
Enforcing Constraints in Learning-Augmented Online
Optimization: Theory and Applications to Energy Systems

Thesis by
James Y. Chen

In Partial Fulfillment of the Requirements for the
Degree of

Bachelor of Science

CALIFORNIA INSTITUTE OF TECHNOLOGY
Pasadena, California

2024
Submitted June 7th, 2024



© 2024

James Y. Chen
ORCID: 0009-0005-5003-2996

All rights reserved

ii



iiiACKNOWLEDGEMENTS

I want to begin by expressing my gratitude towards Professor Adam Wierman and Nico Christianson
for their invaluable mentorship and guidance, both for my thesis and more generally throughout the
last year. I continue to be inspired by both the caliber of their research and the way they conduct
themselves in the academic community. I would also like to thank the rest of Professor Wierman’s
group for providing a welcoming and engaging community.

I owe a great deal to Professors Ralph Adolphs, Azita Emami, Mory Gharib, Victoria Kostina
and Steven Low for welcoming me into their groups during my time at Caltech. My experiences
within their groups were tremendously helpful for clarifying my ever-evolving interests, as well as
for training me to be an effective researcher. I would additionally like to express my appreciation
to Professors Changhuei Yang and Glen George for their guidance as I navigated the Electrical
Engineering option.

I would like to thank Beyond Limits, and particularly Azarang Golmohammadi, for providing us
with real-world data and models, as well as CAST for connecting us to these collaborators.

Finally, I would like to thank my family for their continued love and support. I could not have made
it this far without their dedication and sacrifices.



ivABSTRACT

Increasing renewable penetration into the power grid is critical for combating climate change. To
implement this successfully, it is crucial to design real-time dispatch algorithms that are robust
to the uncertainty that renewable sources present. It has proven difficult to produce effective
large-scale dispatches on the fly using traditional methods; as such, this has motivated research
into incorporating modern machine learning (ML) methods into economic dispatch. In order for
ML-based dispatch algorithms to be effectively deployed, they must have the level of performance
guarantees necessary for a safety-critical setting like the grid, and also be able to enforce strict
operational constraints. In the first part of this work, we consider the problem of designing learning-
augmented algorithms for online optimization in the presence of ramp and feasibility constraints,
and provide some of the first results in this space to our knowledge. We use these insights to
develop learning-augmented algorithms that adhere to these constraints, and demonstrate how they
can effectively balance between algorithm performance and the potential for constraint violations.
In the second part of this work, we consider the complementary problem of training an ML model to
perform economic dispatch in the face of complex operational constraints. In particular, we utilize
a plant model and historical data from a real-world co-generation plant, and develop methods to
enforce constraints in our ML model. Our results demonstrate that ML models can simultaneously
achieve good performance and minimize constraint violations in a real-world dispatch setting.
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1C h a p t e r 1

INTRODUCTION

1.1 Motivation
There are numerous technological and societal challenges we will need to overcome to effectively
fight climate change, with one of them being the design and implementation of better energy
systems. In particular, future energy systems must emit significantly fewer greenhouse gases than
their present day versions, but must also be resilient to increasingly frequent disruptions from
extreme weather and the like. Renewable penetration into the power grid has gone up significantly
in recent decades, and is predicted to continue increasing as renewable energy technologies become
more widely adopted. While this is a necessary step towards building a cleaner energy system, it
also introduces significantly more uncertainty into the power grid compared to before. After all, a
traditional coal-fired plant can maintain a steady output of energy as long as it has a steady supply
of coal, but the energy output of renewable technologies like wind and solar can vary drastically
and unpredictably throughout the day. Due to this uncertainty, grid operators increasingly have
to rapidly make decisions in response to the conditions at any given time. This has motivated
widespread research into improving algorithms for economic dispatch - the process by which grid
operators decide how to best utilize generation resources to produce energy while minimizing cost.
If we develop better dispatch algorithms for our energy resources, we can not only make more
effective decisions in the face of uncertainty, but also to make energy systems more efficient as a
whole.

One way researchers have developed new dispatch algorithms is through the development of
online algorithms that make sequential decisions “on the fly”. Online algorithms are better at
handling uncertainty since they are designed to make effective decisions given incomplete or
no information about the future. These algorithms often have theoretical guarantees on their
performance, particularly in the “worst case”. As such, they are able to meet the robustness
requirements necessary for safety-critical applications like energy systems, but they also tend to be
overly conservative in practice.

There is also significant research being done on developing new dispatch algorithms by using
machine learning (ML). Machine learning and artificial intelligence (AI) algorithms have become
increasingly popular in the last decade, as they are often able to outperform traditional approaches in



various tasks, particular when there is significant data and complexity involved. As such, machine
learning appears to have significant potential when applied to energy systems. However, while
machine learning algorithms commonly demonstrate strong empirical results, there are several
barriers towards their deployment in energy systems. For one, energy systems often have strict
operational constraints that that many “off-the-shelf” machine learning methods are not able to
satisfy. This has motivated further research into neural networks that are informed by the physics
and constraints of electric power grids. In addition, the safety-critical nature of energy systems
requires robustness guarantees that are currently incompatible with the black-box nature of many
machine learning methods. This observation has motivated research into providing robustness
guarantees for ML algorithms. One method for doing this is to use learning-augmented algorithms,
which are a class of meta-algorithms that combine traditional, robust algorithms with untrusted ML
advice. Notably, learning-augmented algorithms can be designed to have performance guarantees
with respect to both the advice and robust algorithms, and ideally get the “best of both worlds”.

1.2 Related Work
We now provide a more thorough review of the literature broadly surrounding the use of ML for
real-time dispatch in highly-constrained energy systems.

Metrical Task Systems
In many real-world applications, an agent must make decisions “on the fly” given incomplete or no
information about the future. One well-studied method of approaching these “online” problems is to
design online algorithms, particularly in the metrical task systems setting (MTS) introduced in [8].
MTS captures the essence of many real-world ”online” problems, where an agent seeks to minimize
some recurring cost at each timestep while also not changing between states too significantly
between timesteps. Specifically, a loss function 𝑓𝑡 is revealed to the decision maker at every timestep
𝑡; the decision maker must then choose an action 𝑥𝑡 from an action space X that incurs a “hitting
cost” 𝑓𝑡 (𝑥𝑡) as well as a “switching cost” 𝑑 (𝑥𝑡 , 𝑥𝑡−1), where 𝑑 is some metric. Then, the overall loss
function over some horizon 𝑡 ∈ {1, . . . , 𝑇} is given by

∑𝑇
𝑡=1 𝑓𝑡 (𝑥𝑡) + 𝑑 (𝑥𝑡 , 𝑥𝑡−1). The performance

of an online algorithm is often measured by its “competitive ratio”, which is the supremum over
all sequences 𝑓1, . . . , 𝑓𝑇 of the ratio between the loss incurred by the online algorithm given
that sequence and the loss incurred by the optimal choices in hindsight. Any determinstic and
randomized MTS algorithms are Ω( |X|)-competitive [8] and Ω(log |X|)-competitive respectively
[6, 9]. We can also define the competitive difference of an online algorithm, which considers the
difference in cost using the optimal choices in hindsight in lieu of the ratio when calculating the
competitive ratio.
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Smoothed Online Convex Optimization
In the SOCO problem, at every timestep 𝑡, an agent makes a decision 𝑥𝑡 in a convex action space X,
and a convex “hitting cost” 𝑓𝑡 is revealed. The SOCO problem with 𝛼-penalized cost and lookahead
𝑖 over a horizon {1, . . . , 𝑇} is defined to be E

[∑𝑇
𝑡=1 𝑓𝑡 (𝑥𝑡+𝑖) + 𝛼∥𝑥𝑡+𝑖 − 𝑥𝑡+𝑖−1∥

]
, where ∥ · ∥ is some

seminorm that defines a “switching cost”. Then, we have an MTS instance if 𝑖 = 1, 𝛼 = 1 [1].

The SOCO problem was introduced by Lin et al. in [40], in which they studied geographical
load balancing. They looked into how jobs could be distributed across data centers based on the
proportion of renewable energy they were using at a given time, in order to better “follow the
renewables”. This problem lended itself well to a SOCO formulation since aside from the primary
objective of using renewable energy when it is available, they also had to account for switching
costs associated with turning servers on and off. The SOCO problem has proven to be useful for
many real-world applications where decision-makers must make sequential decisions while also
minimizing changes between timesteps. As such, SOCO has seen a diverse range of applications
ranging from data centers [39, 40], electricity pricing [31], control [24] and economic dispatch
[37].

Much of the initial work in SOCO relied on having access to limited predictions of the future in
order to make good decisions. For instance, [40] used a length 𝑤 window of perfect predictions
into the future. Their algorithm, Averaging Fixed Horizon Control (AFHC), is able to achieve
a competitive ratio of 1 + O(1/𝑤). There has also been significant work that considers SOCO
with noisy predictions of the future [13, 14, 36]. [13] introduces a colored noise model for
prediction error and demonstrate that under this model, AFHC can achieve sublinear regret and a
constant competitive ratio while using a length O(1) prediction window. [36] introduces a gradient-
biased algorithm Receding Horizon Inexact Gradient (RHIG) and analyze its dynamic regret in the
presence of general prediction errors without assumptions, as well as in the prediction error model
introduced in [13].

