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ABSTRACT

In this thesis, a set of computational methods is developed to extend structural
techniques beyond their conventional practice. First, we build in silico simula-
tions and image processing protocols to design a new data acquisition workflow
in cryo-electron tomography. This enables in situ visualization of macromolecular
complexes at sub-nanometer resolution in a micron-scale field of view. Then, we
demonstrate the applicability of a novel machine-learning algorithm in processing
small molecule electron diffraction data for the first time. For most molecules
tested, the correct ab initio structures can be obtained without the common practice
of manual dataset curation. Finally, molecular dynamics simulations using crys-
tallographic structures of protein and drug molecule complexes are performed to
investigate the fundamental principles of a ternary binding property. A minimal
forcefield with multi-scale coarse-graining enables alchemical free energy calcula-
tions at an unconventional size of perturbation while providing physical insight into
the role of the drug linker and protein shapes.
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C h a p t e r 1

INTRODUCTION

The 3-dimensional (3D) structure of molecules is important for understanding their
biological functions, probing their relationship to other molecules, and advancing the
rational design and optimization of molecular properties for therapeutic purposes.
Biologically relevant molecules span a wide range of sizes, from small molecules on
the scale of Ångstroms to macromolecular complexes approaching tens to hundreds
of nanometers. While structural techniques targeting different spatial resolutions
have been developed, emerging biological and chemical problems constantly push
them to their limit, necessitating further methods development, among which include
computational methods that compose an integral part of structural studies.

Computational methods have proven useful for structural studies at all stages of the
workflow. Data analysis and modeling algorithms are essential to the reconstruction
of an accurate and high-resolution 3D structure from raw experimental signals. After
obtaining a structural model, molecular dynamics simulations and analysis can be
done to calculate structure-based properties of the molecules of interest. Computer
simulations can also be developed ad hoc to predict various experimental outcomes
in a cheap and accessible way, assisting the optimization of experimental design.

In this thesis, three projects focused on computational methods development in
electron microscopy (EM) and molecular dynamics (MD) are presented. To motivate
the readers for our work, in this chapter, we provide the theoretical background of
each project, including the mathematical formulation of the structural techniques
and an overview of the data analysis algorithms involved.

1.1 Large complexes visualized in larger context
Cryo-electron tomography (cryo-ET) is a powerful approach in cryo-electron mi-
croscopy (cryo-EM) that enables the visualization of macromolecules at relatively
high resolution without the need for crystallization in an X-ray diffraction exper-
iments or purification in the single particle analysis (SPA) approach in cryo-EM.
A thinly sliced specimen is flash-frozen to maximally preserve the native state of
molecules within the cellular environment and reduce radiation damage during data
acquisition. Then, it is placed in a transmission electron microscope (TEM) and
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tilted along an axis to acquire a series of 2D projection images. An ideal projection
of the specimen with electrostatic potential𝑉 at orientation 𝝓 can be mathematically
described as,

𝜑 (𝑥, 𝑦) =
∫
𝑧

𝑉

(
𝝓 · [𝑥, 𝑦, 𝑧]𝑇

)
𝑑𝑧 (1.1)

where 𝑧-axis is parallel to the beam. A tilt series can be reconstructed into a 3D
tomogram using the Fourier-slice theorem [1]:

F [𝜑 (𝑥, 𝑦)] = F [𝑉] |𝝓 (1.2)

which states that the Fourier transform of the 2D projection is a central slice of
the Fourier transform of the electrostatic potential in 3D at the same orientation.
For molecules of interest, the 3D structural features can be further sharpened using
subtomogram averaging.

The biological context captured by cryo-ET, however, is physically limited by the
magnification necessary to capture high-resolution details of molecular features. A
straightforward solution would be to perform a montage data collection scheme,
combining magnified images — referred as tiles — into a larger image at each tilt
angle, with some overlap between adjacent tiles necessary to stitch them together.
However, biological specimens are extremely sensitive to radiation damage from the
electron beam even under cryogenic conditions. The overlapping regions between
adjacent images receive double if not more doses in the naive way of montage,
losing critical structural information. Moreover, when stitching experimental images
together, additional data processing is needed to account for Fresnel fringes, uneven
radial illumination, and imperfect beam shifts.

