produce the required

bandpass filter response.

4.2.4 Effect of Superconductivity on the Filter Response

Niobium is used to fabricate the bandpass filters superconducts at the detector op-

erating temperatures (niobium Tc = 9.2 K, Top = 220 mK). Superconductors have a
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Figure 4.5: a) A superconducting film of thickness t with surface impedance Zs. Zη

is the free space impedance, Ei, Er, and Et are the incident, reflected, and transmit-
ted waves, respectively. b) A SONNET analog for schematic a)–two planar sheets
separated by distance t having surface impedance Zx where Zx is related to Zs by
equation 4.9. c) Equivalent transmission line circuit for the schematics

finite surface impedance at microwave and submillimeter wavelengths [55], and simu-

lating them as 2D planar films of perfect conductors can lead to significant errors in

the bandpass filter response calculation.

SONNET can be used to accurately simulate the bandpass filter response by

incorporating the effects of superconductivity and finite conductor thickness. This

can be done by replacing a single perfectly conducting planar sheet with multiple

planar sheets of a given surface impedance (Zx), different from the the actual surface

impedance (Zs) of the superconducting film, as a model for thick superconducting

film [65, 80]. For λL ≃ t a two-sheet model is sufficient (Figure 4.5a,b) [80].

In the local limit, at temperature well below Tc and frequency well below the

gap frequency, assuming Zη(= 377Ω) >> ωµ0λL(= 0.14 Ω) where Zη is the free

space impedance, and µ0 is free space permeability, the surface impedance of the
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superconductor is given by [80]:

Zs = jωµ0λL coth(t/λL). (4.8)

The impedance seen by a TEM mode travelling along a transmission line is the same

as the surface impedance seen by an EM wave normally incident upon a conductor

[81]. Using this, the resulting equivalent circuit for the SONNET model in Figure

4.5b is shown in Figure 4.5c. If the distance between the sheets is much smaller

than the wavelength of incident light, an inductor with a value of µ0t can be used to

represent the impedance due to magnetic field energy stored between the sheets in

Figure 4.5b.

Equating the input impedance Zin of the transmission line equivalent circuit for

the film is the surface impedance Zs. We can solve for Zx:

Zx = Zs

[

1 − t

2λL coth(t/λL)
+

(

1 +
t2

4λ2
L coth2(t/λL)

)1/2
]

. (4.9)

Dividing Zs and Zx by ω gives us a surface inductance (Ls) of 88.5 fH and a modified

surface inductance (Lx) of 0.1166 pH/�.

The above changes in geometry and material properties were incorporated in the

SONNET simulations done earlier with single perfectly conducting sheets. The di-

mensions of the bandpass filter layout were re-optimized to give the new corrected

bandpasses (Figure 4.6). The final layout schematic is shown in Figure 4.7, and the

corresponding dimensions are given in Table 4.4. The actual optical image of one of

the bandpass filters (BPF 1) is seen in Figure 4.8.

4.3 Measurements and Results

Figure 4.9 shows the normalised, predicted and measured responses of the bandpass

filters. The measurement was performed using a Fourier Transform Spectrometer

(FTS). Details of the FTS construction are given in [82].
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Figure 4.6: Bandpass filter response from 90 GHz, where the detector starts be-
coming responsive (Section 3.5) to 700 GHz where Niobium starts to become lossy.

There is excellent agreement between simulated and measured BPF responses

for all 4 bandpass filters. The upper and the lower cutoff frequencies are close to

their design values. The filters have sharp turn-ons and turn-offs, and the designed

bandwidth also matches the measured value closely.

Fringing is observed in the passband of the filter, but this may be due to the

dewar optics. Figure 4.10 shows the various dielectrics with their thicknesses used to

make the dewar windows separating the different temperature stages. The fringing in

the passband of the filter response may be occuring due to the standing waves in the

optical chain due to dielectric constant mismatch between the windows. We further

confirm that the fringing is not a characteristic of the filter passband by comparing it

with the passband response of a pixel which does not have an inline filter between the

antenna and the detector (Figure 4.11). Fringing is seen in the response of the bare

pixel as well, and the fringe maxima and minima are located at the same frequencies in
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Figure 4.7: SONNET geometry layout schematic for the final filter. Numbers indi-
cate points on the schematic as follows: 0 is the origin, 1 the upper-right corner of
the layout. 2, 3, 4 and 5, 6, 7 are the lower-left and upper-right corners, respectively,
of the holes in the niobium ground plane. 8, 9, 10 are the lower-left corners of the
spiral inductor. 11, 12, 13, 14, 15, 16 are the lower-left corners of series capacitors
CLseries1,2,3. 17, 18 are the lower-left corners of the two shunt capacitors. 19 is the
lower-left corner of the input microstrip. The microstrip width is 2.5 µm.

