
Image charge effects near solid surfaces

Thesis by
Benjamin Bobin Ye

In Partial Fulfillment of the Requirements for the
Degree of

Doctor of Philosophy in Chemical Engineering

CALIFORNIA INSTITUTE OF TECHNOLOGY
Pasadena, California

2025
Defended August 9, 2024



ii

© 2025

Benjamin Bobin Ye
ORCID: 0000-0003-0253-6311

All rights reserved



iii

ACKNOWLEDGEMENTS

I am extremely fortunate to have been surrounded by incredible friends, family,
colleagues, and mentors throughout my Ph.D. journey. I am sincerely grateful to
all of these individuals for fostering engaging conversations, providing welcome
distractions, and creating lifelong memories. I am also thankful to the Hong Kong
Quantum AI Lab, AIR@InnoHK of the Hong Kong Government for their partial
support of the work in this thesis.

My deepest gratitude goes to my advisor, Prof. Zhen-Gang Wang, whose enthu-
siasm for research, guidance, and patience have been instrumental in shaping my
personal development and research interests. In many ways, Prof. Wang has been
like a father figure to me during my time at Caltech; his profound knowledge, in-
spiring mentorship, and unwavering support have given me invaluable opportunities
to grow both as an academic and a person, enabling me to achieve things I never
thought possible. I also extend my heartfelt thanks to my thesis committee members,
Profs. John Brady, Konstantinos Giapis, and Kimberly See, for their continuous en-
couragement and guidance. Prof. Brady sparked my love for computer simulations
early in my journey at Caltech, and Profs. Giapis and See laid the essential ground-
work for understanding the physics in my studies through their captivating classes.
Their expertise, insights, and feedback throughout my projects have significantly
contributed to the success of my research. Finally, I am especially indebted to Dr.
Mike Vicic for his invaluable life advice and helping me navigate the uncertainties
after a long and fruitful Ph.D. career.

I am privileged to have had an exceptional cohort of classmates and labmates with
whom I have had the unparalleled opportunity to work closely. I am especially
thankful to Dr. Christopher Balzer, Dr. Yasemin Basdogan, Dr. Shensheng Chen,
Dr. Alejandro Gallegos, Dr. Sriteja Mantha, and Dr. Edmond Zhou for their
mentorship and willingness to lend an ear for research problems and life’s mysteries.
They have imparted on me more knowledge and wisdom than I will ever be able to
repay. I am also thankful to Dorian Bruch, Alec Glisman, Alexandros Tsamopoulos,
Samuel Varner, and Pierre Walker for not only being great office mates but also for
their camaraderie and support. Outside of the Wang group, I appreciate the back-
and-forths with and friendship of Dr. Austin Dulaney, Dr. Camilla Kjeldbjerg, Dr.
Stewart Mallory, Dr. Zhiwei Peng, Dr. Hyeongjoo Row, and Dr. Andy Ylitalo.



iv

Above all, I am eternally grateful to my parents and sister for their unwavering
support and belief in me. Their love and encouragement have been my anchor
throughout my doctoral studies, and I could not have achieved this milestone without
them.

I truly believe that it was fate and my destiny to have come across all of these positive
influences in my life. To everyone who has been a part of this journey, thank you
from the bottom of my heart.



v

ABSTRACT

Ion–surface interactions underpin fundamental biological and technological pro-
cesses and hold the key to advancing the performance of modern electrochemical
devices, such as electric double-layer capacitors (EDLCs). As such, a comprehen-
sive understanding of the mechanistic details governing these interactions and their
effects on the electrical double layer structure and charge transport is crucial. How-
ever, accurately modeling ion–surface interactions in theory and simulations remains
challenging due to the complexities and computational cost associated with properly
treating dielectric discontinuities at ion–surface interfaces. This thesis leverages the
efficient method of image charges in coarse-grained molecular dynamics simulations
to capture the correct behavior at the ion–surface interface and unravel anomalous
phenomena in various charged soft matter systems with conductive metal surfaces.
Specifically, we construct a molecular model to demonstrate a spontaneous sym-
metry breaking transition in room-temperature ionic liquid EDLCs that provides a
molecular mechanism for a hysteresis in the capacitance behavior observed experi-
mentally. We also introduce a physically motivated soft-core model, the Gaussian
core model with smeared electrostatics (GCMe), which addresses the limitations of
traditional hard-core force fields in representing bulky organic ions and their spread
charges, while also being orders of magnitude faster. Using GCMe, we then charac-
terize the effects of the polyelectrolyte chain length, electrolyte polarizability, and
electrode material on the energy storage of polymerized ionic liquid EDLCs, and
the ion adsorption behavior and charging/discharging dynamics in polyelectrolyte
EDLCs. Finally, we present MDCraft, an open-source Python assistant designed
to streamline computational research workflows by providing tools for simulation
setup, data analysis, and visualization. This comprehensive study not only enhances
the understanding of ion-surface interactions but also offers practical insights and
tools for advancing the design and optimization of systems involving charged species
near surfaces, such as next-generation electrochemical energy storage devices.
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1

C h a p t e r 1

INTRODUCTION

This introductory chapter gives an overview of ion–surface interactions, their sig-
nificance in electrochemical devices like electric double-layer capacitors (EDLCs),
and the historical development of electrolyte and electrode materials in EDLCs. It
also discusses the challenges associated with accurately modeling these interactions
and understanding the structure and dynamics of ions near solid surfaces using com-
puter simulations. The subsequent chapters detail the force fields and techniques
used to model charged complex soft matter systems and the dielectric mismatch
at the ion–surface interface, respectively, and present systematic studies that reveal
unique adsorption behaviors near and various phenomena that occur with perfectly
conducting boundaries in different electrolytes, including room-temperature ionic
liquids, polymerized ionic liquids, and polyelectrolytes.

1.1 Ion–surface interactions
Ion–surface interactions refer to the various forces and phenomena that occur when
ions come into contact with solid surfaces. The fundamental forces between ions
and neutral or charged surfaces include short-range van der Waals forces, which
describe distance-dependent nonbonded attractive and repulsive interactions and
capture excluded volume or steric effects, and long-range electrostatic forces, which
attract or repel ions based on their charges. Additional forces, such as chemical
bonding, hydrogen bonding, and hydration effects, may also play a role depending
on the chemical makeup of the charged soft matter system of interest.

These interactions are ubiquitous in nature and play a crucial role in many everyday
products and biological systems. The physics behind these interactions is fun-
damental to numerous natural processes and technological applications involving
ion–surface interfaces. For example, ion channels in cell membranes can open or
close in response to the binding of specific ligands and neurotransmitters [1], and
selectively allow certain ions to pass based on their interactions with the amino
acids residues on the channel surfaces [2]. In medical applications, ion–surface
interactions are the basis of biosensors, which rely on the selective binding of a
target analyte or ion to a bioreceptor surface [3].
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In recent years, one of the most significant applications of ion–surface interactions
is in electrochemical devices, like batteries and electric double-layer capacitors
(EDLCs), due to the proliferation of consumer electronics, electric vehicles, and
renewable energy initiatives. The performance, durability, and efficiency of these
energy storage devices are directly influenced by the nature of ion–surface interac-
tions, making this area of study crucial for advancing energy storage technology.
As such, we will focus on the exploration and understanding of non-Faradaic ion–
surface interactions and phenomena across various combinations of ions and surface
materials through the lens of EDLCs. However, many of our findings can be gener-
alized to other systems involving ion–surface interactions.

1.2 Historical development of electrode and electrolyte materials in electric
double-layer capacitors

EDLCs consist of electronic conductors (electrodes) and an ionic conductor (elec-
trolyte), as illustrated in Fig. 1.1. EDLCs store charge electrostatically in the
electrical double layer (EDL) at the ion–surface interface. In dilute selectrolytes,
the EDL consists of a single layer of counterions that exactly screens the surface
charge in dilute electrolytes [4, 5]. In contrast, in highly concentrated electrolytes,
the EDL can span multiple layers of densely packed ions [6–9]. Generally, EDLCs
are known for their high power densities, but have low energy densities compared
to batteries [10]. As such, optimizing the electrode and electrolyte materials used
in EDLCs is important to enhancing their performance, particularly by improving
their energy densities.

Figure 1.1: Schematic of an electric double-layer capacitor.

To this end, we begin with a historical perspective to explore the evolution of
electrode and electrolyte materials in EDLCs and identify potential opportunities
in unexplored ion–surface interactions and phenomena. EDLCs trace their origins
back to a series of patents between 1957 through 1970 [11–13]. In their original iter-
ation, EDLCs used aqueous electrolytes such as sulfuric acid (H2SO4) or potassium
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hydroxide (KOH), which have small ionic radii for better access to pores and high
ionic concentrations for better conductivity [14]. In the 1990s, these were replaced
by organic electrolytes like acetonitrile and propylene carbonate solutions of salts,
which offered larger voltage windows and improved solubility [14]. Subsequently,
in the early 2000s, ionic liquids emerged as a promising electrolyte candidate due
to their low vapor pressures [15], high chemical and thermal stability [15–17], low
flammability [14], and, critically, wide electrochemical windows [16, 18–21] that
are expected to significantly enhance the low energy density of EDLCs. Recently,
polymer electrolytes and polyelectrolytes have garnered significant attention due to
their similar chemical and thermal stability as ionic liquids, improved mechanical
properties, and leakage-proof nature [22–24]. The physicochemical and energy stor-
age properties of these electrolytes have been extensively studied experimentally,
and numerous theoretical models have been proposed to describe their bulk and
interfacial behavior.

On the electrode front, EDLCs initially employed activated carbon electrodes, which
have high surface area and porosity [14, 25, 26]. In the 1990s, these were succeeded
by nanostructured carbon electrodes for their high specific area and controlled pore
sizes. In modern times, the focus has shifted to conductive electrodes, such as metal
foils with polymer coatings and metal oxides, due to their metallic conductivity and
pseudocapacitance effects that are expected to significantly enhance the capacitance
of EDLCs [14, 25, 26]. While experimental studies have quantified the energy
storage potential of this new class of electrodes, current theories and simulation
force fields struggle to accurately represent the dielectric discontinuities at the ion–
surface interface.

1.3 Challenges and opportunities of modeling ion–surface interfaces
Austrian theoretical physicist and Nobel laureate Wolfgang Pauli once said, "God
made the bulk; surfaces were invented by the devil." This sentiment aptly captures
the challenges of modeling ion-surface interactions in theory and simulations. In
mean-field theories (MFTs), the treatment of ion–surface interactions is often unsat-
isfactory because mean-field approaches fail to distinguish between dielectric and
conductive boundaries. Efforts have been made to include the image charge effects
for conductive surfaces, such as perturbative corrections to the Poisson–Boltzmann
theory [27] and non-perturbative renormalized Gaussian fluctuation theory [28, 29].
However, the former has been shown to be invalid under all limiting conditions [29],
and the latter is exceedingly challenging to evaluate numerically and is inherently
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still an approximation.

In molecular dynamics (MD) simulations, several methods have been developed
to accurately model ion–surface interactions and capture the correct electrostatic
behavior at the interface. For instance, the constant potential method is a variational
approach that allows the positions and charges of surface atoms to fluctuate based
on their local environments [30, 31]. Another approach, the induced charge com-
putation method, introduces induced charges on the surface particles to maintain
equipotentiality [32, 33]. However, both of these methods are computationally ex-
pensive. Thus, we turn to the method of image charges, which efficiently captures
the polarization difference between the electrolyte and parallel planar conductive
surfaces using explicit image charge interactions.

By pairing the method of image charges with coarse-grained MD models, we can
now provide molecular insight into previously unexplored or not-well-understood
behavior near ion–surface interfaces in complex charged soft matter systems over
large ranges of length scales and timescales. In the subsequent chapters, we will
explore various aspects of image charge effects on different ions near conductive
surfaces. A central theme of this thesis is how the attractive image charge interactions
can drastically alter the interfacial phenomena, structure, and behavior of ions
compared to systems with dielectric or nonmetal surfaces, which minimize or lack
these interactions, respectively.

First, Chapter 2 introduces the theory behind and our implementations of the main
electrostatic problem-solving tool, the method of image charges, used throughout the
remaining chapters. Chapter 3 builds a molecular model using the method of image
charges and commonly used coarse-grained MD interaction potentials to provide
a physical mechanism for the hysteresis in capacitance observed experimentally
when the charging direction was reversed and the spontaneous symmetry breaking
transition predicted by theory in room-temperature ionic liquid EDLCs.

In Chapter 4, we detail our development and implementation of an efficient and
physically motivated soft-core model, the Gaussian core model with smeared elec-
trostatics (GCMe). This model represents charged soft matter systems using radially
Gaussian-distributed mass and charge densities, which more rigorously describe
bulky organic ions that can interpenetrate and spread their charges along their back-
bones, and can be multiple orders of magnitude faster than than traditional hard-core
models. As an illustrative example of GCMe and a segue from the monomeric ions
in Chapter 3 to the polyelectrolyte systems we are interested in, Chapter 5 uses
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GCMe to systematically explore how the chain length, relative permittivity of the
electrolyte, and the image charge effects impact the energy storage in polymerized
ionic liquid EDLCs. Then, Chapter 6 characterizes the EDL structure and charge
transport in polyelectrolyte EDLCs with nonmetal and perfectly conducting bound-
aries using GCMe, and reports complete reversals in the adsorption behavior and
charging/discharging dynamics. Finally, Chapter 7 presents MDCraft, an in-house
open-source Python assistant that we developed and used extensively to stream-
line the research workflows in the preceding chapters, from setting up and running
MD simulations to analyzing, modeling, and plotting data from the trajectories.
MDCraft not only provides access to our implementations of the method of image
charges and GCMe but also includes optimized serial and multithreaded analysis
classes that evaluate complex structural, thermodynamic, and transport properties,
making computational chemistry more accessible to a broader audience.
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C h a p t e r 2

METHOD OF IMAGE CHARGES

Energy storage devices, such as batteries and electric double-layer capacitors (EDLCs),
can be constructed from a diverse array of high-performance electrode and elec-
trolyte materials. When modeling these systems using molecular dynamics (MD)
simulations to quantify physical properties and explore phase phenomena, it is es-
sential to capture the boundary polarization effects caused by dielectric mismatches
at the ion–surface interfaces. From a continuum electrostatics perspective, ions are
repelled from or attracted to surfaces with much lower or higher relative permittiv-
ities, respectively, because the surfaces can polarize in response to the nearby ions.
For instance, with perfectly conducting metal boundaries, which have relative per-
mittivities many orders of magnitude higher than most traditional electrolytes, the
adsorption behavior of the charged species and the charging/discharging dynamics
can be markedly different compared to systems where the surfaces and electrolytes
have similar relative permittivities. The following chapter introduces the method of
image charges, an electrostatic problem-solving tool that provides a straightforward
and efficient way to account for surface polarization in systems with parallel planar
surfaces.

This chapter includes content from our previously published articles:

Ye, B. B.; Wang, Z.-G. Phys. Chem. Chem. Phys. 2022, 24, 11573–11584, DOI:
10.1039/D2CP00166G

Ye, B. B.; Chen, S.; Wang, Z.-G. J. Chem. Theory Comput. 2024, acs.jctc.4c00603,
DOI: 10.1021/acs.jctc.4c00603

2.1 Introduction
In systems with charged species and parallel planar surfaces, such as EDLCs, an
important consideration is the proper treatment of the ion–surface interactions to
capture the correct electrostatic behavior at the interface. Two commonly used
methods to enforce constant surface charges are maintaining constant charges on
the atoms that constitute the surfaces and allowing the charges of the atoms to
fluctuate based on the local environment via the versatile variational procedure
formulated by Siepmann and Sprik [3]. However, the former approach gives vastly
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different electrical double layer (EDL) structures and dynamics compared to those
acquired from systems where the surfaces can polarize in response to nearby charge
fluctuations [4], and the latter is computationally expensive.

An alternative and efficient approach for parallel planar perfectly conducting surfaces
is the method of image charges, which accounts for the dielectric mismatch between
the electrolyte and the bounding medium using image charge interactions. An
ion feels repulsion from or attraction to the interface when the surface material
has a lower or higher relative permittivity 𝜀r, surface than that of the electrolyte
(𝜀r), respectively, because the corresponding image charge on the other side of the
interface carries a charge of

𝑞𝑖, IC = 𝑧𝑖𝑒
𝜀r − 𝜀r, surface

𝜀r + 𝜀r, surface
, (2.1)

which has the same sign as the ion when 𝜀r > 𝜀r, surface and the opposite sign when
𝜀r < 𝜀r, surface. We focus on the limiting cases of perfectly conducting metal surfaces
(𝜀r, surface = ∞), where the image charges have equal but opposite charges to the ions
they mirror, and nonmetal surfaces with the same permittivity as the electrolyte,
where the image charges vanish.

2.2 Implementations

Figure 2.1: Two-dimensional representation of the three-dimensional periodic sys-
tem with image charges. The unit cell containing the real and image systems is
enclosed in a solid box. The blue and red colors represent the negative and positive
charges, while the dark and light shades specify the real and image charges, respec-
tively.
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The method of image charges was recently implemented in both LAMMPS [5] by
Dwelle and Willard [6] to take advantage of its spatial decomposition techniques
and wide hardware acceleration support, and OpenMM [7] by Son and Wang [8]
to fully leverage its GPU acceleration to achieve performance that is orders of
magnitude higher than that of traditional multithreaded CPU implementations. The
implementation is based on the method proposed by Hautman et al. [9], which
includes infinitely many repeating systems of image charges for a system of ions in
a three-dimensional MD simulation. In the extended simulation box of dimension
𝐿𝑥 × 𝐿𝑦 × 2𝐿𝑧, there are two subsystems: a real system (0 < 𝑧 < 𝐿𝑧) that contains
the real ions, and an image system (−𝐿𝑧 < 𝑧 < 0) that contains the image charges
mirroring the real ions. The method of image charges involves reflecting the ions
in the real system across the surface at 𝑧 = 0 and giving them opposite charges
to create the corresponding image charges in the image system. With periodic
boundary conditions, the subsystems form a repeat unit that is electroneutral, has no
net potential difference between 𝑧 = −𝐿𝑧 and 𝑧 = 𝐿𝑧, and repeats ad infinitum in all
directions, as shown in Fig. 2.1. It is periodic in the 𝑥- and 𝑦-directions to simulate
a slab and in the 𝑧-direction as both surfaces are perfectly conducting. In each
timestep, because the motion of the real ions and the image charges are coupled, the
positions of the real ions are updated first by evaluating the forces acting on them
from their interactions with each other and the image charges, and integrating the
Langevin equation of motion. Then, the positions of the image charges are updated
to reflect the new positions of the real ions.
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C h a p t e r 3

SPONTANEOUS SURFACE CHARGE SEPARATION IN
ROOM-TEMPERATURE IONIC LIQUIDS

Room-temperature ionic liquids (RTILs) have garnered considerable interest lately
due to their high chemical and thermal stability, low volatility, and large electro-
chemical windows. These are all qualities that enable a wide range of potential appli-
cations. Notably, RTILs are highly promising as electrolytes for electromechanical
devices, such as actuators and sensors, and the next generation of high-performance
energy storage devices, like batteries and electric double-layer capacitors (EDLCs).
Therefore, understanding their behavior at the molecular level is crucial for optimiz-
ing their performance in these applications.

Numerous experimental studies and theoretical models have investigated the dis-
tinctive characteristics of RTIL EDLCs. Notably, recent mean-field theories predict
that RTIL EDLCs undergo a spontaneous surface charge separation (SSCS) with no
applied potential. In this chapter, we construct a coarse-grained molecular model
that corresponds to the mean-field models to directly simulate the behavior of RTILs
without invoking mean-field approximations. In addition to observing the SSCS
transition, we highlight the importance of the image charge interactions and explore
the enhanced in-plane ordering on the electrodes, two effects not accounted for
by the mean-field theories. By comparing the differential capacitance for RTILs
confined between perfectly conducting and nonmetal electrodes, we show that the
image charge interactions can drastically improve the energy storage properties of
RTIL EDLCs.

This chapter includes content from our previously published article:

Ye, B. B.; Wang, Z.-G. Phys. Chem. Chem. Phys. 2022, 24, 11573–11584, DOI:
10.1039/D2CP00166G

3.1 Introduction
Room-temperature ionic liquids (RTILs) are synthetic organic salts that are in the
liquid state at ambient conditions and generally consist of at least one bulky organic
ion [2]. RTILs have been studied extensively in the past two decades owing to their
promising electrochemical performance compared to traditional electrolytes. As
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the design objective of energy storage devices is to maximize both the energy and
power densities, RTILs are prime electrolyte candidates for use in electric double-
layer capacitors (EDLCs) due to their larger operational voltage windows [3–7],
lower vapor pressure and freezing points [8], and higher chemical and thermal
stability [4, 8, 9]. Compared to rechargeable batteries, EDLCs have higher power
densities because their faster non-faradaic charging and discharging processes are
not limited by charge transfer kinetics, but lower energy densities since they store
charge electrostatically instead of electrochemically [10–12]. Since the maximum
energy 𝑈 an EDLC can store scales as 𝐶𝑉2/2, the wider electrochemical windows
of RTILs can enable EDLCs with higher energy storage.

For such applications, the structure of the electric double-layers (EDLs) near the
metal electrodes is important. EDLs in dilute electrolytes consist of a Stern layer of
counterions that screen the surface charge and are well understood due to the classical
Gouy–Chapman–Stern (GCS) theory [13, 14], but EDLs in highly concentrated
electrolytes, such as RTILs, can span multiple layers of densely packed ions due to
overscreening and crowding [2, 15–17]. These effects are driven by the “ion–ion
correlations” in RTILs, which are primarily attributed to the incompatible functional
groups and chemical differences between the cations and anions but can also have
contributions from short-range electrostatic correlations [18, 19].

By considering the finite volume occupied by the ions, Kornyshev [2] found that
the crowding of counterions near the surface can drastically affect the voltage de-
pendency of the differential capacitance. In contrast with the GCS model, which
gives U-shaped capacitance–voltage curves, the Kornyshev model predicted bell-
and camel-shaped capacitance–voltage curves for dense and dilute systems, respec-
tively, which were shown to be consistent with the ensuing capacitance results from
computer simulations [15, 16] and experimental observations of the EDL structure
[20, 21] despite it not accounting for the short-range ion–ion correlations that can
be very strong in RTILs [22–26].

Subsequently, Bazant, Storey, and Kornyshev (BSK) [27] proposed a phenomeno-
logical mean-field theory (MFT) that incorporates the ion–ion correlations through
nonlocality in the relative permittivity and demonstrates the overscreening and
crowding of counterions across multiple layers at moderate and high potentials, re-
spectively. Lee et al. [28] showed that the BSK model maps to a lattice-based MFT
with a composite Coulomb–Yukawa potential, where the Yukawa potential accounts
for the electrostatic ion–ion correlations but has also been used by May and cowork-
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ers [29–31] to capture the hydration-mediated non-electrostatic ion–ion interactions
in aqueous solutions. This Yukawa potential essentially results in the effective
attraction (repulsion) between like (opposite) charges. Limmer [32] offered an al-
ternative phenomenological free energy model that treats the ion–ion correlations
with repulsive non-electrostatic interactions between counterions and approximates
small potential differences with an effective surface adsorption. Interestingly, Lim-
mer showed that the competition between the short-range ion–ion correlations and
long-range electrostatic interactions can lead to the onset of a fluctuation-induced
spontaneous surface charge separation (SSCS) before any bulk phase separation.
Then, Chao and Wang (CW) [19] generalized the BSK model by adding a di-
mensionless parameter 𝛼 to control the strength of the ion–ion correlations. The
Helmholtz free energy 𝐹 for the CW model is

𝐹

𝑘B𝑇
=
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∬
𝜙 (r) exp (− |r − r′| /ℓc)𝜙 (r′)

|r − r′| 𝑑r 𝑑r′,

(3.1)

where 𝑘B is the Boltzmann constant,𝑇 is the absolute temperature, 𝑣 is the molecular
volume, 𝜙 is the local charge density, 𝜓 is the electrostatic potential, 𝜆D is the
nominal screening length, and ℓc is the ion–ion correlation length. The CW model
also predicts SSCS for ion–ion correlation strengths greater than a critical 𝛼𝑠,𝑐 value
and shows that SSCS should be a common feature in RTIL EDLCs. Recently, Bossa
and May (BM) [33] presented a lattice-based MFT accounting for the penetration of
the Yukawa field into the electrode that was neglected in Ref. 18. It also anticipates
SSCS but finds that the CW model had overestimated the extent of the transition.

