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ABSTRACT

Many turbulent flows exhibit time-periodic statistics. These include flows in tur-
bomachinery, the wakes of bluff bodies, and flows exposed to harmonic actuation.
However, many existing techniques for identifying and modeling coherent structures,
most notably spectral proper orthogonal decomposition (SPOD) and resolvent anal-
ysis, assume statistical stationarity. In this thesis, we develop extensions to study
turbulent flows with periodic statistics. We focus on the application of turbulent
jets and jet noise reduction through harmonic actuation, which is of interest for both
commercial and military aviation due to its success in reducing noise by up to 5 dB.

To analyze the coherent structures in harmonically forced flows, we develop the
cyclostationary spectral proper orthogonal decomposition (CS-SPOD). We examine
the resulting properties of CS-SPOD and develop a theoretical connection between
CS-SPOD and harmonic resolvent analysis (HRA), thereby providing the theoretical
basis for HRA to be used as a model for coherent structures of cyclostationary flows.
We develop and validate a computationally efficient algorithm and then illustrate its
efficacy using the linearized (complex) Ginzburg-Landau equation.

We next employ cyclostationary analysis to investigate the impact of an axisymmet-
ric acoustic harmonic forcing on the mean, turbulence, and coherent structures of a
round turbulent jet with a Mach number of 0.4 and a Reynolds number of 4.5× 105.
We perform large-eddy simulations for four cases at two forcing frequencies and am-
plitudes. Both low-frequency (Strouhal number of 0.3) and high-frequency (Strouhal
number of 1.5) forcing is found to generate an energetic, nonlinear, tonal response
consisting of the rollup of vortices via the Kelvin-Helmholtz mechanism. However,
the impact of forcing on the broadband turbulence and coherent structures is limited,
particularly at the low forcing amplitude associated with jet-noise-reduction devices.
Additionally, the dominant coherent structures for the forced jets are similar in their
energy, structure, and mechanism. At high forcing amplitudes, phase-dependent
features arise in the dominant coherent structures and are associated with coupling
to the high-velocity/shear regions of the mean. Overall, our results support the
existing hypotheses that jet noise reduction can be associated with the deformation
of the mean flow field rather than through direct interaction between the forcing and
the turbulence. Lastly, we find that HRA predicts the dominant coherent structures
well. This shows that HRA can be used to develop models of forced jets in a similar
manner to how resolvent is employed for natural jets, which may be useful to guide
future sound-source models of jets subjected to active control.
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C h a p t e r 1

INTRODUCTION

1.1 Turbulence and coherent structures
The analysis and control of turbulent flows, including jet engines, airfoils, wind
turbines, bluff bold flows, cavity flows, and many more, are ongoing and challenging
areas of research. This difficulty is in part due to the stochastic and sensitive
nature of the governing equations (Bradshaw, 1972; Pope, 2001), where any small
perturbation means that each realization of a turbulent flow (e.g, a single experiment
or computation with a unique initial condition) results in an unpredictable trajectory.
Due to this, turbulence is generally thought of as a random and unpredictable process
with no unique or repeatable time history (Von Karman, 1938). However, substantial
order and predictability in the flow can be uncovered. This order in the turbulence
is known as coherent structures, which are generally defined as structures present in
turbulent flows that exhibit a correlation between different points in space and time
that are much greater than the length and time scales that turbulent flows typically
exhibit.

The earliest works on coherent structures are those of Crow and Champagne (1971),
Mollo-Christensen (1967), and Brown and Roshko (1974), who identified coherent
structures in jets and planar mixing layers. Studying and understanding coherent
structures is crucial in understanding the mechanisms present in turbulent flows since
they are a primary contributor to the transport of mass, momentum, and energy in
many turbulent flows. Furthermore, coherent structures have recently been linked
to critical engineering quantities such as jet acoustics (Jordan and Colonius, 2013)
and drag in wall-bounded flows (Jiménez and Pinelli, 1999; Moarref and Jovanović,
2012; Toedtli et al., 2019). Thus, the continued study of coherent structures is
critical to improving our understanding of these flows.

Coherent structures have been investigated using instantaneous realizations or viewed
from a statistical frame of reference (i.e. not looking at a given realization but in-
stead investigating what occurs on average). We employ a statistical framework due
to the existence of useful tools and the strong connection to the linearized (averaged)
equations of motion. The most commonly used (statistical) technique to identify
coherent structures in turbulence is proper orthogonal decomposition (Aubry, 1991;
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Aubry et al., 1988; Lumley, 1967, 1970; Sirovich, 1989), which represents flow
data as mutually orthogonal modes whose amplitudes optimally reconstruct the cor-
relation tensor. When applied in its typical space-only form, the modes are not
coherent in time, leading many researchers to instead apply DMD and its variants
(Rowley et al., 2009; Schmid, 2010; Schmid et al., 2011). However, for statistically
stationary flows, spectral POD (SPOD) (Lumley, 1967, 1970) leads to an optimal
reconstruction of the space-time statistics and results in modes that oscillate at a
single frequency. SPOD has been extensively used to study a wide range of tur-
bulent flows (Citriniti and George, 2000; Picard and Delville, 2000; Towne et al.,
2018). While the benefits of SPOD are clear, difficulty lies in the large amount
of high-fidelity data required to sufficiently converge the modes (with substantially
more data required than techniques like DMD or POD). Additionally, there is uncer-
tainty in the appropriate frequency resolution to employ. Hence, in Chapter 3, we
investigate the optimal frequency resolution for SPOD in an effort to most efficiently
use the available data.

While data-driven techniques used to extract coherent structures from high-fidelity
experimental/computational data are of great interest, the cost in obtaining this data is
great and infeasible for engineering purposes (such as an iterative design procedure).
Thus, the ability to model these structures is also critical. One such technique that
in recent years has shown great capability is resolvent analysis (also known as
input/output analysis), where forcing modes that give rise to the most amplified
response modes with respect to their energetic gain are determined. When applied
to turbulent fluid flows, the nonlinear modal interactions are regarded as forcing
terms to the linearized time-averaged turbulent mean (McKeon and Sharma, 2010).
Resolvent analysis has been used to study a wide range of transitional and turbulent
flows (Cossu et al., 2009; Jeun et al., 2016; McKeon and Sharma, 2010; Meliga et al.,
2012; Oberleithner et al., 2014; Schmidt et al., 2018; Sharma and McKeon, 2013),
amongst others. Towne et al. (2018) provided a theoretical connection between
SPOD and resolvent, showing that resolvent output modes are equivalent to SPOD
modes when the resolvent forcing modes are mutually uncorrelated. This connection
provided a theoretical basis to use resolvent analysis to develop models of the space-
time statistics of a turbulent flow (Amaral et al., 2021; Moarref et al., 2013; Towne
et al., 2020) and the development of various methods (Morra et al., 2019; Pickering
et al., 2021a) to help whiten the forcing coefficients, thereby improving these models.

Along with the great interest in the analysis of turbulent flows, so is the control of
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these flows. Due to the primary contribution of coherent structures to transport,
many researchers have recently focused on determining how flow control can be
used to modify these coherent structures (and thereby key engineering quantities
such as jet noise or drag). Flow control can be achieved through several methods,
including geometry changes, steady forcing, active flow control, etc. Active flow
control is of particular interest due to the ability to turn actuators on/off and due
to the wide basis of possible actuation schemes available. Within this, harmonic
(or periodic) actuation has been widely explored as a candidate technique to control
turbulent flows for some form of objective, including jet noise reduction, drag
reduction, and flow separation control. While the suite of modal analysis techniques
previously mentioned have been applied to a large range of turbulent flows, a key
assumption in many of these techniques (including SPOD and resolvent analysis) is
statistical stationarity, meaning that the statistics are time-invariant. This assumption
is appropriate for many unforced flows, such as natural jets, shear layers, mixing
layers, etc. However, the periodic actuation of turbulent flows results in the statistics
becoming periodic in time. Thus, when forced, this fundamental assumption is
no longer valid as the flow, and its statistics, are now correlated to the forcing.
To clarify, by forcing, we mean any system that exhibits a periodic modulation
of the statistics (including by actuators, rotation in turbomachinery/wind-turbines,
vortex-shedding in bluff body flows, weather and climate, etc). Thus, to be able to
analyze harmonically forced jets, we must go beyond the SPOD/resolvent analysis
framework employed for statistically stationary flows.

The analysis of processes with periodic statistics is called cyclostationary analysis,
which is an extension to statistically stationary analysis to processes with periodic
statistics. Cyclostationary analysis has been applied in a range of fields (Gardner,
2018), from economics to physics and mechanics. However, it is relatively unutilized
in the fluid dynamics community (some of the limited uses include (Cheong and
Joseph, 2014; Jurdic et al., 2009; Pennacchi et al., 2015)). Initially developed by
Gudzenko (1959), Lebedev (1959), and Gladyshev (1963), it was then extensively
studied and popularized in Hurd (1969) and Gardner (1972). The theory of second-
order cyclostationary processes was further developed by Boyles and Gardner (1983)
and Gardner (1986b), while Brown III (1987) and Gardner (1986c) furthered the
theory of complex-valued processes. Cyclostationary analysis provides a robust
statistical theory to study these processes, and tools analogous to those used to study
stationary processes (e.g. the mean, cross-correlation, cross-spectral density, etc)
have been developed which naturally collapse back to their stationary counterparts
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when analyzing a stationary process.

While cyclostationary analysis provides a robust set of tools for the pointwise anal-
ysis of processes with periodic statistics, based on the preceding review, there is
a clear need to study the coherent structures present in these flows. On the mod-
eling front, resolvent analysis was extended to flows with a time-periodic mean
flow in Padovan et al. (2020) and Padovan and Rowley (2022), and was termed
harmonic resolvent analysis. This led to a system of frequency-couple equations
that provided the ability to study the first-order triadic interactions present in these
time-periodic flows. Harmonic resolvent analysis shares the same interpretation as
standard resolvent analysis and has been applied to flows with a periodic mean flow
(Padovan and Rowley, 2022; Padovan et al., 2020). On the data-driven front, several
works have developed extensions to SPOD/POD to study forced turbulent flows.
Franceschini et al. (2022) studied flows where a high-frequency turbulent compo-
nent develops on a low-frequency periodic motion. Subsequently, a quasi-steady
assumption is made, and conditionally fixed coherent structures at each phase are
determined. Glezer et al. (1989) developed an extended POD method for flows
with periodic statistics by summing an ensemble of time series. However, since this
method is based on POD, it still contains the shortcomings present in POD. Clearly,
SPOD and the aforementioned extensions are not sufficient to study forced turbulent
flows. Kim et al. (1996) developed cyclostationary empirical orthogonal-functions
(CSEOFs) that essentially extended SPOD to cyclostationary processes for one-
dimensional data. Kim and North (1997) then modified this technique to include
multi-dimensional data by reducing the computational cost through several approx-
imations. However, due to a lack of clarity in the literature regarding the derivation,
properties, interpretation, and computation of these techniques, their use has been
limited. Furthermore, despite the aforementioned approximations, both formula-
tions are computationally intractable for high-dimensional data. Thus, in Chapter 4,
we extend SPOD to flows with time-periodic statistics through an extension to the
exact form of CSEOFs (Kim et al., 1996) to include large multi-dimensional data.
We hereafter refer to this method as cyclostationary SPOD (CS-SPOD for short).

1.2 Turbulence jets and jet noise reduction
Turbulent jets (and the noise they produce) are a strong concern to the community
since jet noise is a major health hazard, with several health impacts (Basner et al.,
2017; Matheson et al., 2003) including disrupted sleep, adversely affecting academic
performance of children, and possibly increasing the risk for cardiovascular disease
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of people living in the vicinity of airports. Jet noise is also a major issue for
military personnel where tinnitus and hearing loss are the first and second largest
service-related disabilities, impacting 2.3 and 1.3 million veterans, respectively
(U.S. Department of Veterans Affairs, 2020) and costs over $1.2 billion annually
(Alamgir et al., 2016).

In commercial aviation, substantial progress in jet noise reduction has been made
via increases in the by-pass ratio of the jet engines (ACI and CANSO’s, 2015). This
reduces the average jet velocity, thereby substantially reducing the noise produced.
However, in military applications, increasing the by-pass ratio is not possible. This
has led to the noise of military aircraft remaining constant (or even increasing)
over the last 50 years (Naval Research Advisory Committee, 2009). Thus, other
methods to reduce jet noise have been of great interest. This includes techniques
such as chevrons (Prasad and Morris, 2020; Rigas et al., 2019), constant mass-flux
injection (Henderson, 2010; Kœnig et al., 2016; Sinha et al., 2018), and harmonic
forcing (Crow and Champagne, 1971; Hussain and Zaman, 1980, 1981; Morrison
and McLaughlin, 1979; Raman and Rice, 1991; Samimy et al., 2010; Zaman and
Hussain, 1980, 1981) (which are all known to reduce far-field noise). Of these
techniques, active flow control is of particular interest since these methods can be
turned on and off depending on the current phase of the flight envelope.

Harmonic forcing of the jet leads to more orderly structures (Crow and Champagne,
1971), and forcing has subsequently been used both to study the dynamics of
coherent structures, and in attempts to control radiated noise (Crow and Champagne,
1971; Hussain and Zaman, 1980, 1981; Morrison and McLaughlin, 1979; Raman
and Rice, 1991; Samimy et al., 2010; Zaman and Hussain, 1980, 1981). These
studies have characterized the response to a variety of actuation mechanisms, forcing
frequencies, amplitudes, and azimuthal mode numbers. While jets are receptive to
forcing, producing strong, nonlinear tonal responses, forcing typically yields a
modest reduction or increase in broadband noise (not accounting for the often much
larger tonal noise). Some recent experimental studies Kœnig et al. (2016); Sinha
et al. (2018) suggest that (at the relatively low levels of actuation studied) there
is little interaction between the phase-locked coherent structures generated by the
forcing and the underlying, broadband turbulence (containing both coherent and
incoherent motions), except through deformation of the mean flow. This is seen in
Figure 1.1, where the noise reduction of steady forcing and the noise production of
a steady forcing superposed with harmonic forcing were investigated by Sinha et al.
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Figure 1.1: far-field power spectral density (PSD) at aft-angle (150 deg) of the
baseline jet and steady and unsteady actuation. Image reproduced from Sinha
et al. (2018).

(2018). All noise production was linked to the steady component of forcing that
resulted in a modification of the mean.

The reduction in the energy of coherent structures in jets subjected to a co-flow (Maia
et al., 2023a,b), jets with chevrons (Prasad and Morris, 2020; Rigas et al., 2019),
or constant mass-flux injection (Henderson, 2010; Kœnig et al., 2016; Sinha et al.,
2018) have all also been linked to deformations of the mean flow. Consequently,
broadband noise reduction may be limited by the extent to which forcing deforms
the mean. However, the impact of active flow control on coherent structures is
still unresolved. Thus, in Chapter 5, we attempt to directly quantify how forcing
alters the non-phase-locked portion of the turbulent flow. We study acoustically
forced, turbulent, subsonic jets via large-eddy simulation. We use a relatively small
amplitude forcing to connect the work with previous studies on forced jets, as well
as a higher forcing level that seeks to alter the turbulence.

1.3 Contributions and outline
The remainder of the thesis is organized as follows. In Chapter 2 we first outline the
performed LES of harmonically forced turbulent jets and introduce the theory and
computational procedure for SPOD and harmonic resolvent analysis. In Chapter
3, we analyze the impact of frequency resolution when computing SPOD and
develop a physics-informed optimal frequency-resolution computational technique.
In Chapter 4, we develop an extension to SPOD for flows with periodic statistics,
which we call Cyclostationary SPOD (CS-SPOD for short). We validate using
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artificially generated data, develop a computationally efficient procedure to calculate
CS-SPOD (with a similar cost to that of SPOD), determine simplifications for low
and high forcing frequency limits, develop the theoretical relationship between
CS-SPOD and harmonic resolvent analysis, and then demonstrate its utility using
a modified linearized (complex) Ginsburg-Landau model and one of our forced
jet simulations. Chapter 5 then employs the work developed in the previous two
chapters to investigate the impact of harmonic forcing (at several forcing frequencies
and amplitudes) on the mean, turbulence, and coherent structures of turbulent jets.
Finally, Chapter 6 concludes and outlines future work.
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C h a p t e r 2

METHODS

2.1 LES of harmonically forced turbulent jets
The primary application of the techniques developed in this thesis is to a series of
harmonically forced turbulent jets. Here, we will describe the large-eddy simulations
performed.

Large-eddy simulations of isothermal Mach 0.4 forced jets are performed using the
compressible flow solver “CharLES” by Cascade Technologies (Brès et al., 2017,
2018). CharLES solves the spatially filtered compressible Navier–Stokes equations
on unstructured grids using a density-based finite-volume method. Computations
of an unforced Mach 0.9 turbulent jet have shown excellent agreement between the
computational and experimental mean, first-order statistics, and noise spectra (Brès
et al., 2018). The reader can find details on the numerical methods, subgrid models,
and meshing in Brès et al. (2017). To account for the forcing, a slightly refined grid
is employed compared to the natural jet simulations investigated previously (Brès
et al., 2017, 2018), and a total of 19.2 million control volumes are employed.

A schematic of the simulation set up is provided in Figure 2.1. The jets have a
Reynolds number 𝑅𝑒 𝑗 = 𝜌 𝑗𝑈 𝑗𝐷/𝜇 𝑗 = 4.5 × 105 and a Prandtl number of 0.7. The
subscripts 𝑗 and ∞ represent the jet and free-stream conditions, respectively. 𝜌 is
the density, 𝜇 is the viscosity, and 𝑀 𝑗 = 𝑈 𝑗/𝑐 𝑗 is the Mach number where 𝑐 𝑗 is the
speed of sound and𝑈 𝑗 is the natural jet mean-flow velocity magnitude. Throughout
this thesis, the flow is non-dimensionalized by the jet exit values, lengths by the
jet diameter 𝐷, pressure by 𝜌 𝑗𝑈2

𝑗
, and frequencies as 𝑆𝑡 = 𝑓 𝐷/𝑈 𝑗 , where 𝑓 is the

frequency. For numerical stability, the simulations contain a weak 𝑀∞ = 0.009
coflow.

The forcing is applied as planar acoustic waves in an annular region around the
nozzle with frequency 𝑆𝑡 𝑓 = 𝑓 𝑓𝐷/𝑈 𝑗 and amplitude 𝑎0, where 𝑓 𝑓 is the forcing
frequency. The magnitude of the acoustic forcing applied along the co-flow bound-
ary is scaled by the function 𝑐(𝑟), which results in an error-function manner about
𝑟 = 5. Nekkanti et al. (Osaka, Japan (Online) validated a similar forcing strategy for
a similar turbulent jet against experimental data by Maia et al. (2020, 2021, 2022),
showing excellent agreement. Along with the natural unforced jet, simulations are
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(a) Full domain schematic (b) Nozzle region schematic

Figure 2.1: LES schematic, adapted from Brès et al. (2018).

run at 𝑆𝑡 𝑓 = 0.3, 1.5 (𝑎0/𝑈 𝑗 = 1%, 10%). A forcing frequency of 𝑆𝑡 𝑓 = 0.3 was
chosen to roughly match the forced jet experiments of Crow and Champagne (1971),
where 𝑆𝑡 𝑓 = 0.3 was observed as the frequency that led to the largest amplification
by the flow (i.e. the jet preferred mode). The 𝑆𝑡 𝑓 = 1.5 case was chosen as experi-
mental studies (Samimy et al., 2007, 2010) have indicated a broadband reduction in
jet noise at this frequency. The forcing is defined by:

𝑐(𝑟) = 0.5 [1 − erf (2(𝑟 − 5))] ,
𝑢 𝑓 (𝑟, 𝑡) = 𝑐(𝑟)sin(2𝜋 𝑓 𝑓 𝑡),
𝑢𝑥 (𝑟, 𝑡) = 𝑢∞ + 𝑎0𝑢 𝑓 (𝑟, 𝑡),
𝑢𝑟 (𝑟, 𝑡) = 𝑢𝜙 (𝑟, 𝑡) = 0,

𝜌(𝑟, 𝑡) = 𝜌∞ + 𝜌∞(𝑢𝑥 (𝑟, 𝑡) − 𝑢∞)/𝑎∞,
𝑝(𝑟, 𝑡) =𝑝∞ + 𝑎∞𝜌∞(𝑢𝑥 (𝑟, 𝑡) − 𝑢∞).

The simulations are run with a computational time step 𝛥𝑡𝐷/𝑐∞ = 0.001 and
a total simulation time 𝑡𝑠𝑖𝑚𝐷/𝑐∞ = 8000 (after the initial transient, due to the
forcing, has passed). The natural jet is run for 𝑡𝑠𝑖𝑚𝐷/𝑐∞ = 16000 to facilitate
the study performed in Chapter 3. The unstructured LES data were interpolated
onto a structured cylindrical grid that mimics the LES resolution of 𝑛𝑥 × 𝑛𝑟 × 𝑛𝜙 =

656× 138× 128, respectively. The forced cases were saved at 𝑁𝜃 phases per forcing
oscillation, resulting in a temporal spacing between snapshots of 𝛥𝑡𝑐∞

𝐷
. In total,

𝑁𝑡 = 4.5 × 104 − 5.8 × 104 snapshots per forced jet database saved and 8 × 104 for
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Figure 2.2: Instantaneous snapshot of 𝒖′′𝒙 for the Mach 0.4 natural and forced
turbulent jets.

Case 𝑀 𝑗 𝑆𝑡 𝑓 𝑎0/𝑈 𝑗
𝛥𝑡𝑐∞
𝐷

𝑁𝜃 𝑁𝑡

𝑀 = 0.4,Natural 0.4 — — 0.2 — 8 × 104

𝑀 = 0.4, 𝑆𝑡 𝑓 = 0.3, 𝑎0/𝑈 𝑗 = 0.01 0.4 0.3 0.01 0.174 48 4.5 × 104

𝑀 = 0.4, 𝑆𝑡 𝑓 = 0.3, 𝑎0/𝑈 𝑗 = 0.1 0.4 0.3 0.1 0.174 48 4.5 × 104

𝑀 = 0.4, 𝑆𝑡 𝑓 = 1.5, 𝑎0/𝑈 𝑗 = 0.01 0.4 1.5 0.01 0.138 12 5.8 × 104

𝑀 = 0.4, 𝑆𝑡 𝑓 = 1.5, 𝑎0/𝑈 𝑗 = 0.1 0.4 1.5 0.1 0.138 12 5.8 × 104

Table 2.1: Parameters of the large-eddy simulations performed.

the extended natural jet simulation. A summary of the simulations performed is
provided in Table 2.1, and an instantaneous snapshot of the natural and a forced jet
is shown in Figure 2.2.

2.2 Modal analysis
The data generated by the large-eddy simulations will be analyzed using several
methods including SPOD, resolvent analysis, CS-SPOD, and harmonic resolvent
analysis. We outline the preexisting methods (SPOD and resolvent analysis) used to
analyze statistically stationary flows in the following sections.

2.2.1 Spectral proper orthogonal decomposition
An overview of SPOD is provided here; the reader is referred to (Lumley, 1967;
Schmidt and Colonius, 2020; Towne et al., 2018) for details. Let q𝑘 be a possibly
complex vector-valued snapshot of a statistically stationary flow at time 𝑡𝑘 on the
spatial domain 𝛺. The snapshot length 𝑁 equals the number of variables multiplied
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by the number of spatial locations. Assume we have 𝑁𝑡 equally spaced snapshots
available 𝑡𝑘+1 = 𝑡𝑘 + 𝛥𝑡. The space-time data can now be represented as the data
matrix Q and time vector T

Q = [q1, q2, · · · , q𝑀] ∈ C𝑁×𝑀 , (2.1)

T = [𝑡1, 𝑡2, · · · , 𝑡𝑀] ∈ R𝑀 . (2.2)

To employ Welch’s method, we obtain the overlapping data matrix

Q(𝑛) = [q(𝑛)1 , q(𝑛)2 , · · · , q(𝑛)
𝑁𝑠
], (2.3)

where q(𝑛)
𝑘

= q𝑘+(𝑛−1) (𝑁𝑠−𝑁0) , 𝑁𝑠 is the number of snapshots per block, 𝑁0 is the
number of snapshots that overlap, and 𝑁𝑏 is the number of blocks. Assuming
ergodicity, each block is an independent flow realization.

Subsequently, the discrete Fourier transform (DFT) of each block is computed using
a window 𝑤, giving

Q̂(𝑛) = [q̂(𝑛)1 , q̂(𝑛)2 , · · · , q̂(𝑛)
𝑁 𝑓
], (2.4)

where

q̂(𝑛)
𝑘

=
1√︁
𝑁 𝑓

𝑁 𝑓∑︁
𝑗=1
𝑤 𝑗q(𝑛)𝑗 𝑒

−𝑖2𝜋(𝑘−1) [( 𝑗−1)/𝑁 𝑓 ] , (2.5)

for 𝑘 = 1, · · · , 𝑁 𝑓 and 𝑛 = 1, · · · , 𝑁𝑏 where q̂(𝑛)
𝑘

is the 𝑘 𝑡ℎ Fourier component of
the 𝑛𝑡ℎ block. The nodal values 𝑤 𝑗 of a window function are utilized to mitigate
spectral and cyclic leakage arising from the non-periodicity of the data within each
block. If 𝑁𝑠 < 𝑁 𝑓 , the data is zero-padded. This computes SPOD at 𝑁 𝑓 frequencies
with a spectral resolution 𝛥 𝑓 = 1/(𝑁𝑠𝛥𝑡), where the SPOD estimate at 𝑓𝑘 averages
the data in 𝑓 = [ 𝑓𝑘 − 𝛥 𝑓 /2, 𝑓𝑘 + 𝛥 𝑓 /2]. The frequency vector is given by

𝑓𝑘 =


𝑘 − 1
𝑁 𝑓 𝛥𝑡

for 𝑘 ≤ 𝑁 𝑓 /2,

𝑘 − 1 − 𝑁 𝑓

𝑁 𝑓 𝛥𝑡
for 𝑘 > 𝑁 𝑓 /2,

, (2.6)

where 𝑘 = [1, 𝑁 𝑓 ]. Alternatively, a non-FFT method can be used, like the Goertzel
(Goertzel, 1958) method, where specific discrete frequencies are chosen (but nev-
ertheless, a frequency resolution must still be chosen). The cross-spectral density
(CSD) at 𝑓𝑘 is estimated by

𝑺 𝑓𝑘 = Q̂ 𝑓𝑘
Q̂∗𝑓𝑘 , (2.7)
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where Q̂ 𝑓𝑘
=
√
𝜅 [Q̂(1)𝑘 , Q̂(2)𝑘 , · · · , Q̂(𝑁𝑏)𝑘 ], Q̂(𝑛)𝑘 are the Fourier coefficients at 𝑓𝑘 for

each block, 𝜅 = 𝛥𝑡/(| |𝒘 | |2𝑁𝑏), and ∗ is the Hermitian transpose. SPOD is computed
by

𝑺 𝑓𝑘𝑾𝛹𝛹𝛹 𝑓𝑘 =𝛹𝛹𝛹 𝑓𝑘𝜦 𝑓𝑘 , (2.8)

where 𝑾 is a weighting matrix. The estimated SPOD modes are given by the
columns of𝛹𝛹𝛹 𝑓𝑘 and are ranked by their energy 𝜆 𝑗 . The CSD matrix, 𝑺 𝑓𝑘 , is an
𝑁 × 𝑁 matrix, far too large for typical problems. Thus, to practically compute
SPOD, we employ the exact method-of-snapshot approach (Sirovich, 1987), giving

Q̂∗𝑓𝑘𝑾Q̂ 𝑓𝑘
𝜣 𝑓𝑘 =𝛹𝛹𝛹 𝑓𝑘𝜣 𝑓𝑘 , (2.9a)

𝛹𝛹𝛹 𝑓𝑘 = Q̂ 𝑓𝑘
𝜣 𝑓𝑘𝜦

−1/2
𝑓𝑘

. (2.9b)

This estimate converges as the number of blocks 𝑁𝑏 and the number of snapshots in
each block 𝑁𝑠 are increased together (Bendat and Piersol, 2011; Welch, 1967).

2.2.2 Resolvent analysis
Resolvent analysis (McKeon and Sharma, 2010) begins with the nonlinear governing
equations

𝜕𝒈(𝑡)
𝜕𝑡

= 𝑯(𝒈(𝑡)), (2.10)

where 𝑯 are the time-independent compressible Navier-Stokes equations. Reynolds
decomposing (linearizing) the flow state 𝒈(𝑡) gives 𝒈(𝑡) = 𝒈̄ + 𝒈′(𝑡). Substitute this
decomposition into Equation 2.10 and then separate terms linear in the perturbation
𝒈′(𝑡) gives

𝜕𝒈′(𝑡)
𝜕𝑡

= 𝐷𝒈 (𝑯( 𝒈̄))𝒈′(𝑡) + f′(𝑡), (2.11)

where f′(𝑡) contains higher-order terms in 𝒈′(𝑡). The Jacobian 𝑨 = 𝐷𝒈 (𝑯( 𝒈̄))
is the linearized flow operator. For statistically stationary flows (that are also
statistically invariant in the azimuthal dimension), we Fourier transform Equation
2.11 temporally and azimuthally to obtain

(𝑖2𝜋 𝑓 𝑰 − 𝑨̂𝑚) 𝒈̂𝑚, 𝑓 = 𝒇̂𝑚, 𝑓 , (2.12)

where 𝑓 is the frequency,𝑚 is the azimuthal mode number, and 𝑹̂𝑚, 𝑓 = (𝑖2𝜋 𝑓 𝑰− 𝑨̂𝑚)
is the resolvent operator.

We then seek the forcing mode 𝒇̂ that results in the most energetic response 𝒈̂,
expressed as the following optimization problem:

𝜎2 =
⟨𝒈̂, 𝒈̂⟩𝐺
⟨ 𝒇̂ , 𝒇̂ ⟩𝐹

, (2.13)



13

where ⟨𝒈̂, 𝒈̂⟩𝐺 and ⟨ 𝒇̂ , 𝒇̂ ⟩𝐹 are inner products on the output and input spaces,
respectively. The solution to this optimization problem is given by the singular
value decomposition of the weighted resolvent operator

𝑹̃𝑚, 𝑓 = W 1/2
𝐺

𝑹̂𝑚, 𝑓W
−1/2
𝐹

= Ũ𝑚, 𝑓𝚺𝑚, 𝑓 Ṽ ∗𝑚, 𝑓 , (2.14)

where the diagonal matrix 𝚺𝑚, 𝑓 = diag[𝜎2
1 , 𝜎

2
2 , · · · ] contains the ranked gains, W𝐺

and W𝐹 are, respectively, the weightings on the output and input spaces, and the
columns of V̂𝑚, 𝑓 = W−1/2

𝐹
Ṽ𝑚, 𝑓 and Û𝑚, 𝑓 = W 1/2

𝐺
Ũ𝑚, 𝑓 contain the forcing and

response modes, respectively.

Eddy-viscosity model for resolvent/harmonic resolvent analysis

In this thesis, the mean-flow consistent eddy-viscosity method of Pickering et al.
(2021a) is employed to close the nonlinear forcing term, whiten the resolvent forcing
expansion coefficients, and improve the predictive ability of resolvent/harmonic
resolvent modes (introduced in Chapter 4). In essence, the eddy viscosity 𝜇 in the
linearized governing equations is replaced with a modified eddy viscosity given by
𝝁𝑇 = 𝜇𝑚 + 𝝁𝐸 , where 𝜇𝑚 is the molecular viscosity, 𝝁𝐸 is the chosen eddy-viscosity
model, and 𝝁𝑇 is the total eddy viscosity employed in the linearization. Previous
studies (Pickering et al., 2021a) have shown vastly improved alignment between the
SPOD and resolvent analysis modes across all relevant frequencies and azimuthal
mode numbers.

The mean-flow eddy-viscosity model relies on a Lagrangian optimization that deter-
mines the eddy viscosity field that minimizes the error by which the mean flow sat-
isfies the axisymmetric zero-frequency, linearized governing equations augmented
with the addition of an eddy-viscosity model. We seek to find an eddy-viscosity
field that minimizes 𝒇̄ given by

𝑨̂0,𝑇 𝒈̄ = 𝒇̄ , (2.15)

where 𝑨̂0,𝑇 is the zero-frequency and 𝑚 = 0 linearized operator modified with the
turbulent eddy viscosity 𝝁𝑇 . The eddy viscosity 𝝁𝐸 is solved via a Lagrangian
optimization procedure, which we refer the reader to Pickering et al. (2021a) for
details. As discussed in Pickering et al. (2021a), the final eddy-viscosity field
employed for resolvent/harmonic resolvent analysis is scaled by a constant 𝑐 ≈ 0.1.
This constant was kept equal for all cases and all frequencies and led to an improved
alignment across the range of frequencies considered. The impact of the eddy
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viscosity fields on the resolvent/harmonic resolvent performed in this thesis is similar
to that seen by Pickering et al. (2021a) and thus is not shown for brevity.

Numerical computation of resolvent/harmonic resolvent analysis

As part of this thesis, harmonic resolvent analysis for turbulent jets was implemented
as an extension of the resolvent analysis code initially developed by Schmidt et al.
(2018) and further developed by Pickering et al. (2021a).

The code employs a streamwise and radial discretization using fourth-order summation-
by-parts finite differences (Mattsson and Nordström, 2004). Since the code is cylin-
drical, the polar singularity is treated as in Mohseni and Colonius (2000). Sponges
(using a 5𝑡ℎ order polynomial) and stretched grids are employed at the domain
boundaries along with non-reflecting characteristic boundary conditions.

Grid stretching in the axial and radial conditions is performed using a constant growth
ratio of 1.01, meaning that the maximum growth in cell size is 1% (𝐿2 = 1.01𝐿1

where 𝐿1, 𝐿2 are two adjacent cells). The grid is stretched in the axial direction until
a maximum axial cell length is obtained, after which a constant cell size is employed.
Radially, the grid is smallest around the lip line, with the grid stretched both radially
inwards and outwards. The grid is similar to that used in the LES, we refer the reader
to Brès et al. (2018) for details. Similar to the axial grid, the maximum radial grid
size is limited to a fixed value. The specific grid is frequency dependent (smaller
domain/cell size for higher frequency cases and a larger domain/cell size for lower
frequency cases). In all cases, a grid-independence study is performed.
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C h a p t e r 3

FREQUENCY RESOLUTION CONSIDERATIONS FOR
SPECTRAL PROPER ORTHOGONAL DECOMPOSITION

Note that all content in this section is from:
Liam Heidt and Tim Colonius. "Optimal frequency resolution for spectral proper
orthogonal decomposition." arXiv preprint arXiv:2402.15775.

In this chapter, we demonstrate that accurate computation of the SPOD critically
depends on the choice of frequency resolution. Using both artificially generated
data and large-eddy simulation data of a turbulent subsonic jet, we show that an
appropriate choice depends on how rapidly the SPOD modes change in space
at adjacent frequencies. Previously employed values are found to be too high,
resulting in unnecessarily biased results at physically important frequencies. A
physics-informed adaptive frequency-resolution SPOD algorithm is developed that
provides substantially less biased SPOD modes than the standard constant-resolution
method.

3.1 Influence of frequency resolution 𝛥 𝑓
As described in section 2.2.1, when using Welch’s method to estimate the CSD
tensor, a frequency resolution 𝛥 𝑓 must be chosen. This choice is a tradeoff since for
a fixed amount of data 𝑁𝑡 , as 𝑁𝑠 increases, 𝑁𝑏 decreases. This leads to an estimate
with a greater variance but reduced bias (i.e. the typical bias-variance tradeoff).
The vice-versa is also true. Practitioners attempt to determine a 𝑁𝑠 (and thus 𝑁𝑏)
that results in the most accurate SPOD modes. It is well known that for flows
exhibiting a spectral peak, such as an open cavity, a greater 𝑁𝑠 is required to ensure
minimal bias. This is because when computing SPOD at a discrete frequency 𝑓𝑘 ,
the energy/data from [ 𝑓𝑘 − 𝛥 𝑓 /2, 𝑓𝑘 + 𝛥 𝑓 /2] is averaged. Thus, if the energy/flow
in [ 𝑓𝑘 − 𝛥 𝑓 /2, 𝑓𝑘 + 𝛥 𝑓 /2] varies substantially, the discrete estimate of the SPOD
modes (and energy) at 𝑓𝑘 will not accurately reflect the true modes.

3.2 Artificial problem
In addition to the bias being high if 𝛥 𝑓 is large compared to the bandwidth of a
spectral peak, we hypothesize that a small 𝛥 𝑓 is required when the SPOD modes
change rapidly as a function of 𝑓 . By that, we mean if the “true” SPOD modes
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change substantially between 𝑓𝑘 ± 𝛥 𝑓 /2, then the estimated SPOD at 𝑓𝑘 will contain
a high amount of bias (i.e. error). To verify this, we construct artificial data with a
known SPOD spectrum/modes and then analyze the impact of 𝛥 𝑓 as a function of
how rapidly the known SPOD modes vary.

