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ABSTRACT

The plane-strain problem of the diffraction of a transient
plane dilatation wave by a circular cavity in an elastic medium is
treated. The method used determines the (total) solution only in
the shadow zone, i.e.,, those points which cannot be connected to
the source of disturbance by straight-line rays. Numerical results
are obtained for the velocities and displacements on the '"back"
surface of the cavity caused by a step-stress incident wave.

The analysis is based on a method devised by Friedlander

(see his book Sound Pulses, Cambridge, 1958) for the analogous

acoustic diffraction problem. This method converges most rapidly
at short time, in contrast to Fourier series methods. The Fried-~
lander method essentially employs integral transforms on both
time and 0, the circumferential coordinate., In the shadow zone,
the O-inversion can be performed by residue theory, the residues
resulting from poles at the roots of a ''frequency equation.'' The
roots are infinite in number, and may be regarded as forming a
dispersion spectrum relating the frequencies and angular wave
numbers of a series of circumferential propagation modes, The
time-transform inversion is carried out by contour integration
and subsequent numerical evaluation.

The transient response results are found to compare well
with the Fourier-series solutions at moderate to long times, but
at short time the differences are marked, as would be expected.
The fact that the present technique yields good long-time results
suggests it is even more powerful than might be expected. The
major limitation of the numerical method is its restriction to the

shadow zone.
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' NOMENCLATURE
Latin Symbols
a radius of cavity
aj zeros .of Ai(z)
A(v,p) (see Equation 2.21)
Ai(z) Airy function
B(v,p) (see Equation 2,22)
c general wave velocity
C integration contour for inversion of Laplace tranéform
(Figure 6)
4 dilatation wave velocity
cRr Rayleigh wave velocity
c, shear wave velocity
D(v.,p) frequency function (see Equation 2.23)
D (v,p) = 55 D(v.p)
D (v,p) = 5% D(v,p)
f(r,0,t) general response function, e.g., displacement, etc,
fﬂ.‘(r, 6,t) rcsponsc in jth mode of f in wave sum form

*
.F(r, 0,t) integral for fj on imaginary p axis

f .O(r, 0,t) branch point contribution to f;

fJ.A(r, 0,t) contribution to f:;.: from 0 < Q<A

Ej(r,ﬂ) non-oscillatory factor in integrand (Equation 4.12)
H(t_) Heaviside step function

Hv (z) Hankel function of the first kind

j mode number

kg = P/leg

k = p/c

S



p

m
P1,P2,.,...
r

R
SI,SZ,...
t

T =

-xi-

Laplace transform parameter

number associated with terms or ''waves'' in wave sum
designations for séries of modes associated with cq
radial coordinate

Rayleigh mode designation

designation for series of modes associated with c

time

cdt

a

radial displacement
Ona
0 s .

yerm normalization constant for displacements
°0°4
~——=— normalization constant for velocities
A2

circumferential displacement

Cartesian coordinate

Cartesian coordinate

general complex variable

Greek Symbols

Q =

(see Equation A, 2)
circumferential coordinate
lineal wave number

Lamé elastic constant

Lamé elastic constant
Fourier transform parameter

angular wave number
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V. root of D =0

R
1)3" the roots v satisfying Im v,> 0
p density
o radial stress
%9 ‘ circumiferential stress
9 stress amplitude of incident wave
T shear stress

r0
¢ scalar displacement potential
b non-zero component of vector displacement potential
w = ip frequency

wa . .
== nondimensional frequency
d

Q =%2 - 4@

S C

Subscripts and Superscripts

(). incident part of solution
inc
( )sc scattered part of solution
()" wave sum form of a function
() Laplace transform
(~) double (Laplace-Fourier) transform
(. ) time derivative
(). function associated with jth mode



-1- |
1. INTRODUCTION

The purpose of this investigation is to obtain analytical and
numerical results for the diffraction of a stress pulse by a circular
cylindrical cavity in an infinite elastic medium. We consider the
two dimensional, plane-strain, problem in which the incident pulse
is the same at all points of any straight line parallel to the axis of
the cylinder. The specific incident pulse considered is a plane-
fronted dilatation wave whose stress has step-function time depen-
dence.

There has been considerable interest in this problem in
recent years because it has a bearing on the design of underground
structures to withstand severe ground shock environments (1).
However, beyond this, it has fundamental significance as one of
the simplest examples of the diffraction of stress waves by a smooth
curvilinear boundary.

Previous numecrical treatments of the problem (2-5) have
used a Fourier series representation of the dependence on 0, the
circumferential coordinate. The Fourier series may be expected
to converge rapidly at long tinﬁe, since the exact static solution is
a two term series. However af short time the convergence has been
found to be poor. Thus the need arose for a form of solution which
would yield accurate numerical results for short times,

An approach to the diffraction of pulses by a circular bound-
ary in an acoustic medium, which yielded short time approximations,
was developed by Friedlander (6) in 1954, This method utilizes

double integral transforms, on time and 0. In the diffracted region,
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the spatial inversion is performed by residue theory, producing an
infi.nite series of circumferential propagation modes, whose frequency-
wave length relations comprise a dispersive spectrum. Gilbert (7,8)
utilized this technique to develop wave-front approximations for elas-
todynamic problems. Miklowitz proposed that the technique would
be useful for obtaining analytical and numerical results (9), in a
manner similar to that used in rod and plate theory (10)., Miklowitz
noted that a branch of the spectrum was associated with the Rayleigh
velocity and developed an approximation for the associated circum-
ferentially propagating Rayleigh pulse (9, 11, 12),

The present investigation is devoted to exploiting the numer-
ical possibilities of the double transform-residue method, as sug-
gested by Miklowitz., The inversion by residues reduces the problem
to the Laplace (time) inversion of a series of circumferential propa-
gation modes, which is carried out numerically. This mode series
converges rapidly near the wave fronts and thus complementsvthe
previous numerical work based on the use of Fourier series.

The inversion of the B-transform by residues is essential
to the numerical evaluation, because it reduces the double inversion
integral to a single integral. However, the price paid for this
simplification is a restriction of the area of applicability of the
method to the so-called shadow or diffraction zone. For the case
of an incident plane pulse the shadow zone is that shown in Figure 1.*
For points on the surface of the cavity, this restriction means that
* The residue solution for the diffracted waves can be obtained outside

the shadow zone in Figure 1, but it is not the total response in this
region,



-3-
the total response can be found only on the '""back'' side of the cavity.

The first step in the numerical analysis is the determination
of the roots of the frequency eciuation relating the frequency and
- circumiferential wave number, for the residue series is formed by
poles associated with these roots. The frequency equation involves
Beséel functions of complex order, the wave number and frequency
being the order and argument of the Bessel functions, respectively.
The zeros are found numerically and checked by approximations
vealid at high and low frequency. The behavior is found to be similar
to that associated with the simpler equations governing electromag-
netic diffraction problems, which have been studied by similar
means quite recently (13).

The inversion of the Liaplace transform is carried out by
contour integration and subsequent numerical evaluation of the resul-
tant integrals, The transient response is obtained for the displace-
ments and velocities on the surface of the cavity. Comparison of
these results with Baron's Fourier series results (3) shows good
agreement at moderate to long times, indicating a desirable overlap
of the region of convergence of the respective series. The short
time response obtained with the present method differs considerably
from Baron's, as would be expected. Thus the present technique
provides an estimate of the region of validity of the Fourier series

results, in addition to its usefulness in its own right.
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2. METHOD OF ANALYSIS

2.1 Statement of Problem

Consider the plane-strain problem shown in Figure 1. A
plane dilatation wave, propagating freely in a homogeneous, iso-
tropic, linearly elastic solid impinges on a circular cavity, passing
the center of the cavity at time t = 0,

The problem is treated by displacement potentials ¢ and Tf,

where the displacement u is given by
- d ->
Uu= pP+ vxy, P =0

Then the governing displacement equation of motion,

> > 2%
is satisfied by solutions of the wave equations
A < 2 A+ 2u
7290:2?7&252’ & = ——‘/0—' (2. 1a)
N4 P
VY = L c= 2L (2. 1b)
W Cs..? atZ ? S /0

where ¥ is the component of \fperpendicular to the x-y plane, and,
for problems in plane strain, the other components of ﬁ;may be
taken to be zero. A and p are Lamé's elastic constants, Cq and c
are the dilatation and shear wave velocities, respectively, and p
is the density.

In the polar coordinate system (r,0) one has for the Laplacian
operator

P 7% 1 2 ; 22

EY t5r T 32 5o2
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and for the radial and circumferential displacement components u

and v,
_2¥ , 1 2¥
U= T w oo (2.23)
_ 1 2F _o¥
vE=3 38 o (2. 2Db)

Using the strain-displacement and stress-strain relations the

stresses may be expressed in terms of the potentials as

2 43¢ ¥ ;W 3?’)
9 = (1+2u)7'? "'Z/‘/(",ﬁ EYST - R T P (2.3a)
2 9% ¥ 34” ; Y
G =(A+21) V¥ - 2’”(3; 2238 T % i (2.3b)
T =u(22°F 209, F¥_ Y /3%)
28 % Zpoe 208 T a2 287 a2 4k ok (2. 3c)

The solution is separated into an incident and a scattered
part. The incident part is that corresponding to the case when the
cavily is absent. It is taken as given, and must satisfy the wave
equations. The scattered part must be such as to satisfy the boundary
conditions at the cavity, in addition to satisfying the wave equations.

Thus the boundary conditions for the problem are

= - 2.4
%, (29 %) D (L EE) (2. 4a)
Go (42¢) = -1, (46¢) (2. 4b)
Sc nec

S0 thai_: the total stress at the surface of the cavity, r = a, is zero.

The subscripts ( )sc and ( )inc denote the scattered and incident



parts, respectively,

The incident plane dilatation wave is specified by the function
0] O(t:) in

R cose
<t . (2.5a)

A cos& )

= H(t +

gp/'nc: (Afé’t) = Z(f-ﬁ

For a step-function stress of amplitude oy

s %

G rel

(2.5b)

Since the incident wave first touches the cavity at t = - Ei. the initial

d
conditions for the scattered waves are

il
<

J‘@c %_%C:O; ’é:..

2.2 Geometry of Rays and Wave Fronts

The positions of the various wave fronts in the present prob-
lem can be found through geometrical reasoning based on the concept
of rays. Since the method of solution is intimately connected with
the wave front propagation, these geometrical arguments will be
presented at this point.

A ray may be defined as the minimum time path along which
a signal is propagated from a source of disturbance to a ''receiver'’
or field point. For the sake of simplicity, first consider the acoustic
(one-velocity) problem. The plane-fronted incident wave may be re-
garded as the disturbance emanating from a source at r = o and
6 = 0, Then the incident rays are straight lines parallel to the hori-

zontal axis as shown in Figure 2. Points outside the shadow zone
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receive signals via straight lines which are either purely incident rays
or incident plus reflected rays., However, points in the shadow zone
can receive signals only via rays which lie in part along the surface
r = a, On all rays the signals propagate at the wave speed c and by
using this property the wave fronts may be constructed. The position
of the diffracted wave fronts on r = a is particularly easy to determine,
For waves propagating in the positive 0 direction the fronts onr = a
are given simply by
7 ct

G-z = G (2.6)
since t = 0 is taken when the incident wave is at the center of the cavity.

The development of the wave fronts as time increases is shown
in Figure 3. The comparison between Figures 3(b) and 3(c) is espec-
iaily significant. A time difference of ct/a = 27w has elapsed between
these cases, so the diffracted front on r = a has propagated an addi-
tional angle of 27, This '""winding'' of the diffracted waves around the
cavity continues ad infinitum.,

The above discussion also applies to the dilatational fronts in
the elastodynamic problem. However, in this case the dilatation-
shear mode conversion at the cavity surface gives rise to shear
waves also. Since these details become rather involved, and are
not of major concern for present purposes, they will not be dis-
cussed here. Gilbert gives a thorough treatment of dilatation and
shear wave diffraction in References 7 and 8. Diffracted Rayleigh
wave pulses also occur, with their arrival times governed by Equa-
tion 2.6 with ¢ = CR> the Rayleigh velocity, as discussed in Miklo-

witz's work (9, 11, 12),
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2.3 Friedlander's Representation of the 6-Dependence

It has long been known that for harmonic wave difiraction
problems by spheres and circular cylinders the Fourier series
type of solution converges increasingly slowly in the shadow zone
as the frequency is increased., It was discovered that this diffi-
culty could be resolved by changing the form of the solution through

the use of Poisson's summation formula (14), which may be stated

co hind o ‘ZmITE
S ey = 2, / e’ e

h=—oa Mm="0F —oo

Applied to a Fourier series for the function g(0) this gives

o) = f an)em& _ f, /Mé(éje L€ (61+Zm77)d§
o oa m=—ea oo
i.e.,
gle) = i g (e +2mm) | (2. 7a)
PR
where
g*(e) = 4 °66'_(«5)3 6 _—

For reasons which will become clear presently, the sum on
m of g* will be called the '"wave sum'' representation of g(6).

It turns out that this way of representing the 6 dependence of
the solutions to harmonic diffraction problems permits them to be

evaluated in ways for which the convergence becomes more rapid as

the frequency is increased.
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Since high frequency is associated with short time through
'integral transform theory, it might be expected that in transient
problems the wave sum representation would lead to a solution
appropriate for wave front evaluations., Friedlander (6) was ap-
parently the first to try this idea. He attacked the diffraction of
transient acoustic waves by a circular cylinder, and showed that
not only did the wave sum form give good wave front solutions but
also that this form of solution corresponds remarkably well with
the physical phenomena of the problem,

Before discussing Friedlander's results in detail, the
appropriate notation for the present problem will be given and
the initial-boundary value problem will be set. Let f(r,0,t) denote
any of the response functions of interest, i.e., potentials, dis-
placements, etc. Then the wave sum representation will be
written

°s x
£(62) = 5 F (A&t2mn,t) (2.8)
n=—cc
The incident potential (Pinc is the only given function in the prob-
lem, so once it is written in the wave sum form one can set the
problem for the scattered potentials qb:c (r,0,t) and \Ifsc (r,0,t)

as follows:

I 0% L TR L I (2. 9a)
EYCRR ) i

* ok
Zz% 2%; / 9?¢.S'C / ngé;k

(2.9b)
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% *
o - — ae.t 2.10a
o (a6t) == %, (48F) (2. 102)
* *
Tyo (36,¢) =~ T, a, &)
1, (45%) /"%c( (2. 10Db)
B S
o 25y e 4o
R R <
where U]:j and Tr>.(<9. are found from ¢1nc° It is apparent that the
inc inc

wave sum of the solutions to the above problem will be the solution
to the original problem, provided the wave sums involved all con-
verge. But it will shortly be seen that the wave sum has a finite
number of terms, so convergence does not enter,

The solution will be obtained through the use of integral
transforms, and it turns out that the transform of qbfnc has a simple
expression, whereas qb;;c itself does not, so it will not be given at
this point.