While the MFTs have provided insight into the origin of the SSCS transition, their
treatments of the ion–electrode interactions are unsatisfactory since their mean-field
nature prevents the distinction between dielectric and metal boundaries. The poten-
tial in the metal electrodes is constant because the movement and rearrangement of
their free electrons negate the electric field, but can fluctuate for dielectrics since
they only polarize in response to the applied field. However, at the mean-field level,
the dielectric property of the electrodes is not reflected because the averaged electro-
static potential, which varies only in one spatial direction, is used in the free energy
calculations. Furthermore, the MFTs show that SSCS is a second-order transition
due to an underlying microphase separation, but it is likely a weakly first-order
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fluctuation-induced transition that belongs to the Brazovskii universality class [34]
beyond the mean-field, as suggested by Limmer [32].

In this chapter, we construct a molecular model that corresponds to the phenomeno-
logical BSK, CW, and BM models to capture the non-mean-field effects in RTIL
EDLCs. We conduct molecular dynamics (MD) simulations of coarse-grained
RTILs that properly account for the different dielectric properties of ideal perfectly
conducting (PC) metal boundaries and nonmetal (NM) boundaries with the same
relative permittivity as the RTIL using the method of image charges to explore the
driving forces behind, and the propensity for, surface phenomena such as SSCS and
in-plane surface ordering, and investigate how the ion–electrode interactions affect
the capacitance properties of RTILs when potential differences are applied.

3.2 Model and methods
Pair potentials
We aim to construct a coarse-grained molecular model that corresponds to the free
energy functional in Eq. 3.1. In this model, the anions and cations are represented
by featureless equisized spherical particles with opposite point charges −𝑞 and 𝑞

at the center, respectively, that interact via centrosymmetric pair potentials, and the
ion polarization effects are implicitly accounted for with a dielectric continuum.
The long-range electrostatic interaction between any two real or image charges
𝑖 and 𝑗 is modeled by the Coulomb potential, the short-range non-electrostatic
excluded volume interaction between real ions 𝑖 and 𝑗 is modeled by a combination
of Weeks–Chander–Andersen (WCA) and Gaussian potentials, and the short-range
ion–ion correlations are accounted for by a Yukawa potential. As it is convenient
to work in Lennard-Jones units, all input parameters and output quantities in the
remainder of this chapter have been scaled by the fundamental quantities—mass
𝑚, ion size 𝜎, energy 𝜖 , and 𝑘B—unless otherwise noted. The derivations of key
dimensionless quantities can be found in the Appendix.

The Coulomb potential has the form

𝑈Coul
(
𝑟𝑖 𝑗

)
=

𝑞𝑖𝑞 𝑗

𝜀r𝑟𝑖 𝑗
=
𝑧𝑖𝑧 𝑗𝜆B𝑇

𝑟𝑖 𝑗
, (3.2)

where 𝑞𝑖 and 𝑞 𝑗 are the charges of ions 𝑖 and 𝑗 , respectively, 𝜀r is the relative
permittivity, and 𝑟𝑖 𝑗 is the separation distance between ions 𝑖 and 𝑗 . By expressing
the charge 𝑞 = 𝑧𝑒 in terms of the charge number 𝑧 and the elementary charge 𝑒, the
Coulomb potential can also be written in terms of the Bjerrum length 𝜆B = 𝑒2/𝜀r𝑇 .



16

The coulombic interactions are evaluated using a particle-particle particle-mesh
(PPPM) solver, which approximates the electrostatic potential by computing the
short-range interactions within a cutoff normally in a pairwise fashion in real space
and the long-range interactions past the cutoff using fast Fourier transforms in
reciprocal space [35, 36].

The excluded volume interaction is given by

𝑈ex
(
𝑟𝑖 𝑗

)
= 𝑈WCA

(
𝑟𝑖 𝑗

)
+𝑈Gauss

(
𝑟𝑖 𝑗

)
, (3.3)

where 𝑈WCA and 𝑈Gauss are the WCA and soft Gaussian potentials, respectively.
The WCA potential has the form

𝑈WCA
(
𝑟𝑖 𝑗

)
=


4𝜖𝑖 𝑗

[(
𝜎𝑖 𝑗

𝑟𝑖 𝑗

)12
−

(
𝜎𝑖 𝑗

𝑟𝑖 𝑗

)6
]
+ 𝜖𝑖 𝑗 , 𝑟𝑖 𝑗 ≤ 21/6

0, 𝑟𝑖 𝑗 > 21/6
, (3.4)

where 𝜖𝑖 𝑗 and 𝜎𝑖 𝑗 are the scaled dispersion energy and mean ion size, respectively,
between ions 𝑖 and 𝑗 .

The truncated and shifted Gaussian potential has the form

𝑈Gauss
(
𝑟𝑖 𝑗

)
=


𝐴𝑖 𝑗

[
exp

(
−𝐵𝑖 𝑗𝑟

2
𝑖 𝑗

)
− exp

(
−𝐵𝑖 𝑗

) ]
, 𝑟𝑖 𝑗 ≤ 1

0, 𝑟𝑖 𝑗 > 1
, (3.5)

where 𝐴𝑖 𝑗 and 𝐵𝑖 𝑗 are parameters that set the interaction energy and range, respec-
tively, between ions 𝑖 and 𝑗 . This purely repulsive soft potential, with arbitrarily
chosen 𝐴𝑖 𝑗 = 1, 000 and 𝐵𝑖 𝑗 = 7, is used in conjunction with a "soft" WCA potential
with 𝜖𝑖 𝑗 = 0.01 and 𝜎𝑖 𝑗 = 1 to capture the excluded volume interactions of the
squishy RTIL ions that can deform and interpenetrate due to the cushioning from
the alkyl chains or organic groups. Importantly, this hybrid potential also prevents
a bulk liquid–solid phase transition, which is likely to be observed in systems of
densely packed charged "hard" Lennard-Jones spheres due to geometric packing
[37] but is not observed in RTILs at ambient conditions.

The Yukawa potential has the form

𝑈Yukawa
(
𝑟𝑖 𝑗

)
=


−𝛼

𝑧𝑖𝑧 𝑗𝜆B𝑇

𝑟𝑖 𝑗

[
exp(−𝑟𝑖 𝑗/ℓc) − exp(−𝐿𝑧/2ℓc)

]
, 𝑟𝑖 𝑗 ≤ 𝐿𝑧/2

0, 𝑟𝑖 𝑗 > 𝐿𝑧/2
,

(3.6)
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where 𝛼 is a dimensionless parameter that controls the strength and ℓc is the inverse
decay length of the Yukawa potential. While any short-range pair potential could
have been used to model the ion–ion correlations, we use the Yukawa potential
with the correlation length set to ℓc = 1 to match the ion size due to the similar
formulation in the BSK, CW, and BM models. It is important to note that the
Yukawa potential with varying ion–ion correlation strengths 𝛼 is the distinguishing
factor of each system simulated since the WCA–Gaussian potential is the same
across all simulation runs in this study. A comparison of magnitudes of the hybrid
WCA–Gaussian potential with WCA potentials with 𝜖𝑖 𝑗 = 0.01 and 𝜖𝑖 𝑗 = 1, the
Coulomb potential, and the Yukawa potential with 𝛼 = 0.8 is shown in Fig. 3.1.
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Figure 3.1: Comparison of the magnitudes and ranges of the electrostatic (Coulomb)
and excluded volume (WCA, hybrid WCA–Gaussian, and Yukawa) pair potentials.

Lastly, the non-electrostatic interaction between the real ions and the electrodes is
modeled by the WCA potential in Eq. 3.4 with a cutoff of 𝑟𝑖 𝑗 ≤ 2−5/6 and parameters
𝜖𝑖 𝑗 = 100 and 𝜎𝑖 𝑗 = 0.5. Here, 𝑟𝑖 𝑗 is the 𝑧-distance between ion 𝑖 and the wall and
𝜎𝑖 𝑗 represents the closest contact of ion 𝑖 to the surface.

In addition to being analogous to the BSK, CW, and BM models, our model is phe-
nomenologically equivalent to the lattice models used previously to study frustrated
Coulomb liquids [38–40] and ionic liquids [32, 41, 42]. The long-range Coulomb
and short-range Yukawa interactions used in the current model correspond to the
electrostatic interactions and nearest neighbor attraction, respectively, between co-
ions in the lattice models.



18

System
Simulations of RTIL EDLCs were carried out using LAMMPS in the canonical
ensemble with 𝑁 = 1, 000 real particles, a number density of 𝜌 = 0.8, and a
temperature of 𝑇 = 1. The relative permittivity and Bjerrum length were set
to 𝜀r = 12 and 𝜆B = 10, respectively, which are typical for RTILs [2, 27, 43].
With these parameters, the elementary point charges (−𝑧− = 𝑧+ = 1) have reduced
charge magnitudes of 𝑞 =

√
𝜀r𝜆B𝑇 ≈ 11 and a nominal Debye length of 𝜆D =

(4𝜋𝜆B𝜌)−1/2 ≈ 0.1.

The system is initialized by creating a 𝐿 × 𝐿 × 2𝐿 simulation box containing the
real and image subsystems, establishing two smooth planar walls at 𝑧 = 0 and 𝑧 = 𝐿

to represent the metal electrodes, and placing ions in the real system. The method
of image charges is employed to account for the dielectric mismatch at the ion–
electrode interface and mirrors the real ions into the image system. The electrode
separation distance 𝐿𝑧 = 𝐿 is selected such that the desired number density 𝜌 = 𝑁/𝑉
is achieved in the cubic real system, where 𝑉 = 𝐿𝑥𝐿𝑦𝐿𝑧 = 𝐿3 is the volume of the
real system.

For each simulation, energy minimization and system equilibration were performed
over at least 105 timesteps of step size 𝜏 = 0.001, and data was collected for at
least another 2 × 106𝜏. Desired quantities for each set of parameters are calculated
by block averaging data over at least two independent trajectories. For systems
close to transition points, data was collected for and averaged over at least ten
different trajectories to minimize noise. In the perspective of a common RTIL
like [EMIM+][BF−4 ] or [EMIM+][NTf−2 ], the relevant timescale is on the order of
picoseconds, as shown in the Appendix, and the production runs have lengths on
the order of tens of nanoseconds.

3.3 Results and discussion
Spontaneous surface charge separation without applied potential difference
A range of Yukawa interaction strengths from 𝛼 = 0 to 𝛼 = 1.35 was explored, with
the simulations started from both homogeneous and charge-separated configurations
to ensure that the systems converge to the same equilibrium state for each 𝛼 value
regardless of the initial state.

To quantify charge separation, we calculated the relevant order parameter, the surface
charge density, for each system. First, the local charge density profile 𝜌𝑞 (𝑧) is given
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by
⟨𝜌𝑞 (𝑧)⟩ = 𝑞 (⟨𝜌+ (𝑧)⟩ − ⟨𝜌− (𝑧)⟩) , (3.7)

where the angular brackets denote the ensemble average and 𝜌−(𝑧) and 𝜌+(𝑧) are
the anion and cation density profiles, respectively, which are spatially averaged over
the 𝑥- and 𝑦-directions and computed by binning the real systems in the 𝑧-direction
into 100 intervals, counting the number of relevant ions, and dividing the counts by
the volume of the bins. Then, as shown by Hautman et al. [44] and derived by Qing
et al. [45], the surface charge density 𝜎𝑞 is obtained using

⟨𝜎𝑞⟩ = 𝜎s
𝑞 + ⟨𝜎

p
𝑞 ⟩ =

𝜀rΔ𝑉

4𝜋𝐿𝑧

− 1
𝐿𝑧

∫ 𝐿𝑧

0
𝑧⟨𝜌𝑞 (𝑧)⟩ 𝑑𝑧, (3.8)

where Δ𝑉 is the constant potential difference between the two electrodes. The static
term 𝜎s

𝑞 accounts for the direct response to the applied potential in the dielectric
medium with relative permittivity 𝜀𝑟 , while the polarization term 𝜎

p
𝑞 accounts for

the charge separation.

The SSCS transition can be further characterized by analyzing the system dipole
and the differential capacitance. The instantaneous system dipole 𝑀𝑧 is given by

𝑀𝑧 =
∑︁
𝑖

𝑞𝑖𝑧𝑖, (3.9)

where 𝑞𝑖 and 𝑧𝑖 are the charge and 𝑧-position, respectively, of ion 𝑖. The distribution
of the instantaneous system dipoles shows how large the charge fluctuations are in
the system, and it can be shown that the surface charge density is related to the system
polarization with ⟨𝜎p

𝑞 ⟩ in Eq. 3.8 being equivalent to −⟨𝑀𝑧⟩/𝑉 . The differential
capacitance 𝐶d is defined as

𝐶d =
𝜕⟨𝜎𝑞⟩
𝜕Δ𝑉

=
𝐿𝑥𝐿𝑦

𝑇
⟨(𝛿𝜎𝑞)2⟩, (3.10)

where 𝛿𝜎𝑞 = 𝜎𝑞 − ⟨𝜎𝑞⟩ is the surface charge density fluctuation [46, 47]. A
discontinuity or divergence in the𝐶d–𝛼 relationship would signify the onset of SSCS
transition [48]. While the partial derivative definition is less affected by thermal
noise and typically gives more accurate results, the fluctuation definition allows for
𝐶d to be evaluated for systems with Δ𝑉 = 0 without needing any information from
additional simulations with applied potentials. As such, the fluctuation definition is
used for the following analysis in the absence of applied potentials.

Figs. 3.2a and 3.2b show the surface charge densities and differential capacitance,
respectively, at different Yukawa interaction strengths, while Fig. 3.2c shows the
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Figure 3.2: (a) Ensemble-averaged surface charge density ⟨𝜎𝑞⟩ and (b) zero voltage
differential capacitance 𝐶d as a function of the Yukawa interaction strength 𝛼, and
(c) system dipole distributions for selected 𝛼 values with Δ𝑉 = 0 when starting
from homogeneous and charge-separated systems. The error bars in (a) represent
one standard deviation from the mean, and the dotted lines in (a) and (b) identify
the transition point 𝛼t = 0.72 of the spontaneous surface charge separation.
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system dipole distributions for selected 𝛼 values. While Figs. 3.2a and 3.2b have
separate plots for the systems starting from homogeneous and charge-separated
states, Fig. 3.2c combines the system dipole distributions for both initial states.
As expected, the systems evolve into the same final state for each Yukawa inter-
action strength regardless of the initial state, as shown by the overlapping curves
in Figs. 3.2a and 3.2b. The surface charge density remains 0 until the transition
point 𝛼t ≈ 0.72, at which the ⟨𝜎𝑞⟩–𝛼 relationship bifurcates into two curves with
equal but opposite magnitudes and the dipole distribution becomes bimodal since
both SSCS directions are equally favorable when starting from an isotropic fluid.
Note that only the positive half of the ⟨𝜎𝑞⟩–𝛼 curve and the corresponding dipole
distributions for 𝛼 values past the transition point are shown in Fig. 3.2. Details on
how the transition point was determined and how the surface charge densities and
dipole distributions were computed can be found in the Appendix.

For 𝛼 = 0, the surface charge density is 0 and the unimodal dipole distribution has
a narrow peak at 𝑀𝑧 = 0. The differential capacitance and charge fluctuations grow
with increasing 𝛼, as evidenced by Fig. 3.2b and the widening ranges of the dipole
distributions in Fig. 3.2c, respectively, but the dipole distributions continue to be
symmetric about 𝑀𝑧 = 0. As 𝛼 approaches the transition point, the differential
capacitance increases sharply while the dipole distribution flattens out, indicating
significantly more pronounced charge fluctuations in the system and suggesting an
incipient bimodality.

The transition point at 𝛼t = 0.72 marks the onset of a spontaneous symmetry break-
ing transition with no potential difference, when the enhanced charge fluctuations
from the Yukawa potential lead to stable surface charges on the two electrodes but
an electroneutral bulk RTIL, as shown in the charge density profiles in Fig. 3.3.
However, we cannot fully resolve the order of the transition using Fig. 3.2 since it is
unclear whether there are discontinuities in the ⟨𝜎𝑞⟩–𝛼 and 𝐶d–𝛼 relationships and
if the peak in the differential capacitance is divergent at the transition point. Nev-
ertheless, the non-Gaussian nature of the dipole distribution at the transition point
suggests that SSCS is likely a weakly first-order transition driven by the correlation
effects [49].

After the transition, the surface charge density becomes non-zero and monotonically
increases, the differential capacitance sharply decreases, and the peak of the dipole
distribution is no longer centered on 𝑀𝑧 = 0 and shifts further to the left. Addi-
tionally, the dipole distribution narrows as the systems take on increasingly ordered



22

0 2 4 6 8 10
z

−10

−5

0

5

10

〈ρ
q
〉/
q

α
0.72
1.00
1.30

Figure 3.3: Ensemble-averaged charge density profiles ⟨𝜌𝑞⟩ at the transition point
𝛼t = 0.72 of the spontaneous surface charge separation, and for strong Yukawa
interaction strengths 𝛼 = 1 and 𝛼 = 1.3 with Δ𝑉 = 0.

Figure 3.4: Side view of an equilibrated real system for Yukawa interaction strength
𝛼 = 1 with Δ𝑉 = 0 that has undergone spontaneous surface charge separation.

SSCS states and the charge fluctuations are suppressed. The snapshot in Fig. 3.4 for
an 𝛼 = 1 system shows that the ion monolayers next to the electrodes are fully filled
to screen the induced surface charge on the corresponding electrode, and the second
layer is dominated by counterions to screen the excess charge in the first layer. This
overscreening is observed in the three layers next to the electrodes as the charge
density oscillates between positive and negative values before bulk electroneutrality
is achieved, as shown by the orange line in Fig. 3.3.

At even stronger Yukawa interaction strengths but before bulk charge separation, a
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densely packed layer of counterions next to the electrode is unable to screen the high
surface charge and crowding is observed despite there being no applied potential.
At 𝛼 = 1.3, there are two layers of ions with the same charge at each electrode that
screen the surface charge, with those layers then overscreened by subsequent layers
until the concentration of anions and cations are comparable in the bulk, as shown
numerically by the green line in Fig. 3.3 and physically in Fig. 3.5. This extends the
EDL to nearly four distinguishable layers.

Figure 3.5: Side view of an equilibrated real system for Yukawa interaction strength
𝛼 = 1.3 with Δ𝑉 = 0 that has undergone spontaneous surface charge separation.

Surface in-plane ordering without applied potential difference
Two intriguing surface phenomena were observed during SSCS: a transient in-plane
microphase separation and a persistent solid-like ion structuring. These phenomena
are observed mainly for 𝛼 > 1, or when the Yukawa interaction strength become
stronger than the electrostatic interactions at short distances. A comparison of the
transition and equilibrium states at different 𝛼 values in Fig. 3.6 shows that these
effects appear to grow stronger as the Yukawa interaction strength increases.

In the SSCS transition, the anions and cations do not migrate directly to their
respective electrodes. Instead, they aggregate into local, finite domains on both
electrodes that coarsen and grow into either alternating stripes or patches of ions,
as shown in Figs. 3.6c and 3.6e, respectively. This diffusive in-plane microphase
separation is a metastable state driven by the competition between the short-range
effective attraction and the long-range Coulomb repulsion between co-ions, which
gives rise to a preferred length scale in the charge density that dictates the size of
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Figure 3.6: Adlayer cross-sections for systems with Yukawa interaction strengths (a,
b) 𝛼 = 0.8, (c, d) 𝛼 = 1.1, and (e, f) 𝛼 = 1.35 in the transient and equilibrium states,
respectively. The in-plane microphase separation and the solid-like ion structuring
on the surfaces are observed when 𝛼 > 1.

the stripes or patches that form. However, each of the adlayers consists only of
one type of ion at equilibrium due to the unfavorable Yukawa repulsion between
counterions, so the adlayers must be restructured by swapping the less abundant
ions for the dominant ions. This in-plane rearrangement is typically much slower
than the interplane diffusion that screens the induced surface charge [50]. Fig. 3.7
plots a time trace of the total potential energy from all ion–ion and ion–image
charge interactions for a representative 𝛼 = 1.3 system. It not only shows that the
equilibrium state is much more energetically favorable than the metastable state, but
also confirms that the ion restructuring, which is on the order of microseconds for a
typical RTIL, is over an order of magnitude slower than the ion diffusion.
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Figure 3.7: Time trace of the extensive potential energy in the real system with
Yukawa interaction strength 𝛼 = 1.3 when starting from a homogeneous initial
state. The transient metastable and equilibrium states are observed at approximately
𝑡 = 30 and 𝑡 = 860, respectively.

The increased translational ordering on the surfaces is driven by the complex in-
terplay between the image charge effects and pair interactions, as the ionic crystal
adlayers are only observed with PC boundaries and are more pronounced with
stronger Yukawa interactions. Microscopically, the attractive image charge interac-
tions draw ions to and increases the ion density near the surface, and this interfacial
accumulation effect is amplified by the attractive Yukawa interaction between co-
ions that favors the close packing of like-charged ions. As a result, the number
of like-charged ions found in the adlayers increases with the Yukawa interaction
strength, and Fig. 3.8 shows that the surface ion number density 𝜌s, which measures
the number of ions per electrode area in the adlayers, grows sharply after the transi-
tion point. The enhanced lateral interactions from the increasing surface ion number
density result in the formation of solid-like adlayers, similar to how hard spheres
exhibit a liquid–solid phase transition when the density is sufficiently high [37].
Despite the decrease in the surface ion number density from the voids formed be-
tween the like-charged domains due to the increasingly repulsive Yukawa interaction
between counterions, the hexagonal packing of ions is even possible in the transi-
tional in-plane microphase separation at strong Yukawa interaction strengths, such
as 𝛼 = 1.35 as shown in Fig. 3.6e, since the density in each domain is sufficiently
high for the ionic crystal to form. Conversely, whenever there is enhanced crystal
packing on the surfaces, the in-plane microphase separation is always observed
during the SSCS transition since the slow dynamics from the solid-like adlayer
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formation impedes the EDL rearrangement.
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Figure 3.8: Ensemble-averaged surface ion number density ⟨𝜌s⟩ as a function of
the Yukawa interaction strength 𝛼. The dotted line identify the transition point
𝛼t = 0.72 of the spontaneous surface charge separation, and the dashed lines show
the approximate linear fits in the regions before and after the transition point.

This packing phenomenon could be related to the experimentally observed multi-
layered ion structuring on a gold surface for RTILs [51]. Generally, this solid-like
adlayer formation is undesired in capacitance applications because it slows down
the dynamics at the interface and can be avoided by using disordered and uneven
electrodes, which breaks the symmetry between the real and image systems.