Hence, Chapter 2 investigates the optimal montage data collection scheme of cryo-
ET and showcases the experimental outcome. In 2D, the problem of minimizing
the overlapping regions using circular beams is mathematically solved by using a
hexagonal layout [2]. In 3D, however, the location and volume of the overlapping
regions also change as a function of the tilt angle of the sample. Therefore, a
TEM simulator is developed to iteratively test and compare the distribution of
radiation doses received by samples under different tiling and tilting strategies. The
optimal strategy is implemented for experimental validation through SerialEM [3],
a software that interfaces with the TEM to support programmed and automated data
acquisition. A protocol for additional image processing is developed to address
challenges in stitching overlapping images together. In addition to the visualization
of diverse cellular features with smooth transitions at the overlap of tiles, the quality



3

of the stitched montage images is also assessed quantitatively by estimating the
contrast transfer function (CTF).

Raw images obtained from a TEM in the real world, unfortunately, are corrupted 2D
projections different from what eq. 1.1 describes. This is because the information
content is transferred to the image in a sinusoidal fashion across the spatial resolution
𝑘 , which is mathematically described as the CTF [4]:

CTF(𝑘) = sin
[
𝜋Δ 𝑓 𝜆𝑘2 + 𝜋𝐶𝑠𝜆

3𝑘4

2

]
. (1.3)

CTF depends on the defocus Δ 𝑓 and the spherical aberration 𝐶𝑠, and is further
modified by an envelope function that dampens the overall amplitude of information
toward high resolution due to other imperfections of the microscope such as beam
incoherence and chromatic aberration. Defocus is necessary to improve contrast in
the images for alignment and particle picking, but should be carefully controlled to
reduce the compromise of high-resolution information. A naive implementation of
montage data collection at constant defocus would lead to a wide range of effective
defocus among individual tiles due to the much larger field of view. Thus, the defocus
of each tile should be adjusted based on its actual 𝑧-height in the TEM. Despite
this adjustment, microscopes are not perfect and some errors are inevitable. The
effective Δ 𝑓 is predicted by CTF estimation on collected data [5] before performing
CTF correction in data processing.

The effects of CTF can be visualized as Thon rings [6] in the power spectrum
generated from Fourier analysis of the image. Rings observable towards the edge of
the power spectrum indicate the high-resolution limit of the data. Higher resolution
Thon rings are expected at low tilt angles because of sample thinness and dose-
symmetric tilting [7]. Dose-symmetric tilting prioritizes data quality at low angles,
as data are collected in the order of 0◦, ±𝛼◦, ±2𝛼◦, . . . , where 𝛼◦ is the tilt angle
increment, such that the effects from radiation damage over time are accumulated at
data collected at high tilt angles.

In Chapter 2, the detection of the Thon rings limit is used to assess the quality of
images before and after stitching. Before stitching, the individual tiles present Thon
rings detectable at 10 to 20 Å. After stitching overlapping tiles into a larger image,
Thon rings better than 10 Å can be detected at the 0◦ tilt angle for two of the three
reconstructed tomograms, and Thon rings better than 15 Å can be detected at low
tilt angles as expected. While the inevitable extra doses at the overlapping regions
of tiles were considered too damaging for montage cryo-ET, our optimized montage
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scheme and stitching protocol, evidenced by CTF analysis, successfully preserves
information at a resolution typical of regular cryo-ET tomograms.

1.2 Small molecules elucidated from smaller crystals
3D electron diffraction (3D ED), also known as microcrystal electron diffraction
(microED), is another emerging approach in EM that proves particularly useful
for characterizing small molecules. Because electrons interact with matter more
strongly than X-rays, structures can be determined ab initio from micro- and even
nano-sized crystals without arduous efforts to obtain a large and high-quality crystal
as needed by the conventional single-crystal X-ray diffraction (SCXRD) experi-
ments. After depositing the sample on a TEM grid, diffraction images are recorded
as each crystal is continuously rotated. Diffraction spots are formed at the back
focal plane of the lens of a TEM by focusing plane waves scattered by the crystal.
Under the kinematic approximation, each scattered plane wave is linearly related
to the structure factor 𝑭 (ℎ, 𝑘, 𝑙), which is a Fourier component of the electrostatic
potential of the unit cell

𝑉 (𝑥, 𝑦, 𝑧) ∝
∑︁
ℎ,𝑘,𝑙

𝑭 (ℎ, 𝑘, 𝑙) exp [−2𝜋𝑖 (ℎ𝑥 + 𝑘𝑦 + 𝑙𝑧)] . (1.4)

𝑭 (ℎ, 𝑘, 𝑙) is a complex number that can be expressed in terms of its amplitude
𝐹 (ℎ, 𝑘, 𝑙) and its phase exp [𝑖𝜙 (ℎ, 𝑘, 𝑙)]. At image formation, only the amplitudes
are recorded in the intensities of the spots,

𝐼 ∝ 𝑭𝑭∗ = 𝐹2. (1.5)

The loss of information on the phase is known as the phase problem in crystallogra-
phy. Various techniques have been developed to solve the phase problem, especially
in the context of X-ray diffraction (XRD). Programs originally developed for XRD
can be used to estimate the amplitudes and phases of structure factors from 3D ED
data to reconstruct a 3D structure, as the phase problem is essentially the same in
both methods.