There has also been considerable work to develop effective SOCO algorithms that do not rely on
predictions. Bansal et al. gave a 2-competitive SOCO algorithm in the scalar case [5], which was
later shown to match the lower bound [3]. Beyond the scalar case, there is considerable difficulty
in finding effective SOCO algorithms, especially since there is a Ω(

√
𝑑) lower bound for general

SOCO problems in 𝑑 dimensions [23]. Chen et al. introduced the Online Balanced Descent (OBD)
algorithm which is able to achieve a constant competitive ratio with locally polyhedral hitting costs
and ℓ2 switching costs [12]. Moreover, if the hitting costs are 𝑚-strongly convex and the switching
costs are the squared ℓ2 norm, OBD achieves a constant competitive ratio of 3+O(1/𝑚) [24]. Goel
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et al. prove a Ω(𝑚−1/2) lower bound on the competitive ratio for SOCO with 𝑚-strongly convex
hitting costs and squared ℓ2 switching costs [25]. They build upon the OBD algorithm and introduce
Regularized Online Balanced Descent (R-OBD), whose competitive ratio matches the lower bound
up to the constant factors. Notably, R-OBD maintains both a finite, dimension-free competitive
ratio and sublinear regret, which was previously shown in [1] to be impossible for general SOCO.

Online Learning
Online learning is another well-studied class of online problems [27, 47]. In this setting, the decision
maker must commit actions 𝑥𝑡 while only having access to loss functions 𝑓1, . . . , 𝑓𝑡−𝑖, 𝑖 ≥ 1, critically
not including 𝑓𝑡 . Online learning algorithms are often evaluated by their “regret”, which include
static and dynamic regret. The static regret of an algorithm is the worst-case difference between
the loss incurred by the algorithm and the loss incurred if the algorithm had played a single point
𝑥∗ at every timestep. Meanwhile, the dynamic regret is the worst-case difference between the loss
incurred by the algorithm and the loss incurred by the optimal choices in hindsight. There are
many well-known examples of online learning problems. As an example, Zinkevich introduced the
online convex optimization (OCO) problem, in which at every timestep 𝑡, an agent has access to
convex loss functions 𝑓1, . . . , 𝑓𝑡−1 and must commit an action 𝑥𝑡 ; the objective is then to minimize∑𝑇
𝑡=1 𝑓𝑡 (𝑥𝑡). Another example is the experts problem, in which an agent presented with 𝑛 “experts”.

At each timestep 𝑡, the agent must commit a probability distribution 𝑝𝑡 ∈ R𝑛, ∥𝑝𝑡 ∥1 = 1 over these
agents, after which a loss vector ℓ𝑡 ∈ R𝑛 over the agents is revealed. The agent’s loss over a horizon
𝑡 ∈ {1, . . . , 𝑇} is then

∑𝑇
𝑡=1 𝑝𝑡 · ℓ𝑡 . The goal in the experts problem is often to minimize the regret

with respect to the single best expert in hindsight; it is well-established that the multiplicative
weights [41] and Hedge algorithms [22] can achieve static regret sub-linear in 𝑇 for the experts
problem.

Intersection of MTS and Online Learning
Over the years, there has also been significant work trying to connect MTS and online learning.
For instance, Blum and Burch study the relationship between algorithms for the MTS setting and
the experts setting in [7]. In particular, they introduce MTS with the 𝛼-unfair competitive ratio,
in which the optimal sequence in hindsight 𝑥∗1, 𝑥

∗
2, . . . , 𝑥

∗
𝑇

minimizes
∑𝑇
𝑡=1 𝑓𝑡 (𝑥𝑡) + 𝛼 · 𝑑 (𝑥𝑡 , 𝑥𝑡−1).

They use this metric to demonstrate that algorithms designed for MTS can be effectively applied
to the experts setting and vice versa. In particular, Buchbinder et al. [10] build upon the work of
Blum and Burch to give a unified algorithm for the experts and MTS problems that can achieve
optimal regret bounds and competitive ratio respectively by adjusting 𝛼. They also provide bounds
on regert beyond the static expert cases; for instance, they are able to analyze the “drifting experts”
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case, which considers the regret compared to a sequence of experts for which the sum of changes
between timesteps is bounded.

Andrew et al. consider the relationship between the OCO and MTS settings [1]. In particular,
they consider the smoothed online convex optimization (SOCO) problem with lookahead which is
a generalization of OCO and MTS with convex costs. With this setup, Andrew et al. show that
an algorithm cannot simultaneously achieve sublinear static regret and a finite competitive ratio
within this setting. While this result implies that algorithms for MTS and online learning cannot be
generally compatible, it does not discount the value of combining insights from the two fields. In
particular, the SOCO problem emerged by considering the intersection of MTS and online convex
optimization and has proven to be both theoretically rich and practical useful.

Online Optimization with Switching, Ramp and Feasibility Constraints
In online optimization, switching costs are often used to model the costs associated with changing
states. The inclusion of switching costs into the objective function acts as a “soft penalty” for
changing between states too significantly. However, there is also significant interest in developing
online optimization algorithms with hard limits on the extent to which they can change between
states.

Badiei et al. consider online convex optimization with ramp constraints, which establish hard limits
on the amount actions can change between timesteps [4]. Ramp constraints are common in many
real-world systems, such as in power grids. Due to the inherent operational inertia of generation
plants, there are strict limits on the amount they can ramp production up or down within a given
time. As such, it is crucial to consider ramp constraints when considering economic dispatch [51,
21]. Badiei et al. consider element-wise ramp constraints given by 𝑋 (𝑖) ≤ 𝑥 (𝑖)𝑡 − 𝑥 (𝑖)

𝑡−1 ≤ 𝑋
(𝑖) , where

𝑥 (𝑖) designates the 𝑖-th entry of a vector. They derive asymptotically tight bounds on the competitive
difference of AFHC, and also show that AFHC achieves an asymptotically optimal competitive
difference among a class of “forward looking” algorithms.

Shi et al. consider SOCO with linear hitting costs and ramp constraints [49]. They search for an
optimal affine policy by posing a robust optimization problem over an uncertainty set for costs in
the future in order to determine the policy parameters, in order to produce a Robust Affine Policy
(RAP). Unlike previous work, their framework is also able to enforce hard feasibility constraints
such as supply-demand balance constraints, which makes it more amenable for applications like
power grids with many operational constraints. They also do not provide a specific competitive
ratio for RAP, as its performance depends on the specifics of the uncertainty set it is optimized over.
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Chen et al. consider the “switching-constrained OCO problem”, in which an adversary and player
take turns selecting loss functions 𝑓𝑡 and actions 𝑥𝑡 respectively. In particular, the player has access
to 𝑓𝑡 before committing 𝑥𝑡 , and the total cost is

∑𝑇
𝑡=1 𝑓𝑡 (𝑥𝑡). In lieu of including a switching cost, they

consider the case in which the player can change her action 𝑥𝑡 less than 𝐾 times. They demonstrate
that the minimax regret of the switching-constrained OCO problem is Θ( 𝑇√

𝐾
). Sherman and Koren

consider the “lazy OCO problem”, which is similar to switching-constrained OCO except the
number of switches only has to be less than 𝐾 in expectation [48]. They give an efficient algorithm
whose regret is upper bounded by 𝑂 (

√
𝑇 +

√
𝑑𝑇/𝐾) and 𝑂̃ (𝑑𝑇/𝐾2) for general convex costs and

strongly convex costs respectively, where 𝑑 is the dimension of the action space. They provide a
matching Ω(𝑇/𝐾) lower bound for the general convex costs, and also obtain results for adaptive,
oblivious and stochastic i.i.d. adversaries.

Online Algorithms for Energy Applications
We have established that the SOCO formulation has seen many applications to energy systems [4,
31, 37]. There has also been significant work in online algorithms beyond SOCO as a whole for
energy systems applications, for which we provide a limited overview.

Xie and Ilic apply model predictive control (MPC) for the economic dispatch problem, particularly
when grid operators only have access to accurate predictions within just a few minutes [53].
Wang et al. consider energy distribution in a smart grid [52]. They start by introducing a convex
formulation that includes many aspects of the grid. They give both offline and online algorithms for
this formulation and show that the dispatch from their online algorithm converges asymptotically
to the optimal offline dispatch. Shi et al. consider online algorithms for microgrids, and claim
that many previously existing algorithms failed to consider the feasibility constraints associated
with real-world power-grids [50]. They develop an online energy management strategy based on
Lyapunov optimization that follows realistic microgrid constraints and experimentally demonstrate
that it performs well relative to the optimal offline algorithm. Zhong et al. present an online
algorithm based on Lyapunov optimization for managing distributed energy storage networks [58].
Their online control approach is experimentally shown to find a near-optimal solution.

Christianson et al. consider economic dispatch with predictions with a focus on guaranteeing
feasibility [16]. They consider a setting where a system operator must first set “planning variables”
related to the amount of power to be generated, before committing specific dispatches in real time.
They identify that Receding Horizon Control (RHC), which is commonly used in practice for online
dispatch, does not guarantee feasibility even if the initial planning variable was properly set to allow
for a feasible dispatch. They give an algorithm, Feasible Fixed Horizon Control (FFHC), that takes
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advantage of predictions while still guaranteeing a feasible dispatch in the face of uncertainty.

Learning-Augmented Algorithms
Machine learning and artificial intelligence are increasingly replacing traditional approaches in
various tasks, including in energy applications. In recent years, there has also been significant work
in developing machine learning based approaches to various problems in energy, with applications
in DC and AC optimal power flow [15, 57, 29, 28, 43, 20, 56], grid control [11, 18] and economic
dispatch [38, 54, 26]. Many of these machine learning based approaches have demonstrated
strong empirical performance, as well as significantly faster runtime compared to traditional online
algorithms, especially ones that have to perform expensive optimizations. However, while machine
learning often presents superior empirical performance on average, one well-known shortfall is
that they often lack bounds on their worst-case performance. Traditional algorithms encounter the
opposite scenario, where there is much more existing theory on their worst-case performance rather
than their average-case performance. Specifically, an algorithm’s worst-case performance can be
characterized by metrics like its worst-case runtime complexity or its worst-case competitive ratio.
This has motivated research into learning-augmented algorithms, or more generally algorithms with
predictions. These algorithms combine a traditional, robust algorithm with a separate black-box
predictor or advice algorithm to generate a meta-algorithm whose performance captures “the best
of both worlds”.