With applied potential difference
Electrochemical energy storage devices like EDLCs are charged by applying a
potential difference between the two electrodes. In the literature, the potential dif-
ference Δ𝑉 is commonly modeled by applying a uniform electric field of magnitude
𝐸 = Δ𝑉/𝐿𝑧 in the 𝑧-direction, which is constant everywhere in the real system and
exerts an electrostatic force f𝑖 = 𝑞𝑖E on real ion 𝑖 [44, 52, 53]. Alternatively, the
potential difference can be accounted for by placing explicit surface ions with equal
but opposite charges at the 𝑧-boundaries of the RTIL EDLCs [15, 53–55]. The
surface charge densities obtained from the constant potential and constant charge
methods are fully consistent with each other, as shown in the Appendix.

In our study, electric fields with strengths −1 ≤ 𝐸 ≤ 1 were added to the system
to model applied potential differences of approximately −118 ≤ Δ𝑉/𝑉𝑇 ≤ 118,
where 𝑉𝑇 ≈ 11 is the thermal voltage in Lennard-Jones units. Since 𝑉𝑇 = 𝑘B𝑇/𝑒
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has a value of 25.9 mV at room temperature (300 K), the range of applied potentials
explored spans nearly 6 V in real units, which is in line with the electrochemical
window expected for common RTILs [3–7].

To compute the differential capacitance from the surface charge density data col-
lected at a range of Δ𝑉 values using the partial derivative definition in Eq. 3.10, the
⟨𝜎𝑞⟩–Δ𝑉 relationship was first interpolated using a cubic smoothing spline. Then,
the ⟨𝜎𝑞⟩ values are numerically differentiated with respect to the interpolated Δ𝑉

values using first-order accurate forward and backward differences for the endpoints
and second-order accurate central differences for the interior points. We note that
the fluctuation definition in Eq. 3.10 gives consistent results for 𝐶d, and a compari-
son is available in the Appendix. Fig. 3.9 shows the surface charge density and the
differential capacitance at different applied potentials, with the differential capaci-
tance decaying as roughly Δ𝑉−1/2 at large Δ𝑉 for all Yukawa interaction strengths
𝛼 as predicted by Kornyshev [2].

For RTIL systems with 𝛼 < 𝛼t, the 𝐶d–Δ𝑉 curves have the well-known bell-shaped
profiles that the Kornyshev model predicted for densely packed systems with equi-
sized ions [2]. As 𝛼 increases, the magnitude of the surface charge density increases
at all applied potentials since the increasingly attractive Yukawa interactions be-
tween co-ions and the charge fluctuations from the image charge interactions shown
in Fig. 3.2 promote charge separation. Consequently, the differential capacitance
peak at Δ𝑉 = 0 also increases, as shown previously in Fig. 3.2b.

After the transition point 𝛼t = 0.72, there is a discontinuous jump in the surface
charge density at Δ𝑉 = 0 due to the symmetry breaking from SSCS. This first-order
transition is accompanied by the emergence of the metastable phase that both the
CW and BM models predicted, where there are two surface charge density curves
corresponding to the two possible charge separation directions. Naturally, there
are also two corresponding differential capacitance curves that cross each other at
Δ𝑉 = 0, with the systems in the lower branches being more thermodynamically
favorable since the charge polarization in the system is aligned with the applied
electric field. The metastable systems in the upper branches are possible because
the RTIL itself can generate its own electric field with SSCS. However, when the
applied field magnitude exceeds that of the intrinsic field and thermal fluctuations
can overcome the nucleation barrier for SSCS, the metastable state disappears and
the only globally stable state is achieved.

Fig. 3.9 shows that for 𝛼 = 0.73 near the spinodal, there are two green ⟨𝜎𝑞⟩ and
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Figure 3.9: (a) Ensemble-averaged surface charge density ⟨𝜎𝑞⟩ and (b) differential
capacitance 𝐶d as functions of the potential difference Δ𝑉 at various Yukawa in-
teraction strengths 𝛼. In (a), the dots and lines represent raw data points and fits,
respectively.

𝐶d curves with very little overlap in the Δ𝑉 space. As 𝛼 increases further, the
metastable region enlarges to a wider range of applied potentials, allowing for the
charge separation to be in either direction despite the potential difference. The
metastable region can span up to nearly 1.1 V in real units for a strong 𝛼 = 1.3
system, as shown by the purple curves.

These metastable states likely explain the hysteresis in the experimentally measured
capacitance of RTIL EDLCs when the charging direction was reversed [56, 57].
Since hysteresis can lead to uncontrolled energy dissipation and SSCS allows for
metastable states to exist, SSCS is undesirable in EDLCs and should be prevented
by weakening the ion–ion correlations, either by using more chemically compatible
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anions and cations or decreasing the incompatibility by adding an organic solvent
[19].

Comparison with systems with nonmetal boundaries
To compare with systems without image charge interactions, we removed the image
charges to simulate NM boundaries that have the same relative permittivity as the
RTIL. With the Yeh–Berkovitz correction for slab systems [58], we continue using
the fast PPPM method to evaluate the long-range electrostatic interactions despite
the lack of periodicity in the 𝑧-direction, but with constant surface charge instead
of constant potential so that the system dipole is correctly accounted for. At 𝛼 = 0
and with no applied potential, Fig. 3.10a shows that the dipole distribution becomes
sharply peaked, which is indicative of severely diminished charge fluctuations. This
result agrees with recent findings [55] that the image charge interactions from using
PC boundaries induce greater charge fluctuations that promote charge separation.
As such, we expected the onset of SSCS in systems with NM boundaries to be at
a Yukawa interaction strength much larger than the 𝛼t = 0.72 for systems with PC
boundaries.

Surprisingly, SSCS is not observed for the range of Yukawa interaction strengths
explored (0 ≤ 𝛼 ≤ 1.8) when the image charges are eliminated, with the surface
charge vanishing even at strong Yukawa interaction strengths or when the system
starts from a charge-separated state. Fig. 3.10b shows that a system with a strong
Yukawa interaction strength 𝛼 = 1.6 develops bicontinuous domains with interpen-
etrating networks of anions and cations, and Fig. 3.10c shows that a system with an
even stronger Yukawa interaction strength 𝛼 = 1.8 undergoes bulk microphase sepa-
ration, a transition that is also observed in a bulk periodic system with no electrodes
as seen in the Appendix.

Therefore, the attractive image charge interactions from PC boundaries play a crucial
role in the behavior and energy storage properties of RTIL EDLCs. Observing SSCS
requires not only the ion–ion correlations be strong enough to offset the electrostatic
interactions at short ranges so that co-ions can pack tightly together on the surfaces,
but also a net electrostatic attraction of the ions to the interface by the image charge
interactions. The results show that RTIL EDLCs with NM boundaries have very low
polarizability even with strong Yukawa interaction strengths and applied potentials,
but can remarkably charge separate at Δ𝑉 = 0 with PC boundaries due to the
increased charge fluctuations from the image charge interactions.
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Figure 3.10: (a) Comparison of charge fluctuations with perfectly conducting and
nonmetal boundaries at 𝛼 = 0 and Δ𝑉 = 0, and system screenshots of the starting
charge-separated (left) and equilibrium states (right) for (b) 𝛼 = 1.6 and (c) 𝛼 = 1.8
with Δ𝑉 = 0 and nonmetal boundaries.

3.4 Conclusion
In conclusion, we have conducted MD simulations to directly simulate the behavior
of RTIL EDLCs with metal boundaries in the absence of any mean-field approxima-
tions. The coarse-grained RTIL model that we constructed incorporates the ion–ion
correlations using short-range Yukawa interactions—as was done in the previous
MFTs—and accounts for the PC boundaries using the method of image charges.
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Using our model, we observed a SSCS transition with no applied potential driven
by the coupling of the ion–ion correlations in RTILs and the enhanced charge fluc-
tuations from the image charge interactions. Consequently, we also saw metastable
charge-separated states with applied potentials since the intrinsic electric field from
SSCS can either amplify or counteract the applied field, depending on the alignment
of the system dipole with the field direction. The behavior of these transitions is
qualitatively consistent with those predicted in the CW and BM models.

Interestingly, we discovered a prominent surface in-plane structuring with no applied
potential as the Yukawa interaction strength increased. With the image charge inter-
actions drawing the ions to the interface, the competition between the short-range
Yukawa interactions and the long-range electrostatics causes a transient surface
in-plane microphase separation, while the increased lateral interactions from the
higher surface ion number density lead to increased translational order in the ad-
layers that was present in both the transitional and equilibrium states. Although
the in-plane microphase separation was sometimes observed without the increased
translational order, the enhanced crystal packing was always accompanied by the
in-plane microphase separation.

Perhaps most importantly, we found that the electrode boundary condition has a
large influence on the behavior and properties of RTIL EDLCs, in that the enhanced
charge fluctuations with PC boundaries make the RTILs more susceptible to applied
potentials. By removing the attractive image charge interactions to simulate a NM
boundary with the same relative permittivity as the RTIL, we did not observe SSCS
even with very strong Yukawa interaction strengths.

While the current model has identified the key effects of image charge interactions,
it does not account for important effects and properties that can affect the EDL struc-
ture and dynamics, such as the ion asymmetry [2, 15], structure, and polarizability
[55, 59–62]. However, previous MFTs [19, 63] analogous to our coarse-grained
model show that SSCS should be a common feature of RTIL EDLCs and that the
anomalous increase in capacitance observed experimentally [64] in RTIL EDLCs
under confinement can be explained when they have undergone SSCS. These results
indirectly suggest that the key findings of this chapter are relevant in real RTILs
despite the simplifications used in our model. Nevertheless, more detailed atom-
istic simulations using polarizable force fields [65, 66] that capture the specific
chemistries of common RTILs would highlight the molecular mechanisms of the
EDL formation in real RTILs and associate the interaction parameters in the coarse-
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grained models with the molecular properties of the RTILs. These comprehensive
simulations would also reveal how ion transport properties and charging dynamics
of RTILs are affected by the image charge effects from the metal electrodes and help
guide the design of optimized RTIL EDLCs.

3.5 Appendix
Reduced Lennard-Jones units
The fundamental quantities are the mass 𝑚, the particle size 𝜎, and the energy scale
𝜖 . The reduced units for the basic and derived parameters are tabulated in Table 3.1.

Basic
parameter Reduced unit Derived

parameter Reduced unit

Distance 𝑟∗ =
𝑟

𝜎
Charge density 𝜌∗𝑞 =

𝜎3
√

4𝜋𝜀0𝜎𝜖
𝜌𝑞

Energy 𝑈∗ =
𝑈

𝜖

Surface charge
density 𝜎∗𝑞 =

𝜎2
√

4𝜋𝜀0𝜎𝜖
𝜎𝑞

Number
density 𝜌∗ = 𝜌𝜎3 Electric dipole 𝑀∗𝑧 =

𝑀𝑧

𝜎
√

4𝜋𝜀0𝜎𝜖

Temperature 𝑇∗ =
𝑘B𝑇

𝜖
Electric field 𝐸∗ =

𝜎
√

4𝜋𝜀0𝜎𝜖

𝜖
𝐸

Time 𝑡∗ = 𝑡

√︂
𝜖

𝑚𝜎2
Voltage 𝑉∗ =

√
4𝜋𝜀0𝜎𝜖

𝜖
𝑉

Charge 𝑞∗ =
𝑞

√
4𝜋𝜀0𝜎𝜖

Differential
capacitance 𝐶∗d =

𝜎

4𝜋𝜀0
𝐶d

Table 3.1: Relevant physical quantities expressed in reduced Lennard-Jones units.

Using the reduced units in Table 3.1, the key dimensionless quantities and equations
in the main text are derived as follows. The ∗ superscript denotes a dimensionless
quantity (but has been excluded in the main text for convenience).

Timescale

For common RTILs like [EMIM+][BF−4 ] or [EMIM+][NTf−2 ], the average dimension
is approximately 𝜎 = 0.6× 10−9 m and the average molecular weight is on the order
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of 𝑚 = 300 g/mol [67]. At room temperature (300 K), the relevant timescale is

𝜏 =

√︄
𝑚𝜎2

𝜖
=

√√√(
(300 g/mol)/(6.022 × 1023 mol−1)

)
(0.6 nm)2

(1.380649 × 10−23 J/K) (300 K)
≈ 6.6 ps,

which is on the order of picoseconds.

Bjerrum length

The reduced Bjerrum length 𝜆∗B is

𝜆∗B =
𝜆B
𝜎

=
1
𝜎

(
𝑒2

4𝜋𝜀0𝜀r𝑘B𝑇

)
=

(√
4𝜋𝜀0𝜎𝜖𝑒

∗)2

4𝜋𝜀0𝜀r (𝜖𝑇∗) 𝜎
=

4𝜋𝜀0𝜎𝜖 (𝑒∗)2
4𝜋𝜀0𝜎𝜖𝜀r𝑇∗

=
(𝑒∗)2
𝜀r𝑇∗

Coulomb potential

The reduced Coulomb potential 𝑈∗Coul (Eq. 3.2) is

𝑈∗Coul =
𝑈Coul
𝜖

=
1
𝜖

(
𝑞𝑖𝑞 𝑗

4𝜋𝜀0𝜀r𝑟𝑖 𝑗

)
=

(√
4𝜋𝜀0𝜎𝜖𝑞

∗
𝑖

) (√
4𝜋𝜀0𝜎𝜖𝑞

∗
𝑗

)
4𝜋𝜀0𝜀r

(
𝜎𝑟∗

𝑖 𝑗

)
𝜖

=
4𝜋𝜀0𝜎𝜖𝑞

∗
𝑖
𝑞∗
𝑗

4𝜋𝜀0𝜎𝜖𝜀r𝑟
∗
𝑖 𝑗

=
𝑞∗
𝑖
𝑞∗
𝑗

𝜀r𝑟
∗
𝑖 𝑗

With 𝑞 = 𝑧𝑒, the reduced Coulomb potential can also be expressed in terms of the
reduced Bjerrum length:

𝑈∗Coul =
(𝑧𝑖𝑒∗)

(
𝑧 𝑗𝑒
∗)

𝜀r𝑟
∗
𝑖 𝑗

(
𝑇∗

𝑇∗

)
=
𝑧𝑖𝑧 𝑗𝑇

∗

𝑟∗
𝑖 𝑗

(𝑒∗)2
𝜀r𝑇∗

=
𝑧𝑖𝑧 𝑗𝜆B𝑇

∗

𝑟∗
𝑖 𝑗

For symmetric monovalent ions (𝑧𝑖 = ±1 or 𝑞𝑖 = ±𝑒), the magnitude of the reduced
charge is given by equating the two definitions of the Coulomb potential above:

𝑞∗
𝑖
𝑞∗
𝑗

𝜀r𝑟
∗
𝑖 𝑗

=
𝑧𝑖𝑧 𝑗𝜆B𝑇

∗

𝑟∗
𝑖 𝑗

=⇒ 𝑞∗ =
√︁
𝜀r𝜆B𝑇∗
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WCA potential

For 𝑟𝑖 𝑗 ≤ 21/6𝜎, the reduced WCA potential 𝑈∗WCA (Eq. 3.4) is

𝑈∗WCA =
𝑈WCA
𝜖

=
1
𝜖

(
4𝜖𝑖 𝑗

[(
𝜎𝑖 𝑗

𝑟𝑖 𝑗

)12
−

(
𝜎𝑖 𝑗

𝑟𝑖 𝑗

)6
]
+ 𝜖𝑖 𝑗

)
= 4𝜖∗𝑖 𝑗


(
𝜎𝜎∗

𝑖 𝑗

𝜎𝑟∗
𝑖 𝑗

)12

−
(
𝜎𝜎∗

𝑖 𝑗

𝜎𝑟∗
𝑖 𝑗

)6 + 𝜖∗𝑖 𝑗
= 4𝜖∗𝑖 𝑗


(
𝜎∗
𝑖 𝑗

𝑟∗
𝑖 𝑗

)12

−
(
𝜎∗
𝑖 𝑗

𝑟∗
𝑖 𝑗

)6 + 𝜖∗𝑖 𝑗
Gaussian potential

For 𝑟𝑖 𝑗 ≤ 𝜎, the reduced Gaussian potential 𝑈∗Gauss (Eq. 3.5) is

𝑈∗Gauss =
𝑈Gauss

𝜖
=

1
𝜖

(
𝐴𝑖 𝑗

[
exp

(
−𝐵𝑖 𝑗𝑟

2
𝑖 𝑗

)
− exp

(
−𝜎2𝐵𝑖 𝑗

)] )
= 𝐴∗𝑖 𝑗

[
exp

(
−

(
𝐵∗𝑖 𝑗/𝜎2

) (
𝜎𝑟∗𝑖 𝑗

)2
)
− exp

(
−𝜎2

(
𝐵∗𝑖 𝑗/𝜎2

))]
= 𝐴∗𝑖 𝑗

[
exp

(
−𝐵∗𝑖 𝑗 (𝑟∗𝑖 𝑗 )2

)
− exp

(
−𝐵∗𝑖 𝑗

)]
Yukawa potential

The reduced Yukawa potential 𝑈∗Yukawa (Eq. 3.6) is

𝑈∗Yukawa =
𝑈Yukawa

𝜖
=

1
𝜖

(
−𝛼

𝑞𝑖𝑞 𝑗

4𝜋𝜀0𝜀r𝑟𝑖 𝑗

[
exp

(
−𝑟𝑖 𝑗/ℓc

)
− exp (−𝐿𝑧/(2ℓc))

] )
= −𝛼

𝑧𝑖𝑧 𝑗𝜆B𝑇
∗

𝑟∗
𝑖 𝑗

[
exp

(
−

(
𝜎𝑟∗𝑖 𝑗

)
/
(
𝜎ℓ∗c

) )
− exp

(
−

(
𝜎𝐿∗𝑧

)
/
(
2𝜎ℓ∗c

) ) ]
= −𝛼

𝑧𝑖𝑧 𝑗𝜆B𝑇
∗

𝑟∗
𝑖 𝑗

[
exp

(
−𝑟∗𝑖 𝑗/ℓ∗c

)
− exp

(
−𝐿∗𝑧/

(
2ℓ∗c

) ) ]
Debye length

With 𝜌 = 𝜌bulk
+ + 𝜌bulk

− and 𝑧𝑖 = ±1, the reduced Debye length 𝜆∗D is

𝜆∗D =
𝜆D
𝜎

=
1
𝜎

(
𝑒2

𝜀0𝜀r𝑘B𝑇

(
𝜌bulk
+ 𝑧2

+ + 𝜌bulk
− 𝑧2

−

))−1/2
=

1
𝜎
(4𝜋𝜆B𝜌)−1/2

=

(
4𝜋𝜎2 (

𝜎𝜆∗B
) (

𝜌∗/𝜎3
))−1/2

=
(
4𝜋𝜆∗B𝜌

∗)−1/2
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Surface charge density

The reduced surface charge density 𝜎∗𝑞 (Eq. 3.8) is

𝜎∗𝑞 =
𝜎2

√
4𝜋𝜀0𝜎𝜖

𝜎𝑞 =
𝜎2

√
4𝜋𝜀0𝜎𝜖

(
𝜀0𝜀rΔ𝑉

𝐿𝑧

− 1
𝐿𝑧

∫ 𝐿𝑧

0
𝑧𝜌𝑞 𝑑𝑧

)
=

𝜎2
√

4𝜋𝜀0𝜎𝜖

(
𝜀0𝜀r

(
𝜖Δ𝑉∗/

√
4𝜋𝜀0𝜎𝜖

)
𝜎𝐿∗𝑧

− 1
𝜎𝐿∗𝑧

∫ 𝐿∗𝑧

0
(𝜎𝑧∗)

(√
4𝜋𝜀0𝜎𝜖𝜌

∗
𝑞

𝜎3

)
𝑑𝑧∗

)
=
𝜀rΔ𝑉

∗

4𝜋𝐿∗𝑧
− 1

𝐿∗𝑧

∫ 𝐿∗𝑧

0
𝑧∗𝜌∗𝑞 𝑑𝑧

∗

Differential capacitance

The reduced partial derivative definition of differential capacitance 𝐶∗d (Eq. 3.10) is

𝐶∗d =
𝜎

4𝜋𝜀0
𝐶d =

𝜎

4𝜋𝜀0

(
𝐿𝑥𝐿𝑦

𝑘B𝑇
⟨
(
𝛿𝜎𝑞

)2⟩
)

=
𝜎

4𝜋𝜀0

©«
(
𝜎𝐿∗𝑥

) (
𝜎𝐿∗𝑦

)
𝜖𝑇∗

〈(√
4𝜋𝜀0𝜎𝜖

𝜎2 𝛿𝜎∗𝑞

)2〉ª®®¬
=

𝐿∗𝑥𝐿
∗
𝑦

𝑇∗
⟨(𝛿𝜎∗𝑞 )2⟩

Thermal voltage

The reduced thermal voltage 𝑉∗
𝑇

is

𝑉∗𝑇 =

√
4𝜋𝜀0𝜎𝜖

𝜖
𝑉𝑇 =

√
4𝜋𝜀0𝜎𝜖

𝜖

(
𝑘B𝑇

𝑒

)
=

√
4𝜋𝜀0𝜎𝜖

𝜖

(
𝜖𝑇∗

√
4𝜋𝜀0𝜎𝜖𝑒∗

)
=
𝑇∗

𝑒∗

Finite size effect
The finite size effect in our systems should be minimal. In Fig. 3.3 of the main
text, all the charge density profiles reach bulk electroneutrality and are flat in the
center of the system. Furthermore, we ran additional simulations using an 𝛼 = 1.3
system elongated in the 𝑧-direction with dimensions 7.617 × 7.617 × 21.5443,
and the calculated surface charge density is comparable to that from the cubic
10.77 × 10.77 × 10.77 systems. System screenshots and charge density profiles are
shown in Fig. 3.11.

Determining the transition point
For systems with no applied potential, the transition point 𝛼t was determined by
analyzing the evolution of the charge densities in the left and right halves of the real
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Figure 3.11: Visualization of the (a) elongated real system and (b) cubic real system
used in the main text with Yukawa interaction strength 𝛼 = 1.3 and Δ𝑉 = 0. (c)
Ensemble-averaged surface charge density ⟨𝜎𝑞⟩ near the left electrode for the two
systems in (a) and (b).
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system, which are given by

𝜌half
𝑞 (𝑡) =


2
𝐿𝑧

∫ 𝐿𝑧/2

0
𝜌𝑞 (𝑧, 𝑡) 𝑑𝑧, left

2
𝐿𝑧

∫ 𝐿𝑧

𝐿𝑧/2
𝜌𝑞 (𝑧, 𝑡) 𝑑𝑧, right

, (3.11)

where 𝐿𝑧 is the length of the real system in the 𝑧-direction and 𝜌𝑞 (𝑧, 𝑡) is the
instantaneous local charge density profile.

In Fig. 3.12, the time traces of the half-system charge densities 𝜌half
𝑞 (𝑡) are shown

for RTILs with Yukawa interaction strengths 𝛼 = 0.71, 𝛼 = 0.72, and 𝛼 = 0.74.
𝜌half
𝑞 (0) is non-zero because the simulations were started from charge-separated

states, and the top (resp. bottom) rows correspond to systems that started with the
anions (resp. cation) accumulated on the left (resp. right) electrode.

For systems before the transition point, such as the 𝛼 = 0.71 systems in Fig. 3.12a,
the initial charge separation is rarely maintained, with the surface charges quickly
dissipating to form either thermodynamically favorable homogeneous or fluctuation-
driven weakly charge-separated states. As such, the homogeneous state is the most
probable state, leading to the unimodal dipole distributions seen in Fig. 3.2c of the
main text. However, for the systems at𝛼 = 0.72 shown in Fig. 3.12b, the initial charge
separation either persists or reverses direction, forming transient homogeneous states
in the process. As a result, the unimodal dipole distribution turns into a bimodal
distribution since the charge-separated state is more common and long-lived than the
metastable homogeneous state. The metastability of both the ordered and disordered
states and the bimodal nature of the dipole distribution suggest that the transition at
𝛼t = 0.72 is weakly first-ordered [48].

