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Chapter 2 

 

A Cooperative Shear Model for the Rheology of Glass-Forming Metallic 

Liquids 

 
Key words:  Amorphous metals, Non-Newtonian flow, Shear transformation zones, 

Ultrasonic measurement, Compression test 

 

2.1 Abstract  

A rheological law based on the concept of cooperatively sheared flow zones is presented, 

in which the effective thermodynamic state variable controlling flow is identified to be 

the isoconfigurational shear modulus of the liquid.  The law captures Newtonian as well 

as non-Newtonian viscosity data for glass-forming metallic liquids over a broad range of 

fragility.  Acoustic measurements on specimens deformed at constant strain rate correlate 

well with the measured steady-state viscosities, hence verifying that viscosity has a 

unique functional relationship with the isoconfigurational shear modulus. 
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2.2 Introduction  

In a normal metal the atoms are arranged in an orderly crystalline arrangement.  

In a metallic glass the liquid has been rapidly undercooled to the point at which 

nucleation and growth of crystals has been arrested.  Therefore, the amorphous structure 

of the liquid is retained even at room temperature, resulting in a glass.  There are several 

interesting phenomena associated with this amorphous structure.  The deformation 

mechanisms that exist in normal metals do not occur in metallic glasses.  This results in 

high strengths and large elastic limits.  Furthermore, there is an apparent glass transition 

temperature and crystallization temperature in contrast to the normal melting temperature 

associated with crystalline metals.  Additionally, between the glass transition and 

crystallization temperatures, metallic glasses flow plastically due to a decrease in the 

viscosity of the material.  This is due to increased kinetic rates of the material with 

increasing temperature [1]. 

A map of these high-temperature deformation processes can be constructed using 

viscosity measurements.  The deformation processes can be grouped into three distinct 

modes.  The first mode is Newtonian flow, in which the viscosity is purely a function of 

the temperature and is insensitive to strain rate.  The next type of flow is non-Newtonian 

flow, in which viscosity decreases with increasing strain rate.  Both of these modes result 

in homogenous deformation of the specimen.  The last type of deformation is shear 

localization.  In shear localization, flow is isolated in a shear band that may propagate 

catastrophically through the specimen.  A map of these processes has been presented in 

Ref. [2] for the Vitreloy 1 system. 
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Over the last three decades, several phenomenological theories have been 

proposed to explain the behavior of metallic glasses in these different flow regimes.  

Most of these theories are founded on two hypothetical flow mechanisms: dilatation [3] 

and cooperative shear[4].  By analogy to granular materials, metallic glasses were 

thought to flow by deformation-induced dilatation, which results in creation of 

microstructural “free volume,” leading to flow localization and consequent softening [3].  

Owing to their ability to effectively capture the flow characteristics of metallic glasses, 

free volume models have been regarded as good phenomenological flow models and have 

been widely embraced.   

Even though experimental assessment of excess molar volume provided certain 

evidence of deformation-induced dilatation [5, 6], it has not been possible to 

quantitatively link measurable free volume to flow as predicted by free volume models.  

To some extent, this can be attributed to the lack of a fundamental thermodynamic 

definition of “free volume,” leading to constitutive models that possibly lack 

thermodynamic consistency.  This is due to the inability to distinguish the free volume 

contributions from thermal, pressure, and configurational effects separately.  In an 

alternative approach [4], flow in amorphous metals was thought to be accommodated by 

cooperative shearing of atomic clusters, referred to as “shear transformation zones.”  In 

this theory it was envisioned that the small clusters of atoms in the material become 

plastically and mechanically polarized due to an applied stress field.  As more of those 

clusters are formed, the “shear transformation zones” begin to interact and cooperatively 

deform.  It was also envisioned that the unrelaxed clusters were responsible for the 

anelastic responses seen in metallic glasses. 
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In a recent study [7], it has been shown that plastic yielding in metallic glasses 

can be effectively accounted for by adopting a cooperative yielding analysis for these 

flow zones similar to the one developed by Frenkel [8] for dislocation-free crystals.  In 

the present study, we employ that analysis to investigate the rheology of metallic-glass-

forming liquids. 
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2.3 Experimental  

Viscosity tests were performed on Pd43Ni10Cu27P20.  Additionally, ultrasonic 

measurements were performed on Pd43Ni10Cu27P20 and Zr41.2Ti13.8Ni10Cu12.5Be22.5 in order 

to obtain the isoconfigurational shear modulus. 

