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ABSTRACT 

In this work we present three studies in protein engineering. While all three protein classes 

that have been targeted for engineering tasks are very different, the studies have a focus on 

scaling-up the throughput in protein engineering.  

The first study concerns machine learning (ML) based antibody humanization techniques. 

Achieving a reduction of patient anti-drug antibody responses in clinical trials is the goal of 

antibody humanization. To measure this however, one needs to pass significant scientific, 

bureaucratic, and financial hurdles, which is very rarely done and especially never at scale. 

Most existing ML-based antibody humanization techniques claim that they work without 

providing any experimental evidence. We developed Mousify as an in silico antibody 

humanization platform to place existing models into one framework for wet-laboratory 

validation. We demonstrate that even the best models have a fundamental flaw in that they 

only generate a single antibody. We use Mousify and Markov chains to show that using ML-

based antibody humanization models for library generation is not only feasible but produces 

both stable and functional variants. Learning the lessons from our wet-laboratory 

experiments, we then developed a variational autoencoder model with properties that 

hopefully improve the outcomes of antibody humanization experiments.  

In the second study, we outline our plans and initial results to develop a bioelectrocatalytic 

system for the conversion of N2 to ammonia using nitrogenase. Most of the world’s ammonia 

is used for agricultural purposes and is produced via the environmentally damaging Haber-

Bosch process. Engineering nitrogenase for the bioelectrocatalytic production of ammonia is 

not trivial and a high throughput is not guaranteed. We present preliminary results in how 

throughput can be increased through diazotrophic pre-selection of nitrogenase variants, as 

well as a quest to find the ideal starting point for engineering using a combination of ancestral 

sequence reconstruction and generative protein language models. 

In the third and final study we present a directed evolution campaign to evolve protoglobins 

for the enantioselective catalytic formation of cis-trifluoromethyl substituted cyclopropanes, 

the first such reaction in both the chemical and biological world. Not only is the enzyme 
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ApePgb LQ capable of efficiently performing carbene insertions into double-bonds, but it 

also shows a much more diverse substrate scope than similar enantioselective formations of 

trans-trifluoromethyl substituted cyclopropanes. After demonstrating that ApePgb LQ 

reactions can be increased to a 1-mmol scale, we investigated the nature of protoglobin cis-

selectivity using various computational methods.  
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C h a p t e r  1  

SCALING THROUGHPUT IN PROTEIN ENGINEERING 

Abstract 

In this chapter we will introduce key concepts of molecular biology, biochemistry, and 

protein engineering to understand how protein evolution works and how protein engineers 

have hijacked the mechanisms of protein evolution to artificially create protein sequences 

with new functions. Two important decisions in protein engineering campaigns are the 

selection pressure a protein engineer uses as well as the mutagenesis method employed to 

generate variants. Both of these have an impact on throughput. One of the principal jobs of 

a protein engineer is to maximize throughput in an engineering campaign as it dictates how 

quickly one can engineer a protein and how diverse the set of sequences is one can test. 

Lastly, we take a look at a new wave of in silico techniques that can have a large impact on 

throughput in protein engineering. Over the past decade, machine learning models for protein 

engineering have had a large impact on how biochemists and protein engineers think about 

proteins and have provided us with new tools to form informed protein sequence libraries, 

making engineering more efficient. 
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Evolution of Proteins and Thermostability 

For cells, the building blocks of life, information only flows in one direction. From DNA to 

RNA, and from RNA to proteins. A combination of only three polymers dictates the entire 

functioning of a cell and higher organisms.1 Using these three tools, cells synthesize or recruit 

the help of other essential molecules such as lipids or metal ions.2,3 While RNA biology is 

an incredibly fascinating subject,4 full of unanswered questions,5 for this work, we will focus 

on proteins and how DNA contains the information to produce them.   

 

Deoxyribonucleic acid (DNA) is a polymer made up of four different nucleobases, adenine 

(A), cytosine (C), guanine (G), and thymine (T) (Figure 1.1).1 When nucleobases are 

connected together, they form a strand of DNA that likes to pair up with another strand of 

DNA in a helical fashion. Moreover, there are specific rules to DNA strand pairing. The 

nucleobase A will preferably pair with nucleobase T, and nucleobase C will preferably pair 

with nucleobase G. While this is portrayed very simplistically and there is a lot more to the 

structure of DNA,6,7 effectively a four-letter alphabet and the magic of physics and chemistry 

is all it takes to encode all of life on earth. This fact was first discovered in 1952 by Alfred 

Hershey and Martha Chase in a fascinating experiment.8 While the concept of a gene existed 

for half a century at that point, 9 it took nearly a decade since the discovery by Hershey and 

Chase to understand how DNA conveys information to the cell. In 1961, work performed by 

Francis Crick, Sydney Brenner, Leslie Barnett, and R.J. Watts-Tobin demonstrated that DNA 

encodes information in sets of three nucleobases at a time, called a codon. Over the course 

of the next five years, Marshall Nirenberg, Heinrich Matthaei, Philip Leder, and Har Gobind 

Khorana designed experiments that would culminate at the 1966 Cold Spring Harbor 

Symposium with the presentation the genetic code.10,11 This table is the translation from the 

language of DNA/RNA to proteins and with it ushered a new era of molecular biology where 

scientists could now start to manipulate DNA and get a desired protein sequence. It is worth 

noting that since that point, it was discovered that DNA encodes for more than just protein 

sequences.12,13 

 

Similar to DNA, proteins are made up of an alphabet and of a few rules of assembly which 

encodes for a myriad of functions. Instead of nucleobases, proteins are made up of 20 amino 

acids (there are more than 20, but any amino acid outside those 20 is rare14,15) and amino 

acids connect together via peptide bonds (Figure 1.1). Each codon, a set of three DNA bases, 

encodes for an amino acid, with some amino acids being encoded by multiple codons and 

some codons encoding for the end of a protein sequence (Figure 1.1). To get from DNA to a 

protein sequence, the DNA first needs to be transcribed to a type of RNA molecule called 

messenger RNA (mRNA). The mRNA is then bound by the ribosome. This macromolecule 

is mainly made up of RNA and works as a catalyst that produces proteins. The ribosome 

reads the information contained on the mRNA strand and recruits another RNA molecule 

called a transfer RNA (tRNA). The tRNA carries the correct amino acid for a given codon 

to the ribosome, allowing it to catalyze the peptide bond formation and adding another 

member to the protein chain. The last three paragraphs describe what is known as the 

“Central Dogma” of molecular biology and provides us with a sufficient basis to understand 

the concepts of protein evolution and protein engineering.1 



 

 

4 

 
Figure 1.1: Nucleic acids and amino acids make up the building blocks of life, dictating almost all biological 

processes. (Left) Overview of the four deoxyribonucleic acids, adenine (A), cytosine (C), guanine (G), and 

thymine (T). (Middle) Example of two amino acids out of 20 (alanine and serine) and showing the formation 

of a peptide bond between them catalyzed by the ribosome. (Right) DNA codons, sets of three bases, encode 

the information to incorporate a defined amino acid into a peptide chain. In one example we show that the 

codons AGT and AGC translate to the amino acid serine. The other example shows that three codons TAA, 

TAG, and TGA are special in that they do not encode for an amino acid but for the action of stopping 

translation by the ribosome. 

Proteins are fascinating objects. It is sometimes hard to believe that a chain of 20 molecules 

glued together can produce incredibly complex machinery. Proteins can be turbines that act 

as powerplants of the cell.16 They can be two legs walking on a strand carrying cargo from 

one end of the cell to another.17 They can read DNA and copy DNA.18 When we breathe, a 

protein binds oxygen and transports it to cells that require it.19 Some organisms have even 

evolved proteins that work like guns that shoot toxins into adjacent cells.20 This is only a tiny 

fraction of the functionalities that nature has evolved proteins to do! So how did nature create 

such fascinating machinery over billions of years? 

 

To understand protein evolution, we first need to understand how what mutations are. We 

have established above that DNA contains the genetic information of organisms, however 

that information is not static. Every time DNA gets copied by DNA polymerase, there is a 

small chance that the copy accumulated mistakes, e.g. an A was read as a G for example.21 

There are also non-biological factors that can change DNA, such as UV light that can damage 

DNA bases and lead to changes in the DNA composition.22 All of these changes to a DNA 

sequence are considered mutations. When a mutation happens in a region of DNA that 

encodes a protein sequence, one of three things happens. The mutation is silent, which means 

that there is in the protein sequence. Consider the two codons for serine shown in Figure 1.1. 

If the last T is mistakenly interpreted as a C, the ribosome would still incorporate serine at 

that position. The mutation could also be deleterious. An example of such a change in a DNA 

sequence would be if a mutation produces one of the stop codons in the middle of the protein 

sequence, prematurely ending the sequence and often making the protein non-functional. The 

last two types of mutations are by far the most common types. In very rare cases is a mutation 
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beneficial. In fact, it is sometimes hard to define when a mutation is beneficial since it all 

depends on the task that one tests the mutation on. For example, the nicotinic acetylcholine 

receptor (nAChR) is a cell receptor that responds to the neurotransmitter acetylcholine but 

can also bind nicotine. In rats, that receptor is more sensitive to nicotine, lowering amount 

for a lethal dose of the drug 300-fold compared to humans. Researchers have traced back this 

difference in lethality to a single mutation of a threonine to an isoleucine at position 56 of 

the receptor.23 Is this mutation beneficial? Not necessarily, but certainly is to the smoker. 

Therefore, beneficial mutations are most often context dependent. For protein engineers we 

define this context in terms of protein “fitness”. In other words, if a protein has high fitness 

for a task, then it is good at performing that task. 

 

In addition to context dependence of single mutations, there is also context to consider when 

multiple mutations are involved. While so far, we have described proteins as chains of amino 

acids, they do not look so in the cell. Proteins form highly complex 3-dimensional structures 

(Figure 1.2) and residues that would normally be distant from each other can be a lot closer 

in 3-dimensions. For example, residues A112 and F114 of homotetramer cystathionine β-

synthase are in contact with each other even though the contact happens between two 

chains.24 It turns out that these two residues are evolutionarily coupled, meaning in the course 

of evolution of the protein, if one of the residues mutated, then the other mutated as well.25 

This concept of evolutionary coupling is very important in the evolution of proteins and 

researchers have developed tools to identify evolutionarily coupled residues to help in protein 

engineering and in understanding protein evolution.26  

 

 
Figure 1.2: Structure of cystathionine β-synthase. The residues A112 and F114 are evolutionarily coupled, 

meaning if one mutates, then the other one needs to mutate too to not be deleterious. 
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This concept of evolutionary coupling is part of a broader phenomenon in protein evolution 

called epistasis.27 A set of mutations is said to be epistatic if the summed contributions of the 

individual mutations to protein fitness is different than the fitness of all mutations taken 

together. To give an abstract example, lets imagine two mutations, A→A* and B→B*, at two 

positions in a protein sequence. This gives us four possible sequences in this set of mutations: 

AB, A*B, AB*, and A*B*. Let f(AB) be the fitness of the sequence AB. An example of 

epistasis would be if f(A*B) = 1, f(AB*) = -1, and f(A*B*) = 2 ≠ f(A*B) + f(AB*). An example 

of non-epistasis would be if f(A*B*) = 0 = f(A*B) + f(AB*). There are multiple mathematical 

formulations for this phenomenon,28-30 but the fundamental consequence of epistasis is that 

protein fitness landscapes are rugged with epistasis and smooth without epistasis.27,29,31 In 

other words, epistasis makes evolution hard and slow. 

 

We have now seen that most mutations are silent or deleterious, that some protein residues 

are evolutionarily coupled to others and that epistasis makes exploring a protein fitness 

landscape hard. Since we observe fascinating protein machinery all around us, there must be 

at least one mechanism by which proteins manage to evolve towards new functions. While 

there are many such mechanisms,32 one in particular is of high interest to protein engineering. 

In 2006, Jesse Bloom et al. suggested a mechanism for protein evolution that is closely 

related to a proteins’ stability.33 Protein stability is the property of proteins to withstand 

denaturation, whether thermal or chemical. For simplicity, we will only consider globular 

proteins to explain protein stability. When a protein is first produced by the ribosome, the 

amino acid chain immediately starts to fold-up into its 3-dimensional structure. Under normal 

conditions, this 3-dimensional state is the most stable conformation of the amino acid chain 

(it could be that it is not the most stable state but a kinetically stable local energy minimum34). 

When globular proteins fold, they usually do it such that hydrophobic amino acids inhabit 

the core of proteins, and hydrophilic amino acids populate the surface. That is because the 

hydrophilic residues can interact with water and the hydrophobic residues can interact with 

each other. When a protein denatures, the amino acid chain unravels and exposes 

hydrophobic residues to water which do not want to interact with each other (think of oil not 

dissolving in water). If another protein close-by is also unraveling, the hydrophobic residues 

of the two chains can interact with each other. At some point enough hydrophobic 

interactions between chains can happen that they fall into an energy minimum that cannot be 

easily reversed kinetically, i.e. the protein has denatured.35 This unraveling of proteins can 

be induced by increasing the temperature or by exposing the protein to a denaturing chemical. 

A protein is considered more stable if it can withstand higher temperatures or higher 

concentrations of denaturing chemicals.  

 

The seminal paper by Jesse Bloom et al. claims that thermostability of a protein and evolution 

are tightly connected to each other.33 Since at the very least, a protein still needs to fold to a 

thermodynamically stable structure, any sequence of mutations that move a protein from one 

function to another must also make sure that the protein retains some minimal stability. As 

selection pressure only selects for the function of a protein and rarely its stability, a proteins 

potential extra stability is indifferent to evolution. Through simulations of protein evolution, 

the authors show that a thermostable protein is more evolvable though. I.e. the protein can 
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accumulate more mutations to improve its fitness for a task before becoming too unstable. 

That is because only vanishingly rarely is a mutation beneficial for both a new function and 

for thermostability. The more likely scenario is that a mutation that is beneficial for a function 

will reduce the stability of the protein. The authors conclude that functionally neutral 

mutations for a task accumulate silently in a protein over time. These mutations marginally 

increase the stability of a protein and allow the accumulation of a functionally positive 

mutation that is also destabilizing.33 While very interesting from a protein evolution 

standpoint, this study has a much larger impact for protein engineers that want to artificially 

engineer proteins. 
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Protein Engineering from Low to High Throughput 

Protein engineering is the scientific discipline of manipulating the system that nature evolved 

to produce proteins and hijack the tools of evolution to push a protein towards performing a 

desired task. Over the years, scientists have developed many techniques that help in 

engineering proteins. The most important technique in protein engineering is arguably 

directed evolution (DE). DE was invented by Frances Arnold in the late 1980s, showing that 

one can randomly induce mutations in the DNA encoding protein sequences to create a 

protein sequence library, screen them for improved function and picking the best performing 

variant for another round of mutagenesis.36 The work was inspired by a paper from John 

Maynard Smith on evolutionary game theory, where Maynard Smith argues that in order for 

evolution to work a protein sequence needs to have other functional mutants nearby in 

sequence space, even if most sequences do not encode functional proteins.37,38 The advent of 

DE evolution started a wave of protein engineering work. Protein engineers have evolved 

enzymes to catalyze reactions that have no equivalent in nature39-45 DE has also been used to 

take a computationally designed protein with no intended function and engineered it to 

catalyze a wide range of reactions.41,46 

 

The beauty of protein engineering compared to other engineering disciplines is that 

incremental improvements are trivial to make as they are inherent to the system itself. Nature 

evolved with incremental changes to DNA over billions of years, and protein engineers are 

now using the same system to simulate evolution in a test tube in a matter of days. The only 

thing that the engineer needs to provide is the selection pressure and a mutagenesis technique 

for a protein to be engineered. While this may sound simple on the surface, the choice of 

selection pressure and mutagenesis technique are extremely important and often not trivial. 

Between the two however, selection pressure and only selection pressure determines the 

direction in which a protein evolves. An important phrase was coined in a paper by Schmidt-

Dannert and Arnold in 1999: “You get what you screen for”.47 Another key insight in the 

paper by Bloom et al. illustrated this phrase neatly, is that evolution is lazy in a sense, a 

protein will only every be marginally stable because that is the minimum what it needs to be 

to survive.33 “You get what you screen for” means that evolution will always try to find the 

shortest path to generate a minimum viable variant.  

 

For directed evolution, there are two main methods to produce mutations in a DNA sequence. 

One makes use of error-prone DNA polymerases, which have a higher rate than natural 

polymerases to introduce mutations into the DNA sequence. These error-prone polymerases 

are used to amplify the DNA sequence of interest in an error-prone polymerase chain reaction 

(epPCR).48,49 The resulting amplified DNA fragment has a few to many mutations, 

depending on the polymerase used. Another method to produce mutants in DE is to use site-

saturation mutagenesis (SSM). This method makes use of degenerate codons, which are 

codons that can encode for many different amino acids instead of just one. By adding a 

mixture of bases during the artificial synthesis of DNA oligomers, a mixture of DNA 

oligomers is created where each oligomer encodes a different set of amino acids. SSM uses 

degenerate codons that encode for all 20 amino acids at a position of the protein sequence. 

SSM usually targets a specific site in the protein sequence based on a hypothesis which is 
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often times supported by structural data of the protein. This method can also be expanded 

to target multiple sites, however a DE campaign that targets N sites via site saturation, will 

produce 20N different variants in the sequence library.50 Generally, a protein engineer would 

prefer epPCR with a high mutation rate or SSM targeting many sites, however a major 

bottleneck in DE is the throughput with which sequences can be tested. If a generated library 

has 1000 members, but an engineer can only screen 10 of them in a reasonable timeframe, 

then the engineer is likely to only observe non-functional proteins since most mutations are 

deleterious. Broadly, an engineer should aim to only create libraries that are 1-2 orders of 

magnitude smaller than the throughput of the screen. This is not only a problem in DE, but 

any protein engineering technique also faces the same problem. 

 

The ideal way to satisfy both the “You get what you screen for” problem and the throughput 

problem is via selection.47 If the property one wants to engineer for can be tied to the survival 

of a microorganism, then one is only limited by the transformation efficiency in how many 

variants can be tested. Transforming that organism with a library and subjecting it to an 

experiment where only fit variants survive will automatically propagate the best variants. 

This technique has been used successfully many times to evolve proteins quickly and to 

extremely high efficiencies for the task at hand. In a paper showcasing selection well, Fahrig-

Kamarauskait et al. added 4-fluorophenylalanine to the growth media of E. coli chorismate 

mutase knockouts which would normally kill the cells. Chorismate mutase is an essential 

gene in the pathway to produce phenylalanine and the incorporation of 4-fluorophenylalanine 

into a protein sequence is deleterious. The authors transformed E. coli with libraries of M. 

tuberculosis chorismate mutase and subjected the cells to ever-stringent selection pressure. 

Through multiple cycles of DE, they obtained a chorismite mutase variant that was 270-fold 

improved in kcat/KM.51 An ingenious strategy was developed by Molina et al., where they 

used an orthogonal error-prone DNA replication system (OrthoRep) that would only amplify 

a defined gene. They used OrthoRep to target TrpB for mutagenesis while withholding indole 

from the media but adding indole derivatives. Through continuous evolution in the growth 

media, the TrpB variants evolved to efficiently produce non-canonical amino acids with great 

efficiency.52,53  

 

Unfortunately, most tasks one wants to engineer proteins for cannot be tied to the survival of 

a microorganism. In that case, one needs to resort to screening for improved variants. 

Screening is a lot more tedious than selection, since one has to measure the fitness of each 

variant without knowing ahead of time if they are functional or not. When resorting to 

screening, throughput dictates the pace of the engineering, and it is an engineer’s goal to 

maximize throughput as much as possible. Over the past few decades, many instruments and 

techniques have been developed to increase the throughput for protein engineering. The 

advent of using robotics in biochemistry such liquid handling robots have allowed 

researchers to accelerate the rate of assembling library plasmids and automate directed 

evolution.54,55 Likely the most consequential methodology developed for increasing 

engineering throughput comes from the culmination of two technologies, cell surface display 

of proteins and fluorescence activated cell sorting (FACS). In cell surface display, the protein 
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of interest to be engineered is genetically fused to a cell-surface anchor protein, together 

with a signal 

 

sequence to transport the protein to the surface of the cell. Proteins can be displayed on the 

surface of bacteria, insect, phage, mammalian, and yeast cells. Most often, protein engineers 

employ yeast surface display due to the simplicity of establishing the system and yeast, being 

eukaryotic cells, can perform various post-translational modifications that are essential for 

the production of certain proteins56 During FACS, cells are placed into microfluidic lipid 

droplets containing only one cell. As the cells pass through lasers that excite fluorophores 

active on the surface of the cell, the emission of the fluorophores is measured and if the signal 

surpasses a threshold, the cells are either kept in media or discarded.57 If the expression the 

protein of interest and its function can be coupled to the presence of fluorophores in the 

droplet, one can potentially screen 107 variants in a matter of hours.58 While the throughput 

of cell surface display and FACS is immense, allowing for the screening of very large 

libraries, the advantages do not just end there. Usually, one of the fluorophores is used to 

measure presence of the protein on the surface of the cell and the other one is used to measure 

the function of the protein. It turns out that there is a correlation between the cell surface 

expression levels and a variants thermostability, effectively allowing an engineer to optimize 

two properties at once.59,60  

 

So far, we have only considered the limitation of protein engineering in throughput and 

haven’t put much thought into the limitations of library sizes. If we go back to the hypothesis 

by Maynard Jones that there are always sequences with similar function close-by in sequence 

space to a functional sequence and we think about what happens when we move further and 

further away from that functional variant.38 Considering that the vast majority of mutations 

are deleterious, and that epistasis makes protein fitness landscaped hard to explore, means 

that most sequences screened would be non-functional. Anthony Keefe and Jack Szostak 

estimate that for a random protein sequence of length 80, around one in 1011 are functional.61 

Douglas Axe argues that a in a larger range of protein sequence lengths that ratio is around 

one in 1077.62 As libraries get bigger, the fraction of functional variants approaches these 

estimates of one in 1011 or one in 1077. It might be advisable to not just look at random protein 

sequence libraries, but informed protein sequence libraries.  
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Machine Learning in Protein Engineering 

In silico methods such as machine learning (ML) can vastly accelerate protein engineering 

campaigns. The general concept behind ML applied to protein engineering is to use the 

inferences made by an ML model to perform predictions on protein variants.63,64 Sometimes 

called artificial intelligence, ML is a computer science discipline that focuses on using 

algorithms to learn from large corpuses of data. The learning algorithms can be very simple 

ones like multilinear regression or random forest classifiers,65 to highly complex ones such 

as the transformer/graph neural network hybrid model behind Alphafold2.66 Compared to 

other in silico methods, ML has a huge potential in generating informed libraries. Most non-

ML methods make use of complex physical models that are computationally expensive, 

severely limiting the in silico throughput.67,68 ML models however may take days, weeks or 

even months to train, but once trained, can generate variants on the scale of seconds (Figure 

2.21) or even sub-seconds (Figure 2.12).  

 

Informed library design can be very powerful even with simple models. In a series of papers, 

Wu et al., Wittmann et al., and Yang et al. demonstrated that an ensemble of simple machine 

learning models trained on a small set of GB1 sequences can generate libraries that are highly 

enriched in fit variants, through creative training set design. This was later experimentally 

verified by applying machine-learning assisted directed evolution to engineering TrpB. The 

concept of training ML models with low amounts of data is very important for protein 

engineering since labelled sequence datasets are rare,69,70 and collecting sequence-function 

data is slow. This lack of data created a set of ML models for protein engineering called 

“low-N”, for low numbers of datapoints.71-76 One of the key concepts in “low-N” ML is the 

idea that more informative protein sequence embeddings are, the less data is required to train 

a powerful prediction model. A protein sequence embedding is the representation of the 

protein sequence in a way that a computer can understand it, often in the form of a vector or 

a matrix.77 Arguably the simplest form of protein sequence embedding is one-hot encoding, 

where each position in a protein is represented by a 20-dimensional vector. Each dimension 

represents an amino acid, and the vector is 0 everywhere except at the dimension that 

represents the amino acid at a given residue position. While data availability is an issue to 

train “low-N” models, it is not an issue for learning highly informative protein sequence 

embeddings. Since the 2010s, next generation sequencing techniques were showering the 

literature with large, high quality, unlabeled sequence datasets and being summarized in 

databases such as UniRef,78 GenBank,79 and OAS.80 The key to unlocking the potential 

behind this unlabeled sequence data, was to consider protein sequences like a language where 

amino acids act like words. At the time, a very large corpus of work had already been 

published on natural language processing (NLP), which also relied on large unlabeled 

datasets.81-83 The application of NLP model architectures to the language of proteins created 

new model architectures collectively known as protein language models (PLM). A PLM 

often does not require labeled sequences but can infer properties from sequence data alone. 

Three important learning tasks have been applied to PLMs to achieve these inferences, 

masked language modelling,84 autoregressive next-token prediction,85 and diffusion (Figure 

1.3).86 
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Figure 1.3: Examples of different learning tasks for protein language models. In masked token prediction, 

residues are chosen at random to be masked and the model needs to predict the masked residues given the 

context of other unmasked sequences. In next token prediction, the model needs to predict the nature of the 

next amino acid given the context of all the residues that come before it, iteratively reconstructing a sequence. 

In diffusion, random noise is added to a protein sequence in consecutive steps, with each step adding more 

noise. At each step that noise is added, the model is tasked with reconstructing the sequence of the previous 

step. The final model can generate functional sequences from random noise. Note: Diffusion is usually not 

performed in the way explained here, noise addition happens in a latent space where gaussian noise is added 

to a vector or matrix representing the protein. 

 

Very powerful PLMs have been generated over the course of the past half-decade that alone 

can predict a wide range of protein properties. ESM2 for example is a masked language 

model trained with the transformer architecture.87 Transformers were first introduced in the 

paper “Attention is all you need”, where they presented a new model architecture that uses 

modules called “attention heads”.82 An “attention head” gathers global information on a 

sequence, i.e. it tries to answer the question how an amino acid at a certain position is defined 

by its context in the entire sequence. Models like ESM2 trained their transformer on 250 

million sequence clusters from UniRef50,78 using up to 15 billion parameters.87 Even though 

the model has only been trained on masked token prediction of 1-dimensional sequences, the 

model is able to accurately predict the 3-dimensional structure of proteins as well as 

determine functional properties of the protein.84,87-89 Another very powerful model relying 

on the transformer architecture is Alphafold2 (AF2), which is a structure prediction model.66 

Alphafold was born out of the CASP protein structure prediction competition and was the 

first ML model that surpassed the performance of physico-chemical models.67 Where ESM2 

is trained solely on protein sequences, AF2 is a lot more complicated. First of all, AF2 has 

as training objective the minimization of the predicted local-distance difference test 

(pLDDT) which is a measure of how accurate a structure prediction is. Second, AF2s 
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transformer does not work on single sequences but on multiple sequence alignments 

(MSA). The MSA transformer architecture is used in a variety of models where making 

predictions on the evolutionary context of a sequence is important.90,91 Additionally, AF2 

uses graph neural networks to infer 3-dimensional connections between residues. The 

importance of AF2 for biochemists is hard to overstate, spawning a variety of similar more 

specialized models for all sorts of structure prediction tasks.92-94 AF2 even has an influence 

on experimental structure prediction as well, as some researchers have used AF2 structures 

to model crystallographic data onto, solving the “phase problem” for a large variety of 

situations.95,96 

 

The true potential of large PLMs, however, lies in the specific models they can spawn that 

can help in scaling throughput in protein engineering. A powerful tool here is fine-tuning, 

which is the process where one takes a pre-trained model and re-trains it using a very specific 

dataset. Let’s say we want to use a generative PLM such as RFDiffusion,86 a diffusion model, 

or ProtGPT2,85 a next-token prediction model (Figure 1.3). As originally trained, these 

models are generalists. Asking them to perform a specific task, such as creating a TIM-barrel 

in RFDiffusion or generating a nitrogenase-like sequence in ProtGPT2, would likely fail. Re-

training the models using specific datasets like a dataset of TIM-barrel structures or of 

nitrogenase sequences nudges the models in a direction where they are capable of performing 

these tasks. In ProtGPT2, this fine tuning is part of the operating procedure of using it. In 

RFDiffusion, fine tuning was part of the training procedure where the developers used it to 

condition the model to certain situations. Such fine-tuned models can generate thousands of 

informed sequence libraries in a matter of hours, creating diverse sets of sequences for 

protein engineers to screen for. 
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The Three Studies of this Thesis 

In this thesis, I will present three protein engineering studies that may be disjoint in their 

tasks that we are evolving for but have in common that they all attempt to maximize the 

throughput when trying to engineer for hard-to-measure tasks. 

 

In Chapter 2, we tackle the problem of antibody humanization. Out of all the problems in 

this thesis, the actual property that we are engineering for can only be tested in what is best 

described as the ultimate ultra-low throughput. In order to check if humanization was 

successful an antibody candidate must pass all the scientific, bureaucratic, and financial 

hurdles to make it to phase 1 of clinical trials.97-99 While many ML-based antibody 

humanization techniques claim that they work,65,100 we demonstrated that the approach of 

most published methods is deeply flawed when the target is to bring an antibody to clinical 

trials. Through a combination of Markov chains, library generations and yeast display, we 

present a high-throughput technique to obtain as many antibodies as possible that conserve 

or improve properties of non-humanized antibodies, while decreasing their risk in potential 

future clinical trials. 

 

In Chapter 3, we outline a project in collaboration with the Rees lab to engineer nitrogenase 

for the bioelectrocatalytic conversion of N2 to ammonia. This project’s significance stems 

from the fact that the process that produces most of the global ammonia, the Haber-Bosch 

process, is simultaneously one of the essential processes for modern agriculture and 

responsible for widespread environmental damage.101 Our goal is to engineer nitrogenase 

using a bioelectrocatalytic system presented by Lee et al. using a multi-well system inspired 

by work from the Schwanenberg lab.102,103 To further increase throughput, we are also 

developing a diazotrophic pre-selection method to allow us to test much larger libraries and 

selecting only for variants that produce a functional nitrogenase. 

 

In Chapter 4, we use enzymes from a family of proteins of thermophilic organisms to 

engineer for a new-to-nature reaction to produce cis-trifluoromethylated cyclopropanes.40 

Compared to previous studies with chemical catalysts,104-107 we were able to selectively 

synthesize a new conformation of these compounds which is not possible with published 

chemical catalysts. A key idea in this study is the usage of trapped carbene precursor in 

ethanol to run reactions in 96-well plates. We were able to evolve for this reaction and obtain 

a protein that catalyzes the reaction on the 1-mmol scale. 
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C h a p t e r  2  

MACHINE LEARNING BASED ANTIBODY HUMANIZATION 

AT SCALE USING MOUSIFY 

Abstract 

In the past half-decade more monoclonal antibodies (mAb) have been approved for 

therapeutic use than in the 25 years before that. When mAbs are raised in non-human 

organisms and injected into humans, the patient will much more likely produce anti-

drug antibodies than if the antibody is humanized. Since the late 1980’s antibody 

humanization has been developed to reduce immunogenic risk of mAb therapeutics. 

Achieving a reduction of patient anti-drug antibody responses in clinical trials is the 

goal of antibody humanization. To measure this however, one needs to pass 

significant scientific, bureaucratic, and financial hurdles, which is very rarely done 

and especially never at scale. Most existing ML-based antibody humanization 

techniques claim that they work without providing any experimental evidence. We 

developed Mousify as an in silico antibody humanization platform to place existing 

models into one framework for wet-laboratory validation. We demonstrate that even 

the best models have a fundamental flaw in that they only generate a single antibody. 

We use Mousify and Markov chains to show that using ML-based antibody 

humanization models for library generation is not only feasible but produces both 

stable and functional variants. Learning the lessons from our wet-laboratory 

experiments, we then developed a variational autoencoder model with properties that 

hopefully improve the outcomes of antibody humanization experiments.  
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Monoclonal Antibodies and Humanization 

Antibodies are proteins that are produced by certain organisms as part of their 

adaptive immune system. When an organism with an adaptive immune system is 

exposed to an antigen, antibodies are responsible for identifying and neutralizing it. 

The immune system achieves this by producing a large corpus of highly diverse 

antibody sequences via B-cells. This diversity is achieved by the random 

recombination of 3 genes called V, D, and J,1 followed by a process called somatic 

hypermutation. The diversified region of the antibody, made up of the complimentary 

determining region (CDR) and the framework (FWR), is called the variable domain.2 

Through this process it is estimated that a human can produce between 1016-1018 

different antibody variants.3 When B-cell receptor antibody binds an antigen, the cell 

activates a mechanism by which it clones itself, producing many daughter cells and 

proliferating an antibody that can target the antigen that is to be neutralized. Shortly 

after the first monoclonal antibody therapeutic (mAb) was expressed in 1975 by 

Köhler and Milstein, researchers realized that one could employ the highly specific 

binding capacity of mAbs to neutralize targets in the human body. Monoclonal means 

that the antibody comes from a single B-cell clone. In 1986, the FDA approved the 

first mAb called muronomab-CD3 for the use in preventing kidney transplant 

rejection.4 This drug worked by blocking the effects of the T-cell receptor CD3, a 

target that the body would not naturally build antibodies against, since the body has 

a mechanism to reject antibodies that bind to self-antigens. However, human CD3 is 

not a self-antigen in a mouse, therefore a mouse injected with human CD3 would 

produce antibodies against the desired target. However, the use of muronomab-CD3 

was very limited due to the high number of patients developing antibodies against 

the drug (anti-drug antibodies, or ADA).5    

 

While a successful milestone, muronomab-CD3s induction of ADA in patients made 

it clear that scientist needed to overcome some immunogenic and efficacy hurdles to 

make mAbs truly useful. Researchers started to take antibodies from rodents and 

attempted to make them look more like antibodies a human would make without 

affecting the positive properties that drew them to the rodent antibody in the first 

place, a.k.a. antibody humanization. The first successful attempt was abciximab, an 

anti-GPIIb/IIIa mAb whose variable domain was attached to the constant domain of 

a human antibody, producing the first chimeric antibody (Figure 2.1).  A big leap in 

antibody humanization was made with the first demonstration of CDR-grafting.6 The 

CDR is the region of an antibody and is the region of the antibody that is responsible 

for binding the antigen. In CDR grafting, non-human CDR sequences are grafted 

onto the framework of a human antibody. To achieve this one usually identifies the 

V-gene that the non-human antibody originated from, and one grafts it to the 

evolutionarily closest human version of that V-gene. CDR-grafting is still a very 

popular antibody humanization technique which still sees development today by 

combining it with state-of-the-art in silico techniques.7 All these wet-laboratory 

humanization techniques have continuously been evolving by combining CDR-

grafting or chimerization with back-mutations of “human” residues to “non-human”, 
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conservation of Vernier zone residues and in silico stabilization of frameworks or 

CDRs.7,8 Often times, these methods are nothing more than trial-and-error based and 

cannot be systematically evaluated due to the difficulty of bringing a mAb candidate 

to clinical trials.9 

 

Since then, mAbs have been developed to treat a wide range of diseases and 

conditions. Notable examples include Xolair (Omalizumab), an anti-human IgE mAb 

that is used to treat severe asthma in adults and children, chronic urticaria, as well as 

severe allergies from aerosols and food allergies, or Keytruda (Pembrolizumab) a 

highly successful anti-human PD-1 mAb used in cancer therapy. In addition, the 

approval of monoclonal antibody therapeutics has exploded in the past decade with 

nearly two-thirds of all mAbs being approved in that time period (Figure 2.1).10 mAbs 

are also highly valuable, for example the drug Cimizia (Certolizumab Pegol) is the 

only mAb in the portfolio of the Belgian company UCB, Cimizia alone makes up 

40% of the companies yearly revenue (~EUR 2B) in 2022.11 In total the mAb market 

had a valuation of USD 115.2B in 2018.12 

 

 
Figure 2.1: Overview of monoclonal antibodies and humanization. (Left) Illustration of an 

antibody showing the location of the CDR, framework, variable domain, and constant domain. At 

the bottom we are showing an example of a humanized antibody where certain segments of the 

mAb have been replaced with sequences of human origin. (Right) Number of approved antibody 

therapeutics by year and their percentage of origin. †Since chimeric antibodies can count both as 

human or non-human, the sum of all percentages exceeds 100%. 

With modern biochemistry and synthetic biology techniques, many different 

antibody humanization techniques have been developed.  For the purposes of this 

study, we will only briefly mention techniques that originate from non-hybridoma 
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techniques as they are not as often employed nor are they applicable to the main topic 

of this chapter which is machine learning based antibody humanization.  Phages 

expressing human V, D, and J genes can be used together with phage display to 

screen for antibody libraries that originate from human antibody germlines. The main 

problem with this technique is that polyreactivity, the property of non-specifically 

binding antigens, is common. In addition, often times the pI and hydrophobicity of 

the resulting antibodies is unsuitable for usage in organisms, often times requiring 

further downstream engineering of the mAb.12,13 Another commonly used technique 

is to express human germline genes in transgenic mice and raise antibodies in them. 

A common problem here is that the antibodies are not counter-selected for human 

antigens, but for mice antigens resulting in not-fully humanized antibodies.13  

 

Most commonly, the mouse hybridoma technique is used to raise antibodies against 

an antigen. After immunizing a mouse, the B-cells of the mouse are harvested and 

screened for binding against the antigen.12 Once a sufficiently good binder has been 

identified, the B-cell is sequenced, its antibody expressed and further characterized 

for desired properties. At this point the candidate mAbs are evaluated for their 

developability. Developability is a collection of properties of a drug that have been 

determined to be essential to meet in order to increase chances of making it to clinical 

trials with a candidate. Some of these key properties include the solubility, binding 

affinity, thermostability, polyreactivity, and propensity to aggregate, which are 

properties most academic biologists are interested in as well.14 However, there are 

also industry specific properties such as the expression level of the antibody and its 

purity. If the antibody is deemed sufficiently developable, the aforementioned 

humanization techniques are used to engineer the antibody for the purposes of de-

risking the drug. Immunogenicity risk assessment is then performed according to the 

guidelines provided by the FDA or the EMA, which includes evaluating the risk of 

immunogenic incidence such as the humanization of the antibody as well as indirect 

indicators of risk such as the pharmacokinetic properties of the drug.15,16 Only after 

passing through the long process all of the scientific, bureaucratic, and financial 

hurdles associated with experiments and drug candidate assessments can a drug be 

considered for clinical trial and the chosen humanization technique evaluated.  
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Antibody Humanization and Machine Learning 

 

Since the mid-2010s, along with the publication of many other machine learning 

models applied to protein engineering, researchers have looked at ML to create more 

reliable and systematized antibody humanization techniques. While the wet-

laboratory techniques described in the previous section have been validated multiple 

times by the FDA and EMA approved drugs they contributed to producing, they are 

still very risky, with a company not knowing ahead of time if a given drug could 

cause a large fraction of patients to develop ADA.9 With the greater availability of 

both labeled and unlabeled antibody sequence data in databases such as SAbDab,17 

OAS,18 and Thera-SAbDab,19 researchers were trying to replicate the success of 

machine learning models applied to protein engineering on antibody humanization. 

