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ABSTRACT

The biggest physics discoveries of recent decades—the detection of the Higgs at the
Large Hadron Collider (LHC) in 2012 and the observation of gravitational waves
by the Laser Interferometer Gravitational-Wave Observatory (LIGO) in 2015—are
often celebrated as two monumental yet distinct discoveries. While the potential
of gravitational wave experiments to illuminate particle physics has been acknowl-
edged, its full scope has not been fully appreciated. In this dissertation, we explore
various methods to utilize experiments designed for gravitational wave observations
in the pursuit of understanding physics beyond the standard model. Specifically, we
study two pressing aspects of particle physics: dark matter and quantum gravity,
examining their potential signatures in these experiments.

Pulsars, due to their stable periods, are exceptionally suited for gravitational wave
observations. Recently, the North American Nanohertz Observatory for Gravita-
tional Waves (NANOGrav) reported positive evidence of a stochastic gravitational
wave background in 2023. While the application of pulsar timing measurements
in gravitational wave detection is well established, they also offer avenues to study
various properties of dark matter, such as the small-scale power spectrum and grav-
itational wave signatures from a cosmological phase transition. We will discuss
search strategies for dark matter using realistic pulsar timing array data, current
constraints, and future prospects.

Laser interferometry-based gravitational wave detectors like LIGO also offer a po-
tential pathway for dark matter detection. With their high precision in measuring
laser phase fluctuations, even feeble interactions between dark matter and standard
model particles can produce signals of potentially measurable size. This includes
gravitational interactions as well as other long-range forces, such as scalar or vector
mediated Yukawa interactions. We will explore the spectral shape of such signals
and their detection prospects.

Finally, recent proposals suggest that vacuum quantum gravity effects may manifest
as observable phenomena at low energies in laser interferometers. Planck-sized
fluctuations arising from quantum gravity are amplified by the large number of
degrees of freedom on the horizon of the causal diamond, corresponding to its
entropy. Although LIGO is nominally sensitive to these signatures, its lack of sen-
sitivity at the free-spectral range frequency of the cavities renders it ill-suited for
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detecting such phenomena, highlighting the need for additional experimental setups.
We will discuss one approach to estimate the size of these fluctuations by drawing
connections between a four-dimensional causal diamond and known solutions of
two-dimensional Jackiw–Teitelboim (JT) gravity, as well as the experimental impli-
cations.
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residuals ℎ(𝑡). The solid lines are generated from the MC with a
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first fitted to a second order polynomial in time. The fitted signal,
𝛿𝜙fit(𝑡), is then subtracted from 𝛿𝜙(𝑡). . . . . . . . . . . . . . . . . . 50

3.2 Posterior distribution of log10 𝐴stat and log10 𝐴dyn for mock pulsars
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3.5 The 90th percentile upper limits on the PBH dark matter abundance
𝑓dm ≡ Ω/Ωdm for different PBH masses, 𝑀 . The top and bottom
rows correspond to the SKA and optimistic parameters defined in
Table 3.1, while the three columns corresponding to the Doppler
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derived using all pulsars and only the pulsar with maximum signal
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abundance 𝑓dm ≡ Ω/Ωdm for different PBH masses, 𝑀 . The results
in the present work are labelled as ‘Bayesian’ while the sensitivity
projections in Refs. [42, 9] are labelled as ‘Frequentist’. . . . . . . . . 62
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4.1 In red (blue) the 1-𝜎 (68% posterior credible level), and 2-𝜎 (95%
posterior credible level) contours for the two-dimensional posterior
distributions in the (𝑇∗, 𝛼∗) plane obtained in the BO (SWO). The
BO analysis has been performed with the spectral shape computed by
using the envelope approximation (left panel), semi-analytic results
(central panel), and numerical results (right panel). Specifically,
we use (𝑎, 𝑏, 𝑐) = (1, 2.61, 1.5) for the semi-analytic results, and
(𝑎, 𝑏, 𝑐) = (0.7, 2.3, 1) for the numerical results. . . . . . . . . . . . 70
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4.2 Maximum likelihood GWB fractional energy-density spectrum for
the BO (red) and SWO (blue) analyses compared with the marginal-
ized posterior for the free power spectrum (independent per-frequency
characterization; red violin plot) derived in abb+20. For the BO
analysis we show the results derived by using the envelope (solid
line), semi-analytic (dashed), and numerical (dot-dashed) spectral
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mum likelihood spectra are (0.28, 0.7𝑀𝑒𝑉) for the envelope results,
(1.2, 3.4𝑀𝑒𝑉) for the semi-analytic results, and (0.13, 14.1𝑀𝑒𝑉)
for the numerical results. While for the SO analysis we get (6.0, 0.32𝑀𝑒𝑉). 72

4.3 1-𝜎 (68% posterior credible level), and 2-𝜎 (95% posterior credible
level) contours for the parameters 𝐴GWB and 𝛼∗ in the PT+SMBHB
search. In red (blue) the results for the BO (SWO) analyses. In this
figure we have used the semi-analytic results for the bubble spectrum.
The posteriors do not extend to lower values of 𝛼∗ because of our
choice for the 𝛼∗ prior: log-Uniform [−1.3, 1]. . . . . . . . . . . . . 74

4.4 Corner plot showing the 1D and 2D posterior distributions for the
parameters of the PT-only search. In red (blue) the results for the
BO (SWO) analyses. In deriving these results we have used the
semi-analytic bubble spectral shape with (𝑎, 𝑏, 𝑐) = (1, 2.61, 1.5). . . 76

5.1 Summary of the bounds derived in this paper on the DM-baryon fifth
force to gravitational force strength ratio, 𝛼̃, as defined in Eq. 5.1,
for force ranges, 𝜆, at the two extremes of the range we consider.
The relevant equations for tidal heating, maximal heating, PTA, and
bullet cluster + WEP are derived in Sec. 5.2-5.2, Sec. 5.2, Sec. 5.3,
and Sec. 5.4 respectively. Bound from microlensing surveys is shown
in a gray line, which apply to compact DM with radii less than ∼ 0.1
solar radius [147]. . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
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5.2 Limit on an attractive NS-DM fifth force (Eq. 5.1) for four represen-
tative force ranges, 𝜆, from tidal kinetic heating of the coldest known
NS with temperature 𝑇 < 4.2kK and age 0.3 Gyr (black). In Sec. 5.2
we explicitly explain how limits were derived in several regimes, be-
ginning at high mass. Eqs. 5.27, 5.28, 5.29, and 5.30 determine the
limits in the first three panels from high to low mass, respectively,
and Eq. 5.31 applies at the lowest masses in the last panel. The thick
red maximal kinetic heating curve assumes 100% of transiting DM is
captured and deposits energy quickly through additional short-range
forces, leading to Eq. 5.32 at low masses. In the gray regions, the
old NS would have been destroyed by a single DM encounter (see
Eq. 5.26). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.3 The 90th percentile upper limits on the fifth force strength 𝛼̃ derived
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toward the galactic center (Eq. 5.50 and Table 5.2), and the bullet
cluster (Eq. 5.52), respectively, for force ranges at the extremes of
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combining the MICROSCOPE (green) and bullet cluster (red) limits,
using 𝛼̃max =

√︁
𝛼̃max
𝑛 𝛼̃max

𝑋
(Eq. 5.54). We have assumed that all of the

DM in the Milky Way halo and in the bullet cluster takes the form
of compact, effectively point-like states with approximately the same
mass, 𝑚𝑋 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.1 Comparison of the 68% and 95% probability regions for the amplitude
and slope of a power-law fit to the observed GWB signal (green
contours) and predicted for purely GW-driven SMBHB populations
with circular orbits [blue contours; 344]. The black dashed lines
represent a 2D Gaussian fit of the blue contours. The vertical red line
indicates 𝛾 = 13/3, the naive expectation for a GWB produced by a
GW-driven SMBHB population [366]. . . . . . . . . . . . . . . . . 112
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6.2 Bayes factors for the model comparisons between the new-physics
interpretations of the signal considered in this work and the inter-
pretation in terms of SMBHBs alone. Blue points are for the new
physics alone, and red points are for the new physics in combination
with the SMBHB signal. We also plot the error bars of all Bayes fac-
tors, which we obtain following the bootstrapping method outlined
in Section 6.3. In most cases, however, these error bars are small and
not visible. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.3 Median GWB spectra produced by a subset of the new-physics mod-
els, which we construct by mapping our model parameter poste-
rior distributions to ℎ2Ω𝐺𝑊 distributions at every frequency 𝑓 (see
Figs. G.1 and G.2 for the models not included here). We also show the
periodogram for an HD-correlated free spectral process (gray violins)
and the GWB spectrum produced by an astrophysical population of
inspiraling SMBHBs with the parameters 𝐴BHB and 𝛾BHB fixed at the
central values 𝝁

𝐵𝐻𝐵
of the 2D Gaussian prior distribution specified

in Eq. (G.1) (black dashed line). . . . . . . . . . . . . . . . . . . . . 114
6.4 Reconstructed posterior distributions for the pt-bubble (left panel)

and pt-sound model (right panel). Fig. H.1 in Appendix H shows
the same plots but with the parameter 𝑎 fixed by causality, 𝑎 = 3.
Figs. H.2 and H.3 in Appendix H show extended versions of the
two plots that include the spectral shape parameters 𝑎, 𝑏, 𝑐 and the
SMBHB parameters 𝐴BHB and 𝛾BHB. . . . . . . . . . . . . . . . . . . 120

6.5 The black solid (dashed) lines show the posterior distributions
𝑝(log10 𝐴𝑠𝑡𝑎 |𝜹𝒕) (𝑝(log10 𝐴dyn |𝜹𝒕)) for a representative pulsar (J1909-
3744). The filled distributions show the conditional probability dis-
tributions 𝑝(log10 𝐴| 𝑓PBH) for the same pulsar and different values
of 𝑓PBH. In this plot, 𝑀 = 10−6 (10−10) 𝑀⊙ for the Doppler static
(dynamic) signal, and 𝑀 = 10𝑀⊙ for the Shapiro static signal. . . . . 126

6.6 Constraints at the 95% credible level on the local PBH abundance
derived from the search for static Doppler (red shaded region) and
static Shapiro signals (blue shaded region). The solid lines interpolate
between the PBH masses simulated in this work, while the red dashed
line shows an extrapolation of the constraints to higher masses. . . . . 129
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6.7 The 95% credible level for the fifth-force strength 𝛼̃ derived from the
NG15 data (red lines) is compared with constraints from NS kinetic
heating (blue lines), equivalence principle constraints (green lines),
and Bullet Cluster + equivalence principle constraints (gray line).
Solid (dashed) lines are deriving assuming 𝜆 = 1 𝑝𝑐 (𝜆 = 10−1 𝑝𝑐),
while dashed-dotted (dotted) lines are derived assuming 𝜆 = 10−2 𝑝𝑐

(𝜆 = 10−3 𝑝𝑐). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
7.1 Signal spectrum |ℎ𝑋 ( 𝑓 ) |2 for Doppler effect, Shapiro delay and Ein-

stein delay. Here we choose 𝑀 = 10−4 kg, 𝑏 = 90 m, 𝑣 = 340 km/s,
𝑏⊥ = 30 m, 𝑣⊥ = 270 km/s, 𝐿 = 4 km, and assume a single-arm
GW detector for illustration purposes. See the discussion of different
length scales in Sec. 7.2. The analytic expressions for the signal
spectrum are taken from Eq. (7.26) (Doppler), Eq. (7.32) (Shapiro),
and Eq. (7.37) (Einstein). . . . . . . . . . . . . . . . . . . . . . . . . 137

7.2 Relevant distance scales for measuring transiting DM signals as a
function of DM mass 𝑀 , assuming 𝑓DM = 1 and a local DM mass
density of 𝜌DM = 0.46 GeV/𝑐2/cm3. The length scale for Doppler
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if 𝑏min ≳ 𝐿/2 and 𝑏⊥,min otherwise. Note that 𝑏⊥,min depends on
the length scale of the detector baseline, for which we choose three
experiments with diverse baselines (LISA, LIGO, and GQuEST) for
illustration purposes. For reference we also show a typical pulsar-
Earth distance, 𝑧0 ∼ 5 kpc, which is the largest distance scale for PTA
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7.3 Projected 90th-percentile upper limits on transiting DM fraction from
several existing and proposed GW detectors based on laser interfer-
ometry, assuming 𝑇 = 1 yr of observation time and local DM density
𝜌DM = 0.46 GeV/𝑐2/cm3. The limits are derived by setting the 10th-
percentile SNR defined in Eq. (7.5) to be two, and the DM initial
conditions are sampled using a Monte Carlo simulation. Projections
from other types of high-frequency GW experiments are shown with
dashed colored lines. See Sec. 7.5 for a description of the experiments.143
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7.4 Projected 90th-percentile upper limits on the fifth force Yukawa pa-
rameter from several existing and proposed GW detectors based on
laser interferometry, assuming 𝑇 = 1 yr of observation time and two
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to be two, and the DM initial conditions are sampled using a Monte
Carlo simulation. Projections from other types of high-frequency
GW experiments are shown with dashed colored lines. See Sec. 7.2
for a summary of existing fifth force constraints, and Sec. 7.5 for a
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7.5 Projected 90th-percentile upper limits on stochastic DM signals from
LIGO, LISA, GQuEST, and Holometer, assuming 𝑇 = 1 year of
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7.6 Sensitivity curves of GW experiments. The projected noise spectral
densities for laser interferometers are plotted in solid lines. Strain
sensitivities for narrowband detectors are shown in shaded regions
within the quoted bandwidths. Note that the presented frequency
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8.2 Embedding of the the AdS2 in Minkowski space of signature (2,1).
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8.3 Causal diamonds in different AdS coordinates. In all three panels,
the shaded region corresponds to a causal diamond in one half of
the entire AdS space, which in embedding coordinates is 𝑋 → +∞
shown in Fig. 8.2. It is also the shaded region that corresponds to the
interior of the causal diamond in the original Minkowski spacetime,
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inherited from the 4-d Minkowski spacetime is indicated as a solid
red curve, while the same horizon but on the other side of AdS is
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uncertainty in the geodesic distances parameterized by 𝐿𝑔 and 𝛿

defined in the text. In particular 2𝛿 is the time shift, with respect to
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9.4 The amplitude of each (ℓ, 𝑚) mode of the equal-time correlation
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9.5 The amplitude 𝑐ℓ𝑚 (𝜔) [i.e., Eq. (9.56)] of each (ℓ, 𝑚) mode of the
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cutoff in Eq. (9.52) and with an IR cutoff in Eq. (9.62), respectively.
We have dropped the overall factor 𝑎𝑙𝑝
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10.1 Diagram showing light rays originating from a distant star pass-
ing through the telescope aperture and forming a sharp image on
the screen. Here the star-aperture distance, aperture diameter, and
aperture-screen distance are denoted by 𝐿, 𝐷, and 𝑅, respectively.
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A.1 Comparison of the PBH constraints between this work and [42]. The
left panel compares the pulsar term results while the right panel
compares the Earth term results. The meanings of the labels are
described in the main text. The pulsar parameters used here are
𝑁𝑝 = 200, Δ𝑡 = 2, 𝑡rms = 50 and 𝑇 = 20. The SNR thresholds are set
to SNR = 4 for the pulsar term and SNR = 2 for the earth term for
consistency with [42]. . . . . . . . . . . . . . . . . . . . . . . . . . 235
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sults of the numerical simulations (green) at four different redshifts.
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D.1 𝑉eff,+ as a function of DM radial coordinate when 𝑏 = 𝑏max (solid)
and 𝑏 = 10±0.01𝑏max (dashed/dotted), with 𝜆 = 10−11, 𝑣 = 10−3, and
𝛼̃ = 20 (orange) or 𝛼̃ = 50 (purple). The right-hand plot shows only
the outer region, with the vertical (logarithmic) scale magnified. In
this example, the inner barrier determines 𝑏max for 𝛼̃ = 20 while the
outer barrier determines 𝑏max for 𝛼̃ = 50. C.f. Fig. D.2. . . . . . . . . 243

D.2 Maximum impact parameter for which DM with asymptotic speed
𝑣 ∼ 10−3 intersects a NS with circumferential radius 𝑅, assuming
𝐺𝑀
𝑅

= 0.2, as a function of 𝛼̃. The quoted 𝜆 values and right-hand
scale assume 𝑅 = 10. The black lines show (more exact) numerical
results while the colored lines show our analytic approximation in
eq: b, which agrees with the numerical results to within better than a
factor of 2 in the entire range. The kink in the 𝑏max curves correspond
to the point where the outer centrifugal barrier at 𝑟 > 𝜆 occurs at
smaller 𝑏 than the inner barrier closer to 𝑟 ∼ 𝑅. C.f. Fig. D.1. . . . . 244



xxiv
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C h a p t e r 1

INTRODUCTION

sinc

The field of high-energy phenomenology has undergone a gradual shift in focus
over the past decade. Throughout the 20th century, the concerted efforts of theo-
rists and experimentalists yielded the highly successful formulation of the standard
model of particle physics. This culminated with the discovery of the Higgs at the
Large Hadron Collider (LHC) at CERN [12]. The standard model is highly cel-
ebrated for its accurate description of nature and its elegant structure imposed by
symmetry. However, with its completion, attention has turned towards the quest
for physics beyond the standard model (BSM), largely motivated by considerations
of naturalness [13]. Key among these motivations are the hierarchy problem, the
cosmological constant problem, and the strong CP problem. Notably, a significant
ongoing endeavor at the LHC involves probing the Higgs sector with high precision,
aiming to shed light on the hierarchy problem [14].

Naturalness serves as both a physical principle and a pragmatic guide in pursuing
new physics, historically guiding significant discoveries. Many quantities within
the standard model agree with reasoning inspired by naturalness [15]. However, it
is imperative to acknowledge that naturalness issues are fundamentally fine-tuning
problems, and new physics isn’t inherently bound by naturalness arguments. In
particular, there are two avenues where BSM phenomena are known to exist:

• Dark matter: The most unequivocal evidence of BSM physics comes from
the existence of dark matter (DM). The first evidence of DM comes from
the observation of galaxy rotation curves [16], where the mass density in
the galaxy is found to exceed ordinary luminous matter, thus inferring the
existence of dark matter. Additional evidence of dark matter are subsequently
provided by observation of anisotropies in the cosmic microwave background
(CMB) as a result of baryon acoustic oscillation (BAO) [17] and observation
of bullet cluster [18] (more about dark matter will be discussed in Sec. 1.2.
An important open question in physics is to understand the particle nature of
dark matter and any possible interaction with standard model particles.
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• Quantum gravity: The general theory of relativity proposed by Einstein has
been a highly successful theory in describing astrophysical observations, with
the latest landmark being the observation of gravitational waves from a binary
black hole merger by the Laser Interferometer Gravitational-Wave Observa-
tory (LIGO) [19], an effort led by both Caltech and MIT. This incredibly
elegant theory, however, is incompatible with quantum field theory at high
energy scales, the very building block of the standard model. In particu-
lar, quantum gravity is non-renormalizable [20], hence an infinite number of
counter terms are needed to cancel all the divergences, leading to no sensible
predictions from the theory itself. The energy scale associated with quan-
tum effects from gravity is the Planck mass, 𝑀pl =

√︁
ℏ𝑐/𝐺 ∼ 1019 GeV, far

beyond the energy scales that the LHC can probe. On the other hand, when
the spacetime curvature is small, we can classically quantize gravity coupled
to field theory under the framework of effective field theory into a coherent
theory [21]. However, there are compelling reasons to suspect that this ap-
proach is insufficient, even in the low-energy realm. For instance, Hawking’s
semiclassical treatment near black hole horizons predicts black hole evapora-
tion, which is inconsistent with quantum mechanics principles that pure states
should evolve to pure states [22, 23]. This is known as the black hole infor-
mation paradox [24]. Moreover, applying semiclassical methods to eternal
inflation leads to conflicting probability interpretations [25]. These expose
the inadequacies of semiclassical quantum gravity in its naive application. To
the best of the author’s knowledge, low energy effects of quantum gravity have
never been measured experimentally, leaving vast uncharted territory within
the landscape of BSM physics.

Remarkably, the technological advancements developed to observe and detect grav-
itational waves in recent decades have significant implications for understanding
both dark matter and quantum gravity, in ways not previously anticipated. LIGO
achieves remarkable sensitivity by precisely controlling experimental setups and
suppressing noise from various backgrounds, enabling detection of length fluctu-
ations as small as 10−19 m [26]. In addition to conventional interferometry-based
detectors like LIGO, pulsar timing arrays offer another avenue for gravitational wave
detection. [27], with the ability to measure deviations in pulse arrival times as small
as ∼ 𝜇s. The recent report of positive evidence for a stochastic gravitational wave
background at the nano-Hertz level by NANOGrav has generated significant excite-
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ment within both the astrophysics and particle physics communities [28]. These
highly sensitive instruments and observations allow us to potentially measure feeble
interactions between dark matter and ordinary matter, providing insights into the
various particle properties of dark matter. On the quantum gravity front, while
Dyson famously noted the impossibility of detecting gravitons with LIGO [29],
recent proposals suggest that quantum gravity effects may be boosted by the large
number of degrees of freedom associated with the entropy of a causal diamond
horizon, lead to sizable fluctuations in low energy accessible to laser interferometer
systems [30], which is further facilitated by recent advancements in photon-counting
technologies [2].

The thesis aims to explore the possibilities to detect signatures from dark matter
and quantum gravity using technologies developed for gravitational wave detection,
including both laser interferometers and pulsar timing arrays.

1.1 Gravitational Wave Experiments
gravitational wave detectors
This subsection is based on

[1] Vincent S. H. Lee and Kathryn M. Zurek. “Proper Time Observables of Gen-
eral Gravitational Perturbations in Laser Interferometry-based Gravitational
Wave Detectors”. In: (Aug. 2024). arXiv: 2408.03363 [hep-ph].

.

Here, we provide an overview of the operational principles behind laser-interferometer-
based gravitational wave detectors like LIGO [31]. Specifically, we identify the
physics observable of any gravitational perturbation in an interferometer system,
such as simple Michelson interferometers [32], to be the proper time elapsed as
measured by the beamsplitter, between the moments when a photon first passes
through the beamsplitter and when the same photon returns. Denoting the beam-
splitter’s worldline as 𝑥𝜇

𝐵
, its change in proper time is related to the Nambu-Goto

action:
Δ𝜏𝑎 =

∫ √︃
−𝑔𝜇𝜈𝑑𝑥𝜇𝐵𝑑𝑥

𝜈
𝐵
. (1.1)

Here the subscript 𝑎 labels the interferometer arms and runs from 1, 2. The interfer-
ence pattern observed by collecting the laser from the beamsplitter to the detector
is determined by the difference of proper time elapsed between the two arms, i.e.

Δ𝜏 = Δ𝜏1 − Δ𝜏2 . (1.2)

https://arxiv.org/abs/2408.03363
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and the strain is given by
ℎ =

Δ𝜏

2𝐿
, (1.3)

where 𝐿 is the length of the interferometer arms. The interference pattern observed
when the lasers are recollected to the photon detector is determined by the relative
phase shift between the two arms, which can be related to the proper time observable
as follows. Consider a continuous stream of photons, with frequency𝜔laser, arriving
at the beamsplitter from the laser source. Two particular photons pass through the
beamsplitter at two (possibly different) proper times, 𝜏1 and 𝜏2 (as measured by the
beamsplitter), along the two interferometer arms and recombine at the beamsplitter at
the same proper time. Each photon admits a phase, exp(𝑖𝜔laser𝜏1) and exp(𝑖𝜔laser𝜏2),
respectively, which are conserved along the wavefront (up to a 𝜋-phase shift due
to reflection at the far mirror) until they recombine at the beamsplitter. Their
superposition thus admits a relative phase of Δ𝜙 = 𝜔laser(𝜏2 − 𝜏1) = 𝜔laserΔ𝜏

from Eq. (1.2). Note that the shift in laser frequency coincides with the frequency
of the metric perturbation (see, e.g., Ref. [33]), which is much smaller than the
laser frequency in any realistic experimental setup, and is thus neglected. Since
the proper time as defined in Eq. (1.1) is a scalar, it is manifestly invariant under
diffeomorphisms on the metric perturbation. It might be surprising at first that the
physical observable is a time shift quantity as measured by the beamsplitter, not the
photons1. However, any deviation in the photon trajectories will alter the proper
time measured by the beamsplitter by changing the integration limits of Eq. (1.1).
Specifically, for GW signals, as we will later show, the proper time observable
is equivalent to the commonly quoted detector strain, which is well known to be
gauge-invariant by calculations in both the transverse-traceless (TT) gauge and the
proper detector frame [34]2. Furthermore, perturbations on the photons and the
beamsplitter (as well as the far mirror) can be shuffled into each other by a generic
gauge transformation, while the sum of all effects remains gauge-invariant. We will
explicitly verify these statements in later sections.

1One might be tempted to attribute the physical interferometer observable to either the change in
proper distance between the beamsplitter and the far mirror, or the change in proper time for the light
propagating between them. However, neither description is entirely satisfying. Proper distances are
only defined between two spacelike-separated events, which cannot generally be measured by null
geodesics unless the proper distance does not change substantially within a photon roundtrip time
(which holds for long-wavelength GWs but is not true in general). On the other hand, proper times
are ill-defined for photons as they travel in null geodesics (i.e. 𝑑𝑠2 = 0).

2A calculation of GW measurements with laser interferometers in a general gauge, assuming
slowly varying scalar and vector perturbations along a photon roundtrip, is recently performed in
Ref. [35].
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The goal of this Letter is to fully develop the idea of proper time as a physical
observable, focused on the case of a simple Michelson interferometer. We provide
a simple recipe for computing the observable given a generic metric perturbation
in any gauge, and show that, for any metric perturbation, the beamsplitter proper
time elapsed can be written as a sum of Doppler, Shapiro and Einstein delays. This
latter result is consistent with previous work [36, 7], though now we are able to
show explicitly that this sum is the proper time elapse of the beamsplitter observer.
This recipe can now be applied to any metric perturbation, beyond the usual GW
treatment. Readers interested in computing this gauge-invariant observable can
directly refer to Eqs. (1.2)-(1.3) and Eqs. (1.8)-(1.13).

A laser interferometer consists of two arms linked by a beamsplitter. We schemat-
ically depict a single arm of a laser interferometer in Fig. 10.1. For a single
measurement, there are three notable physical events:

i) Emission (E): The laser reaches the beamsplitter and split into two beams,
each traversing along separate arms.

ii) Reflection (R): The beams encounter the mirrors at the far ends, and reflect
back towards the beamsplitter.

iii) Observation (O): The beams return to the beamsplitter, and finally reconverge
at the detection port. The intensity of the laser is then measured to determine
the phase difference between the two laser beams.

Suppose the metric is perturbed as 𝑔𝜇𝜈 = 𝜂𝜇𝜈+ℎ𝜇𝜈, where 𝜂𝜇𝜈 = diag(−1, +1, +1, +1)
is the metric of flat Minkowski spacetime in the mostly positive convention. When
the perturbation is small, we apply the linearized gravity limit and only terms with
leading order in ℎ𝜇𝜈 are retained.

A general gauge transformation on the metric perturbation is defined as

ℎ𝜇𝜈 → ℎ′𝜇𝜈 = ℎ𝜇𝜈 − 𝜕𝜇𝜉𝜈 − 𝜕𝜈𝜉𝜇 , (1.4)

for a general vector field 𝜉𝜇. The physical observable must be a quantity that
is invariant under a transformation as defined in Eq. (1.4). One such quantity is
given by the proper time elapsed, as measured by the photon detector, between
photon emission at the beamsplitter (E) and when the photon is reflected back
to the beamsplitter and sent to the detection port (O). Here, we assume that the
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Figure 1.1: Schematic spacetime diagram of a single arm in a GW detector. The
left/right diagram corresponds to the unperturbed/perturbed system. The worldlines
of the beamsplitter, far mirror, and the photon are represented by green, blue, and red
lines, and denoted by 𝑥𝜇

𝐵
(𝜏), 𝑥𝜇

𝑀
(𝜏), and 𝑥𝜇

𝛾± (𝜆), respectively. The physical events,
emission (E), reflection (R), and observation (O), are defined by intersections
of worldlines (see description of each event in the main text). The proper time
observable for each arm, Δ𝜏𝑎, is defined to be the proper time elapsed at the
beamsplitter between E and O. Quantities defined in the unperturbed system are
denoted by an overbar.

detection port and the mirrors close to the beamsplitter are positioned closely to the
beamsplitter itself (in comparison to the interferometer arm length), and thus can
all be regarded as the same point in spacetime.

We first consider a single arm in the interferometer oriented towards the unit vector
n̂. The proper time elapsed, as measured by the detector, is given by:

Δ𝜏𝑎 =

∫ 𝜏O

𝜏E

𝑑𝜏 = 𝜏O − 𝜏E . (1.5)

where 𝜏E and 𝜏O denote the detector proper times when the photon is emitted from the
beamsplitter and observed by the detector, respectively. Note that 𝜏E is independent
of the metric perturbation, since it simply marks the starting (proper) time of a
measurement. However, 𝜏O will change under a metric perturbation, determined
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by the intersection of worldlines between the detector and the photon. In a general
perturbed metric, the (3+1)-dimensional worldlines do not necessarily intersect with
each other. Nevertheless, in a realistic experimental setup, the beamsplitter and the
mirrors have finite extents, which are usually neglected since they are much shorter
than the interferometer arm length. In the ℎ𝜇𝜈 ≪ 1 limit, the photons should be
considered as coinciding with the detector / mirrors as long as the projections of their
worldlines on the n̂ direction overlap. Denoting the outgoing and incoming photon
worldlines by 𝑥

𝜇

𝛾+ (𝜆) and 𝑥
𝜇
𝛾− (𝜆) respectively with 𝜆 being an affine parameter,

and the detector and far mirror worldlines by 𝑥𝜇
𝐵
(𝜏) and 𝑥𝜇

𝑀
(𝜏) respectively, these

intersections are then obtained by solving the system of equations

E :

𝑥0
𝐵 (𝜏E) = 𝑥

0
𝛾+ (𝜆E)

n̂ · x𝐵 (𝜏E) = n̂ · x𝛾+ (𝜆E)

R :

𝑥0
𝑀 (𝜏R) = 𝑥0

𝛾+ (𝜆R) = 𝑥
0
𝛾− (𝜆R)

n̂ · x𝑀 (𝜏R) = n̂ · x𝛾+ (𝜆R) = n̂ · x𝛾+ (𝜆R)

O :

{
𝑥0
𝐵 (𝜏O) = 𝑥

0
𝛾− (𝜆O)

n̂ · x𝐵 (𝜏O) = n̂ · x𝛾− (𝜆O) ,
, (1.6)

where 𝜏R is the mirror proper time when it reflects the photon, and 𝜆E , 𝜆R and 𝜆O are
the photon affine parameters when it is emitted, reflected and observed, respectively.
In general, Eq. (1.6) needs to be solved by finding the intersections of geodesics
under a general metric. In linearized gravity, however, we can solve for worldline
intersections order by order. Denoting unperturbed worldline trajectories and time
quantities by an overbar and perturbation by 𝛿, we can expand a generic timelike
geodesic in the leading order of ℎ as 𝑥𝜇

𝐵,𝑀
(𝜏) = 𝑥𝜇

𝐵,𝑀
(𝜏) + 𝛿𝜏 𝑣̄𝜇

𝐵,𝑀
(𝜏) + 𝛿𝑥𝜇

𝐵,𝑀
(𝜏)

with 𝜏 = 𝜏 + 𝛿𝜏, 𝑣̄𝜇
𝐵,𝑀

(𝜏) = (𝑑/𝑑𝜏)𝑥𝜇
𝐵,𝑀

(𝜏), and analogous equations for the null
geodesics. Hence, Eq. (1.6) becomes

E :

𝛿𝑥0

𝐵 (𝜏E) = 𝛿𝑥
0
𝛾+ (𝜆E)

n̂ · 𝛿x𝐵 (𝜏E) = n̂ · 𝛿x𝛾+ (𝜆E)

R :

𝛿𝑥0

𝐵 (𝜏R) + 𝛿𝜏R = 𝛿𝑥0
𝛾+ (𝜆̄R) + 𝛿𝜆R = 𝛿𝑥0

𝛾− (𝜆̄R) + 𝛿𝜆R
n̂ · 𝛿x𝑀 (𝜏R) = n̂ · 𝛿x𝛾+ (𝜆̄R) + 𝛿𝜆R = n̂ · 𝛿x𝛾+ (𝜆̄R) − 𝛿𝜆R

O :

{
𝛿𝑥0

𝐵 (𝜏O) + 𝛿𝜏O = 𝛿𝑥0
𝛾− (𝜆̄O) + 𝛿𝜆O

n̂ · 𝛿x𝐵 (𝜏O) = n̂ · 𝛿x𝛾− (𝜆̄O) − 𝛿𝜆O
, (1.7)
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where we used the expressions for the unperturbed worldlines

𝑥
𝜇

𝐵
(𝜏) = (𝜏, x̄𝐵)

𝑥
𝜇

𝑀
(𝜏) = (𝜏, x̄𝑀)

𝑥
𝜇

𝛾+ (𝜆) = (𝜆, (𝜆 − 𝜆E)n̂ + x̄𝐵)

𝑥
𝜇
𝛾− (𝜆) = (𝜆,−(𝜆 − 𝜆̄O)n̂ + x̄𝐵) . (1.8)

We note that the asymmetry between the emission equations (first two) and the
observation equations (last two) in Eq. (1.7) originates from the fact that 𝛿𝜏E = 0
(i.e. the emission proper time is unperturbed) while 𝛿𝜏O ≠ 0.

The perturbed worldlines of the detector and the far mirror are given by solving
the geodesic equation, 𝑑2𝑥

𝜌

𝐵,𝑀
/𝑑𝜏2 + Γ

𝜌
𝜇𝜈 (𝑑𝑥𝜇𝐵,𝑀/𝑑𝜏) (𝑑𝑥

𝜈
𝐵,𝑀

/𝑑𝜏) = 0, which in
linearized gravity gives

𝑑2

𝑑𝜏2 𝛿𝑥
𝑖
𝐵,𝑀 (𝜏) = 𝜂𝑖 𝑗

(
−𝜕0ℎ0 𝑗 +

1
2
𝜕𝑗ℎ00

) ����
𝑥
𝜇

𝐵,𝑀
(𝜏)
. (1.9)

The time component of the worldlines are determined by 𝑑𝑠2 = 𝑔𝜇𝜈𝑑𝑥
𝜇

𝐵,𝑀
𝑑𝑥𝜈

𝐵,𝑀
= −1

for timelike geodesics
𝑑

𝑑𝜏
𝛿𝑥0

𝐵,𝑀 (𝜏) = 1
2
ℎ00

����
𝑥
𝜇

𝐵,𝑀
(𝜏)
. (1.10)

In Eqs. (1.9)-(1.10), the metric derivatives on the RHS are evaluated at the un-
perturbed detector and mirror worldlines, 𝑥𝜇

𝐵
(𝜏) an 𝑥𝜇

𝑀
(𝜏), as defined in Eq. (1.8),

respectively. These differential equations are solved by integrating the RHS of in 𝜏.
The photon geodesics are solved by setting 𝑑𝑠2 = 𝑔𝜇𝜈𝑑𝑥

𝜇

𝛾±𝑑𝑥
𝜈
𝛾± = 0, which becomes

𝑛±𝜇𝛿𝑣
𝜇

𝛾± (𝜆) = −1
2

[
ℎ00 ± 2𝑛𝑖ℎ0𝑖 + 𝑛𝑖𝑛 𝑗ℎ𝑖 𝑗

] ����
𝑥
𝜇

𝛾̄± (𝜆)
, (1.11)

where we defined 𝑣𝜇
𝛾± (𝜆) = (𝑑/𝑑𝜆)𝑥𝜇

𝛾± (𝜆), 𝑛
𝜇
± = (1,±𝑛𝑖), and the perturbed metric

in the RHS are evaluated at the unperturbed photon trajectories, 𝑥𝜇
𝛾± (𝜆), as defined

in Eq. (1.8), respectively.

Finally, rearranging Eq. (1.7) to solve for Δ𝜏𝑎 = 𝜏O − 𝜏E = 2𝐿 + 𝛿𝜏O , we find that
Eq. (1.5) can be written in a compact form

Δ𝜏𝑎 = 2𝐿 + Δ𝜏
(Doppler)
𝑎 + Δ𝜏

(Shapiro)
𝑎 + Δ𝜏(Einstein) , (1.12)
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where we have written the shift in proper time elapsed as a sum of three individual
contributions, defined as

Δ𝜏
(Doppler)
𝑎 = −n̂ · [𝛿x𝐵 (𝜏E) − 2𝛿x𝑀 (𝜏E + 𝐿) + 𝛿x𝐵 (𝜏E + 2𝐿)]

Δ𝜏
(Shapiro)
𝑎 = −

∫ 𝜆E+𝐿

𝜆E

𝑑𝜆 𝑛+𝜇𝛿𝑣
𝜇

𝛾+ (𝜆) −
∫ 𝜆E+2𝐿

𝜆E+𝐿
𝑑𝜆 𝑛−𝜇𝛿𝑣

𝜇
𝛾− (𝜆)

Δ𝜏(Einstein) = −
∫ 𝜏E+2𝐿

𝜏E

𝑑𝜏

[
𝑑

𝑑𝜏
𝛿𝑥0

𝐵 (𝜏)
]
, (1.13)

where 𝜆E = 𝜏E , and the expressions for the worldlines are given in Eqs. (1.8)-(1.11).
Here we used 𝜏O = 𝜏E + 2𝐿 and 𝜏R = 𝜏E + 𝐿. The difference in proper time
elapsed between two arms is then given by Eq. (1.2), Eq. (1.12) and Eq. (1.13). An
analogous decomposition has also been identified in Ref. [36] for the special case
of interferometer response to GWs in the proper detector frame, in which that the
sum is shown to be translationally invariant.

We briefly describe the physical meanings of the Doppler, Shapiro, and Einstein
terms defined in Eq. (1.13). The Doppler term corresponds to the motion of the
detector and the far mirror, akin to the Doppler effect, where the motion of the
emitter or observer of a wave affects the apparent frequency. The Shapiro term
accounts for the integrated shifts in velocity in the photon trajectories, similar to
a Shapiro delay for light waves propagating under the influence of a gravitational
field. Lastly, the Einstein term corresponds to the time dilation of the clock at the
detector.

Since the proper time elapsed defined in Eq. (1.5) is a scalar, it is by construction
a gauge-invariant quantity. Although one could attribute physical meanings to the
individual components in Eq. (1.12) such as proper motion and time delay, they are
ultimately coordinate-dependent quantities, and by themselves do not constitute a
true physical observable as measured by a realistic experiment.

We conclude this section with several remarks. Firstly, observe that the Einstein
term does not depend on the arm orientation n̂, and hence is completely canceled
when the proper time difference across the two arms is computed. Secondly, the
time variable of this measurement can be identified as final time of the light-pulse
sequence. Therefore, the power spectrum of the signal is obtained by Fourier
transforming the proper time elapsed with respect to 𝜏O = 𝜏E + 2𝐿 + O(ℎ), the time
of observation, i.e. [37]

ℎ̃( 𝑓 ) = 1
2𝐿

∫ ∞

−∞
𝑑𝜏E 𝑒

−2𝜋𝑖 𝑓 (𝜏E+2𝐿)Δ𝜏 . (1.14)
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Finally, as an example, we compute the proper time observable as defined above
for a classical GW. Assuming that the wave passes through the interferometer at
𝑡 = 0 in the ẑ direction while the two interferometer arms are oriented in the x̂
and ŷ directions and the beamsplitter set at the origin, the metric perturbation,
in the TT gauge, can be written as ℎ𝑇𝑇𝑥𝑥 = −ℎ𝑇𝑇𝑦𝑦 = ℎ+ cos(𝜔GW𝑡 − 𝑘GW𝑧) and
ℎ𝑇𝑇𝑥𝑦 = ℎ𝑇𝑇𝑦𝑥 = ℎ× cos(𝜔GW𝑡 − 𝑘GW𝑧), where ℎ+ and ℎ× are the plus-polarization
and cross-polarization strains, and 𝜔GW and 𝑘GW are the angular frequency and
wavenumber of the GW. It is immediately clear from Eqs. (1.9)-(1.11) that the only
term in Eq. (1.13) that contributes to the proper time shift is the Shapiro term, which
evaluates to (using Eqs. (1.11)-(1.13) and Eq. (1.2))

Δ𝜏(GW) = 2𝐿ℎ+ (𝜔GW𝐿) cos (𝜔GW(𝜏E + 𝐿)) . (1.15)

The strain as derived from the proper time observable by putting Eq. (1.15) into
Eq. (1.3) is then given by the familiar relation, ℎ(GW) (𝑡) ≈ ℎ+ cos(𝜔GW𝑡) [38]
in the long-wavelength limit, 𝜔GW𝐿 ≪ 1. We have thus shown that the proper
time observable is equivalent to the detector strain for GWs. Consequently, when
discussing GW signatures in TT gauge, one can focus solely on the photon time
delay across a round-trip as a simplified definition of the observable.

As a sanity check, we repeat the above calculation in the proper detector frame.
Using results from Ref. [39], the only non-vanishing and relevant component is
given by ℎ𝑃𝐷00

���
𝑧=0

= −(1/2)𝜔2
GW

[
ℎ+(𝑥2 − 𝑦2) + 2ℎ×𝑥𝑦

]
cos(𝜔GW𝑡) [40]. One finds

that both Doppler and Shapiro terms contribute, with (cf. Eqs. (1.11)-(1.13) and
Eq. (1.2))

Δ𝜏(GW,Doppler) = 2𝐿ℎ+ cos(𝜔GW(𝜏E + 𝐿))
Δ𝜏(GW,Shapiro) = −2𝐿ℎ+ cos(𝜔GW(𝜏E + 𝐿)) [1 − (𝜔GW𝐿)] , (1.16)

which reproduces the TT-gauge result in Eq. (1.15). We note that in the proper
detector frame, the mirror motion (i.e. Doppler term) is the dominant contribution
if 𝜔GW𝐿 ≪ 1, in agreement with the literature [34].

pulsar timing arrays
Precision timing measurement of pulses emitted from rapidly rotating neutron stars
known as pulsars provides us with another way of detecting gravitational waves.
The advantage of pulsar timing measurements comes from the incredible stability
of millisecond pulsars, often with an intrinsic spindown rate potentially as small
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¤𝑃 ∼ 10−21 where 𝑃 is the pulsar period [41]3. This remarkable stability facilitates
the detection of gravitational waves by minimizing the uncertainties originating
from the pulsar itself, thereby enhancing our ability to accurately detect and mea-
sure gravitational wave signals. Additionally, timing measurements from a large
collection of pulsars at different locations in the celestial sphere allows us to mea-
sure the cross-correlation of any timing deviations, which provide a smoking-gun
signature of gravitational waves passing through the entire array of pulsars.

We provide a brief introduction to measuring gravitational perturbations using pulsar
timing arrays. Our treatment here mostly follows Ref. [42]. The intrinsic phase of
a pulsar is modeled by the timing model

𝜙(𝑡) = 𝜙0 + 𝜈𝑡 +
1
2
¤𝜈𝑡2 , (1.17)

where 𝜙0, 𝜈 and ¤𝜈 are the pulsar phase constant, angular frequency and spindown. In
the presence of any gravitational perturbation, the pulsar phase will be modulated,
leading to a phase residual

𝑠(𝑡) = 𝜙(𝑡) − 𝜙fitted(𝑡) , (1.18)

where 𝜙fitted(𝑡) is obtained by fitting the measured pulsar phase with a quadratic
polynomial in time as Eq. (1.17). Any components of the timing residuals 𝑠(𝑡) that
are not attributed to noise can then potentially be signatures due to gravitational
waves, dark matter, or other phenomena that can alter pulsar timings. This also
shows that any perturbations in pulsar timing that are at most linear in time will be
completely degenerate with the timing model, and hence are cannot be discovered
by pulsar timing measurements (although they are still constrained to be smaller in
magnitude than the experimental fitted values).

Dark matter signatures can manifest in pulsar timing measurements in various ways.
Here we name a few as an illustration. First, dark matter substructure in the universe
can gravitationally accelerate pulsars, leading to an apparent Doppler shift in the
observed phase [43]. Second, gravitational field due to dark matter substructure
can lead to Shapiro time delay in the observed pulses [44]. Finally, a strong first-
order cosmological phase transition in the dark sector can produce a stochastic
gravitational wave background, which can in turned be measured by pulsar timing
arrays [45]. This is particularly important if the dark sector is completely secluded

3While individual pulse profile can suffer from random fluctuations, the pulse profile averaged
over rotations can be extraordinarily stable across long timescales [27].
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from the standard model, then gravitational signatures will be the only observables
accessible to experiments.

1.2 Dark Matter
This section provides a concise overview of the field of dark matter research relevant
to this thesis, while not exhaustively covering all recent developments. Detailed
reviews discussing various evidence of dark matter and detection techniques are
available in TASI lectures [46, 47, 48, 49, 50, 51, 52] as well as the recent Snowmass
paper [53]. In summary, the current open questions about dark matter are:

• What is the particle nature (e.g., mass) of dark matter?

• How does dark matter interact with standard model particles?

• What is the origin of dark matter?

evidence of dark matter and alternative explanations
As mentioned in the introduction, dark matter was originally proposed to explain
galaxy rotation curves [54]. The inference of dark matter’s existence from these
curves relies on the assumption that general relativity holds on larger scales than
those currently subjected to precision tests. Consequently, there have been proposals
to explain rotation curves by modifying gravity on a large scale, thus avoiding the
need for dark matter [55, 56, 57]. Additionally, alternative proposals inspired by
string theory, black hole information theory, and quantum information theory suggest
that gravity contains an additional “dark" force at the scale of the cosmological
horizon. This concept is commonly known as “emergent" or “entropic" gravity [58].

While these alternative proposals can often also explain galaxy rotation curves,
sometimes with even better agreement with experimental data (see Refs. [59, 60]),
they also need to be capable of reproducing other empirical evidence of dark matter
without the introduction of extra matter content. This includes observations of the
anisotropies in the cosmic microwave background [61], gravitational lensing ob-
servations of bullet clusters [61, 62], abundance of light elements from big bang
nucleosynthesis [63], and large scale structure observations [64], all of which align
well with the standard ΛCDM (dark energy + cold dark matter) paradigm [65]. Ten-
sions with observational data on small scales can generally be attributed to baryonic
effects [66]. In particular, studies have demonstrated that for any generic theory
of modified gravity that is isotropic and conserves both matter and momentum, to
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match observations of the large-scale distribution of structure [67], the correspond-
ing acceleration law needs to switch sign at around ∼ 150 Mpc scale [68], a feature
absent in any current proposed theories of modified gravity. Therefore, dark matter
remains the simplest and most coherent explanation of cosmological observations
on both large and small scales, with modified gravity (without the addition of any
other matter content) being a possibility that is intriguing, yet challenging to be
reconciled with the vast diversity of existing observations.

properties of dark matter
Here we summarize the known properties of dark matter.

• Mass: The mass of dark matter is constrained within 10−19 eV ≲ 𝑚𝜒 ≲

102 𝑀⊙ [69], where the lower bound is derived from observations of ultrafaint
dwarf galaxies [70], and the upper bound is determined from microlensing
observations [71]. Fermionic dark matter particles are required to be heavier
than ∼keV to fit into a dwarf galaxy while satisfying the Fermi exclusion
principle [72]. Additionally, it is noted that dark matter heavier than the
Planck mass exists as either black holes or bound-states [52].

• Phase space distribution: The dark matter velocity in the solar neighborhood
is often approximated with the standard halo, which is a Maxwell-Boltzmann
distribution, 𝑓 (v) ∝ exp(−v2/𝑣2

0), truncated at the escape velocity of 𝑣esp ≈
600 km/s, with a scale velocity of 𝑣0 ≈ 220 km/s, and boosted to the Earth
frame by the solar system velocity 𝑣⊙ ≈ 240 km/s [73]. However, recent
studies using stellar observations of SDSS-Gaia reveal substantial deviation
of the dark matter velocity distribution from the standard halo model, with
important implications on direct prospects [74]. On the other hand, the
density profile of dark matter in the galaxy can generically be modeled by the
Navarro-Frenk-White (NFW) profile [65, 75], 𝜌(𝑟) ∝ (𝑟/𝑟𝑠)−1(1 + 𝑟/𝑟𝑠)−2,
where 𝑟 is the radial distance from the galactic center and 𝑟𝑠 ≈ 8 kpc is the
scale radius [76].

• Interaction: To date, the only known interaction between dark matter and
standard model particles is gravity. Any additional interactions must be
feeble to evade existing experimental constraints. For instance, interactions
between dark matter and photons are constrained by observation of cosmic
background radiation intensity in the microwave, infrared, optical, ultraviolet,
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x-ray and gamma-ray bands [77]. On the other hand, dark matter is allowed to
self-interact with cross-section limited by the upper bound, 𝜎/𝑚𝜒 ≲ cm2/g,
set by bullet cluster observation [78, 79].

detection strategies
Traditional endeavors in dark matter direct detection have predominantly focused on
weakly interacting massive particles (WIMPs), widely regarded as the most well-
motivated model of dark matter [80]. It has been proposed that WIMPs initially
existed in thermal equilibrium with the standard model plasma in the early uni-
verse. As the universe expanded, the thermal bath cooled, leading to an exponential
suppression in the dark matter number density as exp(−𝑚𝑋/𝑇) until the Hubble ex-
pansion rate surpassed the dark matter annihilation rate. Subsequently, dark matter
underwent “freeze-out" from thermal equilibrium, resulting in a constant comoving
density. Studies have indicated that within this framework, the mass of dark matter
must fall within the range MeV ≲ 𝑚𝜒 ≲ 100,TeV to comply with constraints from
big bang nucleosynthesis and to avoid overproduction. Additionally, standard ther-
modynamic calculations suggest that for dark matter with a mass of ∼ 100 GeV, the
requisite dark matter abundance observed today necessitates an annihilation cross-
section of approximately ⟨𝜎𝑣⟩ ∼ 10−26 cm3/s [50]. This notion, commonly referred
to as the "WIMP miracle," proposes that weak-scale particle dark matter must un-
dergo annihilation with a strength comparable to the weak interaction. Despite this
success, efforts in direct detection of WIMPs have thus far yielded no conclusive
evidence, despite significant advancements in experimental sensitivity.

Over the past decade, there has been significant progress in the direct detection of
light dark matter, particularly sub-GeV dark matter. Unlike their counterparts, these
dark matter candidates were not initially in thermal equilibrium with the standard
model bath. Instead, they attained their observed abundance through inefficient
production via a small coupling with the standard model, a phenomenon termed
“freeze-in" [81, 82]. Given that sub-GeV dark matter particles are not heavy enough
to induce measurable nuclear recoil effects, direct detection hinges on the excitation
of collective modes in condensed matter systems [83, 84].

While direct detection experiments are an indispensable element of the search for
dark matter, it is also important to recognize that targeted experimental searches
for any particular model or class of models might eventually yield no conclusive
results. The importance of “casting a wider net" has gained recognition within the
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community [85], particularly with the increasing number of well-motivated dark
matter models. Specifically, if dark matter is not a single particle but part of a more
complex dark sector with its own dynamics, then designing a targeted experiment
for each variant of the model will be highly inefficient. It has long been recognized
that astrophysical systems offer an excellent avenue to explore the dark matter
parameter space due to their often extreme environments (e.g., gravitational and
magnetic field strengths). Additionally, as to be discussed in Sec. 1.1, gravitational
wave experiments have achieved remarkable precision in recent years, providing
another promising method for probing feeble interactions between dark matter and
standard model particles, including purely gravitational interaction, and potentially
dark-sector mediated long-range Yukawa interaction.

1.3 Quantum Gravity
It is conventional wisdom that quantum gravity effects can never be measured
with realistic experimental setups. Indeed, by traditional power counting under
the effective field theory framework, the size of any physical process that is both
“quantum" and “gravitational" is expected to be proportional to certain positive
powers of both the reduced Planck constant, ℏ, and the Newtonian constant, 𝐺𝑁

(here we temporarily restore units that are otherwise dimensionless in natural units
to illustrate the physical sizes). If the observable is a length quantity, then the
physical size should be given by the only product of fundamental constants that give
a length quantity, i.e the Planck length 𝑙𝑝 =

√︁
𝐺𝑁ℏ/𝑐3 ∼ 10−34 m, which is far too

small to be measured by any interferometer systems.

However, there are reasons to believe that the vacuum fluctuations can be much
bigger than anticipated. A recent review is given by Ref. [86]. The photon trajectory
traces a causal diamond, which is a null surface that causally separates two regions
of spacetime, i.e. the exterior and the interior of the diamond. This is analogous to a
black hole horizon, which is also a null surface. The Berkenstein-Hawking entropy
of a black hole is given by the famous formula [87, 88, 89],

𝑆 =
𝐴

4𝐺𝑁

, (1.19)

where 𝐴 is the area of the black hole horizon. This suggests a thermodynamic
description of the black hole. In particular, this also suggests that the IR scale of
the system, i.e. the horizon size, enters into the number of degree of freedom in the
horizon.
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In fact, it has been long speculated that length fluctuations near a black hole horizon
can be much larger than the size as predicted by a naive application of EFT. Marolf
argued that fluctuations of low energy modes near a black hole horizon provide the
horizon with a non-zero quantum mechanical width. The width in four spacetime
dimensions is estimated to be [90]

Δ𝐿 ∼
√︁
𝑙𝑝𝐿 . (1.20)

A recent paper by Bousso and Penington demonstrated that EFT radically breakdown
as evident of information located in an entanglement island reconstructed non-
perturbatively from distant radiation [91]. The length scale where EFT breaks down
also has the same scaling relation as Eq. (1.20) in four spacetime dimensions. While
these results cannot be directly translated into interferometer observables, they serve
as examples that EFT can break down near a black hole horizon, which is a region
with weak gravitational field and one would assume that EFT is still valid.
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C h a p t e r 2

PROBING DARK MATTER SUBSTRUCTURE WITH PULSAR
TIMING ARRAYS: FORMALISM AND PROJECTED

COSNTRAINTS

This chapter is based on

[1] Vincent S. H. Lee, Andrea Mitridate, Tanner Trickle, and Kathryn M. Zurek.
“Probing Small-Scale Power Spectra with Pulsar Timing Arrays”. In: JHEP
06 (2021), p. 028. doi: 10.1007/JHEP06(2021)028. arXiv: 2012.09857
[astro-ph.CO].

2.1 Introduction
Dark Matter (DM) is one of the pillars of the standard cosmological model. Per-
turbations in the DM density field generated by inflation provide the seeds for
the hierarchical structure formation we observe in the Universe. On large scales
the matter power spectrum of these primordial perturbations can be inferred from
the anisotropies in the cosmic microwave background (CMB). These observations
indicate a nearly scale-invariant spectrum of primordial fluctuations, which is com-
patible with the large scale structures we observe on galactic and extra-galactic
scales.

However on smaller length scales, 𝑘 ≳ pc−1, different theories of DM leave unique
fingerprints on the primordial perturbations and/or their evolution. Here we fo-
cus on four theories which produce different small scale structures, avoid current
experimental bounds, and are theoretically well motivated:

• ΛCDM: A nearly scale invariant spectrum of adiabatic perturbations is pro-
duced at the end of infaltion [92, 93].

• Post-inflationary QCD axion: The 𝑈 (1)PQ symmetry is broken after infla-
tion. The decay of axion field defects at the QCD phase transition then induces
large amplitude isocurvature fluctuations on scales smaller than the horizon
at the QCD epoch [94, 95].

https://doi.org/10.1007/JHEP06(2021)028
https://arxiv.org/abs/2012.09857
https://arxiv.org/abs/2012.09857
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• Early Matter Domination: Adiabatic perturbations which are within the
horizon during an early stage of matter domination grow linearly instead of
logarithmically, enhancing the amount structure on these scales [96, 97].

• Vector DM Produced During Inflation: If the DM is a massive spin-1
particle, the longitudinal modes produced at the end of inflation can peak the
power spectrum at small scales, with the location of the peak determined by
the DM mass [98].

These model specific features in the primordial seeds, and their evolution, translate
to different predictions for the amount, and properties, of sub-galactic DM halos
(subhalos). Therefore measuring this population of subhalos can be a powerful tool
in pinning down the model of DM.

Unfortunately DM subhalos are elusive objects, mostly because they are expected
to contain very little baryonic matter and are therefore nearly invisible (assuming a
weak indirect detection signal). Because of this, gravitational probes are the natural
candidate to look for them. Many such probes have been proposed (e.g. Refs. [99,
100, 101, 102]), however their discovery potential depends on the subhalo mass and
density profile (usually parameterized with a concentration parameter). At small
masses (𝑀 ≲ 10−2𝑀⊙), where these probes lose sensitivity, Pulsar Timing Arrays
(PTAs) may be powerful and complementary probes [44, 103, 104, 105, 43, 42].
The ability to test extremely light (𝑀 ≳ 10−13) subhalos with low concentration
parameters (𝑐 ≳ 10) makes PTA searches particularly interesting.

The signals DM subhalos can induce in a PTA measurement of the pulsar phase
have been studied in depth [43, 42]. Each subhalo induces a shift to the residual
phase measurement which can be non-degenerate with the timing model. Previous
works [43, 42] have used analytic approximations of the signal, denoted as static,
dynamic, and stochastic limits. These correspond to three different limits where the
timescale, 𝜏, for a typical subhalo to transit the line-of-sight is much greater than the
observing time 𝑇 (𝜏 ≫ 𝑇 , static), is much less than the observing time (𝜏 ≪ 𝑇), but
the signal is dominated by a single transiting subhalo (dynamic) or many transiting
subhalos (stochastic). Here we will limit these simplifications by generating the full
time series produced by a population of DM halos by using a Monte Carlo (MC)
simulation. One goal of this paper is to develop this numeric tool, which we make
publicly available on GitHub .

https://github.com/szehiml/dm-pta-mc
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The second goal of this work is to use this MC to generate the PTA signal that
would be produced by the subhalo populations predicted by the four DM models
listed above. To obtain an estimate of the local population of DM subhalos, one
needs to know how primordial perturbations evolve from the early Universe until
today. This is a complex problem, especially at the sub-galactic scales relevant for
PTA searches where non-linearities and tidal effects play a crucial role. The Press-
Schechter formalism [106] is known to give a reasonably good analytic description
of the non-linear physics related to the clustering of DM overdensities (at least for the
case of ΛCDM, where a direct comparison with numerical simulations is possible).
We then use this model, together with semi-analytic description of tidal effects,
to relate the primordial power of primordial perturbations to the local population
of DM subhalos. We should caution that a number of the methods we are using
have not be tested against 𝑁-body simulations for such low mass and high density
subhalos. We leave for future work validating and calibrating the analytic results for
small scale DM subhalos.

The outline of the paper is as follows. In Section 2.2 we review the derivation of
the PTA signal induced by a population of DM subhalos, along with the signal-to-
noise ratio, and discuss the MC algorithm used to compute it. In Section 2.3 we
illustrate the semi-analytic procedure used to relate the primordial power of density
perturbation to the local subhalo population. In Section 2.4 we apply these results to
the benchmark scenarios discussed above, and derive constraints for planned [107],
and future PTAs. Finally, in Section 9.5 we conclude.

2.2 Dark Matter Subhalo Signatures in Pulsar Timing Arrays
We begin with a discussion of the signal induced in PTAs by DM subhalos, how
we generate this signal with the Monte Carlo, and the signal-to-noise ratio (SNR)
of such a signal. Many of the formulae presented here were previously derived
in Refs. [43, 42] and we review them here for completeness. Previously both the
Doppler effect (acceleration induced by a DM subhalo of either the Earth or a pulsar
(called the Earth or pulsar terms, respectively)), and Shapiro effect (a change in the
light arrival time due to the DM subhalo gravitational potential) were considered.
Here we will only consider signals from the Doppler effect, which is dominant over
the Shapiro effect for subhalos with mass below 𝑀 ≲ 10−3𝑀⊙ for any concentration
parameter (see Ref. [42]).
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Phase Shifts from Dark Matter Subhalos
Pulsars are rotating, highly magnetized neutron stars that emit beams of electro-
magnetic radiation from their magnetic poles. Given a misalignment between the
rotation and magnetic axes, the pulsar rotation can cause the radiation beam to sweep
across Earth. If this happens, a pulsar will appear to an Earth observer as a periodic
emitter. When a DM subhalo approaches either the Earth, or a pulsar, in the array
it will cause an acceleration and therefore change the observed pulsar frequency, 𝜈.
This frequency shift, 𝛿𝜈, for a subhalo passing with position r = r0 + v𝑡, where r0

is the initial position and v is the velocity, is given by

𝛿𝜈 (𝑡; r0, v) = 𝜈 d̂ ·
∫ 𝑡

0
∇Φ(r(𝑡′)) 𝑑𝑡′ , (2.1)

where Φ is the subhalo gravitational potential. The coordinate system for the Earth
(pulsar) term is chosen with the Earth (pulsar) at the origin, with d̂ pointing from
the Earth to the pulsar (pulsar to Earth). We also parameterize the position vector as
r(𝑡) = b + v(𝑡 − 𝑡), where b = r0 + v𝑡 is the impact parameter, and 𝑡 = −r0 · v/𝑣2 is
the time to reach the point of closest approach. The phase shift, 𝛿𝜙, is then simply

𝛿𝜙(𝑡) =
∫ 𝑡

0
𝛿𝜈(𝑡′) 𝑑𝑡′ . (2.2)

For spherically symmetric halos, the gradient of gravitational potential appearing in
(2.1) can be written in terms of a form factor F (𝑠, 𝑐) as

∇Φ(r, 𝑀) = 𝐺𝑀

𝑟3 F (𝑟/𝑟𝑣, 𝑐) r, (2.3)

where 𝑀 is the virial mass defined as the subhalo mass contained inside the virial
radius 𝑟𝑣, the radius within which the mean halo density is 200 times the critical
density of the Universe, 𝜌𝑐. In the following we will assume that DM subhalos have
an NFW density profile

𝜌(𝑟) = 4𝜌𝑠
(𝑟/𝑟𝑠) (1 + 𝑟/𝑟𝑠)2 , (2.4)

where 𝑟𝑠 is the scale radius, and 𝜌𝑠 ≡ 𝜌(𝑟𝑠). For NFW subhalos the form factor is

F (𝑠, 𝑐) = ln(1 + 𝑐 𝑠) − 𝑐 𝑠/(1 + 𝑐 𝑠)
ln(1 + 𝑐) − 𝑐/(1 + 𝑐) , (2.5)

where we have introduced the concentration parameter, 𝑐 ≡ 𝑟𝑣/𝑟𝑠, related to the
subhalo scale density by

𝜌𝑠 =
50 𝑐3𝜌𝑐

3 (ln(1 + 𝑐) − 𝑐/(1 + 𝑐)) . (2.6)
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We see that for very compact halos, 𝑐 → ∞, the form factor reduces to one and
subhalos behave as point-like object. We will refer to this as the ‘PBH’ limit since
when F → 1 the gravitational potential reduces to that of a primordial black hole
(PBH).

In the PBH limit Eq. (2.2) can be simplified to [43]1

𝛿𝜙PBH(𝑡;𝑀, r0, v) =
𝐺𝑀𝜈

𝑣2 d̂ ·
(√︁

1 + 𝑥2 b̂ − sinh−1(𝑥) v̂
)
, (2.7)

where 𝑥 = (𝑡 − 𝑡)/𝜏 is a normalized time variable, and 𝜏 = 𝑏/𝑣.

For an F given by Eq. (2.5), 𝛿𝜙 can be challenging to compute analytically due
to the discontinous derivatve in F at 𝑠 = 1 which can be important if the subhalo
passes from 𝑠 > 1 to 𝑠 < 1. In principle, one could perform the integrations
numerically, though this becomes intensive with a large number of subhalos. We
instead use a conservative estimate of the signal size by substituting F (𝑟/𝑟𝑣, 𝑐)
with F ∗(𝑐) ≡ F (𝑟min/𝑟𝑣, 𝑐), where 𝑟min is the distance of closest approach over
the observation time. This approximation changes the amplitude by O(10%) for
𝑐 ∼ 100 but quickly shrinks to O(1%) for 𝑐 ∼ 104. Using this conservative estimate
the phase shift for an NFW subhalo is simply

𝛿𝜙(𝑡;𝑀, 𝑐, r0, v) =
𝐺𝑀F ∗(𝑐)𝜈

𝑣2 d̂ ·
(√︁

1 + 𝑥2 b̂ − sinh−1(𝑥) v̂
)
. (2.8)

This effect is now easily generalized to a PTA with 𝑁𝑃 pulsars, each of which is
influenced by 𝑁 subhalos. In this case the phase shift of the 𝐼 𝑡ℎ pulsar is given by

Δ𝜙𝐼 (𝑡) =
𝑁∑︁
𝑖=1

𝛿𝜙(𝑡;𝑀𝑖, 𝑐𝑖, r𝑖0, v
𝑖), (2.9)

where the sum runs over all of the DM subhalos affecting the 𝐼 th pulsar.

As discussed in detail in Ref. [42], the phase shift itself is not directly observable.
This is because the shift induced by transiting DM subhalos can be partially degen-
erate with the phase shift induced by the ‘natural’ evolution of the pulsar frequency,
described by the timing model

𝜙(𝑡) = 𝜙0 + 𝜈𝑡 + 1
2
¤𝜈𝑡2, (2.10)

1Indefinite integrals were used in deriving Eq. (2.7) from Eq. (2.1). This will not affect any
observable since any dependence on reference times will be removed in the fit to the residual phase
shift.
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Figure 2.1: Sample signal shapes of the static (left column), dynamic (middle col-
umn) and stochastic (right column) signals from DM subhalos with 𝑐 = 100, 103, 104

and the Primordial Black Hole limit 𝑐 → ∞. The top row shows the unsubtracted
signal shapes, computed from Eqs. (2.8) and (2.9), while the bottom row shows
the subtracted signal shapes after the terms degenerate with the timing model have
been removed. The first two columns show the phase shift 𝛿𝜙(𝑡), Eq. (2.8), from
a single transiting subhalo and the last is the signal shape from multiple transiting
subhalos, Δ𝜙, in Eq. (2.9). The signal shapes are taken from a realization of the
Monte Carlo. The mass of the subhalos are 10−2 𝑀⊙, 10−11 𝑀⊙ and 10−14 𝑀⊙ for
the static, dynamic and stochastic signals respectively. Only the closest subhalo is
kept for the static and dynamic signals, while all subhalos are kept for the stochastic
signal.

where 𝜙0, 𝜈, ¤𝜈 are the phase offset, pulsar frequency, and its first time derivative. In
general, if a DM signal is present, each pulsar measures a total residual phase shift,
𝑠𝐼 , given by the sum of signal, ℎ𝐼 , and noise, 𝑛𝐼 :

𝑠𝐼 (𝑡) ≡ ℎ𝐼 (𝑡) + 𝑛𝐼 (𝑡) . (2.11)

The DM signal, ℎ𝐼 , is defined as the part of the phase shift, Δ𝜙𝐼 , that is not absorbed
by the pulsar timing model,

ℎ𝐼 (𝑡) ≡ Δ𝜙𝐼 (𝑡) − Δ𝜙𝐼, 𝑓 𝑖𝑡 (𝑡), (2.12)

where

Δ𝜙𝐼,fit =
1
𝑇

2∑︁
𝑛=0

𝑓𝑛 (𝑡)
∫ 𝑇

0
𝑓𝑛 (𝑡′)Δ𝜙𝐼 (𝑡′) 𝑑𝑡′, (2.13)
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with 𝑓𝑛 =
√

2𝑛 + 1𝑃𝑛 (2𝑡/𝑇 − 1), 𝑃𝑛 the nth Legendre polynomials, and 𝜙(𝑡) given
by Eq. (5.37). Similarly, the post-fit residual noise, 𝑛𝐼 (𝑡), is given by the intrinsic
pulsar phase evolution that is not reabsorbed by the timing model.

Sample unsubtracted and subtracted signal shapes (i.e. before and after fitting for
𝜙0, 𝜈, and ¤𝜈) are shown in Fig. 2.1. The left and middle columns show the signal
shapes from a single subhalo. Depending on the timescale of the interaction, 𝜏, we
classify the signals as either “static" (𝜏 ≫ 𝑇 , left column) or “dynamic" (𝜏 ≪ 𝑇 ,
right column). Both limits allow for simplifications of Eq. (2.8). In the static limit
𝛿𝜙 can be Taylor expanded in 𝑡/𝜏. The total 𝛿𝜙, in the top row, then looks nearly
linear, while the measurable subtracted signal, the bottom row, is ∝ 𝑓3(𝑡), defined
below Eq. (2.13), due to the timing model fit of 𝜙0, 𝜈 and ¤𝜈. A dynamic signal, on
the other hand, has a more characteristic signal shape. Expanding the term ∝ b · d
in Eq. (2.8) for small 𝜏 leads to 𝛿𝜙 ∝ |𝑡 − 𝑡0 |, which explains the kink in the upper
middle panel in Fig. 2.1. This parameterization can be simplified further, since the
terms ∝ 𝑡 will be subtracted, to 𝛿𝜙(𝑡) ∼ (𝑡 − 𝑡)Θ(𝑡 − 𝑡), and therefore the signal
can be parameterized in terms of two variables: an amplitude and 𝑡. Lastly, the
stochastic signal in the right column is the sum of a large number of individual
subhalos with 𝜏 ≲ 𝑇 and we see that the signal has no simple parameterization.

Constructing the SNR
With the signal defined, we now discuss the signal significance relative to noise, or
SNR. As done in Refs. [43, 42] we will use a matched filter procedure [37, 108,
109]. As discussed previously, each pulsar in the PTA measures the residual phase
shift, 𝑠𝐼 , given in (2.11) which is the sum of signal, ℎ𝐼 , and noise, 𝑛𝐼 . Naively
one would expect that the signal is only significant if |ℎ𝐼 | > |𝑛𝐼 |. However if we
know the form of the signal, we can filter the noise and boost the significance. The
optimal scenario for this filtering procedure is the one where the shape of the signal
is known a priori, or can be parameterized by a computationally searchable space
of parameters. In this case the best test statistic is T ≡ ∑

𝐼

∫
𝑑𝑡 𝑠𝐼 (𝑡)𝑄𝑜𝑝𝑡

𝐼
(𝑡), where

the signal of each pulsar is convolved with its own optimal filter, 𝑄opt
𝐼

= ℎ̃𝐼/𝑁𝐼 ,
where ∼ denotes the Fourier transform and 𝑁𝐼 is the noise power spectrum of the
𝐼 𝑡ℎ pulsar. We will assume the noise is white, so that we have

𝑁𝐼 = 𝜈
2
𝐼 𝑡

2
rmsΔ𝑡 , (2.14)

where 𝑡rms is the root mean square residual timing noise, and Δ𝑡 is the time between
measurements (the cadence). However to know, or find through a Markov Chain
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Monte Carlo, the optimal filter for all the pulsars in the array is not always possible.
We discuss alternatives for both the pulsar and Earth terms.

We start by discussing the pulsar term. For a generic pulsar in the array, many
transiting events contribute to the signal 𝑠𝐼 (𝑡). This makes unfeasible to look for
the optimal filter of a generic pulsar, given the large number of parameters needed
to describe the signal shape. However, we expect the largest signal in the array to be
dominated by a single halo transiting very close to the pulsar. Therefore, the largest
signal is expected to have the simple parametrization discussed below (2.13), which
makes the search for its optimal filter feasible. We therefore define the Pulsar SNR,
SNR𝑃, to be the largest across the array:

SNR2
𝑃 = max𝐼

{
SNR2

𝐼

}
= max𝐼


����∫ 𝑑𝑓 𝑠̃𝐼 ( 𝑓 )𝑄∗( 𝑓 )

����2∫
𝑑𝑓 𝑁𝐼 ( 𝑓 )𝑄∗( 𝑓 )𝑄( 𝑓 )


. (2.15)

Concretely, to place a constraint on a model we would generate an array of filters
with different values of the parameters in the signal model (e.g. an amplitude for
the static signal, and an amplitude plus epoch, 𝑡, for the dynamic signal), use these
as the filter 𝑄 in Eq. (2.15), and then place constraints with the largest SNR𝑃.2 In
practice, we assume we can select a filter which is arbitrarily close to 𝑄opt, and
compute the expected maximum SNR from it,

SNR
2
𝑃 = max𝐼

{
1
𝑁𝐼

∫
𝑑𝑡 ℎ2

𝐼

}
. (2.16)

The statistical significance of a given SNR, for the purposes of limit setting, is dis-
cussed in Appendix C. The ℎ𝐼’s are generated with the MC which will be discussed
in more detail below, as well as in Appendix A. The resulting constraints for a
monochromatic population of subhalos are labeled “Closest only" in the right panel
of Fig. 2.2, where only the signal from the closest subhalo is kept. To verify this
approximation we also show the constraints obtained by taking ℎ𝐼 to be the sum of
the signals from all the subhalos around each pulsar, they are labelled “All.” in the
right panel of Fig. 2.2.

The second signal, labelled “Earth” in the left panel of Fig. 2.2, originates from
a large flux of subhalos transiting near the Earth. Since the signal is generated

2This is not the only way the analysis could be done. Since the signal shapes are known the best
fit signal parameters could be searched for with an Markov Chain Monte Carlo (MCMC), such as
Enterprise [110], and then compared to this distribution predicted by the MC presented here. We
plan to explore this in a future work.
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Figure 2.2: Limits from PTAs on the dark matter mass fraction 𝑓 = Ω/ΩDM in
subhalos of mass 𝑀 . The left panel compares different subhalo concentration
parameters, 𝑐 = 100, 104, 108, and the PBH limit, 𝑐 → ∞, as well as the different
search types, “Earth" and “Pulsar". The right panel shows how the constraints change
when different assumptions are used when computing the SNR for the Earth and the
Pulsar terms discussed in Sec. 2.2. For the pulsar term we compare the constraints
from keeping only the closest subhalo around each pulsar, labelled “Closest only",
to the constraint obtained from keeping all of the subhalo contributions, “All". For
the Earth term we compare the optimal filter to the one generated by the MC to
understand the mis-filtering effect. The PTA parameters used were 𝑁𝑃 = 200,
Δ𝑡 = 2 wk, 𝑡rms = 50 ns and 𝑇 = 20 years.

by an acceleration of the Earth it will leave an imprint across the entire array with
correlations between pulsars, similar to the correlations in the stochastic gravitational
wave background [111, 112]. This signal is generated stochastically by many passing
subhalos; as such, the optimal filter is not easily reconstructed. One can, however,
parameterize the signal autocorrelator, 𝑅𝐼𝐽 (𝑡, 𝑡′) ≡ ⟨ℎ𝐼 (𝑡)ℎ𝐽 (𝑡′)⟩, where ⟨⟩ denotes
an ensemble average. As in Ref. [42], we then define the SNR in terms of the signal
correlator, 𝑠𝐼 (𝑡)𝑠𝐽 (𝑡′),

SNR2
𝐸 =

1
2

����∑𝐼≠𝐽

∫
𝑑𝑓 𝑑𝑓 ′ 𝑆𝐼𝐽 ( 𝑓 , 𝑓 ′)𝑄∗

𝐼𝐽 ( 𝑓 , 𝑓 ′)
����2∑

𝐼≠𝐽

∫
𝑑𝑓 𝑑𝑓 ′ 𝑁𝐼 ( 𝑓 )𝑁𝐽 ( 𝑓 ′)𝑄∗

𝐼𝐽 ( 𝑓 , 𝑓 ′)𝑄 𝐼𝐽 ( 𝑓 , 𝑓 ′)
, (2.17)

where 𝑆𝐼𝐽 ( 𝑓 , 𝑓 ′) = 𝑠̃𝐼 ( 𝑓 ) 𝑠̃𝐽 ( 𝑓 ′). If 𝑠̃𝐼 ( 𝑓 ) is known a priori then the optimal filter to
use is 𝑄opt

𝐼𝐽
= 𝑠̃𝐼 ( 𝑓 ) 𝑠̃𝐽 ( 𝑓 ′)/

(
𝑁𝐼𝑁𝐽

)
. Since this is not the case, we use a filter based

on the expected signal, 𝑄 𝐼𝐽 = 𝑅𝐼𝐽/
(
𝑁𝐼𝑁𝐽

)
, where 𝑅𝐼𝐽 = ⟨ℎ̃𝐼 ( 𝑓 )ℎ𝐽 ( 𝑓 ′)⟩. Since the
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expected filter will not be optimal, this introduces a mis-filtering effect. In the right
panel of Fig. 2.2 we illustrate the effect that mis-filtering has on the constraints,
lowering them by an O(1) number. We compute this constraint by using the
MC to generate 𝑆𝐼𝐽 ( 𝑓 , 𝑓 ′) in numerous realizations, taking the ensemble average
𝑅𝐼𝐽 ( 𝑓 , 𝑓 ′) over all the realizations, re-labelling it to 𝑄 𝐼𝐽 ( 𝑓 , 𝑓 ′) and computing the
SNR of the signal from new realizations using Eq. (2.17). We will take the latter,
more conservative, limits below.

As discussed in detail in Appendix A, to generate signals for monochromatic halo
mass functions, as shown in Fig. 2.2, the MC first generates the pulsar positions uni-
formly on a sphere. Then, for the Pulsar (Earth) term, around each pulsar (the Earth),
subhalo initial positions r0

𝑖
and velocities v𝑖 are generated and used to compute the

signal in Eq. (2.9). The initial positions are assumed to be uniformly distributed
throughout space with density fixed to be 0.46 GeV/cm3, and the velocities drawn
from a Maxwell-Boltzmann distribution with RMS velocity 𝑣0 = 325 km/s. The rel-
evant SNR is then computed in 1000 realizations and constraints are placed setting
the 10th percentile SNR equal to 4 which, as detailed in Appendix C, correspond to
a signal significance of 𝜎significance ∼ 2.