Now the discussion of Friedlander's results will be resumed.
He obtained wave front approximations for f* (in the analogous
acoustic problem) for which the wave front positions coincide exactly
with those obtained on the basis of the geometrical reasoning of
Section 2.2, That is, the diffracted fronts wind around the cavity.
Plotted against 0 as a rectilinear coordinate, a typical response
function f* onr = a, is shown in Figure 4(a), propagating outward
from 6 = 0 as time increases. With this picture of the behavior of
f*(a, 0,t) the physical significance of the wave sum can be appreciated,
It is simply the sum of those parts of f* that have overlapped each

o
<

other at a given 0 as f winds around the cavity. Since for finite
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time it will havé dverlapped itself only a finite number of times, the
‘wave sum is finite. The appearance of the wave sum for 6 constant
and r = a is shown in Figure 4(b), There is a succession of arrivals
corresponding to wave fronts passing 0 as they propagate in the
positive and negative 0 directions.

It is convenient at this time to give some of the qualitative
results that Friedlander obtained from his wave front approximations,
He showed that the diffracted wave front behavior is smooth regard-
less of the character of the incident wave. Furthermore, the ampli-
tudes near the wave fronts decay rather rapidly as the wave propagates
into the shadow.

The wave sum representation has been used by Payton (16)
and Levey and Mahoney (17) for acoustic problems, and Gilbert
(7,8), Miklowitz (9,11,12), and Grimes (18) for elastodynamic prob-
lems, These authors obtained various types of approximations to
the response valid near wave arrival times. The present woi‘k is
devoted to the numerical evaluation of the solution in the shadow
zone, for short to moderate time. This is one of the regions where
Gilbert (8) obtained his approkimations, but it appears that a sizable
extension of his work would be. necessary before his approximations
could be made applicable to the present problem. Therefore no quan-
titative comparisons between Gilbert's approximations and the present
work will be made. However, it may be remarked that qualitative
properties of the diffracted dilatational fronts obtained by Gilbert
are the same as Friedlander found in the acoustic problem, and

these properties will be observed in the numerical results presented
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in Chapter 4,

Grimes' work considered the reflected wave fronts which are
not treated in the present problem. The approximations obtained by
Miklowitz applied to the Rayleigh pulse in the deep shadow, i.e.,
after the pulse has propagated around the cavity one or more times.
In this sense it is long time, even though it is concerned with short
times away from pulse arrivals. The numerical methods used here
are not suitable for long times, so no direct comparison can be made
with Miklowitz's work either, However, the occurrence of a pulse-
like disturbance at the diffracted Rayleigh wave arrival time is ob-

served in the numerical results even at short time.

2.4 Application of Integral Transforms

The bilateral Laplace transform on time will be denoted by

— e -pt
Faep) = [ #net)e’ ot (2.11a)

— o0

whecre

T t
Faao) = oL | Faop et ap

2.11b
Br (2.11b)

Br is the Bromwich contour, Rep=c¢, -R<Imp SR, R ™0, and c
must lie in the strip of convergence of the definition integral, Equa-
tion 2.1la (see, for example, Reference 15), The subsequent Fourier
transform on 0 will be denoted by

oo .
fFhyp) = _/ flheple o2 (2. 12a)

_— 0P
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where

-V

Fa6p) = f//z vp e dv

2r

e

(2. 12b)

Applying these to the field equations 2.9 and boundary conditions

2,10 gives
~ ~ N
dzgpsc , AdYsc ( ?) ¥
+ = - sc

42 A da

e Y kz) o _
A? L dr s / ‘s
X K

G (avp) = -9, (2Up)

ok K

Cpw (A2P) = ~ Qo (A1)

(2.13a)

(2, 13b)

(2. 14a)

(2. 14b)

The transformed displacement and stress expressions may be

written
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' d¥
% = ///12[@4 2260477 +2/2¢7’“2WW /z ] (2. 16b)

Ty = ph [&V(sp 4 2% )*(2 “%%)VK’L?A (2. 16c)

The double transform of the incident potential, $i:c’ is found
by applying the Poisson summation formula to the Fourier series of
the Laplace transform of (‘binc" From Equations 2.5

kit cos &

%, (L6,p) = B(p) e (2,17a)
where
=y = B P
%P = A+Zu (2. 17b)
The Fourier series is
— £ — & s
P _(48,p) = P){ - / HADIE o T e
H=—0c
Z e I, (é,//z)e

from the integral definition of I (z), given, for example, in Refer-

ence 30, Since In(z) = I_n(z) one has also

= = ne
@ (h8,0) = 2, Z@IL,, (ki)e

n=-oc
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Then, applying Equation 2.7b,
— % < _ _ &
e (h8.P) = [ B0 Iy (gr) e
—o
so

" _ < = & (E+v)
G ayp = L) / / Iy (kib)e JEAE
—og —oO

Since Iv(Z) approaches zero exponentially as v — co (see Reference

23, for example) the Fourier integral theorem may be applied to give
f\.a* —_— —
Fne (A p) = LAl '[|1/I (kit) (2.18)

It will later be seen that when the sum of the incident and scattered
solution is formed, the sum is even in v when Iv is substituted for
II L | even though Iv(z)#E I_v(z). For the sake of convenience, this
result will be anticipated in the writing of some of the expressions
which follow, by writing IV for Il v (but the individual statements
will be made rigorous by the temporary restriction that v > 0),
Thus, the transforms of the incident stresses are found to bé, for
v >0,

G =2nuGpat|E )L (kyt) - 260 I () | (2. 19a)
ine : .

5 = 2ruBpat (2 Ty lk)- kit T (kin) ] (2. 19b)
£

2.5 Solution of the Transformed Equations

The solutions of the transformed wave equations 2.13 for the

scattered potentials which vanish as r = oo are
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G by p) = AP Ko (ke)

)

YUShup) = Blup) ke (La)

where A and B are determined from the boundary conditions 2. 14 at

r = a, which when written out in full for v > 0, are

/’a_ 2{ [(Zﬁzf;é;d?(y(é/d)—Zéd ZV//@V)] A

r2iv [ # (ka) = kea K (kea)| & }

= wa ZTLp) [(sz+k’2” °) L (k)= Zhaat L (btt) ] (2.20a)
/aa’z {ZL'V [ky (kia) — kya Ky/(ka/a)] A

[(ev*+ ) b o)~ Pt K (Ks2) | B}

=-uaZziv Cp) [%/@d}* kia I,j/km)]zn“ ~ (2.20D)

- Solving Equations 2.20 for A and B gives

4tp) = [00s] 7B ) {[(2 KT, ()~ 244 T, ()]
(20"t ea?) £, (koa) = 2k S (ko) |
~ 4% I (kya) - kya TF (kya)]- (6 (ksa) = KJ(@aﬂ} (2.21)

Blup) = [0t 2rZp) ziv)(2v+ Ka=2) (2. 22)
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where

Dvp) = —{[(272—,‘-%242) Ky(@d) - 2%4 K”/(é{d)]

(v, (ka) - 2a 1] (ksa)]
Pk (aa)- lga K Cya) |- [ ()~ vt K )]}

(2.23)

The Wronskian

£ e - KR ==

has been used to simplify the expression for B(v,p).
The expressions for the transformed displacements and

stresses are, for v > 0,

DX up) = 40 an k) Algp) - e, (64) B3 ) (2.24a)
Zrup) =4 [zvky(@/z)/l@ D)+ kst ky’(@/z)ﬁ(yp)] (2. 24Db)

MK
G

7
s5C

vp) = ,a[z{ [(ZV?/(:/E)@ (hys)~Zleh K (kg )] Ap)

+20v [ky (kst) — k2 Ku’/és/u)] 5(75,&)} (2.25a)
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Gy = pa{2i b )k k) | 40P

Ce

- [(szf_kszéz)kv(ksj,)— ZkA KV/(k,/;,)] be’p)} (2. 25Db)

T p) = uh | [Ca% 2 0D (k) + 2 K5 0id)] Alp)

~2iv [/(y(és/z)—@ﬁﬁy/(ks/}/)] 5(75,0)_} (2.25¢)

2.6 The Bromwich Contour for the Laplace Transform

In the inversion integral for the bilateral Laplace transform,
Equation 2,11b, the Bromwich contour, Rep = ¢, -R<=Imp <R,
R — o, must be chosen so that it lies in the strip of convergence,
c1< c < Cos of the definition integral given by Equation 2.1la. Let
f(r,6,t) denote any of the potentials, displacements, or stresses.
It is physically reasonable to assume that f and f* grow with time

at most like tn, so that
gt
Fruez) = o(e”)

‘as t = oo for any a > 0. This establishes the convergence of the
definition integral at the upper limit for Rep > 0. Since the functions
associated with the scattered and incident waves are identically zero
for t< —a/cd and t < -x/cd, respectively, the definition integral con-
verges at the lower limit for all finite p. Finally, assuming integra-
bility of f* for any bounded t interval, the strip of convergence is
seen to be 0 < ¢ < o,

Under the conditions given above, the T are regular in the
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interior of any closed region inside Rep > 0. To see this, integrate

‘around any closed path I" in the interior of such a closed region:

4 Frineplap = f 4 = a0, ) Sty

For f integrable on any bounded t interval, ept continuous on p and
t, and the t integral uniformly convergent, Theorem 14-26 of Refer-
ence 19 shows that the integrals on p and t may be interchanged,

since the integral on p can be written as the sum of four real inte-

grals. Regularity of T" then follows from Morera's theorem.

2.7 Inversion of the 8-Transform by Residue Theory

Now the properties of the transforms will be considered in

the complex v-plane, so the transforms must thus be continued off

als

the real v axis. In order to do this, the use of I | i(k r) for 5 ,
v d inc

as specified by Equation 2,18, will be re-examined. Consider
G hup) = FX AP + Cpe (L2P)
For v > 0, one has from Equations 2,18 and 2.21,
Graup) = Atvp) b (kir) + ZTE @) Ly (i)
Using thc identity
-2:7/ (k) = Iz/ &) + 2r sinvr Ky (Z)
it is easy to show that

At-zp) = Ay p)- 4G p)sin VT

and then one finds
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Gru-vp) = Praup)

From this result it follows that, as far as the sum aﬂp = aq‘ + q?

‘ sc inc

is concerned, it is irrelevant whether I  or II | is used for (75' .
v 14 inc

N . . ~R
Since Iv occurs in the general response function transforms f only

~ >:<

through their dependence on ¢ , the same holds true for T, Thus,

in summary, the expressions obtained above for { ac? when used in

le
~ 3%

= ;:c + ;inc’ hold for all real v. Then the continuation into the
complex v-plane is immediate.

The singularities of the functions ’fv*(r,v,p) considered as
a function of the complex variable v will now be investigated. First,
it is seen that v occurs in 'f'* only in two ways: as the order of K
and I , and as v raised to integral powers. Then, since Kv(z) and
Iv(z) are entire functions with respect to their order, singularities
of f* can arise only if there are zeros of D(v,p), which occurs in
the denominator of A(v,p}, and B(v,p) in f'::c. In Chapter 3 it will
be seen that D(v,p) has an infinity of simple complex zeros, which
are denoted vj(p). Therefore Fsc has an infinity of simple poles at
vj(p), and the inversion on v can be performed using residue theory.
By completing the v contour by.a sequence of curves Cj passing
between the zeros, as shown in Figure 5,* and applying the residue
theorem one obtains

> X
o) = = 5 (Aot (2.26)

J=—°a

¥ For later convenience, 0 is taken negative, so for convergence the
C; are taken in the upper half-plane. Results for positive 8 are ob-
tained by symmetry.



where
* _ / =% pt
£ (2,8¢) = — 4 epe dp (2.27)
Er
+
f%,a,p)] = t@c(/l,z-f,b)e 7 M (2.28)
” .
H<0 Dz/(szP)
and 2D(; )
yp
D /VJ = —2
v P) aV

The notation v;_ has been used to signify that only the roots having
Im vj > 0 are used.

Since D(vj,p) = 0 one has

dy; Dp (4, )
= - —— . (2. 29)
dp 8, (4 p) -

so that Equation 3,28 may be written

7 TR, -8 pry, *
TXuep)| = -it ayipe 4. P) 4y
J sc J ” =
é<o | Ly.p) 9P

(2. 30)

In the above it is assumed that the integral on p and the summation

on j may be interchanged, and that the integrals on Cj vanish as j~—™ 0.
For the acoustic case it has been shown (17} that the integrals on Cj
vanish only if the field point (r,0) lies in the shadow zone and it is
assumed that the same result holds for the present case.

The series (2.26) will henceforth be referred to as the ""mode
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sum.'’

Each term is the transient response in a circumferential
propagation mode, as discussed in Chapter 3. The ordering of j

from - to oo rather than 1 to oo is a matter of convenience.