Learning-augmented algorithms are often best suited for online problems like in the MTS setting,
as the algorithm can continually adjust its parameters based on how the component algorithms
are performing. Online algorithms are commonly characterized by their competitive ratio, which
gives the ratio of the total loss it incurs to the loss incurred by the optimal choices in hindsight.
Furthermore, a learning-augmented algorithm with an advice algorithm and a robust algorithm
is commonly characterized by its consistency and its robustness [44]. Consistency is defined as
the competitive ratio of the learning-augmented algorithm with the advice algorithm when the
untrusted advice algorithm has zero error; ideally, if the advice algorithm is performing well, then
the learning-augmented algorithm should recognize this and match its actions to that of the advice
algorithm. Robustness is the competitive ratio with regards to the robust algorithm when the advice
algorithm’s error goes to infinity. These definitions capture the general design goals of learning-
augmented algorithms: performing roughly as well as the black-box advice algorithm when the
advice algorithm is performing well, but having the traditional, robust algorithm as a fallback when
the advice algorithm is performing poorly. In recent years, significant progress has been made in
the design of learning-augmented algorithms for many problem classes, such as ski-rental, caching
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and scheduling [44, 42, 19, 30, 45, 32, 46, 2]. In addition, there is also a growing body of work
in applying learning-augmented algorithms specifically in energy-systems applications [17, 34, 33,
35].

A learning-augmented algorithm has consistency at least 1, since it is the competitive ratio when
the advice algorithm has zero error. So, a learning-augmented algorithm is near optimal in some
sense if its consistency is some (1 + 𝜖), 𝜖 > 0, since it can get arbitrarily close to the performance
of its advice algorithm. However, a lower consistency ratio has the tradeoff that the robustness ratio
will increase as a result.

1.3 Our Contributions
In the first part of this work, we investigate learning-augmented algorithms that obey both ramp
and feasibility constraints. We examine fundamental limits on algorithm performance and con-
straint violations for a general class of ramp-constrained learning-augmented algorithms. We also
propose an algorithm and present theoretical and experimental results to demonstrate that we can
take advantage of ML advice while maintaining strong worst-case guarantees relative to standard
algorithms. In particular, our work contributes to the limited literature on online optimization with
hard ramp and feasibility constraints, and is also one of the first, to our knowledge, to consider how
learning-augmented algorithms can be designed to enforce difficult real-world constraints.

In the second part of this work, we consider the complementary question of training a machine
learning algorithm to enforce constraints in a real-world co-generation setting. We demonstrate
that with some small modifications, even a simple ML model can be trained to produce high-quality
dispatch decisions in this setting. In particular, we demonstrate that a ML model can learn to not
only effectively minimize violations of complex operational constraints, but also meet a simpler
class of operational constraints exactly.

Taken as a whole, our work can be extended to produce a full stack for reliable ML-based algorithms
for optimization in energy systems that have both strong performance guarantees for cost as well
as strong guarantees on the magnitude of constraint violations they are susceptible to incurring.

1.4 Notation
Let [𝑛] : = {1, . . . , 𝑛} for 𝑛 ∈ N. R+ denotes the nonnegative extended reals. ∥ · ∥𝑝 denotes the
𝑝-norm. 𝑥 (𝑖) denotes the 𝑖-th entry of some vector 𝑥. For two vectors 𝑥1, 𝑥2 ∈ R𝑛, we take 𝑥1 ≤ 𝑥2

to mean that 𝑥 (𝑖)1 ≤ 𝑥
(𝑖)
2 for all 𝑖 ∈ [𝑛]; the same holds for 𝑥1 ≥ 𝑥2. For an algorithm ALG, we take

ALG𝑡 to be the decision it makes at time 𝑡.
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9C h a p t e r 2

LEARNING-AUGMENTED ALGORITHMS WITH RAMP AND
FEASIBILITY CONSTRAINTS

The first half of this chapter considers how we can exploit good performance of ML advice while
limiting the proportion of constraint violations we incur if the ML advice misbehaves and violates
operational constraints. We demonstrate that while this is difficult in the general case, we can use
a small amount of resource augmentation to drastically reduce the proportion of total constraint
violation incurred in the case where ML advice would incur especially large constraint violations.
In the second half, we consider how we can maintain good performance with respect to both of
our component algorithms. We give an example of a worst-case in which we are hampered by
the presence of ramp constraints, and give an algorithm specifically designed to handle this case.
We give theoretical and experimental results that demonstrate the ability of our algorithm to take
advantage of ML advice while maintaining strong worst-case guarantees.

2.1 Model and Preliminaries
We consider online convex optimization over a horizon of length 𝑇 . At every timestep 𝑡 ∈ [𝑇],
a cost function 𝑓𝑡 : R𝑛 → R+, a constraint function 𝑔𝑡 : R𝑛 → R+ and a constraint 𝑠𝑡 ∈ R+ are
revealed to the player, who must then commit a decision 𝑥𝑡 ∈ X ⊂ R𝑛 that enforces 𝑔𝑡 (𝑥𝑡) = 𝑠𝑡 .
Let 𝑑, 𝑑 ∈ R𝑛 be the lower and upper ramp limits. Let the switching cost be given by ∥𝑥𝑡 − 𝑥𝑡−1∥.
Then, the objective is the following:

min
{𝑥𝑡 }𝑇𝑡=1

∑︁
𝑡∈[𝑇]

𝑓𝑡 (𝑥𝑡) + ∥𝑥𝑡 − 𝑥𝑡−1∥

s.t. 𝑑 ≤ 𝑥𝑡 − 𝑥𝑡−1 ≤ 𝑑 ∀𝑡
𝑔(𝑥𝑡) = 𝑠𝑡 ∀𝑡

(2.1)

Application to Energy Dispatch
In this work, we are particularly interested in the energy dispatch setting. Then, 𝑥𝑡 represents some
dispatch decision, and 𝑓𝑡 (𝑥𝑡) is the cost associated with that decision. We limit X to have finite
diameter 𝐷, where 𝐷 = sup𝑥1,𝑥2∈X ∥𝑥2 − 𝑥1∥. 𝑔𝑡 (𝑥𝑡) represents the amount of power produced
by a dispatch decision 𝑥𝑡 , while 𝑠𝑡 represents the power demand that the system has to meet.
Moreover, if we take the entries of 𝑥𝑡 to simply be the power produced by a set of generators,



then 𝑔𝑡 (𝑥𝑡) is a constant function 𝑔(𝑥𝑡) = 1𝑇𝑥𝑡 . We assume that 𝑓𝑡 is a constant, affine function
𝑓 (𝑥) = 𝑎𝑇𝑥 + 𝑏, 𝑎 ∈ 𝑅𝑛+, 𝑏 ∈ 𝑅+. We also assume that 𝑎 does not have all entries equal, or else
the cost will be directly proportional to the power produced and the problem becomes trivial. We
assume the ramp constraints are 𝑑 = −𝑟1𝑛 and 𝑑 = 𝑟1𝑛, where 𝑟 ∈ R+. Since the ramp constraints
are already significantly limiting the amount we move between timesteps, we ignore the switching
costs ∥𝑥𝑡 − 𝑥𝑡−1∥. Then, our objective is the following:

min
{𝑥𝑡 }𝑇𝑡=1

∑︁
𝑡∈[𝑇]

𝑓 (𝑥𝑡)

s.t. − 𝑟1𝑛 ≤ 𝑥𝑡 − 𝑥𝑡−1 ≤ 𝑟1𝑛 ∀𝑡
1𝑇𝑥𝑡 = 𝑠𝑡 ∀𝑡

(2.2)

In addition, since 𝑥𝑡 represents the power produced by a set of generators, there are also limits on the
feasible values of 𝑥𝑡 , which we refer to as the system feasibility constraints. We wish to enforce that
𝑋 ≤ 𝑥 ≤ 𝑋 , where 𝑋, 𝑋 ∈ R𝑛

+. Let X ≜ {𝑥 | 𝑋 ≤ 𝑥 ≤ 𝑋} denote the feasible space that represents
the true capabilities of our generators. Then, our true system dispatch is 𝑝𝑟𝑜 𝑗X (𝑥𝑡), and the system
must meet the rest of the power demand 𝑠𝑡 using reserve resources. We take ∥𝑥𝑡 − 𝑝𝑟𝑜 𝑗X (𝑥𝑡)∥1 to
represent how much we violate the system operation constraints. This is directly associated with a
cost, as if 𝑥𝑡 ∉ X, our system is producing either too much or too little power, and must use external
resources to account for ∥𝑥𝑡 − 𝑝𝑟𝑜 𝑗X (𝑥𝑡)∥1 units of power. Our system then has the additional
objective to minimize the “total constraint violation” given by

∑
𝑡 ∥𝑥𝑡 − 𝑝𝑟𝑜 𝑗X (𝑥𝑡)∥1.