The main objective of ML-based antibody humanization is to train a model that is 

able to predict the “humanness” of antibody sequences and for that score to be 

correlated to %ADA data from Thera-SAbDab. Pre-ML such humanness scores 

existed in the form of pairwise sequence identity scores of a sequence to the closest 

human germline, however these scores poorly correlated with %ADA.20 

 

At the core of the training is the large antibody sequence database called the observed 

antibody space (OAS). This database contains billions of antibody sequences that are 

gathered from next generation sequencing of human and non-human B-cells. OAS 

has since its inception supported many antibody-specific ML models, beyond just 

antibody humanization.20–27 To our knowledge, the first antibody humanization 

model that made use of OAS to train a model was Hu-mAb which is a random forest 

classifier model. As the name suggests, the classifier takes the antibody sequence as 

an input and tries to predict the species of the antibody. In this case, Hu-mAb trains 

for binary classification of human vs non-human. Hu-mAb is actually a collection of 

V-gene specific classifier models, each model distinguishing between human and 

non-human sequences of every V-gene type. The classifier performed very well in 

the classification task with an AUROC score of 0.977 and a classification accuracy 

of ≥ 0.999 in the test set. In order to obtain a humanness score out of the random 

forest classifier model, they inquire the model for the probability it gives to the human 

vs the non-human class. Meaning the humanness score reflects the probability of a 

sequence that the model assigns to the human class. The reported Pearson’s 

correlation coefficient of the Hu-mAb score to %ADA is -0.58. Marks et al. then 

used this score to perform in silico antibody humanization by plugging-in all possible 

single mutants from the sequence to be humanized into the model and ranking them 

by their increase in humanness. The top variant is then chosen for the next round and 

repeated until a score threshold is achieved.20  

 

BioPhi is a model developed for the humanization of mAbs that makes use of two 

separate models, one ML-based and the other one not. OASis is the model of BioPhi 

that assigns a humanness score to a sequence by counting the occurrence of all 9-mer 

peptides in the sequence and referencing them against a database of all 9-mer 
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peptides that occur in human sequences found in OAS. As opposed to the humanness 

score of Hu-mAb, the OASis score can be tuned since the score is calculated as the 

fraction of 9-mer peptides that can be found in more than x% of humans. Where x is 

the tunable parameter. They find that the OASis score can be used to make a fantastic 

classifier with an AUROC score of 0.966. Additionally, the OASis score correlates 

with %ADA with a Pearson’s correlation coefficient ρ = -0.53. 21 In order to 

humanize antibody sequences, they developed a RoBERTa-based transformer model 

that was trained on only human antibody sequences, called Sapiens28. The logic 

behind training the model only on human sequences is that they want to use the 

softmax layer at the end of the Sapiens model to obtain a probability distribution of 

each residue if the sequence was human. Reasoning that the model would identify 

the mutations that would maximize the human content. We suspect that this reasoning 

is flawed since now non-human sequences might be too far outside of the training set 

to make generalizable predictions on the mutations that would humanize a sequence. 

In order to humanize the sequence, BioPhi picks all the highest probability amino 

acids at each position according to the output from Sapiens, optimizing the entire 

sequence at once. This is performed up to five times to humanize the antibody 

sequence.21 Two flaws become immediately apparent in this methodology. First, 

during training a transformer model on ever predicts one masked token at a time 

(Figure 1.3, See Chapter 1) and therefore the method of predicting all positions at 

once is illogical. The transformer gives a probability of an amino acid at a position, 

conditioned on the fact that all other amino acids remain the same. Second, the usage 

of the OASis score that correlates well with ADA is completely circumvented in this 

method and has no effect on humanization at all. They show however, that the 

mutations predicted by Sapiens increase the OASis score of a sequence, but there is 

no attempt to maximize the OASis score. 

 

To validate the efficacy of both models the authors of Hu-mAb and BioPhi collected 

the data of 25 clinically approved mAbs for which the original murine sequence was 

known and re-humanize the sequences. They then evaluate the overlaps of 

humanizing mutations and concluded that their model works well since there is some 

mutational overlap with therapeutic sequences. Both Hu-mAb and BioPhi achieve 

humanization in fewer mutations from the original sequence. Neither group of 

authors provided any wet-laboratory experimental evidence to support their 

claims.20,21  



 

 

28 

Overview of the Mousify Software Package 

The Mousify software package is made up of three independent parts that can be 

found on the authors GitHub repository (lschaus0408): 

• Mousify: Contains the antibody humanization software of Mousify as well 

as all supporting “.py” files. 

• OAS C/S: Contains the client/server module responsible for downloading 

and packaging antibody sequence datasets. 

• Mousify Analysis: Contains python files (.py) as well as ipython notebook 

files (.ipynb) used to analyze data from the Mousify sub-package, as well as 

generate figures. 

 

The software package was entirely written in python 3.10 and 3.11 (for notebooks) 

on a Windows 10 machine running the Windows Subsystem for Linux (WSL) 

Ubuntu 18.04. The WSL was only used for development of this software package 

and nothing else, to ensure that its environment is reproducible. The python 

environment was managed via Anaconda. It is worth noting that this software 

package cannot be used on Windows, only on Linux or MacOS, due to Mousify and 

OAS API dependence on HMMER,29 which only works on the latter operating 

systems. 
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Antibody Dataset Management Using OAS C/S 

Arguably the most useful sets of databases for antibody data are the resources 

provided by the Oxford Protein Informatics Group (OPIG).30 Amongst many other 

tools, the ones that are of particular interest to machine learning (ML) tasks are the 

Structural Antibody Database (SAbDab)17 and the Observed Antibody Space 

(OAS),18 as demonstrated by the plethora of antibody-specific ML models that make 

use of them.20–27 

 
Figure 2.2: Example of data columns visualized in pandas. Full antibody sequence data can only 

be found in the form of the DNA sequence which contains often contains more sequence data than 

just the desired VH/VL sequence. The amino acid sequence is separated into framework (fwr) and 

complimentary determining region (CDR), and never represented as the full VH/VL sequence. 

Much of the useful annotation data for ML is in the JSON formatted header (not shown), e.g.: 

Organism of origin, exposed antigen, vaccination(s), B-cell type. Each row represents a sequence. 

Showing 19 columns out of 95 columns. Data downloaded from OAS, from the study of Galson et 

al. (2015). 

While vast, with over 2 billion sequences, and thorough, with important sequence 

annotations, in the data represented, OAS is not tailored towards being an ML 

specific database. To start, not all of the 2 billion sequences are equal in quality. Some 

sequences are incomplete, represent non-viable antibodies, or are the result of 

misreads in the original next-generation sequencing data.31 Depending on the 

learning task, there is also lot of unnecessary data (Figure 2.2). For example, the full 

sequence of the variable chain is only represented as its DNA sequence, however, 

this also contains more than just the variable chain. To obtain the amino acid 

sequence, one has to concatenate the sequences in the columns “fwr1_aa”, “cdr1_aa”, 

“fwr2_aa”, “cdr2_aa” etc. Then there is data that is specific to the alignment against 

the putative germline, such as the Compact Idiosyncratic Gapped Alignment Report 

(CIGAR) string and the support score for the chosen germline alignment. While 

useful, the use-cases for ML might be quite niche. In addition, the more useful data, 

e.g. species of origin, exposed antigens, B-cell type, is stored in a JavaScript Object 

Notation (JSON) formatted header, which needs to be parsed. All of this causes 

unnecessarily bloated file sizes that need to be processed in order to be useful for 

machine learning. Lastly, more complex antibody sequence queries can be tedious to 

make on the web client of OAS. For example, if one is interested in all IgG VH 

antibody sequences that originate from B-Cells that have undergone self-antigen 

counter-selection that come from all available species, except camels, one has to 

make 99 different requests, by clicking through drop-down tables in OAS. With the 
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tool described in this section, OAS C/S, such a request can be made with just a few 

lines of a query file or in a command line (Figure SC.1, 2). 

 

The Observed Antibody Space Client/Server (OAS C/S) tool was developed because 

of the desire to explore the effects of dataset qualities on the performance of antibody-

specific ML models. Being able to think of a hypothesis on how an antibody sequence 

dataset could perform, and rapidly gaining access to filtered, high-quality sequences, 

annotated with only the data necessary for the training task, can give ML scientists 

better flexibility and higher quality models than relying on OAS alone. One 

alternative is downloading and storing the entire database which would incur a 

download of approximately 1TB distributed across more than 15,000 compressed 

data files.  These files need to be extracted, sorted, and processed each time one wants 

to form a new dataset. The other alternative is to download each file in a complex 

query from OAS separately, followed by extraction, sorting and processing. Our goal 

was to make OAS C/S the better than both alternatives, simplifying complex queries, 

resulting in download, and processing times not longer than needed, as well as 

helping uses extract only the high-quality sequences of the database. 

 

 
Scheme 2.1: Workflow and modules of OAS CS.  

In Scheme 2.1, we outlined the workflow, and the modules of OAS C/S. Users 

directly interact with the “OAS” module, either through making queries in the 

command line interface (CLI) or by providing the program with a query file in the 

CLI (Figure SC.1, 2). Complex queries are translated to simpler queries by the 

module “OASdownload”, which uses the query file to know which simple query is 

associated with which files on the OAS database. “OASdownload” sends the request 

to the OAS database and receives a file in return. The query file can be updated to 

reflect the actual database using the “Update” module if the user wishes to do so. 

Once all compressed files have been downloaded and placed into a temporary folder, 

the “OAS” module will ask the “CSVreader” module to extract the files and process 
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them. In the user’s query request, it is required to provide what data one wants to 

keep from the downloaded files (e.g. amino acid sequence, antibody subtype, B-cell 

type etc.), the “CSVreader” extracts that data and only keeps the data requested. This 

module also filters out any sequences that are missing any framework or CDR. After 

receiving the temporary folder with the desired antibody data, the “OAS” module 

asks the “Filemanager” module to rename the files according to the desired 

systematic file naming scheme provided by the user. The “Filemanager” can also 

translate files to different formats such as CSV or JSON, as well as merge data from 

different OAS C/S requests.  

 

To ensure that the data used for ML applications is of the highest quality, we 

developed a suite of post-processing tools. All post-processing modules inherit from 

the abstract class “PostProcessor”, which can help in the open-source development 

of new post-processing modules. As of writing this, we have implemented eight post-

processing modules and are planning on implementing a ninth one (Scheme 2.2). 

 

 
Scheme 2.2: Post-processing modules of OAS C/S that are implemented / being implemented. Each 

class inherits from the abstract class “PostProcessor”, which provides a framework for future post-

processing modules. †Planned implementation  

Post-processor: Remove Redundant Sequences 

This post-processing module iterates through all the sequences and removes any 

duplicates. In order to ensure that this is performed in a fast fashion, the program 

iterates through each sequence in every file and uses the SipHash hashing function 

on each sequence to store in a lookup table. If a sequence produces a hash that 

already exists, that sequence is removed from the dataset. 

 

Post-processor: Sequence Length Filter 

This module iterates through all sequences and removes any longer or shorter than 

the provided threshold. 
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Post-processor: Non-Canonical Characters Filter 

This module iterates through all sequences and removes any that contain non-

canonical amino acid single letter codes or any characters that are not amino acids. 

 

Post-processor: Data Maker 

This module creates training, validation, and test sets for ML training purposes. The 

user can determine how many sequences to process, which are then randomly 

sampled from the folder containing OAS C/S files. The user can specify the 

training/validation/test set ratios or directly specify the number of sequences in each 

set. If desired, a label for each sequence can be kept for classification tasks. The 

user can also determine the ratio between each class in the dataset or specify the 

specific number of sequences for each class. 

 

Post-processor: Combine Files 

This module combines files to create new files that are as close as possible to a 

defined file size. This module is especially useful to use before other post-

processing modules that can use up a lot of memory per file processed such as 

“antibody_viability.py” and “encode_esm.py”.  

 

Post-processor: Antibody Viability Filter 

This module is responsible for retaining high-quality antibody sequences while 

filtering out non-viable sequences. This module is a re-implementation of ABOSS, 

a deprecated software written in python 2.7.31 ABOSS itself no longer works as its 

dependencies have been updated to the point that ABOSS cannot process sequences 

and the source code is only available upon request from OPIG. Briefly, the module 

first aligns each sequence to its closest germline using ANARCI33 and IMGT 

numbering.34 If no alignment could be found or the alignment score to the closest V 

or J gene is less than 0.5, the sequence is filtered out of the dataset. Next, the 

sequences are checked if certain conserved residues are present, most importantly 

Cys23 and Cys104, which are important for antibody stability. The check for 

conserved residues is species and light/heavy chain specific. Lastly, for each batch 

of 1000 sequences that is processed through this module, the probability of Cys23 

and Cys104 mutations is calculated. This mutation rate can be considered the upper 

bound of the frequency of false reads in the next-generation sequencing read. 

Therefore, if a residue at a certain position occurs less frequently than the Cys23 or 

Cys104 mutations, then we assume that this residue is present due to a false read. A 

sequence containing a residue with that low of a probability of occurring is filtered-

out.  
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Post-processor: Encode One Hot 

Encodes sequences in the dataset as a one-hot encoded N x 21 matrix, where N is 

the padding length and 21 is the number of amino acids including one empty 

character. Sequences can also be returned as a flattened vector. The module returns 

the encoded sequences as a Numpy “.npy” file,35 if a classification label is 

provided, then another file is returned with the labels.  

 

Post-processor: Encode ESM 

Encodes sequences in the dataset as an ESM encoded N x D matrix, where N is the 

padding length and D is the embedding dimension.36 D is dependent on the ESM 

model used, which can be specified. Sequences can also be returned as a flattened 

vector. The module returns the encoded sequences as a Numpy “.npy” file,35 if a 

classification label is provided, then another file is returned with the labels. 

 

 
Figure 2.3: Example of a file downloaded and processed via OAS C/S, viasualized using “Pandas”. 

Showing five sequences, due to the width of the “Pandas” data frame, the data was split in two and 

stitched together. Showing all columns. 

Together, this suite of post-processing tools provides a practical and reliable way to 

obtain high-quality data to train antibody-specific ML models. The output can be 

specified to be CSV or JSON format, an example of a CSV file can be seen in Figure 

2.3.  
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Mousify Antibody Humanization Software 

A curious observation can be made once one looks at recent ML-based antibody 

humanization tools. Fundamentally, they all share the same structure to translate a 

non-human sequence (query sequence) to a humanized one (final sequence).9,20,21 For 

example, Hu-mAb first produces every possible single mutant from the query 

sequence in silico, then scores each sequence based on a random forest classifier and 

then picks the highest scoring sequence. If the sequence has a higher score than the 

humanization threshold, then it is returned as the final sequence. If the score is less 

than the threshold, the program starts anew with the intermediate sequence replacing 

the query sequence (Figure 2.4)20. In another recent example, BioPhi, the program 

performs a masked token prediction on each possible position of the sequence. Then 

at every sequence position, it picks the highest probability residue and generates that 

sequence. The intermediate sequence is scored using a 9-mer peptide counting 

scheme. If the If the sequence has a higher score than the humanization threshold, 

then it is returned as the final sequence. If the score is less than the threshold, the 

program starts anew with the intermediate sequence replacing the query sequence 

(Figure 2.4).21 Looking at these examples in a more abstract fashion: First, a query 

sequence is used to define a matrix of transition probabilities. Then an intermediate 

sequence is generated by picking the maximum likelihood transition over the whole 

matrix or over per-position vectors. Then a score is given to this intermediate 

sequence and a decision is made if the sequence is humanized enough or if the cycle 

should continue (Figure 2.4). 

 

 
Figure 2.4: Examples of the general model structure for antibody humanization. (A) General 

structure of the Hu-mAb model. The model generates all possible mutants from the query sequence 

in silico. Then each possible next sequence is scored according to a random forest classifier model. 

The highest scoring sequence is selected, and if the score of that sequence is below a set threshold, 
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the cycle continues. (B) General structure of the BioPhi model. The model calculates a (LxN) 

probability matrix of the query sequence via the Sapiens Masked Language Model (MLM). The 

Lth column represents a position in the antibody sequence and the Nth row an amino acid. The 

probabilities in each entry are the probabilities that the Ni amino acid appears at position Lk, 

conditioned on all other positions are occupied by the sequence of the query. The model selects the 

maximum likelihood amino acid at each position of the sequence. If the score of that sequence is 

below a set threshold, the cycle continues. (C) Abstraction of antibody humanization models. 

Fundamentally, the models are made up of a mapping function (calculating the transition 

probability matrix), a scoring function and a mutation algorithm. In this case one can choose 

between a multi shot or a single shot “Greedy Walk” algorithm.  

The advantage of thinking about antibody humanization in this abstract fashion is 

that it allows us to start combining the components that make up individual models. 

For example, we could run BioPhi with a single shot greedy walk, instead of the multi 

shot defined in the web application,37 which makes more sense anyway (See: 

Antibody Humanization and Machine Learning). We could also use the transition 

probability matrix calculation scheme from Hu-mAb and apply it to the scoring 

function of BioPhi (OASis).21 More importantly for this thesis, this abstraction allows 

us to easily replace the “Greedy Walk” algorithm shared by all of the models so 

far,20,21 with a Markov chain or a diffusion algorithm (See sections: Generation of 

Humanized Antibody Libraries using Mousify & Antibody Humanization). 

 

We developed Mousify as a ML-based antibody humanization model scaffold, that 

takes advantage of the aforementioned abstracted structure. Mousify is made up of 

four major components, represented by their respective abstract classes (Figure 2.5).  

The main interface of Mousify manages the entire system by keeping track of the 

state of each class, as well as which sequences have been accepted by the mutator in 

a sequence registry. At the end of humanization, Mousify returns this sequence 

registry as a file which contains the sequence, the score of the sequence and what 

mutation(s) generated this sequence from the previous one. The main function is also 

managing multiprocessing in case a user wants to accelerate humanization by using 

multiple cores. The “Discriminator” abstract class has the task of scoring a sequence 

with a “humanness” score. Since most scoring functions are ML-based, a notable 

exception being OASis, this class also requires an “Encoding” class to represent the 

amino acid string as a numerical object that an ML algorithm can understand. The 

“Map” abstract class translates an amino acid sequence into a Lx21 matrix of 

transition probabilities. Where L is the length of the antibody sequence and 21 

represents the 20 canonical amino acids, plus one character representing an “empty” 

position. Lastly, the “Mutator” abstract class implements a “walking” algorithm. 

Metaphorically one can imagine walking in a mountain range, where taking a step in 

any direction represents one of the L∙21 possible mutations and where the elevation 

gain or drop associated with that step represents the increase or decrease in the 

“humanness” score.   
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Figure 2.5: Mousify model architecture overview (top) and an overview of specific 

implementations (bottom). The main class of Mousify is the part that users interface with. It keeps 

track of all sequences that have been accepted and decides when the cycle of generating sequences 

stops. The discriminator class scores a given sequence (i.e. it discriminates between a human and 

a non-human sequence). The map class calculates a transition probability matrix from a sequence 

to all possible mutants of that sequence. The mutation class performs the “walking” algorithm 

specified. Specifically, it decides which sequence(s) is/are selected to pass on, based on the results 

of the discriminator and map functions.  

Briefly, the Mousify architecture humanizes antibodies in the following way: A user 

defines a query sequence and chooses one implementation of the Discriminator, Map 

and Mutator class. Mousify registers the query sequence as the first sequence in the 

sequence registry and calculates its score using the Discriminator. Then Mousify uses 

the Map class to calculate the transition probability matrix and passes it on to the 

Mutator class. The map is also provided an antibody numbering scheme (IMGT, 

Chothia etc.) to define CDR residues, since we do not want those mutated. The map 

sets the probability of mutating CDR residues defined by the numbering scheme to 0 

and normalizes the map. Depending on the Mutator chosen, the class generates a 

sequence that is either a single mutation away or multiple mutations away from the 

query sequence, using the information from the transition probability matrix to decide 
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on the sequence to generate. The Mutator then needs to accept the sequence as a valid 

next step. If the sequence is rejected, the Mutator will continue to generate sequences 

until one is accepted. If the sequence is accepted, Mousify will register the sequence 

in the sequence registry along with its score, and what mutation(s) from the query 

sequence generated this entry. Mousify will then decide whether to stop the cycle and 

return the sequence registry, or whether to continue the cycle while using the last 

accepted sequence as the input for the cycle. Stopping the cycle can happen under 

multiple user-defined conditions. The cycle can stop when a threshold of humanness 

has been reached, when a certain number of sequences have been generated, or, in 

case of a “Greedy” algorithm if no improvement of the humanness score can be 

achieved.  
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Benchmarks for Antibody Humanization 

To the best of our knowledge, all currently published ML models lack experimental 

validation, as described in more detail above (See section: Antibody Humanization 

and Machine Learning). This poses an interesting problem on how to compare the 

different models available in the literature. Models like Hu-mAb or BioPhi, judged 

the effectiveness of their models based on three metrics: The models’ classification 

performance, the correlation of the score to experimentally available ADA values, 

and the number of mutations it takes to mutate a non-human sequence to a human 

sequence.20,21 With the exception of the correlation coefficient, we do not believe that 

the other provided metrics make a good comparison between models. First, 

classification performance is a metric that is not related to the problem one wants to 

solve when humanizing an antibody, which is to reduce ADA. For example, ~25% 

of mouse antibodies have an ADA that falls within the 95% of human ADAs. It is 

worth noting that the dataset that we have access to is heavily biased towards 

antibodies that at least made it to the first phase of clinical trials (Figure SC.3). 

Second, the number of mutations it takes to humanize, or the amount of overlap to 

therapeutic antibodies, is an irrelevant metric in a system as complex as antibodies. 

Single mutations can vastly change the properties of an antibody,38–40 and as 

demonstrated by the plethora of protein language models (PLM),27,36,41–44 mutations 

are also heavily dependent on context.  

 

Given this context dependance of mutations, we have to ask how well do ML 

humanized antibodies perform experimentally compared to the original antibodies? 

There are a few sets of experiments that pharmaceutical companies subject antibodies 

to in order to evaluate the effectiveness of experimental humanization.  These 

experiments are essential to know which antibodies are moved forward to be tested 

in more complex experiments, such as pharmacokinetic studies, animal studies or 

clinical trials.14–16 In addition, our goal is to set benchmarks that other groups can 

easily replicate after developing an ML-based humanization model. We chose to set 

benchmarks for humanization models using four simple, easily replicable 

experiments: 

• Expression of antibodies in HEK293F or Expi293F cells. 

• Thermofluor assay to determine the apparent melting temperature. 

• Quantitative ELISA to determine the EC50. 

• Polyreactivity ELISA. 

It is also important to consider which antibodies to subject to humanization to set 

benchmarks. The starting antibody cannot be too unstable, otherwise already a small 

set of mutations is very likely to be deleterious.45 The antibody should also be able 

to bind its antigen well and shouldn’t be polyreactive. We believe that an ideal 

antibody humanization model should be able to conserve antibody properties while 

improving immunogenicity and not necessarily improve other properties, even 
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though that is desirable. Therefore, the benchmarking antibodies should have a good 

developability profile.14 We hypothesize that engineered mAbs that have FDA 

approval likely originated from antibodies that had a good developability profile. 

Therefore, using the original antibodies of FDA approved drugs not only provides us 

with a good benchmarking candidate, but also provides us with two reference points 

to compare against. One reference point being the original antibody, the other one 

being the therapeutic antibody that is FDA approved. For the purpose of this study, 

we chose three FDA approved mAbs to re-humanize and one very promising anti-

SARS-CoV-2-RBD mAb from the laboratory of Pamela Bjorkman in order to set 

benchmarks for antibody humanization models (Table 2.1). 

 

Antibody Antigen Indication(s) ADA (%) 

Certolizumab Human TNFα 

Crohn’s Disease 

Rheumatoid Arthritis 

Psoriatic Arthritis 

Axial Spondyloarthritis 

4.4-11.7† 

Omalizumab Human IgE 

Severe Allergic Asthma 

Chronic Spontaneous 

Urticaria 

0‡ 

Palivizumab 
RSV Fusion 

Protein 

Prophylactic against RSV 

infections 
1.1-4.8* 

M8a-3 
SARS-CoV-2 

RBD 
N/A N/A 

Table 2.1: Antibodies used in this study, their targets and, if applicable, their indications and ADA. 
† Indication and ADA data from Deeks (2016); ‡Indication data from Okayama et al. (2020) 
and ADA data from Chen et al. (2023); * Indication data from O’Hagan et al. (2023), ADA lower 

bound from Marks et al. (2021) and upper bound from Robbie et al. (2012). 

Certolizumab is an anti-human-TNFα mAb that is indicated for Crohn’s disease, 

rheumatoid arthritis, and other inflammatory autoimmune diseases.46 Also known as 

Cimizia®, it is produced by the Belgian pharmaceutical company UCB as a 

PEGylated recombinant Fab` fragment. Generally, the drug is well tolerated and has 

low ADA with between 4.4-11.7% of patients developing antibodies against the drug. 

Most antibodies developed by the patient are against the Fab`, but antibodies against 

the PEG moiety itself are possible. Certolizumab pegol is on the World Health 

Organization’s list of essential medicines. 

 

Omalizumab is an anti-human-IgE mAb that is indicated for the treatment of a severe 

asthma in adults and children, chronic urticaria, as well as allergies from aerosols and 

food allergies.47,48 Omalizumab is marketed as Xolair® by the US based company 
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Genentech. The mAb can have a significant impact on patients’ quality of life, with 

improved symptoms and up to 96% reduction in hospitalizations of patients after 24 

weeks of treatment. The drugs ADA is impeccable with multiple studies reporting 

0% of patients developing anti-drug antibodies. 

 

Palivizumab is an anti-RSV-F-Protein mAb that can be used prophylactically in 

populations in high-risk of contracting RSV to mitigate serious RSV disease.49 

Palivizumab is marketed as Solair® by the Swedish pharmaceutical company 

AstraZeneca. While effective prophylactically, it has been demonstrated that 

treatment with palivizumab does not benefit the patient in symptomatic RSV disease. 

Depending on the source, the percent of patients that develop anti-palivizumab 

antibodies is between 1.1-4.8%. 

 

M8a-3 is an anti-SARS-CoV-2-RBD mAb co-developed by research groups at 

Caltech, Rockefeller University, and the University of Oxford. This antibody is 

highly interesting as it is broadly neutralizing amongst Omicron SARS-CoV-2 

variants due to it being able to target the conserved class 1/4 epitope of RBD. It was 

developed by immunizing mice with a mosaic nanoparticle displaying RBDs from 

different sarbecoviruses. Contrary to the other antibodies in this study, it is not 

approved for clinical use and no patient ADA response is known. 

 

In this study, we compared six different antibody humanization models applied to 

four different antibodies. We first used CDR grafting as a baseline for benchmarking 

since it is the simplest form of antibody humanization that does not require further 

engineering steps. Usually, CDR grafting is followed by introducing stabilizing 

mutations or back-mutating Vernier zone residues.8,13 These engineering steps can 

be subjective however and therefore we decided not to introduce any further 

mutations.  We performed CDR grafting by using the web application hosted by 

BioPhi and applied it to all four mAbs presented above (Table SC2.1).  

 

Next, we generated humanized antibodies using our own Mousify software. In order 

to integrate OASis and Sapiens into Mousify, we installed the BioPhi package in the 

Mousify environment. To implement OASis as a “Discriminator” we replicated the 

code that OASis uses inside of a new class that inherits from “Discriminator”.21 The 

Sapiens model was available as a pretrained model from fairseq,50 therefore only a 

call to the Sapiens’ prediction method was necessary to implement a replica as a 

“Map”.21,28 The Hu-mAb model source code is not available on any public repository, 

therefore we had to fully replicate the model as best we could from the description of 

the model architecture and training scheme.20 One major difference to the original 

Hu-mAb model is that we trained the random forest models only on antibody 

sequences from B-cell types that would have under gone self-antigen counter-

selection. We hypothesized that such a dataset would perform better in generating 

humanized sequences, however it did not result in a model that classifies sequences 

better or an improved correlation coefficient of score vs ADA. The module called 
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“Hu-mAb Discriminator” represents the random forest probability score 

implemented in a class inheriting from “Discriminator”. The module called “Hu-

mAb Map” describes the class inheriting from “Map” that assigns a probability to a 

mutation depending on its increase in humanization score compared to all other 

possible mutations. The humanness scoring function used by “Hu-mAb Map” is the 

same as defined as the “Discriminator” in Mousify. All Mousify generated sequences 

used the “Greedy Walk” algorithm in single-shot mode All models using OASis as a 

discriminator were run with min_fraction_subjects = 0.15.21 We also used the web 

applications of Hu-mAb and BioPhi to humanize mAbs to generate sequences the 

way the developers intended to.  

 

In addition to the humanized antibodies above, we sub-cloned the original mouse 

antibodies as well as their therapeutic versions into a p3BNC vector. Heavy chains 

were sub-cloned with human IgG1 CH1 and Fc, light chains were sub-cloned with 

human CL kappa. We decided to clone mouse VH/VL chains with human CH/CL 

because otherwise ELISA experiments would have to be performed with different 

secondary antibodies, making direct comparisons harder.  

 

After sub-cloning we transfected paired heavy and light chain vectors into Expi293F 

cells. We attempted expression of antibodies at least four times before labelling the 

variant as not being able to express. After expression and purification via MabSelect 

column, we ran a thermofluor assay of each purified antibody (See Materials and 

Methods: Thermofluor Assay) at pH7.2 and pH5. The latter assay was performed 

solely to help in assigning unfolding transitions to their antibody domains as 

described previously (Figure 2.2C-D, Figure SC.4-11).51,52 The thermofluor assay 

was performed in six replicates. The results were first derived using the Numpy35 

gradient function (Figure 2.2A-B, Figure SC.12-19) and we then generated 1000 

unfolding curves using statistical bootstrapping. The median apparent melting 

temperature (TM(App)) of the Fab is reported in Table 2.1. 
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Figure 2.6: Overview of thermofluor data analysis and peak assignment. (A) Plot of raw 

thermofluor data is derived using the numpy gradient function (B) to find the inflection points (i.e. 

apparent melting temperatures) at the maxima. Then we perform statistical bootstrapping on these 

datapoints, as well as a measurement of the same antibody at pH5, to obtain the derived melting 

curves at different confidence levels (C, D). Both of these plots help in assigning the peaks to their 

respective domains. For example, it has been reported that IgG CH1 and the Fab shift the most 

when exposed to lower pH buffers. Considering literature values of IgG CH1, we can determine 

that the peak at around 65°C is IgG CH1. The peak at around 80°C is IgG Fc,51 as it does not change 

at lower pH. Lastly, we use the plot in panel (D) to solidify our peak assignment hypothesis. Since 

we are comparing a humanized antibody to its original mouse antibody, we would only expect the 

peak of the Fab to change significantly. This is used as further evidence that the TM(App) of M8a-

3 is 86°C at pH 7.2. 

Unsurprisingly, the therapeutic antibodies all expressed and have a TM(App) of at 

least the value of the original mouse antibody. CDR grafted antibodies only reduced 

the TM(App) for the M8a-3 antibody, however on average CDR grafting reduced the 

TM(App) by 2°C (Table 2.2). The BioPhi web application generated one antibody 

that we were not able to express, but generally performs well, increasing the mean 

TM(App) by 1.2°C. This value is similar to its most closely related Mousify variant 

(OS: OASis Discriminator & Sapiens Map), for which every antibody expressed and 

increased the TM(App) by 1.5°C on average. Both Hu-mAb models did not perform 

well, most antibodies did not express and those that did had a significantly lowered 

TM(App). Lastly, the hybrid model (OH: OASis Discriminator & Hu-mAb Map) 

performed very well on antibodies that did express, on average increasing the 

TM(App) by 5.8°C. However, given that we couldn’t count non-expressed antibodies 

A 
 

B 
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in the calculation of the average temperature difference, gives a false impression that 

the OH model performs better than OS. In fact, if we omitted the Omalizumab OS 

humanized antibody, the average difference would rise to +5.4°C, on par with the 

OH model.  

 

TM(App) (°C) † M T G Bw Hw OS OH HH 

Certolizumab 75.5 80 77 d.n.e. d.n.e. 75.5 86.5 79.5 

Omalizumab 75.5 86 77.5 78* d.n.e. 65 d.n.e. d.n.e. 

Palivizumab 79.5 79.5 80.5 87.5 43 90 78 53 

M8a-3 86 N/A 75.5 78.5 d.n.e. 92 94 d.n.e. 

Mean ΔTM(App) 0 5 -2 1.2 -36.5 1.5 5.8 -11.2 

σ ΔTM(App) 0 4.3 4.9 6.5 0 7.9 5.3 15.3 

Table 2.2: Results of the expression and thermofluor experiments on humanized antibodies. At the 

bottom of the table we are showing the mean difference to the mouse antibody and the biased 

standard deviation of the mean difference. M: Mouse; T: Therapeutic; G: Grafted; Bw: BioPhi 

Web Application; Hw: Hu-mAb Web Application; OS: Mousify OASis Discriminator, Sapiens 

Map; OH: Mousify OASis Discriminator, Hu-mAb Map; HH: Mousify Hu-mAb Discriminator, 

Hu-mAb Map; d.n.e.: did not express; †Apparent melting temperatures are accurate up to ±0.5°C, 
temperature percentiles generated during bootstrapping produced confidence intervals less 
than ±0.5°C, which represents the accuracy of the assay. *Omalizumab “Bw” produced two 
peaks that could be identified as the melting temperature of the Fab, the second peak is at 
74°C±0.5°C. 

After comparing their TM(App), we wanted to investigate the change in binding to an 

antibody’s antigen via quantitative ELISA (See Materials and Methods: ELISA). 

Every ELISA for each antibody/antigen pair was performed in triplicates using the 

same antigen concentration (0.2μg/ml) and the same range of antibody 

concentrations (20nM-0.078pM).  After measuring the ELISA absorption data, we 

first check whether the raw data looks like it could be modelled by a four-parameter 

logistic curve (Figure 2.7A). Then we generated 200 logistic curves fitted using 

statistical bootstrapping on the raw data, from which we evaluated the median EC50 

of each antibody and its 95% confidence interval (Figure 2.2B-D). For clarity, we 

plotted the entire distribution of EC50 data as ECDFs (Figure 2.2B, Figure SC.20). 

For M8a-3 the best performing model was the OS model, which slightly worsens the 

EC50 of the antibody. Its most closely related model Bw, again performed similarly, 

but a bit worse than OS. Both OH and the CDR grafted antibodies performed poorly, 

worsening the EC50 over 45-fold. 
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Figure 2.7: ELISA results of M8a-3 binding to WA1 SARS-CoV-2 RBD. (A) Plot of the raw 

absorbance data from the ELISA vs log-concentration. Each color represents a different 

humanization model. Curve in the plot represents the mean logistic curve fit. (B) Plot of the logistic 

curve fits of different humanization models at the median, the 25th percentile and the 75th percentile. 

Curves generated via statistical bootstrapping from the raw data. (C) Empirical cumulative density 

function (ECDF) plot of the EC50 values calculated from data in panel (B). (D) Table of the EC50 

values calculated, reporting the median, bounds of the 95% confidence level and the ratio between 

the mouse EC50 and the humanized variant EC50. M: Mouse; G: Grafted; Bw: BioPhi Web 

Application; Hw: Hu-mAb Web Application; OS: Mousify OASis Discriminator, Sapiens Map; 

OH: Mousify OASis Discriminator, Hu-mAb Map; HH: Mousify Hu-mAb Discriminator, Hu-

mAb Map; †Lower bound represents the 2.5th percentile of data and the upper bound represents the 

97.5th percentile of data. 

Certolizumab humanized variants (Figure 2.8A-B) generally performed well with 

OH showing the only improvement of EC50 of any of the humanized antibodies in 

this study. For Omalizumab humanized variants (Figure 2.8C-D), the OS antibody 

performed the best, barely changing the EC50 compared to the mouse antibody. 

Combining all the data (Figure 2.8E), we can observe that the OS model performs 

the best overall, with the BioPhi web application model coming in in second place. 

The OH model has too high of a variance to draw any meaningful conclusions, but 

its change in EC50 on the M8a-3 antibody is significant, especially when considering 

the high degree of thermostabilization that the model improved on M8a-3.  

A 
 

B 

C D 



 

 

45 

 

Figure 2.8: ELISA results of Certolizumab and Omalizumab. (A) Logistic curve fits at 50% 

confidence intervals for each expressed humanized variant of Certolizumab. (B) EC50 data 

summary of each humanized variant of Certolizumab. (C) Logistic curve fits at 50% confidence 

intervals for each expressed humanized variant of Omalizumab. (D) EC50 data summary of each 

humanized variant of Omalizumab. (E) Summary of ELISA EC50 data shown as the ratio between 

a humanized variant EC50 and the value for the mouse antibody. Showing the mean and the biased 

standard deviation. M: Mouse; G: Grafted; Bw: BioPhi Web Application; Hw: Hu-mAb Web 

Application; OS: Mousify OASis Discriminator, Sapiens Map; OH: Mousify OASis 

Discriminator, Hu-mAb Map; HH: Mousify Hu-mAb Discriminator, Hu-mAb Map; †Lower bound 

represents the 2.5th percentile of data and the upper bound represents the 97.5th percentile of data. 
*Antibody is polyreactive. 