2.3 From Primordial Perturbations to the Local Subhalo Population
As we have seen in the previous section, PTAs are a powerful tool to constrain the
abundance of Milky Way (MW) DM subhalos. These sub-galactic structures are
seeded by the primordial perturbations on scales much smaller than the ones tested
by CMB observables, where DM models can leave unique fingerprints. In principle,
once the power spectrum of primordial perturbations is known the abundance of
these DM subhalos can be derived. In practice, however, this is an intricate problem
where non-linearities, tidal effects, and baryonic feedback play an important role.
For the ΛCDM model we can rely on numerical simulations which have been well-
tested with semi-analytic fits. For other models of DM we need to employ motivated
analytic estimates. The goal of this section is to illustrate the analytic prescription
that we will adopt in the rest of this work to compute the subhalo mass function
(sHMF) and concentration parameters.

We start by writing the dimensionless primordial power spectrum for DM density
perturbations, Δ2(𝑘), as

Δ2(𝑘) = Δ2
𝑆𝐼 (𝑘) + Δ2

𝑀𝐷 (𝑘) (2.18)

where Δ2
𝑀𝐷

(𝑘) is the model dependent contribution to the small scale power, and
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Δ2
𝑆𝐼
(𝑘) is the scale-invariant primordial power spectrum for adiabatic perturbations

as extracted from CMB measurements (and extrapolated to smaller scales) [113]:

Δ2
𝑆𝐼 (𝑘) = 𝐴𝑠

(
𝑘

𝑘0

)𝑛𝑠−1
, (2.19)

with 𝑛𝑠 = 0.9665, 𝐴𝑠 = 2.101 × 10−9, and pivot scale 𝑘0 = 5 × 10−3 Mpc−1.
Following the standard assumption of linear evolution of the density perturbations,
we relate this primordial power spectrum to its late-time value by means of transfer,
𝑇 (𝑘), and growth, 𝐷 (𝑧), functions:

Δ2(𝑘, 𝑧 < 𝑧𝑒𝑞) = 𝑇2(𝑘)𝐷2(𝑧)Δ2
𝑆𝐼 (𝑘) + 𝑇

2
𝑀𝐷 (𝑘)𝐷2

𝑀𝐷 (𝑧)Δ2
𝑀𝐷 (𝑘), (2.20)

where 𝑧𝑒𝑞 ≃ 3.3 × 103 is the redshift at matter-radiation equality, and we allow Δ𝑆𝐼

and Δ𝑀𝐷 to have different transfer and growth functions.

The first category of models we consider modifies ΛCDM by increasing the ampli-
tude of small-scale perturbations (i.e. Δ2

𝑀𝐷
(𝑘) ≠ 0). The post-inflationary axion

and vector DM models, discussed in Secs. 2.4 and 2.4 respectively, belong to this
category. The second category of models preserves the primordial power of ΛCDM
(i.e. Δ2

𝑀𝐷
(𝑘) = 0) but modifies the growth of small-scale perturbations in the early

Universe, i.e. an enhanced, non-standard 𝑇 (𝑘). Models featuring an early stage of
matter domination, discussed in Sec. 2.4, belong to this category. The net effect
of both of these categories is similar: they enhance the power of matter density
fluctuations on small scales, as shown in Fig. 2.3. We will discuss these figures
in more detail below, but simply note that the models under consideration feature
a large enhancement of density fluctuations at scales well below what is currently
measured with large scale structure surveys.

Halo Mass Function
The first quantity we derive from Δ2(𝑘, 𝑧) is the global Halo Mass Function (HMF),
a function that gives the comoving number density of isolated halos in the Universe
as a function of mass. Despite the non-linear nature of the problem, the analytic
approach pioneered by Press & Schechter [106] has been proven to well-approximate
numerical N-body simulations (at least for the standard ΛCDM).

In the Press-Schechter (PS) formalism, overdense regions are expected to detach
from the Hubble flow and gravitationally collapse when their average overdensity,
𝛿 ≡ 𝛿𝜌/𝜌, becomes larger than a critical value, 𝛿𝑐 (which in a flat Universe is
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Figure 2.3: Left: dimensionless power spectrum at recombination for ΛCDM
(black) compared to the post inflationary axion models (red for the misalignment
dominated scenario, blue for the string dominated one). Dashed lines indicate
regions where, due to lack of numerical or experimental results, the power spectra
has been extrapolated. Right: similar to the left panel, except for the vector DM
(purple), and early matter domination (orange) models replacing the post inflationary
axion. For the early MD model we show the power spectrum obtained with three
different choices of the reheating temperature: 𝑇𝑅𝐻 = 10 MeV (solid), 𝑇𝑅𝐻 =

0.1 GeV (dashdot), and 𝑇𝑅𝐻 = 1 GeV (dotted). For the vector DM model we fix the
inflationary scale at 𝐻𝐼 = 1014 GeV and consider three DM masses: 𝑚 = 10−15 GeV
(solid), 𝑚 = 10−14 GeV (dashdot), and 𝑚 = 10−13 GeV (dotted).

found to be 𝛿𝑐 ≃ 1.686).3 Therefore, for Gaussian perturbations, the probability an
overdense region of mass scale 𝑀 is collapsed by redshift 𝑧 is given by

𝑓 (𝑀, 𝑧) = 2
√

2𝜋𝜎(𝑀, 𝑧)

∫ ∞

𝛿𝑐

𝑑𝛿 𝑒−𝛿
2/2𝜎2 (𝑀,𝑧) (2.21)

where 𝜎(𝑀, 𝑧) is the variance of density perturbations smoothed over a sphere of
size 𝑅(𝑀) = (3𝑀/4𝜋𝜌𝑚)1/3:

𝜎2(𝑀, 𝑧) =
∫ ∞

0

𝑑𝑘

𝑘
Δ2(𝑘, 𝑧)𝑊2 (𝑘 𝑅(𝑀)) , (2.22)

where 𝑊 (𝑥) is the window function of choice, and 𝜌𝑚 is the background matter
density of the universe today. In the following, unless otherwise specified, we will
use a top-hat window function,𝑊 (𝑥) = 3𝑥−3(sin(𝑥) − 𝑥 cos(𝑥)).

The fact that a region of size 𝑅(𝑀) is collapsed does not prejudice against being part
of a larger overdensity which has also collapsed. The HMF only counts collapsed

3For gravitational collapse during the radiation dominated epoch the critical overdensity becomes
redshift dependent: 𝛿𝑐 (𝑧) ≃ 1.686

(
3
2

𝑧
𝑧𝑒𝑞

)
[114, 115].
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objects which are not contained within larger halos; to obtain the comoving number
density of these we differentiate Eq. (2.21) with respect to 𝑀 and multiply by the
average number density, 𝜌𝑚/𝑀 ,

𝑑𝑛(𝑀, 𝑧)
𝑑 ln𝑀

=
𝜌𝑚

𝑀

𝑑𝑓 (𝑀, 𝑧)
𝑑 ln𝑀

, (2.23)

with the mass fraction per logarithmic interval, 𝑑𝑓 /𝑑 ln𝑀 , is

𝑑𝑓 (𝑀, 𝑧)
𝑑 ln𝑀

=

√︂
2
𝜋
𝜈(𝑀, 𝑧) exp

(
−𝜈

2(𝑀, 𝑧)
2

)
𝑑 ln𝜎(𝑀, 𝑧)
𝑑 ln𝑀

, (2.24)

where we have defined 𝜈(𝑀, 𝑧) ≡ 𝛿𝑐/𝜎(𝑀, 𝑧).

The PS formalism has been validated against numerical simulations for ΛCDM
cosmology [116, 117]. But whether it is still a good approximation for models that,
on small scales, differ vastly from ΛCDM has yet to be studied in detail. We plan to
study this question in future work, but for the moment we limit our discussion to PS
predictions and compare them to numerical results available for the case of axion
miniclusters [118]. The results of this comparison, shown in Appendix B, suggest
that – at least for axion miniclusters – PS still provides a good estimate of the HMF.
All the following results are based on this assumption.

Subhalo Mass Function
As already mentioned, the target of PTA searches are pulsars within a radius of
O(5 kpc) from our solar system. Because of this, PTAs can only detect signals
generated by the local population of MW DM subhalos, and not from the cosmolog-
ical population described by the HMF. Unfortunately, estimating the local subhalo
density is a much more complicated problem than deriving the HMF. Indeed, in
the galactic environment these subhalos are exposed to tidal forces that strip part of
their mass, and which may ultimately lead to their complete disruption.

We divide the problem of deriving the subhalo mass function (sHMF), 𝑑𝑛̃/𝑑 log𝑀 ,
in two steps. First we derive its value at infall: 𝑑𝑛̃/𝑑 log𝑀𝑎𝑐𝑐, where 𝑀𝑎𝑐𝑐 is the
subhalo mass at the moment of its accretion into the MW and before tidal effects
may reduce its value. Then, we analytically estimate the impact of tidal effects and
derive the relation between the infall and final subhalo mass

𝑀 ≡ 𝑓𝑏 (𝑀𝑎𝑐𝑐)𝑀𝑎𝑐𝑐, (2.25)

where we have implicitly defined the bound fraction, 𝑓𝑏 (𝑀𝑎𝑐𝑐), as the fraction of
the infall subhalo mass that survives tidal effects. Finally, by using (2.25), we relate
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the infall sHMF to its final value,

𝑑𝑛̃

𝑑 log𝑀
=

∫
𝑑 log𝑀𝑎𝑐𝑐

𝑑𝑛̃

𝑑 log𝑀𝑎𝑐𝑐

𝛿

(
1 − 𝑓𝑏 (𝑀𝑎𝑐𝑐)𝑀𝑎𝑐𝑐

𝑀

)
, (2.26)

where here and in the following, we adopt a ∼ notation to distinguish between the
local sHMF and the global HMF.

As we will see, the density profile plays a key role in determining the impact of
tidal effects. Subhalos are expected to have a radial density profile which is well
described by the usual NFW profile given in Eq. (2.4). The characteristic density of
the subhalo, Eq. (2.4), is set by the Universe’s energy density at the time of collapse,

𝜌𝑠 = 𝐶𝜌𝜌𝑐
[
ΩDM(1 + 𝑧𝑐𝑜𝑙)3 +Ω𝑟 (1 + 𝑧𝑐𝑜𝑙)4] , (2.27)

where 𝐶𝜌 is a free parameter that encodes the growth of the halo density during the
virialization processes, and 𝑧𝑐𝑜𝑙 is the collapse redshift. We fix the value of 𝐶𝜌 by
fitting (2.27) against 𝑁-body simulations. For ΛCDM halos (for which 𝑧𝑐𝑜𝑙 ≃ 10)
we use the results in [119] and find 𝐶𝜌 ∼ 600, for axion miniclusters (for which
𝑧𝑐𝑜𝑙 ≳ 103) we use the results of [118] and find 𝐶𝜌 ∼ 9 × 104. In the following we
use a 𝑧𝑐𝑜𝑙-dependent 𝐶𝜌 which smoothly interpolates between these two values.

Following Ref. [65], we define 𝑧𝑐𝑜𝑙 for a subhalo of final mass 𝑀 as the redshift
at which half of its final mass is contained in progenitors more massive than 𝜖𝑀 .
Using the extended Press-Schechter model [120], this redshift can be estimated by

erf𝑐 [𝑋 (𝑧𝑐𝑜𝑙) − 𝑋 (0)] =
1
2
, (2.28)

where
𝑋 (𝑧) = 𝛿𝑐√︃

2
[
𝜎2(𝜖𝑀, 𝑧) − 𝜎2(𝑀, 𝑧)

] , (2.29)

and the best fit to ΛCDM halos is found for 𝜖 = 0.01. In the following we will
assume that the same value of 𝜖 provides a good estimate also for different DM
models. The typical concentration parameters, as a function of mass, are shown in
the lower panels of Fig. 2.4, where (2.6) was used to relate 𝜌𝑠 to the concentration
parameter. As expected, larger amplitude primordial perturbations lead to an earlier
collapse and in turn larger concentration parameters.
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Figure 2.4: Illustrative example of the impact of tidal effects on the subhalo mass
fraction. Upper: subhalo mass fraction before (solid) and after (dotted) tidal dis-
ruption for standard ΛCDM (red), and early MD (blue) with reheating temperature
𝑇𝑅𝐻 = 10 MeV (for more details see Sec. 2.4). Lower: typical concentration param-
eter as a function of the subhalo mass. Additional power on small scales leads to an
early collapse and therefore a larger concentration parameter for light halos.

sHMF at infall

In the PS formalism the probability that a halo of mass 𝑀 at redshift 𝑧 will be part
of a larger halo of mass 𝑀0 at redshift 𝑧0 is given by [120, 121]

𝑓 (𝑀, 𝑧;𝑀0, 𝑧0) =
1

√
2𝜋
𝛿𝑐 (𝑧 − 𝑧0)
(𝑠 − 𝑆)3/2 exp

(
−
𝛿2
𝑐 (𝑧 − 𝑧0)2

𝑠 − 𝑆

)
, (2.30)

where 𝑠 ≡ 𝜎2(𝑀, 0) and 𝑆 ≡ 𝜎2(𝑀0, 0). Therefore, as a proxy for the sHMF at
infall we can use

𝑑𝑛̃

𝑑 log𝑀𝑎𝑐𝑐

=
𝜌DM
𝑀𝑎𝑐𝑐

𝑑 𝑓 (𝑀𝑎𝑐𝑐, 𝑧𝑀𝑊 ;𝑀𝑀𝑊
200 , 0)

𝑑 log𝑀𝑎𝑐𝑐

, (2.31)

where 𝜌DM is the local DM energy density, 𝑀𝑀𝑊
200 ≈ 1.5× 1012𝑀⊙ is the MW virial

mass, and 𝑧𝑀𝑊 is the MW collapse time, derived from (2.28).

Tidal effects

Subhalos in the MW can experience different kinds of tidal forces. Subhalos on
nearly circular orbits are subjected to an almost constant tidal pull from the galactic
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halo. The effect of this gravitational pull is to strip away the halo mass contained
beyond its tidal radius, 𝑟𝑡 , defined as the distance from the subhalo center at which
the gravitational pull of the galaxy is stronger than the self-gravity of the subhalo
[122]:

𝑟𝑡 = 𝑟⊕

[
𝑀𝑎𝑐𝑐 (𝑟 < 𝑟𝑡)/𝑀𝑀𝑊 (𝑟 < 𝑟⊕)

3 − 𝑑 ln𝑀𝑀𝑊

𝑑 ln 𝑅 |𝑟⊕

]
(2.32)

where 𝑟⊕ is the radius of the Earth’s circular orbit (assumed to be the distance between
the solar system and the center of the galaxy, 8 kpc), 𝑀𝑀𝑊 (𝑟 < 𝑟⊕) is the Milky
Way mass enclosed within radius 𝑟⊕, and 𝑀acc(𝑟 < 𝑟𝑡) is the accreted mass within
𝑟𝑡 . For an NFW profile, the enclosed mass is given by 𝑀 (𝑟 < 𝑟∗) = 𝑀F (𝑟∗/𝑟𝑣, 𝑐),
where F is defined in Eq. (2.5), and 𝑀 is the total mass. Assuming that the mass
outside the tidal radius is instantaneously stripped away, the halo bound fraction
surviving tidal stripping is4

𝑓𝑏 (𝑀𝑎𝑐𝑐) =
𝑀𝑎𝑐𝑐 (𝑟 < 𝑟𝑡)

𝑀𝑎𝑐𝑐

. (2.33)

The treatment of tidal effects performed in this analysis should be seen as a simple
order of magnitude estimate whose main goal is to take into account the large
tidal disruption suffered by the standard ΛCDM halos. To accurately estimate
the smaller impact that tidal effects have on high concentration subhalos a more
sophisticated analysis is needed. Specifically, additional processes like subhalo-
subhalo encounters and interactions with MW stars can be the dominant disruption
mechanism for high density subhalos, and need to be considered. A detailed study of
these effects would require dedicated numerical simulation that we leave for future
works. However, we do not expect these effects to change our results drastically, as
also suggested by the recent results of Ref. [123].

2.4 Constraints on Primordial Power Spectra
In this section we use the tools developed to derive the discovery potential of PTAs
for four benchmark DM models. However before discussing model-specific results,
we want to give a rough idea of the constraints that PTAs can place on the DM
primordial power spectrum. Assuming this spectrum is locally scale invariant, it
can be shown [126] that

𝜎2(𝑀, 𝑧) ∼ Δ2(1/𝑅(𝑀), 𝑧) (2.34)
4In reality, tidal stripping happens over several orbits. However, if compared with numerical

simulations of ΛCDM halos, the instantaneous stripping assumption seems to be accurate up to O(1)
factors [122].
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Figure 2.5: Limits on the dimensionless primordial power of curvature fluctuations.
PTA limits (red) are compared to constraints from a combination of CMB [124] and
Ly-𝛼 [125] observables, together with limits on primordial black holes (PBH) (all
in blue). The thick dashed line is the Planck best fit, assuming a constant spectral
index, while the thin dashed line is the best fit obtained allowing the spectral index
to have a 𝑘 dependence.

where, as before, 𝑅 and 𝑀 are related by 𝑅(𝑀) = (3𝑀/4𝜋𝜌𝑚)1/3. This implies
that there is an approximate one-to-one correspondence between the power of per-
turbations on scales 1/𝑅(𝑀) and the collapse probability, 𝑓 (𝑀, 𝑧), given by (2.21).
Assuming that the population of subhalos is not drastically altered by their merger
history, the fraction of the local DM energy density in subhalos of a given mass
is 𝑓 (𝑀, 𝑧) 𝑓𝑏 (𝑀), where 𝑓𝑏 (𝑀) is the bound fraction, Eq. (2.33), which accounts
for tidal effects that these subhalos experience once accreted into the MW halo.
In general these subhalos will not be isolated objects but will form substructure
of larger subhalos, meaning 𝑓 (𝑀, 𝑧 = 0) is certainly an overestimate of the mass
fraction of subhalos of mass 𝑀 . Bearing in mind these assumptions, we can say
that PTA searches will be sensitive to a given amount of primordial power on scales
1/𝑅(𝑀) when

𝑓 (𝑀, 𝑧 = 0) 𝑓𝑏 (𝑀) > 𝑓𝑚𝑜𝑛𝑜 (𝑀, 𝑐) , (2.35)

where the constraints for a monochromatic population of subhalos, 𝑓𝑚𝑜𝑛𝑜 (𝑀, 𝑐),
are shown in Fig. 2.2. Assuming the transfer function is the one predicted by
ΛCDM, and 𝑟⊕ = 8.2 kpc, the constraints on the dimensionless primordial power
are shown in Fig. 2.5. It is clear from this figure that PTA searches can strongly
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Figure 2.6: Left: sHMF (top panel), and mass fraction per logarithmic interval
(center panel) before (solid) and after (dashed) the inclusion of tidal effects. The
lower panel shows the typical subhalo concentration parameter as a function of their
mass. Right: Discovery significance for different values of the observation time and
number of pulsars in the array. The residual timing noise and observation cadence
have being fixed to 𝑡𝑟𝑚𝑠 = 10 ns and Δ𝑡 = 1𝑤𝑒𝑒𝑘 .

constrain models that have a small scale power spectrum that is enhanced compared
to ΛCDM. However, standard ΛCDM subhalos, being almost completely disrupted
by tidal effects (see Fig. 2.4), are a much more challenging target (as discussed in
Sec. 2.4).

ΛCDM
The ΛCDM model is reproduced taking Δ2

𝑀𝐷
(𝑘) = 0 in (2.18), and the standard

growth and transfer functions in (2.20). Specifically, we use the BBKS transfer
function [127],

𝑇 (𝑥 ≡ 𝑘/𝑘𝑒𝑞) =
12𝑥2

5
ln(1 + 0.171𝑥)

0.171𝑥

[
1+0.284𝑥+(1.18𝑥)2+(0.399𝑥)3+(0.490𝑥)4

]−1/4
,

(2.36)
and a linear growth function,

𝐷 (𝑧) = 𝑔(Ω𝑚,ΩΛ)
1 + 𝑧𝑒𝑞
1 + 𝑧 . (2.37)

Here 𝑎𝑒𝑞 ≃ 3×10−4 is the scale factor at matter radiation equality, 𝑘𝑒𝑞 ≃ 0.01 Mpc−1

the largest scale that enters the horizon before equality, and we use the approximated
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growth factor given in [128]:

𝑔(Ω𝑚,ΩΛ) ≈
5Ω𝑚

2
[
Ω

4/7
𝑚 −ΩΛ + (1 −Ω𝑚/2) (1 +ΩΛ/70)

] , (2.38)

where Ω𝑚 and ΩΛ are the matter and vacuum energy densities, normalized to the
critical density, 𝜌𝑐, respectively.

The sHMF for standard CDM halos has been computed in the mass range (10−5 −
1012)𝑀⊙ [119] but little is known for lighter subhalos. Because of this, we compute
the sHMF at infall by using Eq. (2.30). As expected, the result is compatible with
the numerical simulations, and the sHMF at infall is well fitted by

𝑑𝑛̃

𝑑 log𝑀𝑎𝑐𝑐

= N(𝑀𝑚𝑎𝑥 , 𝑀𝑚𝑖𝑛)
(
𝑀𝑎𝑐𝑐

𝑀0

)𝛼
Θ(𝑀𝑚𝑎𝑥 −𝑀𝑎𝑐𝑐)Θ(𝑀𝑎𝑐𝑐 −𝑀𝑚𝑖𝑛), (2.39)

with a slope of 𝛼 = −0.95, truncated at the DM free streaming scale, 𝑀𝑚𝑖𝑛, and a
host mass 𝑀𝑚𝑎𝑥 ≈ 1012𝑀⊙. The normalization constant

N(𝑀𝑚𝑎𝑥 , 𝑀𝑚𝑖𝑛) =
𝜌DM
1 + 𝛼

(
𝑀1+𝛼
𝑚𝑎𝑥 − 𝑀1+𝛼

𝑚𝑖𝑛

)
(2.40)

is derived by requiring that, before tidal disruption takes place, DM subhalos account
for all the local DM energy density. The final sHMF, including tidal effects, is
derived following the prescription described in the previous section; the results of
this procedure are shown in the left panels of Fig. 2.6.

We then use the MC to simulate the PTA signal that this population of DM subhalos
would induce in a PTA. The statistical significance of this signal is shown in the
right panel of Fig. 2.6 for different values of the observation time and number of
pulsars in the array, while the timing residual noise and cadence have been fixed
to 𝑡𝑟𝑚𝑠 = 10 ns and Δ𝑡 = 1 week. Despite the optimistic PTA parameters, the
strong impact of tidal effects, which almost completely erase the local population
of ΛCDM subhalos, makes the model impossible to test in present and future PTA
experiments.

Axions with PQ Symmetry Breaking After Inflation
If the PQ symmetry breaks after inflation ( 𝑓𝑎 ≲ 𝐻𝐼), the Universe is populated by
casually disconnected patches each containing different values of the axion field.
These patches are separated by a network of strings and domain walls which evolve
through axion radiation until the QCD phase transition. At this point the PQ
symmetry is explicitly broken, the network of topological defects decays, and the
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Figure 2.7: Left: sHMF (top panel), and mass fraction per logaritmich interval
(center panel) before (solid) and after (dashed) the inclusion of tidal effects. The
lower panel shows the typical subhalo concentration parameter as a function of their
mass. Right: Discovery significance for different values of the observation time and
number of pulsars in the array. The residual timing noise and observation cadence
have being fixed to 𝑡𝑟𝑚𝑠 = 10 ns and Δ𝑡 = 1𝑤𝑒𝑒𝑘 . The dashed (solid) line shows
the 1𝜎 (5𝜎) significance contour.

axion starts to oscillate around its minimum. From this point on the axion behaves
as CDM and perturbations in the density field evolve as those of a collisionless fluid.

The evolution of the PQ field down to the QCD phase transition has been studied
numerically in [129, 130]. These simulations need to resolve string cores and contain
a few Hubble patches at the same time. These two scales are respectively fixed by
the mass of the radial mode, 𝑚𝑟 ≈ 𝑓𝑎, and 1/𝐻 ≈ 𝑀𝑃𝑙/𝑇2. At the QCD phase
transition the scale separation is log(𝑀𝑃𝑙 𝑓𝑎/Λ2

𝑄𝐶𝐷
) ≈ 70, which makes numerical

progress to evolve from the PQ to QCD phase transition nearly impossible. Luckily
strings are expected to enter a scaling regime, during which their length per Hubble
patch remains constant, soon after the PQ phase transition. Therefore simulations
can be stopped for reasonable values of log(𝑚𝑟/𝐻) and extrapolated to the QCD era.
However, the authors of [131] recently pointed out that large logarithmic corrections
to this scaling regime are present, the extrapolation of which suggests that axions
from strings may dominate the axion relic density contrary to what is assumed in
[129, 130]. This would not only change the predicted axion mass but also the
spectrum of its primordial perturbations. In the following we will set constraints
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assuming that the axion relic density is dominated by the misalignment contribution,
with the possibility of updating the results in case the conclusion of reference [131]
is confirmed.

Given this assumption we use the primordial spectrum for the axion field derived
in [129]. Since isocurvature perturbations are expected to experience a very small
logarithmic growth during radiation domination, and linearly evolve afterwards, in
(2.20) we take

𝑇𝑀𝐷 (𝑘) ≈ 1 𝑎𝑛𝑑 𝐷𝑀𝐷 (𝑧) ≃
(
1 + 3

2
1 + 𝑧𝑒𝑞
1 + 𝑧

)
, (2.41)

while for the transfer and growth function of the scale invariant part of the spectrum
(𝑇 (𝑘) and 𝐷 (𝑧)) we use the same conventions described in the previous subsection.
The properties of the resulting local population of DM subhalos are shown in the
left panels of Fig. 2.7.

As before we use the MC to simulate the local population of DM subhalos and derive
the induced PTA signal with the methods discussed in Sec. 2.2, and the results are
shown in the right panel of Fig. 2.7. For SKA parameters the detection of axion
MC appears to be challenging, but more futuristic PTA experiments should be able
to test this model.

Similarly to the axion case, models featuring a cosmological phase transition in
the early Universe can boost the DM power spectrum on small scales [132] and
be tested by PTAs. Interestingly, if the phase transition happens at low enough
temperatures (𝑇 ≲ 1 GeV), these models are also expected to generate a background
of gravitational waves which could be searched for in PTAs (see for example [133]).
We leave to future works a detailed study of these scenarios.

Early matter domination
Models with an early stage of matter domination (MD) are another class of models
potentially testable by PTAs. Here, after the end of inflation, the Universe’s energy
density is dominated by a non-relativistic spectator field. Sub-horizon perturbations
of this field then grow linearly with the scale factor during this early stage of MD.
When the spectator field decays and reheats the Universe, these density fluctuations
are inherited by the DM density field. This primordial growth of matter perturbations
can be parametrized in terms of a modified matter transfer function, 𝑇MD. Following
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Figure 2.8: Left: sHMF (top panel), and mass fraction per logarithmic mass interval
(center panel) before (solid) and after (dashed) the inclusion of tidal effects. The
lower panel shows the typical subhalo concentration parameter as a function of
subhalo mass. All curves are shown for three values of the reheating temperature,
𝑇RH = 10 MeV, 100 MeV, 1 GeV. Right: Discovery significance for different values
of the reheating temperature and number of pulsars in the PTA. The residual timing
noise, observation cadence, and observation time are 10 ns, 1𝑤𝑒𝑒𝑘 , and 30 𝑦𝑟,
respectively. The dashed (solid) line shows the 1𝜎 (5𝜎) significance contour.

[96], we include a period of early MD by modifying the transfer function,

𝑇MD(𝑘) = 𝑅(𝑘)𝑇 (𝑘) exp

(
− 𝑘2

2𝑘2
𝑓 𝑠

)
, (2.42)

where 𝑇 (𝑘) is the standard BBKS transfer function, 𝑅(𝑘) encodes the modifications
induced by the early matter domination era, and the exponential is given by the free
streaming scale, induced by the finite velocity of the DM when it is produced from
the decay of the spectator field. Large scales are not affected by the early matter
domination so 𝑅(𝑘 < 0.05 𝑘𝑅𝐻) = 1, where 𝑘𝑅𝐻 is the wave number of the mode
that enters the horizon at reheating,

𝑘𝑅𝐻

𝑘𝑒𝑞
= 1.72 × 1011

(
𝑇𝑅𝐻

100 GeV

) (
𝑔∗

100

)1/6

, (2.43)

with 𝑘𝑒𝑞 ≃ 0.01 Mpc−1 the largest scale that enters the horizon before matter-
radiation equality, 𝑇𝑅𝐻 the temperature at which the spectator field decays (i.e. the
reheating temperature), and 𝑔∗ the number of relativistic species at the time of
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reheating. On small scales, 𝑘 > 0.05 𝑘𝑅𝐻 , early matter domination enhances the
growth of perturbations such that [96],

𝑅(𝑘 > 0.05 𝑘𝑅𝐻) =
𝐴(𝑘/𝑘𝑅𝐻) ln

[(
4
𝑒3

) 𝑓2/ 𝑓1 𝐵(𝑘/𝑘𝑅𝐻 )𝑎𝑒𝑞
𝑎ℎ𝑜𝑟 (𝑘)

]
9.11 ln

[(
4
𝑒3

) 𝑓2/ 𝑓1
0.594

√
2𝑘
𝑘𝑒𝑞

] , (2.44)

with 𝑎ℎ𝑜𝑟 (𝑘) the scale factor at reheating and horizon crossing, and 𝑓1 and 𝑓2 related
to the baryon fraction 𝑓𝑏 ≡ 𝜌𝑏/(𝜌𝑏 + 𝜌DM) by

𝑓1 = 1 − 0.568 𝑓𝑏 + 0.094 𝑓 2
𝑏 𝑓2 = 1 − 1.156 𝑓𝑏 + 0.149 𝑓 2

𝑏 − 0.074 𝑓 3
𝑏 . (2.45)

On small scales, the functions 𝐴(𝑥) and 𝐵(𝑥) are fit according to

𝐴(𝑥) = exp

[
0.609(

1 + 2.15(log 𝑥 − 1.52)2)1.38

] [
9.11S(5.02 − 𝑥) + 3

5
𝑥2S(𝑥 − 5.02)

]
𝐵(𝑥) = exp

[
log(0.594)S(5.02 − 𝑥) + S(𝑥 − 0.52) log

( 𝑒
𝑥2

)]
,

(2.46)

where S(𝑦) = [tanh(𝑦/2) + 1]/2. Finally, ignoring DM interactions, the free-
streaming scale, 𝑘 𝑓 𝑠, appearing in (2.42) is approximately given by

𝑘𝑅𝐻

𝑘 𝑓 𝑠
≈ ⟨𝑣𝑅𝐻⟩

0.06
(2.47)

where 𝑣𝑅𝐻 is the DM velocity at reheating. In deriving our results we have assumed
that ⟨𝑣𝑅𝐻⟩ = 10−3. For smaller values of ⟨𝑣RH⟩ the results shown in Fig. 2.8
remain almost unchanged. However if the DM is produced with ⟨𝑣RH⟩ ≳ 0.06 then
𝑘RH ≳ 𝑘fs and free streaming erases the small scale perturbations of the scalar field
entirely. In this case PTAs will not be able to set constraints.

The properties of the subhalo population resulting from this modified transfer func-
tion are shown in the left panels of Fig. 2.8. While the significance of the predicted
signal is reported on the right panel of the same figure. We see that, assuming
optimistic PTA parameters, the model can be tested for 𝑇𝑅𝐻 ≲ 1 GeV. For higher
reheating temperatures typical subhalo masses become too small to induce a large
enough signal and sensitivity is lost.

Vector DM
As shown in [98], massive vector bosons can be produced by quantum fluctuations
during inflation. The relic abundance of particles produced in this way is given by

Ω ≃ ΩDM

√︂
𝑚

6 × 10−6 eV

(
𝐻𝐼

1014 GeV

)2
, (2.48)
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Figure 2.9: Left: sHMF (top panel), and mass fraction per logarithmic mass
interval (center panel) before (solid) and after (dashed) the inclusion of tidal ef-
fects. The lower panel shows the typical subhalo concentration parameter as a
function of their mass. All curves are shown for three values of the DM mass,
𝑚 = 10−17, 10−18, 10−19 GeV. Right: Discovery significance for different values
of the DM mass and number of pulsars in the array. The inflationary scale, 𝐻𝐼 ,
has been fixed in order to reproduce the DM relic density according to (2.48). The
residual timing noise, observation cadence, and observation time have being fixed
to 𝑡𝑟𝑚𝑠 = 10 ns, Δ𝑡 = 1𝑤𝑒𝑒𝑘 , and 𝑇 = 30 𝑦𝑟. The dashed (solid) line shows the 1𝜎
(5𝜎) significance contour.

where ΩDM ≃ 0.265 is the observed DM relic density, 𝑚 is the mass of the boson,
and 𝐻𝐼 is the Hubble rate during inflation. In addition to the adiabatic and scale
invariant fluctuations inherited from perturbations in the inflaton field, the inflation-
ary production generates isocurvature fluctuations on small scales. Specifically, the
primordial power spectrum of the field amplitude is [98]

Δ2
𝐴 (𝑘) =

(
𝑘𝐻𝐼

2𝜋𝑚

)2
. (2.49)

Notice that this is not the power spectrum for DM density perturbations; we will
discuss shortly how the two are related. At late times the small-scale power spectrum
for the field amplitude has the usual relation

Δ2
𝐴 (𝑘, 𝑧 < 𝑧eq.) = 𝑇2

𝐴 (𝑘)𝐷
2(𝑧)Δ2

𝐴 (𝑘), (2.50)
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where 𝐷 (𝑧) is the standard growth function, while the transfer function is

𝑇𝐴 (𝑘) =
√︄

𝑘∗
𝑚 𝑎𝑒𝑞

×


1 𝑓 𝑜𝑟 𝑘 < 𝑘∗(
𝑘∗
𝑘

)3/2
𝑓 𝑜𝑟 𝑘 > 𝑘∗

, (2.51)

and 𝑘∗ = 𝑎𝑒𝑞
√︁
𝐻𝑒𝑞𝑚, with 𝑎𝑒𝑞 = 3 × 10−4 and 𝐻𝑒𝑞 ≃ 10−29 eV the value of the

scale factor and Hubble rate at equality. Finally, the small-scale power spectrum for
density perturbations is given by [98]:

Δ2
𝑀𝐷 (𝑘, 𝑧) =

𝑘2

4⟨𝐴2⟩2

∫
|𝑞−𝑘 |<𝑝<𝑞+𝑘

(𝑘2 − 𝑞2 − 𝑝2)2

𝑞4𝑝4 Δ2
𝐴 (𝑝, 𝑧)Δ

2
𝐴 (𝑞, 𝑧) 𝑑𝑝𝑑𝑞 (2.52)

where ⟨𝐴2⟩ =
∫
𝑑 ln 𝑘 Δ2

𝐴
(𝑘, 𝑧).

In Fig. 2.9 we show the properties of the subhalo population predicted by this model
(left panel), and the significance of the signal that it would produce (right panel).
We see that future PTA experiments will have a good sensitivity for DM masses
below 10−16 GeV.

2.5 Conclusions
We have studied the detectability in Pulsar Timing Arrays of a variety of well
motivated DM models of substructure including: standard ΛCDM, axion models
where the PQ symmetry breaks after inflation, early matter domination, and vector
DM. Given the low concentration, ΛCDM subhalos are particularly susceptible to
tidal effects which drastically reduces their local abundance. As a result, we found
that ΛCDM will not be testable by present or (near-)future PTAs. The other models,
which feature subhalos with much larger concentration parameters, and hence much
lower tidal disruption, are better candidates for detection. Specifically, we found
that models featuring an early stage of matter domination ending at temperatures
lower than 1 GeV will be testable by PTAs with SKA-like capabilities. Similarly,
vector DM candidates produced during inflation with a mass smaller than 10−16 GeV
are within the reach of PTAs with SKA-like parameters. Finally, axions whose PQ
symmetry breaks after inflation (if the production is dominated by misalignment)
are out of reach for an SKA-like experiment, but could be probe by a slightly more
optimistic set of experimental parameters.

To generate the signals we have developed a Python Monte Carlo tool that, given
the subhalo mass function, DM velocity distribution, and concentration parameters,
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generates a population of subhalos and computes the acceleration of the Earth, or
pulsar, induced, and the resulting shift on the phase of the pulse time-of-arrival. We
make the code publicly available on GitHub .

In future works we plan to improve the present analysis in two ways. First, by
performing dedicated N-body simulations to more precisely describe the impact
of tidal effects on high-density subhalos. Second, by performing a more realistic
treatment of the background noise through the NANOGrav software Enterprise
[110].

https://github.com/szehiml/dm-pta-mc
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C h a p t e r 3

PIPELINE FOR DARK MATTER SUBSTRUCTURE SEARCHES
WITH REALISTIC PULSAR TIMING DATA

This chapter is based on

[1] Vincent S. H. Lee, Stephen R. Taylor, Tanner Trickle, and Kathryn M.
Zurek. “Bayesian Forecasts for Dark Matter Substructure Searches with
Mock Pulsar Timing Data”. In: JCAP 08 (2021), p. 025. doi: 10.1088/
1475-7516/2021/08/025. arXiv: 2104.05717 [astro-ph.CO].

3.1 Introduction
Dark matter, despite being one of the most important components of standard cos-
mology, is not well-constrained on sub-galactic scales. The lack of observational
constraints is problematic because many well-motivated models of dark matter pre-
dict unique structures on these small scales. For example, the Lambda Cold Dark
Matter (ΛCDM) model with inflation produces a nearly scale invariant spectrum of
adiabatic perturbations [64, 134] down to the free streaming scale corresponding to
about 10−6 𝑀⊙ for Weakly Interacting Massive Particle (WIMP) dark matter [135].
The QCD axion, if the Peccei-Quinn (PQ) symmetry [136] breaks after inflation,
induces large isocurvature fluctuations on scales smaller than the QCD epoch hori-
zon [94, 95, 132, 130, 137, 118, 138]. Primordial black holes (PBHs) are generically
formed by increasing the power of density fluctuations on small scales [139] which
then collapse.

To date, general substructure constraints only extend down to mass scales ∼ 10𝑀⊙,
coming predominantly from gravitational microlensing of stars in the Large Mag-
ellanic Cloud and Andromeda [140, 141, 142, 143] as well as stars in the local
neighborhood [144, 145, 99]. Constraints on PBHs extend further down in mass
due to their exceptionally high density. Non-evaporation from Hawking radiation
requires 𝑀 ≳ 10−16 𝑀⊙ [146], and microlensing currently constrains PBHs to be a
subcomponent of dark matter for 𝑀 ≳ 10−10 𝑀⊙ [147, 148, 149, 141].

It has been shown that pulsar timing arrays (PTAs) are potentially a powerful tool to
search for dark matter substructure [44, 150, 103, 151, 104, 105, 43, 152, 42, 9] via
Doppler and Shapiro effects. The Doppler effect is the change of observed pulsar

https://doi.org/10.1088/1475-7516/2021/08/025
https://doi.org/10.1088/1475-7516/2021/08/025
https://arxiv.org/abs/2104.05717
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frequency due to the acceleration of the pulsar as it is pulled by passing substructures
gravitationally, while the Shapiro effect is a gravitational redshift effect due to the
metric perturbations on the photon geodesic along the line of sight [44]. The
signals can be further classified as static (dynamic) if the characteristic time scale
of transiting dark matter, 𝜏, is much smaller (larger) than the pulsar observation
time, 𝑇 . A dynamic signal will be observed as a blip in the pulsar phase time series,
whereas a static signal is observed as a long time scale perturbation. Generally static
(dynamic) signals originate from heavier (lighter) dark matter, due to the smaller
(larger) number density.

In this paper, we develop techniques to detect signals from dark matter substructure
that can be applied to real PTA data. Our purpose is to bridge the gap between
the theoretically exhaustive analyses of Refs. [43, 42, 9] and an application to
real PTA data. We will focus our attention on monochromatic PBH dark mat-
ter since it is the simplest to study. As noted previously [43, 42, 9], PTAs are
sensitive to much less compact subhalos (such as axion miniclusters) than other
lensing searches. To perform our analysis we use the software enterprise [153]
developed by the North American Nanohertz Observatory for Gravitational Waves
(NANOGrav) [154]. enterprise utilizes a Bayesian inference framework to study
how compatible pulsar phase models are with the measured data and noise sources.
Since we are concerned not only with current PTAs but also future PTAs, such as the
Square Kilometer Array (SKA) [155], we use realistic mock data which allows us
to change certain PTA parameters, such as the number of pulsars or the observation
time. Generally we find quite good agreement with the frequentist, signal-to-noise
ratio (SNR) analysis performed previously in Refs. [43, 42, 9] with the exception of
PBHs with masses 10−4–10−2 𝑀⊙ for the Shapiro search where the present constraint
is closer to an order of magnitude weaker than the previous predicted constraints,
mostly due to an approximation of the signal in the static regime necessary for
carrying out the Bayesian analysis.1 Note that we restrict our work to the case of
PBH dark matter, though, utilizing previous work [43, 42, 9], our conclusions can
be generalized to more diffuse substructures such as axion miniclusters.

To search for a dark matter signal with enterprise, a simple, parametrized form of
1We leave for future work how to better approximate the Shapiro signal outside of the static

regime. Note that the Shapiro dynamic signal rapidly becomes weak even for moderately lower halo
concentration relative to a PBH [42], making the Shapiro dynamic search of limited utility for a
broad range of dark matter models.
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the phase shift must be known. This precludes carrying out a fully general analysis,
across static and dynamic signals which have dramatically different time series as
discussed in Refs. [43, 42, 9]. We must break the analysis up into different regimes
where a simple polynomial form of the signal dominates; we will nevertheless find
that the three separate analyses we carry out with enterprise agree well across
more than ten orders of magnitude in PBH mass with the frequentist approach
carried out in Refs. [43, 42, 9].

In particular, we parametrize the dark matter induced phase shift using an amplitude
and at most one shape parameter. Schematically the detection pipeline consists of
the following steps:

i) Search for the dark matter amplitude inside the PTA data.

ii) Compute the theoretical prediction of the dark matter amplitude.

iii) Compare the distributions of the amplitude from i) and ii) for consistency.

The PTA data in i) are analyzed with enterprise while the theoretical predictions
in ii) are computed numerically using the Monte Carlo (MC) simulations developed
in Ref. [9], which produces the probability distribution of the signal amplitudes.

Most importantly, we find that the leading order difference between the previous
theoretical analyses and what can be realistically concluded with future PTA data
will depend on how well a gravitational wave background (GWB) is separated
and mitigated from a dark matter signal. Signals from GWBs are of primary
interest for the PTA community. For instance, NANOGrav recently reported [156]
strong evidence for a common-spectrum low-frequency stochastic process that is
consistent with the characteristic strain spectrum from supermassive black hole
binaries (SMBHBs [157, 158]). If handled naively over the entire frequency range
of the data, and with no spatial correlation information included, we find that it
will swamp a dark matter signal. While beyond the scope of this work, separating
today’s signals (such as the GWB) from signals of future interest (such as dark
matter) will be crucial for the future science program of PTAs. The present work
strongly motivates a focus on this type of background mitigation.

The outline of the paper is as follows. In Sec. 3.2 we describe the form of the PTA
signal injected by dark matter substructure, paying close attention to describing
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the needed approximations. In Sec. 3.3 we perform the Bayesian analysis with
enterprise to derive the posterior distribution of dark matter amplitude in PTA
data, and detail how to detect, or constrain, dark matter with this data. In Sec. 3.4
we apply these detection techniques to mock data and compare the constraints with
our previous sensitivity projections in [9] and [42]. Finally, in Sec. 9.5 we conclude.

3.2 Dark Matter Signals
Pulsars are excellent tools for studying astrophysical phenomena because they are
exceptionally stable clocks [159]. Although the pulsar periods can fluctuate on
shorter time scales, these fluctuations do not accumulate [160]. The intrinsic pulsar
phase, 𝜙(𝑡), can then be modelled, to leading orders, by

𝜙(𝑡) = 𝜙0 + 𝜈𝑡 +
1
2
¤𝜈𝑡2 , (3.1)

where 𝜙0 is the phase offset, 𝜈 is the pulsar frequency and ¤𝜈 is its first derivative.
This is called the timing model of the pulsar. Since the second derivative of the
pulsar frequency is small (typically ¥𝜈/𝜈 ≲ 10−31 𝐻𝑧2 [161]), terms of order O(𝑡3)
or higher are not included in the model. Any process that produces terms that are
not in Eq. (5.37) (e.g. a term ∝ 𝑡3) can be observed or constrained. In this section
we focus on parametrizing additions to the pulsar phase due to a single dark matter
subhalo.

The phase modification, 𝛿𝜙(𝑡), induced by a dark matter subhalo can be written as

𝛿𝜙(𝑡) =
∫ 𝑡

0
𝛿𝜈(𝑡′)𝑑𝑡′ , (3.2)

where 𝛿𝜈 is the induced frequency shift. The frequency shift due to Doppler and
Shapiro effects were studied in Ref. [43], and are given by(

𝛿𝜈

𝜈

)
𝐷

= d̂ ·
∫

∇Φ(r, 𝑀)𝑑𝑡 (3.3)(
𝛿𝜈

𝜈

)
𝑆

= −2
∫

v · ∇Φ(r, 𝑀)𝑑𝑧 , (3.4)

where d̂ is the unit vector pointing from Earth to the pulsar, Φ is the dark matter
gravitational potential, 𝑀 and v are the mass and the velocity of the dark matter,
respectively, and 𝑧 parameterizes the path that the photon travels from the pulsar to
Earth. To further simplify these expressions, we write the position of the dark matter
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as r(𝑡) = r0 + v𝑡 where r0 is the initial position.2 For the Shapiro signal, it is useful
to define r× ≡ r0 × d̂ and v× ≡ v × d̂. Then the time for the dark matter to reach
its point of closest approach is given by 𝑡𝐷, 0 ≡ −r0 · v/𝑣2 and 𝑡𝑆, 0 ≡ −r× · v×/𝑣2

×,
while the width of the signal is given by 𝜏𝐷 ≡ |r0 × v|/𝑣2 and 𝜏𝑆 ≡ |r× × v× |/𝑣2

×.
The impact parameter is b𝐷 ≡ r0 + v𝑡𝐷, 0 and b𝑆 ≡ d̂ × (r× + v×𝑡𝑆, 0). The explicit
expressions for 𝛿𝜙(𝑡) in the PBH limit, the main focus of this work, have been
previously derived in Refs. [43, 9], and are given by

𝛿𝜙𝐷 (𝑡) =
𝐺𝑀𝜈

𝑣2 d̂ ·
(√︃

1 + 𝑥2
𝐷

b̂𝐷 − sinh−1(𝑥)v̂
)

(3.5)

𝛿𝜙𝑆 (𝑡) = 2𝐺𝑀𝜈 log(1 + 𝑥2
𝑆) , (3.6)

where we define 𝑥𝐷 ≡ (𝑡 − 𝑡𝐷, 0)/𝜏𝐷 and 𝑥𝑆 ≡ (𝑡 − 𝑡𝑆, 0)/𝜏𝑆 as normalized time
variables. We have also dropped all terms in Eq. (3.5) and Eq. (3.6) that are
independent, linear or quadratic in time 𝑡 since they are completely degenerate with
the timing model in Eq. (5.37), and hence unobservable.

Static and Dynamic Signals
enterprise primarily uses a Markov Chain Monte Carlo (MCMC) to search over
the parameter space in a signal model, which here is the dark matter signal. However
such methods can become overwhelmed with too many variables, enhancing the
search space dimensions, or variables degenerate in their effects, e.g. two variables
describing the amplitude of a signal. This makes the expressions in Eq. (3.5) and
Eq. (3.6) too cumbersome, and to facilitate the analysis, expressions of 𝛿𝜙(𝑡) with
fewer parameters are necessary. As discussed in Sec. 10.1, the signals can be further
classified into static (𝜏 ≫ 𝑇) and dynamic (𝜏 ≪ 𝑇) signals. If the mass of the dark
matter is large, the number density 𝑛 = 𝜌dm/𝑀 will be smaller, leading to a larger
impact parameter. This translates to a large signal width since 𝜏 = 𝑏/𝑣. On the
other hand, if the dark matter mass is small, the signal width 𝜏 will be small (precise
definitions of ‘large’ and ‘small’ can be found in the discussion of the different
length scales in Ref. [42]).

We start by discussing the Doppler effect. In the static limit, we can expand Eq. (3.5)
in a power series of 𝜏/𝑇 . Since all terms up to 𝑂 (𝑡2) are degenerate with the timing

2We assume the dark matter subhalo travels in a straight line; a valid approximation when the
orbital eccentricity 𝑒 ≫ 1. This requires 𝑏 ≫ 𝐺 (𝑀 + 𝑀𝑃)/𝑣2 [162] where 𝑀𝑃 is the pulsar mass.
Since 𝑀𝑃 ≈ 1𝑀⊙ [163], the impact parameter must satisfy 𝑏 ≫ 10−8 𝑝𝑐, for 𝑀 ≲ 1𝑀⊙ , which is
indeed the case for the mass range considered in this work.



49

model, we can effectively parametrize the measurable signal as

𝛿𝜙𝐷, stat(𝑡)
𝜈

=
𝐴𝐷, stat

𝑦𝑟2 𝑡3 , (3.7)

where 𝐴𝐷, stat is a dimensionless parameter that characterizes the amplitude of the
Doppler static signal and is given by

𝐴𝐷, stat = 𝑦𝑟2𝐺𝑀

2𝑣2 d̂ ·
[
𝑡𝐷, 0

𝜏4
𝐷

1
(1 + 𝑡2

𝐷, 0/𝜏
2
𝐷
)5/2

b̂𝐷 + 1
3𝜏3
𝐷

1 − 2𝑡2
𝐷, 0/𝜏

2
𝐷

(1 + 𝑡2
𝐷, 0/𝜏

2
𝐷
)5/2

v̂

]
. (3.8)

We see that the static signal can be described by using only one parameter (i.e.
𝐴𝐷, stat). In the dynamic limit, by observing that

√︃
1 + 𝑥2

𝐷
∝ |𝑡− 𝑡𝐷, 0 | when 𝜏𝐷 ≪ 𝑇 ,

it is clear that up to a linear term in 𝑥𝐷 , the phase shift is parametrized by

𝛿𝜙𝐷, dyn(𝑡)
𝜈

= 𝐴𝐷, dyn(𝑡 − 𝑡𝐷, 0)Θ(𝑡 − 𝑡𝐷, 0) , (3.9)

where Θ is the Heaviside step function and 𝐴𝐷, dyn characterizes the amplitude of
the Doppler dynamic signal, which is given by3

𝐴𝐷, dyn =
2𝐺𝑀
𝑣2𝜏𝐷

d̂ · b̂𝐷 . (3.10)

We see that in contrast to the static signal, we need two different parameters (𝐴𝐷, dyn

and 𝑡𝐷, 0) to fully describe the dynamic signal.

We now turn our attention to the Shapiro effect. In a completely analogous way to
the Doppler effect, we can parametrize the static Shapiro signal by a term ∝ 𝑡3

𝛿𝜙𝑆, stat(𝑡)
𝜈

=
𝐴𝑆, stat

𝑦𝑟2 𝑡3 , (3.11)

where 𝐴𝑆, stat is the amplitude of the signal given by

𝐴𝑆, stat = − 𝑦𝑟2 4𝐺𝑀
3

𝑡𝑆, 0

𝜏4
𝑆

3 − 𝑡2
𝑆, 0/𝜏

2
𝑆

1 + 𝑡2
𝑆, 0/𝜏

2
𝑆

. (3.12)

Parametrizing the Shapiro signal in the dynamic limit is tricky, since Eq. (3.6) does
not reduce to any simple expressions when 𝜏𝑆 ≪ 𝑇 . On the other hand, in Refs. [42,
9], another type of signal known as the stochastic signal is also considered. In the
limit of extremely light substructure mass, a large number of events could collectively

3For simplicity, only the term ∝ b̂ in Eq. (3.5) is kept since it dominates over the term ∝ v̂ in the
dynamic limit.
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Figure 3.1: Comparison between the numerical and analytic subtracted timing
residuals ℎ(𝑡). The solid lines are generated from the MC with a single PBH using
Eqs. (3.5)-(3.6) while the dashed lines are computed using the analytic formulas in
Eqs. (5.42), (3.9) and (3.11). Both sets of signals are subtracted, meaning that the
timing residual 𝛿𝜙(𝑡) is first fitted to a second order polynomial in time. The fitted
signal, 𝛿𝜙fit(𝑡), is then subtracted from 𝛿𝜙(𝑡).

generate sizable signals. Moreover, the stochastic signal induces angular correlations
between pulsars for the Earth term (similar to the GWB), which enhances the signal-
to-noise ratio. However, parametrizing the stochastic signal is challenging (both in
real and frequency space), and the Earth term analysis requires the construction of the
likelihood function with non-square covariance matrices, which is computationally
demanding. In light of these challenges, we do not search for these signals in this
work and leave the analyses for future work.

In Fig. 3.1 we show some characteristic signal shapes of the timing residuals gen-
erated from the MC4 after numerically fitting away all terms of order O(𝑡2) or less
in the time series. For the static searches, we observe that the subtracted signals
closely resemble a cubic polynomial in 𝑡, which justifies the 𝑡3 parametrization that
we have taken. For the Doppler dynamic case, the timing residuals have a rather
abrupt turn at 𝑡 = 𝑡𝐷, 0, which matches with our prediction of the signal behaving
like a step function in this limit. As shown in the figure, we find good agreement
between the numerical results and the analytic approximations.

The important physical parameters are the dark matter mass, 𝑀 , and mass fraction,
𝑓dm ≡ Ω/Ωdm, where Ωdm ≡ 𝜌dm/𝜌crit is the local dark matter density parameter
and Ω ≡ 𝜌/𝜌crit is the local density parameter of the dark matter of interest (PBHs

4Not to be confused with the MCMC introduced earlier in this subsection, which is a sampling
scheme used to explore the parameter space and compute the posterior distribution.
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in this work). The relations between these parameters and the signal amplitudes 𝐴
are obtained using MC simulations described in Ref. [9]. While the MC simulations
can generate signals from general dark matter subhalos, we focus on the PBH case
here. We first randomly distribute PBHs with mass 𝑀 , density 𝜌dm 𝑓dm (𝜌dm =

0.46 GeV/cm3 [164]), and a Maxwell-Boltzmann velocity distribution with 𝑣0 =

325 km/s, 𝑣esc = 600 km/s and isotropic angular dependence.5 The simulation
volume is taken to be a sphere for the Doppler search and a cylinder with height 𝑑 for
the Shapiro search, where 𝑑 is the distance between the pulsar and Earth. The center
of the simulation volume is taken to be the position of the pulsar. The PBHs are then
classified as dynamic if they satisfy 𝑇 − 𝜏 > 𝑡0 > 𝜏 and static otherwise [43]. This
condition ensures that the pulsar phase shift behaves approximately like Eq. (3.9)
for the dynamic PBHs. To compute 𝐴stat, we first evaluate the total pulsar phase
shift (as a function of time) due to all the static PBHs using Eq. (3.5) and Eq. (3.6)
for the Doppler and the Shapiro case respectively. Then we fit the phase shift to
a cubic polynomial in time to extract the coefficient of the 𝑡3 term, which gives
us 𝐴𝐷, stat and 𝐴𝑆, stat in accordance with Eq. (5.42) and Eq. (3.11). To compute
𝐴𝐷, dyn, we use Eq. (3.9) for the dynamic PBH that has the smallest 𝜏𝐷 . Finally, we
repeat the simulation for numerous realizations to obtain the conditional probability
distributions 𝑃(𝐴𝐷, stat | 𝑓dm), 𝑃(𝐴𝐷, dyn | 𝑓dm) and 𝑃(𝐴𝑆, stat | 𝑓dm) for each choice of
𝑀 .6

3.3 Bayesian Analysis of Dark Matter Signals in PTAs
We now develop the Bayesian framework for detecting dark matter subhalos with
PTAs. For clarity, we will collectively refer the dark matter signal amplitudes for the
different types of signals 𝐴𝐷, stat, 𝐴𝐷, dyn and 𝐴𝑆, stat defined in Eq. (5.42), Eq. (3.9)
and Eq. (3.11) as 𝐴.

5We have taken a dark matter velocity spread, 𝑣0, higher than the often quoted value 𝑣0 ≈
230 km/s. This is to eliminate the velocity anisotropy due to the relative motion between the pulsar
and the galactic rest frame. Since we do not expect such anisotropy to be observable, we ignore this
effect and boost the distribution with a larger 𝑣0 value.

6We have suppressed the PBH mass 𝑀 inside the conditional probability for notational conve-
nience in later sections. A larger 𝑓dm implies a larger signal amplitude 𝐴, so it is conceptually more
natural to draw upper limits on 𝑓dm for each choice of 𝑀 instead of deriving the two dimensional
posterior distribution for both parameters simultaneously.
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Noise Modeling and Likelihood
Our modeling and analysis of PTA data closely follows Refs. [165, 166], and we
refer the reader to those papers for a full discussion of the PTA data model. We
summarize several of the salient features here. Let 𝑁TOA be the number of pulsar
times of arrival (TOAs). The timing residuals of a pulsar correspond to the raw
TOA data with the best-fit timing model subtracted. By definition, any unmodeled
phenomena or noise fluctuations should be encapsulated in the residuals, which we
model as

𝛿t = 𝑀𝜖 + 𝐹a + 𝛿tdm + n . (3.13)

The matrix 𝑀 is the timing model design matrix corresponding to partial derivatives
of the TOAs with respect to timing model parameters, and the vector 𝜖 denote small
linear parameter offsets. Together 𝑀𝜖 represents the inaccuracies in the subtraction
in the timing model.

The term 𝐹a represents a Fourier series of low-frequency (‘red’) timing deviations,
where 𝐹 is an 𝑁TOA×2𝑁modes matrix with alternating columns of sines and cosines in
harmonics of the base frequency 1/𝑇 , and a are the Fourier coefficients of each mode.
Sources of pulsar intrinsic red noise include spin instability noise, secular pulse
profile changes, and time-dependent dispersion measure variations [167, 168, 169]
(although the latter has a known dependence on the observed radio frequency). Inter-
pulsar correlated red noise may derive from Roemer-delay errors when barycentering
the pulse TOAs (inducing dipolar correlations) [170], long-timescale drifts in clock
standards (inducing monopolar correlations) [170], and a stochastic GWB that is
generated from a population of sources such as SMBHBs (inducing quadrupolar-
dominated Hellings & Downs correlations [112]) [e.g., 158, and references therein].
We do not consider barycentering or clock errors here, nor do we leverage the
Hellings & Downs correlations between pulsars for the GWB; for the sake of
computational convenience, the GWB is modeled as an uncorrelated common-
spectrum red process amongst all pulsars, as in the NANOGrav 12.5yr Dataset
analysis [156].

Red noise of any source is modeled as a stationary Gaussian process with a power-
law power spectral density of timing deviations:

𝑃red( 𝑓 ) =
𝐴2

red
12𝜋2

(
𝑓

𝑦𝑟−1

)−𝛾red

𝑦𝑟3 , (3.14)



53

where 𝐴red and 𝛾red are the red noise amplitude and the spectral index respectively.
For a GWB produced by a population of SMBHBs evolving solely through GW
emission, 𝛾 = 13/3 [171].

The term n denotes white noise that has equal power across all frequencies in the
residual time series, and which is uncorrelated amongst pulsars. This noise is
heteroscedastic with a per-TOA uncertainty dominated by the pulse template-fitting
uncertainties. These uncertainties are then scaled. NANOGrav also computes many
near-simultaneous sub-banded TOAs, producing white noise that is correlated across
sub-bands, but uncorrelated in time. Once all of these effects are accounted for, the
white noise covariance matrix has a block-diagonal structure in epoch blocks.

The term 𝛿tdm denotes a putative dark matter signal, which we model as a deter-
ministic process. Grouping the timing model offsets and red noise together into
the matrix-vector product 𝑇blat, we form model-dependent white noise residuals,
rres = 𝛿t −𝑇blat − 𝛿tdm. The likelihood is then simply a Gaussian distribution in all
the data with zero mean and a covariance matrix given by the modeled white-noise.
However, we are typically not interested explicitly in the latent parameters blat,
such that we analytically marginalize over these parameters with Gaussian priors
described by the unbounded variance of the timing model offsets and the power
spectral density (PSD) of the red noise. The resulting likelihood function is then

𝑝(𝛿t|𝜂, 𝜃) =
exp(−1

2 (𝛿t − 𝛿tdm(𝜃))𝑇𝐶 (𝜂)−1(𝛿t − 𝛿tdm(𝜃)))√︁
det(2𝜋𝐶 (𝜂))

. (3.15)

where 𝜂 are hyper-parameters describing the spectral models of the intrinsic pulsar
red noise and GWB;𝐶 is the model-dependent covariance matrix of white noise, red
noise, and timing offsets; and 𝜃 are parameters of the dark matter signal. This like-
lihood is constructed using the enterprise [153] and enterprise_extensions
[172] software packages, and the Bayesian posterior distributions of all parameters
are sampled using MCMC techniques implemented with the PTMCMCSampler pack-
age [173]. To compute the posterior distribution of the dark matter amplitude, we
numerically marginalize the MCMC chain over all parameters except this ampli-
tude. For the Doppler dynamic search, the time of arrival 𝑡0 is also marginalized
over. In every case, we obtain the posterior distribution of the dark matter amplitude
𝑃(𝐴|𝛿t).



54

Posterior Distribution of the Dark Matter Abundance
As stated in the previous section, the physical parameters that we are interested in are
the dark matter mass 𝑀 and mass fraction, 𝑓dm ≡ Ω/Ωdm. This subsection describes
the translation from the posterior distribution on the amplitude 𝐴, 𝑃(𝐴| 𝑓dm, 𝑀) to
a statement on the dark matter abundance.

Single Pulsar

We begin with the simple case of a single pulsar, and fix the dark matter subhalo
mass 𝑀 for the remainder of this subsection. Even for a fixed 𝑓dm, the amplitude 𝐴 is
a random variable since both r0 and v are random variables. The conditional prob-
ability 𝑃(𝐴| 𝑓dm) can be computed using the MC simulation described in Sec. 3.2.
The marginalized posterior distribution of 𝑓dm, given the measured data 𝛿t, is

𝑃( 𝑓dm |𝛿t) =
∫ ∞

−∞
𝑃( 𝑓dm |𝐴)𝑃(𝐴|𝛿t)𝑑𝐴 . (3.16)

Using Bayes’ theorem, we can invert the conditional probability

𝑃( 𝑓dm |𝐴) =
𝑃(𝐴| 𝑓dm)𝑃( 𝑓dm)

𝑃(𝐴) , (3.17)

and assuming uniform priors on both 𝑓dm and 𝐴, we can write

𝑃( 𝑓dm |𝐴) ∝ 𝑃(𝐴| 𝑓dm) . (3.18)

Substituting Eq. (3.18) into Eq. (3.16) gives

𝑃( 𝑓dm |𝛿t) ∝
∫ ∞

−∞
𝑃(𝐴| 𝑓dm)𝑃(𝐴|𝛿t)𝑑𝐴 , (3.19)

subjected to the normalization condition,
∫ ∞

0 𝑃( 𝑓dm |𝛿t)𝑑𝑓dm = 1.

Multiple Pulsars

The above analysis is easily generalized to multiple pulsars. The marginalized
posterior distribution of 𝑓dm for multiple pulsars can be formulated in two non-
equivalent, but equally valid, ways. First, we write the collection of the amplitude
in each pulsar as A = (𝐴1, 𝐴2, · · · , 𝐴𝑁𝑃

) where 𝑁𝑃 is the number of pulsars. Then
𝑃( 𝑓dm |𝛿t) is given by

𝑃( 𝑓dm |𝛿t) =
∫ ∞

−∞
𝑃( 𝑓dm |A)𝑃(A|𝛿t)𝑑𝑁𝑃𝐴 . (3.20)



55

Since all the pulsars are independent from each other, we can factorize the likelihood
function and hence the joint posterior distribution of A (since A has a uniform prior)

𝑃(A|𝛿t) = 𝑃(𝐴1 |𝛿t)𝑃(𝐴2 |𝛿t) · · · 𝑃(𝐴𝑁𝑃
|𝛿t) . (3.21)

Following the same steps in Sec. 3.3, the final expression of 𝑃( 𝑓dm |𝛿t), labelled ‘all’
because it includes all the pulsars directly, is

𝑃all( 𝑓dm |𝛿t) ∝
𝑁𝑃∏
𝑖=1

∫ ∞

−∞
𝑃(𝐴𝑖 | 𝑓dm)𝑃(𝐴𝑖 |𝛿t)𝑑𝐴𝑖 , (3.22)

which must also be normalized to one. We emphasize that since Eq. (5.43) is
merely a product of 𝑁𝑃 integrals (instead of an 𝑁𝑃-dimensional integral), it is
computationally inexpensive to evaluate.

Alternatively, instead of using the amplitudes from all pulsars, we can compute
𝑃( 𝑓dm |𝛿t) using only the pulsar with the maximum amplitude, labelled ‘max’,

𝑃max( 𝑓dm |𝛿t) ∝
∫ ∞

−∞
𝑃(𝐴max | 𝑓dm)𝑃(𝐴max |𝛿t)𝑑𝐴max , (3.23)

where 𝐴max ≡ max𝑖 𝐴𝑖. The upper limits placed on 𝑓dm for these two different ways
of formulating 𝑃( 𝑓dm |𝛿t) scale differently with 𝑁𝑃. If we use the amplitudes from
all pulsars, it is clear from Eq. (5.43) that 𝑃all( 𝑓dm |𝛿t) we obtain from considering
𝑁𝑃 pulsars is effectively raising the single pulsar posterior by a factor of 𝑁𝑃 (up
to normalization, assuming identical pulsars), which always results in a lower 90th

percentile on 𝑓dm. On the other hand, if we only consider the pulsar with the
maximum amplitude, since 𝐴max ≥ 𝐴𝑖 for all 𝑖, 𝑃max( 𝑓dm |𝛿t) will also be shifted to
lower 𝑓dm. Hence we get a more stringent upper limit on 𝑓dm with larger 𝑁𝑃 for both
treatments, but they do not necessarily scale with the same power of 𝑁𝑃. Since both
A and 𝐴max are well defined statistical variables, we have the freedom to draw upper
limits on 𝑓dm using either of them (despite the fact that they give different results).
These treatments can now be repeated for all choices of 𝑀 to obtain 𝑃( 𝑓dm |𝛿t) for
each 𝑀 .

3.4 Mock Data
To demonstrate the formalism developed in the previous sections we place the upper
limits on the dark matter abundance in PBHs with standard mock pulsar data.
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𝑁𝑃 𝑑 [kpc] 𝑇 [yr] Δ𝑡 [week] 𝑡rms [ns]
SKA 200 5 20 2 50

Optimistic 1000 10 30 1 10

Table 3.1: PTA parameters assumed when generating the mock pulsars. Here 𝑁𝑃
is the number of pulsars, 𝑑 is the pulsar-Earth distance, 𝑇 is the observation time,
Δ𝑡 is the cadence and 𝑡rms is the root-mean-square timing residuals.

Dataset
The mock pulsars in our analyses originated from the International Pulsar Timing
Array (IPTA) First Mock Data Challenge (MDC) [174]. Using the python wrapper
libstempo [175] to the pulsar timing package TEMPO2 [176, 177], we generate
mock data from the MDC .par files with zero timing residuals (i.e. perfect fit
of the timing model). We then prepare two sets of mock pulsars with the pulsar
parameters consistent with the predicted parameters for future PTA experiments,
which are summarized in Table 3.1.

Then, for each set of mock pulsars, we inject noise into the timing residuals. To
compare with our previous works [42, 9], our main result uses mock pulsars with
only white noise injected. In addition, we also prepare a separate set of mock
pulsars with both white noise and red noise injected. The spectral index of the red
noise is chosen to be 𝛾red = 13/3, which is the theoretical prediction of a stochastic
gravitational wave background (GWB) signal due to a population of inspiraling
SMBHBs in circular orbits [171]. To investigate the effects of red noise with
different amplitudes, we carried out the analysis using mock data with 𝐴red = 10−17,
10−16, 10−15 and 10−14.

Results
To generate the posterior distribution of the dark matter signal amplitude, 𝐴, we
closely follow the Bayesian inference procedure described in Ref. [165] using the
software enterprise [153]. We marginalize over all the timing model and noise
parameters with an MCMC using the package PTMCMCSampler [173]. The time
of closest approach 𝑡𝐷, 0 for the Doppler dynamic search is also marginalized over.
Since the signals we are interested in are pulsar independent, we carry out the
analysis independently for each pulsar.

The parameters and their priors are listed in Table 5.1. In particular, we use uniform
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Figure 3.2: Posterior distribution of log10 𝐴stat and log10 𝐴dyn for mock pulsars with
white noise only assuming SKA parameters. Both the single pulsar posterior and
the posterior of the maximum amplitude across all 𝑁𝑃 = 200 pulsars are shown.

(instead of log-uniform) priors for the dark matter amplitudes and we justify our
choices as follows. For detection purpose, if the signal amplitude can span across
several orders of magnitude, the prior is often chosen to be log-uniform to yield an
unbiased parameter estimation. However, for the purpose of setting upper limits,
uniform priors are often used for the signal amplitude since the prior of 𝐴 has to
be finite at 𝐴 = 0. Otherwise, if a log-uniform prior is used instead, the prior will
diverge at 𝐴 = 0 and the precise value of the upper limit on 𝐴 will depend on the
lower-cut of 𝐴 [165]. Considering that the data are consistent with 𝐴 = 0 (i.e.
no signal), no physically motivated values can be chosen for the lower-cut of 𝐴,
rendering such dependence undesirable. Since the main objective of this work is
to place constraints of dark matter (rather than claiming detection), we use uniform
priors on 𝐴. Note that this does skew the posterior distribution into higher values
of 𝐴, which indicates that the upper limits that we obtain are conservative bounds.
The red-noise amplitude, however, does not have such restriction. It has been shown
that using uniform priors on the red noise amplitude can lead to overstated Bayesian
upper limits by transferring the signal power to the red noise process [178], so we
choose to use log-uniform priors instead. We show the posterior distribution of the
dark matter amplitude of one of the pulsars and the maximum amplitude across the
entire PTA in Fig. 3.2.

To place an upper limit on the PBH dark matter abundance 𝑓dm, we first use the MC
simulations described in Sec. 3.2 to compute the conditional probability 𝑃(𝐴| 𝑓dm)
for different choices of𝑀 and the same pulsar parameters as the mock data. We show
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Parameter Description Prior

Red noise

𝐴red Red noise power-law amplitude Log-Uniform [−19, −12]

𝛾red Red noise power-law spectral index Uniform [0, 7]

Dark Matter

𝐴stat Static dark matter amplitude Uniform ±[10−21, 10−13]

𝐴dyn Dynamic dark matter amplitude Uniform ±[10−20, 10−12]

𝑡0/𝑇 Dynamic dark time of arrival Uniform [0.1, 0.9]

Table 3.2: Parameters and priors used in the mock data analysis. The notation
Uniform ±[. . . ] stands for the union of Uniform [+ . . . ] and Uniform [− . . . ]. The
effects of white noise are accounted for by marginalizing over a multiplicative factor
in front of the errors on the timing residuals.

the probability for some choices of 𝑓dm and 𝑀 in Fig. 3.3. We see that higher values
of 𝑓dm lead to larger amplitudes. The inferred posterior distributions of 𝑓dm are
then computed using Eqs. (5.43)-(3.23), and are shown in Fig. 3.4.7 By comparing
Fig. 3.2 and Fig. 3.3, we observe that if 𝑓dm is either too large or too small, the
two probability distributions in Eqs. (5.43)-(3.23) do not overlap at all, leading to
𝑃( 𝑓dm |𝛿t) = 0. Hence the posterior distributions of 𝑓dm shrink to zero on both ends
similar to the posterior distributions of 𝐴 in Fig. 3.2. The 𝑝th percentile upper limit
constraints on 𝑓dm, 𝑓𝑝, are then derived by requiring

∫ 𝑓𝑝

0 𝑃( 𝑓dm |𝛿t)𝑑𝑓dm = 100 × 𝑝.

Finally, the 90th percentile upper limits on 𝑓dm for PBHs are shown in Fig. 3.5. These
results are compared to the sensitivity projection in our previous works described in
Refs. [42, 9] using the same pulsar parameters. Our previous works use a matched-
filter procedure to compute the signal-to-noise ratio (SNR) from PBHs relative to
white noise, and derive the upper limits on 𝑓dm by putting an appropriate cut on the
SNR. We see that with both SKA and optimistic pulsar parameters, the constraints
agree with each other to within a factor of two for most PBH masses. The only mass
range where the results significantly differ from each other is 10−3–10−1 𝑀⊙ (SKA)

7Shaded regions in Figs. 3.4-3.6 correspond to 𝑓dm > 1, which are unphysical if gravitation is
the only interaction between the pulsar and the dark matter, but can be possible in the presence of
additional forces.
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Figure 3.3: Conditional probability 𝑃(log10 𝐴| 𝑓dm) obtained by the MC for different
values of 𝑓dm, assuming SKA parameters. The three panels correspond to Doppler
static, Doppler dynamic and Shapiro static respectively.
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Figure 3.4: Posterior probability 𝑃( 𝑓dm |𝛿t) assuming SKA parameters and only
white noise in the mock pulsars. The three panels show the results for Doppler
static, Doppler dynamic and Shapiro static respectively. The lines labelled ‘All
pulsars’ use Eq. (5.43) to compute the posterior distribution, while the lines labelled
‘Max pulsar’ use Eq. (3.23).

and 10−4–10−2 𝑀⊙ (optimistic) for the Shapiro search, where our constraints on 𝑓dm

are weaker by around an order of magnitude. We also show the most stringent upper
limits (for a given PBH mass) on 𝑓dm from both the ‘max/all pulsar’ searches in
Fig. 3.6.

Here we summarize the differences between our previous works and this work. First,
our previous work draws constraints using the SNR, which is a frequentist interpre-
tation of the data. This work derives the constraints using the posterior distribution,
which is Bayesian in nature. It is not uncommon for results from frequentist and
Bayesian inferences to differ from each other by O(1) numbers. Second, the latest
iteration of our previous work [9] does not distinguish the static and dynamic signals,
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because a Monte Carlo was used to generate the signals and smoothly interpolate
between dynamic and static regimes. In this work, we must divide the signal into
static and dynamic signals for the ease of signal parameterization in the data. This
leads to a deterioration of the constraints when the mass 𝑀 falls under the transition
region between the static and the dynamic regimes. For the Doppler case, this dete-
rioration is not significant. However, for the Shapiro case, since we do not carry out
the Shapiro dynamic analysis, the constraint is significantly weakened at the edge
of the static mass regime (as commented in the previous paragraph). While this
weakening is due to calculational limitations in the Bayesian analysis is unfortunate,
we also note the limited utility of the Shapiro searches for even moderately lower
concentration dark matter subhalos [42], suggesting that for a broad range of dark
matter models, Doppler searches will be the dominant tool. Finally, our previous
work only draws constraints using the maximum SNR among all the pulsars, while
in this work we also consider the possibility of studying the dark matter signals in all
the pulsars simultaneously. As indicated in Fig. 3.5, this leads to a better reach for
some mass ranges (e.g. 𝑀 < 10−2 𝑀⊙ for the Shapiro signal with SKA parameters).

Effects of Red Noise
Realistic PTA data contain red noise. Some pulsars contain intrinsic red noise,
while a stochastic GWB can also induce a red noise process correlated among
all pulsars. For instance, a common red noise process with median amplitude
𝐴 = 1.92 × 10−15 and spectral index 𝛾 = 13/3 is reported by NANOGrav in
Ref. [156]. For completeness, we briefly consider the effect of red noise, such as
the SMBHB background, on a PTA’s ability to detect dark matter.

Instead of the upper limits on 𝑓dm, we report the effects of red noise on the posterior
distribution of the dark matter amplitudes 𝐴stat and 𝐴dyn in Fig. 3.7. The presence
of the red noise shifts the posterior distribution towards large amplitudes, implying
that the constraints on the amplitudes (hence 𝑓dm) worsen. To quantify the effects,
we show the 90th percentile of 𝐴stat and 𝐴dyn. As shown in Fig. 3.7, a red noise
process with 𝐴red = 10−15 would increase the upper limits on 𝐴stat and 𝐴dyn by 2 and
1.5 orders of magnitude respectively. The PBH dark matter abundance 𝑓dm scales as
𝐴𝐷, stat, 𝐴2

𝐷, dyn and 𝐴2/3
𝑆, stat respectively, meaning that, in any case, the upper limits

on 𝑓dm worsen by over an order of magnitude when red noise is present in the data.8

8In practice, instead of only considering the upper limits on 𝐴, one would have to perform the
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Figure 3.5: The 90th percentile upper limits on the PBH dark matter abundance
𝑓dm ≡ Ω/Ωdm for different PBH masses, 𝑀 . The top and bottom rows correspond
to the SKA and optimistic parameters defined in Table 3.1, while the three columns
corresponding to the Doppler static, Doppler dynamic and Shapiro static searches,
respectively. The results for this work are shown in solid lines while the dotted
lines denote the projected sensitivity using the frequentist formalism developed in
Refs. [42, 9]. Note that the previous results quoted here do not distinguish between
static and dynamic searches. The lines labelled ‘All pulsars’ and ‘Max pulsar’ labels
show the upper limits derived using all pulsars and only the pulsar with maximum
signal amplitude respectively.

3.5 Conclusions
In this work, we have provided a Bayesian framework for detecting dark matter
substructure with Pulsar Timing Arrays, which bridges the gap between our previous
work [43, 42, 9] and realistic PTA data. Using mock data with well-motivated pulsar
parameters, we found that for mock pulsars with white noise only, the upper limits
placed on the PBH dark matter abundance agree with our previous results up to
a factor of two for all mass ranges for the Doppler search and most mass ranges
for the Shapiro search. This implies that non-negligible constraints on PBHs with
mass 10−8–102 𝑀⊙ and mass 10−11–102 𝑀⊙ can be placed in the next decade and

overlapping integrals using Eqs. (5.43)-(3.23) to compute the posterior distribution of 𝑓dm. Hence
this analysis is an order of magnitude estimate of the effects of 𝐴red on 𝑓dm. We did not perform a
full analysis on mock data with red noise since that would require us to run the MC simulations with
unrealistically high 𝑓dm, which is computationally challenging.
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abundance 𝑓dm ≡ Ω/Ωdm for different PBH masses, 𝑀 . The results in the present
work are labelled as ‘Bayesian’ while the sensitivity projections in Refs. [42, 9] are
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the decade after respectively.