2.8 Completion of the Bromwich Contour

The Bromwich contour is completed down the imaginary
axis, as shown in Figure 6, by the contour C + CR + C-R’ wherc
C= CU + CL + CO' From Equation 2,29 it is seen that vj is
regular in p except at p = 0, where D(v,p) has a branch point
associated with the Bessel functions, and at the zeros, if any,
of Dv(vj,p), i.e., multiple zeros in v of D(v,p). In Chapter 3
it is shown that the zeros of D(v,p) are simple for p on C for large
and small Ipl. For intermediate Ipl, the simplicity of the zeros
has been verified by explicit numerical calculation for the first
few j. With vj regular the only singularities of f_J arise from
the branch points of the Bessel functions and the pole of éﬁ—o(p), at

p = 0. Thus T, is regular on C and Cauchy's theorem may be

Cts 36

applied to give

et = / 75_ to.p)e’ dP (2.31)
v c
where it has been assumed that the integrals on CR and C_R vanish
as R = o, The analytical proof of this assumption would require
complicated and delicate arguments based on the large order ap-
proximations for the Bessel functions. It is made plausible by the

fact that numerical results which follow from it are reasonable,
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The integration contour is taken on the imaginary axis be-
cause this gives p the character of frequency, allowing more physical
insight into the transforms. Such contours have been successfully
used for the numerical treatment of transient elastic wave propaga-
tion problems, see, for example, Miklowitz (20) and Lloyd and
Miklowitz (29). Further analysis and numerical evaluation of Equa~
tion 2. 31 will be carried out in Chapter 4, after the detailed discus-~

sion of the roots Vj in Chapter 3.
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3. ROOTS OF THE FREQUENCY EQUATION

3,1 Introduction

The functions
—tat - (V6
P8, 6,¢) = Pt e

~ it - (VE

v¥ne t)= ¥)e

are obviously solutions of the wave equations 2.9 if & and ¥ satisfy
the Bessel equations 2.13 with p replaced by ~iw. The addition of

ok ES
homogeneous boundary conditions on o and 7.0 at r = a then is found

to lead to the requirement
D(v,-iw) = 0

for non-trivial solutions, where D(v,p) is given by Equation 2.23,
Thus for a given W only certain values of v, the roots vj, satisfy
the boundary conditions, i.e., this is an eigenvalue problem.

Regarding w as frequency and v as an angular wave number,
i.e., 2 w/(wavelength in radians), it is seen that the above solutions
are '‘harmonic wave-train'' solutions for circumferential propaga-
tion., In this respect they are identical to the familiar Pochammer
solutions for circular rods and Rayleigh-Lamb solutions for plates
(10), in which the propagation direction is a rectangular coordinate,
Thus the vj—w relations may be said to form a dispersive spectrum
governed by the frequency equation D = 0,

The purpose of the above discussion is to point out the inti-
mate relation between the transient and harmonic problems. The

correspondence could be carried a step further by using integral
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superposition on w (_Sf the wave train solutions to produce transient
solutions, However, the more direct, but essentially equivalent,
method of integral transforms has been used instead.

The unique aspect of the present use of wave trains is that
the physical requirement of 27 periodicity in 8 has been circum-
vented by the Friedlander representation.

In this section the behavior of the roots will be investigated
for values of p on the Laplace inversion contour C (Figure 6), For
points on the imaginary axis, p = ~iw, with w real, will be used.
Approximations will be found for large w and small Ipl. Numerical

results will be obtained for 0,0l < 2 < 40, where 2= wa/cd.

3,2 Forms of the Frequency Equation

The frequency equation written out in full is, from Equation

(2,23),
pup) = ~{[(2V+ K2k (4a) - 2 4 K7 ()]

[eveka) b ka) -2 ka k) (ka)]
- [, ) -k K 4d] [ (k) - ka K k)] § = ©

where k, = —E~and k_= £,
d ¢ s cC
d s
-iT
For p= -iw = we 2 and using
' 7 2240
7Y = Lime® Z
K (ze %) = Fine® " A3

one obtains
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Oy -tw) = (5) " {[(20%.02) Hy(0)- 222 H)@)]
(2v%02) H(2s) - 2a 1 @)]

- 47 [//,,(ﬂ)—m/;/fz)] -LH,(25) —fst,:(fzsﬂ}

=0 (3.2)

L QS = %o-a”— and H (z) denotes the Hankel function of the

fd S
first kind.™

where 2 =

Through the use of the identities

K, (2)-2k(z) = ) [ Keyye @ — U2 (2)]

and z

(zv2+ ? 27) K, (2) — 22 Ky (&)

= (9_22 __/) ZZ%(E) = 22[/(7#2(2-) * Ky ('Z)]

%

the frequency equation 3.1 can be written in the forms

D(V,,b) = - E/ élzga4{ /(V+2( d>/(V—2 (k a) * z/-z (/Qd)(w-z (%4>

<_§.,: _ /> 0 [A’wz (ksa) + K.z (éﬂ)]}

5

=0 (3.3)

and

* The superscript used in the conventional notation Hl(,l) has been
omitted since the Hankel functions of the second kind will not be used.
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Dl -iw) = £ 0707 (2 €| Hypo (DH, (@) + Hyp (2) 5 (2)

—( _C_Céz_/)/,/y(ﬁ) [szms> + H -2@)]}
= O (3.4)

3.3 Previous Work on the Frequency Equation

The frequency equation was first obtained in the form given in
Equation 3,4 by Victorov (21), who obtained an asymptotic approxima-

tion for a root for which the corresponding velocity Cj’ where

C)—E

\§ ] &
N
O

approached the Rayleigh velocity (22) as £ = . Victorov showed
that this root, which will be referred to as the Rayleigh root, was
complex for finite 2, but the imaginary part vanished as £ — w.

Gilbert (8) used the frequency equation in the form given in
Equation 3.1 and found asymptotic approximations for an infinity of
roots for which Cj —cqaspP — oo for p real. Thesc roots have, to
two terms, the same asymptotic approximation as the zeros of
Kv(kda)’ and are purely imaginary for p real.

The simpler frequency equations which occur in the acoustic
and electromagnetic wave diffraction problems have received consid-
erable attention in recent years. Friedlander (6) and Levey and
Mahoney (17) obtained asymptotic approximation for the zeros of

Kv(z) for large real z. Keller, et al., (13) gave approximations
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for the zeros vj of Hv(z) and H'v_(z) for small lzl, large j and large

lz | and numerical results for z real, 0,01 <2< 7, j= 1,400,550

3.4 Symmetry Properties of the Roots

Let vo(p) denote a root of the frequency equation. Considering

the form given in Equation 3.1 it is first seen that

DEp) = D(-vp) (3.5)

since
K_(2) = k(2

and v appears otherwise in D raised to the second power. Thus
-vo(p) is a root also.

Second, since Kv(z) is real for v real and z real and positive,
so is D{v,p) for v real and p real and positive. Then it follows from

the reflection principle that

O(zp)= D(xp) (3. 6)

where barred quantities denote complex conjugates. Therefore ;0(p)
and - Vo(p) are roots of D(v,p) = 0.

Then it follows that the roots need be found only in half-
planes of v and p, the roots in other regions being obtainable by

symmetry.

3.5 Asymptotic Approximations for Large v | and Imaginary p

The roots on the integration paths CU and CL depend on

imaginary p only, so putting p = -iw, w real will be considered, and
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the frequency equation is taken in the form given in Equation 3.2. By
virtue of the symmetry property only w > 0 need be considered.

For lvl large the approximations developed in Appendix A
for Hv(vz) may be applied. There separate approximations are ob-

tained for the transitional zone, defined as

Z-/ = O(v—%), ce., lim | 2% (2-p)] < 00
[vf—> oo

and the non-transitional zone, defined as

2,
{im [7//5(2—-—1)l = oo
fv/dea

When these restrictions are applied to the frequency equation three

cases arise:

o)

(i) P-transitional case: = -1 = O(v'2/3)
v

Q
(ii) S-transitional case: —-f— -1= O(v_Z/S)

03]

(iii) Non-transitional case: lim - l=o0

Q
[v2/3(% C1yl=1im [v2/3s
v l_>CO

where the use of P for reference to dilatation waves and S for shear
waves has been adopted. The reason that Q/v =1 is associated with

P waves is that the lineal wave number K on r = a is v/a, so that the

phase velocity c is given by

%) waq wa 2 Y c

= — = — = C; == = ;== _— = =

c e o = v 2y = , Z
Therefore /v £ 1 implies ¢ £ cq and, similarly, Qs/v £ 1 implies

In the P-transitional case the transitional Hankel function
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approximations are .used for Hv(ﬂ) and the non-transitional approxi-
mations are used for HV(QS). In the S~transitional case,. just the
opposite applies.

3.5.1 Transitional Cases

First consider the P-transitional case. The requirement

—S—j -1= O(v_Z/S) is written as
2 =1+ Z‘V//3 (3.7)
c c
Then 2 = 4 Q~—d- v so that
S C [
s s
{2l ->e0

Then Equations A.14 and A.15 of Appendix A apply to Hv (Q2) and
I—I"}(Q) and Equations A, 21 and A, 22 apply to HV(QS) and H"}(QS),

Using these in Equation 3.2 gives
D(g-iw) = (L™ exp{ N Z[c(0:r0)] V]
.{[O(V%) +ows)]-[om%) + O]
¢+ v [o( ) rO@H)]-[O*)- Oy )1}

where the O terms have been arranged in the same order as the

terms in Equation 3.2. Thus the dominant term is
2 ; z
Oty -aw) ~ (5™ (202 1y (@) Hutl2)

An examination of Equation A, 21 shows that HV(QS) does not have

zeros in this zone, but Equation A.14 shows that HV(Q) has zeros
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asymptotically at

a:(-2%re®™) =0

i.e., at

-% -257(
T = -2 e a;

where aj are the zeros of Ai(z), which are real and negative. Since,

from Equation 3.7

%%
YV~ 2-7027
then

%

-5 -737 %
Z; ~(7+2 e d/ﬁ (3.8)

Thus there are an infinite number of roots of D which are associated
with the dilatation velocity, and these will be referred to as the P
roots, These roots are the same as the zeros of Hv(ﬂ) to this degree
of approximation,

A similar treatment for the S-transitional case leads to an

infinite set of S roots

-4 -SGme Y3
75_N_Q5+2 e 7 @ﬂs (3.9)

3,5.2 Non-Transitional Case

In the non-~transitional case the asymptotic approximations
given by Equation A, 2l and Equation A, 22 hold for both I—IV(Q) and
and Hv(ﬂs) and their derivatives. Then the frequency equation 3.2

becomes
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2 yyi - .3 D
DY, -iw) = (—g) L & exp [(— ()Z’z/:f-g/z-f “) vEe /Z,]

{low™ +or®]-[ow*) + Ow*)]

w2 [0 + O] [0 ™) + 0]} (5.10)

where the O terms have been arranged in the same order as the terms
in Equation 3, 2. n4 and n_are the values of n in Equation A,19
according to z4 = /v and z = Qs/v , respectively, and Z,d and Z,S are
the corresponding values of {(z).

From Equation 3.10 it is seen that there are two terms of

equal order in v, giving

x, 3 _
Dlg-iw)~ - T exp [vri + 1w 28 %) 028 %4 Oy em) L]
ey -
(1-2v7%) (1-25v7%)

/ Nt  (yrm)mi
N R O A

© Only the factor in braces can have zeros in the non-transitional zone.

Setting it equal to zero gives

' / o K )
(20%22)% = 427(1-0%2) 2 (-2 ) " ()T .y
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Using the definition of phase velocity, ¢ = %E-L- » Equation 3.11 can be

written

7

2. 2\7Z 2.\ n,+n,
c 4 5 T lls
(2——;) = 4(/_?52) (/——;—2 (~/) (3.12)

% =

Squaring Equation 3.12 gives

2 &
< C c? c? C,«,Z Csz =
"—2( —_ - 5“‘2 -+ —-s2<24—-/é-_2>_/6( ____2_> =O (3.12a)

Equations 3.12 and 3.12a are discussed at length in Reference 22,

p. 31 ff. They show that, besides the ¢ = 0 root, Equation 3.12 has
n . +n
one real root ¢ < Cy» the Rayleigh velocity CR> for (-1) ds 1 and
n.tn

d s _ 1.

two real roots c > cq for (-1)
The use of somewhat delicate reasoning, based on the discus-
sion in the paragraphs following Equation A.19 of Appendix A, will

now be used to show only the Rayleigh root applies in the present

case, First, for - 12r-< arg v < 0, the abovementioned discussion

shows nyg=n_= 0, excluding the non~Rayleigh roots in this region.
Second, consider 0 s arg v < -% o« If the roots c > Cd existed, then
z4 and 7 are not in the domain K, in which case ng=n_ = 0, which

is a contradiction. Thus thc non-Raylcigh roots don't exist. On the
other hand, for ¢ < cg and sufficiently small arg v, z4 and z_ are in
K, and for sufficiently small arg v, ng=n_= 0, so the Rayleigh root
does exist.

In summary, there is only one root for the non-transitional
case, which approaches the real v axis as [vI—> oo and whose limit-
ing phase velocity is the Rayleigh velocity. It will be re‘ferred to as

the Rayleigh or R root, and denoted vy The discussion above shows
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that

3.5.3 Victorov's Higher Approximation to the Rayleigh Root

The approximation obtained by Victorov (21) for the Rayleigh
root, which was mentioned earlier, contains higher order terms
which will be useful in comparing asymptotic and numerical results.

Victorov's expressions may be written

< 2

%~ =1+ (3.13a)
4
where
/?e %fzj = @+5
z25Q (@-95)

(25Q+6-5X-5) 214 + (25Q-Q+5) (1) (-Q)f - 45 w-s)
(1-5)(+@) - (1+SY (1-Q)"+45R(Q+S) (3.13b)

2.2
®_ & &S A é?fa"S—S]
iy Q(Q'SXG’ S+295?) ezp[2(62ﬂ+%% ( S ’) (3.13c)

in which 2

2 Ce

etz

2_ ,_ %

° =/

=4

2 £ 2
N
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These exp‘ressions have the forms

<
Fe y, = const

@ —const L1
Im Y ~ const(le

where const > 0.,

3.6 Approximations for Small p

For 0< |pf << 1 the frequency equation may be expressed as
a power series in p. Consider the frequency equation in the form

given in Equation 3.1. The power series for Kv(z) may be written as

@ =22 S o s (5]

am

> @) - r-m) o) (Z)

Substituting the series for Kv (z) into the expression for D(v,p) and
carrying out the required differentiation and multiplication of series

gives, after considerable algebra,

pop=-3 {4 (&) % e+ (i) H(dT e
m=o :

where

_F
“ g

The coefficients bm and ., are functions of v with the ratio of veloci-
ties a = cd/cS as a parameter, These coefficients become progres-

sively more complicated as m increases, and although general
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expressions for them can be written, they are lengthy. For present

purposes only the expressions for m = 0, ] are needed:

~

bo =0

¢, = 25 ()@ @) ) (- 7-1) .

b =2 a'V(czz—/) v(v+/) [(7/—/).']2 ? |

c = [—21/(/—7/‘?—27/) Q2+V+ZV(/—V2+ZV> QZ-V—ZV(/-I/Z) 7
r2v(i-v?) ™[ (v-0)1 (-v-1)! J

The series given by Equation 3,14 may be used to generate
approximations for roots found numerically, but does not appear to
be a useful tool for investigations of the behavior of the roots for
general v as p =0, Therefore, the numerical results are anticipated,
which show that v -+ 1 as p >0 along imaginary p. As a result of
the symmetry properties of the roots the region of interest can be

narrowed to v = 1.