By definition, a random statistically-stationary process 𝑞(𝑥, 𝑡)with a SPOD spectrum
𝜆 𝑗 ( 𝑓 ) and modes 𝜓 𝑗 (𝑥, 𝑓 ) has a CSD,

𝑆(𝑥, 𝑥′, 𝑓 ) =
∞∑︁
𝑗=1
𝜆 𝑗 ( 𝑓 )𝜓 𝑗 (𝑥, 𝑓 )𝜓 𝑗 (𝑥, 𝑓 )∗. (3.1)

Data with these properties can be generated by

𝑞(𝑥, 𝑡) =
∫ ∞

−∞
𝑞(𝑥, 𝑓 )𝑒−𝑖2𝜋 𝑓 𝑡𝑑𝑓 , (3.2a)

=

∫ ∞

−∞
𝐹̃

{
𝐺

(
0, 𝑆(𝑥, 𝑥′, 𝑓 )

)
, 𝑓

}
𝑒−𝑖2𝜋 𝑓 𝑡𝑑𝑓 , (3.2b)

where 𝑔(𝑥, 𝑡) = 𝐺 (0, 𝑆(𝑥, 𝑥′, 𝑓 )) is zero-mean Gaussian white noise with a co-
variance kernel of 𝑆(𝑥, 𝑥′, 𝑓 ) (i.e. a covariance kernel equal to the CSD of
𝑞(𝑥, 𝑡) at frequency 𝑓 ) and 𝐹̃

{
𝑔(𝑥, 𝑡), 𝑓 ′

}
is a Kronecker delta filter such that

𝑔̂(𝑥, 𝑓 ) = 0 ∀ 𝑓 ≠ 𝑓 ′. The dominant SPOD modes are defined as

𝜓1(𝑥, 𝑓 ) = 𝑒−𝑥
2/(2𝑐2

1)𝑒1𝑖𝑥 𝑓 𝑐2/(𝜋1/4𝑐1/2
1 ), (3.3)

where 𝜋1/4𝑐1/2
1 is a normalization constant ensuring ⟨𝜓1(𝑥, 𝑓 ), 𝜓1(𝑥, 𝑓 )⟩ = 1, 𝑐1 is

a constant that defines the spatial distribution, and 𝑐2 defines how rapidly the modes
change from one frequency to the next. Increasing 𝑐2 results in more rapidly chang-
ing SPOD modes. Additionally, 𝜆1( 𝑓 ) = 1, 𝜆2( 𝑓 ) = 0.5, and 𝜓2(𝑥, 𝑓 ) = 𝑟 (𝑥, 𝑓 ),
where 𝑟 (𝑥, 𝑓 ) is a randomly spatially distributed mode orthogonal to 𝜓1(𝑥, 𝑓 ).

Next, we generate discrete data using our analytical SPOD modes, numerically
compute SPOD using varying 𝛥 𝑓 , and then compute the alignment between the
numerical (n) and analytical (a) SPOD modes 𝛼 = ⟨𝜓1,a(𝑥, 𝑓 ), 𝜓1,n(𝑥, 𝑓 )⟩. Since
this process is stochastic, we repeat this process to obtain a converged averaged
alignment. In this artificial case, each frequency is independent, allowing us to also
average over different frequencies. For all results, we confirm sufficient convergence
(not shown). We employ an equally spaced grid 𝑥 = [−20, 20] with 𝑁𝑥 = 801, 𝛥𝑡 =
1, 𝑐1 = 5, 𝑐2 = 10, 20, 40, 80, 160, 𝑁𝑡 = 5000, 10000, 20000, 40000, 80000, 160000,
and an SPOD block overlap of 67%.

In Figure 3.1, we display an example mode R{𝜓1(𝑥, 𝑓 )} at 𝑓 = 0, 0.01 and the
alignment 𝛼 = |⟨𝜓1(𝑥, 0), 𝜓1(𝑥, 0.01)⟩|. We see that as 𝑐2 increases, the modes
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vary more rapidly. In Figure 3.2 (a), we display the average alignment between the
analytical and numerical SPOD modes as a function of 𝛥 𝑓 for the different values
of 𝑐2 and 𝑁𝑡 = 5000. For a given 𝑐2, we find that as 𝛥 𝑓 increases, the alignment first
increases and then decreases. This is the standard bias-variance tradeoff with high
variance at low 𝛥 𝑓 and high bias at high 𝛥 𝑓 . We clearly note that as 𝑐2 increases, the
best 𝛥 𝑓 decreases, confirming our hypothesis that rapidly changing SPOD modes
require a smaller 𝛥 𝑓 . In Figure 3.2 (b), we show the average alignment for a constant
𝑐2 = 160 as a function of 𝑁𝑡 . As expected, the error decreases for larger 𝑁𝑡 , and a
good value of 𝛥 𝑓 also decreases for increasing 𝑁𝑡 . Here, we find that if a too-high
𝛥 𝑓 is chosen, the error does not decrease with increasing 𝑁𝑡 (since the error is
dominated by bias and not variance). Thus, selecting an appropriate 𝛥 𝑓 is crucial,
and an appropriate value varies greatly depending on how rapidly the SPOD modes
vary.

Figure 3.1: Real component of the analytical artificial problem SPOD modes

3.3 Turbulent jet
To investigate a real turbulent flow, we employ the natural jet simulation as outlined
in § 2.1. The natural jet was simulated for 𝑡𝑠𝑖𝑚𝑐∞/𝐷 = 16000 flow through times
saving 𝑁𝑡𝑜𝑡 = 80000 snapshots (4 − 8× previous studies of similar turbulent jets
(Heidt et al., 2021; Nekkanti et al., Osaka, Japan (Online; Schmidt et al., 2018)),
with 𝛥𝑡 = 0.2. This large database will now allow us to investigate the statistical
convergence of SPOD on a real turbulent flow example. In this chapter, we look at
the axisymmetric fluctuating components only.

We now compute SPOD using a variety of 𝑁𝑠 and 𝑁𝑡 for a range of 𝑓 (using
either method described in §2.2.1). Since the true SPOD modes are not known, we
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(a) Varying 𝑵𝒕 (b) Varying 𝒄2

Figure 3.2: Average alignment between numerical and analytical SPOD modes
as a function of 𝜟 𝒇 . ∗ shows the maximum alignment for a given 𝒄2 or 𝑵𝒕.

compare them to resolvent analysis modes generated using an identical method as
in Pickering et al. (2020, 2021a). While resolvent analysis modes are not exactly
SPOD modes for turbulent jets, the alignment has been shown to be high over the
range of important frequencies. In addition, any error due to bias or variance is
not likely to align in the direction of the resolvent mode. Thus, improvement in the
alignment can be considered improvements to the accuracy of the corresponding
SPOD mode.

In Figure 3.3 (a, b), we display the alignment between the 𝑁𝑡 = 10000 SPOD case for
several 𝛥𝑆𝑡. For 𝑁𝑡 < 𝑁𝑡𝑜𝑡 , multiple sets of SPOD are computed with 50% overlap
between datasets, which are used to compute the average alignment. We see that
for higher 𝑆𝑡 (𝑆𝑡 > 0.5), increasing 𝛥𝑆𝑡 results in better alignment (i.e. decreases
variance). For low 𝑆𝑡 (𝑆𝑡 ≈ 0), increasing 𝛥𝑆𝑡 decreases alignment due to increasing
bias. Using a constant 𝛥𝑆𝑡 = 0.05 (a typical value when studying subsonic jets)
results in severely biased results when investigating 𝑆𝑡 → 0, which is an important
regime that contains more energy than any other frequencies. In the intermediate
region (𝑆𝑡 ∈ [0.1, 0.5]), the alignment initially increases with increasing 𝛥𝑆𝑡 due to
decreasing variance and then decreases due to increasing bias. This occurs because
the wavelength of the dominant mode scales approximately inversely with 𝑆𝑡 due
to the constant phase speed of the wavepackets. Thus, modes at 𝑆𝑡 = 0.05, 0.075
(resolvent mode alignments |⟨𝑢1(𝑆𝑡 = 0.05), 𝑢1(𝑆𝑡 = 0.075)⟩| = 0.4) vary more
rapidly than modes at 𝑆𝑡 = 1.5, 1.525 (|⟨𝑢1(𝑆𝑡 = 1.5), 𝑢1(𝑆𝑡 = 1.525)⟩| = 0.85).
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Thus, based on §3.2, we expect a lower/higher 𝛥𝑆𝑡 to be required at low/high 𝑆𝑡,
respectively. In Figure 3.4, we display the dominant resolvent and SPOD modes at
𝑆𝑡 = 0.05 for 𝛥𝑆𝑡 = 0.0125, 0.025, 0.05. Here, we find that as 𝛥𝑆𝑡 increases, the
mode initially becomes less noisy, indicating less variance. In contrast, the mode
shape changes substantially for 𝛥𝑆𝑡 = 0.1, with the wavelength greatly reducing due
to increasing bias.

(a) Full frequency range (b) Zoomed in frequency range

Figure 3.3: Alignment between resolvent and SPOD for 𝑵𝒕 = 10000 for various
𝜟𝑺𝒕.

Figure 3.4: Dominant resolvent and SPOD modes at 𝑺𝒕 = 0.05 for several 𝜟𝑺𝒕.

We now create an adaptive resolution SPOD algorithm to vary 𝛥 𝑓 for improved
alignment. We employ a similar cost function as Yeung and Schmidt (2023) and
for each frequency 𝑓𝑘 begin with a small 𝛥 𝑓 𝑗 and increase 𝛥 𝑓 𝑗+1 (where 𝛥 𝑓 𝑗+1 =
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𝛥 𝑓 𝑗 + 𝛿 𝑓 , and 𝛿 𝑓 is a small increment in the bin width 𝛥 𝑓 ) until

J = 1 − |⟨𝜓1,𝛥 𝑓 𝑗 ( 𝑓𝑘 ), 𝜓1,𝛥 𝑓 𝑗+1 ( 𝑓𝑘 )⟩| < 𝑒, (3.4)

where 𝜓1,𝛥 𝑓 ( 𝑓𝑘 ) is the dominant SPOD mode at frequency 𝑓𝑘 computed using a
frequency bin width of 𝛥 𝑓 and 𝑒 is a convergence tolerance. We also find that at
frequencies where the SPOD modes vary slowly, a better convergence can be reached
for a fixed amount of data (as seen in §3.2). Thus, we develop a physics-informed
(PI) cost function 𝑒 = 𝑒( 𝑓 ) using the known physics. For jets, due to the constant
phase speed, increasing frequency results in more slowly varying SPOD modes.
Thus, we assume 𝑒( 𝑓 ) = 𝑒2/ 𝑓 , such that

J = 1 − |⟨𝜓1,𝛥 𝑓 𝑗 ( 𝑓𝑘 ), 𝜓1,𝛥 𝑓 𝑗+1 ( 𝑓𝑘 )⟩| < 𝑒2/ 𝑓𝑘 . (3.5)

In Figure 3.5 (a, b), we show the alignment between the dominant SPOD and
resolvent modes for several 𝛥𝑆𝑡 and the two adaptive procedures described, using
a convergence constant of 𝑒 = 0.5, 𝑒2 = 0.1, for 𝑁𝑡 = 5000, 20000. Here, both
adaptive methods switch from a lower 𝛥𝑆𝑡 at low 𝑆𝑡 to a higher 𝛥𝑆𝑡 at higher 𝑆𝑡
(where the frequencies are now non-dimensionalized). Using a fixed convergence
tolerance results in the best value of 𝛥𝑆𝑡 decreasing with increasing data lengths
(consistent with results found in § 3.2 since the variance decreases and 𝛥𝑆𝑡 becomes
smaller to reduce the bias). Both adaptive methods result in greatly improved SPOD
modes compared to employing a fixed 𝛥𝑆𝑡. In particular, the modified adaptive
method provides excellent alignment across all frequencies and data lengths.

In general, no value of 𝑒, 𝑒2 can be considered universal, and for each case, practi-
tioners must use physical intuition to determine the best values of 𝛥 𝑓 . In general,
we recommend increasing 𝛥 𝑓 while the mode shape stays similar but becomes less
noisy (i.e. decreasing variance). If the mode shape changes, 𝛥 𝑓 is likely too high,
and large bias errors will occur.

Lastly, in Figure 3.6, we show the alignment as a function of the data length
and 𝛥𝑆𝑡 = 0.025. We also display the standard deviation of the alignment for
𝑁𝑡 = 10000, where we find that the alignment is sensitive and varies greatly from one
set of snapshots to another. We also find that the alignment increases substantially
with increasing 𝑁𝑡 (particularly at lower frequencies). This shows that the alignment
metric requires a substantial amount of data to converge, even once the modes look
visually similar, which we show for 𝑆𝑡 = 0.2 in Figure 3.7. Thus, due to the high
variance and slow convergence of the alignment metric, caution is advised when
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inferring results from (or, in particular, comparing between) alignments. With
respect to the modeling of turbulent flows, and in particular turbulent jets, the
substantial increase in alignment with increasing 𝑁𝑡 (with the alignment increasing
by up to ≈ 0.2) demonstrates that resolvent analysis can model coherent structures
even better than previously determined (Pickering et al., 2021a).

(a) 𝑵𝒕 = 5000 (b) 𝑵𝒕 = 20000

Figure 3.5: Alignment between dominant SPOD and resolvent mode for varying
𝜟𝑺𝒕 and the two adaptive methods.
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Figure 3.6: Alignment between dominant SPOD and resolvent mode for 𝜟𝑺𝒕 =
0.025 for varying 𝑵𝒕 along with standard deviation of alignment for 𝑵𝒕 = 10000
(shaded region).
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Figure 3.7: Dominant resolvent and SPOD modes at 𝑺𝒕 = 0.1 for varying 𝑵𝒕

with 𝜟𝑺𝒕 = 0.025.

3.4 Summary
This chapter demonstrated that the choice of frequency resolution 𝛥 𝑓 is vital to
obtaining accurate SPOD modes, and appropriate values critically depend on how
rapidly the SPOD modes change in space at adjacent frequencies. We showed that
frequency resolution values previously employed are too high, which results in un-
necessarily biased results at key physical frequencies. We showed this using artificial
data and data from a turbulent jet. A physics-informed adaptive frequency-resolution
algorithm was developed that provided substantially superior SPOD modes than the
standard constant resolution method. Lastly, it was demonstrated that the alignment
metric widely employed to quantify the similarity between different SPOD/resolvent
modes is sensitive to bias and the level of statistical convergence, and caution should
be taken when inferring conclusions.
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C h a p t e r 4

CYCLOSTATIONARY SPECTRAL PROPER ORTHOGONAL
DECOMPOSITION

Note that all content in this section is from:
Liam Heidt and Tim Colonius. "Spectral proper orthogonal decomposition of
harmonically forced turbulent flows." Journal of Fluid Mechanics, 985:A42.

In this chapter, we leverage cyclostationary analysis, an extension of the statis-
tically stationary framework to processes with periodically varying statistics, to
generalize SPOD to the cyclostationary case. The resulting properties of the cy-
clostationary SPOD (CS-SPOD for short) are explored, a theoretical connection
between CS-SPOD and the harmonic resolvent analysis is provided, simplifications
for the low- and high-forcing frequency limits are discussed, and an efficient algo-
rithm to compute CS-SPOD with SPOD-like cost is presented. We demonstrate the
utility of CS-SPOD using two example problems: a modified complex linearized
Ginzburg-Landau model and a 𝑆𝑡 𝑓 = 0.3, 𝑎0/𝑈 𝑗 = 10% high-Reynolds-number
forced turbulent jet.

4.1 Cyclostationary theory
This section provides an overview of the theory of cyclostationary analysis and the
tools used to study them, with a focus on fluid dynamics. Comprehensive reviews
can be found in Gardner et al. (2006), Antoni (2009), and Napolitano (2019).

A complex-valued scalar process 𝑞(𝑡) at time 𝑡 is cyclostationary in the wide sense if
its mean and autocorrelation functions are periodic with period𝑇0 (Gardner, 1986b),
giving

𝐸{𝑞(𝑡)} = 𝐸{𝑞(𝑡 + 𝑇0)}, (4.1a)

𝑅(𝑡, 𝜏) = 𝑅(𝑡 + 𝑇0, 𝜏), (4.1b)

where 𝐸{·} is the expectation operator, 𝑅 is the autocorrelation function, and 𝜏 is
a time-delay. Since the mean and autocorrelation are time-periodic, they can be
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expressed as a Fourier series

𝐸{𝑞(𝑡)} =
∞∑︁

𝑘𝛼=−∞
𝑞𝑘𝛼𝛼0𝑒

𝑖2𝜋(𝑘𝛼𝛼0)𝑡 , (4.2a)

𝑅(𝑡, 𝜏) ≡ 𝐸{𝑞(𝑡 + 𝜏/2)𝑞∗(𝑡 − 𝜏/2)} =
∞∑︁

𝑘𝛼=−∞
𝑅̂𝑘𝛼𝛼0 (𝜏)𝑒𝑖2𝜋(𝑘𝛼𝛼0)𝑡 ,

where 𝑘𝛼 ∈ Z and the Fourier series coefficients are given by

𝑞𝑘𝛼𝛼0 ≡
1
𝑇0

∫ 𝑇0/2

−𝑇0/2
𝐸{𝑞(𝑡)}𝑒−𝑖2𝜋(𝑘𝛼𝛼0)𝑡𝑑𝑡, (4.3a)

𝑅̂𝑘𝛼𝛼0 (𝜏) ≡
1
𝑇0

∫ 𝑇0/2

−𝑇0/2
𝑅(𝑡, 𝜏)𝑒−𝑖2𝜋(𝑘𝛼𝛼0)𝑡𝑑𝑡, (4.3b)

where 𝛼0 = 1/𝑇0 is the fundamental cycle frequency and (·)∗ is the complex con-
jugate. The Fourier coefficients 𝑅̂𝑘𝛼𝛼0 (𝜏) are known as the cyclic autocorrelation
functions of 𝑞(𝑡) at cycle frequency 𝑘𝛼𝛼0. If a process contains non-zero 𝑞𝑘𝛼𝛼0

and/or 𝑅̂𝑘𝛼𝛼0 (𝜏), it is said to exhibit first- and second-order cyclostationarity at
cycle frequency 𝑘𝛼𝛼0, respectively. Wide-sense stationary processes are the special
case where 𝑅̂𝑘𝛼𝛼0 (𝜏) ≠ 0 for 𝑘𝛼 = 0 only.

If the process 𝑞(𝑡) contains a deterministic periodic component at cycle frequency
𝑘𝛼𝛼0, it would exhibit both first-order and second-order (and any higher-order)
cyclostationarity at cycle frequency 𝑘𝛼𝛼0. Thus, a deterministic component results
in a pure first-order component and an impure (i.e. made up from components of
a lower-order) second-order (or higher) component (Antoni et al., 2004). Antoni
et al. (2004) and Antoni (2009) showed that in physical systems, it is crucial to
analyze the first- and second-order components separately, where the second-order
component 𝑞′′(𝑡) is defined as

𝑞′′(𝑡) ≡ 𝑞(𝑡) − 𝐸{𝑞(𝑡)}, (4.4)

such that 𝑞(𝑡) = 𝐸{𝑞(𝑡)}+𝑞′′(𝑡) and the mean 𝐸{𝑞(𝑡)} = 𝐸{𝑞(𝑡+𝑇0)} is𝑇0 periodic.
This approach makes physical sense considering that the first-order component is the
deterministic tonal component that originates from the forcing, while the second-
order component is a stochastic component that represents the underlying turbulence
that is modified by the forcing. The sequential approach is analogous to the triple
decomposition (Hussain and Reynolds, 1972, 1970) where the underlying flow is
separated into the first-order (phase-averaged) and second-order (turbulent/residual)
components. First-order and second-order cyclostationarity then refer to a modula-
tion of the first-order and second-order components, respectively.
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In this thesis, we assume that all processes analyzed using second-order analysis tools
are zero-mean processes (or have had their first-order component removed). Thus,
by stating that a process exhibits second-order cyclostationarity at cycle frequency
𝑘𝛼𝛼0, we mean that the process exhibits pure second-order cyclostationarity at 𝑘𝛼𝛼0.

We must clarify one point of terminology. Considering stationary processes are a
subset of cyclostationary processes, all stationary processes are also cyclostationary.
We use the most restrictive description, i.e. stationary processes are referred to as
stationary and not cyclostationary. By stating that a process exhibits cyclostationar-
ity, we imply that at least one cycle frequency 𝑘𝛼𝛼0, 𝑘𝛼 ≠ 0 exists.

4.1.1 Second-order cyclostationary analysis tools
In fluid dynamics, we are frequently interested in the correlation between two
quantities. Thus, we will now consider the complex-valued vector-valued process
𝒒(𝒙, 𝑡) at time 𝑡 and independent variables (or spatial locations) 𝒙 instead of the scalar
process 𝑞(𝑡). Two processes are jointly cyclostationary if their cross-correlation
function can be expressed as a Fourier series, such that

𝑹(𝒙, 𝒙′, 𝑡, 𝜏) ≡ 𝐸{𝒒(𝒙, 𝑡 + 𝜏/2)𝒒∗(𝒙′, 𝑡 − 𝜏/2)} (4.5a)

=

∞∑︁
𝑘𝛼=−∞

𝑹̂𝑘𝛼𝛼0 (𝒙, 𝒙′, 𝜏)𝑒𝑖2𝜋(𝑘𝛼𝛼0)𝑡 , (4.5b)

where the Fourier series coefficients are given by

𝑹̂𝑘𝛼𝛼0 (𝒙, 𝒙′, 𝜏) ≡
1
𝑇0

∫ 𝑇0/2

−𝑇0/2
𝑹(𝒙, 𝒙′, 𝑡, 𝜏)𝑒−𝑖2𝜋(𝑘𝛼𝛼0)𝑡𝑑𝑡, (4.6)

and are known as the cyclic cross-correlation functions between 𝒒(𝒙) and 𝒒(𝒙′)
at cycle frequency 𝑘𝛼𝛼0. If the only non-zero cycle frequency is 𝑘𝛼𝛼0 = 0, then
𝒒(𝒙) and 𝒒(𝒙′) are jointly wide-sense stationary. Similar to the common assump-
tion in stationary analysis, we assume that all processes are separately and jointly
cyclostationary.

A cyclostationary process can be analyzed in the dual-frequency domain via the
cyclic cross-spectral density (CCSD). The CCSD is the generalization of the cross-
spectral density (CSD) for cyclostationary processes and is related to the cyclic
cross-correlation function via the cyclic Wiener-Khinchin relation (Gardner and
Robinson, 1989)

𝑺𝑘𝛼𝛼0 (𝒙, 𝒙′, 𝑓 ) =
∫ ∞

−∞
𝑹̂𝑘𝛼𝛼0 (𝒙, 𝒙′, 𝜏)𝑒−𝑖2𝜋 𝑓 𝜏𝑑𝜏. (4.7)
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The CCSD can also be written as

𝑺𝑘𝛼𝛼0 (𝒙, 𝒙′, 𝑓 ) ≡ (4.8)

lim
𝛥 𝑓→0

lim
𝑇→∞

1
𝑇

∫ 𝑇/2

−𝑇/2
𝛥 𝑓 𝐸

{
𝒒̂1/𝛥 𝑓 (𝒙, 𝑡, 𝑓 +

1
2
𝑘𝛼𝛼0) 𝒒̂∗1/𝛥 𝑓 (𝒙

′, 𝑡, 𝑓 − 1
2
𝑘𝛼𝛼0)

}
𝑑𝑡,

where 𝒒̂𝑊 (𝒙, 𝑡, 𝑓 ) ≡
∫ 𝑡+𝑊2
𝑡−𝑊2

𝒒(𝒙, 𝑡′)𝑒−𝑖2𝜋 𝑓 𝑡′𝑑𝑡′ is the short-time Fourier transform of
𝒒(𝒙, 𝑡), 𝑓 is the spectral frequency, and 𝑘𝛼𝛼0 is the cycle frequency. This shows
that the CCSD represents the time-averaged statistical correlation (with zero lag) of
two spectral components at frequencies 𝑓 + 1

2 𝑘𝛼𝛼0 and 𝑓 − 1
2 𝑘𝛼𝛼0 as the bandwidth

approaches zero (Napolitano, 2019)1. For 𝑘𝛼 = 0, the CCSD naturally reduces to the
CSD, i.e. 𝑺0(𝒙, 𝒙′, 𝑓 ). Correlation between spectral components in cyclostationary
processes is critical in the derivation of CS-SPOD, and for stationary processes, the
lack of correlation between spectral components is why SPOD can analyze each
frequency independently.

The Wigner-Ville (WV) spectrum (Antoni, 2007; Martin, 1982; Martin and Flandrin,
1985) shows the spectral information of the process as a function of time (or phase)
and, for a cyclostationary process, is given by

𝑾𝑽 (𝒙, 𝒙′, 𝑡, 𝑓 ) =
∞∑︁

𝑘𝛼=−∞
𝑺𝑘𝛼𝛼0 (𝒙, 𝒙′, 𝑓 )𝑒𝑖2𝜋(𝑘𝛼𝛼0)𝑡 . (4.9)

The WV spectrum of the cyclic power-spectral density is determined by setting 𝒙 =

𝒙′, giving 𝑾𝑽 (𝒙, 𝑡, 𝑓 ) = ∑∞
𝑘𝛼=−∞ 𝑺𝑘𝛼𝛼0 (𝒙, 𝑓 )𝑒𝑖2𝜋(𝑘𝛼𝛼0)𝑡 . While nonphysical, the

WV spectrum may contain negative energy densities due to the negative interaction
terms in the WV spectrum (Antoni, 2007; Flandrin, 1998). However, Antoni (2007)
showed this could be arbitrarily reduced with increasing sampling time. The CCSD
and WV spectrum can be integrated with respect to frequency (Gardner, 1994;
Randall et al., 2001), which results in the instantaneous variance and the cyclic
distribution of the instantaneous variance, respectively

𝒎(𝒙, 𝑡) = 𝐸{𝒒(𝒙, 𝑡)𝒒∗(𝒙, 𝑡)} =
∫ ∞

−∞
𝑾𝑽 (𝒙, 𝑡, 𝑓 )𝑑𝑓 , (4.10a)

𝒎̂𝑘𝛼𝛼0 (𝒙) =
∫ ∞

−∞
𝑺𝑘𝛼𝛼0 (𝒙, 𝑓 )𝑑𝑓 , (4.10b)

1Formally, the CCSD is defined as in equation (4.8) and then the Fourier transform version (4.7)
is proved, which is then known as the Gardner relation or as the cyclic Wiener-Khinchin relation
(Napolitano, 2019).
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where 𝒎(𝒙, 𝑡) is the mean-variance of the process and 𝒎̂𝑘𝛼𝛼0 (𝒙) quantifies the
mean-variance contribution from each cycle frequency 𝑘𝛼𝛼0.

So far, we have assumed that the cycle frequencies are known, but this may not
always be the case. To determine the cycle frequencies present in the system, all
possible cycle frequencies 𝛼 are explored by rewriting the CCSD as

𝑺(𝒙, 𝒙′, 𝛼, 𝑓 ) ≡

lim
𝛥 𝑓→0

lim
𝑇→∞

1
𝑇

∫ 𝑇/2

−𝑇/2
𝛥 𝑓 𝐸

{
𝒒̂1/𝛥 𝑓 (𝒙, 𝑡, 𝑓 +

𝛼

2
) 𝒒̂∗1/𝛥 𝑓 (𝒙

′, 𝑡, 𝑓 − 𝛼
2
)
}
𝑑𝑡. (4.11)

This formulation allows for the cyclic frequencies present in the process to be
determined if they are not known apriori. A process exhibits cyclostationarity at
cycle frequency 𝛼 when 𝑺(𝒙, 𝒙′, 𝛼, 𝑓 ) ≠ 0. For cyclostationary processes, because
the cross-correlation function is periodic, the spectral correlation becomes discrete
in 𝛼 such that

𝑺(𝒙, 𝒙′, 𝛼, 𝑓 ) =
∞∑︁

𝑘𝛼=−∞
𝑺𝑘𝛼𝛼0 (𝒙, 𝒙′, 𝑓 )𝛿(𝛼 − 𝑘𝛼𝛼0), (4.12)

where 𝛿 is the Kronecker delta. The cyclic distribution of the instantaneous variance
is rewritten as

𝒎̂(𝒙, 𝛼) =
∫ ∞

−∞
𝑺(𝒙, 𝛼, 𝑓 )𝑑𝑓 , (4.13)

which similarly becomes discrete for a cyclostationary process.

4.1.2 Cycloergodicity
In fluid dynamics, it is laborious to require multiple realizations of a single process,
and we often invoke ergodicity in stationary processes to equate the ensemble
average with a long-time average of a single realization. We can similarly leverage
the concept of cycloergodicity as described in Boyles and Gardner (1983), allowing
us to replace the expectation operator with a suitable time average, specifically, the
cycle-averaging operator (Braun, 1975)

𝒒̃(𝒙, 𝑡) = 𝐸{𝒒(𝒙, 𝑡)} = lim
𝑃→∞

1
𝑃

𝑃∑︁
𝑝=0

𝒒(𝒙, 𝑡 + 𝑝𝑇0), (4.14)

where 𝒒̃(𝒙, 𝑡) is the mean. The cycle-averaging operator is used when the data is
phase-locked to the forcing (i.e. sampled at an integer number of samples per cycle)
and is identical to the phase-average used in the triple decomposition (Hussain and
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Reynolds, 1970; Reynolds and Hussain, 1972). As the cycle-averaging operator is
periodic, it can be expressed as a Poisson sum

𝒒̃(𝒙, 𝑡) = 𝐸{𝒒(𝒙, 𝑡)} =
∞∑︁

𝑘𝛼=−∞
𝑒𝑖2𝜋(𝑘𝛼𝛼0)𝑡 lim

𝑠→∞
1
𝑠

∫ 𝑠/2

−𝑠/2
𝒒(𝒙, 𝑡′)𝑒−𝑖2𝜋(𝑘𝛼𝛼0)𝑡′𝑑𝑡′.

(4.15)
This definition is employed for non-phase-locked data or to filter out first-order
components that are assumed to be statistical noise (Franceschini et al., 2022;
Sonnenberger et al., 2000) and is identical to the harmonic-averaging procedure
used by Mezić (2013) and Arbabi and Mezić (2017) when restricted to a temporally
periodic average.

4.1.3 Computing the CCSD
There are practical considerations and nuances to computing the CCSD from discrete
data that we discuss in this section. Let the vector q𝑘 ∈ C𝑁 represent a flow snapshot,
i.e. the instantaneous state of the process 𝒒(𝒙, 𝑡) at time 𝑡𝑘 on a set of points in a
spatial domain 𝛺. The length of the vector 𝑁 is equal to the number of spatial points
multiplied by the number of state variables. We assume that this data is available
for 𝑀 equispaced snapshots, with 𝑡𝑘+1 = 𝑡𝑘 + 𝛥𝑡. In addition, we assume that this
data is phase-locked, meaning that there are an integer number of time steps in
the fundamental period, 𝑇0, and define 𝑁𝜃 = 𝑇0/𝛥𝑡 2. Adopting similar notation to
Towne et al. (2018), we estimate the CCSD tensor 𝑺(𝒙, 𝒙′, 𝛼, 𝑓 ), which represents
the spectral correlation between 𝒒(𝒙, 𝑡) and 𝒒(𝒙′, 𝑡) at cycle frequency 𝛼 and spectral
frequency 𝑓 . For a cyclostationary process, 𝑺(𝒙, 𝒙′, 𝛼, 𝑓 ) is non-zero for 𝛼 = 𝑘𝛼𝛼0

only, and therefore is written as 𝑺𝑘𝛼𝛼0 (𝒙, 𝒙′, 𝑓 ) or equivalently 𝑺𝑘𝛼/𝑇0 (𝒙, 𝒙′, 𝑓 ). The
space-time data can now be represented as the data matrix Q and time vector T

Q = [q1, q2, · · · , q𝑀] ∈ C𝑁×𝑀 , T = [𝑡1, 𝑡2, · · · , 𝑡𝑀] ∈ R𝑀 . (4.16, 4.17)

Although we have a formula for the CCSD as seen in (4.8 and 4.11), this does not
result in a consistent estimator of the CCSD, as the variance of the estimate of the
CCSD does not tend to zero as the amount of available data becomes large (Antoni,
2007; Jenkins, 1968; Napolitano, 2019). Instead, this results in an estimate where
the variance in the estimate is equal to the squared value of the estimate itself.

2This restriction simplifies and reduces the computational expense of the calculations but can in
principle be relaxed by using the Poisson sum time-average as in (4.15) and the non-computationally-
efficient form of CS-SPOD shown in algorithm 3. Alternatively, non-phased-locked data can be
temporally interpolated to be phase-locked.
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A consistent estimate of the CCSD can be obtained by employing an appropriate
averaging technique. The most common technique is the time-averaging Welch
method (Welch, 1967) due to its high computational efficiency. The Welch method
averages a number of CCSDs to obtain a consistent estimate of the CCSD. From
(4.11), we see that to compute the CCSD the Welch procedure is performed on two
frequency-shifted versions of the data, given by

Q±𝛼/2 = Q𝑒−𝑖2𝜋(±𝛼/2)T = [q1,±𝛼/2, q2,±𝛼/2, · · · , q𝑀,±𝛼/2], (4.18a)

= [q1𝑒
−𝑖2𝜋(±𝛼/2)𝑡1 , q2𝑒

−𝑖2𝜋(±𝛼/2)𝑡2 , · · · , q𝑀𝑒−𝑖2𝜋(±𝛼/2)𝑡𝑀 ], (4.18b)

where q𝑘,±𝛼/2 are the ±1
2𝛼 frequency-shifted data matrices corresponding to the 𝑘 𝑡ℎ

snapshot, i.e. q𝑘,±𝛼/2 = q𝑘𝑒−𝑖2𝜋(±𝛼/2)𝑡𝑘 . Next, we split the two frequency-shifted
data matrices into a number of, possibly overlapping, blocks. Each block is written
as

Q(𝑛)±𝛼/2 = [q(𝑛)1,±𝛼/2, q
(𝑛)
2,±𝛼/2, · · · , q

(𝑛)
𝑁 𝑓 ,±𝛼/2] ∈ C

𝑁×𝑁 𝑓 , (4.19)

where 𝑁 𝑓 is the number of snapshots in each block and the 𝑘 𝑡ℎ entry of the 𝑛𝑡ℎ

block is q(𝑛)
𝑘,±𝛼/2 = q𝑘+(𝑛−1) (𝑁 𝑓−𝑁0),±𝛼/2. The total number of blocks, 𝑁𝑏, is given

by 𝑁𝑏 = ⌊ 𝑀−𝑁0
𝑁 𝑓−𝑁0

⌋, where ⌊·⌋ represents the floor operator and 𝑁0 is the number of
snapshots that each block overlaps. The cycloergodicity hypothesis states that each
of these blocks is considered to be a single realization in an ensemble of realizations
of this cyclostationary flow. Subsequently, the discrete Fourier transform (DFT)
of each block for both frequency-shifted matrices is computed using a window 𝑤,
giving

Q̂(𝑛)±𝛼/2 = [q̂(𝑛)1,±𝛼/2, q̂
(𝑛)
2,±𝛼/2, · · · , q̂

(𝑛)
𝑁 𝑓 ,±𝛼/2], (4.20)

where

q̂(𝑛)
𝑘,±𝛼/2 =

1√︁
𝑁 𝑓

𝑁 𝑓∑︁
𝑗=1
𝑤 𝑗q(𝑛)𝑗 ,±𝛼/2𝑒

−𝑖2𝜋(𝑘−1) [( 𝑗−1)/𝑁 𝑓 ] , (4.21)

for 𝑘 = 1, · · · , 𝑁 𝑓 and 𝑛 = 1, · · · , 𝑁𝑏 where q̂(𝑛)
𝑘,±𝛼/2 is the 𝑘 𝑡ℎ Fourier component

of the 𝑛𝑡ℎ block of the ±𝛼/2 frequency-shifted data matrix, i.e. 𝑓𝑘,±𝛼0/2. The nodal
values 𝑤 𝑗 of a window function are utilized to mitigate spectral and cyclic leakage
arising from the non-periodicity of the data within each block. Due to the ±𝛼/2
frequency-shifting applied, the 𝑘 𝑡ℎ discrete frequencies of the ±𝛼/2 frequency-
shifted data matrices represent a frequency of

𝑓𝑘,±𝛼/2 = 𝑓𝑘 ±
𝛼

2
=


𝑘 − 1
𝑁 𝑓 𝛥𝑡

for 𝑘 ≤ 𝑁 𝑓 /2,

𝑘 − 1 − 𝑁 𝑓

𝑁 𝑓 𝛥𝑡
for 𝑘 > 𝑁 𝑓 /2,

± 𝛼
2
. (4.22)
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This shows that the frequency components 𝑓𝑘 + 𝛼/2 and 𝑓𝑘 − 𝛼/2, as required by
(4.11), have the same index 𝑘 in the shifted frequency vectors 𝑓𝑘,±𝛼/2, respectively.
The CCSD tensor 𝑺(𝒙, 𝒙′, 𝛼, 𝑓 ) is then estimated at cycle frequency 𝛼 and spectral
frequency 𝑓𝑘 by

S 𝑓𝑘 ,𝛼 =
𝛥𝑡

𝑠𝑁𝑏

𝑁𝑏∑︁
𝑛=1

q̂(𝑛)
𝑘,𝛼/2(q̂

(𝑛)
𝑘,−𝛼/2)

∗, (4.23)

where 𝑠 =
∑𝑁 𝑓

𝑗=1 𝑤
2
𝑗

is the normalization constant that accounts for the difference in
power between the windowed and non-windowed signal. This is written compactly
by arranging the Fourier coefficients at the same index 𝑘 into new frequency-data
matrices

Q̂ 𝑓𝑘 ,±𝛼/2 =
√
𝜅 [q̂(1)

𝑘,±𝛼/2, q̂
(2)
𝑘,±𝛼/2, · · · , q̂

(𝑁𝑏−1)
𝑘,±𝛼/2 , q̂

(𝑁𝑏)
𝑘,±𝛼/2] ∈ C

𝑁×𝑁𝑏 , (4.24)

where 𝜅 = 𝛥𝑡
𝑠𝑁𝑏

. S 𝑓𝑘 ,𝛼 is then estimated by

S 𝑓𝑘 ,𝛼 = Q̂ 𝑓𝑘 ,𝛼/2(Q̂ 𝑓𝑘 ,−𝛼/2)
∗. (4.25)

This estimate converges, i.e. the bias and variance become zero, as 𝑁𝑏 and 𝑁 𝑓 are
increased together (Antoni, 2007; Bendat and Piersol, 2011; Welch, 1967). The
algorithm to compute the CCSD from data snapshots is outlined in algorithm 1,
from which all other second-order cyclostationary analysis tools can be computed.
For efficient memory management, variables assigned with ‘←’ can be deleted
after each iteration in their respective loop. Similar to the Welch estimate of the
CSD, the estimate of the CCSD suffers from the standard bias-variance trade-off,
and caution should be taken to ensure sufficiently converged statistics. In the
CCSD, a phenomenon similar to spectral leakage is present and is called cyclic
leakage (Gardner, 1986a) that results in erroneous cycle frequencies. Using 67%
overlap when using a Hanning or Hamming window results in excellent cyclic
leakage minimization and variance reduction (Antoni, 2007). To reduce the variance
sufficiently, 𝑇𝛥 𝑓 >> 1 is required (Antoni, 2009). If one does not know the cycle
frequencies apriori, one must search over all possible cycle frequencies with a
resolution 𝛥𝛼 = 1/𝑇 (Gardner, 1986a) to ensure all cycle frequencies are captured.