Figure 4.8: Photograph of bandpass filter taken under the microscope. Green is
the hole in the niobium ground plane showing the substrate. Niobium ground plane
and the wiring layer are seen in pink. The one-to-one correspondence between the
photograph and the SONNET layout in Figure 4.7 is evident.

the response of the pixels containing the filters and ones without them. This strongly

suggests that the fringes are not due to passband response of the BPFs. Furthermore,

the electrical delays implied by the rapid fringing are much too long to be explained

by the physical length of the filter. The source of the passband fringing is currently
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BPF 1 BPF 2 BPF 3 BPF 4

1 148,74 145.5,74 145.5,74 145.5,74

2 8.5,23 8.5,23 8.5,23 8.5,23

3 55,23 57,23 57,23 57,23

4 106,23 105.5,23 105.5,23 105.5,23

5 41.5,51 39.5,51 39.5,51 39.5,51

6 92.5,51 88,51 88,51 88,51

7 139,51 136.5,51 136.5,51 136.5,51

8 10.5,25.5 12.5,29.5 12.5,29.5 12.5,30

9 58,25.5 61,29.5 61,29.5 61,30.5

10 108,25.5 109.5,29.5 109.5,29.5 109.5,30

11 15.5,30.5 15,32.5 16,34 19.5,34.5

12 28,30.5 28,32.5 27.5,34 27.5,34.5

13 60.5,29.5 64,32 64,34 67.5,34.5

14 76,29.5 76.5,32 76,34 76,34.5

15 113,30.5 112,32.5 113,34 116.5,34.5

16 125.5,30.5 125,32.5 124.5,34 124.5,34.5

17 43,25.5 43,27 43,28.5 43.5,32.5

18 94,25.5 91.5,27.5 91,29 92,32

19 0,36 0,36 0,36 0,36

Table 4.4: The table gives x,y coordinate locations of points for the SONNET layout
in Figure 4.7. All the dimensions are in microns.

under investigation.

Figure 4.11 also shows that the response of the pixel without a bandpass filter is

limited by the detector on the low-frequency side. Since band gap for superconducting

aluminum is 90 GHz, the kinetic inductance detector is unresponsive to radiation with

frequency less than that. On the high-frequency side the FTS response is limited by

the two 420 GHz (14 icm) filters in the optical chain. In the absence of these filters
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Figure 4.9: Normalised measured and predicted bandpass filter responses. Lines
with dots are the actual data measured using a Fourier Transform Spectrometer
normalised by the maximum transmission value for that filter. The lines without
dots are the normalised response predicted using SONNET simulations.

Figure 4.10: The optical chain mounted on the dewar windows with temperatures
and thicknesses of various IR blockers and metal-mesh filters.

it would be limited by the high-frequency cutoff frequency of the multi-slot antenna.

Beyond the niobium bandgap at 700 GHz for the antenna and microstrip, both would

become lossy and would reduce pixel responsivity further.

The simulations predict that the filters should show an increased transmission
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Figure 4.11: Normalised measured response of pixel with no inline bandpass filter
between the antenna and the detector. The measurement was performed using an
FTS. The response turns on at 90 GHz and turns off again at 420 GHz.

close to their second harmonic, possibly due to self-resonance of the series inductors.

However, if this effect is present it is much smaller than is predicted by the simulations

and is not clearly visible over the out of band baseline fluctuations in the measured

filter responses.

4.4 Multi-Color Pixel Design

One of the primary advantages of fabricating an inline bandpass filter is the ability

to make multi-color pixels. This can be done by connecting two (or more) filters

of different frequency passbands in parallel to the microstrip coming from a single

broadband antenna using very short microstrip line sections (see Section 4.4.2). The

output microstrips from each of these filters couples power to different detectors al-

lowing each pixel to see multiple colors, using single broad-band antenna and multiple
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BPFs and detectors.

4.4.1 Two–Color Design and Results

a)

b)

Detector 1 Detector 2

Multi-slot Antenna

& 

Binary Tree Network 

Feedline

BPF1 

Single Sub-mm

 output microstrip

BPF3 
Split Microstrip 

Parallel Connection 

To Detector 2To Detector 1

Figure 4.12: a) A schematic of the layout for a two-color pixel showing a single
broadband, multi-slot antenna, single microstrip which splits in two and connects to
BPF1 and BPF3 in parallel. The outputs of these bandpass filters are connected to
different MKIDs made using resonators of different resonance frequency, and readout
using a single feedline

Figure 4.12 shows the layout for a two-color pixel. For proper operation of the

multi-color pixel it is essential that the filters connected in parallel present each other

with high impedance outside their bands and don’t load each other. Figure 4.13 shows

the plot for input impedance for the bandpass filters vs the frequency. The plot shows

that the filter input impedance is roughly the same as the input microstrip inside the

filter band, resulting in high transmission, but high impedance out of band, resulting

in low transmission due to the mismatch. However, the figure also shows that the
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Figure 4.13: Input impedance of the bandpass filters simulated using SONNET

impedance of BPF 1 decreases to low values in the BPF 4 passband. The effects of

this on multi-color pixel performance are discussed in Section 4.4.2.