Putting v = 1 + ¢(p) it is found that as ¢ -0

o(v) = O(/)
L) = O(/)
c,w)= O(e™)

b )= O(€)

Then

-2y
D(yp) = ¢ (v) + b(v) (Lka) + O(p%’) =0 (3.1
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i.€.,

2e 2+2e ( e

(E/é{a) _ _ e +/ (=€)l [/-—/-O(Pze—’)]

a?-/ e!

{3. 16a)

Taking logarithms of each side gives
; Q2+2é-f- / (—-é)l P
—Zé/og(—z—@a) = /og(— 7:}—*)4-/09 —= + O(P € ) (3.17)

Expanding for small € gives

+& had m
/Og(- .0.5_2_3/)-_- /og(— a’?”)+ > dn€

aé-/ a?-1 i
where
d = a’ log a
/@& a? z
= 3 (ge (1= 55 ) (@4°)

and

_ el o C(8m+r) _zmti
/Og§-=236+22 = e

=y P71t/

where y is Euler's constant and { is the Riemann zeta function. The
latter series was used by Keller, et al., (13) to find small z expan-

sions for the zeros of Hv(z).
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USing these expansions in Equation 3.17 gives

> 4,e" + O ) =0 | (3.18)
 where
4, = log (- Q+,/) | (3.19a)
A = z[/og (£4a) +X] + Qf/ log a” (3.19b)
e = A0 T 5:199

?
4y = 2ete o[-t 5+ () 1 (e 69w

in which £(3) = 1.202... .

Reversion of the series in Equation 3.18 yields a series in

ascending powers of A{l

M _ M-
c(p) = > 6,4 " +0(4 ) (3.20)
where
2 B =44
g =ty =0, B=-AA, & =44

An infinite number of roots vj =1+ Ej are obtained by considering

the multiplicity

z
log (— = H) = log 2 +/ + (2/+)7¢ (3.202)
a<s
in AO. € .{p) may also be expressed as a series in ascending powers

of (log p)“-1 but considerable accuracy is lost (cf, Reference 26 for

the similar case of Hv(z))- The first term of this series,
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](‘09;—53)_/7“ O[(@P)—Z] (3.21)

is of interest because it shows clearly the dependence of Ej on j. For
small p, log p is approximately real and negative, cancelling the

minus sign., Then it is seen that roots leave v =1 at the slope
@&j+nm

a?+!
ZOg aé-/

in the v plane. For j =0, Im vj >0, for j <0, Im vj < 0, By symmetry

in v = 0 the j < 0 roots correspond to roots leaving v = -1 with posi-
tive imaginary parts.

The approximation for dv ./dp will be needed for the analysis
of the small | pl| behavior of T (r 0,p) in Chapter 4., It has already
been pointed out in Chapter 2 that vj(p) is regular for |pl > 0 as long
as it is a simple zero of D(v,p). The preceding analysis has 'shown
the zeros are simple near p = 0. Thus vj is regular, and the asymp-
totic approximation for dvj/dp can be found by differentiating the
asymptotic approximation given in Equation 3,21 for vj, according

to the theorem on p. 21 of Reference 27, One finds

22 pa\-Z/pay\’!
d( 7 [@ & m}(@&) @) (3.22)

3.7 Numerical Determination of the Roots for Imaginary p

For p on the imaginary axis, pa/cd = -iQwith Q real, the
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roots were determined nﬁmerically>k for C?{/Cz = 3** in the range
0.01< Q< anax’ where Qmax ivs 20 or 40, depending on the root. The
results are shown in Figures 7 and 8 for Im v > 0; the roots in 2< 0
and Im v < 0 follow from symimetry.

For large 2 the roots separate into three groups, identified
by their asymptotic phase velocities, as predicted by the asymptotic
expansions. The Pl, P2 and P3 roots are the first three of an infinite
set of roots whose associated velocity is the P-wave velocity, Cq°
The S1, S2 and S3 roots are part of the infinite set of g velocity roots.
The ordering is based on increasing imaginary v, and corresponds
with the ordering in the asymptotic approximations given in Equations
3.8 and 3.9. The third '"group'' is a single root, the R or Rayleigh
root, whose imaginary part approaches zero as & = .,

For small § the roots approach the points v = £1, as predicted
by the small p approximations. The numerical results show that the
P roots approach v = -1 and the S and R roots approach v = 1. The
correspondence with the j-ordering in the approximation given in
Equation 3.2l is as follows: j = 0 is the R root; j = 1,2,... are the
S1, S2,... roots; and j = -1,-2,... are the P1, P2,... roots., Since

this ordering of the mode numbers is systematic and encompasses

all of the modes, it is adopted as the definitive ordering.

3.8 Comparison of Asymptotic and Numerical Results

In Figures 9 and 10 the numerical and asymptotic results for

* See Appendix E for a discussion of the numerical methods.

o cczl/cz = 3 corresponds to A = and Poisson's ratio = 1/4.
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the P and S roots are compared. There appears to be a difference
of O(2°), i.e., the next higher term for the approximations given in
Equations 3.8 and 3.9 appears to be a constant. This is in contrast
to the zeros of HV(Q), in which the next term is 0(9-1/3) (see Refer-~
ence 13, for example), The possibility that this could be due to
numerical error is quite unlikely, since the same computer program
gives a very close comparison with the zeros of Hv(ﬂ) (see Appendix
E).

Such a second order term would have a significant effect on
approximations to the transient response, such as those of Gilbert's
(8), in which it was apparently assumed that the second order term
was o(@/3),

For the Rayleigh root, it is seen from Figure 1l that Victorov's
second approximation compares well with the numerical results,

For small Q the asymptotic and numerical results are com-
pared in Figures 12 and 13. The asymptotic results are showﬁ for
the serieé given in Equation 3.20 to m = 4 and for the numerical
solution of the approximate frequency equation given in Equation 3.16.
It is seen that Equation 3,20 is not a very powerful approximation

and becomes poorer rapidly with increased mode number.
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4, EVALUATION OF TRANSIENT RESPONSE

4,1 Introduction

The ultimate goal of the present work is the numerical evalua-
tion of the solution., In Chapter 2, the solution was reduced to a series
of Laplace inversion integrals involving the roots vj(p). In Chapter 3
the propefties of these roots were studied and numervrical evaluations
given, These results will now be used to evaluate the solution.

The first step is the reduction of the contour integral on C to
the sum of a real integral on the imaginary axis and an integral on
the indentation CO. It happens that the integrals on the imaginary
axis are improper at p = 0, so the next step is the assessment of
these singularities, Then the singularities are eliminated by the use
of the convolution theorem., After convolution the contributions near
p = 0 are found to be negligible, reducing the solution to the integrals
on the imaginary p axis, which are then evaluated numerically. The
evaluations are made at r = a, where o and T.g @Y€ zero. fherefore
detailed discussion of these stresses is omitted in this chapter.

The results obtained are found to be circumferentially propa~
gating pulses with definite froﬁts corresponding to those predicted in
Section 2.2. Except near the wave fronts, the results compare favor-
ably with those obtained by the Fourier series method. The results

also compare well with the long-time solution given in Appendix D,

4,2 Normalization of Response Quantities

The response functions u, v, U and ¥ can be normalized in

terms of the following constants:
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= * a (4.1)

- A+Eu ’
g = 22 (4.2)
° " Jr2u “ '

where 0, is the amplitude of the stress in the incident wave. Physi-
cally, Ug is the change in length of a reference length a behind the

incident wave, and 1'10 is the particle velocity behind the incident wave.

4.3 Simplification of Integral on the Imaginary p Axis

In Chapter 2 the solution for the response functions f. was

reduced to the integral
* / 12'*( pt
£ (L8¢) = - 5 7 LEp) e ap (4.3)

where TJ is given by

—_ ~ __‘:V-f.-g_ D 'V-j- dz/.+
’f'*“ﬁp){ =_£§c*(4’6'jp)€ AN

" (4, 4)
B<0 Do (4p) p

The contour C, shown in Figure 6, consists of the imaginary p axis,
except for an indentation CO about p = 0.
Now let the radius of CO be 6, with 6 -0, and let p = -iw, so

that w is real on the imaginary p axis. Then Equation 4.3 becomes

* * *
£ (26¢) = 7§—F (L8, t) + "50 (42¢) (4.5)

where



. '? ~J L0
* _ i 7K -
ss0 4 Ir (4.6)
5 — e pt
. (2 =
750 “ez) 2774 é éf 419;/0)8 » (4.7)
o

The integral in Equation 4.6 can be written on the interval
60 <w <R only, as follows., The transforms ?J are real for p real

by virtue of the definition integral, Equation 2.1la. Therefore

75',*(49, iw) = £*(16, -iw)

by the reflection principle, where the ''long'' bar indicates the com-

plex conjugate. Then

-t
(46 -iw) e da

+LT
/ 40, +Hw) e dw ;.
d
oo

= / ee[ff."*(/m-zw) & dw

*
£ (48,2)

|
S
2 3
3~
A
Q—\\
L‘\\IN

+
Ch\

o (4. 8)
The integrand in Equation 4.8 is, from Equation 4.4,
-t ;K . —iwt
Re [ G -iw) e ]
. -+
Lk, uu) dy” Wt+y6)
=Ke | -iT 755; (/25-,—4’4)) = (4.9)

D( ~éw) Jw
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Equation 4.9 is valid for 6< 0, For 0> 0, the symmetry
property given in Equation B.3 and the result given in Equation B.7

may be used to give

s -t
Re [77' l1§ (/2,9,""‘)) =4 ]

W D(Y-iw) 4yt -{Cwt-y™E)
= ke [—s<f)m’gc*@,zg-w) i) a? @ty J

D, G} -ca) dew

~k F o
=Im [5("5) W—Iﬁ; (/Z,Z‘T-LZO) f_(.?_/_’__‘iﬂ dpj-"e—t(wt zjé)j

B, (g -iw) dw (4.10)

where

+1, for f even in ©
S(#) ={—I) for £ odd in ©

It is convenient to express Equation 4.10 in terms of the non-
dimensional frequency §2 = wa/cd., Furthermore, it turns out that
Equation 4. 10 can be expressed as the product of a non-oscillatory
factor, which will be denoted Ej(r,ﬂ), and an exponential factor,

as follows:

R —wt
/?e[ff £ (46, -w)e ]

= In { E.Z 7J?.‘(/z,rz) exp [—z (ﬂ %f -~ y-+ (6“27[))]}
(4.11)

where
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~ DO -i)) ot E
A -t 3 -+ . v v 2
£(4,Q) = SE 7' H L by -iw) —— = (4.12)
Y a s 77 w(pd_é"d) Fw
i T -
= 6'77‘-, ...C_;{_ e‘uf (é e)./’*(/é,é; —[(())
a <
(4.13)
Then Equation 4.8 becomes
o . Gt _+# 7
A —i[@ -y @-Z)]
75*(/211%-5) _—_—/»Im{ﬁ@ﬂ) e @7 }d_(z (4. 14)
=

[}

4.4 Behavior of Integrands for Small £

Consider the integrand given in Equation 4.14. The exponen-

tial factor of the integrand
- e EE-yle-I)] Lsgn()(6-F)
— C
as £ — 0, since vi._ approaches = 1, according to the sign of jo Thus
both the real and imaginary parts behave like Q° as @ —~ 0, The
behavior of the factors fin Equation 4. 14 is examined in Appendix B,

From Equations B,.23, B.24 and B.25 it is seen that

A
u-(an -/ -2
_*{L(_____)_ ~ cornst (/09-(2> X0, (4. 15a)
p
U (a2 /=2
(49 | const (/ogf?) 0, (4. 15b)
U
A
. ,.(Z -2 2
19/( ) ~ const (/og(?) L (4.16)

&
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Since the transforms of the velocities & and ¥ are found by simply
rmultiplying the transforms of u and v by p, and since fis proportional

3

to f , by Equation 4.13, it is seen that

Y qufz) ~ const logﬁ)-/ﬁ—/ (4. 172)
4,

’l -/ _

.ZJQ_(a’_f_Z) ~ const (log?) @ ‘ (4.17b)

A

Attention has been focussed on r = a, where o. and T.g @€ ZeTo, so
their approximations have been omitted.

These results indicate that the integrals given by Equation
4,14 are improper at Q= 0, As far as convergence of the improper
integrals is concerned, it turns out that the integral for og converges
and the others diverge. However, it will be shown below that by
using convolution the integrands can, in essence, be multiplied by
powers of p near p = 0, thus eliminating the singularities of the
integrand. This will certainly remove any convergence problems,
but convergence is not the most important problem. Since the inte-
grals will be evaluated numerically, it is highly desirable to make
them proper at the origin, so that straightforward numerical methods
can be used. It is seen from Equations 4.15 and 4. 16 that the inte-
grals for u, v and % will be proper at the origin if the integrands
are multiplied by QZ. For & and ¥ the integrals will be proper if

the integrands are multiplied by £

4,5 Behavior of Integrands for Large 2

As £ — o, the v? for the P modes have the form
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<% “ZL1e 7
3@(; a 02

Z+'\‘_(Z+2 J‘..(Z

and for the S modes

/,
~% 787 &
79’-+ ~ ap+2 e a (a)

from Equations 3,8 and 3.9. Since aj< 0, in both cases
%
I y+~ const 27

where const > 0, Thus the exponential factor in Equation 4. 14 is

O[exp(-const 91/3)] for the P and S roots, provided 0 >-22T- . For

the R root

lim Imy" = O
200

so the exponential factor is O(Q_O).