Fig. 3.8 in the main text also supports the conclusion that the transition point is at
𝛼 = 0.72. While the surface ion number density increased slowly with the Yukawa
correlation strength for 𝛼 < 0.72, it grew sharply after 𝛼 = 0.72, with 𝜕𝜌s/𝜕𝛼 being
over an order of magnitude greater. This is driven by the SSCS possible after the
transition point and the stronger Yukawa interactions, which favor the close packing
of co-ions and induces a greater accumulation effect on the surfaces.

For systems past the transition point and the spinodal for the homogeneous state,
such as the 𝛼 = 0.74 systems shown in Fig. 3.12c, the initial charge separation
direction is maintained throughout the entire simulation and the homogeneous state
is not observed. While the dipole distribution is still bimodal due to the two possible
SSCS directions, charge reversal is very improbable.
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Figure 3.12: Time traces of the charge densities in the left (blue) and right (orange)
halves of the real system for Yukawa interaction strengths (a) 𝛼 = 0.71, (b) 𝛼 = 0.72,
and (c) 𝛼 = 0.74. The dotted lines show when production data collection begins.
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Figure 3.13: Visualization of an equilibrated fully periodic bulk system for Yukawa
interaction strength 𝛼 = 1.8 with Δ𝑉 = 0.

Due to the symmetry in the RTILs, the charge density profiles for systems after the
transition point were sign-corrected so that the 𝜌𝑞 is positive and negative on the left
and right electrodes, respectively. For systems with the opposite charge separation
direction, the charge density profiles were flipped in the 𝑧-direction, equivalent to
exchanging the identities of the anions and cations or swapping the signs on the
calculated surface charge densities and system dipoles. This data processing results
in the single positive ⟨𝜎𝑞⟩–𝛼 curve and the corresponding dipole distributions for
𝛼 > 𝛼t in Fig. 3.2 of the main text.

Bulk phase separation at strong Yukawa interaction strengths
The equilibrium state for an 𝛼 = 1.8 system with NM boundaries is the same as
a bulk 𝛼 = 1.8 system that has underwent a bulk phase separation, as shown in
Fig. 3.10c in the main text and Fig. 3.13.

Constant potential vs. constant charge simulations
While the potential difference was modeled using an electric field in the main text,
it can also be induced by placing explicit ions with opposite but equal charges ±𝑞s

on the opposing electrode surfaces. The single layer of surface ions is found at 𝑧 = 0
and 𝑧 = 𝐿𝑧, and is arranged on a hexagonal close-packed (HCP) lattice with spacing
(1/2,

√
3/4,
√

6/6). With this configuration, the surface ions achieve the maximum
packing density for spheres when they have the same interaction range 𝜎𝑖 𝑗 = 0.5 as
the smooth electrodes used in the electric field case, and this close-packing of the
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surface ions minimizes the electric field variations in the 𝑥- and 𝑦-directions due to
the discrete nature of the surface charge. To accommodate the periodicity of the
HCP lattice in the 𝑥- and 𝑦-directions, the real system is no longer perfectly cubic;
instead, it has dimensions 𝐿𝑥 = 11, 𝐿𝑦 = 6

√
3 ≈ 10.39, and 𝐿𝑧 = 9

√
6/2 ≈ 11.02,

which works out to 𝑁s = 528 surface ions on each electrode. With 𝑁 = 1, 000 ions
and a volume of 𝑉 = 𝐿𝑥𝐿𝑦𝐿𝑧 ≈ 1, 260.06, the ion number density is 𝜌 ≈ 0.79,
which is comparable to the 𝜌 = 0.8 used in the main text.

For systems with perfectly conducting electrodes, the charges on the surface ions can
be associated with the electric field through the surface charge density. As shown
in Eq. 3.8 of the main text, the total surface charge density ⟨𝜎𝑞⟩ can be separated
into a static part 𝜎s

𝑞 and a polarization part ⟨𝜎p
𝑞 ⟩ [44, 45]. With ⟨𝜎p

𝑞 ⟩ representing
the average charge dipole in the real system, only the static surface charge density
is related to the applied electric field through 4𝜋𝜎s

𝑞 = 𝜀r𝐸 and is used to determine
the charges of the explicit surface ions via

𝑞s
2

=
𝐴𝜎s

𝑞

𝑁s
=

𝐿𝑥𝐿𝑦𝜀r𝐸

4𝜋𝑁s
, (3.12)

where 𝐴 = 𝐿𝑥𝐿𝑦 is the electrode area and the 2 in the numerator is a scaling factor
that must be included for systems with image charge interactions when using a
three-dimensional Ewald summation method to evaluate the Coulomb interactions
since only half of the calculated energy of the repeat unit should translate to the
electrostatic forces on the real ions [44, 55].

These two methods are compared by testing four distinct system configurations: 1)
an 11.00×10.39×11.02 real system with an applied electric field and smooth metal
electrodes, 2) a 10.77×10.77×10.77 cubic real system with an applied electric field
and smooth metal electrodes, 3) an 11.00 × 10.39 × 11.02 real system with explicit
surface charges and uneven metal electrodes, and 4) an 11.00 × 10.39 × 11.02 real
system with explicit surface charges and smooth metal electrodes. For the first two
systems, the electrodes are idealized surfaces that interact with the real ions using
a WCA potential with 𝜎𝑖 𝑗 = 0.5 and 𝜖𝑖 𝑗 = 100, as outlined in the main text. In
the third system, the electrodes are uneven due to the spherical surface ions, which
interact with the real ions via both the previous WCA potential and a Coulomb
potential (Eq. 3.2 of the main text). In the fourth system, the surface ions are
embedded within an idealized surface with the same interaction potential as the first
two systems. Because the excluded volume interactions are accounted for by the
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Figure 3.14: Ensemble-averaged charge density profiles ⟨𝜌𝑞⟩ for systems with
Yukawa interaction strength 𝛼 = 1 and (a) no external field (𝐸 = 0) or (b) an electric
field with magnitude 𝐸 = 1 for four distinct system configurations.

idealized surface, the surface ions only interact electrostatically with the real ions
via the Coulomb potential.

Fig. 3.14 compares the charge density profiles computed with 400 bins for the four
system configurations with applied electric fields of magnitudes 𝐸 = 0 and 𝐸 = 1. It
shows that systems 1, 2, and 4 have fully consistent charge density profiles for both
electric field strengths tested, indicating that the different approaches of applying
the potential difference and the slight asymmetry in the box dimensions do not
affect the EDL structure in the RTILs. Despite its charge density profile being very
similar in magnitude and shape with the other systems, system 3 has a higher total
surface charge density because the real ions in the adlayers are able to get closer
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to their corresponding image charges by positioning themselves in the hollows on
the surface. While this explicit surface charge model more accurately represent
the discrete atoms that constitute the metal electrode, it introduces the unevenness
or curvature of the surface, which is outside the scope of the current study and
complicates the underlying physics, and is much more computationally expensive
due to the addition of 2𝑁s = 1, 056 surface ions. As such, the systems in our study
were modeled as cubic real systems with applied electric fields for simplicity and
computational performance.

Comparison of differential capacitance definitions
As defined in Eq. 11 of the main text, the differential capacitance𝐶d can be computed
either by interpolating and then numerically differentiating the surface charge density
⟨𝜎𝑞⟩ with respect to the potential difference Δ𝑉 or by calculating the average mean-
square surface charge density fluctuation ⟨(𝛿𝜎𝑞)2⟩ [48]. Fig. 3.15 shows that the 𝐶d

values evaluated using the two definitions for RTIL EDLCs with varying Yukawa
interaction strengths are largely consistent with each other.
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Figure 3.15: Differential capacitance 𝐶d as a function of the potential difference Δ𝑉
for systems with Yukawa interaction strengths (a) 𝛼 = 0, (b) 𝛼 = 0.4, (c) 𝛼 = 0.73,
(d) 𝛼 = 1, and (e) 𝛼 = 1.3. The lines and dots represent the interpolated and
differentiated ⟨𝜎𝑞⟩–Δ𝑉 relationship and the 𝐶d calculated using the mean-square
surface charge density fluctuations, respectively.
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C h a p t e r 4

GAUSSIAN CORE MODEL WITH SMEARED
ELECTROSTATICS

Lately, molecular dynamics (MD) simulations have emerged as an essential tool
for understanding the structure, dynamics, and phase behavior of charged soft mat-
ter systems. To explore phenomena across greater length and time scales in MD
simulations, molecules are often coarse-grained for better computational perfor-
mance. However, commonly used force fields—like the one used in the previous
chapter—represent particles as hard-core interaction centers with point charges,
which often overemphasizes the packing effect and short-range electrostatics, es-
pecially in systems with bulky deformable organic molecules and systems with
strong coarse-graining. This underscores the need for an efficient soft-core model
to physically capture the effective interactions between coarse-grained particles. In
this chapter, we implement a soft-core model uniting the Gaussian core model with
smeared electrostatic interactions that is phenomenologically equivalent to recent
theoretical models. We first parametrize it generically using water as the model
solvent. Then, we benchmark its performance in the OpenMM toolkit for different
boundary conditions to highlight a computational speedup of up to 34× compared
to commonly used force fields and existing implementations.

This chapter includes content from our previously published article:

Ye, B. B.; Chen, S.; Wang, Z.-G. J. Chem. Theory Comput. 2024, acs.jctc.4c00603,
DOI: 10.1021/acs.jctc.4c00603

4.1 Introduction
In recent years, computer simulations have become an essential tool for gaining
physical insights into intriguing phenomena in polymeric and soft matter systems.
Notably, MD simulations with atomistic force fields, which can accurately reproduce
the structural, thermodynamic, and dynamic properties of materials [2, 3], have
been used to understand molecular details and observe dynamic processes in those
systems. However, even with the rapid advancement of computing power over the
past few decades, atomistic MD simulations are often unable to capture phenomena
that require considerable system sizes or extensive equilibrium periods due to the
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high computational costs of evaluating the interactions among the numerous atoms
in large systems.

This limitation has motivated the development of several coarse-grained simulation
methods that improve computational performance by simplifying the representation
of atomistic systems. A widely used approach is coarse-grained MD simulation, in
which groups of atoms or molecules are mapped onto simple, featureless beads to de-
crease the number of degrees of freedom [4, 5]. By carefully determining force field
parameters using bottom-up (structure-based) and/or top-down (thermodynamics-
based) approaches, coarse-grained MD models can faithfully replicate key experi-
mental data despite the loss of detail from the coarse-graining [6]. Another coarse-
graining strategy is to convert the particle-based representation into a field-based
representation through identify transformations. Field-theoretic simulations (FTSs)
are particularly well-suited for efficient exploration of mesoscopic-length-scale phe-
nomena in high-density systems and polymeric liquids with high molecular weights
[7–13]. However, FTS does not provide dynamic information and the field variables
do not directly inform the molecular-level structure.

Within the common coarse-grained MD models [14–17], such as the Kremer–
Grest model for polymeric systems [18], the nonbonded interactions are generally
treated using a combination of 12-6 Lennard-Jones (LJ) and point-charge Coulomb
potentials. While these potentials are ubiquitous in MD simulations, they can be
unsuitable for modeling organic molecules that can deform and interpenetrate, or
systems that have undergone strong coarse-graining. The LJ potential is inherently
a hard-core model because it has a divergence in potential energy when the particle
centers come into contact. This places a tight upper bound on the simulation
timestep, and can lead to a caging effect that severely hinders the diffusion of particles
or even unphysical bulk liquid–solid phase transitions at high geometric packing [19].
Similarly, the Coulomb potential cannot capture the charge delocalization in bulky
organic ions because it assigns the entirety of a particle’s charge to its interaction
center. As such, softer interactions are better suited to reflect the less pronounced
packing effects and short-range electrostatics in coarse-grained soft matter systems.

Dissipative particle dynamics (DPD) [20, 21], a mesoscale simulation method com-
monly used to model fluidic systems, addresses the shortcomings of hard-core
models by treating excluded volume interactions using a soft-core potential [22]. To
model charged particles, the charges are smeared onto an arbitrarily-sized grid to
prevent unbreakable ion pairs [23]. While the DPD potential is well-suited for mod-
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eling the soft interactions between coarse-grained bulky molecules or even entire
liquid elements, its quadratic form is not readily amenable to theoretical analysis.
Perhaps more importantly, there is no analytically closed form for the electrostatic
potential, so it is usually evaluated on CPU without Ewald summation in the MD
software that supports DPD. This makes the evaluation of the electrostatic interac-
tions much slower than the GPU-accelerated implementations commonly used in
LJ-based charged systems.

Therefore, there is a need for a more physical and efficient GPU-enabled coarse-
grained MD model that can simulate large-scale soft matter systems over long time
frames. To this end, we implement a coarse-grained MD model that is motivated
by and compatible with previous Gaussian soft-core models, such as the Gaussian
overlap model by Berne and Pechukas [24] and the Gaussian core model (GCM)
by Stillinger [25–27]. These types of models have been used recently to study the
liquid–liquid phase separation and dynamics in polymer solutions and melts [11,
12, 28–31]. In particular, Jedlinska et al. [32] and Lequieu [13] have employed
Gaussian-distributed particle densities in their multirepresentation simulation ap-
proaches to convert between particle- and field-based representations. Our model,
henceforth referred to as GCMe, combines the GCM with smeared electrostatic in-
teractions from Gaussian charge distributions [33–35]. This combination maintains
the soft nature of DPD and its advantages, can model the charge smearing in large
ions, and still has simple analytically tractable expressions for the interaction poten-
tials. In this chapter, we establish the thermodynamic basis of GCMe and highlight
the computational speedup that is possible with our GCMe implementation in the
high-performance OpenMM toolkit for different types of system boundaries.

4.2 Model and methods
In GCMe, featureless spherical particles with smeared charges interact via cen-
trosymmetric pair potentials. A charged particle 𝑖 has Gaussian-distributed mass
density

𝜌𝑖, 𝑚 (r) =
(

3
2𝜋𝜎2

𝑖

)3/2

exp

(
− 3

2𝜎2
𝑖

(r − r𝑖)2
)

(4.1)

and charge density

𝜌𝑖, 𝑞 (r) =
𝑧𝑖𝑒

(2𝑎2
𝑖
)3/2

exp

(
− 𝜋

2𝑎2
𝑖

(r − r𝑖)2
)
, (4.2)
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where 𝜎𝑖 and 𝑎𝑖 are the mass and electrostatic smearing radii, respectively, 𝑧𝑖 is the
charge number, and 𝑒 is the elementary charge. These Gaussian distributions have
recently been used in theoretical models [11, 12, 28–31, 36, 37] because they have
conveniently defined Fourier transforms and approach the Dirac delta function, the
limit of a point charge, as the smearing radii approach zero, and the particular form
of the charge density distribution in Eq. 4.2 reproduces the Born energy for the
self-energy of an ion 𝑖 [37].

The pair interaction potentials for Eqs. 4.1 and 4.2 are analytically solvable integrals,
and the derivations can be found in the Supporting Information (SI). The excluded
volume interaction between two particles 𝑖 and 𝑗 is given by

𝑢ex(𝑟𝑖 𝑗 ) = 𝐴𝑖 𝑗

(
3

2𝜋𝜎2
𝑖 𝑗

)3/2

exp

(
− 3

2𝜎2
𝑖 𝑗

𝑟2
𝑖 𝑗

)
, (4.3)

where 𝜎𝑖 𝑗 =

√︃
𝜎2
𝑖
+ 𝜎2

𝑗
, 𝑟𝑖 𝑗 is the separation distance, and 𝐴𝑖 𝑗 specifies the strength

of the excluded volume interactions. Since Eq. 4.3 has the form of a Gaussian
interaction potential, the local excluded volume interaction between two smeared
mass densities is equivalent to a Gaussian interaction between two point particles.

The smeared electrostatic interaction has the form

𝑢elec(𝑟𝑖 𝑗 ) =
𝑧𝑖𝑧 𝑗𝑒

2

4𝜋𝜀0𝜀r𝑟𝑖 𝑗
erf

(
𝜋1/2

21/2𝑎𝑖 𝑗
𝑟𝑖 𝑗

)
, (4.4)

where 𝑎𝑖 𝑗 =
√︃
𝑎2
𝑖
+ 𝑎2

𝑗
, 𝜀0 is the vacuum permittivity, and 𝜀r is the relative permittiv-

ity. Unlike the point-charge Coulomb potential, the smeared electrostatic potential
remains finite even as the separation distance tends to zero. Importantly, the self-
energy of an ion 𝑖 (𝑟𝑖𝑖 → 0) can now be defined and is simply the Born energy
𝑧2
𝑖
𝑒2/(8𝜋𝜀0𝜀r𝑎). For two particles that come into contact (𝑟𝑖 𝑗 → 0), the smeared

electrostatic potential reaches an asymptotic value of 𝑧𝑖𝑧 𝑗𝑒
2/(23/2𝜋𝜀0𝜀r𝑎𝑖 𝑗 ). To

prevent ions from collapsing on top of each other, the excluded volume repulsion
must overcome the electrostatic attraction between two oppositely charged particles,
so the relationship

𝐴𝑖 𝑗

𝜎3
𝑖 𝑗
𝑘B𝑇

≫
4𝜋3/2𝑧𝑖𝑧 𝑗𝜆B

33/2𝑎𝑖 𝑗
, (4.5)

where 𝜆B = 𝑒2/(4𝜋𝜀0𝜀r𝑘B𝑇) is the Bjerrum length, must hold.

Another advantage of the smeared electrostatic potential is that it can still be ef-
ficiently evaluated in reciprocal space using three-dimensional Ewald summation
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[38]. The particle-mesh Ewald method for the smeared electrostatic potential splits
the total coulombic energy into four parts as follows:

𝑈elec =
𝑒2

8𝜋𝜀0𝜀r

∑︁
n

𝑁∑︁
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erf
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𝜋1/2

21/2𝑎𝑖 𝑗
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)
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=
𝑒2

8𝜋𝜀0𝜀r
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𝑧𝑖𝑧 𝑗
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erf
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)
− erf
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21/2𝐺

)]
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exp
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−𝐺2𝑘2/2
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𝑘2 |𝑆(k) |2

− 𝑒2
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𝑖
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(4.6)

where n is the cell-coordinate vector specifying the position of a periodic cell, the
prime (′) in the sum in the 𝑈elec, real term indicates that terms where 𝑖 = 𝑗 are
omitted for n = 0, 𝐺 is the width of the Gaussian charge distributions introduced
to screen the smeared charges, k and 𝑘 = |k| are the reciprocal lattice vector and
its magnitude, respectively, and 𝑆(k) = 𝑒

∑𝑁
𝑗 𝑧 𝑗 exp (𝑖k · r 𝑗 ) [34, 35, 39, 40]. The

screening charge distributions are not strictly necessary, as the evaluation of the
position-dependent terms in Eq. 4.6 can be carried out entirely in reciprocal space
by choosing 𝐺 = 𝑎𝑖 𝑗/𝜋1/2, but they are generally included to improve computational
efficiency by moving part of the calculation effort to the real space [35, 40].

In Eq. 4.6, the 𝑈elec, recip and 𝑈elec, corr terms are equivalent to those found in the
standard Ewald summation for the point-charge Coulomb potential [41–43]. The
𝑈Coul, recip term captures the coulombic energy of point charges (carrying the same
charges as the smeared charges) interacting with equal but opposite charge dis-
tributions compensating for the screening charge distributions in reciprocal space
after the cutoff, and the 𝑈Coul, corr term is a constant term that corrects for the self-
interactions between the point charges and the compensating charge distributions
spuriously included in 𝑈Coul, recip.

The only differences between the Ewald summations for smeared charges and point
charges are manifested in the𝑈elec, real term and an additional constant𝑈elec, self term
that accounts for the self-energies of the ions [39]. The 𝑈elec, real term evaluates
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short-range electrostatic interactions within a designated cutoff in real space. Inside
the brackets, the first term corresponds to the interaction between two smeared
charges 𝑖 and 𝑗 (instead of two point charges), while the second term accounts for
the interaction between a point charge and the screening charge distribution for
charge 𝑗 that cancels out the compensating interaction in 𝑈Coul, recip.

As such, existing mesh-based schemes for evaluating the standard Ewald summa-
tion can be used in Eq. 4.6 by simply modifying the real-space contribution and
including the self-energies. Schematics depicting and comparing the real-space,
reciprocal-space, correction, and self-energy contributions to the Ewald summa-
tions for point charges and GCMe smeared charges can be found in Figs. 4.2 and
4.3 in the Appendix.

4.3 Parametrization
An important criterion for coarse-grained models is that the thermodynamics of the
fluid, which is described by the fluctuations in the system, should be reproduced
faithfully. After selecting appropriate 𝜎𝑖 and 𝑎𝑖 values for a system of interest, there
is only one undefined GCMe parameter, the repulsion parameter 𝐴𝑖 𝑗 . In principle,
𝐴𝑖 𝑗 can be determined precisely via systematic structure- or thermodynamics-based
coarse-graining procedures [6]. However, in this chapter, we aim to simply model
generic soft matter systems in a manner consistent with how equivalent DPD sim-
ulations would be configured. Following the formulation of the DPD method [22,
23, 44], we also parametrize GCMe by associating the value of 𝐴𝑖 𝑗 with the com-
pressibility of water, a commonly-used solvent in soft matter systems. Like other
coarse-grained models, this generically parametrized GCMe will likely underrep-
resent the system’s configurational entropy due to the smoothing out of atomistic
details [45]. This loss of entropy can be mitigated by a number of different ap-
proaches [46, 47] but is not the focus of the current work.

To connect 𝐴𝑖 𝑗 to the compressibility, we start with an expression relating pressure
𝑝 to the simulation number density 𝜌. Using the virial theorem and the additivity
of the pairwise forces, the pressure can be determined using

𝑝 = 𝜌𝑘B𝑇 +
1

3𝑉

〈∑︁
𝑖< 𝑗

(r𝑖 − r 𝑗 ) · f𝑖

〉
= 𝜌𝑘B𝑇 +

2𝜋
3
𝜌2

∫ ∞

0
𝑟3 𝑓𝑖 𝑗 (𝑟)𝑔𝑖 𝑗 (𝑟) 𝑑𝑟,

(4.7)

where 𝑘B𝑇 is the thermal energy scale,𝑉 is the system volume, f𝑖 and r𝑖 are the force
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acting on and the position of particle 𝑖, respectively, and 𝑓𝑖 𝑗 and 𝑔𝑖 𝑗 are the pairwise
GCMe force and radial distribution function between particles 𝑖 and 𝑗 . For soft
sphere models, the main contributions to the pressure come from the leading-order
𝜌 terms [22], so an approximation for the equation of state that holds at sufficiently
high number densities is

𝑝 ≈ 𝜌𝑘B𝑇 + 𝜔𝐴𝑖 𝑗 𝜌
2, (4.8)

where 𝜔 is a dimensionless scaling constant. With Eq. 4.8, the dimensionless
compressibility 𝜅−1 is related to 𝐴𝑖 𝑗 via

𝜅−1 =
1

𝑛𝑘B𝑇𝜅𝑇
=

1
𝑘B𝑇

(
𝜕𝑝

𝜕𝜌

)
𝑇

(
𝜕𝜌

𝜕𝑛

)
𝑇

=
1
𝑁m

(
1 +

2𝜔𝐴𝑖 𝑗 𝜌

𝑘B𝑇

)
,

(4.9)

where 𝑛 is the number density of water molecules, 𝜅𝑇 is the isothermal compress-
ibility, and 𝑁m ≡ (𝜕𝑛/𝜕𝜌)𝑇 is a real-space renormalization factor, or the number of
water molecules represented by each simulation particle.