We have tested two different two-color pixels, with passband of the first type of

pixel defined by BPFs 1 and 2 and that of the second type of pixel by BPFs 1 and

3. The CSO demonstration camera (Chapters 1 and 5) was made using the second

multi-color pixel, with the two colors corresponding to the passbands of BPFs 1 and

3. Results of this two-color pixel response function are plotted in Figure 4.14. It

shows that the response of the two bandpass filters connected in parallel is close to

the predicted response of single filters seen in Figure 4.9. The overplotted atmospheric

transmission spectrum shows that the filter passbands lie well within the transmission

windows and away from the water lines.

4.4.2 Four–Color Design

The four-color pixel is an extension of the two-color pixel design and can be con-

structed by connecting four detectors to a broadband antenna in parallel through

four different bandpass filters (Figure 4.15a).
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Figure 4.14: FTS response of the two-color pixel. Red and blue lines rep-
resent response of detector connected to BPF1 (209-265 GHz) and BPF3 (335-
361 GHz), respectively. Green line shows the atmospheric transmission as a
function of frequency for 0.5 mm precipitable water vapor plotted using AT
(http://www.submillimeter.caltech.edu/cso/weather/atplot.shtml).

The equivalent microwave circuit for the schematic is shown in Figure 4.15b. Al-

though the filters were designed to have high input impedance out of band, sections of

transmission lines can act as impedance transformers. If the length of the microstrips

connecting inputs of the filter is a signficant fraction of λ/4 it can transform the

effective input impedance of the filter as seen by the other filters to a short. At the

frequency at which this happens, the filter with low input impedance will load the

other filters, resulting in the distortion of their passband. Hence, it is essential that

the transmission line length be much less than λ/4, where λ is the wavelength at the

higher cut off frequency of BPF4. Mathematically, this may be seen as follows: The

input impedance of jth BPF when transformed by a transmission line of characteristic

imepdance Z0 and length L is given by:

Zj = Z0
Zinj + jZ0 tan(βL)

Z0 + jZinj tan(βL)
(4.10)
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Figure 4.15: a) Layout schematic for networked bandpass filters in a four-color
pixel. The broadband input comes from a wideband, multi-slot antenna. The input
microstrip splits into 4 microstrips, which connect the bandpass filters in parallel.
Output of each of the filters goes to a separate detector. b) A block diagram for the
layout in a). The input microstrip bringing power from the antenna is idealized and
represented by impedance Z0 (≃ 20 Ω). It splits into 4 transmission line sections
each, with characteristic impedance Z0 in their respecitve bands and length l. These
are connected to BPF inputs. The output of the BPF is connected to the detector,
which itself is represented by a load of matched impedance Z0 to ground.

where β is the propagation constant of the wave at a wavelength where L = λ/4,

β = π/2L, and Zj = Z2
0/Zinj. Hence, we see that for large Zinj we get small Zj,

which can load other filters when connected using long transmission lines. In order

to ensure short sections of connecting transmission lines, the ground plane of the

filters adjacent to one another need to overlap such that the common ground plane

is only ∼ 15 µm wide, as shown in Figure 4.15a. We expect that decreasing the

ground plane overlap between the filters any further would cause increased mutual

inductance between inductors in adjacent filters and result in degradation of filter

response. No such effects were observed in simulations with the current dimensions.

Simulations were peformed using the layout shown in Figure 4.15a. The results
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Figure 4.16: SONNET simulation for response of four bandpass filters connected in
parallel using the feednetwork as shown in Figure 4.15a
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Figure 4.17: SONNET simulation for response of four bandpass filters connected in
parallel directly to a common input port without a feednetwork inbetween
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for the filter transmission for each of the four filters is shown in Figure 4.16. We

find that that filter performance matches the stand-alone filter performance well for

passbands 1, 2, and 3, and any out-of-band features remain well below -20 dB for

all the four passbands. However, the BPF 4 response shows a notch in its passband

as a result of connecting all the four filters in parallel. This is a result of band 1

input impedance reducing to ≃ 20 Ω in the passband of filter 4 and loading it (Figure

4.13). To finally use this design in a 4-color pixel, the design for BPF 1 will have to

be tweaked to prevent this. The dimensions used to make the feednetwork are shown

in Figure 4.15. The resultant filter response is shown in Figure 4.16. This can be

compared with the best that can be theoretically done with current design for BPF

1. For this, inputs of all the 4 BPF are connected directly to a common input port

in SONNET without a feednetwork between them. The results for the filter response

in this case are shown in Figure 4.17. The notch deepens from -9 to -16 dB due to

the impedance transformation done by the feednetwork.

4.5 Conclusions

We have designed and tested on-chip, lumped-element bandpass filters with passbands

corresponding to the atmospheric windows from 209-274 GHz, 265-315 GHz, 335-361

GHz, and 397-416 GHz. The performance of the filters is well predicted by computer

simulations done using SONNET, implying that the fabrication process matches the

estimated value for the thickness of SiO2 dielectric (t = 400 nm) and its dielectric

constant value (εd = 4) well. Further, we have fabricated pixels with a single antenna

coupled to multiple bandpass filters and detectors and demonstrated their two-color

operation.