The non-oscillatory factors, :lfj (r,€), have been investigated
numerically. The results for the P1, S1 and R modes are shown in
Figures 14, 15, and 16. The behavior for the higher P and S modes

is essentially the same. It is seen that for the P modes

g(a2) = 0@?)
7 (q.02) = 0(@?)
%_(qﬁ) = o@)

and for the S modes
A -
g (aQ) = o(Q%)

Uj(d)ﬁ) =0 (.Q-Z)
%,(2,(2) = o (1°%)
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For the R mode

;
5 (4,0)= 0(e)

where B> 0.

Now the convergence of the integrals given in Equation 4.14
as 2 = oo will be investigated. For the P and S modes, convergence
is assured by the decay of the exponential factor, provided 8 > /2.
IHo<oO< % , the integrals diverge., This is an additional reason that
the present technique is limited to the shadow zone {which is 6 >1ZT-
on r = a)., Notice also that the integrals converge uniformly with
respect to t.

For the R mode the convergence depends on the decay of the
factor gj(a,ﬂ).' Since fj(a,Q) = O(e-ﬁﬂ), B> 0, these integrals.also
converge, uniformly with respect to t.

Later the convergence of integrals like Equation 4. 14 with

the integrands multiplied by Q™ will be considered. It is seen that

such integrals also converge, uniformly on t.

4.6 Application of the Convolution Theorem

In the shadow zone the response functions f(r,6,t) are iden-

tically zero for t < 0, Thus the bilateral Laplace transforms reduce

to one-sided Laplace transforms, and the convolution theorem can

be appiied in the form
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! =T 5
i) GRFR " = /a(r)gz(é-z)df
Br : 5

To apply this to the present problem, consider

- z
£*ust) = 2 [ Fruspe’s

Br-

/ é }:pn{_*(/é/%p)] [P—n] epi,p

=27/‘4'
i.e., let
— 7k
g = r (48 p)
g =r’
Then
£
T oo
g, = 27”/ p L e p)e’ “dp
and

t h-y _ P
-\f/’*(/é,ﬁ,t) =/ (¢-7) /‘ / p”-)j*(/é/@p)e dp dT

> (n-n! &7 7

The exponent n will be referred to as the ''degree of convolution.
Proceeding as in Chapter 2, the path Br is completed by the path C

which is then written as an integral on C0 and an integral on 0 < <o,

as in the immediately preceding sections.

Consider the integrals



_5.1-
FXhotns - —— lim ”;*f/éé‘p)epil
J};”’—Zm'éaoC/DJ v P

= _ . Se'% :
/ 25‘(5/7-;/5*(/2}79/ ée‘gp)e - (”M)S:/yﬁ

From Equations B.20, B.21 and B, 22 it is seen that

-—-* _ _
4 (a’él’p)} ~ const (/cyp) /P Z
g (ap)

oX(a 6, o
4 (d, P)} ~ const <lOg P) /P /
g (a6, p)

4p) ~ const (logp) p?

—
% (a
Then, since
;/;m c dZ - //m/ de. =0
o ¢ PP S»o g @54_‘(/;
lim / ap — i / ‘@ —o
d»o P(bgp)z 4oL (logd + ()

one has
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* -
u; (a6, ¢;n)
= O, for n>/
ACAZ D)

o

4 (26, (4.18)
@ =01 'faf— 7> 0
(a8 ¢t n)

(-]

S

%f"(a,@f;n) =0, for n>/

(-]

Therefore for n selected as above

t -7
f*(ajé; t) = .Cﬁ:_zz 7[*(0}@) z; n) ST (4.19)
=) (/7—'/)! JE

" where
/ ~ 4 n_[_ -l |
* /7 —/ + - (0.6 -cw
a8 t;n) = "7 / P (28-iw) e duw
ﬁ=( ) R->oa ZWJ oy~ 7

>0 (4. 20)

The integrals in Equation 4.20 can be manipulated in the same way

as the integrals in Equation 4.6, finally resulting in
o n
* = -h & ; B | 2/ »
£ (@8¢;n) = / l'm{(—a(l a—") £@2) ecp[—zﬂ =z 7 4?(9'2)]} d2 (4.21)
<

Then, from Equation 4.19,
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ACL A I z) Im{( 0Z) {@®

. eW [—lﬂ -:i?f-l'y-.f(é'- g)] } C/.Qd’l"

-~

The discussion of the large §2 behavior of fj showed the integral over
2 is uniformly convergent on T for all n, as far as the upper limit
is concerned. If it is further stipulated that n be such as to make
the integrals proper at the lower limit, then the integrals on 7 and

2 can be interchanged, and the 7 integration carried out, giving

* % A ‘J:ﬁ(g‘—g) -c. =, ‘
4 (46%) =/ﬂn{7j(a,ﬁ)ew [e L (2! ) ]}dﬁ

k=0

(4.22)

where T = cdt/a, Since

_err il LQT)
2z,

k=o

it is seen that

...[.QT ”Z‘ (LQT) — Omﬂ) as _Q’;O

thus the integral on £ remains proper at the lower limit after the 7
integration,
Finally, it is noted that the minimum values of n to make the

integrals proper at 2= 0 are, from Equations 4. 15, 4.16 and 4.17,
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wv. g M=2; a@vin=/

7

(4.23)

The integrals given by Equation 4.22 are in the form required
for numerical integration, except for two items. The limitations of
the numerical techniques used in calculating the Bessel functions pre-
venf evaluation of the roots and integrands for £2< 0,01 and 2> 40,
Therefore, the contributions from these intervals will be estimated

in the next two sections.

4. 7. Contributions from Small 2

The contributions to the integrals in Equation 4,22 from
0=< 2=<0,01 will now be estimated. It will be shown that they may
be neglected for the time interval of interest, namely, cdt/a < 10,

The Q-0 approximations for fj, given in Equations B,.23,

B.24 and B.25, are

; 1+597()) -
G@ @)yt~ @ (g 2) BTN

?jj(q,ﬁ)/% ~ [ sgn(y) {same as &n. 424(_7} (4. 24b)
o, : %

A J. t+sgn(j)  _gz aZ

G @0/~ ') et (2)

z _z
-[édg %7’— + (2_/+/)7n’] (log2) @7%  (a.240)

Let f} (r,0,t) denote the small £ contribution to the integrals in Equa-
A

tion 4,22, i.c.,

(4 &¢) /Im{ Fa)e” @2 )[ _‘m-g; ceer ]}dg

(4.25)
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where n is the least integer making the integrals proper at 2 = 0,

'i.e., nis chosen according to Equation 4,23, Note

_i@T " men)* Tt
B L/ n!

e (4. 26)

k=0

Substituting the above approximations into Equation 4,25 gives

‘5; @8T)/ tUo ~ f")ﬂ,‘z/' 1) ErFeose) 4 (log A) = (4.27a)
g @e U ~ I L@ )T (in8) A (loga)” (4. 27b)
- . +1 o —/

@;/d, &t/ U N/—/)J+ (@21) 7T (cose) 4 (tog 4) (4.27c)

@*@6 &d, ~ /-/)J' (ot /)_I/Z T (end) Allagd)”’ (4, 27d)

/

S _2 Q/Z—/ <
%Z(dﬁ g~ (<) o 'c??ﬁ)

. }:[@ 5;7/) cosé — sgr (1) (2/+1)7 sin é‘]

Z -2
-7 4 (loga) (4.27e)
" where the asymptotic approximations

4 ., _
[ (g’ a2 ~ 4 (kg d) (4. 28)

4 L, L
/ (log2) 42 ~ 4 (log 4) (4.28D)
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valid for A = 0 have been used. Equations 4.28 are derived in
Appendix C.

Numerical estimates of the contributions fJ may be made by
A

inserting A = 0,01 and az = 3, The contributions are normalized on

L3
=<

the long-time values of f(a,0,t), given in Appendix D, namely

uaé,t)/ U, ~ 7 cos&
v@et)/ U ~~7sim7E
G(a,8 t)/ d ~ CosE

r@aé, )/ q, v —sin &

8 . &
G @& t)/% ~ 5 SnE

* K’
uy 15 (73 -
A (4%, z) = 4 (ﬂ;&/_ﬁ) = IF.8xro 47’
uaet) VACA- A,
o ¥ o 4 .
Geet) | | |\ W@et) | L ket
d(a6,t) CAAD,
%; 488|  Lpeis® [0693cos6 -sgn ()@t Tsind] -z
@ /d,@ t‘) 57/7?6'

" The following results are for O.Z = 3.

3
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Thus, for the displaéements and velocities the contribution is about
1% or less for T < 10, These contributions will be regarded as
negligible,
For Ogs the contribution for 6 = 27, j = -1 and T = 10 is about
1%.} The contribution to Og of the higher modes j> 0 and j < -1 would
be larger than 1% according to the above estimate. However, it will
be seen below that convergence difficulties at the upper limit prevent
evaluation of the Oy Tesponse by the present techniques, so the analy-
sis of the small & contribution to Oq will not be pursued further,
Therefore the integrals in Equation 4.22 over 0 < £ < oo will

be approximated for r = a, cdt/a < 10 by the integrals

oe A ’ *6’5
£ae,2) i/[m{ﬁ(d,ﬁ)e[y( /

.0/

. [e—z{zr_ Z‘ (‘QT) J} e

4.8 Truncation of the Infinite Integrals

The numerical evaluation of the infinite integrals in Equation
4,29 requires truncation at a finite upper limit, which will be denoted
Qupper' Furthermore, the limitations of the Bessel function program
require that 2 < 40. Thus it is necessary to study the degree of con-
vergence as a function of £
upper’
Although the answer to the truncation question will lie prin-

cipally in an examination of the numerical results, the process will

be simplified by using the available knowledge regarding the large {2
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behavior of the integrands. In Section 4.5 it was seen that the large

2 behavior of Ej is

_ A
P modes: L; Z)j' = O(-Q ),' 0% = O/f?—/)

J
X . A A 4 -
S modes: &, ¥, 0% = o(@ )

A -
R mode: ‘f _”/-

4

)
|
N
D)
[+
D
™
\V4
0

Since, from Chapter 3,

/ O< b, <by<...
P,S modes: 17 7j+ ~ é/’.fzé where { 1 <bz<

O< b, < by <...

R mode: Lrez z-'ffu @]

then the large Q behavior of the integrand factors

s I —ier = i) @)
@R 5 G = g
f=0 .
is
) o -6 02%75-F
P,S modes: ‘5 = O[ﬁh /e 4 (¢ Z)]
R mode: 75(6) = O(_Q”_/e_ﬂ'(z)

where n is chosen according to Equation 4.23,
Combining these results, it is found that the total integrands

behave as follows:

5 4
.. o~ 2P 6- %)
P modes: Integrands for &, ¥, 4, U = O [.(2 e’ z J

b DB (AT
Integrands for ¢z = O[e b2 69 2)]
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%
. - - 2%
S modes: Integrands for U, U U, ¥, dg = O[.Q e (¢-2

R mode: Integrands for «, o, 4,7, z = O[_(Ze‘/éﬁ]
Thus the following conclusions can be drawn:

(i} Convergence will be slowest for the Pl mode,

(ii) For the P and S modes convergence becomes slower

as (0 - 7/2) becomes smaller,

(iii) For the P modes convergence is slower for 0 than

for u, v, G or v.

The smallest value of 8 considered in the numerical evaluations is

0 =357

Blw

The convergence of the Pl mode integrals for ce.(a,%vr,t) is
shown in Figure 17. ¥ It is seen that Qupper = 40 is not :iéarly large
enough to obtain satisfactory convergence. There are various ways
in which the analytical/numerical technique could be modified to
accelerate the convergence of the 0q integrals, One method would
be to reduce the degree of convolution for %q from two to one. This
makes the integrals improper but still convergent at £2 = 0, Then by
refining the small Q approximations, they could be made powerful

enough to allow evaluation of the improper integral. However, it

appears that any such modified method would require a sizable

" These curves are jagged because a limited number of values of

Q " were used.
upper
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extension of the téchniques developed in the present work. Since
‘the present technique is adequate for the displacernents and veloci-
ties, Og is simply dropped from further consideration.

The convergence of the Pl mode integrals for u" and u\h is
shown in Figures 18 and 19, which are also representative of the
convergence for vj and vz;. From these figures it is seen that the
only instance where convergence is not rapid is for the velocities
at short time, say cdt/a = 1 or less, This lack of strong conver-
gence manifests itself as small oscillations in time about the true
value, which will be seen in the transient response graphs discussed
later, such as Figure 21, These oscillations are sufficiently minor
to be of little consequence. At larger values of 6, 6 = 7, -% 7T, they
disappear completely because of the more rapid convergence.

Thus it is concluded that with Qupper = 40 the convergence for the
P modes is satisfactory. For the S and R modes similar studies
have shown the convergence is rapid enough so that pper '20 may

be used.

Thus the integral given in Equation 4.29 is reduced to

éi‘) —/ szm{vf(dﬁ) Y@ 2[)

]
o.0f

i > Lo ”dﬁ

s

k=o (4. 30)

This is the final form for numerical evaluation.
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4.9 Numerical Evaluations of Transient Response

4.9.1 Scope of the Response Calculations

The integrals given in Equation 4.30 for the transient response

have been evaluated in the shadow zone on the surface of the cavity,

r = a; for cdt/a =< 10, The case 0,2 = cé/ci = 3, corresponding to

A

I

p and Poisson's ratio = 1/4, is considered. The results are pre-
sented as timewise variations of the velocities and displacements at

the points 0 = :i'—w and 8 = 7 in the physical plane., The waves m = 0

and m = -1 are evaluated, so for 8 = 3 7 the response in the wave sum
form must also be calculated at 8 - 27 = - %77 or, by using symmetry,
5

6 = T 7o The modes evaluated are P1, P2, P3, R, 51, and S2, For
the most part these modes are sufficient for good convergence of the
mode sum, but in certain cases higher P modes would be desirable,
as pointed out below.,

In the time region cdt/a < 10 them = -2 and m = 1 waves
have also reached the points 6 = 27 and 6 = 7 but numerical results
showed that the contribution from these waves is less than 1% in this
time region, so they have been omitted. For cdt/a 2 10 the higher
Im | waves' contribution will increase, and the Rayleigh mode re-
sponse will begin to predominate as predicted by Miklowitz's
approximations (9, 11, 12) but this region is outside the scope of
the present numerical techniques.,

4,9.2 Discussion of Transient Response Results

The first cases to be examined are the radial and circumfer-
ential velocities at ® = 27, The response for m = 0 wave is shown

in Figures 20 and 21, in which both the response in each mode and
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the modé sum is given.