Despite the availability of established software, 3D ED data processing can be
more challenging than SCXRD. In particular, merging data from multiple crystals
is routinely required. This is a consequence of hardware limitations in most TEMs
and poor data quality from inelastic and dynamical scattering as well as radiation
damage. The direct outcome of merging is estimated values of the amplitude 𝐹.
An accurate estimate is important for downstream data processing — i.e., solving
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the phase problem ab initio and determining the final molecular structure after
refinement. Multi-crystal merging can demand significant human input on dataset
curation when a large number of datasets are collected. Chapter 3 investigates
whether a new merging algorithm based on variational inference (VI) yields superior
and more efficient outcomes for small molecule 3D ED data.

Conventional methods estimate 𝐹 =
√
𝐼 by averaging redundant measurements

of 𝐼 weighted by their uncertainty 𝜎𝐼 after performing a scaling that corrects for
systematic errors. This approach can be interpreted as the maximum likelihood
estimation (MLE), where using normal distribution as the error model, the likelihood
of 𝑁 measurements

𝑝𝜃 (𝐼) =
𝑁∏
𝑖

𝑝𝜃 (𝐼𝑖) =
𝑁∏
𝑖

1
𝜎𝐼𝑖

√
2𝜋

exp

[
− (𝐼𝑖 − 𝜃)2

2𝜎2
𝐼𝑖

]
(1.6)

is maximized when the model parameter 𝜃 is the weighted average

𝜃 = 𝐼 = arg max 𝑝𝜃 (𝐼) =
∑
𝑖 𝐼𝑖/𝜎2

𝐼𝑖∑
𝑖 1/𝜎2

𝐼𝑖

. (1.7)

VI, in contrast, jointly performs scaling and merging by considering 𝐹 as a latent
variable that generates the observed 𝐼. With the introduction of latent variables, the
likelihood term generally becomes intractable:

𝑝𝜃 (𝐼) =
∫

𝑝𝜃 (𝐼, 𝐹) 𝑑𝐹 =

∫
𝑝𝜃 (𝐼 |𝐹) 𝑝 (𝐹) 𝑑𝐹 = E𝑝(𝐹) [𝑝𝜃 (𝐼 |𝐹)] . (1.8)

A naive estimation by Monte Carlo sampling from the prior distribution 𝑝 (𝐹)
converges slowly. A statistical trick that can be useful here is importance sampling,
which samples from a surrogate distribution 𝑞 (𝐹) and corrects the sampling bias:∫

𝑝𝜃 (𝐼 |𝐹) 𝑝 (𝐹) 𝑑𝐹 =

∫
𝑝𝜃 (𝐼 |𝐹)

𝑝 (𝐹)
𝑞 (𝐹) 𝑞 (𝐹) 𝑑𝐹

= E𝑞(𝐹)

[
𝑝𝜃 (𝐼 |𝐹)

𝑝 (𝐹)
𝑞 (𝐹)

]
.

(1.9)

Using Jensen’s inequality,

log 𝑝𝜃 (𝐼) = logE𝑞(𝐹)
[
𝑝𝜃 (𝐼 |𝐹)

𝑝 (𝐹)
𝑞 (𝐹)

]
≥ E𝑞(𝐹)

[
log

[
𝑝𝜃 (𝐼 |𝐹)

𝑝 (𝐹)
𝑞 (𝐹)

] ]
= E𝑞(𝐹) [log 𝑝𝜃 (𝐼 |𝐹)] − E𝑞(𝐹)

[
log

𝑞 (𝐹)
𝑝 (𝐹)

]
= E𝑞(𝐹) [log 𝑝𝜃 (𝐼 |𝐹)] − 𝐷KL [𝑞 (𝐹) ∥𝑝 (𝐹)]

(1.10)
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where the last line of eq.1.10 is also known as the evidence-lower bound (ELBO).
In other words, in VI, maximizing ELBO is guaranteed to maximize the likelihood.
When 𝑞 (𝐹) = 𝑝 (𝐹 |𝐼), 𝑝𝜃 (𝐼) is exactly recovered using Bayes’ theorem. In fact,
ELBO can be alternatively derived from minimizing 𝐷KL [𝑞 (𝐹) ∥𝑝 (𝐹 |𝐼)]. This
motivates the interpretation of 𝑞 (𝐹) as a good approximation of the intractable
true posterior 𝑝𝜃 (𝐹 |𝐼). Thus, unlike MLE or maximum a posteriori methods that
yield a point estimation of 𝐹, VI enables characterizing the distribution of 𝐹 with
uncertainty information.