Our measurements show no effects due to interaction between the bandpass fil-

ters connected to the same input microstrip other than due to loading from each

other’s input impedance. Furthermore, when networked to form a four-color pixel,
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simulations do not show a change in response due to coupling between inductors of

adjacent filters. Hence, it should be possible to integrate all the filters into a single

pixel by simply scaling the filter network and using four detectors connected to each

of the filters thereby operating a multi-color pixel with 4 colors, after tweaking BPF

1 response to prevent it from loading BPF 4.
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CHAPTER V

A 16–PIXEL, TWO–COLOR, SUBMILLIMETER

DEMONSTRATION CAMERA

5.1 Introduction

Figure 5.1: Photograph of Caltech submillimeter obervatory on Mauna Kea, Hawaii
(http://www.submillimeter.caltech.edu/cso/)

This chapter elaborates the design and implementation of the 16-pixel, two-color

DemoCam, which was used to show the submillimeter pixels developed using the novel

technologies discussed in Chapter 3 and 4 their first light on a telescope (CSO). As

mentioned in Chapter 1, the future generation of this camera – MKIDCam – will have

576 pixels, each with four-color imaging capability, and will be a superior-performance

replacement for Bolocam as a CSO facility instrument. Further into the future this

technology may be used to build cameras with still larger numbers of pixels and 4- or

5-color imaging capabilities for CCAT since designs for larger number of pixels and
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colors are easily scalable from our current design.

5.2 Camera Design and Layout

Pixel

Detector A (Band 209-265 GHz) Detector B (Band 335-361 GHz)

fr (GHz) Lc (µm) Lt (µm) fr (GHz) Lc (µm) Lt (µm)

1 6.5 244.55 4560.98 6.54 243.05 4533.08

2 6.58 241.57 4505.52 6.59 241.21 4498.69

3 6.51 244.17 4553.97 6.55 242.68 4526.16

4 6.6 240.84 4491.87 6.61 240.48 4485.08

5 6.66 238.67 4451.4 6.67 238.31 4444.73

6 6.74 235.84 4398.57 6.78 234.45 4372.62

7 6.68 237.96 4438.08 6.69 237.6 4431.44

8 6.75 235.49 4392.05 6.79 234.10 4366.18

9 6.52 243.8 4546.99 6.56 242.31 4519.26

10 6.62 240.11 4478.3 6.63 239.75 4471.55

11 6.53 243.42 4540.02 6.57 241.94 4512.38

12 6.64 239.39 4464.81 6.65 239.03 4458.10

13 6.7 237.25 4424.83 6.71 236.89 4418.23

14 6.76 235.14 4385.56 6.8 233.76 4359.76

15 6.72 236.54 4411.66 6.73 236.19 4405.10

16 6.77 234.79 4379.08 6.81 233.41 4353.36

Table 5.1: Table of detector design parameters. The resonant frequency defines
the resonator length, and the resonator quality factor determines the coupler length.
The length of the submillimeter overlap between microstrip and CPW is uniformly 1
mm (Chapter 3). Bands for detectors A and B in each pixel refer to the BPFs used
between the detector and antenna.
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Figure 5.2: a) Layout of the 16-pixel, two-color camera chip, with pixels tiled in a
4×4 format with a shared feedline to readout all the pixels. b) Layout schematic of
a single, two-color pixel. Schematic shows 8 slot and 8 taps on each slot for clarity.
The design uses 16 slots and taps, as discussed in Chapter 3.

Two-color pixels with passbands in frequency ranges 209-265 GHz and 335-361

GHz were used to fabricate the array. The design dimensions for the antenna and mi-

crostrips are tabulated in Chapter 3 and for bandpass filters are tabulated in Chapter

4.

The photon detectors were implemented using MKIDs resonators. The specifi-

cations for the resonators are tabulated in Table 5.1. The resonators were designed

to have resonance frequencies between 6.5-6.81 GHz with a gap of 10 MHz between

any 2 consecutive resonators. The quality factor under 300 K load was empirically

estimated to be close to 15,000, and coupling quality factor was designed to be the

same value to maximise detector response (Chapter 3).

Once the pixels were designed with the two-color architecture (Chapter 4) using

resonator dimensions tabulated in Table 5.1, they were laid out on the chip in a

4×4 array with a common feedline snaking through the array (Figure 5.2). The

feedline carries a frequency comb with a tone at the resonance frequency of each of the
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detectors for readout. This arrangement greatly simplifies the cryogenic electronics

needed and allows for frequency division multiplexing schemes to readout all the

detectors simultaneously using a single microwave co-ax, enabling the large arrays

needed for future astronomical missions.
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Figure 5.3: Layout of the resonators in different pixels according to frequency.
Bracketed numbers are the resonator frequency, the non-bracketed numbers are the
resonator order in frequency space. Different pixels are separated by solid lines, and
dotted lines separate two detectors on the same pixel.