The major response occurs in the Pl and R modes. The
contribution from the higher P modes decreases rapidly as the mode
number increases. The S1 mode contributes little and the S2 mode
contribution is too small to be shown. It would probably be desirable
to calculate the P4 mode response in the case of {r*, since the P3
response is still fairly large.

The arrival times of the P and R waves are indicated. The
Pl mode has distinctive wave front behavior at the P arrival time,
but there is little pulse-like behavior at the R arrival time. For
times less than the P arrival time thc modal response curves are
too crowded to allow the mode sum to be shown, but in Figures 24
and 25, the mode sum response in this region can be seen. It is
essentially zero, but there are rather minor perturbations about
zero, which arise from the lack of complete convergence of the P1
mode integrals. In the case of ¥, these perturbations persisf slightly
beyond the P arrival time, so that the peak appears to be jagged,
which is, of course, erroneous. For larger 8's or higher modes,
the convergence is strong enough to eliminate these perturbations.

The response for 6 = % 7w, which is used to construct the
m = -1 wave at 0 = %w, is shown in Figures 22 and 23. The mode
convergence is seen to be quite rapid; the P 3 and S modes are too
small to be shown. The amplitudes have decayed markedly from
those at 8 = 27. The mode sum is clearly seen to be zero ahead of
the P arrival time. A pulse-like behavior has begun to appear at

the R arrival time.
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The wave s.urn of the response at 6= %w is then constructed
from the above wave response, as shown in Figures 24 and 25. Note
that the circumierential velocity \'z* for the m = -1 wave is the nega-
tive of the 0 :—Z- response, since v is odd in 6. The wave sums
compare well with the long time solutions given in Appendix D. The
comparis.on would probably be enhanced by using more modes in the
m = 0 wave. The v response is particularly interesting because the
m = -1 wave still has distinctive wave front behavior, so that it
causes a marked jog in. the total response.

Results for the displacements at 6 = 2 7, analogous to those
discussed above, are presented in Figures 26 through 29. The modal
response for the m = -1 wave has been omitted since it does not
show anything new, The correspondence with the long time solution
ie good, but again, in the case of the circumferential displacement,
it would probably be noticeably better if the P4 mode were included
in the m = 0 wave.

The results for the displacements and velocities at 6 = 7 are
presented in Figures 30 through 34. The results are similar to
those for 0 = 37. Note that.the m =0 and m = -1 wave responses
are equal for u and & and equal but opposite in sign for v and ¥. Thus
the v and ¥ wave sums are zero at 8 = 7. Nevertheless, the v re-
sponses have been given (Figure 31), since they may be compared
to Figures 21 and 23 to see how the ¥ pulse decays. Figures 32 and
34 show that the comparison with the long time solution is good.

The qualitative results from the wave front approximations

of Friedlander (6) and Gilbert {8) which were pointed out in Section
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2.2, namely, smooth diffracted fronts and rapid decay of amplitudes
near the wave front, are found to be present in the above results.
The smoothness of the velocity fronts is not evident, however, for
the 6 = 2 7 velocity fronts because they are still quite steep just
behind the fronts, and the numerical resolution is not fine enough
to show the smooth build up.

4,9.3 Comparison with Baron's Fourier Series Results

In Reference 3 Baron and Parnes present extensive numeri-
cal results for the displacement and velocities for the present prob-
lem, based on the Fourier series form of solution. For points in
the shadow zone they gave the velocities at 0 = 7 and 6 = 7 and the
displacement at 6 = 7, Baron calculated 3 terms of the Fourier
series for the scattered wave and used the exact incident wave.

The comparison between Baron's and the present results
for the velocities at 8 = > 7 is shown in Figures 35 and 36, The cor-
respondcnce is fairly good at moderate to long times., For short
time the comparison is quite poor, The response using a three-
term series for the incident wave also was calculated by the present
author, using Baron's results, and it yields considerably better
correspondence. The better correspondence using the three-term
series is possibly explained by the fact that higher terms in the
scattered waves fnay tend to cancel the corresponding higher terms
in the incident wave.

The comparison between Baron's and the present results for
the velocities and displacements at 8 = 7 is shown in Figures 32

and 34, In view of the fact that the displacement correspondence
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is good it seems ciuite likely that the poor correspondence between
‘Baron's velocity and the present solution for long time is due to
an inadvertent error of some sort on Baron's part.

Since the incident wave has encompassed the entire cavity
at cdt/a = 1, a three-term Fourier series on the incident wave is
exact, sd no changes in Baron's results at 6 = 7 can be made on that
basis. However, a different sort of change can be made. Baron
apparently set his results to zero arbitrarily ahead of the wave
arrival time, but it is clear from Figure 32 that he chose the inci-
dent wave arrival time instead of the diffracted P wave arrival
time shown. If one cuts off the results ahead of the P arrival,
fairly good correspondence is obtained.

Finally, it should be noted that the diffracted wave fronts
should be smooth, according to both the general theory of diffracted

waves (6) and the wave front approximations (6, 8).
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5, CONCLUSIONS AND RECOMMENDATIONS

Although the present method might be most correctly classi-
fied as a short-time method, the numerical results show that it is
good up to times at which the solution is essentially equal to the
long-time solution for a step-stress incident wave, Therefore it
seems fair to conclude that the method is even more powerful than
was anticipated.

The purpose of studying a step~function incident wave is of
course so that more general transient behavior can be studied
through the use of the Duhamel integral. The short time inaccuracy
of the Fourier series method must then be taken into account when
the time variations become fairly rapid, and the present method
would be even more advantageous.

The great disadvantage of the present work is, of course,
that it is limited to the shadow zone insofar as the total response
is concerned., In view of the power of the wave sum method in ob-
taining numerical results for the shadow it would appear to be
worthwhile to investigate the possibilities for numerical evaluation
in the illuminated zone. In the illuminated zone the inversion of
the transform on 6 cannot be obtained by residues, and there seems
to be no obvious way of avoiding having to invert the 6-transform
by numerical integration. Then the inversion of the Laplace and
the Fourier transforms would involve the numerical evaluation of
repeated infinite integrals, a formidable task, but perhaps possible
with the exercise of insight.

A more immediate, and much easier, object of continued
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research on the pi‘e sent method would be the extension of Gilbert's
- shadow zone approximations for the line source case (8) to the present
problem, The first step in such a program would be the verification
of the conjecture (in Section 3, 8) that the next higher term in the
large [pl behavior of the roots is O(po) instead of O(p-1/3), for
this woul.d have a major effect on Gilbert's results. It might also
be useful to try to extend to the elastodynamic case the higher ap-
proximations for the acoustic wave front response obtained by Lievey
and Mahoney (17). They concluded that the first order approxima-
tions obtained by Friedlander and Gilbert were valid in such a short
region behind the wave fronts as to be of rather limited usefulness.,

Also, more refined numerical methods could be developed
to evaluate the o integrals. It is probable that such refined methods

could also be used to speed the convergence of the velocity integrals

at short time.
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APPENDIX A, ASYMPTOTIC APPROXIMATIONS FOR
BESSEL FUNCTIONS OF LARGE COMPLEX ORDER

Introduction

The purpose of this appendix is the development of asymptotic
approximations for the Hankel function of the first kind, Hv(vz), ¥
valid as lv| — oo for larg vl < 7/2 and various regions in z. The
development takes as its starting point the asymptotic expansions
given by Olver (23, 24), which are uniform in z. The uniform expres-
sions are too complicated for the application in the text so simpler

forms are obtained by restricting the range of variation of z.

Summary of Olver's Results

From Equations 4.25, 4.16, 4.17 anc 4.6 of (23) and Equation

4.6 of (24), the expansion for I—Iv(vz) is found to be

/
_._/7]—" _—-I— 4C /4
H,(ve)~ Z2e” v 3(

/-2%
2 - ’ PRk o ~2s
- { () S, AC) T F (BT )y T2 B v }
sS=0 S=a
(A.1)
as vl > win larg vI < % . The function ¢(z) is given by
% l+ 1-2%

27 = : _ - z2 A2
=4 log = [~ & (A.2)

¢ has branch points at -1, 0 and oo, hence it is regular on the cut

z-plane in Figure A 1{(a}. The expansion is uniform on the region R

¥ Since only H(vl)(v,z) is considered, the conventional superscript is
omitted.,
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formed by the removal 6f points within a distance 6 > 0 of the cut.
The cut from -1 to oo is taken as shown to secure the maximum region
of validity in z (for details seé Reference 23). The branch of { is
specified by taking { real for real positive z.

‘ The coefficients AS(E,) and BS(?_I,) are also regular on the cut
z-plane, with AO(?;) =1, Olver gives expressions for the higher
coefficients but they will not be needed for the present analys'%s.

The following results will be needcd.

206) = 1-2 85 £ OF?) as £ 0 (A.3)
cra) = 2302 +oO[(-87] as 2= (A.4)

The function ¢(z), given by

e )’/“
(A.5)

which appears in Equation A.l, is regular on the cut z-plane, since
the only possibility of a finite zero or infinity of 4y /(1 —zz) on the cut

plane is at { = 0, z = 1, but in this neighborhood

4&

%
“= =z + 0@ (4. 6)

The branch of ¢(z) is specified by taking ¢ real for z > 0.
The cut z-plane maps onto the {-plane as shown in Figure

A1l(b). The domain K bounded by the branch cut and the lines BPE

and BP'E' maps onto part of largtl< —g— and E'F' maps onto part of
the ray arg § = -737- as shown., The values of z at P and P' are

+i 0,66... sothat |zl <1 for z in K. These facts will be needed

below,
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The asymptotic expansion for H'v(vz) may be derived by the

differentiation of the expansion for H?(vz), giving

P 46"(37,"4' 2 ]
H,(v2) ~ — ——— { V_édz (v%e%mé;)
2 Pp(Z)

N L, , 257
D v TR A A T e 5]

S=o

# vjéCZé/( ™7 )
) < -2s 257 ¢//¢) 4 Ve
séw [0+ 22 a0+ g 0]}
(A7)

r

5 ) uniformly on the region R defined above.

for larg vl <

Properties of the Airy Function

A few propcrtics of the Airy function Ai(z) will be needed in

the following analysis. Ai(z) is defined by

Same
eo &
/ 13
ai(2) = Zm./ enp (te-gt) It
oae—/jjrt

Ai(z) is entire, real for z real, and its only zeros are on the real
negative z axis. The following asymptotic approximations hold as

]zl — 0,
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[arqa(éﬂ‘
az) = 7% exp (-2 27) [/ +O(57%]] (A.8)
ai(e) = - 27 %% ey, ((£27%) [/+0%)] (A.9)

|arg 2| < Zm

di(-z) = 7%z cos (§ za/z- 4—;7;) [/+o(£’3/2)] (A.10)

ai(-z) = 7227 sip Z 27 —77)[/+O(z )] (A.11)

Dominant Terms of the Expansions

From the approximations given in Equations A.8 through A.11

it is seen that
a’re) = o[ e%c 2]
ie€as

d«.'/(p%ezéméf ) [ /3 é?’& d‘ (v% 2/;74¢)]

(except near zeros of Ai). Then the dominant term of the asymptotic

expansion for H (vz) is
~%ri -4 4 4 zZ5 257 |
He)~ 22" VO 2e) @ (P 1)
-2

and the dominant term of the asymptotic expansion for H‘v(vz) is
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. ‘. » |
Luwi _, =z 7, 24 g

Hgﬁ%)~f—4ea z'y‘éﬁﬁi. al (v3P7¢)

1-2% (A.13)

for vl ~c, larg vl<%.

Transitional and Non~Transitional Zones

The above approximations are still too complicated for the
present application, so further simplification will be achieved by

writing separate approximations for the transitional zone

Z-/ :O(v_%)) ce, Iim /V%(z_"—/)/<o<7

el

and the ''non-transitional'' zone

lim | vB(z-1)] = oo
jv[—>ea .

In the transitional zone the z-{ relation can be simplified. In the
non-transitional zone the Airy functions can be replaced by their

asymptotic approximations,

Asymptotic Approximations for the Transitional Zone

2/3

Letz-1=Tv . Then from Equation A.4

Cla) = 22207 ¢ o %)

and
%
—££> ;:z?é+(9ﬁ;%7

/-2%

Hence, from Equations A.12 and A.13,
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P 43 - X %4 37
,Hy(V-E)=Hy'(V+r1//3)~Z3e 2 @(—23 )

Te (A, 14)

) L5 BUL -1 -TB 7, s, BT
H (2) = HY (pe10%5) ~=2 e E VP (2% eT) (415

These approximations are in agreement with those given in an earlier

paper by Olver (25), where they were obtained by a different method.