A 
 

B 

C D 

E 



 

 

46 

The final benchmarking experiment that we performed was a baculovirus prostate-

specific membrane antigen (PSMA) polyreactivity assay (Figure 2.9).53–55  The assay 

is often performed as a quantitative ELISA to obtain a BV score that correlates well 

with pharmacokinetic data.55 However in our case, we were only interested in the 

affinity of humanized antibodies to baculovirus PSMA versus well-known positive 

and negative controls to determine polyreactivity. One humanized antibody variant 

of Omalizumab (OS variant) is striking for its very high polyreactivity. It compares 

to the Fleish antibody, that is known to be highly polyreactive. It is possible that the 

polyreactivity of Omalizumab OS is related to the 10°C decrease in thermostability, 

possibly indicating a change in the structure of the Fab that causes the high 

polyreactivity. The CDR grafted variant of M8a-3 also shows slight polyreactivity, 

being on par in signal with HCI Sap10 antibody, a slightly polyreactive antibody. 

Another M8a-3 antibody (OH variant) is possibly slightly polyreactive as some of 

the data near 1.5-times the inter-quartile range falls within the distribution of the HCI 

Sap10 antibody. No other antibodies variants showed signs of polyreactivity, 

meaning that ML-based antibody humanization models are generally good at 

conserving non-polyreactive properties of antibodies. 

 

ML-based antibody humanization methods seem to struggle the most with generating 

antibodies that express, with seven out of twenty antibodies not expressing after four 

attempts. Notably, the Mousify OASis Discriminator/Sapiens Map model is the only 

model that performs as well as the CDR grafting model in terms of antibody 

expression. However, the Mousify OS model performs better in terms of 

thermostabilization of generated antibodies vs the mouse reference. Interestingly, it 

seems that models using the OASis discriminator perform better than models using 

the Hu-mAb discriminator. Possibly indicating that the 9-mer peptide counting 

metric performs well in correlating with patient ADA and generating stable 

antibodies. This also supports the hypothesis that models good at predicting a metric 

are not necessarily good at generating data that fit the metric. In other words, to make 

an ML-based discriminator that performs well, one needs to have antibody sequence 

generation as part of the training scheme. Due to insufficient data, we cannot yet 

conclude that this trend holds for EC50 data. We have attempted to express two 

different constructs from the literature of RSV Fusion Protein pre-fusion stabilized 

variants with their fusion peptides removed in our own laboratory and with the 

Caltech Protein Expression Center. So far, we have been unable to express this 

protein to use in the Palivizumab variant ELISA, which would complete the 

benchmarking data and allow us to draw conclusions more confidently on the Hu-

mAb discriminator and Hu-mAb map performance. Nevertheless, we believe that the 

Mousify OS model is the best performing model so far when accounting for all four 

metrics. It is the only model that expresses as well as CDR grafted antibodies, while 

performing better in thermostabilization of antibodies. It is also the only model that 

is on par with the change in EC50 with the therapeutic antibodies reference points. 

However, one needs to consider that this model can generate polyreactive antibodies. 

Lastly, we want to discuss the difference in the BioPhi web application model and 
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the Mousify OS model, which are closely related to each other, but show different 

performances in the benchmarks. We believe that at fault is the wrong assumption by 

the developers of BioPhi that transformers trained as a masked language model 

(MLM) can predict high-order epistatic interactions, through the multi-shot greedy 

walk implemented.21 While most MLMs mask multiple tokens during training, the 

prediction is performed on a single masked token at a time conditioned on all other 

tokens.56 Therefore, only first order epistatic interactions can be reasonably expected 

to be accounted for in an MLM. In order to account for higher order interactions, one 

needs to perform multi-token prediction,57 which can vastly increase the 

computational complexity due to combinatorial explosion,58 or specifically embed 

higher order interactions in the model.59 Given that Sapiens is based off of RoBERTa, 

means that no multi-token prediction was performed.21,28,60  

 

In this study we have presented new benchmarking assays for the evaluation of ML-

based humanization models. These benchmarks finally allow comparison of models 

beyond their score correlations to the percentage of patients that form ADAs. We 

have shown that the biggest hurdle for ML-based humanization methods is to 

produce antibodies that express, as well as negatively affecting binding to the target 

antigen. From the data we could conclude that the Mousify model using OASis as a 

discriminator, Sapiens as a map, and a single-shot greedy walk as a mutator module, 

is the best performing model in this set of comparisons. In the future we will be 

completing the data with ELISA data from Palivizumab variants, as well as 

comparing against the AbVAE model that we developed (See Antibody 

Humanization using AbVAE). 
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Figure 2.9: Baculovirus PSMA polyreactivity ELISA results for all expressed humanized 

antibodies. (Top) Full range of absorbance axis. (Bottom) Zoom-in on the absorbance axis to show 

the lower end of absorbances for clarity. M: Mouse; G: Grafted; Bw: BioPhi Web Application; 

Hw: Hu-mAb Web Application; OS: Mousify OASis Discriminator, Sapiens Map; OH: Mousify 

OASis Discriminator, Hu-mAb Map; HH: Mousify Hu-mAb Discriminator, Hu-mAb Map; 
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CTRL: Control; A(+): Fleish antibody positive control; B(+): 45-46m2 positive control; C(+): HCI 

Sap10 positive control; D(-): N6 negative control; E(-): 10-1074 negative control. 
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Generation of Humanized Antibody Libraries using Mousify 

A fundamental attribute of current ML-based antibody humanization models is that 

a query sequence is given as the input and a single “humanized” sequence is returned 

as the output. The user for such a system would be some entity that has a functioning 

non-human monoclonal antibody, and they want to engineer it to give it the highest 

chances of passing through clinical trials and be approved for medical use. Each 

antibody in the pipeline is engineered and then tested for essential properties, such as 

binding, thermostability, propensity to aggregation, and polyreactivity.12 Afterwards, 

a risk assessment is performed on each antibody to figure out if it is worth to push a 

candidate to the pre-clinical development stage. This risk assessment includes the 

immunogenic risk,15,16,61 as well as developability of the candidate.14,62 We would 

argue that the probability of a single engineered antibody that passes the initial 

property tests to also pass all the risk assessments is very low. Now let us consider 

the probability that an ML-based antibody humanization model produces an antibody 

that passes all the essential properties tests. Assuming that the results from our 

experiments are all independently and identically distributed (iid.), we sampled 

10,000 values from the distribution of values from our benchmarking experiments. 

Out of all the generated antibodies, only 9.6% would pass all the tests (Figure SC.21). 

Note: the data sampled is likely not iid. For example, a very unstable antibody is also 

very unlikely to bind to the target antigen specifically. 

 

Having considered that fact, we have designed the Mousify architecture in such a 

way that we can generate libraries form any set of Discriminator and Map modules 

implemented (Figure 2.5). Since the map represents a transition probability 

distribution and the discriminator score a sort of “fitness” of the protein, it seems 

natural to generate libraries via Markov chain monte carlo (MCMC). A Markov chain 

is a process in which a step that is taken in the process is completely independent of 

past and future steps. Similar to the “Greedy Walk” described above, a Markov chain 

is a “walker”, but with the caveat that the probability at arriving at a point θ is 

proportional to the fitness of the point F(θ) (Note: Normally MCMC is discussed as 

a walk over probabilities P(θ), but we adapted this vocabulary to protein fitness 

landscaped).63 In a greedy walk, certain points are not accessible from a given starting 

point. It cannot reach the global maximum if it starts near a local maximum, as the 

greedy-ness would make the walker get stuck at the local maximum. Since in an 

MCMC the walker’s probability of reaching a point is proportional to the fitness of 

the point, the walker can move downhill from a local maximum. The probability of 

doing so is just smaller than remaining in place. Therefore, given enough time, 

MCMC processes will explore the entire fitness landscape, but spending most of its 

time in areas of high fitness.64 This is important when considering applying MCMC 

to ML-based antibody humanization models, the walker will eventually explore all 

possible variants, but will spend most of its time near variants with a high humanness 

score.  
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We have implemented two MCMC modules as a Mutator class, one being a 

Metropolis-Hastings MCMC (MHMC)65 and the other being Simulated Annealing 

MCMC (SAMC).66 Briefly, the implementations work as follows: Mousify proposes 

a mutation by sampling a residue to mutate to another specific residue. The 

probability to sample this position/amino acid pair is taken from the map module’s 

transition probability matrix. This mutant is now the proposed next sequence. Next, 

we calculate the humanness score of the proposed next sequence. We then calculate 

the acceptance ratio A(δ, θ) ∊ [0,1], where θ is the current sequence and δ is the 
proposed next sequence. We then accept this proposed next sequence as the 
next sequence with probability A(δ, θ). This entire implementation works with 

multiprocessing, which means that we simultaneously run a chain for each CPU 

provided by the user. This allows us to explore the protein fitness landscape faster. 

The two modules, MHMC and SAMC, differ by the implementation of the 

acceptance distribution A(δ, θ): 

Metropolis Ratio (MHMC) :       𝐴(𝛿, 𝜃) = 𝑀𝑖𝑛 (1,
𝑃(𝛿)𝑔(𝜃|𝛿)

𝑃(𝜃)𝑔(𝛿|𝜃)
)  

 

Kirkpatrick Function (SAMC):  𝐴(𝛿, 𝜃) = 𝑀𝑖𝑛 (1, 𝑒
−(𝑃(𝛿)−𝑃(𝜃))

𝑇 ) 

 
Where P(x) is the humanness score of the sequence x, g(x|y) is the probability of 

choosing the mutation from x→y, and T is the temperature parameter.  

 

One of the primary methods to optimize MCMC algorithms is through getting the 

mean acceptance ratio to be around 1/3. Empirically, that is the value at which the 

algorithm has an optimal exploration/exploitation ratio to find high-humanness 

sequences efficiently. In this case, efficiently means with the fewest mutations. This 

is a problem for the MHMC method since the mean of the acceptance ratio 

proportional to the square of the standard deviation of the transition probability 

function (A(δ, θ) ~ σ2). The only way to do this in Mousify is to restrict the transition 

probability matrix from the map module. We implemented a parameter that sets all 

probabilities below a user-defined quantile as 0 and re-normalizes the matrix. I.e. if 

the quantile is set to 0.9, then only the top 10% of transitions are considered. Besides 

the target acceptance ratio, we are also looking at getting the average number of 

mutations of the MCMC algorithm to the window of therapeutic antibodies. We 

analyzed the number of mutations that therapeutic antibodies are away from their 

original mouse antibodies using data provided in the Hu-mAb paper.20 We found that 

for heavy chains, the number of mutations in the framework of VH are between 14 

and 39, with a median of 24. Increasing the quantile value in the MHMC algorithm, 

does not greatly change the average number of mutations. In fact, increasing the 

quantile only slightly lowers the average number of mutations, but tightens the 

distribution of mutations around the mean (Figure 2.2), which does not provide us 

with any flexibility on the number of mutations desired. The SAMC algorithm has a 

much more elegant way of reducing the acceptance probability as well as the average 
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mutations, it is controlled by the temperature parameter T (Figure 2.10). We have 

also implemented a temperature annealing algorithm to manage the temperature over 

the course of the run. This allows us to have a high temperature in the warmup of the 

SAMC algorithm, and then lower the temperature once each chain has found its 

optimal exploration area of the fitness landscape. For this reason, we will only be 

using the SAMC algorithm going forward. 

 

 
Figure 2.10: Chain-time vs Hamming distance from parent antibody plot comparisons between 

different MHMC and SAMC configurations. Left column: MHMC Plots. Regardless of the value 

of the quantile parameter, MHMC cannot manage to get the Hamming distance into the desired 

range for a random OAS non-human antibody. Right column: SAMC Plots. The temperature 
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parameter of the Kirkpatrick acceptance distribution allows for fine tuning of the acceptance ratio 

and the Hamming distance to the desired ranges, for a random OAS non-human antibody. Gray 

line: Average Hamming distance from parent for MCMC run. Bottom black line: Lower bound of 

mutations for therapeutic mAb VH. Top black line: Upper bound of mutations for therapeutic mAb 

VH.  

In Figure 2.10, we explored each chain in the SAMC and MCMC runs with a 

different value for the OASis parameter “min_fraction_subjects” (“fraction 

minimum” in Mousify). This parameter controls the strictness of what 9-mer peptide 

is considered to be human. I.e. at a “fraction minimum” of 0.5, only 9-mer peptides 

that occur in at least 50% of human subjects are counted towards an antibody’s 

humanness. While no discernible trend can be seen in Figure 2.10, we were curious 

to see what the distribution of OASis scores for each value of “fraction minimum” 

looks like. In Figure 2.11, we plotted the OASis scores achieved in an SAMC run 

with a temperature of 10-4 and compared it to the OASis score of therapeutic 

antibodies at the same “fraction minimum” threshold. From this we deduced that a 

“fraction minimum” score of 0.15 for an SAMC run best matches the distribution of 

therapeutic mAb OASis scores. 

 

 
Figure 2.11: Boxplot of OASis scores vs Percentile Minimum values in an SAMC Mousify run. 

Percentile minimum was cut-off at < 0.5 for clarity. For plot below the 0.5 cutoff see Figure SC.25. 

Each box represents around 300 data points. 

While our goal is to generate as many antibodies as possible using Mousify, one has 

to consider the cost of a library as well. For example, ordering a library of size 105 

would cost around $30,000 for just the library of one of two chains, if ordered as an 

oligo pool from Twist Biosciences.67 For many academic laboratories, this is 

prohibitively expensive. To overcome this cost constraint, we need to generate a sub-

library that can be synthesized on a single DNA strand using degenerate codons. Sub-

library generation tools such as DeCoDe take a set of sequences and generate N sub-

libraries, where each sub-library can be synthesized in a single process. We attempted 

using DeCoDe but it failed to converge, as reported before.68 In our case, this was 

likely due to the generated libraries being too diverse. A sub-library can only be 



 

 

54 

generated around sequence nodes that the Markov chains pass through multiple 

times.  

 

Our task to bring down the cost of a Mousify library is to reduce the diversity of the 

libraries. The first implementation to reduce diversity is to analyze the data from the 

warm-up run of Mousify Markov chains. After finishing the warm-up, Mousify will 

analyze the distribution of residues at each position and calculate the consensus 

sequence. To make sure the starting sequence is a sequence that “makes sense” 

according to the model, we then find the closest sequence to the consensus sequence 

as the starting point of the second phase of MCMC. The second implementation is to 

reduce the number of sites that can be mutated. Mousify analyzes warmup data to 

rank the positions by the number of mutations accepted. A user can then specify, how 

many of these hotspots to consider for mutation in the second phase of MCMC. These 

library diversity reduction methods are optional for Mousify users, and both diversity 

reduction implementations can be used independently. 

 

Even with these implementations of diversity reduction, DeCoDe still does not 

converge on a solution. In addition, DeCoDe is unpredictable in the time it takes to 

generate a library, which is impractical to use on an HPC where node time is reserved 

ahead of time. To circumvent the time and convergence issues of DeCoDe, we wrote 

a brute-force algorithm to generate libraries where users can define how much time 

to invest into finding a solution. Mousify LibraryMaker takes a sequence registry file 

from Mousify and always returns the best sub-library it could find in the time 

allocated. LibraryMaker first analyzes the sequence registry file for the residue 

distribution at each hotspot. The software then randomly picks a starting point from 

the set of sequences in the library, as well as a random permutation of residues from 

the hotspot distribution. Then in the order sampled, the software checks if adding a 

residue to the sub-library would generate sequences that are elements of the library. 

A slack parameter can allow the user to define how strict the membership of the sub-

library needs to be compared to the library. For example, a slack of 0.1 would mean 

that in each step, 10% of the generated sequences can be outside the library. In our 

experience, this brute-force method can generate libraries of size ~10,000 in 4 hours, 

when run with a 20% slack and Mousify was run with 6 mutational hotspots. Note 

that 10’000 library members per chain, results in a 100,000,000-library size when 

combining light and heavy chains. 
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Figure 2.12: Markov chain time plots showing each chain in a different color versus a library 

metric. Only showing accepted sequences, 32 chains in total. (Top) Chain time versus Hamming 

distance to parent. (Bottom) Chain time versus OASis Identity score. One can observe the end of 

the warmup period at around 200 accepted sequences per chain, after which the diversity restraints 

are added. While diversity severely reduced the Hamming distance, diversity in humanness scores 

is till observed. In total running Mousify in this configuration, generated 750,000 sequences in 72 

hours, of which around 200,000 were accepted. 

We used the SAMC algorithm to produce a library of humanized antibodies based 

on the M8a-3 antibody. From the results of the section “Benchmarks for Antibody 

Humanization”, we concluded that the Mousify OS model is the best performing ML-
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based antibody humanization model so far. Therefore, we used the OASis 

discriminator and the Sapiens map to generate a library of VH of M8a-3. We 

generated 10,000 warmup sequences after which we generated 750,000 sequences, 

where 200,032 sequences were accepted. We used an annealing schedule of T=0.005 

during warmup, T=0.0025 for the first 10,000 sequences and T=0.000001 for the rest 

of the sequences. In total, 81,810 sequences were unique (40.9%) and showed a wide 

range of diversity in OASis scores (Figure 2.12, Figure SC.1). After using 

LibraryMaker with a slack of 20%, we obtained a library of 10,944 humanized M8a-

3 VH domains. Note that a roughly 10,000-member library was our initial target since 

when combined with a VL library of the same size, that would result in a total library 

size of 108, which as large than what can reasonably be transformed69 or explored70 

using yeast surface display. The library had a mutational Hamming distance from 

parent (25-27) just above the humanized therapeutic mAb median (24) and a 

humanization score distribution within the distribution of humanized therapeutic 

mAb scores (Figure 2.12). 

 

To experimentally validate Mousify libraries, we use yeast display of Mousify 

libraries expressed as a Fab, together with fluorescence activated cell sorting 

(FACS).70–72 The latter allows us to roughly evaluate the fitness of a library member 

in a very high-throughput fashion, before validating their fitness using ELISA, 

thermofluor and a polyreactivity assay. Performing yeast display in a conventional 

fashion, that is anchoring a Fab to the surface of a yeast cell via Aga2-Aga1,73 would 

provide us with a non-scalable validation system. Since every sorted cell needs to be 

sequenced, the gene(s) of interest need(s) to be synthesized, followed by subcloning 

into p3BNC, and expression in mammalian cells. These steps are not only very time-

consuming when scaled up to 102 sorted cells, but prohibitively time-consuming and 

expensive when sorting more than 103 cells. Therefore, we adapted a switchable yeast 

display/expression system developed by Van Deventer et al. (Figure 2.13).74 The key 

idea behind the switchable system is the inclusion of an amber stop codon75 before 

the gene of Aga2. Together with a plasmid that includes a constitutively expressed 

suppressor tRNA, as well as an Ome-Tyr-tRNA synthetase, the system can 

incorporate the non-canonical amino acid O-methyltyrosine (OmeY) and lead to 

yeast surface display of the Fab. When OmeY is not added to the yeast media, the 

cells cannot express Aga2 and due to the export signal peptide expressed with the 

Fab, the antibody is secreted by the cells. This allows us to add OmeY to the library 

transformants, perform cell sorting and sort the cells into media that does not contain 

OmeY. Growing the sorted single cells takes a week to express enough antibody for 

downstream validation experiments.  
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Figure 2.13: Yeast display system used in this study to experimentally evaluate Mousify libraries. 

This system is based on the yeast display method described by Van Deventer et al. (2015). The Fab 

is expressed on a dual-promoter (GAL1/10) and each chain of the Fab has its own tag for cell 

sorting. On the strand expressing the heavy chain of the antibody, we added an amber stop codon 

(TAG) before Aga2. A second plasmid contains the constitutively expressed suppressor tRNA and 

the Ome-Tyr-tRNA synthetase, which enables the OmeY incorporation. If OmeY is added to the 

RJY100 media (left), the Fab is displayed on the surface of the yeast cell, due to the successful 

expression of Aga2. If no OmeY is added (right), the Fab is exported and the system can be used 

for antibody expression. Leader: Export signal peptide; *: Amber stop codon. 

After transforming RJY100 yeast cells with the M8a-3 library incorporated into the 

genetic system outlined in Figure 2.13, the cells were grown in media containing 

1mM OmeY to induce yeast display (See Materials and Methods). The cells were 

incubated with biotinylated SARS-CoV-2 RBD , before being stained with dye for 

one hour at room temperature. The original M8a-3 antibody was used as a positive 

control. Since the switchable yeast display/expression system is not entirely efficient, 

only 11.06% of cells had signal in the AF488 (V5-Tag) and AF647 (RBD) channels 

above background. This is slightly lower than the 18% that is reported in the 

literature.76 However, the literature values were measured with scFv’s, as opposed to 

the Fab’s that were displayed in this experiment. Overall, the library display was 

successful, with 1.65% of cells in the double-positive region. Roughly, this would 
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indicate that 15% of the library express and bind RBD, while around 25% of the 

library express but do not show RBD binding above background. 

 

 

 
Figure 2.14: Yeast display results of the Mousify M8a-3 library. (Top) Cell sorting results of the 

Mousify M8a-3 library. In the cell sorting run, 5.7% of cells presented Fabs on their surface above 

background, with 1.65% of cells also binding RBD above background. (Bottom) Cell sorting 

results of the original M8a-3 antibody. Due to inefficiencies in the switchable system, only 11.05% 

of cells were double-positive above background. 
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As of writing, the sorted cells are growing at 30°C without OmeY to obtain enough 

cells for sequencing and are expressing the Fabs. Once we obtain sufficient amounts 

of Fabs, we will validate the sorted cells via Thermofluor, ELISA and the 

polyreactivity assay outlined in the previous section. 

 

We have developed a generalized method to transform any antibody humanization 

model into a model that can generate a library of humanized antibodies, an approach 

can vastly improve the chances of a positive outcome for antibody humanization 

compared to the low chances estimated from our benchmarking experiments (Figure 

SC.21-23). This was achieved by abstracting the way ML-based antibody 

humanization models work and incorporating them into the Mousify framework. 

Mousify is then able to run a Markov chain over the sequence space of humanized 

antibody sequences defined by a discriminator and a map module. Due to the high 

cost of ordering an oligo pool of all generated library members, we sampled a sub-

library of ~10,000 sequences that could be ordered at a reduced cost. If cost is not an 

issue, Mousify can be run without the constraints that aid in generating sub-libraries 

and could potentially result in a higher quality library. We speculate that the method 

outlined in this section would result in multiple humanized and functional antibodies.   
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Antibody Humanization using AbVAE 

The results from the humanized antibody benchmarks have demonstrated that the 

best performing discriminator model is not ML-based, but that adding a ML-based 

map module does help in generating better antibodies (Figure 2.6-7, Figure SC.21-

23. Our main criticism behind the discriminator model developed for Hu-mAb was 

that the model was not trained to generate mAb sequences, only to classify them. 

This makes a model great at distinguishing sequences similar to the ones in the 

dataset, but when asked to generate sequences of a certain class, such a model can 

quickly overextend its capabilities. We were interested in developing a model that is 

on-par in score to ADA correlation with previously published classifiers, but that also 

uses sequence generation as an essential part of training. 

 

We decided that a variational autoencoder model (VAE) would best fit our needs to 

develop a new model for Mousify. A VAE is an unsupervised learning model first 

presented in 2013 by Diederik Kingma and Max Welling for the estimation of 

intractable posteriors in variational Bayes.77 In order to understand VAE’s, we have 

to give a short introduction on autoencoders (AE). AEs are models that take a 

datapoint from a dataset as an input of an encoder and the task is to compress the data 

to a latent space, i.e. an N-dimensional vector space, where N is known as the latent 

dimension. This vector is then passed on to a decoder to recover the information of 

the datapoint from that compressed state (Figure 2.15A). Fundamentally, it is a way 

to compress the information in any arbitrary dataset and be able to recover the data 

within a certain margin of error. The problem with AEs is that the latent space created 

is “unstructured”. For example, we could hypothetically train an AE with images of 

animals and look at the latent vector produced by the image of a dog. If we then 

sample vectors very close-by to the latent vector of the image of a dog, we would 

very likely not get an image of a dog back, but rather an image that is mostly noise. 

In fact, images of different dogs would likely not be represented by vectors in 

proximity to each other, that is what we mean by “unstructured”. The VAE creates a 

structured latent space. In close proximity to images of a dog, we will find other 

images of dogs and even images of dogs that were not in the dataset that the VAE 

generated. VAEs creates this structure in the latent space by adding two new 

properties to the AE (Figure 2.15B). (1) Instead of passing the calculated latent space 

vector, 𝒗, to be decoded, we sample a new vector using the formula 𝑧 =  𝒗 +  𝜀, 

where  𝜀 ~ 𝒩(0, I). The addition of the vector ε sampled from a normal distribution 

ensures that the model is not only capable of reconstructing 𝒗, but all vectors in 

proximity of  𝒗 as the same datapoint. (2) VAEs use two loss functions (See 

Explanation of Common (ML) Software Engineering Terms), a reconstruction loss 

and a Kullback-Leibler divergence (KL divergence) loss. The reconstruction loss 

tells the model how accurately it reconstructed the datapoint and the KL divergence 

loss tells the model how close the sampled datapoint is to a normal distribution (See 

Error! Reference source not found.).78 The seminal paper by Kingma and Welling 

was the beginning of a large wave of generative models from image generation to 3D 

object rendering and more.79–82 
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Figure 2.15: Abstract structure and functioning of an Autoencoder (AE) and a Variational 

Autoencoder (VAE). (A) An AE encoder takes a datapoint, in this case an image of a dog, and 

maps it to a latent space. Usually, the dimension of the latent vector is smaller than the dimension 

of the input embedding. Then the AE decoder decompresses the vector from the latent space and 

reconstructs the image of the dog. The performance of the process is judged by the cross-entropy 

loss between the input image Y and the reconstructed image Ŷ. (B) Similarly, the encoder of a 

VAE compresses the input embedding to a latent vector. However, then the latent vector x is added 

to a sample from a normal distribution 𝒩(0, I). The new latent vector z is decompressed by the 

decoder to reconstruct the image. The performance is calculated by a linear combination of the 

cross-entropy loss and the KL divergence loss. 

VAEs have had a large amount of success in protein ML as well,83–86 with models 

mainly being used for the generation of functional protein sequences. One notable 

recent example comes from Ziegler et al., where the authors used an MSA input for 

a direct coupling analysis (DCA) model87 and a VAE. Together, the latent 

information of the VAE and the DCA were used to create a new latent space which 

captures phylogenetic, function and fitness information of proteins.85 Another 

notable example from Lyu et al.,88 where novel AAVs were generated from a small 

711-sequence dataset, with the help of multihead self-attention models in the 

A 
 

B 
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decoder. The latter’s model structure formed the basis of AbVAE (Figure 2.16).

 
 

Figure 2.16: AbVAE model structure. Protein sequences are embedded as a one hot encoded matrix 

before being passed to the encoder. The 130x21 matrix is downsampled using a series of 1D 

convolutions with kernel size 3, a stride of 2, and “ELU” as the activation function. The latter 1D 

convolutions have the same parameters except that the filter size doubles each time. To extract 

global sequence context, we implemented a ByteNet layer, which consists of a series of 1D 

convolutions and layer normalizations, with one of the convolutions using a higher kernel and 

dilation size (k=5, d=3), with a “GeLU” activation function. The final step in the ByteNet layer is 

to add the input to the layer to the output. Once we obtain the sample from the latent representation 

Z, we pass the vector to the decoder which consists of a series of Up-Block layers. An Up-Block 

layer first performs an inverse 1D convolution with a kernel size of 1 and a stride of 1, which 

conserves the shape of the input. This is followed by an inverse 1D convolution with a kernel size 

of 3 and a stride of 2, which upsamples the data. To maintain the gradient, the input of the Up-

Block is concatenated to the output.  
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Sequences for training were obtained from OAS via OAS C/S, using the following 

post-processing modules: Remove Redundant Sequences, Sequence Length Filter 

(Max. length 130), Non-Canonical Characters Filter, Combine Files, Antibody 

Viability Filter (Filter: “loose”). AbVAE was trained on 592,259 sequences with a 

training/test/validation split of 8:1:1 using the OAS C/S module Data Maker, unless 

specified otherwise. Each sequence was pre-encoded using either a one-hot encoding 

scheme or using ESM2 model t6_8M_UR50D. The model was trained by 

minimizing the objective function using a batch size of 10 and 300 epochs:  

 

𝐿𝑡(𝑺, 𝑿) = − ∑ 𝑺𝑙𝑛(Ŝ) − 𝛽𝑡 ∑ 𝑿 𝑙𝑛 (
𝑿

𝒩(𝟎, 𝑰)
)   

 

Where S is a batch of sequences, Ŝ is the reconstructed batch of sequences, X is the 

latent representation of the batch and βt is the value of the PID controller algorithm 

at time point t, defined by the function: 

 

𝛽𝑡  =  𝑀𝑎𝑥 (𝐾𝑝 𝑒(𝑡)  +  𝐾𝑖  ∑ 𝑒(𝜏)  + 𝐾𝑑  𝚫𝑒(𝑡)  +

𝑡

𝜏=0

 𝛽𝑚𝑖𝑛,  𝛽𝑚𝑎𝑥) 

 

Where 𝑒(𝑡)  =  𝐾𝐿𝑑𝑒𝑠𝑖𝑟𝑒𝑑  −  𝐾𝐿(𝑿𝑡, 𝒩(𝟎, 𝑰)), is the difference between the 

desired KL divergence value and the KL divergence value at time point t, and the 

discrete derivative Δe(t) = e(t) – e(t-1). 

 

The implementation of a PID algorithm to control the contribution of the KL 

divergence error is necessary to prevent KL vanishing during training, which creates 

very poor reconstructions of the data (Figure SC.26). A PID controller algorithm 

applied to VAEs was first reported by Shao et al. to dynamically control the 

contribution of KL divergence to training and achieve a desired KL divergence value 

at the end of training. This is in contrast to previous strategies that set β as a constant, 

which allows no control over the final KL divergence, or to train a separate model to 

train β, which is computationally expensive. Unless specified otherwise, we used the 

following parameters for the PID algorithm:  

βmax = 1, βmin = 10-5, Kp = 10-2, Ki = 10-4, Kd = 10-3 and KLdesired = 0.25 

The model was trained using the Adam optimizer with a learning rate 5∙10-4 and a 

weight decay of 10-4. The learning rate was reduced by a factor of 10 when 

ΔLreconstruction < 0.01. 

 

We evaluated models via four performance metrics: learning curve, reconstruction 

errors, classification performance, and correlation to %ADA. We obtained the 

learning curves from tensorboard by using the “Callbacks” tools from Tensorflow 

(Figure 2.17A, Figure SC.27-28).89 The reconstruction errors were evaluated by 

sampling 25 therapeutic antibodies and plotting the distribution of Hamming 
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distances, as well as BLOSUM62 distances of the original sequences to the 

reconstructed sequences (Figure 2.17B). The inclusion of both the Hamming distance 

and the BLOSUM62 distance allows us to evaluate the difference between the exact 

reconstruction and a similar reconstruction. AbVAE is decent at reconstructing 

antibody sequences with reconstructions being on average 70% accurate, evaluated 

with BLOSUM62. However, AbVAE does not need to be perfectly accurate on the 

entire variable region of an antibody, since during antibody humanization the CDR 

remains conserved. AbVAEs accuracy on framework reconstructions is 76%, while 

only 44% accurate on CDR reconstructions (Figure 2.17B).  

 

As an unsupervised model, we were curious if the model learned any differences 

between species that could help us in creating better humanized antibody sequences. 

This was evaluated by first obtaining the latent representation of test set sequences 

and fitting a principal component analysis (PCA) model with between 2- and 32-

component dimensions (Figure 2.17C). For each species in the test set, we calculated 

the parameters of a normal distribution within every PCA model representation of 

the latent space. We then calculated the Mahalanobis distance of each point in the 

dataset to the center of each species’ normal distribution. The Mahalanobis distance 

of a point x to a multivariate normal distribution 𝒩(𝜇, 𝑆) is defined as: 

 

𝑑𝑀(𝑥, 𝒩) =  √(𝑥 − 𝜇)𝑇𝑆−1(𝑥 − 𝜇) 

 

Where μ is the mean and S the covariance matrix of the distribution. Then we 

calculated the probability of each latent vector belonging to each species’ normal 

distribution by using the fact that the Mahalanobis distance dM is chi-squared (𝜒2) 

distributed: 

 

𝑝𝑠𝑝𝑒𝑐𝑖𝑒𝑠(𝑥, 𝒩𝑠𝑝𝑒𝑐𝑖𝑒𝑠) = 1 − 𝜒𝐷
2 (𝑑𝑀(𝑥, 𝒩)) 

 

Where D is the latent dimension size. Lastly, the humanness score is then calculated 

by using Bayes theorem: 

 

𝑃ℎ𝑢𝑚𝑎𝑛(𝑥)  =  
𝑝ℎ𝑢𝑚𝑎𝑛(𝑥, 𝒩ℎ𝑢𝑚𝑎𝑛)

∑ 𝑝𝑠𝑝𝑒𝑐𝑖𝑒𝑠(𝑥, 𝒩𝑠𝑝𝑒𝑐𝑖𝑒𝑠)𝑠𝑝𝑒𝑐𝑖𝑒𝑠

 

 

We used this score to calculate the classification score (AUROC) for each PCA 

model (Figure SC.1). AbVAE outperforms all other antibody humanization models 

in the classification task of human vs non-human (Table SC.1). However, as stated 

above, classification tasks are not an important metric for antibody humanization. 

Therefore, we calculated the Pearson’s correlation coefficient to the %ADA in 

patients of antibody sequences from the therapeutic antibody sequence dataset 

(Figure 2.17D). For this, the ideal number of PCA dimensions was 22, compared to 

4 dimensions for the classification task. Indicating that %ADA can only be modelled 

with more complex data structures. It is worth noting that modelling each species as 
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a single multivariate normal distribution might not be the ideal way to generate a 

humanness score. We have contemplated using a linear combination of multivariate 

normal distributions to model each species, but we are not sure how to implement a 

distance measurement to the center of a linear combination of normal distributions. 

 

 

 
Figure 2.17: Performance metrics of AbVAE. (A) Learning curve of the total loss per epoch. Large 

jumps in the loss correspond to changes in the learning rate. (B) Reconstruction performance of the 

model calculated via alignment of the input sequence with the reconstructed sequence. Since the 

model can learn that similar amino acids are a valid substitution, we calculated the reconstruction 

performance with a Hamming distance and a BLOSUM62 substitution matrix. (C) Plot of the latent 

dimension, using a PCA model with 2 components, colored by species. Although separation of 

species is visible in this 2D-plot, in higher dimensions these clusters can be connected, or closer to 

each other than they may seem. (D) Correlation of “humanness” score to %ADA, using a PCA 

model with 4 components. The Pearson’s correlation coefficient has a p-value of 9.8∙10-11. 

We attempted to improve the AbVAE model by using a model that makes use of 

ByteNet layers. ByteNet was developed as a model to obtain long-distance 

correlation in convolutional neural networks.90,91 This AbVAE model (AbVAE-

ByteNet) performed similarly on the classification task, with an AUROC score of 

0.982 versus 0.981 for AbVAE. Additionally, this model fared better in the sequence 

reconstruction task with an average reconstruction accuracy of only 74% (SI 

FIGURE), with most of the improvement seen in framework reconstruction (82%). 

However, the correlation of humanness to %ADA was worse as well, with a 

A 
 

B 
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Pearson’s correlation coefficient ρ = -0.33 (Figure 2.18). Interestingly, the best 

correlation coefficient was found using 22 PCA components. At such high 

dimensions, the curse of dimensionality becomes apparent with all scores lying 

between 0.998 and 1 (Figure 2.18D).  

 

 

 
Figure 2.18: Performance of AbVAE-ByteNet. While performing slightly better in reconstruction 

and in classification, it performed worse in correlating humanness score to %ADA. (A) Learning 

curve of the total loss per epoch. (B) Reconstruction performance of the model calculated via 

alignment of the input sequence with the reconstructed sequence. (C) Plot of the latent dimension, 

using a PCA model with 2 components, colored by species. (D) Correlation of “humanness” score 

to %ADA, using a PCA model with 22 components. The Pearson’s correlation coefficient has a p-

value of 4.7∙10-4. 

This poor performance in the key metric of %ADA correlation spurred us to explore 

more informative embeddings to improve the model performance. Due to the wide 

success of ESM in providing more informative protein embeddings,36,41,92 we first 

explored a model trained on ESM embeddings. This new model resulted in a worse 

performance in both reconstruction and correlation, with the correlation coefficient 

being particularly poor (Figure SC.31-32).  

 

While not outperforming other antibody humanization models in terms of humanness 

score correlation to %ADA, we were also interested in developing a model that 

A 
 

B 
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understands the structure of antibody sequences in order to improve the success rate 

of humanized antibody sequences. Additionally, AbVAE forms a good pre-trained 

model, on top of which, more specific models can be trained. One example would be 

to add a regression task to the pre-trained model and directly predicting %ADA or a 

sequence by using therapeutic antibody data and their %ADA as the dataset. While 

this dataset is small (217 sequences), the pre-trained model could add a lot of 

sequence context, making training such a model feasible (Figure 2.19A). 

 
Figure 2.19: Proposed future models making use of the pre-trained AbVAE model presented in this 

thesis. (A) Proposed model to improve humanness correlation to %ADA. In this model we would 

use AbVAE to perform transfer learning on the ADA score prediction task. (B) Proposed model to 

predict scores and reconstruct sequences based on the information of paired antibody sequences.  

Some antibody humanization models independently predict scores for the light chain 

and the heavy chain of an antibody.20,21 This is due to the report in a previous 

publication that claims that VH and VL behave independently when it comes to 

humanization scores, however in the paper this claim is followed by the statement 

“data not shown”.9 Even if the two chains are independent in terms of humanization 

scores, they certainly are not in terms of compatibility when forming a complex.93 

We propose to expand the structure of AbVAE to account for paired antibody chain 

pairing during training. Due to less data availability on OAS for paired antibody 

sequences, one could use the light chain and heavy chain pre-trained AbVAE model 

encoders and concatenate their latent dimension outputs as the input for a paired 

antibody sequence VAE (Figure 2.19B). 