To determine 𝜔 and obtain the equation of state, we conducted a series of MD simu-
lations in the isothermal–isobaric (𝑁𝑝𝑇) ensemble at room temperature 𝑇 = 300 K
and varying 𝑝 and 𝐴𝑖 𝑗 values. The cubic systems were initialized with 𝑁 = 10, 000
randomly placed particles with size 𝑑 = 2𝜎 = 0.275 nm and mass 𝑚 = 18.02 g/mol.
For each simulation, energy minimization and system equilibration were performed
over 1×107 timesteps of step size 𝑡 = 0.01𝜏, where 𝜏 =

√︁
𝑚𝑑2/(𝑁A𝑘B𝑇) ≈ 0.739 ps

is the intrinsic time scale and 𝑁A is the Avogadro constant, and data were collected
over an additional 4 × 107 timesteps, which are on the order of 300 ns.

By plotting the excess pressure (or the nonideal contributions) normalized by 𝐴𝑖 𝑗 ,
Fig. 4.1a shows that all systems fall on a master curve, indicating a simple scaling
relation. When the excess pressure is normalized by 𝜌2, it levels off to an asymptotic
value of 𝜔 = 0.499 at large 𝜌 in Fig. 4.1b, confirming that the main contribution to
the excess pressure is from the 𝜌2 term and that Eq. 4.8 is valid. With 𝜔 = 0.499
and a dimensionless compressibility of 𝜅−1 = 15.9835 for water, Eq. 4.9 provides
the key GCMe parametrization relationship

𝐴𝑖 𝑗 =
(15.9835𝑁m − 1)𝑘B𝑇

0.998𝜌
, (4.10)

with 𝜌 and 𝑁m being free parameters.

From a computational perspective, it is favorable to choose the lowest 𝜌 value
that still satisfies the scaling relation since the number of pair interactions scales



55

0 10 20 30 40

ρd3

0

200

400

600

800

(p
−

ρ
k
B
T
)d

6
/A

ij

(a)
Aij/(d

3kBT )
5
6

10
20

0 10 20 30 40

ρd3

0.0

0.1

0.2

0.3

0.4

0.5

(p
−

ρ
k
B
T
)/
(A

ij
ρ
2
)

← ρd3 = 2.5

(b)

Aij/(d
3kBT )

5
6

10
20

Figure 4.1: (a) 𝐴𝑖 𝑗 - and (b) 𝐴𝑖 𝑗 𝜌
2-normalized excess pressure 𝑝− 𝜌𝑘B𝑇 as functions

of the number density 𝜌 and repulsion parameter 𝐴𝑖 𝑗 for the Gaussian core model.
The dotted lines in (a) show the best quadratic fits. The horizontal dotted lines in (b)
specify the asymptotic 𝜔 values, while the vertical dotted line indicates the optimal
number density 𝜌.

linearly with 𝜌 and the complexity of a single step of a MD simulation increases
with the square of 𝜌. Fig. 4.1b indicates that 𝜌 = 2.5𝑑−3, which is indicated by
the black vertical dotted line, is a reasonable choice. Similarly, for the coarse-
graining level 𝑁m, we recommend the commonly used four-to-one mapping scheme
where each simulation particle roughly encompasses the volume of a (CH2)3 group
in a straight-chain alkane [23, 44, 48]. This real-space renormalization not only
affects 𝐴𝑖 𝑗 via Eq. 4.10 and the length, mass, and time scales, which are now
𝑑 = (𝜌𝑑3𝑁m)1/3 × (0.275 nm) ≈ 0.592 nm, 𝑚 = 𝑁m × (18.02 g/mol) ≈ 72.1
g/mol, and 𝜏 ≈ 3.18 ps, respectively, but also speeds up the simulation for a given
system volume because there are now fewer particle positions to update.
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Finally, to extend GCMe from melts to polymeric mixtures and solutions, the
particles can be connected to form polymers, with the connectivity handled using a
commonly-used bond potential such as the harmonic and finite extensible nonlinear
elastic (FENE) [18] bond potentials. The correct scaling of 𝑅g ∼ 𝑁3/5 is attained
for a single GCMe polymer in an athermal solvent, as shown in Fig. 4.5 in the
Appendix. To study liquid–liquid interfaces, a connection between GCMe and the
Flory–Huggins theory [49, 50] can be made to reinterpret 𝐴𝑖 𝑗 in terms of an energetic
𝜒-parameter. This mapping is available in the Appendix.

4.4 Performance
We have implemented GCMe in OpenMM [51], a high-performance MD simulation
toolkit, to take advantage of its class-leading GPU acceleration among the popular
MD packages [52, 53] and leverage its extensibility and modularity to implement
Eqs. 4.3 and 4.4 as custom pair potentials (available in our open-source MDCraft
Python package).

To highlight the performance (or simulation throughput, defined as simulation time
per elapsed real time) of our GCMe implementation, we benchmarked systems
using the Weeks–Chandler–Andersen (WCA) and Coulomb potentials and GCMe
with various boundary conditions and integration step sizes in both OpenMM 7.7.0
and LAMMPS (21 Nov 2023). LAMMPS [54] currently contains the only other
GCMe implementation through a combination of pair_style gauss in the base
package and pair_style buck6d/coul/gauss/long in the MOF-FF package
[55]. For the method of image charges, we employed the GPU-only openmm_constV
OpenMM plugin [56] and the CPU-only LAMMPS fix imagecharges command
[57]. All benchmarks were performed using a desktop computer with an Intel Core
i9-10900K CPU and an NVIDIA RTX 3080 (10 GB) GPU running Ubuntu 20.04
LTS through the Windows Subsystem for Linux. The results are tabulated in Table
4.1.

For identical GCMe systems with different boundary conditions, our testing shows
that our GPU-accelerated implementation in OpenMM is on average over an order
of magnitude faster than the existing multithreaded LAMMPS implementation, with
the largest speedup of 23× observed in the slab system with image charges. When
compared to systems utilizing the LJ-based Weeks–Chandler–Andersen (WCA) and
point-charge Coulomb potentials, our GCMe implementation in OpenMM provides
an 8× performance uplift over the fastest OpenMP-accelerated LAMMPS method we
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Table 4.1: Comparison of simulation timesteps (ts) per second across systems with
𝑁 = 1, 000 particles and varying reduced number densities 𝜌∗, models, boundary
conditions, reduced step sizes 𝑡∗, and simulation toolkits.

𝜌∗ Model System 𝑡∗ Toolkit ts/s

0.8 WCA/Coulomb Slab w/ ICa 0.005 LAMMPS (OpenMP)d 429
OpenMM (CUDA)e 3,257

2.5 GCMe Bulkb 0.005 LAMMPS (OpenMP)f 342
OpenMM (CUDA)e 4,299

0.020 LAMMPS (OpenMP)f 320
OpenMM (CUDA)e 4,250

Slabb,c 0.005 LAMMPS (OpenMP)f 263
OpenMM (CUDA)e 2,760

0.020 LAMMPS (OpenMP)f 255
OpenMM (CUDA)e 2,832

Slab w/ ICb,c 0.005 LAMMPS (OpenMP)f 163
OpenMM (CUDA)e 3,772

0.020 LAMMPS (OpenMP)f 152
OpenMM (CUDA)e 3,689

a The simulation system has dimensions of 8.0𝑑 × 7.8𝑑 × 20.0𝑑, where 𝑑 is the
particle diameter.
b The simulation system has dimensions of 5.5𝑑 × 5.2𝑑 × 14.0𝑑.
c Each surface contains 288 particles with size 𝑑/2 arranged in a hexagonal close-
packed (HCP) lattice carrying charges such that the constant surface charge density
is 𝜎𝑞 = 0.005 e/nm2.
d The simulation was allocated two CPU threads (higher values led to simulation
instability).
e The simulations were allocated a single GPU.
f The simulations were allocated eight CPU threads (higher values did not improve
performance).

had access to in our previous study [58]. Furthermore, larger step sizes can be taken
in GCMe while still properly maintaining temperature control, since the potential
energy does not diverge when particles come into contact, unlike the WCA and point-
charge Coulomb potentials. As such, we can achieve a further four-fold performance
boost by using a step size of 𝑡 = 0.02𝜏 in GCMe, enabling an OpenMM simulation
of a slab system with image charges that is up to 34× faster than a comparable system
simulated with WCA and Coulomb potentials. Remarkably, this speedup does not
even account for the multiple orders of magnitude faster dynamics from the removal
of the caging effect [44], which further extends the physical time and length scales
attainable with a soft-core model like GCMe.
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4.5 Conclusion
In conclusion, we have developed and implemented GCMe, a soft-core model for
MD simulations that combines the GCM and smeared electrostatic interactions and
is directly compatible with the models used in recent theoretical studies [11, 12, 28–
31, 37] to study charged soft matter systems. The key feature of GCMe lies in its soft
interaction potentials, which have clear physical origins and can accurately capture
the weaker packing effects and short-range electrostatics in deformable organic
molecules and systems with strong coarse-graining. Moreover, the excluded volume
and electrostatic potentials do not diverge when particles overlap, allowing larger
simulation timesteps to be taken. This, when combined with the optimized GPU-
accelerated framework in the high-performance OpenMM toolkit, gives our GCMe
implementation class-leading efficiency among similar coarse-grained simulation
methods. Our benchmarks show that GCMe in OpenMM is at least 8× faster than
the only existing GCMe implementation currently available, and can be up to 34×
faster than the coarse-grained methods we had access to in our recent study [58]. This
significant performance improvement enables simulating systems with hundreds of
thousands of charged particles (corresponding to millions of atoms) over time scales
on the order of milliseconds in just a few hours on modern computer hardware.

As we are interested in modeling coarse-grained soft matter systems using GCMe, we
have generically parametrized it by determining a relationship between the repulsion
parameter 𝐴𝑖 𝑗 and the dimensionless compressibility of water, a common solvent.
In principle, GCMe can model more realistic systems by rigorously parametrizing
them with important effects and properties accounted for, such as particle size
asymmetry, solvent type and quality, and explicit ion polarizability. In our current
implementation, our study was limited to systems with parallel planar surfaces
with infinite permittivity or the same permittivity as the electrolyte due to the
use of the efficient method of image charges to model boundary polarization effects.
However, GCMe can readily be expanded to surfaces with arbitrary permittivities and
complex geometries (e.g., curved, cylindrical [59], spherical [60], and undulating
surfaces [61, 62]) by employing more sophisticated methods, such as the induced
charge computation method [63, 64] and the constant potential method [65, 66], to
capture the polarization effects. We expect GCMe to be able to integrate with these
polarization methods since it already uses discrete smeared charges to represent
surface particles.

With the system-specific parametrization and the innate efficiency of our model, we
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expect GCMe to be able to predict and explore rich bulk and interfacial phenomena
in a wide variety of large soft matter systems over long time scales. In particular,
we envision GCMe being useful for investigating the thermodynamics and charge
transport in highly concentrated electrolytes, where anomalous phenomena like
underscreening [67, 68] have been reported.

4.6 Appendix
Derivation of the excluded volume interaction potential
For a particle 𝑖 with mass 𝑚𝑖, its smeared density 𝜌𝑖 over radius 𝜎𝑖 is

𝜌𝑖 (r) =
(

3
2𝜋𝜎2

𝑖

)3/2

exp

[
−3(r − r𝑖)2

2𝜎2
𝑖

]
.

The excluded volume interaction potential between two particles 𝑖 and 𝑗 is

𝑢𝑒𝑥 (𝑟𝑖 𝑗 ) = 𝐴𝑖 𝑗

∫
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Evaluating the Gaussian integral over three dimensions gives

𝑢ex(𝑟𝑖 𝑗 ) = 𝐴𝑖 𝑗
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where 𝜎2
𝑖 𝑗
= 𝜎2

𝑖
+ 𝜎2

𝑗
.

Derivation of the smeared electrostatic interaction potential
The Fourier and inverse Fourier transforms are

𝑓 (k) =
∫

𝑓 (r) exp (−𝑖k · r) 𝑑r ←→ 𝑓 (r) = 1
(2𝜋)3

∫
𝑓 (k) exp (𝑖k · r) 𝑑k.

For an ion 𝑖 with charge 𝑞𝑖 = 𝑧𝑖𝑒, its smeared charge density 𝜌𝑖 over radius 𝑎𝑖 is

𝜌𝑖 (r) =
𝑧𝑖𝑒

(2𝑎2
𝑖
)3/2

exp

[
−𝜋 (r − r𝑖)2

2𝑎2
𝑖

]
. (4.11)

The electrostatic interaction potential between two particles 𝑖 and 𝑗 is

𝑢Coul(𝑟𝑖 𝑗 ) =
∫

𝜌𝑖 (r) 𝐶 (r − r′) 𝜌 𝑗 (r′) 𝑑r′ 𝑑r, (4.12)

where 𝐶 (r − r′) = (4𝜋𝜀0𝜀r |r − r′|)−1 is the Coulomb operator.
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With 𝑟 = |r| and the change of variable r̄ = r−r′, the Fourier transform of𝐶 (r − r′)
multiplied by a Yukawa-type function exp (−𝜆 |r̄|) that tends to 1 as 𝜆→ 0 is

�̂� (k) = lim
𝜆→0

∫
1

4𝜋𝜀0𝜀r |r̄|
exp (−𝑖k · r̄) exp (−𝜆 |r̄|) 𝑑r̄

=
1

4𝜋𝜀0𝜀r
lim
𝜆→0

∫
exp (−𝑖𝑘𝑟 cos 𝜃 − 𝜆𝑟)

𝑟
𝑑r̄.

(4.13)

Integrating Eq. 4.13 in the spherical coordinate system using an 𝑢-substitution
𝑢 = cos 𝜃 and then by parts,
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lim
𝜆→0

∫ ∞

0
sin (𝑘𝑟) exp (−𝜆𝑟) 𝑑𝑟

=
1

𝜀0𝜀r𝑘
lim
𝜆→0

𝑘

𝜆2 + 𝑘2 =
1

𝜀0𝜀r𝑘2 .

(4.14)

With the change of variable r̄ ≡ r − r𝑖, the Fourier transform of Eq. 4.11 is

�̂�𝑖 (k) =
𝑧𝑖𝑒

(2𝑎2
𝑖
)3/2

∫
exp

[
−

(
𝜋r̄ · r̄
2𝑎2

𝑖

+ 𝑖k · r̄
)]

𝑑r̄ = 𝑧𝑖𝑒 exp

(
−
𝑎2
𝑖
𝑘2

2𝜋

)
. (4.15)

Substituting Eqs. 4.14 and 4.15 into Eq. 4.12 and taking the inverse Fourier transform
by integrating over all r and r′ and using the definition of a delta function 𝛿(r) =
(2𝜋)−3

∫
exp (𝑖k · r) 𝑑k,

𝑢elec(𝑟𝑖 𝑗 ) =
𝑧𝑖𝑧 𝑗𝑒

2

(2𝜋)9𝜀0𝜀r

∫
e−(𝑎

2
𝑖
𝑘2

1+𝑎
2
𝑗
𝑘2

3)/(2𝜋)e𝑖k1·(r−r𝑖)+𝑖k2·(r−r′)+𝑖k3·(r′−r 𝑗)

𝑘2
2

𝑑r′ 𝑑r 𝑑k1 𝑑k2 𝑑k3

=
𝑧𝑖𝑧 𝑗𝑒

2

(2𝜋)3𝜀0𝜀r

∫ exp
[
𝑖𝑘𝑟𝑖 𝑗 cos 𝜃 − 𝑎2

𝑖 𝑗
𝑘2/(2𝜋)

]
𝑘2 𝑑k,

(4.16)

where 𝑎2
𝑖 𝑗
= 𝑎2

𝑖
+ 𝑎2

𝑗
and 𝑟𝑖 𝑗 =

��r𝑖 − r 𝑗

��.
Integrating Eq. 4.16 in the spherical coordinate system using an 𝑢-substitution
𝑢 = cos 𝜃, the definition 2 sin (𝑘𝑟𝑖 𝑗 )/𝑘 =

∫ 𝑟𝑖 𝑗

−𝑟𝑖 𝑗 exp (𝑖𝑘𝑠) 𝑑𝑠, and a change of variables
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𝑠 = (21/2𝑎𝑖 𝑗/𝜋1/2)𝑡,

𝑢elec(𝑟𝑖 𝑗 ) =
𝑧𝑖𝑧 𝑗𝑒

2

(2𝜋)3𝜀0𝜀r

∫ ∞

0
𝑘2

∫ 𝜋

0
sin 𝜃

∫ 2𝜋

0

exp
[
𝑖𝑘𝑟𝑖 𝑗 cos 𝜃 − 𝑎2

𝑖 𝑗
𝑘2/(2𝜋)

]
𝑘2 𝑑𝜑 𝑑𝜃 𝑑𝑘

=
𝑧𝑖𝑧 𝑗𝑒

2

(2𝜋)2𝜀0𝜀r𝑟𝑖 𝑗

∫ ∞

0

2 sin (𝑘𝑟𝑖 𝑗 )
𝑘

exp

(
−
𝑎2
𝑖 𝑗
𝑘2

2𝜋

)
𝑑𝑘

=
𝑧𝑖𝑧 𝑗𝑒

2

23/2𝜋𝜀0𝜀r𝑎𝑖 𝑗𝑟𝑖 𝑗

∫ 𝑟𝑖 𝑗

0
exp

(
− 𝜋

2𝑎2
𝑖 𝑗

𝑠2

)
𝑑𝑠

=
𝑧𝑖𝑧 𝑗𝑒

2

4𝜋𝜀0𝜀r𝑟𝑖 𝑗
erf

(
𝜋1/2

21/2𝑎𝑖 𝑗
𝑟𝑖 𝑗

)
.

Limits of the GCMe interaction potentials
When the separation distance between particles become very large (𝑟𝑖 𝑗 → ∞) or
when the electrostatic smearing radius approaches zero (𝑎𝑖 𝑗 → 0), the smeared
electrostatic potential converges to the Coulomb potential as expected:

lim
𝑟𝑖 𝑗→∞

𝑢elec(𝑟𝑖 𝑗 ) =
𝑧𝑖𝑧 𝑗𝑒

2

4𝜋𝜀0𝜀r𝑟𝑖 𝑗
lim

𝑟𝑖 𝑗→∞

[
erf

(
𝜋1/2

,
21/2𝑎𝑖 𝑗𝑟𝑖 𝑗

)]
=

𝑧𝑖𝑧 𝑗𝑒
2

4𝜋𝜀0𝜀r𝑟𝑖 𝑗
,

lim
𝑎𝑖 𝑗→0

𝑢elec(𝑟𝑖 𝑗 ) =
𝑧𝑖𝑧 𝑗𝑒

2

4𝜋𝜀0𝜀r𝑟𝑖 𝑗
lim
𝑎𝑖 𝑗→0

[
erf

(
𝜋1/2

21/2𝑎𝑖 𝑗
𝑟𝑖 𝑗

)]
=

𝑧𝑖𝑧 𝑗𝑒
2

4𝜋𝜀0𝜀r𝑟𝑖 𝑗
.

When the separation distance between particles become very small (𝑟𝑖 𝑗 → 0), the
excluded volume and smeared electrostatic potentials have the values

lim
𝑟𝑖 𝑗→0

𝑢ex(𝑟𝑖 𝑗 ) = 𝐴𝑖 𝑗

(
3

2𝜋𝜎2
𝑖 𝑗

)3/2

lim
𝑟𝑖 𝑗→0

[
exp

(
− 3

2𝜎2
𝑖 𝑗

𝑟2
𝑖 𝑗

)]
= 𝐴𝑖 𝑗

(
3

2𝜋𝜎2
𝑖 𝑗

)3/2

and

erf
(

𝜋1/2

21/2𝑎𝑖 𝑗
𝑟𝑖 𝑗

)
=

21/2

𝑎𝑖 𝑗
𝑟𝑖 𝑗 + O(𝑟3

𝑖 𝑗 ) −→ lim
𝑟𝑖 𝑗→0

𝑢elec(𝑟𝑖 𝑗 ) =
𝑧𝑖𝑧 𝑗𝑒

2

23/2𝜋𝜀0𝜀r𝑎𝑖 𝑗
.

If ions 𝑖 and 𝑗 have the same Born radii 𝑎 = 𝑎𝑖 = 𝑎 𝑗 , the smeared electrostatic
potential as 𝑟𝑖 𝑗 → 0 becomes

lim
𝑟𝑖 𝑗→0

𝑢elec(𝑟𝑖 𝑗 ) ≈
𝑧𝑖𝑧 𝑗𝑒

2

4𝜋𝜀0𝜀r𝑎
.

The self-energy of an ion 𝑖 is

𝑢elec, self =
1
2

lim
𝑟𝑖𝑖→0

𝑢elec(𝑟𝑖𝑖) ≈
𝑧2
𝑖
𝑒2

8𝜋𝜀0𝜀r𝑎𝑖
, (4.17)

which is simply the Born energy [37].
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Ewald summation

(a)

real

with self (i = j) with others (i 6= j)

reciprocal

correction

self-energy

total

Figure 4.2: Schematic representations of the real-space, reciprocal-space, and self-
energy contributions to the Ewald summations for point charges. The vertical lines
and wide distributions represent point charges and screening/compensating charge
distributions, respectively, each with charge magnitude |𝑞𝑖 | = 𝑒.
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(b)

real

with self (i = j) with others (i 6= j)

reciprocal

correction

self-energy

total

Figure 4.3: Schematic representations of the real-space, reciprocal-space, correc-
tion, and self-energy contributions to the Ewald summations for GCMe smeared
charges. The vertical lines, narrow distributions, and wide distributions represent
point charges, GCMe smeared charges, and screening/compensating charge distri-
butions, respectively, each with charge magnitude |𝑞𝑖 | = 𝑒. Note that the correction
term is subtracted in the summation.
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Most probable pair separation distance
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Figure 4.4: Radial distribution function 𝑔(𝑟) for uncharged nonbonded particles
interacting via the parameterized GCMe with 𝑁m = 4. The oscillations indicate a
pronounced liquid structure. The first peak, indicated by the dotted line, is the most
probable separation distance between two particles.

Scaling law for polymer in athermal solvent
For a polymer in an athermal solvent, the radius of gyration scales as 𝑅g ≈ 𝑏𝑁3/5,
where 𝑏 is the bond length and 𝑁 is the chain length [69].

To test whether GCMe polymers can get the correct scaling, we simulated neutral
systems with 𝑀 = 1 polymer chain with varying chain lengths 𝑁 and explicit solvent
particles in the canonical (NVT) ensemble at temperature 𝑇 = 300 K. The chain
connectivity is modeled by a harmonic bond potential

𝑢harm(𝑟𝑖 𝑗 ) =
1
2
𝑘 (𝑟𝑖 𝑗 − 𝑏)2, (4.18)

where 𝑘 = 100𝑘B𝑇/𝑑2 is the force constant. The monomer–monomer, monomer–
solvent, and solvent–solvent interactions are identical to approximate an athermal
solvent. Indeed, the fits of the 𝑅g–𝑁 relationships for equilibrium bond lengths
𝑏 = 0.7𝑑 and 𝑏 = 0.8𝑑 in Fig. 4.5 give 𝑅g ∼ 𝑁0.592 and 𝑅g ∼ 𝑁0.599, respectively,
which agree with the scaling law.
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b = 0.7d → Rg ∼ N0.592

b = 0.8d → Rg ∼ N0.599

Figure 4.5: Radius of gyration 𝑅g as a function of the chain length 𝑁 and the
equilibrium bond length 𝑏. The dashed lines are fits of the raw data.