4.2 Cyclostationary spectral proper orthogonal decomposition
4.2.1 Derivation
The objective of CS-SPOD is to find deterministic functions that best approximate,
on average, a zero-mean stochastic process. For clarity, we derive CS-SPOD using
an approach and notation analogous to the SPOD derivation presented in Towne



31

Algorithm 1 Algorithm to compute the CCSD.
1: for Each data block, 𝑛 = 1, 2, · · · , 𝑁𝑏 do

⊲ Compute the frequency-shifted block-data matrices

2: Q(𝑛)±𝛼/2 ← [q1+(𝑛−1) (𝑁 𝑓−𝑁0),±𝛼/2, q2+(𝑛−1) (𝑁 𝑓−𝑁0),±𝛼/2, · · · , q𝑁 𝑓 +(𝑛−1) (𝑁 𝑓−𝑁0),±𝛼/2]

⊲Using a (windowed) fast Fourier transform, calculate and store the row-wise

DFT for each frequency-shifted block-data matrix

3: Q̂(𝑛)±𝛼/2 = FFT(Q(𝑛)±𝛼/2) = [q̂
(𝑛)
1,±𝛼/2, q̂

(𝑛)
2,±𝛼/2, · · · , q̂

(𝑛)
𝑁 𝑓 ,±𝛼/2]

⊲ The column q̂(𝑛)
𝑘,±𝛼/2 contains the 𝑛𝑡ℎ realization of the Fourier mode

at the 𝑘 𝑡ℎ discrete frequency 𝑓𝑘,±𝛼/2

4: end for

5: for Each frequency 𝑘 = 1, 2, · · · , 𝑁 𝑓 (or some subset of interest) do

⊲ Assemble the matrices of Fourier realizations from the 𝑘 𝑡ℎ column of each

Q̂(𝑛)±𝛼/2
6: Q̂ 𝑓𝑘 ,±𝛼/2 ←

√
𝜅 [q̂(1)

𝑘,±𝛼/2, q̂
(2)
𝑘,±𝛼/2, · · · , q̂

(𝑁𝑏−1)
𝑘,±𝛼/2 , q̂

(𝑁𝑏)
𝑘,±𝛼/2]

⊲ Compute the CCSD at spectral frequency 𝑓𝑘 and cycle frequency 𝛼

7: S 𝑓𝑘 ,𝛼 = Q̂ 𝑓𝑘 ,𝛼/2(Q̂ 𝑓𝑘 ,−𝛼/2)∗.

8: end for

et al. (2018) and refer the reader to Brereton and Kodal (1992), Towne et al. (2018),
and Schmidt and Colonius (2020) for detailed discussions on POD and SPOD. Like
SPOD, we seek deterministic modes that depend on both space and time such that
we can optimally decompose the space-time statistics of the flow. Thus, we assume
that each realization of the stochastic process belongs to a Hilbert space with an
inner product

⟨𝒒1, 𝒒2⟩𝑥,𝑡 =
∫ ∞

−∞

∫
𝛺

𝒒∗2(𝒙, 𝑡)𝑾 (𝒙)𝒒1(𝒙, 𝑡)d𝒙d𝑡, (4.26)

where 𝒒1(𝒙, 𝑡), 𝒒2(𝒙, 𝑡) are two realizations of the flow, 𝑾 (𝒙) is a positive-definite
weighting tensor3, and 𝛺 denotes the spatial domain of interest. We then seek to
maximize

𝜆 =
𝐸{|⟨𝒒(𝒙, 𝑡), 𝜙𝜙𝜙(𝒙, 𝑡)⟩𝑥,𝑡 |2}
⟨𝜙𝜙𝜙(𝒙, 𝑡), 𝜙𝜙𝜙(𝒙, 𝑡)⟩𝑥,𝑡

, (4.27)

3While we have chosen a time-independent weighting tensor since this simplifies the derivations
and is appropriate for the example cases shown, a time-periodic weighting tensor could also be
employed.
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which leads to∫ ∞

−∞

∫
𝛺

𝑹(𝒙, 𝒙′, 𝑡, 𝑡′)𝑾 (𝒙′)𝜙𝜙𝜙(𝒙′, 𝑡′)d𝒙′d𝑡′ = 𝜆𝜙𝜙𝜙(𝒙, 𝑡), (4.28)

where 𝑹(𝒙, 𝒙′, 𝑡, 𝑡′) ≡ 𝐸{𝒒(𝒙, 𝑡)𝒒∗(𝒙′, 𝑡′)} is the two-point space-time correlation
tensor. Until this stage, no assumptions about the flow has been made and is therefore
identical to the derivation of SPOD (Lumley, 1967, 1970; Towne et al., 2018).

Since cyclostationary flows persist indefinitely, they have infinite energy in the
space-time norm, as shown in (4.26). Consequently, the eigenmodes of (4.28) do
not possess any of the useful quantities relied upon in POD or SPOD. To solve this, a
new eigenvalue decomposition is obtained in the spectral domain from which modes
with the desired properties are determined.

To derive the final eigenvalue problem, we rewrite 𝑹(𝒙, 𝒙′, 𝑡, 𝑡′) → 𝑹(𝒙, 𝒙′, 𝑡, 𝜏) ≡
𝐸{q(𝒙, 𝑡+𝜏/2)q∗(𝒙′, 𝑡−𝜏/2)}, where 𝜏 = 𝑡− 𝑡′. Recalling that for a cyclostationary
process the two-point space-time correlation density is a periodic function in time
and can be expressed as a Fourier series

𝑹(𝒙, 𝒙′, 𝑡, 𝜏) =
∞∑︁

𝑘𝛼=−∞
𝑹̃𝑘𝛼𝛼0 (𝒙, 𝒙′, 𝜏)𝑒𝑖2𝜋(𝑘𝛼𝛼0)𝑡 , (4.29)

where 𝑹̃𝑘𝛼𝛼0 (𝒙, 𝒙′, 𝜏) are the cyclic autocorrelation functions of 𝑹(𝒙, 𝒙′, 𝑡, 𝜏) at
cycle frequency 𝑘𝛼𝛼0. One can also decompose the two-point space-time correlation
density as the following phase-shifted Fourier series:

𝑹(𝒙, 𝒙′, 𝑡, 𝜏) =
∞∑︁

𝑘𝛼=−∞
𝑹̂𝑘𝛼𝛼0 (𝒙, 𝒙′, 𝜏)𝑒−𝑖𝜋(𝑘𝛼𝛼0)𝜏𝑒𝑖2𝜋(𝑘𝛼𝛼0)𝑡 , (4.30)

where the two Fourier coefficients are related by

𝑹̃𝑘𝛼𝛼0 (𝒙, 𝒙′, 𝜏)𝑒𝑖𝜋(𝑘𝛼𝛼0)𝜏 = 𝑹̂𝑘𝛼𝛼0 (𝒙, 𝒙′, 𝜏). (4.31)

Although somewhat unusual, this simply applies a phase shift to the resulting Fourier
series coefficients that, after Fourier transforming, shifts the center frequency of the
CCSD. This is identical to the phase shift that relates the symmetric and asymmetric
definitions of the cyclic cross-correlation functions and CCSD. Due to this, one
can derive CS-SPOD using the symmetric definitions and a phase shift or using the
asymmetric definition. We choose the former as it results in a simpler derivation
later. This phase shift is required to ensure the resulting eigensystem is Hermitian
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and positive semi-definite. Substituting the cyclic Wiener-Khinchin relation from
(4.7) into (4.30) and then into the Fredholm eigenvalue problem (4.28) results in∫ ∞

−∞

∫
𝛺

∫ ∞

−∞

∞∑︁
𝑘𝛼=−∞

𝑺𝑘𝛼𝛼0 (𝒙, 𝒙′, 𝑓 )𝑒𝑖2𝜋(𝑘𝛼𝛼0)𝑡𝑒𝑖2𝜋( 𝑓−
1
2 𝑘𝛼𝛼0)𝜏𝑾 (𝒙′)𝜙𝜙𝜙(𝒙′, 𝑡′)d 𝑓 d𝒙′d𝑡′

= 𝜆𝜙𝜙𝜙(𝒙, 𝑡).
(4.32)

Since 𝜏 = 𝑡 − 𝑡′, this leads to the following simplifications∫ ∞

−∞

∫
𝛺

∞∑︁
𝑘𝛼=−∞

𝑺𝑘𝛼𝛼0 (𝒙, 𝒙′, 𝑓 )𝑒𝑖2𝜋(𝑘𝛼𝛼0)𝑡𝑒𝑖2𝜋( 𝑓−
1
2 𝑘𝛼𝛼0)𝑡𝑾 (𝒙′)

×
∫ ∞

−∞

[
𝜙𝜙𝜙(𝒙′, 𝑡′)𝑒−𝑖2𝜋( 𝑓− 1

2 𝑘𝛼𝛼0)𝑡′d𝑡′
]

d 𝑓 𝑑𝑥′ = 𝜆𝜙𝜙𝜙(𝒙, 𝑡),

(4.33)∫ ∞

−∞

∫
𝛺

∞∑︁
𝑘𝛼=−∞

𝑺𝑘𝛼𝛼0 (𝒙, 𝒙′, 𝑓 )𝑒𝑖2𝜋( 𝑓 +
1
2 𝑘𝛼𝛼0)𝑡𝑾 (𝒙′)𝜙̂𝜙𝜙(𝒙′, 𝑓 − 1

2
𝑘𝛼𝛼0)d 𝑓 d𝒙′ =𝜆𝜙𝜙𝜙(𝒙, 𝑡),

(4.34)

where 𝜙̂𝜙𝜙(𝒙′, 𝑓 ) is the temporal Fourier transform of 𝜙𝜙𝜙(𝒙′, 𝑡′). Similar to SPOD,
we must choose a solution ansatz. In SPOD, we can solve a single frequency at a
time as there is no correlation between different frequency components. However,
since cyclostationary processes have spectral components that are correlated, we are
unable to solve for each frequency component separately. Instead, we solve multiple
coupled frequencies together by choosing our solution ansatz as

𝜙𝜙𝜙(𝒙, 𝑡) =
∞∑︁

𝑘 𝑓 =−∞
𝜓𝜓𝜓(𝒙, 𝛾 + 𝑘 𝑓𝛼0)𝑒𝑖2𝜋(𝛾+𝑘 𝑓 𝛼0)𝑡 , (4.35)

where 𝑘 𝑓 ∈ Z. The set of frequencies present in the solution ansatz 𝜙𝜙𝜙(𝒙, 𝑡) is called
the 𝛾 set of solution frequencies𝛺𝛾 = { · · · , 𝛾−2𝛼0, 𝛾−𝛼0, 𝛾, 𝛾+𝛼0, 𝛾+2𝛼0, · · · }.
This coupling of frequencies in CS-SPOD occurs because frequency components
separated by 𝑘𝛼𝛼0 are correlated to each other, as shown in (4.8). In contrast,
stationary processes do not exhibit correlation between frequencies, and thus each
frequency can be solved independently via SPOD. Due to this coupling, CS-SPOD
performed at 𝛾 and 𝛾 + 𝛼0 solve the same problem, i.e. giving 𝛺𝛾 = 𝛺𝛾+𝑧𝛼0 , where
𝑧 ∈ Z. This means that CS-SPOD only contains unique solutions for the frequency
sets corresponding to 𝛾 ∈ 𝛤, where 𝛤 = [−𝛼0/2, 𝛼0/2). The simplest way to
differentiate between different frequency sets was to introduce the so-called center
frequency 𝛾.
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Fourier transforming Equation 4.35 gives

𝜙̂𝜙𝜙(𝒙, 𝑓 ) =
∞∑︁

𝑘 𝑓 =−∞
𝜓𝜓𝜓(𝒙, 𝛾 + 𝑘 𝑓𝛼0)𝛿( 𝑓 − (𝛾 + 𝑘 𝑓𝛼0)). (4.36)

The frequency-shifted version of 𝜙̂𝜙𝜙(𝒙, 𝑓 ) is then given by

𝜙̂𝜙𝜙(𝒙, 𝑓 − 1
2
𝑘𝛼𝛼0) =

∞∑︁
𝑘 𝑓 =−∞

𝜓𝜓𝜓(𝒙, 𝛾 + 𝑘 𝑓𝛼0)𝛿( 𝑓 − (𝛾 + (𝑘 𝑓 +
1
2
𝑘𝛼)𝛼0)). (4.37)

Substituting these expressions into (4.34) and integrating with respect to 𝑓 results
in ∫

𝛺

∞∑︁
𝑘𝛼=−∞

∞∑︁
𝑘 ′
𝑓
=−∞

𝑺𝑘𝛼𝛼0 (𝒙, 𝒙′, 𝛾 + (𝑘′𝑓 +
1
2
𝑘𝛼)𝛼0)𝑒𝑖2𝜋(𝛾+(𝑘𝛼+𝑘

′
𝑓
)𝛼0)𝑡𝑾 (𝒙′)

× 𝜓𝜓𝜓(𝒙, 𝛾 + 𝑘′𝑓𝛼0)d𝒙′ = 𝜆
∞∑︁

𝑘 𝑓 =−∞
𝜓𝜓𝜓(𝒙, 𝛾 + 𝑘 𝑓𝛼0)𝑒𝑖2𝜋(𝛾+𝑘 𝑓 𝛼0)𝑡 . (4.38)

For this equation to hold over all time, we perform a harmonic balance where each
frequency component must hold separately. This gives 𝛾+(𝑘′

𝑓
+𝑘𝛼)𝛼0 = 𝛾+𝑘 𝑓𝛼0 →

𝑘′
𝑓
+ 𝑘𝛼 = 𝑘 𝑓 . An equation for each frequency component of our ansatz is formed

as∫
𝛺

∞∑︁
𝑘𝛼=−∞

∞∑︁
𝑘 ′
𝑓
=−∞

𝑺𝑘𝛼𝛼0 (𝒙, 𝒙′, 𝛾 + (𝑘′𝑓 +
1
2
𝑘𝛼)𝛼0)𝑾 (𝒙′)𝜓𝜓𝜓(𝒙, 𝛾 + 𝑘′𝑓𝛼0)d𝒙′𝛿𝑘 ′

𝑓
+𝑘𝛼,𝑘 𝑓

= 𝜆𝜓𝜓𝜓(𝒙, 𝛾 + 𝑘 𝑓𝛼0). (4.39)

Substituting 𝑘𝛼 = 𝑘 𝑓 − 𝑘′𝑓 , this expression simplifies to∫
𝛺

∞∑︁
𝑘 ′
𝑓
=−∞

𝑺(𝑘 𝑓−𝑘 ′𝑓 )𝛼0 (𝒙, 𝒙′, 𝛾 +
1
2
(𝑘 𝑓 + 𝑘′𝑓 )𝛼0)𝑾 (𝒙′)𝜓𝜓𝜓(𝒙, 𝛾 + 𝑘′𝑓𝛼0)d𝒙′

= 𝜆𝜓𝜓𝜓(𝒙, 𝛾 + 𝑘 𝑓𝛼0). (4.40)

Expanding (4.40) gives the final infinite-dimensional CS-SPOD eigenvalue problem,
written compactly as∫

𝛺

S (𝒙, 𝒙′, 𝛾)W(𝒙′)𝛹𝛹𝛹 (𝒙′, 𝛾)d𝒙′ = 𝜆(𝛾)𝛹𝛹𝛹 (𝒙, 𝛾), (4.41)
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where

S (𝒙, 𝒙′, 𝛾) = (4.42a)

. . .
. . .

. . .
. . .

. . .

. . . 𝑺0(𝒙, 𝒙′, 𝛾 − 𝛼0) 𝑺−𝛼0 (𝒙, 𝒙′, 𝛾 −
𝛼0
2 ) 𝑺−2𝛼0 (𝒙, 𝒙′, 𝛾)

. . .

. . . 𝑺𝛼0 (𝒙, 𝒙′, 𝛾 −
𝛼0
2 ) 𝑺0(𝒙, 𝒙′, 𝛾) 𝑺−𝛼0 (𝒙, 𝒙′, 𝛾 +

𝛼0
2 )

. . .

. . . 𝑺2𝛼0 (𝒙, 𝒙′, 𝛾) 𝑺𝛼0 (𝒙, 𝒙′, 𝛾 +
𝛼0
2 ) 𝑺0(𝒙, 𝒙′, 𝛾 + 𝛼0)

. . .

. . .
. . .

. . .
. . .

. . .


,

W (𝒙) =



. . .

𝑾 (𝒙)
𝑾 (𝒙)

𝑾 (𝒙)
. . .


,

(4.42b)

𝛹𝛹𝛹 (𝒙, 𝛾) =



...

𝜓𝜓𝜓(𝒙, 𝛾 − 𝛼0)
𝜓𝜓𝜓(𝒙, 𝛾)

𝜓𝜓𝜓(𝒙, 𝛾 + 𝛼0)
...


.

(4.42c)

S (𝒙, 𝒙′, 𝛾) is the CS-SPOD decomposition tensor, W (𝒙) is the concatenated weight
tensor, and𝛹𝛹𝛹 (𝒙, 𝛾) are the CS-SPOD eigenvectors. This frequency-domain version
𝛹𝛹𝛹 (𝒙, 𝛾) of the CS-SPOD eigenvectors can be converted to the time-domain version
𝜙𝜙𝜙(𝒙, 𝑡) using (4.35). In essence, we convert the original problem into the frequency
domain and then solve for the Fourier series coefficients 𝜓𝜓𝜓(𝒙, 𝑓 ) at each 𝑓 ∈ 𝛺𝛾.

In practice, the infinite-dimensional problem can not be solved. Instead, we must
restrict the cycle frequencies considered and the frequencies present in the solution
ansatz to some limit. We restrict the solution ansatz to

𝜙𝜙𝜙(𝒙, 𝑡) =
𝐾 𝑓∑︁

𝑘 𝑓 =−𝐾 𝑓
𝜓𝜓𝜓(𝒙, 𝛾 + 𝑘 𝑓𝛼0)𝑒𝑖2𝜋(𝛾+𝑘 𝑓 𝛼0)𝑡 , (4.43)

and the cycle frequencies to

𝑹(𝒙, 𝒙′, 𝑡, 𝜏) =
𝐾𝛼∑︁

𝑘𝛼=−𝐾𝛼
𝑹̃𝑘𝛼𝛼0 (𝒙, 𝒙′, 𝜏)𝑒𝑖2𝜋(𝑘𝛼𝛼0)𝑡 , (4.44)

where 𝐾 𝑓 ∈ Z+ and 𝐾𝛼 ∈ Z+. This gives a final solution frequency set of 𝛺𝛾 =

{−𝐾 𝑓𝛼0 +𝛾, (−𝐾 𝑓 +1)𝛼0 +𝛾, · · · , 𝛾, · · · , (𝐾 𝑓 −1)𝛼0 +𝛾, 𝐾 𝑓𝛼0 +𝛾}. In addition,
the flow may only exhibit cyclostationarity at𝐾𝛼 harmonics of the fundamental cycle
frequency. We employ identical notation to restrict the harmonics used to compute
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various second-order tools, such as the Wigner-Ville spectrum. These limits result
in 2𝐾 𝑓 + 1 coupled equations, resulting in a 2𝐾 𝑓 + 1 × 2𝐾 𝑓 + 1 block eigensystem
that is 2𝐾𝛼 + 1 banded-block-diagonal. In practice, 𝐾 𝑓 should be chosen such that
𝛺𝛾 encompasses all frequencies of interest/importance, 𝐾𝛼 should be chosen to
encompass all the cycle frequencies present in the flow, and 𝐾𝛼 ≤ 𝐾 𝑓 . An example
for 𝐾 𝑓 = 2, 𝐾𝛼 = 1 is (for compactness, we have dropped the explicit dependence
on 𝒙 in this equation)

S (𝛾) = (4.45)

𝑺0(𝛾 − 2𝛼0) 𝑺−𝛼0 (𝛾 − 3
2𝛼0) 0 0 0

𝑺𝛼0 (𝛾 − 3
2𝛼0) 𝑺0(𝛾 − 𝛼0) 𝑺−𝛼0 (𝛾 − 1

2𝛼0) 0 0
0 𝑺𝛼0 (𝛾 − 1

2𝛼0) 𝑺0(𝛾) 𝑺−𝛼0 (𝛾 + 1
2𝛼0) 0

0 0 𝑺𝛼0 (𝛾 + 1
2𝛼0) 𝑺0(𝛾 + 𝛼0) 𝑺−𝛼0 (𝛾 + 3

2𝛼0)
0 0 0 𝑺𝛼0 (𝛾 + 3

2𝛼0) 𝑺0(𝛾 + 2𝛼0)


.

In the limiting case that 𝐾𝛼 = 0 (i.e. when the flow is statistically stationary
and hence no cross-frequency interactions are present), we obtain a block-diagonal
CS-SPOD decomposition matrix where each diagonal block is the standard SPOD
eigenvalue problem at a frequency 𝛾 + 𝑘𝛼0, 𝑘 ∈ Z.

4.2.2 CS-SPOD properties
Since S (𝒙, 𝒙′, 𝛾) is compact and finite, Hilbert–Schmidt theory guarantees a number
of properties analogous to those for POD and SPOD (Lumley, 1967, 1970; Towne
et al., 2018). There are a countably infinite set of eigenfunctions 𝛹𝛹𝛹 𝑗 (𝒙, 𝛾) at
each unique frequency set 𝛺𝛾 that are orthogonal to all other modes at the same
frequency set 𝛺𝛾 in the spatial inner norm ⟨𝒒1, 𝒒2⟩𝑥 =

∫
𝛺
𝒒∗2(𝒙, 𝑡)𝑾 (𝒙)𝒒1(𝒙, 𝑡)d𝒙,

i.e. ⟨𝛹𝛹𝛹 𝑗 (𝒙, 𝛾),𝛹𝛹𝛹 𝑘 (𝒙, 𝛾)⟩𝑥 = 𝛿 𝑗 ,𝑘 . The following concatenated vector of each flow
realization at the solution frequencies is optimally expanded as

𝑸̂(𝒙, 𝛾) =



...

𝒒̂(𝒙, 𝛾 − 𝛼0)
𝒒̂(𝒙, 𝛾)

𝒒̂(𝒙, 𝛾 + 𝛼0)
...


, 𝑸̂(𝒙, 𝛾) =

∞∑︁
𝑗=1
𝑎 𝑗 (𝛾)𝛹𝛹𝛹 𝑗 (𝒙, 𝛾), (4.46a, b)

where 𝒒̂(𝒙, 𝑓 ) is the temporal Fourier decomposition of each flow realization 𝒒(𝒙, 𝑡)
at frequency 𝑓 and 𝑎 𝑗 (𝛾) = ⟨𝑸̂(𝒙, 𝛾),𝛹𝛹𝛹 𝑗 (𝒙, 𝛾)⟩𝑥 are the expansion coefficients,
which are uncorrelated, i.e. 𝐸{𝑎 𝑗 (𝛾)𝑎∗𝑘 (𝛾)} = 𝜆 𝑗 (𝛾)𝛿 𝑗 ,𝑘 .
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S (𝒙, 𝒙′, 𝛾) is positive semi-definite meaning that S (𝒙, 𝒙′, 𝛾) has the following
unique diagonal representation,

S (𝒙, 𝒙′, 𝛾) =
∞∑︁
𝑗=1
𝜆 𝑗 (𝛾)𝛹𝛹𝛹 𝑗 (𝒙, 𝛾)𝛹𝛹𝛹 ∗𝑗 (𝒙′, 𝛾), (4.47)

in which the CS-SPOD modes are its principal components. This shows that CS-
SPOD determines the modes that optimally reconstruct the second-order statistics,
one frequency set 𝛺𝛾 at a time.

CS-SPOD modes are optimal in terms of their total energy reconstruction of
S (𝒙, 𝒙′, 𝛾) only. Thus, although each of the CCSDs present in S (𝒙, 𝒙′, 𝛾) have
a diagonal representation, the individual components of𝛹𝛹𝛹 𝑗 (𝒙, 𝛾) are, in general,
not orthogonal in the space norm, i.e. ⟨𝜓𝜓𝜓 𝑗 (𝒙, 𝑓 ), 𝜓𝜓𝜓𝑘 (𝒙, 𝑓 )⟩𝑥 ≠ 𝛿 𝑗 ,𝑘 . One exception
is for stationary processes where the correlation between different frequency com-
ponents is zero, resulting in a block-diagonal matrix where𝛹𝛹𝛹 𝑗 (𝒙, 𝛾) contains just a
single non-zero 𝜓𝜓𝜓 𝑗 (𝒙, 𝑓 ) component, with ⟨𝜓𝜓𝜓 𝑗 (𝒙, 𝑓 ), 𝜓𝜓𝜓𝑘 (𝒙, 𝑓 )⟩𝑥 = 𝛿 𝑗 ,𝑘 .

Transforming the eigenvectors𝛹𝛹𝛹 𝑗 (𝒙, 𝛾) back into the time domain, noting the ansatz
defined in (4.35), gives 𝜙𝜙𝜙𝛾, 𝑗 (𝒙, 𝑡) =

∑∞
𝑘 𝑓 =−∞𝜓𝜓𝜓 𝑗 (𝒙, 𝛾 + 𝑘 𝑓𝛼0)𝑒𝑖2𝜋(𝛾+𝑘 𝑓 𝛼0)𝑡 , which are

orthogonal in the space-time inner product integrated over a complete period. Thus,
every mode occurring at each frequency set 𝛺𝛾 can be viewed as a unique space-time
mode.

The two-point space-time correlation tensor can be written as

𝑹(𝒙, 𝒙′, 𝑡, 𝑡′) =
∫ 𝛼0/2

−𝛼0/2

∞∑︁
𝑗=1
𝜆 𝑗 (𝛾)𝜙𝜙𝜙𝛾, 𝑗 (𝒙, 𝑡)𝜙𝜙𝜙∗𝛾, 𝑗 (𝒙′, 𝑡′)𝑑𝛾. (4.48)

Substituting in the frequency expansion of 𝜙𝜙𝜙𝛾, 𝑗 (𝒙, 𝑡) and applying 𝑡′ = 𝑡 − 𝜏 gives

𝑹(𝒙, 𝒙′, 𝑡, 𝜏) =
∫ 𝛼0/2

−𝛼0/2

∞∑︁
𝑗=1
𝜆 𝑗 (𝛾) (4.49)

×
∞∑︁

𝑘 𝑓 =−∞

∞∑︁
𝑘 ′
𝑓
=−∞

𝜓𝜓𝜓 𝑗 (𝒙, 𝛾 + 𝑘 𝑓𝛼0)𝜓𝜓𝜓∗𝑗 (𝒙′, 𝛾 + 𝑘′𝑓𝛼0)𝑒𝑖2𝜋(𝑘 𝑓−𝑘
′
𝑓
)𝛼0𝑡𝑒

𝑖2𝜋(𝛾+𝑘 ′
𝑓
𝛼0)𝜏𝑑𝛾,

resulting in a reconstruction that is time-periodic due to 𝑒𝑖2𝜋(𝑘 𝑓−𝑘
′
𝑓
)𝛼0𝑡 , which is why

the ansatz defined by (4.35) was chosen.

In summary, for cyclostationary flows, CS-SPOD leads to modes that oscillate at a
set of frequencies (𝛺𝛾) and optimally represent the second-order space-time flow
statistics.
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4.2.3 Computing CS-SPOD modes in practice
We now detail how to compute CS-SPOD modes from data along with a technique
to reduce the cost and memory requirements to levels similar to those of SPOD.
A MATLAB implementation of the presented algorithms is available at https://
github.com/CyclostationarySPOD/CSSPOD. Since the dimension of the CCSD
is 𝑁 × 𝑁 , the overall eigensystem S𝛾𝑘 (which is the discrete approximation of
S (𝒙, 𝒙′, 𝛾)) becomes (2𝐾 𝑓 +1)𝑁 × (2𝐾 𝑓 +1)𝑁 in size. For common fluid dynamics
problems, this can become a dense matrix O(106 − 109) × O(106 − 109) in size,
which is computationally intractable to store in memory, let alone compute its
eigendecomposition. This is also the dimension of the inversion required in the
CSEOF methods by Kim et al. (1996) and Kim and North (1997). Thus, we
derive a method-of-snapshots approach similar to the technique employed in POD
(Sirovich, 1987) and SPOD (Citriniti and George, 2000; Towne et al., 2018) that
reduces the size of the eigenvalue problem from (2𝐾 𝑓 + 1)𝑁 × (2𝐾 𝑓 + 1)𝑁 to
(2𝐾 𝑓 + 1)𝑁𝑏 × (2𝐾 𝑓 + 1)𝑁𝑏. Since 𝑁𝑏 << 𝑁 , the method-of-snapshots technique
makes the eigenvalue problem computationally tractable.

To determine CS-SPOD with a finite amount of discrete data, we substitute in the
Welch computational procedure for the CCSD into each term of the frequency-
limited version of (4.42a). We numerically evaluate this as

S𝛾𝑘 = Q̃𝛾𝑘Q̃
∗
𝛾𝑘
, Q̃𝛾𝑘 =



Q̂𝛾𝑘 ,−𝐾 𝑓 𝛼0
...

Q̂𝛾𝑘 ,0
...

Q̂𝛾𝑘 ,𝐾 𝑓 𝛼0


, (4.50a, b)

where

Q̂𝛾𝑘 ,𝑘 𝑓 𝛼0 =
√
𝜅 [q̂(1)

𝑘,𝑘 𝑓 𝛼0
, q̂(2)

𝑘,𝑘 𝑓 𝛼0
, · · · , q̂(𝑁𝑏−1)

𝑘,𝑘 𝑓 𝛼0
, q̂(𝑁𝑏)

𝑘,𝑘 𝑓 𝛼0
] ∈ C𝑁×𝑁𝑏 . (4.51)

Q̃𝛾𝑘 is called the concatenated frequency-data matrix at the discrete 𝛺𝛾𝑘 set of
solution frequencies and q̂(𝑛)

𝑘,𝑘 𝑓 𝛼0
is the 𝑘 𝑡ℎ DFT component of the 𝑛𝑡ℎ block of the

𝑘 𝑓𝛼0 frequency-shifted data matrix. As stated previously, the solution frequency
sets are only unique for 𝛾 ∈ 𝛤, thus the corresponding DFT frequencies are

𝛾𝑘 =


𝑘 − 1
𝑁 𝑓 𝛥𝑡

for 𝑘 ≤ ⌊
𝛼0𝑁 𝑓 𝛥𝑡

2
⌋ + 1,

𝑘 − 1 − 𝑁 𝑓

𝑁 𝑓 𝛥𝑡
for 𝑁 𝑓 − ⌈

𝛼0𝑁 𝑓 𝛥𝑡

2
⌉ + 1 < 𝑘 ≤ 𝑁 𝑓 ,

(4.52)

https://github.com/CyclostationarySPOD/CSSPOD
https://github.com/CyclostationarySPOD/CSSPOD
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which forms the elements 𝛾𝑘 ∈ 𝛤𝑘 . Expanding (4.50) gives

S𝛾𝑘 = (4.53)

Q̂𝛾𝑘 ,−𝐾 𝑓 𝛼0Q̂
∗
𝛾𝑘 ,−𝐾 𝑓 𝛼0 · · · Q̂𝛾𝑘 ,−𝐾 𝑓 𝛼0Q̂

∗
𝛾𝑘 ,0 · · · Q̂𝛾𝑘 ,−𝐾 𝑓 𝛼0Q̂

∗
𝛾𝑘 ,𝐾 𝑓 𝛼0

...
...

...
...

...

Q̂𝛾𝑘 ,0Q̂∗𝛾𝑘 ,−𝐾 𝑓 𝛼0 · · · Q̂𝛾𝑘 ,0Q̂∗𝛾𝑘 ,0 · · · Q̂𝛾𝑘 ,0Q̂∗𝛾𝑘 ,𝐾 𝑓 𝛼0
...

...
...

...
...

Q̂𝛾𝑘 ,𝐾 𝑓 𝛼0Q̂
∗
𝛾𝑘 ,−𝐾 𝑓 𝛼0 · · · Q̂𝛾𝑘 ,𝐾 𝑓 𝛼0Q̂

∗
𝛾𝑘 ,0 · · · Q̂𝛾𝑘 ,𝐾 𝑓 𝛼0Q̂

∗
𝛾𝑘 ,𝐾 𝑓 𝛼0


.

This expression shows that S𝛾𝑘 contains off-diagonal terms that represent spectral
correlations that are not present in the process (i.e. are not cycle frequencies
considered in (4.44)). However, as 𝑁𝑏 and 𝑁 are increased together, this system
converges and becomes a consistent estimate of (4.42a). Thus, all terms that
represent spectral correlations not present in (4.44) converge to zero. Furthermore,
the estimate is numerically positive semi-definite resulting in CS-SPOD modes that
will inherit the desired properties. For the numerical computation, one can not
choose 𝐾𝛼; instead, only 𝐾 𝑓 is chosen and 𝐾𝛼 = 𝐾 𝑓 .

Equation (4.50) shows that the final eigenvalue problem can be compactly written
as

S𝛾𝑘WΨΨΨ𝛾𝑘 = 𝚲𝛾𝑘ΨΨΨ𝛾𝑘 , (4.54a)

Q̃𝛾𝑘Q̃
∗
𝛾𝑘
WΨΨΨ𝛾𝑘 = 𝚲𝛾𝑘ΨΨΨ𝛾𝑘 . (4.54b)

The spatial inner weight

⟨𝒒1, 𝒒2⟩𝑥 =
∫
𝛺

𝒒∗2(𝒙, 𝑡)𝑾 (𝒙)𝒒1(𝒙, 𝑡)d𝒙, (4.55)

is approximated as ⟨𝒒1, 𝒒2⟩𝑥 = q∗2Wq1, where W ∈ C𝑁×𝑁 is a positive-definite
Hermitian matrix that accounts for both the weight and the numerical quadrature of
the integral on the discrete grid and W ∈ C(2𝐾 𝑓 +1)𝑁×(2𝐾 𝑓 +1)𝑁 is the block-diagonal
matrix of W (similar to (4.42b)). The CS-SPOD modes are then given by the columns
of ΨΨΨ𝛾𝑘 and are ranked by their corresponding eigenvalues given by the diagonal
matrix 𝚲𝛾𝑘 . These discrete CS-SPOD modes hold analogous properties to all those
previously discussed, including that they are discretely orthogonal ΨΨΨ∗𝛾𝑘WΨΨΨ𝛾𝑘 = I
and optimally decompose the estimated CS-SPOD decomposition matrix S𝛾𝑘 =

ΨΨΨ𝛾𝑘𝚲𝛾𝑘ΨΨΨ
∗
𝛾𝑘

(i.e. the second-order statistics).
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At most, min(𝑁, 𝑁𝑏) number of non-zero eigenvalues can be obtained. Thus, it is
possible to show that the following 𝑁𝑏 × 𝑁𝑏 eigenvalue problem

Q̃
∗
𝛾𝑘
WQ̃𝛾𝑘𝚯𝛾𝑘 = 𝚲̃𝛾𝑘𝚯𝛾𝑘 , (4.56)

contains the same non-zero eigenvalues as (4.54). This approach is known as the
method-of-snapshots (Sirovich, 1987). The corresponding eigenvectors are exactly
recovered as

Ψ̃ΨΨ𝛾𝑘 = Q̃𝛾𝑘𝚯𝛾𝑘 𝚲̃
−1/2
𝛾𝑘

. (4.57)

Other than the simple weighting matrix W, only the concatenated data matrix Q̃𝛾𝑘

must be determined, which is easily achieved by computing each term (Q̂𝛾𝑘 ,𝑘 𝑓 𝛼0)
in Q̃𝛾𝑘 using algorithm 1. Once Q̃𝛾𝑘 is determined, one computes Q̃

∗
𝛾𝑘
WQ̃𝛾𝑘 and

then performs the eigenvalue decomposition. Typically, only the first few modes
are of physical interest, which allows us to employ a truncated decomposition
where we determine a limited number of the most energetic CS-SPOD modes using
randomized linear algebra methods (Martinsson and Tropp, 2020). The total energy
can be efficiently evaluated by taking the trace of Q̃

∗
𝛾𝑘
WQ̃𝛾𝑘 . In appendix A, we

show a practical but computationally inefficient implementation of CS-SPOD. The
algorithm requires computing 2𝐾 𝑓 + 1 CCSDs, and thus the cost is approximately
2𝐾 𝑓 + 1 times that of the SPOD. The memory requirement scales similarly. This
can be prohibitive when analyzing large data sets.