We have also investigated the effects of red noise on the sensitivity of dark matter
signals, where we found that the upper limits on the PBH dark matter abundance
𝑓dm weaken by over an order of magnitude when red noise from supermassive black
hole binaries is introduced in the present framework. While this might eliminate any
hope of detecting dark matter with PTAs in the near future, we note that significant
progress is being made by the PTA community in separating signals from different
physical processes. In particular, if the timing residuals due to red noise (pulsar
intrinsic or pulsar correlated) are identified to high precision (instead of only the
amplitude and the spectral index in frequency space), we will be able to subtract
the contribution from red noise and mitigate its effects, since the dark matter signal
shape studied here is not degenerate with the red noise. We hope that this work
will motivate future work in the PTA community in separating signals of different
sources.

This work only formulates the detection of PBHs and PBH-like substructures. To
distinguish between different dark matter models, it is important to also develop
a formalism that works for dark matter substructure with general halo mass func-
tions and density profiles. In addition, many dark matter models include additional
couplings between dark matter and the standard model beyond gravitational inter-
actions. Such classes of dark matter also produce signals that can be potentially
detected by PTAs [179]. We leave these analyses for future work.

bibliography
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C h a p t e r 4

SEARCHING FOR GRAVITATIONAL WAVES FROM
COSMOLOGICAL PHASE TRANSITIONS WITH THE

NANOGRAV 12.5-YEAR DATASET

This chapter is based on

[1] Zaven Arzoumanian et al. “Searching for Gravitational Waves from Cosmo-
logical Phase Transitions with the NANOGrav 12.5-Year Dataset”. In: Phys.
Rev. Lett. 127.25 (2021), p. 251302. doi: 10.1103/PhysRevLett.127.
251302. arXiv: 2104.13930 [astro-ph.CO].

4.1 Introduction
The search for gravitational waves (GWs) spans many orders of magnitude and en-
capsulates a plethora of source phenomena. At very-low frequencies (∼ 1−100 nHz),
pulsar-timing arrays (PTAs; [180, 181, 182]) aim to detect GWs through the pres-
ence of correlated deviations to radio-pulse arrival times across an ensemble of
precisely-timed Milky Way millisecond pulsars. There are three PTA collabora-
tions that currently have decadal-length timing data from an ensemble of pulsars:
The North American Nanohertz Observatory for Gravitational Waves (NANOGrav;
[183]), the European Pulsar Timing Array (EPTA; [184]), and the Parkes Pulsar
Timing Array (PPTA; [185]). These three, in addition to the Indian PTA (InPTA;
[186]), are synthesized into the International Pulsar Timing Array (IPTA; [187]).
There are also emerging efforts in China (CPTA; [188]), as well as some telescope-
centered timing programs (MeerKAT; [189]; CHIME; [190]).

The dominant GW signals at such low frequencies frequencies are expected to be
from a cosmic population of tightly-bound inspiralling supermassive binary black
holes (SMBHBs; [191, 192]), producing an aggregate incoherent signal that we
search for as a stochastic GW background (GWB), and also individual binary signals
that we attempt to resolve out of this stochastic confusion background. However,
other more speculative GW sources in the PTA frequency range include cosmic
strings [193, 194], a primordial GWB produced by quantum fluctuations of the
gravitational field in the early universe, amplified by inflation [195, 196, 197], and
cosmological phase transitions [198, 199, 200, 201, 202], the latter of which is the
subject this study.

https://doi.org/10.1103/PhysRevLett.127.251302
https://doi.org/10.1103/PhysRevLett.127.251302
https://arxiv.org/abs/2104.13930
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The most recent PTA results are from NANOGrav’s analysis of 12.5 years of preci-
sion timing data from 47 pulsars [203, hereafter ], of which 45 exceeded a timing
baseline of 3 years and were analysed in a search for a stochastic GWB [204, here-
after ]. NANOGrav reported strong evidence for a common-spectrum low-frequency
stochastic process in its array of 45 analyzed pulsars, where ∼ 10 of those pulsars
are strongly supportive, most are ambivalent, and a few seem to disfavor the process
(although not significantly). No evidence for the characteristic inter-pulsar corre-
lation signature imparted by GWs was found. At low frequencies the shape of the
characteristic strain spectrum was well matched to a power-law, with an amplitude
and slope consistent with theoretical models of SMBHB populations. Under a model
that assumes the origin of the GWB is a population of SMBHBs, the median char-
acteristic strain amplitude at a frequency of 1/year is 1.92 × 10−15. Interpretations
of this common-spectrum process as a GWB from SMBHBs have since appeared
in the literature, showing that, if it is indeed so, robust evidence of the distinctive
inter-pulsar correlations should accrue within the next several years, followed by
characterization of the strain spectrum and astrophysical probes of the underlying
population [205, 206]. However, the Bayesian posterior probability distributions of
the strain-spectrum amplitude and slope are broad enough to entertain a variety of
different source interpretations, many of which have since appeared in the literature
[e.g. 207, 208, 209, 210].

In this Letter we consider gravitational waves produced by first-order cosmological
phase transitions, both as an alternative origin of the common process measured in
the NANOGrav 12.5 year Dataset [211, 212, 213, 214, 215, 216, 217, 218], and as a
sub-dominant signal to that produced by SMBHBs. The frequency range to which
NANOGrav is sensitive corresponds to phase transitions at temperatures below the
electroweak phase transitions of the Standard Model (i.e. 𝑇 ≲ 100 GeV). This has
led many to consider higher frequency GW observatories, such as LISA and LIGO, as
the dominant instruments to search for phase transitions. However, phase transitions
may occur at much lower temperatures in particular in hidden sectors [219, 220, 45].
Hidden sectors/valleys feature rich dynamics, with multiple matter fields and forces,
independent of the dynamics of the Standard Model. They appear generically in
top-down constructions like string theory, and in some solutions to the so-called
hierarchy problem. In many cases, they may be difficult to detect via their particle
interactions with the Standard Model, but gravity is an irreducible messenger. In
this regard, PTAs provide a powerful complementary probe to the dynamics of
hidden sectors already being explored through many terrestrial, astrophysical and
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cosmological probes (see Ref. [221] for a recent summary).

Previous studies on cosmological first order phase transition in the context of the
NANOGrav results were carried out in [216, 222, 223, 212]. Our analysis presents
two main novelties compared to these works: first, we properly include the rele-
vant noise sources and discuss the impact of backgrounds (like the one generated
by SMBHBs); second, we discuss how the results are affected by the theoretical
uncertainties on the GW spectrum produced by first order phase transitions.

The outline of this Letter is as follows. In the next section we briefly summarize the
signature of GWs from the dominant background of SMBH mergers. We then dive
into the main subject of this Letter, GWs from a first-order phase transition, where
we discuss the relevant parameters characterizing the signal. We then carry out an
analysis with the NANOGrav 12.5 year dataset, finding that the data can be modeled
in terms of a strong phase transition with a transition temperature around 10 MeV.
The dataset and data model for these analyses are exactly as described in NG12
and NG12gwb, respectively. All common processes (whether interpreted as being
of SMBHB or phase-transition origin) are modeled within the five lowest sampling
frequencies of the array time series, corresponding to ∼ 2.5 − 12 nHz. Finally, we
discuss theoretical uncertainties, and compare the PT interpretation of the data to
the standard interpretation in terms of SMBHB finding no strong preference for one
over the other.

4.2 GW from SMBHBs Mergers
Regardless of origin, the energy density of GWs as a fraction of closure density is
related to the GW characteristic strain spectrum by [224]

Ω𝐺𝑊 ( 𝑓 ) = 2𝜋2

3𝐻2
0
𝑓 2ℎ2

𝑐 ( 𝑓 ), (4.1)

where 𝐻0 is the Hubble constant (set here to be 67 km/s/Mpc [225]), and the GWB
characteristic strain spectrum ℎ𝑐 ( 𝑓 ) is often described by a power-law function for
astrophysical and cosmological sources:

ℎ𝑐 ( 𝑓 ) = 𝐴GWB

(
𝑓

𝑦𝑟−1

)𝛼
, (4.2)

where 𝐴GWB is the amplitude at a reference frequency of 1/year, and𝛼 is an exponent
that depends on the origin of the GWB. For a population of inspiraling SMBHBs,
this is 𝛼 = −2/3 [226]. The cross-power spectral density of GW-induced timing
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Bubbles [228] Sound Waves [229]

Δ(𝑣𝑤)
0.48𝑣3

𝑤

1 + 5.3𝑣2
𝑤 + 5𝑣4

𝑤

0.513 𝑣𝑤

𝜅 𝜅𝜙 𝜅𝑠𝑤

𝑝 2 2

𝑞 2 1

S(𝑥) (𝑎 + 𝑏)𝑐[
𝑏𝑥−𝑎/𝑐 + 𝑎𝑥𝑏/𝑐

] 𝑐 𝑥3
(

7
4 + 3𝑥2

)7/2

𝑓∗/𝛽
0.35

1 + 0.07𝑣𝑤 + 0.69𝑣4
𝑤

0.536
𝑣𝑤

Table 4.1: Parameters for the gravitational wave spectrum of eq. (4.4). The values of
the parameters (𝑎, 𝑏, 𝑐) in the spectral shape of the bubble contribution are reported
in Table 4.2.

deviations between two pulsars 𝑎 and 𝑏 can be written as

𝑆𝑎𝑏 ( 𝑓 ) = Γ𝑎𝑏
𝐴2

GWB
12𝜋2

(
𝑓

𝑦𝑟−1

)−𝛾
𝑦𝑟3 , (4.3)

where 𝛾 ≡ 3 − 2𝛼 = 13/3 for SMBHBs, and Γ𝑎𝑏 is the Hellings-Downs [227]
correlation coefficient between pulsar 𝑎 and pulsar 𝑏.

4.3 GWs from First-order Phase Transition
A first-order phase transition (PT) occurs when the true minimum of a potential
is separated from a false minimum by a barrier through which a field must locally
tunnel. This can occur in either weakly coupled (where a scalar field tunnels)
or strongly coupled (where a vacuum condensate corresponds to the scalar field)
theory. Such transitions are known to proceed through nucleation of bubbles of
true vacuum which, if sufficiently large, expand in the background plasma (still in
the false vacuum). Collisions of these bubbles, as well as interactions between the
expanding bubble walls and the surrounding plasma, can be efficient sources of
GWs.

We characterize the phase transition in terms of four parameters:

• 𝑇∗ – the Universe temperature at which the phase transition takes place.
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Envelope Semi-analytic Numerical

𝑎 3 1 − 2.2 1.6 − 0.7

𝑏 1 2.6 − 2.9 1.4 − 2.3

𝑐 1.5 1.5 − 3.5 1

𝑓∗/𝛽
0.35

1 + 0.07𝑣𝑤 + 0.69𝑣2
𝑤

0.1 0.2

Table 4.2: Comparison of the bubble spectral shape parameters derived using
the envelope and thin wall approximation [228] (left column), the semi-analytic
approach of reference [230] (middle column), and lattice simulations [231] (right
column). For numerical and semi-analytic results the values of the parameters
depend on the choice of the scalar field potential, we report the range of values
obtained for the different scalar field potentials considered in the above mentioned
works.

• 𝛼∗ – the strength of the phase transition, defined as the ratio of the vacuum
and relativistic energy density at the time of the phase transition.

• 𝛽/𝐻∗ – the bubble nucleation rate in units of the Hubble rate at the time of
the phase transition, 𝐻∗.

• 𝑣𝑤 – the velocity of the bubble walls.

The three main sources of GWs associated with a first-order phase transition are:
(i) collisions of bubble walls, (ii) collisions of the sound waves generated in the
background plasma by the bubbles expansion, and (iii) turbulence in the plasma
generated by expansion and collisions of the sound-wave. However, in this analysis
we will not include the turbulence contribution as it usually is subleading compared
to the sound-wave one, and also affected by the largest theory uncertanties (see for
example [232, 233, 234] for recent developments).

The contribution to the total GW spectrum from bubbles and sound waves collisions
can be parametrized as [235, 232]

ℎ2Ω( 𝑓 ) = R Δ(𝑣𝑤)
(
𝜅 𝛼∗

1 + 𝛼∗

) 𝑝 (
𝐻∗
𝛽

)𝑞
S

(
𝑓 / 𝑓 0

∗

)
, (4.4)

where the prefactor R ≃ 7.69×10−5𝑔
−1/3
∗ accounts for the redshift of the GW energy

density, S(·) parametrizes the spectral shape, and Δ(𝑣𝑤) is a normalization factor
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which depends on the bubble wall velocity, 𝑣𝑤. The value of the peak frequency
today, 𝑓 0

∗ , is related to the value of the peak frequency at emission, 𝑓∗, by:

𝑓 0
∗ ≃ 1.13 × 10−10 𝐻𝑧

(
𝑓∗
𝛽

) (
𝛽

𝐻∗

) (
𝑇∗
𝑀𝑒𝑉

) (
𝑔∗
10

)1/6
, (4.5)

where 𝑔∗ denotes the number of relativistic degrees of freedom at the time of the
phase transition. The values of the peak frequency at emission, the spectral shape,
the normalization factor, and the exponents 𝑝 and 𝑞 are reported in Table 4.1 for
all the production mechanisms considered in this work. Due to the finite lifetime
[236, 237] of the sound waves, to derive Ω𝑠𝑤 eq. (4.4) needs to be multiplied by a
suppression factor Υ(𝜏𝑠𝑤) given by [236]:

Υ(𝜏𝑠𝑤) = 1 − (1 + 2𝜏𝑠𝑤𝐻∗)−1/2 (4.6)

where the sound-wave lifetime is usually taken to be the timescale for the onset of
turbulent behaviors in the plasma [238]: 𝜏𝑠𝑤 ≈ 𝑅∗/𝑈̄ 𝑓 , where the average bubble
separation is given by 𝑅∗ = (8𝜋)1/3𝛽−1𝑀𝑎𝑥(𝑣𝑤, 𝑐𝑠) [239], and 𝑈̄2

𝑓
≈ 3𝜅𝑠𝑤𝛼/[4(1+

𝛼∗)] [238].

Generally both the production mechanism contribute to the GW spectrum. How-
ever, if the bubble walls interacts with the surrounding plasma most of the energy
released in the PT is expected to be transferred to the plasma so that the sound
waves (and possibly the turbulence) contribution dominates the GW spectrum. An
exception to this scenario is provided by models in which the bubble walls do not
interact with the plasma, or by models where the energy released in the PT is large
enough that the friction exerted by the plasma is not enough to stop the walls from
keep accelerating (runaway scenario). However, determining wether or not the run-
away regime is realized is either model dependent or affected by large theoretical
uncertainties. Therefore, we perform two separate of analyses. A sound-wave-only
(SWO) analysis, where we assume that the runaway regime is not reached and that
the sound wave and turbulence contributions dominate the GW spectrum; therefore
we set 𝜅𝜙 = 0, and use the results of reference [240] to derive 𝜅𝑠𝑤 as a function of 𝑣𝑤
and 𝛼∗. A bubble-only (BO) analysis, where we assume that the runaway regime is
reached and that bubble collisions dominate the GW spectrum; we then set 𝑣𝑤 = 1,
𝜅𝑠𝑤 = 0 and 𝜅𝜙 = 1.

We conclude this section emphasizing that, despite recent progress, large theoretical
uncertainties still affect the prediction of the GW signal produced in cosmological
phase transitions. To get an idea of the impact that these uncertainties have on our
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Figure 4.1: In red (blue) the 1-𝜎 (68% posterior credible level), and 2-𝜎 (95%
posterior credible level) contours for the two-dimensional posterior distributions
in the (𝑇∗, 𝛼∗) plane obtained in the BO (SWO). The BO analysis has been per-
formed with the spectral shape computed by using the envelope approximation (left
panel), semi-analytic results (central panel), and numerical results (right panel).
Specifically, we use (𝑎, 𝑏, 𝑐) = (1, 2.61, 1.5) for the semi-analytic results, and
(𝑎, 𝑏, 𝑐) = (0.7, 2.3, 1) for the numerical results.

results we will study how the BO analysis is impacted by them. Similar, if not larger,
uncertainties affect the sound wave contribution and would impact the results of the
SWO analysis.

Assuming that the stress energy density of the expanding bubbles is localized in an
infinitesimally thin shell near the bubble wall (thin shell approximation), and that it
instantaneously decays to zero after two bubbles collide (envelope approximation),
the bubble spectral shape can be derived analytically [241, 228]. The spectral shape
parameters obtained in this way are reported in the left column of Table 4.2. To go
beyond these approximations, 3D lattice simulations are needed. These simulations
are extremely expensive given the hierarchy between the large simulation volume
needed to include multiple bubbles, and the small lattice spacing needed to resolve
the thin walls. Because of the relativistic contraction of the wall width, this sepa-
ration of scales becomes increasingly large for increasing wall velocities, making it
impossible to simulate ultra-relativistic walls. However, the GW spectrum can be
simulated at lower velocities and the results extrapolated to larger values. This is the
approach taken in Refs. [242, 231], where the authors show that at high frequencies
the GW spectrum is much steeper than predicted by the envelope approximation
(𝑏 ∼ 1.4 − 2.3 depending on the form of the scalar field potential). An alternative
approach to the problem has been taken by the authors of Refs. [243, 230]. In these
works a parametric form for the evolution of the scalar field during bubble colli-
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sions is found by using two-bubble simulations. This parametric form is then used
in many-bubble simulations to derive the GW spectrum. They also find a steeper
high frequency slope (𝑏 ∼ 2.6 − 2.9) compared to the prediction of the envelope
approximation. Similar discrepancies are found at low frequencies, where both the
numerical and semi-analytic results find a shallower spectrum compared to the enve-
lope approximation (see Tab. 4.2). To probe the theoretical uncertainty associated
with the bubble contribution, we will carry out three separate BO analyses utilizing
each approach and compare the constraint on the phase transition temperature and
strength.

4.4 Results
We now report our results for the BO and SWO analyses. For either of them we
consider both the case where the only GW signal is the one produced by the PT,
and the one in which the PT signal is superimposed to an astrophysical background
produced by SMBHB. This latter analyses will give an indication of how difficult it
will be to disentangle a signal from a phase transition from the SMBHB background.
The prior distributions for the model parameters of all these analyses, in addition to
other noise characterization parameters, are listed in Table 4.3.

The two parameters that we can constrain the most are the transition temperature,
𝑇∗, and the phase transition strength, 𝛼∗. Their 2D posterior distributions for the PT-
only searches are shown in Fig. 4.1. To assess the impact of theoretical uncertainties
related to the bubble spectrum, for the BO analysis we report the results obtained by
using the three different estimates of the bubble contribution to the GW spectrum
described in the previous section (envelope, semi-analytic, and numerical). We
can see that at the 1-𝜎 (68% posterior credible) level all the searches prefer a
strong PT, 𝛼∗ ≳ 0.1, with low transition temperature, 𝑇∗ ≲ 10𝑀𝑒𝑉 . At 2-𝜎 (95%
posterior credible) level the posteriors for the semi-analytical and numerical results
have support at much higher temperatures, while the envelope results still prefer
relatively low values. The preference for small values of 𝑇∗ at the 1-𝜎 level can be
understood by noticing (see Fig. 4.2) that the data prefer GW spectra that are peaked
at frequencies below the NANOGrav sensitivity window (i.e. 𝑓 0

∗ ≲ 10−9 𝐻𝑧).
And, by setting 𝛽/𝐻∗ = 1 in (4.5), we see that this requirement corresponds to
𝑇∗ ≲ 10𝑀𝑒𝑉 . The low-frequency part of the numerical and semi-analytical GW
spectra is shallow enough that, at the 2-𝜎 level, the data can be fitted also by spectra
with peak frequencies above the NANOGrav sensitivity window. The same is not
true for the envelope results, which have a much steeper low-frequency spectrum;
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Figure 4.2: Maximum likelihood GWB fractional energy-density spectrum for the
BO (red) and SWO (blue) analyses compared with the marginalized posterior for the
free power spectrum (independent per-frequency characterization; red violin plot)
derived in NG12gwb. For the BO analysis we show the results derived by using the
envelope (solid line), semi-analytic (dashed), and numerical (dot-dashed) spectral
shapes. For the BO analyses the values of (𝛼∗, 𝑇∗) for these maximum likelihood
spectra are (0.28, 0.7𝑀𝑒𝑉) for the envelope results, (1.2, 3.4𝑀𝑒𝑉) for the semi-
analytic results, and (0.13, 14.1𝑀𝑒𝑉) for the numerical results. While for the SO
analysis we get (6.0, 0.32𝑀𝑒𝑉).

this is the reason why the 2-𝜎 levels of the envelope results deviate substantially
from the other two.

In Fig. 4.2 we show the GWB spectrum predicted for the maximum likelihood
parameters of PT-only searches. To better illustrate our results, and how the different
parameters and theoretical uncertainties affect the GWB spectrum, we release an
interactive version of Fig. 4.2 at this link.

https://mybinder.org/v2/gh/AMitridate/bokeh/master?urlpath=%2Fproxy%2F5006%2Fbokeh-app
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Parameter Description Prior
White Noise

𝐸𝑘 EFAC per backend/receiver system Uniform [0, 10]
𝑄𝑘 [s] EQUAD per backend/receiver system log-Uniform [−8.5,−5]
𝐽𝑘 [s] ECORR per backend/receiver system log-Uniform [−8.5,−5]

Red Noise

𝐴red red-noise power-law amplitude log-Uniform [−20,−11]
𝛾red red-noise power-law spectral index Uniform [0, 7]

Phase Transition

𝑇∗ [GeV] phase transition temperature log-Uniform [−4, 3]
𝛼∗ phase transition strength log-Uniform [−1.3, 1]
𝐻∗/𝛽 bubble nucleation rate log-Uniform [−2, 0]
𝑣𝑤 bubble wall velocity log-Uniform [−2, 1]

Supermassive Black Bole Binaries (SMBHB)

𝐴GWB common process strain amplitude log-Uniform [−18,−14]
𝛾GWB common process power-law spectral index delta function (𝛾GWB = 13/3)

Table 4.3: Priors distributions for the parameters used in all the analyses in this
work. The prior for the bubble wall velocity reported in this table is the one used
for the SWO analysis, for the BO analyses we use 𝑣𝑤 = 1 as explained in the text.
The white noise parameters are fixed by the single-pulsar analysis. The red noise
parameters are independent for each pulsar while the phase transition and SMBHB
parameters are common across the entire PTA (except for 𝛾GWB, which is fixed to
13/3).

To understand how the inclusion of the SMBHB background affects our results,
in Fig. 4.3 we show the posterior for the parameters 𝛼∗ and 𝐴GWB obtained in the
PT+SMBHB search. As expected, with the inclusion of the SMBHB background,
the posteriors for 𝛼∗ stretch to lower values where most of the signal is provided
by the SMBHB contribution.1 The Bayesian Information Criterion (BIC) [244],
defined to be BIC = 𝑘 ln 𝑛 − 2 ln L̂ where 𝑛 = 5 is the number of data points in
the frequency space, 𝑘 is the number of parameters in the model and L̂ is the
maximum likelihood, is also computed. For the BO searches, the differences in
BIC between the PT+SMBHB and SMBHB only searches are found to be −0.92,
3.04 and 1.89 for the envelope, semi-analytic and numerical results respectively;

1The posterior stops around 𝛼∗ ≃ 0.05 because of choice of the prior, otherwise it woiuld extend
down to 𝛼∗ ∼ 0.
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Figure 4.3: 1-𝜎 (68% posterior credible level), and 2-𝜎 (95% posterior credible
level) contours for the parameters 𝐴GWB and 𝛼∗ in the PT+SMBHB search. In
red (blue) the results for the BO (SWO) analyses. In this figure we have used the
semi-analytic results for the bubble spectrum. The posteriors do not extend to lower
values of 𝛼∗ because of our choice for the 𝛼∗ prior: log-Uniform [−1.3, 1].

similarly the BIC differences between the PT-only and SMBHB-only searches are
−1.82, −3.18, −1.28. For the SWO analysis, the difference in BIC between the
PT+SMBHB and SMBHB only searches is −4.56, while we get −2.19 for the
difference between the PT-only and SMBHB-only searches. We can then conclude
that that the PT+SMBHB and PT-only models were neither strongly favored nor
disfavored compared to the SMBHB only model [245].

A complete set of posteriors for the parameters of the PT-only searches (derived by
using the semi-analytic spectrum for the BO analysis) are shown in Fig. 4.4. As
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noted previously, at 1-𝜎 level the data prefer a strongly first-order phase transition
(𝛼∗ ≳ 0.1) taking place at temperature 𝑇∗ ≲ 10𝑀𝑒𝑉 ; while no strong constraints
on 𝑣𝑤 or 𝐻∗/𝛽 is observed. We can also notice that the higher values of 𝑇∗ allowed
in the 2-𝜎 region are accompanied by slower nucleation rates (large 𝐻∗/𝛽). We
should caution, however, that numerical simulation have been performed for phase
transition strengths up to 𝛼∗ ∼ 0.5 [246], and that our results for 𝛼∗ ≳ 0.5 are derived
by extrapolating the results of these simulations. A similar remark should be made
for 𝐻∗/𝛽, numerical simulations with values of this parameter close to unity have
not been performed yet.

Given the low value of 𝑇∗, and the strong constraints on new physics at such low
scales, we expect the phase transition to take place in a dark sector with only feeble
interactions with the Standard Model (SM). In order to be consistent with the Hubble
parameter constraints during the era of Big Bang Nucleosynthesis (BBN) [247], the
energy of this dark sector must be transferred to the SM before the onset of BBN at
𝑇 ∼ 1𝑀𝑒𝑉 . This leaves an allowed range of values for the transition temperature
given by 𝑇∗ ∼ 1𝑀𝑒𝑉 − 100 GeV. The next data release, which adds multiple years
of observations and extends the the sensitivity window to lower frequency, should
begin to resolve the peak of the spectrum or additionally shrink the range of allowed
values for 𝑇∗.

4.5 Conclusions
We performed a search for a stochastic gravitational wave background from first-
order phase transitions in the 12.5 year NANOGrav dataset. While previous
NANOGrav analysis found no evidence yet for the inter-pulsar correlation sig-
nature of a GWB, the evidence for a common-spectrum process was significant.
We found that the data can be modeled by a strong (𝛼∗ > 0.1) phase transition
taking place at temperatures below the electroweak scale. However, the data do not
show any strong preference between an SMBHB and a PT generated signal, but we
expect to gain additional discriminating power with future datasets, improving the
signal to noise ratio and extending the sensitivity window to lower frequencies. In
particular, data from the International Pulsar Timing Array will allow the baseline
of observations to be significantly extended, and the number of monitored pulsars to
be greatly expanded. The present quality of the data is such that our results are not
strongly affected by theoretical uncertainties on the GW spectral shape. However,
methodological improvements on determining the origin of the GWB spectrum will
be needed for future datasets in order to separate the signal from a first-order PT
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Figure 4.4: Corner plot showing the 1D and 2D posterior distributions for the
parameters of the PT-only search. In red (blue) the results for the BO (SWO)
analyses. In deriving these results we have used the semi-analytic bubble spectral
shape with (𝑎, 𝑏, 𝑐) = (1, 2.61, 1.5).

from the SMBHB background, as well as to constrain the microscopic origins of the
PT.

4.6 Facilities and Software Used in the Analysis
Facilities Arecibo, GBT

Software — ENTERPRISE [248], enterprise_extensions [172], HASASIA [249],
libstempo [250], matplotlib [251], PTMCMC [252], tempo [253], tempo2 [254],
PINT [255]
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C h a p t e r 5

OBSERVATIONS OF A LONG-RANGE DARK
MATTER-BARYON INTERACTION USING NEUTRON STAR

KINETIC HEATING AND PULSAR TIMING ARRAYS

This chapter is based on

[1] Moira I. Gresham, Vincent S. H. Lee, and Kathryn M. Zurek. “Astrophysical
observations of a dark matter-Baryon fifth force”. In: JCAP 02 (2023),
p. 048. doi: 10.1088/1475-7516/2023/02/048. arXiv: 2209.03963
[astro-ph.HE].

5.1 Introduction
A long-range fifth force between baryonic matter has long been the focus of both
theoretical and experimental inquiry, as reviewed in Ref. [256]. If DM also interacts
with baryons via an attractive fifth force, it induces a potential,

𝑉Yuk(𝑟) = −𝛼̃𝐺𝑀𝑚𝑋

𝑟
𝑒−𝑟/𝜆, (5.1)

where 𝑚𝑋 and 𝑀 are the masses of the DM and a macroscopic baryonic object,
respectively, when the sizes of both objects are much smaller than the force range,
𝜆, and separation, 𝑟. This potential can arise from an effective interaction L ⊃
𝑔𝑋𝜙𝑋̄𝑋 + 𝑔𝑛𝜙𝑛̄𝑛 where 𝑋 and 𝑛 are the effective DM and nucleon fields, and 𝜙 can
be either a massive but very light scalar or vector field. The effective coupling in
this simplified model is

𝛼̃ ≈ 𝑔𝑛𝑔𝑋

4𝜋𝐺𝑚𝑛𝑚𝑋

, (5.2)

where the approximation holds well when the fifth force and gravitational binding
energies are subdominant contributors to the mass, 𝑀 . Here we have in mind that
𝑚𝑋 could be the mass of a DM particle, or a macroscopic DM object such as a
nugget of asymmetric DM [257, 258, 259, 260, 261, 262, 263, 264].

The goal of this paper is to consider the astrophysical observables of such a
DM-baryon fifth force 1, focusing on a few simple tests that constrain such an
interaction. Focusing on astrophysical tests implies that we are interested in
force ranges 20 km ≪ 𝜆 ≪ kpc, corresponding to (ultralight) mediator masses

1A recent work on long-range DM-baryon fifth force with a different set-up can be found in [265].

https://doi.org/10.1088/1475-7516/2023/02/048
https://arxiv.org/abs/2209.03963
https://arxiv.org/abs/2209.03963
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10−11 eV ≫ 𝑚𝜙 ≫ 10−26 eV.2 Firstly, one must consider the constraints separately
on 𝑔𝑛 and 𝑔𝑋 , which are dominated by the MICROSOPE mission’s weak equivalence
principle (WEP) test [266, 267] and DM self-interactions [78, 79, 268], respectively.
Combining these constraints allows one to derive a bound on 𝛼̃, shown in Fig. 5.1
as “bullet cluster + WEP” for two different astrophysical force ranges. Note, impor-
tantly, that this combination of bounds will lift quickly for a DM sub-component,
only weakly constrained by observations of DM halos.

The majority of this paper will focus on a pair of constraints that weaken only linearly
with the DM density for a DM sub-component. These come from heating of neutron
stars (NSs) from DM capture, and pulsar timing measurements of transiting DM
clumps, where DM passing near pulsars enhance the Doppler effect on the pulsar
frequencies [269, 270, 151, 271, 272, 273, 274, 103, 43, 42, 9, 10]. These two
constraints on the DM-baryon fifth force, which we derive in detail below, are
summarized in Fig. 5.1, labeled as “heating” and “PTA.” The heating constraints
are further shown for two different limits: first, where the DM interactions beyond
gravity are only via the fifth force (labeled as “tidal”), and, second, where the DM
has not only the fifth force to focus it onto the NS but also a short range interaction
to capture it with high efficiency (labeled as “maximal”). In Fig. 5.1 we also show
constraints from microlensing surveys, which rule out DM with 𝑀 > 10−11 𝑀⊙

and radii less than ∼ 0.1 solar radius [147]. This is relevant for our kinetic heating
analysis, since we assume that each DM is smaller than the size of a typical NS. The
PTA constraints, however, are unaffected by the microlensing bounds, since the PTA
analysis only assumes DM to be smaller than the impact parameter relative to the
NS, which are at least 𝑏 > 2.5 × 104 solar radii for 𝑀 > 10−11 𝑀⊙ (cf. Eq. (5.41)),
and thus cannot be effectively constrained by microlensing studies.

Heating of NSs via DM capture has been considered previously for the case of a
short-range interaction, such as for WIMPs and hidden sector DM [275, 276, 277,
278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 286, 288, 289, 290, 291, 292,
293, 294]. However, when the force range is longer than a typical NS diameter,
𝜆 > 20 km (𝑚𝜙 < 10−11 eV), a DM-baryon force accelerates and focusses DM
more than through gravity alone, leading to observable effects via two different
mechanisms which we compute in detail. First, more DM is focussed on the NS
due to the fifth force. Second, the DM is more energetic when it arrives at the
NS surface, which we show then dominantly heats the NS via seismic oscillations.

2Above the kpc scale, torsion balance tests of differential accelerations toward the galactic center
limit the baryon-DM force to be weaker than gravity. The lower limit is set by neutron star diameters.
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We then extract the heating constraints utilizing the coldest observed NS (PSR
J2144-3933, from Hubble Space Telescope) by requiring that the kinetic energy
of all the captured DM raise the temperature by an amount less than the observed
(unredshifted surface) temperature, 𝑇𝑠 < 42, 000 K [295].

The rest of the paper is devoted to deriving in detail the constraints on the DM-baryon
fifth force coupling 𝛼̃ outlined in Fig. 5.1. In Sec. 5.2, we derive the kinetic heating
rate and resulting NS luminosity in the presence of a fifth force interaction. Some
of the details are relegated to Appendices. In Sec. 5.3, we outline the procedure
for deriving fifth force constraints with PTA observations, and show the results
using the 11-year dataset [296, 297] by NANOGrav [298]. In Sec. 5.4, we consider
observations from WEP tests and the bullet cluster, and derive indirect upper limits
on the DM-baryon interaction. Finally, in Sec. 5.5, we conclude.

5.2 Limits from NS Temperature Observations
Transiting DM can heat NSs to higher-than-expected temperatures observable by the
next generation of infrared telescopes, including the James Webb Space Telescope
(JWST) [275]. As discussed in [275], if the energy deposited by DM passing near
a NS is dissipated through black-body radiation, then in the local rest frame of the
NS, the thermal photon luminosity due to dark kinetic heating is 𝐿DM

𝛾 = ¤𝐸kin. Given
an unredshifted surface temperature measurement 𝑇s,𝑖 ≤ 𝑇s,𝑖

meas
max for a particular NS,

𝑖, with radius, 𝑅, we can infer a limit on the factors contributing to ¤𝐸kin through3

¤𝐸kin < 𝜎B4𝜋𝑅2 (
𝑇s,𝑖

meas
max

)4
, (5.3)

where the heating rate is schematically given by

¤𝐸kin ≈ ¤𝑁Δ𝐸, (5.4)

with ¤𝑁 and Δ𝐸 being the relevant DM flux and single-DM energy transfer, respec-
tively.

All previous analyses of DM kinetic heating of NSs have focused on short-range
DM interactions. As explained in [275], in this case, DM can deposit energy on
a NS only if it intersects the NS, requiring impact parameters less than 𝑏

grav
max =

𝑣−1
√︁

2𝐺𝑀𝑅/(1 − 2𝐺𝑀/𝑅). At a maximum, an order one fraction of DM that
intersects the NS is captured and deposits all of its kinetic energy at the NS surface,

3Redshifted surface temperature, 𝑇∞, is related to unredshifted temperature, 𝑇 , through 𝑇 =
𝑇∞√︃

1− 2𝐺𝑀
𝑅

.
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Figure 5.1: Summary of the bounds derived in this paper on the DM-baryon fifth
force to gravitational force strength ratio, 𝛼̃, as defined in Eq. 5.1, for force ranges,
𝜆, at the two extremes of the range we consider. The relevant equations for tidal
heating, maximal heating, PTA, and bullet cluster +WEP are derived in Sec. 5.2-5.2,
Sec. 5.2, Sec. 5.3, and Sec. 5.4 respectively. Bound from microlensing surveys is
shown in a gray line, which apply to compact DM with radii less than ∼ 0.1 solar
radius [147].

also known as the gravitational binding energy released in the capture process.
Hence Δ𝐸grav

max ≈ 𝐺𝑀𝑚𝑋/𝑅 and ¤𝑁grav
max ≈ (𝜌𝑋/𝑚𝑋)𝜋⟨𝑏2

max𝑣⟩, leading to a maximum
heating rate from DM focused by gravity onto typical NSs near our galactic radius
(𝐺𝑀/𝑅 ∼ 0.2, ⟨𝑣⟩ ∼ 10−3, 𝜌𝑋 ∼ 0.4 GeV/ cm3),

¤𝐸grav
kin, max ≈ 𝐺𝑀𝑚𝑋

𝑅
𝜋
𝜌𝑋

𝑚𝑋

⟨
(
𝑏

grav
max

)2
𝑣⟩ ≈ 4𝜋𝑅2𝜎B(2000K)4. (5.5)

Therefore measured (unredshifted) surface temperatures of nearby NSs below about
2000K can start to constrain short-range interactions of DM with NS matter.
Conversely, finding several old isolated neutron stars with temperatures of order
2000K and greater near our Galactic radius—with higher temperatures in DM-rich
regions—could be a sign of DM kinetic heating.
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We now consider a long-range (> 20 km) fifth force, which changes the heating rate
calculation, Eq. (5.4), in three ways. First, more DM is focussed and potentially
captured by the NS (larger 𝑏max).4 Second, the DM’s kinetic energy near the NS
surface—roughly equivalent to the DM-NS binding energy—is larger, meaning
more energy is dissipated in a DM capture process (larger Δ𝐸).5 Third, the energy
deposition mechanism is qualitatively different due both to the long-range force and
ultrarelativistic DM speeds at the NS surface; collective excitations of NS matter
are particularly important.

We divide DM contributing to heating into two groups:

A. Grazing DM, including NS-transiting DM that is not gravitationally captured,
as well as gravitationally bound DM whose first orbital period after capture is
greater than the NS lifetime, implying no subsequent energy deposits within
the NS’s lifetime.

B. Captured DM, which deposits sufficient energy to become gravitationally
bound on its first transit and deposits further energy on subsequent transits
within the NS lifespan.

The total heating rate for a long-range interaction is thus

¤𝐸kin ≈ ¤𝐸graze + ¤𝐸cap (5.6)

with ¤𝐸graze ≈ ¤𝑁grazeΔ𝐸graze and ¤𝐸cap ≈ ¤𝑁capΔ𝐸cap. Below in Secs. 5.2-5.2, we derive
explicit estimates of Δ𝐸graze, ¤𝑁graze, Δ𝐸cap, and ¤𝑁cap in Eqs. 5.7, 5.12, 5.16, and
5.19, respectively. Then in Sec. 5.2 we discuss the maximal heating rate, analogous
to Eq. 5.5, requiring assistance by additional short-range forces. In Sec. 5.2 we
estimate when heating is effectively continuous and possibly destructive to the NS,
which is relevant at the higher mass scales we consider. Finally, in Sec. 5.2, we
present limits based on our estimates and Eq. 5.3.

Grazing heating rate
Δ𝐸graze

Two stars in a close encounter can become bound by sinking energy and angular
momentum into seismic oscillations of the stars through gravitational tidal forces

4A repulsive interaction would defocus DM and reduce the maximum possible kinetic heating
rate. Here we focus on the attractive case.

5Similar effects on Earth could be relevant for direct detection, and were discussed in [299, 300].
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[301, 302]. Pani and Loeb [303] considered a similar capture mechanism for
primordial black holes (PBHs) by NSs. They modeled PBHs as point-like objects
that remain intact as they transit the NS, and found that tidally deposited energy
exceeds energy deposit through dynamical friction by several orders of magnitude.
A small, compact DM object should behave similarly, and an additional Yukawa
force with range much larger than the NS radius will simply effectively increase the
strength of the gravitational tidal forces by a factor 1 + 𝛼̃.

Based on [303], we estimate the energy deposited through tidal excitation of NS
seismic oscillations by DM that transits an NS as

Δ𝐸graze ≈
𝐺𝑚2

𝑋
(1 + 𝛼̃)2

𝑅
4
√︁
𝑙max (5.7)

where 𝑙max corresponds to the largest spherical seismic mode excited in the NS.
Qualitatively, thinking of the NS like a spring, the energy goes as the square of
the amplitude of the oscillation, which is set by the maximum tidal force at close
approach—proportional to (1 + 𝛼̃)𝑚𝑋 . The stiffness of the NS equation of state
determines the nontrivial dependence on mode number. We refer the reader to [303]
for details.

Ref. [303] considers many possible cutoffs for 𝑙max. The limiting cutoffs come from
demanding the particle size, 𝑅𝑋 , is smaller than the mode’s wavelength, leading to
𝑙max < 𝑅/𝑅𝑋 , and that the DM crossing time, 𝜏cross ∼ 𝑅/𝛽𝑅 ∼ 𝑅, is short compared
to the shear viscosity oscillation damping timescale [304],

𝜏𝜂 ≈
𝜌𝑅2/𝜂

(𝑙 − 1) (2𝑙 + 1) , (5.8)

where 𝜂 is the shear viscosity, and 𝜌 is the mass density of the NS. For cold NSs
with 𝑇 < 108K, in which neutrons and protons are expected to be superfluid (at
least outside the inner core of the NS, where the tidally-induced oscillations are
supported) the dominant source of viscosity is from electron scattering, 𝜂𝑒 [305].
To within an order of magnitude, for a given temperature, the maximal value of
𝜂𝑒/𝜌 occurs around 𝜌 ∼ 1010–4 × 1014 g

cm3 , and is [306, 307](
𝜂𝑒

𝜌

)
max

≈
(
𝑇

108K

)−2
104cm2/sec, (5.9)

leading to an estimate

𝑙max ∼ min
(
102

(
𝑇

104K

)
,
𝑅

𝑅𝑋

)
(5.10)
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for DM that is relativistic (and ultrarelativistic) at the NS surface, with the consis-
tency requirement, 𝑙max > 1. For simplicity and consistency, we consider only DM
and NSs with

𝑅𝑋

𝑅
< 10−2 104K

𝑇
< 1 and 𝑇 < 108K (5.11)

such that the shear viscosity timescale determines the highest excited mode num-
ber. For maximally compact (i.e. 𝐺𝑚𝑋

𝑅
∼ 1/2) DM objects, this requires 𝑚𝑋 ≲

10−2 104K
𝑇
𝑀⊙ < 𝑀⊙. The cutoff occurs at lower mass for less compact DM.

A few other factors deserve mention. First, our estimate based on [303] is consistent
only if both the DM and NS survive the DM’s transit. For DM to survive, the Roche
distance—where the tidal forces on the DM from the NS start to exceed the binding
forces—must be smaller than the NS radius. Depending on the forces binding the
DM, the DM must be sufficiently compact.6 Energy deposits comparable to a few
percent of the NS’s gravitational binding energy could also destroy the NS. We
discuss this case further in Secs. 5.2 and 5.2.

Second, the estimate Eq. 5.7 is based on analyzing a particle’s infall from rest.
But as discussed in [303], it should be a decent estimate for particles with other
trajectories as long as they breach or come close to breaching the NS surface. On the
other hand, at distances, 𝑟, large compared to 𝑅, the tidal force falls off as 𝑟−3 and
effective crossing times lengthen when 𝑟min ≫ 𝑅. Indeed estimates of gravitational
tidal capture for close star encounters as in [301] apply in this case, and the moral
is that a good estimate of heating and capture comes from counting only DM that
intersects the NS, with Δ𝐸graze as in Eqs. 5.7 and 5.10 for all such DM.

¤𝑁graze

The number of DM particles of mass 𝑚𝑋 and asymptotic mass density 𝜌𝑋 passing
through a given NS per time—the flux—is

¤𝑁graze =
𝜌𝑋

𝑚𝑋

𝜋⟨𝑏2
max𝑣⟩. (5.12)

Given focusing through gravity alone, ¤𝑁graze ∼ 10−24

yr
𝜌𝑋

0.4 GeV/ cm3

〈
10−3

𝑣

〉
𝑀⊙
𝑚𝑋

𝑅
10 km

𝐺𝑀
2 km .

An attractive DM-NS fifth force focuses more DM onto a NS, leading to a signifi-
cantly larger flux via larger 𝑏max. For moderate 𝛼̃ and 𝜆 ≫ 𝑅, compared to focusing

6Modeling the DM binding force per mass as proportional to ( 𝛼̃𝜒,eff+1)𝐺𝑚𝑋

𝑅2
𝑋

on the DM surface,

given 𝑅𝑋 ≪ 𝑅, the Roche distance is approximately 𝑟Roche ∼
(
4 (1+𝛼̃)𝑀
(1+𝛼̃𝜒,eff )𝑚𝑋

)1/3
𝑅𝑋, and in terms of

the DM and NS compactnesses, the DM can survive only if 𝐺𝑚𝑋

𝑅𝑋
> 4 (1+𝛼̃)

(1+𝛼̃𝜒,eff )
𝐺𝑀
𝑅

(
𝑅𝑋

𝑅

)2
.
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through gravity alone, 𝑏max is larger by a factor
√

1 + 𝛼̃. When 𝛼̃ ≫ 1, 𝑏max grows
linearly with 𝛼̃ until a cutoff where an outer centrifugal barrier at 𝑟 > 𝜆 from the
exponential turn-on of the fifth force becomes stronger than the always-present inner
centrifugal barrier. More specifically, when 𝛼̃ ≫ 1,

𝑏max𝑣 ∼
{ 𝐺𝑀𝛼̃ inner barrier√︁

2𝐺𝑀𝜆 log (𝛼̃ log 𝛼̃) outer barrier when 𝛼̃𝑒−𝐺𝑀/𝜆𝑣2
< 1

𝜆𝑣 log
(
𝛼̃𝐺𝑀

𝜆𝑣2

)
outer barrier otherwise,

(5.13)

with 𝑏max = min(𝑏max, 𝑖𝑛𝑛𝑒𝑟 , 𝑏max, 𝑜𝑢𝑡𝑒𝑟) if 𝛼̃𝐺𝑀/𝜆𝑣2 ≳ 𝑒 and 𝑏max = 𝑏max, 𝑖𝑛𝑛𝑒𝑟

otherwise. In Appendix D, we derive the general relativistic equation of motion that
determines 𝑏max in Eqs. D.2-D.5 along with analytic approximations in Eqs. D.6-
D.8; Fig. D.2 shows our analytic approximations alongside numerical solutions to
the exact barrier-determining expressions.

Captured heating rate
Δ𝐸cap

The energy deposited per DM particle captured is approximately the DM kinetic
energy at the NS surface,

𝐸DM, kin(𝑅) ≈ 𝑚𝑋 (𝛾𝑅 − 1). (5.14)

with

𝛾𝑅 =

1√
1−𝑣2 + 𝛼̃

𝐺𝑀
𝑅
𝑒−𝑅/𝜆√︃

1 − 2𝐺𝑀
𝑅

≈
1 + 𝐺𝑀

𝑅
𝛼̃𝑒−𝑅/𝜆√︃

1 − 2𝐺𝑀
𝑅

≈ 1 + 𝐺𝑀
𝑅

(
1 + 𝛼̃𝑒−𝑅/𝜆

)
(5.15)

as measured in a locally flat frame at the NS surface. Since DM asymptotic speeds,
𝑣, are generally much less than the escape speed at the NS surface, the energy
deposit is essentially independent of 𝑣. Without a fifth force, 𝛾𝑅 is given by
Eq. (5.15) but with 𝛼̃ = 0, which for typical neutron stars and DM with 𝑣 ≪ 1, is
𝛾𝑅 ∼ (1 − 2𝐺𝑀

𝑅
)−1/2 ∼

√︁
5/3. With a fifth force, 𝛾𝑅 − 1 is larger by about a factor

of 1 + 𝛼̃𝑒−𝑅/𝜆.

If the period of the first orbit after capture, Δ𝑡1, is greater than NS lifetime, then
the DM deposits only energy Δ𝐸graze within the NS lifetime. Hence, we cannot
simply use the expression for 𝐸DM, kin(𝑅) in Eq. (5.14) for Δ𝐸cap. Instead, we use
an empirical formula for Δ𝐸cap to smoothly interpolate between different limits of
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Δ𝑡1/𝑡NS, written as

Δ𝐸cap ≈
(

Δ𝐸graze

𝐸DM, kin(𝑅)

)Δ𝑡1/𝑡NS

𝐸DM, kin(𝑅) (whenΔ𝐸graze ≪ 𝐸DM, kin(𝑅)) .
(5.16)

We now justify this expression. If Δ𝑡1 ≫ 𝑡NS, then DM would not have enough time
to deposit energy into NS, and we expect Δ𝐸cap → 0. In the opposite limit where
Δ𝑡1 ≪ 𝑡NS, DM has ample time to transfer all its energy and be completely captured
by the NS, hence one expects Δ𝐸cap = 𝐸DM, kin(𝑅). Finally, if Δ𝑡1 ∼ 𝑡NS, then we
expect DM to deposit some but not all of its kinetic energy to the NS, since the
DM is not fully captured by NS. Effectively, the DM grazes the NS once. It is thus
appropriate to approximate Δ𝐸cap ∼ Δ𝐸graze in this scenario. One can easily check
that the empirical formula in Eq. (5.16) is a smooth function that reduces to these
three limits. In the case where Δ𝑡1 ≳ 𝑡NS, the DM is counted as “grazing” DM.7 We
estimate the orbital period in Appendix E; see Δ𝑡1 in Eqs. (E.4)-(E.5).

Using Eqs. 5.7, 5.10, 5.14, and 5.15, we see Δ𝐸graze < 𝐸DM, kin(𝑅) as long as
𝑚𝑋

𝑀
(1 + 𝛼̃)40

√︃
𝑇

104K < 1. The condition saturates when Δ𝐸graze ≈ 𝐸DM, kin(𝑅) ≈√︃
104K
𝑇

1
40
𝐺𝑀2

𝑅
, or when the energy deposit is about 10% of the NS binding energy

(∼ 3
5
𝐺𝑀2

𝑅
) given 𝑇 ∼ 42, 000K. We expect such an energy deposit to destroy

the NS rather than “heat” it, as we will discuss further in Sec. 5.2. Therefore
Δ𝐸graze < 𝐸DM, kin(𝑅) holds as long as the kinetic heating limit is relevant.

¤𝑁cap

To become gravitationally bound to the NS, DM must lose sufficient energy when it
first grazes the NS surface. Thus the capture rate is approximately

¤𝑁cap ≈ 𝜌𝑋

𝑚𝑋

𝜋⟨𝑏2
max𝑣⟩𝑣<𝑣cap , (5.17)

where the average is over asymptotic DM speeds up to a the maximum speed of DM
that is captured:

𝑣cap =

√︃
2Δ𝐸graze/𝑚𝑋 . (5.18)

Given a Maxwellian velocity distribution with peak speed 𝑣𝑝, since (𝑏max𝑣) is nearly
constant as function of 𝑣—increasing negligibly for most or our parameter range of

7Note the first energy deposit of captured DM is double counted in ¤𝐸graze and ¤𝐸cap, which is
acceptable for an order-of-magnitude estimate since it will at most overestimate the heating effect by
a factor of two, and in most cases by a only a tiny fraction over one.
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interest and less than linearly in the entire range—to reasonable approximation,

¤𝑁cap ≈ 𝜌𝑋

𝑚𝑋

𝜋(𝑏max𝑣)2 |𝑣→min(𝑣𝑝 ,𝑣cap)
2

√
𝜋𝑣𝑝

𝑓 (5.19)

where
𝑓 ≈

(
1 − 𝑒−𝑣2

cap/𝑣2
𝑝

)
(5.20)

roughly represents the fraction of surface-breaching DM that is captured. We can
also use Eq. (5.19) to estimate ¤𝑁graze by taking 𝑣cap → 1.

Capture assisted by short-range interactions
We have just described a capture mechanism through DM’s tidal force excitation
of seismic oscillations in an NS—classical collective modes stretching over the
entire NS. In contrast, most previous treatments of kinetic heating have focussed on
effectively local interactions of DM with one or more individual nucleons or leptons
within the NS during a transit [275, 276, 277, 278, 279, 280, 281, 282, 283, 284,
285, 286, 287, 286, 288, 289, 290, 291, 292, 293, 294]. A notable exception is
[308], which focuses specifically on collective effects within dense stellar media in
DM scattering.

Relative to the case without a fifth force, when the fifth force increases DM’s speeds
in the NS rest frame (c.f. Eq. 5.15), the kinematic upper limit on energy transfer to
nucleons in elastic DM-nucleon interactions also increases. At the same time, length
contraction of the NS in the DM-nucleon CM frame can be significant, so it is easier
for the de Broglie wavelength of the CM motion (𝑞−1 ∼ 1/

√︁
2𝑚𝑛Δ𝐸graze) to be larger

than the inter-nucleon distance along the direction of motion in the CM frame. Thus
while the increased CM energy might naively increase nucleon-DM elastic cross
sections, the range of kinematically allowed energies where nucleons are effectively
free is also narrower. When the DM is ultrarelativistic at the NS surface, we expect
proper treatment of collective effects in NS matter to be particularly important in a
treatment of DM scattering via short-range forces.

Rather than trying to model specific short-range interactions and account for the
relevant microscopic NS physics that determines the probability of capture, we
consider maximal heating, where an order one fraction of transiting DM is captured.
In this case,

¤𝐸kin, max ≈ 𝐸DM, kin(𝑅) ¤𝑁graze (5.21)

with 𝐸DM, kin(𝑅) given by Eq. 5.14 and ¤𝑁graze by Eq. 5.12.
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Cooling timescale and continuous heating approximation
NSs are born with internal temperatures of order 1011 K and rapidly cool through
neutrino and photon emission to under 107 K within about 1000 years. Without
additional sources of heating, NSs are expected to cool to under 1000 K within about
20 Myr (see e.g. [309, 310]). Under temperatures of order 106 K, photon emission
dominates, and nucleons in at least the inner crust and outer core of such cold stars
are thought to be superfluid. The heat capacity (per unit volume) of such very cold
NS’s is dominated by ultrarelativistic, degenerate electrons, and is given by [311]

𝑐𝑉,𝑒 ≈
𝑝2

F𝑒𝑘
2
B𝑇

3
=

(3𝜋2𝑛𝑒)2/3𝑘2
B𝑇

3
. (5.22)

Given heating only through DM kinetic heating, and black-body-radiation-dominated
cooling, the NS temperature evolves in time according to

𝐶𝑉
𝑑𝑇

𝑑𝑡
= ¤𝐸kin − 4𝜋𝑅2𝜎𝐵𝑇

4. (5.23)

Without a heat source, using the relations above and approximating the NS as roughly
uniform temperature throughout, we approximate the timescale to cool from a higher
temperature 𝑇ℎ to a lower temperature of order 𝑇𝑙 below 106K as

𝑡c(𝑇𝑙) ∼
𝑅(3𝜋2𝑛𝑒)2/3𝑘2

B

18𝜎𝐵𝑇2
𝑙

(
1 −

(
𝑇𝑙

𝑇ℎ

)2
)
∼ 104 yr

(
104K
𝑇𝑙

)2 (
1 −

(
𝑇𝑙

𝑇ℎ

)2
)

(5.24)

where we set the electron density to a typical value in the NS outer core, 𝑛𝑒 ∼
0.01fm−3. To set a kinetic heating limit based on a maximum temperature, 𝑇 , we
require a deposit rate (flux) comparable to or greater than one per cooling time,
¤𝑁 ≳ 1/𝑡𝑐 (𝑇).

Going the other way, the temperature, 𝑇ℎ, to which a NS is heated from temperature
𝑇𝑙 through an energy deposit Δ𝐸 is given by

Δ𝐸 =

∫
𝐶𝑉𝑑𝑇 ∼ 4𝜋𝑅3

3
(3𝜋2𝑛𝑒)2/3𝑘2

B
6

(𝑇2
ℎ −𝑇

2
𝑙 ) ∼ 5×10−14𝐺𝑀

2

𝑅

𝑇2
ℎ
− 𝑇2

𝑙

(106K)2 (5.25)

where the last expressions apply when both temperatures are below 106 K. The
heat capacity rises by a factor of 20 or so at higher temperatures, and we can see
that Δ𝐸 ≳ 10−2𝐺𝑀2

𝑅
, approaching the gravitational binding energy of a NS, roughly

heats a NS back above its temperature at birth (∼ 1011 K). We expect a single energy
deposit of order 10−2𝐺𝑀2

𝑅
or greater to destroy a NS. So the mere existence of a cold
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NS of age 𝑡NS > ¤𝑁−1
cap limits

Δ𝐸graze

10−2𝐺𝑀2/𝑅
∼ 104

(𝑚𝑋

𝑀

)2
(1+𝛼̃)2

√︂
𝑇

4.2kK
<
𝐸DM, kin(𝑅)

10−2𝐺𝑀2/𝑅
∼ 102𝑚𝑋

𝑀
(1+𝛼̃) < 1.

(5.26)

Limits
Here we present limits based on Eq. 5.3 for the coldest presently known NS [295],
a slow, isolated pulsar located about 170 pc from Earth, with the observation upper
limit on temperature 𝑇s,𝑖

meas
max = 42, 000 K and age 𝑡NS = 0.3 Gyr. Without additional

sources of heating, this NS should have cooled to temperatures below 1000 K
within the first 10% of its life. Here we emphasize that the value𝑇s,𝑖

meas
max = 42, 000 K

is an upper limit based on telescope observations, and is expected to tighten as
observational techniques improve. The four panels in Fig. 5.2 show limits for four
different force ranges, 𝜆, spanning our range of interest. The thick black tidal
heating limit lines result from our estimate of ¤𝐸kin in Eq. 5.6, as described in
Secs. 5.2-5.2. The thick red maximal kinetic heating line results when an order
one fraction of NS-transiting DM deposit their entire available energy over a NS
lifetime, with a heating rate as in Eq. 5.21, requiring assistance from short-range
forces as described in Sec. 5.2. We employed our analytic estimate of the impact
parameter in Eqs. D.6-D.8 to calculate the relevant fluxes (Eqs. 5.12 and 5.19), and
the limits assume asymptotic DM density 𝜌𝑋 = 0.4 GeV/ cm3, a Maxwellian speed
distribution peaked at 𝑣𝑝 ∼ 10−3, and typical NS parameters 𝐺𝑀

𝑅
≈ 0.2, 𝑅 ≈ 10 km.

Below we explain the scaling of the limits, starting with the high-mass behavior and
working to lower masses.

To set a limit based on Eq. 5.3 for a given maximum NS temperature 𝑇 , we require
the frequency of energy deposit events, ¤𝑁 , to be comparable to or greater than the
inverse cooling timescale, 1/𝑡c(𝑇), in Eq. 5.24. This requirement determines the
high-mass cut-off for the limit, shown by the thin purple “flux <1/(cooling time)”
lines in Fig. 5.2. Using Eq. 5.12, and assuming a Maxwellian speed distribution
with peak speed 𝑣𝑝, the high-mass limit reads,

¤𝑁graze𝑡c ∼ 6 × 10−22
(

𝑡𝑐

500 𝑦𝑟

) (
𝑅

10 𝑘𝑚

)2 (
10−3

𝑣𝑝

) (
𝑀⊙
𝑚𝑋

) ( (𝑏max𝑣) |𝑣𝑝
𝑅

)2

< 1.

(5.27)

where fiducial quantities in the parentheses are used to obtain our Fig. 5.2 and we
have taken here (and throughout) 𝜌𝑋 = 0.4 GeV/cm3. Note that 𝑡𝑐 (𝑇𝑙 = 42 𝑘𝐾) ∼
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500 years according to Eq. 5.24. Here, 𝑏max is given in Eqs. D.6-D.8 and Fig. D.2,
and its scaling with 𝛼̃ depends on whether it is determined by the inner or outer
barrier, as indicated by the brown horizontal dashed lines in the figure.8 Eq. 5.13
gives the scaling of 𝑏max in various regimes.

The grazing and capture fluxes are approximately equal at the highest constrained

masses, where 𝑣cap ∼ 5(1 + 𝛼̃)
(
𝑚𝑋

𝑀⊙

)1/2 (
𝑇

42 𝑘𝐾
)1/4

(
10 𝑘𝑚
𝑅

)1/2
≳ 𝑣𝑝 (see Eqs. 5.7,

5.10, and 5.18). The tidal heating limit curves break away from the ¤𝑁graze = 1/𝑡c
curves where 𝑣cap < 𝑣𝑝, below the dashed blue lines in Fig. 5.2. When 𝑣cap < 𝑣𝑝,
the flux-limited limit follows

¤𝑁cap𝑡c

∼ 10−14(1 + 𝛼̃)2
(

𝑡𝑐

500 𝑦𝑟

) (
𝑅

10 𝑘𝑚

) (
𝑇

42 𝑘𝐾

)1/2 (
10−3

𝑣𝑝

)3 ( (𝑏max𝑣) |𝑣cap

𝑅

)2

< 1 .

(5.28)

For lower masses, the limit applies in parameter regions with continuous heating,
and when ¤𝐸cap ≫ ¤𝐸graze (see Eqs. 5.6, 5.7, 5.12, 5.16, and 5.19), the limit reads

¤𝐸cap

𝐿◦

∼ 2 × 102(1 + 𝛼̃)3
(

𝑀

1.4𝑀⊙

) (
𝑇

42 𝑘𝐾

)1/2 (
10 𝑘𝑚
𝑅

)2 (
10−3

𝑣𝑝

)3 (
𝑚𝑋

𝑀⊙

) ( (𝑏max𝑣) |𝑣cap

𝑅

)2

<

(
𝑇s,𝑖

meas
max

42kK

)4
, (5.29)

where 𝐿◦ = 4𝜋𝑅2𝜎𝐵 (42kK)4, and the scaling of (𝑏max𝑣) |𝑣cap with 𝛼̃ again depends
on whether the outer or inner barrier determines 𝑏max. For Fig. 5.2, the relevant rela-
tionships are 𝑏max𝑣 ∼ 𝐺𝑀𝛼̃ for the inner barrier and 𝑏max𝑣 ∼

√︁
2𝐺𝑀𝜆 log(𝛼̃ log 𝛼̃)

for the outer.

The thin green “period > NS age” lines in Fig. 5.2 are the contours Δ𝑡1 = 𝑡NS

with Δ𝑡1 as in Eq. E.6. Heating from captured DM goes to zero when Δ𝑡1 > 𝑡NS

(c.f. Eq. 5.16), explaining why the limit asymptotes to this contour in the first
three panels of Fig. 5.2 at low DM masses. Using the results in Appendix E, for

8In the first three panels, we show the transition for 𝑏max |𝑣cap and in the last the dashed line
corresponds to the transition for 𝑏max |𝑣𝑝 .
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Figure 5.2: Limit on an attractive NS-DM fifth force (Eq. 5.1) for four representative
force ranges, 𝜆, from tidal kinetic heating of the coldest known NS with temperature
𝑇 < 4.2kK and age 0.3 Gyr (black). In Sec. 5.2 we explicitly explain how limits were
derived in several regimes, beginning at high mass. Eqs. 5.27, 5.28, 5.29, and 5.30
determine the limits in the first three panels from high to low mass, respectively, and
Eq. 5.31 applies at the lowest masses in the last panel. The thick red maximal kinetic
heating curve assumes 100% of transiting DM is captured and deposits energy
quickly through additional short-range forces, leading to Eq. 5.32 at low masses. In
the gray regions, the old NS would have been destroyed by a single DM encounter
(see Eq. 5.26).
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𝜆 ≪ (
√
𝐺𝑀𝑡NS)2/3 ∼ 10 pc

(
𝑡NS
Gyr

)2/3
, the Δ𝑡1 > 𝑡NS asymptote corresponds to

𝑡NS
Δ𝑡1

=
𝑡NS
𝐺𝑀

√
2
𝜋

(
Δ𝐸graze

𝑚𝑋

)3/2

≈ 3 × 1022(1 + 𝛼̃)3
(

𝑇

42 𝑘𝐾

)3/4 (
1.4𝑀⊙
𝑀

) (
10 𝑘𝑚
𝑅

)3/2 (
𝑡NS

0.3 Gyr

) (
𝑚𝑋

𝑀⊙

)3/2

< 1. (5.30)

In the last panel, at low masses the contour is instead controlled by heating from
grazing encounters. When ¤𝐸graze ≫ ¤𝐸cap, the limit is,

¤𝐸graze

𝐿◦

∼ 4 × 10−4(1 + 𝛼̃)2
(

𝑇

42 𝑘𝐾

)1/2 (
10 𝑘𝑚
𝑅

) (
10−3

𝑣𝑝

) (
𝑚𝑋

𝑀⊙

) ( (𝑏max𝑣) |𝑣𝑝
𝑅

)2

<

(
𝑇s,𝑖

meas
max

42kK

)4
(5.31)

with (𝑏max𝑣) |𝑣𝑝 as in Eq. 5.13 for large 𝛼̃. The thin gray “ ¤𝐸graze < 𝐿◦” contour in the
last panel corresponds to saturation of Eq. 5.31 evaluated at the fiducial parameters.

When an order one fraction of transiting DM is captured and deposits its available
energy quickly, kinetic heating is “maximal.” When 𝜆 ≫ 𝑅 and ¤𝑁graze𝑡c > 1, the
limit reads

¤𝐸kin, max

𝐿◦
∼ 6 × 10−6(1 + 𝛼̃)

(
𝑀

1.4𝑀⊙

) (
10 𝑘𝑚
𝑅

) (
10−3

𝑣𝑝

) ( (𝑏max𝑣) |𝑣𝑝
𝑅

)2

<

(
𝑇s,𝑖

meas
max

42kK

)4
.

(5.32)

To one significant figure the maximal kinetic heating limit shown in red in Fig. 5.2
corresponds to

𝛼̃ < 150 when 𝜆 ≳ 10−10pc, (5.33)
𝜆

𝑅
𝛼̃ log (𝛼̃ log(𝛼̃)) < 4 × 105 when 𝑅 < 𝜆 ≲ 10−10pc. (5.34)

In Appendix F, we show that the kinetic heating limit above also rules out the
possibility of observable pulsar glitches caused by angular momentum deposits of
transiting DM.
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Near-future measurements with infrared telescopes such as JWST should be able
to improve NS surface temperature measurements by a factor of ten or better (see
[275]). For smaller force ranges, tidal heating limits will not change much because
they are bounded by the flux and energy deposit timescales (see Eqs. 5.27, 5.28 and
5.30) except in a narrow mass range, where Eq. 5.29 applies. The bound for larger
𝜆 will tighten at lower masses, according to Eq. 5.31. If the temperature of a cold
NS were an order of magnitude lower, so 𝑇𝑠 ∼ 4, 200K, the maximal kinetic heating
limit (Eq. 5.32) becomes 𝛼̃ ≲ 2 for all 𝜆 ≳ 𝑅. Recalling that the maximum heating
rate of a typical local NS by DM focussed through gravity alone corresponds to
𝑇𝑠 ∼ 2, 000K (see Eq. 5.5), we expected maximal kinetic heating to constrain a fifth
force to gravitational strength or weaker for temperatures approaching this infrared
range.

We now highlight some important caveats. First, DM-DM interactions become
important to NS capture and heating at time 𝑡eq when the effective charge of captured
DM is comparable to the effective charge of baryons in the NS:9 ¤𝑁cap𝑡eq𝑔𝑋 =

𝑀
𝑚𝑛
𝑔𝑛. Accelerated (decelerated) capture and heating start just before 𝑡eq given

scalar (vector) mediation. Therefore scalar-mediated constraints should tighten and
vector mediated constraints should loosen when

𝑡NS
𝑡eq

=
𝑚𝑋

𝑀

𝛼̃

𝛼̃𝑛
¤𝑁cap𝑡NS > 1. (5.35)

When this inequality is satisfied, time dependence of capture and heating rates
should be taken into account. More specifically, the capture luminosity constraint,

𝐸DM, kin(𝑅) ¤𝑁cap ≈ 𝑚𝑋
𝐺𝑀
𝑅

(1 + 𝛼̃) ¤𝑁cap < 𝐿◦
(
𝑇max
42kK

)4
, is saturated in a region of

parameter space with 𝑡eq < 𝑡NS when

1 + 𝛼̃
𝛼̃

𝛼̃𝑛 <
𝐿◦𝑡NS

𝐺𝑀2/𝑅

(
𝑇max
42kK

)4
≈ 4 × 10−11

(
𝑡NS

0.3 Gyr

) (
𝑇max
42kK

)4
. (5.36)

Since WEP tests suggest 𝛼̃𝑛 ≲ 10−11 when 𝜆 ≳ 2𝑅Earth [312, 266, 267], DM-DM
interactions may thus be relevant when 𝛼̃𝑛 is significantly below this bound. Our
kinetic heating limits which neglect DM-DM interactions are thus conservative
in the scalar-mediated case since captured DM could further accelerate capturing
more DM. On the other hand our bounds could lift in the vector-mediated case if
the DM-DM repulsive interaction was sufficiently strong compared to the attractive

9This expression assumes the charge-to-mass ratio of captured DM is similar to that of halo DM.
If this were untrue, additional heat would be released (absorbed) in the capture process, leading to
larger (smaller) DM charge-to-mass ratios.
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DM-baryon interaction. Furthermore, heating that appears to accelerate (decelerate)
at a characteristic timescale depending on local DM density and NS age could be a
smoking gun signal of a scalar (vector) mediated long-range force.

We also remind the reader of restrictions necessary for consistency of our tidal
heating estimate discussed in Secs. 5.2-5.2. First, the DM must be sufficiently
compact to survive an NS transit and to tidally excite modes up to the cutoff
determined by shear viscous damping (see Sec. 5.2). Second, tidal energy deposits
approach the expected maximum 𝐸DM, kin(𝑅) at approximately the same 𝛼̃, 𝑚𝑋

parameter range as they approach a few percent of the NS gravitational binding
energy, where we expect transiting DM to destroy rather than heat the NS (see
Eq. 5.26). Fig. 5.2 shows this region in gray.

5.3 Limits from Pulsar Timing Arrays
The use of PTAs to probe DM substructure has been extensively studied [269, 270,
103, 151, 271, 273, 43, 152, 42]. To set upper limits on the fifth force strength, we
analyse the data collected by NANOGrav [298] in their 11-year dataset [296, 297].
This analysis utilizes the software enterprise [153] developed by NANOGrav
and closely follows the Bayesian inference framework developed in our previous
work [10].

We commence with deriving the phase shift signals measured by an observer on
Earth due to a transiting DM. The intrinsic pulsar phase, 𝜙(𝑡), is often modelled as
a truncated power series in 𝑡

𝜙(𝑡) = 𝜙0 + 𝜈𝑡 +
1
2
¤𝜈𝑡2 , (5.37)

where 𝜙0 is the phase offset, 𝜈 is the pulsar frequency and ¤𝜈 is its first derivative.
Astrophysical signals such as Doppler shifts due to transiting DM manifest as
deviations from the above timing model.

The phase shift 𝛿𝜙(𝑡) is related to the frequency shift 𝛿𝜈(𝑡) by 𝛿𝜙(𝑡) =
∫ 𝑡

0 𝛿𝜈(𝑡
′)𝑑𝑡′.

In the presence of an external potential Φ, the acceleration of the pulsar induces an
observed frequency shift due to the Doppler effect, which is given by [43]

𝛿𝜈

𝜈
= 𝑑 ·

∫
∇Φ𝑑𝑡 , (5.38)

where 𝑑 is the unit vector pointing from Earth to the pulsar. The fifth force potential
is given by Eq. (5.1) and Φ(𝑟) = 𝑉Yuk(𝑟)/𝑀 , and its gradient is

∇Φ(𝑟) = 𝐺𝑚𝑋

𝑟2

[
1 + 𝛼̃(1 + 𝑟/𝜆)𝑒−𝑟/𝜆

]
𝑟 . (5.39)
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To simplify these expressions, we perform the analysis in the pulsar rest frame and
place the pulsar at the origin. We then write the DM position as ®𝑟 (𝑡) = ®𝑟0 + ®𝑣𝑡 with ®𝑣
being the DM velocity. The two important timescales in this system are the time of
closest approach, 𝑡0 = −®𝑟0 · ®𝑣/𝑣2, and the signal width, 𝜏 = |®𝑟0 × ®𝑣 |/𝑣2. The impact
parameter is given by ®𝑏 = ®𝑟0 + ®𝑣𝑡0 = 𝑣𝜏. Defining the dimensionless time variable,
𝑥 ≡ (𝑡 − 𝑡0)/𝜏, we write ®𝑟 = 𝑏(𝑏̂ + 𝑥𝑣̂) and 𝑟 = 𝑏

√
1 + 𝑥2. Using these variables, the

frequency shift due to the fifth force can be written as(
𝛿𝜈

𝜈

)
fifth

= 𝛼̃𝐺𝑚𝑋

1
𝑣2𝜏

𝑑 ·
∫

1
(1 + 𝑥2)3/2

(
1 + 𝑏

𝜆

√︁
1 + 𝑥2

)
𝑒−(𝑏/𝜆)

√
1+𝑥2 (𝑏̂ + 𝑥𝑣̂)𝑑𝑥 .

(5.40)
The equivalent expression for gravitation is given by Eq. 5.40 but with 𝛼̃ = 1 and
𝜆 → ∞. In general the integral in Eq. 5.40 has to be computed numerically. An
additional integration over time gives the phase shift 𝛿𝜙(𝑡).

The above analysis assumes that the DM trajectory is approximately a straight line,
which has been shown to hold for the DM mass range that we are interested in for
gravity only [10]. In the presence of a fifth force, the deviation in DM paths is
small if and only if 𝑏 ≈ 𝑟min where 𝑟min is the distance of closest approach. Eq. D.4
implies 𝑏 ≈ 𝑟min iff 𝐺𝑀

𝑏𝑣2 (1 + 𝛼̃𝑒−𝑏/𝜆) ≪ 1. One can estimate the minimum impact
parameter of all passing DMs to be

𝑏min ∼
(

3
4𝜋
𝑚𝑋

𝜌𝑋

)1/3
∼ 3 pc

(
𝑚𝑋

𝑀⊙

)1/3
. (5.41)

If the aforementioned condition is not satisfied, then DMs will substantially converge
to the pulsar, which will lead to a larger amplitude for the timing deviation. Hence
our constraints based on the straight-trajectory approximation serve as a conservative
estimate. We leave a detailed analysis of PTA constraints accounting for full DM
orbit information as a potential direction for future work.

To search for the DM signal in experimental data, similar to the static analysis in
Ref. [10], we parametrize the signal with the leading order perturbation of the timing
model

𝛿𝜙(𝑡)
𝜈

=
𝐴

yr2 𝑡
3 , (5.42)

where 𝐴 characterizes the signal amplitude. Terms of order 𝑡2 or less are degenerate
with the timing model and have no observable consequences. We search for the
signal in Eq. 5.42 using enterprise and compute the Bayesian posterior distribu-
tion of the DM amplitude, 𝑃(𝐴|𝛿®𝑡 ), using the Markov Chain Monte Carlo sampling
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Parameter Description Prior

Comments

Red noise

𝐴red Red noise power-law amplitude Log-Uniform [−20, −11]

𝛾red Red noise power-law spectral index Uniform [0, 7]

Dark Matter

𝐴 Dark matter amplitude Uniform ±[10−20, 10−11]

Table 5.1: Parameters and priors used in the PTA analysis with the 11-yr dataset
from NANOGrav. The notation Uniform ±[. . . ] stands for the union of Uniform
[+ . . . ] and Uniform [− . . . ]. We account for the effects from white noise by
marginalizing over a multiplicative pre-factor of the timing residual errors. Errors
from Solar System ephemeris (SSE) modeling are corrected using BayesEphem, as
described in [297].

techniques with the PTMCMCSampler package [173]. The parameters and priors are
listed in Table. 5.1. In particular, we adopt a uniform (instead of log-uniform) prior
on the DM amplitude 𝐴, which is a standard procedure for upper-limit setting [313,
10]. For the red noise amplitude, however, we use a uniform prior to avoid the
transfer of signal power to the red noise process, which has been shown to lead to
overstated Bayesian upper limits [314].

We now fix a choice of 𝜆. To relate the posterior distribution 𝑃(𝐴|𝛿®𝑡 ) to the fifth
force parameters 𝛼̃, we use a Monte Carlo simulation described in Ref. [10] to
compute the conditional probability 𝑃(𝐴|𝛼̃). In particular, we randomly distribute
DMs in a sphere and compute the total 𝛿𝜙(𝑡) using Eq. 5.40. We then numerically
fit 𝛿𝜙(𝑡) with a third order polynomial in 𝑡 to extract the 𝑡3 coefficient and hence
𝐴. This procedure is repeated for numerous realizations to obtain the required
distribution 𝑃(𝐴|𝛼̃). The final posterior distribution on 𝛼̃ is then given by [10]

𝑃(𝛼̃ |𝛿®𝑡 ) ∝
𝑁𝑃∏
𝑖=1

∫ ∞

−∞
𝑃(𝐴𝑖 |𝛼̃)𝑃(𝐴𝑖 |𝛿®𝑡 )𝑑𝐴𝑖 (5.43)

where 𝑁𝑃 is the number of pulsars.10 The posterior distribution satisfies the nor-
malization condition

∫
𝑑𝛼̃𝑃(𝛼̃ |𝛿®𝑡 ) = 1.

10In Ref. [10] we also considered the possibility of deriving upper limits using the maximum
amplitude among all pulsars (instead of using the amplitude in every single pulsar), but the limits
turn out to be less stringent than the present results.
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Figure 5.3: The 90th percentile upper limits on the fifth force strength 𝛼̃ derived
from the NANOGrav 11-year dataset. The constraints are shown for different DM
mass 𝑚𝑋 and range 𝜆.