Figure 5.3 shows the layout of the resonators on the chip. Due to readout elec-

tronics constraint that only resonators within 50 MHz of one another can be readout

simultaneously (see Section 5.3.1), 16 of the 32 resonators are laid out so that the

pairs of adjacent frequency resonators are on the same pixel. This enables us to si-

multaneously readout both the detectors on the same pixel, which allows observation

of submillimeter sources in both the frequency bands simultaneously as well. These

detectors are on pixels 2, 4, 5, 7, 10, 12, 13, and 15. The remaining detectors are

placed on the chip such that the pairs of adjacent frequency resonators corresponding

to the same submillimeter frequency band lie far apart on the chip, allowing us to

look at the source with one detector and the sky with another and use sky noise

subtraction to get a better signal-to-noise ratio.
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Figure 5.4: Picture of 16-pixel camera and different sub-components after zooming in. a) 16-pixel, two-color camera. b)
Single camera pixel. c) Antenna Slots, taps, and feednetwork. d) Resonator coupler. e) Two submillimeter BPFs connected in
parallel. f) Submillimeter microstrip and CPW overlap
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Figure 5.4 shows a picture of the DemoCam chip. The figure also shows zoomed-in

pictures of different components of the chip for clarity. Figure 5.5 shows picture of a

single wafer with at least 12 usable 16-pixel cameras.

Figure 5.5: Picture of the wafer on which the camera was fabricated

5.3 Setup

5.3.1 Electronics

The electronics are implemented using a digital equivalent of the analog readout dis-

cussed in Chapter 2. The analog readout requires multiple copies of discrete and

expensive microwave circuitry such as the frequency synthesizers – one for each res-

onator. The digital circuit discussed below integrates generation of frequency comb

used to readout the resonators simultaneously and detection of different tones out

onto a single board. Figure 5.6 shows the block diagram for the readout electronics.

It is implemented using a software-defined radio [31]. In this method the required

number of tones, each corresponding to a detector, are generated – separated by the

93



76407640 T R

(500 MHz 16 bit

D/A Convertor)

(105 MHz 14 bit

A/D Convertor)

Figure 5.6: Schematic of the room-temperature electronics used to readout the
camera

difference of the detector resonance frequencies. This is done using a 16-bit, 500 MHz

digital to analog (D/A) convertor which resides inside a Pentek 7640 board. The

entire frequency comb is then upconverted using a single side-band (SSB) mixer with

the carrier generated by a Anritsu frequency sythesizer which can generate signal

up to 20 GHz. The frequency synthesizer is stabilised using a rubidium frequency

standard.

The frequency comb is then passed through the detectors and mixed back to

baseband with another SSB mixer and signal from the frequency synthesizer. The

baseband signal is anti-alias filtered and digitized using as 14-bit, 105 MHz analog to

digital (A/D) converter which also resides on the Pentek 7640 board. The resulting

tones are then individually mixed down to 0 Hz and the complex detector output is

stored in a computer. This readout system currently allows us to read an arbitrary

number of resonators with resonance frequencies within a 105 MHz band.

For this telescope run the detector phase response was measured because the

resonator responsivity is higher in phase direction. However, the phase noise of the

resonator is much higher than the amplitude noise as well (Chapter 2). Ideally, the
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entire complex signal needs to be readout and the final measurement made along

the direction with maximum signal-to-noise ratio [44]. However, this can be easily

implemented using the same readout electronics by simply changing the software.

5.3.2 Optics

Room Temp

1” Zotefoam

1” PTFE

1” PTFE

0.06” Fluorgold

300 K

77 K

4 K

220 mK

13.9”

Lyotstop

4 K

Detector Chip

Light from 

Telescope

Figure 5.7: Optical chain used for filtering IR light to reduce the thermal load on
the cold stage

Bolocam optics box [83] was used to couple light from the telescope to the dewar.

Different temperature stages of the fridge were physically separated using the dewar

windows (Figure 5.7). The fridge optical chain (Figure 5.7) consisted of a 1”-thick

Zotefoam window at room temperature, 1”-thick PTFE window at 77 K, 1”’ thick

PTFE window at 4 K, followed by 0.060”-thick flurogold sheet. Subsequently, a

PTFE lens (Chapter 3) is used to ensure the antenna beam can pass through the

dewar windows. PTFE and fluorogold act as good IR blockers to reduce heat load on

the fridge cold stage and allow cycling to base temperature. All PTFE components
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and lens are AR coated using Zitex. No metal-mesh filters were used and filtering at

submillimeter frequencies was completely implemented using on-chip filters discussed

in Chapter 4. This allowed for multi-color pixel operation (Chapter 4).