Pd43Ni10Cu27P20 [9] alloy was made by first prealloying a mixture of Pd, Ni, and 

Cu.  The prealloying was accomplished using induction heating.  The process was carried 

out in a quartz tube under an inert argon atmosphere.  The prealloy was then combined 

with P and sealed under an argon atmosphere in a quartz tube.  The alloy was then heated 

at 0.1 K/min up to 1023 K and allowed to cool back to room temperature.  The 

Pd43Ni10Cu27P20 alloy was then fluxed with B2O3 at 1000 K for 1000 sec.  The elements 

used in this process ranged in purity from 99.9 to 99.999%.   

Zr41.2Ti13.8Ni10Cu12.5Be22.5 [10] ingots were prepared from a mixture of elemental 

metals ranging in purity from 99.99 to 99.999%.  The elements were alloyed in an 

induction melter with a water-cooled copper boat.  An argon atmosphere was used during 

the alloying process.  A titanium getter was used prior to alloying to scavenge any 

oxygen that was present. 

After the alloys were prepared, the materials were cast into 4 mm diameter glassy 

rods of Pd43Ni10Cu27P20 for the viscosity tests and 6 mm diameter glassy rods of 

Pd43Ni10Cu27P20 and Zr41.2Ti13.8Ni10Cu12.5Be22.5 for the shear modulus tests.  The casting 

process was done under vacuum into a machined copper mold.  The amorphous nature of 

the cast rods was verified by Differential Scanning Calorimetry and X-ray diffraction.  

The Differential Scanning Calorimetry was performed at a constant heating rate of 20 
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K/min.  The machine used was a Netzch DSC 404C with graphite crucibles.  The X-ray 

diffraction was performed on a Siemens Kristalloflex Diffractometer. 

After verifying the amorphous nature of the specimens the rods were cut into 6 

mm and 9 mm lengths respectively.  Prior to testing it was necessary to ensure that the 

deformation surfaces were parallel.    The top and bottom surfaces were ground 

perpendicular to the central axis of the specimens using a polishing jig and 600 grit 

sandpaper.    

Isothermal viscosity measurements for Pd43Ni10Cu27P20 were obtained using 

parallel plate reheometry as done in Ref. [2].   Before taking viscosity measurements the 

specimens were allowed to thermally relax at the testing temperature.  By assuming a 

Poisson ratio of 0.5 during plastic flow we can estimate the viscosity as  

•=
ε

σ
η

3

flow  

where flowσ  is the flow stress in steady state and 
•

ε  is the strain rate of the test.  High-

temperature compression tests were carried out on a Servo-Hydraulic Materials Testing 

System (MTS 358 Series).  The MTS machine was equipped with multiple load cells 

including 5 kip, 20 kip, and 50 kip cartridges.  There was a 5 in internal linear voltage 

displacement transducer (LVDT) that recorded the machine head displacement during 

testing. 

An additional load frame was used during the testing of the metallic glass 

specimens.   The load frame is described in detail in Figure 1 of Chapter 2 in Ref. [2].  

The design includes an LVDT and its adapter, a split electric furnace, and a temperature 

feedback/control system.  Small modifications such as increased insulation and increased 
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plate thickness for connecting the extension rods were incorporated into the current 

system. 