 

Lastly, we want to discuss the potential new avenues that AbVAE could present for 

antibody humanization. While so far mostly presented for its potential as a 

discriminator module, one can imagine AbVAE as a map module as well. In that 

case, a Markov chain would explore the latent space of AbVAE, aiming to minimize 

A 
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the Mahalanobis distance to human sequences. The transition probability matrix at 

any point in the latent space is then extracted at the softmax step in the VAE (Figure 

2.16), which represents the probability distribution of a sequence at that coordinate 

in the latent space.  
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Fast Structure Calculations for Mousify Libraries 

With our focus in Mousify to perform library generations from any machine learning 

model, we were wondering if the performance of large 105-106 libraries could be 

improved by increasing the likelihood of library members producing valid and stable 

antibodies. It is important that this method is very fast. Consider if it only takes one 

second per antibody in a 105-size library, it will add 27 CPU-hours and in a 106-size 

library it will add 11 CPU-days to the workflow. We envisioned two methods to tie 

this validation into the Mousify framework, depending on the time it takes to validate 

each generated antibody sequence. If the structure/thermostability validation works 

on the order of ≤100 seconds, the validation could happen on each worker as soon as 

it accepts a sequence in the Markov Chain. If the validation step takes longer than is 

reasonable to perform on each sequence of the library (i.e. ≥101 seconds), we would 

implement an “evolutionary bottleneck” algorithm. In this case, it is useful to think 

of the individual chains of the Markov Chain as different evolutionary lineages. One 

concurrent process in Mousify would be responsible to perform the validation on the 

evolutionary lineage, instead of the individual antibody sequences. Once warmup is 

complete, the validation process would occasionally probe the predicted 

structure/thermostability of the last sequence in the lineage. If the chain passes the 

test, the chain continues. If it fails, then the chain is forced to remove all sequences 

from its registry until it gets to a point in its lineage where a sequence has passed the 

test and starts over. This method is far more flexible for validation methods that take 

up more compute resources as one can now decide how often the validator probes 

evolutionary lineages depending on how fast it can process single sequences. In this 

part of the Mousify project, I describe the work performed together with Jessie Gan, 

to investigate different protein structure prediction methods on antibodies. We 

decided to study the structural accuracy and computational time of our Thermosurf 

(TS) method against homology modeling and machine learning-based methods. 

Developing a fast and reliable method for computing antibody structures will enable 

us to screen proposed humanized sequences for thermostability and may improve the 

quality of predicted antibody libraries. 

 

In recent years, in silico methods of structure prediction have dramatically increased 

in accuracy and viability to investigate protein properties in the absence of 

experimental structures. Notably, AlphaFold2 (AF2), a machine learning approach 

to structure prediction, has distinguished itself as a near atomic resolution predictor 

given ideal conditions.12,44 However, to structurally validate in silico protein libraries, 

AF2 is not computationally viable for library sizes of 105-106. In the past, many 

structure prediction methods involved searching for the nearest homologous 

sequence for which an experimental structure exists and using it as a template for 

homology modelling.94 The template searching step, calculating a multiple sequence 

alignment (MSA), can be computationally expensive, while the structure prediction 

step is low-cost. This method may be efficient but is inaccurate when the available 

homologs are evolutionarily too distant from the query. The advantage in the case of 

mAb engineering is that the set of homologous sequences to consider is limited to 
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known antibody structures, vastly reducing the computational cost. We aim to 

accelerate the calculation of reliable antibody structures by combining AF2 with the 

classic homology modeling methods for unknown, but closely related, structures. 

Our hypothesis is that homology modeling based on an AF2 template of a highly 

related structure is very similar to an AlphaFold2 structure of the query sequence and 

is orders of magnitudes faster while being indiscernible in thermostability 

calculations. 

 

 
Figure 2.20: Potential implementation of a physical sequence validation model into the Mousify 

model architecture. The physical validation could either act as a second filter to the acceptance step 

of the mutator, or the score of the physical validation could be implemented into the mutators 

algorithm as a linear combination of the discriminator score and the physical score.  

To investigate possible structure prediction methods, we first considered the 

performance of homology modeling (HM), the standard of protein structure 

prediction before machine learning based models, such as AlphaFold2 (AF)44 and 

ESMFold (ESM).36 First, we ran HM structure predictions, in which an MSA against 

sequences of an antibody structure database determines the template structure for a 

given query sequence based on the highest sequence similarity. In HM prediction, 

the major bottleneck in calculation speed originates from the MSA. We calculated 

the root mean squared deviation (RMSD) of a predicted structure’s backbone atoms 

to the experimentally determined crystal structure (Xtal) from the Structural 

Antibody Database (SAbDab).17 HM structure prediction performs with a median 

RMSD of 2.13 Å, compared to the median RMSD of AF of 1.41 Å (Figure 2.21A). 

To compare the relative performance  between different models beyond the 

distribution of RMSDs, we calculated the probabilities of each method 

outperforming another (Figure 2.21C, Fig S4, Fig S5) .We hypothesized that to 
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improve on the speed of AF, but retain its accuracy, we developed a homology 

modeling-based method that uses AF calculated structures as templates and uses a 

classifier to rapidly find the homology modelling template (Supplemental 1). We 

started by clustering all paired sequences in the Observed Antibody Space (OAS) 

database using MMseqs2 down to 421 cluster representatives.95 We then calculated 

AF structures from those representative sequences to provide us with templates. To 

determine the best template for a given structure, we trained simple classifiers to 

identify the best templates for a given query sequence. However, these classifiers 

were not able to capture the complexity of our dataset and could not effectively pair 

query sequences to their best template (Figure SC.33). For the duration of the project, 

we implemented a method based on Clustal Omega to match query sequences to their 

closest template sequence by sequence similarity.96 

 

We developed a random (RD) method to set a baseline benchmark against TS, where 

a random antibody structure from SAbDab was used as the template for any given 

sequence. We were interested in the fitness of a random crystal structure against an 

AF structure for any given sequence. The least accurate method was TS with a 

median RMSD of 2.76 Å (Figure 2.21A). While the RD method has a median RMSD 

of 2.32 Å. While some predictions of RD are comparable to the HM method, in terms 

of probability that one is better than the other, RD only performs better than HM 27% 

of the time (Figure 2.21C).  

 

To explore the qualities of high-performing templates in homology modeling 

methods, we further investigated template sequence similarity compared to method 

accuracy in homology-based methods. We observed that the homology modeling 

based methods demonstrated an inverse correlation between RMSD and percent 

identity to the sequence of the reference structure (Figure 2.21B). We also observed 

that the highest performing method, HM, also had most of its templates between 50-

100% sequence similarity, compared to TS which cannot offer templates over 60% 

sequence similarity as a consequence of the sequence clustering threshold. We sought 

to test machine learning-based models against the homology model-based methods. 

As shown in figure 1, we observed that the machine learning-based models, AF, and 

ESM, had lower median RMSDs compared to homology modeling based methods, 

HM, RD, and TS (Fig. 1A). The lowest median RMSD was 1.41 Å for AF, making 

it the most accurate method while ESM performed only slightly worse at 1.47 Å. 

From our probabilistic analysis to determine how often one model outperforms the 

other, it became apparent that AF was consistently the most accurate method, while 

TS was the lowest performing method.  
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Figure 2.21: Performance of different antibody structure prediction models. (A) Boxplot summary 

of the RMSD of the entire backbone (BB) atoms of the predicted structure to the original query 

crystal (Xtal) structure for each method, with a sample size of 19 query sequences.  (B) RMSD of 

the entire backbone (BB) atoms of the predicted structure to the original query crystal (Xtal) 

structure vs. template sequence percent identity to the query sequence. (C) Probability map of every 

method, showing the probability of one method being more accurate than the other. (D) Boxplot 

summary of the timing benchmarks performed for each viable method. Due to random sampling 

the sample sizes for each method differed over the 100 calculations. HM: Homology Modelling; 

RD: Random Sampling; TS: Thermosurf; AF: Alphafold2; ESM: ESMFold; Sample sizes per 

method is as follows: HM:27; TS:25; AF:26; ESM;22. 

Since predicting structures in a reasonable timeframe is important to determine the 

type of implementation in Mousify, we are not only interested in accuracy, but also 

time. Therefore, we performed timing benchmarks to compare their structure 

prediction time. We found HM to be the fastest method, with a median time of 13.50 

seconds in real time, and AF to be the slowest with 2250 seconds, or approximately 
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37 minutes. TS was the second fastest method with a median time of 38.09 seconds, 

and ESM was next with a median time of 65.28 seconds (Figure 2.21D). 

 

 
Figure 2.22: Model performance by section of the variable region of an antibody. CDR regions are 

more difficult to predict, while framework regions are predicted with similar accuracy across all 

methods. Method RMSDs of predicted structure backbone atoms to query crystal structures are 

shown in boxplots. Antibody structure shown for illustrative purposes only. PDB: 7TRH. 

 

Since some antibody engineering methods can be more interested in the accuracy of 

the complementarity-determining region (CDR) or the framework region, we 

investigated the structural accuracy of predictions of all methods on different sections 

of the antibody (Figure 2.22). We computed RMSDs of the antibody CDR and the 

framework. The CDR region is of great interest due to its essential role in antibody 

function when interacting with the targeted antigen. We observed that on average 

across all methods the CDR regions have less accuracy in structure prediction than 

the whole structure, showing how the variability in known CDRs affects the 

reliability of all methods. We also observed that the methods perform similarly on 

the framework regions.  

 

Considering the dependence of these structure prediction models on current dataset, 

we investigated potential areas for bias in the tested RD and TS methods by exploring 

our template database. The template database of crystal structures from SAbDab 

contained metadata about antigen species and antibody types. We observed that 

Homo Sapiens was the most common type of antigen species, as well as antibody 

origin species (Figure 2.23). We also observed many deposited antibodies that were 

specific to Sars-CoV-2 virus and HIV.  
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Figure 2.23: Bias in the antibody dataset used in this study, that needed to be accounted for during 

benchmarking. The template dataset for homology modeling is skewed towards commonly studied 

antibody targets and types. (A) Sequence distribution of antigen species which antibodies in the 

database target. Antigen species shown were the top 10 most common species. (B) Sequence 

distribution of antibody species of origin. Any antibody that was a fusion of more than one antibody 

species, for example, synthetic constructs, Homo Sapiens and Mus Musculus, or Homo Sapiens 

and Lama Glama, were considered “Chimeric”. 

To account for these biases in our dataset, we ensured our test sequences did not 

reflect the same skew towards commonly studied antibody types. We randomly 

sampled within each antigen species category such that our final test set was less 

likely to have sequences similar to the templates. As suggested in Figure 2.21B, high 

similarity between the test sequences and template sequences generally results in 

higher performances. 

 

In this part of the Mousify project, we compared various structure prediction methods 

to validate large sets of antibody libraries in a high-throughput fashion. We were 

interested in a method that is not only as accurate as possible, but also fast enough to 

be able to validate millions of antibody sequences in an acceptable timeframe. Our 

findings suggest that homology modelling is the most viable method for large 

libraries due to its trade-off between speed and accuracy. If speed is not as important, 

or large amounts of compute capability is available, ESMFold achieves accuracy 

nearly on-par with Alphafold2 while finishing calculations two orders of magnitude 

faster. It is worth noting that in all methods except random sampling and ESMFold, 

the slow step is the calculation of an MSA. Combining that with the rather obvious 

observation that the higher the sequence identity of a template is to its query, the 

more accurate the homology modelling prediction. Therefore, it is not unreasonable 
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to imagine a deep learning method that could quickly pair a query sequence with a 

reference sequence from SAbDab and perform homology modelling to optimize the 

method even further. We also performed further analyses to investigate structural 

accuracy over different antibody components and biases in homology modeling-

based methods. We found that the CDR regions were the most difficult to predict 

across all methods, but methods performed similarly across framework regions. We 

assume that CDRs are often the most important component to predict in antibody 

libraries, therefore it is important that this large discrepancy is considered when 

validating libraries.  
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Computational Details: OAS C/S 

Main.py: 

The user interacts with the main function of OAS C/S (“main.py”), which contains 

the argument parser implemented through python’s argparse module. The parser 

expects that the query is defined either in the command line or through a query file 

(Figure SC.1). Based on the query provided, the program instantiates the following 

objects: 

• DownloadOAS 

• CSVReader 

• FileManager 

• List of PostProcessor 

These objects are then passed to another object, instantiated from the API class, via 

dependency injection. The API class manages the communication between all 

modules by calling methods of the objects passed to it.  

 

The first method called is “get_OAS_files” which first checks whether the query is a 

valid query and then tells DownloadOAS to download the files.  

 

The next method called is “process_folder” which follows the factory pattern, which 

chooses the processing mode. The processing mode can either process each file with 

the CSVReader individually, in bulk, or split by file size. Individually means that 

each downloaded file is processed and then saved in a separate file. In bulk means 

that each downloaded file is processed and saved in a single large file. Splitting the 

processing by file size, processes each downloaded file and merges the results into a 

file until a set file size is achieved. Within this method, files are given a descriptive 

name by the FileManager to better keep track of files.  

 

Then the API calls another factory pattern method to decide what to do with the raw 

files downloaded from OAS. By default, the files are deleted, but a user can choose 

to keep them or to move them to another folder. 

 

Lastly, the API iterates through the list of postprocessors and executes them in the 

order provided. 

 

 

Oasdownload.py: 

This file contains the DownloadOAS class responsible for downloading files from 

OAS. An object instantiated from this class, requires a file 

(“OAS_files_dictionary_paired.json” or “OAS_files_dictionary_unpaired.json”) 

that keeps track of which queries on OAS return which result in the web application. 

When a DownloadOAS object is called, it iterates through the download queries and 
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grabs every file name associated with it. At this step, complex user queries are also 

translated to their simpler equivalents. Then the make_union method, takes the union 

of all sets of file names of the individual queries. Next, the create_url method iterates 

through the file names associated with the full query and creates a list of URLs that 

can later be used to download the files. The list of URLs is packaged into a shell file 

that can be executed via Linux’s “wget”. The shell file is then executed to make a 

“wget” request to OAS and download the files using the download_files method. 

Lastly, the downloaded, compressed files are unpacked by the unpack method and 

given a descriptive name. 

 

Csvreader.py 

The CSVReader class contained in this program reads the files downloaded by 

DownloadOAS and processes them according to the user’s specifications. The 

program opens each file and extracts the metadata stored in the downloaded files 

header as well as the desired column data. CSVReader stores all the data in python 

dictionaries. After processing a file, the dictionary is converted to a pandas dataframe. 

If the processing mode set in the API module is set to “bulk” or “split”, the 

CSVReader will process more files to add to the dictionary. After meeting the 

conditions of the processing mode, the module will pass the dataframe to the 

Filemanager. 

 

Filemanager.py 

The FileManager class is responsible for saving and loading dataframes. The 

methods save_file, load_file can save and load files. We also implemented a python 

magic method to override the addition of Filemanager object to each other to return 

a concatenated dataframe. Another useful method in the Filemanager is the file_size 

method, which returns the size of a file. This is used in “split” mode to tell the API 

when to stop adding files to the CSVReader’s dictionary. 

 

Post_processing.py 

This program defines the PostProcessor abstract class, defining the methods 

load_file, save_file and process.  
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Computational Details: Fast Structure Calculations 

Structure Prediction Methods 

All calculations were run on the Caltech Resnick High Performance Computing 

Center resources, including compute nodes with 32 16-core Intel Skylake CPUs, and 

GPU nodes with 4 Nvidia P100 GPUs each for AlphaFold2 (AF)44 and ESMFold 

(ESM)36 calculations. Dataset clustering was performed with MMseqs2.95 Homology 

modelling was performed with OpenStructure97 and ProMod3.98 ProMod3 can 

superimpose the query sequence on a given template sequence and also construct 

missing loops and minimize structures for the ideal prediction. Machine learning 

classification was performed using scikit-learn python library99 and XGBoost.100 

Structure analyses were performed with MDTraj.101 

 

We tested five different models for accuracy and time. Out of five models, three were 

based on homology modeling. We first performed homology modeling where a 

template for a given query was determined by Clustal Omega via sequence similarity 

(HM). Templates were taken from the Structural Antibody Database, known as 

SAbDab,17 which contains metadata and structures of all antibodies deposited in the 

PDB. We filtered this database for non-redundant antibody structures with both VH 

and VL being represented in the structure.  We also performed a variant of this 

method where templates were randomly determined from the same dataset, instead 

of by sequence similarity (RD). 

 

The TS method implemented a database of AF calculated templates for homology 

modeling. To determine the templates for structure prediction, we filtered the 

Observed Antibody Space database (OAS).18 These were downloaded and processed 

using OAS API. We used redundancy removal and antibody viability post-processors 

to filter sequences. We limited our predictions to heavy chains. We next clustered 

this dataset by sequence similarity using the MMseqs2 software suite.95 We then 

predicted the structure of cluster representatives using Alphafold2 using a model 

trained on data before June 2023.44  Next, given a query sequence, we used Clustal 

Omega to identify the cluster representative that has the highest sequence similarity 

to the query sequence96. The cluster representative’s Alphafold2 structure becomes 

the homology modelling template for the query sequence. We apply the homology 

modeling software ProMod3 to perform the homology modeling step.  

 

We used AF version 2.2.0 installed on the Caltech HPC. We installed ESM from 

source, on pytorch version 1.12 with CUDA enabled on CUDA Toolkit 11.3. 

Apptainer environments for homology modelling, Thermosurf, and Alphafold2 are 

provided on this project’s GitHub repository. All analysis scripts are also included 

for reproducibility. 
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Timing Benchmarks 

We ran timing benchmarks to compare the speed of viable methods for structure 

prediction in thermostability calculations. We wrote a bash script that calls one of the 

structure prediction methods to test, at random, 120 times. This way each method is 

run on the same compute node with the same resources using SLURM. The random 

call to each structure prediction method is important to account for the variability in 

runtime running one function after another. The times were noted using the stdout of 

python which are then written to the SLURM output. Between each call of a structure 

prediction method, the environment was reset or the Apptainer was changed to the 

appropriate one. The output file was parsed after completion of all timing 

benchmarks via a python script.  
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Materials and Methods 

Materials 

Solvents and buffer salts were purchased from Sigma Aldrich, Koptec, Fisher 

Bioreagents and Merck. Media for bacterial expression were purchased from Merck 

Millipore. We used Invitrogen Mix&Go DH5α for plasmid expression and BL21-

DE3 for protein expression. Reagents and media for mammalian cell expression were 

purchased from Gibco. We used Gibco Expi293F cells (donated by the Caltech 

Protein Expression Center) for all mammalian cell transfections. Expi293F cells were 

counted on a Roche Cedex® HiRes Analyzer. Expi293F cells were maintained in an 

Eppendorf CellXpert C170i. Taq DNA polymerase, Dpn1 and NEBuilder® HiFi 

DNA Assembly was obtained from New England BioLabs. Oligonucleotides were 

synthesized by Integrated DNA Technologies. Genes we synthesized by Integrated 

DNA Technologies and Twist Biosciences. DNA libraries were purchased from 

Twist Biosciences. PCR reactions were performed on an Eppendorf Mastercycler 

Gradient. Plasmids were purified using the Zymo Research Zyppy Miniprep Kit or 

the Macherey-Nagel Xtra MidiPlus kit. Agarose gel electrophoresis for DNA 

fragment purification was performed at 90V using TAE as buffer and 1% agarose 

gels (Merck Millipore). Gel excisions from agarose gel DNA electrophoresis were 

processed using the Zymoclean Gel DNA recovery kit. DNA gels were referenced 

against the Goldbio 1kb DNA ladder. Protein and DNA concentrations were 

measured with a Nanodrop ND-1000, for IgGs the Nanodrop was used in the IgG 

mode. Protein expression was verified via SDS-PAGE using the Invitrogen protein 

gel electrophoresis system. We used NuPAGE 4-12% Bis-Tris gels at 200V with 

MES as buffer and SeeBlue Plus2 prestained protein standard as the ladder. SDS-

PAGE gels were stained using InstantBlue® Coomassie Protein Stain (Abcam). 

Proteins were purified using a Cytiva ÄKTA Start protein purification system, using 

either Cytiva MabSelect columns, Cytiva HisTrap HP columns and Cytiva HiTrapQ 

columns. Thermofluor assay was performed on a BioRad CFX 96 Real-Time PCR 

Detection System in BioRad Individual PCR Tubes 8-strip clear, using Biotium 

SYPRO® Orange as dye. ELISA assays were performed in Corning® Costar High 

Binding 96-well plates. Secondary antibody was purchased from Invitrogen. 

Development of ELISA plates were done with 1-Step Ultra TMB ELISA substrate 

solution (Thermo Scientific). Plates were analyzed on an Agilent Biotek Epoch 2 

plate reader. Human recombinant IgE Fc (His-Tag) was purchased from Sino 

Biological. SARS-CoV-2 RBD (WA 1) was a gift from the Bjorkman lab (Caltech). 

Baculovirus prostate-specific membrane antigen (PSMA) was purchased from the 

Caltech Protein Expression Center. 

 

Data Analysis and Visualization 

All data was analyzed using python 3.10 or python 3.11 (depending on the Anaconda 

environment used). Two Anaconda environments were created for data analysis and 

data visualization, “Mousify” (python 3.10) and “Mousify-Holoviews” (python 

3.11), the latter was created due to incompatibility of the newest version of 
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Holoviews with other packages used in the “Mousify” environment. Generally, we 

used Scipy, Scikit-Learn, Pandas and Numpy for data analysis and Holoviews with 

a Bokeh backend for data visuzalization. 

 

Molecular Cloning 

Genes encoding immunoglobulin G (IgG) VH and VL were ordered as gBlocks from 

Integrated DNA Technologies or as a gene fragment from Twist Biosciences. IgG 

CH1, Fc and CLκ were amplified via polymerase chain reaction (PCR) from a p3BNC 

vector, also known as pAbVec2.1, containing an IgG heavy chain or an IgG light 

chain. PCR was performed with the following protocol: 50 μL total volume, 50 ng 

template DNA, 0.5 μM each primer, 0.2 mM dNTPs (NEB), 1 μL Taq Polymerase, 

NEB). Annealing temperatures, determined with Geneious software, were held for 

15 s, while maintaining a ramp of 2 °C/s from the melting temperature (92 °C for 30 

s) to the annealing temperature, followed by elongation and 30 cycles were run to 

obtain product. Fragments were separated via agarose gel electrophoresis and the 

relevant bands were extracted and purified with the Zymoclean Gel DNA Recovery 

Kit (Zymo Research Corp.). For heavy chain assembly, the genes were assembled 

using HiFi DNA Assembly Mix (NEB) into a p3BNC vector, together with a 

fragment containing IgG CH1 and IgG Fc. For light chain assembly, the genes were 

assembled using HiFi DNA Assembly Mix (NEB) into a p3BNC vector, together 

with IgG CLκ. For the assembly of soluble TNF expression plasmid, the gene was 

ordered as a gBlock from Integrated DNA Technologies and subcloned into a pET-

21a vector. Gibson assembly products were then mixed together with CutSmart 

Buffer (NEB) and diluted according to the NEB Dpn1 digest protocol, then 1μL 

Dpn1 restriction enzyme was added and incubated at 37°C for 30 minutes, followed 

by 15 minutes at 80°C. E. coli DH5α Mix&Go Competent Cells (Zymo Research 

Corp.) were transformed with the Dpn1 digested plasmids via the Mix&Go protocol. 

E. coli BL21(DE3) chemically competent cells were transformed with the Dpn1 

digested Gibson assembly products via heat shock. An aliquot of SOC medium 

(750μL) was added, and the cells were incubated at 37°C and 220 rpm for 45 minutes. 

Both strains of transformed cells were plated on LB carbenicillin (LBCarb, 100μg/mL) 

agar plates. Overnight cultures (5-mL LBCarb) were grown at 37°C and 220rpm in 

culture tubes. Plasmids were subsequently isolated using the Zyppy Miniprep Kit 

(Zymo Research Corp.). The assembled plasmids were sequence verified via whole-

plasmid sequencing by Primodium Labs.  

 

Bacterial Protein Expression & Purification of Soluble TNF 

His-tagged, soluble tumor necrosis factor (TNF) was expressed and purified as 

described previously.102 Luria broth (LB, Merck Millipore) with 100μg/mL 

ampicillin in unbaffled Erlenmeyer flasks was inoculated 1% (v/v) with stationary-

phase overnight cultures of E. coli BL21(DE3) cultures and shaken in an Innova 428 

shaker at 180 rpm and 37 °C. At an optical density of 600 (OD600) = 0.8, the cultures 

were chilled on ice for 20 minutes. Protein expression was induced with 1 mM 
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isopropyl β-d-1-thiogalactopyranoside (IPTG). The cultures were shaken at 180 rpm 

and 18°C overnight (18–24 hours). Cells were pelleted via centrifugation at 4000xg 

for 30 minutes at 4°C and the supernatant was discarded. The cell pellet was 

resuspended in Lysis buffer (20mM Tris pH 8.0, 300mM NaCl, 1mM DTT) and 

lysed via sonication on ice. The lysate was centrifuged for 1h at 4000xg at 4°C and 

applied to a HisTrap HP column (Cytiva) equilibrated with wash buffer (20mM Tris 

pH 8.0, 300mM NaCl, 1mM DTT, 50mM imidazole), using an Äkta Start. The 

column was washed with five column volumes of wash buffer. The protein was 

eluted with elution buffer (20mM Tris pH 8.0, 300mM NaCl, 1mM DTT, 400mM 

imidazole). The protein was then buffer exchanged into storage buffer (20mM Tris 

pH 8.0, 300mM NaCl, 1mM DTT) and concentrated using a Merck Amicon Ultra 

10MWCO filter. 

 

Mammalian Protein Expression & Purification 

DNA for mammalian cell expression was obtained by growing E. coli DH5α cells in 

50mL of LBAmp and extracted using the Macherey-Nagel Xtra MidiPlus Kit. 

Expi293F cells were counted and only used if the viable cell count was between 3.5-

6∙106 with a viability of ≥97%. Cells were diluted with Expi293 expression media, 

warmed to 37°C, to a cell count of 3∙106 to total volumes of 10-, 25-, or 50mL. 50mL 

conical tubes (for 10- and 25mL transfections) or 125mL baffled Erlenmeyer flasks 

containing the cell suspensions were capped with AirOTop Sterile Flask Seals and 

shaken at 350rpm/125rpm respectively until the DNA complexation mixture was 

ready to be added. Transfections were performed using 1μg or DNA per mL of 

culture, with 1/3 of the DNA mass coming from the heavy chain plasmid and 2/3 of 

the DNA mass coming from the light chain plasmid. DNA was added to 500μL of 

OPTI-MEM in a 0.22μm Costar Spin-X centrifuge tube filter and spun at 21,000xg 

for 5 minutes. After sterile-filtering the DNA, the mixture was added to a volume of 

OPTI-MEM (See table below). Then Expifectamine was mixed with a volume of 

room temperature OPTI-MEM in a 15mL conical tube, gently inverted three times 

and incubated for three minutes. The DNA-OPTI-MEM mixture was added to the 

Expifectamine-OPTI-MEM mixture, gently inverted seven times and left to incubate 

to complete the complexation reaction. The cells were taken out of the incubator after 

10 minutes have elapsed in the complexation reaction. The DNA was added to the 

cultures after a minimum of 11 minutes and a maximum of 15 minutes, resealed and 

protein was expressed for 96 hours at 37°C, 8% CO2. After expression was 

completed, a 100μL was aliquoted and filtered through a 0.22μm filter and analyzed 

on SDS-PAGE to check for successful expression. If expression was successful, the 

culture was centrifuged at 3000xg for 30 minutes at 4°C and the supernatant was 

subsequently sterile filtered through a 0.22μm filter. The filtered supernatant was 

kept on ice. A Cytiva MabSelect column was equilibrated with wash buffer (20mM 

Sodium Phosphate pH7.2, 150mM NaCl), then the supernatant was loaded onto the 

column. The column was washed with 10 column volumes of wash buffer, then the 

protein was eluted with 5 column volumes of elution buffer (50mM Sodium Citrate 

pH3.2). To the eluted fraction was added 60μL of neutralization buffer (1M Tris 
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pH8.0) per mL of eluted protein volume. Antibodies were concentrated in a Merck 

Amicon Ultra 50MWCO filter. 

 

Transfection 

Volume 

DNA 

Volume 

OPTI-MEM 

(DNA)* 
Expifectamine 

OPTI-MEM 

(Expifectamine) 

10mL 10μL 500μL 28μL 500μL 

25mL 25μL 1.5mL 80μL 1.4mL 

50mL 50μL 3mL 160μL 2.8mL 
*Note: If the DNA volume was more than the listed DNA volume, the amount of OPTI-MEM was 

reduced to account for the excess 

Preparation of Electrocompetent Yeast Cells 

Preparation modified from a previously described protocol.103 Yeast cells were struck 

out on YPD plates (24g/L Agar, 20g/L bacto peptone, 10g/L yeast extract, 2% 

glucose) from a cryogenic stock of RJY100 cells and left to grow at 30°C for two 

days. A single colony was picked to inoculate 5mL of YPD (20g/L bacto peptone, 

10g/L yeast extract, 2% glucose) in a culture tube and grown in a culture tube at 30°C 

and 220 rpm. The following day, the cells were passaged by adding 100μL of the 

previous days culture to a fresh aliquot of 5mL YPD in a culture tube. Cells were left 

to grow at 30°C and 220 rpm, overnight. The next day, the culture was diluted to an 

OD600 of 0.2 in 50mL YPD. Cells were grown until an OD600 of 1.5 was reached and 

subsequently pelleted at 2000xg for 5 minutes. The supernatant was discarded, and 

the cell pellet was resuspended in 25mL of sterile filtered 100mM lithium acetate by 

vortexing. Then 250μL of sterile filtered 1M DTT was added to the tube. The cap on 

the 50mL conical tube cap was loosened to ensure oxygenation and the cells were 

incubated at 30°C at 220 rpm for 10 minutes. After this step, the cells will always be 

kept on ice for the remainder of the preparation. The cells were pelleted at 2000xg 

for 5 minutes at 4°C and resuspended with 25mL of cold, sterile ddH2O via vortexing. 

The cells were then again pelleted at 2000xg for 5 minutes at 4°C and resuspended 

with 10mL cold, sterile ddH2O via vortexing. The electrocompetent cells were 

aliquoted to 0.5mL and immediately used. 

 

Transformation of RJY100 Cells via Electroporation 

250μL of electrocompetent cells were mixed with 10μL library DNA (30ng of 

library, 123ng of SP-GAL cassette, 133ng of pAB01 vector), 10μL of M8a-3 DNA 

(30ng of M8a-3 VH fragment, 123ng of SP-GAL cassette, 133ng of pAB01 vector) 

or 10μL of empty vector DNA (123ng of SP-GAL cassette, 133ng of pAB01 vector). 

Note: pAB01 vector is a derivative of pJC014 vector. Cells were then transferred to 

a prechilled 2mm electroporation cuvette using a pipette. Before electroporating the 

cells, the outside of the cuvette was wiped dry. The cuvette was placed in a BioRad 

Gene Pulser XCell and shocked using a square wave protocol with 500V, one 15ms 

pulse. Immediately afterwards, 1mL YPD was added to the electroporated cells and 
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mixed by pipetting up and down. The contents of the cuvette were added to a culture 

tube and incubated at 30°C without shaking for 1h. Aliquoted 10μL of the 

electroporated cells and diluted them to 1000x, 10’000x, 100’000x, 1’000’000x, 

10’000’000x, 100’000’000x to determine the transformation efficiency. The diluted 

mixtures were plated on warm SDCAA plates (5.4g/L Na2HPO4, 8.56g/L 

NaH2PO4∙H2O, 182g/L sorbitol, 20g/L dextrose, 6.7g/L Difco yeast nitrogen base, 

5g bacto casamino acids, 15g/L agar) and incubated for three days at 30°C.104 The 

rest of the cells were pelted at 900xg for 5 minutes and resuspended in 5mL selection 

media and grown overnight at 30°C, 220rpm. The electroporated cells were passaged 

by diluting the overnight culture to OD600 of 1.0 and grown again overnight. 

 

Thermofluor Assay 

The assay was performed as described previously.105,106 Each antibody was diluted 

to 5μM in PBS pH 7.2 and 45μL were added to six wells of an 8-well optically clear 

PCR strip. The two remaining wells were filled with 45μL of PBS pH 7.2. SYPRO 

orange master stock was diluted from 5000x to 200x and 5μL was added to each 

sample. Each tube was mixed by flicking and briefly centrifuged to ensure all the 

liquid is at the bottom of the tube. The strips were loaded on a BioRad CFX 96 Real-

Time PCR Detection System. The protocol ran in scan mode “FRET” with an 

“Unknown” sample defined for each well. A run is started at 25°C and every 30 

seconds the temperature is incremented by 0.5°C until a temperature of 99°C is 

reached, then the sample is cooled down to 25°C again. Data was analyzed and 

visualized using a custom python script (See GitHub repository for details). 

 

ELISA 

To each well of a 96-well clear flat-bottom high-binding microplate was added 75μL 

of 0.2μg/mL antigen in PBS pH 7.2 (M8a-3 derivatives: SARS-CoV-2 WA1 RBD; 

Certolizumab derivatives: Soluble Human TNF; Omalizumab derivatives: IgE Fc) 

and was incubated overnight at 4°C. The next day, the antigen solution was discarded, 

and the plate was washed three times with 200μL of PT solution (0.1% Tween-20 in 

PBS pH 7.2), thoroughly discarding the solution between each wash. The plate was 

blocked by adding 150μL blocking solution (3% BSA in PT solution) to each well 

and incubated at room temperature, covered. After 1h, the blocking solution was 

discarded thoroughly. Purified antibodies were diluted in blocking solution to the 

following concentrations: 20nM, 10nM, 5nM, 2.5nM, 1.25nM, 0.625nM, 0.313nM, 

0.078nM, then diluting 10-fold, 2nM, 1nM, 0.5nM, 0.25nM, 0.125nM, 0.063nM, 

0.031nM, 0.008nM, then diluting 10-fold again, 20pM, 10pM, 5pM, 2.5pM, 1.25pM, 

0.625pM, 0.313pM, 0.078pM. Then 75μL of each antibody dilution was added to a 

well and incubated for 90 minutes at room temperature, covered. During this 

incubation period, Ultra TMB ELISA substrate solution was transferred to a 50mL 

conical tube wrapped in aluminum foil to shield from light and left to warm up to 

room temperature in a closed drawer to further shield from light. The antibody 

solutions were discarded, and the plate was washed three times with 200μL of PT 
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solution, thoroughly discarding the solution between each wash. Secondary antibody 

(Goat anti-human IgG Fc HRP fusion protein) was diluted 1000-fold in blocking 

solution and 75μL was added to each well. The plate was again incubated for 1h at 

room temperature, covered. The secondary antibody solution was discarded, and the 

plate was washed three times with 200μL of PT solution (0.1% Tween-20 in PBS pH 

7.2), thoroughly discarding the solution between each wash. To each well, 75μL of 

Ultra TMB ELISA substrate solution was added and the plate was left to develop for 

7 minutes and 30 seconds. The reaction was quenched by adding 75μL of 1M HCl in 

each well. The ELISA was analyzed using an Agilent Biotek Epoch 2 plate reader by 

measuring the absorbance at 450nm. Data was analyzed and visualized using a 

custom python script (See GitHub repository for details). 

 

Baculovirus PSMA Polyreactivity Assay 

100μL of baculovirus prostate-specific membrane antigen (PSMA)107 was diluted in 

9.9mL of 100mM sodium bicarbonate solution pH 9.6. The mixture was gently 

mixed by inversion in a 15mL conical tube until the PSMA was completely 

suspended in solution. 75μL of the PSMA suspension was added to each well of a 

96-well clear flat-bottom high-binding microplate, covered with a pierceable seal foil 

and stored at 4°C over night. The next day, plates were washed three times with 

200μL phosphate buffered saline (PBS) pH 7.2. Plates were blocked by adding 75μL 

of blocking solution (0.5% by weight of bovine serum albumin in PBS) and incubated 

at room temperature, covered, for one hour. Humanized monoclonal antibodies and 

controls were diluted to 1μg/mL in blocking solution. After thoroughly removing the 

blocking solution from the microplates, 75μL of antibodies were added to a 

respective well with four replicates per antibody, plus eight wells with only blocking 

solution as a background measurement. The solution was incubated in the plates at 

room temperature, covered, for 90 minutes. During this incubation period, Ultra 

TMB ELISA substrate solution was transferred to a 50mL conical tube wrapped in 

aluminum foil to shield from light and left to warm up to room temperature in a closed 

drawer to further shield from light. After thoroughly removing the solution, the plates 

were washed three times with 200μL PBS pH 7.2. Secondary antibody (Goat anti-

human IgG Fc antibody HRP fusion protein) was diluted to 1μg/mL in blocking 

solution. 75μL of secondary antibody solution was added to each well and incubated 

in the plates at room temperature, covered, for one hour. After thoroughly removing 

the solution, the plates were washed three times with 200μL PBS pH 7.2. To develop 

the polyreactivity assay, 75μL of Ultra TMB ELISA substrate solution was added to 

each well and left to develop for 7 minutes and 30 seconds, after which 75μL of 1M 

HCl was added to each well to quench the reaction. Plates were analyzed with an 

Agilent Biotek Epoch 2 plate reader. The resulting CSV files were then analyzed with 

python scripts detailed in the section “Data Analysis and Visualization”. 

Positive Controls: Fleish antibody, 45-46m2,108 HCI Sap10. 

Negative Controls: N6,109 10-1074.110  
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C h a p t e r  3  

DEVELOPING A SCALABLE ENGINEERING PLATFROM FOR 

THE BIOELECTROCATALYTIC REDUCTION OF N2 TO 

AMMONIA USING NITROGENASE 

Abstract  

Nature balances ammonia production and consumption in a highly efficient manner. 

Industrial nitrogen fixation processes, however, dramatically disrupt this balance, 

putting a heavy burden on the environment and rendering its long-term usage 

unsustainable. With the growing urgency of achieving sustainable and 

environmentally friendly industrial processes, the flaws of industrial nitrogen 

fixation, the process of reacting N2 with H2 to produce ammonia (NH3), become 

alarmingly apparent: It consumes ~5% of the global supply of natural gas, makes up 

~3% of global CO2 emissions and consumes ~1% of the global power supply. 