However, substantial savings are realized since all the terms in Q̃𝛾𝑘 are in the
form of Q̂𝛾𝑘 ,𝑘 𝑓 𝛼0 , which represent the 𝑘 𝑡ℎ frequency component of the temporal
Fourier transform of the 𝑘 𝑓𝛼0 frequency-shifted data matrix. The temporal Fourier
transform of the 𝑛𝑡ℎ realization of the 𝑘 𝑓𝛼0 frequency-shifted data is given by

q̂(𝑛)
𝑘,𝑘 𝑓 𝛼0

=
1√︁
𝑁 𝑓

𝑁 𝑓∑︁
𝑗=1
𝑤 𝑗q(𝑛)𝑗 ,𝑘 𝑓 𝛼0

𝑒
−𝑖2𝜋(𝑘−1) [ 𝑗−1

𝑁 𝑓
]
, (4.58a)

=
1√︁
𝑁 𝑓

𝑁 𝑓∑︁
𝑗=1
𝑤 𝑗q(𝑛)𝑗 𝑒

−𝑖2𝜋(𝑘 𝑓 𝛼0) [( 𝑗−1)+(𝑛−1) (𝑁 𝑓−𝑁0)]𝛥𝑡𝑒
−𝑖2𝜋(𝑘−1) [ 𝑗−1

𝑁 𝑓
]
, (4.58b)

where 𝑒−𝑖2𝜋(𝑘 𝑓 𝛼0) [( 𝑗−1)+(𝑛−1) (𝑁 𝑓−𝑁0)]𝛥𝑡 is the frequency-shifting operation. We sep-
arate these components into a phase-shifting component and a zero-phase-shift
frequency-shifting component, by

q̂(𝑛)
𝑘,𝑘 𝑓 𝛼0

= 𝑒−𝑖2𝜋 (𝑘 𝑓 𝛼0 )𝛥𝑡 [ (𝑛−1) (𝑁 𝑓 −𝑁0 ) ] 1√︁
𝑁 𝑓

𝑁 𝑓∑︁
𝑗=1
𝑤 𝑗q(𝑛)𝑗 𝑒

−𝑖2𝜋 (𝑘 𝑓 𝛼0𝛥𝑡𝑁 𝑓 +𝑘−1) [ 𝑗−1
𝑁𝑓
]
, (4.59a)

q̂(𝑛)
𝑘,𝑘 𝑓 𝛼0

= 𝑒−𝑖2𝜋 (𝑘 𝑓 𝛼0 )𝛥𝑡 [ (𝑛−1) (𝑁 𝑓 −𝑁0 ) ] q̂(𝑛)
ℓ (𝑘,𝑘 𝑓 ) , (4.59b)
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where ℓ(𝑘, 𝑘 𝑓 ) is the ℓ𝑡ℎ frequency that is a function of 𝑘, 𝑘 𝑓 and will be defined in
equation (4.62). This shows that the 𝑓𝑘 discrete frequency of the 𝑘 𝑓𝛼0-frequency-
shifted data matrix (Q̂ 𝑓𝑘 ,𝑘 𝑓 𝛼0) can be exactly computed as a phase-shifted version of
the 𝑓ℓ(𝑘,𝑘 𝑓 ) discrete frequency component of the non-frequency-shifted data matrix
(Q̂ 𝑓ℓ (𝑘,𝑘 𝑓 ) ,0

). To employ this method, 𝑘 𝑓𝛼0𝛥𝑡𝑁 𝑓 ∈ Z. Since 𝛼0𝛥𝑇 = 1/𝑁𝜃 , where

𝑁𝜃 is the number of snapshots per fundamental period, this gives 𝑘 𝑓 𝑁 𝑓
𝑁𝜃
∈ Z, which

requires 𝑁 𝑓 = 𝑐𝑁𝜃 , where 𝑐 ∈ Z+ (i.e. there is a restriction on the length of each
realization). This ensures that the change in frequency due to the frequency-shifting
operator is equal to an integer change in the index of the frequency vector. With this
restriction, the frequency spectrum of the DFT of a 𝑁 𝑓 length record is

𝑓𝑘 =


(𝑘 − 1)𝛼0

𝑐
for 𝑘 ≤

𝑁 𝑓

2
,

(𝑘 − 1 − 𝑁 𝑓 )𝛼0

𝑐
for 𝑘 >

𝑁 𝑓

2
,

(4.60)

and the unique frequency sets become

𝛾𝑘 =


(𝑘 − 1)𝛼0

𝑐
for 𝑘 ≤ ⌊ 𝑐

2
⌋ + 1,

(𝑘 − 1 − 𝑁 𝑓 )𝛼0

𝑐
for 𝑁 𝑓 − ⌈

𝑐

2
⌉ + 1 < 𝑘 ≤ 𝑁 𝑓 .

(4.61)

This demonstrates that a frequency shift of 𝑘 𝑓𝛼0 corresponds to an integer change in
the frequency index, i.e. the 𝑘 𝑡ℎ frequency component of the 𝑘 𝑓𝛼0-frequency-shifted
data matrix corresponds to the phase-shifted version of the ℓ(𝑘, 𝑘 𝑓 )𝑡ℎ frequency
component ( 𝑓ℓ(𝑘,𝑘 𝑓 )) of the non-frequency-shifted data matrix, i.e. 𝑓𝑘,𝑘 𝑓 𝛼0 = 𝑓ℓ(𝑘,𝑘 𝑓 ) ,
where

ℓ(𝑘, 𝑘 𝑓 ) =



{
𝑘 + 𝑘 𝑓 𝑐 for 𝑘 𝑓 ≥ 0

𝑘 + 𝑘 𝑓 𝑐 + 𝑁 𝑓 for 𝑘 𝑓 < 0
for 𝑘 ≤ ⌊ 𝑐

2
⌋ + 1,{

𝑘 + 𝑘 𝑓 𝑐 − 𝑁 𝑓 for 𝑘 𝑓 > 0

𝑘 + 𝑘 𝑓 𝑐 for 𝑘 𝑓 ≤ 0
for 𝑁 𝑓 − ⌈

𝑐

2
⌉ + 1 < 𝑘 ≤ 𝑁 𝑓 .

(4.62)

This means that all the data required for CS-SPOD (for all frequency sets 𝛺𝛾𝑘 ) is
contained within the Fourier transform of the original data matrix.

Algorithm 2 incorporates these savings and requires only a single DFT of the
data matrix, making it similar in computational cost and memory requirement
to SPOD. The memory usage to compute CS-SPOD for complex input data is
≈ ( 1

1−𝑁0/𝑁 𝑓 + 1) × mem(Q), which is the memory required to store the, possibly
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overlapping, block-data matrix and the original data matrix. Additional memory
is required to store the temporary matrix Q̃𝛾𝑘 , although the size of this matrix is
minimal as typically 2𝐾 𝑓 +1 << 𝑁 𝑓 . In extreme cases where only a single snapshot
can be loaded at a time, a streaming CS-SPOD algorithm could be developed
analogous to the streaming SPOD method by Schmidt and Towne (2019).

Algorithm 2 Efficient algorithm to compute CS-SPOD.
1: for Each data block, 𝑛 = 1, 2, · · · , 𝑁𝑏 do

⊲ Construct the block-data matrix
2: Q(𝑛) ← [q1+(𝑛−1) (𝑁 𝑓−𝑁0) , q2+(𝑛−1) (𝑁 𝑓−𝑁0) , · · · , q𝑁 𝑓 +(𝑛−1) (𝑁 𝑓−𝑁0)]

⊲Using a (windowed) fast Fourier transform, calculate and store the row-wise
DFT for each frequency-shifted block-data matrix

3: Q̂(𝑛) = FFT(Q(𝑛)) ⊲ Discard any frequency components that are not
required

to compute Q̃𝛾𝑘

4: end for
5: for Each 𝛾𝑘 ∈ 𝛤𝑘 (or some subset of interest) do

⊲ Assemble the concatenated frequency-data matrix for frequency set 𝛺𝛾𝑘

6: Q̃𝛾𝑘 ←



Q̂𝛾𝑘 ,−𝐾 𝑓 𝛼0
...

Q̂𝛾𝑘 ,0
...

Q̂𝛾𝑘 ,𝐾 𝑓 𝛼0


where Q̂𝛾𝑘 ,𝑘 𝑓 𝛼0 ←

√
𝜅 [q̂(1)

𝑘,𝑘 𝑓 𝛼0
, q̂(2)

𝑘,𝑘 𝑓 𝛼0
, · · · , q̂(𝑁𝑏−1)

𝑘,𝑘 𝑓 𝛼0
, q̂(𝑁𝑏)

𝑘,𝑘 𝑓 𝛼0
] is the matrix

of
Fourier realizations corresponding to the 𝑘 𝑡ℎ column of the 𝑘 𝑓𝛼0 frequency-

shifted
block-data matrix Q̂(𝑛)𝑘 𝑓 𝛼0 , evaluated efficiently by q̂(𝑛)

𝑘,𝑘 𝑓 𝛼0
=

𝑒−𝑖2𝜋(𝑘 𝑓 𝛼0)𝛥𝑡 [(𝑛−1) (𝑁 𝑓−𝑁0)] q̂(𝑛)
ℓ(𝑘,𝑘 𝑓 ) , where the index ℓ(𝑘, 𝑘 𝑓 ) is given by (4.62)

7: Compute the matrix M𝛾𝑘 ← Q̃
∗
𝛾𝑘
WQ̃𝛾𝑘

8: Compute the eigenvalue decomposition M𝛾𝑘 = 𝚯𝛾𝑘 𝚲̃𝛾𝑘𝚯
∗
𝛾𝑘

9: Compute and save the CS-SPOD modes Ψ̃ΨΨ𝛾𝑘 = Q̃𝛾𝑘𝚯𝛾𝑘 𝚲̃
−1/2
𝛾𝑘

and energies 𝚲̃𝛾𝑘 for the 𝛾𝑘 frequency set 𝛺𝛾𝑘
10: end for
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4.3 Validation of our CCSD and CS-SPOD algorithms
We validate our implementation of the CCSD and CS-SPOD using a model problem
that has an analytical solution. Let 𝑛(𝑥, 𝑡) be a zero-mean, complex-valued, station-
ary random process with uniformly distributed phase (between 0 and 2𝜋), normally
distributed unit variance, and a covariance kernel 𝑐(𝑥, 𝑥′) = 𝐸{𝑛(𝑥, 𝑡)𝑛∗(𝑥′, 𝑡)} of

𝑐(𝑥, 𝑥′) = 1
√

2𝜋𝜎𝜂
exp

[
−1

2

(
𝑥 − 𝑥′
𝜎𝜂

)2
]

exp
[
−𝑖2𝜋𝑥 − 𝑥

′

𝜆𝜂

]
, (4.63)

where 𝜎𝜂 = 4 is the standard deviation of the envelope, 𝜆𝜂 = 20 is the wavelength
of the filter, and 𝑥0 = 1.5 is the center off-set distance. A domain 𝑥 ∈ [−10, 10] is
employed and is discretized using 2001 equispaced grid points resulting in a grid
spacing of 𝛥𝑥 = 0.01. This covariance kernel is identical to the one used by Towne
et al. (2018) as its structure is qualitatively similar to statistics present in real flows
(e.g. a turbulent jet). The filtered process 𝑛̃(𝑥, 𝑡) is defined as the convolution
between a filter 𝑓ℓ (𝑥, 𝑡) and 𝑛(𝑥, 𝑡), given by

𝑛̃(𝑥, 𝑡) = 𝑓ℓ (𝑥, 𝑡) ⊛ 𝑛(𝑥, 𝑡). (4.64)

The filter employed is a 5𝑡ℎ-order finite-impulse-response filter with a cutoff fre-
quency 𝑓𝑐𝑜, that varies as a function of the spatial location 𝑓𝑐𝑜 = 0.2|𝑥−𝑥0 |/max(𝑥)+
0.2. This results in a filter exhibiting a more rapid spectral decay at 𝑥0 and a flatter
spectrum moving away from this location.

We sinusoidally modulate 𝑛̃(𝑥, 𝑡) to create a cyclostationary process

𝑔(𝑥, 𝑡) = 𝑛̃(𝑥, 𝑡)cos(2𝜋 𝑓0𝑡 + 𝜃0), (4.65)

where 𝑓0 = 0.5 is the modulation frequency and 𝜃0 = 1
32𝜋 is a phase offset. Using

the theory developed in §4.1, the CCSD of 𝑔(𝑥, 𝑡) is analytically determined as

𝑆𝑔 (𝑥, 𝑥′, 𝛼, 𝑓 ) =


1
4𝑒
±𝑖2𝜃0𝑆𝑛̃ (𝑥, 𝑥′, 0, 𝑓 ) for 𝛼 = ±2 𝑓0,

1
4𝑆𝑛̃ (𝑥, 𝑥

′, 0, 𝑓 + 𝑓0) + 1
4𝑆𝑛̃ (𝑥, 𝑥

′, 0, 𝑓 − 𝑓0) for 𝛼 = 0,

0 otherwise,
(4.66)

where 𝑆𝑛̃ (𝑥, 𝑥′, 0, 𝑓 ) is the CCSD of 𝑛̃(𝑥, 𝑡) at cycle frequency 𝛼 = 0 (thus equaling
the CSD). The fundamental and only non-zero cycle frequency present is 𝛼0 = ±2 𝑓0,
indicating that this process exhibits cyclostationarity. The CSD of 𝑛̃(𝑥, 𝑡) is given
by

𝑆𝑛̃ (𝑥, 𝑥′, 0, 𝑓 ) = 𝑐(𝑥, 𝑥′)𝐹ℓ (𝑥, 𝑓 )𝐹∗ℓ (𝑥
′, 𝑓 ), (4.67)
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where 𝐹ℓ (𝑥, 𝑓 ) is the temporal Fourier transform of the filter 𝑓ℓ (𝑥, 𝑡). All estimates of
the CCSD and CS-SPOD are performed using a Hamming window with 𝑁 𝑓 = 10𝑁𝜃
and an overlap of 67%. Snapshots are saved in time with 𝛥𝑡 = 0.04, resulting in
𝑁𝜃 = 25 time steps per period of the fundamental cycle frequency, 𝑇0 = 1/𝛼0 =

1/(2 𝑓0). Data is saved for 𝑡𝑒𝑛𝑑 = 2000𝑇0, resulting in 50000 snapshots and 593
blocks (realizations) of the process.

Sample paths of the process at 𝑥 = 0, as a function of the phase of the fundamental
cycle frequency, are shown in Figure 4.1. As theoretically predicted, we observe
a modulation in the amplitude of the process as a function of the phase. This
modulation is observed in Figure 4.2, where we plot the analytical WV spectrum
computed using (4.9 and 4.66) at 𝑥 = 𝑥′ = 0. This shows the sinusoidal modulation
of the PSD as a function of the phase, a maximum in the PSD at 𝜃 = 𝜋/3 due
to the phase offset applied, and a decay in the amplitude of the spectrum with
increasing | 𝑓 | due to the applied filter. In Figure 4.3, we compare the magnitude
of the analytical and numerical CCSD at 𝑓 = 0.1 and 𝛼 = 0,±2 𝑓0. Here, we
observe the aforementioned key structures of the covariance kernel along with the
excellent agreement between the numerical and analytical CCDSs, which would
further improve with an increasing number of realizations, thereby validating our
CCSD implementation (algorithm 1).

Figure 4.1: Model problem sample paths at 𝒙 = 0 as a function of the phase 𝜽
where the red line shows a single representative trajectory for clarity.

Next, we validate our efficient algorithm to compute CS-SPOD (algorithm 2) and
determine its convergence with increasing data by comparing the numerical results to
the analytical results. The analytical solution is determined by forming the CS-SPOD
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Figure 4.2: Analytical WV spectrum of the model problem at 𝒙 = 𝒙′ = 0 as a
function of phase 𝜽 .

(a) Analytical (b) Numerical

(c) Analytical (d) Numerical

Figure 4.3: Magnitude of the analytically and numerically generated CCSD of
the model problem at 𝒇 = 0.1.

eigensystem defined via (4.42a) through evaluating the analytical CCSDs (given by
(4.66)) and then numerically evaluating the final eigenvalue problem. To encompass
the range of relevant frequencies we use 𝐾 𝑓 = 10 (i.e. cyclic frequencies up to
10𝛼0), resulting in 𝛺𝛾 = {−10,−9, · · · , 9, 10} + 𝛾. Figure 4.4 shows a comparison
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of the analytical and numerical CS-SPOD eigenspectrums (averaged over 10000
realizations of the process), at 𝛾 = 0.2 for 𝑡𝑒𝑛𝑑 = 100𝑇0, 400𝑇0, and 2000𝑇0, which
corresponds to 27, 117, and 593 blocks, respectively. As the duration of the process
increases, we observe an increasingly converged estimate of the eigenspectrum.
This is reflected in the percentage error between the averaged numerical eigenvalues
and the analytical eigenvalues of the three most dominant CS-SPOD modes, which
we show in Figure 4.5. We see that these eigenvalues linearly converge to the true
value as the duration of the process increases, which is theoretically expected due
to the linear reduction in the variance of the Welch estimate of the CCSD with
increasing realizations (Antoni, 2007). Overall, we obtain a consistent estimate of
the CS-SPOD eigenvalues and conclude that our implementation of CS-SPOD is
correct.

Figure 4.4: Plot of the analytical and numerical CS-SPOD eigenspectrum of
the model problem at 𝜸 = 0.2 for multiple signal durations.

4.4 Example problems
4.4.1 Application to a modified linearized complex Ginzburg-Landau equa-

tion
Our first example is the simple and well-understood linearized complex Ginzburg-
Landau equation, which has been used as a model for a convectively unstable flow
that exhibits non-modal growth (Chomaz et al., 1988; Cossu and Chomaz, 1997;
Hunt and Crighton, 1991). It can be written in the form of a generic linear forced
system

𝜕𝑞(𝑥, 𝑡)
𝜕𝑡

− 𝐿 (𝑥, 𝑡)𝑞(𝑥, 𝑡) = 𝑓 (𝑥, 𝑡), (4.68)
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Figure 4.5: Convergence of CS-SPOD eigenvalues of the model problem at
𝜸 = 0.2 as a function of the total signal duration.

where 𝑞(𝑥, 𝑡) and 𝑓 (𝑥, 𝑡) represent the state and forcing, respectively, with |𝑞(𝑥 →
±∞, 𝑡) | → 0, and 𝐿 (𝑥, 𝑡) is the linear operator

𝐿 (𝑥, 𝑡) = −𝜈1
𝜕

𝜕𝑥
+ 𝜈2

𝜕2

𝜕𝑥2 − 𝜇(𝑥, 𝑡). (4.69)

We use the commonly used form 𝜇(𝑥) = 𝜇0 − 𝑐2
𝜇 + 𝜇2

𝑥2

2 (Bagheri et al., 2009; Chen
and Rowley, 2011; Hunt and Crighton, 1991; Towne et al., 2018). All constants in
(4.68, 4.69), except for 𝜇0, use the values in Bagheri et al. (2009).

Similar to Franceschini et al. (2022), we construct periodic dynamics by using
𝜇0 = 𝜇0 + 𝐴𝜇0sin(2𝜋 𝑓0𝑡), where 𝜇0 is the average value of 𝜇0, 𝐴𝜇0 is the amplitude
of the periodic modulation of 𝜇0, and 𝑓0 is the frequency of the periodic modulation.
For 𝐴𝜇0 = 0 the system has time-invariant dynamics, while for |𝐴𝜇0 | > 0 the
system has time-periodic dynamics, resulting in a stationary and cyclostationary
response, respectively. By varying 𝐴𝜇0 , we modify the degree to which the system
is cyclostationary. We choose 𝑓0 = 0.1, which is substantial compared to the
frequencies of interest (≈ [−0.5, 0.5]), meaning that the quasi-steady approach of
Franceschini et al. (2022) can not be employed. Like Towne et al. (2018), we
use 𝜇0 = 0.23, which for 𝐴𝜇0 = 0 strongly amplifies external noise due to the
non-normality of 𝐿 (𝑥, 𝑡) and results in a degree of low-rankness typically present
in turbulent flows. As per Franceschini et al. (2022), we confirm the stability of
the system using Floquet analysis (results not shown). To demonstrate the utility
of CS-SPOD and facilitate its interpretation, we compare CS-SPOD performed at
several levels of cyclostationarity 𝐴𝜇0 = 0.0, 0.2, and 0.4.
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A pseudo-spectral approach utilizing Hermite polynomials is employed to discretize
the equations (Bagheri et al., 2009; Chen and Rowley, 2011), where the collocation
points [𝑥1, 𝑥2, · · · , 𝑥𝑁𝐻 ] correspond to the first𝑁𝐻 Hermite polynomials with scaling
factor ℜ{(−𝜇2/(2𝜈2))

1
4 }. Following Bagheri et al. (2009) and Towne et al. (2018),

we use 𝑁𝐻 = 221, leading to a computational domain 𝑥 ∈ [−85.19, 85.19], which is
large enough to mimic an infinite domain. The boundary conditions are implicitly
satisfied by the Hermite polynomials (Bagheri et al., 2009). For CS-SPOD, the
value of the weighting matrix at 𝑥𝑖 is determined as the distance between the
midpoints of the neighbouring grid points. Temporal integration is performed
using the embedded 5𝑡ℎ order Dormand–Prince Runge-Kutta method (Dormand
and Prince, 1980; Shampine and Reichelt, 1997). After the initial transients have
decayed, a total of 40000 solution snapshots are saved with 𝛥𝑡 = 0.5, giving a
Nyquist frequency of 𝑓Nyquist = 1.

To mimic a turbulent system, similar to Towne et al. (2018), we force our system using
spatially correlated band-limited noise, 𝑓 (𝑥, 𝑡). This is performed by constructing
spatially correlated noise with the following covariance kernel

𝑔(𝑥, 𝑥′) = 1
√

2𝜋𝜎𝜂
exp

[
−1

2

(
𝑥 − 𝑥′
𝜎𝜂

)2
]

exp
[
−𝑖2𝜋𝑥 − 𝑥

′

𝜆𝜂

]
, (4.70)

where 𝜎𝜂 is the standard deviation of the envelope and 𝜆𝜂 is the wavelength of the
filter, such that the covariance 𝑐(𝑥, 𝑥′) = 𝐸{ 𝑓 (𝑥, 𝑡) 𝑓 ∗(𝑥′, 𝑡)} = 𝑔(𝑥, 𝑥′). Spatial
correlation is introduced by multiplying white noise by the Cholesky decomposi-
tion of the covariance kernel. The white noise has a uniformly distributed phase,
normally distributed amplitude with unit variance, and is generated as in Towne
et al. (2018). The forcing is spatially restricted to an interior portion of the domain
via the window exp[−(𝑥/𝐿)𝑝], where 𝐿 = 60, 𝑝 = 10. The spatially correlated
noise is low-pass filtered using a 10𝑡ℎ-order finite-impulse-response filter with a
cutoff frequency equal to 0.6 𝑓Nyquist. This results in a stationary forcing that is
approximately constant in amplitude up to the cutoff frequency (−6dB in amplitude
at the cutoff frequency) but has non-zero spatial correlation as defined by (4.70).
The forcing is then linearly interpolated to the temporal locations required by the
temporal integration. To compute the WV spectrum, SPOD, and CS-SPOD, we
employed a window length 𝑁 𝑓 = 10𝑁𝜃 and an overlap 67%, resulting in 𝑁𝑏 = 595
(realizations) of the process and a frequency discretization of 𝛥 𝑓 = 0.01.

In analyzing the data, we must first determine those frequencies, if any, where the
system exhibits cyclostationarity. To do this, we compute the CCSD and search



49

over all possible values of 𝛼 in the range 𝛼 ∈ [−1, 1], noting the 𝛼 discretization
required as discussed in §4.1 to ensure no possible cycle frequencies are missed.
Figure 4.6 shows the CCSD and integrated CCSD for the three values of 𝐴𝜇0 at
𝑥 = 𝑥′ = 0, and confirms that the system is cyclostationary when 𝐴𝜇0 > 0 as high
values of the CCSD and the integrated CCSD are seen at 𝛼 = 0, the modulation
frequency ( 𝑓0), and an increasing number of harmonics as 𝐴𝜇0 is further increased.
This demonstrates that 𝛼0 = 𝑓0.

(a) 𝑨𝝁0 = 0 (b) 𝑨𝝁0 = 0.2 (c) 𝑨𝝁0 = 0.4

Figure 4.6: CCSD (top) and integrated CCSD (bottom) of the Ginzburg-
Landau system at 𝒙 = 0.

We show 100 realizations of the process for each 𝐴𝜇0 along with the WV spectrum
at 𝑥 = 𝑥′ = 0 as a function of the phase of 𝛼0 in Figure 4.7. The WV spectrum
is computed using 𝐾𝛼 = 5 to encompass all cycle frequencies present. Figure
4.7 (a) shows that the statistics are almost constant as a function of phase for
𝐴𝜇0 = 0, which is expected given the time-invariant dynamics. The small degree of
modulation observed is due to statistical uncertainty. In Figures 4.7 (b, c), we observe
increasing levels of modulation in the statistics as 𝐴𝜇0 increases. Furthermore, the
peak value of the spectrum also increases due to the increasing non-normality of
the system with increasing 𝜇0. Given that the largest value of 𝜇0 occurs at 𝜃 = 0.5𝜋
and the peak of the WV spectrum occurs at 𝜃 ≈ 0.95𝜋, there is a phase delay of
≈ 0.45𝜋 between when the dynamics of the system are the least stable and when the
perturbations are, on average, the largest.

Based on the preceding analysis and to ensure we encompass all frequencies of
interest, we compute CS-SPOD using 𝐾 𝑓 = 5, resulting in a frequency range of
𝛺𝛾 = [−0.5, 0.5] + 𝛾. We first consider the stationary process with 𝐴𝜇0 = 0.0.
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(a) 𝑨𝝁0 = 0 (b) 𝑨𝝁0 = 0.2 (c) 𝑨𝝁0 = 0.4

Figure 4.7: Example Ginzburg-Landau sample paths (top) at 𝒙 = 0, where the
red line shows a single representative trajectory for clarity. WV spectrum at
𝒙 = 0 (bottom).

Although CS-SPOD modes are theoretically equivalent to SPOD for the stationary
case, finite data length leads to differences.

Figure 4.8 shows the SPOD eigenspectrum for 𝐴𝜇0 = 0.0. Note that the spectrum is
not symmetric in 𝑓 because the Ginzburg-Landau system is complex. We superpose
on the SPOD spectra the set of frequencies 𝑓 ∈ 𝛺𝛾 for 𝛾 = 0.05, and mark and
rank the 6 intersections with the highest energy. Based on the plot, we should
find that the 4 most dominant CS-SPOD modes correspond to the dominant SPOD
mode at a frequency of 𝛾 − 𝛼0, 𝛾, 𝛾 + 𝛼0, and 𝛾 + 2𝛼0, respectively. Similarly, the
5𝑡ℎ and 6𝑡ℎ CS-SPOD modes should correspond to the first subdominant SPOD
modes at a frequency of 𝛾 and 𝛾 + 𝛼0, respectively. Figure 4.9 makes comparisons
between SPOD and CS-SPOD (performed assuming a fundamental cycle frequency
of 𝛼0 = 𝑓0) for the energy and eigenfunctions for each of these six modes. While the
results are quite similar in each case, there are differences associated with statistics
convergence, and this, as expected, occurs when there is a small energy separation
between two distinct modes (e.g. modes 5 and 6).

In Figure 4.10, we now compare the CS-SPOD eigenspectrum for all 𝛾𝑘 ∈ 𝛤𝑘
for the three different values of 𝐴𝜇0 . As 𝐴𝜇0 increases, so does the energy, as the
disturbances are increasingly amplified by the increasing non-normality of the linear
operator at phases corresponding to positive 𝐴𝜇0sin(2𝜋 𝑓0𝑡), consistent with the trend
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Figure 4.8: SPOD eigenspectrum of the Ginzburg-Landau system with 𝑨𝝁0 =
0.0, showing the three most energetic modes at each discrete frequency 𝒇 . Every
other eigenvalue has been omitted to improve readability. The 6 highest-energy
modes occurring at the frequencies presen in the CS-SPOD solution frequencies
at 𝜸 = 0.05, i.e. 𝒇 ∈ 𝜴𝜸, are depicted with the red dots.

shown previously in Figure 4.7. A large energy separation between the dominant
and sub-dominant CS-SPOD modes is observed, which increases for greater 𝐴𝜇0 ,
indicating that the process is increasingly low rank. In Figure 4.11, for 𝛾 = 0.05, we
show the fraction of the total energy (𝜆𝑇 =

∑
𝑗 𝜆 𝑗 ) that the first 𝐽 CS-SPOD or SPOD

modes recover. As theoretically expected for 𝐴𝜇0 = 0, CS-SPOD and SPOD result
in an almost identical energy distribution. In contrast, with increasing 𝐴𝜇0 , CS-
SPOD captures an increasingly greater amount of energy than SPOD. For example,
at 𝐴𝜇0 = 0.4, the first CS-SPOD mode captures 64% of the total energy, while the
first SPOD mode captures just 45%. Furthermore, the first three CS-SPOD modes
capture 92% of the total energy, while seven SPOD modes are required to capture a
similar amount of energy. As theoretically expected, the energy captured by SPOD
does not exceed the energy captured by CS-SPOD (since SPOD modes are a subset of
CS-SPOD modes). Thus, as the statistics become increasingly cyclostationary (i.e.
more phase-dependent), CS-SPOD is able to capture an increasingly larger fraction
of the phase-dependent statistics present in the process, which SPOD, due to the
fundamentally flawed assumption of statistical stationarity, is unable to achieve.
Due to the increased complexity of CS-SPOD modes, since they contain several
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Figure 4.9: Comparison of SPOD (left) and CS-SPOD modes (right) of the
Ginzburg-Landau system with 𝑨𝝁 = 0. From top to bottom are the six most
dominant CS-SPOD modes and the six points identified in Figure 4.8. The con-
tour limits of the CS-SPOD eigenfunctions are set equal to the corresponding
SPOD mode ±||𝕽{𝝓𝝓𝝓 𝒋 (𝒙, 𝒕)}||∞.

frequency components, it is expected that they capture more energy. However, the
critical difference is that SPOD is unable to capture the phase-dependent structure
of the statistics (regardless of the number of modes employed).

We now investigate how 𝐴𝜇0 modifies the dominant CS-SPOD modes, at 𝛾 = 0.05,
by showing the real component and the magnitude of the temporal evolution of
the modes 𝜙𝜙𝜙 𝑗 (𝒙, 𝑡) in Figures 4.12 and 4.13, respectively. Due to the multiple
frequency components (𝛺𝛾) present in 𝜙𝜙𝜙 𝑗 (𝒙, 𝑡), 𝜙𝜙𝜙 𝑗 (𝒙, 𝑡) can, unlike SPOD, no
longer be completely represented by a single snapshot and instead must be displayed
as a function of time. Similarly, the amplitude of the mode is periodic in time with
period 𝑇0 = 1/𝛼0, unlike SPOD where the amplitude is constant in time. Thus, the
amplitude is displayed as a function of phase 𝜃. Similar results are observed for other
values of 𝛾 not shown here. Overall, across all values of 𝐴𝜇0 , the real component
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Figure 4.10: CS-SPOD energy spectrum of the Ginzburg-Landau systems.

Figure 4.11: Total fractional energy captured by a truncated set of CS-SPOD
and SPOD modes of the Ginzburg-Landau systems at 𝜸 = 0.05.

of the CS-SPOD modes show a similar structure. However, as 𝐴𝜇0 is increased,
an additional modulation is seen that results in increasingly time/phase-dependent
magnitudes.

Finally, in Figure 4.14, we investigate which frequency components are the most
energetic via the fractional energy of each frequency component 𝑓 ∈ 𝛺𝛾 for each
CS-SPOD mode, defined as 𝐸 𝑓 , 𝑗 ≡ 𝜓𝜓𝜓 𝑗 (𝒙, 𝑓 )∗𝑾 (𝒙)𝜓𝜓𝜓 𝑗 (𝒙, 𝑓 ), where

∑
𝑓 ∈𝛺𝛾 𝐸 𝑓 , 𝑗 =

1. As 𝐴𝜇0 increases, the CS-SPOD modes are constructed from an increasing
number of non-zero-energy frequency components and at higher energy levels.
For example, at 𝛾 = 0.05, the dominant frequency component, 𝑓 = 0.05, contains
≈ 100%, 83%, and 64% of the total energy of the corresponding CS-SPOD mode for
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Figure 4.12: Real component of the three dominant CS-SPOD modes of the
Ginzburg-Landau systems at 𝜸 = 0.05. The contour limits for each CS-SPOD
mode is ±||𝕽{𝝓𝝓𝝓 𝒋 (𝒙, 𝒕)}||∞.

Figure 4.13: Magnitude of the three dominant CS-SPOD modes of the
Ginzburg-Landau systems at 𝜸 = 0.05. The contour limits for each CS-SPOD
mode is [0, | |𝝓𝝓𝝓 𝒋 (𝒙, 𝜽)||∞].

𝐴𝜇0 = 0, 0.2, and 0.4, respectively. This occurs because of the increasing amount
of correlation present between different frequency components as 𝐴𝜇0 increases.
Alternatively, this phenomenon can be understood as the following: as 𝐴𝜇0 increases,
the statistics become more time-dependent, and thus, the amount of interaction
between frequency components in 𝛺𝛾 increases such that the summation of these
frequency components result in CS-SPOD modes that capture the time-periodic
modulation experienced by the flow.

Figure 4.14: Fractional CS-SPOD modal energy by frequency, 𝑬 𝒇 , 𝒋 , of the
Ginzburg-Landau systems at 𝜸 = 0.05.
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4.4.2 Low frequency forced turbulent jet
We now consider the 𝑆𝑡 𝑓 = 0.3, 𝑎0/𝑈 𝑗 = 10% forced turbulent, isothermal, subsonic
jet as described in 2.1. In this chapter, a database of length equal to 480 periods of
the forcing frequency (or a total time of 𝑡𝑠𝑖𝑚𝐷/𝑐∞ ≈ 4000) was employed. For the
stochastic estimates, we use a window length 𝑁 𝑓 = 12𝑁𝜃 and an overlap of 67%,
resulting in 𝑁𝑏 = 118 blocks and a non-dimensional frequency discretization of
𝛥𝑆𝑡 ≈ 0.025. While in Chapter 3, we find that the optimal frequency discretization
should vary as a function of frequency, in CS-SPOD, multiple different frequency
components are linked together. Thus, one should ensure that the chosen frequency
resolution is appropriate for all frequency components considered. Based on the
natural jet example in Chapter 3, we employ 𝛥𝑆𝑡 ≈ 0.025. Future work would in-
clude devising a similar optimal frequency resolution for CS-SPOD (where different
resolutions could be used for the different CCSD tensors).

In Figure 4.15, we plot the instantaneous and phase-averaged (4.14) velocity at
four phases of one forcing cycle. Though not shown, we verified that the phase-
averaged field is axisymmetric, consistent with the axisymmetric jet forcing. In the
phase-averaged field, a large modulation in the axial velocity of the jet is observed
with a vortex roll-up occurring around 𝑥/𝐷 = 2.0. The fundamental frequency
fluctuation is primarily located in the potential core region and drives the large-
scale periodic modulation. In Figure 4.16, we extract the first four frequency
components ( 𝑓 = 0, 0.3, 0.6, 0.9) of the phase-averaged field. The total fluctuation
level, i.e. 2 × ℜ{𝑢̂𝑥, 𝑓 /𝑈 𝑗 }, for each non-zero frequency is ≈ 40%, 15%, and 8%
thereby indicating that a substantial, nonlinear periodic modulation of the mean
occurs. Harmonic generation similarly peaks near 𝑥 = 2 where the strong roll-up is
occurring.

Next, we analyze the second-order stochastic component to determine the cycle
frequencies present in order to apply CS-SPOD. Similar to the previous example, to
determine what cycle frequencies are present in the flow, we interrogate the CCSD
and integrated CCSD for 𝛼 = [−3, 3] (not shown), again noting the 𝛼 discretization
required as discussed in §4.1. We confirm that the only cycle frequencies present
are harmonics of the forcing frequency (i.e. Z 𝑓 𝑓 ).

Figures 4.17 and 4.18 show the CCSD and corresponding WV spectrum, respec-
tively, of the axisymmetric component of the axial velocity at 𝑥/𝐷 = 5, 𝑟/𝐷 = 0.75.
For clarity, the CCSD is only shown for 𝛼/𝛼0 ∈ Z (equal to 𝑘𝛼) since all other values
of 𝛼 are ≈ 0 (this was numerically verified to be true within statistical convergence).
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Figure 4.15: Top of each pair of images is 𝒖̃𝒙 (𝜽)/𝑼 𝒋 of the forced Mach 0.4
turbulent jet at 𝜽 = 0, 𝝅/2, 𝝅, 3𝝅/2. Bottom of each pair of images is 𝒖′′𝒙 (𝒕)/𝑼 𝒋

at a time instant corresponding to a forcing phase of 𝜽 = 0, 𝝅/2, 𝝅, 3𝝅/2.

Figure 4.16: 𝕽{𝒖̂𝒙,𝑺𝒕/𝑼 𝒋 } of the forced Mach 0.4 turbulent jet at 𝑺𝒕 = 0, 0.3, 0.6,
and 0.9 (top to bottom).

A large modulation occurs for 𝛼/𝛼0 = 0,±1,±2. The WV spectrum shows how the
PSD of 𝑢′′𝑥 /𝑈 𝑗 (at a Strouhal number 𝑆𝑡) varies as a function of the phase of the
forcing 𝜃. We find a large phase dependence of the statistics, where the phase of the
high-energy regions corresponds to when the high-velocity regions pass. Overall,
it is clear that the forced turbulent jet exhibits cyclostationarity at frequencies equal
to the harmonics of the forcing frequency.
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Figure 4.17: Absolute value of the CCSD of 𝒖′′𝒙/𝑼 𝒋 of the forced Mach 0.4
turbulent jet at 𝒙/𝑫 = 7, 𝒓/𝑫 = 0.75.