Finally, we compute the 90th percentile upper limit on 𝛼̃ for each choice of 𝜆,
which is shown in Fig. 5.3. In the large mass limit, the constraints degrade since
𝑏min becomes larger than 𝜆, hence the phase shift is dominated by gravitational
effects only, which is not sufficient to produce an observable signal. On the other
hand, in the low mass limit, we have 𝑏min ≲ 𝜆, but the constraints also become
less stringent, since the fifth force and gravitational strength weaken with the DM
mass. For adequately large force ranges (i.e. 𝜆 ≳ 10−2 pc), there is an intermediate
mass regime where 𝑏min ≲ 𝜆 so the fifth force effectively modifies the gravitational
constant by 𝐺 → (1 + 𝛼̃)𝐺, but its strength is not enough to perturb the DM path,
hence the constraints exhibit a plateau behavior similar to the gravity-only analyses
in Ref. [10].

5.4 Inferred Limits from Equivalence Principle Tests and the Bullet Cluster
In this section we consider indirect constraints on a fifth force between NS matter
and DM from a combination of weak equivalence principle (WEP) tests [256, 312],
which can constrain composition-dependent forces to be weaker than gravitational
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limit ref test Δ((𝐵 − 𝐿)/(𝑀/𝑚𝑛)) Δ(𝐵/(𝑀/𝑚𝑛))
| Δ𝑎
𝑎tot

| ≲ 3 × 10−4 [315] perihelion precession 0.37 ∼ 0
| Δ𝑎
𝑎tot

| ≲ 0.004 [316] binary pulsar 0.69 0.19
| Δ𝑎
𝑎tot

| ≲ 10−5 [312] lunar laser ranging 0.012 ∼ 0
| Δ𝑎
𝑎tot

| ≲ 10−4 [312] torsion pendula 0.013, 0.036 0.0024, 0.0020

Table 5.2: Collection of limits on the differential acceleration of two baryonic test
objects toward the galactic center. The 𝐵 and 𝐵 − 𝐿 number to mass ratios are
based on Table II in [315] and Table 1 in [312]. The magnitude of the gravitational
acceleration field due to galactic dark matter at Earth was taken as 5 × 10−11 m/ s2

in [312], following [317]; this is the value assumed in calculating | Δ𝑎
𝑎tot

| for the last
two entries.

at macroscopic scales, and the bullet cluster bound on DM self-interactions [78,
79]. In Sec. 5.4 we translate a WEP bound on the differential acceleration of two
baryonic bodies toward our Galaxy’s center to a limit on 𝛼̃ and 𝜆when 𝜆 ≪ kpc. We
then combine bullet cluster limits on 𝛼̃𝑋 = 𝑔2

𝑋
/4𝜋𝐺𝑚2

𝑋
with the very strong WEP

constraints on 𝛼̃𝑛 = 𝑔2
𝑛/4𝜋𝐺𝑚2

𝑛 at Earth and solar system scales (𝜆 ≳ 1000 km) to
infer a limit on 𝛼̃ =

√
𝛼̃𝑋 𝛼̃𝑛 in Sec. 5.4. Our results are shown in Fig. 5.4.

Weak Equivalence Principle Tests
Most DM-baryonic matter WEP tests constrain the difference in acceleration be-
tween two baryonic test bodies (which we will label as 𝐴 and 𝐵) toward the galactic
center, divided by the total acceleration:11 Δ𝑎

𝑎tot
. When the total acceleration is domi-

nated by gravity and the fifth force is Coulombic, assuming the DM charge-to-mass
ratio is constant for DM throughout the halo, it is given by12

Δ𝑎Coul
𝑎tot

= 𝛼̃

[(
𝑄

𝑀/𝑚𝑛

)
𝐴

−
(

𝑄

𝑀/𝑚𝑛

)
𝐵

]
, (5.44)

where 𝑄 is the effective charge of the body in units of 𝑔𝑛. The difference in charge-
to-mass ratio for the test bodies must be nonzero in order to obtain a non-trivial
constraint. For normal matter, we consider couplings to baryon number or to 𝐵−𝐿—
i.e. 𝑄 = 𝐵 or 𝐵 − 𝐿, but other combinations lead to similar constraints.

To include range dependence in the differential acceleration calculation, we in-
tegrate over the force times DM distribution and correct Eq. 5.44 with the ratio

11See Ref. [312] for one of the most highly cited treatments/reviews from the last decade.
12We neglect the difference between the atomic mass unit, 𝑢, and the neutron mass, 𝑚𝑛, through-

out.
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|Δ®𝑎Yuk (®𝑟) |
|Δ®𝑎Coul (®𝑟) | . Given a spherically symmetric DM halo mass distribution, 𝜌ℎ𝑎𝑙𝑜 (𝑟′),
and a uniform DM charge-to-mass ratio, the net acceleration due to a Coulom-
bic force from halo DM on object 𝑖 at position ®𝑟 relative to the halo’s center is
®𝑎Coul(®𝑟) = 𝛼̃𝐺

𝑄𝑖

𝑀𝑖/𝑚𝑛

𝑟

𝑟2

∫ 𝑟

0 𝜌ℎ𝑎𝑙𝑜 (𝑟′)𝑑3®𝑟 ′. For a Yukawa force, when 𝜆 ≪ 𝑟, we
find13

®𝑎Yuk(®𝑟) = −𝛼̃𝐺 𝑄𝑖

𝑀𝑖/𝑚𝑛
®∇
∫

DM halo

𝜌ℎ𝑎𝑙𝑜 (𝑟′)𝑒−|®𝑟−®𝑟
′ |/𝜆

|®𝑟 − ®𝑟 ′| 𝑑3®𝑟 ′

≈ −4𝜋𝛼̃𝐺𝜆2 𝑄𝑖

𝑀𝑖/𝑚𝑛
𝜌′ℎ𝑎𝑙𝑜 (𝑟)𝑟 . (5.45)

Therefore when 𝜆 ≪ 𝑟 the ratio of Yukawa to Coulomb differential accelerations
for test objects near the same radial distance, 𝑟, from the halo center is given by

|Δ®𝑎Yuk(®𝑟) |
|Δ®𝑎Coul(®𝑟) |

≈
−4𝜋𝑟4𝜌′

ℎ𝑎𝑙𝑜
(𝑟)∫ 𝑟

0 𝜌ℎ𝑎𝑙𝑜 (𝑟′)𝑑3®𝑟 ′

(
𝜆

𝑟

)2
. (5.46)

Given an NFW DM halo profile [65],

𝜌ℎ𝑎𝑙𝑜 (𝑟) =
𝜌ℎ𝑎𝑙𝑜,0

𝑟/𝑟𝑠 (1 + 𝑟/𝑟𝑠)2 , (5.47)

with scale radius 𝑟𝑠, the expression in Eq. (5.46) becomes

|Δ®𝑎Yuk(®𝑟) |
|Δ®𝑎Coul(®𝑟) |

=
(𝑟/𝑟𝑠)2(1 + 3𝑟/𝑟𝑠)

(1 + 𝑟/𝑟𝑠)2 [(1 + 𝑟/𝑟𝑠) log(1 + 𝑟/𝑟𝑠) − 𝑟/𝑟𝑠]

(
𝜆

𝑟

)2
. (5.48)

The coefficient in Eq. (5.48) lies between 2.4 and 2.6 when 0.23 < 𝑟
𝑟𝑠
< 2, with

the maximum of about 2.6 occurring near 𝑟
𝑟𝑠

= 0.8. For concreteness we take
𝑟 = 8 kpc and set the coefficient to 2.5, which is within 4% of the exact value
when 4 kpc < 𝑟𝑠 < 35 kpc, well within agreement with recent fits [318, 73]. The
constraint on a Yukawa fifth-force then reads,����Δ𝑎Yuk

𝑎tot

���� ≈ 2.5 𝛼̃
(
𝜆

𝑟

)2 [(
𝑄

𝑀/𝑚𝑛

)
𝐴

−
(

𝑄

𝑀/𝑚𝑛

)
𝐵

]
<

����Δ𝑎𝑎tot

����max
. (5.49)

Table 5.2 shows a variety of recent limits on differential accelerations, along with
the difference in 𝐵- and (𝐵 − 𝐿)-to-mass ratios for the test objects. The strongest
limit given 𝑄 = 𝐵 corresponds to | Δ𝑎

𝑎tot
|/|Δ[𝑄/(𝑀/𝑚𝑛)] | ≲ 0.02. The best limit

given 𝑄 = 𝐵 − 𝐿 is more than an order of magnitude stronger. Therefore the limit
13We dropped terms suppressed by 𝑒−𝑟/𝜆 and higher powers of 𝜆

𝑟
. More precisely, we assumed

𝜆𝜌′
ℎ𝑎𝑙𝑜

(𝑟) ≫ 𝑒−𝑟/𝜆𝜌ℎ𝑎𝑙𝑜 (𝑟), 𝑒
−𝑟/𝜆

𝑟𝜆

∫
𝑒−𝑟

′/𝜆𝜌ℎ𝑎𝑙𝑜 (𝑟 ′) 𝑟 ′𝑑𝑟 ′, 𝜆𝑟 𝜆
2𝜌′′

ℎ𝑎𝑙𝑜
(𝑟), . . .
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on a Yukawa fifth force coupling to baryon number from equivalence principle tests
is roughly,

2.5 𝛼̃
(
𝜆

8 kpc

)2
≲ 0.02 when

(
𝑚𝑋

𝜌𝑋

)1/3
≪ 𝜆 ≪ 8 kpc, (5.50)

where the conditions on𝜆 are necessary for consistency of our spherically symmetric
fluid approximation for the DM distribution near Earth, where the inter-DM spacing

is estimated as
(
𝑚𝑋

𝜌𝑋

)1/3
and we set Earth’s galactic radius to 𝑟 ≈ 8 kpc.

Bullet Cluster limit
Following Ref. [268], the momentum transfer cross section for a long-range DM-DM
interaction can be approximated as 𝜎𝑇 ≈ 4𝜋𝑑2

𝐶
where 𝑑𝐶 is the distance of closest

approach given a repulsive Yukawa interaction, 𝑉Yuk =
𝐺𝑚2

𝑋
𝛼̃𝑋

𝑟
𝑒−𝑟/𝜆. For simplicity

we assume an order one fraction of the DM by mass takes the form of objects with
roughly the same size. Assuming the Yukawa DM-DM interaction is much stronger
than the gravitational DM-DM interaction at closest approach, 𝑑𝐶

𝜆
= 𝑊

(
4𝐺𝛼̃𝑋𝑚𝑋

𝜆𝑣2

)
,

where 𝑊 is the Lambert 𝑊 function satisfying 𝑊 (𝑧)𝑒𝑊 (𝑧) = 𝑧 and 𝑣 is the relative
speed of the interacting DM pair. Note that 𝜎𝑇 thus depends on the DM velocity 𝑣.
Observation of the bullet cluster sets the rough limit 𝜎𝑇

𝑚𝑋
=

4𝜋𝑑2
𝐶

𝑚𝑋
< cm2

g , translating
to a limit

4𝐺𝛼̃𝑋𝑚𝑋

𝑣2 <

√︄
1

4𝜋
𝑚𝑋

g
𝑒

√︃
1

4𝜋
𝑚𝑋

g
cm
𝜆 cm (5.51)

or
𝛼̃𝑋

√︂
𝑚𝑋

𝑀⊙
< 2 × 106

( 𝑣

10−2

)2
𝑒

4×10−3
√︃

𝑚𝑋
𝑀⊙

pc
𝜆 . (5.52)

The limit becomes very weak when the interaction range, 𝜆, is comparable or small
compared to the scattering length

√︃
𝑚𝑋

g cm = 10−2
√︃
𝑚𝑋

𝑀⊙
pc.14 The constraint on 𝛼̃𝑋

is clearly consistent with our assumption that 𝛼̃𝑋 ≫ 1 when 𝑚𝑋 ≲ 𝑀⊙.

Now consider the indirect constraint on 𝛼̃. If the DM and B fifth force charge to
mass ratios are approximately independent of environment, then

𝛼̃ ≈
√︁
𝛼̃𝑛𝛼̃𝑋 . (5.53)

Therefore the bullet cluster constraint plus a constraint on 𝛼̃𝑛 lead to a constraint on
𝛼̃:

𝛼̃ < 5 × 10−3
(
𝛼̃max
𝑛

10−11

)1/2 (
𝑀⊙
𝑚𝑋

)1/4 ( 𝑣

10−2

)
𝑒

2×10−3
√︃

𝑚𝑋
𝑀⊙

pc
𝜆 . (5.54)

14Conversely, the limit is very insensitive to 𝜆 as long as 𝜆 ≫ 10−2
√︃

𝑚𝑋

𝑀⊙
pc.
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We choose a fiducial value of 10−11 for 𝛼̃max
𝑛 based on the MICROSCOPE limit

[266, 267] but note that a more conservative limit based on inverse-square-law
tests corresponds to 𝛼̃max

𝑛 ∼ 10−1 - 10−10 in the km to pc force range [256].
Furthermore, both the inverse square law and MICROSCOPE limits come from
measuring accelerations on Earth and in our solar system—very different from
the bullet cluster environment. A more conservative approach would not combine
the limits at all. Furthermore, we note that the bullet cluster limit on DM sub-
components weakens precipitously.

The limits in Eqs. 5.52 (red), 5.54 (purple), and 5.50 (blue) are represented in
Fig. 5.4, along with the best constraint on 𝛼̃𝑛, from Fig. 1 of [266] (green) for two
force ranges at the boundaries of our range of interest. The inferred limit on 𝛼̃ is
just the geometric mean of the limits on 𝛼̃𝑋 and 𝛼̃𝑛.

5.5 Summary and Conclusions
We investigated probes of a long-range DM-baryon interaction. First, we derived
limits on the interaction strength and range as functions of NS temperature and DM
mass, density, and asymptotic speed distribution. This work extends the dark kinetic
heating analysis of [275] to long-range forces and draws on the PBH gravitational
tidal capture analysis of [303]. Fig. 5.2 shows our limit based on the coldest known
NS. Next, extending the work in [10], we considered effects of a long-range fifth
force on Doppler shifts of pulsar frequencies, and derived a limit based on the
11-yr NANOGrav PTA timing dataset, shown in Fig. 5.3. Finally, we considered
indirect limits from weak equivalence principle tests and the bullet cluster, shown
in Fig. 5.4. The three sets of constraints are shown together in Fig. 5.1. The
indirect bullet cluster + WEP bound is stronger than the direct tidal heating and
PTA bounds by an order of magnitude or more for all of the parameter space we
considered. However, the tidal heating and PTA constraints are still interesting since
they are direct phenomenological probes on DM-baryon interactions, independent
of the microscopic origin of such a force. Moreover, if additional short-range
interactions assist DM capture by NSs (allowing “maximal kinetic heating”) or if
only a subcomponent of DM interacts through the long-range fifth force, the kinetic
heating and PTA limits dominate.

Imminent improvements on NS temperature and pulsar timing observations from,
e.g., the James Webb Space Telescope [319] and Square Kilometer Array [320]
will extend the reach of NSs as probes of a long-range DM-baryon fifth force.
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Figure 5.4: Constraints on the fifth force to gravitational force strength ratios for
baryonic matter self-interactions (𝛼̃𝑛), DM-baryon interactions (𝛼̃), and DM self-
interactions (𝛼̃𝑋), from MICROSCOPE (Fig. 1 of [266]), weak equivalence principle
tests constraining accelerations toward the galactic center (Eq. 5.50 and Table 5.2),
and the bullet cluster (Eq. 5.52), respectively, for force ranges at the extremes of
those we consider. The inferred constraint on 𝛼̃ (purple) is derived by combining
the MICROSCOPE (green) and bullet cluster (red) limits, using 𝛼̃max =

√︁
𝛼̃max
𝑛 𝛼̃max

𝑋

(Eq. 5.54). We have assumed that all of the DM in the Milky Way halo and
in the bullet cluster takes the form of compact, effectively point-like states with
approximately the same mass, 𝑚𝑋 .

In addition, the requirement for the NS cooling timescale to be smaller than the
encounter timescale can be potentially relaxed by surveying a large population of
NSs and searching for a fraction of them that are still cooling down after recent DM
encounters [294]. On the other hand, higher than expected temperatures of isolated
old NSs could be a sign of DM kinetic heating; if those temperatures are higher than
can be explained given kinetic heating through short-range interactions (c.f. [275]
and Eq. 5.21 with 𝛼̃ = 0), a long-range force could be part of the explanation. So
could DM annihilation (see e.g. [321, 322, 323, 324, 325]) or other DM-induced
exothermic processes (see e.g. [326, 290]). An unexpected NS temperature age
dependence for old NSs in otherwise similar environments is another potential
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signature of a long-range force, since the heating rate can dramatically change once
the effective charge of captured DM becomes comparable to that of the NS at birth.
As discussed at the end of Sec. 5.2, scalar-mediated interactions would lead to
accelerated heating and vector-mediated to decelerated heating at late times. We
leave detailed analyses of such possibilities for future work, should any observational
hints arise.
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C h a p t e r 6

SEARCHING FOR SIGNATURES FROM DARK MATTER
SUBSTRUCTURE AND COSMOLOGICAL PHASE

TRANSITIONS WITH THE NANOGRAV 15-YEAR DATA SET

This chapter is based on

[1] Adeela Afzal et al. “The NANOGrav 15 yr Data Set: Search for Signals
from New Physics”. In: Astrophys. J. Lett. 951.1 (2023), p. L11. doi: 10.
3847/2041-8213/acdc91. arXiv: 2306.16219 [astro-ph.HE].

6.1 Introduction
The Standard Model (SM) of particle physics currently provides our best descrip-
tion of the laws governing the universe at subatomic scales. However, it fails to
explain several observed properties of our universe, such as the origin of the matter–
antimatter asymmetry, the nature of dark matter (DM) and dark energy, and the
origin of neutrino masses. These shortcomings have motivated the development of
several theories for physics beyond the SM, or BSM theories for short, accompanied
by a rich experimental program trying to test them. The generation of gravitational
waves (GWs) is a ubiquitous feature of many BSM theories [327, 328, 329]. These
GWs form a stochastic background and propagate essentially unimpeded over cosmic
distances to be detected today, whereas electromagnetic radiation does not start free
streaming until after recombination. Thus, detecting a stochastic GW background
(GWB) of cosmological origin would offer a unique and direct glimpse into the very
early universe and herald a new era for using GWs to study fundamental physics.

Cosmological GWBs can be produced by a number of particle physics models
of the early universe. Notably, cosmic inflation generically produces GWs [330],
which may be observable at nanohertz frequencies if their energy density spectrum
is sufficiently blue-tilted. Similarly, an enhanced spectrum of short-wavelength
scalar perturbations produced during inflation can source so-called scalar-induced
GWs [SIGWs; 331, 332]. Another potential source of GWs are cosmological first-
order phase transitions [333, 334, 335], which proceed through bubble nucleation;
bubble collisions and bubble interactions with the primordial plasma giving rise to
sound waves contribute to GW production. Finally, topological defects left behind

https://doi.org/10.3847/2041-8213/acdc91
https://doi.org/10.3847/2041-8213/acdc91
https://arxiv.org/abs/2306.16219
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by cosmological phase transitions, such as cosmic strings and domain walls [336,
337, 338], can radiate GWs and hence contribute to the GWB.

The North American Nanohertz Observatory for Gravitational Waves [NANOGrav;
339] has recently found the first convincing evidence for a stochastic GWB signal,
as detailed in [340]. Analyzing 15-year of pulsar timing observations, NANOGrav
has detected a red-noise process whose spectral properties are common among all
pulsars and that is spatially correlated among pulsar pairs in a manner consistent
with an isotropic GWB. In the following, we will refer to this observation as “the
NANOGrav signal,” “the GWB signal,” or simply “the signal,” keeping in mind
the level of statistical significance at which the GW nature of the signal has been
demonstrated in [340]. While the GWB is primarily expected to arise from a
population of inspiraling supermassive black hole binaries [SMBHBs; 341, 342,
343, 157, 158], cosmological sources may also contribute to it.

The SMBHB interpretation of the signal is considered in [344]. In this paper, we
analyze the NANOGrav 15-year data set [345] to investigate the possibility that
the observed signal is cosmological in nature or that it arises from a combination
of SMBHBs and a cosmological source. In particular, we consider phenomeno-
logical models of cosmic inflation, SIGWs, first-order phase transitions, cosmic
strings (stable, metastable, and superstrings), and domain walls. We find that all
of these models, except for stable cosmic strings of field theory origin, are consis-
tent with the observed GWB signal. Many models provide in fact a better fit of
the NANOGrav data than the baseline SMBHB model, which is reflected in the
outcome of a comprehensive Bayesian model comparison analysis that we perform:
several new-physics models result in Bayes factors between 10 and 100. We also
consider composite models where the GWB spectrum receives contributions from
new physics and SMBHBs. Comparing these composite models to the SMBHB
reference model leads to comparable results, again with many Bayes factors falling
into the range from 10 to 100. Cosmic superstrings, as predicted by string theory,
are among the models that provide a good fit of the data, while stable cosmic strings
of field theory origin only result in Bayes factors in the range from 0.1 to 1.

The reason that some of the Bayes factors reach large values is that the SMBHB
signal expected from the theoretical model used in this analysis agrees somewhat
poorly (only at the level of 95% regions) with the observed data, leaving room for
improvement by adding additional sources or better noise modeling. It is perhaps an
intriguing idea that this disagreement may point to the presence of a cosmological
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source, but the present evidence is quite weak. We stress that Bayes factors for
additional models beyond the SMBHB interpretation are highly dependent on the
range of priors with which these models are introduced. Thus, one should not assign
too much meaning to the exact numerical values of the Bayes factors reported in
this work.

In many models, there are ranges of parameter values that would produce signals
in conflict with the NG15 data. In those cases, we show the excluded regions and
give numerical upper limits for individual parameters. We do so in terms of a new
statistical test, introducing what we call the 𝐾 ratio. These parameter constraints
are independent of the origin of the signal in the NG15 data and a testament to the
constraining power of PTA data in the search for new physics. In our parameter plots,
we label the 𝐾-ratio constraints by NG15, and where applicable, we compare them
to other existing bounds. In many cases, the NG15 bounds are complementary to
existing bounds, highlighting the fact that new-physics searches at the PTA frontier
venture into previously unexplored regions of parameter space.

Aside from cosmological GWBs, signals of new physics can appear in GW detectors
in a deterministic manner. Although pulsar timing arrays (PTAs) are primarily used
to search for a GWB, we can also leverage their remarkable sensitivity to search
for these deterministic signals. Specifically, DM substructures within the Milky
Way can produce a Doppler effect by accelerating the Earth or a pulsar [150], or a
Shapiro delay of the photons’ arrival times by perturbing the metric along the photon
geodesic [44]. PTAs can also probe models of ultralight DM (ULDM), which can
cause shifts in the observed pulse timing via metric fluctuations [346, 347] or via
couplings between ULDM and SM particles [348, 349]. We search for both of these
deterministic signals, and after finding no evidence for either of them, we derive
new bounds on both these models.

This paper is organized as follows. We describe the NG15 data set in Section 6.2
and our general analysis methods in Section 6.3. In Section 6.4, we discuss the
GWB expected from SMBHBs. We present the analysis and results for new-physics
models that generate a cosmological GWB in Section 6.5 and for models that produce
deterministic signals in Section 6.6. We conclude in Section 6.7. Additionally,
we include a list of parameters for each model, the prior ranges we use in our
analysis, and the corresponding recovered posterior ranges in Appendix G. We
provide supplementary material for specific models in Appendix H .
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6.2 PTA data
The NANOGrav 15-year (NG15) data set consists of observations of 68 millisecond
pulsars made between 2004 July and 2020 August. This updated data set adds 21
pulsars and 3 yr of observations to the previous 12.5 yr data set [350]. One pulsar,
J0614–3329, was observed for less than 3 yr, which is why it is not included in
our analysis. The remaining 67 pulsars were all observed for more than 3 yr with
an approximate cadence of 1 month (with the exception of six pulsars that were
observed weekly as part of a high-cadence campaign, which started in 2013 at the
Green Bank Telescope and in 2015 at the Arecibo Observatory).

The pulse times of arrival (TOAs) were generated from the raw data following the
procedure discussed in [166, 351] and [350]. The resulting cleaned TOAs were fit to
a timing model that accounts for the pulsar’s period and spin period derivative, sky
location, proper motion, and parallax. For pulsars in a binary system, we included in
the timing model five Keplerian binary parameters and an additional non-Keplerian
parameter if they improved the fit as determined by an 𝐹-test. Pulse dispersion was
modeled as a piecewise constant with the inclusion of DMX parameters [166, 169].
The timing model fits were performed using the TT(BIPM2019) timescale and the
JPL Solar System Ephemeris model DE440 [352]. Additional detail about the data
set and the processing of the TOAs can be found in [345] and [353].

6.3 Data Analysis Methods
The statistical tools needed to describe noise sources, GWBs, and deterministic
signals in pulsar timing data have already been extensively discussed in the lit-
erature [see, e.g., 165, 354]. In the following brief overview, we focus on the
implementation of new-physics signals within this framework.

Likelihood
Our search for a new-physics signal utilizes the pulsars’ timing residuals, 𝜹𝒕. These
timing residuals measure the discrepancy between the observed TOAs and the ones
predicted by the pulsar timing model described in [345] and briefly summarized in
Section 6.2. There are three main contributions to these timing residuals: white
noise, time-correlated stochastic processes (also known as red noise), and small
errors in the fit to the timing-ephemeris parameters [355]. Specifically, we can
model the timing residuals as

𝜹𝒕 = 𝒏 + 𝐹 𝒂 + 𝑀 𝝐 . (6.1)
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In the remainder of this section, we will define and discuss each of these three terms
and define the PTA likelihood.

The first term on the right-hand side of Eq. (6.1), 𝒏, describes the white noise that is
assumed to be left in each of the 𝑁T𝑂𝐴 timing residuals after subtracting all known
systematics. White noise is assumed to be a zero mean normal random variable,
fully characterized by its covariance. For the receiver/back-end combination 𝐼, the
white-noise covariance matrix reads

⟨𝑛𝑖𝑛 𝑗 ⟩ = F 2
𝐼

[
𝜎2
𝑖 𝑆/𝑁 + Q2

𝐼

]
𝛿𝑖 𝑗 + J 2

𝐼 U𝑖 𝑗 , (6.2)

where 𝑖 and 𝑗 index the TOAs, 𝜎𝑖 𝑆/𝑁 is the TOA uncertainty for the 𝑖th observation,
F𝐼 is the Extra FACtor (EFAC) parameter, Q𝐼 is the Extra QUADrature (EQUAD)
parameter, and J𝐼 is the ECORR parameter. ECORR is modeled using a block
diagonal matrix, U, with values of 1 for TOAs from the same observing epoch and
zeros for all other entries. Following the approach of previous works [165, 354], we
fix all white-noise parameters to their values at the maxima in the posterior prob-
ability distributions recovered from single pulsar noise studies in order to increase
computational efficiency [353].

Time-correlated stochastic processes, like pulsar-intrinsic red noise and GWB sig-
nals, are modeled using a Fourier basis of frequencies 𝑖/𝑇obs, where 𝑖 indexes the
harmonics of the basis and 𝑇obs is the timing baseline, extending from the first to
the last recorded TOA in the full PTA data set. Since we are generally interested in
processes that exhibit long-timescale correlations, the expansion is truncated after
𝑁 𝑓 frequency bins. In this paper, we use 𝑁 𝑓 = 30 for pulsar-intrinsic red noise
and 𝑁 𝑓 = 14 for GWBs. The latter choice stems from the observation that most of
the evidence for a GWB comes from the first 14 frequency bins. More specifically,
fitting a common-spectrum uncorrelated red-noise process with a broken power-law
spectral shape to the NG15 data, the posterior distribution for the break frequency
reaches it maximum around the 14th frequency bin [340]. This set of 2𝑁 𝑓 sine–
cosine pairs evaluated at the different observation times is contained in the Fourier
design matrix, 𝐹. The Fourier coefficients of this expansion, 𝒂, are assumed to
be normally distributed random variables with zero mean and covariance matrix,
⟨𝒂𝒂T⟩ = 𝜙, given by

[𝜙] (𝑎𝑘) (𝑏 𝑗) = 𝛿𝑖 𝑗
(
Γ𝑎𝑏Φ𝑖 + 𝛿𝑎𝑏𝜑𝑎,𝑖

)
(6.3)

where 𝑎 and 𝑏 index the pulsars, 𝑖 and 𝑗 index the frequency harmonics, and Γ𝑎𝑏 is
the GWB overlap reduction function, which describes average correlations between
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pulsars 𝑎 and 𝑏 as a function of their angular separation in the sky. For an isotropic
and unpolarized GWB, Γ𝑎𝑏 is given by the Hellings & Downs correlation [356],
also known as “quadrupolar” or “HD” correlation.

The first term on the right-hand side of Eq. (6.3) parameterizes the contribution to the
timing residuals induced by a GWB in terms of the model-dependent coefficients
Φ𝑖. In this work, we consider two kinds of GWB sources: one of astrophysical
origin, namely a population of inspiraling SMBHBs (discussed in section 6.4),
and one of cosmological origin, induced by one of the exotic new-physics models
under consideration (discussed in section 6.5). The last term in Eq. (6.3) models
pulsar-intrinsic red-noise in terms of the coefficients 𝜑𝑎,𝑖, where

𝜑𝑎 ( 𝑓 ) =
𝐴2
𝑎

12𝜋2
1
𝑇obs

(
𝑓

1 𝑦𝑟−1

)−𝛾𝑎
𝑦𝑟3 (6.4)

and 𝜑𝑎,𝑖 = 𝜑𝑎 (𝑖/𝑇obs) for all 𝑁 𝑓 frequencies. The priors for the red noise parameters
are reported in Table G.1.

Finally, deviations from the initial best-fit values of the𝑚 timing-ephemeris parame-
ters are accounted for by the term 𝑀𝝐 . The design matrix, 𝑀 , is an 𝑁T𝑂𝐴×𝑚 matrix
containing the partial derivatives of the TOAs with respect to each timing-ephemeris
parameter (evaluated at the initial best-fit value), and 𝝐 is a vector containing the
linear offset from these best-fit parameters.

Since in this analysis we are not interested in the specific realization of the noise but
only in its statistical properties, we can analytically marginalize over all the possible
noise realizations (i.e., integrate over all the possible values of 𝒂 and 𝝐). This leaves
us with a marginalized likelihood that depends only on the (unknown) parameters
describing the red-noise covariance matrix [i.e., 𝐴𝑎, 𝛾𝑎, plus any other parameters
describing Φ𝑖; 357, 358]:

𝑝(𝜹𝒕 |𝜙) =
exp

(
−1

2𝜹𝒕
𝑇𝐶−1𝜹𝒕

)
√︁
𝑑𝑒𝑡 (2𝜋𝐶)

, (6.5)

where 𝐶 = 𝑁 +𝑇𝐵𝑇𝑇 . Here 𝑁 is the covariance matrix of white noise, 𝑇 = [𝑀, 𝐹],
and 𝐵 = 𝑑𝑖𝑎𝑔(∞, 𝜙), where ∞ is a diagonal matrix of infinities, which effectively
means that we assume flat priors for the parameters in 𝝐 . Since in our calculations
we always deal with the inverse of 𝐵, all these infinities reduce to zeros.

Eq. (6.5) can be easily generalized to take into account deterministic signals (like the
ones that will be discussed in Section 6.6). In the presence of a deterministic signal,
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𝒉(𝜽), which depends on a set of parameters 𝜽 , we just need to shift the residuals,
𝜹𝒕 → 𝜹𝒕 − 𝒉(𝜽).

Finally, we relate our characterization of the GWB given in Eq. (6.3) in terms of
Φ𝑖 to the commonly adopted spectral representation in terms of the GWB energy
density per logarithmic frequency interval, 𝑑𝜌𝐺𝑊/𝑑 ln 𝑓 , as a fraction of the closure
density, i.e., the total energy density of our universe, 𝜌𝑐 [109]

Ω𝐺𝑊 ( 𝑓 ) ≡
1
𝜌𝑐

𝑑𝜌𝐺𝑊 ( 𝑓 )
𝑑 ln 𝑓

=
8𝜋4 𝑓 5

𝐻2
0

Φ( 𝑓 )
Δ 𝑓

. (6.6)

Here 𝐻0 is the present-day value of the Hubble rate, Δ 𝑓 = 1/𝑇obs is the separation
between the 𝑁 𝑓 frequency bins, andΦ( 𝑓 ) determines the coefficientsΦ𝑖 in Eq. (6.3),
i.e., Φ𝑖 = Φ (𝑖/𝑇obs). Note that Φ( 𝑓 ) is identical to the timing residual power
spectral density (PSD), 𝑆( 𝑓 ) = Φ( 𝑓 )/Δ 𝑓 , up to the constant factor of 1/Δ 𝑓 . In the
remainder of this paper, we will often work with ℎ2Ω𝐺𝑊 instead of Ω𝐺𝑊 , where ℎ
is the dimensionless Hubble constant, 𝐻0 = ℎ × 100 kms−1Mpc−1, such that the
explicit value of 𝐻0 cancels in the product ℎ2Ω𝐺𝑊 .

Bayesian analysis
The goal of this work is to investigate a series of cosmological interpretations of
the GWB signal in our data. Specifically, we would like to answer two questions.
First, what is the region in the parameter space of the new-physics models that
could produce the observed GWB? And second, is there any preference between the
astrophysical and cosmological interpretations of the signal?

To answer these questions, we make use of Bayesian inference. Bayesian inference
is a statistical method in which Bayes’ rule of conditional probabilities is used to
update one’s knowledge as observations are acquired. Given a model H , a set of
parameters Θ, and data D, we can use Bayes’ rule to write

𝑃(Θ|D,H) = 𝑃(D|Θ,H)𝑃(Θ|H)
𝑃(D|H) , (6.7)

where 𝑃(Θ|D,H) is the posterior probability distribution for the model parameters,
𝑃(D|Θ,H) is the likelihood, 𝑃(Θ|H) is the prior probability distribution, and

Z ≡ 𝑃(D|H) =
∫

dΘ 𝑃(D|Θ,H)𝑃(Θ|H) (6.8)

is the marginalized likelihood, or evidence. In the context of this work, H is
the timing residual model given in Eq. (6.1), Θ contains the parameter describing
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the covariance matrix 𝜙, and the data are the timing residuals 𝜹𝒕. The likelihood
function for our analysis is given by Eq. (6.5) and implemented using the [153]
and ENTEPRISE_EXTENSIONS [248] packages. Our prior choices are summarized
in Tables G.1 and G.2.

The posterior distribution on the left-hand side of Eq. (6.7) is the central result of
the Bayesian analysis and contains all the information needed to answer our two
original questions. Indeed, integrating over all the model parameters except one
(two) allows us to derive marginalized distributions that can be used to obtain 1D
(2D) credible intervals. At the same time, given two models H0 and H1, we can
perform model selection by calculating the Bayes factor defined as

B10(D) = Z1
Z0

=
𝑃(D|H1)
𝑃(D|H0)

. (6.9)

The numerical value of the Bayes factor for a given model comparison can then
be interpreted as evidence against or in favor of model hypothesis H1 according to
the Jeffreys scale [359]: B10 < 1 means that H1 is disfavored, while B10 values
in the ranges [100.0, 100.5], [100.5, 101.0], [101.0, 101.5], [101.5, 102.0], [102.0,∞)
are interpreted as negligibly small, substantial, strong, very strong, and decisive
evidence in favor of H1, respectively.

Given the large number of parameters, the integration required to derive marginal-
ized distributions and Bayes factors needs to be performed through Monte Carlo
sampling. Specifically, we use the Markov Chain Monte Carlo (MCMC) tools
implemented in the PTMCMCSampler package [360] to sample from the posterior
distributions. The marginalized posterior densities shown in our plots are then de-
rived by applying kernel density estimates to the MCMC samples via the methods
implemented in the GetDist package [361].

In order to compute the Bayes factor between two models, we use product space
methods [362, 363, 364], instead of calculating the evidence Z for each model sep-
arately. This procedure recasts model selection as a parameter estimation problem,
introducing a model indexing variable that is sampled along with the parameters
of the competing models and controls which model likelihood is active at each
MCMC iteration. The ratio of samples spent in each bin of the model indexing
variable returns the posterior odds ratio between models, which coincides with the
Bayes factor for equal model priors, 𝑃(H1) = 𝑃(H0). The Monte Carlo sampling
uncertainties associated with this derivation of the Bayes factors can be estimated
through statistical bootstrapping [365]. Bootstrapping creates new sets of Monte
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Carlo draws by resampling (with replacement) the original set of draws. These sets
of draws act as independent realizations of the sampling procedure and allow us to
obtain a distribution for the Bayes factors from which we derive point values and
uncertainties on our Bayes factors corresponding to mean and standard deviation.
Specifically, the central values and corresponding errors quoted in the following for
the Bayes factors were derived by creating 5 × 104 realizations of our Monte Carlo
draws.

From Eq. (6.8), it is evident that models’ evidence and, therefore, Bayes factors
depend on the prior choice. In our analysis, we will often restrict priors to the region
of parameter space for which cosmological models produce an observable signal in
the PTA frequency band. However, a more appropriate prior choice would cover
the entire allowed region of parameter space. Nonetheless, when working with
flat priors, it is easy to rescale the Bayes factors to account for wider prior ranges.
Specifically, if the priors are extended to a region of parameter space for which the
likelihood 𝑃 (D|Θ,H) is approximately zero, the Bayes factors decrease by a factor
proportional to the increase in prior volume.

For each model H considered in our analysis, we use the reconstructed posterior
distribution, 𝑃 (Θ|D,H), to identify relevant parameter ranges and set upper limits.
Specifically, we identify 68% (95%) Bayesian credible intervals [367] by integrating
the posterior over the regions of highest density until the integral covers 68%
(95%) of the posterior probability. Moreover, we give upper limits above which the
additional model is “strongly disfavored” according to the Jeffreys scale [359]. For
instance, to place a bound on a single parameter 𝜃, we first marginalize over all other
model parameters and then determine the parameter value at which the likelihood
ratio

𝐾 (𝜃) = 𝑃(D|𝜃,H)
𝑃(D|𝜃0,H) , (6.10)

has dropped to 𝐾 = 110. Here 𝜃0 refers to the parameter limit in which the
new-physics contribution to the total signal becomes negligible and 𝑃(D|𝜃,H) no
longer depends on the exact value of 𝜃. Graphing 𝑃(D|𝜃,H) as a function of 𝜃,
this parameter region appears as a plateau, with 𝑃(D|𝜃0,H) denoting the height
of this plateau. Assuming a flat prior on 𝜃, the ratio in Eq. (6.10) is identical to
the corresponding ratio of marginalized posteriors. Furthermore, multiplying and
dividing by the prior on 𝜃,

𝐾 (𝜃) = 𝑃(𝜃 |H)
𝑃(𝜃0 |D,H)

𝑃(𝜃 |D,H)
𝑃(𝜃 |H) . (6.11)
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Figure 6.1: Comparison of the 68% and 95% probability regions for the amplitude
and slope of a power-law fit to the observed GWB signal (green contours) and
predicted for purely GW-driven SMBHB populations with circular orbits [blue
contours; 344]. The black dashed lines represent a 2D Gaussian fit of the blue
contours. The vertical red line indicates 𝛾 = 13/3, the naive expectation for a GWB
produced by a GW-driven SMBHB population [366].
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Figure 6.2: Bayes factors for the model comparisons between the new-physics
interpretations of the signal considered in this work and the interpretation in terms
of SMBHBs alone. Blue points are for the new physics alone, and red points are for
the new physics in combination with the SMBHB signal. We also plot the error bars
of all Bayes factors, which we obtain following the bootstrapping method outlined
in Section 6.3. In most cases, however, these error bars are small and not visible.

The first factor is the Savage–Dickey density ratio and can hence be identified as
the Bayes factor B = 𝑃(D|H)/𝑃(D|H0), where H0 is the model that results from
model H when omitting the signal contribution controlled by the parameter 𝜃. The
𝐾 ratio can thus be written as the product of the global Bayes factor and the local
posterior-to-prior ratio for the parameter 𝜃,

𝐾 (𝜃) = B 𝑃(𝜃 |D,H)
𝑃(𝜃 |H) . (6.12)

Once B is known, it is straightforward to evaluate Eq. (6.12) and determine the 𝐾-
ratio bound on 𝜃. Eq. (6.12) is useful for numerically evaluating𝐾 , as it automatically
encodes the height of the plateau in the marginalized posterior, 𝑃(𝜃0 |D,H) =

𝑃(𝜃 |H)/B, which we would otherwise have to obtain from a fit to our MCMC data.
However, we stress that𝐾 is defined as a likelihood ratio, which renders it immune to
prior effects [prior choice, range, etc.; 368]. For more than one parameter dimension,
we proceed analogously and derive bounds based on the criterion 𝐾 (Θ) > 110.

All Bayesian inference analyses discussed in this work were implemented into via
a newly developed wrapper that we call PTArcade [369, 370]. This wrapper is
intended to allow easy implementation of new-physics searches in PTA data. We
make this wrapper publicly available at https://doi.org/10.5281/zenodo.

https://doi.org/10.5281/zenodo.7876429
https://doi.org/10.5281/zenodo.7876429
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7876429. Similarly, all MCMC chains analyzed in this work can be downloaded at
https://zenodo.org/record/8010909.

6.4 GWB Signal from SMBHBs
Most galaxies are expected to host a supermassive black hole (SMBH) at their
center [371, 372]. During the hierarchical merging of galaxies taking place in
the course of structure formation [373], these black holes are expected to sink to
the center of the merger remnants, eventually forming binary systems [374]. The
gravitational radiation emitted by this population of inspiraling SMBHBs forms a
GWB in the PTA band [341, 342, 343] and is a natural candidate for the source of
the signal observed in our data.
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Figure 6.3: Median GWB spectra produced by a subset of the new-physics models,
which we construct by mapping our model parameter posterior distributions to
ℎ2Ω𝐺𝑊 distributions at every frequency 𝑓 (see Figs. G.1 and G.2 for the models
not included here). We also show the periodogram for an HD-correlated free
spectral process (gray violins) and the GWB spectrum produced by an astrophysical
population of inspiraling SMBHBs with the parameters 𝐴BHB and 𝛾BHB fixed at the
central values 𝝁

𝐵𝐻𝐵
of the 2D Gaussian prior distribution specified in Eq. (G.1)

(black dashed line).

The shape and normalization of this GWB depend on the properties of the SMBHB
population and on its dynamical evolution [375, 376, 377, 378]. As discussed

https://doi.org/10.5281/zenodo.7876429
https://doi.org/10.5281/zenodo.7876429
https://doi.org/10.5281/zenodo.7876429
https://zenodo.org/record/8010909
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in [344], the normalization is primarily controlled by the typical masses and abun-
dance of SMBHBs, while the shape of the spectrum is determined by subparsec-
scale binary evolution, which is currently unconstrained by observations. For a
population of binaries whose orbital evolution is driven purely by GW emission, the
resulting timing residual PSD is a power law with a spectral index (defined below
in Eq. (6.13)) of −𝛾BHB = −13/3 [366], produced by the increasing rate of inspiral
and decreasing number of binaries emitting over each frequency interval. However,
as GW emission alone is typically insufficient to merge SMBHBs within a Hubble
time, the number of binaries emitting in the PTA band depends on interactions
between binaries and their local galactic environment to extract orbital energy and
drive systems toward merger [374]. If these environmental effects extend into the
PTA band, or if binary orbits are substantially eccentric, then the GWB spectrum
can flatten at low frequencies [typically expected at 𝑓 ≪ 1 𝑦𝑟−1; 377]. At high fre-
quencies, once the expected number of binaries dominating the GWB approaches
unity, the spectrum steepens below 13/3 [typically expected at 𝑓 ≫ 1 𝑦𝑟−1; 376].

Unfortunately, current observations and numerical simulations provide only weak
constraints on the spectral amplitude or the specific locations and strengths of
power-law deviations. Despite these uncertainties, the sensitivity range of PTAs is
sufficiently narrowband that it is reasonable, to first approximation, to model the
signal by a power law in this frequency range:

ΦBHB( 𝑓 ) =
𝐴2

BHB
12𝜋2

1
𝑇obs

(
𝑓

yr−1

)−𝛾BHB

yr3 , (6.13)

where Φ𝐵𝐻𝐵/Δ 𝑓 is the timing residual PSD (see Eq. (6.6)).

Following [379], we can gain some insight into the allowed range of values for the
amplitude, 𝐴BHB, and slope, 𝛾BHB, of this power law by simulating a large number of
SMBHB populations covering the entire range of allowed astrophysical parameters.
Specifically, we consider the SMBHB populations contained in the GWOnly-Ext
library generated as part of the [344] analysis (and discussed in additional detail
there). This library was constructed with the holodeck package [380] using semian-
alytic models of SMBHB mergers. These models use simple, parameterized forms
of galaxy stellar mass functions, pair fractions, merger rates, and SMBH-mass ver-
sus galaxy-mass relations to produce binary populations and derived GWB spectra.
While some parameters in these models are fairly well known (e.g., concerning the
galaxy stellar mass function), others are almost entirely unconstrained—particularly
those governing the dynamical evolution of SMBHBs on subparsec scales [374].
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The GWOnly-Ext library assumes purely GW-driven binary evolution and uses
relatively narrow distributions of model parameters based on literature constraints
from galaxy-merger observations [e.g., 381] in addition to more detailed numerical
studies of SMBHB evolution [e.g., 382].

For each population contained in the GWOnly-Ext library, we perform a power-
law fit of the corresponding GWB spectrum across the first 14 frequency bins that
we use in our analysis. The distribution for 𝐴BHB and 𝛾BHB obtained in this way
is reported in Fig. 6.1 (blue contours) and compared to the results of a simple
power-law fit to the GWB signal in the NG15 data set (green contours). The 95%
regions of the two distributions barely overlap, signaling a mild tension between
the astrophysical prediction and the reconstructed spectral shape of the GWB. In
view of this observation, we stress again that while these simulated populations
are consistent with systematic investigations of the GWB spectrum [e.g., 382],
they assume circular orbits and GW-only driven evolution. Adopting models that
include either significant coupling between binaries and their local environments
or very high eccentricities could serve to flatten the spectral shape and lead to
SMBHB signals that better align with the observed data (see [344] for an extended
discussion). Neither of these effects, however, is expected to significantly impact
the amplitudes of the predicted spectra that, for expected values of astrophysical
parameters, remain in mild tension with observed data. As discussed in [344], in
order to reproduce the observed amplitude, SMBHB models require one or more
of the astrophysical parameters describing the binaries’ population to differ from
expected values. For the present analysis, the spectra derived from the GWOnly-Ext
library thus represent a convenient benchmark that is simple, well defined, and
easy to use. By using theory-motivated priors, our reference model constitutes
an important step toward a more realistic modeling of the GWB spectrum from
inspiraling SMBHBs that goes beyond a power-law parameterization with spectral
index 𝛾BHB = 13/3, which has been the standard reference model in much of the
PTA literature over the past decades.

The black dashed contours in Fig. 6.1 show the results of a 2D Gaussian fit to the
distribution of 𝐴BHB and 𝛾BHB values derived from the simulated SMBHB populations
(see Eq. (G.1) in Appendix G for the parameters of this Gaussian distribution). This
fitted distribution is what we adopt as a prior distribution for 𝐴BHB and 𝛾BHB in all
parts of the analysis described in this paper.
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6.5 GWB Signals from New Physics
In this section, we discuss the GWB produced by various new-physics models
and investigate each model alone and in combination with the SMBHB signal as
a possible explanation of the observed GWB signal. For each model, we give
a brief review of the mechanism behind the GWB production and discuss the
parametrization of its signal prediction. We report the reconstructed posterior
distributions of the model parameters and compute the Bayes factors against the
baseline SMBHB interpretation. In Fig. 6.2, we show a summary of these Bayes
factors; in Fig. 6.3, we present median reconstructed GWB spectra in the PTA band
for a number of select new-physics models.

As discussed in Section 6.4 and in more detail in [344], there is a mild tension be-
tween the NG15 data and the predictions of SMBHB models. The models generally
prefer a weaker and less blue-tilted ℎ2Ω𝐺𝑊 spectrum than the data. This discrepancy
presents an opportunity for new-physics models to fit the data better than the con-
ventional SMBHB signal. Eventually, this tension may grow to the point of giving
strong evidence for new physics, or it may be resolved with better modeling and more
data. Specifically, models of SMBHB evolution with a significant coupling between
binaries and their local environment could lead to a signal that better aligns with
the data and reduce the evidence for new physics. For all these reasons, we caution
against over-interpreting the observed evidence in favor of some of the new-physics
models discussed in the following sections.

Cosmological phase transitions
Model description

In the cosmological context, first-order phase transitions take place when a potential
barrier separates the true and false minima of scalar field potential.1 The phase
transition is triggered by quantum or thermal fluctuations that cause the scalar field to
tunnel through or fluctuate over the barrier, which results in the nucleation of bubbles
within which the scalar field is in the true vacuum configuration. If sufficiently large,
these bubbles expand in the surrounding plasma where the scalar field still resides
in the false vacuum. The expansion and collision of these bubbles [241, 383, 384,
385, 386, 387], together with sound waves generated in the plasma [388, 389, 390,

1The scalar field can either be an elementary field of a weakly coupled theory or correspond to
the vacuum condensate of a strongly coupled theory. Scenarios with several scalars are also possible.
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391], can source a primordial GWB (see [392, 199] for seminal work).2 For earlier
Bayesian searches for a phase transition signal in PTA data, see [8, 393].

Generally, the GWB produced during the phase transition is a superposition of the
bubble and sound-wave contributions. However, if the bubble walls interact with the
surrounding plasma, most of the energy released in the phase transition is expected to
be converted to plasma motion, causing the sound-wave contribution to dominate the
resulting GWB. An exception to this scenario is provided by models in which there
are no (or only very feeble) interactions between the bubble walls and the plasma,
or by models where the energy released in the phase transition is large enough that
the friction exerted by the plasma is not enough to stop the walls from accelerating
(runaway scenario). However, determining whether or not the runaway regime is
reached is either model dependent or affected by large theoretical uncertainties (see,
e.g., [394, 395, 396] for recent work on this topic). Therefore, in this work, we
perform two separate analyses: a sound-wave-only analysis (pt-sound), where we
assume that the runaway regime is not reached and sound waves dominate the GW
spectrum, and a bubble-collisions-only analysis (pt-bubble), where we assume that
the runaway regime is reached and bubble collisions dominate the GW spectrum.

We parameterize the GWB produced by both sound waves and bubble collisions in
a model-independent way in terms of the following phase transition parameters:

• 𝑇∗, the percolation temperature, i.e., the temperature of the universe when ∼ 34%
of its volume has been converted to the true vacuum [397]. For weak transitions,
this temperature coincides with the temperature at the time of bubble nucleation,
𝑇𝑛 ∼ 𝑇∗. Conversely, for supercooled transitions, we typically have 𝑇𝑛 ≪ 𝑇∗.
Barring the case of extremely strong transitions, 𝛼∗ ≫ 1 (see below), which we
do not consider in this work, 𝑇∗ also determines the reheating temperature after
percolation, 𝑇𝑟ℎ ∼ 𝑇∗ [397].

• 𝛼∗, the strength of the transition, i.e., the ratio of the change in the trace of the
energy–momentum tensor across the transition and the radiation energy density at
percolation [334, 398].

• 𝐻∗𝑅∗ = 𝑅∗/𝐻−1
∗ , the average bubble separation in units of the Hubble radius

at percolation, 𝐻−1
∗ . For relativistic bubble velocities, which is what we consider

2Turbulent motion of the plasma can also source GWs; however, its contribution is usually
subleading compared to the two other contributions (see the discussion in [334]). Therefore, we
ignore GWs sourced by turbulence in our analysis.
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in the following, 𝑅∗ is related to the bubble nucleation rate, 𝛽, by the relation
𝐻∗𝑅∗ = (8𝜋)1/3𝐻∗/𝛽.

In addition to the parameters 𝑇∗, 𝛼∗, and 𝐻∗𝑅∗, the GWB produced by a phase
transition also depends on the velocity of the expanding bubble walls, 𝑣𝑤. However,
deriving the precise value of this quantity is an open theoretical problem, which
depends on model-dependent quantities, such as the strength of the interactions
between the bubble walls and the SM plasma. Therefore, in our analysis, we fix the
bubble velocity to unity (i.e., the speed of light in natural units). This assumption
is well justified for strong phase transitions [399], which, realistically, are the only
ones that could lead to a detectable signal in our current data. In particular, we
fix 𝑣𝑤 = 1 for both phase transition scenarios that we are interested in, pt-sound
and pt-bubble. In the latter case, 𝑣𝑤 → 1 is automatically implied by the runaway
behavior of the phase transition; in the former case, one actually expects a subluminal
terminal velocity, 𝑣𝑤 < 1. In this sense, our decision to fix 𝑣𝑤 = 1 amounts to the
optimistic assumption that this terminal velocity is numerically close to 𝑣𝑤 = 1. A
similar approach is followed by the authors of the LISA review paper [334] who
work with 𝑣𝑤 = 0.95 throughout most of their analysis in the absence of more
detailed microphysical calculations. Finally, we point out that the parametrization
of the GWB signal in terms of 𝐻∗𝑅∗ = (8𝜋)1/3 𝑣𝑤 𝐻∗/𝛽 already absorbs a large part
of the dependence on the bubble wall velocity. The remaining 𝑣𝑤 dependence is
mostly contained in the efficiency factor 𝜅𝑠 (see below). However, in the regime of
large 𝛼∗ values, 𝛼∗ ∼ 0.3 · · · 10, which turn out to be preferred by the NG15 data
(see Fig. 6.4), this dependence is rather weak (see Fig. 13 in [400]), which justifies
again to keeping 𝑣𝑤 fixed.

The GWB spectrum sourced by bubbles and sound waves can be written in terms of
these parameters as

Ω𝑏 ( 𝑓 ) = D Ω̃𝑏

(
𝛼∗

1 + 𝛼∗

)2
(𝐻∗𝑅∗)2 S( 𝑓 / 𝑓𝑏) (6.14)

Ω𝑠 ( 𝑓 ) = D Ω̃𝑠Υ(𝜏𝑠𝑤)
(
𝜅𝑠 𝛼∗

1 + 𝛼∗

)2
(𝐻∗𝑅∗) S( 𝑓 / 𝑓𝑠) . (6.15)

Here Ω̃𝑏 = 0.0049 [401] and Ω̃𝑠 = 0.036 [402]; the efficiency factor 𝜅𝑠 = 𝛼∗/(0.73+
0.083√𝛼∗ + 𝛼∗) [400] gives the fraction of the released energy that is transferred to
plasma motion in the form of sound waves, and D accounts for the redshift of the
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Figure 6.4: Reconstructed posterior distributions for the pt-bubble (left panel) and
pt-sound model (right panel). Fig. H.1 in Appendix H shows the same plots but
with the parameter 𝑎 fixed by causality, 𝑎 = 3. Figs. H.2 and H.3 in Appendix H
show extended versions of the two plots that include the spectral shape parameters
𝑎, 𝑏, 𝑐 and the SMBHB parameters 𝐴BHB and 𝛾BHB.

GW energy density,

D =
𝜋2

90
𝑇4

0

𝑀2
𝑃𝑙
𝐻2

0
𝑔∗

(
𝑔
𝑒𝑞
∗,𝑠
𝑔∗,𝑠

)4/3

≃ 1.67 × 10−5 . (6.16)

We recall that 𝑇0 and 𝐻0 denote the photon temperature and Hubble rate today. The
degrees of freedom 𝑔∗ and 𝑔∗,𝑠 in Eq. (6.16) are evaluated at 𝑇 = 𝑇∗, and 𝑔𝑒𝑞∗,𝑠 is
the number of degrees of freedom contributing to the radiation entropy at the time
of matter–radiation equality. The production of GWs from sound waves stops after
a period 𝜏𝑠𝑤, when the plasma motion turns turbulent [397, 398, 403, 404]. In
Eq. (6.15), this effect is taken into account by the suppression factor

Υ(𝜏𝑠𝑤) = 1 − (1 + 2𝜏𝑠𝑤𝐻∗)−1/2, (6.17)

where the shock formation time scale, 𝜏𝑠𝑤, can be written in terms of the phase
transition parameters as 𝜏𝑠𝑤 ≈ 𝑅∗/𝑈̄ 𝑓 , with 𝑈̄2

𝑓
≈ 3𝜅𝑠𝛼∗/[4(1 + 𝛼∗)] [238].

The functions S𝑏,𝑠 describe the spectral shape of the GWB and are expected to peak
at the frequencies

𝑓𝑏,𝑠 ≃ 48.5 𝑛𝐻𝑧 𝑔1/2
∗

(
𝑔
𝑒𝑞
∗,𝑠
𝑔∗,𝑠

)1/3 (
𝑇∗

1𝐺𝑒𝑉

)
𝑓 ∗
𝑏,𝑠
𝑅∗

𝐻∗𝑅∗
, (6.18)
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where the values of the peak frequencies at the time of GW emission are given
by 𝑓 ∗

𝑏
= 0.58/𝑅∗ [401] and 𝑓 ∗𝑠 = 1.58/𝑅∗ [402]. In passing, we mention that

the numerical factors in these estimates may still change in the future, as our
understanding of cosmological phase transitions improves. However, at the level
of our Bayesian fit analysis, changes in these prefactors can be absorbed in the
temperature scale 𝑇∗, which in its role as an independent fit parameter only controls
the peak frequencies in Eq. (6.18). A similar argument applies to the numerical
factors in Eqs. (6.14) and (6.15): changes in these prefactors can always be absorbed
in a rescaled version of the fit parameter 𝛼∗, which only appears in the expressions
for the peak amplitudes of the GWB signal.

The shape of the spectral functions can be usually approximated with a broken power
law of the form

S(𝑥) = 1
N

(𝑎 + 𝑏)𝑐

(𝑏𝑥−𝑎/𝑐 + 𝑎𝑥𝑏/𝑐)𝑐
. (6.19)

Here 𝑎 and 𝑏 are two real and positive numbers that give the slope of the spectrum
at low and high frequencies, respectively; 𝑐 parametrizes the width of the peak. The
normalization constant, N , ensures that the logarithmic integral of S is normalized
to unity and is given by

N =

(
𝑏

𝑎

)𝑎/𝑛 (
𝑛𝑐

𝑏

)𝑐
Γ (𝑎/𝑛) Γ (𝑏/𝑛)

𝑛 Γ(𝑐) , (6.20)

where 𝑛 = (𝑎 + 𝑏)/𝑐 and Γ denotes the gamma function. While the values of the
coefficients 𝑎, 𝑏, and 𝑐 can in principle be estimated from numerical simulations, we
allow them to float within the prior ranges given in Table G.2. These prior ranges
were chosen to roughly reflect the typical uncertainties of numerical simulations
and any possible model dependency of these coefficients (see, e.g., [402, 335, 405,
406, 407, 408]).3

Results and discussion

The reconstructed posterior distributions for the parameters 𝛼∗, 𝑇∗ and 𝐻∗𝑅∗ of the
pt-sound and pt-bubble models are reported in Fig. 6.4, both for the case where
the phase transition is assumed to be the only source of GWs (blue contours) and

3Causality fixes the spectral index of the phase transition GWB signal to 𝑎 = 3 in the low-
frequency limit. However, given the simple power-law parametrization adopted in this work, double-
peak features observed in the results of numerical simulations [402, 409] can appear as a deviation
from this behavior near the peak frequency. Nonetheless, in Appendix H, we also report the results
of an analysis in which the low-frequency slope is fixed to 𝑎 = 3.
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for the scenario where we consider the superposition of the phase transition and
SMBHB signals (red contours).4 Corner plots including the posterior distributions
for the spectral shape parameters 𝑎, 𝑏, 𝑐 and SMBHB parameters 𝐴BHB and 𝛾BHB are
reported in Figs. H.2 and H.3 in Appendix H.

In all analyses, the data prefer a relatively strong and slow phase transition. Specif-
ically, for pt-bubble, we find 𝛼∗ > 1.1 (0.29) and 𝐻∗𝑅∗ > 0.28 (0.14) at the
68% (95%) credible level. When the SMBHB signal is added on top of the GWB
predicted by pt-bubble, we find 𝛼∗ > 1.0 (0.23) and 𝐻∗𝑅∗ > 0.26 (0.11) at the
68% (95%) credible level. For the pt-sound model, we find 𝛼∗ > 0.42 (0.37) and
𝐻∗𝑅∗ ∈ [0.053, 0.27] ([0.046, 0.89]) at the 68% (95%) credible level. Including the
SMBHB signal on top of the one predicted by pt-sound, we find 𝛼∗ ∈ [0.46, 5.4]
(> 0.16) and 𝐻∗𝑅∗ ∈ [0.054, 0.35] (> 0.0015) at the 68% (95%) credible level.

As can be seen in Fig. 6.3, for both phase transition models, the reconstructed
GWB spectrum tends to peak around the higher frequency bins and fit the signal
in the lower frequency bins with the left tail of the spectrum. Specifically, for the
pt-bubble model we find 𝑇∗ ∈ [0.047, 0.41] ( [0.023, 1.75]) GeV at the 68% (95%)
credible level, whereas for the pt-sound model we get 𝑇∗ ∈ [4.7, 33] ( [2.7, 93])
MeV at the 68% (95%) credible level. The shift between these 𝑇∗ intervals is
partially explained by the different numerical factors in the frequencies 𝑓 ∗𝑠 and 𝑓 ∗

𝑏

(see Eq. (6.18)). As explained below Eq. (6.18), any change in these numerical
factors can be reabsorbed in a redefinition of the fit parameter 𝑇∗.

The inclusion of the SMBHB signal, by adding power to the lowest frequency bins,
allows the 𝑇∗ posterior for the pt-sound model to extend to higher values. In this
case, we find that 𝑇∗ ∈ [4.9, 50] ( [0.8, 2 × 106]) MeV at the 68% (95%) credible
level. Here the increase in the 68% upper limit is reflected in the slight shift between
the red and blue dashed vertical lines in the 1D marginalized posterior distribution
for𝑇∗ in the right panel of Fig. 6.4. The drastic increase in the 95% upper limit, on the
other hand, is related to the fact that adding the SMBHB signal to the GWB results in
a flat plateau region in the posterior distribution of the pt-sound model parameters
where the NANOGrav signal is mostly explained by the SMBHB contribution to
the GWB. The 95% credible regions for the pt-sound+smbhb model cover much of
this plateau, which explains their large extent and noisy appearance in Fig. 6.4. For

4The noise in the 95% credible regions of the posterior distributions of the pt-sound+smbhb
model is due to the presence of an extended plateau region in the posterior distribution, which renders
the kernel density reconstruction sensitive to Poisson fluctuations in the binned MCMC data.
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the pt-bubble model, the inclusion of the SMBHB signal is less significant, and we
find 𝑇∗ ∈ [0.046, 0.46] ( [0.017, 3.27]) GeV at the 68% (95%) credible level.

The larger phase transition temperatures observed for the pt-bubble model are a
consequence of the smaller value of the peak frequency at the time of emission, 𝑓 ∗

𝑏
,

but also of the lower prior range for the low-frequency spectral index adopted for
the pt-bubble model. Indeed, a shallower low-frequency tail allows spectra with a
higher peak frequency to still produce a sizable signal in the lowest frequency bins.
In Appendix H, we report the results of the analysis in which the low-frequency
slope is set to the value predicted by causality (𝑎 = 3). In this case, as expected, the
reconstructed phase transition temperatures for the two phase transition models are
closer to each other.

The corner plots in Fig. 6.4 also illustrate that, as expected from the expression
for the peak frequency in Eq. (6.18), there is an approximately linear correlation
between log10 𝑇∗ and log10 𝐻∗𝑅∗. For 𝛼∗ ≲ 1, we instead find 𝛼∗ ∼ 1/(𝐻∗𝑅∗) for
the pt-bubble model and 𝛼2

∗ ∼ 1/(𝐻∗𝑅∗) for the pt-sound model as expected from
the factors in Eq. (6.14) and Eq. (6.15).

We also notice that, for both models, the posterior distribution for 𝑇∗ is peaked at
significantly larger values compared to what was derived in the 12.5 yr analysis [8].
This shift results from the reconstructed ℎ2Ω𝐺𝑊 spectrum being bluer than the one
derived for the common process observed in the 12.5 yr data set. As a result,
the lowest frequency bins, which were fit by the high-frequency tail of the phase
transition spectrum in the 12.5 yr analysis, are now fit by the low-frequency tail of the
spectrum. This then translates into a higher peak frequency and therefore a higher
transition temperature. Incidentally, the larger reconstructed value for the transition
temperature allows the phase transition signal to safely evade bounds from BBN and
CMB observations [410, 411] for both the pt-bubble and pt-sound models, which
constrain the phase transition parameter space at temperatures around 𝑇∗ ∼ 1 MeV.

Instead, we conclude that the reconstructed posterior distribution of𝑇∗ is compatible
with phase transition scenarios that have been discussed in the literature as a possible
source of GWs in the PTA band: (i) BSM models in which the chiral-symmetry-
breaking phase transition in quantum chromodynamics (QCD) is a strong first-order
phase transition (see, e.g., [412, 222]) and (ii) strong first-order phase transitions
in a dark sector composed of new BSM degrees of freedom (see, e.g., [413, 133]).
In view of the NG15 data, both of these options for the particle physics origin of
the phase transition signal remain viable. A third option may consist in a strongly
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supercooled first-order electroweak phase transition [414].

Finally, we report that that the phase transition models provide a better fit of the
NG15 data than the base smbhb model. The Bayes factors for pt-bubble and pt-
sound versus smbhb are B = 18.1 ± 0.6 and B = 3.7 ± 0.1, respectively, while
the Bayes factors for pt-bubble+smbhb and pt-sound+smbhb versus smbhb are
B = 12.6 ± 0.5 and B = 6.5 ± 0.3, respectively. An interesting observation in view
of these results is that adding the SMBHB contribution to the GWB signal does not
help to improve the quality of the fit for pt-bubble—in this case, we find again a
decrease in the Bayes factor going from pt-bubble to pt-bubble+smbhb because
of the larger prior volume—but it does lead to a better fit for pt-sound. This model
benefits from the additional SMBHB contribution because it can add power to the
low frequency bins in the GW spectrum that the pt-sound model alone struggles
to fit well on its own (see Fig. 6.3). The reason for this, in turn, is the prior range
for the spectral index at low frequencies, 𝑎, which can as be as low as 𝑎 = 1 for
pt-bubble, but which we require to be at least 𝑎 = 3 for pt-sound (see Table G.2).
Another consequence of this interplay between the phase transition and SMBHB
signals is that the NANOGrav signal may in fact be dominated by SMBHBs. This
possibility is realized when the pt-sound model parameters fall into the plateau
region in Fig. 6.4 (i.e., the red 95% credible regions in the right panel) and the
SMBHB parameters are close to log10 𝐴BHB ∼ −(15 · · · 14) and 𝛾BHB ∼ 3 · · · 4 (see
Fig. H.3).

6.6 Deterministic Signals from New Physics
In addition to the GWB signals discussed previously, there are several new-physics
theories that can imprint a deterministic signal, described by a time series 𝒉, in
pulsar timing data. In this section, we consider the deterministic signals induced by
DM substructures. After finding no statistically significant evidence for such signals
in our data, we report upper limits on the allowed strength of these signals.

Dark matter substructures
Model description

In the ΛCDM model, the structures we observe in the universe are seeded by
primordial curvature fluctuations generated during inflation and then imprinted
onto the DM density field. CMB observations indicate that these fluctuations
have a nearly scale-invariant power spectrum on large scales (i.e., for comoving
wavenumbers 𝑘 ≃ 𝑀𝑝𝑐−1). However, on smaller scales, various theories of DM
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leave unique fingerprints on primordial perturbations or their evolution, resulting in
different predictions for the amount of subgalactic DM substructures. Consequently,
measuring local DM substructures could be crucial in determining the correct model
of DM.

PBHs are perhaps the simplest example of such small-scale DM substructures. They
can be formed in inflationary theories that create large density fluctuations on small
scales. Several studies investigated the possibility of identifying a galactic PBH
population by analyzing the Doppler and Shapiro signals they can leave in PTA
data [150, 44, 43, 42, 9, 10]. In this analysis, we will closely follow the method
outlined by [10] to constrain the local PBH abundance.5

The Doppler signal results from the apparent shift in the pulsar spin frequency,
generated by the acceleration induced by the gravitational pull of a passing PBH.
According to the timescale of the transit event, 𝜏, the signal can be further classified
as dynamic (static) if 𝜏 is much smaller (larger) than the observation time, 𝑇obs. In
the static regime, the leading-order term of the Doppler signal that is not degenerate
with the timing model is given by [42, 9, 10]

ℎ𝐷,𝑠𝑡𝑎 (𝑡) =
𝐴𝐷,𝑠𝑡𝑎

𝑦𝑟2 𝑡3 , (6.21)

where 𝐴𝐷,𝑠𝑡𝑎 is a dimensionless parameter that can be related to the kinematic
parameters of the transiting event (see Appendix H for more details). In the dynamic
limit, and assuming that the signal is dominated by the closest transiting PBH, we
get

ℎ𝐷,dyn(𝑡) = 𝐴𝐷,dyn (𝑡 − 𝑡0) Θ(𝑡 − 𝑡0) , (6.22)

where Θ is the Heaviside step function, 𝐴𝐷,dyn is a dimensionless amplitude that
can be related to kinematic parameters of the transiting event, and 𝑡0 is the time of
closest approach (see Appendix H for more details).

The Shapiro signal refers to shifts in the TOAs caused by metric perturbations
along the photon geodesic produced by PBHs transiting along the observer’s line of
sight. In the static limit, and after subtracting away degeneracies with timing model
parameters, the leading-order term of this signal can be parameterized as

ℎ𝑆,𝑠𝑡𝑎 (𝑡) =
𝐴𝑆,𝑠𝑡𝑎

𝑦𝑟2 𝑡3 , (6.23)

5A similar approach could be applied to set constraints on the local abundance of DM subhalos.
However, we do not consider this case, since our constraints for PBHs are already quite weak.
Constraints on DM subhalos would likely be even weaker, making it a less promising target for future
PTAs.
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Figure 6.5: The black solid (dashed) lines show the posterior distributions
𝑝(log10 𝐴𝑠𝑡𝑎 |𝜹𝒕) (𝑝(log10 𝐴dyn |𝜹𝒕)) for a representative pulsar (J1909-3744). The
filled distributions show the conditional probability distributions 𝑝(log10 𝐴| 𝑓PBH) for
the same pulsar and different values of 𝑓PBH. In this plot, 𝑀 = 10−6 (10−10) 𝑀⊙ for
the Doppler static (dynamic) signal, and 𝑀 = 10𝑀⊙ for the Shapiro static signal.
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where, as for the Doppler case, 𝐴𝑆,𝑠𝑡𝑎 is a dimensionless parameter that can be
related to the kinematic parameters of the transiting event (see Appendix H for more
details). In the dynamic limit, there is no simple parametrization of the Shapiro
signal; therefore, we do not search for this signal.

Assuming a monochromatic PBH population, our goal is to derive a posterior
distribution for the PBH mass fraction, 𝑓PBH ≡ ΩPBH/Ω𝐷𝑀 , as a function of the PBH
mass, 𝑀: 𝑝( 𝑓PBH |𝜹𝒕, 𝑀). We do this as follows:

• For each given value of 𝑓PBH and 𝑀 , we use the Monte Carlo code developed
by [9] to generate a PBH population surrounding each of the pulsars in our array.
From this distribution, we derive the amplitude of the static Doppler and Shapiro
signals generated by the entire PBH population and the amplitude for the dynamic
Doppler signal generated by the closest transiting PBH. Finally, we repeat this
procedure for 2.5×103 realizations to obtain the conditional probability distributions
𝑝(log10 𝐴𝐼 | 𝑓PBH), where 𝐼 indexes pulsars in the array and 𝐴 refers to any of the
PBH signal amplitudes introduced in Eqs. (6.21), (6.22), and (6.23). In Fig. 6.5 we
report some of the distributions derived in this way.6

• One at a time, we include the PBH signals given in Eqs. (6.21), (6.22), and (6.23)
in the timing model, and we analyze our data to derive the posterior distributions
for the various PBH signal amplitudes, 𝑝(log10 𝑨|𝜹𝒕). Since the PBH signal in
different pulsars is assumed to be independent, these distributions can be factorized
as

𝑝(log10 𝑨|𝜹𝒕) =
𝑁𝑃∏
𝐼=1

𝑝(log10 𝐴𝐼 |𝜹𝒕) . (6.24)

Some of the 𝑝(log10 𝐴𝐼 |𝜹𝒕) are reported in Fig. 6.5.

• Finally, we can write

𝑝( 𝑓PBH |𝜹𝒕) =
𝑁𝑃∏
𝐼=1

∫
𝑑 log10 𝐴𝐼 𝑝( 𝑓PBH | log10 𝐴𝐼)𝑝(log10 𝐴𝐼 |𝜹𝒕)

∝
𝑁𝑃∏
𝐼=1

∫
𝑑 log10 𝐴𝐼 𝑝(log10 𝐴𝐼 | 𝑓PBH)𝑝(log10 𝐴𝐼 |𝜹𝒕) (6.25)

where, in the second step, we used Bayes theorem and assumed uniform priors
on log10 𝐴𝐼 and 𝑓PBH. More details on each of these three steps can be found in
Appendix H or in [10].

6From now on, we suppress the PBH mass, 𝑀 , in the expressions for the conditional probabilities
for the sake of notation.
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DM substructures can also possess macroscopic charges and interact with baryonic
matter via long-range Yukawa interactions. These interactions can be modeled by a
potential of the form

𝑉fifth(𝑟) = −𝛼̃𝐺𝑀𝑀𝑃

𝑟
𝑒−𝑟/𝜆 , (6.26)

where 𝑀 and 𝑀𝑃 are the masses of the DM and pulsar, respectively, 𝜆 is the range of
the interaction, and 𝛼̃ is the effective DM-barion coupling, normalized against the
gravitational coupling (also known as the Yukawa parameter). Here the DM can be
either a particle or a macroscopic object such as a nugget of asymmetric DM ([259,
260, 257, 258, 262, 261]). These Yukawa interactions can arise from an effective
Lagrangian of the form L ⊃ 𝑔𝑋𝜙𝑋̄𝑋 + 𝑔𝑛𝜙𝑛̄𝑛, where 𝑋 and 𝑛 are the effective
DM and neutron fields, and 𝜙 is a massive (but potentially light) scalar or vector
field. The effective coupling is related to the coupling constants by 𝛼̃ ≈ 𝑔𝑛𝑔𝑋

4𝜋𝐺𝑚𝑋𝑚𝑛
,

where 𝑚𝑛 is the neutron mass. These interactions are constrained to be weaker than
gravity for the mass range 𝑀 ≲ 100 GeV by the CMB, Lyman-𝛼 forest [415], and
direct detection experiments such as X-ray Quantum Calorimeter (XQC) [416] and
Cryogenic Rare Event Search with Superconducting Thermometers (CRESST) [417]
(for a review on these constraints see [418]). However, stronger-than-gravity fifth
forces are allowed if 𝑀 ≫ 100 GeV, even when 𝑋 accounts for the entirety of the
DM population.

If present, these Yukawa interactions will contribute to the pulsar’s acceleration
induced by a transiting DM substructure and contribute to the Doppler signal dis-
cussed before (the expression for the Yukawa contribution to the Doppler signal
can be found in Appendix H). Therefore, as shown by [5], following a procedure
similar to the one used to constrain the abundance of PBHs, we can constrain the
value of the Yukawa parameter, 𝛼̃ . Specifically, for each given value of 𝛼̃ and
𝑀 , we use the Monte Carlo code developed by [9] to generate a population of DM
substructure surrounding each of the pulsars in our array. From this distribution, we
derive the amplitude of the static Doppler signal generated by the closest transiting
substructure by considering the acceleration induced by both the gravitational and
Yukawa interaction. By repeating this procedure for multiple populations of DM
substructure, we derive the distribution 𝑝(log10 𝐴𝐼 |𝛼̃). By plugging this quantity
into an expression similar to the one given in Eq. (6.25), we can derive 𝑝(𝛼̃ |𝜹𝒕) and
use this quantity to constrain 𝛼̃.
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Figure 6.6: Constraints at the 95% credible level on the local PBH abundance
derived from the search for static Doppler (red shaded region) and static Shapiro
signals (blue shaded region). The solid lines interpolate between the PBH masses
simulated in this work, while the red dashed line shows an extrapolation of the
constraints to higher masses.

Results and discussion

We start by searching for PBH signals on top of a GWB that we model as a power law
with amplitude and spectral index allowed to float within the following prior ranges:
log10 𝐴𝐺𝑊𝐵 ∈ [−11,−18] and 𝛾𝐺𝑊𝐵 ∈ [0, 7]. We find no statistically significant
evidence for any of the PBH signals described in the previous section. Therefore,
we proceed to set constraints on the local PBH abundance. The prior distributions
used for the PBH signal parameters are reported in Table G.2.

The 95% upper limits on 𝑓PBH derived from the static Doppler and Shapiro signals
are reported in Fig. 6.6. The dynamic Doppler signal is too weak to produce any
detectable signal for any of the 𝑓PBH values considered. These are the first constraints
on 𝑓PBH derived using real PTA data. As expected, our constraints are much weaker
compared to the projections that were derived by [10] using mock data and including
only white noise. Indeed, as already discussed by [10], the presence of a common
red-noise process significantly reduces the sensitivity to PBH signals.