Nevertheless, the importance of industrial nitrogen fixation is hard to overstate. 

Before the 20th century humans relied on the enzyme nitrogenase, native to some 

bacteria and archaea, animal waste or natural saltpeter deposits to fertilize soil, none 

of which could keep up with global population growth. In 1913, the Haber-Bosch 

process revolutionized agriculture and caused an unprecedented population boom by 

providing a way of synthesizing the fertilizer NH3 at industrial scale. Today, around 

230 megatons of NH3 is produced per year via the Haber-Bosch process. 

Consequently, nearly 50% of the nitrogen found in human tissues originates from an 

energy-intensive process that requires the use of fossil fuels. 

 

In this chapter, we discuss establishing an interdisciplinary research project with a 

translational focus to possibly supplant the Haber-Bosch process. We propose 

engineering nitrogenase, a protein complex that catalyzes the reduction of H+ and N2 

to produce NH3, for its use in a bioelectrocatalytic system, that is, a system where 

enzymes catalyze a redox reaction at an electrode. We present the early efforts in 

establishing the project, describing the engineering goals and the screening methods. 

Engineering nitrogenase to produce ammonia in an electrified reactor could provide 

an economically and ecologically viable alternative to the Haber-Bosch process, 

taking humanity a step closer to sustainable agricultural practices.  
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The Human and Environmental Impact of the Haber-Bosch Process 

With the growing urgency of achieving sustainable and environmentally friendly 

industrial processes, the flaws of industrial nitrogen fixation, the process of reacting 

N2 with H2 to produce ammonia (NH3), become alarmingly apparent:1 It consumes 

~5% of the global supply of natural gas,2 makes up ~3% of global CO2 emissions1,3 

and consumes ~1% of the global power supply.2-4 The ammonia produced from this 

process is largely used to fertilize soil for food production, which makes industrial 

nitrogen fixation a process of global importance as 40-60% of global food production 

depends on fertilization with ammonia. Effectively, a single chemical process, the 

Haber-Bosch process, is responsible for 90% of global ammonia production.5,6 

Before the 20th century humans relied on the enzyme nitrogenase, native to some 

bacteria and archaea, animal waste or natural saltpeter deposits to fertilize soil, none 

of which could keep up with the global population growth.4 In 1913, the Haber-Bosch 

process revolutionized agriculture and caused an unprecedented population boom by 

providing a way of synthesizing the fertilizer NH3 at industrial scale.2,4,7 Today, 

around 230 megatons of NH3 is produced per year via the Haber-Bosch process.8,9 

Consequently, nearly 50% of the nitrogen found in human tissues is tied to an energy-

intensive process that requires the use of fossil fuels.2,4,9  

 

Even after more than 100 years, the Haber-Bosch process is still the most widely used 

synthesis method for ammonia.9 In this process, N2 gas is reduced to NH3 using H2 

gas: 

 

 𝑁2(𝑔) +  3𝐻2(𝑔) →  2𝑁𝐻3(𝑙),    𝐸0 = 0.057 

 

The high energy consumption is necessary to maintain the high temperature and 

pressure of ~450°C and 200 atm.10 One of the principal reasons for the high CO2 

emissions of the Haber-Bosch process is due to the hydrogen production method. The 

most economical pathway for H2 production uses natural gas via steam methane 

reforming (SMR), followed by the water-gas shift reaction, which under ideal 

conditions produces one molecule of CO2 per four molecules of H2.
9 Much of the 

focus in developing a greener ammonia production process is to decrease the energy 

consumption by moving to less extreme conditions and to find an alternative method 

for producing hydrogen. Sustainably producing ammonia using a hydrogen gas 

dependent approach requires finding a green approach to hydrogen gas production 

that is low-cost in order to be competitive with SMR or coal gasification. However, 

there is currently no cost competitive hydrogen synthesis approach that does not use 

natural gas. The next best alternative, water electrolysis, consumes large amounts of 

energy and requires 9 tons of preprocessed high-purity water per ton of hydrogen, 

which makes this process too costly in all but very niche applications.9 Producing 

ammonia using hydrogen gas directly adds an extra dimension of problems to solve 
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in order to make it sustainable before considering green ammonia synthesis processes 

themselves. 

 

Roughly 80% of the ammonia produced in the Haber-Bosch process is used for crop 

fertilization.11 As agriculture is largely decentralized, a high transportation cost is 

incurred when ammonia is produced in a centralized fashion as in the Haber-Bosch 

process.7,12 The fertilizer is liquified at high pressure in its anhydrous form for 

transportation. This highly concentrated ammonia is toxic to humans and the 

environment. It is then either diluted for application on fields or injected at high 

pressure into the soil. Ammonia overuse for crop cultivation caused approximately 

25 thousand deaths globally in 2012.13 An alternative, low-concentration ammonia 

synthesis process where production is performed at a farm or highly distributed 

throughout agricultural regions can reduce fertilizer overuse and mitigate the 

environmental impact of ammonia toxicity as well as reduce transportation cost both 

economically and environmentally.14 While such a process would be dependent on 

the local price of electricity, the current cost of ammonia is mostly dependent on the 

price of natural gas, a fossil fuel whose supply should drop by 65% by 2050 if the 

goals of the Paris Agreement are achieved.15,16 Since centralized anhydrous ammonia 

production is not strictly necessary for agricultural applications, we believe that a 

small to medium scale aqueous process can have a significant impact towards 

achieving sustainable agricultural practices. 
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A Brief History of Nitrogenase 

Before the dawn of the 20th century, humans were heavily restricted in the supply of 

nitrogen, mainly for the production of fertilizer and gun powder.17,18 There were only 

a few ways of obtaining nitrogen for these purposes, collection of manure and night 

soil,18 mining mineral nitrogen deposits or guano,19 and creative usage of companion 

planting.20 With the exception of some mineral deposits, all of the nitrogen sources 

above can be traced back to a single enzyme. Evidence suggests that organic, 

nitrogen-rich matter was deposited 2.5 billion years ago, around 50 million years 

before the earliest signs of rising atmospheric O2 levels,21 suggesting that the enzyme 

nitrogenase evolved before the advent of photosynthesis. While photosynthetic 

protein complexes eventually found themselves in eukaryotic organisms, as far as we 

know, nitrogenase only evolved in archaea and bacteria.  

 

The scientific advances since the start of the industrial revolution have been 

responsible for an unprecedented boom in population and has increased the quality 

of life throughout the world. The economic growth that these technologies brought 

with them came to an impasse at the turn of the 20th century, as feeding the growing 

world population would only be possible by fertilizing crops with scarce sources of 

nitrogen, while also needing nitrogen to produce explosives. Between the 1820s and 

1860s, all 12.5 million tons of guano were mined off the Chincha island in Peru. In 

1879, the “Nitrate War” between Bolivia, Chile and Peru was fought over the geo-

strategically important saltpeter deposits in the Atacama desert.22 From the late 18th 

century onwards, chemists such as Georg Friedrich Hildebrandt attempted to 

synthesize ammonia, ushering in a century-long quest to achieve industrial-scale 

ammonia production.23 The Haber-Bosch process solved the nitrogen scarcity 

problem and ushering a new era of food safety. Today, we find ourselves again at an 

impasse created by humanity’s progress. This time the very technology that have 

carried humanity towards an era of prosperity is partially responsible for a climate 

crisis that risks undoing much of the progress made in the past 250 years.17 For 

decades, researchers have attempted to dethrone the Haber-Bosch process9 and 

replace it with a sustainable way to produce ammonia but have so far been 

unsuccessful.  

 

One often proposed solution to the ammonia fertilizer production problem, is to go 

back to the roots of nitrogen fixation and circumventing synthetic ammonia 

completely. Inspired by the root nodules of legumes in which a symbiotic relationship 

with nitrogen fixing bacteria provides the plant with fixated nitrogen, plant 

biotechnologists have attempted to either replicate the root nodules in different plants 

or to express nitrogenase in plant cells. Starting in the latter half of the 20th century, 

this unachieved quest is considered the holy grail of plant biotechnology.24 At the 

same time, biochemist and biophysicist became interested in the unique properties of 

nitrogenase, starting a journey of nitrogenase discoveries that lasts to this day.  

The prokaryotic enzyme nitrogenase is a two-protein component system (Figure 3.1) 

that catalyzes the reduction of N2 to ammonia coupled to the hydrolysis of ATP:25  



 

 

98 

 

               𝑁2 + 8𝐻+ + 8𝑒− + 16𝐴𝑇𝑃 → 2𝑁𝐻3 + 𝐻2 + 16𝐴𝐷𝑃 + 16𝑃𝑖  

 

This equation holds under the “standard” model, but other ratios of NH3 to H2 

production and ATP consumption have been observed.26 The protein complex 

catalyzing the reaction is made up of the Fe-protein, an ATPase responsible 

transferring electrons to the second component, the MoFe-protein, which contains 

the active site that reduces N2 to ammonia. The full and detailed mechanism of 

nitrogenase is still unknown despite decades of effort to deduce it, but broadly the 

two proteins interact in four steps to perform the reduction (Figure 2A).26 The active 

site of ammonia production contains a highly unique cofactor called FeMoco (Figure 

3.1), whose structure was only recently elucidated to have the elemental composition 

[Mo:7Fe:9S:C] and which contains a spectroscopically elusive central C4- carbide.27 

The MoFe-protein and its cofactor also suffer from two known mechanisms of 

permanent deactivation, one oxygen dependent25 and one pH- and turnover 

dependent.28 Additionally, nitrogenase is dependent on ferredoxin/flavodoxin to 

reduce the Fe-protein and it is dependent on ATP hydrolysis to transfer electrons to 

FeMoco.26  
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Figure 3.1: Structure of the nitrogenase complex (PDB ID: 1N2C) and overview of mechanism. 

(Top) The complex is composed of two main protein chains, the Fe-protein and the MoFe-protein. 

The Fe-protein is an ATPase that contains a [4Fe:4S] cluster. Through ATP hydrolysis, the protein 

is responsible for transferring electrons to the MoFe-protein. The MoFe-protein is a heterotetramer 

made up of two NifK and two NifD subunits and contains the active site of N2 reduction. In the 

interface between NifK and NifD lies the [8Fe:7S] cluster which acts as an intermediate to transfer 

electrons from the Fe-protein to FeMoco. FeMoco (top right box, PDB ID: 3U7Q) is a unique 

cofactor containing a molybdenum atom and a central carbide (formally C4-). The cofactor is the 

active site of N2 reduction. (Bottom) In vivo nitrogenase mechanism. I: Fe-protein with two ATP 

bound, forms a complex with the MoFe-protein. II: ATP is hydrolyzed by the Fe-protein and 

initiates the electron transfer from the [4Fe:4S] cluster to the FeMoco through the [8Fe:7S] cluster. 

III: Fe-protein dissociates from the MoFe-protein, releases ADP and is re-reduced by 

ferrodoxin/flavodoxin. IV: The previous steps repeat until sufficient electrons have been 

transferred to FeMoco to reduce N2 to NH3. (Figures adapted from Einsle and Rees 2020) 
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Electrochemical Approaches to Supplant the Haber-Bosch Process 

Even after more than 100 years, the Haber-Bosch process is still the most widely used 

synthesis method for ammonia.9 In this process, N2 gas is reduced to NH3 using H2 

gas: 

 

 𝑁2(𝑔) +  3𝐻2(𝑔) →  2𝑁𝐻3(𝑙),    𝐸0 = 0.057𝑉 

 

 

 

 

  

The high energy consumption is necessary to maintain the high temperature and 

pressure of ~450°C and 200 atm.10 One of the principal reasons for the high CO2 

emissions of the Haber-Bosch process is due to the hydrogen production method. The 

most economical pathway for H2 production uses natural gas via steam methane 

reforming (SMR), followed by the water-gas shift reaction, which under ideal 

conditions produces one molecule of CO2 per four molecules of H2.
9 Much of the 

focus in developing a greener ammonia production process is to decrease the energy 

consumption by moving to less extreme conditions and to find an alternative method 

for producing hydrogen. Sustainably producing ammonia using a hydrogen gas 

dependent approach requires finding a green approach to hydrogen gas production 

that is low-cost in order to be competitive with SMR or coal gasification. However, 

there is currently no cost competitive hydrogen synthesis approach that does not use 

natural gas. The next best alternative, water electrolysis, consumes large amounts of 

energy and requires 9 tons of preprocessed high-purity water per ton of hydrogen, 

which makes this process too costly in all but very niche applications.9 Producing 

ammonia using hydrogen gas directly adds an extra dimension of problems to solve 

in order to make it sustainable before considering green ammonia synthesis processes 

themselves. 

 

A more direct approach to solving the green ammonia problem is to produce it 

electrochemically, which produces hydrogen in situ on a platinum anode from water:9 

 

                𝑁2(𝑔) + 3𝐻2𝑂(𝑙)  → 2𝑁𝐻3(𝑙) +  
3

2
𝑂2(𝑔),    𝐸0 =  −1.164𝑉 

 

Although a variety of temperature, pressure, and electrical conditions exist in this 

approach, the electrochemical synthesis methods can broadly be categorized into 

low-, intermediate-, and high-temperature processes. Among these, the low-

temperature processes usually bring lower capital expenditures making them more 

competitive, while also reducing the environmental impact by reducing its energy 

intensity. Compared to the Haber-Bosch process, the electrochemical approach can 

boast higher efficiency and is more suitable at small and medium scale production,9 

ideal for a decentralized approach to ammonia synthesis. Although using inorganic 
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electrocatalysts for ammonia production can be efficient, they are not necessarily 

truly green technologies. Many of the proposed catalysts use metals such as 

ruthenium, vanadium, iridium, and lithium among others which are environmentally 

toxic either in their nature and/or through their production processes.29-32 There are 

promising electrochemical approaches that utilize non-toxic metals such as iron, but 

their per-electron efficiency (faraday efficiency) is under 2% under normal 

conditions.33,34 Such low faraday efficiencies lead to higher energy requirements per 

unit of ammonia produced. Ideally, an approach to making ammonia should have 

high faraday efficiency, a low carbon footprint by utilizing mild reaction conditions 

and be non-toxic to the environment.  

 

While many studies aiming to find a green catalyst for ammonia production have 

taken inspiration from nature’s solution to the problem, the Minteer lab took 

inspiration from electrocatalytic ammonia cells to achieve the first bioelectrocatalytic 

ammonia synthesis using nitrogenase.3 In 2010, Roth et al., showed through 

covalently linking a ruthenium catalyst to the MoFe-protein that substrate reduction 

could occur independent of the Fe-protein and ATP hydrolysis.35 The first attempt at 

bioelectrocatalytic reduction of N2 by Milton et al. used ATP and H2 as the energy 

source which generated low amounts of electricity while producing ~0.7 nmol NH3 

per nmol MoFe-protein per hour.3 In 2020, Lee et al. decoupled the reaction from 

ATP and H2 by using a cobaltocene modified polymer to transfer electrons to the 

MoFe-protein directly as has been demonstrated by Roth et al.36 This setup improved 

the yield to ~140 nmol NH3 per nmol MoFe-protein per hour and has a faraday 

efficiency of ~45%. While a remarkable feat, the lifetime of the catalyst in the reactor 

is at best a day10 (and at worst one hour36) which makes this technology not 

competitive with traditional chemical catalysts. While the Minteer lab focused on the 

engineering of the reactor, the protein employed is the wild type nitrogenase of 

Azotobacter vinelandii. Since nitrogenase has been optimized via evolution to work 

inside its host cell, the enzyme is not optimized for a bioelectrocatalytic system.12 

However, we can use nature’s mechanism to incrementally optimize properties of 

protein sequences via directed evolution. This places biocatalysts in a unique position 

compared to other catalysts because there is a direct iterative process with which 

enzyme sequences can be optimized.37 Using a biocatalyst would not only be able to 

achieve the goal of green ammonia production, it also has a variety of other 

advantages that cannot be easily achieved using inorganic catalysts. Being produced 

by bacteria found in most soils, in water and on certain plant roots, nitrogenase is 

inherently benign to the environment. The individual components used to produce 

nitrogenase are recyclable; culture media, cell pellets, and the enzyme itself can be 

recycled to produce more nitrogenase or be used in other biological processes.38  
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Technoeconomic Analysis and Engineering Goals 

In this section we will outline the engineering goals of this project by performing a 

technoeconomic analysis. We are not only seeking to engineer nitrogenase for the 

sake of scientific advancement, but we are fundamentally interested in performing 

translational research and producing a nitrogenase that can benefit the world at large. 

To do this, we need to set realistic engineering goals which reflect at what point the 

technology could be used in a non-laboratory setting. First, we would want to focus 

on the competitiveness of the technology purely in terms of engineering goals and 

not factoring in production cost and logistics. To achieve some sort of 

competitiveness, the catalyst needs to produce ammonia quickly enough to provide 

a farm with enough fertilizer for a year within that same year. According to the 

USDA,39 the average farm in the US has around 445 acres of land, of which a third 

is cropland harvested in a year. Certain crops such as soybeans (~25% of crop land) 

do not need to be fertilized or only need to be fertilized in certain conditions such as 

corn (~30% of crop land). The median farm has around 100 acres of land. We will 

use both the average and the median farm for our calculations (100 and 22 fertilized 

acres respectively).40 The amount of ammonia applied to a field can vary depending 

on the yield of the crop, with high-yielding crops needing more fertilizer. For 

simplicity, we will divide the necessary anhydrous ammonia per acre into three 

categories: Low yield with 64 kg per acre, medium yield with 91 kg per acre, and 

high yield with 136 kg per acre.41 In our calculation, we multiple this number with 

the respective acreage of the average and median farm. Since our plan is to use solar 

energy to power the reactor and on average the US sees 205 days of sunshine, we 

assume need to produce the ammonia for the entire year within these 205 days (4920 

hours).42  

 

According to our own experience expressing nitrogenase, A. vinelandii yields 20 mg 

of nitrogenase per liter of culture. Assuming that we can keep this yield constant 

when scaling up, a 50,000-liter reactor can produce 1 kg of enzyme per batch.43 For 

now, we assume that we provide the farm every 20 days with 100 g of enzyme for 

the reactor (I.e., the catalysts lifetime is 20 days). The final size of the 

bioelectrocatalytic reactor is not defined yet, so the 100g enzyme reactor size is 

subject to change and would influence the numbers below. 



 

 

103 

 
Table 3.1: Reaction rate needed to produce enough ammonia for a given US farm size and crop 

yield. Yields are divided into low yield (64 kg NH3 per acre), medium yield (91 kg NH3 per acre), 

and high yield (136 kg NH3 per acre). Calculation of the reaction rate is performed via the formula 

above. As a comparison, we added the fold-improvement necessary against two references: The 

original bioelectrocatalytic reaction rate of nitrogenase by Lee et al.,44 and the natural reaction rate 

of nitrogenase in Azotobacter vinelandii.25  

We believe that improving the bioelectrocatalytic conversion of nitrogenase to 

around half the rate of the natural reactivity will make this approach competitive with 

the Haber-Bosch process, at least technologically, across most farms in the US. 

However, that would still require a 165-fold improvement in rate over the baseline 

presented in Lee et al.,44 which is an ambitious goal (Table 3.1). Therefore, we 

propose that a reasonable goal for a translational research project is to achieve around 

10% of the way to a technologically competitive catalyst, which would be a ~20-fold 

improvement in reaction rate. Of course, this model assumes that we can replace the 

catalyst every 20 days, which would require a catalyst that lasts as long.  

 

For catalyst lifetime, we would like to set our first goal based on replacing the 

nitrogen in the enzyme, which makes it reaction rate and catalyst lifetime dependent. 

The range of reaction rates are chosen from the Lee et al. baseline (35 h-1)44 and a 

100-fold improvement of the reaction rate, which is where the technology could be 

used for low-yield crops on a median-sized farm. One molecule of the nitrogenase 

complex contains 4130 nitrogen atoms (PDB: 1N2C).45 The time it takes to replace 

that amount of nitrogen is simply this number divided by the rate per unit time. Using 

these numbers, the original system from the Minteer lab could replace the nitrogen 

in the enzyme within ~5 days. At 20-fold improvement of the baseline rate, the same 

amount of nitrogen would be produced in 6 hours. Our initial goal is to improve the 

catalyst lifetime and reaction rate such that we surpass the blue line in (Figure 3.2). 

Next, we would want to tackle producing enough nitrogenase to replace the nitrogen 

in the culture A. vinelandii grows in. Typically, nitrogenase is expressed in Burk’s 

Medium which contains 1.5 g/liter of ammonium acetate. At a 20-fold improvement 

of the rate over the baseline, we would need to have the catalyst last 20 days in order 

to produce as much nitrogen as has been used in the culture. Although this might 
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make it seem at first sight that our catalyst would need to last longer than 20 days, 

the medium can at least partially be recycled, either to produce more nitrogenase or 

to use as a feedstock for other biological applications.  
 

 
Figure 3.2: Graph representing the reaction rate – catalyst lifetime relationship necessary to replace 

either the nitrogen contained in the enzyme, or the nitrogen replaced in the culture used to express 

the enzyme. 

Lastly, we want to focus on the price of ammonia produced via the Haber-Bosch 

process and how that could potentially influence the engineering the proposed 

technology. Currently, 15% of the price of ammonia is dictated by the price of natural 

gas. However, usually that share is larger since the supply chain issues and tariffs 

dictate a larger part of the price (19%).46 The price of ammonia is often as volatile as 

the price of natural gas during the same time periods. As many nations are attempting 

to at least partially phase-out fossil fuels from their economy, one could expect this 

price volatility to get worse with time. Although the price of these commodities 

remains speculation, the price of ammonia that the farmer pays is highly competitive, 

even at the current all-time-high price of ammonia (USD 850 per ton).47 In the 

context of translational research, it is important to keep the price of ammonia in mind 
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since it is difficult to sell a technology to farmers that ends up increasing their 

operational costs. Some of the factors that will affect the cost of a bioelectrocatalytic 

method of producing ammonia is the cost of electricity, the cost of water and the cost 

of expression, purification, and transportation of the enzyme. The latter is especially 

critical in our case since all of those steps likely need to be performed anaerobically. 

 

In conclusion, the bioelectrocatalytic production of ammonia could from an 

engineering perspective become competitive with the Haber-Bosch process. If the 

price of natural gas continues to rise and if the carbon offsets from producing 

ammonia bioelectrocatalytically would reduce production costs, there is a case to be 

made for our method to be financially competitive as well.  
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Developing a Bioelectrocatalytic Screening Method for Nitrogenase 

Natural selection induced by environmental pressures has been nature’s means of 

pushing evolution forward. Through many generations of random mutations and 

selection that increase fitness, organisms overcome the challenges nature presents. 

Directed evolution has allowed humans to artificially simulate evolution, 

accelerating natural selection resulting in the generating proteins with new or 

improved functions.37 While spontaneous mutations take far too long to occur in a 

laboratory environment, mutagenesis methods allow for the creation of genetic 

libraries that cover a vast array of gene variants which can be reintroduced into 

expression systems and screened for desired activity. The engineering of proteins 

through either in silico methods or directed evolution, requires the testing of protein 

fitness for each round putative improvements are made.48 Through multiple 

generations of mutagenesis, a protein may be engineered to have enhanced 

characteristics such as solubility, thermostability, catalytic turnover and/or substrate 

affinity. Directed evolution is a well-established laboratory process that has proven 

to be successful in the engineering of proteins, such as evolving cytochromes P450 

to perform new-to-nature reactions49 or repurposing a bacterial protein to create a 

virus-like capsid.50 The method chosen to screen new variants is one of the most 

important steps to successfully engineer a protein.51 The screening assay needs to be 

as close to the final application as possible to avoid selecting for undesired properties 

and to improve upon the desired ones, commonly known by the phrase “You get what 

you screen for”.52 The throughput of the chosen screening method is also important 

in defining the library size, that is, how much diversity to generate in each round of 

evolution.48 Ideally, the throughput should be as high as possible, but there are many 

factors that can determine the maximum throughput for a given protein engineering 

campaign. 

  

Azotobacter vinelandii (A. vinelandii) is a gram-negative diazotroph bacterium 

commonly used as a model organism to study nitrogen fixation. Similar to 

Escherichia coli (E. coli), it is easily cultured and grown as it is an obligate aerobe. 

Under diazotrophic conditions, the organism strongly regulates nitrogen fixation to 

fulfill the requirements for cell growth due to the energetically expensive nature of 

biological nitrogen fixation.53 Although the organism is an obligate aerobe, 

nitrogenase itself is highly oxygen sensitive.26 It is currently not known how A. 

vinelandii achieves this feat. Likely due to the energetically expensive nature to fix 

nitrogen, the organism is very good at scavenging nitrogen from its environment and 

minor contaminants, such as cleaning products, can have an influence on the 

organism’s growth. From a protein engineering perspective, the organism poses a 

challenge as it contains multiple copies of the nitrogenase producing NifD and NifK 

genes on its chromosomes.54 To study the effect of mutations in the nitrogenase 

sequence, an A. vinelandii nitrogenase knock-out is used that is then rescued by 

knocking-in a mutated copy of the gene of interest.55 In order to test mutants of 

nitrogenase in a bioelectrocatalytic system, we need to devise an appropriate 
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workflow to best assess improvements of the enzyme in the system where it will be 

used. As we are planning on engineering nitrogenase’s ability to produce ammonia 

in a bioelectrocatalytic system, where the enzyme is isolated from other cellular 

components, we cannot use an in vivo selection assay. Besides generating mutants, 

screening for ammonia production requires a minimum of three main steps: (1) 

Aerobically grow nitrogenase mutants transformed into A. vinelandii in a 96-well 

format. (2) Isolate all 96 mutants and transfer them to a 96-deepwell plate equipped 

with an electrode under anaerobic conditions. (3) Measure ammonia production after 

a fixed period of time to assess the fitness of different variants. The aim is to create 

a low-to-medium throughput assay to engineer nitrogenase for bioelectrocatalytic 

production of ammonia. Using directed evolution, we can then improve the faraday 

efficiency, ammonia yield and catalyst lifetime of nitrogenase. This will provide a 

first step to engineering a sustainable approach to produce ammonia to help in 

fertilizing our crops and reduce the negative impact of modern agriculture on our 

planet. 

 

Recent scientific advances will help us in our endeavor to engineer nitrogenase. The 

Kacar Research Group at the University of Wisconsin-Madison has established 

expression of the A. vinelandii model organism in a 96-well format, which together 

with knocked-in nitrogenase mutants shows that step (1) is feasible.56 Work from the 

lab of Uli Schwanenberg has demonstrated that it is possible to test 

bioelectrocatalytic reactions in 96-well microtiter plates by adding an electrode array 

to the plates on which enzymes have been immobilized. Using their setup, they were 

able to engineer a bacterial laccase for use in an enzymatic fuel cell, improving the 

power output of the system 1.72-fold.57 We propose a similar setup that immobilizes 

wild type nitrogenase on an electrode array to produce ammonia at small scale. 

Lastly, the Minteer lab has shown that it is possible to coat an electrode with the 

MoFe-protein of nitrogenase along with a polymer modified with a redox mediator 

to achieve ATP-free bioelectrocatalytic conversion of N2 to ammonia.36,44,58 

Additionally, the study describes a method to measure NH3 production via a 

fluorescence assay. Combining the above methods from the Kacar, Minteer and 

Schwanenberg lab will form the basis of our screening assay (Figure 3.3). 

 

 
Figure 3.3: Workflow overview of bioelectrochemical screening assay. After generating 

nitrogenase libraries, we select for variants that have a functional nitrogenase through diazotrophic 

pre-selection on agar plates containing no nitrogen source. We then pick 24,48, or 96 colonies, 

depending on the possible throughput, to express nitrogenase. After sufficient nitrogenase has been 

expressed in each well, the plate is moved to an anaerobic chamber for purification and 
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electrochemical screening. Once the reaction has finished, the plate can be removed from the 

anaerobic chamber to measure the ammonia production through a fluorescence-based read-out.  

The first step for our assay is to generate nitrogenase mutants and transform them 

into ΔNifD/NifK knock-out strains of A. vinelandii. While we will attempt to setup 

the bioelectrocatalytic screening setup in 96-well plates, the work from Chen et al. 

only demonstrated their system screening 8 reactions at a time. Since we want to 

screen for catalyst lifetime as well, that setup may reduce our throughput 

significantly. Therefore, after streaking out the bacteria onto growth media 

containing petri dishes, we will use the diazotrophic properties of the bacterium to 

our advantage to create a pre-selection of deleterious mutants (Figure 3.3) to greatly 

increase throughput. Since no nitrogenase gene copy other than a mutated one should 

be present within a cell, deleterious mutations in the protein will either cause the 

bacteria to grow very slowly or not grow at all under diazotrophic conditions. Due to 

the excellent scavenging skills of A. vinelandii, it is important to make sure no 

nitrogen containing contaminants influence the pre-screen. 

 

 
Figure 3.4: Explanation of NifD/NifK variant insertion into the chromosome of A. vinelandii. 

(Left) Insertion of NifD/NifK into the chromosome via homologies on the donor plasmid pDJ33. 

(Right) For this study we modified the pDJ33 plasmid to contain a kanamycin resistance gene 

between the NifK and NifT genes. While all Nif genes are regulated under one promoter, we added 

a second promoter into the Nif cluster to increase the expression of KanR.  

We received a NifD/NifK knock-out strain from Dennis Dean and developed a 

method to insert NifD/NifK variants into the genome of A. vinelandii. Initial 

experiments of knocking-in wild-type nitrogenase rescued growth under diazotrophic 

conditions but cells grew very slowly and not to full density. Since A. vinelandii can 

accumulate up to 40 copies of its chromosome, we suspected that growth to full 

density can only be achieved if nearly all copies of the chromosome contain the 

knock-in. This is usually achieved by passaging cells through nitrogen deficient 

media multiple times.59 This poses a problem in our experimental setup. We want to 

include negative controls during engineering to simulate non-functioning variants. 

Since negative controls are by definition non-functional, we cannot use passaging on 

them. Therefore, we developed a genetic system that contains a kanamycin resistance 

gene which is inserted to the chromosome with NifD/NifK (Figure 3.4). Only 
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variants containing the antibiotic resistance gene can grow on kanamycin containing 

plates. This selection pressure can then help us in accumulating multiple knock-in 

copies even if the variant is non-functional. 

 

We confirmed the function of our genetic system by transforming A. vinelandii with 

the KanR containing version of pDJ33 as described in Figure 3.4. The cells were 

struck out on Burk’s medium agar plates containing nitrogen as well as a defined 

kanamycin concentration (Figure 3.5A). Cells were grown for 60 hours at 30°C 

before imaging. The positive control contained no kanamycin and cells grew as a 

lawn. Increasing the kanamycin concentration from 0.5 μg/mL to 5 μg/mL thinned 

out the number of cells growing on the plates, indicating that the increase in selection 

pressure is allowing fewer cells to grow on the plates. This confirms that our genetic 

system works. Next, we will use the 96-well growth assay of A. vinelandii published 

by the Kacar lab to grow transformed A. vinelandii cells aerobically.56 After 

transformation with pDJ33, we grew the cells to OD600=1 in Burk’s media (N+), 

followed by washing off the nitrogen containing media from the cells by spinning 

them down and resuspending in Burk’s media (N-) twice. The cells were then diluted 

in Burk’s media (N-) or (N+) containing 0.5μg/mL kanamycin to the starting 

OD600=0.05 and transferred to a 96-well plate. Cells were then grown in a shaker-

incubator at 30°C aerobically and diazotrophically, and their growth was measured 

in real time over 50 hours (Figure 3.5B). We were able to replicate the results from 

the Kacar lab, showing that our knock-in grows to an OD600 of around 0.3 in (N-) 

medium versus 0.4 in (N+) medium. 

 

Before isolating nitrogenase mutants from the cultures it is important to transfer the 

cultures to an anaerobic environment to prevent the permanent deactivation of the 

enzyme by oxygen. Here, the Rees lab’s expertise in working with nitrogenase under 

anaerobic conditions will allow us to isolate His-tagged enzymes via 96-well Ni-

NTA columns. We will then coat the electrode array with nitrogenase mutants and 

apply a current to induce ammonia production, similar to the method proposed by the 

Schwanenberg lab and the Minteer lab. The electronic setup will also allow us to 

analyze important reaction parameters such as the potential, the current density, and 

the power input. Once the reaction is completed, the setup can be reintroduced to 

aerobic conditions to perform yield analysis. In a similar fashion to the Minteer lab, 

ammonia production by the system can be measured in a fluorescence detection 

assay, where an NH3 detection buffer is added, and fluorescence is measured (Figure 

3.3).36,44,58  
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Figure 3.5: Preliminary results to establish a bioelectrocatalytic screen for nitrogenase engineering. 

(A) Demonstration of the function of the genetic system described in Figure 3.4. Knock-in of 

NifD/NifK into the genome of A. vinelandii were struck out on Burk’s medium agar plates with 

added nitrogen (N+) and increasing concentrations of kanamycin. Plates were imaged 60 hours 

after transformation with pDJ33. (B) Illustration of growth assay and growth assay results. Cells 

were transformed using the pDJ33 containing wild type NifD/NifK and grown in Burk’s media 

(N+) to OD600=1. To remove nitrogen from the media, the cells were spun down and washed twice 

with Burk’s media (N-) before diluting to the starting OD600=0.05 for the start of the growth assay 

in nitrogen deficient or nitrogen supplemented media. 

As of writing, we have not finished reproducing the bioelectrocatalytic system from 

the Minteer lab. Therefore, we have decided to attempt an engineering round of 

nitrogenase without screening for bioelectrocatalytic activity. We prepared an 

alanine scan of NifD to validate the proof-of-concept. This alanine scan will provide 

us with useful information on what sites of nitrogenase could potentially be targeted 

for site-saturation mutagenesis (Figure 3.6). As of writing, we have transformed the 

A 
 

B 
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alanine scan variants but have not yet subjected them to diazotrophic pre-selection or 

a real-time growth assay. 

 

 
Figure 3.6: Structure of A. vinelandii NifD, highlighting positions of residues targeted in an alanine 

scan. Residues in green are negative controls as those positions are catalytically important. 

The engineering platform outlined in this section will create an invaluable tool not 

only for our goal of bioelectrocatalytic conversion, but also for mechanistic studies 

of nitrogenase. Individual pieces of our setup can be modified and used by the 

scientific community to analyze the effects of mutations on nitrogenase at a much 

larger scale than previously possible. This has the potential to have a significant effect 

on our understanding of nitrogenase and can be revolutionary for applications in plant 

biotechnology where there is an ongoing quest to express nitrogenase in plant roots.  
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Computational Methods to Find Engineering Starting Points 

Next-generation sequencing technologies have been revolutionary to the field of 

biology, providing high quantities of high-quality sequence data for various 

applications ranging from determining the B-cell profiles of COVID-19 patients for 

generating monoclonal antibody treatments,60 to creating large sequence databases 

that helped in the development of Alphafold2.61,62 In fact, the availability of protein 

sequence data on Uniprot has increased by an order-of-magnitude in the past decade. 

The development of highly efficient protein homology detection algorithms, with 

modern models being able to detect distant homologs with sequence similarities 

below 30%,63 together with the ever-growing protein sequence databases has resulted 

in the construction of highly informative phylogenetic trees through a process called 

multiple sequence alignment (MSA).64 The culmination of these technologies is 

found in Ancestral Sequence Reconstruction (ASR) a new and unique protein 

engineering tool with promising prospects.65  

 

ASR is performed by using sequence data to find modern homologs of a protein of 

interest and then inferring the phylogenetic relationship between those homologs.66-

68 The inference uses statistical methods to calculate the probability distribution of 

sequences at each node of the phylogenetic tree. The inference is usually performed 

via Bayesian inference or by creating maximum likelihood distributions,64 but recent 

advances in machine learning, in particular natural language processing, have 

allowed the usage of more complex inference models.69 Regardless of the method of 

sequence distribution construction at the nodes, ancestral sequences are reconstructed 

by sampling from those distributions. This sampling can be performed with restraints 

by, among others, validating sequences thermodynamically or by forcing a certain 

consistency with a consensus sequence (Figure 3.7). ASR is fundamentally different 

from mutating proteins to the consensus sequence. The latter has consistently failed 

to produce functional proteins while ASR has produced enzymes that are more 

thermostable66 and have catalyst lifetimes >100 times longer than their modern 

forms.67 Because reconstructed sequences are a representation of historical 

sequences, the fraction of functional proteins in an ASR library is high while also 

providing a highly diverse library in terms of properties. Additionally, a 

reconstructed ancestral sequence is likely not as dependent on the cellular processes 

of the host and often have properties described as an ancestral generalist versus the 

modern specialist enzyme.65 One notable recent example of applying ASR to protein 

engineering was a study by Lin et al. where they engineered Rubisco, a notoriously 

hard enzyme to engineer. Among 98 predicted ancestors in their library, 34 had 

superior catalytic efficiency to wild type modern Rubisco, showcasing the power of 

ASR.68  
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Figure 3.7: Overview of ancestral sequence reconstruction (ASR). Ancestral nodes are inferred 

through statistical methods and reconstructed ancestors can be created by sampling from the 

distribution in those nodes. (Adapted from Spence et al.67) 

As mentioned above, ASR has produced catalysts with lifetimes >100 times longer 

than their modern forms67 (likely required due to the harsher environmental 

conditions found on a younger planet), and produced more efficient and more 

“generalized” enzyme sequences.65 We believe the properties that ASR is able to 

extract will be well suited to engineering nitrogenase for a bioelectrocatalytic 

application. Nitrogenase is an ancient enzyme, dating from before the advent of 

photosynthesis,21 for which many sequences have been deposited in databases 

(~90,000 on Uniprot),61 making this an ideal candidate for the application of ASR. 

Our goal is to screen an ASR-based library for improved thermostability and catalyst 

lifetime. Additionally, a reconstructed ancestral nitrogenase is likely not as dependent 

on the cellular processes of the host and could be more amenable to engineering for 

higher faraday efficiency in a bioelectrocatalytic reactor. 