Flory–Huggins parameter mapping
Since the GCM is phenomenologically equivalent to and can be considered a contin-
uous version of the lattice-based Flory–Huggins (FH) theory [49, 50], it can be used
to study liquid–liquid and liquid–solid interfaces. For a binary polymer mixture of
𝐴 and 𝐵 chains, the FH theory gives a free energy per unit volume 𝑓 of

𝑓

𝑘B𝑇
=

𝜙𝐴

𝑁p, 𝐴
ln 𝜙𝐴 +

𝜙𝐵

𝑁p, 𝐵
ln 𝜙𝐵 + 𝜒𝜙𝐴𝜙𝐵,

where 𝜙𝐴 and 𝜙𝐵 are the volume fractions of components 𝐴 and 𝐵 (with 𝜙𝐴+𝜙𝐵 = 1
such that all lattice sites are filled), 𝑁p, 𝐴 and 𝑁p, 𝐵 are the chain lengths of the 𝐴

and 𝐵 chains, and 𝜒 is a free mixing parameter. The sign of 𝜒 dictates the nature
of the interactions between the 𝐴 and 𝐵 components: 𝐴–𝐴 and 𝐵–𝐵 contacts are
favored when 𝜒 > 0 while 𝐴–𝐵 interactions are preferred when 𝜒 < 0. When 𝜒

gets sufficiently large, there are two minima separated by a maximum in the free
energy curve, as shown in Fig. 4.6, indicating an equilibrium phase-separated state
with 𝐴- and 𝐵-rich domains. If the chain lengths are equal (𝑁p = 𝑁p, 𝐴 = 𝑁p, 𝐵), the
minimum free energy is located at 𝜇 = 𝜕 𝑓 /𝜕𝜙𝐴 = 0, or

𝜒𝑁p =
ln [(1 − 𝜙𝐴)/𝜙𝐴]

1 − 2𝜙𝐴

. (4.19)

In the GCM, the 𝜒 parameter can be modeled by the excess repulsion parameter
Δ𝐴 = 𝐴𝐴𝐵 − 𝐴𝐴𝐴, with 𝐴𝐴𝐴 = 𝐴𝐵𝐵. As a first step to map Δ𝐴 to the 𝜒 parameter,
we ran a series of MD simulations of 𝐴 and 𝐵 monomers in the canonical (𝑁𝑉𝑇)
ensemble at temperature𝑇 = 300 K and varyingΔ𝐴 values, with each system having
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Figure 4.6: Free energy 𝑓 (solid line) and chemical potential 𝜇 (dashed line) in the
FH theory for 𝑁p = 1 and 𝜒 = 3. The dotted lines indicate the coexistence volume
fractions and the corresponding free energy.

dimensions of 20𝑑 × 20𝑑 × 50𝑑 and 𝑁𝐴 = 𝑁𝐵 = 25, 000 particles of each type. The
initial macrophase-separated configurations were generated by randomly placing
only 𝐴 or 𝐵 particles in the left and right halves of the simulation box, respectively.
For each simulation, energy minimization and system equilibration were performed
over 5× 106 timesteps of step size 𝑡 = 0.01𝜏, and data was collected over at least an
additional 2 × 107 timesteps, which is on the order of 630 ns.

To determine the 𝜒–Δ𝐴 relationship, we first computed the number density profiles
of 𝐴 and 𝐵 particles across the interface by binning the 𝑧-axis into intervals, counting
the number of relevant particles, and dividing the counts by the volume of the bins.
Selected number density profiles are shown in Fig. 4.7. Then, the volume fraction
𝜙𝐴 = 𝜌𝐴/(𝜌𝐴 + 𝜌𝐵) for each Δ𝐴 value was evaluated using the average values of
𝜌𝐴 and 𝜌𝐵 over the 𝐴-rich domain where the total number density is homogeneous.
Finally, the 𝜒 values were calculated by substituting the 𝜙𝐴 values into Eq. 4.19.
Fig. 4.8 shows that 𝜒 is linearly proportional to Δ𝐴, and linear regression over the
intermediate Δ𝐴 regime yields the explicit scaling

𝜒 = 41.15Δ𝐴/𝐴𝐴𝐴 = 1.63Δ𝐴/(𝑑3𝑘B𝑇) (4.20)

for systems with a number density of 𝜌 = 2.5𝑑−3. As such, Eq. 4.20 is an effective
mapping of the GCM onto the FH theory.



67

0 10 20 30 40 50

z/d

0.0

0.5

1.0

1.5

2.0

2.5

ρ
id

3

(a)

Species i
A
B

0 10 20 30 40 50

z/d

0.0

0.5

1.0

1.5

2.0

2.5

ρ
id

3

(b)

Species i
A
B

0 10 20 30 40 50

z/d

0.0

0.5

1.0

1.5

2.0

2.5

ρ
id

3

(c)

Species i
A
B

Figure 4.7: Number density profiles 𝜌𝑖 (𝑧) of the 𝐴 and 𝐵 particles at excess repulsion
parameters Δ𝐴/𝐴𝐴𝐴 of (a) 0.050, (b) 0.075, and (c) 0.100 in the Gaussian core
model.
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Figure 4.8: The Flory–Huggins 𝜒 parameter as a function of the excess repulsion
parameter Δ𝐴 for systems with a number density of 𝜌 = 2.5𝑑−3. The dotted line
shows the best linear fit.

References

(1) Ye, B. B.; Chen, S.; Wang, Z.-G. J. Chem. Theory Comput. 2024, acs.jctc.4c00603,
DOI: 10.1021/acs.jctc.4c00603.

(2) Gartner, T. E.; Jayaraman, A. Macromolecules 2019, 52, 755–786, DOI:
10.1021/acs.macromol.8b01836.

(3) Joshi, S. Y.; Deshmukh, S. A. Mol. Simul. 2021, 47, 786–803, DOI: 10.
1080/08927022.2020.1828583.

(4) Nielsen, S. O.; Lopez, C. F.; Srinivas, G.; Klein, M. L. J. Phys.: Condens.
Matter 2004, 16, R481–R512, DOI: 10.1088/0953-8984/16/15/R03.

(5) Ingólfsson, H. I.; Lopez, C. A.; Uusitalo, J. J., et al. WIREs Comput. Mol. Sci.
2014, 4, 225–248, DOI: 10.1002/wcms.1169.

(6) Brini, E.; Algaer, E. A.; Ganguly, P., et al. Soft Matter 2013, 9, 2108–2119,
DOI: 10.1039/C2SM27201F.

(7) Fredrickson, G. H.; Ganesan, V.; Drolet, F. Macromolecules 2002, 35, 16–39,
DOI: 10.1021/ma011515t.

(8) Lee, J.; Popov, Y. O.; Fredrickson, G. H. J. Chem. Phys. 2008, 128, 224908,
DOI: 10.1063/1.2936834.

(9) Matsen, M. W. J. Chem. Phys. 2020, 152, 110901, DOI: 10.1063/1.
5145098.

(10) Fredrickson, G. H.; Delaney, K. T., Field-theoretic simulations in soft mat-
ter and quantum fluids; International series of monographs on physics 173;
Oxford University Press: New York, NY, 2023, DOI: 10 . 1093 / oso /
9780192847485.



69

(11) Villet, M. C.; Fredrickson, G. H. J. Chem. Phys. 2014, 141, 224115, DOI:
10.1063/1.4902886.

(12) Delaney, K. T.; Fredrickson, G. H. J. Phys. Chem. B 2016, 120, 7615–7634,
DOI: 10.1021/acs.jpcb.6b05704.

(13) Lequieu, J. J. Chem. Phys. 2023, 158, 244902, DOI: 10.1063/5.0153104.

(14) Jorgensen, W. L.; Madura, J. D.; Swenson, C. J. J. Am. Chem. Soc. 1984, 106,
6638–6646, DOI: 10.1021/ja00334a030.

(15) Jorgensen, W. L.; Swenson, C. J. J. Am. Chem. Soc. 1985, 107, 569–578,
DOI: 10.1021/ja00289a008.

(16) Jorgensen, W. L. J. Phys. Chem. 1986, 90, 1276–1284, DOI: 10.1021/
j100398a015.

(17) Souza, P. C. T.; Alessandri, R.; Barnoud, J., et al. Nat. Methods. 2021, 18,
382–388, DOI: 10.1038/s41592-021-01098-3.

(18) Kremer, K.; Grest, G. S. J. Chem. Phys. 1990, 92, 5057–5086, DOI: 10.
1063/1.458541.

(19) Frisch, H. L. Science 1965, 150, 1249–1254, DOI: 10.1126/science.150.
3701.1249.

(20) Hoogerbrugge, P. J.; Koelman, J. M. V. A. Europhys. Lett. 1992, 19, 155–160,
DOI: 10.1209/0295-5075/19/3/001.

(21) Español, P.; Warren, P. Europhys. Lett. 1995, 30, 191–196, DOI: 10.1209/
0295-5075/30/4/001.

(22) Groot, R. D.; Warren, P. B. J. Chem. Phys. 1997, 107, 4423–4435, DOI:
10.1063/1.474784.

(23) Groot, R. D. J. Chem. Phys. 2003, 118, 11265–11277, DOI: 10.1063/1.
1574800.

(24) Berne, B. J.; Pechukas, P. J. Chem. Phys. 1972, 56, 4213–4216, DOI: 10.
1063/1.1677837.

(25) Stillinger, F. H. J. Chem. Phys. 1976, 65, 3968–3974, DOI: 10.1063/1.
432891.

(26) Prestipino, S.; Saija, F.; Giaquinta, P. V. Phys. Rev. E 2005, 71, 050102, DOI:
10.1103/PhysRevE.71.050102.

(27) Ruppeiner, G.; Mausbach, P.; May, H.-O. Fluid Phase Equilib. 2021, 542-543,
113033, DOI: 10.1016/j.fluid.2021.113033.

(28) Guenza, M. Phys. Rev. Lett. 2001, 88, 025901, DOI:10.1103/PhysRevLett.
88.025901.

(29) Guenza, M. Macromolecules 2002, 35, 2714–2722, DOI:10.1021/ma011596t.



70

(30) McCarty, J.; Delaney, K. T.; Danielsen, S. P. O.; Fredrickson, G. H.; Shea, J.-E.
J. Phys. Chem. Lett. 2019, 10, 1644–1652, DOI: 10.1021/acs.jpclett.
9b00099.

(31) Shen, K.; Sherck, N.; Nguyen, M., et al. J. Chem. Phys. 2020, 153, 154116,
DOI: 10.1063/5.0022808.

(32) Jedlinska, Z. M.; Tabedzki, C.; Gillespie, C., et al. J. Chem. Phys. 2023, 159,
014108, DOI: 10.1063/5.0145006.

(33) Warren, P. B.; Vlasov, A.; Anton, L.; Masters, A. J. J. Chem. Phys. 2013, 138,
204907, DOI: 10.1063/1.4807057.

(34) Kiss, P. T.; Sega, M.; Baranyai, A. J. Chem. Theory Comput. 2014, 10, 5513–
5519, DOI: 10.1021/ct5009069.

(35) Eslami, H.; Khani, M.; Müller-Plathe, F. J. Chem. Theory Comput. 2019, 15,
4197–4207, DOI: 10.1021/acs.jctc.9b00174.

(36) Kung, W.; Olvera De La Cruz, M. J. Chem. Phys. 2007, 127, 244907, DOI:
10.1063/1.2822277.

(37) Wang, Z.-G. Phys. Rev. E 2010, 81, 021501, DOI: 10.1103/PhysRevE.81.
021501.

(38) Ewald, P. P. Ann. Phys. 1921, 369, 253–287, DOI:10.1002/andp.19213690304.

(39) Gingrich, T. R.; Wilson, M. Chem. Phys. Lett. 2010, 500, 178–183, DOI:
10.1016/j.cplett.2010.10.010.

(40) Coslovich, D.; Hansen, J.-P.; Kahl, G. J. Chem. Phys. 2011, 134, 244514,
DOI: 10.1063/1.3602469.

(41) Darden, T.; York, D.; Pedersen, L. J. Chem. Phys. 1993, 98, 10089–10092,
DOI: 10.1063/1.464397.

(42) Essmann, U.; Perera, L.; Berkowitz, M. L., et al. J. Chem. Phys. 1995, 103,
8577–8593, DOI: 10.1063/1.470117.

(43) Toukmaji, A. Y.; Board, J. A. Comput. Phys. Commun. 1996, 95, 73–92, DOI:
10.1016/0010-4655(96)00016-1.

(44) Groot, R.; Rabone, K. Biophys. J. 2001, 81, 725–736, DOI: 10.1016/S0006-
3495(01)75737-2.

(45) Guenza, M. G.; Dinpajooh, M.; McCarty, J.; Lyubimov, I. Y. J. Phys. Chem.
B 2018, 122, 10257–10278, DOI: 10.1021/acs.jpcb.8b06687.

(46) Lyubimov, I.; Guenza, M. G. Phys. Rev. E 2011, 84, 031801, DOI: 10.1103/
PhysRevE.84.031801.

(47) Lyubimov, I. Y.; Guenza, M. G. J. Chem. Phys. 2013, 138, 12A546, DOI:
10.1063/1.4792367.



71

(48) Li, X.; Gao, L.; Fang, W. PLoS ONE 2016, 11, ed. by Huang, X., e0154568,
DOI: 10.1371/journal.pone.0154568.

(49) Flory, P. J. J. Chem. Phys. 1941, 9, 660–660, DOI: 10.1063/1.1750971.

(50) Huggins, M. L. J. Chem. Phys. 1941, 9, 440–440, DOI: 10 . 1063 / 1 .
1750930.

(51) Eastman, P.; Swails, J.; Chodera, J. D., et al. PLoS Comput. Biol. 2017, 13,
ed. by Gentleman, R., e1005659, DOI: 10.1371/journal.pcbi.1005659.

(52) Kondratyuk, N.; Nikolskiy, V.; Pavlov, D.; Stegailov, V. Int. J. High Perform.
Comput. Appl. 2021, 35, 312–324, DOI: 10.1177/10943420211008288.

(53) Pavlov, D.; Kolotinskii, D.; Stegailov, V. In Parallel Processing and Applied
Mathematics, Wyrzykowski, R., Dongarra, J., Deelman, E., Karczewski, K.,
Eds., Series Title: Lecture Notes in Computer Science; Springer International
Publishing: Cham, 2023; Vol. 13826, pp 346–358, DOI: 10.1007/978-3-
031-30442-2_26.

(54) Thompson, A. P.; Aktulga, H. M.; Berger, R., et al. Comput. Phys. Commun.
2022, 271, 108171, DOI: 10.1016/j.cpc.2021.108171.

(55) Bureekaew, S.; Amirjalayer, S.; Tafipolsky, M., et al. Phys. Status Solidi B
2013, 250, 1128–1141, DOI: 10.1002/pssb.201248460.

(56) Son, C. Y.; Wang, Z.-G. Proc. Natl. Acad. Sci. U.S.A. 2021, 118, e2020615118,
DOI: 10.1073/pnas.2020615118.

(57) Dwelle, K. A.; Willard, A. P. J. Phys. Chem. C 2019, 123, 24095–24103,
DOI: 10.1021/acs.jpcc.9b06635.

(58) Ye, B. B.; Wang, Z.-G. Phys. Chem. Chem. Phys. 2022, 24, 11573–11584,
DOI: 10.1039/D2CP00166G.

(59) Feng, G.; Li, S.; Atchison, J. S.; Presser, V.; Cummings, P. T. J. Phys. Chem.
C 2013, 117, 9178–9186, DOI: 10.1021/jp403547k.

(60) Feng, G.; Jiang, D.-e.; Cummings, P. T. J. Chem. Theory Comput. 2012, 8,
1058–1063, DOI: 10.1021/ct200914j.

(61) Wu, H.; Li, H.; Solis, F. J.; Olvera De La Cruz, M.; Luijten, E. J. Chem. Phys.
2018, 149, 164701, DOI: 10.1063/1.5047550.

(62) Pogharian, N.; Dos Santos, A. P.; Ehlen, A.; Olvera De La Cruz, M. J. Chem.
Phys. 2024, 160, 094704, DOI: 10.1063/5.0185570.

(63) Boda, D.; Gillespie, D.; Nonner, W.; Henderson, D.; Eisenberg, B. Phys. Rev.
E 2004, 69, 046702, DOI: 10.1103/PhysRevE.69.046702.

(64) Nguyen, T. D.; Li, H.; Bagchi, D.; Solis, F. J.; Olvera De La Cruz, M. Comput.
Phys. Commun. 2019, 241, 80–91, DOI: 10.1016/j.cpc.2019.03.006.



72

(65) Siepmann, J. I.; Sprik, M. J. Chem. Phys. 1995, 102, 511–524, DOI: 10.
1063/1.469429.

(66) Reed, S. K.; Lanning, O. J.; Madden, P. A. J. Chem. Phys. 2007, 126, 084704,
DOI: 10.1063/1.2464084.

(67) Smith, A. M.; Lee, A. A.; Perkin, S. J. Phys. Chem. Lett. 2016, 7, 2157–2163,
DOI: 10.1021/acs.jpclett.6b00867.

(68) Huang, J. J. Phys. Chem. C 2018, 122, 3428–3433, DOI: 10.1021/acs.
jpcc.7b11093.

(69) Rubinstein, M.; Colby, R. H., Polymer physics; Oxford University Press:
Oxford ; New York, 2003.



73

C h a p t e r 5

CHAIN LENGTH AND SURFACE POLARIZABILITY EFFECTS
IN POLYMERIC IONIC LIQUIDS

Building on our previous work on monomeric room-temperature ionic liquids
(RTILs) and transitioning to the polyelectrolyte systems we aim to explore, this chap-
ter examines polymeric ionic liquid (PIL) electric double-layer capacitors (EDLCs).
PILs share many of the advantageous physicochemical properties of RTILs while
benefitting from the increased stability and design versatility inherent to polyelec-
trolytes, positioning them as prime electrolyte candidates for electrochemical and
electromechanical devices. Although recent experimental and theoretical studies
have highlighted the wide electrochemical windows and exceptionally high electri-
cal double-layer (EDL) capacitance of PILs, the underlying physical mechanisms
remain unclear due to a lack of particle-based theoretical or simulation models. To
address this gap, we utilize the Gaussian core model with smeared electrostatics
(GCMe) to systematically investigate the effects of the potential difference, relative
permittivity, chain length, and electrode polarizability on the EDL structure and ca-
pacitance behavior. This study aims to provide a deeper understanding of the factors
influencing the performance of PIL EDLCs and contribute to their development.

5.1 Introduction
Polymeric ionic liquids (PILs) are a distinct class of polymers composed of ionic
liquid monomeric units [1]. They exhibit an unique combination of the advan-
tageous properties of ionic liquids and the sequence complexity and mechanical
characteristics of polyelectrolytes [2, 3]. Like monomeric room-temperature ionic
liquids (RTILs), PILs have low volatility [2–4], high chemical and thermal stabil-
ity [2–5], and broad electrochemical windows [2, 4]. Additionally, they possess
superior mechanical stability and are leakage-proof compared to their monomeric
counterparts, owing to their polymeric backbones [2, 3, 6]. Notably, PILs have been
shown to be able to overcome the typical trade-offs between mechanical strength
and conductivity in polymer electrolytes [3, 7–11], achieving both high mechanical
stability and ionic conductivity [5, 8, 12–14]. These distinctive physicochemical
properties have attracted significant attention to PILs in recent years and made them
prime candidates for a variety of applications, including drug delivery [4, 15–17],
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catalysts [4, 18], precursors [3, 5, 19], surfactants [3, 5], and the design of smart
materials [5].

One of the most notable applications of PILs is in electrochemical devices [2–
6, 20], such as electric double-layer capacitors (EDLCs). A key performance
indicator of an EDLC is its energy density, which is determined by the electrical
double-layer (EDL) structure at the ion–electrode interface and influenced by the
choice of the electrolyte and the electrode, and cyclability. The energy 𝑈 that an
EDLC can store scales as 𝐶𝑉2/2, where 𝐶 is the capacitance and 𝑉 is the voltage,
so PILs are excellent electrolytes due to their wide operational voltage windows,
high mechanical stability, and high conductivity. Indeed, experimental [21] and
theoretical studies [22] of oligomeric ionic liquids have demonstrated exceptionally
high EDL capacitance that surpasses what is possible with monomeric RTILs.

However, the molecular description of the EDLs in PIL EDLCs and the underlying
physics behind this energy density improvement from RTIL EDLCs to PIL EDLCs
are not fully understood, largely due to a lack of particle-based theoretical studies
and computer simulations. To address this gap, we use the Gaussian core model with
smeared electrostatics (GCMe) established in the previous chapter to systematically
investigate the effects of the chain length and electrolyte and electrode polarizabilities
on the energy storage of PIL EDLCs.

5.2 Model and methods
Simulations were carried out using OpenMM [23] in the canonical ensemble with
𝑁p = 10, 000 equisized charged monomers and a temperature of 𝑇 = 300 K.
Following our parametrization of the GCMe previously, the system has a number
density of 𝜌𝑑3 = 2.5, and the ions are approximately the size of a (CH2)3 group
in a straight-chain alkane (𝑁𝑚 = 4, 𝑑 = 0.592 nm, 𝑚 = 72.1 g/mol). The solvent-
free electrolyte consists solely of symmetric (poly)anions and (poly)cations with
the same chain length 𝑁 . The chain connectivity is modeled by a harmonic bond
potential

𝑢harm(𝑟𝑖 𝑗 ) =
1
2
𝑘𝑖 𝑗 (𝑥𝑖 𝑗 − 𝑏𝑖 𝑗 )2, (5.1)

where 𝑘𝑖 𝑗 = 100𝑘B𝑇/𝑑2 is the force constant and 𝑏𝑖 𝑗 = 0.7𝑑 is the equilibrium bond
length. These bond parameters align with those typically used in conjunction with
soft-core models [24–26]. The electrolyte polarization is implicitly accounted for
using a dielectric continuum with the relative permittivity of either a typical ionic
liquid (𝜀r = 12) [27–29] or water (𝜀r = 78).



75

The real systems are initialized by first determining the 𝐿𝑥 and 𝐿𝑦 values that will
accommodate the periodic placement of the surface particles, which are half the
size of the electrolyte particles and arranged in a hexagonal close-packed lattice,
and then 𝐿𝑧, which is constrained by the number of particles and number density.
For the parameters we chose, our real systems have dimensions of approximately
12.5𝑑 × 12.99𝑑 × 49.27𝑑. Then, the system is randomly filled with 𝑁p ions or
𝑀 ≡ 𝑁p/𝑁 polyelectrolytes, and undergoes a local energy minimization. Finally,
for the systems with perfectly conducting boundaries, the simulation box is doubled
in width so that the real system can be reflected over the surface at 𝑧 = 0 to generate
the image charges. For the systems with nonmetal boundaries with no image charges,
the 𝑧-dimension of the simulation box is instead tripled to introduce a sufficiently
large void between periodic replicas in the 𝑧-direction so that the Yeh–Berkovitz
correction [30, 31] can be used to remove the long-range electrostatic slab–slab
interactions. In either case, because the simulations still have periodic boundary
conditions, we can continue to use the fast PME method to evaluate the long-range
electrostatic interactions, despite the lack of actual periodicity in the 𝑧-direction.

Potential differences Δ𝑉 in the 𝑧-direction are applied using the constant charge
method (CCM), in which charges are assigned to the explicit particles that constitute
the surfaces. Although CCM typically does not maintain electrode equipotentiality,
it does so in systems with perfectly conducting boundaries when the image charge
effect is included [32]. As such, CCM with the method of image charges is equivalent
to the constant potential method or simply applying a uniform electric field 𝐸 =

Δ𝑉/𝐿𝑧 in the 𝑧-direction. The target surface charge density 𝜎𝑞, s is related to the
potential difference via Gauss’s law:

𝑞𝑖,wall

2
=

𝐿𝑥𝐿𝑦𝜎𝑞, s

𝑁wall
=

𝐿𝑥𝐿𝑦𝜀0𝜀r𝐸

𝑁wall
=

𝐿𝑥𝐿𝑦𝜀0𝜀rΔ𝑉

𝐿𝑧𝑁wall
, (5.2)

where 𝑞𝑖,wall is the charge of a surface particle 𝑖, 𝑁wall is the number of particles in
each surface, and 𝜀0 is the vacuum permittivity.