Learning-Augmented Algorithms Setup and Objectives
In order to form our learning-augmented algorithm ALG, we have algorithms ADV and ROB,
which are the untrusted advice algorithm and trusted robust algorithm respectively. We assume
that ADV,ALG, and ROB start from the same dispatch, so the space of possible dispatches that
respect the ramp constraints are the same for ADV1,ALG1, and ROB1. Let the learning-augmented
algorithm be given by ALG. We assume that ALG is always a convex combination of ADV and ROB.
Denote 𝜆𝑡 as the convex parameter that ALG plays, so ALG𝑡 = 𝜆𝑡ADV𝑡 + (1 − 𝜆𝑡)ROB𝑡 . Both of
these algorithms always follow the ramp constraint 𝑥𝑡 − 𝑥𝑡−1 ∈ [−𝑟, 𝑟]𝑛 and supply-demand balance
constraint 𝑔(𝑥𝑡) = 𝑠𝑡 . We also assume that the system allows resource augmentation such that the
ramp constraint for ALG is [−𝑟 (1+𝜖′), 𝑟 (1+𝜖′)], where 𝜖 ≥ 0. This guarantees that ALG can always
“move between” ADV and ROB by at least some small amount. ROB always follows the system
feasibility constraints, but it is possible for ADV to violate the constraints and incur constraint
violation costs. Note that one consequence of this assumption is that ∥𝑠𝑡 − 𝑠𝑡−1∥ ≤ 𝑛 · 𝑟, since it
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must be possible for our algorithms to meet the next power demand within the ramp constraints.

We are interested in the following general-horizon tradeoffs:

• The tradeoff between the competitive ratio with respect to ADV assuming that ADV never
violates the system feasibility constraints, and the proportion of total constraint violation that
ALG incurs compared to ADV if ADV does violate the system feasibility constraints.

• The tradeoff between the competitive difference with respect to ADV and ROB, assuming
that ADV never violates the system feasibility constraints costs

We assume that our algorithms are always residing in a “demand hyperplane” given by {𝑥 |1𝑇𝑥 = 𝑠𝑡}.
The reason that we let algorithms play “infeasible” dispatches 𝑥𝑡 ∉ X is so that they can stay on
the demand hyperplane. If ADV and ROB are both on the demand hyperplane, then we can focus
our attention on finding the best convex combination parameter 𝜆𝑡 at any given time, without being
concerned that the convex combination is potentially not meeting the power demand 𝑠𝑡 .

In particular, we are motivated by the setup shown in Figure 2.1. At times 𝑡 and 𝑡 + 1, all
the algorithms are playing dispatches that lie on the corresponding power demand hyperplane.
Suppose ADV is in the top left corner since it is naively minimizing its cost, while ROB is playing a
more conservative dispatch. Then, it is unable to meet the next power demand at time 𝑡 + 1 without
calling on external resources, as ADV𝑡+1 causes a system constraint violation. However, if we play
a sufficiently small 𝜆𝑡 , then ALG can avoid violating the system constraints while still meeting the
power and ramp constraints.

In addition, one of the questions we are interested in is how to best adjust 𝜆 in an online manner.
Without resource augmentation, if the power demand changes as much as possible, then ALG is
also forced to ramp up or down as much as possible, and 𝜆 does not change. By allowing for a bit
of resource augmentation, it gives us the freedom to always change 𝜆 by some minimum amount
between timesteps, which proves to be quite useful. For instance, without resource augmentation,
we could consider some adversarial setting in which the power demand changes up or down as
much as possible between each timestep, and we cannot change 𝜆 at all. We relate 𝜖 with the
amount we can always change 𝜆 in the following lemma.

Lemma 1. Let 𝐷 be the largest distance in a single dimension between two points in the feasible set
(for instance, if the feasible set is hypercube with sides of length D). Let 𝜆 by the convex parameter
that ALG plays between ADV and ROB. We are guaranteed to be able to change 𝜆 by ±𝑟𝜖/𝐷 at
each timestep.

11



Figure 2.1: Insightful example for algorithm dispatch decisions and power demand

Proof of Lemma 1. Let R = {𝑥 | − 𝑟1 ≤ 𝑥 ≤ 𝑟1}𝑛 be a “ramp box”, which represents how much
ADV𝑡 and ROB𝑡 can change between timesteps. Let R𝜖 = {𝑥 | −𝑟 (1+𝜖)1 ≤ 𝑥 ≤ 𝑟 (1+𝜖)1} represent
the resource-augmented ramp box. Consider ADV𝑡 , ROB𝑡 and ALG𝑡 = 𝜆𝑡ADV𝑡 + (1 − 𝜆𝑡)ROB𝑡 .
Let ADV𝑡+1 = 𝑥A

𝑡 + ADV𝑡 and ROB𝑡+1 = 𝑥R
𝑡 + ROB𝑡 , with 𝑥A

𝑡 , 𝑥
R
𝑡 ∈ R. We can still play 𝜆𝑡+1 = 𝜆𝑡

for ALG𝑡 , as

𝜆𝑡ADV𝑡+1 + (1 − 𝜆𝑡)ROB𝑡+1 = 𝜆𝑡𝑥
A
𝑡 + (1 − 𝜆𝑡)𝑥R

𝑡 + 𝜆𝑡ADV𝑡 + (1 − 𝜆𝑡)ROB𝑡
= 𝜆𝑡𝑥

A
𝑡 + (1 − 𝜆𝑡)𝑥R

𝑡 + ALG𝑡

By convexity, 𝜆𝑡𝑥A
𝑡 + (1 − 𝜆𝑡)𝑥R

𝑡 ∈ R. Since R𝜖 is larger than R by ±𝑟𝜖 in each vector entry, we
know that we are guaranteed to be able to further change ALG𝑡+1 by ±𝑟𝜖 in each vector entry. The
largest distance in a single dimension between two points in the feasible set is at most 𝐷, so we are
guaranteed to be able to change 𝜆 by ±𝑟𝜖/𝐷 at each timestep. □

2.2 Tradeoff Between Competitive Ratio With Respect to Advice and Proportion of Con-
straint Violation Incurred

In this section, we analyze the tradeoff between how well a learning-augmented algorithm can follow
ML advice when it performs well versus the risk it is exposed to when the advice misbehaves. In
particular, we show that while it is difficult to meaningfully shield the algorithm when the advice
incurs small constraint violations, we can get much stronger guarantees against large constraint
violations.
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Figure 2.2: Space of dispatches that meet demand of 24 while staying feasible

General Lower Bound on Proportion of Total Constraint Violation Incurred
We denote 𝐶A =

∑
𝑡∈[𝑇] 𝑓 (ADV𝑡), 𝐶R =

∑
𝑡∈[𝑇] 𝑓 (ROB𝑡) and 𝐶 =

∑
𝑡∈[𝑇] 𝑓 (ALG𝑡)

Proposition 1. Suppose ALG has the property that 𝐶 ≤ (1−𝛼)𝐶R +𝛼𝐶A whenever ADV is always
feasible. Then, there exists a sequence of power demands and dispatches in which ALG must incur
at least 𝛼 of the total constraint violation of ADV without resource augmentation.

Proof of Proposition 1. We give an example sequence of power demands and dispatches in which
ADV remains feasible, and show that ALG must be playing a certain dispatch in order to guarantee
that 𝐶 ≤ (1 − 𝛼)𝐶R + 𝛼𝐶A. We then show that we can then extend this sequence to force ALG to
incur at least 𝛼 of the (nonzero) infeasibility cost of ADV.

Let 𝑐 = [1, 1, 5], 𝑋 = [0, 0, 0], 𝑋 = [10, 10, 10], 𝑟 = 2, 𝛼 = 0.5, 𝜖 = 0. Suppose that the demand
goes to 24, ADV plays [10, 10, 4] and ROB plays [8, 8, 8] for arbitrarily long. For this set of
dispatches and demands, ADV is always feasible. We can consider the 2D space of dispatches that
meet the demand of 24 while staying feasible, which is depicted in Figure 2.2.

At [9, 9, 6], the cost per timestep is 48. The intersection of the hyperplane for which cost is 48
with the hyperplane for which supply is 24 is the line from [8, 10, 6] to [10, 8, 6]. Any algorithm
that achieves 𝐶 ≤ (1 − 𝛼)𝐶R + 𝛼𝐶A must eventually play a dispatch with cost 24 or less, which is
represented with the shaded region. Now, once ALG plays a dispatch in this region, we consider
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what happens when demand increases by 6. In order to meet this new demand, we must increase
the dispatch on each generator by 2. ROB becomes [10, 10, 10] and remains feasible, while ADV
becomes [12, 12, 6], incurring a constraint violation of 4. We now consider the constraint violation
that ALG must have incurred.

We can parameterize this area as [8 + 𝑥 + 𝑦, 10 − 𝑥, 6 − 𝑦] for 𝑥 ∈ [0, 2], 𝑦 ≥ 0. Once demand
increases by 6, it becomes [10 + 𝑥 + 𝑦, 12 − 𝑥, 8 − 𝑦]. Then, the constraint violation is max{10 +
𝑥 + 𝑦, 0} + max{12 − 𝑥 − 10, 0} = max{𝑥 + 𝑦, 0} + max{2 − 𝑥, 0} = 2 + 𝑦 ≥ 2. So, we must incur a
constraint violation of at least 2 = 𝛼 · 4. □

This implies that if we wish to incur 𝛼 of the “cost benefit” of ADV with ALG, we can be forced
to also incur 𝛼 of the constraint violation of ADV. In particular, our example illustrates that it is
insightful to analyze what happens when a constraint violation occurs while ADV is playing 𝜆 = 𝛼.

Algorithm To Control Proportion of Total Constraint Violation Incurred
We now introduce Algorithm 1, which has a tunable parameter 𝛼 that makes it possible to trade
off between the competitive ratio with respect to ADV and the proportion of constraint violation
potentially incurred.