 

We first used FireProtASR to perform ASR on NifD alone and selected two ancestors 

of nitrogenase to be experimentally validated.70 Since FireProtASR does cannot 

manage a concatenated sequence to generate ancestors, we decided to generate 

NifD/NifK pairs manually. We assembled a dataset of concatenated NifD/NifK 

sequence homologs using jackhmmer and then formed an MSA using ClustalW.71,72 

The MSA created in ClustalW was then passed to RAxML for ancestral sequence 

reconstruction.73 Unfortunately, the publication by Garcia et al. in 2023 outlines a 

very similar methodology for ASR of NifD/NifK pairs.74 In addition to our own 

ancestors, we will also test the sequences from Garcia et al. as potential engineering 

starting points. 

 

In addition to ASR, we were interested in the performance of generative protein 

language models on generating a diverse set of nitrogenase homologs to use as 

potential engineering starting points. Protein language models (PLMs) are a subset 

of natural language processing (NLP) models, where tokens (representations of either 
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words or a collection of words) are represented by amino acids. The aim of a PLM is 

to learn the relationship between amino acids when they form proteins.75 The learning 

of this relationship is then used to infer certain properties of proteins such as its 

function,76 phylogeny,77 or structure.78 Another common application of PLMs is the 

generation of protein sequences, in fact generation of protein sequences is built into 

the training of the model itself. While there are myriad different model architectures, 

two main training objectives exist to infer the sequence of a protein, masked token 

prediction and next token prediction (Figure 3.8, See Machine Learning in Protein 

Engineering). These models have been trained on large protein sequence datasets and 

are not directly capable of generating specific proteins without nudging them into the 

right direction. This nudging is performed via fine-tuning, where the model is re-

trained with a very low learning rate on a family or protein sequence one wishes to 

generate homologous members of.79 

 

 
Figure 3.8: Main differences in training objectives for ESM2 and ProtGPT2 sequence generation 

tasks. ESM2 sequence generation works via masked token prediction, where random tokens (i.e. 

amino acid residues) are masked for the model to predict. The model takes the surrounding context 

into account when making a prediction on a token. ProtGPT2 sequence generation works via next 

token prediction where a protein is constructed sequentially and only the context of previous 

residues are considered for the prediction of the next one. 

Evolutionary Scale Modelling 2 (ESM2) is a PLM based on the transformer 

architecture trained on 250 million sequence clusters from UniRef50 with up to15 

billion parameters.78 The first iteration of ESM was published in 2019 with the 

objective of learning about protein sequences by scaling-up models in terms of 

parameter size to capture the evolutionary relationships between protein sequences.80 

It is trained as a masked language model where amino acid residues are masked from 

the model during training and the model has to predict the amino acid at a position 

given its sequence context. ESM2 is a very powerful model, capable of capturing the 

function of proteins, the way they fold, and is capable of generating a sequence based 

on a particular fold.78 

 

Similarly, ProtGPT2 is also a transformer model trained on 45 million sequence 

clusters from UniRef50, using 738 million parameters.81 While ESM2 was developed 

for the general task of understanding proteins, ProtGPT2 was trained for the purpose 

of protein sequence design. This is also reflected in the next token prediction tasked 
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performed during training, which is similar to the task that ChatGPT is trained on for 

example.82 In next token prediction, the model always predicts the next amino acid 

in the protein sequence, using only the context of the previously generated residues 

to determine the nature of the next one. Compared to ESM2, ProtGPT2 lacks the 

global context on protein sequence families, but is very good at generating sequences 

that are similar but still distant from the sequences in the dataset. 

 

We fine-tuned both ESM2 and ProtGPT2 with two different datasets, one obtained 

via a BLAST search and the other via a jackhmmer search of NifD, resulting in four 

separate NifD sequence generation models. The jackhmmer search resulted in 23315 

sequences for fine-tuning, where sequences can be from any homolog of NifD.71 The 

BLAST search was very specific toward only NifD sequences from different 

organisms, resulting in a more uniform dataset in terms of the nature of the sequences, 

but a lot smaller with only 85 sequences.83 After fine-tuning the models, we generated 

5000 sequences in each model to be processed further. We then performed a pairwise 

alignment of each generated sequence vs NifD to determine how similar they are to 

the seed sequence. Next, we filtered the sequences for the existence of certain 

residues. The first filter determines whether all catalytic residues of NifD are present. 

For the second filter we analyzed the residues on the interface of NifD and NifK in 

PyMol and picked-out the residues that are within 3Å of each other. Sequences that 

missed those interface residues were removed from the generated sequence list. 

Lastly, the sequences’ structures were predicted via AlphaFold2 and structurally 

aligned against A. vinelandii NifD (Figure 3.9A).62 

 

None of the sequences generated by ESM2 had any of the catalytic residues and could 

not be considered homologs of NifD. ProtGPT2 fine-tuned using the jackhmmer 

dataset generated 287 sequences that passed the catalytic residue filter, but none that 

passed the NifD/K interface filter. ProtGPT2 fine-tunes using the BLAST dataset 

was a lot more successful, with 4483 sequences passing the first filter and 6 passing 

the second filter. We show the structural alignment of the 3 of those sequence in 

Figure 3.9B. 

 

With these sequences generated and the structure prediction being similar to A. 

vinelandii NifD, we will be transforming these variants into A. vinelandii using the 

genetic system described in Figure 3.4 to determine whether the variants are 

functional NifD variants. We would then further explore the properties of these 

variants, especially for their bioelectrocatalytic efficiency. 
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Figure 3.9: NifD PLM generation workflow and results. (A) Workflow of NifD PLM sequence 

generation. We first fine-tuned ESM2 and ProtGPT2 using two different datasets from jackhmmer 

and BLAST. We generated 5000 sequences using the fine-tuned models and ranked them based on 

their pairwise sequence alignment using Blosum62 as the substitution matrix. We then filtered the 

sequences based on the existence of important catalytic and interface residues, before finally 

performing a structure prediction and aligning against A. vinelandii NifD. (B) Results of the top 3 

variants generated via ProtGPT2 fine-tunes on the BLAST dataset. 

  

A 
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Producing a Longer-Lasting Catalyst 

A main hurdle to overcome to make any green ammonia production process 

economically viable is increasing the catalyst lifetime. This metric often remains 

unreported in initial studies of sustainable ammonia production but is nevertheless a 

crucial property of the catalyst.84 The Minteer lab has not reported the lifetime of 

nitrogenase in their reactor, but it is at best one day10 (and at worst one hour36). From 

a practical perspective, increasing the catalyst lifetime will decrease the capital 

expenditure by reducing the amount of maintenance on a functional reactor as well 

as reduce the logistical issues that would come with regularly having to supply highly 

distributed reactor sites with new catalyst. One problem that many biocatalysts face 

is that nature’s solution to short enzyme lifetime is often to manage it by continuous 

replacement.85 Understanding the mechanisms of catalyst inactivation can be used as 

the basis to mitigate the problem. Nitrogenase has a few known mechanisms of 

permanent inactivation: permanent deactivation by contact with oxygen,26 a pH- and 

turnover-dependent permanent deactivation mechanism,28 and thermally induced 

denaturation. Oxygen dependent deactivation is not very well understood, but 

researchers have prevented this mechanism by manipulating nitrogenase using 

anaerobic techniques. Similar to other electrocatalytic ammonia production methods, 

hydrogen can be used to remove oxygen from the reactor.9 One can imagine using 

the hydrogen produced by nitrogenase to keep the reactor atmosphere anaerobic, 

minimizing or eliminating usage of the gas as an additional consumable. 

 

Increasing the thermostability of enzymes is often seen as an imperative to making a 

biocatalyst successful for two main reasons: (1) According to the Arrhenius equation, 

the reaction rate increases exponentially with a rise in temperature which is often 

summarized as the Q10 rule for enzymatic processes – the reaction rate doubles for 

every 10°C increase in temperature.86 (2) Throughout evolution, proteins are usually 

only marginally more thermostable than is required by their environmental 

conditions. Naturally evolving proteins often accumulate functionally neutral but 

thermostabilizing mutations in order to tolerate a functionally beneficial mutation 

that is destabilizing.87 For protein engineering this means that more thermostable 

proteins are often more evolvable because they can tolerate more mutations to 

produce a protein with higher fitness. Jesse Bloom summarized this in the concept of 

“protein stability promotes evolvability”.88 Therefore, many methods have been 

developed to recognize thermostabilizing mutations in a given protein, especially 

computational methods that reduce the cost and time expenditure of the process. 

Using metrics such as crystallographic B-factors, force-fields from MD simulations, 

machine learning based approaches, and/or protein design software such as TRIAD 

or Rosetta, leaves us with many options to consider for this aim.87 As nitrogenase’s 

structure has been well-studied in multiple organisms and in a wide range of 

conditions, the protein is well suited for thermostabilization using in silico methods.26  
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We aim to utilize these methods to increase the stability of A. vinelandii nitrogenase. 

In addition to providing us with a more stable catalyst with likely a longer lifetime, a 

thermostabilized nitrogenase might also allow us to increase the space-time yield by 

increasing the power input of the bioelectrocatalytic reactor, as increased power 

usually increases reactor temperatures. Thermostabilization software can provide us 

with a library of variants that can be measured for using differential scanning 

fluorimetry (DSF). DSF assays such as Thermofluor have been used in a high-

throughput fashion to obtain approximate apparent protein melting temperatures (TM) 

by using fluorophores that are activated when binding to the hydrophobic cores of 

unfolded proteins.89 The main factor limiting throughput is often protein purification, 

but the need for only a small amount of protein in these assays enables the use of 

high-throughput protein purification methods utilizing, for example, nickel-NTA 

binding in a 96-well plate format. Increasing the thermostability of a protein could 

reduce the flexibility of the protein and possibly prevent catalytically required 

conformational changes. Given this, we’ll need to make sure that thermostabilization 

does not impede nitrogenase reactivity. Data from thermostability and enzymatic 

activity could also provide insights into the necessary flexibility/rigidity of the 

nitrogenase complex to further advance our understanding of the enzyme.87  

Lastly, we will tackle the irreversible pH- (pH > 8.6) and turnover-dependent 

deactivation of nitrogenase first reported by Pham and Burgess in 1993.90 This 

deactivation mechanism prevented efforts to generate highly reduced MoFe-protein 

for structural and biochemical studies by lowering the presence of protons in the 

buffer. A subsequent study by the Rees lab has shown that this was not a simple 

denaturation of the protein due to high pH as is often observed with proteins, but 

rather a consequence of a complex turnover dependent mechanism. Even at the 

catalytically optimal pH of 7.8, this inactivation is observable, albeit slowly.28 The 

study further revealed that the hydrodynamic radius of the protein increased, however 

they could not spectroscopically observe any changes to the metal cofactor 

environments. Recently, the Rees lab has solved the structure of the pH-inactivated 

nitrogenase complex, revealing a striking similarity to apo-nitrogenase, with the C-

terminus of the protein being unstructured.91 

 

We aim to use computational protein design tools to stabilize nitrogenase against the 

unfolding of the C-terminus in an effort to prevent turnover and pH dependent 

deactivation of nitrogenase. As opposed to purely thermostabilizing nitrogenase, in 

this approach we need to measure the deactivation of the protein under turnover 

conditions. A pH-stabilized variant would also allow us to determine the ideal pH of 

the system, which to our knowledge has not been performed by the Minteer lab and 

their system pH varies from study to study. 

 

This part of the project, with its focus on deactivation mechanisms of nitrogenase, 

will serve a dual purpose. By providing stabilized variants of nitrogenase, we will not 

only likely increase the catalyst lifetime making our ammonia production approach 

more economically competitive but could also provide the scientific community with 
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new tools to probe the mechanisms of nitrogenase catalysis. Our initial goal is to 

improve catalyst lifetime to one week. The later benefit of this aim will have wide 

reaching consequences for the future of nitrogenase. A better understanding of 

nitrogenase’s inner workings and a stabilized enzyme will also help plant 

biotechnology in the quest of expressing nitrogenase in the roots of plants in order to 

avoid nitrogen fertilization altogether for certain crops. 
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Materials and Methods 

Materials 

Solvents and buffer salts were purchased from Sigma Aldrich, Koptec, Fisher 

Bioreagents and Merck. Media for bacterial expression were purchased from Merck 

Millipore. We used Invitrogen Mix&Go DH5α for plasmid. A. vinelandii wild type 

was given to us as a gift from the lab of Doug Rees. A. vinelandii ΔNifD/K and the 

pDJ33 plasmid was given to us as a gift from the lab of Dennis Dean. 

Oligonucleotides and genes were synthesized by Integrated DNA Technologies. PCR 

reactions were performed on an Eppendorf Mastercycler Gradient. Plasmids were 

purified using the Zymo Research Zyppy Miniprep Kit. Agarose gel electrophoresis 

for DNA fragment purification was performed at 90V using TAE as buffer and 1% 

agarose gels (Merck Millipore). Gel excisions from agarose gel DNA electrophoresis 

were processed using the Zymoclean Gel DNA recovery kit. DNA gels were 

referenced against the Goldbio 1kb DNA ladder. DNA concentrations were measured 

with a Nanodrop ND-1000. 96-well growth assays were performed in Corning® 96-

well plates. Growth was monitored on an Agilent Biotek Epoch 2 plate reader. 

 

Burk’s Medium Recipe 

Burk’s medium is prepared by making two separate, autoclaved solutions that are 

only combined when ready to grow cells. The first solution is a phosphate buffer 

made up of 0.2g/L KH2PO4, 0.8g/L K2HPO4. The second solution is made up of 

200g/L sucrose, 2g/L MgSO4∙7H2O, 0.9g/L CaCl2∙2H2O, 10μM Na2MoO4∙H2O, 

50mg/L FeSO4∙7H2O. The two solutions are mixed in a 9:1 ratio of the first solution 

to the second solution. 

 

Iron deficient Burk’s medium is prepared the same way, but without 10μM 

Na2MoO4∙H2O, 50mg/L FeSO4∙7H2O in the second solution. 

 

Burk’s medium agar plates are prepared by mixing the first solution with 16g/L agar 

prior to sterilization. 

 

Burk’s medium (N+) is made by adding 1.5g/L NH4OAc to the second solution prior 

to sterilization. 

 

Transformation of A. vinelandii 

From a glycerol stock, A. vinelandii is struck out on Burk’s medium (N+) agar plates 

and grown at 30°C for 2-3 days until colonies are visible. Then a colony is struck out 

on iron deficient Burk’s medium agar plates and passaged three times every 2-3 days. 

Then a colony is used to inoculate a liquid culture of iron deficient Burk’s medium 

and grown at 30°C, 170rpm overnight. Cultures should be visibly green at this point, 

indicating that the cells are now competent. A. vinelandii is then transformed by 

adding 1μg of pDJ33 plasmid containing NifD/NifK and leaving shaking for 5 
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minutes. The culture is struck out on selection plates being either Burk’s medium (N-

) agar plates or Burk’s medium agar plates with added kanamycin. 

 

Diazotrophic Preselection Assay 

Freshly transformed A. vinelandii cells or cells previously passaged through 

kanamycin plates are struck out on Burk’s medium (N-) agar plates and left to grow 

for 60 hours before counting cells and imaging. 

 

96-well Growth Assay 

Freshly transformed A. vinelandii cells are first grown in Burk’s medium (N+) 

overnight, or until reaching an OD600 of at least 1, at 30°C and 200rpm. Then cells 

are spun down at 500xg for 5 minutes and resuspended in Burk’s medium (N-) twice 

to get rid of excess ammonium in the medium. Cells are then diluted to an 

OD600=0.05 before adding to the wells of a 96-well plate. Cell growth is then 

monitored on an Agilent Biotek Epoch 2 plate reader in incubator mode at 30°C for 

72 hours. 
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DEVELOPMENT AND SCALE-UP OF A CATALYZED 

FORMATION OF CIS-TRIFLUOROMETHYL-SUBSTITUTED 

CYCLOPROPANES USING PROTOGLOBINS 

L. Schaus, A. Das, A. M. Knight, G. Jimenez-Osés, K. N. Houk, M. Garcia-

Borràs, F. H. Arnold, X. Huang, Angew. Chem. Int. Ed. 2023, 62, e202208936; 

Angew. Chem. 2023, 135, e202208936. doi: 10.1002/ange.202208936  

 

Abstract 

Trifluoromethyl-substituted cyclopropanes (CF3-CPAs) constitute an important class 

of compounds for drug discovery. While several methods have been developed for 

synthesis of trans-CF3-CPAs, stereoselective production of corresponding cis-

diastereomers remains a formidable challenge. We report a biocatalyst for diastereo- 

and enantio-selective synthesis of cis-CF3-CPAs with activity on a variety of alkenes. 

We found that an engineered protoglobin from Aeropyrnum pernix (ApePgb) can 

catalyze this unusual reaction at preparative scale with low-to-excellent yield (6–

79%) and enantioselectivity (17–99% ee). Computational studies revealed that the 

steric environment in the active site of the protoglobin forced iron-carbenoid and 

substrates to adopt a pro-cis near-attack conformation. This work demonstrates the 

capability of enzyme catalysts to tackle challenging chemistry problems and provides 

a powerful means to expand the structural diversity of CF3-CPAs for drug discovery. 
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Biocatalysis in the Pharmaceutical Industry 

Natural products and natural product derivatives represent 38% of all FDA-approved 

drugs.1,2 While in nature, the molecular scaffolds that can help us fight infections or 

suppress coughing, are synthesized by cascades of enzymatic reactions, most of the 

drugs on the market are produced via non-biocatalytic methods. Medicinal chemists 

spend considerable time developing and testing multiple reaction steps to produce 

complex molecular scaffolds that enzymes can make in a only a few steps.3,4  

 

On paper, biocatalytic strategies have many advantages over traditional chemical 

methods. Enzymes have excellent regio- and stereoselectivity allowing us to access 

functionalizations that are very challenging with conventional catalysts.5–9 They can 

achieve diffusion-limited reaction rates and work under mild conditions which 

combined with their selectivity could allow the omission of protecting groups in the 

synthesis of a drug.10,11 Enzyme promiscuity and their ability to be expressed from 

DNA can be exploited to optimize and modify the properties of a biocatalyst through 

directed evolution and other protein engineering techniques.12 There are also 

significant environmental advantages to biocatalysis. The mild reaction conditions, 

mean that there is less energy expenditure. The production of the catalysts in an 

organism means they can be produced sustainably with lower carbon footprints.10,11 

Conventional transition metal catalysts can sometimes rival the stereoselectivity of 

enzymes, but the mining practices that provide these metals are often unsustainable 

and unethical.13 

 

Despite these numerous advantages, adoption of biocatalytic processes pales in 

comparison to conventional catalysts. In a publication, Matthew Truppo outlines key 

factors that are responsible for the slow adoption of biocatalysts.10 Access to 

biocatalysts is a challenge that can be seen as three related problems, the ability to 

obtain enzymes, the ability to use enzymes and range of reactions possible with 

accessible enzymes. For some categories of enzymes, these problems have been 

solved by companies such as Codexis, which sell screening kits for commonly used 

enzyme classes such as ketoreductases (KRED) and transaminases (ATA).14,15 

Access to biocatalysts is however far more limited when more bespoke reactions are 

required, especially for new-to-nature chemistry. Protein engineering lead times pose 

another problem. Even when a suitable enzyme for a reaction has been found, 

engineering through directed evolution is often too slow for the expected lead times 

in pharmaceutical industries.10 Recent advances in computationally assisted protein 

engineering techniques, such as machine learning, have helped to shorten 

engineering lead times and may be a contributing factor to the increased adoption in 

the past decade.16–20 The last key factor in the adoption of biocatalysis for the 

production of small molecule drugs is reaction scale-up. While many advances for 

biocatalytic reaction scale-up have been made in the past decade, it is still the case 

that processes that may look interesting in the laboratory can take a long time to get 

to a scale that is useful for industrial applications. One key problem is the necessity 

to use larger reactors in which the occurrence of nonideal mixing can produce 
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inconsistent reagent concentration, pH, or temperatures, which in turn can degrade 

the catalyst.10,21 

 

Nevertheless, the past decade has seen considerable growth in the usage of 

biocatalytic processes to produce small molecule drugs. This can be largely 

contributed to advances in the first key point Matthew Truppo described about access 

to biocatalysts. Nowadays there are many off-the-shelf enzyme kits that are 

commercially available that help in rapidly finding a starting point for protein 

engineering campaigns. To the best of our knowledge, the most common enzymes 

that are used in kilogram-scale biocatalytic reactions are KREDs and ATAs, both of 

which catalyze reactions found in nature (Scheme 4.1A-B).11,22,23 A notable recent 

example of the usage of enzymes for the production of a small molecule drug is the 

synthesis of Islatravir, an HIV reverse transcriptase translocation inhibitor (Scheme 

Scheme 4.1: Examples of biocatalytic reactions used in the synthesis of small molecule drugs.      

(A) Example of large-scale usage of a ketoreductases in the synthesis of an intermediate to produce 

a renal outer medullary potassium channel inhibitor candidate by Merck.22 (B) Example of a large-

scale usage of a transaminase in the synthesis of an intermediate of a gamma secretase inhibitor by 

Pfizer.23 (C) Enzymatic cascade synthesis of Islatravir. GOase and PanK-AcK-fusion are 

immobilized via a polyhistidine tag. Conversion of sucrose and the phosphate product to glucose-

1-phosphate not shown. This last step pulls the equilibrium towards the Islatravir product.24 KRED: 

Ketoreductase; ATA: Transaminase; GOase: Galactose oxidase; HRP: Horseradish peroxidase; 

PanK: Pantothenate kinase; AcK: Acetate kinase; DERA: Deoxyribose 5-Phosphate Aldolase; 

PPM: Phosphopentomutase; PNP: Purine nucleoside phosphorylase. 
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4.1C).24 The drug was produced via an enzymatic cascade, using nine enzymes in a 

six-step reaction, requiring no intermediate isolation. Even more impressive is the 

fact that no protective groups are used, and only a single stereoisomer of Islatravir is 

produced with 51% yield. Part of the selectivity comes from the excellent 

enantiomeric excess produced by the galactose oxidase (GOase) and the kinetic 

selectivity of the pantothenate kinase (PanK) towards the (R)-aldehyde intermediate. 

This example showcases the truly transformative potential that biocatalysis can have 

in the production of small molecule drugs. 

 

The above enzymatic reactions showcase some of the advantages of using enzymes 

instead of conventional catalysts to achieve high selectivity and high yield. Despite 

these chemists require ever evolving tools to tackle new synthetic problems.25 

However, many commercially available enzymes catalyze reactions that are known 

in nature, which only provides a narrow reaction scope available to biocatalysis. In 

1985 Svastits and his co-workers demonstrated that a rabbit liver cytochrome P450 

could activate a nitrene precursor and catalyze a C-H amination reaction, showing 

that enzymes could be used for reactions that are new-to-nature (Error! Reference 

source not found.).26 Followed by the practical application of John Maynard Smith’s 

theoretical work on protein evolution by Frances Arnold in the 1990s, the gates were 

opened to explore a new reaction space catalyzed by engineered enzymes.12,27 Since 

then, enzymes have been engineered to catalyze carbene addition across alkenes and 

alkynes,7,28–32 nitrene C-H insertions,5,33–36 Diels-Alder reactions,37,38 and Kemp 

eliminations to name a few.39,40 While much work has been done to engineer proteins 

to be capable of catalyzing new-to-nature reactions, in order to be truly useful in 

industry, protein engineers need to keep the key points of Matthew Truppo’s 

perspective in mind. Ideally, the engineered proteins should be shelf-stable or even 

lyophilizable. The reactions should be as easy to setup as those using a conventional 

Scheme 4.2: New-to-nature enzyme catalyzed reaction first discovered by Svastis et al. Rabbit liver 

cytochrome P450 catalyzes the insertion of a nitrene into a C-H bond on the same molecule, via an 

iron-nitrene intermediate that forms in the active site of the enzyme. 
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small molecule catalyst. Lastly, protein engineers should demonstrate that the 

reactions work at a larger scale then the often-seen μmol-scale.30,33,41   
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Protoglobins 

Much of the Arnold lab’s pursuit to engineer enzymes for new-to-nature reactions 

focused on cytochromes P450 and cytochromes c as the parent enzyme.25,42 The lab 

has shown that these enzymes can be evolved to catalyze a wide range of reactions. 

In his thesis work, Dr. Anders Knight wanted to explore the world of metalloenzymes 

beyond cytochromes.29 Inspired by the concepts of evolvability described in a paper 

by Jesse Bloom,43 Anders Knight was looking for iron-heme cofactor proteins from 

thermophiles. One of the enzymes that showed a very broad substrate scope for the 

cyclopropanation reaction of unactivated alkenes was a protoglobin from 

Aeropyrnum pernix.29,30 

 

Protoglobins are iron-heme cofactor proteins found in Archaea with unknown 

biological function. The little that is known about them is limited to the protoglobin 

of Methanosarcina acetivorans. That protoglobin has been shown to bind the gases 

O2, CO2, and NO reversibly in vitro, as well as cyanide, azide and imidazole.44,45 It 

is also observed to having a low O2 dissociation constant. It has been hypothesized 

that protoglobins are the extant predecessors to globin-coupled sensors (GCS) and 

may be closely related to the globin of the last universal common ancestor (LUCA) 

due to its promiscuity in gas binding and the high oxygen sensitivity.46,47 Regardless 

of their natural function, the two properties of high promiscuity and stability at high 

temperatures make them excellent candidates to explore and engineer non-natural 

functions. 

 
Scheme 4.3: New-to-nature chemistry catalyzed by protoglobin variants discovered in the past five 

years. ApePgb: Aeropyrnum pernix protoglobin; ParPgb: Pyrobaculum arsenaticum protoglobin. 

Since Anders Knight’s first discovery of a new-to-nature reaction catalyzed by 

protoglobins,30 these proteins have found a lot of success in protein engineering 

campaigns in the Arnold lab. In the past five years, protoglobins have been shown to 

catalyze carbene mediated cyclopropanations using diazo carbene precursors as well 
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as diazirine carbene precursors,28,30,41 C-H primary amination and 

aminohydroxylation (Scheme 4.3).33 In addition, as described in this work, 

protoglobins can be lyophilized and remain functional,28 as opposed to cytochromes, 

and used at larger scale than has been shown with cytochromes.  
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Organofluorines 

Fluorine-containing molecules (organofluorines) have become one of the most 

important classes of compounds in medicinal chemistry. Recent reports state that 

20% of marketed drugs contain fluorine, a number that has only grown over the years 

versus conventional drug molecules.48,49 This growing success rate of 

organofluorines suggests that these drug candidates can minimize the risk of 

unsuccessful drug trials.48,50 Fluorine moieties can provide many desirable properties 

to a drug candidate. The C–F bond is one of the strongest bonds a carbon can form, 

significantly increasing metabolic stability. The electronegativity of fluorine leads to 

bond polarization which can shift the lipophilicity/hydrophobicity of a 

compound.48,49 Fluorine can act as a weak hydrogen bond acceptor through its σ-

hole,51,52 which together with the large Van-der-Waals radius makes it a good 

carbonyl isostere.49 Bioisosterism is an important concept in medicinal chemistry, 

which allows functional groups with similar shapes to be interchanged without 

inducing a large change in the group’s biological behaviour.53 As an example, 

trifluoromethyl-substituted cyclopropanes can act as a tert-butyl bioisostere to 

improve the bioavailability and metabolic stability of drug compounds, making them 

highly valuable for the pharmaceutical industry (Scheme 4.4).54–56 Drug development 

is a challenging, time-consuming and expensive process, on the order of $1 billion 

per marketed drug. Thus, providing medicinal chemists with the tools to access new 

organofluorines can have a significant impact on the success of drug development. 

 

Among various organofluorines for pharmaceutical development, trifluoromethyl-

substituted cyclopropanes (CF3-CPAs) have assumed a privileged position, as they 

combine the conformational rigidity of cyclopropanes and desirable medicinal 

properties of trifluoromethyl groups in one moiety.55,57 

 
Scheme 4.4: Examples of CF3-CPAs in the pharmaceutical industry. (A) Bioactive CF3-CPA 

examples from left to right: Class of soluble guanylate cyclase (sGC) inhibitors by Bayer outlined 

in a recent patent (WO 2022/122916 Al); Bamocaftor, a cystic fibrosis transmembrane regulator 

(CFTR) channel corrector by Vertex Pharmaceuticals, currently in clinical trials (doi: 

10.1056/NEJMoa1807119); Apinocaltamide, a T-type calcium channel (TCC) blocker by Idorsia 

Pharmaceuticals, currently in clinical trials (doi: 10.1111/epi.14732). (B) Set of property changes 

that are desired in drug candidates when including CF3-CPAs in molecules. 
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Because of the prevalence of CF3-CPAs in medicinal chemistry, there are continuous 

efforts in developing catalytic methods for enantioselective synthesis of CF3-CPAs 

(Scheme 4.5).58–60 Despite considerable progress, a few challenges remain. One is 

the limited substrate scope, as most methods developed so far have focused on 

cyclopropanation of styrenes and arene-substituted alkenes.55,58,59,61–67 Furthermore, 

the majority of current catalytic methods only produced the trans-diastereomer of 

CF3-CPAs, which is often thermodynamically and kinetically favored.60,68–70 

Accessing cis-CF3-CPAs is considerably harder, most likely due to an additional 

steric challenge posed in the pro-cis transition state.60 The only method reported to 

selectively synthesize the cis-CF3-CPA used a Corey-Chaykovski reaction on highly 

electron-deficient β-nitrostyrenes;63 it is neither catalytic nor enantioselective. 

Gaining access to cis-trifluoromethyl-substituted cyclopropanes will be valuable for 

full exploitation of CF3-CPAs for drug development, as it is known that molecular 

topologies of cis- and trans-cyclopropanes are quite different and often lead to drastic 

differences in their biological properties.71  

 
Scheme 4.5: Overview of strategies for the synthesis of CF3-CPAs. (A) Transition-metal catalyzed 

strategies first reported by Le Maux et al.72 in 2006 and expanded by Morandi et al.58 in 2011. 

These first synthetic strategies were limited to aryl-substituted alkenes and showed strong 

preference for the trans-product across all substrates. (B) Enzyme-catalyzed strategy reported by 

Tinoco et al. in 2017.59 While an overall improvement to the previous strategies in terms of yield 

and selectivity, the strategy is more limited in substrate scope and in scale (0.15-mmol reactions). 

(C) First report of a cis-selective synthesis of CF3-CPAs by Hock et al. in 2017.63 This strategy 

uses a Corey-Chaykovsky on highly electron-deficient β-nitrostyrenes. The reaction is neither 

catalytic nor stereoselective. 
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In this work, we present a method to synthesize cis-trifluoromethyl-substituted 

cyclopropanes using new laboratory-evolved variants of Aeropyrnum pernix and 

Methanosarcina acetivorans protoglobins (denoted as ApePgb and MaPgb 

respectively). Previous work showed that ApePgb could be engineered to catalyze 

the cyclopropanation of unactivated alkenes using ethyl diazoacetate, yielding 

corresponding cis-cyclopropanes.30 Thus, we speculated that protoglobins can be 

evolved to catalyze the challenging synthesis of cis-CF3-CPAs despite the fact that 

iron-porphyrin catalysts overwhelmingly produce the trans products.58,72 The 

motivation to choose protoglobins to explore this reaction came from the fact that it 

is an iron-heme cofactor containing protein that is mainly found in thermophiles. 

Properties of proteins from thermophilic organisms make them more evolvable and, 

we hypothesized, more amenable to scale-ups. This approach enabled us to scale up 

the reaction to 1 mmol using lyophilized whole-cell powders, which can be used 

without cell-culture experience. 

 
Scheme 4.6: In this chapter we will present a scalable biocatalytic synthetic strategy to form trans- 

and cis-CF3-CPAs. While lower in overall yield to previously reported approaches, the substrate 

scope is much more expansive, going beyond aryl-substituted alkenes and includes unactivated-, 

electron-deficient, and electron-rich alkenes. 
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Engineering ApePgb for CF3-CPA Reactions 

 

We screened several of variants of protoglobin catalysts, previously engineered by 

Dr. Anders Knight, for initial activity for production cis-CF3-CPAs. For screening 

conditions, we devised a method that would enable sufficiently high screening 

throughput during both initial activity search and consecutive enzyme engineering 

steps (Error! Reference source not found.A). A 96-deep-well plate screening assay 

was enabled by the preparation of solutions of trifluorodiazoethane via a protocol 

first reported by Gilman et al. (Figure 4.1B, see Materials and Methods for details).73 

This approach has been demonstrated to enable sufficiently high screening 

throughput during both initial activity search and consecutive enzyme engineering 

steps.74 Through this initial screening, we found that wild-type ApePgb can catalyze 

the formation of cis-CF3-CPA 1 with a total turnover number (TTN) of 110 (Figure 

4.1Error! Reference source not found.C). 

 
Figure 4.1: Variant screening strategy and results for the enzymatic formation of cis-CF3-CPAs. 

(A) Initial screening for activity was conducted in 96-well plates with each row containing E. coli 

cells expressing a protoglobin variant at OD600=30 in M9-N buffer. To this we added a carbene-

precursor solution trapped in ethanol, as well as the respective alkene for each column, and ran the 

reaction for 16 hours. Results were analyzed on GCMS to confirm formation of the desired product 

at a favorable diastereomeric ratio. (B) Reaction setup for the formation of carbene-precursor 

trapped in ethanol as outlined in Gilman et al. (C) Results of reaction screening and directed 

evolution of ApePgb While evolving for the formation of trans-1, we discovered that the mutations 

to produce trans-CF3-CPAs do not change diastereoselectivity for compound 2, preferably forming 

the cis product. TTN: Total Turnover Number; a The major diastereomer is compound 2 as detailed 

in the compound characterization section. 

We next carried out site-saturation mutagenesis (SSM) and screening on four sites 

including W59, Y60, F73, and F145. These four sites were chosen based on their 

proximity to the heme center. Previous studies also showed that they were important 

for regulating the stereoselectivity of carbene-transfer reactions catalyzed ApePgb.30 
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Through this engineering, we were able to improve the TTN of ApePgb for this 

abiological reaction to 420 (3.8-fold improvement) by introducing two mutations, 

W59L and Y60Q. This is the first example of a catalytic method that can selectively 

produce cis-CF3-CPAs from alkenes. The ApePgb W59L Y60Q (ApePgb LQ) variant 

showed activity on a broad range of olefins including electron-rich and electron-

deficient styrenes, unactivated alkenes, and heteroatom-substituted alkenes. The 

diastereo- and enantioselectivities were moderate to excellent for most tested 

substrates (Figure 4.2). The yields ranged from 6% to 55% in a 1-mmol-scale reaction 

using lyophilized powder of whole Escherichia coli cells expressing the ApePgb LQ 

variant. We also tested the reactions with clarified cell lysates. However, the yields 

dropped significantly presumably due to the instability of protein in cell lysates under 

gas bubbling conditions. Products 1, 2, and 3 were particularly interesting since 

neither the cis nor the trans forms of these compounds have been synthesized 

previously. And the successful production of 2 and 3 showed that this method could 

be used to synthesize quaternary chiral centers. 
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Figure 4.2: Substrate scope of the cyclopropanation reaction of trifluorodiazoethane with an alkene, 

catalyzed by ApePgb LQ. Yields, diastereomeric ratios (dr), enantiomeric excess (ee), and TTNs 

of the reactions are reported. Yields are reported as analytical yields measured via 19F-NMR against 

4-fluoroacetophenone of known concentration. Reactions were run at 1-mmol scale with 

lyophilized whole-cell powder at OD600 = 45 in M9-N buffer with 2.5% ethanol as co-solvent. 

Absolute configurations were not determined. We were not able to determine the ee of 10 due to 

difficulties in separation on chiral GC-FID 
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Scale-Up of Cis-Selective CF3-CPA Formation 

When we initially scaled the reaction from analytical to preparative scale (1 mmol), 

we observed an undesired 3+2 cycloaddition side reaction that was negligible in 

reactions at analytical scale. This cycloaddition is detrimental since the product is 

known to undergo a thermal contraction reaction to afford the corresponding CF3-

CPAs with no diastereo- and enantio-control (Table 4.1).55,75 To investigate this, we 

performed a time-dependent analysis of the reaction outcome, which showed that 

ApPgb LQ catalyzed the cyclopropanation reaction rapidly (Figure 4.3). The desired 

cis product was formed within 20 minutes, and the yield was maximized at 55% at 

4-μmol scale. The most interesting observation was the rapid accumulation of the 

3+2 cycloaddition product in the initial five minutes of the reaction. We reasoned 

that this phenomenon indicated that the formation of cyclization products was 

favored when concentrations of alkenes and trifluorodiazoethane were high. 

Therefore, we resorted to ex situ generation of trifluorodiazoethane59 and a slow 

addition of the alkene into the reaction mixture. This greatly improved the yield and 

diastereoselectivity of the reactions at preparative scale (Table 4.1). 

 
Table 4.1 Proposed mechanism for loss of diastereoselectivity on preparative scale reactions. 

Reactions were carried out in preparative-scale format with lyophilized whole-cell powder. The 

slow-addition column indicates whether the alkene was added via slow addition, 5 minutes after 

generation of the trifluorodiazoethane gas. Yields for “slow addition: no” are reported as analytical 

yields calculated from a calibration curve on a GC-FID. Yields for “slow addition: yes” are reported 

as analytical yields from 19F-NMR. For benzyl methacrylate, “cis” product refers to the 

diastereomer in which CF3 and benzyl ester groups reside on the same side of the cyclopropane 

ring (compound 2). For dimethyl itaconate, “cis” product refers to the diastereomer in which CF3 

and methyl ester groups reside on the opposite side of the cyclopropane ring (compound 3). a The 

major diastereomer is compound 2 as detailed in the compound characterization section. 
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b The major diastereomer is compound 3 as detailed in the compound characterization 

section. NR: no reaction product detected. ND: not determined. 

During the evolution of the ApePgb LQ variant, we learned that mutations at position 

F73 can dramatically influence the diastereoselectivity of ApePgb catalysts. We 

performed further rounds of SSM at residues W59, Y60, and F73, resulting in the 

discovery of an ApePgb Y60G F73W (GW) variant which selectively catalyzed the 

formation of the trans product for the benzyl acrylate model substrate (Figure 4.1C). 