For each simulation, system equilibration was performed over 5 × 106 timesteps
of step size 𝑡 = 0.01𝜏, and data were collected over at least an additional 2 × 107

timesteps, which is on the order of 600 ns.

5.3 Results and discussion
To quantify the energy storage in EDLCs, we calculated the differential capacitance
𝐶d. First, we evaluate the surface charge density, which has been shown [33, 34] to
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be obtainable from the charge density profile 𝜌𝑞 (𝑧) using

⟨𝜎𝑞⟩ = 𝜎𝑞, s + ⟨𝜎𝑞, p⟩ =
𝜀0𝜀𝑟Δ𝑉

𝐿𝑧

− 1
𝐿𝑧

∫ 𝐿𝑧

0
𝑧⟨𝜌𝑞 (𝑧)⟩ 𝑑𝑧, (5.3)

where the static term 𝜎𝑞, s accounts for the applied electric field and the polarization
term 𝜎𝑞, p captures the spatial reorientation of ions in the electrolyte in response
to the potential difference. The voltage-dependent differential capacitance is then
given by

𝐶d =
𝜕⟨𝜎𝑞⟩
𝜕Δ𝑉

, (5.4)

with the area under the 𝐶d–Δ𝑉 curve being proportional to the stored energy in the
EDLC.

We start by examining how the chain length impacts the energy storage in systems
with perfectly conducting electrodes and a high relative permittivity of 𝜀r = 78. As
shown in Fig. 5.1, PIL EDLCs exhibit higher surface charge densities compared to
RTIL EDLCs at all potential differences. This increase in the surface charge density
in PIL EDLCs is driven by the connectivity between the charged monomers. When
an ion is attracted to and moves towards the electrode, it forces adjacent bonded
co-ions to follow, turning the ion–electrode interaction into an effective multivalent
electrostatic interaction. Consequently, the electrodes saturate more quickly with
ions of the same charge in the PIL EDLCs when a potential difference is first applied,
as illustrated in Fig. 5.2.

Figure 5.2: System snapshots of electric double-layer capacitors using (a) a
monomeric room-temperature ionic liquid (𝑁 = 1), (b) a polymeric ionic liquid
with chain length 𝑁 = 2, or (c) a polymeric ionic liquid with chain length 𝑁 = 10 as
the electrolyte with a static surface charge density of 𝜎𝑞, s = 0.0134𝑒/𝑑2 (or applied
potential difference of Δ𝑉 = 5𝑘B𝑇/𝑒) and perfectly conducting electrodes. The blue
and red colors represent the anions and cations, respectively.

Since the differential capacitance represents the change in 𝜎𝑞 with respect to Δ𝑉 ,
we expect the 𝐶d curves to have higher peaks for the PIL EDLCs. Indeed, the
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Figure 5.1: (a) Surface charge density 𝜎𝑞 and (b) differential capacitance 𝐶d as
functions of the potential difference Δ𝑉 for monomeric room-temperature ionic
liquid and polymeric ionic liquid electric double-layer capacitors with high relative
permittivities of 𝜀r = 78 and perfectly conducting electrodes. The black solid line
in (a) denotes the static contributions to 𝜎𝑞 from the potential differences.

peak increases monotonically with the chain length for the PILs that we tested, as
shown in Fig. 5.1b. The capacitance also starts decaying at a lower Δ𝑉 since the
first layer next to the electrode saturates more quickly in PIL EDLCs. Perhaps
more interestingly, the capacitance behavior transitions from a bell-shaped curve for
RTIL EDLCs, as predicted by the Kornyshev model for dense electrolytes [28], to
a camel-shaped one as the chain length increases. This results in two peaks in the
capacitance of the 𝑁 = 10 PIL systems that are no longer centered on Δ𝑉 = 0 but
rather at some moderate Δ𝑉 values of opposite signs. This significantly increases
the area under the 𝐶d–Δ𝑉 curve, greatly enhancing the energy storage potential of
PIL EDLCs. The physical mechanism behind this phenomenon will become clearer
when we look at systems with stronger electrostatics in the discussion that follows.
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Figure 5.3: (a) Surface charge density 𝜎𝑞 and (b) differential capacitance 𝐶d as
functions of the potential difference Δ𝑉 for monomeric room-temperature ionic
liquid and polymeric ionic liquid electric double-layer capacitors with low relative
permittivities of 𝜀r = 12 and perfectly conducting electrodes. The black solid line
in (a) denotes the static contributions to 𝜎𝑞 from the potential differences.

For systems with a lower relative permittivity of 𝜀r = 12, we observed 𝜎𝑞–Δ𝑉
and 𝐶d–Δ𝑉 relationships with behavior similar to those in the 𝜀r = 78 systems in
Fig. 5.3. However, the 𝑁 = 2 PIL system also exhibits two capacitance peaks that
are not centered on Δ𝑉 = 0. Moreover, the range of potential differences over
which the capacitance reaches its peak and begins to decline is now much wider,
providing us with an opportunity to understand why the peak occurs at a non-zero
Δ𝑉 in the 𝑁 = 10 PIL systems. From the system snapshot in Fig. 5.4a, we observe
that oppositely charged polyelectrolytes pair together in an alternating pattern while
adsorbed on the electrodes when a weak potential difference is first applied. As Δ𝑉
increases to moderate values, Fig. 5.4b shows that this ordering begins to disappear,
and polycations start to accumulate on the left electrode in greater numbers than the
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Figure 5.4: System snapshots of electric double-layer capacitors using (d, e) a
monomeric ionic liquid (𝑁 = 1) or (a–c, f) a polymeric ionic liquid with chain
length 𝑁 = 10 as the electrolyte with static surface charge densities of (a, d)
𝜎𝑞, s = 0.0134𝑒/𝑑2 (or applied potential difference of Δ𝑉 = 5𝑘B𝑇/𝑒), (b, e) 𝜎𝑞, s =
0.0536𝑒/𝑑2 (or Δ𝑉 = 20𝑘B𝑇/𝑒), or (c, f) 𝜎𝑞, s = 0.458𝑒/𝑑2, and (a–e) perfectly
conducting or (f) nonmetal electrodes. The blue and red colors represent the anions
and cations, respectively.

polyanions. At even higher Δ𝑉 , the in-plane correlation between the polyanions and
polycations has completely dissipated, and the adlayer comprises only polyanions,
as shown in Fig. 5.4. This breaking of the polyelectrolyte pairs, which allows the
adsorption of only one type of charged species on the electrodes, likely explains the
sharper increases in the surface charge density in PIL EDLCs and the capacitance
peak at some moderate Δ𝑉 since energy is predominantly stored when the EDL
consists of layers with alternating charges away from the electrodes.

In contrast, such enhanced energy storage is not achievable in RTIL EDLCs due to
the absence of collective monomer motion enabled by the connectivity in PILs. As
shown in Figs. 5.4d and e, there is no evident ion pairing in RTIL EDLCs across the
diverse Δ𝑉 values we tested. Hence, cations begin to accumulate on the electrodes
and the anions are repelled, even at low Δ𝑉 . Consequently, the surface charge
density increases most rapidly when a potential difference is first applied, resulting
in a capacitance peak at Δ𝑉 = 0. Similarly, there is no ordering in PIL EDLCs with
nonmetal electrodes, even at high static surface charge densities, because of the lack
of attractive image charge interactions that enable the repelled charged species—the
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polyanions in Fig. 5.4f—to stay adsorbed on the left electrode.

Therefore, PILs can have significantly outperform monomeric RTILs in energy den-
sity when used as the electrolyte in EDLCs with perfectly conducting electrodes.
With PILs, the connectivity between monomers brings multiple co-ions into the
adlayer for each ion drawn to the electrode, resulting in a faster rise in the surface
charge density and a higher capacitance peak. Additionally, the pairing of oppo-
sitely charged polyelectrolytes adsorbed on the electrodes—possible only with the
attractive image charge interactions from perfectly conducting electrodes—leads to
a transition from a bell-shaped capacitance curve to a camel-shaped one. This chain
length effect and in-plane ordering come together to give PIL EDLCs much higher
potential energy storage than RTIL EDLCs.

5.4 Conclusion
In this chapter, we highlighted the critical role of chain length and the influence of
image charges in enhancing the energy density in ionic liquid EDLCs. PIL EDLCs
exhibit higher surface charge densities at all potential differences compared to RTIL
EDLCs due to the bonds between the constituent monomers. This connectivity
enables PILs to saturate the electrodes more quickly with ions of the same charge
when a potential difference is applied. Consequently, PIL EDLCs show higher but
narrower capacitance peaks as the chain length increases.

In PIL EDLCs with perfectly conducting electrodes and utilizing PILs with higher
chain lengths and lower relative permittivities, we also observed an in-plane pairing
of oppositely charged polyelectrolytes adsorbed on the electrodes. This pairing
required a strong external electric field to break apart, shifting the capacitance peak
from Δ𝑉 = 0 to a moderate Δ𝑉 and transitioning the capacitance curve from a bell
shape typical of RTIL EDLCs to camel-shaped curves. The offset of the peaks, along
with their higher magnitudes, significantly improves the energy storage potential in
PIL EDLCs since the area underneath the 𝐶d–Δ𝑉 curve is proportional to the stored
energy. This phenomenon is not possible in monomeric RTIL EDLCs due to the lack
of connectivity that turns the anion–cation interaction into a multivalent one, nor in
PIL EDLCs with nonmetal electrodes due to the absense of attractive image charge
interactions that allows both charged species to stay adsorbed to the electrodes even
when the external electric field repels one of them.

Our findings emphasize that the interplay between PIL chain length, electrolyte
polarizability, and electrode polarizability profoundly impacts the energy storage
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mechanisms in EDLCs. Future investigations can build upon these insights by
manipulating these key factors to optimize EDLC performance. Additionally, ex-
ploring other possible tuning methods, such as introducing asymmetry between the
polyanion and polycation or increasing the screening length through the addition
of organic solvents, could further increase the capacitance peaks for higher energy
storage.
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C h a p t e r 6

ADSORPTION BEHAVIOR AND CHARGING DYNAMICS IN
POLYANION–COUNTERION–SOLVENT SYSTEMS

Polyelectrolytes are prevalent and play crucial roles in natural environments, bio-
logical systems, and everyday products. In nature, they are found in the adhesives
secreted by mussels and barnacles, enabling these organisms to stick to wet sur-
faces like rocks and ship hulls. In drug delivery, polyelectrolytes form the basis of
hydrogels that interact with cells and tissues to control the release of therapeutic
agents and facilitate wound healing. In personal care products like shampoos and
conditioners, polyelectrolytes help detangle hair and remove dirt and oils by mediat-
ing interactions with negatively charged hair surfaces. Of utmost significance today
is the use of polyelectrolytes in energy storage devices like batteries and electric
double-layer capacitors (EDLCs), which power commonly used electronics ranging
from smartphones and laptops to electric vehicles.

The common thread in these examples is the predominant role of electrostatic
forces in adhesion and adsorption. Understanding these forces is essential for
optimizing the performance of polyelectrolytes across various applications. In this
chapter, we investigate how boundary polarizability affects the adsorption behavior
of a salt-free polyanion–counterion–solvent system on perfectly conducting and
nonmetal boundaries using our Gaussian core model with smeared electrostatics
(GCMe). Then, we explore how the different adsorption behavior impacts the energy
storage and charging/discharging dynamics of polyelectrolyte EDLCs. Although the
discussion is framed in the context of polyelectrolyte EDLCs, our findings may have
broader implications for the general applications of polyelectrolytes near neutral and
charged surfaces.

This chapter includes content from our previously published article:

Ye, B. B.; Chen, S.; Wang, Z.-G. J. Chem. Theory Comput. 2024, acs.jctc.4c00603,
DOI: 10.1021/acs.jctc.4c00603

6.1 Introduction
EDLCs have received significant interest in the recent years owing to their substantial
power densities, fast charge and discharge rates, and sustainable cyclability compared
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to other energy storage devices, such as batteries and fuel cells [2]. The performance
of an EDLC is strongly correlated with the electrical double-layer (EDL) structure
at the ion–electrode interface, which is largely dependent on the choice of the
electrolyte and the electrode. The maximum energy 𝑈 an EDLC can store scales
as 𝐶𝑉2/2, where 𝐶 is the capacitance and 𝑉 is the voltage, so electrolytes with
large operational voltage windows, great mechanical stability, and high conductivity
have been sought after. As a result, polyelectrolytes and polymeric ionic liquids
have recently attracted considerable attention since they satisfy the design criteria
with their wide electrochemical windows, outstanding thermal stability, and notable
mechanical strength and conductivity [3, 4]. Indeed, experimental studies and
computer simulations [5–7] have shown that polyelectrolytes have exceptionally high
EDL capacitance, making them prime electrolyte candidates for the next generation
of EDLCs.

On the other hand, limited attention has been given to how the polarizability of
the boundary material affects the adsorption behavior and transport of the charged
species in polyelectrolyte EDLCs, in part due to the technical challenges of effi-
ciently conducting particle-based simulations while accounting for image charge
effects. Existing studies have largely focused on how repulsive image charges and
finite potential differences influence polyelectrolyte adsorption behavior and energy
storage. For example, Monte Carlo simulations by Wang et al. [8] have elucidated
how repulsive image charges can either enhance or penalize polyelectrolyte adsorp-
tion depending on the polyelectrolyte charge fraction and surface charge distribution.
MD efforts by Bagchi et al. [9] have revealed that repulsive image charges give rise
to enhanced energy storage in polyelectrolyte EDLCs at low surface charge densi-
ties due to charge amplification. However, the effect of attractive image charges on
polyelectrolyte adsorption behavior is not well understood. To this end, we use our
Gaussian core model with smeared electrostatics (GCMe) to study the adsorption
behavior of polyanions on neutral parallel planar perfectly conducting and nonmetal
boundaries. We then explore how these interactions influence the energy storage
and charging/discharging dynamics with when potential differences are applied.

6.2 Model and methods
Simulations were carried out using OpenMM [10] in the canonical ensemble with
𝑁p = 96, 000 equisized particles and a temperature of 𝑇 = 300 K. The salt-free
electrolyte consists of polyanions with chain length 𝑁 = 60, their counterions,
each with ion fraction 𝑥p, and solvent particles to fill the empty space. The chain



86

connectivity in the polyanions is modeled by a harmonic bond potential

𝑢harm(𝑟𝑖 𝑗 ) =
1
2
𝑘 (𝑟𝑖 𝑗 − 𝑏)2, (6.1)

where 𝑘 = 100𝑘B𝑇/𝑑2 is the force constant and 𝑏 = 0.8𝑑 is the equilibrium bond
length, which coincides with where the radial distribution function for a neutral
GCMe fluid (Fig. 4.4) has its maximum. The solvent polarization is implicitly
accounted for using a dielectric continuum with the relative permittivity of water
𝜀r = 78.

The real systems are initialized by first determining the 𝐿𝑥 and 𝐿𝑦 values that will
accommodate the periodic placement of the surface particles, which are half the
size of the electrolyte particles and arranged in a hexagonal close-packed lattice,
and then 𝐿𝑧, which is constrained by the number of particles and number density.
For the parameters we chose, our real systems have dimensions of approximately
25𝑑 × 25.11𝑑 × 61.16𝑑. Then, the system is randomly filled with the polyanions,
counterions, and solvent particles, and undergoes a local energy minimization.
Finally, for the systems with perfectly conducting boundaries, the simulation box is
doubled in width so that the real system can be reflected over the surface at 𝑧 = 0
to generate the image charges. For the systems with nonmetal boundaries with no
image charges, the 𝑧-dimension of the simulation box is instead tripled to introduce
a sufficiently large void between periodic replicas in the 𝑧-direction so that the Yeh–
Berkovitz correction [11, 12] can be used to remove the long-range electrostatic
slab–slab interactions. In either case, because the simulations still have periodic
boundary conditions, we can continue to use the fast PME method to evaluate the
long-range electrostatic interactions despite the lack of actual periodicity in the
𝑧-direction.

For each simulation, system equilibration was performed over 5 × 106 timesteps
of step size 𝑡 = 0.02𝜏, and data were collected over at least an additional 2 × 107

timesteps, which are on the order of 1 𝜇s.

6.3 Results and discussion
Adsorption behavior with neutral surfaces
The polyanion and counterion number density profiles for the systems with nonmetal
boundaries are presented in Fig. 6.1. As expected, they exhibit the same general
trends as the density profiles obtained using classical polymer density functional
theory (PDFT) [13, 14]. In systems with low polyanion fractions, such as the
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Figure 6.1: Ensemble-averaged (a) polyanion and (b) counterion number density
profiles normalized by their respective total number densities, and (c) the charge
density profile normalized by the total counterion charge density near a surface for
a salt-free polyanion–counterion–solvent system confined by nonmetal boundaries.
The total number density differs from the bulk number density in the center of the
system by less than 2%.
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Figure 6.2: Representative simulation snapshot of the real polyanion–counterion–
solvent system with nonmetal boundaries at 𝑥p = 0.005. Solvent particles are not
shown.

𝑥p = 0.005 system shown in Fig. 6.2, there is a net depletion of polyanions near
the surfaces due to the conformational entropy penalty for them to adsorb onto the
surfaces. Instead, the polyanions aggregate a short distance from the surfaces, as
shown by the peak centered at 𝑧 = 7.5𝑑 in Fig. 6.1a. The counterions are also
depleted in the vicinity of the surfaces due to their favorable interactions with the
polyanions, although to a lesser extent since they are nonbonded and do not suffer
from an entropic penalty when they absorb onto the surfaces. This local charge
imbalance gives rise to an effective EDL, shown in Fig. 6.1c, where the positively-
charged inner layers are screened by the negatively-charged outer layers.

As 𝑥p increases, the nominal Debye length 𝜆D = [4𝜋𝜆B𝜌(𝑥p + 𝑥+)]−1/2, which is
a measure of the range of an ion’s electrostatic effects, decreases. This increased
screening renders the repulsive polyanion–polyanion and counterion–counterion
electrostatic interactions weaker, enabling both charged species to accumulate in
greater numbers near the boundaries. As a result, there are strong peaks immediately
next to, and oscillatory behavior away from, the surface in our simulation density
profiles, unlike those predicted by PDFT [14]. Notably, GCMe is able to capture the
accumulation of polyanions and counterions on the surfaces driven by the packing
effect from the solvent particles, an effect not as pronounced in PDFT due to its
treatment of the solvent using a local incompressibility condition.

With the inclusion of attractive image charges, the arrangement of polyanions and
counterions near the perfectly conducting boundaries is vastly different. In what
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Figure 6.3: Ensemble-averaged (a) polyanion and (b) counterion number density
profiles normalized by their respective total number densities, and (c) the charge
density profile normalized by the total counterion charge density near a surface for
a salt-free polyanion–counterion–solvent system confined by perfectly conducting
boundaries. The total number density differs from the bulk number density in the
center of system by less than 2%.
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Figure 6.4: Representative simulation snapshot of the real polyanion–counterion–
solvent system with perfectly conducting boundaries at 𝑥p = 0.005. Solvent particles
are not shown.

appears to be a complete reversal from the systems with nonmetal boundaries,
there is a strong accumulation of both species on the surfaces and, consequently,
a depletion in the outer layers of the EDL. At the low 𝑥p = 0.005, the singular
intial peak in Fig. 6.3a and the simulation snapshot in Fig. 6.4 clearly show that the
polyanions prefer to be adsorbed on the surfaces, suggesting that the attractive image
charge interactions can overcome the entropic penalty. Fig. 6.3b shows that there is
also an influx of counterions due to the attractive electrostatic polyanion–counterion
interactions, but not in equal proportion to the polyanions. As a result, there is
now a considerable net negative charge next to the surfaces, as shown in Fig. 6.3c,
and a second diffuse layer of counterions is needed to neutralize the first polyanion
layer. Additionally, Fig. 6.11 in the Appendix shows that systems with low ion
fractions now have positive bulk electrostatic potentials (evaluated using Eq. 6.7
presented subsequently in this chapter), as opposed to the negative ones observed in
comparable systems with nonmetal boundaries.

Perhaps surprisingly, when 𝑥p first begins to increase, the number of polyanions
and cations adsorbed on the surfaces relative to that in the bulk instead decreases.
A simple explanation is that the decreased screening length diminishes the image
charge interactions, lessening the driving force for the adsorption of either charged
species to the surfaces. This effect is so much more significant than the coinciding
weakening of the repulsive electrostatic interactions between like species that the net
result is a substantial decrease in the amount of both polyanions and counterions in
the EDL. As the polyanion fraction increases further, i.e., 𝑥p ≥ 0.05, the changes in
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Figure 6.5: Ensemble-averaged polyanion and counterion number densities 𝜌𝑖, peak
in the first adsorption layer next to the boundaries as functions of the polyanion
fraction for perfectly conducting (PC) and nonmetal (NM) boundaries.

the polyanion and counterion distributions near and away from the surfaces become
less pronounced, as evidenced by the converging number densities in Fig. 6.3. In
particular, the systems with perfectly conducting electrodes end up having a makeup
comparable to that of the systems with nonmetal boundaries at high 𝑥p. This is best
illustrated in Fig. 6.5, where the polyanion and counterion number densities in
the first layer of the EDL for the nonmetal and systems with perfectly conducting
boundaries reach similar values at 𝑥p = 0.2.

Therefore, the attractive image charge interactions from perfectly conducting bound-
aries can have a marked effect on the EDL structure in polyelectrolyte EDLCs,
especially at low ion fractions. While the systems with nonmetal boundaries have
a moderate net positive layer next to the surfaces due to an uneven depletion of
polyanions and counterions, the systems with perfectly conducting boundaries have
a sizable net negative adsorption layer due to the enhanced adsorption of polyanions
driven by their net electrostatic attraction to the surfaces by the image charges.

Energy storage with charged surfaces
Given the anomalous adsorption behavior, we anticipate different structures and
dynamics in the systems with perfectly conducting boundaries since the more
pronounced charge separation suggests that they are more susceptible to applied
potentials [15, 16]. As such, we are interested in exploring the energy storage
and charging/discharging dynamics of polyanion–counterion–solvent EDLCs with
applied potential differences Δ𝑉 .
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To apply potential differences and simulate the charging of the polyelectrolyte
EDLCs, we use the constant charge method (CCM) to assign equal but opposite
charges to the particles that constitute the opposing surfaces such that each surface
had a fixed surface charge density 𝜎𝑞, f . The charge magnitude 𝑞𝑖,wall is given by

𝑞𝑖,wall

𝑛b
=

𝐿𝑥𝐿𝑦𝜎𝑞, f

𝑁wall
, (6.2)

where 𝑁wall is the number of particles in each surface and

𝑛b =

{
2, for perfectly conducting boundaries

1, for nonmetal boundaries
(6.3)

is a scaling factor that must be included for systems with image charge interactions
when using a three-dimensional Ewald summation method to evaluate the Coulomb
interactions since only half of the calculated energy of the repeat unit should translate
to the electrostatic forces on the real ions [15, 17].

Then, to quantify the energy storage, we computed the surface charge density and
differential capacitance, measures of the charge accumulated on the surfaces and the
amount of energy stored in the EDLCs, respectively. As shown by Hautman et al.
[17] and derived by Qing et al. [18], the total surface charge density 𝜎𝑞 is given by

⟨𝜎𝑞⟩ = 𝜎𝑞, s + ⟨𝜎𝑞, p⟩ =
𝜀0𝜀rΔ𝑉

𝐿𝑧

− 1
𝐿𝑧

∫ 𝐿𝑧

0
𝑧⟨𝜌𝑞 (𝑧)⟩ 𝑑𝑧, (6.4)

where Δ𝑉 is the potential difference across the electrolyte between the two surfaces.
The static term 𝜎𝑞, s captures the direct response of the electrolyte to the applied
potential difference, while the polarization term 𝜎𝑞, p accounts for the system dipole
generated by the adsorption of the charged species onto the surfaces. The differential
capacitance 𝐶d is related to the total surface charge density via

𝐶d =
𝜕𝜎𝑞

𝜕Δ𝑉
, (6.5)

with the area under the 𝐶d–Δ𝑉 curve being proportional to the stored energy.