Finally, in Fig. 6.7 we show the constraints on 𝛼̃ set by NG15 data. These constraints
are compared with several other constraints that can be placed on 𝛼̃. Specifically,
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Figure 6.7: The 95% credible level for the fifth-force strength 𝛼̃ derived from
the NG15 data (red lines) is compared with constraints from NS kinetic heating
(blue lines), equivalence principle constraints (green lines), and Bullet Cluster +
equivalence principle constraints (gray line). Solid (dashed) lines are deriving
assuming 𝜆 = 1 𝑝𝑐 (𝜆 = 10−1 𝑝𝑐), while dashed-dotted (dotted) lines are derived
assuming 𝜆 = 10−2 𝑝𝑐 (𝜆 = 10−3 𝑝𝑐).

in teal we show weak equivalence principle (WEP) constraints [312, 316, 315]
(properly rescaled to take into account the finite range of the interaction [5]) derived
by considering differential acceleration of baryonic test bodies toward the galactic
center. In blue we report constraints from neutron star (NS) heating (assuming addi-
tional short-range DM-baryon interaction) induced by DM capture [5], derived from
the coldest known NS to date - PSR J2144-3933 [295]. And in gray we report the
indirect constraints that can be derived by combining the fifth-force constraints on
baryon-baryon interactions [266, 267], and Bullet Cluster constraints on DM-DM
interactions [78, 79] (see [268, 5]). We find that the NG15 constraints are compet-
itive with WEP and NS kinetic heating, especially in the 𝑀 ≳ 10−12 𝑀⊙ regime.
However, the combined constraint from the Bullet Cluster and MICROSCOPE
dominates over all other constraints in the entire mass range of interest. We note,
however, that the combined constraint is an indirect probe of the Yukawa parameter
and depends on the specific form of the light mediator coupling to DM and baryons.
Specifically, in deriving the combined constraints, we have assumed that the Yukawa
DM-baryon interaction arises from a Lagrangian of the form L ⊃ 𝑔𝑋𝜙𝑋̄𝑋 + 𝑔𝑛𝜙𝑛̄𝑛.
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In addition, if only a subcomponent of DM interacts through the long-range fifth
force, then the Bullet Cluster constraint will quickly lift, while the other constraints
only deteriorate linearly with the DM fraction.

6.7 Discussion
The analysis of the NANOGrav 15-year data set has produced the first convincing
evidence for a stochastic background of GWs in the nanohertz frequency range. The
origin of this background is still unknown. In this work, we considered various
cosmological sources and compared them to the commonly studied astrophysical
signal produced by a population of inspiraling supermassive black-hole binaries.
Specifically, we considered the signals produced by nonminimal inflation scenarios,
scalar-induced GWs, cosmological phase transitions, several cosmic-string models,
and domain walls.

For each of these models, we identified regions of the parameter space that are
compatible with the observed signal. We find that, with the exception of stable
cosmic strings of field theory origin, all new-physics models considered in this
analysis are capable of reproducing the GWB signal. Many models allow us in fact
to fit the signal better than the SMBHB reference model, which is reflected in Bayes
factors ranging from 10 to 100 (see Fig. 6.2). When the new-physics signals are
combined with the astrophysical one, we obtain comparable results. More precisely,
in several models, the addition of the SMBHB signal leads to a slight decrease of the
Bayes factor, which indicates that the SMBHB contribution does not help to improve
the quality of the fit but merely increases the prior volume. In other models, on
the other hand, such as pt-sound and dw-dr, adding the SMBHB signal on top of
the new-physics signal can lead to a slight increase of the Bayes factor, indicating
that the SMBHB signal can in fact play a dominant role in the total GW spectrum.
For all four stable-string models, we find Bayes factors between 0.1 and 1. Cosmic
superstrings, on the other hand, which are also stable but not of field theory origin,
can explain the data at a level comparable to other new-physics sources.

Despite the fact that some of the Bayes factors derived in this paper might suggest
that a purely astrophysical interpretation of the signal is disfavored by the data, we
caution against this interpretation. The Bayes factors do not account for the full
range of uncertainties in both the cosmological and astrophysical signals and are
prior dependent. It is conceivable that, as our understanding of SMBHB signals and
our noise models improve, the tension between observations and astrophysical pre-
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dictions will decrease, potentially weakening the evidence in favor of cosmological
signals.

Future data sets will improve the spectral characterization of the signal and improve
our ability to discriminate cosmological sources from the SMBHB signal. Unfor-
tunately, similarities in the spectral shape and theoretical uncertainties will make
it challenging to definitively determine the origin of the background using power
spectrum characterization alone. However, the observation of anisotropies could
eventually resolve this debate, as the expected anisotropies generated by black hole
binaries are significantly larger than those produced by most cosmological sources.
Similarly, the detection of a continuous wave from a single binary would provide
convincing evidence in favor of an astrophysical origin of the signal. Ultimately,
measurements of the GWB spectral shape and angular power spectrum may be com-
plemented by observations of its polarization content and possible deviations from
Gaussian statistics, which can again help to discriminate between an astrophysical
and a cosmological origin of the signal.

It is worth emphasizing that in all parts of our analysis we described cosmological
signals using effective parameters, e.g., 𝑇∗, 𝛼∗, and 𝐻∗𝑅∗, for the phase transition
models. Moving forward, it will be crucial to identify microscopic models that can
reproduce the values of these parameters that we found to best fit the GWB signal.
That is, in order to shed more light on the various cosmological interpretations of
the signal, we require a better understanding of how the NANOGrav signal could
possibly result from the fundamental parameters of a particle physics Lagrangian
that describes the generation of GWs in the early universe.

Along with searching for a cosmological GWB, we also analyze our data to search
for deterministic signals generated by models of ULDM and DM substructures. We
do not find significant evidence for either of these signals. Nonetheless, we are able
to place constraints on the parameters space of these models. For a wide range of
ULDM models, our constraints compete or outperform laboratory constraints in the
10−23 eV ≲ 𝑚𝜙 ≲ 10−20 eV mass window. The signal from DM substructures is
harder to detect; as a consequence, we are able to set very weak constraints on the
local abundance of these objects. Future data sets will improve our reach, but a
better characterization of the GWB will be needed to probe realistic models of DM
substructures.

The discovery of a GWB will lead to significant breakthroughs in our understanding
of cosmology and particle physics. As future PTA data sets become available,
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we will establish the origin of the GWB. Regardless of whether the signal is of
cosmological origin, we have shown how PTAs will undoubtedly contribute to
exploring new physics, either as a discovery tool or as a new way to constrain the
parameter space of BSM models.
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C h a p t e r 7

DETECTION OF MACROSCOPIC DARK MATTER WITH
GRAVITATIONAL WAVE EXPERIMENTS

This chapter is based on

[1] Yufeng Du, Vincent S. H. Lee, Yikun Wang, and Kathryn M. Zurek. “Macro-
scopic dark matter detection with gravitational wave experiments”. In: Phys.
Rev. D 108.12 (2023), p. 122003. doi: 10.1103/PhysRevD.108.122003.
arXiv: 2306.13122 [astro-ph.CO].

7.1 Introduction
Astrophysical and cosmological evidence points to the existence of dark matter
(DM), but little has been determined about its microscopic nature, with even its
possible mass consistent with observation in the large range of 10−22 eV to 104 𝑀⊙

(see Ref. [419] for a recent review). Direct detection of dark matter in terrestrial
experiments has focused on DM particles whose interactions with the Standard
Model particles are determined by the DM abundance in the Universe. Such DM
typically has mass ≲ 340 TeV [420], and has been the subject of a range of exper-
iments searching both for single particle interactions (see Ref. [421] for a review)
and collective wavelike phenomena [422, 423].

On the other hand, the direct detection of ultra-heavy dark matter (UHDM) is
relatively unexplored, with primordial black holes (PBHs) [424] being the most well-
studied DM candidate in this category. While unitarity bounds limit DM production
through thermal mechanisms above ∼ 100 TeV, UHDM can be a composite state
synthesized in a way similar to SM nuclei [425, 260, 261, 262]. Such UHDM can be
searched for by direct scattering [268] or quantum mechanical sensors [426, 427].

In this work, we consider the detection of UHDM beyond 𝑀Pl via long-range
forces, whether gravity or a new fifth force between baryons and DM. Alongside
LIGO’s success in detecting gravitational waves (GWs) from a binary black hole
merger [428], a myriad of laser interferometer experiments are either in operation
or are planned to commence operation in the near future [429]. DM transiting in
the solar system produces a weak gravitational potential, and can in principle be
observed by laser interferometers. These effects have been analyzed previously in

https://doi.org/10.1103/PhysRevD.108.122003
https://arxiv.org/abs/2306.13122
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the context of pulsar timing arrays (PTAs) [44, 103, 42, 9, 10, 5]. In addition,
laser interferometer experiments with shorter (∼ m) baselines, designed to measure
quantum gravity signature in causal diamonds (see Ref. [86] for a review), can also
be sensitive to transiting DM, which includes the past experiment Holometer [430,
431], and an upcoming experiment commissioned by Caltech and Fermilab under
the Gravity from the Quantum Entanglement of Space-Time (GQuEST) collabora-
tion [432]. These GW detectors generally operate at high frequency ≳ 10 Hz, which
corresponds to sensitivity towards DM with mass 𝑀 ≲ kg assuming that the DM
saturates the local dark matter density.

Detection of UHDM with laser interferometers has been considered elsewhere in the
literature [433, 434, 435]. Other works model GW detectors as simple accelerome-
ters and derive the sensitivity due to transiting DM from mirror acceleration [436,
437, 438, 439]. In this work, we take a more careful approach and formally derive
the gauge invariant observable on laser interferometers [7] from transiting DM. In
addition to the Doppler effect (which is usually the sole effect considered in the liter-
ature), the Shapiro delay and Einstein delay are also derived. Moreover, we discuss
the statistical formalism for detecting both single events and a stochastic background
of events. For other types of GW detectors, we give an overview of those sensitive
to transiting DM and project the sensitivity assuming an accelerometer signal.

Finally, we also consider the possibility that the DM and baryon are coupled with
an additional long-range Yukawa interaction, also known as a fifth force [440].
Such an interaction can arise very generally from an effective Lagrangian with
a scalar/vector/tensor mediator between DM and baryons and is only weakly un-
constrained by cosmology for heavy DM with force range 𝜆 ≲ 106 m, even with
stronger-than-gravity coupling. The existence of a long-range fifth force can have
profound implications in DM searches, such as the creation of DM evaporation
barriers in celestial bodies [441]. Various experiments searching for weak equiv-
alence principle violating forces have put constraints on specific models, such as
coupling through massive scalars [442, 443]. Here we consider a more general
scenario without the assumption of the specific microscopic interaction. We find
that high-frequency detectors are able to constrain the Yukawa coupling constant to
be ≲ 103 for a force range 𝜆 > 106 m and 𝑀 ∼ kg within one year of integration
time, which is roughly consistent with the findings of Refs. [438, 435].

Our paper is organized as follows. In Section 7.2, we provide a description of the
gauge invariant strain from transiting macroscopic DM and discuss various aspects
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of the signal. In Section 7.3, we provide a detailed derivation of the signal spectrum.
In Section 7.4, we derive the constraints from a stochastic signal, where individual
DM might be insufficient to produce a detector signature, but the collective behavior
from all DM passing by the detector can be detectable. In Section 7.5 we discuss
the various experiments we consider in this work and their sensitivity curves to the
signal. In Section 7.6 we place our results into context and conclude.

7.2 Description of Macroscopic Dark Matter Signals in Interferometry-Based
Gravitational Wave Detectors

Transiting DM induces a gravitational field as a metric perturbation ℎ𝜇𝜈. This
produces a strain in a GW detector, ℎ(𝑡) = Δ𝐿/𝐿 (where 𝐿 is the interferometer arm
length), which is the sum of three individual contributions

i) Doppler effect: acceleration of the mirrors

ii) Shapiro delay: change in the photon travel time within the interferometer arm

iii) Einstein delay: time dilation of the clock proper time (also known as gravita-
tional redshift)

The total strain can be written in the general form

ℎ(𝑡, n̂) = ℎDoppler(𝑡, n̂) + ℎShapiro(𝑡, n̂) + ℎEinstein(𝑡) , (7.1)

where n̂ is the unit vector along the interferometer arm. Note that the Einstein delay
does not depend on the arm orientation. A Michelson-Morley laser interferometer
consists of two arms and measures the difference between the two arms

ℎ(𝑡, n̂1, n̂2) = ℎ(𝑡, n̂1) − ℎ(𝑡, n̂2) , (7.2)

where n̂1 and n̂2 are the orientation of the two arms respectively. We quickly
see that the Einstein delay contribution vanishes for laser interferometers, but can
be present in single-arm interferometers, such as PTAs and long-baseline atom
interferometers. In the following sections, we will suppress the unit vector depen-
dence for simplicity. We emphasize that individual contributions from Eq. (7.1) are
frame-dependent, and only the sum is gauge invariant and is hence an acceptable
experimental observable [7], which will be formally derived in Sec. 7.3.

In Fig. 7.1 we show the Fourier transformed strain, ℎ̃𝑋 ( 𝑓 ) ≡
∫
𝑑𝑡 exp(−2𝜋𝑖 𝑓 𝑡)ℎ𝑋 (𝑡),

for each contribution (𝑋 = Doppler, Shapiro or Einstein) and some choices of the
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Figure 7.1: Signal spectrum |ℎ𝑋 ( 𝑓 ) |2 for Doppler effect, Shapiro delay and Einstein
delay. Here we choose 𝑀 = 10−4 kg, 𝑏 = 90 m, 𝑣 = 340 km/s, 𝑏⊥ = 30 m, 𝑣⊥ = 270
km/s, 𝐿 = 4 km, and assume a single-arm GW detector for illustration purposes.
See the discussion of different length scales in Sec. 7.2. The analytic expressions
for the signal spectrum are taken from Eq. (7.26) (Doppler), Eq. (7.32) (Shapiro),
and Eq. (7.37) (Einstein).

DM mass 𝑀 , velocity 𝑣, and impact parameter 𝑏, as specified in the figure caption.
Analytic formulae for the spectrum are derived in Sec. 7.3. We observe that the sig-
nal is a simple power law in the frequency 𝑓 when 𝑓 ≲ 𝑓𝜏, and rapidly drops to zero
as 𝑓 ≳ 𝑓𝜏, where 𝑓𝜏 ≡ 1/(2𝜋𝜏) is the characteristic frequency of a transiting DM as
given by the characteristic timescale 𝜏 ≡ 𝑏/𝑣, or in the 𝑏 ≲ 𝐿/2 limit of the Shapiro
delay, 𝜏⊥ ≡ 𝑏⊥/𝑣⊥ with 𝑏⊥ and 𝑣⊥ being the perpendicular impact parameter and
velocity with respect to the interferometer arm, respectively. In general, the signal
spectrum can be parameterized as

| ℎ̃𝑋 ( 𝑓 ) |2 = 𝐴2
𝑋

����𝑞𝑋 (
𝑓

𝑓FSR

)����2 ����𝑠𝑋 (
𝑓

𝑓𝜏

)����2 , (7.3)

where 𝑓FSR ≡ 𝑐/4𝜋𝐿 is the detector’s free-spectral-range (FSR) frequency, charac-
terizing the time needed for the photon to complete a roundtrip within the interfer-
ometer, 𝑞𝑋 (𝑥) is its associated spectral shape, and 𝑠𝑋 (𝑥) is the spectral shape of the
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DM signal. The constant coefficient 𝐴𝑋 characterizes the amplitude of the signal.
Explicit forms of each component are derived in Sec. 7.3.

Most laser interferometers designed to measure GWs such as LIGO utilize Fabry–
Pérot (FP) cavities to increase interaction time between photons and the GW. A
direct consequence is that the detector peak sensitivity is displaced from the FSR
frequency by the cavity quality factor 𝑄 ≫ 1, i.e. 𝑓peak/ 𝑓FSR ∼ 1/𝑄. As we will
derive in Sec. 7.3, the effect of finite photon travel time produces corrections to
the signal spectrum in powers of ( 𝑓 / 𝑓FSR) (Eq. (7.26), Eq. (7.32), and Eq. (7.37)),
and hence can be safely ignored for these experiments. However, experimental
apparatus designed to measure quantum gravity effects such as Holometer and
GQuEST generally do not have FP cavities, since the peak frequency of quantum
gravity signatures is naturally the frequency associated with the photon travel time
in the physical interferometer arm, i.e. the FSR frequency [7]. Hence these quantum
gravity detectors generally are most sensitive to signals that peak at 𝑓FSR, and the
photon travel time within the apparatus cannot be neglected.

Distance Scales
We first summarize various relevant distance scales for the DM signals. For Doppler
and Einstein delay, since the DM effect only acts on a point (the mirrors or the clock),
the relevant distance scale is 𝑏. For Shapiro delay, if the DM is sufficiently distant
(≳ 𝐿/2) from the detector, then the entire interferometer arm is effectively a point
and the relevant distance is still 𝑏. However, for nearby DM (𝑏 ≲ 𝐿/2), the relevant
scale for Shapiro delay is the DM’s closest encounter to any point along the arm
rather than a specific point, denoted as 𝑏⊥ (note that 𝑏⊥ ≤ 𝑏 by definition). The
local statistical distribution of 𝑏 and 𝑏⊥ of DM has been studied and derived in
the appendix of Ref. [43]. In particular, the 90th percentile minimum DM impact
parameters, 𝑏min and 𝑏⊥,min, are given by

𝑏min =

√︂
− log(1 − 𝑝)

𝜋𝑛𝑣̄𝑇
= 9 km

(
𝑀

kg

)1/2
𝑓
−1/2
DM

(
340 km/s

𝑣̄

)1/2 ( yr
𝑇

)1/2
,

𝑏⊥,min = − log(1 − 𝑝)
𝑛𝑣̄⊥𝑇𝐿

= 300 km
(
𝑀

kg

)
𝑓 −1
DM

(
km
𝐿

) (
270 km/s

𝑣̄⊥

) ( yr
𝑇

)
, (7.4)

where 𝑝 is the percentile of the minimal impact parameters (taken to be 0.9 for the
numerical estimate above), 𝑛 = 𝜌DM 𝑓DM/𝑀 is the local DM number density, with
𝜌DM = 0.46 GeV/𝑐2/cm3, 𝑓DM the DM fraction in mass 𝑀 , 𝑣̄ and 𝑣̄⊥ are the average
DM velocity and perpendicular velocity respectively, and the estimate for 𝑏⊥,min

only holds when 𝑏min < 𝐿. In Fig. 7.2 we show the distance scales from LISA,
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Figure 7.2: Relevant distance scales for measuring transiting DM signals as a
function of DM mass 𝑀 , assuming 𝑓DM = 1 and a local DM mass density of
𝜌DM = 0.46 GeV/𝑐2/cm3. The length scale for Doppler and Einstein effect is 𝑏min,
while the length scale for Shapiro is 𝑏min if 𝑏min ≳ 𝐿/2 and 𝑏⊥,min otherwise.
Note that 𝑏⊥,min depends on the length scale of the detector baseline, for which we
choose three experiments with diverse baselines (LISA, LIGO, and GQuEST) for
illustration purposes. For reference we also show a typical pulsar-Earth distance,
𝑧0 ∼ 5 kpc, which is the largest distance scale for PTA searches when 𝑀 < 102 𝑀⊙.

LIGO, and GQuEST for different choices of DM mass𝑀 . As will be discussed in the
next subsection and carefully verified in Sec. 7.3, only DM with impact parameter
𝑏 ≲ 𝐿 can potentially generate sizable signals. We see that 𝑏min and 𝑏⊥,min coincide
at ∼ 𝐿. At those lower mass ranges, the Shapiro effect is boosted by the fact that
𝑏⊥ < 𝑏, but as we will see in the next section (cf. Eq. (7.32)), the Shapiro delay in
the 𝑏 < 𝐿/2 limit suffers a suppression factor of 𝑣/𝑐. These competing factors lead
to the dominance of the Doppler effect in most experiments, but the Shapiro effect
has a slight edge for specific values of 𝐿 and 𝑀 .

For reference, we also show the typical distance between Earth and a pulsar observed
in PTA experiments, 𝑧0 ∼ 5 kpc. For 𝑀 ≲ 10𝑀⊙, which is the mass range
considered in most previous works on PTA [43, 42, 9, 10, 5], 𝑧0 is the largest
distance scale. This shows a natural mass cut-off when extending the previous PTA
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results for DM with mass 𝑀 ≳ 10𝑀⊙, as we do not expect DM to give measurable
signatures in PTAs if 𝑏 ≳ 𝑧0.

Tidal and 𝑄-Suppression
Laser interferometers are mostly sensitive to DM with impact parameter 𝑏 ≲ 𝐿. The
main reason is that if 𝑏 ≳ 𝐿, the peak frequency of the signal 𝑓𝜏 ≲ 2(𝑣/𝑐) 𝑓FSR ∼
10−3 𝑓FSR. Thus unless the 𝑄-factor is sufficiently large (𝑄 > 103), the peak DM
frequency typically falls below the sensitivity window of the GW detector. Notice
that the DM signal drops exponentially above such a signal peak frequency. In
addition, the strain due to DM with 𝑏 ≳ 𝐿 suffers suppression from two other
effects, which we will see explicitly from the derivation in Sec. 7.3.:

• Tidal suppression. Since an interferometer measures differential quantities,
when 𝑏 ≳ 𝐿, the interferometer behaves like a dipole under a gravitational
field, and thus the signal can be suppressed by a factor of 𝐿/𝑏, which is
commonly known as the tidal effect.

• 𝑄-suppression. When 𝑏 ≳ 𝐿, the signal can evade tidal suppression since
the interferometer measures the differential strain at slightly different times,
creating an envelope in Fourier space that is peaked at 𝑓FSR

1. When the signal
is evaluated at the detector peak sensitivity 𝑓𝑝𝑒𝑎𝑘 , the signal picks up a factor
of 1/𝑄.

When the signal with 𝑏 > 𝐿 is evaluated at frequency 𝑓 = 𝑓𝜏, since (1/𝑄) ( 𝑓𝜏/ 𝑓𝑝𝑒𝑎𝑘 ) =
𝑓𝜏/ 𝑓FSR = 2(𝑣/𝑐) (𝐿/𝑏), we see that the 𝑄-suppressed term is always weaker than
the tidally-suppressed term for laser interferometers as 𝑣 ≪ 𝑐. However, for some
types of interferometers, such as atom interferometers, the speed of the probe can
be much slower than the DM speed. In that case 𝑓𝜏 > 𝑓FSR is possible even when
𝑏 > 𝐿, and the 𝑄-suppressed term can dominate over the tidally-suppressed term.
We leave the detailed treatment of these types of experiments for future work.

Projected Sensitivity
To set the projected sensitivity for various current and future GW detectors, we
assume that the detector noise is stationary and Gaussian with a one-sided PSD
𝑆𝑛 ( 𝑓 ) (in units of Hz−1). The deterministic signal-to-noise ratio (SNR), assuming

1Effects of finite photon travel time in the context of ultralight DM are discussed in Ref. [444]
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optimal filtering in a matched filtering procedure, is given by [34]

SNR2
det = 4

∫ ∞

0
𝑑𝑓

| ℎ̃( 𝑓 ) |2
𝑆𝑛 ( 𝑓 )

. (7.5)

For narrowband GW detectors, the deterministic SNR can be approximated as
SNR2

det ≈ (4Δ 𝑓 /𝑆𝑛) | ℎ̃( 𝑓peak) |2, where Δ 𝑓 is the narrow frequency bandwidth.

On the signal side, the spectrum in Eq. (7.3) can be greatly simplified assuming
𝑏 < 𝐿 for the purpose of computing the SNR, which takes much simpler forms
truncated at 𝑓 = 𝑓𝜏. Here we quote the results from Sec. 7.3, and take the 𝑓 ≪ 𝑓𝜏

limit of Eq. (7.26), Eq. (7.32) and Eq. (7.37)

| ℎ̃Doppler( 𝑓 ) |2 ≈ 4
3

(
8𝐺𝑀𝐿
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)2 (
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𝑓

)4
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)
Θ( 𝑓𝜏 − 𝑓 ),

| ℎ̃Shapiro( 𝑓 ) |2 ≈
(
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)2 (
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| ℎ̃Einstein( 𝑓 ) |2 ≈
(
8𝐺𝑀
𝑐2𝑣

)2 (
𝑓FSR
𝑓

)2
sin2

(
𝑓

2 𝑓FSR

)
log2

(
𝑓

𝑓𝜏

)
Θ( 𝑓𝜏 − 𝑓 ) , (7.6)

for one-arm detectors. For two-arm interferometers | ℎ̃Doppler( 𝑓 ) |2 should pick up a
factor of 4 sin2(Δ𝜃/2), where Δ𝜃 is the angle between the two arms, | ℎ̃Shapiro( 𝑓 ) |2

does not receive a correction when 𝑏 < 𝐿/2 and Δ𝜃 ∼ O(1), and | ℎ̃Einstein( 𝑓 ) |2 = 0.
The simplified spectrum is very accurate for the lower mass range where 𝑏 < 𝐿, but
can underestimate the upper limits on 𝑓DM by ≲ 4 orders of magnitude on the higher
mass range.

The 90th percentile upper limit on 𝑓DM is derived by requiring 𝑏𝑚𝑖𝑛 > 𝐿 (in the
high mass limit), and the 10th percentile SNR to be less than two (in the low mass
limit), where the SNR is produced by DM with impact parameter given by Eq. (7.4).
Computing SNRdet in Eq. (7.5) using the simplified signal strain in Eq. (7.6), the
constraints on 𝑓DM are then roughly given by

𝑓 𝐿DM,Doppler ≲ 2 × 1016
(

kg
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) ( yr
𝑇

) (
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)2 (
1
𝑄

)4 (
𝑆𝑛

10−46 Hz−1

) (
kHz
Δ 𝑓

)
,

𝑓 𝑅DM,Doppler ≲ 80
(
𝑀

kg

) ( yr
𝑇

) (
340 km/s

𝑣̄

) (
km
𝐿

)2
,

𝑀𝐿
Shapiro ≲ 5 × 109 kg

(
1
𝑄

) (
𝑆𝑛

10−46 Hz−1

)1/2 (
kHz
Δ 𝑓

)1/2
,

𝑓 𝑅DM,Shapiro ≲ 3 × 102
(
𝑀

kg

) ( yr
𝑇

) (
270 km/s

𝑣̄⊥

) (
km
𝐿

)2
. (7.7)
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Here 𝐿 and 𝑅 denote the low and high mass regions of the parameter space, respec-
tively. Note that in the low mass regime, the SNR for the Shapiro effect becomes
independent of 𝑓DM, for which case we show the constraint on the DM mass 𝑀
instead.

In Fig. 7.3 we show the projected constraints for several existing and proposed GW
experiments based on laser interferometery, assuming 𝑇 = 1 yr of observation time.
These experiments are discussed in Sec. 7.5 in more detail, with the noise spectral
densities plotted together in Fig. 7.6. We derive the projections using a Monte Carlo
simulation to sample the DM initial conditions, compute the SNR with the exact
strain as derived and shown in Sec. 7.3, and set the SNR to two. In the Monte Carlo
simulation, the DM impact parameters are randomly sampled, properly normalized
to the local DM density, while the velocity distribution is taken to be the Standard
Halo Model (SHM), i.e. an isotropic Maxwell-Boltzmann distribution with 𝑣0 = 220
km/s, boosted by the solar system speed 𝑣0 = 220 km/s, and truncated at the escape
velocity 𝑣esc = 600 km/s. The mean DM velocities are 𝑣̄ = 340 km/s and 𝑣̄⊥ = 270
km/s [42]. The DM trajectories are then given by Eq. (7.16) and Eq. (7.17) for the
Doppler and Shapiro signal respectively (see discussion in Sec. 7.3). The constraints
are reported in terms of 𝑓DM, defined to be the fraction of DM as transiting point
masses. We find that for laser interferometers, the Doppler effect is dominant over
the Shapiro delay except for the high mass range in Holometer and GQuEST (which
appears as bumps in the constraint curves). We see that gravitational signals from
transiting DM are out-of-reach for laser interferometry-based GW detectors, even if
the DM local density is saturated. However, if there exists an additional long-range
fifth force between DM and baryonic matter, GW detectors can be sensitive to a fifth
force ∼ 103 times stronger than gravity within a year of observation, which will be
elaborated in Sec. 7.2. On the same plot, we show projections from other types of
high-frequency GW detectors, which are modeled as accelerometers for simplicity.
More specifics are explained in Sec. 7.5.

Fifth Force
In the presence of a long-range DM-baryon Yukawa force (also known as a fifth
force), the potential can be written as

Φfifth(𝑟) = −𝛼̃𝐺𝑀
𝑟
𝑒−𝑟/𝜆 , (7.8)

where 𝛼̃ is the coupling strength (normalized against gravity), and 𝜆 is the force
range. The effect of the fifth force can be estimated using the same signal spectrum
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Figure 7.3: Projected 90th-percentile upper limits on transiting DM fraction from
several existing and proposed GW detectors based on laser interferometry, assuming
𝑇 = 1 yr of observation time and local DM density 𝜌DM = 0.46 GeV/𝑐2/cm3. The
limits are derived by setting the 10th-percentile SNR defined in Eq. (7.5) to be
two, and the DM initial conditions are sampled using a Monte Carlo simulation.
Projections from other types of high-frequency GW experiments are shown with
dashed colored lines. See Sec. 7.5 for a description of the experiments.

in Eq. (7.3) but truncated at 𝑏 ≳ 𝜆 for Doppler effect (note that a fifth force coupled
to 𝐵 or 𝐵− 𝐿 induces no Shapiro delay). In Fig. 7.4 we show the resulting projected
constraints from the Monte Carlo simulation on 𝛼̃ for 𝜆 = 1 m and 𝜆 = 106 m,
alongside several existing fifth force constraints. The finite force range introduces
a cutoff mass corresponding to 𝑏min ∼ 𝜆. We observe that constraints on 𝛼̃ for
experiments with long baselines such as LISA and LIGO significantly weaken when
the force range 𝜆 drops below the interferometer length. However, experiments with
shorter baselines such as Holometer and GQuEST are less insensitive to the shorter
force range as long as 𝜆 ≳ 1 m, since the peak sensitivity of these experiments
corresponds to the 𝑏 ∼ 1 m scale.

Astrophysical constraints on the DM-baryon fifth force include weak equivalence
principle (WEP) tests, which measure the differential acceleration of two baryonic
bodies toward the galactic center. Several existing WEP analyses include perihelion
precession (Sun-Mercury) [315], binary pulsar (NS-WD) [445], lunar laser ranging
(Earth-Moon) and torsion pendula (Be-Ti, Be-Al) [446], but have been shown to
be subdominant (upper limits on 𝛼̃ > 1020) for 𝜆 < 106 m [5]. Observation of
neutron star (NS) surface temperature can also place upper limits on the Yukawa
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coupling constant since a large DM-baryon interaction leads to a high NS tempera-
ture due to kinetic heating [5]. An indirect bound on DM-baryon interaction comes
from combining [268] upper limits on DM self-interaction from bullet cluster ob-
servation [447, 448], and bounds on baryon-baryon fifth force measured in Eötvös
experiments such as MICROSCOPE [449, 450], which is shown in Fig. 7.4. While
the bullet cluster + MICROSCOPE bound is dominant over the GW detector bounds
for most mass ranges, if only a sub-component (say 1%) of DM is charged under
the fifth force, then the bullet cluster bound on DM self-interaction does not exist,
while the GW detector bounds will only deteriorate linearly with the sub-component
fraction.

7.3 Derivation of the Signal
To understand the general interferometry signals induced by a passing massive
object, we analyze the gauge invariant quantity proposed in Ref. [7] in three parts,
corresponding to the Doppler effect, the Shapiro effect, and the Einstein time delay,
as conventionally seen in the literature. Here we briefly summarize the gauge
invariant quantity and show that it can be separated into the above mentioned
effects. Then, we restrict ourselves to the scenario of a point-like transiting DM and
explicitly derive the strain for each effect.

In the presence of a general metric perturbation

𝑑𝑠2 = −(1 −H0)𝑑𝑡2 + (1 + H2)𝑑𝑟2 + 2H1𝑑𝑡𝑑𝑟..., (7.9)

the total photon travel time within a roundtrip, 𝑇𝛾, in an interferometer centering at
the origin can be computed by including effects from the clock rate change, mirror
motion, and gravitational redshift in the photon geodesic [7]:

𝑇𝛾 (𝑡) = 𝑇out
𝛾 (𝑡) + 𝑇 in

𝛾 (𝑡) = 𝛿𝜏 + 1
𝑐

∫ 𝐿+𝑟M (𝑡+ 𝐿
𝑐
,𝐿)

𝑟M (𝑡,0)
𝑑𝑟

(
1 + 1

2
Hout

(
𝑡 + 𝑟

𝑐
, 𝑟

))
− 1
𝑐

∫ 𝑟M(𝑡+ 2𝐿
𝑐
,0)

𝐿+𝑟M(𝑡+ 𝐿
𝑐
,𝐿)
𝑑𝑟

(
1 + 1

2
H in

(
𝑡 + 2𝐿 − 𝑟

𝑐
, 𝑟

))
(7.10)

where 𝑡 is the time when the photon leaves from the beamsplitter. Here Hout/in ≡
H0 + H2 ± 2H1, 𝑟𝑀 (𝑡′, 𝑟′) denotes the mirror position at time 𝑡′ with 𝑟′ being its
spatial coordinate in the absence of metric perturbations, and 𝛿𝜏 is the clock rate
change, corresponding to the Einstein time delay. Keeping the linear terms, one can
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obtain the total time delay:

𝑐𝛿𝑇𝛾 ≡ 𝑐𝑇𝛾 − 2𝐿 = 𝑐𝛿𝜏︸︷︷︸
Einstein

+ 2𝑟M

(
𝑡 + 𝐿

𝑐
, 𝐿

)
− 𝑟M (𝑡, 0) − 𝑟M

(
𝑡 + 2𝐿

𝑐
, 0

)
︸                                                    ︷︷                                                    ︸

Doppler

+ 1
2
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Shapiro

.

(7.11)

The second line shows the gravitational redshift experienced by the photon between
two unperturbed mirrors, which corresponds to the definition of the Shapiro effect
in the literature [451, 44]. The contribution from mirror motion, corresponding to
the Doppler effect, is the differential position shift between the two mirrors during
one photon roundtrip obtained by solving the mirror geodesic equations, which, to
leading order, can be written as [103]:

𝑟M(𝑡, 𝑟) ≈ 1
2

∫ 𝑡

𝑑𝑡′
∫ 𝑡′

𝑑𝑡′′𝜕𝑟H0(𝑡′′, 𝑟). (7.12)

The choice of initial conditions in the above time integrals can be subtle de-
pending on the gauge choice, so it is more convenient to work with the mir-
ror acceleration instead. The Doppler strain, which is a displacement quan-
tity, is related to the mirror acceleration, 𝑎̃( 𝑓 ), in the frequency domain via
| ℎ̃Doppler( 𝑓 ) |2 ∼ (2𝜋 𝑓 )−4𝐿−2 |𝑎̃( 𝑓 ) |2 [452], circumventing the need to specify the
mirrors’ initial conditions. This is to be contrasted with the treatment of the Doppler
effect in PTAs, where the accelerations of the pulsars / Earth are explicitly integrated
over time to obtain the shift in the pulsar phase [43, 42, 9, 10].

The total time delay in Eq. (7.11) is shown to be invariant under general gauge
transformations [7]. Equipped with this well-defined observable, we specialize to
the case of a transiting DM and compute each effect individually.

To compute the individual contributions, one has to fix a gauge. We work with the
harmonic gauge, where the metric perturbation due to a non-relativistic (𝑣 ≪ 𝑐)
point particle is given by [453]

𝑑𝑠2 = −
(
1 + 2Φ(𝑡, x)

𝑐2

)
𝑐2𝑑𝑡2 +

(
1 − 2Φ(𝑡, x)

𝑐2

)
(𝑑𝑥2 + 𝑑𝑦2 + 𝑑𝑧2) , (7.13)

where Φ is the DM Newtonian potential

Φ(𝑡, x) = − 𝐺𝑀

|x − rDM(𝑡) | , (7.14)
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with rDM(𝑡) being the DM trajectory. Assuming a straight-line motion, we can
completely specify rDM(𝑡) using six phase space parameters, {r0, v}

rDM(𝑡) = r0 + v𝑡 , (7.15)

where r0 and v are the three-dimensional DM initial position and velocity. While
Eq. (7.15) is intuitive, it is inconvenient to use in practice, since it does not explicitly
show the DM time of closest approach, when the signal is maximized. For DM
signals induced on a spatial point of the detector (i.e. Doppler effect and Einstein
delay), a more convenient parameterization of Eq. (7.14) is [43]

rDM(𝑡) = b + v(𝑡 − 𝑡0) , (7.16)

where b is the impact parameter, and 𝑡0 can be interpreted as the DM “arrival time".
Note that b is constrained to be perpendicular to v, hence the total number of phase
space parameters {b, v, 𝑡0} is still six, and for an experiment with total observation
time𝑇 , only DM with arrival time within the range −𝑇/2 ≤ 𝑡0 ≤ 𝑇/2 can be feasibly
detected. One can rewrite Eq. (7.16) as rDM(𝑡) = 𝑏(b̂ + 𝜂v̂), where 𝜂 ≡ (𝑡 − 𝑡0)/𝜏
is a dimensionless time parameter and 𝜏 ≡ 𝑏/𝑣.

Finally, if the DM signal depends on the closest distance between rDM and the
experiment baseline (i.e. Shapiro delay in the small impact parameter limit, see
Sec. 7.3), assumed to be aligned in n̂, then the most convenient parameterization of
Eq. (7.15) is

rDM(𝑡) = b⊥ + 𝑏∥n̂ + v(𝑡 − 𝑡0,⊥) , (7.17)

where b⊥ and 𝑏∥ are the perpendicular and parallel impact parameter respectively,
and 𝑡0,⊥ is the time when the DM reaches b⊥. The phase space parameters are
{b⊥, 𝑏∥ , v, 𝑡0,⊥}, where 𝑏⊥ is constrained to be perpendicular to both n̂ and v̂, giving
again a total of six independent parameters, as expected. The perpendicular DM
distance is 𝑟⊥(𝑡) ≡ |rDM(𝑡)×n̂| = 𝑏⊥

√︃
1 + 𝜂2

⊥, where 𝜂⊥ ≡ (𝑡−𝑡0,⊥)/𝜏⊥, 𝜏⊥ ≡ 𝑏⊥/𝑣⊥
and 𝑣⊥ ≡ |v × n̂|.

Doppler Effect
We start by studying the Doppler effect, focusing on a one-arm GW detector. The
Doppler effect is often the only component of transiting DM signals considered in
the literature, such as Refs. [433, 438], since it is the most dominant contribution in
most mass ranges. When unperturbed, suppose the two mirrors are located at r𝑀1

(an inner mirror close to the beamsplitter) and r𝑀2 (an exterior mirror at the edge of
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the arm), which are separated by a distance of r𝑀2 − r𝑀1 = 𝐿n̂. The laser measures
the distance between the two free-falling mirrors, with trajectories given by r𝑀1 (𝑡)
and r𝑀2 (𝑡) (with arguments), evaluated at times separated by the photon transverse
time.

ℎDoppler(𝑡) =
n̂
𝐿
·
{[

r𝑀2

(
𝑡 + 𝐿

𝑐

)
− r𝑀1 (𝑡)

]
−

[
r𝑀1

(
𝑡 + 2𝐿

𝑐

)
− r𝑀2

(
𝑡 + 𝐿

𝑐

)]}
.

(7.18)
This corresponds to the mirror motion term in Eq. (7.11). It is in fact more natural
to consider the Doppler signal as the acceleration of the mirrors caused by the
transiting DM. The strain, which is a displacement quantity, is related to the mirror
acceleration along the interferometer arm, 𝑎𝑀𝑎

(𝑡) = n̂ · 𝑑2

𝑑𝑡2
r𝑀𝑎

(𝑡) for 𝑎 = 1, 2, by

𝑑2

𝑑𝑡2
ℎDoppler(𝑡) =

1
𝐿

{[
𝑎𝑀2

(
𝑡 + 𝐿

𝑐

)
− 𝑎𝑀1 (𝑡)

]
−

[
𝑎𝑀1

(
𝑡 + 2𝐿

𝑐

)
− 𝑎𝑀2

(
𝑡 + 𝐿

𝑐

)]}
.

(7.19)
In the Newtonian limit, it is clear that the mirror accelerations are simply given by
the gravitational potential from the DM. Alternatively, to more explicitly relate to
the gauge invariant formalism developed in Ref. [7], one can also derive the mirror
acceleration using the metric perturbation in Eq. (7.13), which is a standard general
relativity calculation that we briefly review. The mirrors free fall in accordance with
the geodesic equation parameterized by the coordinate time, which is 𝑑2

𝑑𝑡2
𝑟
𝜇

𝑀𝑎
(𝑡) +

Γ
𝜇
𝜌𝜎 [𝑑𝑟 𝜌𝑀𝑎

(𝑡)/𝑑𝑡] [𝑑𝑟𝜎
𝑀𝑎

(𝑡)/𝑑𝑡] = 0. For the metric in Eq. (7.13), when the source is
moving slowly (𝑣 ≪ 𝑐), the Christoffel symbols are Γ0

0𝑖 = Γ𝑖00 = 𝜕𝑖Φ/𝑐2 and Γ𝑖
𝑗 𝑘

=

(𝛿 𝑗 𝑘𝜕𝑖Φ− 𝛿𝑖𝑘𝜕𝑗Φ− 𝛿𝑖 𝑗𝜕𝑘Φ)/𝑐2 [453]. In the limit where the mirror is moving very
slowly ( ¤𝑟𝑀𝑎

≪ 𝑐), the leading order geodesic equation is (𝑑2/𝑑𝑡2)𝑟𝑖
𝑀𝑎

(𝑡)+𝑐2Γ𝑖00 = 0,
and thus the mirror acceleration is given by the gradient of the potential

𝑎𝑀𝑎
(𝑡) = − 𝐺𝑀

Δ𝑟2
𝑀𝑎

(𝑡)
Δr̂𝑀𝑎

(𝑡) · n̂ , (7.20)

where we define the distance between the mirrors and the DM, Δr𝑀𝑎
(𝑡) ≡ r𝑀𝑎

−
rDM(𝑡). This is of course the gravitational force that the DM exerts on the mirrors.
We now take the DM trajectory in Eq. (7.16) choosing the unperturbed beamsplitter
location as the coordinate origin. Then the acceleration of the first mirror in
Eq. (7.20) is given by 𝑎𝑀1 (𝑡) = −n̂ · (𝐺𝑀/𝑏2) (b̂ + 𝜂v̂)/(1 + 𝜂2)3/2 with the Fourier
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transform

𝑎̃𝑀1 ( 𝑓 ) = −𝐺𝑀
𝑏𝑣

𝑒−2𝜋𝑖 𝑓 𝑡0𝑠𝑀1

(
𝑓

𝑓𝜏

)
𝑤𝑖𝑡ℎ 𝑠𝑀1 (𝑥) ≡ 2𝑥

[
𝐾1(𝑥)b̂ − 𝑖𝐾0(𝑥)v̂

]
· n̂ ,

(7.21)

where we separated the magnitude and the signal shape for clarity. The Doppler
acceleration has a sharp peak at 𝜂 = 0 in real space, corresponding to the DM
time of arrival as expected. In Fourier space, the Doppler acceleration has a weak
log-dependence on the frequency for 𝑓 < 𝑓𝜏, but quickly drops to zero when 𝑓 > 𝑓𝜏.
This behavior is in fact general for all three types of signals, as we will see shortly.

The acceleration of the second mirror can be computed using Eq. (7.15), Eq. (7.20)
and Δr𝑀2 (𝑡) = Δr𝑀1 (𝑡) + 𝐿n̂,

𝑎𝑀2 (𝑡) ≈


−𝐺𝑀
𝐿2 , if 𝑏 ≪ 𝐿

𝑎𝑀1 (𝑡) +
𝐺𝑀𝐿

𝑏3

[
3(b̂ · n̂ + 𝜂v̂ · n̂)2

(1 + 𝜂2)5/2 − 1
(1 + 𝜂2)3/2

]
, if 𝑏 ≫ 𝐿

.

(7.22)
The Fourier transform is given by

𝑎̃𝑀2 ( 𝑓 ) ≈


0, if 𝑏 ≪ 𝐿

𝑎̃𝑀1 ( 𝑓 ) +
(
𝐿

𝑏

)
𝑎̃tidal( 𝑓 ), if 𝑏 ≫ 𝐿

, (7.23)

where we have approximated 𝛿( 𝑓 ) ∼ 0 and

𝑎̃tidal( 𝑓 ) =
𝐺𝑀

𝑏𝑣
𝑒−2𝜋𝑖 𝑓 𝑡0𝑠tidal

(
𝑓

𝑓𝜏

)
𝑠tidal(𝑥) ≡ 2𝑥

{ [
(b̂ · n̂)2 − (v̂ · n̂)2

]
𝑥𝐾0(𝑥)

+
[(

2(b̂ · n̂)2 + (v̂ · n̂)2 − 1
)
− 2𝑖(b̂ · n̂) (v̂ · n̂)𝑥

]
𝐾1(𝑥)

}
. (7.24)

The total Doppler effect can be computed by Fourier transforming Eq. (7.19) and,
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using Eq. (7.23), we have

ℎ̃Doppler( 𝑓 ) ≈ − 2
(2𝜋 𝑓 )2𝐿

𝑒−𝑖 𝑓 /2 𝑓FSR

×



cos
(

𝑓

2 𝑓FSR

)
𝑎̃𝑀1 ( 𝑓 ), if 𝑏 ≪ 𝐿

2 sin2
(

𝑓

4 𝑓FSR

)
𝑎̃𝑀1 ( 𝑓 )︸                       ︷︷                       ︸

Q-suppressed

−
(
𝐿

𝑏

)
𝑎̃tidal( 𝑓 )︸          ︷︷          ︸

tidal-suppressed

, if 𝑏 ≫ 𝐿 . (7.25)

Eq. (7.25) is illuminating, as it shows that we can safely ignore the contribution
from the second mirror if 𝑏 ≪ 𝐿 since the acceleration of the first mirror is much
greater than the second mirror. However, if 𝑏 ≫ 𝐿, then both mirrors experience
similar acceleration from the same transiting DM. This leads to a suppression factor
of (𝐿/𝑏), known as the tidal factor as alluded to in Sec. 7.2, which is well-studied
in the literature of accelerometers [434, 438]. However, an additional piece of the
power spectrum is not suppressed by the tidal factor, but arises from the fact that a
laser interferometer measures the differential acceleration between the mirrors at a
slightly different time. Defining 𝑄 𝑓 ≡ 𝑓FSR/ 𝑓 , the Doppler signal is thus

| ℎ̃Doppler( 𝑓 ) |2 ≈
(
8𝐺𝑀𝐿
𝑐2𝑏𝑣

)2 (
𝑓FSR
𝑓

)4

×



cos2
(

𝑓

2 𝑓FSR

) ����𝑠𝑀1

(
𝑓

𝑓𝜏

)����2 , if 𝑏 ≪ 𝐿

4 sin4
(

𝑓

4 𝑓FSR

) ����𝑠𝑀1

(
𝑓

𝑓𝜏

)����2 , if 𝑏 ≫ 𝐿 and 1/𝑄 𝑓 ≫ 𝐿/𝑏(
𝐿

𝑏

)2 ����𝑠tidal

(
𝑓

𝑓𝜏

)����2 , if 𝑏 ≫ 𝐿 and 1/𝑄 𝑓 ≪ 𝐿/𝑏

,

(7.26)

where we assume that either the 𝑄-suppressed or the tidal-suppressed term domi-
nates when 𝑏 ≫ 𝐿. Previous studies in the literature [437, 438] that treated a laser in-
terferometer as a simple accelerometer have generally neglected the sines and cosines
of ∼ ( 𝑓 / 𝑓FSR) (which originate from the finite photon travel time within the inter-
ferometer), the second term of Eq. (7.26), and estimated 𝑠tidal( 𝑓 / 𝑓𝜏) ≈ 𝑠𝑀1 ( 𝑓 / 𝑓𝜏).
The treatment is well-justified for GW detectors that utilize FP cavities with 𝑄 ≫ 1
such as LIGO, but does not apply to other laser interferometers such as Holometer
and GQuEST.

The average signal shape can be computed by taking the amplitude squared of
Eq. (7.21) and Eq. (7.24) while substituting the angular factors derived in App. I
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(see Eq. (I.2) and Eq. (I.4))〈
|𝑠𝑀1 (𝑥) |2

〉
=

4
3
𝑥2 [

𝐾2
0 (𝑥) + 𝐾

2
1 (𝑥)

]
≈ 4

3

{
1, if 𝑥 ≪ 1

𝜋𝑥𝑒−2𝑥 , if 𝑥 ≫ 1〈
|𝑠tidal(𝑥) |2

〉
=

∑︁
𝑖, 𝑗 ,𝑘

𝑐𝑖 𝑗 ,𝑘𝑥
𝑘𝐾𝑖 (𝑥)𝐾 𝑗 (𝑥) ≈

16
15

{
1, if 𝑥 ≪ 1

𝜋𝑥3𝑒−2𝑥 , if 𝑥 ≫ 1
, (7.27)

where 𝑐𝑖 𝑗 ,𝑘 are some O(1) coefficients.

We observe that
〈
|𝑠tidal(𝑥) |2

〉
∼ (4/5)

〈
|𝑠𝑀1 (𝑥) |2

〉
. The spectral shapes of the tidal-

suppressed piece and the 𝑄-suppressed piece are in fact very similar to each other
(constant until 𝑓𝜏 and then exponential decay), but are suppressed by factors of
different physical origins. To set an upper limit on the DM fraction, we compute
the 10th percentile | ℎ̃Doppler( 𝑓 ) |2 using Eq. (7.26) with impact parameter given by
Eq. (7.4), while taking the mean value of the angular factors and 𝑣. In the limit where
𝑏 ≪ 𝐿, one recovers Eq. (7.6). On the other hand, if the interferometer has two arms
separated by an angle of Δ𝜃, then we replace the angular factors in Eq. (7.27) with
the two-arm angular factors in Eq. (I.5), while removing the n̂-independent term in
Eq. (7.24), giving, up to O(1) factors, a factor of 4 sin2(Δ𝜃/2) in Eq. (7.26).

Shapiro Delay
The Shapiro delay has been studied extensively for transiting DM signals in PTAs [44,
43, 42]. A pulsar located at a distance of 𝑧0 from Earth has a long baseline of 𝐿 ∼
kpc, which is greater than the DM impact parameter even for DM as heavy as 10
𝑀⊙. Hence most PTA works compute the Shapiro signal assuming 𝑧0 > 𝑏, in
which case it has been shown that the relevant impact parameter is defined relative
to the line-of-sight between Earth and the pulsar, i.e. 𝑏⊥. For laser interferometers,
however, the baseline 𝐿 can, in general, be smaller than the DM impact parameter,
𝑏. In this section, we show that if 𝑏 > 𝐿, then the relevant impact parameter is,
in fact, 𝑏 as the length scale of the detector becomes negligible and the detector
becomes “point-like", which is consistent with Ref. [44]. In the opposite limit
where 𝑏 < 𝐿, an interferometer becomes similar to the pulsar-Earth system, and the
relevant impact parameter is 𝑏⊥.

We choose the midpoint of the interferometer arm as the coordinate origin in
Eq. (7.17) . The total Shapiro delay is given by the change in the proper length
of the interferometer arm, measured over a photon roundtrip

ℎShapiro(𝑡) =
1
𝐿

[
Δ𝑙

(
𝑡 + 𝐿

2𝑐

)
+ Δ𝑙

(
𝑡 + 3𝐿

2𝑐

)]
, (7.28)
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where Δ𝑙 (𝑡) is the shift in the proper arm length, measured by a photon that passes
through the midpoint of the arm, rmid, at time 𝑡, i.e.

Δ𝑙 (𝑡) = 1
2

∫ 𝐿/2
−𝐿/2 𝑑𝑧 ℎ𝑖 𝑗

(
𝑡 + 𝑧

𝑐
, rmid + 𝑧n̂

)
𝑛𝑖𝑛 𝑗 . Under the DM gravitational field in

Eq. (7.13) and Eq. (7.14), and assuming that DM moves in a straight line with a
constant velocity according to Eq. (7.15), the motion of rDM(𝑡) within a one-way
photon travel time can be simply treated as rDM(𝑡 + (𝑧/𝑐)) = rDM(𝑡) + (𝑧/𝑐)v, and
hence [44]

Δ𝑙 (𝑡) = 𝐺𝑀

𝑐2

∫ 𝐿/2

−𝐿/2
𝑑𝑧

1√︃
(𝑧 − 𝑟∥)2 + 𝑟2

⊥

, (7.29)

where we defined the parallel and perpendicular distance of DM, relative to the
arm midpoint, 𝑟⊥ ≡ |[rDM(𝑡) − rmid] × n̂| and 𝑟∥ ≡ [rDM(𝑡) − rmid] · n̂, and used
the non-relativistic limit n̂ − (𝑣/𝑐)v̂ ≈ n̂. The integral in Eq. (7.29) can now be
computed analytically [44]

Δ𝑙 (𝑡) = 𝐺𝑀

𝑐2 log
©­­«
𝑟∥ + (𝐿/2) +

√︃
𝑟2
⊥ + [𝑟∥ + (𝐿/2)]2

𝑟∥ − (𝐿/2) +
√︃
𝑟2
⊥ + [𝑟∥ − (𝐿/2)]2

ª®®¬ ≈ 𝐺𝑀

𝑐2

×


log

(
𝐿2

𝑟2
⊥

)
, if

√︃
𝑟2
⊥ + 𝑟2

∥ ≲ 𝐿/2

𝐿√︃
𝑟2
⊥ + 𝑟2

∥

, if
√︃
𝑟2
⊥ + 𝑟2

∥ ≳ 𝐿/2
, (7.30)

taking a simpler form in the two different limits. We observe that when 𝑏 ≳ 𝐿/2,
then the Shapiro delay depends on the magnitude of b, similar to the Doppler effect.
However when 𝑏 ≲ 𝐿/2, the effect only depends on the perpendicular component
and has a weak log boost from the small distance (as opposed to the Doppler case).
Using the parameterization in Eqs. (7.16)-(7.17) for the upper and lower entries of
Eq. (7.30) and performing a Fourier transform, we find 2

Δ𝑙 ( 𝑓 ) ≈ 𝐺𝑀

𝑐2


1
𝑓
𝑒−2𝜋𝑖 𝑓 𝑡0,⊥𝑒− 𝑓 / 𝑓𝜏⊥ , if 𝑏 ≲ 𝐿/2

2𝐿
𝑣
𝑒−2𝜋𝑖 𝑓 𝑡0𝐾0

(
𝑓

𝑓𝜏

)
, if 𝑏 ≳ 𝐿/2

. (7.31)

2Useful Fourier transform integral:
∫ ∞
−∞ 𝑑𝑥𝑒

−𝑖𝑘𝑥 log
(

1
𝛼𝑥2+𝛽𝑥+𝛾

)
= 2𝜋

|𝑘 | 𝑒
𝑖𝑘

𝛽

2𝛼 𝑒−
√
−Δ

2𝛼 |𝑘 | , where
𝛼, 𝛽 𝛾 ∈ R, 𝛼 > 0, 𝛾 > 0, and Δ ≡ 𝛽2 − 4𝛼𝛾 < 0. We dropped all delta functions as usual.
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We then Fourier transform the total Shapiro delay in Eq. (7.28)

| ℎ̃Shapiro( 𝑓 ) |2 =

(
8𝜋𝐺𝑀
𝑐3

)2
cos2

(
𝑓

4 𝑓FSR

) 
(
𝑓FSR
𝑓

)2
𝑒−2 𝑓 / 𝑓𝜏⊥ , if 𝑏 ≲ 𝐿/2( 𝑐

2𝜋𝑣

)2
𝐾2

0

(
𝑓

𝑓𝜏

)
, if 𝑏 ≳ 𝐿/2

.

(7.32)

We emphasize that Eq. (7.32) should be read with caution. The two entries of
Eq. (7.32) are decided by the relative magnitude between 𝑏 and 𝐿/2. If 𝑏 ≳ 𝐿/2,
then the Shapiro signal is cut off at the frequency corresponding to 𝑏. Otherwise if
𝑏 ≲ 𝐿/2, then the Shapiro spectrum is suppressed by factors of 𝑣/𝑐 compared to
the Doppler spectrum in Eq. (7.26), and is cut off at the frequency corresponding to
𝑏⊥.

In a two-arm interferometer system with an O(1) (in radians) arm separation angle,
the total Shapiro strain is the difference between individual arm strains. If 𝑏 ≪ 𝐿/2,
then the Shapiro delay for one of the arms should be much stronger than that of the
second arm (it is statistically unlikely that the DM with the smallest 𝑏⊥,1 for one
arm also has a comparably small 𝑏⊥,2 relative to the second arm unless the angle
between the two arms is very small, which is in general not true for any realistic
GW detector). Otherwise, if 𝑏 ≫ 𝐿/2, then the two interferometer arms effectively
become two point detectors oriented towards directions n̂1 and n̂2, and the total strain
suffers a tidal suppression factor of 𝐿/𝑏, similar to the Doppler effect in Eq. (7.22).
Using Eq. (7.30), we find

Δ𝑙 (𝑡, n̂1) − Δ𝑙 (𝑡, n̂2) ≈
𝐺𝑀

𝑐2


log

(
𝐿2

|rDM(𝑡) × n̂1 |2

)
, if 𝑏 ≲ 𝐿/2

𝐿2

2𝑟2
DM(𝑡)

r̂DM(𝑡) · (n̂1 − n̂2), if 𝑏 ≳ 𝐿/2
. (7.33)

Taking the Fourier transform of Eq. (7.33) using Eq. (7.17) and Eq. (7.28), the total
Shapiro strain is

| ℎ̃Shapiro( 𝑓 ) |2 =

(
8𝜋𝐺𝑀
𝑐3

)2
cos2

(
𝑓

4 𝑓FSR

)

×


(
𝑓FSR
𝑓

)2
𝑒−2 𝑓 / 𝑓𝜏⊥ , if 𝑏 ≲ 𝐿/2(

𝐿

8𝑏

)2 ( 𝑐

2𝜋𝑣

)2
����𝑠𝑀1

(
𝑓

𝑓𝜏

)����2 , if 𝑏 ≳ 𝐿/2
, (7.34)
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where 𝑠𝑀1 (𝑥) is defined in Eq. (7.21), but with n̂ replaced by n̂1 − n̂2. Comparing
Eq. (7.34) with Eq. (7.32), we see that the Shapiro spectrum for a two-arm inter-
ferometer is identical to that of a one-arm detector for 𝑏 ≲ 𝐿/2, but picks up a
suppression factor of 4 sin2(Δ𝜃/2) (𝐿/8𝑏)2 when 𝑏 ≳ 𝐿/2.

Einstein Delay
The gravitational effect due to the Einstein delay is given by the difference of the
clock proper time 𝜏 at the beamsplitter over a photon roundtrip time

ℎEinstein(𝑡) =
𝑐

𝐿

[
𝜏

(
𝑡 + 2𝐿

𝑐

)
− 𝜏(𝑡)

]
. (7.35)

The proper and coordinate times are related by 𝑑𝜏(𝑡)/𝑑𝑡 = 1 − (1/2)ℎ00, so that
using Eq. (7.13) and Eq. (7.35), we write

𝑑

𝑑𝑡
ℎEinstein(𝑡) =

1
𝑐𝐿

[
Φ

(
𝑡 + 2𝐿

𝑐

)
−Φ(𝑡)

]
, (7.36)

where the DM gravitational potential Φ is evaluated at the beamsplitter. Putting the
DM trajectory in Eq. (7.15) with the beamsplitter location chosen as the coordinate
origin into the potential, one finds Φ(𝑡) = −(𝐺𝑀/𝑏) (1 + 𝜂2)−1/2 with the Fourier
transform Φ̃( 𝑓 ) = −(2𝐺𝑀/𝑣)𝑒−2𝜋𝑖 𝑓 𝑡0𝐾0( 𝑓 / 𝑓𝜏), giving the Einstein strain

| ℎ̃Einstein( 𝑓 ) |2 =

(
8𝐺𝑀
𝑐2𝑣

)2 (
𝑓FSR
𝑓

)2
sin2

(
𝑓

2 𝑓FSR

)
𝐾2

0

(
𝑓

𝑓𝜏

)
. (7.37)

Note that the impact parameter only enters the spectrum through the peak frequency
𝑓peak, but not the amplitude.

If the interferometer has two arms, then the Einstein delay contribution cancels
between the two interferometer arms, and thus the effect vanishes.

7.4 Stochastic Signal
In the small DM mass limit, it is possible that each individual DM is not sufficient
to produce a sizable signal, but the collective effect due to all DM passing by
the detector might be large enough to be measured. In this limit, DM behaves
collectively like a stochastic background. The total strain ℎ(𝑡) is given by summing
over strains ℎ𝑎 (𝑡) from all individual DM:

ℎ(𝑡) =
∑︁
𝑎

ℎ𝑎 (𝑡) . (7.38)

Correlations from the stochastic DM field have been previously studied in Ref. [42]
in the context of PTAs.
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Doppler Effect
For a given v̂, the differential volume of an element in a cylinder is 𝑑𝑉 = 𝑣𝑏𝑑𝑏𝑑𝜑𝑑𝑡0,
where 𝜑 is the polar angle of b on the plane perpendicular to v. We have assumed
monochromatic DM masses. Using the parameterization in Eq. (7.16), the auto-
correlation function of ℎ̃Doppler( 𝑓 ) is then given by integrating over the volume

⟨ℎ̃( 𝑓 ) ℎ̃∗( 𝑓 ′)⟩ = 𝑛

4𝜋

∫ ∞

𝑏min

𝑏𝑑𝑏

∫ 2𝜋

0
𝑑𝜑

∫ 𝑇/2

−𝑇/2
𝑑𝑡0

×
∫ 𝑣esc

0
𝑣 𝑓𝑣 (𝑣)𝑑𝑣

∫ 𝜋

0
sin 𝜃𝑑𝜃

∫ 2𝜋

0
𝑑𝜙 ℎ̃( 𝑓 ) ℎ̃∗( 𝑓 ′) , (7.39)

where 𝑓𝑣 (𝑣) is the Maxwell-Boltzmann distribution for the velocity, and 𝜃 and 𝜙
are the polar and azimuthal angles for v respectively. The factor of 1/(4𝜋) comes
from normalization of the angular integration over 𝜃 and 𝜙. Note that we also set
the lower limit of the integral over 𝑏 to 𝑏min as defined in the RHS of Eq. (7.4).
The integral is formally divergent if we allow 𝑏 → 0, which is a case of statistical
outliers skewing the mean of a distribution. Following the treatment of Ref. [42]
in the context of PTAs, the divergence can be regulated by truncating the integral
at the 90th-percentile of minimum impact parameter among DM particles, which is
insensitive to statistical outliers.

Since the DM trajectory in Eq. (7.15) is a function of 𝑡 − 𝑡0, the strain in Fourier
space ℎ̃( 𝑓 ) can only depend on 𝑡0 through a phase factor exp(−2𝜋𝑖 𝑓 𝑡0). Integrating
over 𝑡0 thus evaluates to a delta function in 𝑓 − 𝑓 ′ in the limit when 𝑓 𝑇 ≫ 1:
⟨ℎ̃Doppler( 𝑓 ) ℎ̃Doppler( 𝑓 ′)⟩ = 𝑆Doppler( 𝑓 )𝛿( 𝑓 − 𝑓 ′), indicating that the stochastic signal
is stationary when the observation time is sufficiently large. The strain power
spectrum reads

𝑆Doppler( 𝑓 ) =
𝑛

4𝜋

∫ ∞

𝑏min

𝑏𝑑𝑏

∫ 2𝜋

0
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∫ 𝑣esc

0
𝑣 𝑓𝑣 (𝑣)𝑑𝑣

∫ 𝜋

0
sin 𝜃𝑑𝜃

∫ 2𝜋

0
𝑑𝜙 | ℎ̃( 𝑓 ) |2 .

(7.40)
Anticipating that the signal’s dependence on the velocity is going to be weak, we
set the velocity to 𝑣̄, while integrating over angular factors of b̂ · n̂ and v̂ · n̂ using
Eq. (I.2). We show the analytic form for the Doppler effect and extend the spectrum
result for 𝑏 < 𝐿 to 𝑏 → ∞, since we expect the detector to only be sensitive to
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𝑏 < 𝐿. Then integrating Eq. (7.40) with Eq. (7.26), we find 3

𝑆Doppler( 𝑓 ) = 𝐵Doppler

(
𝑓FSR
𝑓

)4
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(
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) (
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)
𝐾0

(
𝑓

𝑓𝜏min

)
𝐾1

(
𝑓

𝑓𝜏min

)
,

(7.41)

where 𝑓𝜏min ≡ 𝑣/(2𝜋𝑏min), and

𝐵Doppler ≡
128𝜋𝐿2𝐺2𝑀𝜌DM 𝑓DM

3𝑐4𝑣̄

= 2 × 10−73 Hz−1
(
𝑀

kg

)
𝑓DM

(
340 km/s

𝑣̄

) (
𝐿

km

)2
. (7.42)

For stationary signals, considering the cross-correlation between two detectors and
the optimal matched filtering, the stochastic SNR is given by

SNR2
X,stoc = 2𝑇

∫ ∞

0
𝑑𝑓 Γ2( 𝑓 )

𝑆2
𝑋
( 𝑓 )

𝑆𝑛1 ( 𝑓 )𝑆𝑛2 ( 𝑓 )
, (7.43)

where 𝑆𝑛1,2 ( 𝑓 ) are the one-sided auto-correlated PSD of the two detectors 1, 2,
Γ( 𝑓 ) is the cross-correlation function across detectors, and 𝑋 can correspond to
the Doppler, Shapiro or Einstein effect. For simplicity, we assume Γ( 𝑓 ) ∼ 1,
i.e. the two detectors are co-located and aligned without correlated noise, and
𝑆𝑛1 ( 𝑓 ) = 𝑆𝑛2 ( 𝑓 ) = 𝑆𝑛 ( 𝑓 ). Note that if there is only one detector, then due to the
random nature of both the signal and the noise, no matched filtering can be applied.

In the first panel of Fig. 7.5, we show constraints on the DM fraction 𝑓𝐷𝑀 for
LIGO, LISA, GQuEST, and Holometer, which all have two detectors. For the mass
range and experimental parameters considered in this work, the Doppler stochastic
reach is subdominant compared to the deterministic reach, which is consistent
with the conclusion of Ref. [433]. This can be explicitly shown by estimating the
SNR assuming both the signal and the noise are constant within the experiment’s
frequency window Δ 𝑓 , using Eqs. (7.26) and (7.41), one observes

SNR,Doppler

(SNR𝑑𝑒𝑡,Doppler)2 ≈ 1√︁
𝑇Δ 𝑓

𝐾0(𝑥)𝐾1(𝑥)
𝑥 [𝐾0(𝑥)2 + 𝐾1(𝑥)2]

����
𝑥= 𝑓𝑝𝑒𝑎𝑘/ 𝑓𝜏

≈ − 1√︁
𝑇Δ 𝑓

log( 𝑓𝑝𝑒𝑎𝑘/ 𝑓𝜏) , (7.44)

in the limit 𝑓𝑝𝑒𝑎𝑘 ≪ 𝑓𝜏, showing that the stochastic constraint grows logarithmically
for lower masses. As for all GW detectors considered in this work, including

3Useful integral:
∫ ∞
𝑎
𝑥 [𝐾2

0 (𝑥) + 𝐾
2
1 (𝑥)]𝑑𝑥 = 𝑎𝐾0 (𝑎)𝐾1 (𝑎) for 𝑎 > 0.
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LIGO, LISA, GQuEST and Holometer, 𝑇Δ 𝑓 ≫ 1, and hence the stochastic limit is
subdominant for the whole mass range as shown in Fig. 7.5. Notice that for PTAs,
for example, 𝑇Δ 𝑓 ∼ 1 thus the stochastic constraint can take over at a relevant mass
range [42].

Shapiro Delay
The stochastic Shapiro delay can be derived in a similar manner. Recall from
Sec. 7.3 that in the 𝑏 ≪ 𝐿 limit, the impact parameter relative to the interferometer
arm sets the size of the signal. The volume of a differential element is given by
𝑑𝑉 = 𝑣⊥𝑑𝑏⊥𝑑𝑏∥𝑑𝑡0,⊥ [42]. The stochastic Shapiro power spectrum is thus given by
integrating the Shapiro strain in Eq. (7.32) with the parameterization in Eq. (7.17)
over volume

𝑆Shapiro( 𝑓 ) =
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4𝜋

∫ ∞
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0
𝑑𝜙 | ℎ̃Shapiro( 𝑓 ) |2 , (7.45)

where we again assume that v points at a direction of (𝜃, 𝜙), 𝑓𝑣⊥ (𝑣⊥) is the perpen-
dicular (relative to the interferometer arm) velocity distribution, and we performed
the integral over 𝑡0,⊥ assuming 𝑓 𝑇 ≫ 1. Anticipating that DM with 𝑏⊥ < 𝐿/2 will
dominate the stochastic signal, we perform the integral in Eq. (7.45) using the upper
entry of Eq. (7.32) and find

𝑆Shapiro( 𝑓 ) = 𝐵Shapiro
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(7.46)

where
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, (7.47)

and we substituted the mean value, 𝑣̄⊥, of the velocity distribution, and introduced
a cut-off requiring 𝑏⊥,min < 𝐿 to ensure that there are non-zero number of DM with
𝑏⊥ < 𝐿.

The projected reach of the stochastic Shapiro signal is shown in the second panel
of Fig. 7.5, and is derived by setting the SNR in Eq. (7.43) with the spectrum in
Eqs. (7.46)-(7.47) to be two. Unlike the Doppler effect, the stochastic Shapiro signal
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can actually have better reach than the deterministic signal in the lower DM mass
range, such as 𝑀 ≲ 106 kg for LIGO, for example. This can be traced to the fact
that the Shapiro deterministic signal amplitude is independent of the DM mass once
the DM impact parameter becomes less than 𝐿. However, the stochastic Shapiro
spectrum scales lienarly with the DM mass, as evident in Eq. (7.47), resulting in a
larger SNR for the relevant mass range.

The stochastic signal derived in this section in general agrees with the results in
Ref. [42] studied in the context of PTAs. In particular, the stochastic spectrum
in Eq. (7.42) and Eq. (7.46) have the same scaling relations of 𝑀 , 𝑓DM, 𝜌DM,
𝑣̄, 𝑣̄⊥ and 𝐿 (up to the definition of the observable) as the spectrum derived in
Ref. [42]. A notable difference is that Ref. [42] presented the stochastic signal as
a non-stationary process, with a power spectrum that is a function of both 𝑓 and
𝑓 ′, as opposed to the stationary signal we derived in this section, where the power
spectrum is only a function of 𝑓 , similar to a stochastic GW background [329].
As discussed in Sec. 7.4, one can explicitly demonstrate that the stochastic DM
signal is stationary by integrating over the DM arrival time, 𝑡0 (Doppler) or 𝑡0,⊥
(Shapiro), over the experimental time 𝑇 . In the limit 𝑓 𝑇 ≫ 1, which holds for all
GW detectors considered in this work with 𝑇 = 1 year, one finds that ⟨ℎ̃( 𝑓 ) ℎ̃( 𝑓 ′)⟩ is
proportional to 𝛿( 𝑓 − 𝑓 ′), which is the definition of a stationary process. Physically,
this demonstrates that for a sufficiently long observation time, DM can arrive at any
time during the experiment, which is a uniformly random variable, and hence the
signal produced is stationary in nature.

7.5 Gravitational Wave Experiments and Noise Curves
In this section, we discuss various types of GW experiments that are sensitive to
transiting macroscopic DM signals, with a focus on laser interferometers.

A collection of noise spectral densities for such experiments can be found in Fig. 7.6.

Laser Interferometers
Gravitational waves were first detected by LIGO and Virgo [428]. Since then,
laser interferometry laboratories, both ongoing and proposed, have expanded their
coverage to encompass a broader range of signal frequencies. At higher frequencies
(≳ 𝐻𝑧), the advanced LIGO and Virgo are to be joined by Cosmic Explorer [454],
Einstein Telescope [455, 456] and proposals such as NEMO [457] and LIGO Voyager
[458]. On the other hand, LISA [459] is proposed to operate at lower frequencies
below Hz. At the same time, experimental apparatus proposed mainly to detect
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quantum gravity effects, such as Holometer [431] and GQuEST [432], are sensitive
to signals at high frequencies in the MHz range.

The peak sensitivity frequency is typically set by the arm length 𝐿 and the quality
factor 𝑄 of the FP cavity (if any), 𝑓𝑝𝑒𝑎𝑘 ≃ 𝑐/(4𝜋𝑄𝐿). Throughout the paper,
for laser interferometers, we consider the sensitivity as obtained by a two-arm
configuration. The angle between the two arms is given by the proposed detector
geometry. Throughout this work, We have used the published noise curves for
all experiments as shown in Fig. 7.6 unless otherwise specified. Holometer and
GQuEST are in principle narrowband detectors.

Other Types of Gravitational Wave Detectors
Optically levitated sensors with tunable frequencies have been proposed to detect
GWs at high frequencies in the∼ [10, 300] 𝑘𝐻𝑧 range [460, 461]. Such a device con-
sists of a nano- or micro-scale sensor (sphere or disk) levitated optically and placed
at an antinode of a tunable trapping laser inside an FP cavity. An interferometer-like
configuration [461] further increases the sensitivity by noise cancellation between
its two arms. A one-meter prototype of the detector is under construction. The
optically levitated sensor is a resonant detector, where the motion of a dielectric
nanoparticle suspended at an antinode of the cavity can be detected. The operat-
ing frequency is determined by the tunable trapping frequency of the nanoparticle:
𝜔2

0 = 1
𝑚𝑠

𝑑2𝑈
𝑑𝑥2 |𝑥=𝑥0 , where 𝑚𝑠 is the nanoparticle mass, 𝑈 is the optical potential, and

𝑥0 is the antinode location. The dominant noise source is from the Brownian thermal
motion of photon scattering from the nanoparticle, which is suppressed at higher
frequencies and cryogenic temperatures. For such resonant sensors, we assume the
TM to be free over the interaction timescale, so the characteristic frequency of the
signal is larger than the trapping frequency, 2𝜋 𝑓𝜏 ≳ 𝜔0.

In a local Lorentz frame with the inner mirror at the origin, we treat both the levitated
object and the end mirror as free objects within one measurement, initially at 𝑥𝑠
and ℓ𝑚. The relevant quantity measured is the displacement of the levitated object
from the antinode of the trapping laser, Δ𝑥 = 𝛿𝑥min − 𝛿𝑥𝑠 = 𝛿ℓ𝑚 − 𝛿𝑥𝑠. A detector
specialized to probe GW signals would benefit from having 𝑥𝑠 as small as possible
[460], so here we also work in the limit where 𝑥𝑠 ≪ ℓ𝑚, treating the device as an
interferometer with two mirrors separated by a distance of ∼ ℓ𝑚. We use the strain
sensitivity quoted in Ref. [461] to calculate the SNR, without a careful treatment
of the cavity response. The cavity response might boost the signal on the higher
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frequency end up to an order of magnitude (for the 100 m stack detector). In addition
to the classical Doppler acceleration, we also consider the Shapiro effect, which
can displace the minimum of the optical potential and hence the sensor location.
We estimate the Shapiro strain using formulas derived for laser interferometers in
Sec. 7.3. We emphasize that the interferometry treatment here is an approximation,
where the effects are not gauge invariant in the setup of an optically levitated sensor
with a trapping potential. We leave a more detailed calculation for future work.

We note that there are experiments with standalone levitated or trapped test masses
not included in this paper [462, 463, 464, 465, 466, 467, 468, 469]. They either
operate at lower frequencies comparable to laser interferometers or with lower
acceleration sensitivities than the apparatus considered. Another recent proposal
involving an array of levitated mechanical sensors and the projected sensitivity to
composite DM can be found in Ref. [470].

Resonant mass detectors have their origins at the beginning of experimental GW
physics, i.e. the Weber bar experiment. In general, resonant vibration modes of the
test mass as induced by an external force can be sensed through certain read-out
systems. Along one direction of the test mass, considering the fundamental mode,
the strain sensitivity of such detectors can be converted to acceleration sensitivity
according to ℎ̃( 𝑓 ) ∼ 𝑎̃( 𝑓 )/(8𝐿 𝑓 2), where 𝐿 is the length of the resonant mass in
such a direction [34]. To estimate the DM sensitivity, we consider the classical
Doppler acceleration as given by Eq. (7.21) projected onto one direction. We
acknowledge that the exact signal induced by the DM’s potential requires a careful
calculation that can be done using the metric perturbation formalism. However, as
the DM sensitivity for such experiments is suppressed, as shown in Fig. 7.3 and
7.4, we do not attempt to refine the calculation further. Spherical resonant mass
experiments, such as Mini-GRAIL [471] and Schenberg antenna [472], transform
excited mechanical modes to electrical signals. Such experiments operate at ∼ kHz
frequencies, and the strain sensitivities are typically less than laser interferometers
operating at the same frequency. At the same time, a new type of resonant mass
detectors, the Bulk Acoustic Wave experiment, is designed to operate at higher
frequencies in the MHz - GHz range [473, 474]. These experiments generally sense
the acoustic waves inside a piezoelectric material along a certain direction (e.g., for
a cylinder, along the length) through the SQUID readout. There is a broad range of
operating frequencies depending on the acoustic eigenmode. The strain sensitivity
is improved with a large mode quality factor and cryogenic temperatures. Note that
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such experiments employ higher resonance modes to achieve broadband sensitivity.
To convert the strain sensitivity, we have assumed the fundamental mode. Notice
that at a similar frequency range, membrane optomechanical experiments based
on optical cavities (see e.g. [475]) can reach a similar acceleration sensitivity of
∼ 10−5 𝑚/𝑠2/

√
𝐻𝑧. We do not make explicit projections for such experiments and

refer the readers to the BAW projection as a reference.