Figure 4.18: WV spectrum of 𝒖′′𝒙/𝑼 𝒋 of the forced Mach 0.4 turbulent jet at
𝒙/𝑫 = 7, 𝒓/𝑫 = 0.75.

Finally, we demonstrate the utility of CS-SPOD on a forced turbulent jet. Recalling
that both SPOD and CS-SPOD modes are decoupled amongst the azimuthal modes
of the jet (owing to the statistical axisymmetry of the flow), we focus for brevity
only on the axisymmetric 𝑚 = 0 component of the fluctuations. We seek modes
that are orthogonal in the Chu-compressible energy norm (Chu, 1965) that has been
applied in previous SPOD studies (Schmidt et al., 2018)

⟨q 𝑗 , q𝑘⟩𝐸 =

∭
q∗𝑘 diag

(
𝑇0

𝛾𝑔 𝜌̂0𝑀2 , 𝜌̂0, 𝜌̂0, 𝜌̂0,
𝜌̂0

𝛾𝑔 (𝛾𝑔 − 1)𝑇0𝑀2

)
q 𝑗𝑟d𝑥d𝑟d𝜙 = q∗𝑘Wq 𝑗 ,

(4.71)
where 𝑀 is the Mach number, 𝛾𝑔 is the ratio of specific heats, 𝜌̂0 and 𝑇0 are
the zero-frequency mean density and temperature components, and the matrix W
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takes into account the energy and domain quadrature weights. To compute CS-
SPOD, we choose 𝐾 𝑓 = 10, resulting in a non-dimensional solution frequency set
of 𝛺𝛾𝑆𝑡 = [−3, 3] + 𝛾𝑆𝑡 (where 𝛾𝑆𝑡 is non-dimensional 𝛾 normalized as the standard
jet Strouhal number), which encompasses all frequencies of interest.

We show the CS-SPOD eigenspectrum of the turbulent jet in Figure 4.19. A large
difference in the energy between the 1st & 2nd and 2nd & 3rd modes, at each 𝛾𝑆𝑡 , across
almost all 𝛾𝑆𝑡 is seen. This shows that the jet is low-rank. Since CS-SPOD solves for
multiple frequencies at a time, the energy separation will be smaller than with SPOD,
in particular, with a flatter spectrum. The spectrum peaks at 𝛾𝑆𝑡 = 0.025 and decays
as |𝛾𝑆𝑡 | → 0.15 which, because the smallest |𝑆𝑡 | ∈ 𝛺𝛾𝑆𝑡 occurs at |𝛾𝑆𝑡 |, occurs due
to the decaying energy spectrum typically present in a turbulent jet. This low-rank
behavior, which is expected based on previous literature on natural turbulent jets
(e.g. Schmidt et al. (2018)), is observed in Figure 4.20 where we show the fraction
of the total energy captured by the first 𝐽 SPOD and CS-SPOD modes. The first
CS-SPOD mode, at 𝛾𝑆𝑡 = 0.15, captures 10% of the total energy present in the flow
at the set of frequencies 𝛺𝛾𝑆𝑡 , 2 modes capture 15.2%, 10 modes capture 38%, and
50 modes capture 84.5%. Surprisingly, in contrast to the Ginsburg-Landau model,
the energy separation between the most energetic CS-SPOD and SPOD modes is
not large despite the high level of modulation present. However, despite this small
difference, a large variation in the structure and temporal evolution of the most
energetic SPOD and CS-SPOD modes is seen, which we explore next.

Figure 4.19: CS-SPOD energy spectrum of the forced Mach 0.4 turbulent jet.

We show the real component and absolute value of the pressure component of the
most energetic SPOD and CS-SPOD mode at 𝛾𝑆𝑡 = 0.15 in Figure 4.21. The solid
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Figure 4.20: Total fractional energy captured by a truncated set of CS-SPOD
(blue) and SPOD (black) modes of the forced Mach 0.4 turbulent jet at 𝜸𝑺𝒕 =
0.15. The difference in the fractional energy captured by CS-SPOD and SPOD
modes is also shown (red).

and dashed lines in these Figures correspond to the contour lines of 𝑢̃𝑥 (𝜃)/𝑈 𝑗 =

0.25, 0.75. SPOD modes are only shown at a single time instance due to their time-
invariant evolution, while CS-SPOD modes are shown at several time instances
to show their temporal evolution. The most dominant SPOD mode is focused
downstream at 𝑥/𝐷 ≈ [6, 12], has a frequency 𝑆𝑡 = 0.15, and has a structure
typical of the so-termed “Orr modes” previously observed in unforced turbulent jets
(Pickering et al., 2020; Schmidt et al., 2018). By construction, the amplitude of
the SPOD mode remains constant over time, and the region of maximum amplitude
corresponds to 𝑥/𝐷 ≈ [6, 12] and 𝑟/𝐷 ≈ [0, 1]. The real component of the most
energetic CS-SPOD mode has a structure similar to the respective SPOD mode but
with an additional modulation localized to the shear layer in regions of high velocity.
This is also observed in the amplitude contours, where the amplitude of the mode
substantially varies as a function of phase in a region similar to the amplitude profile
of SPOD, but the high-amplitude regions always follow the high-velocity regions
of the jet. The CS-SPOD modes follow this region since it is where the greatest
amount of shear occurs along with the vortex roll-up (as seen in Figures 4.16 and
4.15).

Figure 4.22 shows the same CS-SPOD mode in a zoomed-in region near the nozzle
exit, plotted with lower contour levels since the fluctuation levels are smaller there.
At 𝑡 = 0 (i.e. 𝜃 = 0), a short wavelength Kelvin-Helmholtz (KH) mode that is
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located between the 25% and 75% velocity lines in the 𝑥/𝐷 = [0, 1] region is seen.
The KH mode is angled towards the centerline due to the modulation of the mean
flow. Next, at 𝑡 = 𝑇0/4, the KH mode has propagated slightly downstream and has
become weaker due to the much thinner shear layer at this phase of the motion.
From 𝑡 = 𝑇0/4 to 𝑡 = 3𝑇0/4, the KH mode increases in strength as it continues to
propagate downstream due to the increasing thickness of the boundary layer. The
KH mode also rotates due to the roll-up induced by the forcing, as seen in Figure
4.15. At 𝑡 = 3𝑇0/4, the KH mode is substantially stronger than at 𝑡 = 𝑇0/4 and is a
lower-frequency structure located around the 𝑥/𝐷 = [0.6, 1] region and is angled
away from the centerline. A corresponding interrogation of the SPOD mode shows
no near-nozzle Kelvin-Helmholtz activity at this frequency, highlighting the ability
of CS-SPOD to reveal potentially important dynamical effects that are slaved to the
forcing frequency.

Figure 4.21: Comparison of the real component (left) and magnitude (right)
of the pressure component of the dominant CS-SPOD mode to the dominant
SPOD mode of the forced Mach 0.4 turbulent jet at 𝜸𝑺𝒕 = 0.15. All contours
are set to ±0.75| |𝕽{𝝓 𝒑,1(𝒙, 𝒓, 𝒕)}||∞ and [0, 0.75| |𝝓 𝒑,1(𝒙, 𝒓, 𝜽)||∞] for the real
and magnitude contours, respectively. The solid and dashed lines correspond
to contour lines of 𝒖̃𝒙 (𝜽)/𝑼 𝒋 = 0.25, 0.75, respectively.

Figure 4.23 shows the normalized energy as a function of phase of the three domi-
nant modes at 𝛾𝑆𝑡 = 0.15, defined as the spatial norm of the modes at each 𝜃. The
energy, despite the large phase-dependent modulation seen in Figure 4.21, varies
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Figure 4.22: Real component of the pressure of the dominant CS-SPOD
mode of the forced Mach 0.4 turbulent jet at 𝜸𝑺𝒕 = 0.15 (zoomed into
𝒙/𝑫 = [0, 2], 𝒓/𝑫 = [0, 2]). All contours are set to ±0.25| |𝕽{𝝓 𝒑,1(𝒙 =
[0, 2], 𝒓 = [0, 2], 𝒕)}||∞. The solid and dashed lines correspond to contour lines
of 𝒖̃𝒙 (𝜽)/𝑼 𝒋 = 0.25, 0.75, respectively.

by just ±2% as a function of phase. This demonstrates that, despite the strong
phase-dependent structure of the mode and of the statistics present in the jet, on
average, over the flow, the total energy contained within these modes is not strongly
phase-dependent. Finally, in Figure 4.24, we show the fractional energy of each
frequency component 𝑆𝑡 ∈ 𝛺𝛾𝑆𝑡 of the CS-SPOD modes. The large amount of
frequency interaction previously observed is visible, where for 𝑗 = 1, the 8 high-
est energy frequency components are ±0.15,±0.45,±0.75,±1.05 which contain
45.6%, 3.6%, 0.52%, 0.15% of the energy, respectively. Thus, a large amount of
interaction occurs between the frequency components in 𝛺𝛾𝑆𝑡 , which results in the
large periodicity observed. It is important to note that although a frequency com-
ponent may only contain a small fraction of the total energy in a CS-SPOD mode,
in many cases, it is still a physically important feature, such as the modulated KH
mode discussed previously, and hence should be carefully studied.

Overall, we see that the forcing clearly results in a large modulation of the KH and
Orr modes present, an effect that SPOD is unable to capture. Thus, the utility of CS-
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SPOD to describe the coherent structures in a forced turbulent jet is demonstrated.

Figure 4.23: Normalized energy of the dominant CS-SPOD modes of the forced
Mach 0.4 turbulent jet over the phase of the external forcing at 𝜸𝑺𝒕 = 0.15.

Figure 4.24: Fractional CS-SPOD modal energy by frequency, 𝑬 𝒇 , 𝒋 , of the
forced Mach 0.4 turbulent jet at 𝜸𝑺𝒕 = 0.15, shown in log10 scale.

4.5 Harmonic resolvent analysis
Harmonic resolvent analysis (HRA) (Padovan and Rowley, 2022) extends resol-
vent analysis to time-periodic mean flows. Starting with the nonlinear governing
equations

𝜕𝒈(𝑡)
𝜕𝑡

= 𝑯(𝒈(𝑡)), (4.72)

where 𝑯 is the time-independent continuity, momentum, and energy equations
and 𝒈(𝑡) ∈ C𝑁 is the state vector of flow variables, we decompose the state as
𝒈(𝒙, 𝑡) = 𝒈̃(𝒙, 𝑡) + 𝒈′′(𝒙, 𝑡), where 𝒈̃(𝑡) = 𝒈̃(𝑡 + 𝑇0) is the 𝑇0 periodic mean flow
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component (first-order component) and 𝒈′′(𝑡) is the turbulent component (second-
order component). Since 𝒈̃(𝑡) is periodic, it can be expressed as a Fourier series,
giving 𝒈̃(𝑡) = ∑∞

𝑘𝛼=−∞
ˆ̃𝒈𝑘𝛼𝛼0𝑒

𝑖2𝜋(𝑘𝛼𝛼0)𝑡 , where ˆ̃𝒈𝑘𝛼𝛼0 are the Fourier series compo-
nents of the meanflow and 𝑇0 is the period of oscillation of the mean flow. The
cycle frequencies, which in the context of linear analysis must be the frequencies
present in the mean flow, are 𝑘𝛼𝛼0. By substituting this decomposition into (4.72),
we obtain

𝜕𝒈′′(𝑡)
𝜕𝑡

= 𝐷𝒈 (𝑯( 𝒈̃(𝑡))𝒈′′(𝑡) + f′′(𝑡), (4.73)

where f′′(𝑡) contains higher-order terms in 𝒈′′(𝑡). The Jacobian 𝑨(𝑡) = 𝐷𝒈 (𝑯( 𝒈̃(𝑡))
is also a periodic function in time, which, following the discussion in Padovan and
Rowley (2022), we assume is a differentiable function of time, thereby guaranteeing a
unique solution of (4.73). Subsequently, it is also expanded as a Fourier series 𝑨(𝑡) =∑∞
𝑘𝛼=−∞ 𝑨̂𝑘𝛼𝛼0𝑒

𝑖2𝜋(𝑘𝛼𝛼0)𝑡 . Inserting this expansion into (4.73), Fourier transforming
in time, and then separating by frequency gives

𝑖2𝜋(𝛾 + 𝑘 𝑓𝛼0) 𝒈̂𝛾+𝑘 𝑓 𝛼0 =

∞∑︁
𝑘𝛼=−∞

𝑨̂𝑘𝛼𝛼0 𝒈̂𝛾+(𝑘 𝑓−𝑘𝛼)𝛼0 + f̂𝛾+𝑘 𝑓 𝛼0 , (4.74)

where 𝒈̂ 𝑓 and f̂ 𝑓 are the 𝑓 -frequency components of 𝒈′′(𝑡) and f′′(𝑡), respec-
tively. Equation (4.74) represents a system of coupled equations where perturba-
tions at frequency 𝑓 are coupled to perturbations at frequency 𝑓 + 𝑘𝛼𝛼0 through
the 𝑘𝛼𝛼0 frequency component of the mean flow. In general, this results in an
infinite-dimensional problem similar to the infinite-dimensional CS-SPOD eigen-
value problem. The final problem is compactly written as

(𝑖2𝜋𝛾I − T̂ )Ĝ = F̂ , (4.76)

where

T̂ =



. . .
. . .

. . .
. . .

. . . 𝑹̂−𝛼0 𝑨̂−𝛼0 𝑨̂−2𝛼0
. . .

. . . 𝑨̂𝛼0 𝑹̂0 𝑨̂−𝛼0
. . .

. . . 𝑨̂2𝛼0 𝑨̂𝛼0 𝑹̂𝛼0
. . .

. . .
. . .

. . .
. . .



, Ĝ =



...

𝒈̂𝛾−𝛼0

𝒈̂𝛾

𝒈̂𝛾+𝛼0

...



, F̂ =



...

𝒇̂ 𝛾−𝛼0

𝒇̂ 𝛾

𝒇̂ 𝛾+𝛼0

...



,

(4.77a, b, c)
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𝑹̂𝑘𝛼0 = (−𝑖2𝜋𝑘𝛼0𝑰 + 𝑨̂0) ∈ C𝑁×𝑁 , and 𝑰 is the identity operator. The harmonic
resolvent operator is then defined as Ĥ = (𝑖2𝜋𝛾I − T̂ )−1. If the flow is time-
invariant, then all off-diagonal blocks are zero, i.e. there is no cross-frequency
coupling, and the system becomes block-diagonal where each diagonal block is the
standard resolvent problem at frequency 𝛾+ 𝑘𝛼0, 𝑘 ∈ Z. As detailed by Padovan and
Rowley (2022), the singularity in the harmonic resolvent operator must be removed
to avoid numerical difficulties.

In practice, identically to CS-SPOD, we restrict the number of linked problems and
the base flow frequencies considered. Thus, we seek time-periodic perturbations of
𝒈′′(𝑡) = ∑𝐾 𝑓

𝑘 𝑓 =−𝐾 𝑓 𝒈̂𝛾+𝑘 𝑓 𝛼0𝑒
𝑖2𝜋(𝛾+𝑘 𝑓 𝛼0)𝑡 , where 𝐾 𝑓 ∈ Z+. This results in a solution fre-

quency set of𝛺𝛾 = {−𝐾 𝑓𝛼0+𝛾, (−𝐾 𝑓 +1)𝛼0+𝛾, · · · , 𝛾, · · · , (𝐾 𝑓 −1)𝛼0+𝛾, 𝐾 𝑓𝛼0+
𝛾}. We also limit the mean flow frequencies to 𝒈̃(𝑡) = ∑𝐾𝛼

𝑘𝛼=−𝐾𝛼
ˆ̃𝒈𝑘𝛼𝛼0𝑒

𝑖2𝜋(𝑘𝛼𝛼0)𝑡 ,
with 𝐾𝛼 ≤ 𝐾 𝑓 .

Resolvent analysis (McKeon and Sharma, 2010; Sharma and McKeon, 2013) is then
the specialization of harmonic resolvent analysis to a time-invariant mean flow. For
a time-invariant mean flow all off-diagonal components in T̂ are eliminated, and the
system can be separated frequency-by-frequency (at frequency 𝑓 ), given by

(𝑖2𝜋 𝑓 I − 𝑨̂0) 𝒈̂ 𝑓 = 𝒇̂ 𝑓 . (4.78)

Similar to CS-SPOD, harmonic resolvent analysis is periodic in 𝛾, and thus we
must only solve over the range 𝛾 ∈ 𝛤, where 𝛤 = [−𝛼0/2, 𝛼0/2). We then seek
the forcing mode F̂ that results in the most energetic response Ĝ, expressed as the
following optimization problem:

𝜎2 =
⟨Ĝ, Ĝ⟩𝐺
⟨F̂ , F̂ ⟩𝐹

, (4.79)

where ⟨Ĝ 𝑗 , Ĝ𝑘⟩𝐺 and ⟨F̂ 𝑗 , F̂𝑘⟩𝐹 are inner products on the output and input spaces,
respectively, and are given by

⟨Ĝ 𝑗 , Ĝ𝑘⟩𝐺 =

∫
𝛺

Ĝ∗𝑘 (𝒙, 𝑓 )W𝐺 (𝒙)Ĝ 𝑗 (𝒙, 𝑓 )d𝒙, (4.80a)

⟨F̂ 𝑗 , F̂𝑘⟩𝐹 =

∫
𝛺

F̂ ∗𝑘 (𝒙, 𝑓 )W𝐹 (𝒙)F̂ 𝑗 (𝒙, 𝑓 )d𝒙. (4.80b)

The solution to this optimization problem is given by the singular value decompo-
sition of the weighted harmonic resolvent operator

H̃ = W 1/2
𝐺

ĤW−1/2
𝐹

= Ũ𝚺Ṽ ∗, (4.81)
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where the diagonal matrix 𝚺 = diag[𝜎2
1 , 𝜎

2
2 , · · · ] contains the ranked gains and the

columns of V̂ = W−1/2
𝐹

Ṽ and Û = W 1/2
𝐺

Ũ contain the forcing and response modes,
respectively. These modes have an analogous structure to F̂ or Ĝ, and the 𝑗 𝑡ℎ forcing
and response modes (V̂ 𝑗 , Û 𝑗 ) can be reconstructed in the time-domain as

V 𝑗 = V 𝑗 (𝒙, 𝑡) =
𝐾 𝑓∑︁

𝑘 𝑓 =−𝐾 𝑓
𝒗̂ 𝑗 ,𝛾+𝑘 𝑓 𝛼0𝑒

𝑖2𝜋(𝛾+𝑘 𝑓 𝛼0)𝑡 , (4.82a)

U 𝑗 = U 𝑗 (𝒙, 𝑡) =
𝐾 𝑓∑︁

𝑘 𝑓 =−𝐾 𝑓
𝒖̂ 𝑗 ,𝛾+𝑘 𝑓 𝛼0𝑒

𝑖2𝜋(𝛾+𝑘 𝑓 𝛼0)𝑡 . (4.82b)

respectively. These modes are orthonormal in their respective spatial norms
⟨V̂ 𝑗 , V̂𝑘⟩𝐹 = ⟨Û 𝑗 , Û𝑘⟩𝐺 = 𝛿 𝑗 ,𝑘 and the temporal modes are orthogonal in their
respective space-time norms when integrated over a complete period. The decom-
position is complete, allowing the output to be expanded as

Ĝ(𝒙, 𝛾) =
∞∑︁
𝑗=1

Û 𝑗 (𝒙, 𝛾)𝜎𝑗 (𝛾)𝛽 𝑗 (𝛾), (4.83)

where
𝛽 𝑗 (𝛾) = ⟨F̂ (𝒙, 𝛾), V̂ 𝑗 (𝒙, 𝛾)⟩𝐹 . (4.84)

A connection between harmonic resolvent analysis and CS-SPOD is obtained using
an approach similar to that of Towne et al. (2018) and is analogous to the relationship
between resolvent analysis and SPOD.

To derive the relationship between CS-SPOD and harmonic resolvent analysis, we
use that in §4.1 it was shown that 𝑺(𝒙, 𝒙′, 𝛼, 𝑓 ) can be compactly written as

𝑺(𝒙, 𝒙′, 𝛼, 𝑓 ) = 𝐸{𝒒̂(𝒙, 𝑓 − 𝛼/2) 𝒒̂∗(𝒙′, 𝑓 + 𝛼/2)}, (4.85)

where 𝒒̂(𝒙, 𝑓 ) is the short-time Fourier transform of 𝒒(𝒙, 𝑡). Similarly, the CS-
SPOD decomposition tensor for the process 𝒒(𝒙, 𝑡) can be written as

S (𝒙, 𝒙′, 𝛾) = 𝐸{Q̂(𝒙, 𝛾)Q̂∗(𝒙′, 𝛾)}. (4.86)

To develop a relationship between CS-SPOD and harmonic resolvent analysis, we
equate the CS-SPOD and harmonic resolvent expansions of the CS-SPOD decom-
position matrix and set all norms to be equal, i.e. ⟨ · ⟩ = ⟨ · ⟩𝐺 = ⟨ · ⟩𝐹 = ⟨ · ⟩𝑥 ,
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giving

S (𝒙, 𝒙′, 𝛾) =
∞∑︁
𝑗=1
𝜆 𝑗 (𝛾)𝛹𝛹𝛹 𝑗 (𝒙, 𝛾)𝛹𝛹𝛹 ∗𝑗 (𝒙′, 𝛾), (4.87a)

=

∞∑︁
𝑗=1

∞∑︁
𝑘=1

Û 𝑗 (𝒙, 𝛾)Û∗𝑘 (𝒙
′, 𝛾)𝜎𝑗 (𝛾)𝜎𝑘 (𝛾)𝑆𝛽 𝑗 𝛽𝑘 (𝛾), (4.87b)

where 𝑆𝛽 𝑗 𝛽𝑘 (𝛾) = 𝐸{𝛽 𝑗 (𝛾)𝛽∗𝑘 (𝛾)} is the scalar CSD between the 𝑗 𝑡ℎ and 𝑘 𝑡ℎ ex-
pansion coefficients. Identical to Towne et al. (2018), the output harmonic resolvent
modes and singular values were moved outside of the expectation operator since
they are deterministic quantities. Conversely, the expansion coefficients depend on
the forcing F̂ (𝒙, 𝛾), which is stochastic due to the random nature of turbulent flows
and thus is described by the CSD. In the case of a stationary process, S (𝒙, 𝒙′, 𝛾) is
block-diagonal, meaning that𝛹𝛹𝛹 𝑗 (𝒙, 𝛾) and Û 𝑗 (𝒙, 𝛾) contain only a single non-zero
frequency component per mode, and this relationship simplifies to that in Towne
et al. (2018). For uncorrelated expansion coefficients 𝑆𝛽 𝑗 𝛽𝑘 (𝛾) = 𝜇 𝑗 (𝛾)𝛿 𝑗 ,𝑘 , the
relationship simplifies to

S (𝒙, 𝒙′, 𝛾) =
∞∑︁
𝑗=1
𝜆 𝑗 (𝛾)𝛹𝛹𝛹 𝑗 (𝒙, 𝛾)𝛹𝛹𝛹 ∗𝑗 (𝒙′, 𝛾), (4.88a)

=

∞∑︁
𝑗=1

Û 𝑗 (𝒙, 𝛾)Û∗𝑗 (𝒙′, 𝛾)𝜎2
𝑗 (𝛾)𝜇 𝑗 (𝛾). (4.88b)

Since orthogonal diagonalizations are unique, this shows that CS-SPOD modes and
harmonic resolvent modes are identical, and the 𝑘 𝑡ℎ most energetic CS-SPOD mode
corresponds to the resolvent mode with the 𝑘 𝑡ℎ greatest 𝜎2

𝑗
(𝛾)𝜇 𝑗 (𝛾). If 𝜇 𝑗 = 1

for all 𝑗 , then 𝜎2
𝑗
(𝛾) = 𝜆 𝑗 (𝛾) and𝛹𝛹𝛹 𝑗 (𝒙, 𝛾) = Û 𝑗 (𝒙, 𝛾) showing that the ranked

CS-SPOD eigenvalues equal the ranked harmonic resolvent gains. To determine the
conditions when the expansion coefficients are uncorrelated, we perform identical
manipulation to Towne et al. (2018), and show that

𝑆𝛽 𝑗 𝛽𝑘 (𝛾) = ⟨⟨S𝐹𝐹 (𝒙, 𝒙′, 𝛾), V̂ 𝑗 (𝒙′, 𝛾)⟩∗, V̂𝑘 (𝒙, 𝛾)⟩∗, (4.89)

where S𝐹𝐹 (𝒙, 𝒙′, 𝛾) = 𝐸{F̂ (𝒙, 𝛾)F̂ ∗(𝒙′, 𝛾)} is the CS-SPOD decomposition tensor
of F̂ (𝒙, 𝛾). Since harmonic resolvent modes are orthogonal, if
⟨S𝐹𝐹 (𝒙, 𝒙′, 𝛾), V̂ 𝑗 (𝒙′, 𝛾)⟩∗ = 𝜇 𝑗 (𝛾)V̂ 𝑗 (𝒙, 𝛾) then 𝑆𝛽 𝑗 𝛽𝑘 (𝛾) = 𝜇 𝑗 (𝛾)𝛿 𝑗 ,𝑘 . This can
be written as ∫

𝛺

S𝐹𝐹 (𝒙, 𝒙′, 𝛾)W (𝒙′)V̂ 𝑗 (𝒙′, 𝛾)d𝒙′ = 𝜇 𝑗 (𝛾)V̂ 𝑗 (𝒙, 𝛾), (4.90)
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which is identical to the CS-SPOD of the input. One can then show that the
expansion coefficients are uncorrelated if and only if the harmonic resolvent input
modes correspond exactly with the CS-SPOD modes of the input. Thus, we conclude
that the relationship between CS-SPOD and harmonic resolvent analysis is identical
to that of SPOD and resolvent analysis.

We can then specialize for 𝜇 𝑗 = 1, giving

S𝐹𝐹 (𝒙, 𝒙′, 𝛾)W (𝒙′) = I𝛿(𝒙 − 𝒙′), (4.91)

which for W (𝒙′) = I results in S𝐹𝐹 (𝒙, 𝒙′, 𝛾) = I𝛿(𝒙 − 𝒙′), i.e. the forcing is unit-
amplitude white noise. This results in identical harmonic resolvent and CS-SPOD
modes along with equal energies/gains, i.e. 𝜎2

𝑗
= 𝜆 𝑗 .

This shows that show that CS-SPOD and harmonic resolvent analysis modes are
equal if and only if the harmonic resolvent-mode expansion coefficients are uncor-
related. Furthermore, the CS-SPOD eigenvalues and harmonic resolvent analysis
gains are equal (𝜎2

𝑗
= 𝜆 𝑗 ) if the forcing is unit-amplitude white noise.

As described in Towne et al. (2018), while the nonlinear forcing terms in a real
flow are unlikely to be white, this approximation has been shown to be reasonable
in some flows, and has been employed to construct low-order models (Farrell and
Ioannou, 1993, 2001) and resolvent-based models (Bagheri et al., 2009; Jovanovic
and Bamieh, 2001; Pickering et al., 2019; Sipp et al., 2010; Towne et al., 2017a)
which consider resolvent modes to be approximations of SPOD modes. We expect
similar models could be created for cyclostationary flows using harmonic resolvent
analysis modes as approximations of CS-SPOD modes. Furthermore, a comparison
of CS-SPOD modes and harmonic resolvent analysis modes can also show us how
correlated the forcing modes are (and where).

We demonstrate this result by comparing the CS-SPOD and harmonic resolvent
analysis results for the modified forced Ginzburg-Landau for 𝐴𝜇 = 0.4. For both
CS-SPOD and harmonic resolvent analysis, we employ 𝐾 𝑓 = 5 resulting in a
frequency range of 𝛺𝛾 = [−0.5, 0.5] + 𝛾. To compute CS-SPOD, we force the
system with unit variance band-limited white noise. This is constructed similarly
to the spatially correlated case previously considered in §4.4.1 without the step to
introduce the spatial correlation. We employ identical computational parameters to
those used in §4.4.1.

Since the forcing is white, CS-SPOD modes and harmonic resolvent analysis modes
are theoretically identical. Furthermore, since the inner product has unit weight,
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the CS-SPOD eigenvalues equal the harmonic resolvent analysis gains. Figure 4.25
shows the first six CS-SPOD eigenvalues and harmonic resolvent gains. Overall,
excellent agreement is observed between the CS-SPOD eigenvalues and harmonic
resolvent gains. The small amount of jitter present in the CS-SPOD eigenvalues
is due to statistical uncertainty. The minor overshoot or undershoot is associated
with spectral and cycle leakage, which can be reduced by increasing the frequency
resolution of the estimate. As with any spectral estimate, increasing the length of
the blocks reduces the number of blocks leading to the well-known bias-variance
tradeoff. Improved control over the bias-variance tradeoff in SPOD was achieved
using multi-taper methods (Schmidt, 2022) and could similarly be used for CS-
SPOD.

Figure 4.25: Comparison of the first six harmonic resolvent gains 𝝈2
𝒋 and CS-

SPOD eigenvalues 𝝀 𝒋 as a function of 𝜸 for the white noise forced Ginzburg-
Landau system with 𝑨𝝁 = 0.4.

Figure 4.26 shows the magnitude of the time evolution of the three most energetic
CS-SPOD and harmonic resolvent modes at 𝛾 = 0.05, which we see are almost
indistinguishable. The similarity between the CS-SPOD and harmonic resolvent
modes is quantified using the projection 𝜉 𝑗 𝑘 (𝛾) = ⟨𝛹𝛹𝛹 𝑗 (𝛾), Û𝑘 (𝛾)⟩𝑥 and the harmonic
resolvent-mode expansion-coefficient CSD 𝑆𝛽 𝑗 𝛽𝑘 (𝛾). To compute 𝑆𝛽 𝑗 𝛽𝑘 (𝛾), we take
two inner products with respect to Û 𝑗 (𝛾) and Û𝑘 (𝛾) and then divide by 𝜎𝑗 (𝛾) and
𝜎𝑘 (𝛾), obtaining

𝑆𝛽 𝑗 𝛽𝑘 (𝛾) =
∞∑︁
𝑛=1

𝜆𝑛 (𝛾)
𝜎𝑗 (𝛾)𝜎𝑘 (𝛾)

𝜉𝑛 𝑗 (𝛾)𝜉∗𝑛𝑘 (𝛾). (4.92)
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Figure 4.26: Comparison of the magnitude of the three most energetic CS-
SPOD (left) and harmonic resolvent analysis (right) modes at 𝜸 = 0.05 of the
white noise forced Ginzburg-Landau system with 𝑨𝝁 = 0.4. The contour limits
of the CS-SPOD modes are set equal to the corresponding harmonic resolvent
modes [0, | |U 𝒋 (𝒙, 𝜽)||∞].

The projection 𝜉 𝑗 𝑘 and
|𝑆𝛽 𝑗 𝛽𝑘 |
|𝑆𝛽 𝑗 𝛽𝑘 |∞

are shown in Figure 4.27 for 𝛾 = 0.05. |𝑆𝛽 𝑗 𝛽𝑘 | is,
by construction, diagonal, and this should result in a diagonal 𝜉 𝑗 𝑘 . This is verified
for the first eight modes, but for increasingly subdominant modes, off-diagonal
terms become increasingly apparent, which is owing to a lack of full statistical
convergence.

(a) 𝝃 𝒋𝒌 (b)
|𝑺𝜷𝒋 𝜷𝒌

|

|𝑺𝜷𝒋 𝜷𝒌
|∞

Figure 4.27: CS-SPOD and harmonic resolvent analysis mode projection coeffi-
cient (a) and magnitude of the normalized harmonic resolvent-mode expansion-
coefficient CSD (b) of the white noise forced Ginzburg-Landau system at
𝜸 = 0.05.

Finally, to demonstrate the necessity of using harmonic resolvent and CS-SPOD to
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model and educe structures for time-periodic mean flows, we compare our results
with a naive application of SPOD and (standard) resolvent analysis to the time-
periodic GL system. Figure 4.28 compares the (standard) resolvent gains and SPOD
eigenvalues for 𝐴𝜇 = 0, 0.2, and 0.4. When 𝐴𝜇 = 0, the system is stationary, and
the resolvent gains and SPOD energies agree (as expected), but there are large and
growing discrepancies as 𝐴𝜇 ≠ 0 is increased and the base flow is increasingly
oscillatory. This shows that once the statistically stationary or constant mean flow
assumptions are violated, the relationship between SPOD and resolvent analysis
does not hold even if the forcing is white (as seen due to the difference between the
SPOD eigenspectrum and resolvent analysis gains for 𝐴𝜇 > 0). Thus, for systems
with periodic statistics, CS-SPOD and harmonic resolvent analysis must be used to
analyze these flows.

Figure 4.28: Comparison of the first three resolvent analysis gains 𝝈2
𝒋 and

SPOD eigenvalues 𝝀 𝒋 as a function of frequency 𝒇 for the white noise forced
Ginzburg-Landau system with 𝑨𝝁 = 0.0, 0.2, and 0.4. For clarity, every second
SPOD eigenvalue has been omitted.

4.6 Low-frequency and high-frequency forcing limits
In many flows, the frequency of the forcing may be either low or high with respect to
the dynamics of interest. In both cases, simplifications can be made to the analysis.

For low-frequency forcing, CS-SPOD and harmonic resolvent analysis tend towards
systems that link all frequency components together, thereby making the analysis
of the resulting system impractical. However, in many cases, we are interested in
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frequencies that are much higher than the forcing frequency. Franceschini et al.
(2022) showed that high-frequency structures evolving on a low-frequency periodic
motion could be analyzed using a quasi-steady approach which they named phase-
conditioned localized SPOD (PCL-SPOD) and quasi-steady (QS) resolvent analysis.
These methods require 𝑓 >> 𝑓0 and that at each fixed time (or phase) 𝑡, the cross-
correlation tensor, around that phase, only depends on the time lag 𝜏. At each
phase, all standard SPOD and resolvent analysis properties are satisfied in PCL-
SPOD and QS resolvent analysis, and we refer the reader to Franceschini et al.
(2022) for a detailed discussion. Although PCL-SPOD was developed without
reference to cyclostationary theory and computational methods, by employing a
similar derivation to Franceschini et al. (2022), PCL-SPOD can be written as∫

𝛺

𝑾𝑽 (𝒙, 𝒙′, 𝑓 , 𝑡)𝑾 (𝒙′)𝜓𝜓𝜓(𝒙′, 𝑓 , 𝑡)d𝒙′ = 𝜆( 𝑓 , 𝑡)𝜓𝜓𝜓(𝒙, 𝑓 , 𝑡), (4.93)

where 𝑾𝑽 (𝒙, 𝒙′, 𝑓 , 𝑡) is the Wigner-Ville spectrum and 𝜓𝜓𝜓(𝒙, 𝑓 , 𝑡) are the PCL-
SPOD eigenvectors that only contain a single frequency component 𝑓 and are
independent over time. This is analytically identical to the PCL-SPOD shown in
Franceschini et al. (2022), but is numerically determined using a different compu-
tational procedure. QS resolvent analysis is similarly written as

(𝑖2𝜋 𝑓 I − 𝑨(𝑡)) 𝒈̂( 𝑓 , 𝑡) = 𝜼̂( 𝑓 , 𝑡), (4.94)

where 𝑹( 𝑓 , 𝑡) = (𝑖2𝜋 𝑓 I−𝑨(𝑡)) is the QS resolvent operator, and the solution at each
time-instance 𝑡 (or equivalently phase 𝜃) is independent of the solution at any other
time-instance. For each frequency 𝑓 and time 𝑡, we then seek to solve the forcing
mode 𝜼̂( 𝑓 , 𝑡) that results in the most energetic response 𝒈̂( 𝑓 , 𝑡), which is determined
via the singular value decomposition of the weighted QS resolvent operator

W 1/2
𝑔 𝑹( 𝑓 , 𝑡)W−1/2

𝜂 = Ũ†𝚺†Ṽ ∗† , (4.95)

where W𝜂 and W𝑔 are the norms on the input and output space, respectively, and are
defined similarly to equation (4.80). The diagonal matrix 𝚺† = diag[𝜎2

1 , 𝜎
2
2 , · · · ]

contains the ranked gains and the columns of V̂† = W−1/2
𝜂 Ṽ† and Û† = W 1/2

𝑔 Ũ†
contain the forcing and response modes, respectively.

Using equation (4.9), algorithm 1, and a procedure similar to that of regular SPOD,
we compute PCL-SPOD of the Ginzburg-Landau systems with white-noise forcing
for several different forcing frequencies 𝑓0 = 0.01, 0.04, and 0.1 at 𝐴𝜇 = 0.2. Due
to the substantially lower forcing frequency, 2 × 105 snapshots are saved instead of
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4 × 104. We then compare the PCL-SPOD and QS resolvent results in Figure 4.29
where we see excellent agreement for small 𝑓0. We see that as 𝑓0 increases, the
PCL-SPOD and QS resolvent results increasingly deviate as the two aforementioned
assumptions are increasingly violated.

(a) Contours of QS resolvent gain 𝝈1( 𝒇 , 𝜽)
2 and PCL-SPOD energy 𝝀1( 𝒇 , 𝜽)

as a function of frequency 𝒇 and phase 𝜽 .

(b) Weighted mode shapes in 𝜽 − 𝒙 space of the dominant QS resol-
vent 𝝈1( 𝒇 , 𝜽)|Û†1(𝒙, 𝒇 , 𝜽)| and PCL-SPOD

√︁

𝝀1( 𝒇 , 𝜽)|𝝍𝝍𝝍1(𝒙, 𝒇 , 𝜽)| modes at
𝒇 = 0.1.