To further expand the synthetic utility of this catalytic system, we tested whether the 

key LQ and GW mutations identified for ApePgb could be transferred to the 

protoglobin from Methanosarcina acetivorans (MaPgb, 57% sequence identity to 

ApePgb) and conserve catalytic properties. The choice of MaPgb, as opposed to other 

known protoglobins, was motivated by the fact that, at the time, an experimentally 

determined structure for this enzyme existed,76,77 as opposed to ApePgb for which a 

structure was experimentally determined after completion of this project.41 This 

allowed us to study the unique ability of protoglobins to produce cis conformations 

on cyclopropanes in silico. In all cases, MaPgb LQ and MaPgb GW achieved the 

diastereoselectivity observed with the ApePgb variants. One exception was benzyl 

methacrylate substrate, with which the MaPgb GW variant showed notably reduced 

preference for generating product 2 compared to its ApePgb counterpart (Figure 4.1). 

These results demonstrate the utility of protoglobins for stereoselective synthesis of 

CF3-CPAs. 

 

 
Figure 4.3: Time trace of the cyclopropanation reaction using ApePgb LQ. The reactions were setup 

on 4-μmol scale in 400 μL M9-N + ApePgb LQ (OD600 = 30). The reactions were extracted with 
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hexanes:ethyl acetate and measured on GC-FID. The depletion of the starting material stabilized 

in 30 min with most of the desired product synthesized after 20 min. 
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Investigating Divergent Selectivities 

Next, we explored the origins of the divergent selectivity observed in these 

engineered protoglobins. Because of the high structural and sequence similarity 

between MaPgb (PDB: 2VEB)44,76,77 and ApePgb,41 we based our in-silico studies on 

MaPgb variants since there were more structural data available for MaPgb. We first 

performed density functional theory (DFT) calculations on a truncated computational 

model to evaluate the intrinsic reactivity of histidine-ligated iron-heme for CF3-

cyclopropanation in a protein-free environment (see Materials and Methods: 

Molecular dynamics simulations). Our results revealed that a radical stepwise 

mechanism was likely, due to the presence of the strong electron-withdrawing CF3 

group on the iron-carbene intermediate and the electron-deficient character of the 

alkene substrates (Figure 4.4, see Appendix D Figures 1-2 for details), which was 

consistent with previous computational studies on truncated models of related heme-

protein carbene systems.70 Our transition-state analysis revealed that formation of the 

first C–C bond in the cyclopropane ring (TS1) was intrinsically favored for 

generating the trans-diastereomer over the cis-isomer for both benzyl acrylate (ΔΔG‡ 

= 2.6 kcal·mol-1) and benzyl methacrylate (ΔΔG‡ = 2.0 kcal·mol-1) substrates (see 

Appendix D Figure 3 for details). These calculations were in line with previous 

experimental studies which showed that iron-porphyrin catalysts overwhelmingly 

produced trans products for cyclopropanation.64,72 These results were also consistent 

with previous computational studies in which trans-cyclopropanation was found to 

be the lowest-energy pathway and was preferred over the cis-cycloproanation 

pathway by about 1.7 kcal·mol-1.68,69 Our computational data also indicated that after 

generation of the radical intermediate after the first C−C bond formation, no stereo-

scrambling is likely to occur prior to a fast second C–C bond formation step to 

generate the cyclopropane ring (Figure 4.4).70 Overall, these results suggested that, 

for cyclopropanation mediated by a histidine-ligated heme-carbene complex in free 

solution, the formation of trans-CF3-CPA products would be intrinsically favored. 

Therefore, the active-site environment of the proteins must play a crucial role in 

overcoming this intrinsic barrier and redirecting the reaction to selectively form cis-

CF3-CPAs. 

 

To further investigate this, we first modelled the iron-carbene intermediate in the 

active sites of wild-type MaPgb and the MaPgb LQ and GW variants using molecular 

dynamics (MD) simulations (Figure 4.5, see Materials and Methods for details).78–81 

MD simulations showed that the iron-carbenoid explored two major conformations 

in the MaPgb active sites, whose geometric features were influenced directly by the 

mutations introduced. In wild-type MaPgb and MaPgb LQ, which are cis-selective, 

the iron-carbenoids mainly explore orientations with a ∠N-Fe-C-C(CF3) dihedral 

angle around -25º and +50º, respectively, whereas the preferred conformer for the 

carbenoid in the trans-selective MaPgb GW variant is described by a ∠N-Fe-C-

C(CF3) angle of around -100º and -140º (Figure 4.5A-B). Under these iron-carbenoid 

conformations, assuming a similar binding pose for the substrate in the active site of 

different protoglobin variants (see Appendix D Figure 4 for details), wild-type 
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MaPgb and variant MaPgb LQ would preferentially lead to the cis-diastereomer and 

variant MaPgb GW would mainly afford the trans-diastereomer. These results 

suggest that the introduced mutations change the geometric constraints in the active 

site and switch iron-carbenoid orientation, which ultimately controlled the 

diastereoselectivity of the reaction (Figure 4.5C-D). 

 

 

 
Figure 4.4: DFT-optimized intrinsic reaction profiles for the trans and cis- CF3-cyclopropanation 

of benzyl acrylate for the two possible diastereomers (cis and trans). A computational truncated 

model was used. Calculations were performed at the uB3LYP-D3BJ / Def2-TZVP 

(PCM=DiethylEther) // uB3LYP / 6-31G(d)+SDD(Fe) (PCM=DiethylEther) level of theory. Three 

different electronic states (open-shell singlet, OSS; closed-shell singlet , CSS; and triplet) were 

considered. For TS1, the higher in energy quintet electronic state was also considered. Gibbs free 

energies are given in kcal·mol-1. 

Under this mechanistic scheme, however, there is one exception. MaPgb GW 

preferentially produces the cis diastereomer in the reaction with benzyl methacrylate 

(Figure 4.1C). To further explore the origins of opposite selectivities offered by 

MaPgb LQ and GW variants, we performed restrained MD simulations with both 

substrates bound in LQ and GW active sites. Starting from structures corresponding 

to the preferred carbenoid-bound major conformers in LQ and GW MaPgb variants, 

benzyl acrylate (11) and benzyl methacrylate (12) were docked into the active site. 

These structures were then used to start 500 ns MD trajectories in which the 

substrates were restrained at distances between 2.5–3.5 Å from the iron-carbenoid in 

order to analyze accessible near-attack conformations (NAC) that they could explore 

with respect to the iron-carbenoid and to avoid exploring unbinding events (see 

Materials and Methodsfor details).82 To study the relative orientations of the alkene 

and iron-carbenoid, geometric parameters based on two dihedral angles were defined 

which allowed us to characterize the pro-cis/trans character of the NACs explored 

by the substrate and the carbene in each variant-substrate pair along the MD 

trajectories (Figure 4.6, relative orientation of the alkene is defined by the orange 

dihedral angle, and the relative orientation of the iron-carbenoid by the blue dihedral 

angle). These simulations revealed that when both substrates (benzyl acrylate 11, and 
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benzyl methacrylate 12 in Figure 4.6) were bound in the MaPgb LQ active site, they 

mainly explored a major near-attack conformation with respect to the carbenoid, 

which corresponded to a cis-selective configuration (Figure 4.6A-B, dihedral values 

ca. +130º (alkene, in orange) and -90º (carbenoid, in blue)). 

 

 
Figure 4.5: Computational modelling based on MD simulations to model the iron-carbenoid formed 

in the active site of wild-type MaPgb and MaPgb LQ and MaPgb GW variants. (A) Active site of 

MaPgb GW with the carbenoid bound to heme describing the ∠N-Fe-C-C(CF3) dihedral angle 

measured along the MD trajectories. This angle, highlighted in red, describes the relative 

orientation of the iron-carbene in the active site. (B) Histogram describing the dihedral angles 

explored by the carbenoid relative to heme along MD simulations. Three independent MD replicas 

of 500 ns each are conducted for each system, shown in three color shades: 3 red tones for wild-

type MaPgb, 3 blue tones for MaPgb LQ, and 3 green tones for MaPgb GW (see SI for complete 

data). Representative snapshots of the major orientation explored in (C) MaPgb GW (∠N-Fe-C-

C(CF3) = -117°); and in (D) MaPgb LQ (∠N-Fe-C-C(CF3) = +49°). 

This was due to the preorganization of the iron-carbenoid intermediate in the active 

site and the steric requirements applied to the substrate when placed in the binding 

pocket in a catalytically competent pose. In contrast, MaPgb GW preferentially 

bound the benzyl acrylate substrate in a slightly different catalytic pose to that in the 

LQ variant, whereas the iron-carbenoid was rotated, as previously observed in 

carbene-bound simulations (Figure 4.6A-B, dihedral values ca. +130º (alkene, in 
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orange) and +90º (carbenoid, in blue)). This alternative near-attack conformation led 

to the preferential formation of the trans-diastereomer, in line with the 

experimentally observed selectivity switch. Consequently, we propose that different 

orientations explored by the iron-carbenoid in the active sites of the LQ and GW 

MaPgb variants are responsible for controlling the selectivity of these reactions and 

overcoming the intrinsic electronic preferences to yield almost exclusively the cis-

diastereomer. 

 

Finally, simulations with the benzyl methacrylate substrate bound in the MaPgb GW 

variant described a preferential near-attack conformation that led to the cis-

cyclopropane product (Figure 4.6A-B, dihedral values ca. +130º (alkene, in orange) 

and -90º (carbenoid, in blue)). These simulations showed that due to the extra steric 

bulk of the methyl group at the alkene α-position and the MaPgb GW active-site 

environment, the iron-carbenoid was forced to rotate when the olefin approaches, as 

compared to the benzyl acrylate system. Consequently, the iron-carbenoid and benzyl 

methacrylate preferentially explored near-attack pro-cis conformations due to steric 

requirements in the GW variant active site. These results illustrate why MaPgb GW 

was not able to produce the trans-cyclopropane in the case of benzyl methacrylate 

(Figure 4.6A). 
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Figure 4.6: Computational modelling based on MD simulations to characterize the substrate bound 

in a catalytically competent pose relative to the iron-carbenoid in variants MaPgb LQ and GW. (A) 

Two different dihedral angles were defined to describe the relative orientation of the substituted 

alkene and the iron-carbenoid along substrate-bound MD simulations. These geometric parameters 

define which faces of the alkene and the carbenoid are exposed to each other. In orange: 
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∠C(carbene)-C(alkene)-C(=O)-C(CH3) dihedral angle describes which face of the alkene is 

exposed to the carbenoid. In blue: ∠C(alkene)-H(carbene)-C(carbene)-C(CF3) dihedral angle 

describes which face of the carbenoid is exposed to the alkene. Different combinations of dihedral 

angle values describe near attack conformations (NAC) that could produce cis or trans 

diastereomers. (B) Dihedral angles measured along 500 ns MD trajectories for MaPgb LQ/GW 

variants and benzyl acrylate/methacrylate substrates. Benzyl acrylate bound in MaPgb LQ mainly 

explores pro-cis NACs, while it mainly explores pro-trans NACs in the GW variant. Benzyl 

methacrylate mainly explores pro-cis NACs in both LQ and GW variants. (C) Representative 

snapshot taken from MD simulations of MaPgb GW with benzyl acrylate and (D) of MaPgb GW 

with benzyl methacrylate. For similar snapshots in MaPgb LQ, see Appendix D Figure 5. 
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Conclusion 

Herein, we report a catalytic and enantioselective method for producing cis-

trifluoromethyl-substituted cyclopropanes. Additionally, we have shown that the 

biocatalysts are active on a wide range of substrates, including non-aryl-substituted 

alkenes and unactivated alkenes. Their cis-selectivity is likely controlled by the 

active-site geometry, which preorganizes the iron-carbenoid and the substrate in a 

pro-cis near-attack conformation to overcome the intrinsic preference of the reaction. 

The reactions were performed using lyophilized whole-cell powders, which can be 

stored easily and used by those without any cell-culture experience. This new 

catalytic method to make cis-trifluoromethyl-substituted cyclopropanes provides a 

new, green route to their production and has the potential to become a valuable 

approach for producing new biologically active compounds. 
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Materials and Methods 

Materials 

Solvents and reagents were purchased from Sigma Aldrich, TCI, CombiBlocks, or 

Alfa Aesar and used without further purification. Nitrogen, argon, and carbon 

monoxide gas cylinders were ordered from Airgas. Phusion® High-Fidelity DNA 

polymerase was obtained from New England BioLabs (Ipswich, MA, USA). 

Oligonucleotides were synthesized by Integrated DNA Technologies (Coralville, 

Iowa). GC-FID data were collected on an Agilent 7820A GC system. GC-MS data 

were collected on a Shimadzu GCMS-QP2010 SE. NMR spectra were recorded on a 

Bruker Prodigy 400 MHz instrument or Varian 300 MHz instrument with CDCl3 as 

solvent. 1H-NMR spectra were recorded at 400 MHz, 13C-NMR spectra were 

recorded at 100 MHz and 19F-NMR were recorded at 282 MHz. Chemical shifts were 

normalized to the chloroform solvent’s proton impurity (1H-NMR 7.26 ppm, 13C-

NMR 77.2 ppm) or to the fluorine in the 4-floroacetophenone internal standard (19F 

NMR -113.15ppm). Protein concentrations were measured with a Tecan Spark® via 

carbon monoxide binding (Extinction coefficient ε = 0.103 μM-1cm-1) as previously 

reported. Products were purified with a Biotage® Isolera One with either 10-g 

Biotage® SNAP Ultra columns or 25-g Biotage® Sfär Silica HC columns. 

 

Molecular Cloning 

Genes encoding Methanosarcina acetivorans and Aeropyrnum pernix protoglobins 

were ordered as codon-optimized gBlocks (Integrated DNA Technologies, 

Coralville, IA) and assembled into pET22b(+) with the pelB leader sequence 

removed. The gBlocks were amplified via polymerase chain reaction (PCR), and the 

PCR products were gel extracted and purified with the Zymoclean Gel DNA 

Recovery Kit (Zymo Research Corp, Irvine, CA). PCR was performed with the 

following protocol: 50 μL total volume, 50 ng template DNA, 0.5 μM primer, 0.2 

mM dNTPs (Sigma), 1 μL Phusion), 2 μL DMSO (NEB), 2 μL formamide (Sigma). 

Annealing temperature was set at 60 °C for 15 s, while maintaining a ramp of 0.5 

°C/s from the melting temperature (92 °C for 30 s) to the annealing temperature, 

followed by 15 s of elongation and 35 cycles were run to obtain product. The PCR 

product was subcloned into pET22b(+) via Gibson assembly.[2] Electrocompetent E. 

cloni EXPRESS BL21(DE3) cells (Lucigen, Middleton, WI) were transformed with 

the Gibson assembly products using a Gene Pulser Xcell (Bio-Rad, Hercules, CA). 

Aliquots of SOC medium (750 μL) were added, and the cells were incubated at 37 

°C and 230 rpm for 45 minutes before being plated on LB ampicillin (LBamp, 100 μg 

mL-1) agar plates. Overnight cultures (5-mL LBamp in culture tubes) were grown at 

37 °C and 230 rpm for 12–18 hours. Overnight cultures were used to inoculate flask 

cultures, prepare glycerol stocks, and isolate plasmids. Plasmids were isolated with 

Qiagen Miniprep kits, and the genes were sequence verified (T7 promoter/terminator 

sequencing primers, Laragen, Inc.). 
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Site-Saturation Mutagenesis 

Site-saturation mutagenesis was performed using the 22-codon method.[3] Briefly, 

oligonucleotides were ordered with NDT, VHG, and TGG codons in the coding 

strand at the amino acid position to be saturated. A reverse primer complementary to 

all three forward primers was also ordered. Two PCRs were performed for each 

library, the first containing a mixture of forward primers (12:9:1 NDT:VHG:TGG) 

and a pET22b(+) internal reverse primer and the second containing the 

complementary reverse primer and a pET22b(+) internal forward primer. The two 

PCR products were gel-purified with Zymoclean Gel DNA Recovery Kit (Zymo 

Research Corp, Irvine, CA) and ligated together via Gibson assembly. The Gibson 

assembly product was used to transform electrocompetent E. cloni EXPRESS 

BL21(DE3) cells (Lucigen, Middleton, WI). Aliquots of SOC medium (750 μL) were 

added, and the cells were incubated at 37 °C for 45 minutes before being plated on 

LBamp (100 μg mL-1) agar plates. 

 

Protein Expression 

For expression cultures, hyperbroth (HB, AthenaES) with 100 μg mL-1 ampicillin in 

unbaffled Erlenmeyer flasks was inoculated 1% (v/v) with stationary-phase 

overnight cultures and shaken in an Innova 428 shaker at 230 rpm and 37 °C. At an 

optical density of 600 (OD600) = 0.8, the cultures were chilled on ice for 20 minutes. 

Protein expression was induced with 1 mM isopropyl β-d-1-thiogalactopyranoside 

(IPTG), and heme production was enhanced with supplementation of 1 mM 5-

aminolevulinic acid (ALA). The cultures were shaken at 160 rpm and 22 °C 

overnight (18–24 hours). Cells were pelleted via centrifugation at 4000xg for 15 

minutes at 4 °C. The supernatant was discarded, and the cells were resuspended in 

M9-N buffer.  

 

96-Well Protein Expression 

Single colonies from the LBamp agar plates were picked using sterile toothpicks and 

grown in 300 μL LBamp in 2-mL 96-well deep-well plates at 37 °C, 250 rpm, and 80% 

humidity overnight (12–18 hours). Multi-channel pipettes were used to transfer 20 

μL of starter culture into deep-well plates containing 1 mL HBamp per well. Glycerol 

stocks of these plates were prepared in parallel by adding starter culture (100 μL) and 

50 % (v/v) sterile glycerol (100 μL) to a 96-well microplate, which was then stored 

at -80 °C. The deep-well expression culture plate was incubated at 37 °C, 250 rpm, 

and 80% humidity for 2.5 hours. The plate was then chilled on ice for 20 minutes. 

The cultures were induced with 1 mM IPTG and supplemented with 1 mM ALA to 

increase cellular heme production. The plate was incubated at 22 °C and 250 rpm 

overnight. The plate was centrifuged at 4000×g for 10 minutes at 4 °C. 
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Whole-Cell Lyophilization 

Whole Escherichia coli (E. coli) cells containing ApePgb W59L Y60Q were 

expressed via the above protocol. The cell pellet was resuspended in M9-N buffer to 

OD600 = 45 in a 50-mL Falcon tube. The suspension was flash-frozen in liquid 

nitrogen and lyophilized for three days at 0.0018 mbar. Lyophilized whole-cell 

powder was stored at 4 °C. The lyophilized whole-cell powder can be reconstituted 

with dH2O in a ratio of 36 mg lyophilized powder to 1 mL of water.  

Synthesis of 2,2,2-Trifluorodiazoethane Trapped in Ethanol 

To a 6-mL crimp vial, 4 mL EtOH were added and the vial subsequently sealed and 

cooled to -4 °C in an ice-salt bath (Vial 1). 2,2,2-Trifluoroethylamine HCl (800 mg, 

6 mmol) was dissolved in 3 mL dH2O and added to a crimp vial that was subsequently 

sealed (Vial 2). NaNO2 (620 mg, 9 mmol) was dissolved in 2 mL dH2O and taken up 

with a syringe. The needle of the syringe was introduced into vial 2, and NaNO2 was 

added via slow addition over 4 hours. The developing gas of 2,2,2-

Trifluorodiazoethane was bubbled through vial 1 over the course of the reaction via 

canula transfer. A balloon was added to vial 1 to regulate pressure. The resulting 

yellow solution was stored at -20 °C and used as such without further purification. 
19F-NMR: δ =-54 ppm 

 

Analytical-Scale Enzymatic Reactions in 96-Well Plates 

The reactions (400 μL) were carried out in 96-well plates in an anaerobic chamber 

(Coy). Whole-cell catalysts (380 μL, OD600 = 30 in M9-N minimal medium) were 

added to a 96-well plate. A solution of alkene reagent (10 μL, 400 mM in ethanol) 

was added, followed by a solution of 2,2,2-trifluorodiazoethane (10 μL, 400 mM in 

ethanol). The reaction plate was sealed using a pierceable foil cover (USA Scientific) 

and was left to shake on a plate shaker at 400 rpm for 12 h at room temperature. To 

quench the reaction, the plate was unsealed and a 1:1 mixture of pentane/diethyl ether 

(0.6 mL) was added, followed by 1,3,5-trimethoxybenzene (20 μL, 20 mM in 

toluene) as an internal standard. The plates were vortexed and centrifuged (4000xg, 

5 min). The organic layer was analyzed by gas chromatography – mass spectrometry 

(GC-MS). 

 

Time-Course Reactions 

The reactions (400 μL) were carried out in 1.5-mL GC screw-cap vials in an 

anaerobic chamber at 24 °C and pH 7.4. Whole-cell catalysts (380 μL, OD600 = 30 in 

M9-N minimal medium) were added to a 1.5-mL GC screw-cap vial. A solution of 

alkene reagent (10 μL, 400 mM in ethanol) was added. As we added a solution of 

2,2,2-trifluorodiazoethane (10 μL, 400 mM in ethanol), the timer was started. The 

vials were sealed, placed in a vial holder, and left to shake on a plate shaker at 400 

rpm for the following times (minutes): 0, 1, 5, 10, 20, 30, 60, 90, 120, 180, 240, and 
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1440. After the time had elapsed, the reaction was quenched with the addition of a 

1:1 mixture of hexane/ethyl acetate (0.6 mL) and vigorously shaken. The contents of 

each vial were transferred to a 1.7-mL microcentrifuge tube and vortexed, followed 

by centrifugation (14000xg, 5 min). The organic layer was analyzed by gas 

chromatography – flame induced detection (GC-FID). The reactions were performed 

in technical triplicated and biological duplicates for a total of 72 measurements. 

 

Preparative-Scale Enzymatic Reactions 

Lyophilized whole-cell powder (1.4 g) was reconstituted in 80 mL dH2O via 

vortexing. The suspension was transferred to a 100-mL Erlenmeyer flask. To a 6-mL 

crimp vial, we added 270 mg of 2,2,2-trifluoroethylamine HCl dissolved in 1 mL 

dH2O and subsequently sealed it. The crimp vial was placed on a stir plate and 

sparged with argon. A canula from the crimp vial was passed into the Erlenmeyer 

flask containing the enzyme, and this suspension was subsequently sparged with 

argon as well, making sure the gas stream did not make the mixture foam too much. 

NaNO2 (207 mg) was dissolved in 0.8 mL dH2O and taken up with a syringe. 

Sparging of the crimp vial solution was stopped and argon was blown on the surface 

of the solution in the vial. NaNO2 was added to the crimp vial via slow addition over 

2 hours. After 5 minutes, a 1 M solution of alkene in EtOH was added to the 

Erlenmeyer flask via slow addition over 20 minutes. After 2.5 hours, the reaction 

products were extracted with 1:1 pentane/diethyl ether (20 mL) via vortexing. The 

product was concentrated in vacuo (on ice) and purified via column chromatography 

(pentane/diethyl ether). The sample should always be kept cold to avoid evaporation 

of product. 

 

Yield Determination of Preparative-Scale Enzymatic Reactions 

Reactions were set up as described and extracted as above. The product was 

concentrated in vacuo (on ice) until around 1 to 3 mL of solution were left in the 

flask. The solution was then diluted in CDCl3 to 10 mL total volume. For the 

substrates ‘dimethyl itaconate’, 3-nitrostyrene’ and ‘phenyl vinyl ether’, we 

concentrated the crude in vacuo to below 1-mL volume and diluted the solution with 

CDCl3 to 3 mL total volume. We transferred 900 μL of this solution to an NMR tube 

together with 100 μL of a 400 mM solution of 4-fluorobenzophenone as the standard. 

The NMR sample was measured at 282 MHz on a Varian 300 MHz instrument. The 

signal of the product was divided by three to account for the three fluorines of the 

cyclopropane versus one of the standards.  

Yield was calculated via: 

𝑌𝑖𝑒𝑙𝑑 =  
𝐼(Cis)

3 ∙ 𝐼(𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑)
 ∙  𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 ∙  𝑉𝑜𝑙𝑢𝑚𝑒(𝐶𝐷𝐶𝑙3) 

Where I is the integral from 19F-NMR. Total Turnover Number (TTN) was calculated 

via:  

𝑇𝑇𝑁 =  
𝑌𝑖𝑒𝑙𝑑 ∙  1000

𝑃𝑟𝑜𝑡𝑒𝑖𝑛 𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 ∙  𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛 𝑉𝑜𝑙𝑢𝑚𝑒
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Where the reaction was always from the same ApePgb LQ batch with a protein 

concentration of 5.3 μM and a reaction volume of 80 mL. Isolating the compounds 

typically reduces the yield about 10-fold, and the crude reaction extract should be 

always kept on ice to prevent evaporation. Ideally, isolation of products should be 

performed via distillation to avoid a large loss of product. 

 

Synthesis of Authentic Standards: Method 1 

As described previously:[4] [Rh2(OAc)4] (21.5 mg, 0.0275 mmol) and NaOAc (18 

mg, 0.22 mmol) were dissolved in degassed dH2O (4 mL). Then 2,2,2-

trifluoroethylamine HCl (300 mg, 2.2 mmol) and H2SO4 (6 μL, 0.11 mmol) were 

added. The solution was degassed for 1 minute by sparging with Ar(g). Alkene (1.1 

mmol) was added next. NaNO2 (180 mg, 2.6 mmol) was dissolved in 2.5 mL dH2O 

and added over 10 hours, after which the products were extracted three times in DCM 

by vortexing in a 20-mL screw-cap vial. The organic phase was dried over MgSO4, 

and solvents were removed in vacuo. The product was purified via column 

chromatography. Alternatively, after extraction and filtering of the reaction one can 

add 5% aqueous KMnO4 (Warning: This is an exothermic reaction!), followed by 

washing of the organic phase with H2O (three times). This consumes most of the 

unreacted alkene, making purification easier.  

 

 

Synthesis of authentic standards: Method 2 

As described previously:[5] A solution of NaNO2 (345 mg, 5 mmol) in dH2O (1 mL) 

and slowly added over 10 hours into a solution of 2,2,2-trifluoroethylamine HCl (677 

mg, 5 mmol) in dH2O (2 mL). Upon addition, the 2,2,2-trifluorodiazoethane formed 

was blown off with argon into a vial containing a stirring solution of alkene (1 mmol) 

and DCM (5 mL). Excess gas was trapped in a balloon. After the slow addition was 

completed, the solvent was removed in vacuo until only a clear oil was left. The oil 

was transferred into a sealed flask and heated to 70 °C for 1 hour in an oil bath. After 

cooling down the flask, the product was separated via column chromatography. 

 

Synthesis of authentic standards: Method 3 

As described previously:[4b] [Fe(TPP)Cl] (20 mg, 0.03 mmol), DMAP (12 mg, 0.1 

mmol) and NaOAc (16 mg, 0.2 mmol) were dissolved in degassed dH2O (4 mL). 

Then 2,2,2-trifluoroethylamine HCl (300 mg, 2.2 mmol) and H2SO4 (6 μL, 0.11 

mmol) were added. Then the alkene (1.1 mmol) was added to the reaction mixture. 

NaNO2 (180 mg, 2.6 mmol) was dissolved in 2.5 mL dH2O and added over 10 hours. 

The product was extracted three times in DCM (10 mL), and the aqueous phase was 

separated from the organic phase via separatory funnel. The organic phase was dried 

with Na2SO4, and solvents were removed in vacuo. The product was purified via 

column chromatography (pentane/diethyl ether). 
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Density functional theory calculations 

Density Functional Theory (DFT) calculations were carried out using Gaussian09.[6] 

A truncated computational model was used, which includes the Fe-porphyrin pyrrole 

core, an imidazole coordinated to the Fe center to mimic the histidine axial ligand, 

the CF3-carbene bound to the Fe, and the corresponding benzyl acrylate substrate. 

Geometry optimizations and frequency calculations were performed using 

(U)B3LYP[7] functional with the SDD basis set for iron and 6-31G(d) on all other 

atoms. Transition states had one negative force constant corresponding to the desired 

reaction coordinate. Enthalpies and entropies were calculated for 1 atm and 298.15 

K. Single point energy calculations were performed using the dispersion-corrected 

functional (U)B3LYP-D3(BJ)[8] with the Def2TZVP basis set on all atoms and within 

the CPCM polarizable conductor model (diethyl ether, ε = 4)[9] to have an estimation 

of the dielectric permittivity in the enzyme active site. The use of a dielectric constant 

ε=4 has been proven to be a good and general model to account for electronic 

polarization and small backbone fluctuations in enzyme active sites.[10] 

The DFT-based approaches employed in this study are very similar to the ones 

previously used by us and other groups for the study of heme-iron carbene transfer 

reaction mechanisms.3,28–32 Independent benchmark studies by Prof. Shaik28 and 

Prof. Liu’s31 groups demonstrated that this method performs very well in the 

computational modelling of these carbene transfer reactions. 

The modeling of the open-shell electronic state was done by using a Gaussian09 

“stable = opt” calculation[11] to generate a singlet open-shell orbital guess from the 

triplet optimized geometry, followed by a full optimization of the system starting 

from this guess.  

 

Molecular dynamics simulations 

Molecular Dynamics simulations were performed using the GPU code (pmemd)[13] 

of the AMBER 16 package.[14] The MaPgb X-ray structure available from the PDB 

Bank (2VEB.pdb) was used as starting point in its monomeric form. Initial structures 

for double mutants LQ and GW were built using PyMOL[15] mutagenesis tool. 

Parameters for the iron-carbenoid and substrates were generated within the 

antechamber and MCPB.py[16] modules in AMBER16 package using the general 

AMBER force field (gaff),[17] with partial charges set to fit the electrostatic potential 

generated at the B3LYP/6-31G(d) level by the RESP model.[18] The charges were 

calculated according to the Merz–Singh–Kollman scheme[19] using the Gaussian 09 

package.[6] Protonation states of protein residues were predicted using H++ server. 

Each protein was immersed in a pre-equilibrated truncated cuboid box with a 10-Å 

buffer of TIP3P[20] water molecules using the leap module, resulting in the addition 

of around 9,600 solvent molecules. The systems were neutralized by addition of 

explicit counter ions (Na+). All subsequent calculations were done using the widely 

tested Stony Brook modification of the Amber14 force field (ff14sb).[21] A two-stage 

geometry optimization approach was performed. The first stage minimizes the 

positions of solvent molecules and ions imposing positional restraints on the solute 
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by a harmonic potential with a force constant of 500 kcal·mol−1·Å−2 and the second 

stage minimizes all the atoms in the simulation cell except those involved in the 

harmonic distance restraint. The systems were gently heated using six 50 ps steps, 

incrementing the temperature by 50 K for each step (0–300 K) under constant-

volume and periodic-boundary conditions. Water molecules were treated with the 

SHAKE algorithm such that the angle between the hydrogen atoms was kept fixed. 

Long-range electrostatic effects were modelled using the particle-mesh-Ewald 

method.[22] An 8-Å cutoff was applied to Lennard–Jones and electrostatic 

interactions. Harmonic restraints of 10 kcal·mol–1 were applied to the solute, and the 

Langevin equilibration scheme was used to control and equalize the temperature. The 

time step was kept at 1 fs during the heating stages, allowing potential 

inhomogeneities to self-adjust. Each system was then equilibrated for 2 ns with a 2-

fs time step at a constant pressure. Once the systems were equilibrated in the NPT 

ensemble, production trajectories were then run under the NVT ensemble and 

periodic-boundary conditions for an additional 500 ns (0.5 µs). Trajectories were 

processed and analyzed using the cpptraj[23] module from Ambertools utilities.  

Substrate-bound constrained MD simulations included a restrained distance between 

the center of mass of the substrate C–C double bond and the central C atom of the 

iron-carbenoid (3.0 – 3.2 Å) that was defined by adding a harmonic potential with k 

= 100 mol–1 Å–2 to this coordinate during the respective equilibrations and production 

runs. 
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Compound Characterization Data 

Note: For compound characterization spectra see Appendix E. 

 

Cis-Benzyl 2-(trifluoromethyl)cyclopropane-1-carboxylate (cis-1): 

 
Synthesized via method “Preparative Scale Enzymatic Reactions”. After removal of 

solvent in the crude reaction mixture, the product was purified via column 

chromatography on a 10-g silica column using a pentane/diethyl ether gradient: 3 

column volumes (CV) with pure pentane, 15 CV gradient up to 5% diethyl ether in 

pentane, 10 CV with 5% diethyl ether in pentane, 5 CV gradient up to 10% diethyl 

ether in pentane, 5 CV with 10% diethyl ether in pentane, 5 CV gradient up to 25% 

diethyl ether in pentane, 5 CV with 25% diethyl ether in pentane.  

 
1H-NMR (400 MHz, CDCl3): δ 7.37 (m, 5H), 5.16 (dd, J = 12.2, 6.7 Hz, 2H), 2.06 

(dddd, J = 9.4, 8.4, 6.8, 1.0 Hz, 1H), 1.93 (tp, J = 9.3, 7.5 Hz, 1H), 1.70 (q, J = 9.7 

Hz, 3H), 1.27 (m, 1H).  
13C-NMR (100 MHz, CDCl3): δ 168.6, 135.6, 128.7, 128.6, 128.5, 123.9 (q, J = 272.7 

Hz), 67.4, 22.1 (q, J = 38.8 Hz), 18.8 (q, J = 1.8 Hz), 8.7 (q, J = 2.6 Hz).  
19F-NMR (282 MHz, CDCl3): δ -61.15 (d, J = 7.4 Hz);  

MS (FAB) m/z [M]•+ calcd for C12H11F3O2: 244.07057, found 244.06947. 

 

Trans-Benzyl 2-(trifluoromethyl)cyclopropane-1-carboxylate (trans-1): 

 
 

Synthesized via method “Synthesis of authentic standards: Method 3”. After removal 

of solvent in the crude reaction mixture, the product was purified via column 

chromatography on a 10-g silica column using a pentane/diethyl ether gradient: 3 

column volumes (CV) with pure pentane, 15 CV gradient up to 5% diethyl ether in 

pentane, 10 CV with 5% diethyl ether in pentane, 5 CV gradient up to 10% diethyl 

ether in pentane, 5 CV with 10% diethyl ether in pentane, 5 CV gradient up to 25% 

diethyl ether in pentane, 5 CV with 25% diethyl ether in pentane.  

 
1H-NMR (400 MHz, CDCl3): δ 7.37 (m, 5H, Ar), 5.17 (m, 2H, PhCH2), 2.18 (m, 1H, 

COCH), 2.09 (ddd, J = 9.5, 5.5, 4.3 Hz, 1H, CF3CH), 1.38 (m, 2H, CH2-

cyclopropane). 
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13C-NMR (100 MHz, CDCl3): δ 171.3, 135.4, 128.8, 128.7, 128.5, 123.3 (q, J = 271.6 

Hz), 67.3, 22.1, 17.0 (q, J = 2.6 Hz), 10.66 (q, J = 2.6 Hz).  
19F-NMR (282 MHz, CDCl3): δ -67.14. 

 

Benzyl 1-methyl-2-(trifluoromethyl)cyclopropane-1-carboxylate (2):  

 
Synthesized via method “Preparative Scale Enzymatic Reactions”. After removal of 

solvent in the crude reaction mixture, the product was purified via column 

chromatography on a 10-g silica column using a pentane/diethyl ether gradient: 3 

column volumes (CV) with pure pentane, 15 CV gradient up to 5% diethyl ether in 

pentane, 5 CV with 5% diethyl ether in pentane, 5 CV gradient up to 25% diethyl 

ether in pentane, 5 CV with 25% diethyl ether in pentane.  

 
1H-NMR (400 MHz, CDCl3): δ 7.36 (m, 5H, Ar), 5.14 (dd, J = 12.3, 11.0 Hz, 2H, 

PhCH2), 1.82 (t, J = 6.2 Hz, 1H, CF3CH), 1.68 (m, 1H, CH2-cyclopropane), 1.42 (s, 

3H, Me), 1.05 (ddq, J = 8.5, 5.6, 1.3 Hz, 1H, CH2-cyclopropane).  
13C-NMR (100 MHz, CDCl3): δ 170.5, 135.6, 128.6, 128.4, 126.5, 125.1 (q, J = 272.5 

Hz), 67.4, 28.8 (q, J = 38.0 Hz). 25.5 (q, J = 1.9 Hz), 15.9 (q, J = 2.5 Hz).  
19F-NMR (282 MHz, CDCl3): δ -61.4 (d, J = 7.7 Hz).  

MS (FAB) m/z [M]•+ calcd for C13H13F3O2: 258.08622, found 258.08484. 

 

Methyl 1-(2-methoxy-2-oxoethyl)-2-(trifluoromethyl)cyclopropane-1-

carboxylate (3): 

 
Synthesized via method “Preparative Scale Enzymatic Reactions”. After removal of 

solvent in the crude reaction mixture, the product was purified via column 

chromatography on a 10-g silica column using a pentane/diethyl ether gradient: 3 

column volumes (CV) with pure pentane, 10 CV gradient up to 5% diethyl ether, 10 

CV with 5% diethyl ether in pentane, 10 CV gradient up to 25% diethyl ether in 

pentane, 15 CV with 25% diethyl ether in pentane.  
1H-NMR (400 MHz, CDCl3): δ 3.69 (s, 3H, COOMe), 3.69 (s, 3H, COOMe), 2.80 

(dd, J = 60, 18, 2H, CH2COOMe), 2.34 (m, 1H, CF3CH), 1.71 (ddt, J = 9.6, 5.5, 1.2, 

1H, CH2-cyclopropane), 1.27 (m, 1H, CH2-cyclopropane).  

 
13C-NMR (100 MHz, CDCl3): δ 172.3, 171.6, 125.1 (q, J = 272.4 Hz), 52.9, 52.0, 

32.9 (d, J = 2.0 Hz), 26.0 (q, J = 37.5 Hz), 24.6 (d, J = 1.7 Hz), 16.9 (q, J = 2.7 Hz). 
19F-NMR (282 MHz, CDCl3): δ -60.9 (d, J = 7.8 Hz).  
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MS (FAB) m/z [M]•+ calcd for C9H11F3O4: 240. 06039, found 240. 05937. 