Algorithm 1: Ramp-Constrained Learning-Augmented Algorithm
1 for t ∈ [𝑇] do
2 if 𝑓 (ROB𝑡) ≤ 𝑓 (ADV𝑡) then
3 ALG𝑡 steps towards ROB𝑡 as much as possible within ramp constraints
4 end
5 else // 𝑓 (ROB𝑡) > 𝑓 (ADV𝑡)
6 if ADV𝑛 ∈ X ∀𝑛 ∈ [𝑡] then
7 ALG𝑡 steps towards ROB𝑡 as much as possible within ramp constraints
8 end
9 else

10 ALG𝑡 steps towards ADV𝑡 as much as possible within ramp constraints, while
enforcing 𝜆 ≤ 𝛼

11 end
12 end
13 end

Competitive Ratio of Algorithm 1 with Respect to Component Algorithms
We now provide bounds on the cost incurred Algorithm 1 compared to ADV and ROB. In particular,
we show that we get much stronger guarantees when 𝑛 = 2 compared to when 𝑛 > 2.
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Proposition 2. Algorithm 1 achieves 𝐶 ≤ min{𝛼𝐶R + (1 − 𝛼)𝐶A, 𝐶R} when 𝑛 = 2.

Proof of Proposition 2. Consider the algorithm ADV𝛼, which always just plays a convex combina-
tion of ROB and ADV with 𝜆 = 𝛼. We know that we can always keep the same 𝜆 while following
the ramp constraints. Let the total cost be 𝐶𝛼. Trivially, 𝐶𝛼 = 𝛼𝐶R + (1 − 𝛼)𝐶A. Now, we must
show that 𝐶 ≤ 𝐶𝛼. To do, we use proof by induction to show that at every timestep, ALG incurs
cost no more than ADV𝛼.

For the first timestep, there are two cases: ADV is lower cost than ROB, or not. If ADV is lower
cost, we know that since ROB1 and ADV1 are within the ramp constraints from the starting point,
ALG must be able to set 𝜆 = 𝛼 within the ramp constraints. If ROB has the same or lower cost,
ALG will have 𝜆 = 0 and incur no more cost than ADV𝛼.

Next, we perform the inductive step. There are three cases we have to consider based on whether
ADV was better at the previous and current timesteps

• Case 1 - ADV is worse at the current timestep. Our algorithm must play some 𝜆 ∈ [0, 𝛼], so
we do no worse than ADV𝛼.

• Case 2 - ADV is better at the current timestep, and was better at the previous timestep. By
our inductive assumption, in the previous step, we must have had 𝜆 = 𝛼. Then, we can stay
there.

• Case 3 - ADV is better at the current timestep, but was worse at the previous timestep.

Suppose the losses look like 𝑓 (𝑥) = 𝑐𝑇𝑥 (ignore constant term). Let the 𝑎𝑡 and 𝑟𝑡 be the decisions
of the advice and robust algorithms at time 𝑡. We know the following:

• 1𝑇𝑎𝑡 = 1𝑇𝑟𝑡

• 1𝑇𝑎𝑡−1 = 1𝑇𝑟𝑡−1

• 𝑎𝑡 − 𝑎𝑡−1 ∈ [−𝑟1, 𝑟1]

• 𝑟𝑡 − 𝑟𝑡−1 ∈ [−𝑟1, 𝑟1]

We wish to show that if 𝑐𝑇𝑟𝑡 − 𝑐𝑇𝑎𝑡 > 0 but 𝑐𝑇𝑟𝑡−1 − 𝑐𝑇𝑎𝑡−1 < 0, then 𝑟𝑡−1 − 𝑎𝑡 ∈ [−𝑟1, 𝑟1]. The
conditions on the cost differences means that the robust algorithm performs better at time 𝑡 − 1, but
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the advice algorithm performs better at time 𝑡. We show that we must be able to jump from robust
at 𝑡 − 1 to advice at 𝑡 - this also implies that we jump from any convex combination of advice and
robust at 𝑡 − 1 to any other convex combination at 𝑡.

There must exist some unique 𝜆 such that 𝜆(𝑐𝑇𝑟𝑡 − 𝑐𝑇𝑎𝑡) + (1 − 𝜆) (𝑐𝑇𝑟𝑡−1 − 𝑐𝑇𝑎𝑡−1) = 0. This
implies that 𝑐𝑇 (𝜆𝑟𝑡+(1−𝜆)𝑟𝑡−1) = 𝑐𝑇 (𝜆𝑎𝑡+(1−𝜆)𝑎𝑡−1). We also know that 1𝑇 (𝜆𝑎𝑡+(1−𝜆)𝑎𝑡−1) =
1𝑇 (𝜆𝑟𝑡 + (1 − 𝜆)𝑟𝑡−1). If 1 and 𝑐 are linearly dependent, we note the original problem is trivial
(cost solely a function of demand). Otherwise, if they are linearly independent, we must have that
𝜆𝑎𝑡 + (1 − 𝜆)𝑎𝑡−1 = 𝜆𝑟𝑡 + (1 − 𝜆)𝑟𝑡−1 = 𝑥∗.

𝑥∗ − 𝑎𝑡 ∈ 𝜆[−𝑟1, 𝑟1]
𝑥∗ − 𝑟𝑡−1 ∈ (1 − 𝜆) [−𝑟1, 𝑟1]
𝑟𝑡−1 − 𝑎𝑡 ∈ [−𝑟1, 𝑟1]

Our algorithm will be able to jump to 𝜆 = 𝛼, so case 3 also holds. Since ALG never incurs more
cost than ADV𝛼 across all timesteps, it must hold that 𝐶 ≤ 𝛼𝐶R + (1 − 𝛼)𝐶A.

We can use the same argument to conclude that at every timestep, ALG never incurs more cost than
ROB, so 𝐶 ≤ 𝐶R. So, 𝐶 ≤ min{𝛼𝐶R + (1 − 𝛼)𝐶A, 𝐶R} □

Our proof in 2D relied critically on the observation that when the costs of ADV goes from being
higher to lower than the cost of ROB (or vice versa), their dispatches must be close to each other.
However, this is generally untrue for 3D and beyond. Then, we can consider a worst-case in which
ROB starts very slightly better than ADV, causing Algorithm 1 to play 𝜆 = 0. Suppose that ADV
starts rapidly getting better, while ROB rapidly gets worse. It may take several steps for ALG to go
from ROB to ADV𝛼, and thereby do much worse than ADV𝛼.

Proposition 3. For 𝑛 ≥ 3, our algorithm can be forced to incur a competitive difference relative to
ROB of order Ω(𝛼4𝜖−2).

Proof of Proposition 3. Suppose that ADV and ROB start at the same point, but their dispatches
go to opposite points in the feasible space. The cost of ADV is always greater than ROB by some
𝛿 << 1. Then, Algorithm 1 must stay at 𝜆 = 𝛼.
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Then, suppose that ROB starts going in the direction of maximum descent for the cost, while
ADV𝛼 does the opposite. First, we must calculate that amount that the cost difference between
ROB and ADV𝛼 can change between each timestep. The cost difference at time 𝑡 is equal to
𝑎𝑇 (ADV𝛼,𝑡 − ROB𝑡) = 𝛼𝑎𝑇 (ADVt − ROBt). Since ROB and ADV are both ramp constrained,
𝑎𝑇 (ADVt − ROBt) can increase by at most 𝑐 ≜ 2𝑟𝑛∥𝑎∥1 if each generator ramps fully up or down
based on the signs of each entry of 𝑎. So, the cost difference between ADV𝛼 and ROB can change
by at most 𝛼𝑐 between timesteps. In the most constrained case, ALG can change 𝜆 by Δ𝜆 = 𝑑𝜖

𝐷
each

time. Suppose it takes 𝑁 = 𝛼 𝐷
𝑑𝜖

steps to go from ADV𝛼 to ROB. In each of these steps 𝑖 = 1, . . . , 𝑁 ,
the cost difference between ADV𝛼 and ROB is 𝑖𝛼𝑐 − 𝛿, and ALG incurs 𝑁−𝑖

𝑁
of the cost difference

relative to ROB. The total “extra loss” that ALG incurs relative to ROB that we incur is then:
𝑁∑︁
𝑖=1

𝑁 − 𝑖
𝑁

· (𝑖𝛼𝑐 − 𝛿)

We can ignore 𝛿, so this expression grows as Ω(𝑁2𝛼𝑐) = Ω(𝛼3𝜖−2). □

If we use a similar example as in Proposition 3, we can see that we can incur a large competitive
difference with respect to both ROB and ADV𝛼. In particular, if we repeat the example cyclically,
Algorithm 1 get unbounded competitive difference with one of the component algorithms. This is
suboptimal, as we demonstrate in Section 2.3. However, it is still reasonable to analyze Algorithm
1 for insights into the proportion of total constraint violation incurred by a ramp-constrained
learning-augmented algorithm.

Upper Bounds on Proportion of Constraint Violation Incurred By Algorithm 1
Trivially, Algorithm 1 never achieves more than 𝛼 of the constraint violation of ADV since 𝜆𝑡 ≤
𝛼 ∀𝑡 ∈ [𝑇]. We can also construct a sequence of demands and dispatches to force Algorithm 1 to
incur at least 𝛼 of the constraint violation of ADV with the example in Figure 2.3. In this example,
we have 𝑛 = 2 generators, 𝑋 = 0 · 1𝑛, 𝑋 = 10 · 1𝑛 and 𝑟 = 2. At time 𝑡, ROB𝑡 = [8, 8] and
ADV𝑡 = [10, 6]. The demand then increases maximally from 16 to 20, and ROB𝑡+1 = [10, 10]
and ADV𝑡+1 = [12, 8]. Then, note that 𝜆 cannot change between 𝑡 and 𝑡 + 1, and ALG incurs 𝜆
of the constraint violation of ADV. We can imagine that this is the first time that ADV incurred a
constraint violation, and 𝑡 is sufficiently large that 𝜆 = 𝛼. Then, ALG must have incurred 𝛼 of the
constraint violation of ADV.