The split furnace elements (#5010-1057-00A, Lunaire, WI) were half cylinders 

with an inner diameter of 75 mm and a length of 150 mm.  The temperature control 

system incorporated a temperature controller (#CN77000) and two solid state relays 

(#SSR240DC25) from Omega Engineering.  The temperature data from the sample was 

relayed to the temperature controller via a K-type thermocouple spot welded to the 

middle of the specimen.  During the high-temperature compression tests the temperature 

controller was operated in the Proportional-Integral-Derivative mode [11].  The 

temperature controller maintained the specimen within ± 0.5 K of the programmed 

temperature.  To insure that the temperature profile was uniform across the specimen, 

thermocouples were attached to different points along the specimen length for several 

tests.  In those tests the different thermocouples registered less than 1 K difference 

between the top and bottom surfaces of the specimen.  This is corroborated by looking at 

the thermal diffusivity of the material.  A typical thermal diffusivity for metallic glasses 

is 5x10-6 m2s-1 [12].  For a specimen with dimensions on the order of 4–6 mm the thermal 

relaxation time is on the order of several seconds.  Hence, the specimens may be assumed 

to be at a homogeneous temperature for the performed strain rates.   

The specimens were initially heated at 20 K/min.  Upon reaching 20 K below the 

target temperature the temperature controller was switched to manual operation.  Once in 

manual operation the target temperature was slowly approached to avoid any temperature 

overshoot.  Once at the appropriate temperature the machine was again put into 

Proportional-Integral-Derivative mode, and the specimens were allowed to relax. 
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In addition to the viscosity measurements, we performed tests to measure the 

isoconfigurational shear modulus.  In these tests we utilized specimens of 

Zr41.2Ti13.8Ni10Cu12.5Be22.5 and Pd43Ni10Cu27P20 which have undergone mechanical 

deformation at constant strain rates and constant temperatures of 593 K and 548 K, 

respectively.  Continuous-strain-rate compression tests were performed using the setup 

described above.  In Ref. [13] the non-Maxwellian relaxation times ( NMτ ) have been 

measured for Pd43Ni10Cu27P20.  The measured relaxation times are around four times 

longer than the calculated Maxwellian relaxation times ( Mτ ) for Pd43Ni10Cu27P20.  The 

Maxwellian relaxation time can be estimated as 

GM
ητ =  

Deformation was performed for a minimum of four NMτ  after a steady-state flow 

stress was attained.  Upon unloading, quenching was performed as rapidly as possible in 

an effort to freeze the configurational state associated with the flow stress.  The furnace 

was opened at the same time as the measurement was stopped.  Once the furnace was 

opened the specimen was removed and quenched in water.  The entire process took 

roughly 5 sec.  The fastest sample relaxation time for which we attempted to “quench” in 

the configurational state was Mτ  ≈ 30 sec.  The amount of actual relaxation observed for 

such specimens with this Mτ  was minimal.  For longer relaxation times, relaxation during 

quenching was assumed to be negligible. 

After quenching, the specimens were prepared for acoustic measurement.  The 

specimens were polished to a 2 μm surface finish.  To ensure the surfaces were parallel it 

was necessary to use a polishing jig that held the specimen’s central axis perpendicular to 
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the polishing surface.  We evaluated the shear modulus of the quenched unloaded 

specimens using ultrasonic measurements along with density measurements [14].  Shear 

wave speeds were measured at room temperature using the pulse-echo overlap setup 

described in [15].  5 MHz transducers (Panametrics-NDT V157) and a computer 

controlled pulser/receiver (Panametrics-NDT Model 5800) were used to produce and 

measure the acoustic signal.  The signal was measured using a Tektronix TDS 1012 

oscilloscope.  The data was captured using a routine developed by Mary Laura Lind in 

LabView.   

The sound velocity was evaluated using the measured time delay of the acoustic 

signal and the length of the specimen.  The time delay was measured in MatLab by 

matching the wave profiles from the first and last echo recorded, and then measuring the 

time between them.  The specimen length was measured using calipers with an accuracy 

of ±0.005 mm.  The sound velocity was calculated using: 

t
nlc )1(2 −

=  

where c is the sound velocity, l is the length of the specimen, t is the measured time 

delay, and n is the number of echoes measured.  If there were four echoes and you 

compared the first and last echo n would equal 4.  If the second and third echoes were 

compared, n would equal 2. 