Another intuitive interpretation of maximizing ELBO as the optimization objective
of VI is that the former term encourages fitting variable 𝐹 to observed data 𝐼

by maximizing the log-likelihood, whereas the latter Kullback–Leibler (KL) term
penalizes overfitting by constraining model 𝑞 (𝐹) to not deviate too far from the
prior distribution 𝑝 (𝐹).

The choice of the error model for the log-likelihood term is not limited to a normal
distribution. An implementation of VI [8] shows that the Student’s t-distribution
performs better than the normal distribution on merging XRD data in a few macro-
molecular cases. This is likely because diffraction measurements are very noisy,
and the Student’s t-distribution is more tolerant of outliers. Thus, we use the same
error model in Chapter 3 to test the VI model [8] on small molecule 3D ED data.

The choice of the prior distribution can be adapted to specific experimental design
[9]. In crystallography, a general and reasonable prior distribution as implemented
in Dalton et al. [8] is the Wilson distribution [10], which is the intensity distribution
if atoms are uniformly distributed within the unit cell. A detailed derivation is
available in Srinivasan and Parthasarathy [11], and key steps are summarized below.

In a crystal without symmetry where there are 𝑁 atoms in a unit cell and the
scattering factor of the 𝑗 th atom is 𝑓 𝑗 , 𝑭 can be written as

𝑭 (𝒔) =
𝑁∑︁
𝑗=1

𝑓 𝑗 (𝒔) exp [𝑖2𝜋𝒔 · 𝒓] = 𝐴 + 𝑖𝐵 (1.11)

𝐴 =
∑︁
𝑗

𝑓 𝑗 cos (2𝜋𝒔 · 𝒓) 𝐵 =
∑︁
𝑗

𝑓 𝑗 sin (2𝜋𝒔 · 𝒓) (1.12)

where 𝒔 ≡ (ℎ, 𝑘, 𝑙) and 𝒓 ≡ (𝑥, 𝑦, 𝑧). In the limit of large 𝑁 , by the central limit
theorem, 𝐴 and 𝐵 both follow normal distributions. Furthermore, assuming a
uniform distribution of the atoms in the unit cell and setting the center of mass as
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the origin such that the mean and variance are 0 and 1
2
∑
𝑗 𝑓

2
𝑗

for both 𝐴 and 𝐵. The
joint probability of 𝐴 and 𝐵 is:

𝑝 (𝐴, 𝐵) = 1
𝜋
∑
𝑗 𝑓

2
𝑗

exp

[
−𝐴

2 + 𝐵2∑
𝑗 𝑓

2
𝑗

]
. (1.13)

Since 𝐹2 = 𝐴2 + 𝐵2, a polar coordinate transformation can be performed where
𝐴 = 𝐹 cos (𝛼) and 𝐵 = 𝐹 sin (𝛼), and

𝑝 (𝐹, 𝛼) = 𝐹

𝜋
∑
𝑗 𝑓

2
𝑗

exp

[
− 𝐹2∑

𝑗 𝑓
2
𝑗

]
. (1.14)

Finally, 𝑝 (𝐹) is obtained by marginalizing over 𝛼.

With centrosymmetric space group, 𝑭 ∈ (−∞,∞), 𝐹 ∈ [0,∞), 𝐵 = 0, and the
variance of 𝐴 becomes

∑
𝑗 𝑓

2
𝑗
. These conditions simplify the derivation such that

𝑝 (𝑭) = 𝑝 (𝐴) = 1√︃
2𝜋

∑
𝑗 𝑓

2
𝑗

exp

[
− 𝐴2

2
∑
𝑗 𝑓

2
𝑗

]
. (1.15)

Together, we have the Wilson prior

𝑝 (𝐹) =


2𝐹∑
𝑗 𝑓

2
𝑗

exp

[
− 𝐹2∑

𝑗 𝑓
2
𝑗

]
if (ℎ, 𝑘, 𝑙) acentric,√︂

2
𝜋
∑

𝑗 𝑓
2
𝑗

exp
[
− 𝐹2

2
∑

𝑗 𝑓
2
𝑗

]
if (ℎ, 𝑘, 𝑙) centric.