It is important to note that in the systems with perfectly conducting boundaries, the
potential difference is known and related to the fixed or static surface charge density
via Gauss’s law

𝜎𝑞, f = 𝜎𝑞, s =
𝜀0𝜀rΔ𝑉

𝐿𝑧

(6.6)

since surface equipotentiality is maintained despite the use of CCM due to the
inclusion of the image charge effect [19]. On the other hand, only the fixed surface
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charge density (which is equal to the total surface charge density, as shown in
Fig. 6.6) is known in the systems with nonmetal surfaces, and the potential difference
Δ𝑉 ≡ Ψ(𝑧 = 𝐿𝑧) − Ψ(𝑧 = 0) must be determined by numerically solving the one-
dimensional Poisson’s equation for electrostatics

𝜕2Ψ

𝜕𝑧2 = −
𝜌𝑞 (𝑧)
𝜀0𝜀r

, (6.7)

whereΨ(𝑧) is the position-dependent potential with respect to the reference potential
on the left surface, which we arbitrarily set to Ψ0 = 0 V.

Figure 6.6: Schematic representations of the contributions to the surface charge
densities (or potential difference) of (a) perfectly conducting and (b) nonmetal
boundaries with the constant charge method. The solid black borders indicate
what charges are included in the total surface charge density 𝜎𝑞. The large circles
represent ions (outside black borders) and image charges (inside black borders),
the small circles represent surface particles, and the blue and red colors represent
negative and positive charges, respectively.
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Figure 6.7: Potential difference Δ𝑉 between the two perfectly conducting (PC) or
nonmetal (NM) surfaces in a polyelectrolyte electric double-layer capacitor as a
function of the fixed surface charge density 𝜎𝑞, f . The solid black line denotes the
potential difference in a perfect conductor according to Gauss’s law.

Indeed, Fig. 6.7 demonstrates that the potential differences evaluated using Eqs. 6.6
and 6.7 are equivalent for systems with perfectly conducting boundaries. In these
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systems, the potential differences have contributions from both the fixed surface
charge density and the image charges. In contrast, for systems with nonmetal
boundaries, Δ𝑉 is more than an order of magnitude lower at the same 𝜎𝑞, f due
to the absence of the attractive image charges. Additionally, Δ𝑉 decreases as the
electrolyte becomes more concentrated and the screening length increases. This
indicates that significantly more energy is required to charge nonmetal surfaces
to achieve the same potential difference as in systems with perfectly conducting
boundaries.

When compared at the same range of potential differences, Figs. 6.8 and 6.9 show
that the surface charge densities and differential capacitance exhibit almost identi-
cal behavior in systems with perfectly conducting and nonmetal boundaries. The
𝜎𝑞–Δ𝑉 curves are sigmoidal, with the fastest increase in the surface charge density
occurring at low potential differences before slowing down due to crowding effects.
Consequently, the 𝐶d–Δ𝑉 curves are bell-shaped. Interestingly, for polyanion frac-
tions above 𝑥p = 0.025, the 𝜎𝑞–Δ𝑉 and 𝐶d–Δ𝑉 curves nearly overlap, suggesting
that the same energy storage can be achieved with dilute polyelectrolyte solutions
without requiring very high polyelectrolyte concentrations. This has significant im-
plications for experimental studies and real-world energy storage devices involving
polyelectrolytes from a cost savings perspective.

Perhaps more notably, Fig. 6.9 reveals that systems with nonmetal boundaries have a
higher capacitance peak atΔ𝑉 = 0 V than those with perfectly conducting electrodes,
indicating that the former can store slightly more energy at low potential differences.
This is contrary to expectations, as the attractive image charge interaction is expected
to enhance energy storage. However, the underlying mechanism for this becomes
clear when considering the adsorption behaviors on the neutral surfaces shown in
Figs. 6.1 and 6.3. In systems with perfectly conducting boundaries, the polyanions
and counterions are already near the surfaces, whereas in the systems with nonmetal
boundaries, the charged species are both depleted from the surfaces. When a
potential difference is first applied, the EDL structure changes little in systems with
perfectly conducting boundaries but changes drastically in systems with nonmetal
boundaries, resulting in a sharper increase in surface charge density in the latter
systems. This suggests that the image charge interaction, when it does not induce
a phase separation (like spontaneous surface charge separation), is a near-surface
effect whose impact can only be discerned when external forces, such as potential
differences, are not dominant.
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Figure 6.8: Surface charge density 𝜎𝑞 as a function of the potential difference Δ𝑉

and the polyanion fraction 𝑥p for polyelectrolyte electric double-layer capacitors
with (a) perfectly conducting or (b) nonmetal boundaries. The colored curves are
interpolations of the raw data. The abnormal asymptotic behavior in low polyanion
fraction systems at large Δ𝑉 is an artifact of using 𝑁𝑉𝑇 ensembles, as all ions are
adsorbed on the surfaces and none are left in the bulk.

Charging and discharging dynamics with charged surfaces
We investigate the charging and discharging dynamics of polyanion–counterion–
solvent systems by analyzing how the surface charge density 𝜎𝑞 responds to the
application or removal of potential differences. Our focus is on systems with per-
fectly conducting boundaries due to their expected non-monotonic non-monotonic
charging behavior and the necessity to maintain equipotentiality during the charg-
ing and discharging processes. To mitigate finite size effects and efficiently obtain
non-equilibrium simulation trajectories that avoid metastable states while waiting
for ion reorientation on the surfaces, we used smaller systems with 𝑁p = 48, 000
particles and dimensions of 26𝑑 ×25.98𝑑 ×28.42𝑑 to enlarge the surface area with-
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Figure 6.9: Differential capacitance 𝐶d as a function of the potential difference Δ𝑉

and the polyanion fraction 𝑥p for polyelectrolyte electric double-layer capacitors
with (a) perfectly conducting or (b) nonmetal boundaries. The colored curves are
interpolations of the raw data. The abnormal asymptotic behavior in low polyanion
fraction systems at large Δ𝑉 is an artifact of using 𝑁𝑉𝑇 ensembles, as all ions are
adsorbed on the surfaces and none are left in the bulk.

out introducing confinement effects. Additionally, we used shorter polymers with
a chain length of 𝑁 = 30, which our preliminary testing indicated have the same
adsorption behavior as those with 𝑁 = 60.

Charging times 𝜏c and discharging times 𝜏d were extracted from the time traces
of 𝜎𝑞 (𝑡) after a potential difference is applied or removed, respectively, by fitting
stretched exponential functions with the forms

1 −
𝜎𝑞 (𝑡)
⟨𝜎𝑞⟩

= exp[−(𝑡/𝜏c)𝛽c] (6.8)
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and
𝜎𝑞 (𝑡)
⟨𝜎𝑞⟩

= exp[−(𝑡/𝜏d)𝛽d], (6.9)

where 𝜏c, 𝜏d, 𝛽c and 𝛽d are fitting parameters, and ⟨𝜎𝑞⟩ is retrieved from Fig. 6.8a.
These functions have been used successfully to analyze the relaxation of dynamically
heterogeneous systems that have charging and discharging dynamics unable to be
described by a single exponential relaxation process [20].
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Figure 6.10: (a) Charging times 𝜏c and (b) discharging times 𝜏d in polyelectrolyte
electric double-layer capacitors as functions of the polyanion fraction 𝑥p and the
potential difference Δ𝑉 .

Fig. 6.10a displays the charging times obtained from the stretched exponential fits
in Fig. 6.12 of the Appendix. At a low 𝑥p = 0.005, 𝜏c decreases monotonically as
Δ𝑉 increases. At low Δ𝑉 , the slow charging dynamics are governed by the diffusion
of the charged species to and from the surfaces. As Δ𝑉 increases, the charging time
decreases due to the strengthened electric field, which more effectively separates the
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polyanions from their counterions and directs the charged species to their respective
surfaces.

For intermediate ion fractions such as 𝑥p = 0.025 and 𝑥p = 0.050, the 𝜏c–Δ𝑉
relationship generally trends downwards but becomes non-monotonic at moderate
Δ𝑉 . Compared to systems with low ion fractions, the charging dynamics at low
Δ𝑉 are faster due to a higher availability of charged species near the surfaces,
making the EDL formation less dependent on the sluggish ion diffusion. At high
Δ𝑉 , the charging process slows down because the increased ion concentration leads
to a stronger screening effect, which diminishes the ability of the electric field to
overcome the counterion condensation in the bulk (expected in our system since the
dimensionless Coulomb coupling strength is Γ = 𝜆B/𝑏 ≈ 1.5, which is greater than
1) and effectively draw the charged species to their respective surfaces.

At intermediate Δ𝑉 , there is a peak in the charging time caused by a combination of
stepwise adsorption and crowding effects. When the potential difference is applied,
polyanions adsorb one-by-one or in small groups, which successively screens the
electric field and lessens the driving force for subsequent polyanions to adsorb. This
behavior is seen in theΔ𝑉 = 25𝑘B𝑇/𝑒 subplot in Fig. 6.12b, where the 1−𝜎𝑞 (𝑡)/⟨𝜎𝑞⟩
curves for individual simulations exhibit stepwise decays during 𝑡 < 7, 500𝜏. As
the adlayer fills with polyanions, the last few polyanions to diffuse to the surface
struggle to fit into the remaining gaps, necessitating an in-plane reorientation of the
other polyanions to create space. This local maximum in the charging time shifts
to higher Δ𝑉 as 𝑥p increases since a stronger electric field is necessary to overcome
the counterion condensation and complete the adlayer with only polyanions due to
stronger screening.

When the ion fraction gets sufficiently large (i.e., 𝑥p ≥ 0.100), both charged species
are abundantly available near the surfaces. Consequently, the charging process is
much faster since it is primarily dependent on the adlayer reorientation and less
influenced by the ion diffusion or the initial breaking of polyanion–counterion pairs
by the electric field.

We now turn our attention to the discharging times shown in Fig. 6.10b, which are
obtained from the stretched exponential fits in Fig. 6.13 of the Appendix. Surpris-
ingly, Fig. 6.13a reveals a hysteresis effect during the discharging process for the
𝑥p = 0.005 systems, where 𝜎𝑞 does not return to zero due to the strong polyanion
adsorption shown previously in Fig. 6.3a. To address this, the average value of 𝜎𝑞 (𝑡)
past 𝑡 > 7, 500𝜏 is subtracted from all data points to shift the entire curve down for
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fitting Eq. 6.9.

From Fig. 6.10b, there are no immediately obvious 𝜏d–Δ𝑉 trends for any given 𝑥p.
However, we do observe that the discharging dynamics accelerate as the ion fraction
increases. This occurs because the image charge interactions, which attract the
charged species to the electrodes as shown previously in Figs. 6.3 and 6.5, are felt
more strongly in the systems with low ion fractions due to weaker screening. As
such, when the potential difference is removed, the polyanions tend to remain near
the electrodes in their established layers. In fact, for 𝑥p = 0.005 and 𝑥p = 0.025, the
discharging process first entails the counterions desorbing from their surface and
diffusing across the simulation systems to condense on the polyanions still adsorbed
on the opposing surface. Then, the polyanion–counterion pairs leave the surface
together, allowing both charged species to return to the bulk. This lingering of
polyanions slows down the discharging process, which normally involves the direct
exchange of ions between the EDL and the bulk, or the expulsion of both charged
species from the EDL into the bulk.

Finally, a comparison of the charging and discharging dynamics in Figs. 6.10a and
b shows that the discharging times are consistently longer and can be over an order
of magnitude slower than the charging times, which is a complete reversal of the
behavior expected and previously reported in systems with nonmetal (dielectric)
boundaries [20]. Therefore, the attractive image charge interactions from perfectly
conducting boundaries can have a significant impact on the charging and discharging
dynamics of polyelectrolyte EDLCs. They not only drastically slow down the dis-
charging process of systems with low ion fractions by keeping polyanions adsorbed
on their surface, but also causes the hysteresis effect observed in systems with low
ion fractions, such as 𝑥p = 0.005. However, a more systematic study is required to
fully characterize that phenomenon, which is beyond the scope of the current study.

6.4 Conclusion
In this chapter, we examined systems consisting of polyanions, their counterions, and
solvent particles confined between planar parallel nonmetal or perfectly conducting
metal surfaces, where the boundary polarizability was accounted for by the method
of image charges. For systems with uncharged nonmetal boundaries, we were able
to qualitatively reproduce the depletion of polyanions and counterions from the
surfaces that PDFT [14] predicted. Notably, the GCMe simulations showed that
there is a growing accumulation of both charged species on the surfaces as the
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ion fraction 𝑥p increases, a feature missing in PDFT due to the density smearing
under its incompressibility condition. For systems with neutral perfectly conducting
boundaries, which cannot be represented by a mean-field treatment, we found a
complete reversal in the structure and charge of the effective EDLs. Peculiarly,
there is a strong accumulation of both polyanions and counterions on the surfaces,
suggesting that the attractive image charge interactions are favorable enough to
overcome the conformational entropy penalty from the polyanion adsorption. As 𝑥p

increases and the nominal screening length decreases, the image charge interactions
weaken and the EDL structure begin to resemble that from a high 𝑥p system with
nonmetal boundaries.

Despite the contrasting adsorption behavior, we observed similar energy storage in
systems with perfectly conducting and nonmetal surfaces when potential differences
were applied, except at low Δ𝑉 . At these lower potentials, systems with nonmetal
surfaces stored slightly more energy due to a higher capacitance peak, which results
from a more significant change in the EDL structure compared to systems with per-
fectly conducting boundaries, where the EDL is already partially formed due to the
strong polyanion and counterion adsorption. However, the charging and discharg-
ing dynamics with different boundary materials differed drastically. While previous
studies found faster discharging processes than charging processes in systems with
nonmetal boundaries, we observed discharging times up to an order of magnitude
slower than charging times in systems with perfectly conducting boundaries due to
polyanions remaining adsorbed to the surfaces by the attractive image charge inter-
actions even after the potential difference was removed. In systems with low ion
fractions, this metastability even causes a hysteresis effect, where the polyelectrolyte
EDLCs do not fully discharge and the surface charge density does not return to zero.

These findings underscore the importance of capturing the surface polarizability
effects in simulations [21, 22] and how they can influence the energy storage and
power delivery capabilities of EDLCs. By understanding these ion–surface interac-
tions, we can better optimize and design electrochemical systems, paving the way
for advancements in energy storage devices.

6.5 Appendix
Electrostatic potential profiles for systems with neutral surfaces
The electrostatic potential profile Ψ(𝑧) can determined by numerically evaluating
the one-dimensional Poisson’s equation in Eq. 6.7 using the charge density profile
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Figure 6.11: Electrostatic potential profiles Ψ(𝑧) for systems with (a) perfectly
conducting and (b) nonmetal boundaries at different ion number fractions 𝑥p.

𝜌𝑞 (𝑧) with boundary conditions Ψ|𝑧=0 = 0 to use the left surface as the reference
and 𝜕Ψ/𝜕𝑧 |𝑧=0 = −𝜎𝑞/(𝜀0𝜀r) to enforce zero electric field in the bulk of the
polyelectrolyte system [9, 23]. Without an applied potential difference (Δ𝑉 = 0),
the surface charge density 𝜎𝑞 is zero in systems with nonmetal boundaries and
𝜎𝑞 = −𝐿−1

𝑧

∫ 𝐿𝑧

0 𝑧𝜌𝑞 (𝑧) 𝑑𝑧 in systems with perfectly conducting boundaries due to
the polarization effects from the image charges [17, 18].
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Stretched exponential fits of charging and discharging dynamics
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Figure 6.12: Stretched exponential fits to obtain the charging times 𝜏c at given
reduced potential differences Δ𝑉∗ ≡ 𝑒Δ𝑉/(𝑘B𝑇) in polyanion–counterion–solvent
systems with perfectly conducting electrodes and polyanion fractions of (a) 𝑥p =

0.005, (b) 𝑥p = 0.025, (c) 𝑥p = 0.050, and (d) 𝑥p = 0.100. The colored curves show
the normalized raw data from three separate simulations.



103

0.0

0.5

1.0

1
−

σ
q
(t
)/
〈σ

q
〉 ∆V ∗ = 5

(c)
∆V ∗ = 10 ∆V ∗ = 15 ∆V ∗ = 20

0 5000

t/τ

0.0

0.5

1.0

1
−

σ
q
(t
)/
〈σ

q
〉 ∆V ∗ = 25

0 5000

t/τ

∆V ∗ = 50

0 5000

t/τ

∆V ∗ = 75

0 5000

t/τ

∆V ∗ = 100

0.0

0.5

1.0

1
−

σ
q
(t
)/
〈σ

q
〉 ∆V ∗ = 5

(d)
∆V ∗ = 10 ∆V ∗ = 15 ∆V ∗ = 20

0 5000

t/τ

0.0

0.5

1.0

1
−

σ
q
(t
)/
〈σ

q
〉 ∆V ∗ = 25

0 5000

t/τ

∆V ∗ = 50

0 5000

t/τ

∆V ∗ = 75

0 5000

t/τ

∆V ∗ = 100

Figure 6.12: Stretched exponential fits to obtain the charging times 𝜏c at given
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the normalized raw data from three separate simulations.



104

0.0

0.5

1.0

σ
q
(t
)/
〈σ

q
〉

∆V ∗ = 5
(a)

∆V ∗ = 10 ∆V ∗ = 15 ∆V ∗ = 20

0 5000

t/τ

0.0

0.5

1.0

σ
q
(t
)/
〈σ

q
〉

∆V ∗ = 25

0 5000

t/τ

∆V ∗ = 50

0 5000

t/τ

∆V ∗ = 75

0 5000

t/τ

∆V ∗ = 100

0.0

0.5

1.0

σ
q
(t
)/
〈σ

q
〉

∆V ∗ = 5
(b)

∆V ∗ = 10 ∆V ∗ = 15 ∆V ∗ = 20

0 5000

t/τ

0.0

0.5

1.0

σ
q
(t
)/
〈σ

q
〉

∆V ∗ = 25

0 5000

t/τ

∆V ∗ = 50

0 5000

t/τ

∆V ∗ = 75

0 5000

t/τ

∆V ∗ = 100
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Figure 6.13: Stretched exponential fits to obtain the discharging times 𝜏d at given
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C h a p t e r 7

MDCRAFT: A PYTHON ASSISTANT FOR PERFORMING AND
ANALYZING MOLECULAR DYNAMICS SIMULATIONS

For new or inexperienced computational chemists and physicists, there are several
major deterrents to conducting molecular dynamics (MD) simulations. These in-
clude the steep learning curve associated with the complex command-line and appli-
cation programming interfaces of common MD simulation software, the challenges
of initializing stable simulation systems and properly parameterizing intermolecu-
lar interactions in the force fields, and the need for a strong understanding of the
principles underlying MD simulations and statistical mechanics to correctly process
the simulation data and interpret the results. In particular, the data analysis can
be an especially daunting task. Not only does data have to be parsed, extracted
from large trajectory files, and sanitized before it can be used to compute desired
physical quantities, but this procedure also has to be implemented efficiently so that
it can be feasibly evaluated on the computer hardware available today. Motivated
by the lack of an all-encompassing tool to reduce these hurdles, we developed a
easy-to-use and well-documented open-source Python package called MDCraft to
provide helper classes and functions that aid in every step of the simulation research
workflow. MDCraft has been used extensively in the preceding sections for setting
up and simulating intricate soft matter systems, analyzing terabytes of simulation
data, and generating publication-ready figures.

This chapter includes content from our manuscript that we submitted for publication
in the Journal of Open Source Software. The submission can be accessed at https:
//joss.theoj.org/papers/fa65dcce626157b3f2b0b396c43adfed.

7.1 Summary
MDCraft is a comprehensive Python package designed to enhance research work-
flows involving molecular dynamics (MD) simulations. It streamlines the entire
process—from setting up and executing simulations to analyzing trajectories using
sophisticated algorithms and visualizing results—making computational chemistry
more accessible to a broader audience. At its core, MDCraft comprises three prin-
cipal components.
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First, the lammps and openmm modules provide user-friendly tools to initialize, op-
timize, and run simulations, enabling the exploration of various large soft matter
systems across different timescales. These modules extend the functionality of the
LAMMPS [1] and OpenMM [2] simulation packages by introducing custom force
fields, such as the efficient and intuitive Gaussian core model with smeared elec-
trostatics (GCMe) [3]; incorporating advanced techniques like the slab correction
[4, 5] and the method of image charges [6] for charged systems with slab geome-
tries; facilitating coarse-grained MD simulations by scaling physical values by the
fundamental quantities (mass 𝑚, length 𝑑, energy 𝜖 , and Boltzmann constant 𝑘B𝑇);
and offering feature-rich readers and writers for topologies and trajectories stored
in memory-efficient formats.

Second, the algorithm and analysis modules offer optimized serial and multi-
threaded algorithms and analysis classes for evaluating structural, thermodynamic,
and dynamic properties using thermodynamic state and trajectory data. These prop-
erties include, but are not limited to, static and dynamic structure factors, density
and potential profiles, end-to-end vector autocorrelation functions for polymers, and
Onsager transport coefficients [7].

Finally, the fit and plotmodules simplify the post-processing and visualization of
data, aiding in the creation of aesthetically pleasing figures for scientific publications.
These modules consist of models for curve fitting and helper functions that interface
seamlessly with the commonly used SciPy [8] and Matplotlib [9] libraries.

Together, these modules provide both novice and experienced MD simulation users
with a comprehensive set of tools necessary to conduct computer experiments
ranging from simple to complex, all within a single, succinct package.

7.2 Statement of need
Although established MD analysis packages such as MDAnalysis [10] and MD-
Traj [11] have been around for a considerable time, they primarily focus on the
post-simulation analysis. In contrast, MDCraft is designed to provide compre-
hensive support throughout the entire simulation process, from initialization to
post-processing.

MDCraft is tightly integrated with OpenMM, a relatively new simulation toolkit that
has seen a surge in popularity in recent years due to its class-leading performance
and flexibility through support for custom intermolecular forces and integrators for
equations of motion. Due to its age and design philosophy, OpenMM offers com-
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paratively fewer choices of pair potentials and external forces, and no on-the-fly
analysis support. MDCraft fills this gap in two ways. First, the openmm module
leverages the modularity of OpenMM to provide a suite of custom force fields,
problem-solving tools, trajectory readers and writers, and utility functions for unit
reduction, topology transformations, and performance optimizations that are not
typically available in other simulation packages. Then, the classes in the analysis
module enable computing common structural, thermodynamic, and dynamic prop-
erties using the topology, trajectory, and state data generated by OpenMM (or other
simulation packages).

The analysis module also stands out due to the remarkable flexibility it affords
its end users. General users have unprecedented control over what aspects of the
properties to calculate and which method to employ through a plethora of well-
documented built-in options in each analysis class, without having to be concerned
about the underlying implementations. More advanced users, on the other hand, have
the option to work directly with the algorithms in the algorithmsmodule for further
customization. These analysis functions and classes have proven indispensable in
several recent publications [12–14].

The application of MDCraft extends across various domains within computational
chemistry and materials science. Researchers can utilize it to study the low-level
mechanisms involved in supercapacitors, polymer gels, drug delivery systems, and
nanomaterial synthesis, thus highlighting its versatility and broad applicability in
cutting-edge scientific research.
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