5.3.3 Cryogenics

5.3.3.1 Cryostat

Figure 5.8: Photographs of the cryostat

Figure 5.8 shows photographs of the fridge used to cool down the DemoCam in

the lab and at CSO (Figure 5.1). It is a closed-cycle, two-stage He-3/He-4 system

similar to the one used to cool down Bolocam. The fridge has a base temperature

of 220 mK with the windows open and the optical chain shown in Figure 5.7. The

fridge has much lower cooling power compared to a dilution fridge and the material

and geometry for readout microwave co-axes has to be carefully chosen and heat

sunk in order to ensure it cools down to the base temperature. We used 0.085”

co-ax made out of stainless steel from room temperature to 4 K. From 4 K to 220

mK stage 0.085” NbTi alloy coaxes were chosen for their better thermal properties

close to 220 mK, compared to Nb. The cables were carefully heat sunk at 77 K, 4

K, and the intermediate stage. Heat sinking for the center conductor of the co-axes

was ensured by connecting the co-axes bringing the signal into the stage and co-ax

96



taking signal out of the stage through a small valued attenuator (1-3 dB). This allows

for a thermally conductive path from center conductor to the co-ax shield. These

attenuators were held in custom designed heat sinks made out of gold-plated oxygen

free high conductivity (OFHC) copper.

The device was magnetically shielded using Metglas 2705M tape at 4 K and 77 K.

In spite of this, the device was seen to respond to the Earth’s magnetic field. Future

telescope runs will correct this by using niobium shielding can at 4 K (See 6.2.2.4).

5.3.3.2 Device Box

Carbon loaded 

plastic cones

SMA Connector

Microstrip/CPW

duroid transition

Camera Chip

Device Box Lid Device Box 

Figure 5.9: Photograph of the housing used to mount the camera chip in the cryostat

The device was mounted on the fridge ultra-cold stage housed in a gold-plated box

(Figure 5.9) made out of OFHC copper. Gold plating ensured good thermal contact

between the cold stage and the device box. Microwave readout circuit consisted of an

SMA connector, followed by duroid microstrip-to-CPW transition [84], the feedline

on the camera chip and then a duroid transition and an SMA connector again. The
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different portions of microwave circuit were carefully designed to ensure that there

was a 50 Ω impedance match all along, to prevent standing waves or losses due to

reflections. This was further ensured by using a 1 mm wide ribbonised wirebond to

minimise reflections due to the wirebond inductance. The depth of the channel for

the duroid microstrip and the democam chip is carefully chosen such that the top

surfaces are flush with each other to minimise the length of wirebond required for the

connection.

The features on the chip are on the top surface (visible), and the device was

illuminated using submillimeter radiation from the substrate side (Chapter 3) from

a hole in the box below the device (not visible). Carbon loaded plastic cones were

glued on to the box lid since they are good submillimeter loads and prevent excitation

of box resonant modes at those frequencies. The box design is versatile and may be

adapted to the study of other microwave frequency devices.

5.4 Results

The 16-pixel, two-color camera, along with the associated instrumentation discussed

in this chapter was used to take maps of Jupiter, Saturn, and G34.4 using two pixels

and in the two frequency bands corresponding to BPFs 1 and 3.

Figures 5.10a, and b show maps of Jupiter obtained by raster scanning over the

source. This was accomplished soon (couple of hours) after beginning the on-sky

observation for the first time. Jupiter is a bright source and was detected with high

significance in both the bands. The sensitivity for this mode of operation are 1

Jy/
√
Hz and 10 Jy/

√
Hz for band 1 and 3, respectively [14].

The figure also shows the images of G34.3 – a galactic HII region. These were

obtained by drift scanning over the source and as such we expected to see more 1/f

atmospheric noise. The sensitivities in this mode of operation are 1.6 Jy/
√
Hz and

14 Jy/
√
Hz for band 1 and 3, respectively [14].
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The sensitivities quoted in both cases are effective sensitivities limited by the

efficiency of the optical chain rather than the efficiency of the detector itself (See

Chapter 6).

a) b)

c) d)

Figure 5.10: Images of Jupiter and G34.3 taken using the DemoCam [14]. a) Jupiter
in Band 1. b) Jupiter in Band 3. c) G34.3 in Band 1. d) G34.3 in Band 3

5.5 Conclusion

In conclusion we have used the planar technology for making submillimeter wave

antenna, microstrips, and bandpass filters to implement a multi-color submillimeter

pixel. We have integrated the pixels on a single chip to make a 16-pixel, two-color

camera – which along with the cryogenic, readout, and optical intrumentation – was

mounted on top of CSO and used to take astronomical data. With this we have shown

that the Microwave Kinetic Inductance Detectors are a viable technology for making

99



a full-fledged facility instrument in the submillimeter frequency range. Future steps

involve realisation of a 24×24 pixel, four-color camera which can be used as a facility

instrument on CSO and used to replace Bolocam.

100



CHAPTER VI

FUTURE SCOPE

6.1 Resonator Noise

6.1.1 Conclusions

We have studied the temperature and the power dependence of resonance frequency

shift and frequency noise of superconducting resonators which are used to make the

sensing element of our photon detectors. Our experiments indicate that the resonance

frequency response of the resonator matches two-level system theory well, thereby

indicating that these could be responsible for the resonator frequency noise as well.