Densities were measured by the Archimedes method, as given in the ASTM 

standard C693-93.  The weight measurements were carried out on a Mettler Toledo AG 

204 Delta Range scale with an accuracy of ±0.00005 g.  The water used was distilled 

water that had been degassed by bringing it to a gentle boil and then allowing it to cool to 

ambient temperature near the scale.  The setup for measuring the weight of the specimens 
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under water included a 140 ml beaker which was filled with the degassed water.  Inside 

the 140 ml beaker a smaller 10 ml beaker was freely suspended in the water using thin 

gauge Inconel wire less than 0.2 mm in diameter.  The wire was attached to a frame that 

transmitted the load to the scale.  Before weighing the samples the scale was zeroed for 

the initial load of the beaker and frame.  Once the water was at ambient temperature the 

water temperature was recorded and the specimens were weighed.  Additionally, the dry 

weight of each specimen was measured, and the air temperature was recorded.  In 

determining the densities of the air and water a pressure of 760 mmHg was assumed 

when using the tables in the ASTM standard C693-93.  The density was calculated using: 

)(
)(

WA

AWWA

WW
WW

−
−

=
ρρ

ρ  

where WA and WW are the weight of the specimen in air and water respectively, and Aρ  

and Wρ  are the densities of the air and water respectively. 

After the sound velocity and density for a specimen was evaluated it was possible 

to estimate the isoconfigurational shear modulus using: 

ρ2CG =  

where C is the measured shear sound velocity at ambient conditions, and ρ  is the density 

as determined above.   

These room-temperature measurements were corrected to estimate the shear 

modulus at the temperature of the flow experiment by accounting for the Debye-

Grüneisen temperature effect on the shear modulus of the frozen glass.  The Debye-

Grüneisen temperature effect is linked to the thermal expansion of the material.  As the 

average atomic volume increases with increasing temperature the shear modulus of the 
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material softens.  To correct the room-temperature measurements we utilized measured 

linear Debye-Grüneisen coefficients of 9 MPa/K for Zr41.2Ti13.8Ni10Cu12.5Be22.5 [15] and 

15 MPa/K for Pd43Ni10Cu27P20 [16].  The temperature correction was done using 

GD
RTExpRTDG dT

dG)T-(T-GG =  

where GDG is the shear modulus corrected for the Debye-Grüneisen effect, GRT is the 

shear modulus as measured at room temperature, TExp is the temperature of the 

deformation experiment, TRT is room temperature, and GDdTdG  is the measured linear 

Debye-Grüneisen coefficient 
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2.4 Discussion  

There is a large amount of data in the literature detailing the viscosities of the 

different alloys shown in this chapter [2, 17-21].  Furthermore, the physical properties 

and processing routes for these alloys are well described [9, 10].  A discrepancy was 

found concerning the viscosity data for the Pd43Ni10Cu27P20 alloy.  As seen in Fig. 2.1 

there are almost two orders of magnitude difference between the viscosity data reported 

in Refs. [19, 20] and that reported in Ref. [21].  The viscosity as measured in Refs. [19, 

20] is exceptionally low at the calorimetric glass transition temperature (Tg).  A 

measurement of Tg is shown in Fig. 2.2.  Even when accounting for the shifts of the 

calorimetric Tg with the different heating rate the viscosity of the undercooled liquid at 

that temperature should roughly be 1011 Pa-s to 1012 Pa-s.  This discrepancy may be due 

to the difference in specimen size used in the test.  In Refs. [19, 20] the specimens are 2 

mm in diameter.  In Ref. [21] the specimens are 5 mm in diameter.  In order to resolve 

this problem the non-Newtonian viscosity regime was mapped out for different 

temperatures and strain rates for Pd43Ni10Cu27P20, and we compared the obtained 

Newtonian data to the data in the literature.  The Newtonian measurements were found to 

fit with the data from Ref. [21] the best.  This comparison can be seen in Fig. 2.3. 