Long-baseline atom interferometers are another venue for both GW and DM
direct detection. There has been a growing interest in such detectors and active
proposals. Long-baseline atom interferometers consisting of two spatially separated
single atom interferometers are proposed to close the mid-band window between the
low-frequency LISA (∼ 0.01 Hz) and ground-based laser interferometers (∼ 1 Hz).
The operation frequency is limited by gravity gradient noise on the lower end and
the rate of relaunching cold atoms on the higher end. With improved noise models
and space-based designs, some missions can cover lower frequency range even
beyond LISA (see Ref. [476] for a review). A long-baseline atom interferometer,
such as Magis [477, 478], AEDGE [479], or AION [480], resembles a single-arm
laser interferometer that can perform differential phase measurements at any given
time and benefit from noise cancellation between the two devices. Although a
single atom interferometer can also serve as an accelerometer, the tidal effect is
determined by the rather small wavepacket separation, typically ≲ 1 m, that would
generally suppress the sensitivity. Here we briefly discuss the prospects for long-
baseline atom interferometers and leave detailed studies for both types of proposals
for future work. A long-baseline atom interferometer precisely measures the light
traveling time between the two atom interferometers distantly separated by a baseline
length 𝐿. The two atom interferometers are run by a common laser. The laser drives
the atomic transition between the ground and excited states and transfers 2𝜋ℏ/𝜆
momentum to the atoms at each pulse, where 𝜆 is the laser wavelength. Laser
pulses applied at different times serve as “mirrors" and the “beamsplitter" for the
interferometer. The phase of the interference fringe at each atom interferometer
depends both on the laser phase and the phase accumulated by the atoms themselves.
The pair of atom interferometers serve as both precise inertia and laser frequency
reference. For the single-photon transition scheme, the relative interference phase
between the two atom interferometers is given by Δ𝜙 = 𝜔𝐴 (2𝐿/𝑐), where 𝜔𝐴 is the
atomic transition frequency, and the baseline length determines the light traveling
time. Thus, naively, the strain on the baseline length ℎ(𝑡) ∼ Δ𝐿/𝐿, as induced by
the transiting DM interacting with the atom cloud and the traversing photon through
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the Newtonian potential, can be sensed by such detectors. However, the exact phase
shift as induced by the transiting DM depends on the internal mechanism of the atom
interferometry, as well as how the photon propagates with space-time fluctuations.
For example, the Shapiro effect can be dominant in the high DM mass regime, and
cannot be captured by the classical accelerometer projection based on the Doppler
effect. The strain sensitivity of proposed long-baseline atom interferometers can
be comparable to laser interferometers. Thus, we postpone the study of the gauge
invariant phase calculation to future work.

Pulsar timing arrays have been studied as powerful and complementary probes
to DM subhalos at small masses (𝑀 < 102𝑀⊙) [44, 103, 104, 43, 42, 9]. In this
work, we appropriately extend the results from [9] to lower masses using analytic
results, assuming observations of 200 pulsars across 20 years of observational time,
2 weeks of cadence, and 50 ns of white noise in the timing data, which corresponds
to an estimated scenario of the Square Kilometer Array (SKA) experiment [155].

7.6 Discussion and Conclusion
In this paper, we consider the effects of transiting macroscopic dark matter on
GW experiments, particularly laser interferometers. Gravitational interaction and
an additional Yukawa interaction are both considered. We applied the formal
gauge invariant observable for laser interferometers to the case of transiting DM.
Importantly, in addition to the Dopper effect, which is the only effect considered in
existing literature, the Shapiro effect and Einstein delay may also be present for a
generic interferometer design. The Shapiro effect is the change in the messenger
travel time along the interferometer arm. The Einstein delay is the time dilation of
the clock’s proper time, which cancels between arms for a two or multi-baseline
interferometer. We show that, for most operating and proposed laser interferometers,
the Shapiro effect is subdominant compared to the Doppler effect. However, we also
observe that depending on the experimental parameters, the Shapiro effect may take
over for higher DM masses.

In general, GW experiments operating at higher frequencies are sensitive to macro-
scopic DM with lower masses. Across the landscape of experiments included in this
paper, apart from PTAs in the very low-frequency range, for laser interferometers
in the 10−4 𝐻𝑧 − 𝑘𝐻𝑍 range and high-frequency apparatus (including Holometer
and GQuEST) in the 𝑘𝐻𝑍 − 𝐺𝐻𝑧 range, the projections peak at DM masses in the
range of ∼ 1 − 1015 kg. The signal is dominated by transiting DM with an impact
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parameter smaller than the interferometer baseline length, i.e. 𝑏 < 𝐿. This is a
result of several effects, such as the peak frequency of the DM signal compared to
that of the experiment, the tidal effect, and the time differential effect of the strain
measurement. Typically the peak frequency is the dominant factor. However, for
experiments with a large quality factor, the tidal effect may be the most relevant
suppression for DM with large impact parameters.

We have also investigated constraints from the stochastic signal produced by an
ensemble of transiting DM. We found that for the Doppler effect, the constraints
from stochastic signals are always weaker than the deterministic constraints. On
the other hand, for the Shapiro effect, the stochastic signal could dominate over the
deterministic signal in the low mass regime.

Lastly, we have left out the analysis of an important type of GW experiment, i.e. atom
interferometers, as the exact gauge invariant observable induced by transiting DM
is different than that of laser interferometers. We postpone such a study for future
work.
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Figure 7.4: Projected 90th-percentile upper limits on the fifth force Yukawa param-
eter from several existing and proposed GW detectors based on laser interferometry,
assuming 𝑇 = 1 yr of observation time and two choices of force range, 𝜆 = 1 m and
𝜆 = 106 m. Existing constraints are shown in dotted lines. The grey line is the com-
bined constraint from bullet cluster observation [447, 448] and the MICROSCOPE
experiment [449, 450], while the purple (red) lines are constraints from neutron star
kinetic heating [5] with (without) additional short-range DM-baryon interactions to
facilitate energy transfer. The limits are derived by setting the 10th-percentile SNR
defined in Eq. (7.5) to be two, and the DM initial conditions are sampled using
a Monte Carlo simulation. Projections from other types of high-frequency GW
experiments are shown with dashed colored lines. See Sec. 7.2 for a summary of
existing fifth force constraints, and Sec. 7.5 for a description of the experiments.
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Figure 7.5: Projected 90th-percentile upper limits on stochastic DM signals from
LIGO, LISA, GQuEST, and Holometer, assuming 𝑇 = 1 year of observation time
and local DM density 𝜌DM = 0.46 GeV/𝑐2/cm3. The limits are derived by setting the
10th-percentile SNR defined in Eq. (7.43) to be two. See Sec. 7.5 for a description
of the experiments.
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narrowband detectors are shown in shaded regions within the quoted bandwidths.
Note that the presented frequency range for the levitated sensor corresponds to
the tunable frequency range of the trapping potential, rather than the measurement
bandwidth. See Sec. 7.5 for a description of experiments.
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C h a p t e r 8

NEAR-HORIZON QUANTUM DYNAMICS OF 4-D EINSTEIN
GRAVITY FROM 2-D JT GRAVITY

This chapter is based on

[1] Sergei Gukov, Vincent S. H. Lee, and Kathryn M. Zurek. “Near-horizon
quantum dynamics of 4D Einstein gravity from 2D Jackiw-Teitelboim grav-
ity”. In: Phys. Rev. D 107.1 (2023), p. 016004. doi: 10.1103/PhysRevD.
107.016004. arXiv: 2205.02233 [hep-th].

8.1 Introduction
Dimensional reduction has long played an important role in understanding the be-
havior of higher dimensional gravitational theories, in particular in the study of black
hole horizons. When a higher-dimensional theory is reduced to a two-dimensional
system associated with the light-cone directions, the area of the transverse directions
becomes the dilaton field. In the near-horizon limit the dilaton is conformal (see
e.g. [481]), and by studying the conformal states of the action and using Cardy’s
formula the correct expression for the black hole entropy can be derived.

While the conformal description of near-horizon states has been widely applied to
black hole horizons, there is reason to think that a similar formalism may apply to
light sheet horizons more generally [482]. The interior of a causal diamond in many
generic spacetimes can be represented by a topological black hole metric:

𝑑𝑠2 = − 𝑓 (𝑅)𝑑𝑇2 + 𝑑𝑅2

𝑓 (𝑅) + 𝜌(𝑇, 𝑅)
2𝑑Σ2

𝑑−2. (8.1)

For example, for boundary anchored diamonds in AdS, 𝑓 (𝑅) = 𝑅2/𝐿2 − 1, with
𝐿 the AdS curvature, while in empty Minkowski, 𝑓 (𝑅) = 1 − 𝑅/𝑅ℎ, where 𝑅ℎ is
the radius of the bifurcate horizon. The representation of the causal diamond has
an associated modular Hamiltonian, 𝐾 , that characterizes the density matrix of the
diamond, 𝜌diamond = 𝑒−𝐾/tr(𝑒−𝐾). If one conjectures that the near-horizon states
of a light-sheet horizon are described by a conformal field theory, one is able to
immediately write down the form of the partition function (see discussion in [482]),

log 𝑍 = log
(∫

𝑑𝐸 𝑒𝐵
√
𝐸−𝛽𝐸

)
, (8.2)

https://doi.org/10.1103/PhysRevD.107.016004
https://doi.org/10.1103/PhysRevD.107.016004
https://arxiv.org/abs/2205.02233
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from which one can derive both the expectation value of 𝐾 , ⟨𝐾⟩ = −𝛽𝜕𝛽 log 𝑍 +
log 𝑍 = 𝛽⟨𝐸⟩+log 𝑍 = 𝑆, and its fluctuations, ⟨Δ𝐾2⟩ = 𝛽2𝜕2

𝛽
log 𝑍 = 𝛽2⟨Δ𝐸2⟩, find-

ing ⟨Δ𝐾2⟩ = ⟨𝐾⟩. This result agrees with previous calculations for Ryu-Takayanagi
diamonds in AdS/CFT [483, 484]. These modular fluctuations generate metric fluc-
tuations, inducing a quantum uncertainty in the horizon of the causal diamond. The
authors of previous works [482, 484, 30] suggested that these fluctuations might be
observably large.

Here, we put a new twist on these ideas by showing that Einstein gravity on a
causal diamond in flat 4-d spacetime, at least in the near-horizon limit, exactly
dimensionally reduces to Jackiw-Teitelboim (JT) gravity [485, 486] in 2 dimensions.
In particular, the parent 4-d theory can be Weyl-rescaled to a dilaton theory on
AdS2×S2, as shown in Fig. 8.1. The dynamics of the dilaton (shown by a dashed
line) controls both the size of the S2 and the relative position of the horizon with
respect to the boundary. As has also been noted by others, the dilaton is expected to
have an effective hydrodynamic description [487].

This implies that, if we are interested only in observables defined on a light sheet
horizon, we can make use of a vast literature studying the JT theory. In turn, this
allows us to potentially draw connection between experimental observables and
theoretical calculations in the vast field of quantum gravity. We will make use, in
particular, of the solutions presented in Ref. [487], which features a 2-sided AdS2

spacetime. These authors computed the quantum uncertainty in a geodesic distance
controlled by the dilaton. We will show that the quantum uncertainty in this geodesic
distance computed in the 2-sided 2-d JT theory is directly related to the uncertainty
in the travel time for a photon to be fired from a boundary to the bulk, reflected by
a mirror, and returned to the boundary. The relation is illustrated in Fig. 8.1, which
will be described in more detail in the main text. The original 4-d spacetime has a
flat metric

𝑑𝑠2
Mink = −𝑑𝑡2 + 𝑑𝑟2 + 𝑟2𝑑Ω2

2 , (8.3)

which is conformally equivalent to the product metric on AdS2×S2:

𝑑𝑠2
Mink =

𝜌2

𝐿2

(
𝐿2−𝑑𝑡2 + 𝑑𝑟2

𝑟2 + 𝐿2𝑑Ω2
2

)
, (8.4)

where we treat 𝜌 = 𝑟 as a scalar field, and 𝐿 is a positive constant which we
identify with the AdS2 radius (as well as the radius of the sphere S2). This closely
resembles the near-horizon limit of a 4-d near-extremal Reissner-Nordström black
hole. In the limit 𝑙𝑝 → 0, such that the magnetic charge and temperature are kept
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𝑔𝜇𝜈 𝑔෤𝜇𝜈 

JT Gravity 

𝑔෤𝜇𝜈 = (𝐿2/𝜌2)𝑔𝜇𝜈 

 

𝑡 ≅ 𝑡 

𝑟 ≅ 𝑧 

 

near-horizon 

Einstein Gravity 

 
 

Figure 8.1: The metric on Mink4 is conformally equivalent to that on AdS2×S2.
Inserts illustrate spacetime diagrams of the causal diamonds in both geometries.

fixed, this near-horizon geometry becomes AdS2×S2, while the Einstein-Maxwell
action reduces to the JT action [488] after integrating over the angular coordinates.
Moreover, Eq. (8.4) demonstrates that the Minkowski spacetime variables, 𝑡 and
𝑟, naturally become the AdS spacetime variables in Poincarécoordinates, 𝑡 and
𝑧. Motivated by this well known result, in later sections we demonstrate that the
Einstein gravity reduces to the JT gravity by a similar procedure and compute the
relevant observables.

The causal diamond can be observationally defined by an interferometer set-up, also
shown in Fig. 8.1. We align our interferometer arm along the radial direction and
denote its length by 𝐿. The photon is fired from 𝑟 = 0 at 𝑡 = −𝐿. At time 𝑡 = 0, the
photon hits the mirror at the interferometer end (𝑟 = 𝐿) and bounces back. Finally,
the photon arrives to its starting position 𝑟 = 0 at 𝑡 = 𝐿. The photon trajectory is
hence described by 𝑡 − 𝑟 = −𝐿 and 𝑡 + 𝑟 = 𝐿 for its first and second trip respectively.
The spacetime region bounded by the photon trajectory and 𝑟 = 0 is commonly
referred to as the causal diamond, where the photon trajectory itself is known as the
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horizon since no particles can cross the boundary and escape to infinity, similar to a
black hole horizon. Spacetime fluctuations lead to uncertainty in the photon travel
time.

At first sight, it seems surprising that JT gravity in 2-sided AdS, such as that
solved explicitly in Ref. [487], would have anything to do with photon trajectories
in Minkowski space. After all, the JT set-up is in AdS space and has curvature,
while Minkowski does not. It is also not immediately clear what a 2-sided geometry
has to do with a 1-sided causal diamond. It is important to highlight two subtle,
but important points that allow us to utilize the computational tools of JT gravity.
First, while AdS clearly has curvature that the parent Minkowski theory does not,
in the near horizon limit of the causal diamond relevant for photon trajectories,
we will show that these terms in the action which contribute to the curvature are
subdominant. Second, while the formal solution to JT gravity that we utilize is
in two-sided AdS, we will see that the length of the causal diamond horizon in
one-sided Minkowski is identical to that of the two-sided AdS horizon connecting
the two boundaries. Hence, one can compute the physical photon roundtrip time by
calculating the time for a photon to travel from one AdS boundary to the boundary
on the other side of AdS along the horizon. We will see that the other side of AdS
serves as a convenient tool for us to compute quantum fluctuations in the physical
observable by computing how one side of AdS fluctuates with respect to the other
side.

The outline of the paper is as follows. In Sec. 8.2, we discuss how the JT action
can be obtained by dimensionally reducing the familiar gravitational action and
dropping a subdominant kinetic term in the near-horizon limit. In Sec. 8.3, we study
the AdS geometry and introduce various useful coordinate systems. In Sec. 8.4,
we define our observable in the context of JT gravity and compute its fluctuations.
Finally, in Sec. 10.5, we discuss implications of our results and mention a few future
directions.

8.2 Dimensional Reduction to the JT action
We begin by dimensionally reducing the familiar gravitational action in 4-d Minkowski
spacetime, in the near-horizon limit, to the 2-d JT action. As advertised above, this
calculation is similar to the previous work by one of the authors [482] on small
empty diamonds. There are, however, a couple of important differences with these
earlier works. First, in line with theories of JT gravity, our dimensionally-reduced
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manifold has a boundary. We thus must include the boundary contributions dur-
ing the dimensional reduction process, which will ultimately lead to the boundary
action in JT gravity. This is crucial for our later analysis since the bulk action
vanishes on-shell for JT gravity, and thus the boundary term gives rise to the sole
degree of freedom. Second, we perform a (different) Weyl rescaling to bring the
two-dimensional metric into the AdS2 form to align with the exact JT gravity setup
studied in the literature.

On a 4-manifold 𝑀4, the total action, 𝐼 = 𝐼EH+ 𝐼GHY, is the sum of the bulk Einstein-
Hilbert (EH) action and the boundary Gibbons-Hawking-York (GHY) action:

𝐼EH =
1

16𝜋𝐺𝑁

∫
𝑀4

𝑑4𝑥
√−𝑔4𝑅4

𝐼GHY =
1

8𝜋𝐺𝑁

∫
𝜕𝑀4

𝑑3𝑥
√−𝛾3𝐾3 (8.5)

where𝐺𝑁 is the 4-d gravitational constant, 𝛾3 is the induced metric on the boundary,
𝑔4 is the metric with the Ricci scalar 𝑅4 and the extrinsic curvature 𝐾3 on 𝜕𝑀4.
The GHY action is needed in gravitational theories with a boundary to make the
variational problem well-posed. In particular, the extra boundary term that arises
from varying the EH action cancels against the variation of the GHY term. We will
see a similar mechanism in action shortly.

We consider spherically-symmetric metrics in the general form

𝑑𝑠2 = 𝑔𝑎𝑏 (𝑥0, 𝑥1)𝑑𝑥𝑎𝑑𝑥𝑏 + 𝜌2(𝑥0, 𝑥1)𝑑Ω2
2 . (8.6)

where 𝑥0 and 𝑥1 will be referred to as the light-cone coordinates1, the radius 𝜌 is a
scalar function of 𝑥0 and 𝑥1, and 𝑑Ω2

2 is the line element of a two-dimensional unit
sphere. Geometrically speaking, 𝜌 sets the radius of the horizon. As we will see
below, 𝜌2 plays the role of a dilaton, which corresponds to the horizon area (and
hence the entropy).

A generalization of the conformal equivalence Mink4 �AdS2×S2 noted in Eqs. (8.3)-
(8.4) is a similar relation between a spherically-symmetric metric (8.6) and the space
of the form 𝑀̃2×S2:

𝑑𝑠2 =
𝜌2

𝐿2

(
𝐿2

𝜌2 𝑔𝑎𝑏𝑑𝑥
𝑎𝑑𝑥𝑏 + 𝐿2𝑑Ω2

2

)
. (8.7)

1We use Greek letters for bulk coordinates in four dimensions and Latin letters from the early
part of the alphabet for the light-cone coordinates.
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Ultimately we would like to work with an AdS2 metric, which motivates us to denote
the metric in the parenthesis as 𝑔̃𝜇𝜈 = (𝐿2/𝜌2)𝑔𝜇𝜈, and compute the action in terms
of 𝑔̃𝜇𝜈.

A few remarks are in order:

• Since Einstein gravity is not conformally invariant, 𝑔̃𝜇𝜈 does not satisfy the
usual vacuum Einstein equation. However, it still satisfies the equation of mo-
tion that follows from action Eq. (8.5) after the contribution of the conformal
factor is properly accounted for.

• The conformal relation between 𝑔𝜇𝜈 and 𝑔̃𝜇𝜈 in Eq. (8.4) works for any choice
of positive 𝐿. We find it most convenient to choose 𝐿 that coincides with the
interferometer arm length.

• Weyl transformations do not alter the causal structure of a metric. A null
geodesic in 𝑔𝜇𝜈 is still a null geodesic in 𝑔̃𝜇𝜈.

Einstein-Hilbert Action
We first consider the EH action. The curvatures of 𝑔𝜇𝜈 and 𝑔̃𝜇𝜈 are related by [489]

𝑅4 = 𝐿2(𝜌−2𝑅̃4 − 6𝜌−3□̃𝜌) , (8.8)

while the curvature of the product manifold 𝑔̃𝜇𝜈 in Eq. (8.7) is a simple sum of
individual curvatures

𝑅̃4 = 𝑅̃2 +
2
𝐿2 , (8.9)

where 𝑅̃2 is the Ricci scalar of 𝑔̃𝑎𝑏. This allows us to evaluate the action in Eq. (8.5)2

𝐼EH =
1

16𝜋𝐺𝑁

1
𝐿2

∫
𝑀̃4

𝑑4𝑥
√︁
−𝑔̃4

(
𝜌2𝑅̃2 − 6𝜌□̃𝜌 + 2

𝐿2 𝜌
2
)

=
1

16𝜋𝐺𝑁

1
𝐿2

∫
𝑀̃4

𝑑4𝑥
√︁
−𝑔̃4

(
𝜌2𝑅̃2 + 6(∇̃𝜌)2 + 2

𝐿2 𝜌
2
)

− 1
16𝜋𝐺𝑁

3
𝐿2

∫
𝜕𝑀̃4

𝑑3𝑥
√︁
−𝛾̃3𝑔̃

𝜇𝜈𝑛̃𝜇∇̃𝜈𝜌2 . (8.10)

2We use the shorthands □𝜌 = 𝑔𝜇𝜈∇𝜇∇𝜈𝜌, (∇𝜌)2 = 𝑔𝜇𝜈∇𝜇𝜌∇𝜈𝜌, □̃𝜌 = 𝑔̃𝜇𝜈∇̃𝜇∇̃𝜈𝜌 and
(∇̃𝜌)2 = 𝑔̃𝜇𝜈∇̃𝜇𝜌∇̃𝜈𝜌. Since 𝜌 does not depend on the angular variables, we can also replace the
four-dimensional contractions in the above derivatives by just two-dimensional contractions.
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The boundary term here comes from the Stokes’ theorem3 that relates a total deriva-
tive to a boundary term.

To perform the dimensional reduction, we integrate over the angular directions while
keeping in mind that 𝜌 as well as 𝑅̃2 only depend on the light-cone variables. Hence,
the EH action becomes

𝐼EH =
1

4𝐺𝑁

∫
𝑀̃2

𝑑2𝑥
√︁
−𝑔̃2

(
𝜌2𝑅̃2 + 6(∇̃𝜌)2 + 2

𝐿2 𝜌
2
)
− 3

4𝐺𝑁

∫
𝜕𝑀̃2

𝑑𝑥0√︁−𝛾̃1𝑔̃
𝑎𝑏𝑛̃𝑎∇̃𝑏𝜌2 ,

(8.11)

where 𝑥0 is the boundary time.

Gibbons-Hawking-York Action
We now turn our attention to the GHY action. The normal vector of the boundary
transforms as 𝑛̃𝜇 = (𝜌/𝐿)𝑛𝜇, hence the extrinsic curvature transforms as

𝐾3 = ∇𝜇𝑛𝜇

=
1

√−𝑔4
𝜕𝜇 (

√−𝑔4𝑛
𝜇)

=

(
𝐿

𝜌

)4 1
√
−𝑔̃4

𝜕𝜇

(( 𝜌
𝐿

)3 √︁
−𝑔̃4𝑛̃

𝜇

)
=
𝐿

𝜌
𝐾̃3 + 3

𝐿2

𝜌2 𝑛̃
𝜇∇̃𝜇

𝜌

𝐿
. (8.12)

Putting this into the GHY action in Eq. (8.5) gives

𝐼GHY =
1

8𝜋𝐺𝑁

1
𝐿2

∫
𝜕𝑀̃4

𝑑3𝑥
√︁
−𝛾̃3

(
𝜌2𝐾̃3 +

3
2
𝑔̃𝜇𝜈𝑛̃𝜇∇̃𝜈𝜌2

)
. (8.13)

Since the boundary 𝜕𝑀4 is taken to be spherically symmetric, only the light-cone
component of the normal vector 𝑛𝜇 is non-zero, which then coincides with 𝑛𝑎, the
normal vector to 𝜕𝑀2. On the other hand, projection to 𝑀̃2 gives a simple relation
𝐾̃3 = 𝐾̃1, where 𝐾̃1 is the extrinsic curvature of 𝑔̃𝑎𝑏 on 𝜕𝑀̃2. This allows us to
perform the dimensional reduction

𝐼GHY =
1

2𝐺𝑁

∫
𝜕𝑀̃2

𝑑𝑥0√︁−𝛾̃1𝜌
2𝐾̃1 +

3
4𝐺𝑁

∫
𝜕𝑀̃2

𝑑𝑥0√︁−𝛾̃1𝑔̃
𝑎𝑏𝑛̃𝑎∇̃𝑏𝜌2 . (8.14)

3We define the normal vector 𝑛𝜇 to the boundary to be pointing outward/inward if it
is spacelike/timelike. In this convention, the Stokes’ theorem reads

∫
𝑀4
𝑑4𝑥

√−𝑔4∇𝜇𝑉
𝜇 =∫

𝜕𝑀4
𝑑3𝑥

√−𝛾3𝑛𝜇𝑉
𝜇 for any vector 𝑉 𝜇 regardless of the signature of the boundary. The analo-

gous formula also holds in two dimensions.
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We see that the extra boundary term from the EH action precisely cancels the second
term in the GHY action. The total action then becomes

𝐼 =
1

4𝐺𝑁

∫
𝑀̃2

𝑑2𝑥
√︁
−𝑔̃2

(
𝜌2𝑅̃2 + 6(∇̃𝜌)2 + 2

𝐿2 𝜌
2
)
+ 1

2𝐺𝑁

∫
𝜕𝑀̃2

𝑑𝑥0√︁−𝛾̃1𝜌
2𝐾̃1 .

(8.15)
Similar cancellations have been noted in Ref. [490] while models with actions
similar to Eq. (8.15) have been extensively studied in Ref. [491].

Near-horizon Limit
We now examine the metric and the action near the horizon of a Minkowski causal
diamond of size 𝐿. The metric in the interior of a causal diamond is obtained from
Eq. (8.3) via the transformation [30]

𝑡 = 2𝐿 sinh
(
𝑇

2𝐿

) √︂
1 − 𝑅

𝐿

𝑟 = 𝐿 − 2𝐿 cosh
(
𝑇

2𝐿

) √︂
1 − 𝑅

𝐿
, (8.16)

and the metric can be written in the form of Eq. (8.1)

𝑑𝑠2
Mink = −

(
1 − 𝑅

𝐿

)
𝑑𝑇2 + 𝑑𝑅2

1 − 𝑅/𝐿 + 𝜌2(𝑇, 𝑅)𝑑Ω2
2 , (8.17)

where we again identify 𝜌 = 𝑟. The transformed light-cone variables are 𝑇 and 𝑅.
Observe that

(𝑡 + 𝑟 − 𝐿) (𝑡 − 𝑟 + 𝐿) = −4𝐿2
(
1 − 𝑅

𝐿

)
, (8.18)

hence the horizon of the causal diamond described at the end of Sec. 10.1 is located
at 𝑅 = 𝐿. In the near-horizon limit, 𝑅 → 𝐿, the dilaton is approximately a large
positive constant. We can thus expand the dilaton as a small perturbation

𝜌2 = 𝜙0 + 𝜙 , (8.19)

where 𝜙0 = 𝐿2 and 𝜙 ≪ 𝜙0. It is also clear in this coordinate that the classical area
of the causal diamond is 𝐴 = 4𝜋𝐿2.

The action we obtained in Eq. (8.15) is almost the action of JT gravity except for
the kinetic term (∇̃𝜌)2. It has been argued in Ref. [492] that the kinetic term is
a subdominant contribution in the context of a near-extremal Reissner-Nordström
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black hole. We briefly review the argument and apply it to our set-up. Expanding
the kinetic term using Eq. (8.19) gives∫

𝑀̃2

𝑑2𝑥
√︁
−𝑔̃2(∇̃𝜌)2 =

1
4

∫
𝑀̃2

𝑑2𝑥
√︁
−𝑔̃2

(∇̃𝜙)2

𝜙0 + 𝜙
. (8.20)

Suppose the system is perturbed by coupling to some matter field via 𝐼 → 𝐼 +
𝐼matter. Then, the equation of motion associated with the action in Eq. (8.15)
can be written as 𝑇𝑎𝑏 = 𝑇matter

𝑎𝑏
with 𝑇𝑎𝑏 = −∇̃𝑎∇̃𝑏𝜌2, where we have absorbed

the dilaton kinetic term into the definition of 𝑇matter
𝑎𝑏

. In the conformal gauge,
𝑑𝑠2 = − exp(2𝜔(𝑢+, 𝑢−))𝑑𝑢+𝑑𝑢−, the ++ component of the equation of motion
turns out to be

−𝑒2𝜔𝜕+(𝑒−2𝜔𝜕+𝜌
2) = 𝑇matter

++ > 0 . (8.21)

Integrating this expression along a line 𝑢− = 0 from 𝑢+ = 0 to 𝑢+ = 𝜋 then gives∫ 𝜋

0
𝑑𝑢+𝑒−2𝜔𝑇matter

++ = [𝑒−2𝜔𝜕+𝜌
2] |𝑢+→0 − [𝑒−2𝜔𝜕+𝜌

2] |𝑢+→𝜋 . (8.22)

In AdS2, the conformal gauge is given by exp(−2𝜔) ∼ sin2 𝑢+ with the boundaries
located at 𝑢+ = 0 and 𝑢+ = 𝜋. Requiring the expression in Eq. (8.22) be positive
then implies that 𝜌2 diverges near at least one of the boundaries [488]

𝜌2 |𝑢+→0 ∼ constant + 1
𝑢+

𝜌2 |𝑢+→𝜋 ∼ constant + 1
𝑢+ − 𝜋 . (8.23)

With this information in hand, we can consider the dilaton kinetic term in Eq. (8.20)
using the Poincaré coordinates4

𝑑𝑠2 = 𝐿2−𝑑𝑡2 + 𝑑𝑧2

𝑧2 , (8.24)

where the boundary is located at 𝑧 = 0. Since the dilaton diverges as 𝜙 ∼ 1/𝑧
near 𝑧 = 0 and has the dimension of [length]2, by dimensional analysis, one finds
𝜙 ∼ 𝑙2𝑝𝐿

2𝐸/𝑧 where 𝐸 is the energy associated with the causal diamond. The
derivatives evaluate to (∇̃𝜙)2 = 𝑔𝑧𝑧𝜕𝑧𝜙𝜕𝑧𝜙 = 𝜙2/𝐿2 ∼ 𝜙2/𝜙0. Hence we can
evaluate Eq. (8.20)

(∇̃𝜙)2

𝜙0 + 𝜙
≈ 1
𝜙0

1
1 + 𝜙/𝜙0

𝜙2

𝜙0

=
𝜙2

𝜙2
0
+ O

(
𝜙3

𝜙3
0

)
, (8.25)

4We use the symbol 𝑡 for both the Minkowski time and the AdS time in Poincaré coordinates
since they can be identified with each other via the Weyl rescaling of Eq. (8.4), while different
notations are used for the spatial coordinates, 𝑧 and 𝑟 .
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which is quadratic in 𝜙/𝜙0 at the leading order, and thus can be omitted in Eq. (8.15).
This leaves us with the JT action

𝐼 =

∫
𝑀̃2

𝑑2𝑥
√︁
−𝑔̃2Φ

(
𝑅̃2 +

2
𝐿2

)
+ 2

∫
𝜕𝑀̃2

𝑑𝑥0√︁−𝛾̃1Φ𝐾̃1 . (8.26)

where we have defined the dimensionless dilaton field

Φ =
𝜌2

4𝐺𝑁

, (8.27)

which controls the size of the S2. We will also show that this field controls how long
it takes for a photon to traverse from the bottom to the top of the causal diamond.

We emphasize that the procedure of dropping the dilaton kinetic term (and hence the
correspondence with JT gravity) is only valid near the causal diamond horizon. The
classical equations of motion for the metric and dilaton are later derived in Eq. (8.33)
using the truncated action Eq. (8.26). If one attempts to directly compute the classical
Ricci scalar of the four dimensional metric in Eq. (8.6) and Eq. (8.27), one finds
a non-vanishing curvature for 𝑟 > 0. On the other hand, if one retains the kinetic
term, than the metric equation of motion would remain the same as Eq. (8.33), but
the dilaton solution would simply be 𝜌 = 𝑧 = 𝑟, which would completely reproduce
the original four dimensional Minkowski metric in Eq. (8.6) with zero curvature.
For our purposes, we are interested in the dilaton equation of motion near a null
trajectory, where the dilaton kinetic term is subdominant. Dropping the kinetic
term, however, comes at a price of introducing a (unphysical) curvature in the parent
Minkowski theory. According to our argument above, however, this curvature is
irrelevant for the dilaton equations of motion in the near-horizon limit. We thus
proceed with the JT theory, in the near-horizon limit, as a good approximation to
near-horizon Minkowski spacetime fluctuations.

8.3 The Two-sided AdS Geometry and Classical Dilaton Solution
Before considering the quantum fluctuations, we discuss the classical equations of
motion for both the metric field and the dilaton. This will allow us to determine
how the dilaton is related to fluctuations in geodesic distances, that we can in turn
relate to photon travel times in the original 4-d Minkowski space. The equations of
motion read:

𝑅̃2 +
2
𝐿2 = 0

(𝐿2∇̃𝑎∇̃𝑏 − 𝑔̃𝑎𝑏)Φ = 0 . (8.28)
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The first equation shows that the bulk geometry is a slice of AdS while the second
equation specifies the classical behavior of the dilaton. To ensure that the variational
problem is well defined, we fix the dilaton value at the boundary to be

Φ|boundary =
Φ𝑏𝔯𝑐

𝐿
, (8.29)

and the induced metric to be 𝛾00 |𝜕𝑀̃2
= 𝔯2

𝑐/𝐿2, where 𝔯𝑐 → ∞ is the regularized
location of the AdS boundary.

The AdS2 space can be described as a hypersurface 𝑇2
1 + 𝑇2

2 − 𝑋2 = 𝐿2 in the
Minkowski spacetime with signature (2,1):

𝑑𝑠2 = −𝑑𝑇2
1 − 𝑑𝑇2

2 + 𝑑𝑋2 , (8.30)

As shown in Fig. 8.2, this hypersurface is a hyperboloid with one connected com-
ponent and a reflection symmetry around 𝑋 = 0. The two AdS boundaries are
located at 𝑋 → ±∞. We see that the boundaries are disjoint and each associated to
a coordinate patch. The most general solution to Eqs. (8.28) has the dilaton profile
Φ = 𝐴𝑇1 + 𝐵𝑇2 + 𝐶𝑋 , with some constants 𝐴, 𝐵 and 𝐶. Following Ref. [487], by
invoking the SO(2,1) symmetry of the ambient Minkowski spacetime, we can rotate
our coordinates such that 𝐵 = 𝐶 = 0. Hence we can write

Φ =
Φℎ𝑇1
𝐿

, (8.31)

where Φℎ will later be identified as the dilaton value at the horizon.

As shown in Fig. 8.3, we will use multiple coordinates to describe the causal diamond
in AdS geometry, as we discuss in detail next. We cast the embedding coordinates
first in the standard Poincarécoordinates. Then we discuss Schwarzschild coor-
dinates, which have the advantage of making the position of the Rindler horizon
explicit, which in turn will be directly related to the value of the dilaton; these
coordinates cover only the interior of the causal diamond shown in Fig. 8.3. Finally,
we transform to global coordinates, which cover the entire spacetime and will be the
coordinate system of choice for computing the Hartle-Hawking wavefunction and
partition function. We will also explain how each of these coordinate systems relates
to the coordinates in the original Minkowski metric, where actual measurements are
supposed to take place.
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Figure 8.2: Embedding of the the AdS2 in Minkowski space of signature (2,1).
The explicit relation between the coordinate is summarized in Eq. 8.32. In these
coordinates, the two AdS2 boundaries (related by the reflection symmetry) are at
𝑋 → ±∞. In Poincarécoordinates, these boundaries correspond to 𝑧 = 0± shown in
Fig. 8.3.
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Figure 8.3: Causal diamonds in different AdS coordinates. In all three panels, the
shaded region corresponds to a causal diamond in one half of the entire AdS space,
which in embedding coordinates is 𝑋 → +∞ shown in Fig. 8.2. It is also the
shaded region that corresponds to the interior of the causal diamond in the original
Minkowski spacetime, which will be the focus of our attention. The causal diamond
horizon inherited from the 4-d Minkowski spacetime is indicated as a solid red
curve, while the same horizon but on the other side of AdS is indicated as a dashed
red curve.
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Poincarécoordinates
The most commonly used coordinate system in the AdS spacetime is the aforemen-
tioned Poincarécoordinate system, related to the embedding coordinates by

𝑇1 =
𝐿2 − 𝑡2 + 𝑧2

2𝑧
𝑇2 = 𝐿

𝑡

𝑧

𝑋 =
𝐿2 + 𝑡2 − 𝑧2

2𝑧
, (8.32)

with the metric and dilaton

𝑑𝑠2 = 𝐿2−𝑑𝑡2 + 𝑑𝑧2

𝑧2

Φ = Φℎ

𝐿2 − 𝑡2 + 𝑧2

2𝐿𝑧
. (8.33)

The AdS boundaries are located at 𝑧 = 0±, shown in the left-hand panel of Fig. 8.3;
they corresponds to 𝑋 → ±∞ in the embedding coordinates, shown in Fig. 8.2.

From Eq. (8.4), the (𝑡, 𝑧) coordinates in AdS directly translate to (𝑡, 𝑟) in Minkowski
spacetime, such that the horizon in the original Minkowski spacetime is now at
|𝑡 | + 𝑧 = 𝐿. The shaded regions in Fig. 8.3 thus correspond to the interior of the
causal diamond also in the original Minkowski spacetime.

Schwarzschild Coordinates
Since we are interested in the behavior near the horizon, a convenient coordinate sys-
tem is the so-called “topological black hole,” or Schwarzschild system of coordinate
(𝔱, 𝔯), given by

𝑇1 = 𝐿
𝔯

𝔯𝑠

𝑇2 = 𝐿 sinh
(
𝔯𝑠𝔱

𝐿2

) √︄
𝔯2

𝔯2
𝑠

− 1

𝑋 = ±𝐿 cosh
(
𝔯𝑠𝔱

𝐿2

) √︄
𝔯2

𝔯2
𝑠

− 1 , (8.34)

where

𝑑𝑠2 = −
𝔯2 − 𝔯2

𝑠

𝐿2 𝑑𝔱2 + 𝐿2

𝔯2 − 𝔯2
𝑠

𝑑𝔯2

Φ = Φ𝑏

𝔯

𝐿
, (8.35)
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and 𝔯𝑠 is some constant and the coordinate is only defined for 𝔯 ≥ 𝔯𝑠. The ± sign
in Eq. (8.34) corresponds to the right and left patches of the AdS spacetime. This
coordinate system was used in Refs. [493, 484] to study the behavior of light sheet
horizons utilizing black hole thermodynamics in the bulk. The relation between
Poincaréand Schwarzschild coordinates is(

(𝐿 + 𝑡)2 − 𝑧2

2𝑧

) (
(𝐿 − 𝑡)2 − 𝑧2

2𝑧

)
= 𝐿2

(
𝔯2

𝔯2
𝑠

− 1
)

2𝐿𝑡
𝐿2 + 𝑡2 − 𝑧2 = ± tanh

𝔯𝑠𝔱

𝐿2 . (8.36)

It is clear from Eq. (8.36) that 𝔯 = 𝔯𝑠 is the position of the Rindler (bifurcate)
horizon, where 𝑋 = 𝑇2 = 0 corresponds to 𝑡 = 0, 𝑧 = 𝐿 in Poincarécoordinates. The
AdS boundary is located at 𝔯 → ∞, hence the region 𝔯 ≥ 𝔯𝑠 describes the entirety
of the causal diamond interior.

Note that Eq. (8.35) explicitly states that the dilaton controls the position of the
Rindler horizon, and evaluating it at the horizon reveals that

𝔯𝑠 = 𝐿
Φℎ

Φ𝑏

. (8.37)

We thus expect dilaton quantum fluctuations to be responsible for the quantum
uncertainty in the photon travel time in the original Minkowski theory.

Global Coordinates
Finally, we define a global coordinate system (𝜏, 𝑥) by

𝑇1 = 𝐿

√︂
1 + 𝑥2

𝐿2 cos
𝜏

𝐿

𝑇2 = 𝐿

√︂
1 + 𝑥2

𝐿2 sin
𝜏

𝐿

𝑋 = 𝑥 , (8.38)

such that

𝑑𝑠2 = −
(
1 + 𝑥2

𝐿2

)
𝑑𝜏2 + 𝑑𝑥2

1 + 𝑥2/𝐿2

Φ = Φℎ

√︂
1 + 𝑥2

𝐿2 cos
𝜏

𝐿
, (8.39)

Following Ref. [487], this is the basis of choice for computing the Hartle-Hawking
wavefunctions and the partition function. An important observation is that the
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global coordinates cover the entire AdS spacetime, while the Poincaréand (right)
Schwarzschild coordinates only cover the region 𝑥 ≥ 0, i.e. the right exterior region.
This can be easily verified by noting the relation with the Poincarécoordinates

tan
𝜏

𝐿
=

2𝐿𝑡
𝐿2 − 𝑡2 + 𝑧2

𝑥 =
𝐿2 + 𝑡2 − 𝑧2

2𝑧
. (8.40)

Moreover, one could check that the horizon is located at 𝑥 = ±𝐿 tan (𝜏/𝐿), while
the AdS boundary is at 𝑥 → ±∞. Hence, the causal diamond is a subset of the
right coordinate patch, while the global coordinates effectively provide the maximal
extension of the patch. An analogous coordinate system can be set up to describe
the left exterior region, thus effectively factorizing the system.

With the groundwork laid on the relation between the dilaton and coordinate systems,
we can now compute the quantum fluctuations.

8.4 Spacetime Fluctuations in JT Gravity
Our analysis mostly follows Ref. [487], which was originally motivated by the factor-
ization problem [494, 495]. Instead of applications to the factorization problem, we
use this framework for constructing the action and its solutions beyond the classical
saddle point approximation.

One important feature of the JT gravity is that it can be reduced to a 1-d quantum
mechanics on the boundary. The Hamiltonian of the QM problem is obtained by
evaluating the stress-energy tensor on each boundary, left and right, using the action
in Eq. (8.26):

𝐻𝐿 = 𝐻𝑅 =
Φ2
ℎ

𝐿Φ𝑏

. (8.41)

The Hamiltonian on the left (resp. right) boundary is conjugate to the time variable
𝑡𝐿 (resp. 𝑡𝑅), denoting the Schwarschild time on the respective AdS boundary.
Alternatively, on can define conjugate momentum 𝑃 and length (which we denote
𝐿𝑔 to distinguish it from the AdS radius). In these variables, the symplectic form Ω

looks like [487]
Ω = 𝑑𝛿 ∧ 𝑑𝐻 = 𝑑𝐿𝑔 ∧ 𝑑𝑃 , (8.42)

where 𝐻 = 𝐻𝐿 + 𝐻𝑅 is the total Hamiltonian. The two canonical conjugate pairs
are (𝛿, 𝐻) and (𝐿𝑔, 𝑃).
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Canonical Variables
Since Eq. (8.41) implies that 𝐻𝐿 − 𝐻𝑅 = 0, the only time variable is generated by
𝐻𝐿 + 𝐻𝑅, and is defined to be

𝛿 =
𝔱𝐿 + 𝔱𝑅

2
. (8.43)

It is noted in Ref. [487] that 𝛿 can be interpreted as a time-shift operator of the
Hilbert space spanned by normalized states 𝐸 , with 𝛿 = 𝑖𝜕/𝜕𝐸 . Physically, 𝛿 is
the time difference between the two boundaries, which is a quantity that can be
measured by an interferometer system. According to Ref. [487], one way to define
𝛿 is to examine a geodesic connecting the two boundaries which is orthogonal to
surfaces of constant Φ. The fluctuation of the arrival time relative to the starting
time is characterized by 2𝛿 [487]. A suitable candidate for such geodesic is simply
the horizon of the two-sided AdS, defined by firing a photon from a point at the left
boundary, (−𝜋𝐿/2,−∞), and eventually arriving at the right boundary, (𝜋𝐿/2,∞).
The horizon is indicated as a red line in the right panel of Fig. 8.3 (ignoring the
mirror in the figure for now), combining the dashed and the solid lines in the left
and right AdS patch respectively. The equation for this trajectory can be solved by
setting 𝑑𝑠 = 0 in Eq. (8.40), which turns out to be 𝜏 = 𝐿 tan−1(𝑥/𝐿)5. The dilaton
field along this trajectory can be found by putting this equation into Eq. (8.40),
which turns out to be a constant, Φ = Φℎ, as expected. Since null geodesics are
orthogonal to themselves, the horizon (which connects the two boundaries) satisfies
the condition quoted from Ref. [487], i.e. a geodesic that is orthogonal to curves of
constantΦ. Hence we can interpret 𝛿 as the relative time between the two boundaries
measured by this particular photon path. Note that 𝛿 = 0 corresponds to the classical
(unperturbed) light trajectory, since the clock on the left and right boundaries runs
oppositely, and the time for a photon to traverse from 𝑥 = 0 to either boundary is
the same in the unperturbed spacetime, i.e. the clocks on each boundary tick at
the same pace (but with opposite arrows of time) on either boundary in the absence
of quantum fluctuations. Thus 𝛿 ≠ 0 indicates a quantum fluctuation in the light
trajectory, or equivalently, a quantum fluctuation in rate at which the boundary
clocks tick.

Further, 𝛿 is related to the quantum fluctuation in the time of arrival of a photon in
the Minkowski interferometer. First, we note that while the two-sided AdS system

5Usually it is not possible to shoot a photon from one boundary to the other in a two-sided
black hole system, since the two boundaries are causally disconnected. However, in our set-up, the
photon trajectory defines the horizon, which is a (and the only) null geodesic that connects the two
boundaries, as apparent when the Penrose diagram of the spacetime is inspected. AdS geometries
with horizons defined by photon paths are also noted and used in Refs [493, 484].
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0

x

0τ

mirror

Figure 8.4: The quantum uncertainty in the light trajectory, here depicted by fuzzing
of the horizon, is what we seek to compute via the quantum uncertainty in the
geodesic distances parameterized by 𝐿𝑔 and 𝛿 defined in the text. In particular 2𝛿 is
the time shift, with respect to a classical unperturbed trajectory, for a photon that is
fired from the right boundary and reflected back to its starting position.

is a natural solution to the JT theory, the original Minkowski causal diamond only
covers a Poincarépatch as indicated by the shaded regions in Fig. 8.3. However, by
putting a mirror at 𝑥 = 0 (i.e. the interface between the two AdS sides), one can
construct a geodesic that was fired from the right boundary at (−𝜋𝐿/2,∞), reflected
by the mirror at (0, 0), and arrives back at the right boundary at (𝜋𝐿/2,∞), as
indicated by the solid red line at the right panel of Fig. 8.3. This is simply the
horizon of the Minkowski causal diamond. Then, using reflection symmetry around
𝑥 = 0 as discussed in the previous paragraph, the distance traveled by this photon
must be identical, in the absence of quantum fluctuations, to the distance traveled by
a photon fired from the left boundary and eventually arrives at the right boundary,
i.e. the two-sided AdS horizon. Then, 2𝛿 is precisely the time shift, with respect to
a classical unperturbed trajectory, for a photon that is fired from the right boundary
and reflected back to its starting position. This is illustrated in Fig. 8.4.

In this sense, the two-sided AdS serves as a mathematical trick (philosophically
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akin to the method of images in electrostatics) for us to compute the physical photon
travel time, by allowing us to compute the relative photon travel time in one copy of
AdS with respect to the other. Since the photon travel time must be the same on both
sides in the absence of quantum fluctuations, 𝛿 thus quantifies quantum fluctuations
in the time of arrival of the photon in one copy of AdS relative to the reference copy.

We further work with the assumption that the mirror is a probe and hence does not
substantially affect the spacetime geometry. This is analogous to calculations of
the interferometer response in gravitational wave experiments, which also neglect
the back-reaction of the geometry to the mirrors. This treatment can be justified by
considering the Schwarzschild radius of the mirror. For a mirror with mass ∼ 10 kg,
its Schwarzschild radius is 𝑅mirror = 2𝐺𝑁𝑀mirror ∼ 10−26 m, which is much shorter
than both the interferometer arm length and the photon wavelength, and hence its
back-reaction to the geometry can be ignored. On the other hand, since 𝑅mirror is
much longer than 𝑙𝑝, we can also ignore the quantum effect of the mirror. We believe
that the effect of the mirror could be included more explicitly by incorporating the
additional degrees of freedom associated with the reflecting boundary conditions (a
la “end-of-the-world brane”), but we leave this implementation to future work.

Now we turn to the other pair of canonically conjugate variables (𝐿𝑔, 𝑃). The
renormalized geodesic distance 𝐿𝑔 between the two boundaries can be evaluated
using the global coordinates in Eq. (8.39), where the boundaries are now regulated
by bringing them from 𝑥 → ±∞ to some cut-off at 𝑥 = ±𝑥𝑐. The expression for
𝑥𝑐 can be found by equating the second lines of Eq. (8.35) and Eq. (8.39) at the
boundary

Φ|𝜕𝑀̃2
= Φ𝑏

𝔯𝑐

𝐿
= Φℎ

√︄
1 + 𝑥2

𝑐

𝐿2 cos
𝜏

𝐿

=⇒ 𝑥𝑐 ≈
𝐿𝔯𝑐

𝔯𝑠

1
cos(𝜏/𝐿) , (8.44)

where we used Eq. (8.37) and also assumed 𝑥𝑐 ≫ 𝐿. This allows us to define a
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“renormalized geodesic distance” [487]

𝐿𝑔 =

∫ 𝑥𝑐

−𝑥𝑐

√︂
−𝑔𝜏𝜏

𝑑𝜏

𝑑𝑥

𝑑𝜏

𝑑𝑥
𝑑𝑥 − 2𝐿 log(2Φ|𝜕𝑀̃2

)

=

∫ 𝑥𝑐

−𝑥𝑐

1√︁
1 + 𝑥2/𝐿2

𝑑𝑥 − 2𝐿 log
(
2Φ𝑏𝔯𝑐

𝐿

)
= 2𝐿 sinh−1

(𝑥𝑐
𝐿

)
− 2𝐿 log

(
2Φ𝑏𝔯𝑐

𝐿

)
≈ 2𝐿 log

(
𝑥𝑐

Φ𝑏𝔯𝑐

)
= 2𝐿 log

(
𝐿 cosh(𝔯𝑠𝛿/𝐿2)

Φ𝑏𝔯𝑠

)
, (8.45)

where we used cos(𝜏/𝐿) = 1/cosh(𝔯𝑠𝛿/𝐿2) in the third line [487], which can be
found by equating Eq. (8.34) and Eq. (8.38) and taking the 𝔯𝑐 ≫ 𝔯𝑠 limit. We are
interested in computing the Euclidean path integral in terms of 𝐿𝑔, and because we
are interested in perturbations about the classical spacetime (where 𝛿 = 0), we will
expand 𝐿𝑔 to its first correction in 𝛿:

𝐿𝑔 ≈ 2𝐿
(
log

𝐿

Φ𝑏𝑟𝑠
+
𝔯2
𝑠 𝛿

2

2𝐿4

)
. (8.46)

That 𝐿𝑔 depends (at first order) quadratically on 𝛿 will have important consequences
for fluctuations in the photon travel time.

Euclidean Path Integral
We now turn to the solution to the QM path integral from a saddle point expansion
of the Euclidean Path Integral, which gives the thermodynamic fluctuations of the
system. The saddle-point geometry in Euclidean signature is given by performing a
Wick rotation on Eq. (8.35)

𝑑𝑠2
𝐸 =

𝔯2 − 𝔯2
𝑠

𝐿2 𝑑𝔱2
𝐸 + 𝐿2

𝔯2 − 𝔯2
𝑠

𝑑𝔯2 . (8.47)

Consider the AdS geometry with one asymptotic boundary. To avoid a conical
singularity at 𝔯 = 𝔯𝑠, we require

𝔯𝑠 =
2𝜋𝐿2

𝛽
. (8.48)

We compute the JT action in Eq. (8.26) on an AdS manifold with a disk topology
and 𝛽 as the periodicity of 𝑡𝐸 ,

−𝐼𝐸 = 2
Φ𝑏𝔯𝑐

𝐿

∫ 𝛽

0
𝑑𝔱𝐸

√︁
𝛾̃1𝐾̃1 , (8.49)
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where we have used the bulk equation of motion and the dilaton value at the
boundary. The Euclidan version of the boundary condition outlined below Eq. (8.28)
is

√
𝛾̃ =

√︁
𝛾̃𝑡𝐸 𝑡𝐸 = 𝔯𝑐/𝐿. The unit vector normal to the boundary 𝔯 = 𝔯𝑐 is 𝑛̃𝜇 =

(0,
√︁
𝔯2 − 𝔯2

𝑠 /𝐿). Hence, the extrinsic curvature in Eq. (8.47) is given by

𝐾̃1 = ∇̃𝜇𝑛̃𝜇 |𝔯=𝔯𝑐
= 𝜕𝜇𝑛̃

𝜇 |𝔯=𝔯𝑐

=
1
𝐿

𝔯𝑐√︁
𝔯2
𝑐 − 𝔯2

𝑠

=
1
𝐿

(
1 + 1

2
𝔯2
𝑠

𝔯2
𝑐

)
, (8.50)

where we used
√
𝑔̃ = 1 in the second line. Finally, putting Eq. (8.50) and Eq. (8.48)

into Eq. (8.49), the action becomes6

−𝐼𝐸 = 4𝜋2𝐿
Φ𝑏

𝛽
. (8.51)

The thermal partition function evaluated at the saddle-point is given by

𝑍 [𝛽] = 𝑒−𝐼𝐸

= 𝑒4𝜋2𝐿Φ𝑏/𝛽 . (8.52)

This allows to compute the energy and the entropy

⟨𝐸⟩ = −𝜕𝛽 log 𝑍 [𝛽] = 1
𝐿

Φ2
ℎ

Φ𝑏

𝑆 = log 𝑍 [𝛽] + 𝛽⟨𝐸⟩ = 4𝜋Φℎ . (8.53)

Here we see the direct connection between the entropy and the value of the dilaton
at the horizon.

We can get the leading correction to the saddle-point via

𝑍 [𝛽] ≈
∫ ∞

0
𝑑𝐸𝐿𝑒

𝑆(𝐸𝐿)−𝛽𝐸𝐿 ≈
∫ ∞

0
𝑑𝐸𝐿𝑒

4𝜋
√
𝐿Φ𝑏𝐸𝐿−𝛽𝐸𝐿 . (8.54)

This is the famous “square-root E” behavior of the density of states that appears
in many systems. It was shown in Ref. [482] that this density of states gives rise
to the relation 𝛽2𝜕2

𝛽
log 𝑍 [𝛽] = −𝛽𝜕𝛽 log 𝑍 [𝛽] + log 𝑍 [𝛽], which corresponds to

6To obtain a finite result in Eq. (8.49), we need to add a holographic renormalization counterterm
−(2/𝐿)

∫
𝜕𝑀̃2

𝑑𝑥0√−𝛾̃1Φ, similar to the one in Ref. [496] where the Schwarzian action is derived
from the JT action, but with a different boundary condition.
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⟨Δ𝐾2⟩ = ⟨𝐾⟩ [483, 484] in the language of AdS/CFT. This also directly follows
from the relation log 𝑍 ∼ 𝛽−1 at the saddle-point as indicated in Eq. (8.52).

We will later identify the entropy of the system to be the black hole entropy associated
with the causal diamond horizon, i.e.

𝑆 =
𝐴

4𝐺𝑁

=
8𝜋2𝐿2

𝑙2𝑝
. (8.55)

In order to understand the fluctuation in 𝛿, we now turn our attention to the calcu-
lation in the (𝐿𝑔, 𝑃) basis with two asymptotic boundaries in global coordinates.
Following Ref. [487], this can be achieved by studying the Hartle-Hawking wave-
function, which can be interpreted as a wormhole connecting the two boundaries.
Operationally, this amounts to computing the action in Eq. (8.26) with the metric
in Eq. (8.47), where the boundaries of the manifold is now the AdS conformal
boundary with length 𝔯𝑐𝛽/2 and a bulk boundary Σ. The action in Eq. (8.26) also
has to be modified to include contributions from the two corners of the geometry.
The result is

−𝐼𝐸 =
8𝐿Φ𝑏

𝛽

(
𝑦2 + 2𝑦

tan 𝑦

)
, (8.56)

where 𝛽 is the periodicity of the Euclidean time and

𝑦 =
𝑟𝑠𝛽

4𝐿2 =
1
4
𝛽Φℎ

𝐿Φ𝑏

𝑎 =
sin 𝑦
𝑦

= 4𝐿Φ𝑏𝑒
𝐿𝑔/2𝐿𝛽−1 , (8.57)

and 𝑎 ≤ 1. We observe that 𝐼𝐸 is minimized at 𝑦 = 𝜋/2, which corresponds to 𝛿 = 0
according to Eq. (8.45). Expanding near the peak, one finds [487]

−𝐼𝐸 = constant − 8𝐿Φ𝑏

𝛽

(
𝑦 − 𝜋

2

)2

= constant − 𝜋2

2
Φ𝑏

𝛽𝐿
(𝐿𝑔 − 𝐿𝑔,peak)2

= constant − 𝑆

16𝐿2 (𝐿𝑔 − 𝐿𝑔,peak)2 , (8.58)

where in addition to Eq. (8.53), we used Eq. (8.48) in the last line, which is expected
to hold at the peak of the wavefunction as required by smoothness at 𝔯 = 𝔯𝑠 in
Eq. (8.35). This suggests that the uncertainty of 𝐿𝑔 is

Δ𝐿𝑔 =
2
√

2𝐿
√
𝑆

, (8.59)
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Using Eq. (8.46), this translates to the variance in 𝛿

Δ𝛿2 =
2
√

2𝐿4

𝔯2
𝑠

√
𝑆
. (8.60)

We note that the precise numerical factor here depends on the details of the path
integral measure, which we mostly ignored so far in our leading-order analysis.
Moreover, at this level of approximation, we can use semiclassical relations between
different variables, in particular, between 𝐿𝑔 and 𝛿. A more careful treatment would
require a Jacobian factor in the path integral, which also can be considered as a
part of the integration measure. We expect that all such factors do not considerably
change the results of the leading-order saddle point analysis.

8.5 Photon Travel Time
The uncertainty relation in Eq. (8.58) allows us to compute the uncertainty in
photon travel time in the interferometer system. Recall that 𝛿 measures the time
shift between the two AdS boundaries shown in the right-hand panel of Fig. 8.3.
When regulated, the boundaries are brought in from 𝔯 → ∞ to a finite value 𝔯 = 𝔯𝑐

in their respective Schwarzschild patch. To allow for a non-zero value of 𝛿, we must
allow the two boundaries to fluctuate independently while keeping Φ𝑏 fixed. Since
the experiment is only probing the right exterior region (i.e. 𝑧 > 0), we would like
to trace out the degrees of freedom in the left patch. This can be achieved by taking
the limit where 𝔯𝑐 in the left is much greater than its right-hand side counterpart.
Operationally, we take 𝔯𝑐 → ∞ at the left while keeping 𝔯𝑐 at the right finite (but
still large). In Poincarécoordinates, this perturbs the boundary from 𝑧 = 0+ to some
small curve 𝑧 = 𝑧boundary(𝑡). Putting 𝔯 = 𝔯𝑠 in the first line of Eq. (8.36), one finds

𝑧boudnary(𝑡) =
𝐿 −

√︁
𝐿2 − (𝐿2 − 𝑡2) (𝔯2

𝑠 /𝔯2
𝑐 )

𝔯𝑠/𝔯𝑐

=
𝐿2 − 𝑡2

2𝐿
𝔯𝑠

𝔯𝑐
+ O

(
𝔯3
𝑠

𝔯3
𝑐

)
. (8.61)

As expected, if 𝔯𝑐 → ∞, the boundary would be located at 𝑧 = 0. The regularized
boundary 𝑧 = 𝑧boundary(𝑡) turns out to be a parabola, which we plot in Fig. 8.5.
Noting that the left boundary is still at 𝑧 = 0, the boundary times are given by the
second line of Eq. (8.36)

𝔱𝑅 =
𝐿2

𝔯𝑠
tanh−1 2𝐿𝑡

𝐿2 + 𝑡2 − 𝑧2
boundary(𝑡)

𝔱𝐿 = −𝐿
2

𝔯𝑠
tanh−1 2𝐿𝑡

𝐿2 + 𝑡2
. (8.62)
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Figure 8.5: Spacetime diagram showing the regularized boundary 𝑧 = 𝑧boundary(𝑡),
the flat brane 𝑧 = 𝑧𝑐 and the photon trajectories. We have chosen 𝔯𝑠/𝔯𝑐 = 0.2 for
illustration purpose.

We emphasize that 𝑡 is the Poincarétime, related to the Minkowski time by a con-
formal rescaling (as already noted below Eq. (8.4)), while 𝔱 is Schwarzschild time.
Hence, we use Eq. (8.61) to evaluate 𝛿 = (𝔱𝐿 + 𝔱𝑅)/2 and obtain

𝛿 =
𝐿𝔯𝑠

4𝔯2
𝑐

𝑡 + O
(
𝔯3
𝑠

𝔯3
𝑐

)
. (8.63)

We see that 𝛿 in linear in the Poincarétime.

The interferometer is now placed on a flat brane 𝑧 = 𝑧𝑐 for some constant 𝑧𝑐 ≪ 𝐿

such that the brane is barely touching 𝑧boundary(𝑡). This ensures that the brane is as
close to the boundary as possible without leaving the domain of the system, which
sets the value of 𝑧𝑐 to be

𝑧𝑐 =
𝐿

2
𝔯𝑠

𝔯𝑐
. (8.64)

The location of the brane is also indicated in Fig. 8.5. The photon round-trip time
𝑇r.t. is 2(𝐿 − 𝑧𝑐) multiplied by a conformal factor in front of the metric 𝐿/𝑧𝑐, which
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is approximately

𝑇r.t. =
2𝐿2

𝑧𝑐

= 4𝐿
𝔯𝑐

𝔯𝑠
. (8.65)

Note that the photon travel time diverges if the boundary was not regularized, as
noted in Ref. [484]. The fluctuation in photon roundtrip time scales linearly with
fluctuations in 𝛿. The ratio Δ𝑇r.t./𝑇r.t. should be independent of the metric prefactor.
Using Eq. (8.63), Eq. (8.60) and Eq. (8.65), we find

Δ𝑇2
r.t.

𝑇2
r.t.

=
(4𝔯2

𝑐/𝐿𝔯𝑠)2Δ𝛿2

4𝐿2

= 8
√

2
(
𝔯𝑐

𝔯𝑠

)4 1
√
𝑆

=
1
√

2

(
𝑇r.t.
2𝐿

)4 1
√
𝑆
. (8.66)

Since the experiment is carried out in Minkowski spacetime, the photon measured
travel time does not have any conformal factors in it, which allow us to identify
𝑇r.t. = 2𝐿. Combined with the entropy relation in Eq. (8.55), we find

Δ𝑇2
r.t.

𝑇2
r.t.

=
1

√
2𝑆

=
𝑙𝑝

4𝜋𝐿
. (8.67)

This scaling relation agrees with the previous work of one of the present authors in
Refs. [30, 484, 497, 482], which demonstrated that the two-point correlation function
of arm length fluctuations in an interferometer system are proportional to 𝑙𝑝/𝐿.
While a small fluctuation, it is measurable with a laboratory scale interferometer.

8.6 Conclusion
The dimensional reduction of Einstein gravity in a causal diamond of the four-
dimensional flat Minkowski spacetime can be described by two-dimensional JT
gravity with the dilaton field playing the role of the diamond area. By analyzing
the Hartle-Hawking wavefunction in JT gravity, we find that the uncertainty in an
interferometer arm length scales with the Newton’s constant as Δ𝐿 ∼

√︁
𝑙𝑝𝐿. This

agrees with the previous works [30, 484, 497, 482], where the same scaling was
obtained by other methods.
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Our result in Sec. 8.4 may appear surprising since it naively violates well-known
effective field theory lore, which states that the two-point function of an observable
should scale with an integer power of the coupling constant. Our result, however, is
not in contradiction with this fact for two reasons. First, our analysis is not based on
perturbation theory involving a single graviton. Instead, this is a collective effect that
comes from all quantum gravity effects within a causal diamond. This is analogous to
hydrodynamic description of diffusion, where the UV scale is the average separation
of fluid particles. In hydrodynamics, it is well-known that a particle in the system
admits a random walk description, with variance growing linearly in time and with
the diffusion coefficient that scales as the square root of the UV scale. Following
Refs. [498, 499], relations between JT gravity and hydrodynamics have been noted
e.g. in Ref. [487]. Establishing a more precise connection between quantum gravity
in flat spacetime and hydrodynamics is a possible future development of this work.

The second reason our result is consistent with the effective field theory lore is that
the quantity with a traditional EFT scaling ⟨𝐿𝑔𝐿𝑔⟩ ∼ 𝑆−1 ∼ 𝐺𝑁 does not correspond
to the observable 𝛿 relevant for a photon travel time measurement. Rather 𝛿 scales
as 𝐿𝑔 ∼ 𝛿2, implying that it is the four-point of 𝛿 with linear scaling in 𝐺𝑁 . This
behavior is familiar from the study of time-ordered/out-of-time-ordered-correlators,
and it is not surprising that such correlators are relevant for systems that display
chaotic and hydrodynamic behavior. We leave study of the connection between the
observable of interest and hydrodynamic and chaotic behavior for future work.
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C h a p t e r 9

INTERFEROMETER RESPONSE TO GEONTROPIC
FLUCTUATIONS

This chapter is based on

[1] Dongjun Li, Vincent S. H. Lee, Yanbei Chen, and Kathryn M. Zurek. “In-
terferometer response to geontropic fluctuations”. In: Phys. Rev. D 107.2
(2023), p. 024002. doi: 10.1103/PhysRevD.107.024002. arXiv: 2209.
07543 [gr-qc].

9.1 Introduction
Traditional wisdom in effective field theory (EFT) suggests that quantum fluctuations
in the fabric of spacetime should be of the order of ∼ 𝑙𝑝 =

√︁
8𝜋𝐺ℏ/𝑐3 ∼ 10−34 m,

where 𝐺, ℏ, 𝑐, and 𝑙𝑝 are the gravitational constant, reduced Planck constant, speed
of light, and Planck length respectively. Fluctuations on such small time and length
scales are experimentally undetectable.

It has, however, been recently argued in multiple different contexts that the length
scale 𝐿 of the physical system itself may enter into the observable [30, 484, 482,
497, 6, 500] (see Ref. [86] for a summary)〈(

Δ𝐿

𝐿

)2
〉
∼
𝑙𝑝

𝐿
, (9.1)

where Δ𝐿 is the quantum fluctuation of 𝐿. For example, in Refs. [30, 497], 𝐿 is
the length of interferometer arm in flat spacetime. More generally, 𝐿 can be the
size of a causal diamond in dS, AdS, and flat spacetime [482, 484]. These works
argued that the naive EFT reasoning is corrected by long-range correlations in the
metric fluctuations–such as are known to occur in holography–which allow the
UV fluctuations to accumulate into the infrared. A physical analogue is Brownian
motion (discussed in Ref. [86]) where the interactions occur at very short distances
but become observable on long timescales as the UV effects accumulate.

While the calculations presented in Refs. [30, 484, 482, 497, 6] are firmly grounded
in standard theoretical techniques, such as AdS/CFT, they have not yet provided
important, detailed experimental information, such as the power spectral density.

https://doi.org/10.1103/PhysRevD.107.024002
https://arxiv.org/abs/2209.07543
https://arxiv.org/abs/2209.07543
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This was the motivation behind the model of Ref. [497], to provide a framework
that reproduces important behaviors of the UV-complete theory while also allowing
to calculate detailed signatures in the infrared. In the language of the Brownian
motion model, while the fluctuations arise from local interactions, the observable is
only defined globally. In the language of an interferometer experiment, one cannot
measure spacetime fluctuation within a portion of an interferometer arm length, but
must wait for a photon to complete a round trip before making a measurement of
the global length fluctuation across the entire arm.

In this work, we continue along the lines of Ref. [497], utilizing a scalar field
coupled to the metric to model the behavior of the spacetime fluctuations proposed
in Refs. [30, 484, 482, 497, 6]. In particular, we propose a model in four dimensions,
where the metric appears as a breathing mode of a sphere controlled by a scalar field
𝜙:

𝑑𝑠2 = −𝑑𝑡2 + (1 − 𝜙) (𝑑𝑟2 + 𝑟2𝑑Ω2) . (9.2)

Since 𝜙 effectively controls the area of a spherical surface, it is thus proportional
to the entropy of a causal diamond, and may be identified with the dilaton mode
studied in Refs. [482, 6]. In the model we consider, 𝜙 is a scalar field whose quantum
fluctuations will be characterized by its occupation number, which we label as 𝜎𝑝𝑖𝑥 .
The subscript denotes “pixellon” following the proposal of Ref. [497], referring to
the pixels of spacetime whose fluctuations the scalar field is modeling.

In particular, the quantum fluctuations of the scalar, since they couple to the metric,
will give rise to fluctuations in the round-trip time for a photon to traverse from
mirror to mirror in an interferometer, as depicted in Fig. 10.1. Similar to Ref. [497],
our main goal is to compute the gauge invariant interferometer observable arising
from the metric Eq. (9.2), with 𝜙 being a scalar field having a high occupation
number. In contrast to Ref. [497], which calculated length fluctuations utilizing
the Feynman-Vernon influence functional in a single interferometer arm, we will
use only linearized gravity and the QFT of a scalar field with a given occupation
number. We will thus be able to extend the previous work in Ref. [497], calculating
both the power spectral density and angular correlations in the interferometer arms
in a manifestly gauge invariant way, checking previous claims made in Ref. [30],
as well as making new predictions. Note that while the model is not yet uniquely
derived from first principles in the ultraviolet (utilizing for example shockwave
geometry [500]), we will argue below that it is nevertheless well-motivated from
first principles.
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More specifically, we consider an interferometer with two arms of equal length 𝐿,
i.e., with spherical symmetry, and separated by angle 𝜃, as depicted in Fig. 10.1.
We assume that the first arm as the reference beam points in the direction n1, and
the second arm as the signal beam points in the direction n2. We will find that the
observable takes the form:〈

𝛿𝑇 (𝑡1, 𝑛1)𝛿𝑇 (𝑡2, 𝑛2)
4𝐿2

〉
=

𝑙2𝑝

4𝐿2

∫ 𝐿

0
𝑑𝑟1

∫ 𝐿

0
𝑑𝑟2

∫
𝑑3p
(2𝜋)3

𝜎𝑝𝑖𝑥 (p)
2𝜔(p) 𝐹 (𝑟1, 𝑟2, 𝑝,Δ𝑥) , (9.3)

where 𝛿𝑇 (𝑡, 𝑛) denotes the fluctuation of time delay of light beam sent at time 𝑡 − 𝐿
along the direction 𝑛, and 𝑝 = (𝜔, 𝑝), Δ𝑥 = (Δ𝑡,Δ𝑥) are four-vectors. The main
object of interest in this paper is 𝐹 (𝑟1, 𝑟2, 𝑝,Δ𝑥), which encapsulates the response
of the interferometer gravitationally coupled to the scalar field 𝜙.

The rest of the paper is organized around deriving Eq. (9.3). In Sec. 9.2, we
review the pixellon scalar field model, with an occupation number 𝜎𝑝𝑖𝑥 motivated
in particular by [497], but also by work demonstrating that the effect of interest is
a breathing mode of the horizon [482, 6]. We then couple this scalar field to the
Einstein-Hilbert action and derive its equation of motion. In Sec. 9.3, we perform a
linearized gravity calculation and derive the observable. In particular, we compute
the interferometer response function 𝐹 (𝑟1, 𝑟2, 𝑝,Δ𝑥) from our specific model. In
Sec. 9.4, we compute the relevant power spectral density and angular correlation
from Eq. (9.3). We then discuss various existing experimental constraints. Finally,
in Sec. 9.5, we conclude. Throughout the paper we will work in units ℏ = 𝑐 = 𝑘𝐵 = 1
while keeping the gravitational constant 𝐺 = 𝑙2𝑝/(8𝜋) explicit.

9.2 Scalar Field Quantum Fluctuations in a Causal Diamond
The main goal of this section is to motivate the form of the scalar occupation number,
𝜎𝑝𝑖𝑥 , that will be coupled to the metric. Our discussion here is mostly based on
Ref. [497], though, as mentioned previously, it is also broadly consistent with the
dilaton model presented in Ref. [482, 6].

The effect of interest, as presented in Refs. [30, 484] is based on fluctuations in the
modular Hamiltonian 𝐾

𝐾 =

∫
𝐵

𝑇𝜇𝜈𝜁
𝜇

𝐾
𝑑𝐵𝜈 , (9.4)

where 𝐵 is some spatial region with a stress tensor𝑇𝜇𝜈, 𝑑𝐵𝜈 is the volume element of
𝐵 (with 𝑑𝐵𝜈 pointing in the time direction), and 𝜁 𝜇

𝐾
is the conformal Killing vector
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Figure 9.1: Setup of the interferometer.

of the boost symmetry of Σ, the entangling surface between 𝐵 and its complement
𝐵̄ [501, 484]. One can map 𝐵 to Rindler space, so Σ is also a Rindler horizon. In
the context of AdS/CFT, where 𝑇𝜇𝜈 is the stress tensor of the boundary CFT, both
the vacuum expectation value and the fluctuations of the modular Hamiltonian are
known to obey an area law in vacuum [484, 502, 503]

⟨𝐾⟩ = ⟨Δ𝐾2⟩ = 𝐴(Σ)
4𝐺

, (9.5)

where 𝐴(Σ) is the area of Σ. One tempting interpretation of this relation is that
⟨𝐾⟩ ≡ 𝑁 counts the number of gravitational bits, or pixels, in the system, which is
further motivated by the fact that the entanglement entropy 𝑆𝑒𝑛𝑡 = ⟨𝐾⟩ is known to
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hold in a CFT. The fluctuations of those 𝑁 bits then satisfy “root-N” statistics:

|Δ𝐾 |
⟨𝐾⟩ =

1
√
𝑁
, (9.6)

where |Δ𝐾 | =
√︁
⟨Δ𝐾2⟩ represents the amplitude of the modular fluctuation.

While the precise relation ⟨𝐾⟩ = ⟨Δ𝐾2⟩ is demonstrated only in the context of
AdS/CFT, one can place a Randall-Sundrum brane in the (5-d) bulk of AdS, inducing
gravity on the (flat 4-d) RS brane, and show that Eq. (9.5) holds on the 4-d brane
[482]. The measuring apparatus can then be placed on the flat 4-d brane. Further,
as shown in [481, 504, 482], gravity is approximately conformal near the horizon.
For an interferometer, the light beams are probing the near-horizon geometry of
the spherical entangling surface Σ bounding it (shown in Fig. 10.1), so Ref. [482]
argued that the correlator of stress tensor takes the same form as any CFT. Thus,
⟨Δ𝐾2⟩ follows Eq. (9.5), i.e.,

⟨Δ𝐾2⟩ ∼
∫

𝑑2𝑦𝑑2𝑦′
𝑑𝑟 𝑑𝑟′𝑟 𝑟′

((𝑟 − 𝑟′)2 + (𝑦 − 𝑦′)2)4

∼ 𝐴

∫
𝑑𝑟 𝑑𝑟′𝑟 𝑟′

(𝑟 − 𝑟′)6 ∼ 𝐴

𝛿2 ∼ 𝐴

𝑙2𝑝
, (9.7)

where y denotes the transverse directions (corresponding to the coordinates on Σ),
and 𝐺 ∼ 𝛿2 corresponds to a UV cut-off in the theory at a distance scale 𝛿 ∼ 𝑙𝑝.
In our case, 𝑟 − 𝑟′ ∼ 𝛿 corresponds to the distance to the (unperturbed) spherical
entangling surface Σ in our setup shown in Fig. 10.1. A similar relation holds for
⟨𝐾⟩. More generally, as found in [505], an area law for entanglement entropy does
not hold only for a CFT but also any massless scalar QFT, which also motivates the
scalar model of geoentropic fluctuations in [497] and this work.

The idea of Ref. [497] was thus to model the gravitational effects of modular
fluctuations with a massless scalar field, dubbed a “pixellon.” Since pixellons are
bosonic scalars, their creation and annihilation operators (𝑎, 𝑎†) satisfy the usual
commutation relation [

𝑎p1 , 𝑎
†
p2

]
= (2𝜋)3𝛿(3) (p1 − p2) . (9.8)

We are interested in modeling the impact of the (fluctuating) effective stress tensor in
Eq. (9.13). We will do this by allowing for a non-zero occupation number 𝜎𝑝𝑖𝑥 (p),

Tr
(
𝜌𝑝𝑖𝑥𝑎

†
p1𝑎p2

)
= (2𝜋)3𝜎𝑝𝑖𝑥 (p1)𝛿(3) (p1 − p2) (9.9)
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such that

Tr
(
𝜌𝑝𝑖𝑥{𝑎p1 , 𝑎

†
p2}

)
= (2𝜋)3 [

1 + 2𝜎𝑝𝑖𝑥 (p1)
]
𝛿(3) (p1 − p2) . (9.10)

The occupation number should be consistent with the modular energy fluctuation,
Eq. (9.6), as we will check explicitly at the end of this section.

The pixellon couples to the metric and sources the stress tensor at second order in
perturbations. In general, we can consider a metric of the form

𝑔𝜇𝜈 = 𝜂𝜇𝜈 + 𝜖ℎ𝜇𝜈 + 𝜖2𝐻𝜇𝜈 + ... , (9.11)

where 𝜖 is a dimensionless parameter that denotes the order in perturbation theory.
The vacuum Einstein Equation (EE) is, parametrically 1,

𝐺𝜇𝜈 = 𝜖
[
∇2ℎ

]
𝜇𝜈

+ 𝜖2
( [
∇2𝐻

]
𝜇𝜈

− 𝑙2𝑝𝑇𝜇𝜈
)
+ ... = 0 , (9.12)

where the precise form of the equations of motion (e.g., numerical prefactors in the
time and spatial derivatives) will depend on the precise form of the metric that we
consider below, and where the effective stress tensor is given by

𝑇𝜇𝜈 ∼
1
𝑙2𝑝

[
(∇ℎ)2]

𝜇𝜈
. (9.13)

At leading order in perturbation theory, the metric perturbation ℎ𝜇𝜈 satisfies the
vacuum EE having a form [

∇2ℎ
]
𝜇𝜈

= 0 . (9.14)

However, at second order, the effective stress tensor of ℎ𝜇𝜈 will source a non-zero
metric perturbation 𝐻𝜇𝜈, i.e., [

∇2𝐻
]
𝜇𝜈

= 𝑙2𝑝𝑇𝜇𝜈 . (9.15)

One can compute ⟨𝐾⟩ from ⟨𝑇𝜇𝜈⟩, but as shown in [484], ⟨𝐾⟩ does not gravitate
and should be subtracted in the metric equation of motion (similar to a tadpole
diagram in QFT). Thus, the vacuum expectation value of this stress tensor vanishes,
⟨𝑇𝜇𝜈⟩ = 0, consistent with Eqs. (9.13)-(9.14). In contrast, it is expected to have
nonzero fluctuations ⟨Δ𝐾2⟩ ∼ ⟨𝑇𝛼𝛽𝑇𝜇𝜈⟩ ≠ 0, which gravitate and lead to physical
observables.