Due to the high readout power used for these measurements, the TLS dissipation

was strongly saturated and the quality factor data cannot be explained using the

TLS theory. The power law dependence of the resonator frequency noise, which is

the dominant noise in our resonators, with the resonator readout power is P−0.46

and matches the index of −0.5 in the literature [44]. The frequency noise was seen

to decrease by close to two orders of magnitude as temperature was increased by

an order of magnitude from 120 – 1200 mK, with the power law dependence well

approximated as T−1.73. This is a new and very interesting result with important

implications for resonator design. The temperature dependence of this noise has

important practical implications. For instance, if the two level system origin of the

noise is correct, designing resonators to operate in the regime fr << 2kT/h could

result in lower noise and improved performance.
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6.1.2 Future Work

Future experiments could concentrate on repeating the measurements in a low-power

regime to be able to reconcile the quality factor data as well. Gathering the data

at lower temperatures, different resonance frequencies, and multiple harmonics of the

same resonators would also provide deeper insights into behavior of two level systems

and how to further optimize the resonator performance. From a scientific standpoint

it is critical to not only understand that the two-level systems are causing the noise but

also to understand the mechanism for noise generation. This would involve devising

a theory that explains the noise spectrum along with the temperature and power

dependence. It might also be necessary to evaluate the time scales for the mechanism

and whether the generation mechanism is related to T1 (dissipative processes) or

T2 (dephasing processes). Experimental data helping to corroborate or falsify such a

theory would indicate new avenues to optimize the resonator performance parameters

and the trade-offs involved in making good resonators for different applications from

qubit readouts to photon detectors.

6.2 Camera Design

6.2.1 Conclusion

We have designed and tested a 16-pixel, two-color submillimeter wave, prototype cam-

era. Each of the pixel components of the camera are implemented using novel planar

technologies which allow for a monolithic architecture. The antenna is implemented

using multi-slot architecture [62] allowing for large effective area and narrow beams.

This obviates the need for interceding on-chip optics and enables scalability and inte-

gration. The multi-slot antenna uses a binary tree feed network [65] used to combine

power from each of the slots and taps into a single output microstrip. On-chip su-

perconducting, lumped-element, bandpass filters were designed and implemented and

placed inline between the antenna output and the detector to prevent loading of the
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detector due to atmospheric emissions. These remove the need to use complicated

and bulky metal mesh filters reducing the heat load. These also make it possible to

design multi-color pixels where a single broadband antenna is connected to multiple

bandpass filters in parallel, output of each of which is detected by a separate photon

detector. We have demonstrated the two-color operation of a 16-pixel camera and

designed a four-color pixel. The photon detectors were implemented using Kinetic

Inductance Detector technology [28] which uses superconducting microresonators as

the sensing element. This is a powerful new approach to make very large arrays.

The readout for the entire array can be easily accomplished by frequency division

multiplexing the readout signal on just two microwave coaxes.

Our submillimeter pixel design conclusively addresses the problem of scalability

to large arrays and four colors. Both these goals are scientifically significant. Sections

below suggest some technical issues that need to be overcome while desigining the

next generation instrument with four colors and 36 pixels before the final MKIDCam

with four colors and 576 pixels can be implemented.

6.2.2 Future Directions

6.2.2.1 Coupling Quality Factor Design

To maximise the detector sensitivity the coupling quality factor, which may be ad-

justed by changing the coupler length (Section 3.5.2.2), needs to be equal to the

internal quality factor of the resonator (Section 3.5.1). The internal quality factor

can in principle be limited by various effects and for our designs it is limited by the

resonator optical loading (Table 3.4). For the design of the DemoCam an optical

loading due to 300 K was assumed for purposes of lab testing the camera. The result-

ing empirical value of Qi was 15,000 and the coupler length was adjusted to give the

same value for Qc. However, the optical loading at the telescope through the optical

chain is lower, resulting in a higher Qi. Implementation of a sensitive next generation

camera needs to account for lower optical loading at the telescope and proportionally
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design for a higher coupling quality factor. Such a critically coupled resonator will

respond optimally to astronomical sources [72].

6.2.2.2 Material and Geometry Exploration

The ultimate sensitivity of a device with ideal design Qc is limited by its noise. In ad-

dition to the noise studies mentioned above the device design may be further improved

by exploring different metals, substrates, dielectrics alongwith fabrication techniques

such as passivisation of the superconductor using different metals. Different device

geometries may also be explored such as microstrip based MKIDs or separation of

the absorber and detector (resonator) section of the device to control more of device

design parameters separately. The readout power handling abilities are limited by

choice of metal and geometry as well. Experiments have shown lower fractional fre-

quency noise at higher readout powers which gives incentives to explore this part of

the design phase space as well. Both these directions materials and gemoetries can

effect the ultimate noise equivalent power of the detector and will have consequences

for further optimising device design [27].