Following Ref. [7], a periodic energy density φ  vs. strain γ  can be formulated as 

( )2sin 4=o cφ φ πγ γ , where oφ  is the barrier energy density, and cγ  is a critical shear 

strain limit shown to be a universal scale for metallic glasses.  See Fig. 2.4 for an 

example of a potential energy well as modeled with this potential.  This potential energy 

landscape can be viewed as arising from a collection of clusters where each cluster 

deforms to accommodate the applied stress field.  These clusters are estimated to be  
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Figure 2.1. Conflicting Newtonian viscosity data for Pd43Ni10Cu27P20 obtained 
from references (◊) [19], (□) [20], and (O) [21]. 
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Figure 2.2. A Differential Scanning Calorimetry trace with a scan rate of 20 K/min for a 
Pd43Ni10Cu27P20 alloy.  The calorimetric glass transition temperature is denoted in the 
figure. 
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Figure 2.3. Newtonian viscosity data obtained from (Δ) experiments and (O) 
Ref. [21]. 
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 Figure 2.4. An example of the potential energy landscape generated from the function 
( )2sin 4=o cφ φ πγ γ  
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~ 100–200  atoms in size, and are called Shear Transformation Zones (STZs) [7].  

With this model the stress associated with moving a STZ out of the potential well can 

be calculated as γφγτ dd=)( .  This results in the maximum shear stress occurring at 

cγγ = .  Zero shear stresses occur at 0=γ  and cγγ 2= .  Furthermore, the shear 

modulus is given by the curvature of the energy density function (i.e., 

2 2
0=

=G d d
γ

φ γ ), and a linear relationship between barrier energy density and shear 

modulus can be formulated as ( )2 28=o c Gφ π γ .  Multiplying by an effective zone 

volume Ω , the total energy barrier for configurational hopping between inherent 

states, which can be regarded as the activation barrier for shear flow, can be 

expressed as ( )2 28= ΩcW Gπ γ .  Acknowledging that the variables contributing to 

barrier softening are G  and Ω , the expression for the energy barrier can be 

rearranged as ( )( )= Ω Ωo o oW W G G , where oG  and Ωo  are characteristic scales for 

the shear modulus and the zone volume, and ( )2 28≡ Ωo c o oW Gπ γ .  Taking the barrier 

crossing rate normalized by an attempt frequency to follow a Boltzmann distribution 

function, we can arrive at a viscosity law based on barrier softening: 

 

 [ ]exp∞ = W kTη η  (2.1) 

 

where ∞η  is the Born-liquid limit of viscosity, which can be realized in the limit of 

0→W . 
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In the context of this analysis, Newtonian flow can be regarded as thermally 

activated flow where barriers are overcome entirely by thermal fluctuations.  The 

viscosity should therefore be determined by the shear modulus and STZ volume 

corresponding to the equilibrium configurational state, eG  and Ωe , whose temperature 

dependence we describe by an exponential decay function, as:  

 

( )exp= −e o gG G nT T  

and  

( )expΩ Ω = −e o gpT T , 

 

where gT  is the glass transition temperature.  The form of this function originates from 

the probability distribution of inherent configurational states in a potential energy 

landscape model of a metallic glass [22].  In these expressions, n  and p  are indices 

quantifying the contributions of G  and Ω  to the softening of W .  The equilibrium 

barrier therefore takes the form: 

 

[ ( ) ]ge TTpnWW +−= exp0 . 

 

Evaluating Eq. (2.1) at Tg we get: 

 

( )∞= ηηggg kTW ln . 
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We are now able to define 0W  in reference to measurable quantities at the glass transition 

using: 

 

( )pnWW g += exp0 . 