While this seems quite pessimistic, we show that it possible for a learning-augmented algorithm
ADV to get up to 𝛼 of the performance benefit of ADV while incurring less than 𝛼 of constraint
violations if we consider resource augmentation and the magnitude of constraint violations. To do
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Figure 2.3: Numerical example of “worst case” for Algorithm 1 with regards to constraint violations.

so, we must consider what happens when ADV starts incurring constraint violations while ALG is
playing some 𝜆, and ALG responds by lowering 𝜆 as much as possible within the ramp and demand
constraints for all future timesteps until 𝜆 = 0. Intuitively, ALG can be forced to incur a larger
proportion of the total constraint violation is demand increases or decreases maximally; if demand
does not change substantially, ALG can decrease 𝜆 much more and incur a significantly smaller
proportion of the total constraint violation - this is illustrated in Figure 2.4. In the example on the
left, demand increases enough to max out the ramp constraints for ADV and ROB. As a result,
even though ALG has resource augmentation, it still cannot decrease 𝜆 by much. On the other
hand, in the example on the right, demand does not increase by as much, as both ALG and ADV
take the opportunity to play a dispatch with as low a constraint violation as possible. Thanks to the
geometry, ALG is not only able to incur a much smaller constraint violation for time 𝑡 + 1, but also
lower 𝜆 significantly for all future trajectories, which also lowers the proportion of total constraint
violation it incurs. Based on this intuition, we arrive at the following conjecture:

Conjecture 1. In order to maximize the proportion of total constraint violation that Algorithm 1
incurs relative to ADV, the demand needs to increase and decrease as much as possible to force
full ramps up and down.

Assuming Conjecture 1, we can derive upper bounds on the proportion of total constraint violation
that Algorithm 1 can incur. In particular, we demonstrate a tradeoff between the maximum
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Figure 2.4: Two scenarios for demand and dispatches. Demand does not increase maximally in the
example on the right.

proportion of total constant violation incurred trades off and the maximum constraint violation by
ADV at any individual instance. We first consider the case without resource augmentation. Let the
maximum constraint violation by ADV at any single instance be𝑉 . Assume that the ramp constraints
are normalized such that when demand increases up or down as much as possible, the constraint
violation of ADV changes by 1. (Note that this depends on exactly how many generators are at
infeasible setpoints.) The worst case under Conjecture 1 must correspond to demand increasing by
1 until ADV has a constraint violation of 𝑉 , and then indefinitely decreasing then increasing by 1.
ALG incurs the greatest proportion of constraint violation if ROB is on the edge of X when ADV
incurs a constraint violation of𝑉 . In the limit, ADV alternates between constraint violations of𝑉 and
max{0, 𝑉 − 1}, while ROB alternates between constraint violations of 0 and −1 (abusing notation).
Then, ALG alternates between constraint violations of 𝛼𝑉 and max{0, 𝛼(𝑉 − 1) − (1 − 𝛼)}. So,
the proportion of total constraint violation converges to 𝛼𝑉+max{0,𝛼(𝑉−1)−(1−𝛼)}

𝑉+max{0,𝑉−1} . These are plotted
in Figure 2.5. From these plots, we see that for 𝛼 < 1, the proportion starts at 𝛼, dips down when
1 ≤ 𝑉 ≤ 1/𝛼, then goes back up towards 𝛼 for 𝑉 ≥ 1/𝛼. This implies that without resource
augmentation, we cannot do much better than incurring 𝛼 of the total constraint violation, both
when the maximum constraint violation is especially small or large.

Fortunately, we get more optimistic results when considering resource augmentation. We consider
the same setting as before, but ALG can now decrease 𝜆 by 𝑑𝜖/𝐷 at each timestep. The results are
shown in Figures 2.6 and 2.7. As the magnitude of the maximum constraint violation increases,
when we have even small resource augmentation, the ratio converges towards zero instead of
upwards to 𝛼.
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In Figure 2.8 shows the maximum proportion of total constraint violation with resource augmen-
tation for each value of 𝑉 . We see that with resource augmentation, the maximum proportion
eventually decreases to 0 as the maximum violation per timestep increases. ALG will return to
𝜆 = 0 within 𝛼/ 𝑑𝜖

𝐷
steps, so if the maximum violation exceeds 𝛼/ 𝑑𝜖

𝐷
, ALG will not incur any

constraint violation. We also see that the plots are not smooth, particular around integer values of
𝑉 ; to see why this is reasonable, we can consider the examples 𝑉 = 2 and 𝑉 = 2.01. Then, ADV
can attain a constraint violation of 2 within two steps, but it would take at least three steps to reach
2.01. So, 𝑉 = 2 and 𝑉 = 2.01 are effectively separate cases. Since the ratio can vary so much even
when the parameters change a little, it explains why the plots are neither smooth nor monotonic.
From these plots, we can see that the Algorithm 1 is much more effective at reducing the proportion
of total constraint violation that it incurs when ADV has large violations.
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Figure 2.5: Plots of upper bound on proportion of total constraint violation incurred without
resource augmentation
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Figure 2.6: Evolution of ratio of total constraint violation, 𝑑𝜖
𝐷

= 0.01, 𝛼 = 0.25
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Figure 2.7: Evolution of ratio of total constraint violation, 𝑑𝜖
𝐷

= 0.01, 𝛼 = 0.5
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Figure 2.8: Plots of upper bound on proportion of total constraint violation incurred with resource
augmentation

24



2.3 Competitive Difference With Respect to Component Algorithms
Algorithm 1-competitive with ROB in general horizon
In this section, we focus on the the competitive difference with respect to ADV and ROB. In the
previous section, we noted in Lemma 3 that Algorithm 1 can incur a competitive difference of
O(𝜖2) with ADV or ROB every time one algorithm becomes better than the other. Intuitively, this
case occurs when we greedily go towards one algorithm when the cost benefit is not that large, and
then the costs rapidly start changing rapidly in an adversarial manner. We note that adversarial
costs can always force us to do worse than at least one of the algorithms in the general horizon;
however, we now give an algorithm that is 1-competitive with ROB despite ramp constraints. The
main idea is that we hedge against the cost we would incur if ROB rapidly improves and we would
need to slowly jump back towards ROB.

Suppose ALG is currently at convex parameter 𝜆𝑡 , where 𝜆 = 0 is ROB and 𝜆 = 1 is ADV. Note that

𝑓 (ALG𝑡) = 𝜆 𝑓 (ADV𝑡) + (1 − 𝜆) 𝑓 (ROB𝑡)
𝑓 (ALG𝑡) − 𝑓 (ROB𝑡) = 𝜆𝑡 ( 𝑓 (ADV𝑡) − 𝑓 (ROB𝑡))

We have previous established that ALG can change its 𝜆𝑡 by at least ± 𝑑𝜖
𝐷

in each step. So, if ALG
adopts a policy of stepping back towards 𝜆 = 0 as much as possible, ALG is guaranteed to be able
to step back to ROB in ⌈𝜆𝑡/ 𝑑𝜖𝐷 ⌉ steps or less. Define T (𝑇, 𝜆) := {𝑇 + 1, 𝑇 + 2, . . . , 𝑇 + ⌈𝜆𝑇/ 𝑑𝜖𝐷 ⌉}.
Then, we define

𝑔(𝜆𝑇 ,ADV𝑇 ,ROB𝑇 ) ≜ max
ADV𝑡 ,ROB𝑡 ,𝑡∈T (𝑇,𝜆)

∑︁
𝑡∈T (𝑇,𝜆)

𝜆𝑡 ( 𝑓 (ADV𝑡) − 𝑓 (ROB𝑡))

where 𝜆𝑡 , 𝑡 ∈ T (𝑇, 𝜆) correspond to ALG stepping towards 𝜆 = 0 as fast as possible given the
dispatches of ADV and ROB.

Algorithm 2: Ramp-Constrained Learning-Augmented Algorithm, Resource Augmented
Data: ramp box [−𝑑, 𝑑]𝑛, resource augmentation factor 𝜖
Result:

1 for 𝑡 ∈ {1, 2, 3, . . .} do
2 ALG𝑡 plays the largest 𝜆𝑡 possible while following ramp constraint and

𝑔(𝜆𝑡 ,ADV𝑡 ,ROB𝑡) ≤ Δ𝐶𝑡
3 end

Note that we can consider Algorithms 1 and 2 as two meta-algorithms that can be combined.
The former determines the maximum 𝜆 that can be selected in order to not incur too much total

25



constraint violation, while the latter determines how to update 𝜆 within the limit set by the former.
So, when we analyze 2, we assume that 𝛼 = 1.

Proposition 4. Algorithm 2 is 1-competitive with respect to ROB

Proof of Proposition 4. we first prove that if 𝑔(𝜆𝑇 ,ADV𝑇 ,ROB𝑇 ) ≤ Δ𝐶𝑇 , then 𝑔(𝜆𝑇+1,ADV𝑇+1,ROB𝑇+1) ≤
Δ𝐶𝑇+1 if we minimize 𝜆𝑇+1 within the ramp constraints. Let 𝜆∗𝑡 ,ADV∗

𝑡 ,ROB∗
𝑡 , 𝑡 ∈ T (𝑇, 𝜆𝑡) corre-

spond to the optimal values for 𝑔(𝜆𝑇 ,ADV𝑇 ,ROB𝑇 ).