 

(2-(Trifluoromethyl)cyclopropyl)benzene (4): 

 
Synthesized via method “Preparative Scale Enzymatic Reactions”. Reactions were 

extracted in pentane, and the organic phase was washed with 1% aqueous KMnO4. 

After removal of solvent in the crude reaction mixture, the product was purified via 

column chromatography on a 10-g silica column using pentane as eluent. Compound 

is volatile, and pentane is present in the NMR spectrum.  

 
1H-NMR (400 MHz, CDCl3): δ 7.31 (m, 4H, Ar), 7.26 (m, 1H, Ar), 2.49 (tdd, J = 

8.8, 7.5, 1.2 Hz, 1H, PhCH), 1.88 (m, 1H, CF3CH), 1.44 (dd, J = 7.3, 5.9, 1H, CH2-

cyclopropane), 1.34 (m, 1H, CH2-cyclopropane).  
13C-NMR (100 MHz, CDCl3): δ 135.4, 129.5, 128.0, 127.0, 126.4 (q, J = 272.0 Hz), 

20.6 (q, J = 1.8 Hz), 20.38 (q, J = 35.5 Hz), 6.5 (q, J = 2.5 Hz).  
19F-NMR (282 MHz, CDCl3): δ -61.2 (d, J = 7.5 Hz).  

NMR values are in accordance with literature. [4a] 

 

1-Methoxy-4-(2-(trifluoromethyl)cyclopropyl)benzene (5): 

 
Synthesized via method “Preparative Scale Enzymatic Reactions”. Reactions were 

extracted in pentane, and the organic phase was washed with 1% aqueous KMnO4. 

After removal of solvent in the crude reaction mixture, the product was purified via 

column chromatography on a 10-g silica column using pentane as eluent. Compound 

is volatile, and pentane is present in the NMR spectrum.  

 
1H-NMR (400 MHz, CDCl3): δ 7.22 (m, 2H, Ar), 6.83 (m, 2H, Ar), 3.79 (s, 3H, 

OMe), 2.42 (m, 1H, ArCH), 1.81 (tqd, J = 8.8, 7.7, 5.7, 1H, CF3CH), 1.36 (m, 1H, 

CH2-cyclopropane), 1.26 (m, 1H, CH2-cyclopropane).  
13C-NMR (100 MHz, CDCl3): δ 158.6, 130.5, 127.4, 126.43 (q, J = 272.1 Hz), 113.7, 

55.3, 20.23 (q, J = 35.1 Hz), 19.86 (q, J = 1.8 Hz), 6.74 (q, J = 2.5 Hz).  
19F-NMR (282 MHz, CDCl3): δ -60.49 (d, J = 7.4 Hz).  

MS (FAB) m/z [M]•+ calcd for C11H11F3O: 216.07565, found 216.07384. 
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1-Nitro-3-(2-(trifluoromethyl)cyclopropyl)benzene (6): 

 
Synthesized via method “Preparative Scale Enzymatic Reactions”. Reactions were 

extracted in pentane, and the organic phase was washed with 1% aqueous KMnO4. 

After removal of solvent in the crude reaction mixture, the product was purified via 

column chromatography on a 10-g silica column using pentane as eluent. Compound 

is volatile, and pentane is present in the NMR spectrum.  

 
1H-NMR (400 MHz, CDCl3): δ 8.17 (m, 1H, Ar), 8.11 (m, 1H, Ar), 7.65 (d, J = 7.7 

Hz, 1H, Ar), 7.47 (t, J = 7.9 Hz, 1H, Ar), 2.55 (tdt, J = 9.1, 7.1, 1.0 Hz, 1H, ArCH), 

1.99 (m, 1H, CF3CH), 1.51 (dt, J = 7.2, 6.0, Hz, 1H, CH2-cyclopropane), 1.40 (tdq, J 

= 8.7, 6.0, 1.3 Hz, 1H, CH2-cyclopropane). 
13C-NMR (100 MHz, CDCl3): δ 148.3, 137.7, 135.9, 129.2, 125.9 (q, J = 272.2 Hz), 

124.4, 122.3, 20.75 (q, J = 35.7 Hz), 20.10(q, 1.8 Hz), 6.9 (q, J = 2.7 Hz). 
19F-NMR (282 MHz, CDCl3): δ -61.31 (d, J = 7.5 Hz).  

MS (FAB) m/z [M]•+ calcd for C10H8F3NO2: 231.05016, found 231.04902. 

 

1-Bromo-2-(2-(trifluoromethyl)cyclopropyl)benzene (7): 

 
 

Synthesized via method “Preparative Scale Enzymatic Reactions”. Reactions were 

extracted in pentane and the organic phase was washed with 1% aqueous KMnO4. 

After removal of solvent in the crude reaction mixture, the product was purified via 

column chromatography on a 10-g silica column using pentane as eluent. Compound 

is volatile, and pentane is present in the NMR spectrum.  

 
1H-NMR (400 MHz, CDCl3): 7.59 (dd, J = 7.9, 1.3, 1H, Ar), 7.23 (m, 2H, Ar), 7.13 

(tdd, J = 7.2, 1.9, 0.6 Hz, 1H, Ar), 2.48 (q, J = 8.3, 1H, ArCH), 2.04 (m, 1H, CF3CH), 

1.52 (m, 1H, CH2-cyclopropane), 1.36 (m, 1H, CH2-cyclopropane).  
13C-NMR (400 MHz, CDCl3): δ 135.09, 132.65, 129.81 (d, J = 1.6 Hz), 128.69, 

127.12, 126.07 (q, J = 272.5 Hz), 27.29 (q, J = 899.1 Hz), 20.94 (q, J = 35.5 Hz), 6.91 

(q, J = 2.6 Hz). 

19F-NMR (300 MHz, CDCl3): -61.70 (d, J = 7.5 Hz).  

MS (FAB) m/z [M]•+ calcd for C10H8BrF3: 263.97560, found 263.97443. 

 

 



 

 

163 

((2-(Trifluoromethyl)cyclopropyl)methyl)benzene (8): 

 
Synthesized via method “Preparative Scale Enzymatic Reactions”. Reactions were 

extracted in pentane, and the organic phase was washed with 1% aqueous KMnO4. 

After removal of solvent in the crude reaction mixture, the product was purified via 

column chromatography on a 10-g silica column using pentane as eluent. Compound 

is volatile, and pentane is present in the NMR spectrum. As reported before,[25] the 

trans- and cis-isomer cannot be separated via column chromatography. At large 

enough scale, distillation can be performed as previously suggested [4a].  

 
1H-NMR (400 MHz, CDCl3): δ 7.28 (m, Ar), 2.98 (dd, J = 15.0, 5.5 Hz, cis, PhCH2), 

2.73 (dd, J = 14.8, 6.5 Hz, trans, PhCH2), 2.64 (dt, J = 14.9, 9.7 Hz, PhCH2), 1.87 

(dq, J = 14.7, 7.4 Hz, cis, BnCH-cyclopropane), 1.66–1.44 (m, CF3CH-

cyclopropane), 1.12-1.06 (m, cis, CH2-cyclopropane), 1.06-0.99 (m, trans, CH2-

cyclopropane), 0.97 (dd, J = 6.6, 0.8 Hz, cis, CH2-cyclopropane), 0.71 (dd, J = 9.5, 

5.2 Hz, trans, CH2-cyclopropane).  
13C-NMR (100 MHz, CDCl3): δ 141.11, 139.78, 128.64, 128.61, 128.46, 128.41, 

126.57, 126.37, 37.95 (trans, PhCH2), 33.44 (q, J = 1.7 Hz, cis, PhCH2), 19.69 (trans, 

CF3CH), 18.17 (cis, CF3CH), 17.57 (cis, BnCH), 16.24 (q, J = 2.3 Hz, trans, BnCH), 

8.98 (q, J = 2.5 Hz, cis, CH2-cyclopropane), 8.61 (trans, CH2-cyclopropane). 
19F-NMR (282 MHz, CDCl3): δ -59.54 (dd, J = 8.6 Hz, cis), -66.29 (d, J = 6.7 Hz, 

trans). 

MS (FAB) m/z [M]•+ calcd for C11H11F3: 200.08074, found 200.07894. 
 

1-Methyl-2-((2-(trifluoromethyl)cyclopropyl)methyl)benzene (9): 

 
Synthesized via method “Preparative Scale Enzymatic Reactions”. Reactions were 

extracted in pentane, and the organic phase was washed with 1% aqueous KMnO4. 

After removal of solvent in the crude reaction mixture, the product was purified via 

column chromatography on a 10-g silica column using pentane as eluent. Compound 

is volatile, and pentane is present in the NMR spectrum.  

 
1H-NMR (400 MHz, CDCl3): δ 7.30 (dd, J = 7.7, 2.0 Hz, 1H, Ar), 7.18 (m, 3H, Ar), 

3.03 (dd, J = 15.4, 4.9 Hz, 1H, ArCH2), 2.60 (dd, J = 15.2, 9.5 Hz, 1H, ArCH2), 2.35 

(s, 3H, Me), 1.65 (qd, J = 8.6, 5.7 Hz, 1H, CF3CH), 1.41 (m, 1H, ArCH), 1.09 (tdd, 

J = 8.7, 5.2, 1.4 Hz, 1H, CH2-cyclopropane), 1.00 (d, 6.6 Hz, 1H, CH2-cyclopropane). 
13C-NMR (100 MHz, CDCl3): δ 139.32, 136.09, 130.30, 128.44, 127.24 (q, J = 271.9 

Hz), 126.45, 126.21, 31.77, 30.55, 18.39 (q, J = 35.9 Hz), 16.34 (q, J = 1.5 Hz), 9.18 

(q, J = 2.6 Hz). 
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19F-NMR (282 MHz, CDCl3): δ -59.6 (d, J = 8.4 Hz).  

MS (FAB) m/z [M]•+ calcd for C12H12F3: 214.09639, found 214.09549. 

 

(2-(Trifluoromethyl)cyclopropoxy)benzene (10): 

 
 

Synthesized via method “Preparative Scale Enzymatic Reactions”. After removal of 

solvent in the crude reaction mixture, the product was purified via column 

chromatography on a 10-g silica column using pentane. Compound is volatile, and 

pentane is present in the NMR spectrum.  

 
1H-NMR (400 MHz, CDCl3): δ 7.31 (m, 2H, Ar), 7.03 (m,3 H, Ar), 3.96 (dtq, J = 

6.4, 4.3, 2.1 Hz, 1H, OCH), 1.79 (dpd, J = 10.0, 7.2, 6.4 Hz, 1H, CF3CH), 1.36 (td, J 

= 7.0, 4.3 Hz, 2H, CH2-cyclopropane), 1.29 (m, 1H, CH2-cyclopropane). 
13C-NMR (100 MHz, CDCl3): δ 158.1, 129.5, 125.50 (q, J = 271.9 Hz), 121.9, 

115.16, 52.3 (q, J = 2.1 Hz), 19.7 (q, J = 36.4 Hz), 9.43 (q, J = 2.6 Hz), 1.18. 
19F-NMR (300 MHz, CDCl3): δ -60.6 (dt, J = 7.2, 1.7 Hz).  

MS (FAB) m/z [M]•+ calcd for C10H9F3O: 202.06000, found 202.05855. 
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Appendix A: Explanation of Common (ML) Software Engineering 

Terms 

 

Abstract Class: 

A type of parent class from which objects cannot be instantiated from. Abstract 

classes are used to define a set of classes that should all have the same behavior. A 

key concept of an abstract class is the abstract method, which a class inheriting from 

the abstract class has to implement its own version of for the program to compile. 

 

Attribute: 

The set of variables that define an object. 

 

Child Class: 

A class that inherited from another class. In other words, a class that defines its own 

methods but that also has access to the methods of the parent class. 

 

Class: 

A class in object-oriented programming is a template that defines methods and 

attributes of an object that is an instance of it. 

 

Dependency Injection: 

A type of coding pattern in which the required input of an object is defined by an 

abstract class. This ensures that whatever the exact nature of the input is does not 

matter as long as it has implemented the methods of the abstract class. 

 

Dictionary: 

A dictionary is a data structure that stores data in key/value pairs. The value in a 

dictionary can be accessed by providing the dictionary with a key. An important 

property of dictionaries is that each key appears at most once in the data structure. 

 

Factory Pattern: 

A type of coding pattern in which relays information to be processed to the correct 

function. The factory pattern achieves this by using a dictionary in which the key is 

used to define what function should be executed and the value of the dictionary is the 

function to be executed. The factory pattern is useful in not having to write long 

if/else statements. 

 

Method: 

A function of a class or object. Just like a function, a method takes inputs and 

manipulates them. However, a method also has access to the attributes of the object 

it is executed from. 
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MLM: 

A masked language model (MLM) is an unsupervised machine learning model in 

which a token in a sequence is masked and the task for the model is to guess the 

correct token in the sequence. 

 

NLP: 

A class of machine learning models that learns the structure of written and spoken 

language. 

 

Object: 

An object is a data structure that stores specific variables (attributes) and methods on 

how to manipulate them. An object is always in instance of a class which defines it. 

 

Private Attribute: 

An attribute that can only be accessed by the object itself and no external objects. 

 

PLM: 

A class of machine learning models that learns the language of protein sequences, 

their properties and structures. 
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Appendix B: Other Contributions 

In addition to the work presented in this thesis, I also contributed to the following 

paper:  

S. Petrovic, D. Samanta, T. Perriches, C. J. Bley, K. Thierbach, B. Brown, S. Nie, G. 

W. Mobbs, T. A. Stevens, X. Liu, G. P. Tomaleri, L. Schaus, A. Hoelz, Architecture 

of the linker-scaffold in the nuclear pore, Science 2022, 376, 6598. 

doi:10.1126/science.abm9798 

 

Together with S. Petrovic, I solved determined the crystal growth conditions and 

solved the structure of H. sapiens Nup93SOL in complex with Nup53R2. 

 

 

I also contributed to the development of projects and helped in writing grants and 

fellowships for the following programs, all of which have been funded: 

• Resnick Impact Grant 

• AFR PhD Fellowship 

• NSF CBE Grant 
• DOE Data Science to Advance Chemical and Material Sciences Grant 

• Amgen Foundation Grant 

• Nvidia GPU Grant Program  
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Appendix C: Chapter 2 Supplementary Figures 

OAS C/S 

 

Figure SC.1: Example of a query file for OAS C/S. The program will parse this file and start two 

downloading runs. The first run will download all available heavy chains from B-Cells that have 

been counter-selected (i.e. Memory B-Cells, Plasma B-Cells, Germinal Center B-Cells etc.). The 

data kept from the OAS files will be information on the author of the study, the species of origin, 

the chain type (i.e. IGHG, IGHE etc.), the amino acid sequence, the framework and CDR 

sequences, and the V-gene type. After processing the files, the listed post-processing modules will 

be passing over the data in the order listed, with the options listed. 

 

Figure SC.2: Example of the command line interface (CLI) of OAS C/S. This CLI query results in 

the same download as “Run Number: 2” from Figure SC.1. In this case OAS C/S has not been 

added to PATH and therefore main.py has to be run in the folder it is stored in. 
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Antibody Benchmarks 

 

Figure SC.3: Empirical cumulative density function (ECDF) of the percentage of patients that 

produce anti-drug antibodies (ADA) when treated with a monoclonal antibody, separated by the 

origin of the antibody. 

Antibody VL Grafted Gene VH Grafted Gene 

Certolizumab IGKV1-16 IGHV7-4 

Omalizumab IGKV1-3 IGHV4-38 

Palivizumab IGKV1-39 IGHV2-5 

M8a-3 IGKV4-1 IGVH1-3 
Table SC2.1: Framework genes that monoclonal antibodies’ CDRs have been grafted onto. CDR 

grafting was performed via the BioPhi web application. 
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Figure SC.4: Plots used for peak assignments for M8a-3 “Mouse” and “Grafted” thermofluor 

assays. 
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Figure SC.5: Plots used for peak assignments for M8a-3 “BioPhi”, “Mousify: OASis/Hu-mAb”, 

and “Mousify: OASis/Sapiens” thermofluor assays. 
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Figure SC.6: Plots used for peak assignments for Certolizumab “Mouse”, “Therapeutic”, and 

“Grafted” thermofluor assays. 
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Figure SC.7: Plots used for peak assignments for Certolizumab “Mousify: OASis/Hu-mAb”, 

“Mousify: OASis/Sapiens” and “Mousify: Hu-mAb/Hu-mAb” thermofluor assays. 
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Figure SC.8: Plots used for peak assignments for Omalizumab “Mouse”, “Therapeutic” and 

“Grafted” thermofluor assays. 
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Figure SC.9: Plots used for peak assignments for Omalizumab “BioPhi” and “Mousify: 

OASis/Sapiens” thermofluor assays. 
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Figure SC.10: Plots used for peak assignments for Palivizumab “Mouse”, “Therapeutic”, and 

“Grafted” thermofluor assays. 
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Figure SC.11: Plots used for peak assignments for Palivizumab “BioPhi”, “Mousify: 

Oasis/Sapiens”, “Mousify: Hu-mAb/Hu-mAb”, and “Hu-mAb” thermofluor assays. 
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Figure SC.12: Raw data of thermofluor assay data and the derivative of the data of M8a-3 “Mouse” 

and “Grafted” antibodies. 
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Figure SC.13: Raw data of thermofluor assay data and the derivative of the data of M8a-3 “BioPhi”, 

“Mousify: OASis/Hu-mAb” and “Mousify: OASis/Sapiens” antibodies. 
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Figure SC.14: Raw data of thermofluor assay data and the derivative of the data of Certolizumab 

“Mouse”, “Therapeutic”, and “Grafted” antibodies. 
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Figure SC.15: Raw data of thermofluor assay data and the derivative of the data of Certolizumab 

“Mousify: OASis/Hu-mAb”, “Mousify: OASis/Sapiens”, and “Mousify: Hu-mAb/Hu-mAb” 

antibodies. 
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Figure SC.16: Raw data of thermofluor assay data and the derivative of the data of Omalizumab 

“Mouse”, “Therapeutic”, and “Grafted” antibodies. 
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Figure SC.17: Raw data of thermofluor assay data and the derivative of the data of Omalizumab 

“BioPhi”, and “Mousify: OASis/Sapiens” antibodies. 
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Figure SC.18: Raw data of thermofluor assay data and the derivative of the data of Palivizumab 

“Mouse”, “Therapeutic”, and “Grafted” antibodies. 
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Figure SC.19: Raw data of thermofluor assay data and the derivative of the data of Palivizumab 

“BioPhi”, “Mousify: OASis/Sapiens”, “Mousify: Hu-mAb/Hu-mAb” and “Hu-mAb” antibodies. 
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Figure SC.20: ECDF of EC50 values calculated from ELISA. (Top) M8a-3 EC50 values. (Middle) 

Certolizumab EC50 values. (Bottom) Omalizumab EC50 values. 
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Mousify Library Generation 

 

Figure SC.21: Sampled data from the Mousify OS model. Only 9.6% of antibodies would pass all 

experiments (At least no change in TM, not polyreactive, expresses and maximum EC50 increase of 

20%). Each point would represent an antibody with the properties listed. Samples were considered 

iid. to generate this figure. It is worth noting that the samples are likely not iid. in reality. For 

example, a very unstable antibody will likely also have very poor EC50, or a very low EC50 antibody 

also has a higher chance of being polyreactive than an antibody that does not bind to the target 

antigen at all. 
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Figure SC.22: Sampled data from the Mousify OH model. Only 0.7% of antibodies would pass all 

experiments (At least no change in TM, not polyreactive, expresses and maximum EC50 increase of 

20%). Each point would represent an antibody with the properties listed. Samples were considered 

iid. to generate this figure. It is worth noting that the samples are likely not iid. in reality. For 

example, a very unstable antibody will likely also have very poor EC50, or a very low EC50 antibody 

also has a higher chance of being polyreactive than an antibody that does not bind to the target 

antigen at all. D.n.e.: Does not express. 
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Figure SC.23: Sampled data from the Mousify OH model. Only 1% of antibodies would pass all 

experiments (At least no change in TM, not polyreactive, expresses and maximum EC50 increase of 

20%). Each point would represent an antibody with the properties listed. Samples were considered 

iid. to generate this figure. It is worth noting that the samples are likely not iid. in reality. For 

example, a very unstable antibody will likely also have very poor EC50, or a very low EC50 antibody 

also has a higher chance of being polyreactive than an antibody that does not bind to the target 

antigen at all. D.n.e.: Does not express. 
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Figure SC.24: Boxplot of OASis Identity Scores of the M8a-3 library run. Mousify Library 

Parameters: Discriminator: OASis (percentile minimum: 0.15); Map: Sapiens; Mutator: Simulated 

Annealing (Temperature schedule of 0.005 (warmup), 0.0025 (Run, first 10,000), 0.000001 (Run, 

up to 200,032). Warmup: First 10,000 sequences; Run: Second phase of MCMC, 200,032 

sequences; Sim: OASis Identity score distribution of therapeutically available mAbs. 

 

Figure SC.25: Boxplot of OASis scores vs Percentile Minimum values in an SAMC Mousify run. 

Percentile minimum was cut-off at ≥ 0.5 for clarity. This figure is complementary to Figure 2.11. 
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AbVAE 

 

Figure SC.26: AbVAE trained without PID control algorithm to limit the contribution of KL 

divergence to the total loss. The model cannot learn any structure of the latent space as well as 

cannot reduce the reconstruction loss due to KL vanishing. 
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Figure SC.27: Reconstruction loss of AbVAE. 
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Figure SC.28: KL divergence loss of AbVAE. 
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Figure SC.29: AbVAE classification performance of human vs non-human calculated as the 

AUROC score plotted against the number of PCA dimensions used. 
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Figure SC.30: AbVAE AUROC plot at 4 PCA dimensions. AUROC score at this dimension is 

0.9823. 

 AbVAE Hu-mAb OASis 

AUROC 0.981 0.977 0.966 

Table SC.1: Comparison of AUROC scores of three different models compared in this thesis. 

AbVAE at 4 latent dimensions outperforms the other models in terms of classification task. 
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Figure SC.31: Reconstruction performance of AbVAE-ESM. This model performs worse than 

AbVAE and AbVAE-ByteNet in terms of reconstruction performance. 
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Figure SC.32: AbVAE-ESM humanness score correlation to %ADA. Pearsons correlation 

coefficient was 0.16 for this model which is of the inverse sign of what one would expect the 

correlation to be. 
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Fast Structure Predictions 

 

Figure SC.33: Thermosurf classifier performance. The simple classifiers used in this ensemble 

model (Support Vector Classifier, XGBoost, Random Forest Classifier) cannot find a good solution 

for a complex classification task. This is most likely due to the distribution of sequence cluster 

sizes as show in the lower right panel. 20% of clusters only have a single sequence as a member 

and nearly 50% of the clusters have 10 or less members. 
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Figure SC.34: Empirical Cumulative Distribution Function (ECDF) plots of the probability that 

one structure prediction model performs better than the other. This was performed via the one-to-

one comparison of each model’s predictions on a given query sequence, we then counted the 

number of occurrences of one performing better than the other. We performed statistical 

bootstrapping to generate an empirical distribution of each model’s performance. These results 

were used to make Figure 2.21C. 
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Appendix D: Chapter 4 Supplementary Figures 

 

 
Figure SD.1: DFT-optimized lowest in energy transition state (TS1) structures for the 

cyclopropanation reaction involving benzyl acrylate for the two possible diastereomers (cis and 

trans). A computational truncated model was used. Calculations were performed at the uB3LYP-

D3BJ / Def2-TZVP (PCM=DiethylEther) // uB3LYP / 6-31G(d)+SDD(Fe) (PCM=DiethylEther) 

level of theory. Distances are shown in Å, and energies are reported in kcal·mol-1. 
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Figure SD.2: Intrinsic reaction coordinate (IRC) calculations for the DFT-optimized transition state 

TS1 (trans and cis) structures for the cyclopropanation reaction involving benzyl acrylate for the 

two possible diastereomers (cis and trans) at the uB3LYP / 6-31G(d)+SDD(Fe) 

(PCM=DiethylEther) level of theory. Four different electronic states (open-shell singlet, OSS; 

closed-shell singlet , CSS; quintet, QUINT; and triplet) have been considered for TS1. Distances 

are shown in Å, and electronic energies are reported in kcal·mol-1. IRC calculations describe a 

stepwise mechanism for the open-shell singlet (OSS), quintet and triplet electronic states, where a 

covalent intermediate is formed from the corresponding TS1-trans/cis. On the other hand, IRC 

calculations describe a concerted mechanism for the closed-shell singlet (CSS) electronic state for 

both trans- and cis- CF3-cyclopropanations. 

 

Figure SD.3: DFT-optimized lowest in energy transition state (TS1) structures for the 

cyclopropanation reaction involving benzyl acrylate for the two possible diastereomers (cis and 

trans). A computational truncated model has been used. Calculations were performed at the 



 

 

213 
uB3LYP-D3BJ / Def2-TZVP (PCM=DiethylEther) // uB3LYP / 6-31G(d)+SDD(Fe) 

(PCM=DiethylEther) level of theory. Distances are shown in Å, and energies are reported in 

kcal·mol-1. 

 

Figure SD.4: Representative snapshots obtained from MD simulations (replica 1, at t = 60 ns) 

showing the accessible active site volume in two protoglobins variants with an iron-carbenoid 

bound (View 1 and 2, red blobs), where substrate is expected to bind and approach the carbenoid 

species in a catalytically competent pose (View 2 and 3, purple arrow). View 2 and 3 are equivalent 

and correspond to a 90° rotation from View 1. 
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Figure SD.5: Snapshots describing the most visited and representative conformers of the iron-

carbenoid as observed from MD simulations in of MaPgb GW (left) and in MaPgb LW (right). The 

mutated amino acids from wild type are shown in maroon color. 

Calibration Curves 

To determine the standard calibration curves, stock solutions of chemically 

synthesized organoborane products were prepared at various concentrations (0.4–20 

mM in 4:6 hexanes/EtOAc). All data points represent the average of triplicate runs. 

The standard curves plot product concentration in mM (y-axis) against the ratio of 

product area to internal standard area on GC-FID (x-axis). 

 

Calibration curve of benzyl 1-methyl-2-(trifluoromethyl)cyclopropane-1-

carboxylate 
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Calibration curve of benzyl 1-methyl-2-(trifluoromethyl)cyclopropane-1-

carboxylate  
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Appendix E: Chapter 4 Compound Characterization Data 

Explanation of NMR-NOESY Interpretation 

We added this section to the compound characterization to demonstrate that the cis 

diastereomer is the major product yielded by ApePgb LQ. First, we use the example 

of trans-benzyl 2-(trifluoromethyl)cyclopropane-1-carboxylate and  cis-benzyl 2-

(trifluoromethyl)cyclopropane-1-carboxylate to demonstrate how the 1H-NMR shifts 

differ in both diastereomers. Second, we show the difference in NOESY spectra for 

the two diastereomers to demonstrate that the cis and trans labels have been correctly 

assigned. Lastly, we show the NOESY spectra for all other reported cis 

diastereomers. NOESY spectra were measured on a Bruker Prodigy 400 MHz 

instrument at 400 MHz and a mixing time of 1 s. 

  

  
δ (ppm) Ha Hb  Hc Hd 

cis 2.21 1.88  1.27 1.62 

trans 2.21 1.70  1.23 1.41 

 

NOESY spectrum of cis-benzyl 2-(trifluoromethyl)cyclopropane-1-carboxylate 

shows strong NOE signal of Ha with Hb, indicating that both protons are on the same 

side of the cyclopropane plane. Additionally, a weaker signal is observed of Hc with 

Ha and Hb. 
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NOESY spectrum of trans-benzyl 2-(trifluoromethyl)cyclopropane-1-carboxylate 

shows no NOE signal between Ha and Hb, indicating that these two protons are on 

opposite sides of the cyclopropane plane. In the trans diastereomers, Hd is also shifted 

upfield compared to the cis diastereomer, providing another indicator for the 

diastereomer. 

 
  



 

 

219 

NMR Spectra of new compounds 

cis-benzyl 2-(trifluoromethyl)cyclopropane-1-carboxylate (Cis-1): 

 

19F-NMR (282 MHz, CDCl3): 

 
  



 

 

220 
1H-NMR (400 MHz, CDCl3): 

 
  



 

 

221 
13C-NMR (100 MHz, CDCl3): 

 

  



 

 

222 
1H-COSY (400 MHz, CDCl3): 

 

 

  



 

 

223 
1H-13C-HMBC (400 Mhz, 100 MHz, CDCl3): 

 

  



 

 

224 

NOESY (400 MHz, CDCl3): 

 

 

  



 

 

225 

Trans-benzyl 2-(trifluoromethyl)cyclopropane-1-carboxylate (Trans-1): 

 

19F-NMR (282 MHz, CDCl3): 

 
  



 

 

226 
1H-NMR (400 MHz, CDCl3): 

 
  



 

 

227 
13C-NMR (100 MHz, CDCl3): 

 
  



 

 

228 
1H-13C-HMBC (400 Mhz, 100 MHz, CDCl3): 

 

  



 

 

229 

NOESY (400 MHz, CDCl3): 

 

  



 

 

230 

Benzyl 1-methyl-2-(trifluoromethyl)cyclopropane-1-carboxylate (2): 

 

19F-NMR (282 MHz, CDCl3): 

 

 

  



 

 

231 
1H-NMR (400 MHz, CDCl3): 

 

 

 

  



 

 

232 
13C-NMR (100 MHz, CDCl3): 

 

  



 

 

233 
1H-COSY (400 MHz, CDCl3): 

 

  



 

 

234 
1H-13C-HMBC (400 Mhz, 100 MHz, CDCl3): 

  



 

 

235 

 

NOESY (400 MHz, CDCl3): 

 

  



 

 

236 

Methyl 1-(2-methoxy-2-oxoethyl)-2-(trifluoromethyl)cyclopropane-1-carboxylate 

(3): 

 
19F-NMR (282 MHz, CDCl3): 

 
  



 

 

237 
1H-NMR (400 MHz, CDCl3): 

 
  



 

 

238 
13C-NMR (100 MHz, CDCl3): 

 

  



 

 

239 
1H-COSY (400 MHz, CDCl3): 

  



 

 

240 
1H-13C-HMBC (400 Mhz, 100 MHz, CDCl3): 

  



 

 

241 

NOESY (400 MHz, CDCl3): 

 

  



 

 

242 

(2-(Trifluoromethyl)cyclopropyl)benzene (4): 

 
19F-NMR (282 MHz, CDCl3): 

 
  



 

 

243 
1H-NMR (400 MHz, CDCl3): 

  



 

 

244 
13C-NMR (100 MHz, CDCl3): 

  



 

 

245 
1H-13C-HMBC (400 MHz, 100 MHz, CDCl3): 

  



 

 

246 

NOESY (400 MHz, CDCl3): 

 

  



 

 

247 

1-Methoxy-4-(2-(trifluoromethyl)cyclopropyl)benzene (5): 

 
19F-NMR (282 MHz, CDCl3): 

  



 

 

248 
1H-NMR (400 MHz, CDCl3): 

  



 

 

249 
13C-NMR (100 MHz, CDCl3): 

  



 

 

250 

NOESY (400 MHz, CDCl3): 

 

  



 

 

251 

1-Nitro-3-(2-(trifluoromethyl)cyclopropyl)benzene (6): 

 
19F-NMR (282 MHz, CDCl3): 

  



 

 

252 
1H-NMR (400 MHz, CDCl3): 

  



 

 

253 
13C-NMR (100 MHz, CDCl3): 

  



 

 

254 
1H-13C-HMBC (400 Mhz, 100 MHz, CDCl3): 

  



 

 

255 

NOESY (400 MHz, CDCl3): 

 

  



 

 

256 

1-Bromo-2-(2-(trifluoromethyl)cyclopropyl)benzene (7): 

 
19F-NMR (282 MHz, CDCl3): 

 
  



 

 

257 
1H-NMR (400 MHz, CDCl3): 

 
  



 

 

258 
13C-NMR (100 MHz, CDCl3): 

 

  



 

 

259 
1H-13C-HMBC (400 Mhz, 100 MHz, CDCl3): 

  



 

 

260 

NOESY (400 MHz, CDCl3): 

 

  



 

 

261 

((2-(Trifluoromethyl)cyclopropyl)methyl)benzene (8): 

 
19F-NMR (282 MHz, CDCl3): 

  



 

 

262 
1H-NMR (400 MHz, CDCl3): 

  



 

 

263 
13C-NMR (100 MHz, CDCl3): 

  



 

 

264 

NOESY (400 MHz, CDCl3): 

 

  



 

 

265 

1-Methyl-2-((2-(trifluoromethyl)cyclopropyl)methyl)benzene (9): 

 
19F-NMR (282 MHz, CDCl3): 

 
  



 

 

266 
1H-NMR (400 MHz, CDCl3): 

 

 

  



 

 

267 
13C-NMR (100 MHz, CDCl3): 

  



 

 

268 
1H-13C-HMBC (400 Mhz, 100 MHz, CDCl3): 

  



 

 

269 

NOESY (400 MHz, CDCl3): 

  



 

 

270 

(2-(Trifluoromethyl)cyclopropoxy)benzene (10): 

 
19F-NMR (282 MHz, CDCl3): 

 
  



 

 

271 
1H-NMR (400 MHz, CDCl3): 

 

 

 

  



 

 

272 
13C-NMR (100 MHz, CDCl3): 

 

  



 

 

273 

NOESY (400 MHz, CDCl3): 

 

 

 

  



 

 

274 

Mass Spectra from GC-MS 

Cis-benzyl 2-(trifluoromethyl)cyclopropane-1-carboxylate (Cis-1) 

 
Trans-benzyl 2-(trifluoromethyl)cyclopropane-1-carboxylate (Trans-1) 

 
Benzyl 1-methyl-2-(trifluoromethyl)cyclopropane-1-carboxylate (2) 

 
Methyl 1-(2-methoxy-2-oxoethyl)-2-(trifluoromethyl)cyclopropane-1-

carboxylate(3) 

 
1-Methoxy-4-(2-(trifluoromethyl)cyclopropyl)benzene(4) 

 
  



 

 

275 

1-Nitro-3-(2-(trifluoromethyl)cyclopropyl)benzene (5) 

 
1-Bromo-2-(2-(trifluoromethyl)cyclopropyl)benzene (6) 

 
(2-(Trifluoromethyl)cyclopropyl)benzene (7) 

 
((2-(Trifluoromethyl)cyclopropyl)methyl)benzene (8) 

 
1-Methyl-2-((2-(trifluoromethyl)cyclopropyl)methyl)benzene (9): 

 
(2-(Trifluoromethyl)cyclopropoxy)benzene (10) 

 
 

  



 

 

276 

High Resolution Mass Spectra 

Benzyl 2-(trifluoromethyl)cyclopropane-1-carboxylate (1) 

 
 

 

 

 



 

 

277 

Benzyl 1-methyl-2-(trifluoromethyl)cyclopropane-1-carboxylate (2) 

 
  



 

 

278 

Methyl 1-(2-methoxy-2-oxoethyl)-2-(trifluoromethyl)cyclopropane-1-carboxylate 

(3) 

 
 

 

 

 

 

 

  



 

 

279 

1-Methoxy-4-(2-(trifluoromethyl)cyclopropyl)benzene (5) 

 
 

 

 

 

 

 

  



 

 

280 

1-Nitro-3-(2-(trifluoromethyl)cyclopropyl)benzene (6) 

 
 

 

 

 

 

 

  



 

 

281 

1-Bromo-2-(2-(trifluoromethyl)cyclopropyl)benzene (7) 

 
  



 

 

282 

(2-(Trifluoromethyl)cyclopropyl)benzene (8) 

 
  



 

 

283 

((2-(Trifluoromethyl)cyclopropyl)methyl)benzene (9) 

 
 

 

 

 

 

  



 

 

284 

(2-(Trifluoromethyl)cyclopropoxy)benzene (10) 

 
  



 

 

285 

Chiral GC-FID Traces 

Benzyl 2-(trifluoromethyl)cyclopropane-1-carboxylate (ApePgb LQ) 

 
Benzyl 2-(trifluoromethyl)cyclopropane-1-carboxylate (Racemic) 

 
 

 

 

 

Benzyl 1-methyl-2-(trifluoromethyl)cyclopropane-1-carboxylate (ApePgb LQ) 

 
Benzyl 1-methyl-2-(trifluoromethyl)cyclopropane-1-carboxylate (Racemic) 

 
 



 

 

286 

Methyl 1-(2-methoxy-2-oxoethyl)-2-(trifluoromethyl)cyclopropane-1-carboxylate 

(ApePgb LQ) 

 
Methyl 1-(2-methoxy-2-oxoethyl)-2-(trifluoromethyl)cyclopropane-1-carboxylate 

(Racemic) 

 
 

 

 

 

(2-(Trifluoromethyl)cyclopropyl)benzene (ApePgb LQ) 

 
(2-(Trifluoromethyl)cyclopropyl)benzene (Racemic) 

 



 

 

287 

1-Methoxy-4-(2-(trifluoromethyl)cyclopropyl)benzene (ApePgb LQ) 

 
1-Methoxy-4-(2-(trifluoromethyl)cyclopropyl)benzene (Racemic) 

 
 

 

 

 

 

 

1-Nitro-3-(2-(trifluoromethyl)cyclopropyl)benzene (ApePgb LQ) 

 
1-Nitro-3-(2-(trifluoromethyl)cyclopropyl)benzene (Racemic) 

 



 

 

288 

1-Bromo-2-(2-(trifluoromethyl)cyclopropyl)benzene (ApePgb LQ) 

 
1-Bromo-2-(2-(trifluoromethyl)cyclopropyl)benzene (Racemic) 

 
 

 

 

 

 

 

((2-(Trifluoromethyl)cyclopropyl)methyl)benzene (ApePgb LQ) 

 
((2-(Trifluoromethyl)cyclopropyl)methyl)benzene (Racemic) 

 



 

 

289 

1-Methyl-2-((2-(trifluoromethyl)cyclopropyl)methyl)benzene (ApePgb LQ) 

 
1-Methyl-2-((2-(trifluoromethyl)cyclopropyl)methyl)benzene (Racemic) 

 
 