 

This results in: 

 

( ) [ ( )( ) ]ggge TTpnkTW −+= ∞ 1expln ηη . 

 

Substituting eW  into Eq. (2.1), an equilibrium viscosity law is obtained where the only 

unknown is the combined fitting parameter, (n+p): 

 

 ( )
⎪⎭
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T

1explnexp
η
η

η
η . (2.2) 

 

In Fig. 2.5, we present the fit of the equilibrium law to Newtonian viscosity data 

of metallic-glass-forming liquids.  The law effectively captures the Newtonian viscosity 

of Zr41.2Ti13.8Ni10Cu12.5Be22.5 [17] and Pd40Ni40P20 [23-25] over the entire range of 

temperatures studied rheologically.  Moreover, plotted on a normalized plot [26] (insert 

in Fig. 2.5), the law captures Newtonian data of liquids ranging from the strongest to the 

most fragile [21, 27-32], and can thus be perceived as a universal viscosity law.  The 

fitting parameters are given in Table 2.1.  By comparison to free-volume based laws, the 

one-parameter Cooperative shear model fits Newtonian data better than the two-
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Figure 2.5. Fit of the equilibrium viscosity law, Eq. (3.1) and (3.2), to Newtonian 
data of metallic glass-forming liquids: Zr41.2Ti13.8Ni10Cu12.5Be22.5 ( ); Pd40Ni40P20 
( ); Pd40Ni10Cu30P20 ( ); Pd77.5Cu6Si16.5 ( ); La55Al25Ni20 ( ); Mg65Cu25Y10 
( ).  Low-temperature viscosity data was produced by three-point beam bending, 
continuous-strain-rate tension and compression, and parallel-plate rheometry; 
high-temperature data was produced by concentric-cylinder rheometry, oscillating 
crucible, and electrostatic levitation [8-11,13-20]. 

η/
η ∞

 
Tw/T 
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 parameter Vogel-Fulcher-Tammann law [33], and at least as well as the three-parameter 

Cohen-Grest law [34].  These fits are compared in Fig. 2.6. 

 Tg [K] (n+p) η∞ [Pa-s] 
Zr41.2Ti13.8Ni10Cu12.5Be22.5 [17] 613 1.75 5.6×10-3 
Pd40Ni40P20 [23-25] 560 2.52 4.0×10-3 
Pd43Ni10Cu27P20 [13,Fig. 2.3] 569 2.85 2.2×10-3 
Pd77.5Cu6Si16.5 [18,27] 635 3.53 1.0×10-2 
La55Al25Ni20 [28,29] 450 1.43 5.3×10-4 
Mg65Cu25Y10 [30,31] 405 1.72 1.5×10-3 

 
Table 2.1. Fit parameters to the equilibrium viscosity law, Eq. (2.1), for various metallic 
glass-forming liquids.  It is noted that ∞η  was assigned a value near the Planck limit 
which resulted in a best fit (as typically implemented when fitting viscosity). 

 

As evidenced from Fig. 2.5 and Table 2.1, fragile liquids are characterized by a 

high +n p , which suggests that liquid fragility is dictated by +n p , i.e., by the combined 

softening effects of G  and Ω .  From the functional dependencies of G  and Ω , the 

relationship ( ) ( )= Ω Ω n p
o oG G  can be recognized, which leads to a correlation 

between G  and W  as ( ) ( )= q
o oG G W W , where )( pnnq += .  This can be 

reformulated in terms of the glass transition as ( ) ( )qgg WWGG = .  A correlation between 

G  and η  may now be formulated as: 

 
( )
( )

q

ggg T
T

G
G

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=

∞

∞

ηη
ηη

ln
ln

 (2.3) 