Asymptotic Approximations in the Non-Transitional Zone

The non-transitional zone is defined by
- 2
Vied ly"/;(g_/){ = oo
lzf—00
Then, from Equation A. 4,

lin  |22%| = ea
[z e

and the asymptotic approximations given in Equations A,8 and A, 9 for

the Airy functions can be used in Equations A,12 and A, 13 to give

Vi . —a .3 |
o g b S 2 2AETL 2 /24 %W, \72
//V(pg)my’ée/’m(/fz) Vé(v/ge/j/é') e);ﬁ[—g(?/ 5.%7¢) J (A, 16)

% w D
-t b, L B zzs 2/ 2 25T NE
lqvl(bz)“’z?r/zeé”—% l(f_ﬁ v %(V%e 37”4) e%f [-B_(p/se é) .] (A.17)
where
{d.g (pz/.aez/gVZC){ <7 (A.18)

is required for thc validity of the Airy function approximations. Equa-

tions A.16 and A, 17 are validas |v| - in larg v <% and z in the

non-transitional zone,
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It is seen that Equations A.16 and A.17 will be simplified if
the products raised to fractional powers can be expressed as the
product of each factor raised to the fractional power, for then the
§1/4 factors will cancel. However, this process is complicated by
the fact that, according to Equation A,18, the principal value of
v2/3e2/37ri§ must. be taken, and principal values of products are
not in general equal to products of principal values. This difficulty
can be resolved by writing the principal value of the argument of
v2/3ez/3ﬁi§, as the sum of the principal values of the argument of

each factor plus the proper multiple of 27, This process is carried

out as follows,

Let Arg denote the principal value of the argument. Then
2 Zha Z £ o
7 (_Vée 577'64') =EQgv+sT + g & + Znm

z £

T

the last equation arising from the fact that the restriction larg vl < >

has already been imposed. The range of n for the present problem

is easily obtained since |larg vI[< -72-7- , and -7 < Arg { < 7 by definition.

Then
—3--2—7/*<(,3‘i argv + 5T+ Chg &)< Z7

so the only values of n required are 0 and -1, selected as follows:

=4 Z £
Y o, ~—3—7r<(§-a/:gv+—5—7r+mgc:)<7f (A.19)

-~ 2 = 7
/) 77({36’/252/-/-3771‘-%;)‘(2/1
The case (—i— arg v t 2 7+ Arg {) = 7 is excluded since it would re-

3

quire the use of different Airy function approximations, and is
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not requii‘ed for the application in the text,
The application in the text considers z to be of the form

Z:_’@_
v

where £ is real, so that arg z = -arg v, Inthis case some useful
further delineation of the behavior of n can be made. The reasoning
is based on the domain K defined in the paragraph following Equation
A,5 on the z-{ transformation depicted in Figure Al. For conven-
ience in writing the notation

re(ab) = a<x<b

zelas) = asp<b
etc.

will be used. The discussion is broken down into three parts which
cover the range of interest,
(i) For argve [O,%) and z not in K, argze (-—72-r~,0] so Arggs(%,ﬂ']

and (-g— argv + %‘ﬂ'"‘ Argl) ¢ {(m,27), hence n = -1,

(ii) For argve [0, 12T_) and z in K, argze (-Z, 0] so Arggs[O,%) and
(—g— argv + —§-7r+ Argl)e (%'ﬁ, %ﬂ') hence n may be 0 or -1, Howsever,
for sufficiently small argv, argz is small and Argl is small, in

which case (-g— argv + -%—71'+ Argl)<w, so thatn= 0,

(iiil) For argve (- %,O), argze (0, 3) so Argle(-7,0) and (-g— argy +
%—7("‘ Arglle (- %’77', %ﬂ), hence n = 0,
*1/4

2/3 2/3miy, o

The definition of n allows the quantity (v
be split up into its factors, so that if the same can be done for
=1/4
[41;/(1-22)] the {'s outside the exponential can be cancelled,

effecting a desirable simplification, This can be done, but requires
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further delicate reé.sonihg.
2 1/4
The function [4(/(1-z7)] has previously been defined as

¢(z), see Equation A.5. Let

4
/- 2%

=]

Anticipating the application in the text, the range of z will be limited

to argz (-w/2,7/2). The discussion is broken down inifo four parts:

(i) z in K, argz8[0,7r/2)., It follows that —-Arg(l-—zz)s [0,7/2) and

Argte(-7/3,0], so argye(-n/3,7/2).

(ii) z in K, argze(-7/2,0] . Then -Arg(l-zz)s(-w/?.,()] and

Argte[0,7/3), so argye(-1/2,7/3)e

(iii) z not in K, argze (0,7/2), Then —Ar.or(l-zz)s(O,ﬂ) and
g g

Argle(-7, -7/3), so argye(-m, 27/3).

(iv) z not in K, argze(-7/2,0] . Then —Arg(l—zz)s [-m,0) and

Argte(r/3,7], so argye(-27/3, 7).
From the above discussion it is seen that

arg ¥ = igl - Cag (1-27) (A.20)

1/4 2 "1/4
Hence in breaking up ¢ into its factors & and {1-z") the prin-

cipal values of the fractional powers may be used. The intervals
on argz in (iii) and (iv) are chosen so that argz can reach zero only
from negative values (for z not in K). This is equivalent to intro-
ducing a branch cut from z =1 to z = co along the real axis, in which
the surrounding region is open above the cut and closed below the
cut. (It should be noted that the necessity for the cut arises from

choosing to describe ¢(z) by the principal arguments of its factors,
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not because ¢ has a branch point at z = 1.)
On the basis of the above discussions, the factors raised to
fractional powers in Equations A.16 and A, 17 may be separated, and

advantage taken of the cancellation of 21/4, resulting in

% -4 R % T ;
H,(veg) o2 ‘7 /2(/-22) v ‘erp [(—/)n__—,’,z—é “v - n+1) E‘] (A.21)

Y - Y -4 3% .
H(v2) ~ 2% (- 297 /Zezp [/—/)"—52— ¢ vt (m«/)—ga:( (A.22)

where |vI—o, larg vl < % and larg zl < —g— The principal value
of (1 - 22 1/4 is to be taken. The special case (2/3 arg v + 2/3 7 +

Arg U) = 7 is excluded.



-81-
' APPENDIX B. APPROXIMATIONS FOR f—J ASp — 0

Introduction

In Chapter 2 the solution for the response functions f; (r,0,t)

was reduced to the following integral on the contour C in Figure 6:

/ =K pT
£n8t) = “zni . f (Agp)e o (B.1)
where T;'cis given by
— ~ % D) vt
ﬁ*(é,&p)} =-c'v§c*(4,?j~fp)e” D(“’;p) C-j——J (B.2)
$<0 Or(yip) P

in which v;— denotes the roots vj having Im vj> 0.

The radius of the CO part of the contour C will be taken to
zero, so a study of the behavior of f;k as p ™ 0is required. The
necessary information about the roots vj as p = 0 was obtained in
Chapter 3, There it was found that v; approached v =1 as p — 0,

and approximations were written in terms of ej, where
= &y
Y=t
and from Equation 3,2l it was seen that

>0 , for j2o
Im@{ _
< O , for J<O

Thus,
+ [+€;, 'For‘\/'%o
Zj. =

—I-€, ‘For—J'<O

according to the symmetry of the roots in v = 0,
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In view of the above, approximations for E:C(r, Vj ,p) for
vj =1+ ej will not be directly applicable for j <0. However, it

e

~
is proven below that fsc satisfies the simple symmetry rule

EXayfp) = SO £ (A4 p) (.3)

where

+1, for f even in ¢
S) = _
—t . for  odd inG (B.4)

E

Therefore, the approximations for vJ. =1+ Ej can be converted to

those for v:].l-, and this is the procedure that will be followed.

Symmetry of ’f'sc inv =0

Although the proof of Equation B.3 can be based on a detailed
examination of the various expressions for ‘f:c’ it is shorter to argue
as follows.

The residue evaluation yielding the form given by Equation
B.2 is based on 6< 0, which requires Im vj> 0. Considering instead

0> 0, the v-inversion contour must be closed in Im v <0, whichyields

P =ik wype 9T LG T (B.5)
#>0 Op (4. p) 9P

" where v} denotes those vj satisfying Im vj< 0. Note a sign change
between Equations B.2 and B.5 arising from encircling the poles of
F:c in directions of opposite sense.

Since the roots of vj are symmetric in v = 0, no generality
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is lost by taking
y=-Y (B. 6)
Furthermore,
O¢yp) =D p)

dtv) _ dv
dp dp

. so Equation B.5 can be written

- ~ 5'7/7"90/ 7 gv?
Enep)| =-ifioyp e’ ZL0 7 (5.7)
G50 Op(ep) 9P
Now, from Equation B.4,
7+ Z4-2 )
Zreer)| = S(F) 4742 p) (5.8)
v J

&>0 4> 0

so combining Equations B.2, B.7 and B.8 gives the desired result,

Equation B. 3.

Approximations for ?EF

The first step is the development of approximations for Kv s
I, and their derivatives for p > 0 and € — 0. To simplify the writ-
ing, the subscript j on Ej and vj will be dropped when no loss of clarity
results. The dependence of € on p is given in sufficient detail to make

order of magnitude assessments by the following approximations,

€ ~ const ([agp)—/
,Dé~ comnst + cornst €

derived from Equations 3.21 and 3.16a, respectively. Then

using the power series definitions for the Bessel functions, the two
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term approximations are found to be

/€

zZ
L e r2) = —(—_,—)/(-E) [/ +Z+_/—é (—§—> * 0(24)] (B.9a)

Lie ) = ze/ (5) [’*ﬁ%@(i) +O(‘?4)] (B. 9b)
/-fé(g) ( {/+[ é/— 67’/-;/5:_:66)7/‘(:) J +0( £4)}(B.10a)

P Zé
/ /- vescern (2
K (2)= - Q‘;;i)'(é {H{e{/vﬁé) é/(/+é)/( ) +0( 4)} (B.10b)

where z = kda = pa/cd or z = ksa = pa/cs.
Using just the first terms of Equations B.10the approximation

for Dp is found to be

Dplup) = - Zde(re)@rs) 2= S F T ) (ya)™!

A+ O(e"Pz)] (B.11)

Eor the function A(v,p), defined in Equation 2,21, it turns out a two
term approximation is required, since the lower order term cancels

when A 1s inserted into the £ c' Thus, using both terms in Equations

B.9 and B.10 one finds
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Diwp) Atyp) = T Bp< (re)(@re)al’ ©

[ 4 af(z-e)z-f s(2+€)
e (/+€)(2+E€)

(ka)” + Oe™p?) |

(B.12)

~
The approximations for the response functions f c will be

e
4

X ~R
s v ,and o o The stresses o and T will
c sC Osc r ro

no longer be considered because attention will later be focussed on

written only for us

r = a, where the latter stresses are zero, Using the approximations

for the Bessel functions, A(v,p), and the exact elementary expres-

sion for B(v,p), Equation 2.22, yields

//2 =
D(Vp) *lavp) = { g (p)a ‘(1+e)(2te) ( — ”6 a
<. &)é ka [ 1+ O(é‘pz)]} (B.13)
a1 '

I

Diyp) & (@, np)

_L'{gdme as Egn 5,/5’} (B.14)

Dsp) L (aup) = 16m BT Ue(re)Er) (@ 1)*
S<

.[_(052*26 )} (5,,767;) La [/+O(e pz)] (B.15)

In Chapter 3, the argument of —(u2+l) was taken to be (2j+1)7i,

s0 since € is small,

% (Z/+1)Te
[(24-26 /)j[ Z-/-Ze ) % (<) ¢ (5.16)
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: —x
Combining the above results the approximations for fj for

O > 0 are found to be

. , P -+
‘Z-*(a,rﬂp) ={(~/)J77§—’Z/P)d-'eﬂjﬁﬁ (@ 2 ) (o’ /)

a(g’
'<5~e:l-77rJr) _I(Pa) E”‘O(‘E'PZ)]} (B.17)

B.
FXa,6.p) = L sgn (i) some a5 Eqn 5./7} (B.18)

+
A 7 -
54 5 ( a,z+z§/+ ) )

AE)
(d) (5”76./) ( ) [/1‘-0(6',02)] ‘B.l‘))

d—%*( ,53,0) = —(;/)Jzy‘yz(p)a—:?”e

where

5gn(J) {

!, J<O

The sgn function arises from the oddness of v with respect to zero,
which must be accounted for according to Equation B, 3 for j < 0. The
approximations given in Equations B.17, B.18 and B.19 have been
compared with numerical results for the Rayleigh mode (j = 0) at
Q= ipa/cd = 0,01, Using exact values for vj and Ej the errors are
about 5%.

- The expressions for T, T can be written entirely in terms of p

J
by using
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-/

’ 4!24'/ ] - _pﬁ
g (p) ~ —5[509 PRy +(%+/)W‘](log z

from Equation 3. 21,

Av: a’+y ) . pa \"%, pa —/
AR I/ +(%+/)77zj(éo ———) i
A(22) 2[@42—/ 7% ‘d)
<A
from Equation 3,22, and
2 -3
— GAP

from Equation 2.17b. Then the T;, normalized on u, {defined by

Equation 4.1) and g, are

— ¥
e _ e - -z ,
J—Zd’m’—e)a«{—(—/fﬂ’d@/(ﬂi/) /zetsgn(dé{wg _g{) /g) } (B.20)
Gaepr) | _; sqn (/) { same as Eqn. 5,20} (B.21)
% . SN z , \%
KAGATIN -(-/)fzvac;—'ewgnm&cvz E:"—/‘)

z a /!