𝑔(𝜆𝑇 ,ADV𝑇 ,ROB𝑇 ) = 𝜆∗𝑇+1( 𝑓 (ADV∗
𝑇+1) − 𝑓 (ROB∗

𝑇+1)) + 𝑔(𝜆
∗
𝑇+1,ADV∗

𝑇+1,ROB∗
𝑇+1)

≥ 𝜆𝑇+1( 𝑓 (ADV𝑇+1) − 𝑓 (ROB𝑇+1)) + 𝑔(𝜆𝑇+1,ADV𝑇+1,ROB𝑇+1)
𝑔(𝜆∗𝑇+1,ADV∗

𝑇+1,ROB∗
𝑇+1) ≤ 𝑔(𝜆𝑇 ,ADV𝑇 ,ROB𝑇 ) − 𝜆∗𝑇+1( 𝑓 (ADV∗

𝑇+1) − 𝑓 (ROB∗
𝑇+1))

≤ Δ𝐶𝑇 − 𝜆∗𝑇+1( 𝑓 (ADV∗
𝑇+1) − 𝑓 (ROB∗

𝑇+1))
= Δ𝐶𝑇+1

We can always maintain 𝑔(𝜆𝑡 ,ADV𝑡 ,ROB𝑡) ≤ Δ𝐶𝑡 by minimizing 𝜆𝑡 . So, when ALG𝑡 plays the
largest viable 𝜆𝑡 , there must exist at least one viable option.
Next, we will show that Δ𝐶𝑡 ≥ 0 for all time via induction. In the base case, 𝑡 = 1. If 𝑓 (ROB𝑡) ≤
𝑓 (ADV𝑡), we maintain 𝜆 = 0, so Δ𝐶1 = 0. If 𝑓 (ROB𝑡) > 𝑓 (ADV𝑡), any choice of 𝜆1 ensures
Δ𝐶1 ≥ 0.
Next, we perform the inductive step. Suppose, Δ𝐶𝑡−1 ≥ 0. If 𝑓 (ROB𝑡) ≤ 𝑓 (ADV𝑡), we note that
𝑔(𝜆,ADV𝑡 ,ROB𝑡) ≥ 0 for all 𝜆, and our algorithm ensures that Δ𝐶𝑡 ≥ 𝑔(𝜆𝑡 ,ADV𝑡 ,ROB𝑡) ≥ 0. On
the other hand, 𝑓 (ROB𝑡) > 𝑓 (ADV𝑡), we must have that Δ𝐶𝑡 ≥ Δ𝐶𝑡−1 ≥ 0. In either case, Δ𝐶𝑡 ≥ 0,
so our induction is complete. Since our algorithm maintains Δ𝐶𝑡 ≥ 0 for all 𝑡, it is 1-competitive
with respect to ROB. □

This algorithm handles the case where we go towards ADV𝑡 , but then ROB rapidly becomes better
than ADV and we are not able to switch back in time, causing us to incur a lot of additional cost
compared to ROB. At every step, our algorithm stays close enough to ROB so that if ROB becomes
better, the extra cost ALG incur is less than or equal to the benefit it already got from going towards
ADV. In addition, if 𝑓 (ADV𝑡) − 𝑓 (ROB𝑡) is sufficiently negative, 𝑔(𝜆,ADV𝑡 ,ROB𝑡) < 0 ≤ Δ𝐶𝑡 for
all 𝜆, so our algorithm is free to go all the way towards ADV.

Upper Bound on Competitive Difference With Respect to ADV
We next show that our algorithm maintains a finite competitive difference with respect to ADV in
the case where ADV always maintains a cost no greater than ROB.
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Theorem 1. If ADV never incurs a higher cost than ROB at any timestep, then the competitive
difference of Algorithm 2 with respect to ADV is O(𝜖−3).

Proof of Theorem 1. Define 𝑐𝑡 = 𝑓 (ADV𝑡) − 𝑓 (ROB𝑡). Therefore,

∑︁
𝑡

𝑐𝑡 =

regret wrt ADV︷                         ︸︸                         ︷∑︁
𝑡

𝑓 (ALG𝑡) − 𝑓 (ADV𝑡) +

benefit wrt ROB︷                          ︸︸                          ︷∑︁
𝑡

𝑓 (ROB𝑡) − 𝑓 (ALG𝑡)

The sketch of our proof is as follows. We have previously shown that
∑
𝑡 𝑓 (ROB𝑡) − 𝑓 (ALG𝑡) ≥ 0

for all trajectories. We claim that if
∑
𝑡 𝑓 (ALG𝑡) − 𝑓 (ADV𝑡) ≥ 𝛾, where 𝛾 is some threshold, then∑

𝑡 𝑐𝑡 ≥ 𝛾. We then show that while
∑
𝑡 𝑐𝑡 ≥ 𝛾, then our algorithm is playing 𝜆 = 1, and we cannot

be incurring any more regret with respect to ADV. This establishes 𝛾 as a finite upper limit on the
regret wrt ADV in the case where 𝑐𝑡 ≥ 0 ∀𝑡.

Note that while 𝑐𝑡 ≥ 0, 𝑔(𝑐𝑡 , 𝜆 = 𝜖) = 0. We have previously established that
∑𝑇
𝑡=1 𝑓 (ROB𝑡) −

𝑓 (ALG𝑡) ≥ 0 for all possible trajectories, so𝜆𝑡 ≥ 𝜖 ∀𝑡. Furthermore, this implies that
∑𝑇
𝑡=1 𝑓 (ROB𝑡)−

𝑓 (ALG𝑡) ≥ 𝜖
∑
𝑡 𝑐𝑡 ∀𝑡. Now, we consider 𝑔(𝑐𝑡 , 𝜆 = 1). If 𝑐𝑡 ≥ 0, then the risk is maximized by

𝑐𝑡 = 0. In order to play 𝜆 = 1, we need
∑𝑇
𝑡=1 𝑓 (ROB𝑡) − 𝑓 (ALG𝑡) ≥ 𝑔(𝑐𝑡 = 0, 𝜆 = 1). To

get a loose upper bound, let 𝐶 be the maximum possible 𝑐𝑡 . 𝑐𝑡 cannot be unbounded because
our feasible region is bounded. If

∑𝑇∗

𝑡=1 𝑓 (ROB𝑡) − 𝑓 (ALG𝑡) ≥ 𝑔(𝑐𝑡 = 0, 𝜆 = 1) + 1
𝜖
𝐶 then∑𝑇∗−1/𝜖

𝑡=1 𝑓 (ROB𝑡) − 𝑓 (ALG𝑡) ≥ 𝑔(𝑐𝑡 = 0, 𝜆 = 1). Starting at time 𝑇∗ − 1/𝜖 , ALG has been
trying to set 𝜆 to 1 within the ramp constraints, so by time 𝑇∗, ALG must have reached 𝜆 = 1.∑𝑇
𝑡=1 𝑓 (ROB𝑡) − 𝑓 (ALG𝑡) ≥ 𝑔(𝑐𝑡 = 0, 𝜆 = 1) for all 𝑇 ≥ 𝑇∗/𝜖 since 𝑐𝑡 ≥ 0 ∀𝑡, so ALG will stay at

𝜆 = 1 for the rest of the trajectory and stop incurring regret with respect to ADV.

If
∑𝑇
𝑡=1 𝑓 (ALG𝑡)− 𝑓 (ADV𝑡) ≥ 1

𝜖

(
𝑔(𝑐𝑡 = 0, 𝜆 = 1) + 1

𝜖
𝐶

)
, then

∑𝑇
𝑡=1 𝑐𝑡 ≥ 1

𝜖

(
𝑔(𝑐𝑡 = 0, 𝜆 = 1) + 1

𝜖
𝐶

)
,

and
∑𝑇
𝑡=1 𝑓 (ROB𝑡) − 𝑓 (ALG𝑡) ≥ 𝑔(𝑐𝑡 = 0, 𝜆 = 1) + 1

𝜖
𝐶. We have shown that this implies for 𝑡 ≥ 𝑇 ,

ALG is playing 𝜆 = 1, so the regret with respect to ADV is capped at 1
𝜖

(
𝑔(𝑐𝑡 = 0, 𝜆 = 1) + 1

𝜖
𝐶

)
.

𝑔(𝑐𝑡 = 0, 𝜆 = 1) is O(1/𝜖2), so our regret with respect to ADV is O(1/𝜖3). □

Lower Bound on Competitive Difference With Respect to ADV
Suppose we start at 𝑐0 = 0, 𝜆 = 0. Consider the case where 𝑐𝑡 grows by 𝑐 at every step, reminiscent
of the adversarial example in Lemma 3. We can lower bound the ‘regret’ with respect to ADV

27



if we assume that 𝜆 grows by 𝑑𝜖
𝐷

at every step. Define 𝑁 = 𝐷
𝑑𝜖

. In this case, the total regret is∑𝑁
𝑡=1 𝑡𝑐 · (𝑁 − 𝑡) 𝑑𝜖

𝐷
= 𝑐 𝑑𝜖

𝐷

∑𝐷/𝑑𝜖
𝑡=1 𝑡 (𝑁 − 𝑡) = Ω(1/𝜖2).

Our lower and upper bounds are therefore only separated by a factor of 1/𝜖 .