1This argument was formulated in private communication with E. Verlinde in the work leading
to Ref. [484].
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Although ⟨Δ𝐾2⟩ is directly related to the vacuum two-point function of 𝐻𝜇𝜈 or four-
point function of ℎ𝜇𝜈, the physical observable can be directly computed from the
two-point function of ℎ𝜇𝜈 with a nontrivial density-of-states 𝜎𝑝𝑖𝑥 . That is, we are
using the language of linearized gravity in this work, while our result captures the
nonlinearity in Eq. (9.15) and higher orders via 𝜎𝑝𝑖𝑥 . To compute the fluctuations,
we quantize the metric perturbations via the scalar field 𝜙, which, to second order in
perturbation theory, leads to a nonzero ⟨Δ𝐾2⟩, as shown at the end of this section.
The major goal of this work is to compute the effects of such quantized metric
perturbations on the interferometer depicted in Fig. 10.1.

More specifically, following Ref. [497], we model these energy fluctuations, in the
volume of spacetime interrogated with an interferometer, with a thermal density
matrix 𝜌𝑝𝑖𝑥 , as shown in Eqs. (9.9)-(9.10). The motivation for this choice is based
on formal work [501] showing that the reduced density matrix 𝜌𝑉 of the system 𝑉

bounded by a sphere 𝑆𝑑−1 or its casual development D can be mapped to the thermal
density matrix 𝜌𝛽 of the hyperbolic spacetime 𝑅 × 𝐻𝑑−1, which foliates AdS𝑑+1, in
the asymptotic limit. A similar argument relating the vacuum state of any QFT in a
causal diamond to a thermal density matrix can be found in [506].

Thus, following [497], we are motivated to define a thermal density matrix 𝜌𝑝𝑖𝑥 of
pixellons using the definition in [507],

𝜌𝑝𝑖𝑥 =
1
Z exp

[
−𝛽

∫
𝑑3p
(2𝜋)3 (𝜖p − 𝜇)𝑎

†
p𝑎p

]
, (9.16)

Z =
∏

p

1
1 − 𝑒−𝛽(𝜖p−𝜇)

, (9.17)

where 𝜖p is the energy of pixellons with momentum p, and 𝜇 is the chemical potential
counting background degrees of freedom associated with ⟨𝐾⟩ [497].

Furthermore, as in Ref. [497], we identify the energy per degree-of-freedom as

𝛽(𝜖p − 𝜇) ≡ 𝛽𝜔(𝑝) ∼ |Δ𝐾 |
⟨𝐾⟩ . (9.18)

In four dimensions, according to Eq. (9.5),
|Δ𝐾 |
⟨𝐾⟩ =

1
√
N

∼
𝑙𝑝

𝐿
, (9.19)

suggesting that the energy fluctuation per degree-of-freedom is set by a ratio of UV
and IR length scales. Since 𝑙𝑝

𝐿
≪ 1, we approximate the occupation number 𝜎(p)

by
𝜎𝑝𝑖𝑥 (p) =

1
𝑒𝛽𝜔(p) − 1

≈ 1
𝛽𝜔(p) . (9.20)
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More specifically, we identify the IR length scale 1/𝐿 ∼ 𝜔(p), so we take

𝜎𝑝𝑖𝑥 (p) =
𝑎

𝑙𝑝𝜔(𝑝)
, (9.21)

where 𝑎 is the dimensionless number to be measured in an experiment, or fixed
in a UV-complete theory. Here 𝑎 = 1/(2𝜋) corresponds to an inverse temperature
𝛽 = 2𝜋𝑙𝑝, giving a result most closely mirroring Refs. [30, 484, 497] in amplitude.

Note that 𝜎𝑝𝑖𝑥 (p) is not Lorentz invariant, but this is to be expected because the
measurement of interest via a causal diamond picks out a frame. This is also not
contradictory to our statement that we have computed a gauge invariant observ-
able. It is because Lorentz transformations of 𝜎𝑝𝑖𝑥 (p) are global transformations of
background Minkowski spacetime. After the interferometer picks a frame, the in-
terferometer response is independent of how we describe metric perturbations, i.e.,
independent of local coordinate transformations at scale of metric perturbations,
which is what gauge invariance usually means in linearized gravity.

We now derive the dispersion relation for the scalar field from the metric in Eq. (9.2).
We start from the linearized Einstein Hilbert action or Fierz-Pauli action [508]

𝑆FP =
1

2𝜅

∫
𝑑4𝑥

√−𝑔 ℎ𝜇𝜈
(
𝐺𝜇𝜈 [ℎ𝜇𝜈] − 𝜅𝑇 𝜇𝜈

)
=

1
4𝜅

∫
𝑑4𝑥

√−𝑔 ℎ𝜇𝜈 (𝜂𝜇𝜈□ℎ − □ℎ𝜇𝜈

− 2∇𝜇∇𝜈ℎ + 2∇𝜌∇𝜇ℎ𝜈𝜌 − 2𝜅𝑇 𝜇𝜈) + O(ℎ3) ,

(9.22)

where 𝜅 = 8𝜋𝐺. The Fierz-Pauli action can be derived by expanding the full
metric 𝑔𝜇𝜈 about the Minkowski metric 𝜂𝜇𝜈, 𝑔𝜇𝜈 = 𝜂𝜇𝜈 + ℎ𝜇𝜈, and keeping the terms
quadratic in ℎ𝜇𝜈 in the Einstein Hilbert action [508, 509]. Here, ℎ𝜇𝜈 is the metric
perturbation associated with the pixellon 𝜙. The terms linear in ℎ𝜇𝜈 are discarded
because they can be written as a total derivative [509].

Instead of a functional of a general ℎ𝜇𝜈, 𝑆FP in our model is a functional of the metric
in Eq. (9.2) and thus a functional of 𝜙, so the pixellon’s action 𝑆𝑝𝑖𝑥 [𝜙] is

𝑆𝑝𝑖𝑥 [𝜙] ≡ 𝑆FP [ℎ𝑝𝑖𝑥𝜇𝜈 [𝜙]] , ℎ
𝑝𝑖𝑥
𝜇𝜈 𝑑𝑥

𝜇𝑑𝑥𝜈 = 𝑑𝑠2
𝑝𝑖𝑥 , (9.23)

which after plugging in Eq. (9.2) becomes

𝑆𝑝𝑖𝑥 [𝜙] =
1

2𝜅

∫
𝑑4𝑥

√−𝑔 𝜙
[
∇2 − 3𝜕2

𝑡

]
𝜙 + 𝜅Lint [𝜙] ,

Lint [𝜙] ≡ −ℎ𝑝𝑖𝑥𝜇𝜈 [𝜙]𝑇 𝜇𝜈 . (9.24)
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Then the equation of motion (EOM) of 𝜙 is derived by varying L𝑝𝑖𝑥 with respect to
𝜙. (

𝜕2
𝑡 − 𝑐2

𝑠∇2
)
𝜙 =

𝜅

𝑐2
𝑠

𝛿Lint [𝜙]
𝛿𝜙

, 𝑐𝑠 ≡
√︂

1
3
. (9.25)

Following the logic of Eqs. (9.12)-(9.13), to leading order in 𝜙, the right-hand side
of Eq. (9.25) vanishes. Although Eq. (9.25) is source-free, one may find that the
effective stress tensor contains linear term in 𝜙, which is a tadpole due to imposing
the form of metric in Eq. (9.2) and can be subtracted off. Eq. (9.25) also implies
that for the metric in Eq. (9.2), 𝜙 needs to have the dispersion relation

𝜔 = 𝑐𝑠 |p| , 𝑐𝑠 =

√︂
1
3

(9.26)

using the expansion 𝜙 =
∫

𝑑3p
(2𝜋)3 𝜙(p)𝑒−𝑖𝜔𝑡+𝑖p·x. It is clear that 𝜙 is a sound mode

with the sound speed 𝑐𝑠 =
√︃

1
3 . From Eq. (9.24), we also notice that to canonically

normalize 𝜙, we can define 𝜙 such that

𝜙 =
√
𝜅𝜙 = 𝑙𝑝𝜙 . (9.27)

As a consistency check, one can use the metric in Eq. (9.2) and the occupation
number in Eq. (9.21) to confirm that ⟨Δ𝐾2⟩ has the same scaling in Eq. (9.5).
Although the physical observable is driven by the two-point function of 𝜙 as we will
discuss in Sec. 9.3, ⟨Δ𝐾2⟩ is driven by the four-point function of 𝜙. One can see
this by noting that 𝐾2 ∼ (𝑇𝜇𝜈)2 according to Eq. (9.4), while 𝑇𝜇𝜈 ∼ 1

𝑙2𝑝

[
(∇𝜙)2]

𝜇𝜈

according to Eq. (9.13). In Sec. 9.3, we find, utilizing the Ansatz Eq. (9.21) for the
density of states, ⟨𝜙2⟩ ∼ 𝑙𝑝

𝐿
[see Eq. (9.39)]. Thus, if we identify spatial gradients

with the IR length scale 1/𝐿, we obtain ⟨Δ𝐾2⟩ ∼ 𝐿2

𝑙2𝑝
∼ 𝐴

4𝐺 , as expected.

9.3 Time Delay in Pixellon Model
The major goal of this work is to compute an interferometer response to fluctuations
in the pixellon model. Instead of using the Feynman-Vernon influence functional
approach to compute the mirror’s motion, e.g., in [497, 509, 510], we compute the
time delay of a light beam traveling a round trip directly.

In general, for a metric in the form

𝑑𝑠2 = −(1 −H0)𝑑𝑡2 + (1 + H2)𝑑𝑟2 + 2H1𝑑𝑡𝑑𝑟 + · · · , (9.28)

we need to consider three effects: the shift in the clock rate, mirror motion, and light
propagation. As discussed in detail in Appendix J, the shift in the clock’s rate only
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depends on H0, the mirror motion in the radial direction is affected by H0,1, and the
light propagation is determined by all three components H0,1,2.

In Appendix K, we further show that if we take all of these three effects into
consideration and sum up the resulting time delay for both outbound and inbound
light, the total time delay 𝑇 of a round trip is gauge invariant, so 𝑇 is a physical
quantity to measure. In this section, we compute the shift of 𝑇 due to geoentropic
fluctuations and its correlation function using the metric of the pixellon model in
Eq. (9.2). To calculate time delay in a generic metric like Eq. (9.28), one can refer
to Appendix J.

For the metric in Eq. (9.2), the only nonzero component in the 𝑡 − 𝑟 sector of the
metric is H2, so we only need to consider light propagation. Then for a light beam
sent at time 𝑡 − 𝐿 along the direction n, its total time delay 𝑇 (𝑡, n) of a round trip is
completely determined by the pixellon field 𝜙, e.g.,

𝑇 (𝑡, n) = 2𝐿 + 1
2

∫ 𝐿

0
𝑑𝑟 [𝜙(𝑥) + 𝜙(𝑥′)] ,

𝑥 ≡ (𝑡 − 𝐿 + 𝑟, 𝑟n) , 𝑥′ ≡ (𝑡 + 𝐿 − 𝑟, 𝑟n) . (9.29)

We have chosen the start time to be at 𝑡 − 𝐿 such that the time coordinate of 𝑥 and
𝑥′ are symmetric about 𝑡.

Since 𝜙 satisfies the massless free scalar wave equation with the sound speed 𝑐𝑠 = 1√
3

[i.e., Eqs. (9.25) and (9.26)], the quantization for 𝜙(𝑥) should be

𝜙(𝑥) = 𝑙𝑝
∫

𝑑3p
(2𝜋)3

1√︁
2𝜔(p)

(
𝑎p𝑒

𝑖𝑝·𝑥 + 𝑎†p𝑒−𝑖𝑝·𝑥
)
, (9.30)

where 𝑙𝑝 is to make 𝜙(𝑥) canonically normalized, as discussed in Eq. (9.27). Cre-
ation and annihilation operators 𝑎p, 𝑎†p satisfy the commutation relation in Eq. (9.8)
with a thermal density matrix 𝜌𝑝𝑖𝑥 defined in Eqs. (9.16) and (9.21).

Let us define 𝛿𝑇 (𝑡, n) to be the correction to the total time delay 𝑇 (𝑡, n). We write
the auto-correlation of 𝛿𝑇 (𝑡, n) as

𝐶 (Δ𝑡, 𝜃) ≡
〈
𝛿𝑇 (𝑡1, n1)𝛿𝑇 (𝑡2, n2)

4𝐿2

〉
,

Δ𝑡 ≡ 𝑡1 − 𝑡2 , 𝜃 = cos−1 (n1 · n2) , (9.31)

and using Eq. (9.29), we obtain

𝐶 (Δ𝑡, 𝜃) = 1
16𝐿2

∫ 𝐿

0
𝑑𝑟1

∫ 𝐿

0
𝑑𝑟2

⟨
(
𝜙(𝑥1) + 𝜙(𝑥′1)

) (
𝜙(𝑥2) + 𝜙(𝑥′2)

)
⟩ ,

(9.32)
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where ⟨O⟩ is a shorthand notation for

⟨O⟩ = (𝜌𝑝𝑖𝑥O) . (9.33)

We have assumed that 𝐶 (Δ𝑡, 𝜃) only depends on Δ𝑡, the difference of the time when
the two beams are sent, and 𝜃, the angular separation of two arms. We will see that
this assumption is true.

Besides the correlation function in Eq. (9.31), a more physical correlation function
is to first subtract the time delay of the first arm 𝑇 (𝑡, n1) from the time delay of the
second arm𝑇 (𝑡, n2), where two beams are sent at the same time 𝑡, and then correlate
this difference of time delay at different beam-sent time:

𝐶T (Δ𝑡, 𝜃) ≡
〈
T (𝑡1, 𝜃)T (𝑡2, 𝜃)

4𝐿2

〉
,

T (𝑡, 𝜃) ≡ 𝑇 (𝑡, n2) − 𝑇 (𝑡, n1) = 𝛿𝑇 (𝑡, n2) − 𝛿𝑇 (𝑡, n1) , (9.34)

such that
𝐶T (Δ𝑡, 𝜃) = 2 [𝐶 (Δ𝑡, 0) − 𝐶 (Δ𝑡, 𝜃)] . (9.35)

Here, we treat the first arm as the reference beam and the second arm as the
signal beam. Since the relation between 𝐶 (Δ𝑡, 𝜃) and 𝐶T (Δ𝑡, 𝜃) is directly given
by Eq. (9.35), we will focus on 𝐶 (Δ𝑡, 𝜃) in our calculations below. To compute
𝐶 (Δ𝑡, 𝜃) in Eq. (9.32), we need to first compute the correlation function of 𝜙. Using
Eq. (9.30), we obtain

𝜙(𝑥) + 𝜙(𝑥′) = 𝑙𝑝
∫

𝑑3p
(2𝜋)3

1√︁
2𝜔(p)

2 cos [𝜔(𝐿 − 𝑟)](
𝑎p𝑒

−𝑖𝜔𝑡+𝑖p·x + 𝑎†p𝑒𝑖𝜔𝑡−𝑖p·x
)
.

(9.36)

Then we have
⟨
(
𝜙(𝑥1) + 𝜙(𝑥′1)

) (
𝜙(𝑥2) + 𝜙(𝑥′2)

)
⟩

= 4𝑙2𝑝
∫

𝑑3p1

(2𝜋)3

∫
𝑑3p2

(2𝜋)3
1√︁

4𝜔1(p1)𝜔2(p2)
cos [𝜔1(𝐿 − 𝑟1)] cos [𝜔2(𝐿 − 𝑟2)][
⟨𝑎p1𝑎

†
p2⟩𝑒

−𝑖(𝜔1𝑡1−𝜔2𝑡2−p1·x1+p2·x2) + 𝑐.𝑐.
]
,

(9.37)

where we have only kept the term proportional to 𝑎†p1𝑎p2 and 𝑎p1𝑎
†
p2 since the other

terms are zero.

To evaluate Eq. (9.37), we need to calculate ⟨𝑎†p1𝑎p2⟩ and ⟨𝑎p1𝑎
†
p2⟩. The former is

given directly by Eq. (9.9), ⟨𝑎†p1𝑎p2⟩ = (𝜌𝑝𝑖𝑥𝑎†p1𝑎p2) = (2𝜋)3𝜎𝑝𝑖𝑥 (p1)𝛿(3) (p1 − p2).
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Using both Eq. (9.9) and the commutation relation in Eq. (9.8), we find the latter to
be

⟨𝑎p1𝑎
†
p2⟩ = (2𝜋)3 [1 + 𝜎𝑝𝑖𝑥 (p1)]𝛿(3) (p1 − p2)

≈ (2𝜋)3𝜎𝑝𝑖𝑥 (p1)𝛿(3) (p1 − p2) , (9.38)

where we have used 𝜎𝑝𝑖𝑥 (p) ≫ 1 at the last line. Then,

⟨
(
𝜙(𝑥1) + 𝜙(𝑥′1)

) (
𝜙(𝑥2) + 𝜙(𝑥′2)

)
⟩

= 4𝑙2𝑝
∫

𝑑3p
(2𝜋)3

𝜎𝑝𝑖𝑥 (p)
2𝜔(p) cos [𝜔(𝐿 − 𝑟1)] cos [𝜔(𝐿 − 𝑟2)][

𝑒−𝑖𝜔Δ𝑡+𝑖p·Δx + 𝑐.𝑐.
]
,

(9.39)

where we have defined Δx ≡ x1 − x2. Notice that Eq. (9.37) is a complex function
in general, so we usually need to symmetrize it over x1,2. Due to our approximation
in Eq. (9.38), Eq. (9.39) is a real function, so the one after symmetrization over x1,2

is the same as Eq. (9.39). For simplicity, we will drop the term 𝑐.𝑐. and always
assume that a complex conjugate is taken.

Finally, plugging Eq. (9.39) into Eq. (9.32), we obtain

𝐶 (Δ𝑡, 𝜃) =
𝑙2𝑝

4𝐿2

∫ 𝐿

0
𝑑𝑟1

∫ 𝐿

0
𝑑𝑟2

∫
𝑑3p
(2𝜋)3

𝜎𝑝𝑖𝑥 (p)
2𝜔(p)

cos [𝜔(𝐿 − 𝑟1)] cos [𝜔(𝐿 − 𝑟2)]𝑒−𝑖𝜔Δ𝑡+𝑖p·Δx .

(9.40)

This is our main result, and we will work on applying it to existing interferometer
configurations next.

9.4 Observational Signatures and Constraints
After plugging 𝜎𝑝𝑖𝑥 (p) in Eq. (9.21), Eq. (9.40) is reduced to

𝐶 (Δ𝑡, 𝜃) =
𝑎𝑙𝑝

8𝐿2

∫ 𝐿

0
𝑑𝑟1

∫ 𝐿

0
𝑑𝑟2

∫
𝑑3p
(2𝜋)3

1
𝜔2(p)

cos [𝜔(𝐿 − 𝑟1)] cos [𝜔(𝐿 − 𝑟2)]𝑒−𝑖𝜔Δ𝑡+𝑖p·Δx .

(9.41)

In the next two subsections, we will study the power spectral density and angular
correlation of Eq. (9.41) in more detail.



204

Power spectral density
We first study the power spectral density implied by Eq. (9.41). Carrying out the
angular part of the momentum integral in Eq. (9.41), we have

𝐶 (Δ𝑡, 𝜃) =
𝑎𝑙𝑝

32𝜋2𝑐2
𝑠𝐿

2

∫ 𝐿

0
𝑑𝑟1

∫ 𝐿

0
𝑑𝑟2

∫ ∞

0
𝑑 |p|

cos [𝜔(𝐿 − 𝑟1)] cos [𝜔(𝐿 − 𝑟2)]

𝑒−𝑖𝜔Δ𝑡
∫ 𝜋

0
𝑑𝜗 sin 𝜗𝑒𝑖 |p| |Δx| cos 𝜗

=
𝑎𝑙𝑝

16𝜋2𝑐2
𝑠𝐿

2

∫ 𝐿

0
𝑑𝑟1

∫ 𝐿

0
𝑑𝑟2

∫ ∞

0
𝑑𝜔

cos [𝜔(𝐿 − 𝑟1)] cos [𝜔(𝐿 − 𝑟2)]
sin [𝜔D(𝑟1, 𝑟2, 𝜃)/𝑐𝑠]

𝜔D(𝑟1, 𝑟2, 𝜃)
𝑒−𝑖𝜔Δ𝑡 ,

(9.42)

where we have defined

D(𝑟1, 𝑟2, 𝜃) ≡ |Δx| =
√︃
𝑟2

1 + 𝑟
2
2 − 2𝑟1𝑟2 cos 𝜃 . (9.43)

The additional factor of 1
𝑐2
𝑠

in Eq. (9.42) comes from using the dispersion relation
in Eq. (9.26). 𝐶T (Δ𝑡, 𝜃) is directly given by plugging Eq. (9.42) into Eq. (9.35). In
Fig. 9.2, we have plotted 𝐶T (Δ𝑡, 𝜃) over the separation angle 𝜃 of the interferometer
for Δ𝑡 = 0. Notice the signal is maximal when the interferometer arms are back-to-
back.

Performing a Fourier transform of 𝐶 (Δ𝑡, 𝜃) with respect to Δ𝑡, we obtain the two-
sided power spectral density 𝐶̃ (𝜔, 𝜃) to be

𝐶̃ (𝜔, 𝜃) =
∫ ∞

−∞
𝑑𝑡 𝑒−𝑖𝜔𝑡𝐶 (𝑡, 𝜃)

=
𝑎𝑙𝑝

8𝜋𝑐2
𝑠𝐿

2

∫ 𝐿

0
𝑑𝑟1

∫ 𝐿

0
𝑑𝑟2

sin [𝜔D(𝑟1, 𝑟2, 𝜃)/𝑐𝑠]
𝜔D(𝑟1, 𝑟2, 𝜃)

cos [𝜔(𝐿 − 𝑟1)] cos [𝜔(𝐿 − 𝑟2)] .

(9.44)

To evaluate the power spectral density of 𝐶T (Δ𝑡, 𝜃), we can put Eq. (9.44) into
Eq. (9.35) such that its power spectral density 𝐶̃T (𝜔, 𝜃) is

𝐶̃T (𝜔, 𝜃) = 2[𝐶̃ (𝜔, 0) − 𝐶̃ (𝜔, 𝜃)] . (9.45)

In Fig. 9.3, we have plotted Eq. (9.45) over𝜔𝐿 for several different separation angles
𝜃 of the interferometer.
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Figure 9.2: Equal-time correlation function𝐶T (0, 𝜃) [i.e., Eq. (9.34)] of the pixellon
model without IR cutoff in Eq. (9.41) (blue) and with an IR cutoff in Eq. (9.58) (red),
where both curves are normalized by 8𝜋2𝑐2

𝑠𝐿

𝑎𝑙𝑝
.

In the limit 𝜔 → 0, Eqs. (9.44)-(9.45) reduce to

𝐶̃ (𝜔, 𝜃) =
𝑎𝑙𝑝

8𝜋𝑐3
𝑠

+ O(𝜔2𝐿2) , (9.46)

𝐶̃T (𝜔, 𝜃) =
𝑎𝑙𝑝

48𝜋𝑐5
𝑠

𝜔2𝐿2(1 − cos 𝜃) + O(𝜔4𝐿4) . (9.47)

A major feature of 𝐶̃ (𝜔, 𝜃) at low frequencies is that it is flat in frequency, corre-
sponding to the spectrum of white noise. This feature is consistent with the “random
walk intuition" of holographic effects in [86], as well as the random walk models
in [511, 512]. On the other hand, although 𝐶̃ (𝜔, 𝜃) is independent of 𝜔 at low fre-
quency, 𝐶̃T (𝜔, 𝜃) is quadratic in 𝜔. It is because, as one can directly observe from
Eq. (9.46), the leading order term of 𝐶̃ (𝜔, 𝜃) at low frequency is angle-independent.
Thus, when subtracting the time delay of the first arm from the second arm, this
leading order term cancels out, and the next order term, which is quadratic in 𝜔 and
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Figure 9.3: Power spectral density 𝐶̃T (𝜔, 𝜃) [i.e., Eq. (9.45)] of the pixellon model
without IR cutoff in Eq. (9.44) (left) and with an IR cutoff in Eq. (9.59) (right),
where all the curves are normalized by 8𝜋𝑐2

𝑠

𝑎𝑙𝑝
.

has a nontrivial angular dependence, contributes to 𝐶̃T (𝜔, 𝜃).

In Eqs. (9.46)-(9.47), there are also additional factors of 1
𝑐𝑠

from the expansion of
sin [𝜔D(𝑟1, 𝑟2, 𝜃)/𝑐𝑠] in Eq. (9.44). Since the leading order term in the expansion
of sin [𝜔D(𝑟1, 𝑟2, 𝜃)/𝑐𝑠] is linear in its argument, it contributes an additional factor
of 1

𝑐𝑠
to 𝐶̃ (𝜔, 𝜃) in Eq. (9.46). On the other hand, as we explained above, this

leading order term is angle-independent, so the next order term, which is cubic in
its argument, contributes an additional factor of 1

𝑐3
𝑠

to 𝐶̃T (𝜔, 𝜃) in Eq. (9.47).

One last observation from Eqs. (9.46)-(9.47) is that both 𝐶̃ (𝜔, 𝜃) and 𝐶̃T (𝜔, 𝜃) are
regular in low frequency. In [30], an IR regulator at the scale of ∼ 1

𝐿2 was added to
the 2D Laplacian on the sphere to regulate the angular correlation function as we
will discuss in Sec. 9.4. To perform an analogous calculation and take into account
other IR effects, such as information loss due to soft graviton loss, we will apply the
procedures in this section to the pixellon model with an IR cutoff at the same scale
as in [30] in Sec. 9.4.

Angular correlation
We now study the angular correlation implied by Eq. (9.41). It will be convenient to
first decompose Eq. (9.41) into spherical harmonics and spherical Bessel functions.
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Using

𝑒𝑖p·r =
∞∑︁
ℓ=0

𝑖𝑙 (2ℓ + 1) 𝑗ℓ ( |p|𝑟)𝑃ℓ (cos 𝜃) , 𝜃 = p̂ · r̂ , (9.48)

and the addition theorem

𝑃ℓ (p̂ · n) = 4𝜋
2ℓ + 1

∑︁
𝑚

𝑌 ℓ𝑚∗(p̂)𝑌 ℓ𝑚 (n) , (9.49)

we obtain

𝑒𝑖p·(x1−x2) =
∑︁

ℓ1,𝑚1,ℓ2,𝑚2

16𝜋2𝑖ℓ1 (−𝑖)ℓ2 𝑗ℓ1 ( |p|𝑟1) 𝑗ℓ2 ( |p|𝑟2)

𝑌 ℓ1𝑚1∗(p̂)𝑌 ℓ2𝑚2 (p̂)𝑌 ℓ1𝑚1 (n1)𝑌 ℓ2𝑚2∗(n2) .
(9.50)

Using
∫
𝑑Ω 𝑌 ℓ1𝑚1∗(p̂)𝑌 ℓ2𝑚2 (p̂) = 𝛿ℓ1ℓ2𝛿𝑚1𝑚2 , we can integrate out all the angular

dependence of p, so

𝐶 (Δ𝑡, 𝜃) =
𝑎𝑙𝑝

4𝜋𝑐3
𝑠𝐿

2

∑︁
ℓ,𝑚

∫ 𝐿

0
𝑑𝑟1

∫ 𝐿

0
𝑑𝑟2

∫ ∞

0
𝑑𝜔

cos [𝜔(𝐿 − 𝑟1)] cos [𝜔(𝐿 − 𝑟2)]
𝑗ℓ (𝜔𝑟1/𝑐𝑠) 𝑗ℓ (𝜔𝑟2/𝑐𝑠)
𝑌 ℓ𝑚 (𝜗1, 𝜑1)𝑌 ℓ𝑚∗(𝜗2, 𝜑2)𝑒−𝑖𝜔Δ𝑡 ,

(9.51)

where we have an additional factor of 1
𝑐3
𝑠

from replacing p with 𝜔 using Eq. (9.26).
If we define the amplitude of each (ℓ, 𝑚) mode of the integrand to be

𝐴ℓ𝑚 (Δ𝑡, 𝜔, 𝑟1, 𝑟2) ≡ cos [𝜔(𝐿 − 𝑟1)] cos [𝜔(𝐿 − 𝑟2)]
𝑗ℓ (𝜔𝑟1/𝑐𝑠) 𝑗ℓ (𝜔𝑟2/𝑐𝑠)𝑒−𝑖𝜔Δ𝑡 ,

(9.52)

Eq. (9.51) can be more compactly written as

𝐶 (Δ𝑡, 𝜃) =
𝑎𝑙𝑝

4𝜋𝑐3
𝑠𝐿

2

∑︁
ℓ,𝑚

∫ 𝐿

0
𝑑𝑟1

∫ 𝐿

0
𝑑𝑟2

∫ ∞

0
𝑑𝜔

𝐴ℓ𝑚 (Δ𝑡, 𝜔, 𝑟1, 𝑟2)𝑌 ℓ𝑚 (𝜗1, 𝜑1)𝑌 ℓ𝑚∗(𝜗2, 𝜑2) .
(9.53)

Let us first look at the equal-time correlator by setting Δ𝑡 = 0. The amplitude 𝑐ℓ𝑚
of each (ℓ, 𝑚) mode of 𝐶 (0, 𝜃) is then given by integrating 𝐴ℓ𝑚 (0, 𝜔, 𝑟1, 𝑟2) over 𝜔
and 𝑟1,2 as indicated by Eq. (9.53), i.e.,

𝑐ℓ𝑚 =
𝑎𝑙𝑝

4𝜋𝑐3
𝑠𝐿

2

∫ 𝐿

0
𝑑𝑟1

∫ 𝐿

0
𝑑𝑟2

∫ ∞

0
𝑑𝜔 𝐴ℓ𝑚 (0, 𝜔, 𝑟1, 𝑟2) . (9.54)
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Since these integrals are hard to evaluate analytically, we have plotted the numerical
result in Fig. 9.4. In Fig. 9.4, we have only plotted the modes starting from ℓ = 1
since the ℓ = 0 mode, which is angle-independent, is cancelled out in 𝐶T (Δ𝑡, 𝜃) as
explained in the previous section.

In Fig. 9.4, we have also shown the amplitude of each (ℓ, 𝑚) mode found in Ref. [30].
They argued that the angular part of 𝐶 (0, 𝜃) should be described by the Green’s
function of the 2D Laplacian on the sphere with an additional IR regulator at the
scale of 1

𝐿2 . After decomposing the Green’s function into spherical harmonics, one
obtains

𝐶 (0, 𝜃) ∝
∑︁
ℓ,𝑚

𝑌 ℓ𝑚 (𝜗1, 𝜑1)𝑌 ℓ𝑚∗(𝜗2, 𝜑2)
ℓ(ℓ + 1) + 1

. (9.55)

Excellent agreement between the pixellon model and the expectation of Ref. [30] is
observed.

As mentioned in Sec. 9.4, both 𝐶̃ (𝜔, 𝜃) and 𝐶̃T (𝜔, 𝜃) in this work are regular when
𝜔 → 0, even without an IR regulator, e.g., Eqs. (9.46)-(9.47). However, it will
still be interesting to study the pixellon model with an IR cutoff due to IR effects
from the physical size of the interferometer. We will consider the case with an IR
cutoff in Sec. 9.4, but in this section, we first consider only the model without an IR
cutoff. Thus, when comparing Eq. (9.54) to Ref. [30], we drop the additional 1 in
the denominator of Eq. (9.55), which appears due to the insertion of an IR regulator.
In this case, the amplitude of each (ℓ, 𝑚) mode becomes 1

ℓ(ℓ+1) . In Fig. 9.4, one
can observe that the angular correlation in this work is very close to the one in [30]
without the IR regulator. Note that one also observes the same angular dependence
in the shockwave geometry (e.g., see Refs. [513, 514, 515, 500]), a connection we
would like to study further in our future work.

One might also be interested in the amplitude 𝑐ℓ𝑚 (𝜔) of each (ℓ, 𝑚) mode of the
power spectral density 𝐶̃ (𝜔, 𝜃). Performing a Fourier transform of 𝐶 (Δ𝑡, 𝜃) in
Eq. (9.53) and thus a Fourier transform of 𝐴ℓ𝑚 (Δ𝑡, 𝜔, 𝑟1, 𝑟2) in Eq. (9.52), we obtain

𝑐ℓ𝑚 (𝜔) =
𝑎𝑙𝑝

2𝑐3
𝑠𝐿

2

∫ 𝐿

0
𝑑𝑟1

∫ 𝐿

0
𝑑𝑟2 𝐴ℓ𝑚 (0, 𝜔, 𝑟1, 𝑟2) . (9.56)

We have plotted 𝑐ℓ𝑚 (𝜔) starting from ℓ = 1 in Fig. 9.5.

To determine an analytical representation of the amplitude of each (ℓ, 𝑚) mode, one
can also look at 𝐴ℓ𝑚 (0, 𝜔, 𝑟1, 𝑟2) at the end points 𝑟1 = 𝑟2 = 𝐿. If we integrate
𝐴ℓ𝑚 (0, 𝜔, 𝐿, 𝐿) over 𝜔, we find the amplitude of each (ℓ, 𝑚) mode at end points to
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be
𝐿

∫ ∞

0
𝑑𝜔 𝐴ℓ𝑚 (0, 𝜔, 𝐿, 𝐿) =

𝜋𝑐𝑠

2(2ℓ + 1) , (9.57)

which is the major contribution to 𝑐ℓ𝑚 plotted in Fig. 9.4. Although Eq. (9.57)
decreases more slowly than Eq. (9.55) over ℓ, we have additional suppression due
to, for example, the factors of cos

[
𝜔(𝐿 − 𝑟1,2)

]
in Eq. (9.52) when integrating

𝐴ℓ𝑚 (0, 𝜔, 𝑟1, 𝑟2) over 𝜔 and 𝑟1,2, so the total amplitude in Eq. (9.54) is very close
to Eq. (9.55) without the IR regulator.

IR cutoff
In this section, we apply the calculations in the previous two sections to the pixellon
model with an IR cutoff. As discussed above, although both 𝐶̃ (𝜔, 𝜃) and 𝐶̃T (𝜔, 𝜃)
are regular in the IR, we still expect an explicit IR cut-off to enter the calculation
because of the finite size of the interferometer. We will also find that adding an IR
cut-off gives a better agreement with the angular correlation of Eq. (9.55). For this
reason, we place an IR cutoff at a scale ∼ 1

𝐿2 , similar to [30], into Eq. (9.41), e.g.,

𝐶 (Δ𝑡, 𝜃) =
𝑎𝑙𝑝

8𝐿2

∫ 𝐿

0
𝑑𝑟1

∫ 𝐿

0
𝑑𝑟2

∫
𝑑3p
(2𝜋)3

1
𝜔2(p) + 1

𝐿2

cos [𝜔(𝐿 − 𝑟1)] cos [𝜔(𝐿 − 𝑟2)]𝑒−𝑖𝜔Δ𝑡+𝑖p·Δx .

(9.58)

Following the same procedure in Sec. 9.4, we find that the power spectral density
𝐶̃ (𝜔, 𝜃) in Eq. (9.44) is modulated by an additional factor in 𝜔 and 𝐿, i.e.,

𝐶̃ (𝜔, 𝜃) →
(

𝜔2

𝜔2 + 1
𝐿2

)
𝐶̃ (𝜔, 𝜃) , (9.59)

while 𝐶̃T (𝜔, 𝜃) is still given by Eq. (9.45). 𝐶T (0, 𝜃) and 𝐶̃T (𝜔, 𝜃) with this IR
cutoff are shown in Figs. 9.2 and 9.3, respectively.

One major effect of the IR cutoff is that the amplitude of 𝐶̃ (𝜔, 𝜃) is suppressed at
low frequency due to the modulation factor in Eq. (9.59), as one can directly observe
in Fig. 9.3. For the same reason, the overall amplitude of 𝐶T (Δ𝑡, 𝜃) in the case with
an IR cutoff is smaller than the one without IR cutoff as depicted in Fig. 9.2. As
frequency increases, the modulation factor goes to 1, so the amplitude of 𝐶̃ (𝜔, 𝜃)
in these two cases becomes nearly identical. In addition, as the separation angle
𝜃 decreases, the difference between these two cases also becomes smaller since
interferometers with smaller 𝜃 are more sensitive to higher ℓ modes, which have
higher characteristic frequency, and thus are less sensitive to the IR cutoff.
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Figure 9.4: The amplitude of each (ℓ, 𝑚) mode of the equal-time correlation function
𝐶 (0, 𝜃) decomposed into spherical harmonics. The blue and green lines correspond
to the amplitude in [30] [i.e., Eq. (9.55)] without and with an IR regulator, respec-
tively. The red and orange lines correspond to 𝑐ℓ𝑚 [i.e., Eq. (9.54)] of the pixellon
model without IR cutoff in Eq. (9.52) and with an IR cutoff in Eq. (9.62), respec-
tively. We have normalized the amplitude of each mode by the amplitude of the
mode ℓ = 1.

One can also determine the suppression factor due to the IR cutoff as 𝜔 → 0 by
expanding Eq. (9.59), e.g.,

𝐶̃ (𝜔, 𝜃) =
𝑎𝑙𝑝

8𝜋𝑐3
𝑠

𝜔2𝐿2 + O(𝜔4𝐿4) , (9.60)

𝐶̃T (𝜔, 𝜃) =
𝑎𝑙𝑝

48𝜋𝑐5
𝑠

𝜔4𝐿4(1 − cos 𝜃) + O(𝜔6𝐿6) . (9.61)

The IR behaviors of both 𝐶̃ (𝜔, 𝜃) and 𝐶̃T (𝜔, 𝜃) above are very different from the
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Figure 9.5: The amplitude 𝑐ℓ𝑚 (𝜔) [i.e., Eq. (9.56)] of each (ℓ, 𝑚) mode of the
power spectral density 𝐶̃ (𝜔, 𝜃) decomposed into spherical harmonics. The left and
right panels are for the pixellon model without IR cutoff in Eq. (9.52) and with an
IR cutoff in Eq. (9.62), respectively. We have dropped the overall factor 𝑎𝑙𝑝

2𝑐3
𝑠

in both
plots.

case without an IR cutoff in Eq. (9.46)-(9.47) due to the additional factor of 𝜔2𝐿2

contributed by the modulation factor in Eq. (9.59). For this reason, one has to be
cautious when constraining our model using detectors with peak sensitivity at low
frequency, such as LIGO, as discussed in Sec. 9.4.

For the angular correlation, after decomposing Eq. (9.58) into spherical harmonics,
we find that the amplitudes 𝑐ℓ𝑚 and 𝑐ℓ𝑚 (𝜔) of each (ℓ, 𝑚) mode of 𝐶 (0, 𝜃) and
𝐶̃ (𝜔, 𝜃) are given by Eqs. (9.54) and (9.56), respectively, but 𝐴ℓ𝑚 (Δ𝑡, 𝜔, 𝑟1, 𝑟2) is
modulated by the same factor in Eq. (9.59), i.e.,

𝐴ℓ𝑚 (Δ𝑡, 𝜔, 𝑟1, 𝑟2) →
(

𝜔2

𝜔2 + 1
𝐿2

)
𝐴ℓ𝑚 (Δ𝑡, 𝜔, 𝑟1, 𝑟2) . (9.62)

We show both 𝑐ℓ𝑚 and 𝑐ℓ𝑚 (𝜔) with the IR cutoff in Figs. 9.4 and 9.5, respectively.

Since the overall amplitude of 𝐶̃ (𝜔, 𝜃) is suppressed at low frequency, the amplitude
𝑐ℓ𝑚 (𝜔) of different (ℓ, 𝑚) modes is also suppressed as shown in Fig. 9.5. In Fig. 9.4,
one can also observe that the amplitude 𝑐ℓ𝑚 falls off more slowly with ℓ in the case
with an IR cutoff since low ℓmodes are more sensitive to this IR cutoff and hence are
more suppressed. As noted previously, our model with the IR cutoff better agrees
with the results in [30], though one should remain cautious until our model has been
fully mapped to a UV-complete theory.
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Existing constraints and future projections
In an effort to detect high frequency gravitational waves and quantum gravity signa-
tures, several laboratory-sized interferometer experiments have been implemented
to accurately detect tiny spacetime perturbations. The constraints from these exper-
iments are often reported as upper limits on the one-sided noise strain

√︁
𝑆ℎ ( 𝑓 ) of the

photon round-trip time, obtained by analysing interference patterns. For stationary
signals, the strain is defined as [516, 517]√︃

𝑆
(𝑛)
ℎ

( 𝑓 ) =

√︄
2
∫ ∞

−∞

〈
Δ𝐿 (𝜏)
𝐿

Δ𝐿 (0)
𝐿

〉
𝑒−2𝜋𝑖 𝑓 𝜏𝑑𝜏 , (9.63)

which has units of Hz−1/2. This is related to Eq. (9.44) by Eq. (9.45), i.e.,√︁
𝑆ℎ ( 𝑓 ) =

√︂
2𝐶̃T

(
𝜔, 𝜃 =

𝜋

2

)
, (9.64)

where 𝜔 = 2𝜋 𝑓 and we assume a perpendicular arm configuration. Our power
spectrum in Eq. (9.44) can be parameterized more conventionally by defining

𝛼 ≡ 2𝜋
𝑐2
𝑠

𝑎 , (9.65)

leading to the peak strain
√︁
𝑆ℎ ( 𝑓peak) ≈

√︁
2𝛼𝑙𝑝/(4𝜋) =

√
𝛼(2.62 × 10−23) Hz−1/2 2.

Here 𝛼 ∼ 1 gives the amplitude of the effect computed in [30, 484], and should be
considered the natural benchmark 3.

We now compare our predicted strain to the experimental constraints from Holome-
ter [516], GEO-600 [518], LIGO [519], and the projected sensitivity from LISA [520].
Since the four interferometers have different arm lengths, the predicted strain from
our models will also differ between these experiments. The result assuming 𝛼 = 1
with or without the IR cutoff using Eqs. (9.44), (9.45), (9.59), (9.64), and (9.65) is
plotted in Fig. 9.6. As expected, the tightest experimental limit comes from LIGO
and Holometer measurements, which at 3𝜎 significance, are roughly 𝛼 ≲ 3 and
𝛼 ≲ 0.7 (with IR cutoff), and 𝛼 ≲ 0.1 and 𝛼 ≲ 0.6 (w/o IR cutoff), respectively.
On the other hand, our model is out of reach for GEO-600 and LISA.

Caltech and Fermilab are commissioning a joint theoretical and experimental initia-
tive called Gravity from Quantum Entanglement of Space-Time (GQuEST), dedi-
cated to probing the VZ effect proposed in Ref. [30]. This includes the construction

2This is related to the one-sided displacement spectrum by 𝑆𝐿 ( 𝑓 ) = 2𝐿2𝐶̃ ( 𝑓 ), which is peaked
at 𝑆𝐿 ( 𝑓peak) = 𝛼𝑙𝑝𝐿2/(8𝜋2).

3Since 𝛼 = 1 corresponds to 𝑎 = 𝑐2
𝑠/(2𝜋), the finite propagation speed 𝑐𝑠 has led us to make a

corrected prescription of 𝛽 = 𝑙𝑝/𝑎 = 2𝜋𝑙𝑝/𝑐2
𝑠 in Eqs. (9.20) and (9.21).
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Figure 9.6: Strain comparison between model predictions (blue and green) and
experimental / projection constraints (red). The model curves are computed using
Eqs. (9.44), (9.45), (9.59), (9.64) and (9.65) assuming 𝛼 = 1, while the experimental
curves are extracted from Refs. [516, 518, 519, 520]. The LIGO data shown here
are obtained by the Livingston detector, but we note that the Hanford detector yields
similar constraints.

of a tabletop optical Michelson interferometer with arm-length 𝐿 = 5 m, with a
novel read-out scheme with single photons rather than the usual interference effect.
The advantage of this scheme is that sensitivity beats the standard quantum limit,
with signal-to-noise ratio increasing linearly with integration time, rather than the
usual square-root dependence. The experiment is projected to be able to constrain
𝛼 ≲ 1 after 1000 s of background-free integration time, corresponding to a dark
count rate of 10−3 Hz. We expect the constraint on 𝛼 to tighten linearly with lower
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dark count rate and longer integration time.

Some previous works on quantifying spacetime fluctuations (motivated by theories
other than the VZ effect) argued that the predicted strain should not be directly
compared against experimental constraints such as GEO-600 and LIGO [521], since
transitional interferometer experiments often utilize Fabry-Perot cavities (e.g., LIGO
uses Fabry-Perot cavities within each arm, where the average light storage equals
to 35.6 light round trips [522]) to boost the signal-to-noise ratio from astrophysical
gravitational waves, while it is unclear whether quantum gravity signals, which
are fundamental to spacetime itself, will benefit from additional light-crossings.
Here we show that spacetime fluctuations based on Eq. (9.2) do accumulate over a
Fabry-Perot cavity, thus justifying our direct strain comparison with gravitational
experiments. A Fabry-Perot Michelson interferometer can be viewed as a linear
device that measures the differential single-round-trip phase,ΔΦ = Φ1−Φ2 between
the two arms — regardless of whether this phase arises from gravitational waves,
displacement of mirrors, or space-time fluctuations. This ΔΦ is linearly transferred
to the output field 𝑧, with noise 𝑁 added:

𝑧( 𝑓 ) = M( 𝑓 )ΔΦ( 𝑓 ) + 𝑁 ( 𝑓 ) . (9.66)

In particular, M( 𝑓 ) contains the build-up (or suppression) of signal due to the
Fabry-Perot cavity.

We now convert the strain-referred noise spectrum 𝑆ℎ published by LIGO to a
spectrum for T . In obtaining 𝑆ℎ (below 5 kHz, as shown in Fig. 9.6), LIGO used
a long-wave-length approximation, and assumed that the wave has a + polarization
(stretching along the 𝑥 and squeezing along the 𝑦 direction), and propagating along
𝑧 — perpendicular to the detector plane (e.g., adopted by Chapter 27.6 of [523]).
In this case, in the Local Lorentz frame of the beam splitter, the first and second
mirrors are going to be displaced by ±𝐿ℎ/2, leading to phase shifts of

Φ1,2 = ±𝜔0𝐿ℎ/𝑐 (9.67)

and
ΔΦ = 2𝜔0𝐿ℎ/𝑐 . (9.68)

In this way, the ΔΦ-referred spectrum is related to 𝑆ℎ published by LIGO via√︁
𝑆ΔΦ =

2𝜔0𝐿

𝑐

√︁
𝑆ℎ . (9.69)
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We note that at higher frequencies, and/or for interferometers with longer arms, the
conversion from ℎ to Φ becomes less trivial. In our case, we have

ΔΦ(𝑡) = 𝜔0 [𝛿𝑇 (𝑡, n1) − 𝛿𝑇 (𝑡, n2)] = 𝜔0T (𝑡, 𝜃) . (9.70)

We therefore have
√
𝑆ΔΦ = 𝜔0

√
𝑆T and thus√︁
𝑆T =

2𝐿
𝑐

√︁
𝑆ℎ . (9.71)

This allows us to straightforwardly relate our observable defined in Eqs. (9.34) and
(9.45) to the quantity 𝑆ℎ constrained by LIGO. In LIGO, 𝑆ℎ is usually reported as a
one-sided spectrum, so we need another factor of 2 when converting the two-sided
spectrum 𝐶̃T in Eq. (9.45) to the one-sided spectrum 𝑆ℎ, i.e.,√︁

𝑆ℎ =
√︁
𝑆T

/ (
2𝐿
𝑐

)
=

√︂
2𝐶̃T

(
𝜔, 𝜃 =

𝜋

2

)
, (9.72)

which is consistent with the conversion in Eq. (9.64).

9.5 Conclusions
In this paper we have investigated the effects on the fluctuations in the time-of-
arrival of a photon in an interferometer, due a scalar field coupled to the metric as in
Eq. (9.2) with an occupation number given by Eq. (9.21). This simple scalar field is
designed to model the behavior of vacuum fluctuations of the modular energy (e.g.,
Ref. [484]) from shockwave geometries [500].

We showed that the interferometer observable had a power spectral density quadrat-
ically suppressed ∝ 𝜔2 or ∝ 𝜔4, depending on the IR regulator, at low frequency,
and an angular correlation between the interferometer arms consistent with that
proposed in Ref. [30], as expected from shockwave geometries.

In future work, we plan to more explicitly demonstrate the connection between
shockwave geometries and interferometer observables, completing the bridge be-
tween the model presented here and the UV-complete theory.
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C h a p t e r 10

ASTRONOMICAL IMAGE BLURRING FROM TRANSVERSELY
CORRELATED QUANTUM GRAVITY FLUCTUATIONS

This chapter is based on

[1] Vincent S. H. Lee, Kathryn M. Zurek, and Yanbei Chen. “Astronomical
image blurring from transversely correlated quantum gravity fluctuations”.
In: Phys. Rev. D 109.8 (2024), p. 084005. doi: 10.1103/PhysRevD.109.
084005. arXiv: 2312.06757 [gr-qc].

10.1 Introduction
Although a consistent quantum mechanical description of spacetime geometry is not
yet fully developed, it can be anticipated that spacetime geometry will have quantum
fluctuations, which will manifest as uncertainties in the macroscopic distances trav-
eled by light rays. Over a distance 𝐿, one naively expects that the length fluctuation
is Δ𝐿 ∼ 𝑙𝑝 [524], where 𝑙𝑝 =

√
8𝜋𝐺 = 10−34 m is the Planck length associated

with the UV scale of gravity with 𝐺 being the gravitational constant. However, it is
possible for length fluctuations to accumulate over an entire path of length 𝐿, like a
random walk, leading to an overall uncertainty of [525, 526]

⟨Δ𝐿2⟩ ∼ 𝑙𝑝𝐿 . (10.1)

More specifically, random walk can arise from a “spacetime foam" [527] model, in
which the spacetime metric has independent, order-of-unity fluctuations at neigh-
boring Planck-length intervals [528, 529]. During each Planck time 𝑡𝑝 = 𝑙𝑝/𝑐, a
photon deviates from its classical path by a random step with zero average and ∼ 𝑙𝑝
uncertainty [530, 531, 532]. After 𝑁 = 𝐿/𝑙𝑝 steps, the variance of the total distance
traveled by the light ray is then given by Δ𝐿 ∼

√
𝑁𝑙𝑝, consistent with Eq. (10.1).

It has been proposed that the phase front of starlight propagating in such a spacetime
foam will be distorted and lead to blurring of telescope images [533, 534, 535, 536,
537, 538, 539, 540]. However, diffraction of light is known to be able to restore
the transverse coherence of the phase front (see, e.g., Chapter 9 of Ref. [523]) and
restore the quality of images for a large class of spacetime foam models [541].

If, however, quantum gravity is holographic, then the number of spacetime degrees
of freedom in a region of spacetime is set by the area of its boundary, instead of

https://doi.org/10.1103/PhysRevD.109.084005
https://doi.org/10.1103/PhysRevD.109.084005
https://arxiv.org/abs/2312.06757
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the volume of its bulk. This implies spatial correlations in the quantum degrees-
of-freedom of spacetime, manifesting as correlations between metric fluctuations
at different spacetime locations. In particular, Verlinde-Zurek (VZ) proposed how
holographic theories could give rise to an accumulation of spacetime fluctuations
consistent with Eq. 10.1 [30]. In the VZ theory, quantum degrees of freedom
on the boundary of a causal diamond drive quantum fluctuations in the spacetime
geometry inside the diamond, which in turn leads to fluctuations in the size of
the causal diamond [484, 482, 6, 500]. In Ref. [30], VZ specifically considered the
causal diamond generated by the union of the future and past domains of dependence,
which in flat spacetime is simply a sphere.

For the radius 𝐿 of the spatial sphere along any arbitrary direction, while they found a
magnitude of fluctuation Δ𝐿 along the lightcone directions consistent with Eq. 10.1,
they also discovered unique long distance (large angle) angular correlations between
radii along different angular directions such that most of the power of the quantum
fluctuations lies in the low angular harmonic modes. Decomposing the length
fluctuation correlation between two points on a sphere with angular coordinates 𝛀̂
and 𝛀̂′ as a sum over spherical harmonics, the contribution from each mode exhibits
a 𝑙−2 scaling for 𝑙 ≫ 1 [30], i.e.

⟨Δ𝐿 (𝛀̂)Δ𝐿 (𝛀̂′)⟩ ∼
𝑙𝑝𝐿

4𝜋

∑︁
𝑙𝑚

1
𝑙2
𝑌𝑚𝑙 (𝛀)𝑌𝑚∗𝑙 (𝛀′) . (10.2)

This is consistent with the ’t Hooft uncertainty relation [542] that motivated the
VZ proposal. In particular, the modular energy fluctuations that generate a length
fluctuation of Eq. 10.2 [484] have been shown to have a physical origin in grav-
itational shockwaves produced by vacuum energy fluctuations [500, 543]. These
gravitational shockwaves motivated the use of ’t Hooft commutation relations as a
way to quantize gravity at black hole horizons [544, 545, 542, 546], and has pro-
found implications in various contexts of quantum gravity, including the AdS/CFT
correspondence and black hole thermodynamics [547, 548].

As a consequence of the different correlation structure, while both spacetime foam
and the VZ effect give rise to length fluctuations parametrically of the size of
Eq. (10.1), they have different properties and observable signatures. For instance,
the random walk model due to spacetime foam predicts spatial correlations in all
directions consistent with Brownian motion for paths that are separated by more
than 𝑙𝑝 from each other, while the VZ effect has stronger correlations over large
transverse distances up to 𝐿 [30] as predicted by Eq. 10.2.
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Since interferometers are extremely sensitive to tiny length fluctuations, they are
the primary experimental candidates for detecting spacetime fluctuations [525, 549,
550, 532]. The correlation function (10.2) for radii emanating from the same origin
alone is not sufficient to provide predictions for all experiments that can be per-
formed in a spacetime, including for interferometers. For that general purpose, the
Pixellon model was proposed [497], in which a breathing-mode metric perturbation
is prescribed to provide consistent results with (10.2). The pixellon model has been
applied to make predictions for current and future interferometer experiments [497,
7]. A summary of the VZ proposal is given in Ref. [86].

In addition to interferometers, it has been proposed that astronomical observations
of distant stars can potentially constrain spacetime fluctuation thanks to the long
propagation distance [533, 534, 535, 536, 537, 551]. The fluctuating spacetime
between an astronomical object and a telescope acts as a fuzzy lens, leading to
degradation in image quality. Hence the observation of a diffraction-limited image
places an upper limit on the magnitude of the fluctuations. A diagram showing the
propagation of light rays from a distant point source and the formation of its image
in a telescope is given in Fig. 10.1.

Assuming no spatial correlations between fluctuations at points separated by more
than 𝑙𝑝, the upper limit 𝐿 for distance from a point source (a star, a galaxy, or a
galaxy cluster) to the telescope, before the image of the star is blurred, can be naively
estimated as

√︁
𝑙𝑝𝐿 ≲ 𝜆0, where 𝜆0 is the optical wavelength. For a cosmological

distance of 𝐿 ∼ Gpc, we have
√︁
𝑙𝑝𝐿 ∼ 5 × 10−5 m, which is already far greater than

the wavelength of visible light.

This estimate has been used to argue that the random walk model is thus completely
ruled out by, for instance, existing data from the Hubble Space Telescope (HST) [552,
553]. As an example, HST observed a star at a redshift of 𝑧 = 6.2 [554] with
distance 𝐿 ∼ 28 Gly from Earth1, corresponding to a length fluctuation of order√︁
𝑙𝑝𝐿 ∼ 0.1 mm, far exceeding the optical wavelength 𝜆0 ∼ 1 𝜇m, and thus is

expected to completely destroy the optical image of the star itself. However, in the
case of spacetime foam, the constraining power of astronomical image blurring has
been questioned in several papers [555, 556]. In particular, Ref. [541] argues that

1Here we quoted the co-moving distance, which is argued in Ref. [552] to be the correct distance
measure for constraining spacetime foam as it measures the fabric of spacetime itself. However, as
we will demonstrate in Sec. 10.4, the limits from image blurring are satisfied by many orders of
magnitude for quantum gravity models that we are interested in, and thus our conclusion does not
depend on the choice of distance measure.
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Figure 10.1: Diagram showing light rays originating from a distant star passing
through the telescope aperture and forming a sharp image on the screen. Here the
star-aperture distance, aperture diameter, and aperture-screen distance are denoted
by 𝐿, 𝐷, and 𝑅, respectively. Two distinct points on the aperture, denoted by two-
dimensional vectors 𝝆 and 𝝆′, span an angle of Δ𝜃. Typically 𝐿 ≫ 𝑅 ≫ 𝐷. The
diagram is not drawn to scale.

wave diffraction of photons with sub-Planckian energy as they propagate through
spacetime introduces an extra factor of 𝑙𝑝/𝜆0 in the level of fluctuations, completely
eliminating any hope in constraining spacetime foam with any physical system.

In this work, we use the pixellon model [497, 7] realization of the VZ effect to show
that length fluctuations given in Eq. (10.2) are not ruled out by the observations
of astronomical images. The key idea is that while the phase shift relative to the
classical photon path is large, the astrophysical image does not become blurred,
since blurring depends not on the phase difference relative to the classical path, but
rather on the phase difference between light rays hitting two typical points on the
aperture, as illustrated in Fig. 10.1. Since the telescope size 𝐷 is much smaller than
the classical photon path length 𝐿, the phase difference across the aperture due to
quantum fluctuations parameterized by Eq. (10.2) is much smaller, and thus cannot
sufficiently decohere the light to prevent the formation of a sharp image. Using this
argument plus a Riemann zeta regularization, we will demonstrate that for 𝐿 > 𝐷,
the maximum distance of propagation before the image is destroyed is given by√︁

𝑙𝑝𝐿 ≲
𝜆0𝐿

𝐷
, (10.3)
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which is easily satisfied by any realistic telescope.2

It is natural to ask whether wave diffraction, as analyzed in Ref. [541] in the context
of spacetime foam, affects our image blurring analysis when spatial correlations in
the pixellon model are taken into account. However, since in the pixellon model,
the energy associated with length fluctuations over a distance 𝐿 mainly arises from
scales ∼ 1/𝐿, which is much less than the optical frequency of a light ray, diffraction
produces very little effect. This will be explicitly demonstrated using Huygens-
Fresnel-Kirchhoff scalar diffraction theory [557].

The rest of the paper is organized as follows. In Sec. 10.2, using the pixellon model
described in Refs. [497, 7], we derive the transverse correlations of fluctuations
(more specifically, two-point correlation functions) in optical path lengths connect-
ing a distant point source and points on the aperture of the telescope (see Fig. 10.1).
In Sec. 10.3, we apply diffraction theory from the aperture of the telescope to the
image plane and quantify the level of image degradation due to the pixellon-model-
induced phase fluctuations. We also present some numerical results on the blurring
effects as observed on an opaque screen. In Sec. 10.4, we consider the effects of
diffraction between the point source and the telescope and show that they are sub-
dominant for correlated fluctuations obtained in Sec. 10.3. Finally, in Sec. 10.5, we
summarize our conclusions.

10.2 Transverse Correlations of Length Fluctuations of Light Rays from a
Distant Star

In this section, we derive the transverse correlations of the distances traveled by light
rays emitted from a distant point source. This source can either be a star or a galaxy,
but for simplicity, we shall refer to it as a star. The setup is shown in Fig. 10.1.
Assuming that the incident light is normal to the aperture plane, the blurring effect
on the image provides a direct probe to the transverse correlation.

We commence with a brief review of the pixellon model as described in Refs [497,
7], but we emphasize that our analysis holds for any quantum gravity model that
produces angular two-point correlation functions with a spherical harmonic decom-
position in the form of Eq. (10.2). The pixellon model describes the breathing
mode of a spherical entangling surface bounding a causal diamond [482, 6, 558].
Implications of the pixellon model on interferometer and astrophysical observables

2Note that inequality (10.3) can be formally violated when 𝐿 is chosen to be a very small distance.
However, that will violate the 𝐿 > 𝐷 condition from which (10.3) was derived.
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are studied in Refs [7, 559]. The metric fluctuation can be written as a scalar field
in the radial component of the metric

𝑑𝑠2 = −𝑑𝑡2 + [1 − 𝜙(𝑡, x)] (𝑑𝑥2 + 𝑑𝑦2 + 𝑑𝑧2) . (10.4)

Decomposing the scalar field into Fourier components

𝜙(𝑡, x) = 𝑙𝑝
∫

𝑑3p
(2𝜋)3

𝑎p𝑒
−𝑖𝜔p𝑡+𝑖p·x + 𝑎†p𝑒𝑖𝜔p𝑡−𝑖p·x√︁

2𝜔p
, (10.5)

the creation and annihilation operators admit a two-point function of

⟨𝑎p𝑎
†
p′⟩ = (2𝜋)3

(
1 + 𝑎

𝑙𝑝𝜔p

)
𝛿3(p − p′) , (10.6)

and an on-shell dispersion relation,

𝜔p = 𝑐𝑠 |p| , 𝑐𝑠 ≡ 1/
√

3 . (10.7)

Here 𝑎 is a constant characterizing the theoretical uncertainty of the model. Note
that the second term in Eq. (10.6) corresponds to the pixellon occupation number
and is much greater than unity. We refer readers to Refs. [497, 7, 559] for details of
the pixellon model.

We now compute the two-point function of 𝜙 defined in Eq. (10.5) by using the
correlation function (10.6) and the dispersion relation (10.7), obtaining

⟨𝜙(𝑡, x)𝜙(𝑡′, x′)⟩

= 𝑎𝑙𝑝

∫
𝑑3p
(2𝜋)3

1
𝜔2

p
cos

[
𝜔p(𝑡 − 𝑡′) − p · (x − x′)

]
=
𝛼𝑙𝑝

32𝜋2
1

|x − x′|Θ ( |x − x′| − 𝑐𝑠 |𝑡 − 𝑡′|) , (10.8)

where Θ is the Heaviside step function, and we have redefined the normalization
constant to be 𝛼 ≡ (2𝜋/𝑐2

𝑠)𝑎. Note that the benchmark of the theory is 𝛼 ∼
O(1). Alternatively, we can apply the plane wave decomposition formula 𝑒𝑖p·x =

4𝜋
∑
𝑙𝑚 𝑖

𝑙 𝑗𝑙 ( |p| |x|)𝑌𝑚𝑙 (x̂)𝑌𝑚∗
𝑙

(x̂′) to Eq. (10.8), which gives

⟨𝜙(𝑡, x)𝜙(𝑡′, x′)⟩ =
𝛼𝑙𝑝

2𝜋2𝑐𝑠

∫ ∞

−∞
𝑑𝜔 𝑒−𝑖𝜔(𝑡−𝑡

′)

∞∑︁
𝑙=0

𝑙∑︁
𝑚=−𝑙

𝑗𝑙

(
𝜔 |x|
𝑐𝑠

)
𝑗𝑙

(
𝜔|x′|
𝑐𝑠

)
𝑌𝑚∗𝑙 (x̂)𝑌𝑚𝑙 (x̂′) , (10.9)
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where we have integrated over the angular components of the momentum using the
orthogonality relation of spherical harmonics, and extended to negative frequency
using the identity 𝑗𝑙 (−𝑥) = (−1)𝑙 𝑗𝑙 (𝑥). Remarkably, when 𝑡 = 𝑡′, the integral over
frequency in Eq. (10.9) can be performed exactly, leading to

⟨𝜙(𝑡, x)𝜙(𝑡, x′)⟩ =
𝛼𝑙𝑝

2𝜋

∞∑︁
𝑙=0

𝑙∑︁
𝑚=−𝑙

1
2𝑙 + 1

𝑌𝑚∗𝑙 (x̂)𝑌𝑚𝑙 (x̂′)

×


|x|𝑙

|x′|𝑙+1 if |x| ≤ |x′|

|x′|𝑙
|x|𝑙+1 if |x| > |x′|

. (10.10)

We now consider two photon paths originating from a distant star, extending over a
distance 𝐿 to two distinct points on the aperture with angular coordinates 𝛀̂ and 𝛀̂′.
Clearly, when the aperture is much smaller than the star-telescope distance, 𝐷 ≪ 𝐿,
the curvature of a sphere with radius 𝐿 centered at the origin can be ignored when
only the extent of the telescope is considered. The length shift of a photon path
arriving at the telescope at time 𝑡 is then given by integrating the linearized metric
perturbation in Eq. (10.4) along the classical photon path,

Δ𝐿 (𝑡, 𝛀̂) = −1
2

∫ 𝐿

0
𝑑𝑟 𝜙(𝑡 − 𝐿 + 𝑟, 𝑟𝛀̂) . (10.11)

The two-point function of the accumulated length fluctuation is thus obtained by
integrating Eq. (10.10) along radial coordinates 𝑟 and 𝑟′, leading to

⟨Δ𝐿 (𝑡, 𝛀̂)Δ𝐿 (𝑡, 𝛀̂′)⟩

=
1
4

∫ 𝐿

0
𝑑𝑟

∫ 𝐿

0
𝑑𝑟′ ⟨𝜙(𝑡 − 𝐿 + 𝑟, 𝑟𝛀̂)𝜙(𝑡 − 𝐿 + 𝑟′, 𝑟′𝛀̂′)⟩

=
1
4

∫ 𝐿

0
𝑑𝑟

∫ 𝐿

0
𝑑𝑟′ ⟨𝜙(𝑡, 𝑟𝛀̂)𝜙(𝑡, 𝑟′𝛀̂′)⟩

=
𝛼𝑙𝑝𝐿

4𝜋

∞∑︁
𝑙=0

𝑙∑︁
𝑚=−𝑙

1
(𝑙 + 1) (2𝑙 + 1)𝑌

𝑚∗
𝑙 (𝛀̂)𝑌𝑚𝑙 (𝛀̂′) . (10.12)

Here the third line of Eq. (10.12) directly follows from the result in Eq. (10.8) and
the triangle inequality, |𝑟𝛀̂−𝑟′𝛀̂′| ≥ |𝑟 −𝑟′|, alongside with 𝑐𝑠 < 1. The 𝑙−2 scaling
of the transverse correlation found here has been anticipated in Sec. 10.1, and is
in accordance with previous works in Refs. [30, 500, 7, 558]. Using the addition
theorem of spherical harmonics,

∑𝑙
𝑚=−𝑙 𝑌

𝑚∗
𝑙

(𝛀̂)𝑌𝑚
𝑙
(𝛀̂′) = 2𝑙+1

4𝜋 𝑃𝑙 (𝛀̂ · 𝛀̂′) where 𝑃𝑙
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is the Legendre polynomial, we can rewrite Eq. (10.12) as

⟨Δ𝐿 (𝑡, 𝛀̂)Δ𝐿 (𝑡, 𝛀̂′)⟩ =
𝛼𝑙𝑝𝐿

16𝜋2

∞∑︁
𝑙=0

1
𝑙 + 1

𝑃𝑙 (cosΔ𝜃) , (10.13)

where Δ𝜃 is the angular separation between 𝛀̂ and 𝛀̂′. Note that Eq. (10.13) is
independent of time. Additionally, we note that the summation over 𝑙 in Eq. (10.13)
can be analytically performed to yield log(1 + csc(Δ𝜃/2)), which diverges logarith-
mically as Δ𝜃 → 0 .

Since both points are confined on the telescope, their separation is bounded by
Δ𝜃 ≲ 𝐷/𝐿 ≪ 1, and hence one can expand the Legendre polynomials for small
argument, 𝑃𝑙 (cosΔ𝜃) = 1 − 1

4 𝑙 (𝑙 + 1)Δ𝜃2 + · · · , and Eq. (10.13) becomes

⟨Δ𝐿 (𝛀̂)Δ𝐿 (𝛀̂′)⟩ =

𝛼𝑙𝑝𝐿

16𝜋2

( ∞∑︁
𝑙=0

1
𝑙 + 1

− 1
4
Δ𝜃2

∞∑︁
𝑙=0

𝑙 + · · ·
)
. (10.14)

The sums here are clearly divergent but can be properly regulated by some large Λ

serving as a physical cutoff on the 𝑙-modes. As we will demonstrate in Sec. 10.3,
the blurring effects from correlated fluctuations do not depend on the absolute
phase of the light rays, but only the phase difference between two typical points
on the aperture. The first sum in Eq. (10.14) is independent of Δ𝜃, and hence is
an unimportant term that will drop out of the observable (i.e. the path difference
between two points) by introducing a local counterterm, similar to an extrinsic
energy quantity. The second sum in Eq. (10.14) depends on the system size, Δ𝜃,
and has to be regulated accordingly. In particular, we do not expect our effective
field theory description of the VZ effect, the pixellon model, to be valid at scales
𝑙 ≳ 1/Δ𝜃. Imposing a cutoff on 𝑙Δ𝜃 then leads to the following regulated sums

⟨Δ𝐿 (𝛀̂)Δ𝐿 (𝛀̂′)⟩

→
𝛼𝑙𝑝𝐿

16𝜋2

(
−1

4
Δ𝜃2

∞∑︁
𝑙=0

𝑙𝑒−𝑙Δ𝜃/Λ + · · ·
)

=
𝛼𝑙𝑝𝐿

16𝜋2

[
−Λ

2

4
+ 1

48
Δ𝜃2 + O

(
1
Λ

)
+ O(Δ𝜃4)

]
. (10.15)

The divergent parts are now all independent of Δ𝜃, and hence have to drop out of
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the observable, which becomes

⟨[Δ𝐿 (𝛀̂) − Δ𝐿 (𝛀̂′)]2⟩
=2[Δ𝐿 (𝛀̂)Δ𝐿 (𝛀̂) − Δ𝐿 (𝛀̂)Δ𝐿 (𝛀̂′)]

= −
𝛼𝑙𝑝𝐿

384𝜋2Δ𝜃
2 . (10.16)

Such a length fluctuation is strongly suppressed in astrophysical observations due
to the extra factor Δ𝜃2 ≲ (𝐷/𝐿)2.

Interestingly, one can directly arrive at the result in Eq. (10.16) by applying the
following identity to Eq. (10.14)

∞∑︁
𝑙=0

𝑙 = 1 + 2 + 3 + · · · = − 1
12
. (10.17)

This identity originates from the analytic continuation of the Riemann zeta function
and is more familiar in the context of the Casimir force [560]. The Riemann zeta
function, 𝜁 (𝑠) ≡ ∑∞

𝑛=1 𝑛
−𝑠, is only convergent for 𝑠 > 1, but can be analytically

continued to include the entire complex plane except for a simple pole at 𝑠 = 0.
The identification amounts to 𝜁 (−1) = −1/12 by analytical continuation. This
technique is known as the Zeta function regularization, which has been widely used
to regulate divergent series in QFT and quantum gravity (e.g. see Ref. [22] for
application to the gravitational path integral by Hawking). The divergent series is
assigned a physical and finite value by analytic continuation, which always yields a
unique value regardless of the actual renormalization scheme.

Returning to the image blurring analysis, analogous to the Casimir effect, the precise
UV physics in Eq. (10.15) that cuts off 𝑙Δ𝜃 > Λ does not matter, since the quantum
fluctuation that can be realistically measured by an experimental device is only
sensitive to the IR physics. In addition, we note that while Eq. (10.16) appears to
have a spurious minus sign, it will not affect the size of the image blurring effect,
since the path difference only enters the observable as a phase of the light rays.

10.3 Blurring Effects from Correlated Fluctuations
In Sec. 10.2, we argued that the path difference between two light rays is the actual
quantity responsible for blurring a sharp image from a distant star. We computed the
variance of the path difference in Eq. (10.16) and found a severe suppression factor
of ∼ Δ𝜃2. In this section, we justify this argument by an explicit computation of the
blurring effect by the Huygens-Fresnel principle of wave optics to light propagation
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from the telescope’s aperture to the image plane. We find that the corresponding
upper limits placed on the size of quantum fluctuation are given by Eq. (10.27), and
are satisfied by many orders of magnitude.

In a typical astronomical observation, a telescope with size 𝐷 is pointed towards the
source such that the surface of the aperture is embedded in the transverse plane with
respect to the propagation direction of the incoming photons, which points from the
source to the telescope. (See Fig. 10.1 for an illustration of the system).

The source can then be treated as generating a perfect spherical wave. In the absence
of perturbations (either astrophysical or quantum-gravity-induced), the incoming
wave at the aperture of the telescope can be well-approximated as a plane wave.
The intensity profile observed by the telescope is obtained by treating each point of
the aperture as a spherical wavelet (Huygens-Fresnel principle) and computing their
interference pattern by considering the path difference of each wavelet

𝐼 (𝝈) ∝
����∫

Ω𝐴

𝑑2𝝆 𝑒−𝑖k·𝝆
����2 , (10.18)

where 𝐼 (𝝈) is the unperturbed image intensity at 𝝈 on the screen, Ω𝐴 is the domain
of the aperture, and we define k ≡ (2𝜋/𝜆0𝑅)𝝈 with 𝑅 being the aperture-screen
distance. Here we have assumed the far-field limit (𝑅 ≫ 𝐷). Let 𝐴 = 𝜋(𝐷/2)2 be
the area of the aperture, the expression in Eq. (10.18) is more commonly written
as the (squared) Fourier transform of the aperture function 𝑤(𝝆), defined to be 1
where the aperture is unblocked, and zero otherwise

𝐼 (𝝈) = 𝐼0

𝐴2

����∫ ∞

−∞
𝑑2𝝆 𝑤(𝝆)𝑒−𝑖k·𝝆

����2
=
𝐼0

𝐴2 |𝑤̃(k) |2 , (10.19)

where 𝐼0 is the peak intensity of 𝐼ideal(𝝈). We now apply this to a circular aperture
with a diameter 𝐷. Let 𝛾 ≪ 1 be the angular position of 𝝈 relative to the origin,
which is placed at the center of the aperture. Then the intensity profile is given by
integrating Eq. (10.18)

𝐼 (𝛾) = 𝐼0

𝜋2(𝐷/2)4

�����∫ 𝐷/2

0
𝜌𝑑𝜌

∫ 2𝜋

0
𝑑𝜑 𝑒

−𝑖 2𝜋
𝜆0
𝜌𝛾 sin 𝜑

�����2
= 4𝐼0

[
𝐽1(𝜋𝛾𝐷/𝜆0)
𝜋𝛾𝐷/𝜆0

]2
. (10.20)
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The profile in Eq. (10.20) is known as the Airy disk, where the first minimum is
located at 𝛾 ≈ 1.22𝜆0/𝐷.

Image blurring happens when each wavelet from the aperture acquires a random
fluctuating phase, ΔΦ(𝝆) = (2𝜋/𝜆0)Δ𝐿 (𝝆). The resulting intensity now picks up a
phase factor

𝐼 (𝝈) = 𝐼0

𝐴2

����∫ ∞

−∞
𝑑2𝝆 𝑤(𝝆)𝑒𝑖ΔΦ(𝝆)𝑒−𝑖k·𝝆

����2 , (10.21)

with the expectation value

⟨𝐼 (𝝈)⟩ = 𝐼0

𝐴2

∫ ∞

−∞
𝑑2𝝆

∫ ∞

−∞
𝑑2𝝆′

𝑤(𝝆)𝑤(𝝆′)𝑒𝑖(ΔΦ(𝝆)−ΔΦ(𝝆′))𝑒−𝑖𝑘 (𝝆−𝝆
′) . (10.22)

Defining
√︁
⟨ΔΦ2⟩ = ΔΦrms, for uncorrelated noise, one expects significant image

distortion to happen when ΔΦrms ≳ 𝜋. This is usually quantified using the Strehl
ratio, defined as the ratio between the perturbed and unperturbed peak intensity,
𝑆 =

⟨𝐼 (𝜃=0)⟩
𝐼0

, which is given by [561]

𝑆 =
1
𝐴2

∫ ∞

−∞
𝑑2𝝆

∫ ∞

−∞
𝑑2𝝆′𝑤(𝝆)𝑤(𝝆′)𝑒− 1

2𝐷Φ (𝝆,𝝆′) , (10.23)

where we defined the two-point function 𝐷Φ(𝝆, 𝝆′) = |⟨[ΔΦ(𝝆) − ΔΦ(𝝆′)]2⟩|.
It is clear that if ΔΦ has no spatial correlation, then the Strehl ratio simply decays
exponentially with the rms value of the phase [551], 𝑆uncorrelated = 𝑒−ΔΦ

2
rms . Requiring

𝑆 to be close to unity then implies the rough estimateΔΦrms ≲ 1 and thus
√︁
𝑙𝑝𝐿 ≲ 𝜆0,

ignoring O(1) factors. This is a substantial level of fluctuations that have been ruled
out, as we have discussed in Sec. 10.1.