Figure 4.29: Contours of the gain and weight modes shapes of the white noise
forced Ginzburg-Landau system with 𝑨𝝁 = 0.2 and 𝒇0 = 0.01, 0.04, and 0.1.
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Many physical systems exhibit some form of spectral peak. If the forcing frequency
is sufficiently large, such that the energy contained at 𝑓 + 𝑘𝛼0, 𝑘 ∈ Z & 𝑘 ≠ 0 is
substantially lower than at 𝑓 , one can see that the CS-SPOD and harmonic resolvent
systems (given by equations (4.41), (4.76), respectively) can be approximated by
the block diagonal term that corresponds to 𝑓 (i.e. the most energetic component
in 𝛺𝛾). Furthermore, for many systems, the impact of a high-frequency forcing on
the low-frequency dynamics is not direct, instead, the low-frequencies are modified
as a result of nonlinear interaction that modifies the mean flow. Thus, for a large
forcing frequency, CS-SPOD and harmonic resolvent analysis approach SPOD and
standard resolvent analysis, respectively. In Figure 4.30, we show the SPOD and
CS-SPOD eigenspectrum of the white-noise forced Ginzburg-Landau system at
𝐴𝜇 = 0.8 for 𝑓0 = 0.1, 0.2, 0.4. To assess the convergence of CS-SPOD to SPOD
for large forcing frequencies, the CS-SPOD modes have been mapped to the SPOD
mode of greatest alignment (computing over the same set of frequencies 𝛺𝛾). This
is similar to what was performed in §4.4.1 during the comparison between SPOD
and CS-SPOD modes. We see that as the forcing frequency increases, the CS-
SPOD and SPOD eigenvalues begin to converge in the region where the energy at
𝑓 + 𝑘𝛼0 << 𝑓 , 𝑘 ∈ Z & 𝑘 ≠ 0.

Figure 4.30: Comparison of the dominant SPOD and CS-SPOD eigenvalues
𝝀1 as a function of frequency 𝒇 for the white noise forced Ginzburg-Landau
system at 𝑨𝝁 = 0.8 for 𝒇0 = 0.1, 0.2, 0.4. The SPOD eigenvalues for 𝑨𝝁 = 0 are
overlaid to show the impact of the forcing on the spectrum.
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4.7 Summary
In this chapter, we have proposed CS-SPOD for the extraction of the most ener-
getic coherent structures from complex turbulent flows whose statistics vary time-
periodically (i.e. flows that have cyclostationary statistics). This is achieved by
an extension of the one-dimensional technique developed by Kim et al. (1996) to
large high-dimensional data through the use of the method-of-snapshots to make
the algorithm computationally feasible for large data. The orthogonality/optimality
properties of the modes generated by CS-SPOD are shown, where, similar to SPOD
analysis of stationary flows, CS-SPOD determines the set of orthogonal modes that
optimally reconstruct the statistics of these flows in terms of the space-time norm.

In contrast to SPOD, where the modes oscillate at a single frequency and have a
constant amplitude in time, CS-SPOD modes oscillate at a set of frequencies sep-
arated by the fundamental cycle frequency (typically the modulation frequency),
have a periodic amplitude in time, and optimally reconstruct the second-order
statistics. We show that CS-SPOD naturally becomes SPOD when analyzing a
statistically stationary process, allowing the CS-SPOD results to be interpreted
in a familiar manner. Furthermore, we develop an efficient computational algo-
rithm to compute CS-SPOD with a computational cost and memory requirement
similar to SPOD, thus allowing CS-SPOD to be computed on a wide range of
problems. A MATLAB implementation of the presented algorithms is available at
https://github.com/CyclostationarySPOD/CSSPOD. Lastly, similar to the
relationship that exists between SPOD and standard resolvent analysis (Towne et al.,
2018), CS-SPOD modes are identical to harmonic resolvent modes in the case where
the harmonic resolvent-mode expansion coefficients are uncorrelated. We also dis-
cuss simplifications that can be made when forcing at a low or high frequency.

We applied the CS-SPOD algorithm to two datasets. The first is data from a mod-
ified linearized complex Ginzburg-Landau equation with time-periodic dynamics,
which represents a simple model of a flow exhibiting non-modal growth. As the
amplitude of the imposed time-periodicity is increased, CS-SPOD yields modes
that are increasingly phase-dependent. We demonstrated the inability of SPOD to
capture these dynamics, which is shown through both an analysis of the temporal
evolution of the modes and by the ability of CS-SPOD to capture substantially
more energy than SPOD. In addition, we show that when the system is forced with
unit-variance white noise, the CS-SPOD modes from the data were identical (up to
statistical convergence) with modes computed by harmonic resolvent analysis. For

https://github.com/CyclostationarySPOD/CSSPOD
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cyclostationary processes, we show that (standard) resolvent analysis cannot predict
the time-averaged statistics even when the white-forcing conditions are met. This
shows that CS-SPOD and harmonic resolvent analysis should be used to correctly
analyze and/or model flows with cyclostationary statistics.

We next considered a 𝑆𝑡 𝑓 = 0.3, 𝑎0/𝑈 𝑗 = 10% forced, turbulent high-Reynolds-
number jet, demonstrating CS-SPOD on a turbulent flow for the first time. We
identified coherent structures that differed in important ways from their SPOD-
identified cousins in natural jets. In particular, CS-SPOD clarifies how the dynamics
of the coherent structures are altered by the forcing. For example, the axisymmetric
CS-SPOD structure at a low Strouhal number featured finer-scale axisymmetric
Kelvin-Helmholtz roll-up in the near-nozzle region that is absent in natural jets at a
high Reynolds number. This roll-up waxed and waned at those phases of the forcing
cycle where the initial shear layer was thinned and thickened, respectively.

Overall, our results show that CS-SPOD successfully extends SPOD to flows with
cyclostationary statistics. This allows us to study a wide range of flows with time-
periodic statistics, such as turbomachinery, weather and climate, flow control with
harmonic actuation, and wake flows rendered cyclostationary through the (arbitrary)
choice of a phase reference for the dominant shedding frequency.
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C h a p t e r 5

MODAL ANALYSIS OF FORCED TURBULENT JETS

In this chapter, we study the impact of periodic acoustic forcing on the statistics
and coherent structures of turbulent jets using cyclostationary analysis and the CS-
SPOD as developed in Chapter 4. Both low- (𝑆𝑡 𝑓 = 0.3) and high-frequency
(𝑆𝑡 𝑓 = 1.5) forcing is found to generate an energetic tonal response but has a
limited impact on the period-averaged mean, turbulent kinetic energy, and the energy
transfer between the mean and turbulent fields, with a forcing amplitude greater
than 𝑎0/𝑈 𝑗 = 1% required to achieve a moderate deformation. We then investigate
coherent structures using CS-SPOD and harmonic resolvent analysis (HRA). For
𝑚 = 0, the 𝑆𝑡 𝑓 = 0.3 forcing results in a broadband increase in the energy of
the dominant coherent structures across all center frequencies, while the 𝑆𝑡 𝑓 = 1.5
forcing attenuates structures at lower center frequencies and amplifies them at higher
center frequencies. Analysis of the dominant modes shows that the forced jets have a
similar primary mechanism as the natural jet. Sufficiently strong forcing is found to
create phase-dependent features in the dominant coherent structures that are coupled
to the high-velocity/shear regions of the mean. Low-frequency forcing results in
a greater phase dependency than high-frequency forcing due to a larger and more
global impact on the mean. The phase dependency of the dominant coherent
structures is weaker at lower center frequencies due to a large difference in the
wavelength and spatial support between the coherent structures and the mean. The
forcing has a limited impact on the energy of coherent structures at other azimuthal
mode numbers. At 𝑚 = 1, 2, the modification of the dominant modes is similar to
𝑚 = 0. Excellent agreement between the dominant CS-SPOD and HRA modes are
found for 𝑚 = 0, 1, 2 for all cases.

5.1 A modification to HRA
Before we begin with out analysis, we must address one challenge employing HRA.
In Chapter 4, we show that, analogous to the relationship between SPOD and stan-
dard resolvent analysis (Towne et al., 2018), CS-SPOD modes are identical to HRA
modes when the harmonic-resolvent-mode expansion coefficients are uncorrelated.
However, the resolvent analysis gain curves and SPOD energy curves are still sub-
stantially different, both in magnitude and trend, since, in a real flow, the forcing
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is not white. This presents a problem when comparing HRA to CS-SPOD. To
demonstrate this, we begin with the HRA equations, but for a steady flow,

(𝑖2𝜋𝛾I − T̂ )Q̂ = BF̂ , (5.2a)

Ŷ = CQ̂, (5.2b)

where
T̂ = diag{ . . . , 𝑹̂−𝛼0 , 𝑹̂0, 𝑹̂𝛼0 , . . . }. (5.3)

Since the flow is steady, all off-diagonal blocks are zero, meaning that we are
simply solving standard resolvent analysis problems at each 𝑓 ∈ 𝛺𝑆𝑡𝑐 (note for this
chapter all frequencies are nondimensional, thus 𝛾 is replaced by 𝑆𝑡𝑐). However,
the dominant mode will now be the dominant resolvent analysis mode across all
frequencies in 𝛺𝑆𝑡𝑐 . Since the resolvent analysis gain spectrum is substantially
different from the SPOD energy spectrum, HRA may obtain a mode at the wrong
frequency compared to CS-SPOD. We demonstrate this in Figure 5.1, where we
perform HRA and CS-SPOD on the natural jet with 𝛼0 = 0.3 and 𝑆𝑡𝑐 = 0.10. The
dominant CS-SPOD mode is the standard Orr-type mode with a Strouhal number of
𝑆𝑡 = 0.1, while the dominant HR mode is a Kelvin-Helmholtz mode at a frequency
of 𝑆𝑡 = −0.5. This occurs because resolvent analysis is unable to predict the correct
gains of the different frequency components. We highlight this in Figure 5.2, where
we display the SPOD eigenspectrum and resolvent gain spectrum for the natural jet.
We have also displayed the solutions set frequencies for 𝑆𝑡𝑐 = 0.1, i.e. 𝛺𝑆𝑡𝑐=0.1. We
find that the highest energy/gain component for SPOD and resolvent is at 𝑆𝑡 = 0.1
and 𝑆𝑡 = −0.5, respectively, which results in the modes shown in Figure 5.1.

A correction procedure is required to fix this problem. To achieve this, we introduce
the forcing weighting tensor W̃ , such that

(𝑖2𝜋𝛾I − T̂ )Q̂ = BW̃ 𝑓 F̂ , (5.5a)

Ŷ = CQ̂, (5.5b)

where
W̃ = diag{ . . . , 𝑾̃𝑆𝑡𝑐−𝛼0 , 𝑾̃𝑆𝑡𝑐 , 𝑾̃𝑆𝑡𝑐+𝛼0 , . . . }. (5.6)

W̃ scales the weighting of the individual frequency components 𝑾̃ 𝑓 to ensure
that HR and CS-SPOD modes are equal. 𝑾 𝑓 could be defined in many ways
(TKE spectrum, SPOD eigenspectrum, etc). We choose to base it on the SPOD
eigenspectrum of the natural jet, at the respective azimuthal mode number, for all
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cases. This means that for the forced jets, no LES data, outside of the time-dependent
mean flow and SPOD eigenspectrum of the natural jet, is required to generate HR
modes. 𝑾 𝑓 is defined as

𝑾 𝑓 =

√√
𝜎2

Natural,1, 𝑓

𝜆Natural,1, 𝑓
𝑰, (5.7)

where 𝜎2
Natural,1, 𝑓 and 𝜆Natural,1, 𝑓 represent the dominant resolvent and SPOD

gains/energies performed at a frequency of 𝑓 of the natural jet. For the natural jet,
this results in the HRA eigenspectrum being equal to the CS-SPOD eigenspectrum
(to within the statistical convergence of CS-SPOD). We show the dominant HR
mode for this corrected case in Figure 5.1, where HRA now selects the correct
mode. The scaling 𝑾 𝑓 is the same for all forced jets since it only depends on the
natural jet, and thus all changes to the spectrum and modes are due to the differences
between the mean flow of the natural and the forced jets.

(a)

(b)

(c)

Figure 5.1: Dominant 𝒎 = 0 (a) CS-SPOD, (b) uncorrected HRA, and (c)
corrected HRA mode of the natural jet at 𝑺𝒕𝒄 = 0.1, 𝜶0 = 0.3. Contour limits
are ±0.75|𝝓𝝓𝝓(𝒕)|∞.

To compute HRA for 𝑆𝑡 𝑓 = 0.3 and 1.5, we let 𝐾 𝑓 = 10 and 4 which results in
a solution frequency set of 𝛺𝑆𝑡𝑐 = 𝑆𝑡𝑐 + {−3,−2.7, · · · , 0, · · · , 2.7, 3} and 𝛺𝑆𝑡𝑐 =

𝑆𝑡𝑐+{−6,−4.5, · · · , 0, · · · , 4.5, 6}, respectively. For 𝑆𝑡 𝑓 = 0.3, due to more coupled
frequencies, the range of resolved frequencies is chosen to be lower for computational
expense. We confirmed that the unresolved high-frequencies have a minimal effect
in the near nozzle region, but the differences are minor and do not affect the
interpretation of the results. We set 𝐾𝛼 = 𝐾 𝑓 to ensure all base flow frequencies
are captured. Calculations are performed on the Bridges2 (Brown et al., 2021)
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(a) (b)

Figure 5.2: Comparison of the (a) SPOD energy spectrum and (b) resolvent
gain spectrum of the natural jet. The solution frequency set for 𝑺𝒕𝒄 = 0.1 and
the location of the frequency corresponding to the maximum energy in 𝜴𝑺𝒕𝒄 is
also displayed.

Extreme Memory Nodes with 4TB of RAM. To efficiently calculate HRA modes, a
time-stepping method (Farghadan et al., 2024) can be employed.

5.2 Cyclostationary Navier-Stokes equations
To determine how the forcing interacts with the turbulence, we perform a cyclo-
stationary decomposition of the governing equations. In particular, we wish to
determine how the turbulence is modulated by (is reorganized by) the forcing and
to what degree there is energy transfer between the mean flow and turbulent fields.

Thus, we decompose the governing equations in a similar manner to the standard
Reynolds decomposition and the triple decomposition (Hussain and Reynolds, 1970;
Reynolds and Hussain, 1972). However, unlike the triple decomposition, we split
our state variables into two components; the first-order (deterministic) and second-
order (stochastic) components. We do not decompose the first-order component
into the period-averaged mean and phase-locked component since both components
belong to the deterministic first-order field, and there is no advantage in separating
them.

Let f (𝒙, 𝑡) be a vector-valued cyclostationary process, which we decompose into its
first-order f̃ (𝒙, 𝑡) (mean) and second-order f′′(𝒙, 𝑡) (turbulent) components,

f (𝒙, 𝑡) = f̃ (𝒙, 𝑡) + f′′(𝒙, 𝑡). (5.8)
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The following three properties then arise from the decomposition:

⟨f̃ (𝒙, 𝑡)⟩ = f̃ (𝒙, 𝑡), (5.9a)

⟨f̃ (𝒙, 𝑡)g(𝒙, 𝑡)⟩ = f̃ (𝒙, 𝑡)g̃(𝒙, 𝑡), (5.9b)

⟨f′′(𝒙, 𝑡)⟩ = ⟨f (𝒙, 𝑡) − f̃ (𝒙, 𝑡)⟩ = 0, (5.9c)

where f̃ (𝒙, 𝑡) = ⟨f (𝒙, 𝑡)⟩ and g(𝒙, 𝑡) is another vector-valued geostationary process.
Combining the second and third properties gives

⟨f̃ (𝒙, 𝑡)f′′(𝒙, 𝑡)⟩ = 0, (5.10)

i.e. the mean flow and the turbulence are linearly uncorrelated (but not independent).

We now use this decomposition to understand the interaction between the forcing
and the turbulence of periodically forced turbulent flows. For convenience, we use
the incompressible form 1, written in Cartesian notation

𝜕𝑢𝑖

𝜕𝑥𝑖
= 0,

𝜕𝑢𝑖

𝜕𝑡
+ 𝑢 𝑗

𝜕𝑢𝑖

𝜕𝑥 𝑗
= −1

𝜌

𝜕𝑝

𝜕𝑥𝑖
+ 𝜈 𝜕2𝑢𝑖

𝜕𝑥 𝑗𝜕𝑥 𝑗
, (5.11a, b)

where 𝑢𝑖, 𝑥𝑖, 𝑡, 𝜌, 𝜈 are the velocity component in the 𝑖th dimension, the spatial
component in the 𝑖th dimension, time, density, and kinematic viscosity, respectively.
Substituting (5.8) into the continuity and momentum equations and taking the mean,
we obtain

𝜕𝑢̃𝑖

𝜕𝑥𝑖
=
𝜕𝑢′′

𝑖

𝜕𝑥𝑖
= 0,

𝜕𝑢̃𝑖

𝜕𝑡
+
𝜕𝑢̃𝑖𝑢̃ 𝑗

𝜕𝑥 𝑗
+
𝜕�𝑢′′

𝑖
𝑢′′
𝑗

𝜕𝑥 𝑗
= −1

𝜌

𝜕𝑝

𝜕𝑥𝑖
+ 𝜈 𝜕2𝑢̃𝑖

𝜕𝑥 𝑗𝜕𝑥 𝑗
. (5.12a, b)

To investigate the energy transfer between the mean and turbulent components, we
determine the mean kinetic energy equation by multiplying the mean momentum
equation by 𝑢̃𝑖 and then taking the mean. After manipulating, we obtain

𝐷̃ ( 12 𝑢̃𝑖𝑢̃𝑖)
𝐷𝑡

= −
𝜕𝑢̃𝑖�𝑢′′𝑖 𝑢′′𝑗
𝜕𝑥 𝑗

−
(
−�𝑢′′

𝑖
𝑢′′
𝑗

𝜕𝑢̃𝑖

𝜕𝑥 𝑗

)
− 1
𝜌

𝜕𝑝𝑢̃𝑖

𝜕𝑥𝑖
(5.13)

+ 𝜈 𝜕

𝜕𝑥 𝑗

[
𝑢̃𝑖

( 𝜕𝑢̃𝑖
𝜕𝑥 𝑗
+
𝜕𝑢̃ 𝑗

𝜕𝑥𝑖

)]
− 𝜈

2

( 𝜕𝑢̃𝑖
𝜕𝑥 𝑗
+
𝜕𝑢̃ 𝑗

𝜕𝑥𝑖

) ( 𝜕𝑢̃𝑖
𝜕𝑥 𝑗
+
𝜕𝑢̃ 𝑗

𝜕𝑥𝑖

)
,

where the first term is accumulation + transport, the second, fourth, and fifth terms
are diffusion, the sixth is dissipation, and the third is transfer. The transfer term

−�𝑢′′
𝑖
𝑢′′
𝑗

𝜕𝑢̃𝑖

𝜕𝑥 𝑗
, (5.14)

1In the low subsonic jets (𝑀 𝑗 = 0.4) we consider, the density fluctuations can be expected to
minor in the energy balance.
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is of particular interest as it represents the drain of energy from the mean to the
turbulent field by the action of the mean against the turbulent Reynolds stresses.
This term is a source in the turbulent kinetic energy equation and a sink in the
mean kinetic energy equation. Unlike the Reynolds/triple decomposition, we obtain
a phase-dependent energy transfer that allows us to investigate how the energy
transfer between the mean and turbulent field varies under the external forcing.

5.3 Analysis of mean flow and second-order statistics
5.3.1 Mean flow
We begin with an analysis of the impact of the forcing on the mean flow. It is
known that high-Reynolds number turbulent jets are receptive to a wide range of
forcing frequencies and azimuthal mode numbers (Crow and Champagne, 1971;
Samimy et al., 2007, 2010, 2012; Sinha et al., 2018). Generally, forcing results in a
thickening of the shear layer and a consequent reduction in the potential core length,
which can be seen in Figures 5.3 and 5.4.

Figure 5.3 displays the time-periodic mean axial velocity. The left column shows
the flow at a forcing phase 𝜙 𝑓 = 0◦ (the forcing phase has been replaced by 𝜙 𝑓 in
this Chapter instead of 𝜃 𝑓 as in earlier Chapters). For 𝑆𝑡 𝑓 = 0.3, the mean shows
a substantial response to forcing, and is modulated by the roll-up of large-scale
vortices in the potential core region whose strength increases as the amplitude of
forcing is increased. In contrast, for 𝑆𝑡 𝑓 = 1.5, the effect of forcing is spatially
limited to the near-nozzle region, with the largest phase-dependency occurring in
the first diameter downstream of the nozzle exit. As we discuss later, the 𝑆𝑡 𝑓 = 1.5
flow also features phase-locked roll-up of vortices in the near-nozzle region. These
results are in accord with past studies of forced jets and the identification of the
largest response to forcing (jet preferred mode) at 𝑆𝑡 𝑓 ≈ 0.3. The largest response
of the jet to forcing occurring at 𝑆𝑡 𝑓 ≈ 0.3 is also supported by linear stability
analysis (Garnaud et al., 2013). For the 𝑆𝑡 𝑓 = 1.5, 𝑎0/𝑈 𝑗 = 10% forcing, the high
amplitude acoustic waves have steepened as they propagate downstream and begin
to exhibit shock-like structures resulting in the observed outside the jet.

Figure 5.3b shows the zero-frequency component of the mean axial velocity (i.e.
the period-averaged flow). Despite the jet’s strong harmonic response to the forcing,
the impact on the period-averaged field is less obvious. This is further examined
in Figure 5.4, where we display the period-averaged axial velocity 𝑢̃𝑥,0(𝑥) and the
standard deviation of the mean axial velocity 𝜎(𝑢̃𝑥 (𝑥)) along the centerline and lip-
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line, along with the momentum thickness 𝛿𝜃 . Similar to previous studies (Schmidt
et al., 2018), 𝛿𝜃 is defined as

𝛿𝜃 (𝑥) =
∫ 𝑟0.05

0

𝜌̃0(𝑥, 𝑟)𝑢̃𝑥,0(𝑥, 𝑟)
𝜌̃0(𝑥, 0)𝑢̃𝑥,0(𝑥, 0)

(
1 − 𝑢̃𝑥,0(𝑥, 𝑟)

𝑢̃𝑥,0(𝑥, 0)

)
d𝑟, (5.15)

where 𝑢̃𝑥,0(𝑥, 𝑟) is the time- and azimuthally averaged axial velocity. The integral
radial bound 𝑟0.05 corresponds to the radial location where 𝑢̃𝑥,0(𝑥, 𝑟0.05) − 𝑈∞ =

0.05 𝑢̃𝑥,0(𝑥, 0). An increase in the momentum thickness with forcing amplitude and
an associated shortening of the potential core is evident for all cases. The 𝑆𝑡 𝑓 =

0.3, 𝑎0/𝑈 𝑗 = 10% forcing is sufficiently strong to result in a non-monotonically
decreasing period-averaged centerline velocity. This is also seen close to the nozzle
for the 𝑆𝑡 𝑓 = 1.5, 𝑎0/𝑈 𝑗 = 10% forcing case. The 𝑆𝑡 𝑓 = 0.3 forcing at an amplitude
𝑎0/𝑈 𝑗 = 1% and 10% results in maximum standard deviations (as a ratio of the jet
velocity) of 15% and 33%, respectively, along the centerline, and 9.8% and 35%,
respectively, along the lip-line. In contrast, the 𝑆𝑡 𝑓 = 1.5 forcing is more localized
to the near-nozzle exit, with substantial lipline phase-dependency occurring within
0.15 diameters of the nozzle exit with a maximum standard deviation of 7.0%
and 18% for the 𝑎0/𝑈 𝑗 = 1% and 10% forcing, respectively. The effect along
the centerline is reduced, with a maximum phase-dependency of just 3.5% for the
𝑎0/𝑈 𝑗 = 10% forcing. Curiously, the 𝑆𝑡 𝑓 = 1.5, 𝑎0/𝑈 𝑗 = 10% forcing results
in a slight decrease in mixing far downstream, where the centerline velocity and
momentum thickness are slightly larger and smaller, respectively, than the natural
jet at 𝑥 = 20.

5.3.2 Second-order statistics
In Figure 5.5a, we display the azimuthally averaged root-mean-square (RMS) tur-
bulent axial velocity �𝑢′′𝑥𝑢′′𝑥 at 𝜙 𝑓 = 0. The turbulence is modulated and is phase
dependent in similar regions as was seen in the mean flow–up to the end of the
potential core for 𝑆𝑡 𝑓 = 0.3 and near the nozzle exit (up to 𝑥 ≈ 2) for 𝑆𝑡 𝑓 = 1.5.
Both 𝑎0/𝑈 𝑗 = 10% forcing cases exhibit clear vortex roll-up. For all cases, the
radial location of the maximum phase-dependency of the RMS is along the lipline,
𝑟 ≈ 0.5, which is where the center of the rolled-up vortices pass.

We display the period-averaged axial velocity RMS along the centerline and lipline in
Figure 5.5b. The 𝑆𝑡 𝑓 = 0.3 forcing results in a minor upstream shift of the centerline
RMS, which is expected given the observed shortening of the jet. Additionally, an
increase in the peak centerline and lipline RMS is observed, indicating an increase
in the period-averaged intensity of the turbulence. A more substantial effect on the
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(a) (b)

Figure 5.3: Contours of the (a) mean axial velocity 𝒖̃𝒙 (𝝓 𝒇 ) at 𝝓 𝒇 = 0 and
(b) the 𝒇 = 0 component (period-averaged) of the axial velocity 𝒖̃𝒙,0. The
solid and dashed white lines correspond to lines of 𝒖̃𝒙 (𝝓 𝒇 ) = 0.25, 0.75 and
𝒖̃𝒙,0 = 0.25, 0.75 for (a) and (b), respectively.

lipline RMS is seen, with a decrease for the first 5 diameters and then a substantial
increase between 𝑥 ∈ [6, 11] diameters downstream. This decrease in the period-
averaged RMS is due to the shear layer being modulated towards and away from
the centerline due to the forcing, thereby resulting in a lower period-averaged value.
The substantial increase in the RMS at 𝑥 ∈ [6, 11] is likely caused by the energetic
vortices generated by the forcing. These vortices advect downstream while breaking
down, thereby creating a substantial amount of turbulent energy. For the 𝑆𝑡 𝑓 =

1.5, 𝑎0/𝑈 𝑗 = 10% forcing, the RMS contours clearly show the presence of vortex
roll-up. However, in contrast to the 𝑆𝑡 𝑓 = 0.3 case, these vortices are smaller in
size and are spatially limited to 𝑥 ∈ [0, 2]. Consequently, these vortices break down
more rapidly and do not increase peak RMS along the centerline. Instead, a slight
decrease in the peak centerline RMS is observed (and a slight upstream shift for the
𝑎0/𝑈 𝑗 = 10% forcing). Along the lipline, a large increase is observed for 𝑥 ∈ [0, 2]
corresponding to where the 𝑆𝑡 𝑓 = 1.5 forcing is dominant. After 𝑥 = 5, a slight
decrease is observed in the lipline RMS for the forced cases.

In Figure 5.6, we display the azimuthally averaged Wigner-Ville spectrum of the
axial velocity at two axial stations along the lipline. This shows how the frequency
content 𝑢′′𝑥 at these locations varies as a function of the phase of the forcing. These
stations were chosen to correspond to the locations where the RMS is most phase-
dependent for the 𝑆𝑡 𝑓 = 0.3 and 1.5 forcing, respectively. As expected from the
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Figure 5.4: (a) Period-averaged axial velocity 𝒖̃𝒙,0, (b) standard-deviation of the
mean axial velocity 𝝈(𝒖̃𝒙) along the centerline and lipline, and (c) momentum
thickness 𝜹𝜽 .

RMS, the 𝑆𝑡 𝑓 = 0.3 forcing shows substantial frequency phase-dependency at both
stations, while the 𝑆𝑡 𝑓 = 1.5 forcing only shows this at the upstream station. Looking
at the mean axial velocity in Figure 5.3 for the 𝑆𝑡 𝑓 = 0.3 cases at 𝑥 = 5, 𝑟 = 0.5,
we observe that the 1% forcing case is in a low-velocity trough at 𝜙 𝑓 = 0◦, whereas
the 10% forcing case is at a high-velocity peak at that same phase. Comparing
this to the corresponding Wigner-Ville contours, we find that the high-velocity
phases correspond to bursts of higher-frequency energy in the Wigner-Ville spectrum
associated with the passage of the rolling-up vortex. Overall, the 𝑎0/𝑈 𝑗 = 1% cases
result in a mild phase-dependency compared to the 10% case.

For reference, we also display in Figure 5.6 the Wigner-Ville spectrum of the
natural jet computed by assuming a forcing frequency of 𝑆𝑡 𝑓 = 0.3. A Welch
bin width of 𝛥𝑆𝑡 = 0.025 is employed. As the natural jet is stationary, the minor
phase-dependency of the spectrum with the phase of forcing is an artifact of non-
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(a) (b)

Figure 5.5: (a) RMS contours
√︃

(I𝒖′′𝒙𝒖′′𝒙 ) at 𝝓 𝒇 = 0 and (b) period-averaged

RMS
√︃

(I𝒖′′𝒙𝒖′′𝒙 )0 along the centerline and lipline.

(a)

(b)

Figure 5.6: Wigner-Ville spectrum of 𝒖′′𝒙 at (a) 𝒙 = 1.25, 𝒓 = 0.5 and (b)
𝒙 = 5, 𝒓 = 0.5.

convergence of the statistics. Comparing these spectra to the forced cases allows
one to discern a satisfactory statistical convergence — where a phase dependence is
absent from the natural jet.

To further isolate where the turbulence is most strongly modulated by forcing, we
display contours of the cyclic variance of the turbulent axial velocity as a function of
𝛼/𝛼0 given by equation 4.10b in Figure 5.7. This is also equal to the Fourier series
expansion of the phase-dependent mean-squared variance. The period-averaged
variance, 𝛼/𝛼0 = 0, shows the change in the RMS. Next, 𝛼/𝛼0 = 1 and 2 shows
where the turbulence is phase-dependent with a period equal to and equal to half the
forcing frequency, respectively. This shows where the turbulence is being modified
by the forcing (i.e. where non-linearity has resulted in phase-dependent turbulence).
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Figure 5.7: Cyclic variance 𝒎̂𝜶(𝒙, 𝒓) contours of the turbulent axial velocity
𝒖′′𝒙 (𝒙, 𝒓) for (a) 𝜶/𝜶0 = 0, (b) 𝜶/𝜶0 = 1, and (c) 𝜶/𝜶0 = 2.

Thus, if 𝒎̂𝛼 (𝑥, 𝑟) = 0 for 𝛼/𝛼0 ≠ 0 then the flow is statistically stationary. Thus, for
example, we see that despite the strong 𝑆𝑡 𝑓 = 1.5, 𝑎0/𝑈 𝑗 = 10% forcing, the flow is
stationary-stationary for 𝑥/𝐷 > 2. The period-averaged variance, 𝛼/𝛼0 = 0, when
compared to the natural jet, is elevated towards the end of the potential core for the
𝑆𝑡 𝑓 = 0.3 forcing and in the near nozzle shear layer region for the 𝑆𝑡 𝑓 = 1.5 forcing.
We also see that the phase-dependency of the variance 𝛼/𝛼0 = 1, 2 is more global
for the 𝑆𝑡 𝑓 = 0.3 forcing, located 𝑥 ∈ [0, 10], than the 𝑆𝑡 𝑓 = 1.5 forcing which is
much more localized to the near nozzle region 𝑥 ∈ [0, 2].

5.3.3 Energy transfer
We quantify the interaction between the mean flow and the turbulence by computing
the energy transfer (production of turbulent kinetic energy)

𝐸 (𝑥, 𝑟, 𝜃, 𝑡) = −�𝑢′′
𝑖
𝑢′′
𝑗

𝜕𝑢̃𝑖

𝜕𝑥 𝑗
, (5.16)

where, for ease of notation, we use Cartesian coordinates on the right-hand side and
cylindrical on the left. Any phase-averaged quantities are axisymmetric due to the
homogeneity in 𝜃 of the flow and the forcing. In Figure 5.8 we display the energy
transfer at three phases of the forcing 𝜙 𝑓 = 0, 𝜋/3, and 2𝜋/3. In line with previous
results, the 𝑆𝑡 𝑓 = 0.3 forcing results in a maximum phase-dependency of the energy
transfer towards the end of the potential core while the 𝑆𝑡 𝑓 = 1.5 cases are localized
to 𝑥 ∈ [0, 2]. Similar to the RMS contours, the phase-dependency of the energy
transfer for the 𝑎0/𝑈 𝑗 = 1% forcing cases is relatively minor. The phase-dependency
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Figure 5.8: Energy transfer contours ˜𝑬(𝒙, 𝒓, 𝜽, 𝒕) at (a) 𝝓 𝒇 = 0, (b) 𝝓 𝒇 = 2𝝅/3,
and (c) 𝝓 𝒇 = 4𝝅/3 .

is substantial for the 𝑎0/𝑈 𝑗 = 10% forcing cases, and the localization of the energy
transfer to the vortex cores is clearly observed.

Next, we analyze the global impact that the forcing has on the energy transfer. In
Figure 5.9, we display cumulative energy transfers by first integrating 𝐸 in 𝑟 and 𝜃,

𝐸𝑟 (𝑥, 𝑡) =
∫
𝑟

∫
𝜃

𝐸 (𝑥, 𝑟, 𝜃, 𝑡)𝑟𝜕𝑟𝜕𝜃, (5.17)

and then, additionally, in 𝑥,

𝐸𝑟𝑥 (𝑥, 𝑡) =
∫ 𝑥

𝑥′=0

∫
𝑟

∫
𝜃

𝐸 (𝑥′, 𝑟, 𝜃, 𝑡)𝑟𝜕𝑟𝜕𝜃𝜕𝑥′, (5.18)

and we refer to these as the local and global energy transfer, respectively. In the local
measure, we observe a strongly phase-dependent energy transfer for 𝑥 ∈ [0, 10] for
the 𝑆𝑡 𝑓 = 0.3 cases, where bands of low and high energy transfer correspond to
the roll-up and passage of the large-scale vortices. The width and energy of the
bands increase as the vortices grow in size and strength and then, after 𝑥 ≈ 8, begin
to decay. A similar phenomenon occurs for the 𝑆𝑡 𝑓 = 1.5 cases but is spatially
restricted to 𝑥 = [0, 2], in line with our mean-flow observations. After this, another
phase-dependent energy transfer phenomenon becomes apparent with a wavelength
of≈ 1.66, which corresponds to the acoustic wavelength associated with the forcing.
This is an acoustic artifact of the strong high-frequency forcing and steepening of
the plane acoustic waves outside the shear layer (and also evident in Figure 5.3a),
which apparently interacts with the natural stochastic perturbations present in the
jet.

Despite the strong local phase-dependency, the global energy transfer is similar
across all cases, as seen in the 𝐸𝑟𝑥 (𝑥, 𝑡) contours. The white lines represent locations
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(a)

(b)

Figure 5.9: Contours of (a) ˜𝑬𝒓 (𝒙, 𝒕) and (b) ˜𝑬𝒓𝒙 (𝒙, 𝒕) as a function of the phase
of the forcing 𝝓 𝒇 and axial location 𝒙. The white lines overlaid on the ˜𝑬𝒓𝒙 (𝒙, 𝒕)
contours represent lines of [2, 10, 50, 90]% × 0.25 energy transfer.

of fixed energy transfer which are phase-independent for the natural case and nearly
so with 𝑎0/𝑈 𝑗 = 1% forcing. To obtain a modest phase-dependent integrated energy
transfer, 𝑎0/𝑈 𝑗 = 10% forcing must be used. In Figure 5.10, we quantify this
effect by displaying the period-average and minimum/maximum values of 𝐸𝑟𝑥 (𝑥, 𝑡).
A similar result is seen: only the 10% forcing results in an appreciable phase-
dependency of the total energy transfer. Even with the 10% forcing, the variation
as a function of phase is minor after 𝑥 ≈ 5, 1 for 𝑆𝑡 𝑓 = 0.3, 1.5, respectively. This
indicates that at a given phase, the higher energy transfer linked to the high-velocity
regions is counteracted by the lower energy transfer linked to the low-velocity
regions.

After 𝑥 = 2, 0.7 for the 𝑆𝑡 𝑓 = 0.3, 1.5 forcing, the change in the period-averaged
energy transfer for the forced jets is large in comparison to the maximum variation
as a function of the phase of the forcing. This supports the hypothesis (Kœnig
et al., 2016; Sinha et al., 2018) that the primary change in jet noise is driven by a
corresponding change to the period-averaged mean.

5.4 Modal analysis
5.4.1 CS-SPOD
So far, we have seen that forcing generates an energetic phase-locked response
(especially at the 10% forcing level), consisting of roll-up, advection, and decay
of vortices. These vortices modulate the production of turbulence, with higher
production in phases of the forcing where there is relatively stronger shear, and
propagating and eventually decaying within the cores of the developed vortices.
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Figure 5.10: Comparison of ˜𝑬𝒓𝒙,0(𝒙, 𝒕) and the maximum fluctuation of
˜𝑬𝒓𝒙 (𝒙, 𝒕).

We now investigate the evolution of the coherent structures in the turbulence and
compare them to those of the natural jet. While the overall energy transfer from
mean to turbulence has been found to be only weakly modified by the forcing,
alteration of the coherent structures could have an outsized impact on important
features such as the radiated acoustic field (Jordan and Colonius, 2013). While we
do not investigate the acoustic radiation problem directly, we seek to quantify the
alteration of the structures by using CS-SPOD and HRA.