Simulations of Algorithm 2
Theorem 1 only applies to the case where ADV never achieves cost lower than ROB. We were
unable to obtain an upper bound on the general case, due to the potential of an adversarial case in
which ADV first has slightly higher cost than ROB in order to influence our algorithm into playing
a lower 𝜆. Then, ADV could rapidly become lower cost, and since ALG started at a lower 𝜆, it
would incur a larger competitive difference as it chases ADV. We simulate Algorithm 2 across more
general scenarios and show our results in Figure 2.9.

In the first case, the cost of ADV rapidly becomes lower than ROB, and ALG quickly increases 𝜆
in response. Due to the ramp constraints, we incur a competitive difference. In the second case,
ADV becomes starts slightly better, briefly becomes higher cost, then rapidly becomes lower cost
than ROB in the same way as the first case. In this second case, we see that the overall competitive
difference is noticeably lower than the first case. Finally, in the third case, ADV and ROB oscillate
back and forth between having lower cost than the other. Interestingly, the competitive difference
of Algorithm 2 soon becomes negative compared to ADV. Our experimental results suggest that the
competitive difference of Algorithm 2 with respect to ADV is finite. In particular, our simulation
results suggest that the competitive difference is maximized in the first case in Figure 2.9 in which
ADV rapidly becomes better, and does not try to make adversarial adjustments to influence ALG
into playing a smaller 𝜆.

2.4 Discussion and Future Work
Our lower bound in Proposition 1 demonstrates the difficulty of designing effective algorithms that
respect ramp constraints in the general case. However, our experimental results for Algorithm
1 illustrate that we are able to get more optimistic results by considering resource augmentation
and the magnitude of constraint violations we are trying to protect against. Our theoretical and
experimental results for Algorithm 2 demonstrate that it is possible to get worst-case guarantees
with respect to a robust baseline, even in the presence of ramp constraints.

In future work, it would be illuminating to determine whether the competitive difference of Algo-
rithm 2 with respect to ADV is bounded in the general case. In addition, it would be useful to prove
Conjecture 1, as well as establishing lower bounds on the proportion of total constraint violation
that can be incurred in the presence of resource augmentation.
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Figure 2.9: Simulations of Algorithm 2 with 𝑐 = 2, 𝑑𝜖/𝐷 = 0.1 in three cases of interest: ADV
always better than ROB, ADV better that ROB in all but a few timesteps, ADV and ROB alternating
in relative performance.
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30C h a p t e r 3

TRAINING A MACHINE LEARNING MODEL TO ENFORCE
CONSTRAINTS IN A REAL-WORLD CO-GENERATION PLANT

In the previous chapter, we considered how an ML advice algorithm could be effectively integrated
into a learning-augmented algorithm for dispatch. In this chapter, we consider the complementary
problem of how to train an ML algorithm for the dispatch problem to begin with. The main
technical challenge is in training an ML model that adheres to complex operational constraints
while still maintaining good performance. We develop a training procedure that enables the ML
algorithm to adhere to operational constraints while simultaneously still maintaining good profit.
We also introduce a constraint enforcement layer into our model architecture that strictly enforces
a subset of operational constraints. We demonstrate the efficacy of our ML models on a real-world
co-generation plant and its historical data. In particular, the co-generation environment that we
train in captures many of the intricacies of real-world economic dispatch that a simpler toy model
would not.

It is important to emphasize that the ML model discussed in this chapter does not exactly match
the ML advice algorithm considered Chapter 2. In Chapter 2, we assume that the cost function is
affine and constant, the ramp constraints form a hypercube, and that the operational constraints can
be described by a simple linear function of the input parameters. The co-generation model we use
in this chapter does not have any of those simplifying assumptions. On the other hand, the ML
model we develop in this chapter produces a dispatch at each timestep independently of the others,
so it does not consider ramp constraints.

3.1 Model and Preliminaries
Our industry partner Beyond Limits supplied us with historical data and a neural-network model
for a real-world co-generation plant that produces both power and steam. The plant has complex
operational constraints that need to be met for any given dispatch, and our goal was to investigate
whether a machine learning model could be trained to produce dispatches that met the plant’s
internal constraints. The plant had both static and dynamic constraints; static constraints on input
parameters did not change, whereas the dynamic constraints would change based on the particular
input. We were not given an explicit set of constraints, but rather a black-box neural network model
of the plant that would take a proposed dispatch as input and produce the corresponding set of



Figure 3.1: Overall system model that demonstrates how our ML model produces dispatches for
the co-generation plant

constraints as an output. As such, it was not possible to ascertain whether a proposed dispatch would
follow the constraints ahead of time. The model is also a modified version of the co-geneneration
environment in SustainGym, which is a collection of environments meant to provide a testbench
for reinforcement learning algorithms for sustainability applications [55]. One difference is steam
supply-demand is incorporated into the loss function in SustainGym, whereas our model explicitly
enforces steam supply-demand balance.

The overall system is shown in Figure 3.1. Our ML model was to take in the ambient conditions
at any given time and propose a set of inputs for the co-generation plant. The proposed dispatch
and the ambient conditions would be inputted into the neural network model of the plant, which
would then output the extent of constraint violations, the amount of fuel consumed, and the amount
of power and steam produced. With these values, we can then evaluate how much profit the plant
would expect for that timestep compared to the amount of constraint violations. The plant model
did not consider violations of ramp constraints, and due to the difficulty of training the ML model
to enforce black-box plant constraints, we opted to not consider ramp constraints for our ML model
either. Without the presence of ramp constraints, dispatches across timesteps are not coupled with
each other, so we only need our model to produce dispatches for a single timestep at a time.

Our goals for the model are to:

• enforce steam supply-demand balance

• enforce the system constraints reflected in the plant model
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• maximize the profit at each timestep

Let 𝜃𝑡 be the ambient conditions at timestep 𝑡, and let {𝑥𝑡 | ℎ(𝑥𝑡 , 𝜃𝑡) ≤ 𝑟} define the set of dispatches
that satisfy the system operational constraints. ℎ and 𝑟 are constant throughout time and are captured
via the neural-network plant model. The problem we are training our ML model to solve is then:

min
{𝑥𝑡 }𝑇𝑡=1

∑︁
𝑡∈[𝑇]

𝑓𝑡 (𝑥𝑡 , 𝜃𝑡)

s.t. ℎ(𝑥𝑡 , 𝜃𝑡) ≤ 𝑟 ∀𝑡
𝑔(𝑥𝑡) = 𝑠𝑡 ∀𝑡

(3.1)

To enforce steam supply-demand balance, we use the gauge map method introduced in [56]. This
is a differentiable transformation that projects our ML model output onto the set of dispatches
whose steam output matches the demand at that time. The gauge map works best with polyhedral
constraint sets, which fits with steam supply-demand balance constraints since the steam output is
a linear function of our input parameters.

On the other hand, we cannot enforce the system constraint or maximize the profit using the gauge
map due to the black-box nature of the plant model. In order to train our ML model to enforce
these, we put them into our loss function, as described in the following section.

3.2 Model Architecture and Training
The plant model produces the profit at each stage as well as a vector containing the constraint
violations on each input parameter. We take the overall constraint violation to be the ℓ2 norm of
the constraint violations vector. We also have a penalty term 𝜆 that weights profit with constraint
violation. Our ML model does not incorporate classical optimization techniques, but instead
performs task-based training with the training objective −profit + 𝜆 · (constraint violation). We
found that training was more stable when we minimized the equivalent objective

1
𝜆
(−profit) + constraint violation

This ensured that the magnitude of the loss does not change significantly for different values of 𝜆.

In order to train our model, we employed the penalty method and increased 𝜆 in stages over
𝜆 ∈ {10, 100, 1000, 10000, 100000}. For each 𝜆 we trained for 100 epochs, 10 batches per epoch,
and a batch size of 100 datapoints. We used a learning rate of .01 and automatically decreased it
using ReduceLROnPlateau.
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For the architecture, we settled on a simple two-layer feed-forward ReLU network with a final
layer that implements the gauge map transformation. By keeping our network simple, we aim to
demonstrate that we can achieve high performance in this setting using simple ML architectures.

3.3 Training Results
Our training results are shown in Figure 3.2 over 20 training runs across different random seeds.
We see that there is a clear Pareto frontier shown by the dashed blue line that we are often able
to approach. Notably, we see that it is possible to train the model to achieve near-zero constraint
violations while still having sizable profits. There is considerable variance in the quality of
the models we are able to learn at each value of 𝜆. For instance, the constraint violation only
approached zero at 𝜆 = 105 for five of the training runs, and sometimes still ended as high as 50.
This is reasonable given the inherent non-convexity of the neural-network based plant model, so
there should be many local minima that can be difficult to escape. If we compare models with the
same 𝜆, we see that their constraint violation and profit both decrease significantly on average as
we increase 𝜆 from 10 to 104. By the time 𝜆 increases from 104 to 105, the constraint violation and
profit stops decreasing as much; this is reasonable since when 𝜆 is sufficiently high, the model is
primarily learning to minimize the constraint violations rather than negative profit.

3.4 Discussion and Future Work
We are able to produce a ML model with good performance that has near zero constraint violation
while also exactly matching the steam demand. This demonstrates the efficacy of using ML
algorithms for energy applications, as we were able to achieve good performance with a very
simple network. For our model, one next step is to change it to produce dispatches for multiple
timesteps at once; this initially proved difficult to train compared to our “single timestep” model.
We anticipate that we can employ similar techniques to enforce other constraints. For instance,
to employ ramp constraints we can add in a projection layer to keep the dispatch at each timestep
within the ramp constraints of the previous dispatch. For non-convex constraints like up-time or
down-time constraints, we anticipate that we can also explicitly penalize them in the loss function,
just as we penalized the original constraint violations from the plant model.
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Figure 3.2: Results from 20 training runs initialized on different random seeds
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