If we now take transverse correlation into account, then Eq. (10.16) implies the
phase difference variance to be

𝐷Φ(𝝆, 𝝆′) = 2Φ2
rms

|𝝆 − 𝝆′|2
𝐿2 , (10.24)

where ΔΦ2
rms = (1/192) (𝛼𝑙𝑝𝐿/𝜆2

0). Combined with Eq. (10.23), one finds

𝑆 =
1
𝐴2

∫
Ω𝐴

𝑑2𝝆

∫
Ω𝐴

𝑑2𝝆′𝑒−ΔΦ
2
rms |𝝆−𝝆′ |2/𝐿2

. (10.25)

Because |𝝆 | < 𝐷 ≪ 𝐿, 𝐷Φ(𝝆, 𝝆′) in Eq. (10.24) is suppressed by an additional
factor of (𝐷/𝐿)2, which means the level of variation between ΔΦ(𝝆) across the
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Figure 10.2: Plot of a realization of cosΔΦ(𝑟) on the aperture, generated in ac-
cordance with Eq. (10.24) assuming ΔΦrms = 2𝜋. The rightmost panel assumes
𝐿 = 𝐷.

aperture is a factor 𝐷/𝐿 suppressed from Φrms. This drives the Strehl ratio strongly
towards unity. More specifically, expanding the exponential in Eq. (10.25) gives

𝑆 = 1 − 1
192

𝛼𝑙𝑝

𝜆2
0𝐿

1
𝐴2

∫
Ω𝐴

𝑑2𝝆

∫
Ω𝐴

𝑑2𝝆′ |𝝆 − 𝝆′|2

= 1 − 1
768

𝛼𝑙𝑝𝐷
2

𝜆2
0𝐿

. (10.26)

The formation of a sharp image from a distant star indicates 𝑆 ≈ 1 in Eq. (10.26),
and thus places a limit

𝛼 ≲ 3 × 1050
(
𝜆0

1 𝜇m

)2 (
𝐿

1 Gpc

) (
1 m
𝐷

)2
, (10.27)

which is clearly satisfied by many orders of magnitude in any realistic system with
𝛼 ∼ O(1).

We perform a numerical simulation by generating random fields ΔΦ(𝝆) across the
aperture and producing the images as observed on the telescope’s image plane by
computing the Fourier transform in Eq. (10.21). We consider a circular aperture
with a diameter of 1024 pixels, embedded in a 4096×4096-pixel square. The phase
fluctuation is assumed to be a random Gaussian field with ΔΦrms = 0.1, 𝜋 and
2𝜋. Correlated noise is generated to satisfy the variance in Eq. (10.24)3 assuming
𝐿/𝐷 = 1 or 10. We show the distribution of cosΔΦ(𝝆) over the aperture in Fig. 10.2
and plot the observed image in Fig. 10.3. When the noise is uncorrelated, the Airy

3This can be achieved numerically, for example, by proposing that ⟨ΔΦ(𝝆)ΔΦ(𝝆′)⟩ =

Φ2
rms𝑒

−|𝝆−𝝆′ |2/𝐿2
= (2𝜋)−2

∫
𝑑2k𝐺 (k)𝑒−𝑖k· (𝝆−𝝆′ ) , where 𝐺 (k) = (𝜋Φ2

rms𝐿
2)𝑒−𝐿2 |k |2/4. Corre-

lated noise can then be numerically simulated by filtering a realization of uncorrelated noise by the
Green’s function 𝐺 (k).
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Figure 10.3: Images from a point object for various values of ΔΦrms and correlation
scale 𝐿, with correlation given by Eq. (10.24). The color represents log10(𝐼)
with arbitrary normalization. The aperture is simulated with 1028 × 1028 pixels
embedded in a 4096× 4096 grid. The images are zoomed into the center 128× 128
pixels to better resolve the Airy disks.
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disk patterns from the point source are destroyed when ΔΦrms ≳ 𝜋, corresponding
to a small Strehl ratio. However, once spatial correlation is introduced to the noise,
the Airy disk patterns are restored, showing that correlated length fluctuations are
much harder to constrain by studying image blurring effects.

10.4 Effects of Diffraction
In Sec. 10.2, we treated photons from a distant star as point particles (with zero
wavelength) following null rays until they reached the telescope. The sole contribu-
tion to the phase difference across the aperture is due to fluctuations in the distance
covered by the rays. In other words, we have neglected the wave nature of the
photons as they travel from the source to the telescope — even though in Sec. 10.3
we have incorporated that wave nature as light propagates from the aperture to the
screen. In this section, we incorporate the wave nature of light rays more carefully
by applying the Huygens- Fresnel-Kirchhoff scalar diffraction theory [557] to light
propagation from the source to the telescope, which has been argued in Ref. [541] to
significantly modify the blurring effect in the context of spacetime foam. A recent
work that investigates the effects of spacetime fluctuations on light rays, taking into
account the wave nature of photons, is given in Ref. [562].

We compute and compare the size of phase modulations on the telescope aperture,
as well as their transverse correlations, explicitly in Fig. 10.4, and conclude that
diffraction does not lead to qualitative changes in the observable if quantum gravity
fluctuations have the high spatial correlation contained in the pixellon model.

Consider a scalar wave Φ(𝑡, x) with angular frequency 𝜔0 propagating outwards
in the radial direction with the metric in Eq. (10.4). The equation of motion of
the scalar wave is given by 1√−𝑔𝜕𝜇 (𝑔

𝜇𝜈𝜕𝜈Φ) = 0. The leading order contributions
of the derivatives is the frequency of the scalar wave 𝜔0, which allows us to take
𝜕𝜙 ≪ 𝜕Φ, leading to the familiar wave equation[

−(1 − 𝜙(𝑡, x))𝜕2
𝑡 + ∇2] Φ(𝑡, x) = 0 . (10.28)

Note that one can also derive Eq. (10.28) by setting 𝑑𝑠2 = 0 in Eq. (10.4) and
observing that the scalar wave travels with speed 𝑑𝑟/𝑑𝑡 = (1 − 𝜙)−1/2. Writing
the wave as Φ(𝑡, x) = [Φ0(x) + 𝜓(𝑡, x)]𝑒−𝑖𝜔0𝑡 , where Φ0(x) = 𝑒𝑖𝜔0 |x|/(4𝜋 |x|) is an
unperturbed spherical wave, and 𝜓 is the time-dependent scattered wave. The wave
equation to the first order gives

(∇2 + 𝜔2
0)𝜓(𝑡, x) + (2𝑖𝜔0𝜕𝑡 − 𝜕2

𝑡 )𝜓(𝑡, x) = 𝜔2
0𝜙(𝑡, x)Φ0(x) . (10.29)
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We can decompose the scattered wave and the pixellon field into Fourier and
harmonic modes, i.e. 𝜓(𝑡, 𝑟𝛀̂) =

∫ ∞
−∞ 𝑑𝜔 𝑒

−𝑖𝜔𝑡 ∑∞
𝑙=0

∑𝑙
𝑚=−𝑙 𝜓

𝑚
𝑙
(𝜔, 𝑟)𝑌𝑚

𝑙
(𝛀̂) and

𝜙(𝑡, 𝑟𝛀̂) =
∫ ∞
−∞ 𝑑𝜔 𝑒

−𝑖𝜔𝑡 ∑∞
𝑙=0

∑𝑙
𝑚=−𝑙 𝜙

𝑚
𝑙
(𝜔, 𝑟)𝑌𝑚

𝑙
(𝛀̂). Then Eq. (10.29) becomes[

∇2
𝑟 + (𝜔0 + 𝜔)2 − 𝑙 (𝑙 + 1)

𝑟2

]
𝜓𝑚𝑙 (𝜔, 𝑟) =

𝜔2
0𝑒
𝑖𝜔0𝑟

4𝜋𝑟
𝜙𝑚𝑙 (𝜔, 𝑟) . (10.30)

Imposing a regularity condition at the origin and out-going wave boundary condition
at infinity, we obtain a solution [541]

𝜓𝑚𝑙 (𝜔, 𝐿) =
𝜔2

0(𝜔0 + 𝜔)ℎ(1)𝑙 [(𝜔0 + 𝜔)𝐿]
4𝜋∫ 𝐿

0
𝑑𝑟

{
𝑟 𝑗𝑙 [(𝜔0 + 𝜔)𝑟]𝑒𝑖𝜔0𝑟𝜙𝑚𝑙 (𝜔, 𝑟)

}
. (10.31)

On the other hand, the variance of the pixellon modes has been derived in Eq. (10.9)

⟨𝜙𝑚𝑙 (𝜔, 𝑟)𝜙
𝑚′∗
𝑙′ (𝜔′, 𝑟′)⟩

=
𝛼𝑙𝑝

2𝜋2𝑐𝑠
𝑗𝑙

(
𝜔𝑟

𝑐𝑠

)
𝑗𝑙

(
𝜔′𝑟′

𝑐𝑠

)
𝛿𝑙𝑙′𝛿𝑚𝑚′𝛿(𝜔 − 𝜔′) . (10.32)

The modulation as measured at the telescope can be written as 𝜉 (𝑡, 𝛀̂) ≡ 𝜓(𝑡, 𝐿𝛀̂)/Φ0(𝑡, 𝐿𝛀̂) =
4𝜋𝐿𝜓(𝑡, 𝐿𝛀̂)𝑒−𝑖𝜔0𝐿 . Combining Eq. (10.31) and Eq. (10.32), the variance of the
modulation is given by

⟨𝜉 (𝑡, 𝛀̂)𝜉 (𝑡, 𝛀̂′)⟩

=

∫ ∞

−∞
𝑑𝜔

∞∑︁
𝑙=0

𝑙∑︁
𝑚=−𝑙

|𝜉𝑚𝑙 (𝜔) |
2
𝑌𝑚𝑙 (𝛀̂)𝑌𝑚′

𝑙 (𝛀̂′) , (10.33)

where ��𝜉𝑚𝑙 (𝜔)��2 =

���𝜔2
0(𝜔0 + 𝜔)𝐿ℎ(1)𝑙 [(𝜔 + 𝜔0)𝐿]

���2 (
𝛼𝑙𝑝

2𝜋2𝑐𝑠

)
����∫ 𝐿

0
𝑑𝑟 𝑟𝑒𝑖𝜔0𝑟 𝑗𝑙 [(𝜔0 + 𝜔)𝑟] 𝑗𝑙

(
𝜔𝑟

𝑐𝑠

)����2 . (10.34)

Here 𝜉𝑚
𝑙

’s independence on 𝑚 results from the spherical symmetry of the two-point
function. While the integral over frequency in Eq. (10.34) is difficult to perform,
we can estimate the variance in different regimes using asymptotic limits of Bessel
functions. Realizing that each mode of the scattered wave 𝜓𝑚

𝑙
(𝜔) has a frequency

of 𝜔0 +𝜔, significant blurring effects of the image can only be induced by scattered
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waves with roughly the same frequency as the unperturbed wave, i.e. 𝜔 ≲ 𝜔0. This
leads to the following estimate for Eq. (10.34)

|𝜉𝑚𝑙 (𝜔) |
2 ∼

(
𝛼𝑙𝑝

2𝜋2𝑐𝑠

)
×


(𝜔0𝑐𝑠

2𝜔

)2 O(1)
𝑙

if 𝑙 ≪ (𝜔𝐿/𝑐𝑠), 𝜔0𝐿(
𝐶𝑙

2𝑙 + 1

)2 (
𝜔𝐿

𝑐𝑠

)2𝑙
(𝜔0𝐿)4 if 𝑙 ≫ (𝜔𝐿/𝑐𝑠), 𝜔0𝐿

, (10.35)

where

𝐶𝑙 ≡
2𝑙−1𝑙!

(𝑙 + 1) (2𝑙 + 1) (2𝑙)! ≪ 1 . (10.36)

Here O(1) in Eq. (10.35) denotes a number of order unity that has to be evaluated
for each value of 𝑙. In Fig. 10.4 we plot |𝜉𝑚

𝑙
(𝜔)2 | as a function of 𝑙 in blue for

different choices of 𝜔0𝐿 and 𝜔𝐿 (see caption), obtained by numerically integrating
Eq. (10.34). Estimates in Eqs. (10.35)-(10.36) show that high 𝑙 modes with 𝑙 ≫ 𝜔0𝐿

are extremely suppressed by factors of 1/𝑙! (more dramatic than an exponential
suppression), which are negligible even when summed to 𝑙 → ∞. While we did
not derive approximations in the intermediate 𝑙 regime where 𝑙 ≪ 𝜔𝐿/𝑐𝑠 but
𝑙 ≫ 𝜔0𝐿, it is clear from the right panel of Fig. 10.4 that these 𝑙-modes are also
highly suppressed in this middle regime. Therefore, only the low 𝑙-modes satisfying
𝑙 ≪ 𝜔𝐿/𝑐𝑠 and 𝑙 ≪ 𝜔0𝐿 will contribute to image blurring.

We now compare these new results with those obtained in Sec. 10.2, where the
effects of diffraction are neglected. In that approximate treatment, the phase
modulation as measured at the aperture, denoted by 𝜉 (𝑡, 𝛀̂), was given by the
photon path length fluctuation divided by the photon wavelength, i.e. 𝜉 (𝑡, 𝛀̂) =

−(𝜔0/2)
∫ 𝐿

0 𝑑𝑟 𝜙(𝑡, 𝑟𝛀̂). We can obtain the mode decomposition of 𝜉 by directly
integrating Eq. (10.32) over the radial distance, obtaining

(𝜉𝑚𝑙 (𝜔))
2 =

(
𝛼𝑙𝑝

2𝜋2𝑐𝑠

) (𝜔0
2

)2
[∫ 𝐿

0
𝑑𝑟 𝑗𝑙

(
𝜔𝑟

𝑐𝑠

)]2

. (10.37)

This can be further approximated as

(𝜉𝑚𝑙 (𝜔))
2 ≈

(
𝛼𝑙𝑝

2𝜋2𝑐𝑠

)
×


𝜋

2

(𝜔0𝑐𝑠
2𝜔

)2 1
𝑙

if 𝑙 ≪ (𝜔𝐿/𝑐𝑠)

(𝐶𝑙)2
(
𝜔𝐿

𝑐𝑠

)2𝑙
(𝜔0𝐿)2 if 𝑙 ≫ (𝜔𝐿/𝑐𝑠)

. (10.38)
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Figure 10.4: Plots of the modulations on the aperture, (𝜉𝑚
𝑙
(𝜔))2 (red, Eq. (10.34))

and (𝜉𝑚
𝑙
(𝜔))2 (blue, Eq. (10.37)), as functions of 𝑙 with and without considering

diffraction respectively. The curves are obtained by numerical integration. The left
panel assumes 𝜔0𝐿 = 𝜔𝐿 = 100 while the right panel assumes 𝜔0𝐿 = 100 and
𝜔𝐿 = 30. The 𝑦-axes are normalized to 𝛼𝑙𝑝/2𝜋2𝑐𝑠.

where we also took the 𝑙 ≫ 1 limit with Stirling’s approximation in the first
entry. Comparing the result (10.35) from diffraction and the result (10.38) ignoring
diffraction, one immediately observes that for both analyses, the high 𝑙-modes are
severely suppressed, and will not produce any blurring effects. On the other hand,
the amplitudes of the low 𝑙-modes in both analyses scale as 1/𝑙 with identical
scalings in frequencies when 𝜔 ≲ 𝜔0, and with numerical factors agreeing up to
O(1).

In Fig. 10.4 we plot in red the |𝜉𝑚
𝑙
(𝜔) |2 obtained by numerically integrating

Eq. (10.37) — and confirm that this agrees with the diffraction results (shown
in blue) up to an O(1) factor. We thus conclude that the diffraction effect does not
qualitatively change the level and correlation structure of phase modulation on the
telescope’s aperture.

10.5 Conclusion
In this paper, we studied the effect of spacetime fluctuations from the VZ effect,
specifically modeled by the pixellon field, on the blurring of astrophysical images.
We concluded that it is not constrained by such observations. Even though the VZ
effect, similar to the previously considered random walk models, leads to a root-
mean-squared path length fluctuation of ∼

√︁
𝑙𝑝𝐿, we have shown that the transverse
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correlation between phase modulations on the telescope’s aperture will lead to a
suppression factor of 𝐷/𝐿, where 𝐷 is the size of the aperture. More specifically,
in Sec. 10.2, we used the pixellon model to compute the two-point correlation
function of path length fluctuations on the telescope’s aperture, and then employed
a Zeta-function regularization technique to obtain UV-independent values for two-
point correlations of phase fluctuations of light on the aperture. In Sec. 10.3, we
applied scalar diffraction theory to convert this level of phase fluctuations to the level
of image blurring, confirming that the VZ effect cannot be constrained by image
blurring with foreseeable technology.

In Sec. 10.4, we incorporated the effect of diffraction on light propagation with space-
time fluctuations from the pixellon model. Unlike in Ref. [541] which considered
a spacetime foam model of quantum fluctuations, diffraction does not qualitatively
modify the correlation structure of light in the pixellon mode. In this way, diffraction
alone does not provide a physical mechanism for the UV cutoff that underlies the
Zeta-function regularization carried out in Sec. 10.2.

Note that our results are in contradiction to the claim made by Ref. [539], which
incorrectly analyzed the model of Ref. [7] without properly renormalizing the UV
divergence. One concludes that the VZ effect, as motivated by the ’t Hooft commu-
tation relations, can give rise to observably large effects in interferometers, while
remaining consistent with the observations of images of distant stars.
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A p p e n d i x A

SIGNAL GENERATION MONTE CARLO

Our goal is to compute the impact of a population of subhalos on the timing resid-
uals measured in a PTA. The signal from an individual subhalo, given in Eq. (2.8),
is a function of a few random variables, specifically: the subhalo mass, 𝑀 , initial
position, ®𝑟0, and velocity, ®𝑣. To generate the full signal all of these variables must
be generated for each subhalo. We assume that these probability distributions are
independent and identically distributed (iid). With these assumptions the popula-
tion can be generated by drawing random variables from three probability density
functions (pdfs):

• 𝑓®𝑟 (®𝑟): the subhalo spatial distribution;

• 𝑓®𝑣(®𝑣): the subhalo velocity distribution;

• 𝑓𝑀 (𝑀): the subhalo mass distribution (related to the subhalo mass function,
𝑑𝑛̃/𝑑 log𝑀 as described below),

all of which are normalized to 1:
∫
𝑑𝑋 𝑓𝑋 (𝑋) = 1. Since PTA searches are

only sensitive to DM subhalos in the neighborhood of the solar system, we expect
the position distribution to be uniform. Therefore we take 𝑓®𝑟=1/𝑉 , where 𝑉 is the
simulation volume. Practically this volume is limited by the total number of subhalos
that can be kept in the simulation. The velocity distribution, 𝑓®𝑣(®𝑣) , is taken to be
a Maxwell-Boltzmann distribution with 𝑣0 = 325 km/s, 𝑣esc = 600 km/s, and the
angular dependence assumed to be isotropic. The larger value of 𝑣0 relative to the
standard choice of ∼ 200 km/s is chosen to account for the Earth or pulsar velocity
relative to the Galactic rest frame.1 Lastly, the mass distribution can be written in
terms of the subhalo mass function as

𝑓𝑀 (𝑀) = 1
𝑛𝑀

𝑑𝑛̃

𝑑 log𝑀
, (A.1)

1This also introduces an anisotropy in the velocity distribution which creates spurious finite
volume effects in the simulation. Since we do not expect the anisotropy to change our results
significantly we ignore this effect.
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Figure A.1: Comparison of the PBH constraints between this work and [42]. The
left panel compares the pulsar term results while the right panel compares the Earth
term results. The meanings of the labels are described in the main text. The pulsar
parameters used here are 𝑁𝑝 = 200, Δ𝑡 = 2, 𝑡rms = 50 and 𝑇 = 20. The SNR
thresholds are set to SNR = 4 for the pulsar term and SNR = 2 for the earth term
for consistency with [42].

where 𝑛 ≡
∫
𝑑𝑀𝑑𝑛̃/𝑑𝑀 . The concentration parameters are then taken from the

concentration-mass relationship, 𝑐(𝑀), as discussed in Sec. 2.4. We also generate
the pulsar directions, ®̂𝑑 in Eq. (2.8), from a uniform distribution on the sphere.

Given these pdfs, the Monte Carlo generates a large number (taken to be 1000 in our
results) of different universe realizations and in each computes the total phase shift,
Eq. (2.9), due to subhalos surrounding the Earth or pulsar. The total phase shift
is computed on a uniform grid of time points with spacing equal to the cadence,
Δ𝑡, and total number of points equal to 𝑇/Δ𝑡. The residual signal in each pulsar,
ℎ𝐼 , is then computed by finding the best fit to the parameters 𝜙0, 𝜈, and ¤𝜈 in the
timing model of (5.37) and subtracting the best fit timing model from the total phase
shift. These ℎ𝐼’s are then used to compute the SNRs discussed in Sec. 2.2 for each
realization. To draw constraints we take the 10th percentile SNR across universes.
The statistical significance of a given SNR is discussed below in App. C.

The results derived here are more complete and subsume the previous works [43,
42]. To illustrate the differences with the previous results, in Fig. A.1 we compare
the constraints on the fraction of DM in PBHs, 𝑓 = ΩPBH/Ω𝐷𝑀 . The curves labelled
“DopDet-P" in the left panel and “DopStoch" in the right panel are taken from [42],
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which are analogous to the “pulsar term" and “Earth term" analysis presented in this
work. The main difference between the more recent work, Ref. [42], and this analysis
is how the signal is calculated. Previously the signal ℎ𝐼 (𝑡) and its autocorrelator were
computed using analytic approximations, and the constraints were cut off when these
were no longer good expressions. Here we explicitly generate the residual signal
ℎ𝐼 which avoids the need of analytic simplifications. More specifically, for the
“DopDet-P" curve in [42] the signal 𝛿𝜙(𝑡) was approximated by the leading order
term in the power series in the small (dynamic) and large (static) 𝜏/𝑇 limits. By
contrast, this work does not use the aforementioned approximations. This allows
the constraint to smoothly interpolate between the two regimes and asymptote to the
“DopDet-P" curves in both limits. Similarly, the “DopStoch" curve was obtained
using an approximate form of the correlation function 𝑅(𝑡, 𝑡′), which was derived
analytically from the step function approximation of 𝛿𝜙(𝑡). As shown in Fig. A.1, the
constraint has a non-negligible deviation from this work, which is an indication that
the approximations used in [42] is overly optimistic near the peak of the constraint.
For an explicit comparison we ran the MC using the same approximate form of
𝛿𝜙(𝑡) in [42], keeping only subhalos with impact parameter satisfying 𝑏 < 𝑣̄𝑇 . The
resulting constraints are labelled “Step" in the right hand panel of Fig. A.1 and we
see good agreement with the result in [42].
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A p p e n d i x B

COMPARISON BETWEEN ANALYTIC AND NUMERICAL
HALO MASS FUNCTION

In this appendix we compare the numerically derived HMF for axion models where
the PQ symmetry is broken after inflation [118], against some commonly used ana-
lytic prescriptions. Specifically, we compare the numerical result against the analytic
predictions of the Press-Schechter [106], and Sheth-Tormen [563] formalisms. The
first one has been described in the main text, for convenience of reference we report
here the differential halo mass fraction predicted by the PS formalism:

𝑑𝑓𝑃𝑆 (𝑀, 𝑧)
𝑑 ln𝑀

=

√︂
2
𝜋
𝜈(𝑀, 𝑧) exp

(
−𝜈

2(𝑀, 𝑧)
2

)
𝑑 ln𝜎(𝑀, 𝑧)
𝑑 ln𝑀

, (B.1)

where 𝜈(𝑀, 𝑧) ≡ 𝛿𝑐/𝜎(𝑀, 𝑧). The Sheth-Tormen formalism instead predict a
differential halo mass fraction given by

𝑑𝑓𝑆𝑇 (𝑀, 𝑧)
𝑑 ln𝑀

= 𝐴

√︂
𝑎

𝜋
𝜈(𝑀, 𝑧)

[
1 +

(
1

𝑎 𝜈2(𝑀, 𝑧)

) 𝑝]
exp

(
−𝑎 𝜈

2(𝑀, 𝑧)
2

)
𝑑 ln𝜎(𝑀, 𝑧)
𝑑 ln𝑀

,

(B.2)
where the choice of parameters 𝐴 = 0.3222, 𝑎 = 707, and 𝑝 = 0.3 has been showed
to best reproduce the numerical results (at least for the the case of ΛCDM).

The results of the comparison, at four different redshifts, are shown in Fig. B.1. The
agreement between numerical and analytic results is quite good, with the exception
of the high mass regime where simulations start to lose sensitivity.
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Figure B.1: Comparison between the HMF predicted by PS (blue) and the results
of the numerical simulations (green) at four different redshifts. For comparison
we also show the predictions of another analytical prescription (red) developed by
Sheth & Tormen.
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A p p e n d i x C

SNR STATISTICAL SIGNIFICANCE

In this section we discuss the statistical significance associated with a given observed
value of the SNR, more specifically, we derive its 𝑝-value (i.e the probability that
an SNR at least as large as the one observed is generated in presence of noise only).

In absence of a signal, the pulsar SNR given in (2.15) can be written as

SNR =

����∫ 𝑑𝑡 𝑛(𝑡)
����(∫

𝑑𝑡𝑑𝑡′⟨𝑛(𝑡)𝑛(𝑡′)⟩
)1/2 =

1√︁
𝑇𝑁

����∫ 𝑑𝑡 𝑛(𝑡)
���� . (C.1)

where we have drop the expectation value in the numerator because we want to
study the full statistical distribution of the SNR, and ignored the filter functions for
simplicity. Assuming that the noise is Gaussian, it is evident from the previous
equation that the SNR in absence of a signal is distributed as the absolute value of
a Gaussian variable with zero mean and unit standard deviation. From this follow
that, given an array of 𝑁𝑃 pulsars, the 𝑝-value for the pulsar term is

𝑝(SNR) = 1 −
[
erf

(
SNR
√

2

)𝑁𝑃

]
. (C.2)

Assuming pulsar independent noise, the Earth SNR in absence of a signal takes the
form

SNR =

����∑
𝐼,𝐽

∫
𝑑𝑡𝑑𝑡′𝑛𝐼 (𝑡)𝑛𝐽 (𝑡′)

����
𝑁
√︁

2𝑁𝑃 (𝑁𝑃 − 1)
(C.3)

where, as before, we have dropped the filter functions and the expectation value in
the numerator. We now define

𝜌 ≡
∑
𝐼

∫
𝑑𝑡 𝑛𝐼 (𝑡)√︁
𝑁𝑁𝑃𝑇

(C.4)

which, by construction, is a Gaussian variable with zero mean and unit standard
deviation. In terms of 𝜌, Eq. (C.3) can be rewritten as

SNR =
𝑁𝑃√︁

2𝑁𝑃 (𝑁𝑃 − 1)
𝜌2 , (C.5)
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from which conclude that, in absence of signal, the Earth SNR follows a rescaled
𝜒-squared distribution. Therefore, the 𝑝-value for the Earth term is given by

𝑝(SNR) = 1 − 𝑃(1/2,
√︁

2𝑁𝑃 (𝑁𝑃 − 1)
𝑁𝑃

SNR) (C.6)

where 𝑃(𝑠, 𝑡) is the regularized gamma function.

Finally, when showing our final results in the main text, we express 𝑝-values in
terms of standard deviations by using the relation

𝜎significance(𝑝) =
√

2erf−1(1 − 2𝑝) . (C.7)

As an example, an SNR = 4 corresponds (both for the pulsar and Earth term) to a
p-value of 𝑝 ∼ 0.01, and a signal significance of 𝜎significance ∼ 2.
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A p p e n d i x D

CLASSICAL ORBITS AND 𝑏max UNDER A LONG-RANGE
INTERACTION

In this appendix we consider orbits of point-like DM about a static NS given both
a gravitational and Yukawa force between them, as described in Sec. 5.1. Our
primary goal is to identify the impact parameters of orbits that intersect the NS,
which requires finding the location of centrifugal barriers. The barriers can occur
at radii 𝑟 ≳ 𝜆 where the fifth force is starting to turn on, and at radii much smaller
than the force range, where general and special relativity can be relevant. We begin
with a reminder of the gravity-only case and then generalize to include the Yukawa
interaction.

The general relativistic expression of energy conservation given a spherically sym-
metric star of mass 𝑀 and a much lighter orbiting body of mass 𝑚 comes from
the constraint 𝑝𝜇𝑝𝜇 = −𝑚2. Employing the Schwarzschild metric and coordinates,
𝑝𝑡 = 𝑔𝑡𝑡𝑚

𝑑𝑡
𝑑𝜏

= −𝐸 = −𝑚𝛾 and 𝑝𝜙 = 𝑔𝜙𝜙𝑚 𝑑𝜙

𝑑𝜏
= 𝐿 = 𝛾𝑚𝑏𝑣 are conserved quantities

along geodesics, where 𝑣 is the asymptotic DM speed, 𝛾 = 1/
√

1 − 𝑣2, and 𝑏 is the
impact parameter. With these identifications the constraint reads,(

𝑑𝑟

𝑑𝜏

)2
=
𝐸2

𝑚2 −
(
(𝐿/𝑚)2

𝑟2 + 1
) (

1 − 2𝐺𝑀
𝑟

)
. (D.1)

Given a large enough impact parameter, DM streaming in from infinity with asymp-
totic speed 𝑣 hits a centrifugal barrier, where 𝑑𝑟

𝑑𝜏
→ 0.

Given an additional attractive Yukawa interaction, the four-momentum constraint is
the same, but 𝐸 → 𝐸 −𝑉Yuk. So orbits obey1(

𝑑𝑟

𝑑𝜏

)2
=

(
𝐸 −𝑉eff,+

𝑚

) (
𝐸 −𝑉eff,−

𝑚

)
(D.2)

1The NS’s fifth force charge could non-negligibly affect the general relativistic lapse function

when 𝐺𝑄2
NS

𝑅2 =𝑛

((
𝑄

𝑀/𝑚𝑛

)
NS

𝐺𝑀
𝑅

)2
≳ 0.1. So a consistency requirement is √𝑛

(
𝑄

𝑀/𝑚𝑛

)
NS

≪ 1. Since
equivalence principle measurements restrict 𝑛 ≲ 10−11-10−9 for the force ranges we examine, the
condition easily holds when baryonic charge (and not captured DM charge) dominates the total NS
charge.
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with2

𝑉eff,±
𝑚

= −𝐺𝑀𝛼̃𝑒
−𝑟/𝜆

𝑟
±

√︄(
1 − 2𝐺𝑀

𝑟

) (
(𝐿/𝑚)2

𝑟2 + 1
)
. (D.3)

The turning points, 𝑟min, of unbound orbits—i.e. centrifugal barriers—occur at the
maximum radial coordinate for which 𝑉eff,+ = 𝐸 . Solving the condition for the
impact parameter, 𝑏, yields,

𝑏(𝑟min) = 𝑟min

√√√√√√√1 + 2𝐺𝑀
𝑟min𝛾2𝑣2

(
1 + 𝑒−𝑟min/𝜆

)
+

(
𝐺𝑀
𝑟min𝛾𝑣

𝑒−𝑟min/𝜆
)2(

1 − 2𝐺𝑀
𝑟min

) . (D.4)

DM focused through gravity alone breaches a NS surface iff 𝑏 < 𝑏(𝑅) |→0 =

𝑅

√︃
1 + 2𝐺𝑀/𝑅𝑣2

1−2𝐺𝑀/𝑅 ≈
√︃

2𝐺𝑀𝑅/𝑣2

1−2𝐺𝑀/𝑅 .

For large 𝛼̃, the exponential turn-on of the fifth force can lead to an additional
partial centrifugal barrier at 𝑟 > 𝜆, and the peak of the inner centrifugal barrier near
the Schwarzschild radius moves to larger radial coordinates. These behaviors are
demonstrated in Fig. D.1, which shows examples of𝑉eff, + and 𝐸 assuming 𝑣 = 10−3

for 𝜆 = 10−11. When 𝛼̃ = 20 (orange), the centrifugal barrier appears first in the
inner region where 𝑟 < 𝜆. When 𝛼̃ = 50 (purple), the centrifugal barrier appears in
the outer region where 𝑟 > 2𝜆. In these examples, DM orbits either hit a centrifugal
barrier at 𝑟 > 𝑅 or they intersect the neutron surface when 𝑑𝑟

𝑑𝜏
> 0; there are no

orbits that just barely touch the NS surface.

The solid lines in Fig. D.1 correspond to conserved angular momentum 𝐿 =

𝛾𝑚𝑏max𝑣. For large , as can be seen in the figure, 𝑏max and the coordinate of
the barrier’s peak, 𝑟b, are the solutions to

𝑉 ′
eff, +(𝑟b) |𝐿=𝛾𝑚𝑏max𝑣 = 0, 𝑉eff, +(𝑟b) |𝐿=𝛾𝑚𝑏max𝑣 = 𝛾𝑚. (D.5)

For very large there are two solutions, corresponding to the inner and outer barriers,
respectively. The maximum impact parameter of DM that intersects the NS is the
solution with smallest 𝑏max.

Using 𝑣2 ≪ 𝐺𝑀
𝑅

≪ 1 and 𝜆 ≫ 𝑅, we find that a very good analytic approximation
for 𝑏max is given by the minimum of

𝑏max, inner ≈
𝑅

𝑣

√√√√√√√ 2𝐺𝑀
𝑅

(
1 + 𝛼̃𝑒−𝑅/𝜆

)
+

(
𝐺𝑀
𝑅
𝛼̃𝑒−𝑅/𝜆

)2(
1 − 2𝐺𝑀

𝑅

) (D.6)

2C.f. [564].
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Figure D.1: 𝑉eff,+ as a function of DM radial coordinate when 𝑏 = 𝑏max (solid) and
𝑏 = 10±0.01𝑏max (dashed/dotted), with 𝜆 = 10−11, 𝑣 = 10−3, and 𝛼̃ = 20 (orange) or
𝛼̃ = 50 (purple). The right-hand plot shows only the outer region, with the vertical
(logarithmic) scale magnified. In this example, the inner barrier determines 𝑏max
for 𝛼̃ = 20 while the outer barrier determines 𝑏max for 𝛼̃ = 50. C.f. Fig. D.2.

and

𝑏max, outer ≈

√︄
𝜆𝑥

(
2𝐺𝑀
𝑣2 + 𝜆𝑥

)
with 𝑥 ≈ log ©­« 𝛼̃

𝜆𝑣2

𝐺𝑀
+ 1

log 𝛼̃

ª®¬ ≳ 2 + log 2, (D.7)

so
𝑏max = min

(
𝑏max, inner, 𝑏max, outer

)
. (D.8)

Fig. D.2 shows our analytic approximation in eq: b (color) alongside numerical
solutions to eq: bmax numerical (black)3 as a function of for three choices of force
range, 𝜆, assuming 𝑣 ∼ 10−3, 𝑅 = 10, and 𝐺𝑀

𝑅
= 0.2. The inner barrier controls 𝑏max

at small 𝛼̃. For 𝛼̃ ≫ 1, 𝑏max grows in proportion to 𝛼̃ until it is cut to logarithmic
growth because of the outer centrifugal barrier at radial distances greater than 𝜆.

We end this appendix with a few comments on our analytic approximation and
the behavior of 𝑏max. eq: b inner is the impact parameter for which the effective
potential equals 𝐸 at the NS surface in the 𝑣 ≪ 1 limit—i.e. 𝑏(𝑅) from eq: b of
rmin. It is only a slight overestimate of the impact parameter for which the inner
centrifugal barrier peaks at 𝐸 (c.f. Fig. D.1), and it is exact in the limit → 0. In
the opposite limit and when 𝜆 ≫ 𝑅, 𝑏max, inner ≈ 𝐺𝑀

𝑣
𝛼̃; the effective radius of the

NS is approximately the geometric mean of the Coulomb classical and circular radii
(𝐺𝑀𝛼̃ and 𝐺𝑀𝛼̃

𝑣2 , respectively). eq: b outer comes from analyzing the effective
potential in the 𝐺𝑀

𝑟
,
(𝐿/𝑚)2

𝑟2 ≪ 1 limit (the nonrelativistic limit), and 𝑟p ≈ 𝜆𝑥. For
3When 𝐺𝑀

𝑅
= 0.2 and 𝜆 ≫ 𝑅, 𝑟p ≲ 𝑅 when ≲ 6, and 𝑏max is given exactly by eq: b inner. The

exact cutoff at small depends somewhat sensitively on 𝐺𝑀
𝑅

.
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Figure D.2: Maximum impact parameter for which DM with asymptotic speed
𝑣 ∼ 10−3 intersects a NS with circumferential radius 𝑅, assuming 𝐺𝑀

𝑅
= 0.2, as a

function of 𝛼̃. The quoted 𝜆 values and right-hand scale assume 𝑅 = 10. The black
lines show (more exact) numerical results while the colored lines show our analytic
approximation in eq: b, which agrees with the numerical results to within better
than a factor of 2 in the entire range. The kink in the 𝑏max curves correspond to the
point where the outer centrifugal barrier at 𝑟 > 𝜆 occurs at smaller 𝑏 than the inner
barrier closer to 𝑟 ∼ 𝑅. C.f. Fig. D.1.

𝑥 ≲ 2, the outer barrier does not exist. When the Yukawa force is much smaller than
the gravitational force at the gravitational circular radius, 𝛼̃𝑒−𝐺𝑀/𝑣2𝜆 ≪ 1, gravity
is important in determining 𝑏max, outer, and 𝑏max, outer → 1

𝑣

√︁
2𝜆𝐺𝑀 log(𝛼̃ log 𝛼̃). In

the opposite extreme, when 𝛼̃𝑒−𝐺𝑀/𝑣2𝜆 > 1, gravity is unimportant in determining
the location of the barrier, and 𝑏max, outer → 𝜆 log

(
𝛼̃𝐺𝑀

𝜆𝑣2

)
. This latter case is the only

one where 𝑏max𝑣 evolves appreciably as a function of 𝑣; in all other limits discussed,
𝑏max𝑣 is essentially constant.4 When computing averages over the asymptotic DM
velocity distribution, we use the fact that 𝑏𝑣 is nearly constant or—in the limit just
discussed—mildly increasing (less than linearly) as a function of 𝑣.

4When 𝑣 ≪ 1, we expect (𝐿/𝑚) ≈ 𝑏𝑣 to be nearly independent of 𝑣 for orbits that sweep near
the NS surface because the kinetic energy at closest approach is essentially independent of 𝑣; it is
instead dominated by the fifth force and gravitational potential energy loss.
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A p p e n d i x E

TIMESCALE FOR NEUTRON STAR KINETIC HEATING FROM
CAPTURED DARK MATTER

In this appendix we estimate the period of the first obit after DM is captured
by depositing energy Δ𝐸graze during a transit of a NS. Our approach is inspired
by that in [303]. As long as the apastron of this orbit, 𝑟max, is large so that
𝛼̃𝐺𝑀
𝑟max

𝑒−𝑟max/𝜆, 𝐺𝑀
𝑟max

≪ 1, a non-relativistic treatment yields a good estimate because
then the DM is non-relativistic on parts of its trajectory near the apastron, where it
spends the majority of its time. We proceed with a non-relativistic analysis.

The apastron is related to the DM’s conserved non-relativistic energy, 𝐸 , and orbital
angular momentum magnitude, 𝐿, through

𝐸 = −𝐺𝑀𝑚𝑋

𝑟max
(1 + 𝛼̃𝑒−𝑟max/𝜆) + 1

2
𝐿2

𝑚𝑋𝑟
2
max

. (E.1)

And the period of an orbit with apastron 𝑟max and periastron 𝑟min is

Δ𝑡 = 2
∫ 𝑟max

𝑟min

𝑑𝑟

¤𝑟 = 2
∫ 𝑟max

𝑟min

(
2𝐸
𝑚𝑋

+ 2𝐺𝑀
𝑟

(
1 + 𝛼̃𝑒−𝑟/𝜆

)
− (𝐿/𝑚𝑋)2

𝑟2

)−1/2

𝑑𝑟.

(E.2)
Assuming orbital angular momentum doesn’t increase upon capture, 𝐿closed orbit ≤
𝑚𝑋𝑏max𝑣, and the orbital angular momentum term negligibly affects the period of
orbits with 𝑟max ≫ 𝑅, which are the orbits with the largest contribution to the total
energy deposit timescale, we get

Δ𝑡 ≈ 2
∫ 𝑟max

0

(
2𝐺𝑀 (1 + 𝛼̃𝑒−𝑟/𝜆)

𝑟
− 2𝐺𝑀 (1 + 𝛼̃𝑒−𝑟max/𝜆)

𝑟max

)−1/2

𝑑𝑟. (E.3)

The above equation is the period of a maximally eccentric orbit. It reduces to
Kepler’s third law, Δ𝑡 = 2𝜋 𝑎3/2

√
𝐺𝑀

for a maximally eccentric orbit, where 𝑎 = 𝑟max/2,
when the ratio of the fifth force to the gravitational force at the apastron is very small,
𝛼̃(1 + 𝑟max

𝜆
)𝑒−𝑟max/𝜆 ≪ 1. To extremely good accuracy when the force ratio at the

apastron is either very small or very large, we find the integral can be approximated
as

Δ𝑡 ≈ Δ𝑡◦(𝑟max)
2
√

2
=
𝜋
√

2
𝑟

3/2
max/

√
𝐺𝑀√︃

1 + 𝛼̃
(
1 + 𝑟max

𝜆

)
𝑒−𝑟max/𝜆

(E.4)
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where Δ𝑡◦ is the period of a circular orbit with radius 𝑟max. eq: orbit period is
an overestimate. The overestimate is most significant when the force ratio at the
apastron is comparable to 1 and 𝛼̃ is large, but it comes within a factor of 4 as long
as 𝛼̃ ≲ 1030.

The apastron of the orbit after the first encounter, 𝑟max,1, is given by the solution to

1
2
𝑚𝑋𝑣

2 − Δ𝐸graze = −𝐺𝑀𝑚𝑋

𝑟max,1

(
1 + 𝛼̃𝑒−𝑟max,1/𝜆

)
+ 𝑚𝑋

2
(𝐿1/𝑚𝑋)2

𝑟2
max,1

. (E.5)

A good estimate of the period of the first orbit after capture, Δ𝑡1, is given by eq:
orbit period evaluated at 𝑟max = 𝑟max,1 determined by eq: rmax1 with 𝐿1 = 0 (a
maximally eccentric orbit). We note that 𝑟max,1 is an increasing function of 𝑣 and
𝑟max,1(𝑣) < 𝑟max,1(0)/(1 − 𝑣2/𝑣2

max) so that Δ𝑡 (𝑣) ≲ Δ𝑡 (0)
(1−𝑣2/𝑣2

cap)3/2 . For asymptotic
speeds up to about 0.8 𝑣cap, Δ𝑡1(𝑣) ≈ Δ𝑡1(0) is a good estimate; the period rapidly
asymptotes to infinity thereafter, as 𝑣 → 𝑣cap.

Altogether, we have,

Δ𝑡1(0) ≈ 𝐺𝑀
𝜋
√

2

(
𝑚𝑋

Δ𝐸graze

)3/2
(
1 + 𝛼̃𝑒−𝑟max,1/𝜆

)3/2√︃
1 + 𝛼̃

(
1 + 𝑟max,1

𝜆

)
𝑒−𝑟max,1/𝜆

(E.6)

where we redefined 𝑟max,1 to be defined through eq: rmax1 with 𝑣 = 0, 𝐿1 = 0:

Δ𝐸graze =
𝐺𝑀𝑚𝑋

𝑟max, 1
(1 + 𝑒−𝑟max, 1/𝜆). (E.7)

When 𝑟max,1 ≫ 𝜆 and 𝑟max,1
𝜆
𝛼̃𝑒−𝑟max,1/𝜆 ≪ 1, the period of the first orbit after

capture is approximately Δ𝑡1 ≈ 𝐺𝑀 𝜋√
2

(
𝑚𝑋

Δ𝐸graze

)3/2
. When 𝑟max, 1 ∼ 𝐺𝑀𝑚𝑋 (1+)

Δ𝐸graze
≪ 𝜆,

Δ𝑡1 ≈ 𝐺𝑀 𝜋√
2

(
𝑚𝑋

Δ𝐸graze

)3/2
(1 + 𝛼̃).

The timescale is the limiting factor in the tidal heating rate when Δ𝑡1 ≳ 𝑡NS.

From eq: orbit period, 𝑟max,1 >
(√

2𝐺𝑀
𝜋

Δ𝑡1(0)
)2/3

so Δ𝑡1 ≳ 𝑡NS requires 𝑟max ≳(
𝑡NS

√
𝐺𝑀

)2/3
∼ 10

( 𝑡NS
)2/3. For𝜆 ≪

(
𝑡NS

√
𝐺𝑀

)2/3
and 𝛼̃ < 𝜆(

𝑡NS
√
𝐺𝑀

)2/3 𝑒

(
𝑡NS

√
𝐺𝑀

)2/3
/𝜆,

we see Δ𝑡1 = 𝑡NS corresponds to the contour Δ𝑡1 = 𝐺𝑀 𝜋√
2

(
𝑚𝑋

Δ𝐸graze

)3/2
= 𝑡NS.
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A p p e n d i x F

PULSAR GLITCHES

In principle DM can transfer both energy and angular momentum to pulsars. At
most, DM can transfer its entire angular momentum, 𝑚𝑋𝑏𝑣, during a close-range
interaction. This would cause a typical shift in the pulsar frequency—a glitch—of
at most

Δ𝜈 ≈ |Δ𝐿NS |
𝐼NS

≈ 𝑚𝑋 ⟨𝑏max𝑣⟩
2
5𝑀𝑅

2
≈ 105

(𝑚𝑋

𝑀

) (
⟨𝑏max𝑣⟩
𝑅

) (
10 km
𝑅

)
Hz. (F.1)

Meanwhile, the DM glitch rate per NS is at most the DM flux, given by,

¤𝑁glitch ≲
𝜌𝑋

𝑚𝑋

𝜋⟨𝑏2
max𝑣⟩ ∼

10−24

yr
𝑅2

(10 km)2
𝜌𝑋

0.4 GeV/ cm3
1.4𝑀⊙
𝑀

10−3

𝑣𝑝

(
⟨𝑏2

max𝑣⟩𝑣𝑝
𝑅2

)
𝑀

𝑚𝑋

.

(F.2)
Consider Δ𝜈 ∼ 10−9Hz as a benchmark.1 Given gravity only, ⟨𝑏max𝑣⟩/𝑅 ∼ 1,
requiring 𝑚𝑋/𝑀 ≳ 10−14 for a glitch of order 10−9Hz or greater, and the rate for
such glitches is order ¤𝑁glitch ∼ 10−10

yr or less for the fiducial parameters in (F.2).

However, the presence of a DM-NS fifth force with range greater than order a
thousand kilometers opens up the possibility for larger 𝑏max; thus smaller 𝑚𝑋 could
cause detectable glitches at greater rates than in the gravity-only case just discussed.
Given maximal kinetic heating, the coldest observed NS constrains 𝛼̃ ≲ 102 for
𝜆 ≳ 10−10 pc (see Eq. 5.33), corresponding to ⟨𝑏max𝑣⟩

𝑅
≲ 𝐺𝑀

𝑅
102 ∼ 20. To get typical

glitches of order 10−9Hz or greater, one would require 𝑚𝑋

𝑀
≳ 10−15 and thus a glitch

rate less than about 10−6 per NS per year.

To conclude, in principle, a DM-baryon fifth force may have given rise to an
interesting DM-induced pulsar glitch phenomenon, but kinetic heating limits rule
this out.

1Several convincing detections of frequency shifts as low as order Δ𝜈 ≳ 10−9Hz have been
made [565, 566, 567]. See Ref. [568] for a discussion of thresholds.
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A p p e n d i x G

PARAMETER RANGES AND LIMITS USED IN THE NEW
PHYSICS SEARCH WITH NANOGRAV 15-YEAR DATASET

In this appendix, we specify the prior assumptions for all model parameters used
in our analyses and report characteristic values for these parameters that we extract
from the corresponding reconstructed 1D marginalized posterior distributions. In
Table G.1, we list our prior assumptions for the pulsar-intrinsic red-noise parameters
𝐴red and 𝛾red (𝐴𝑎 and 𝛾𝑎 in Eq. (6.4)) as well as for the SMBHB parameters and .
In the latter case, we work with a bivariate normal distribution for (log10, ) whose
mean and covariance matrix are given by

𝝁BHB =

(
−15.6

4.7

)
, 𝜎BHB = 10−1 ×

(
2.8 −0.026

−0.026 1.2

)
, (G.1)

which we obtain by fitting the log10 and distributions extracted from the SMBHB
simulations in the GWOnly-Ext library in [344] (see Section 6.4). In Table G.2,
we list our prior assumptions for the model parameters of all new-physics models
considered in this work.

The Bayes estimator ⟨𝜃⟩ of a parameter 𝜃 with marginalized 1D posterior probability
distribution 𝑃(𝜃 |D,H) corresponds to the expectation value with respect to the
distribution 𝑃(𝜃 |D,H), while the standard deviation 𝜎𝜃 of the Bayes estimator
corresponds to the positive square root of the associated variance 𝜎2

𝜃
,

⟨𝜃⟩ =
∫

𝑑𝜃 𝜃 𝑃(𝜃 |D,H) ,

𝜎2
𝜃 = ⟨𝜃2⟩ − ⟨𝜃⟩2 =

[∫
𝑑𝜃 𝜃2 𝑃(𝜃 |D,H)

]
−

[∫
𝑑𝜃 𝜃 𝑃(𝜃 |D,H)

]2
.

(G.2)

In practice, in a given analysis and for a given chain of MCMC samples, we compute
the Bayes estimator and its standard deviation in terms of the corresponding sample
mean and sample variance. The maximum posterior estimator 𝜃max of a parameter
𝜃 with marginalized 1D posterior probability distribution 𝑃(𝜃 |D,H) corresponds
to the 𝜃 value where 𝑃(𝜃 |D,H) reaches its global maximum across the predefined
prior range,

𝑃(𝜃max |D,H) = max
𝜃
𝑃(𝜃 |D,H) , (G.3)
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and the 68% Bayesian credible interval
[
𝜃min

68 , 𝜃
max
68

]
follows from integrating the

posterior distribution 𝑃(𝜃 |D,H) over the regions of highest posterior density such
that the integral returns an integrated probability of 68%,∫ 𝜃max

68

𝜃min
68

𝑑𝜃 𝑃(𝜃 |D,H) = 0.68 , (G.4)

where 𝑃(𝜃 |D,H) > 𝑃68 for all 𝜃 ∈
[
𝜃min

68 , 𝜃
max
68

]
and some appropriate threshold

𝑃68. Similarly, we can also construct 95% Bayesian credible intervals.

𝐾 (𝜃𝐾) =
𝑃(D|𝜃𝐾 ,H)
𝑃(D|𝜃0,H) =

1
10
. (G.5)

Note that, unlike all other quantities discussed in this section, the 𝐾 ratio is not
defined in terms of a posterior probability distribution, but rather in terms of a
likelihood ratio, which makes it robust against our prior assumptions.

Parameter Description Prior
Pulsar-Intrinsic Red Noise

𝐴red red-noise power-law amplitude log-Uniform [−20,−11]
𝛾red red-noise power-law spectral index Uniform [0, 7]

Supermassive Black Bole Binaries (SMBHB)

(log10 𝐴BHB, 𝛾𝐵𝐻𝐵) SMBHB signal amplitude and slope Normal(𝜇BHB, 𝜎BHB)

Table G.1: Prior distributions for the pulsar-intrinsic red-noise parameters and the
parameters of the astrophysical SMBHB signal. The mean and covariance matrix
of the Gaussian prior distribution for (log10, ) are given in Eq. (G.1). The red
noise parameters are independent for each pulsar, while the SMBHB parameters are
common across the PTA.
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Figure G.1: Median GWB spectra (solid lines) for all new-physics models considered
in this work except for the cosmic-string models, together with their 68% and 95%
posterior envelopes. Median GWB spectra for the cosmic-string models are shown in
Fig. G.2. In the left column (blue shading), we show the median GWB spectra for the
new-physics models alone; in the right column (red shading), we combine the new-
physics signals with the signal from SMBHBs. The gray violins are symmetrical
representations of the 1D marginalized posterior probability density distributions of
the GW energy density at each sampling frequency of the data. The dashed black
lines show the GWB spectrum produced by inspiraling SMBHBs (see caption of
Fig. 6.3).
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Figure G.2: Same as Fig. G.1 but for the cosmic-string models considered in this
work.
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Parameter Description Prior
Cosmological phase transition (pt)

𝑇∗ [GeV] transition temperature log-uniform [−4, 4]
𝛼∗ transition strength log-uniform [−2, 1]
𝐻∗𝑅∗ bubble separation log-uniform [−3, 0]
𝑎 low-frequency slope (pt-bubbles) uniform [1, 3]
𝑎 low-frequency slope (pt-sound) uniform [3, 5]
𝑏 high-frequency slope (pt-bubbles) uniform [1, 3]
𝑏 high-frequency slope (pt-sound) uniform [2, 4]
𝑐 spectral-shape width (pt-bubbles) uniform [1, 3]
𝑐 spectral-shape width (pt-sound) uniform [3, 5]

Primordial black holes (PBH-DYNAMIC)

𝐴 signal amplitude log-uniform [−20,−12]
𝑇0/𝑇obs normalized time of closest approach uniform [0, 1]

Primordial black holes (pbh-static)

𝐴 signal amplitude log-uniform [−21,−13]

Table G.2: Priors distributions for the parameters of the new-physics models con-
sidered in this work. All paramters listed in this table are common across the PTA.
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A p p e n d i x H

SUPPLEMENTARY MATERIAL IN THE NEW PHYSICS
SEARCH WITH NANOGRAV 15-YEAR DATASET
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Figure H.1: Reconstructed posterior distributions for the pt-sound (left panel)
and pt-bubble models with a low-frequency slope fixed to the value predicted by
causality, i.e., 𝑎 = 3.

Cosmological phase transitions
In the phase transition analysis discussed in the main text, we allow the low-frequency
spectral index to float despite that causality predicts 𝑎 = 3. We do this to capture
possible double-peak spectral features with our simple power-law parametrization.
However, it is not clear whether or not a strong and fast phase transition like
the one needed to explain the observed signal could produce such a double-peak
structure [402, 409]. Therefore, in Fig. H.1 we report the results of a phase transition
analysis where we assume 𝑎 = 3. Figure H.1 shows the reconstructed posterior
distributions for the parameters 𝛼∗, 𝑇∗, and 𝐻∗𝑅∗ of the pt-sound and pt-bubble
models, both for the case where the PT is assumed to be the only source of GWs
(blue contours) and for the scenario where we consider the superposition of the PT
and SMBHBs signal (red contours). For the analyses where the SMBHB signal
is included, we also report the posterior distributions for 𝐴BHB and 𝛾BHB. For the
pt-sound model we notice very minor differences compared to the analysis in the
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Figure H.2: Same as Fig. 6.4 but including the spectral shape parameters 𝑎, 𝑏, 𝑐
and SMBHB parameters 𝐴BHB and 𝛾BHB.

main text. However, for the pt-bubble model we notice how the posterior for 𝑇∗ is
peaked to slightly smaller values for the reasons explained in the main text.

In Figs. H.2 and H.3, we report the posterior distributions for all the parameters
of the phase transition models, including the spectral shape parameters 𝑎, 𝑏, and
𝑐 that were excluded from Fig. 6.4. As expected for the pt-bubble model, the
low-frequency slope is peaked around 𝑎 ∼ 2, which is the reconstructed slope of
the GWB signal, while the posteriors for 𝑏 and 𝑐 are approximately flat. For the pt-
sound model, the posterior for 𝑎 is peaked around the lower limit of the prior range
𝑎 = 3, and there is also a mild preference for larger values of the width parameter,
as this would flatten the spectrum close to the peak.
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Figure H.3: Same as Fig. H.2 but for the pt-sound model.

Dark matter substructures
In this appendix we provide more details on the procedure that we followed to derive
the constraints on 𝑓PBH reported in Section 6.6.

Given a PBH with position relative to the pulsar given by 𝑟 (𝑡) = 𝑟0 + 𝑣𝑡, where
𝑟0 and 𝑣 are the initial PBH position and velocity, respectively, we can write the
Doppler and Shapiro signals as

ℎ𝐷 (𝑡) =
𝐺𝑀

𝑣2 𝒅̂ ·
(√︃

1 + 𝑥2
𝐷
𝒃̂𝐷 − sinh−1(𝑥) 𝒗̂

)
(H.1)

ℎ𝑆 (𝑡) = 2𝐺𝑀 log(1 + 𝑥2
𝑆) , (H.2)

where 𝑥D ≡ (𝑡 − 𝑡D,0)/𝜏D and 𝑥S ≡ (𝑡 − 𝑡S,0)/𝜏 S. These expressions only include
cubic terms in time 𝑡 and have been previously derived in [43, 10]. For the static
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limit in which 𝜏 ≫ 𝑇obs, these expressions can be expanded in series of 𝑡0/𝜏.
Since the O(𝑡2) terms would be degenerate with the timing model, the measurable
new-physics signal can then be parametrized as a term ∝ 𝑡3 as

ℎ(𝑡)D(S) =
𝐴D (S), sta

yr2 𝑡3 , (H.3)

where 𝐴D(S), sta for both the Doppler and Shapiro static signal cases are dimensionless
amplitudes given by

𝐴D, stat = yr2𝐺𝑀

2𝑣2 𝒅̂ ·
[
𝑡𝐷,0

𝜏4
𝐷

1
(1 + 𝑡2

𝐷,0/𝜏
2
𝐷
)5/2

𝒃̂𝐷 + 1
3𝜏3
𝐷

1 − 2𝑡2
𝐷,0/𝜏

2
𝐷

(1 + 𝑡2
𝐷,0/𝜏

2
𝐷
)5/2

𝒗̂

]
(H.4)

𝐴S, stat = −yr2 4𝐺𝑀
3

𝑡𝑆,0

𝜏4
𝑆

3 − 𝑡2
𝑆,0/𝜏

2
𝑆

(1 + 𝑡2
𝑆,0/𝜏

2
𝑆
)3
. (H.5)

For the Doppler case, in the dynamic limit when 𝜏 ≪ 𝑇𝑜𝑏𝑠, the dominant contribution
would come from the first term in Eq. (H.1) where

√︃
1 + 𝑥2

𝐷
∝ |𝑡 − 𝑡0 |. Upto linear

order in 𝑥𝐷 , we can write

ℎ𝐷,dyn(𝑡) = 𝐴𝐷,dyn(𝑡 − 𝑡0)Θ(𝑡 − 𝑡0) , (H.6)

where 𝐴 D,dyn is the dimensionless amplitude given by

𝐴𝐷,dyn =
2𝐺𝑀
𝜏𝑣2 𝒅̂ · 𝒃̂𝐷 . (H.7)

Given the expressions in Eqs. (H.1) and (H.2) for the Doppler and Shapiro signals, we
use the MC developed in [9] to derive the distributions 𝑝(log10 𝐴𝐼 | 𝑓PBH). Specifically,
we proceed as follows:

• For each pulsar we generate a population of 𝑁PBH PBHs, where 𝑁PBH is implicitly
defined by the relation

𝑁PBH = 𝑓PBH
𝜌𝐷𝑀𝑉

𝑀PBH
, (H.8)

where the simulation volume,𝑉 , is a sphere of radius 𝑅 = 𝑣̄𝑇𝑜𝑏𝑠 centered around the
pulsar position for the Doppler signal and a cylinder with the same radius and height
given by the Earth–pulsar distance for the Shapiro signal. Here 𝑣̄ ≃ 340 𝑘𝑚/𝑠 is the
average PBH velocity, and 𝑇𝑜𝑏𝑠,𝐼 is the observation time of the 𝐼th pulsar.

• For each of these PBHs we generate a random initial position and velocity. Since
PTA searches are only sensitive to DM subhalos in the neighborhood of the solar



257

system, we expect the position distribution to be uniform. Therefore, we use the
probability density function 𝑓 (𝑟) = 1/𝑉 to sample initial positions. To sample
PBHs’ velocity, we use a Maxwell–Boltzmann distribution with 𝑣0 = 325 𝑘𝑚𝑠−1,
𝑣𝑒𝑠𝑐 = 600 𝑘𝑚𝑠−1, and the angular dependence assumed to be isotropic.

• The PBHs’ signals are then classified as dynamic if they satisfy the condition
𝑇𝑜𝑏𝑠,𝐼 − 𝜏 > 𝑡0 > 𝜏, and static otherwise.

• To evaluate 𝐴stat, we sum the static signals of all PBHs computed by using Eqs. (H.1)
and (H.2), and we fit the resulting signal to a cubic polynomial in time to extract the
𝑡3 term. To compute 𝐴𝐷,𝑑𝑦𝑛, we take the closest transiting object and compute the
signal amplitudes using Eq. (H.7).

All the previous points are repeated for 2.5 × 103 realizations to obtain the distribu-
tions 𝑝(log10 𝐴𝐼 | 𝑓PBH). Given the conditional distributions 𝑝(log10 𝐴𝐼 | 𝑓PBH) and the
posterior distribution 𝑝(log10 𝐴𝐼 |𝜹𝒕) derived by analyzing our data, we can write

𝑝 ( 𝑓PBH |𝜹𝒕) =
𝑁𝑃∏
𝐼=1

∫
𝑝( 𝑓PBH | log10 𝐴𝐼)𝑝

(
log10 𝐴𝐼 |𝜹𝒕

)
𝑑 log10 𝐴𝐼 . (H.9)

Then, using Bayes’ theorem, we can rewrite

𝑝
(
𝑓PBH | log10 𝐴𝐼

)
=
𝑝

(
log10 𝐴𝐼 | 𝑓PBH

)
𝑝 ( 𝑓PBH)

𝑝
(
log10 𝐴𝐼

) . (H.10)

Our priors on 𝑝 ( 𝑓PBH) and 𝑝
(
log10 𝐴𝐼

)
are uniform, which allows us to eventually

write Eq. (H.9) as

𝑝 ( 𝑓PBH |𝜹𝒕) ∝
𝑁𝑃∏
𝐼=1

∫
𝑝(log10 𝐴𝐼 | 𝑓PBH)𝑝(log10 𝐴𝐼 |𝜹𝒕) 𝑑 log10 𝐴𝐼 , (H.11)

where the ∝ implies that the 𝑝( 𝑓PBH |𝛿𝑡) would be subject to the normalization
condition,

∫ ∞
0 𝑝( 𝑓PBH |𝜹𝒕) 𝑑𝑓PBH = 1.

In the presence of a DM-baryon fifth force in the form of a Yukawa potential in
Eq. (6.26), assuming point-mass DM, the pulsar frequency shift due to Doppler
effect is given by [5](
𝛿𝜈

𝜈

)
fifth

=
𝛼̃𝐺𝑀

𝜏2
𝐷
𝑣
𝑑 ·

∫
1

(1 + 𝑥2
𝐷
)3/2

(
1 + 𝑏

𝜆

√︃
1 + 𝑥2

𝐷

)
𝑒−(𝑏/𝜆)

√
1+𝑥2

𝐷 (𝑏̂ + 𝑥𝐷 𝑣̂)𝑑𝑥𝐷 .

(H.12)
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The integral in Eq. (H.12) has to be computed numerically, and the signal due
to the fifth force can be computed by performing an additional integration over
time and subtracting away degeneracies with timing model parameters. The total
signal is the sum of the gravitational and the fifth-force contribution, ℎ𝐷, total(𝑡) =
ℎ𝐷, fifth(𝑡) + ℎ𝐷 (𝑆) (𝑡). In this analysis of the fifth-foce constraint, we only consider
the scenario where the DM substructure makes up the entirety of the DM local
density, which is equivalent to taking 𝑓PBH = 1 for the gravitational contribution.
Parameterizing the signal as ℎD, total(𝑡) =

𝐴𝐷, total
yr2 𝑡3 similar to the PBH case, the

amplitude 𝐴𝐷, total is a random variable dependent on 𝜆 and 𝛼̃. The probability
distribution function 𝑃(log10 𝐴𝐷, total |𝜆, 𝛼̃) can be extracted again by Monte Carlo
simulations and Bayes’ theorem. Finally, the posterior distribution of 𝛼̃ and 𝜆,
𝑃(𝛼̃, 𝜆 |𝜹𝒕), is given by the analog of Eq. (H.11)

𝑝 (𝛼̃, 𝜆 |𝜹𝒕) ∝
𝑁𝑃∏
𝐼=1

∫
𝑝(log10 𝐴𝐼 |𝛼̃, 𝜆)𝑝(log10 𝐴𝐼 |𝜹𝒕) 𝑑 log10 𝐴𝐼 . (H.13)
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A p p e n d i x I

ANGULAR FACTORS

In this appendix we derive the mean values of angular factors involving dot and cross
products between v̂, b̂ and n̂, assuming an isotropic distribution of v̂, and a uniform
distribution of b̂ constrained on a plane perpendicular to v̂. We note that while
the DM velocity in the lab frame has a preferred direction, the isotropic velocity
distribution is a good approximation for analytic estimates, as verified by the Monte
Carlo simulation.

Without loss of generality, we set n̂ = (0, 0, 1) on the 𝑧-axis. In spherical coor-
dinates, we write v̂ = (sin 𝜃 cos 𝜙, sin 𝜃 sin 𝜙, cos 𝜃). Since b̂ is constrained to be
perpendicular to v̂, we can write b̂ = cos 𝜑b̂1+sin 𝜑b̂2, where b̂1 = (− sin 𝜙, cos 𝜙, 0)
and b̂2 = (cos 𝜃 cos 𝜙, cos 𝜃 sin 𝜙,− sin 𝜃) are orthogonal unit vectors that are per-
pendicular to v̂. Averages over an angular factor 𝑋 are then computed by the integral

⟨𝑋⟩ = 1
8𝜋2

∫ 𝜋

0
sin 𝜃𝑑𝜃

∫ 2𝜋

0
𝑑𝜙

∫ 2𝜋

0
𝑑𝜑 𝑋 (𝜃, 𝜙, 𝜑) . (I.1)

One easily evaluates v̂ · n̂ = cos 𝜃, b̂ · n̂ = − sin 𝜃 sin 𝜑, |v̂ × n̂|2 = sin2 𝜃 and
|b̂ × n̂|2 = cos2 𝜙 + cos2 𝜃 sin2 𝜙, giving

⟨(v̂ · n̂)2⟩ = ⟨(b̂ · n̂)2⟩ = 1
3

⟨|v̂ × n̂|2⟩ = ⟨|b̂ × n̂|2⟩ = 2
3
. (I.2)

Cross terms between b̂ and v̂ include (b̂ · n̂) (v̂ · n̂) = − sin 𝜃 cos 𝜃 sin 𝜑 and (b̂× n̂) ·
(v̂ × n̂) = sin 𝜃 cos 𝜃 sin 𝜑, which integrate to zero

⟨(b̂ · n̂) (v̂ · n̂)⟩ = 0

⟨(b̂ × n̂) · (v̂ × n̂)⟩ = 0 . (I.3)

Higher-order factors include (b̂ · n̂)4 = sin4 𝜃 sin4 𝜙, (v̂ · n̂)4 = cos4 𝜃 and (b̂ · n̂)2(v̂ ·
n̂)2 = sin2 𝜃 cos2 𝜃 sin2 𝜑,

⟨(b̂ · n̂)4⟩ = ⟨(v̂ · n̂)4⟩ = 1
5

⟨(b̂ · n̂)2(v̂ · n̂)2⟩ = 1
15
. (I.4)
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For interferometers with two arms separated by Δ𝜃, we set n̂1 = (0, 0, 1) and n̂2 =

(0, sinΔ𝜃, cosΔ𝜃), again without loss of generality. Then the angular differences
between the two arms are

⟨[(b̂ · n̂1) − (b̂ · n̂2)]2⟩ = ⟨[(v̂ · n̂1) − (v̂ · n̂2)]2⟩ = 4
3

sin2
(
Δ𝜃

2

)
⟨[(b̂ · n̂1)2 − (b̂ · n̂2)2]2⟩ = ⟨[(v̂ · n̂1)2 − (v̂ · n̂2)2]2⟩ = 4

15
sin2 Δ𝜃

⟨[(b̂ · n̂1) (v̂ · n̂1) − (b̂ · n̂2) (v̂ · n̂2)]2⟩ = 1
5

sin2 Δ𝜃 . (I.5)
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A p p e n d i x J

PHOTON TIME DELAY IN LASER INTERFEROMETERS
UNDER A GENERAL METRIC

In this appendix, we derive the time delay of a generic metric in Eq. (9.28). There
are three effects, from the clock rate, the mirror motion, and the light propagation.
Only when summing all three do we obtain the gauge invariant observable.

We start by computing the clock’s rate. Since 𝑔𝑡𝑡 = −(1−H0), to the leading order,
the proper time differs from the coordinate time by

𝑑𝜏

𝑑𝑡
≈ 1 − 1

2
H0 . (J.1)

Thus, for a clock with radial position 𝑟 when there is no metric fluctuation, the
difference 𝛿𝜏 between the proper time and the coordinate time from 𝑡 = 𝑡1 to 𝑡 = 𝑡2
is

𝛿𝜏(𝑡1, 𝑡2, 𝑟) = −1
2

∫ 𝑡2

𝑡1

𝑑𝑡′ H0(𝑡′, 𝑟) . (J.2)

To account for the mirror’s motion, we consider the geodesic equation of the mirror

0 =
𝑑2𝑥𝜇

𝑑𝜏2 + Γ
𝜇

𝛼𝛽

𝑑𝑥𝛼

𝑑𝜏

𝑑𝑥𝛽

𝑑𝜏
≈ 𝑑2𝑥𝜇

𝑑𝜏2 + Γ
𝜇
𝑡𝑡 + Γ

𝜇

𝑡𝑖
𝑣𝑖 + · · · . (J.3)

Since the velocity of the mirror 𝑣𝑖 ≪ 1, to the leading order, 𝑑2𝑟
𝑑𝑡2

≈ −Γ𝑟𝑡𝑡 . Using
Γ
𝜇

𝛼𝛽
= 1

2𝜂
𝜇𝜈 (𝜕𝛼ℎ𝛽𝜈 + 𝜕𝛽ℎ𝛼𝜈 − 𝜕𝜈ℎ𝛼𝛽), we get

Γ𝑟𝑡𝑡 = 𝜕𝑡ℎ𝑡𝑟 −
1
2
𝜕𝑟ℎ𝑡𝑡 = 𝜕𝑡H1 −

1
2
𝜕𝑟H0 , (J.4)

so for a mirror at radius 𝑟 when there is no metric fluctuation, its radial position 𝑟M

at coordinate time 𝑡 is

𝑟M(𝑡, 𝑟) ≈
∫ 𝑡

𝑑𝑡′
∫ 𝑡′

𝑑𝑡′′
[
1
2
𝜕𝑟H0(𝑡′′, 𝑟) − 𝜕𝑡′′H1(𝑡′′, 𝑟)

]
. (J.5)

For the light propagation, the geodesic equation of outgoing light is

𝑑𝑡out

𝑑𝑟
≈ 1 + 1

2
(H0 + H2 + 2H1) ≡ 1 + 1

2
H out , (J.6)

and for ingoing light,

𝑑𝑡 in

𝑑𝑟
≈ −1 − 1

2
(H0 + H2 − 2H1) ≡ −1 − 1

2
H in . (J.7)
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In total, the proper time 𝑇out the light beam takes to reach the mirror is

𝑇out ≈
∫ 𝐿+𝑟M (𝐿,𝐿)

0+𝑟M (0,0)
𝑑𝑟

[
1 + 1

2
H out(𝑟, 𝑟)

]
+ 𝛿𝜏(0, 𝐿, 0)

≈ 𝐿 + 𝑟M(𝐿, 𝐿) − 𝑟M(0, 0) + 𝛿𝜏(0, 𝐿, 0)

+ 1
2

∫ 𝐿

0
𝑑𝑟 H out(𝑟, 𝑟) .

(J.8)

Similarly, for the ingoing light beam,

𝑇 in ≈
∫ 0+𝑟M (2𝐿,0)

𝐿+𝑟M (𝐿,𝐿)
𝑑𝑟

[
−1 − 1

2
H in(2𝐿 − 𝑟, 𝑟)

]
+ 𝛿𝜏(𝐿, 2𝐿, 0)

≈ 𝐿 + 𝑟M(𝐿, 𝐿) − 𝑟M(2𝐿, 0) + 𝛿𝜏(𝐿, 2𝐿, 0)

+ 1
2

∫ 𝐿

0
𝑑𝑟 H in(2𝐿 − 𝑟, 𝑟) .

(J.9)

Then the total time delay𝑇 is given by summing up Eqs. (J.8) and (J.9),𝑇 = 𝑇out+𝑇 in.
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A p p e n d i x K

GAUGE INVARIANCE OF PHOTON TIME DELAY IN LASER
INTERFEROMETERS

In this appendix, we show that the total time delay 𝑇 = 𝑇out +𝑇 in, where 𝑇out and 𝑇 in

are defined in Eqs. (J.8) and (J.9), of the light beam traveling a round trip is a gauge
invariant quantity. Since the 𝑡 − 𝑟 sector of any metric, e.g., Eq. (9.28), will only be
affected by the gauge transformations of coordinate 𝑡 or 𝑟, we will show that 𝑇 is
invariant under these two types of gauge transformations.

Gauge transformations of coordinate t
First, let’s consider gauge transformations 𝑥𝜇 → 𝑥𝜇 + 𝜉𝜇, where only 𝜉𝑡 ≠ 0, so the
metric becomes

𝑑𝑠2 = − (1 −H0 + 2𝜕𝑡𝜉𝑡)𝑑𝑡2 + (1 + H2)𝑑𝑟2

+ 2(H1 − 𝜕𝑟𝜉𝑡)𝑑𝑡𝑑𝑟 + · · · .
(K.1)

Since ℎ𝑡𝑡 is modified, 𝑑𝜏
𝑑𝑡

→ 𝑑𝜏
𝑑𝑡

+ 1
2𝜕𝑡𝜉𝑡 , the difference between the proper time and

the coordinate time becomes

𝛿𝜏(𝑡1, 𝑡2, 𝑟) → 𝛿𝜏(𝑡1, 𝑡2, 𝑟) + 𝜉𝑡 (𝑡2, 𝑟) − 𝜉𝑡 (𝑡1, 𝑟) . (K.2)

The geodesics equations of light beam are modified into

𝑑𝑡out

𝑑𝑟
≈ 1 + 1

2
(
H out − 2𝜕𝑡𝜉𝑡 − 2𝜕𝑟𝜉𝑡

)
, (K.3)

𝑑𝑡 in

𝑑𝑟
≈ −1 − 1

2
(
H in − 2𝜕𝑡𝜉𝑡 + 2𝜕𝑟𝜉𝑡

)
. (K.4)

For mirror’s motion, let’s define

𝛿𝑟out ≡ 𝑟M(𝐿, 𝐿) − 𝑟M(0, 0) , (K.5)

𝛿𝑟 in ≡ 𝑟M(𝐿, 𝐿) − 𝑟M(2𝐿, 0) . (K.6)

Since Γ𝑟𝑡𝑡 → Γ𝑟𝑡𝑡 − 𝜕𝑡𝜕𝑟𝜉𝑡 + 𝜕𝑟𝜕𝑡𝜉𝑡 = Γ𝑟𝑡𝑡 remains unchanged, 𝛿𝑟out
M → 𝛿𝑟out

M and
𝛿𝑟 in

M → 𝛿𝑟 in
M. In total,

𝑇out → 𝑇out + 𝜉𝑡 (𝐿, 0) − 𝜉𝑡 (0, 0) −
∫ 𝐿

0
𝑑𝑟 (𝜕𝑡𝜉𝑡 + 𝜕𝑟𝜉𝑡) |𝑡=𝑟

= 𝑇out + 𝜉𝑡 (𝐿, 0) − 𝜉𝑡 (𝐿, 𝐿) ,
(K.7)
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𝑇 in → 𝑇 in + 𝜉𝑡 (2𝐿, 0) − 𝜉𝑡 (𝐿, 0) +
∫ 𝐿

0
𝑑𝑟 (𝜕𝑟𝜉𝑡 − 𝜕𝑡𝜉𝑡) |𝑡=2𝐿−𝑟

= 𝑇 in − 𝜉𝑡 (𝐿, 0) + 𝜉𝑡 (𝐿, 𝐿) ,
(K.8)

so the total time delay of a round trip 𝑇 → 𝑇 under the gauge transformation of
coordinate 𝑡.

Gauge transformations of coordinate r
Next, let’s consider gauge transformations 𝑥𝜇 → 𝑥𝜇 + 𝜉𝜇 with 𝜉𝑟 ≠ 0 only. The
metric then becomes

𝑑𝑠2 = − (1 −H0)𝑑𝑡2 + (1 + H2 − 2𝜕𝑟𝜉𝑟)𝑑𝑟2

+ 2(H1 − 𝜕𝑡𝜉𝑟)𝑑𝑡𝑑𝑟 + · · · .
(K.9)

The relation between the proper time and the coordinate time remains unchanged.
The ingoing and outgoing light’s geodesics are modified to be

𝑑𝑡out

𝑑𝑟
≈ 1 + 1

2
(
H out − 2𝜕𝑟𝜉𝑟 − 2𝜕𝑡𝜉𝑟

)
, (K.10)

𝑑𝑡 in

𝑑𝑟
≈ −1 − 1

2
(
H in − 2𝜕𝑟𝜉𝑟 + 2𝜕𝑡𝜉𝑟

)
. (K.11)

Γ𝑟𝑡𝑡 now becomes Γ𝑟𝑡𝑡 → Γ𝑟𝑡𝑡 − 𝜕2
𝑡 𝜉𝑟 , so

𝛿𝑟out
M → 𝛿𝑟out

M + 𝜉𝑟 (𝐿, 𝐿) − 𝜉𝑟 (0, 0) , (K.12)

𝛿𝑟 in
M → 𝛿𝑟 in

M + 𝜉𝑟 (𝐿, 𝐿) − 𝜉𝑟 (2𝐿, 0) . (K.13)

Then, in total,

𝑇out → 𝑇out + 𝜉𝑟 (𝐿, 𝐿) − 𝜉𝑟 (0, 0) −
∫ 𝐿

0
𝑑𝑟 (𝜕𝑟𝜉𝑟 + 𝜕𝑡𝜉𝑟) |𝑡=𝑟

= 𝑇out ,

(K.14)

𝑇 in → 𝑇 in + 𝜉𝑟 (𝐿, 𝐿) − 𝜉𝑟 (2𝐿, 0) −
∫ 𝐿

0
𝑑𝑟 (𝜕𝑟𝜉𝑟 − 𝜕𝑡𝜉𝑟) |𝑡=2𝐿−𝑟

= 𝑇 in ,

(K.15)

so 𝑇 also remains invariant under the gauge transformation of coordinate 𝑟. Thus,
we have shown that 𝑇 is a gauge invariant quantity.
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