] [[ag :Z/’ +(@'+/)7ri] ([ag %)_Z(g)_z (B.22)

The asymptotic approximations for the functions fj(a,ﬂ),

defined by Equation 4.13, are
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LD e " g7

A
v (4(2)

~ L'sgn(j)«{ﬁame as Egn. 5.23}
U, '

d/‘- ¥ i 1+sgnli) a—/ vz
6.(/ ) > (_/)J (lj sgr(J 2 -2 2 )
g a+/

[wg —C—k—t{— + (2/1"/)777] (kgﬂ)—2-2

(B.23)

(B.24)

(B.25)



-89-

APPENDIX C, ASYMPTOTIC APPROXIMATIONS
FOR LOGARITHMIC INTEGRALS

In the text the integrals

4
dQ / a2
— ¥} 2
o logL? o (lLog2)
occur, where A is small. Asymptotic approximations for A~ 0 will
now be derived, by the straightforward application of the properties
of the exponential and logarithmic integrals, as given, for example,

in (30), For A< 1 the logarithmic integral £i(A) is defined by

4
4 (4) z/ i;—%' (C.1)
[o]

The change of variables 2= e = gives

o £
L) =-[ St = ~£,(-t94)
Zlogd

where El(x) is an exponential integral, defined by

oa "t
_ <

x

Reference 30 gives, for large real x,
-X

Ey~ S [145 st(a)"]
s=/

Therefore, for A — 0

L (8) ~ ;;—’Z[Hs? =! (/ogd)_s] (C.2)
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Now consider

4
A2

I/A)E / (logﬂ)z

-_—_—/12:‘“—[ /]a’ﬁ
a2 log(2
4

_ _[_f_z__]ﬂ/ 2

o o

- z)- 4
éogd

Then, from Equation C,.2

(C.3)
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APPENDIX D. LONG-TIME SOLUTION
The displacement, velocity, and stress fields as t =00 can
be found by considering an equivalent static problem. First, consider
the response caused by the incident wave alone. Then, from Equa-

tions 2.5,

4 2
G < z
Ve (19,) = A+2u = 7
where 7 =t + = . Then
€4
y = e _ B Ly = 4 (T E)H ) (D. 1a)
e Q¥ A+EU
= O
» (D.1b)
a&/g : Yo
_ Py _ H(z (b.2)
“,, v A+Eu ‘

the remaining strain components being zero. The normalization
constant u, is defined by Equation 4.1 and T = cdt/a. The stresses

and velocities are

a]’%: AMeytey+ez)+Zuey = g, H(T) (D. 3a)
A
0}‘%6—: e +E€y+Ce)+Zuey, = Jeza 0;"//2'/ (D. 3b)
Z'z]/b: ) (D. 3c)
. % < . -~
= = U, H(®)
Uz/h 27(_2/“ H(Z—) (D. 4:3.)

I

0 D, 4b
Ay ( )



-92-
where fJ.O is the normalization constant defined by Equation 4.2.
These same response fields apply at large distances from the
cavity long after the incident wave has passed the cavity, Therefore
the long-time solution is the sum of the following:
(i) the stresses and displacements for the static problem where the
stresses 0 = 0, and o, = NN+ 2w 0, are applied at r = co and
the displacement at r = 0 is zero,
(ii) the displacements and velocity of the center of the cavity, derived
from Equations D,1 and D, 4.
The solution to the static problem can be constructed from
the uniaxial load solution given, for example, on p. 291 of Reference

28, At r = a, the results for A= p ((12 = 3) are

g .
%, (40)/q = 5 s &
7 (41.9)/ W, = 2 coste
32 .
Y, (a, &)/ U, = -z sinZ&

where ( )st denotes the static solution, The total long-time response

at r = a is given by

G(aet) /G ~ 5 i b-3)
ula 6 L)/ U, ~ Teosd + 3Fase (D. 62)
U2, 8 4) Uy ~ ~Tsin® -2 sinZé (D. 6b)
a(aét)/ 4, ~ cos& (D. 7a)

slast)/ d~ - sir7E (D. 7b)
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APPENDIX E. DISCUSSION OF NUMERICAL TECHNIQUES

Programs for Bessel Functions of Complex Order

SHARE Program 979 was the basic program used for the
computation of the Bessel functions. This program can handle com-
plex arguments and orders of absolute value of 75 or less and 85 or
less, respectively. This means that the maximum value of £ that
can be used in the present work is 43, since QS = a2 = 75 for a 2 3.

The results for the roots vj and the integrands Ej were
checked against SHARE Program 1315 for 2< 5 and agreement to
4 or more significant figures was found for > 0.1. At &= 0.01 the
agreement for the roots is 3 or more figures and for the integrands,
2 or more figures.

The program was checked for large £ by finding the first
two zeros of HV(Q) for © < 40, Agreement with asymptotic expan-
sions for the roots was very close. For example, the numerical
values of the lowest two zeros at 2 = 40 are 43,173 + 5.496i and
45,458 + 9,610i, whereas the asymptotic expansion to 0(91/3) gives

43,157 + 5.525i and 45.499 + 9.699i, respectively.

Rootfinder Program

The method of false position was used, with complex arith-
metic. Convergence usually occurs in about ten iterations when
the original guess is good. In order to economize on computer
time, the integrands Ej were calculated at the same time as the
root, and punched on cards. The derivative dvj/dp was calculated

using a quadratic polynomial approximation.
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Calculating both the roots and the integrands, the time
required for each root was about 5 minutes for the points £ = 0.01
(0.01)0.1(0,1)1(0.2)2(0.5)5(1)20, * and one minute for the points

Q= 20(1)40.

Integration Program

In order to avoid recalculation of the Besscl functions and
interpolation during integration, the integrands were tabulated on
punched cards at a fixed set of integration points. It was found
through trial and error that the points 2 = 0.01(0.01)0. 1(0.1)1(0.2)

(where Qu = 20 for the R and S modes and 40 for the P

Q
upper pper

modes) gave satisfactory results. The integrands at non-integral

values of  between 2 and Qupper were found by interpolation.

Simpson's rule was used to evaluate the integrals over even num-

bers of increments, and the trapezoidal rule was used to {ill in

odd intervals as required. The 7094 time required to calculate

the P1, P2, P3, R, Sl and S2 mode response for the displacements

and velocities at one 0 point and 40 time points was about 10 minutes.
In retrospect, it appears that a great deal of convenience

would have been gained by using built-in step size control and built-

in upper limit convergence controls. This would require interpo-

lating to find the values of the integrands, but the time required

for this would probably be made up by avoiding unnecessary calcu-

lations.

e
bd

Numbers in parentheses are the increments between numbers on
either side of parentheses.
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-107-

IT v
1.4 +
(.2 T+
1.O T
/
7/
/7
/
0.8+ /{ Exact Egn.
/ — —— Approximate Eqn.
/ __.___ Series Approx.
/ ‘ o fl=0.1
o L =0.01
2l =0.00l

}e

0} } } 4 —= Rev
.0 |.2 .4 1.6 [.8

Fig.13. Comparison of Asymptotic and Numerical Results for
the R and S Roots as £ = O.



-108-

0-6— K—-
0. & Re, Im .Q.2 Gj/“o
0.3 B Re, Im \Q,zoj/uo -

v ¥ Re, Im & séj/cro

o T

e ———

-03F- -

-0.6 L

Fig. t4. Behavior of Integrand Functions 'f\j (a,8)) for
Large £, Pl Mode.



_109_

0.15
T T T T T T T T
O.10 24 -
' o @ Re,Im §) Uj/ug
2
B oo Re,lmﬂcj/uo 7
0.05 v v Re,Im 9.2 6éj /0, ]
O e
-0.05} a
-0.10 ] | | 1 | ! l
0 10

|
5
93
A
Fig. I5. Behavior of Integrand Functions fj(a,ﬂ)
for Large {}, S| Mode.



5)([0'7 Y T T

10°7 |-

o & Re,lm u]'*/uo

0°F @ o Re,Im vj-*/ ug

v ¥ Re,im 0'6;‘/0"0

. A
Fig.16. Behavior of Integrand Functions fj (a,{l)
for Large {, R Mode.

20



)

Circumferential Stress, U: /a(-)

-111-

3 -
cdt/c
2 -
10
5
I+ 4
|
S VRN '
_I -
-2 L1 | ! | | | 1 |
0 20 40

Qupper

Fig.17. Convergence at Upper Limit, Pl Mode,9=% .



-112~

0.3 I I T T I T | I
_ 0.85y
.07
.=° B i
3 0.5
L J—
[ | O
=
‘o
3 i
Q
>
§ -
E cdf/Q
-0.3 H -
3
5
‘ ?: o
-0.6 | | } 1 | ] 1 |
0 20 40
‘Qupper

Fig.18. Convergence at Upper Limit, Pl mode, 8=



*

Radial Displacement, uj/ Ug

-113-

O l
3
_l L 5
_2 - -
_3 - f/ —
Cd a

Q

upper

Fig. |19. Convergence at Upper Limit, Pl Mode, 9=% T,

40



Radial Velocity, 78, and a¥a,

~114-

0.3 T I I |
P R Arrival times

—~—

—
=T I L ]

-0.6 A 1 4
0] 5
cdt /a

Fig. 20. Modal Response Gj*and Mode Sum u*

at r=a, 9=%1r.



(0]

O*o
v /u

Circumferential Velocity, Vi /uy and

-115-

0.3 T | | T T I T |
Arrival times
. P R -
o.-
-0.3
-0.6
1 1 1 | ] ] L ]
O 5 (O
Cdt/ﬂ

Fig. 2l. Modal Response Gj*and Mode Sum \.I#(Gf

r=a, 9:

3
41!'.



-116-

Uo
o
W

Arrival times
B P R

*\
«J

©

c

o

[)
=]

~
3 P2—

2 00 —

.g R —
K PlI— |
= i }‘*‘—“:
° Mode sum

© | i | | !

-0.3 | | 1 ]
(0] 5 10

Cdf/ﬂ

Fig.22. Modal Response Gj* and Mode Sum U

5
at r=c,0=T1r.

*



K, .
v/uo

o X o

Circumferential Velocity, Vi /uoand

0.4

-117~

| I 1 | ] | I | I

P R -

. L * .*
Fig. 23. Modal Response vj and Mode Sum v at r=a,

=—§-1r
4 .



-113-

0'4 I LI l | ! ] I

Arrival times
B P

R

O
1

.*-

Radial Velocity, u/ug, and u/u,

-0.4 ..
m = O wave B
—’/_-
\ ‘-/
- — /

- Wave sum B
i Long-time soln. |

-0.8 1 1 1 1 1 1 1 ]
0 5 [0

cdf/o

Fig.24. Waves (*and Wave Sum 4 atr=a,0=% =



Circumferential Velocity, v/0o and v/0,

-119-

Fig.25. Waves v and Wave Sum v at r=o,9=—2—- .

0.4 T 7 T T T T T T T
B Arrival times ]
- Po Y R _
0'/\
o - J
nd <
= m=-| wave . N
- -~\__
-0.4t m= 0 wave _
R
B Wave sum ]
= Long-tim_evsoln. =
_ | I 1 1 L I ] 1 1
0.80 5 o



-120-

! T T i T ) I v ) T

—

P R Arrival times

0t —_

Radial Displacement, u;K/uo and uqk/u0

-2
ol
ol
..50— | { L | 5L 1 | ] | °

cdt/o

Fig. 26. Modal Response u*j and Mode Sum u*atr=a,

. 3
—?7’:



*
v/uo

/ug,ond

*

:W

Circumferential Displacement

-121-

! I L ! I
P R Arrival times T
b . P2
Sl —]
0 —
N\ S2
N\
- R P3 — -
N
N\
_I = \
— N\
AN
AN
-2 N R
N
N Pl \
N
-3 |k N
\
AN
= —///%\
AN
-4 Mode sum N\
B N\
-5 | 1 1 | : 1 1 | 1
0 5
cqt/a

A e
Fig. 27 Modal Response Vj*ond Mode Sum v at r=a,
9:'1'7.



Radial Displacement, u*/uoond u/ug

-122-

I 1 | ,] [ [ 1 T
Po P.; Arrival times

..\..
\

~ —

m= -1 wove-7\"\

o

Wave sum

Long-time soln.

cdf/a

Fig. 28. Waves u®and Wave Sumuat r=a,8=

&l
N



0
o
3
~
>
o
[
o
o"‘
)
=
>
-
c
o
E 2
(8]
A=)
a
R
a
o -3
lp—
c
@
L
o
N—
1=
s |
£ -4
(&
-5
-6

Long-time soin.

Wave sum

1 l ] | i | 1 I L

5 |0
cqt/a

Fig. 29. Waves v*and Wave Sum v at r=a,

6:-2—- .



-124-~

0.2 | | I | | | | T
P R Arrival times

o ¥

(@]
|

Radial Velocity, G; /0, and 4"/d,
1
O
N

i
o
H

-0.6 | 1 | | | | ; |

Fig.30. Modal Response Gj*and Mode Sum 4™ at

r=a, 8=



Circumferential Velocity, Vi

~125~

0.2
O -
-0.2
-04 | 1 L | 1 L1
0] 5 10
cdt/o
Fig.3l. Modal Response v:* and Mode Sum v¥ at r=a,

G=1.

)



0.2

-126-

J T 1 T T T T T
Po,-1 Ro,-| Arrival times
o A
|
|
A a
A
l/ \
-0.2 - l I\ _
[\
|
(=] B b "\ —
3
~
3 -0.4} s _
© \
c
o -,
o ) .
3 = . . .
*\ Z\
3
~ ~0.6 m=0 and m=-| waves
> ) —
‘o
o
g - -
S N Baron's results
- -08 \\[ : -
o
\\_-—__
= Wave sum
r- ‘o
-1.0k Long-flm_e_ soln._
-1.2 | ] | i 1 | | | i
0 5 10
cdt/a

Fig. 32.

E 3 .
Waves U and Wave Sum u at r=a, 8= 1.



Radial Displacement, u}"/uo and u*/uo

-127 -

| ‘ | 1 ! ]

P Arriva

T 1 T
| times

*

Fig. 33. Modal Response uj

8=

cqyt /a

and Mode Sum u

*

at r=a,



Radial Displacement, u®X/ug, and u/uy

waves

-7 ] 1 ] L ] ] 1 ] 1

0 5
Cdf/O

Fig.34. Waves u¥and Wave Sumu at r=a, 8=



-129-

0.4

Radial Velocity, U /0o
o
1

[
o
»

-0.8

Exact incident

wave

Baron's results

——
—— e — v o—

\ Long-time soln.
l ] ) ] | ] ] 1

cdt/a

Fig.35.Comparison with Baron's Results.



Circumferential Velocity, v/u,

~130-

0.4 T T T T T T T T
0 -«ﬂjﬂ
|
] _
|
|
L -
|
|
B {q{3term Fourier series on incident wave 7
~0.4F { -
|
- |/ -
Baron's results
\/
- p
Exact incident wave ~—
Long- time soin./
-08 I | | | | I I L
0 5 o]

Cdf/O

Fig.36. Comparison with Baron's Results,



-131-

i1lmz

Domain K

(@) The z-plane. 8=argw.

bim{

(b) The [-plane.

Fig. Al. The z-{ Transformation.