Interpreting coherent structures in cyclostationary flows is not as straightforward
as in the stationary case, where each frequency is independent. Instead, each CS-
SPOD (or HR) mode oscillates with a set of frequencies 𝛺𝑆𝑡𝑐 = {· · · , 𝑆𝑡𝑐−2𝛼0, 𝑆𝑡𝑐−
𝛼0, 𝑆𝑡𝑐, 𝑆𝑡𝑐 +𝛼0, 𝑆𝑡𝑐 +2𝛼0, · · · }, where 𝑆𝑡𝑐 is termed the center frequency. For every
𝑆𝑡𝑐, the amplitude (and energy) of the mode varies periodically in time with period
1/𝛼0. This is similar to how SPOD modes have a constant amplitude/energy in time
but have a 1/𝑆𝑡 periodic real/imaginary components. The CS-SPOD eigenvalues
are periodic in 𝑆𝑡𝑐 with unique values existing in (−𝛼0/2, 𝛼0/2]. SPOD modes
can be thought of as the limit of CS-SPOD modes as 𝛼0 → 0, in which case the
amplitude (energy) becomes constant and the set of frequencies at which the real
and imaginary modes oscillate collapse to the center frequency, 𝑆𝑡 = 𝑆𝑡𝑐, but the
range of 𝑆𝑡𝑐 now extends to [−∞,∞]. Statistically (and strictly for 𝑚 = 0), the
SPOD and CS-SPOD eigenvalues are the same at ±𝑆𝑡𝑐, so we only need to examine
the range 𝑆𝑡𝑐 ∈ (0, 𝛼0/2].
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Based on Chapter 3, we employed a fixed Welch bin width of 𝛥𝑆𝑡 = 0.025 since this
was seen to be the optimal constant frequency resolution across the frequency range
of interest. While a varying frequency resolution would be desirable to obtain better
convergence, since CS-SPOD coupled varying frequencies together, it is unclear
how to incorporate this into the algorithm. An extension to the proposed optimal
frequency resolution algorithm to CS-SPOD is left as future work.

Figure 5.11(a) shows the first two eigenvalues of the CS-SPOD spectrum for the
forced jets at 𝑚 = 0 and 𝑆𝑡 𝑓 = 0.3 (with 𝛼0 = 0.3). The overall trend for 𝑆𝑡𝑐 ≠ 0 is
a decrease in energy with increasing 𝑆𝑡𝑐, which can be associated with the typical
behavior of jet turbulence with monotonically decreasing energy with increasing 𝑆𝑡.
The energy of the modes increases with forcing amplitude across all frequencies,
with the largest increase as 𝑆𝑡𝑐 approaches ±𝛼0/2. Increasing the forcing amplitude
also increases the energy separation between the dominant and subdominant modes,
and this effect is also stronger as→ ±𝛼0/2.

Figure 5.11(b) shows the results for the 𝑆𝑡 𝑓 = 1.5 forcing. A different behavior is
observed, in that the dominant mode is relatively unaffected by the forcing level for
lower 𝑆𝑡𝑐 and then decreasing with increasing forcing level until ticking up again
as 𝑆𝑡𝑐 approaches 𝛼0/2. The first subdominant modes are unaffected by the forcing
for all 𝑆𝑡𝑐.

In Figure 5.11, we also superpose the CS-SPOD spectra of the natural jets. Using CS-
SPOD for the natural jet is permissible as stationarity is a subset of cyclostationarity.
In fact, up to statistical convergence, we show in Appendix B that SPOD and CS-
SPOD produce the same spectrum for the natural jet, regardless of the chosen value
of 𝛼0. However, the ordering of the modes is different for each choice of 𝛼0 (and
for regular SPOD), and this makes a side-by-side comparison with the forced jet
challenging. We find that the simplest interpretation of the eigenvalues follows by
comparing the natural jet to the forced jets using CS-SPOD with 𝛼0 chosen to be
the corresponding forcing frequency. We are essentially interpreting the natural jet
as forcing with vanishing strength. We see that for the most part, the natural jet fits
the trend-wise descriptions for each case given above.

Sinha et al. (2018) and Kœnig et al. (2016) showed that high-frequency forcing
results in a more stable mean flow that reduces the amplification of coherent struc-
tures, while the opposite is true for low-frequency forcing. The CS-SPOD results
agree with this interpretation, and provide some further clarity. For both forcing
frequencies, we find that the spectrum is more impacted as 𝑆𝑡𝑐 → 𝛼0/2 and that the
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spectrum is affected less as 𝑆𝑡𝑐 → 0. As we will show shortly, we find that coherent
structures at 𝑆𝑡 << 𝑆𝑡 𝑓 (i.e. the lower frequency components present for 𝑆𝑡𝑐 → 0)
evolved independently to the phase-dependent mean field. This occurs because
the dominant coherent structures at 𝑆𝑡 have a wavelength much greater than the
wavelength of the forcing. Instead, these structures are modified by corresponding
changes to the period-averaged mean flow. Since the period-averaged mean flow is
not greatly impacted by the forcing, as seen in Figures 5.3 and 5.4, these coherent
structures are impacted less. Higher frequency structures (in particular, 𝑆𝑡 >> 𝑆𝑡 𝑓 )
respond to the phase-dependent mean. Since the phase-dependent variation of the
mean is far greater than the period-averaged mean flow, as shown in Figures 5.3 and
5.4, the impact on the energy/structure of the coherent structures is also far greater.

Samimy et al. (2007) showed that low-frequency forcing (𝑆𝑡 𝑓 ≈ 0.3) results in a
louder jet while high-frequency forcing (𝑆𝑡 𝑓 > 1) results in a small noise reduction.
While the stability of the mean flow is not directly computed in their study, the
increase/decrease in the noise is consistent with the increase/decrease in the stability
of the period-averaged mean flow found by Sinha et al. (2018) and Kœnig et al.
(2016). We provide some further clarity. In Samimy et al. (2007), low-frequency
forcing (𝑆𝑡 𝑓 = 0.36, 𝑚 = 0) at 𝜃 = 30◦ results in a noise increase from 𝑆𝑡 ≈ 0.1
onward with the noise increase being larger at higher 𝑆𝑡. This increase in the high-
frequency noise can be explained using Lighthill acoustic analogy (Lighthill, 1952),
which states that total sound power is proportional to the eighth power of the jet
velocity, ∝ 𝑈8

𝑗
. Due to a large difference in the frequency between the low-frequency

forcing and the high-frequency wavepackets, the high-frequency wavepackets are
likely to respond to the change in the mean flow in a quasi-steady manner. This was
seen in the Wigner-Ville spectrum in Figure 5.6, where it was seen that the high-
frequency components responded in a quasi-steady manner to the change in the
mean. Furthermore, this is similar to the results by Franceschini et al. (2022), who
showed that the high-frequency Kelvin-Helmholtz structures present in the turbulent
flow over a square cylinder evolved in a quasi-steady manner, and the structures
were phase-locked to the vortex shedding. Since low-frequency forcing results in a
substantial modulation of the jet velocity (with alternating regions of high and low
velocity), the high-frequency wavepackets are more energetic (louder) during the
high-velocity phases and less energetic (quieter) during the low-frequency phases.
Since acoustic power is non-linear ∝ 𝑈8

𝑗
, the increase in acoustic power during the

high-velocity phases overwhelms the decrease in acoustic power during low-velocity
phases, thereby resulting in a louder jet at high-frequencies on average. The same
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Figure 5.11: Comparison of the CS-SPOD eigenspectrum of the natural and
(a) 𝑺𝒕 𝒇 = 0.3 and (b) 𝑺𝒕 𝒇 = 1.5 forced jets.

trend is seen for high-frequency 𝑆𝑡 𝑓 = 1.07 forcing in Samimy et al. (2007), where
the forcing still results in an increase in high-frequency noise 𝑆𝑡 ≈ 1 (where for
𝑆𝑡 >> 𝑆𝑡 𝑓 the structures can again be considered to respond to the periodic mean
flow in a quasi-steady manner). This is consistent with our quasi-steady structure
hypothesis.

To investigate how the forcing impacts the coherent structures, we display the
dominant CS-SPOD mode for 𝑚 = 0 and 𝑆𝑡 𝑓 = 0.3 jet at 𝑆𝑡𝑐 = 0.1 in Figure 5.12.
As described previously, CS-SPOD modes have a periodic amplitude in time, so we
display the modes at several time instances. We also display the corresponding phase
of the forcing and overlay contours of 𝑢̃𝑥 (𝜙 𝑓 ) = 0.25 and 0.75 to demonstrate how
the coherent structures are linked to/modulated by the phase-dependent mean flow.
By contrast with the eigenvalues, we compare CS-SPOD eigenvectors to the SPOD
(rather than CS-SPOD) eigenvector of the natural jet, which has constant amplitude
in time. We select the corresponding SPOD mode by carefully sorting the spectra
as discussed in the appendix. We find that this provides a cleaner comparison, as
the CS-SPOD eigenvectors for the natural jet show statistical artifacts that are easy
to misinterpret as cyclostationary features.

Looking at the CS-SPOD modes, we find a few salient features. First, all modes
are Orr-type modes with a dominant frequency component at 𝑆𝑡 = 0.1, which
corresponds to the most energetic frequency component in 𝛺𝑆𝑡𝑐 . The Orr-type mode
structure is consistent with the literature for this 𝑚 − 𝑆𝑡 pair (Pickering et al., 2020);
forcing has not changed the dominant mechanism. Second, we see an upstream shift
in the location of the Orr mode corresponding to the shift in the period-averaged
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Figure 5.12: Pressure of the dominant 𝒎 = 0 mode of (a) the natural jet at
𝑺𝒕 = 0.1 and (b,c) the 𝑺𝒕 𝒇 = 0.3 forced jets (1 and 10% forcing, respectively) at
𝑺𝒕𝒄 = 0.1. The contour limits are ±0.75|𝝓𝝓𝝓(𝒕)|∞.

field. Third, as the forcing amplitude is increased, we observed a strong phase-
dependency of the dominant Orr-type mode where the highest amplitude region
of the mode is slaved to the greatest velocity/shear present in the jet. This phase-
dependency of the dominant mode is most clearly observed in Figure 5.12a. In
Figure 5.13, we decompose the CS-SPOD modes into their Fourier components,
𝜓𝜓𝜓(𝒙, 𝑓 ) of the CS-SPOD modes 𝜙𝜙𝜙(𝒙, 𝑡) displayed in Figure 5.12. We can clearly
observe the features seen in the time-domain modes, such as the contraction of
the Orr-type mode as the forcing amplitude increases. Furthermore, for the high-
amplitude forcing, there is a substantial change in the structure of the 𝑆𝑡 = 0.1
component as well as substantial contributions from the 𝑆𝑡 = −0.5,−0.2, 0.4, and
0.7 components. These frequency components are all coupled together to create the
time-domain modes seen in Figure 5.12. These 𝑆𝑡 = −0.5, 0.4 and 0.7 components
do not have a Kelvin-Helmholtz-type structure as would be expected of the dominant
mode at these frequencies. Thus, the dominant CS-SPOD mode is not simply the
summation of multiple dominant SPOD modes. Instead, it forms an entirely new
mode.
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Figure 5.13: Fourier coefficients of the CS-SPOD modes depicted in Figure
5.12; layout the same as Figure 5.12. Contour limits are ±0.75|𝝍𝝍𝝍(𝒙, 𝒇 )|∞.

In Figure 5.14, we display the dominant CS-SPOD mode for the natural jet and the
𝑆𝑡 𝑓 = 0.3 forced cases at two other center frequencies, 𝑆𝑡𝑐 = 0.05 and 0.15, which
also take the form of Orr modes. For the forced jets, the time-dependent modes are
shown at a single instance in time corresponding to the phase 𝜙 𝑓 = 0. At 𝑆𝑡𝑐 = 0.05,
there is a similar structure as for 𝑆𝑡𝑐 = 0.15. There is a reduction in the length of the
dominant frequency component, 𝑆𝑡 = 0.05, and stronger phase-dependent structures
as the forcing amplitude increases.

In Figure 5.15, we compare the dominant modes for the natural jet and the 𝑆𝑡 𝑓 = 1.5
forced jets at 𝑆𝑡𝑐 = 0.05, 0.15, 0.475, and 0.75. Based on the separation between
the center frequency and 𝛼0 = 𝑆𝑡 𝑓 = 1.5, we expect the dominant mechanisms to
be those associated with the natural jet at the center frequency. Based on Pickering
et al. (2020), we expect 𝑆𝑡𝑐 = 0.05 and 𝑆𝑡𝑐 = 0.15 to correspond to Orr mechanism
and 𝑆𝑡𝑐 = 0.475 and 0.75 to correspond to Kelvin-Helmholtz mechanism.

The Figure supports these expectations, though the 10% forcing cases display the
previously discussed phenomenon (see sections 5.3.1 and 5.3.3) whereby the strong
acoustic forcing leads to shocks and direct nonlinear interaction between the waves
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Figure 5.14: Dominant 𝒎 = 0 SPOD/CS-SPOD mode of the natural jet and
the 𝑺𝒕 𝒇 = 0.3 forced jets, respectively, at (a) 𝑺𝒕𝒄 = 0.05 and (b) 𝑺𝒕𝒄 = 0.15.
The pressure is shown at 𝝓 𝒇 = 0 for the forced jets. Contour limits are
±0.75|𝝓𝝓𝝓(𝝓 𝒇 = 0)|∞. Note the varying axis limits between sub-figures.

and the coherent structures. Apart from this effect, forcing has relatively minor
impact on the coherent structures. There is a slight increase in the length of the
Orr mode for the 𝑎0/𝑈 𝑗 = 10% forcing, and for 𝑆𝑡𝑐 = 0.75, a reduction in the
length of the Kelvin-Helmholtz mode is evident. For 𝑆𝑡𝑐 = 0.05, 0.15, and 0.475,
no substantial phase-dependency in the dominant modes is observed even for the
10% forcing (apart from the shock interaction). By contrast, for 𝑆𝑡𝑐 = 0.75, some
phase dependency is observed for the 10% forcing in the near-nozzle region.

The lack of phase dependency for the lower frequencies is due to several reasons.
First, the dominant wavelength present in the 𝑆𝑡𝑐 = 0.05, 0.15, and 0.475 modes is
much greater than the wavelength of the mean-flow deformation caused by the 𝑆𝑡 𝑓 =
1.5 forcing. This wavelength mismatch suggests that the low-frequency coherent
structures evolve independently to the phase-dependent mean flow variation, instead,
they respond to changes in the period-averaged mean. In contrast, for 𝑆𝑡𝑐 = 0.75, the
primary wavelength is closer to that of the forcing, resulting in phase dependency.
This trend was also seen for the 𝑆𝑡 𝑓 = 0.3 cases. Second, the spatial support of these
dominant low-frequency/longer-wavelength structures is much further downstream
than the spatial support of the mean-flow phase-dependency, resulting in a limited
phase-dependency of the low-frequency coherent structures. Lastly, in section 4.6,
we showed that CS-SPOD modes are approximated by SPOD modes when there is a
large energy difference between the different frequencies in 𝛺𝑆𝑡𝑐 , which is precisely
the case for the 𝑆𝑡 𝑓 = 1.5 forcing for low 𝑆𝑡𝑐.

In Figure 5.16, we display the CS-SPOD eigenspectrum for 𝑚 = 1, 2, 3. Since
the instantaneous data at 𝑚 > 0 is complex, the sampled statistics are not equal
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Figure 5.15: Dominant 𝒎 = 0 SPOD/CS-SPOD mode of the natural jet and
the 𝑺𝒕 𝒇 = 1.5 forced jets, respectively, at (a) 𝑺𝒕𝒄 = 0.05, (b) 𝑺𝒕𝒄 = 0.15, (c)
𝑺𝒕𝒄 = 0.475, and (b) 𝑺𝒕𝒄 = 0.75. The pressure is shown at 𝝓 𝒇 = 0 for the
forced jets. Contour limits are ±0.75|𝝓𝝓𝝓(𝝓 𝒇 = 0)|∞. Note the varying axis
limits between sub-figures.

for positive and negative frequencies. However, the true statistics are identical
(Schmidt and Colonius, 2020). Thus, as stated in Schmidt and Colonius (2020), we
average positive and negative 𝑆𝑡𝑐 eigenvalues together to obtain a better statistical
representation of the flow. Since the spectrum is symmetric about 𝑆𝑡𝑐 = 0, we
display the spectrum for 𝑆𝑡𝑐 ∈ [0, 𝛼0/2] only.

Similar to the SPOD spectrum at higher azimuthal mode numbers (Schmidt et al.,
2018), for all jets, the energy separation between the dominant and subdominant
modes becomes smaller with increasing azimuthal mode numbers. In addition, as
the azimuthal mode number increases, the impact of the forcing on the energy of
the dominant mode decreases for all 𝑆𝑡𝑐 ≠ 0. The effect on the 𝑚 = 1 spectrum is
approximately similar to the 𝑚 = 0 for all cases. For 𝑚 = 2 and 3, the 𝑆𝑡 𝑓 = 0.3
forcing has a limited impact. In contrast, the 𝑆𝑡 𝑓 = 1.5 forcing at both amplitudes
results in an increase in the energy of the dominant mode as 𝑆𝑡𝑐 → 0.75 for𝑚 = 1 and
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Figure 5.16: CS-SPOD eigenspectrum of the natural, (a) 𝑺𝒕 𝒇 = 0.3 and (b)
𝑺𝒕 𝒇 = 1.5 forced jets for 𝒎 = 1, 2, 3.

2. Interestingly, the 𝑆𝑡 𝑓 = 1.5, 𝑎0/𝑈 𝑗 = 1% forcing results in a larger amplification
of the dominant mode for approximately 𝑆𝑡𝑐 ∈ [0.55, 0.75] at 𝑚 = 1, 2, 3 than the
𝑎0/𝑈 𝑗 = 10% forcing. In contrast, the 𝑎0/𝑈 𝑗 = 10% forcing results in a larger
suppression of the dominant mode for 𝑆𝑡𝑐 ∈ [0.25, 0.55] for 𝑚 = 1, 2 but a smaller
amplification for 𝑆𝑡𝑐 ∈ [0.6, 0.75].

Overall, we find that low- and high-frequency forcing increases and decreases the en-
ergy of the axisymmetric dominant coherent structures, respectively. The dominant
modes of the forced jets are found to generally share the same primary mech-
anism as the natural jet with strong forcing required to introduce a substantial
phase-dependency with a stronger phase-dependency occurring as 𝑆𝑡𝑐 → 𝛼0/2.
For increasing 𝑚, the impact of the forcing on the energy of the dominant modes
decreases while the changes to the modes are similar to that of the 𝑚 = 0 modes.

5.4.2 Comparison of CS-SPOD and HRA
In this section, we compare the dominant CS-SPOD modes to the dominant HRA
modes to determine if the mechanisms represented by the HR modes are responsible
for the energetic coherent structures.

We show the HRA gain spectrum for 𝑚 = 0 modes of the 𝑆𝑡 𝑓 = 0.3 and 𝑆𝑡 𝑓 = 1.5
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Figure 5.17: Comparison of the HR gain spectrum of the subsonic natural jet
and (a) 𝑺𝒕 𝒇 = 0.3 and (b) 𝑺𝒕 𝒇 = 1.5 forced jets.

forced jets in Figure 5.17. For 𝑆𝑡 𝑓 = 0.3, we observe an increase in the gain for
all 𝑆𝑡𝑐, with the maximum increase occurring towards 𝑆𝑡𝑐 = 0.15, which is largely
similar to that seen in the CS-SPOD eigenspectrum. For 𝑆𝑡 𝑓 = 1.5, a similar good
agreement is seen. The HR gain spectrum captures the similar gain values for
𝑆𝑡𝑐 ∈ (0, 0.15], the gain decrease for the forced cases for 𝑆𝑡𝑐 ∈ [0.25, 0.5], and the
gain increase for the forced cases for 𝑆𝑡𝑐 ∈ [0.5, 0.75].

For selected 𝑆𝑡𝑐, the CS-SPOD and HRA modes are compared in Figures 5.18 and
5.19 for 𝑆𝑡 𝑓 = 0.3 and 1.5, respectively. For the 𝑆𝑡 𝑓 = 0.3 forced cases, we see
good agreement between the CS-SPOD and HRA modes. For 𝑆𝑡𝑐 = 0.05, 0.15,
an increased forcing amplitude reduces the length of the low-frequency component
and increases the amount of phase-dependency present in the high-velocity/high-
shear regions. HRA slightly over-predicts the magnitude of the mode in the high-
velocity/high-shear regions, which results in the low-frequency component appear-
ing less strongly in the contours. The agreement between the CS-SPOD and HR
modes is substantially better for the 𝑆𝑡 𝑓 = 1.5 forced jets. For all 𝑆𝑡𝑐, the HR modes
closely resemble the CS-SPOD modes both in terms of the main low-frequency
structure and the higher-frequency components in the near-nozzle region (which
agree particularly well for 𝑆𝑡𝑐 = 0.45, 0.75). Unlike the 𝑆𝑡 𝑓 = 0.3 cases, the
amplitude of these structures is more consistent for the 𝑆𝑡 𝑓 = 1.5 cases. For the
high-amplitude forcing, at 𝑆𝑡𝑐 = 0.05, 0.15, HRA is also able to predict the pressure
waves in the far-field. Since linear HRA is able to predict these waves, this shows
that these waves are a direct result of the high-amplitude forcing modulating the
mean flow of the jet. It is likely there is an additional direct nonlinear interaction
between the forcing waves and the stochastic wavepackets that CS-SPOD captures,
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but is absent from (linear) HRA.

For the high-amplitude forcing cases across all 𝑆𝑡𝑐, but most clearly for 𝑆𝑡𝑐 ∈
[0.05, 0.55], we observe upstream propagating waves in the dominant CS-SPOD
and HRA modes in the near-nozzle centerline region 𝑥 ∈ [0, 1], 𝑟 ∈ [0, 0.4]. We
hypothesize that these waves are a result of Kelvin-Helmholtz waves propagating
downstream and interacting with the periodic mean. These acoustic waves are not
phase locked (since the mean is removed before computing CS-SPOD). Similar
waves are produced in screeching jets (Raman, 1999), impinging jets (Ho and
Nosseir, 1981), and trapped modes in transonic jets (Schmidt et al., 2017; Towne
et al., 2017b). However, in this case, we do not observe resonance or tonal peaks;
the waves occur over a range of 𝑆𝑡𝑐.

(a) (b)

(c) (d)

Figure 5.18: Comparison between the dominant 𝒎 = 0 (a, c) SPOD/CS-SPOD
and (b, d) RA/HRA modes of the natural and the 𝑺𝒕 𝒇 = 0.3 forced jets at (a, b)
𝑺𝒕𝒄 = 0.05 and (c, d) 𝑺𝒕𝒄 = 0.15. The pressure is shown at 𝝓 𝒇 = 0. Contour
limits are±0.75|𝝓𝝓𝝓(𝝓 𝒇 = 0)|∞. Note the varying axis limits between sub-figures.
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Figure 5.19: Comparison between the dominant 𝒎 = 0 (a, c, e, g) SPOD/CS-
SPOD and (b, d, f, h) RA/HRA modes of the natural and the 𝑺𝒕 𝒇 = 1.5 forced
jets at (a, b) 𝑺𝒕𝒄 = 0.05, (c, d) 𝑺𝒕𝒄 = 0.15, (e, f) 𝑺𝒕𝒄 = 0.475, and (g,h) 𝑺𝒕𝒄 = 0.75.
The pressure is shown at 𝝓 𝒇 = 0. Contour limits are ±0.75|𝝓𝝓𝝓(𝝓 𝒇 = 0)|∞. Note
the varying axis limits between sub-figures.
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The excellent agreement between CS-SPOD and HRA shows that the changes to the
coherent structures are driven by a change to the mean flow (both the period-averaged
and the phase-dependent mean) and not by any direct interaction between the forcing
and the turbulence/coherent structures. It also shows that a linearized framework can
predict the dominant mechanisms well. This is beneficial for developing reduced
order models similar to what has been performed for the natural jets (Cavalieri et al.,
2019; Pickering et al., 2021b; Towne et al., 2017a).

In Figure 5.20 and 5.21, we compare the dominant HR and CS-SPOD modes for
𝑚 = 1 where we find great agreement. The trends in the CS-SPOD modes for
𝑚 = 1 are similar to 𝑚 = 0, and HRA is able to capture these trends faithfully. In
Appendix C, we display a comparison of the CS-SPOD and HR modes at 𝑚 = 2, 3.
The agreement for 𝑚 = 2 is reasonable, with correct trends in the modes being
captured. For 𝑚 = 3, the agreement is poor. A mild and substantial decrease in the
agreement between SPOD and resolvent analysis modes for 𝑚 = 2, 3, respectively,
compared to𝑚 = 0, 1 was also noted by Pickering et al. (2021a). This likely explains
why the modes and trends are not captured well. In addition, the𝑚 = 2, 3 CS-SPOD
modes do not appear as well converged as at 𝑚 = 0, 1 due to the decrease in the
low-rank behavior with increasing 𝑚. Overall, we find that when RA and SPOD
agree well for the natural jet, HRA and CS-SPOD agree well for the forced jets.

5.5 Summary
Periodic forcing of turbulent jets has been of great interest, both in terms of un-
derstanding the impact of the forcing on the fundamental mechanisms present in
the jet but also the impact of forcing on engineering parameters such as jet noise.
However, a detailed study investigating the mechanisms by which periodic forcing
alters the turbulence is lacking. This is driven by the lack of adequate tools to study
these flows, which exhibit periodic statistics, in detail. Previous investigations have
employed a statistically stationary framework that assumes the statistics are invariant
in time, thereby neglecting all phase-dependent effects.

To fill this gap, we investigated the effect of periodic acoustic forcing by performing a
series of large-eddy simulations of turbulent axisymmetric subsonic jets. We forced
the jets at 𝑆𝑡 𝑓 = 0.3, corresponding to the jet-preferred mode (Crow and Champagne,
1971), and at 𝑆𝑡 𝑓 = 1.5, which previous studies have shown results in a broadband
noise reduction (Samimy et al., 2007, 2010), at an amplitude of 𝑎0/𝑈 𝑗 = 1%, 10%
of the jet velocity. To analyze data from the forced jets, we employed cyclostationary
analysis. To investigate how the dominant coherent structures are modified by the
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Figure 5.20: Comparison between the dominant 𝒎 = 1 (a, c) SPOD/CS-SPOD
and (b, d) RA/HRA modes of the natural and the 𝑺𝒕 𝒇 = 0.3 forced jets at (a, b)
𝑺𝒕𝒄 = 0.05 and (c, d) 𝑺𝒕𝒄 = 0.15. The pressure is shown at 𝝓 𝒇 = 0. Contour
limits are±0.75|𝝓𝝓𝝓(𝝓 𝒇 = 0)|∞. Note the varying axis limits between sub-figures.

forcing, we employed cyclostationary spectral proper orthogonal decomposition
(CS-SPOD) proposed in Chapter 4 and HRA (Padovan and Rowley, 2022). CS-
SPOD and HRA are extensions to SPOD and resolvent analysis for flows with
time-periodic statistics/mean flows, respectively.

Both low-frequency 𝑆𝑡 𝑓 = 0.3 and high-frequency 𝑆𝑡 𝑓 = 1.5 forcing generated an
energetic tonal response. The 𝑆𝑡 𝑓 = 0.3 forcing exhibited the largest effect towards
the end of the potential core, while the 𝑆𝑡 𝑓 = 1.5 forcing was localized to the
near nozzle region. Despite the strong tonal response, all forcing cases had a
limited impact on the period-averaged mean where a forcing amplitude greater than
𝑎0/𝑈 𝑗 = 1% was required to achieve a moderate change. The phase-dependency of
the statistics was found to follow a similar but more subtle trend. The RMS, Wigner-
Ville spectrum, and energy transfer between the mean and turbulent fields were found
to be mildly modulated by the forcing, with a substantial modification only coming
from the 𝑆𝑡 𝑓 = 0.3, 𝑎0/𝑈 𝑗 = 10% forcing case. Despite the phase-dependency of the
energy transfer, the domain-integrated energy transfer was found to be surprisingly
constant as a function of phase. This indicates that regions of locally greater
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energy transfer are canceled out by corresponding regions of locally lower energy
transfer. Furthermore, the change in the period-averaged energy transfer was found
to be substantially larger than the phase-dependent variation. This suggests that
the impact of the forcing on the turbulence is minor and that any change to the
turbulence should driven by an associated change to the period-averaged mean.

Next, we employed CS-SPOD and HRA to educe how the dominant coherent struc-
tures are modified and modulated by the forcing. We find several important obser-
vations. First, both forcing frequencies result in a broadband modification to the
energy of the dominant coherent structures for 𝑚 = 0. Consistent with existing
literature, the 𝑆𝑡 𝑓 = 0.3 forcing resulted in a broadband increase in the energy of the
dominant coherent structures across all 𝑆𝑡𝑐, while the 𝑆𝑡 𝑓 = 1.5 forcing attenuated
structures at lower 𝑆𝑡𝑐 and amplified them as 𝑆𝑡𝑐 → 𝑆𝑡 𝑓 . Next, the dominant coher-
ent structures for the forced jets were found to have a similar primary mechanism as
the natural jet, with the forcing resulting in phase-dependent features that are cou-
pled to the high-velocity/shear regions of the mean. The 𝑆𝑡 𝑓 = 0.3 forcing resulted
in a greater phase-dependency than the 𝑆𝑡 𝑓 = 1.5 forcing due to the larger and more
global impact it has on the mean. As 𝑆𝑡𝑐 → 0, the phase dependency is weaker
due to a large difference in the wavelength and spatial support between the coherent
structures and the mean. Third, high amplitude forcing 𝑎0/𝑈 𝑗 = 10% resulted in
broadband upstream propagating acoustics waves. We hypothesize that these waves
are a result of Kelvin-Helmholtz waves that propagate downstream and then interact
with the periodic mean. This interaction then generates non-phase-locked acous-
tic waves that travel upstream. Fourth, in non-zero azimuthal mode numbers, the
forcing had a limited impact. At 𝑚 = 1 and 2, the modification of the dominant
modes is similar to𝑚 = 0. Lastly, HRA is found to predict the coherent structures of
the forced flows accurately. Excellent agreement was found for both 𝑆𝑡 𝑓 = 0.3 and
1.5 forcing frequencies across all amplitudes, frequencies, and dominant azimuthal
mode numbers 𝑚 = 0, 1, and 2.

Overall, our results show that cyclostationary analysis, CS-SPOD, and HRA can
help educe the impact of periodic forcing on the turbulence and coherent structures
of turbulent jets. Our results support the hypothesis that jet noise reduction is
primarily driven by a corresponding change to the period-average mean (Kœnig
et al., 2016; Sinha et al., 2018). Lastly, our results indicate that HRA can be used
to develop models of forced jets, which may be useful to guide future sound-source
models of jets subjected to active control.



104
(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5.21: Comparison between the dominant 𝒎 = 1 (a, c, e, g) SPOD/CS-
SPOD and (b, d, f, h) RA/HRA modes of the natural and the 𝑺𝒕 𝒇 = 1.5 forced
jets at (a, b) 𝑺𝒕𝒄 = 0.05, (c, d) 𝑺𝒕𝒄 = 0.15, (e, f) 𝑺𝒕𝒄 = 0.475, and (g,h) 𝑺𝒕𝒄 = 0.75.
The pressure is shown at 𝝓 𝒇 = 0. Contour limits are ±0.75|𝝓𝝓𝝓(𝝓 𝒇 = 0)|∞. Note
the varying axis limits between sub-figures.
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C h a p t e r 6

CONCLUSION AND FUTURE WORK

6.1 Conclusion
In this thesis, we covered a series of topics related to the analysis of coherent
structures in forced and natural turbulent flows with a focus on turbulent jets. We
now outline some of the major conclusions and contributions from each chapter.

In Chapter 2, we introduced the LES performed and outlined the existing meth-
ods used to analyze these flows, including SPOD and HRA. We also outlined the
numerical procedure used to implement these methods.

In Chapter 3, we investigated the choice of frequency resolution for spectral proper
orthogonal decomposition using both artificially generated data and data from our
natural (unforced) turbulent jet simulation. We first demonstrated that the frequency
resolution 𝛥 𝑓 must be carefully chosen to obtain accurate SPOD modes. In addition,
we found that the best choice of frequency resolution critically depended on how
rapidly the SPOD modes change in space at adjacent frequencies. A lower 𝛥 𝑓 must
be employed if the SPOD modes change rapidly in space at adjacent frequencies. If
𝛥 𝑓 is too high, the modes will be substantially affected by bias. On the turbulent
jet, we showed that the values of the frequency resolution previously used are too
high, which resulted in unnecessarily biased results at key frequencies of interest.
Furthermore, we have shown that the alignment metric commonly used to measure
the similarity between SPOD and resolvent modes is sensitive to bias and the de-
gree of statistical convergence. Given this susceptibility, it is important to exercise
caution when drawing conclusions. To optimally utilize the generated data (which
is typically expensive to obtain both computationally and experimentally), we de-
veloped a physics-informed adaptive frequency-resolution algorithm that provides
more accurate SPOD modes than the standard constant-resolution method. This
technique allows one to generate more accurate SPOD modes for a given amount of
data or reduce the amount of data (by up to 2 − 4 times) required to obtain SPOD
modes with a similar level of statistical convergence.

In Chapter 4, we developed CS-SPOD as an extension to SPOD to flows with pe-
riodic statistics. CS-SPOD extracts the most energetic coherent structures from
complex turbulent flows whose statistics vary time-periodically (i.e. flows that have
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cyclostationary statistics). Compared to SPOD, where the modes oscillate at a single
frequency and maintain a constant amplitude over time, CS-SPOD modes oscillate
at a range of frequencies separated by the fundamental cycle frequency, which is
typically the forcing frequency. These CS-SPOD modes have a periodic ampli-
tude/energy over time, and they optimally reconstruct the second-order statistics. A
benefit of CS-SPOD is that it collapses to SPOD when analyzing statistically sta-
tionary data, thus allowing CS-SPOD to be interpreted in a familiar manner. Next,
similar to the relationship between SPOD and standard resolvent analysis (Towne
et al., 2018), we showed that CS-SPOD modes are identical to harmonic resolvent
modes in the case where the harmonic resolvent-mode expansion coefficients are
uncorrelated. This enables the development of models using HRA modes. Fur-
thermore, we demonstrated that for cyclostationary processes, (standard) RA does
not predict the time-averaged statistics even when the white-forcing conditions are
satisfied. This shows that CS-SPOD and HRA should be used to correctly analyze
and/or model flows with cyclostationary statistics. We then explored simplifications
that can be implemented when forcing at low or high frequencies. In order to effi-
ciently compute CS-SPOD, we created an algorithm with a computational cost and
memory requirement comparable to SPOD. This enables CS-SPOD to be applied to
a variety of real-world problems. A MATLAB implementation of these algorithms is
available at https://github.com/CyclostationarySPOD/CSSPOD. Lastly, we
validated our CS-SPOD implementation and demonstrated its utility by applying it
to two datasets. Essentially, we demonstrated that CS-SPOD successfully extends
SPOD to flows with periodic statistics.

Finally, in Chapter 5, we employed the advances in Chapters 3 and 4 to analyze
the impact of harmonic acoustic forcing on the mean, turbulence, and coherent
structures of turbulent jets. We found that both low- (𝑆𝑡 𝑓 = 0.3) and high-frequency
(𝑆𝑡 𝑓 = 1.5) forcing generates an energetic tonal response but have a limited impact on
the period-averaged mean, turbulent kinetic energy, and the energy transfer between
the mean and turbulent fields. A forcing amplitude greater than 𝑎0/𝑈 𝑗 = 1% was
needed to moderately deform the period-averaged mean. Coherent structures were
then investigated using CS-SPOD and HRA, and the dominant modes of the forced
jets were found to have a primary mechanism similar to that of the natural jet. With
sufficient forcing amplitude, these modes contained phase-dependent features that
are coupled to the high-velocity/shear regions of the mean. The 𝑆𝑡 𝑓 = 0.3 forcing
resulted in greater phase-dependent coherent structures than the 𝑆𝑡 𝑓 = 1.5 forcing
due to the larger and more global impact on the mean. We also found that the phase

https://github.com/CyclostationarySPOD/CSSPOD
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dependency is weaker at lower center frequencies 𝑆𝑡𝑐 ≈ 0 due to a large difference
in the wavelength and spatial support between the coherent structures and the mean.
Minor differences in the energy of the dominant coherent structures were found for
𝑚 = 0. The 𝑆𝑡 𝑓 = 0.3 forcing resulted in a slight broadband increase while the
𝑆𝑡 𝑓 = 1.5 forcing attenuated structures at lower center frequencies and amplified
them as 𝑆𝑡𝑐 → 𝛼0/2. For 𝑚 ≠ 0, the forcing had a limited impact on the energy. At
𝑚 = 1, 2, the modification of the dominant modes was found to be similar to 𝑚 = 0.
Good agreement between the dominant CS-SPOD and HRA modes was found for
𝑚 = 0, 1, 2 for all forcing schemes investigated. This demonstrates that HRA can be
applied to create models for forced jets in a similar way to how resolvent analysis
is used for natural jets. This may be valuable for informing future sound-source
models of jets subjected to active control. Overall, our results provide evidence that
supports the hypothesis observed by Kœnig et al. (2016) and Sinha et al. (2018)
in that the primary change in jet noise is driven by a corresponding change to the
period-averaged mean.

6.2 Future work
Our work broadly supports the existing theory that jet noise reduction is driven by a
change to the mean flow. Nonetheless, the question of how we optimally reduce jet
noise using active flow control remains open. Since there is no (or limited) direct
interaction between the forcing and natural turbulence, the broadband (non-tonal)
noise produced by the jet subjected to periodic forcing could be estimated via the
linear HRA/RA based on a new mean flow. However, this requires the amplitude
(not just the amplification) of the optimal modes to be estimated. This work is
currently ongoing in the Colonius group via machine learning models. Developing
this model would allow one to perform an optimization study to determine the forcing
that optimally reduces the jet noise. Since this model would only require the mean
flow, a lower fidelity computational method (such as RANS/URANS/DES) could
be employed to estimate the new mean. Even if LES are required, the meanflow
converges much quicker than the statistics required to compute coherent structures,
thereby substantially decreasing the cost of the simulations. Additionally, recent
advances in LES performed on GPUs allow for a turbulent jet to be simulated in
just ≈ 12 hours of wall time, making LES of jets much more efficient and iterative
design studies tractable.