 

where gG  is the isoconfigurational shear modulus at gT .  Equation (2.3) essentially states 

that variations in viscosity correlate uniquely to variations in shear modulus.
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Fig 2.6. The two-parameter Vogel-Fulcher-Tammann law, three-parameter Cohen Grest 
law, and one-parameter Cooperative shear model are used to fit the Vitreloy 1 viscosity 
data from Ref. [17].  The fits have R2 values of 0.9994, 0.9995, and 0.9995 respectively.  
From this comparison it is clear that the Cooperative shear model is capable of predicting 
the Newtonian viscosity of metallic glasses over a wide range of temperatures with the 
use of only one fitting parameter.  Additionally, the one-parameter Cooperative shear 
model is found to have the same accuracy as the two- and three-parameter fitting laws. 
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We can now proceed to extend the softening law to the case of a driven system.  

A non-Newtonian flow law can be formulated by accounting for the effect of dissipated 

energy on W .  This effect can be accounted for by considering the induced changes in 

the specific configurational potential energy of shear zones, ε .  The rate of softening can 

thus be formulated as =& &sofW Wε δ δε , where 2≈& &ε ηγ  is the rate of production of 

specific configurational potential energy as a result of flow dissipation ( &γ  is strain rate), 

and ( ) ( )= ∂ ∂ ∂ ∂W W T Tδ δε ε  is a dimensionless thermodynamic parameter denoting 

changes in W  with respect to changes in ε .  Near gT , we can differentiate 

[ ( )( ) ]gge TTpnWW −+= 1exp  with respect to T at gT  to give 

( ) ggT TpnWdTdW
g

+−= .  We can also evalute ( )∂ ∂ ≈ ∂ ∂
gT

T h Tε , where h  is the 

specific configurational enthalpy and ( )
gT

h T∂ ∂  can be evaluated from enthalpy 

recovery experiments as pcΔ  at gT .  Configurational relaxation can be accounted for by 

adopting a uni-molecular kinetic model as ( ) ( )= −&
rel e MW W W ατ , where  

[ ( ) ]q
ggM WWGG ηητ ==  is the Maxwell relaxation time, and α  is a model 

parameter quantifying the deviation from simple Maxwellian relaxation.  Requiring 

=& &
sof relW W  for steady flow, we arrive at a self-consistent non-equilibrium law: 

 

 
( ) ( )( )2 −

− =
Δ

&

q
e gg

g p g

W W W Wn q W
T c G

α ηγ
η

.  (2.4) 
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For Zr41.2Ti13.8Ni10Cu12.5Be22.5, ( ) 33 GPa≈e gG T  [15] and 

( ) 31.5 MJ/m K
gT

h T∂ ∂ ≈  [35], which gives -285.29 10= − ×Wδ δε .  For 

Pd43Ni10Cu27P20, ( ) 31 GPa≈e gG T  [16] and ( ) 32.5 MJ/m K
gT

h T∂ ∂ ≈  [36], which gives 

-285.32 10= − ×Wδ δε .  In Fig 2.7 we present the solution of Eq. (2.4), superimposed on 

the non-Newtonian data of Zr41.2Ti13.8Ni10Cu12.5Be22.5 [18] and Pd43Ni10Cu27P20, produced 

by adjusting α  to 16.5 and 58.5, respectively.  Evidently, the non-equilibrium model 

seems capable of effectively capturing non-Newtonian viscosity data by adjustment of 

just one parameter. 

The results from the acoustic measurements are presented in Fig. 2.8.  The 

observed effect of strain rate on shear modulus has also been seen in recent molecular 

dynamics simulations [37].  In Fig. 2.8 we superimpose the shear moduli predicted from 

viscosities using Eq.(2.3), along with the solution of the non-equilibrium law, Eq. (2.4).  

As evidenced from Fig. 2.8, the shear modulus measured acoustically can be adequately 

correlated to the measured viscosity.  The small apparent discrepancy in this correlation 

may be related to the ex situ nature of the acoustic experiment.  During unloading and 

quenching of specimens prior to measuring sound velocities, some degree of relaxation  

towards equilibrium might occur, or some fraction of the potential energy might 

instantaneously recover as elastic energy, resulting in lower apparent strain-rate 

sensitivity. 