6.2.2.3 Optical Chain

The optical chain used for the DemoCam instrument was low efficiency resulting in

a higher detector noise. The background limited sensitivity is 50 mJy/
√

Hz in 240

GHz band window but our achieved sensitivity is approximately 20 times worse. This

is a result of contribution from multiple factors including - magnetic field sensitivity,

sky noise (i.e. atmospheric emissivity fluctuations), and lower than expected detector

frequency responsivity, all of which are currently under further investigation.

Recent lab tests have shown that the detectors themselves are working properly

but one reason for the low responsivity can be attributed to thicker than desired

aluminum film in sensing layer. Additionally, there is excess in-band optical load-

ing reasons for which are being currently investigated. Latest lab experiments with

104



cryogenic black body show definitively that the optical efficiency of just the detector

is actually quite high, 50% or better. Newer resonator designs which are much less

susceptible to stray magnetic fields are also being tested.

For future engineering runs at the telescope, optimization of the optical chain

performance is a very important area of performance improvement and will itself

result in significant instrument sensitivity improvement. This will require a new filter

stack with better dielectric constant matching, fewer layers and better AR coating to

reduce reflections and increase in band transmission. A 420 GHz metal mesh filter

will be incorporated in the filter chain to further reduce the leakage, obviating the

need for some of the dielectric layers and resulting in fewer standing waves [14]. This

will also require that the design of BPF 1 be tweaked so that its impedance does

not reduce to transmission line characteristic impedance (20 Ω) in BPF 4 pass band.

This effect causes BPF1 to load BPF 4 resulting in a strong notch in its passband

and will add to lower optical efficiencies.

6.2.2.4 Magnetics

Design of better magnetic shielding for the instrument is critical to ensure a supe-

rior detector performance. With present system the detectors are sensitive to small

changes in the earth’s magnetic field. While raster scanning Jupiter, we noticed linear

drifts in the detector response compared to large signal from Jupiter. Resultantly,

with the present set up, mapping was done either using raster scans to alleviate sky

1/f noise or drift scans which elminates magnetic field effects by leaving the cryo-

stat stationary for the scan duration. Better magnetic shielding would render the

detectors insensitive to Earth’s field allowing raster scans to reduce the sky noise.

This can be achieved by using a niobium can or cryoperm at low temperatures and

permalloy shielding at room temperature for the magnetic shielding [14]. Further, we

can fabricate ground planes and resonators with holes in the superconducting films.
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This will pin the magnetic flux lines that would otherwise be trapped in the MKID

resonators and will lead to change in responsivity as they move [14].

6.2.2.5 Readout Electronics

The advent of very fast analog to digital (A/D) and digital to analog (D/A) convertors

has made it possible to use software defined radio (SDR) technology for fabricating

high performance and low cost boards that read out large pixel count cameras. The

specific readout scheme used for our 16-pixel, two-color camera is outlined in Section

5.3.1. The scheme works by digitally generating tones separated in the frequency

space by the difference in the resonance frequencies of the resonators. These tones

are converted to an analog signal using the D/A convertor and then block upcon-

verted to the readout frequencies of the different photon detectors using a frequency

synthesizer stabilised using a rubidium frequency standard. This frequency comb is

passed through the detectors and downconverted to the baseband. A fast A/D con-

vertor is used to digitize the output and the signals from different readout channels

are separated using a channelisation algorithm implemented using field programmable

gate arrays (FPGAs).

This technology is an excellent candidate for building the readouts for future

generations of camera. It is an economic solution which is also high performance

- often exceeding the performance of the analog readout component which requires

bulky expensive signal generators and other analog circuitry to readout each detector.

Pentek 7640 board (Section 5.3.1) already incorporates the functionality to generate

and detect the frequency comb to readout multiple resonators, on a single board.

Future developments in the technology which would be relevant to reading out MKIDs

arrays are an increase in the total bandwidth and the number of resonators that can

be read out simultaneously using the SDR and changing the software to optimally

measure the resonator signal in direction of maximum signal to noise in real time [85].
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6.3 Outlook

A second engineering run is being planned in 2008 with 36 element, 4 color array. With

the above changes in design we are anticipating a background limited performance for

all the four frequency bands. The larger scale designs will require changing to focal

plane architecture in which pixels are fabricated in octants and each octant is readout

using a single feedline. Each feedline will require its own HEMT amplifier and a pair

of co-axial cables, but will allow greater flexibility in terms of readout - resonance

frequency design, and digital readout [14]. This architecture will also be simpler in

terms of fabrication issues. With a limited stepper field currently being used for

fabrication no more than 4x4 pixels can be accommodated without stitching together

different fields of view. New designs will reduce the requirements for fabrication

uniformity over large areas.

The previous observing run in March 2007 [14] shows an immense promise for

submillimeter pixels made using the MKIDs, planarised multi-slot antenna and the

lumped-element bandpass filters. While there still remain technical challenges that

need to be overcome, it is to be expected that this technology will play a vital role

in astronomical instrumentation and discoveries in the future.
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