Our study demonstrated that extremely high amplitude acoustic forcing is required
to modify the statistics of a turbulent jet. For practical jet noise reduction, this would
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introduce a tonal component that is likely much louder than any broadband noise
reduction that could be achieved. Therefore, any forcing optimization seeking to
reduce the broadband noise should consider the additional tonal response generated
by the forcing. Furthermore, we only consider acoustic forcing schemes, which are
clearly acoustically efficient and lead to the observed loud tonal response. However,
it is expected that forcing schemes that do not rely on acoustic drivers would likely
provide a response that is less acoustically efficient. Investigating alternative forcing
schemes (pulsed jets, oscillating chevrons/tabs, etc.) could provide a better method
to reduce the broadband jet noise while simultaneously limiting the generation of
an overwhelming (acoustic) tonal component.

In this work, we focused exclusively on axisymmetric 𝑚 = 0 acoustic forcing.
However, existing literature has indicated that non-axisymmetric 𝑚 > 0 is more
efficient at reducing the jet noise (by up to 2− 3𝑑𝐵). Employing the tools developed
in this thesis to study forcing at a variety of azimuthal mode numbers may provide
insights into why higher azimuthal mode number forcing schemes generally provide
more efficient jet noise reduction. Additionally, we solely focus on the near-field
turbulence and coherent structures. An explicit study of the impact of forcing on
the far-field noise should be performed.

More broadly, the study of flows with periodic statistics, which include turboma-
chinery, weather and climate, flow control with harmonic actuation, and wake flows
rendered cyclostationary through the (arbitrary) choice of a phase reference for the
dominant shedding frequency, has primarily been achieved via our knowledge and
tools of statistically stationary flows. This, by construction, ignores any phase-
dependency present in the system and simply looks at the statistics on average.
Thus, the application of cyclostationary analysis and tools used to study coherent
structures in cyclostationary flows could allow one to understand how the complex
phase-dependent behavior influences the physics of these processes. Beyond flows
with periodic statistics, further generalizations are possible to almost periodic flows
and flows forced with several non-commensurate cyclic frequencies. Thus, the ap-
plication of tools that deviate from the standard statistically stationary framework to
analyze this class of flows would likely have a substantial impact on the field.



109

Bibliography

ACI and CANSO’s. ACI and CANSO’s managing the impacts of aviation noise: A
guide for airport operators and air navigation service providers. 2015.

H. Alamgir, D. L. Tucker, S.-Y. Kim, J. A. Betancourt, C. A. Turner, N. S. Gorrell,
N. J. Wong, H. K. Sagiraju, S. P. Cooper, D. I. Douphrate, et al. Economic burden
of hearing loss for the us military: a proposed framework for estimation. Military
Medicine, 181(4):301–306, 2016.

F. R. Amaral, A. V. Cavalieri, E. Martini, P. Jordan, and A. Towne. Resolvent-based
estimation of turbulent channel flow using wall measurements. Journal of Fluid
Mechanics, 927:A17, 2021.

J. Antoni. Cyclic spectral analysis in practice. Mechanical Systems and Signal
Processing, 21(2):597–630, 2007.

J. Antoni. Cyclostationarity by examples. Mechanical Systems and Signal Process-
ing, 23(4):987–1036, 2009.

J. Antoni, F. Bonnardot, A. Raad, and M. El Badaoui. Cyclostationary modelling of
rotating machine vibration signals. Mechanical Systems and Signal Processing,
18(6):1285–1314, 2004.

H. Arbabi and I. Mezić. Study of dynamics in post-transient flows using koopman
mode decomposition. Physical Review Fluids, 2(12):124402, 2017.

N. Aubry. On the hidden beauty of the proper orthogonal decomposition. Theoretical
and Computational Fluid Dynamics, 2(5-6):339–352, 1991.

N. Aubry, P. Holmes, J. L. Lumley, and E. Stone. The dynamics of coherent
structures in the wall region of a turbulent boundary layer. Journal of Fluid
Mechanics, 192:115–173, 1988.

S. Bagheri, D. S. Henningson, J. Hoepffner, and P. J. Schmid. Input-output analysis
and control design applied to a linear model of spatially developing flows. Applied
Mechanics Reviews, 62(2), 2009.

M. Basner, C. Clark, A. Hansell, J. I. Hileman, S. Janssen, K. Shepherd, and
V. Sparrow. Aviation noise impacts: state of the science. Noise and Health, 19
(87):41–50, 2017.

J. S. Bendat and A. G. Piersol. Random Data: Analysis and Measurement Proce-
dures. John Wiley & Sons, 2011.

R. Boyles and W. Gardner. Cycloergodic properties of discrete-parameter nonsta-
tionary stochastic processes. IEEE Transactions on Information Theory, 29(1):
105–114, 1983.



110

P. Bradshaw. The understanding and prediction of turbulent flow. The Aeronautical
Journal, 76(739):403–418, 1972.

S. Braun. The extraction of periodic waveforms by time domain averaging. Acustica,
32(2):69–77, 1975.

G. J. Brereton and A. Kodal. A Frequency-Domain Filtering Technique for Triple
Decomposition of Unsteady Turbulent Flow. Journal of Fluids Engineering, 114
(1):45–51, 03 1992. ISSN 0098-2202.

G. A. Brès, F. E. Ham, J. W. Nichols, and S. K. Lele. Unstructured large-eddy
simulations of supersonic jets. AIAA Journal, 55(4):1164–1184, 2017.

G. A. Brès, P. Jordan, V. Jaunet, M. Le Rallic, A. V. Cavalieri, A. Towne, S. K. Lele,
T. Colonius, and O. T. Schmidt. Importance of the nozzle-exit boundary-layer
state in subsonic turbulent jets. Journal of Fluid Mechanics, 851:83–124, 2018.

G. L. Brown and A. Roshko. On density effects and large structure in turbulent
mixing layers. Journal of Fluid Mechanics, 64(4):775–816, 1974.

S. T. Brown, P. Buitrago, E. Hanna, S. Sanielevici, R. Scibek, and N. A. Nystrom.
Bridges-2: A platform for rapidly-evolving and data intensive research. New York,
NY, USA, 2021. Association for Computing Machinery. ISBN 9781450382922.

W. A. Brown III. On the theory of cyclostationary signals. University of California,
Davis, 1987.

A. V. Cavalieri, P. Jordan, and L. Lesshafft. Wave-packet models for jet dynamics
and sound radiation. Applied Mechanics Reviews, 71(2), 2019.

K. K. Chen and C. W. Rowley. H2 optimal actuator and sensor placement in the
linearised complex ginzburg–landau system. Journal of Fluid Mechanics, 681:
241–260, 2011.

C. Cheong and P. Joseph. Cyclostationary spectral analysis for the measurement
and prediction of wind turbine swishing noise. Journal of sound and vibration,
333(14):3153–3176, 2014.

J. Chomaz, P. Huerre, and L. Redekopp. Bifurcations to local and global modes in
spatially developing flows. Physical Review Letters, 60(1):25, 1988.

B.-T. Chu. On the energy transfer to small disturbances in fluid flow (part i). Acta
Mechanica, 1(3):215–234, 1965.

J. H. Citriniti and W. K. George. Reconstruction of the global velocity field in
the axisymmetric mixing layer utilizing the proper orthogonal decomposition.
Journal of Fluid Mechanics, 418:137–166, 2000.

C. Cossu and J. Chomaz. Global measures of local convective instabilities. Physical
Review Letters, 78(23):4387, 1997.



111

C. Cossu, G. Pujals, and S. Depardon. Optimal transient growth and very large–scale
structures in turbulent boundary layers. Journal of Fluid Mechanics, 619:79–94,
2009.

S. C. Crow and F. H. Champagne. Orderly structure in jet turbulence. Journal of
Fluid Mechanics, 48(3):547–591, 1971.

J. R. Dormand and P. J. Prince. A family of embedded runge-kutta formulae. Journal
of computational and applied mathematics, 6(1):19–26, 1980.

A. Farghadan, J. Jung, R. Bhagwat, and A. Towne. Efficient harmonic resolvent
analysis via time stepping. Theoretical and Computational Fluid Dynamics, pages
1–23, 2024.

B. F. Farrell and P. J. Ioannou. Stochastic forcing of the linearized navier–stokes
equations. Physics of Fluids A: Fluid Dynamics, 5(11):2600–2609, 1993.

B. F. Farrell and P. J. Ioannou. Accurate low-dimensional approximation of the linear
dynamics of fluid flow. Journal of the Atmospheric Sciences, 58(18):2771–2789,
2001.

P. Flandrin. Time-frequency/time-scale analysis. Academic press, 1998.

L. Franceschini, D. Sipp, O. Marquet, J. Moulin, and J. Dandois. Identification
and reconstruction of high-frequency fluctuations evolving on a low-frequency
periodic limit cycle: application to turbulent cylinder flow. Journal of Fluid
Mechanics, 942, 2022.

W. Gardner. Measurement of spectral correlation. IEEE Transactions on Acoustics,
Speech, and Signal Processing, 34(5):1111–1123, 1986a.

W. A. Gardner. Representation and estimation of cyclostationary processes. Tech-
nical report, Massachusetts Univ Amherst Engineering Research Inst, 1972.

W. A. Gardner. Introduction to random processes with applications to signals and
systems((book)). New York, MacMillan Co., 1986, 447, 1986b.

W. A. Gardner. The spectral correlation theory of cyclostationary time-series. Signal
Processing, 11(1):13–36, 1986c.

W. A. Gardner. Cyclostationarity in Communications and Signal Processing. pages
1–90. IEEE press New York, 1994.

W. A. Gardner. Statistically inferred time warping: extending the cyclostationarity
paradigm from regular to irregular statistical cyclicity in scientific data. EURASIP
Journal on Advances in Signal Processing, 2018(1):1–25, 2018.

W. A. Gardner and E. A. Robinson. Statistical Spectral Analysis—A Nonprobabilistic
Theory. Prentice Hall, 1989.



112

W. A. Gardner, A. Napolitano, and L. Paura. Cyclostationarity: Half a century of
research. Signal processing, 86(4):639–697, 2006.

X. Garnaud, L. Lesshafft, P. Schmid, and P. Huerre. The preferred mode of incom-
pressible jets: linear frequency response analysis. Journal of Fluid Mechanics,
716:pp–189, 2013.

E. Gladyshev. Periodically and almost-periodically correlated random processes
with a continuous time parameter. Theory of Probability & Its Applications, 8
(2):173–177, 1963.

A. Glezer, Z. Kadioglu, and A. J. Pearlstein. Development of an extended proper
orthogonal decomposition and its application to a time periodically forced plane
mixing layer. Physics of Fluids A: Fluid Dynamics, 1(8):1363–1373, 1989.

G. Goertzel. An algorithm for the evaluation of finite trigonometric series. American
Math. Monthly, 65:34–35, 1958.

L. Gudzenko. On periodic nonstationary processes. Radio Eng. Electron.
Phys.(USSR), 4(6):220–224, 1959.

L. Heidt, T. Colonius, A. Nekkanti, O. Schmdit, I. Maia, and P. Jordan. Analysis of
forced subsonic jets using spectral proper orthogonal decomposition and resolvent
analysis. In AIAA Aviation 2021 Forum, page 2108, 2021.

B. Henderson. Fifty years of fluidic injection for jet noise reduction. International
Journal of Aeroacoustics, 9(1-2):91–122, 2010.

C.-M. Ho and N. S. Nosseir. Dynamics of an impinging jet. part 1. the feedback
phenomenon. Journal of Fluid Mechanics, 105:119–142, 1981.

R. Hunt and D. G. Crighton. Instability of flows in spatially developing media.
Proceedings of the Royal Society of London. Series A: Mathematical and Physical
Sciences, 435(1893):109–128, 1991.

H. Hurd. An investigation of periodically correlated stochastic processes, ph.d.
dissertation. Technical report, Duke University, Durham, North Carolina., 1969.

A. Hussain and W. Reynolds. The mechanics of an organized wave in turbulent shear
flow. part 2. experimental results. Journal of Fluid Mechanics, 54(2):241–261,
1972.

A. Hussain and K. Zaman. Vortex pairing in a circular jet under controlled excitation.
part 2. coherent structure dynamics. Journal of Fluid Mechanics, 101(3):493–
544, 1980.

A. F. Hussain and K. Zaman. The ‘preferred mode’of the axisymmetric jet. Journal
of Fluid Mechanics, 110:39–71, 1981.



113

A. K. M. F. Hussain and W. C. Reynolds. The mechanics of an organized wave in
turbulent shear flow. Journal of Fluid Mechanics, 41(2):241–258, 1970.

G. M. Jenkins. Spectral analysis and its applications. Holden-Day, Inc., San
Francisco, Card Nr. 67-13840, 1968.

J. Jeun, J. W. Nichols, and M. R. Jovanović. Input-output analysis of high-speed
axisymmetric isothermal jet noise. Physics of Fluids, 28(4):047101, 2016.

J. Jiménez and A. Pinelli. The autonomous cycle of near-wall turbulence. Journal
of Fluid Mechanics, 389:335–359, 1999.

P. Jordan and T. Colonius. Wave packets and turbulent jet noise. Annual review of
fluid mechanics, 45(1):173–195, 2013.

M. Jovanovic and B. Bamieh. Modeling flow statistics using the linearized navier-
stokes equations. In Proceedings of the 40th IEEE Conference on Decision and
Control (Cat. No. 01CH37228), volume 5, pages 4944–4949. IEEE, 2001.

V. Jurdic, P. Joseph, and J. Antoni. Investigation of rotor wake turbulence through
cyclostationary spectral analysis. AIAA Journal, 47(9):2022–2030, 2009.

K.-Y. Kim and G. R. North. Eofs of harmonizable cyclostationary processes. Journal
of the Atmospheric Sciences, 54(19):2416–2427, 1997.

K.-Y. Kim, G. R. North, and J. Huang. Eofs of one-dimensional cyclostationary
time series: Computations, examples, and stochastic modeling. Journal of Atmo-
spheric Sciences, 53(7):1007–1017, 1996.

M. Kœnig, K. Sasaki, A. V. Cavalieri, P. Jordan, and Y. Gervais. Jet-noise control
by fluidic injection from a rotating plug: linear and nonlinear sound-source
mechanisms. Journal of Fluid Mechanics, 788:358–380, 2016.

V. Lebedev. On random processes having nonstationarity of periodic character.
Nauchn. Dokl. Vysshch. Shchk. Ser. Radiotekh. Elektron., 2:32–34, 1959.

M. J. Lighthill. On sound generated aerodynamically i. general theory. Proceedings
of the Royal Society of London. Series A. Mathematical and Physical Sciences,
211(1107):564–587, 1952.

J. L. Lumley. The structure of inhomogeneous turbulent flows. Atmospheric turbu-
lence and radio wave propagation, 1967.

J. L. Lumley. Stochastic tools in turbulence. J. Fluid Mech., 67:413–415, 1970.

I. A. Maia, P. Jordan, A. V. G. Cavalieri, E. Martini, and F. Silvestre. Closed-loop
control of forced turbulent jets. arXiv preprint arXiv:2009.09299, 2020.

I. A. Maia, P. Jordan, A. V. Cavalieri, E. Martini, K. Sasaki, and F. J. Silvestre. Real-
time reactive control of stochastic disturbances in forced turbulent jets. Physical
Review Fluids, 6(12):123901, 2021.



114

I. A. Maia, P. Jordan, and A. V. Cavalieri. Wave cancellation in jets with laminar and
turbulent boundary layers: The effect of nonlinearity. Physical Review Fluids, 7
(3):033903, 2022.

I. A. Maia, G. Brès, L. Lesshafft, and P. Jordan. Effect of a flight stream on subsonic
turbulent jets. Physical Review Fluids, 8(6):063902, 2023a.

I. A. Maia, L. Heidt, E. Pickering, T. Colonius, P. Jordan, and G. Brès. The effect of
flight on a turbulent jet: coherent structure eduction and resolvent analysis. arXiv
preprint arXiv:2311.05072, 2023b.

W. Martin. Time-frequency analysis of random signals. In ICASSP’82. IEEE
International Conference on Acoustics, Speech, and Signal Processing, volume 7,
pages 1325–1328. IEEE, 1982.

W. Martin and P. Flandrin. Wigner-ville spectral analysis of nonstationary processes.
IEEE Transactions on Acoustics, Speech, and Signal Processing, 33(6):1461–
1470, 1985.

P.-G. Martinsson and J. A. Tropp. Randomized numerical linear algebra: Founda-
tions and algorithms. Acta Numerica, 29:403–572, 2020.

M. Matheson, S. Stansfeld, and M. Haines. The effects of chronic aircraft noise
exposure on children’s cognition and health: 3 field studies. Noise and Health, 5
(19):31–40, 2003.

K. Mattsson and J. Nordström. Summation by parts operators for finite difference
approximations of second derivatives. Journal of Computational Physics, 199
(2):503–540, 2004.

B. McKeon and A. Sharma. A critical-layer framework for turbulent pipe flow. J.
FluidMech, 658:336382, 2010.

P. Meliga, G. Pujals, and E. Serre. Sensitivity of 2-d turbulent flow past a d-shaped
cylinder using global stability. Physics of Fluids, 24(6):061701, 2012.

I. Mezić. Analysis of fluid flows via spectral properties of the koopman operator.
Annual Review of Fluid Mechanics, 45:357–378, 2013.

R. Moarref and M. R. Jovanović. Model-based design of transverse wall oscillations
for turbulent drag reduction. Journal of Fluid Mechanics, 707:205–240, 2012.

R. Moarref, A. S. Sharma, J. A. Tropp, and B. J. McKeon. Model-based scaling
of the streamwise energy density in high-reynolds-number turbulent channels.
Journal of Fluid Mechanics, 734:275–316, 2013.

K. Mohseni and T. Colonius. Numerical treatment of polar coordinate singularities.
Journal of Computational Physics, 157(2):787–795, 2000.



115

E. Mollo-Christensen. Jet Noise and Shear Flow Instability Seen From an Experi-
menter’s Viewpoint. Journal of Applied Mechanics, 34(1):1–7, 03 1967. ISSN
0021-8936.

P. Morra, O. Semeraro, D. S. Henningson, and C. Cossu. On the relevance of
reynolds stresses in resolvent analyses of turbulent wall-bounded flows. Journal
of Fluid Mechanics, 867:969–984, 2019.

G. Morrison and D. McLaughlin. Noise generation by instabilities in low reynolds
number supersonic jets. Journal of Sound and Vibration, 65(2):177–191, 1979.

A. Napolitano. Cyclostationary processes and time series: theory, applications,
and generalizations. Academic Press, 2019.

Naval Research Advisory Committee. Report on jet engine noise reduction. 2009.

A. Nekkanti, I. Maia, P. Jordan, L. Heidt, T. Colonius, , and O. T. Schmidt. Triadic
nonlinear interactions and acoustics of forced versus unforced turbulent jets. In
Twelveth International Symposium on Turbulence and Shear Flow Phenomena
(TSFP12), Osaka, Japan (Online), July 19-22, 2022.

K. Oberleithner, C. O. Paschereit, and I. Wygnanski. On the impact of swirl on the
growth of coherent structures. Journal of Fluid Mechanics, 741:156–199, 2014.

A. Padovan and C. W. Rowley. Analysis of the dynamics of subharmonic flow struc-
tures via the harmonic resolvent: Application to vortex pairing in an axisymmetric
jet. Physical Review Fluids, 7(7):073903, 2022.

A. Padovan, S. E. Otto, and C. W. Rowley. Analysis of amplification mechanisms
and cross-frequency interactions in nonlinear flows via the harmonic resolvent.
Journal of Fluid Mechanics, 900, 2020.

P. Pennacchi, P. Borghesani, and S. Chatterton. A cyclostationary multi-domain
analysis of fluid instability in kaplan turbines. Mechanical Systems and Signal
Processing, 60:375–390, 2015.

C. Picard and J. Delville. Pressure velocity coupling in a subsonic round jet.
International Journal of Heat and Fluid Flow, 21(3):359–364, 2000.

E. Pickering, G. Rigas, P. A. S. Nogueira, A. V. G. Cavalieri, O. T. Schmidt, and
T. Colonius. Lift-up, kelvin–helmholtz and orr mechanisms in turbulent jets.
Journal of Fluid Mechanics, 896:A2, 2020.

E. Pickering, G. Rigas, O. T. Schmidt, D. Sipp, and T. Colonius. Optimal eddy vis-
cosity for resolvent-based models of coherent structures in turbulent jets. Journal
of Fluid Mechanics, 917, 2021a.

E. Pickering, A. Towne, P. Jordan, and T. Colonius. Resolvent-based modeling of
turbulent jet noise. The Journal of the Acoustical Society of America, 150(4):
2421–2433, 2021b.



116

E. M. Pickering, G. Rigas, D. Sipp, O. T. Schmidt, and T. Colonius. Eddy vis-
cosity for resolvent-based jet noise models. In 25th AIAA/CEAS Aeroacoustics
Conference, page 2454, 2019.

S. B. Pope. Turbulent flows. Measurement Science and Technology, 12(11):2020–
2021, 2001.

C. Prasad and P. J. Morris. A study of noise reduction mechanisms of jets with fluid
inserts. Journal of Sound and Vibration, 476:115331, 2020.

G. Raman. Supersonic jet screech: half-century from powell to the present. Journal
of Sound and Vibration, 225(3):543–571, 1999.

G. Raman and E. J. Rice. Axisymmetric jet forced by fundamental and subharmonic
tones. AIAA Journal, 29(7):1114–1122, 1991.

R. B. Randall, J. Antoni, and S. Chobsaard. The relationship between spectral
correlation and envelope analysis in the diagnostics of bearing faults and other
cyclostationary machine signals. Mechanical Systems and Signal Processing, 15
(5):945–962, 2001.

W. Reynolds and A. Hussain. The mechanics of an organized wave in turbulent
shear flow. part 3. theoretical models and comparisons with experiments. Journal
of Fluid Mechanics, 54(2):263–288, 1972.

G. Rigas, E. M. Pickering, O. T. Schmidt, P. A. Nogueira, A. V. Cavalieri, G. A. Bres,
and T. Colonius. Streaks and coherent structures in jets from round and serrated
nozzles. In 25th AIAA/CEAS Aeroacoustics Conference, page 2597, 2019.

C. W. Rowley, I. Mezić, S. Bagheri, P. Schlatter, and D. S. Henningson. Spectral
analysis of nonlinear flows. Journal of Fluid Mechanics, 641:115–127, 2009.

M. Samimy, J.-H. Kim, J. Kastner, I. Adamovich, and Y. Utkin. Active control of
a mach 0.9 jet for noise mitigation using plasma actuators. AIAA Journal, 45(4):
890–901, 2007.

M. Samimy, J.-H. Kim, M. Kearney-Fischer, and A. Sinha. Acoustic and flow fields
of an excited high reynolds number axisymmetric supersonic jet. Journal of Fluid
Mechanics, 656:507–529, 2010.

M. Samimy, M. Kearney-Fischer, J.-H. Kim, and A. Sinha. High-speed and high-
reynolds-number jet control using localized arc filament plasma actuators. Journal
of Propulsion and Power, 28(2):269–280, 2012.

P. J. Schmid. Dynamic mode decomposition of numerical and experimental data.
Journal of Fluid Mechanics, 656:5–28, 2010.

P. J. Schmid, L. Li, M. P. Juniper, and O. Pust. Applications of the dynamic mode
decomposition. Theoretical and Computational Fluid Dynamics, 25(1):249–259,
2011.



117

O. T. Schmidt. Spectral proper orthogonal decomposition using multitaper estimates.
Theoretical and Computational Fluid Dynamics, 36(5):741–754, 2022.

O. T. Schmidt and T. Colonius. Guide to spectral proper orthogonal decomposition.
AIAA Journal, 58(3):1023–1033, 2020.

O. T. Schmidt and A. Towne. An efficient streaming algorithm for spectral proper
orthogonal decomposition. Computer Physics Communications, 237:98–109,
2019.

O. T. Schmidt, A. Towne, T. Colonius, A. V. Cavalieri, P. Jordan, and G. A. Brès.
Wavepackets and trapped acoustic modes in a turbulent jet: coherent structure
eduction and global stability. Journal of Fluid Mechanics, 825:1153–1181, 2017.

O. T. Schmidt, A. Towne, G. Rigas, T. Colonius, and G. A. Brès. Spectral analysis
of jet turbulence. Journal of Fluid Mechanics, 855:953–982, 2018.

L. F. Shampine and M. W. Reichelt. The matlab ode suite. SIAM journal on scientific
computing, 18(1):1–22, 1997.

A. Sharma and B. J. McKeon. On coherent structure in wall turbulence. Journal of
Fluid Mechanics, 728:196–238, 2013.

A. Sinha, A. Towne, T. Colonius, R. H. Schlinker, R. Reba, J. C. Simonich, and
D. W. Shannon. Active control of noise from hot supersonic jets. AIAA Journal,
56(3):933–948, 2018.

D. Sipp, O. Marquet, P. Meliga, and A. Barbagallo. Dynamics and Control of
Global Instabilities in Open-Flows: A Linearized Approach. Applied Mechanics
Reviews, 63(3):030801, 04 2010. ISSN 0003-6900.

L. Sirovich. Turbulence and the dynamics of coherent structures. i. coherent struc-
tures. Quarterly of Applied Mathematics, 45(3):561–571, 1987.

L. Sirovich. Chaotic dynamics of coherent structures. Physica D: Nonlinear Phe-
nomena, 37(1-3):126–145, 1989.

R. Sonnenberger, K. Graichen, and P. Erk. Fourier averaging: a phase-averaging
method for periodic flow. Experiments in Fluids, 28(3):217–224, 2000.

S. S. Toedtli, M. Luhar, and B. J. McKeon. Predicting the response of turbulent
channel flow to varying-phase opposition control: resolvent analysis as a tool for
flow control design. Physical Review Fluids, 4(7):073905, 2019.

A. Towne, G. A. Bres, and S. K. Lele. A statistical jet-noise model based on the
resolvent framework. In 23rd AIAA/CEAS Aeroacoustics Conference, page 3706,
2017a.



118

A. Towne, A. V. Cavalieri, P. Jordan, T. Colonius, O. Schmidt, V. Jaunet, and G. A.
Brès. Acoustic resonance in the potential core of subsonic jets. Journal of Fluid
Mechanics, 825:1113–1152, 2017b.

A. Towne, O. T. Schmidt, and T. Colonius. Spectral proper orthogonal decomposi-
tion and its relationship to dynamic mode decomposition and resolvent analysis.
Journal of Fluid Mechanics, 847:821–867, 2018.

A. Towne, A. Lozano-Durán, and X. Yang. Resolvent-based estimation of space–
time flow statistics. Journal of Fluid Mechanics, 883:A17, 2020.

U.S. Department of Veterans Affairs. Compensation 2020 report. 2020.

T. Von Karman. Some remarks on the statistical theory of turbulence. Proc. 5th Int.
Congr. Appl. Mech., Cambridge, MA, 347, 1938.

P. Welch. The use of fast fourier transform for the estimation of power spectra:
a method based on time averaging over short, modified periodograms. IEEE
Transactions on audio and electroacoustics, 15(2):70–73, 1967.

B. C. Yeung and O. T. Schmidt. Adaptive spectral proper orthogonal decomposition
of tonal flows. arXiv preprint arXiv:2312.02385, 2023.

K. Zaman and A. Hussain. Vortex pairing in a circular jet under controlled excitation.
part 1. general jet response. Journal of Fluid Mechanics, 101(3):449–491, 1980.

K. Zaman and A. Hussain. Turbulence suppression in free shear flows by controlled
excitation. Journal of Fluid Mechanics, 103:133–159, 1981.



119

A p p e n d i x A

STRAIGHTFORWARD BUT INEFFICIENT CS-SPOD
ALGORITHM

Algorithm 3 Straightforward but Inefficient algorithm to compute CS-SPOD.
1: for Each data block, 𝑛 = 1, 2, · · · , 𝑁𝑏 do

⊲ Construct the block-data matrix
2: Q(𝑛) = [q1+(𝑛−1) (𝑁 𝑓 −𝑁0 ) , q2+(𝑛−1) (𝑁 𝑓 −𝑁0 ) , · · · , q𝑁 𝑓 +(𝑛−1) (𝑁 𝑓 −𝑁0 ) ]

⊲ Construct the block-time matrix
3: T(𝑛) = [𝑡1+(𝑛−1) (𝑁 𝑓 −𝑁0 ) , 𝑡2+(𝑛−1) (𝑁 𝑓 −𝑁0 ) , · · · , 𝑡𝑁 𝑓 +(𝑛−1) (𝑁 𝑓 −𝑁0 ) ]
4: end for
5: for 𝑘 𝑓 = −𝐾 𝑓 to 𝐾 𝑓 do
6: for Each data block, 𝑛 = 1, 2, · · · , 𝑁𝑏 do

⊲ Compute the frequency-shifted block-data matrices
7: Q(𝑛)

𝑘 𝑓 𝛼0
← Q(𝑛)𝑒−𝑖2𝜋 (𝑘 𝑓 𝛼0 )T(𝑛)

⊲ Using a (windowed) fast Fourier transform, calculate and store the row-wise
DFT for each frequency-shifted block-data matrix

8: Q̂(𝑛)𝑘 𝑓 𝛼0 = FFT(Q(𝑛)
𝑘 𝑓 𝛼0
) = [q̂(𝑛)1,𝑘 𝑓 𝛼0

, q̂(𝑛)2,𝑘 𝑓 𝛼0
, · · · , q̂(𝑛)

𝑁 𝑓 ,𝑘 𝑓 𝛼0
]

where, the column q̂(𝑛)
𝑘,𝑘 𝑓 𝛼0

contains the 𝑛𝑡ℎ realization of the Fourier mode at
the 𝑘 𝑡ℎ discrete frequency of the 𝑘 𝑓 𝛼0 frequency-shifted block-data matrix

9: end for
10: end for
11: for Each 𝛾𝑘 ∈ 𝛤𝑘 (or some subset of interest) do

⊲ Assemble the concatenated frequency-data matrix for frequency set 𝛺𝛾𝑘

12: Q̃𝛾𝑘 ←



Q̂𝛾𝑘 ,−𝐾 𝑓 𝛼0
...

Q̂𝛾𝑘 ,0
...

Q̂𝛾𝑘 ,𝐾 𝑓 𝛼0


,

where Q̂𝛾𝑘 ,𝑘 𝑓 𝛼0 ←
√
𝜅 [q̂(1)

𝑘,𝑘 𝑓 𝛼0
, q̂(2)
𝑘,𝑘 𝑓 𝛼0

, · · · , q̂(𝑁𝑏−1)
𝑘,𝑘 𝑓 𝛼0

, q̂(𝑁𝑏 )
𝑘,𝑘 𝑓 𝛼0

] is the matrix of
Fourier realizations corresponding to the 𝑘 𝑡ℎ column of the 𝑘 𝑓 𝛼0 frequency-shifted
block-data matrix Q̂(𝑛)𝑘 𝑓 𝛼0

13: Compute the matrix M𝛾𝑘 ← Q̃
∗
𝛾𝑘
WQ̃𝛾𝑘

14: Compute the eigenvalue decomposition M𝛾𝑘 = 𝚯𝛾𝑘 𝚲̃𝛾𝑘𝚯
∗
𝛾𝑘

15: Compute and save the CS-SPOD modes Ψ̃ΨΨ𝛾𝑘 = Q̃𝛾𝑘𝚯𝛾𝑘 𝚲̃
−1/2
𝛾𝑘

and energies 𝚲̃𝛾𝑘 for the 𝛾𝑘 frequency set 𝛺𝛾𝑘
16: end for
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A p p e n d i x B

STATISTICAL CONVERGENCE OF CS-SPOD

To assess the statistical convergence of CS-SPOD, we compute regular SPOD and
CS-SPOD on the natural jet. For CS-SPOD, we assume a forcing frequency of 𝑆𝑡 𝑓 =
0.3, 1.5. Since SPOD and CS-SPOD are theoretically identical for a statistically
stationary flow, CS-SPOD modes should contain just a single frequency component
at a frequency equal to the frequency in 𝛺𝑆𝑡𝑐 with maximum energy. Since the
energy spectrum of a jet is approximately monotonically decaying for increasing 𝑓 ,
we expect this to be 𝑆𝑡 = 𝑆𝑡𝑐. For example, for 𝑆𝑡 𝑓 = 0.3 and 𝑆𝑡𝑐 = 0.1, the solution
frequency set is 𝛺𝑆𝑡𝑐 ∈ [· · · ,−0.8,−0.5,−0.2, 0.1, 0.4, 0.7, · · · ]. Thus, we would
expect the dominant mode to be at a frequency of 𝑆𝑡 = 0.1. Similarly, for 𝑆𝑡 𝑓 = 1.5
and 𝑆𝑡𝑐 = 0.1, we would expect the mode to again be at 𝑆𝑡 = ±0.1.

To assess this proposition, in Figure B.1a, we display the eigenspectrum of the
dominant mode as a function of 𝑆𝑡, 𝑆𝑡𝑐 for the natural jet computed using SPOD
and computed with CS-SPOD assuming a forcing frequency of 𝑆𝑡 𝑓 = 0.3, 1.5.
Good agreement is found between the SPOD and CS-SPOD eigenspectrums at
both assumed forcing frequencies. CS-SPOD with an assumed forcing frequency of
𝑆𝑡 𝑓 = 0.3 results in a larger deviation from the SPOD eigenspectrum than CS-SPOD
with an assumed forcing frequency of 𝑆𝑡 𝑓 = 1.5. This occurs because the frequency
components in 𝛺𝑆𝑡𝑐 are separated by 𝑆𝑡 𝑓 . Since the different frequency components
have a more similar energy for 𝑆𝑡 𝑓 = 0.3 than 𝑆𝑡 𝑓 = 1.5, they have a greater impact
on the statistical convergence. This is seen in Figure B.1b, where we display the
corresponding dominant modes at 𝑆𝑡𝑐, 𝑆𝑡 = 0.1. It is seen that the 𝑆𝑡 𝑓 = 0.3
assumed forcing frequency CS-SPOD mode is more polluted with spectral content
from other frequencies than the 𝑆𝑡 𝑓 = 1.5 case. Thus, care should be taken when
interpreting these modes to ensure that statistical artifacts are not misinterpreted.
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(a) (b)

Figure B.1: Comparison of the (a) dominant mode eigenspectrum and (b) real
component of the pressure at 𝑺𝒕𝒄, 𝑺𝒕 = 0.1 at 𝝓 𝒇 = 0 of the natural jet computed
using SPOD, CS-SPOD (𝑺𝒕 𝒇 = 0.3), and CS-SPOD (𝑺𝒕 𝒇 = 1.5). All contour
limits are ±|𝝓𝝓𝝓(𝝓 𝒇 = 0)|∞ of the SPOD case.
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A p p e n d i x C

DOMINANT MODES FOR 𝑚 = 2, 3

(a) (b)

(c) (d)

Figure C.1: Comparison between the dominant 𝒎 = 2 (a, c) SPOD/CS-SPOD
and (b, d) RA/HRA modes of the natural and the 𝑺𝒕 𝒇 = 0.3 forced jets at (a, b)
𝑺𝒕𝒄 = 0.05 and (c, d) 𝑺𝒕𝒄 = 0.15. The pressure is shown at 𝝓 𝒇 = 0. Contour
limits are ±0.75|𝝓𝝓𝝓(𝝓 𝒇 = 0)|∞. Note the varying axis limits between different
sub-figures.
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(c) (d)

(e) (f)

(g) (h)

Figure C.2: Comparison between the dominant 𝒎 = 2 (a, c, e, g) SPOD/CS-
SPOD and (b, d, f, h) RA/HRA modes of the natural and the 𝑺𝒕 𝒇 = 1.5 forced
jets at (a, b) 𝑺𝒕𝒄 = 0.05, (c, d) 𝑺𝒕𝒄 = 0.15, (e, f) 𝑺𝒕𝒄 = 0.475, and (g,h) 𝑺𝒕𝒄 = 0.75.
The pressure is shown at 𝝓 𝒇 = 0. Contour limits are ±0.75|𝝓𝝓𝝓(𝝓 𝒇 = 0)|∞. Note
the varying axis limits between different sub-figures.
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(c) (d)

Figure C.3: Comparison between the dominant 𝒎 = 3 (a, c) SPOD/CS-SPOD
and (b, d) RA/HRA modes of the natural and the 𝑺𝒕 𝒇 = 0.3 forced jets at (a, b)
𝑺𝒕𝒄 = 0.05 and (c, d) 𝑺𝒕𝒄 = 0.15. The pressure is shown at 𝝓 𝒇 = 0. Contour
limits are ±0.75|𝝓𝝓𝝓(𝝓 𝒇 = 0)|∞. Note the varying axis limits between different
sub-figures.
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(c) (d)

(e) (f)

(g) (h)

Figure C.4: Comparison between the dominant 𝒎 = 3 (a, c, e, g) SPOD/CS-
SPOD and (b, d, f, h) RA/HRA modes of the natural and the 𝑺𝒕 𝒇 = 1.5 forced
jets at (a, b) 𝑺𝒕𝒄 = 0.05, (c, d) 𝑺𝒕𝒄 = 0.15, (e, f) 𝑺𝒕𝒄 = 0.475, and (g,h) 𝑺𝒕𝒄 = 0.75.
The pressure is shown at 𝝓 𝒇 = 0. Contour limits are ±0.75|𝝓𝝓𝝓(𝝓 𝒇 = 0)|∞. Note
the varying axis limits between different sub-figures.
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