We have therefore demonstrated that liquid fragility and strain-rate sensitivity are 

dictated by the softening of W , which is uniquely determined by the thermodynamics of 

G .  We can therefore regard G  as the effective thermodynamic state variable governing 
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Figure 2.7. Fit of the non-equilibrium viscosity law, Eq. (2.4), to the non-Newtonian data 
of (a) Zr41.2Ti13.8Ni10Cu12.5Be22.5 [28], and (b) Pd40Ni10Cu30P20 [14].  The data was 
obtained by continuous-strain-rate compression experiments using the Instron setup 
described in [28].  The small discrepancy in the Newtonian data of 
Zr41.2Ti13.8Ni10Cu12.5Be22.5 between [28] and [8] was adjusted by introducing a 
temperature correction of 8 K. 
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Figure 2.8. Acoustically measured shear moduli (corrected for Debye-Grüneisen effect) 
of quenched unloaded specimens following steady deformation at the indicated rates: 
Zr41.2Ti13.8Ni10Cu12.5Be22.5 at 593 K ( ) and Pd40Ni40P20 at 548 K ( ).  Shear modulus 
predicted from viscosity data using Eq. (2.3): Zr41.2Ti13.8Ni10Cu12.5Be22.5 at 593 K ( ) and 
Pd43Ni10Cu27P20 at 548 K ( ).  Solid lines are predictions from Eq. (2.4). 
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flow.  Contrary to free volume, which is presumed to vanish at some finite temperature 

below the glass transition producing a singularity in viscosity, G  is measurable and is 

thermodynamically well behaved, rendering the viscosity law thermodynamically 

consistent.  Fundamentally, G  represents the isoconfigurational shear modulus of the 

liquid at the high-frequency “solid-like” limit, and, unlike free volume, is a 

thermodynamically well defined and experimentally accessible property.  Accordingly, in 

situ ultrasonic acoustic measurements during mechanical deformation would be expected 

to correlate with viscosity assessed from measuring flow stress.  We shall hence attempt 

to validate such correlation by measuring ultrasonic shear moduli of stressed 

configurational states and comparing them to the associated viscosities. 
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2.5 Conclusion  

In conclusion, we performed viscosity measurements on Pd43Ni10Cu27P20 and 

isoconfigurational shear modulus experiments on Zr41.2Ti13.8Ni10Cu12.5Be22.5 and 

Pd43Ni10Cu27P20.  Furthermore, we presented a rheological law based on the concept of 

cooperatively sheared flow zones, in which the effective thermodynamic variable 

governing flow is identified to be the isoconfigurational shear modulus of the liquid.  The 

model was capable of explaining the equilibrium as well as the non-equilibrium flow of 

metallic-glass-forming liquids. 

We successfully applied this model to alloys with different fragilities.  This 

included the Zr41.2Ti13.8Ni10Cu12.5Be22.5, Pd40Ni40P20, Pd40Ni10Cu30P20, Pd77.5Cu6Si16.5, 

La55Al25Ni20, and Mg65Cu25Y10 alloys.  In all cases the fits worked equally well in the 

high- and low-temperature regimes.  Additionally, the one-parameter fit is found to be as 

good as the three-parameter Cohen-Grest Law. 

In addition to the viscosity fits, we compared the shear moduli obtained by 

experiment and shear moduli calculated from viscosity for different strain rates.  It was 

shown that there was a good correlation between the measured and calculated shear 

moduli.  The model was also found to fit Newtonian data over a wide range of 

temperatures.  This suggests that the assumption of a unique function of shear modulus 

with temperature is valid.  Therefore, we have demonstrated that variations in viscosity 

with both temperature and strain rate can be uniquely correlated to variations in 

isoconfigurational shear modulus, and hence verified that viscosity has a unique 

functional relationship and a one-to-one correspondence with shear modulus.     
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