(1.16)

The cumulative distributions of normalized intensity for centric and acentric reflec-
tions can be derived [12] from the Wilson distributions (eq. 1.16) and are tabulated
in standard data processing programs to assess twinning [13] and other non-ideal
conditions [11]. Small molecule electron diffraction data do not always perfectly
obey the Wilson distributions, as dynamical scattering, background noises, and a
small number of atoms in the unit cell can all affect the intensity statistics. Mean-
while, VI using the Wilson prior as implemented in Dalton et al. [8] has only been
tested on macromolecular XRD experiments.

In Chapter 3, we show for the first time that scaling and merging using VI robustly
generalizes to small molecule electron diffraction data. Moreover, we look into
the impact of manual dataset curation and explore an extension to the model in
Dalton et al. [8] using machine learning principles to automate dataset curation. In
our tested cases, dataset curation — whether manual or automated, is less effective
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than conventionally thought. This suggests that the VI algorithm can efficiently
leverage information from all available datasets and reduce human bias in data pro-
cessing. Finally, limitations and practical challenges are discussed for experimental
practitioners.

1.3 Protein-drug complexes simulated at multi-scale
Structure determination is often motivated by the need to understand molecular
functions carried out by interactions with other molecules, referred to as binding
events. Structures of the bound and unbound states of the molecules of interest
unveil key information such as the binding sites and binding modes. However,
obtaining complete structural information at high resolution is not always possible,
especially for complexes exhibiting substantial conformational flexibility that makes
sample preparation challenging and blurs the measured signals. Moreover, a static
structural model is insufficient to characterize thermodynamic averages such as the
binding free energies. A quantitative measurement of the binding energies requires
additional techniques such as surface plasmon resonance (SPR) and isothermal
titration calorimetry (ITC).

The development of proteolysis targeting chimera (PROTAC) as a novel drug modal-
ity is a concrete example where analysis of the binding properties requires structural
insights and complementary techniques. A PROTAC molecule has two warheads for
simultaneously binding the target protein and recruiting an E3 ligase that induces the
degradation of the target protein. An interesting property of the target-PROTAC-E3
complex is that the presence of E3 ligase affects the binding affinity between the
PROTAC and the target protein and vice versa. Mathematically, this phenomenon is
summarized by the binding cooperativity 𝛼 = 𝐾

binary
D /𝐾 ternary

D . With positive coop-
erativity (𝛼 > 1), the E3 ligase facilitates the binding between the PROTAC and the
target protein and lowers the binding free energy. However, rational optimization of
the cooperativity is hindered by a poor understanding of the fundamental principles
due to the scarcity and low resolution of experimental data. Structures of the ternary
complexes can be difficult to obtain compared to the binary complexes. In addition,
few studies measure PROTAC binding energies against systematic perturbation of
structural features.

Free energy calculation methods complement experimental techniques and can be
insightful for cases such as the ternary complexes of PROTAC where experimental
measurements are challenging. Given the binding modes from binary complex



9

structures, computer simulations can be leveraged to calculate the cooperativity of
the ternary complexes. Within each thermodynamic state, different configurations
of the complexes are sampled by MD simulations to predict the binding energies.

The Helmholtz free energy difference (Δ𝐴) between the start state 𝑠 and the final
state 𝑓 is:

Δ𝐴 𝑓 ,𝑠 = −𝛽−1 (ln𝑄 𝑓 − ln𝑄𝑠

)
= −𝛽−1 ln

𝑄 𝑓

𝑄𝑠

(1.17)

where 𝛽−1 = 𝑘𝐵𝑇 , 𝑘𝐵 is the Boltzmann constant, 𝑇 is the temperature, and

𝑄 =

∫
Γ

exp [−𝛽𝑈 (q)] 𝑑q (1.18)

is the configurational partition function over phase space Γ. The probability of a
particular configuration q of the molecule or molecular complex is its Boltzmann
weight normalized by the partition function:

𝑝 (q) = exp [−𝛽𝑈 (q)]
𝑄

. (1.19)

A naive way to calculate binding free energy is to directly observe the binding and
unbinding events in an MD simulation. However, atomistic MD simulations of the
ternary complex at a biologically relevant timescale are infeasible due to the high
computational cost.

In principle, using importance sampling, the free energy difference can be exactly
obtained by importance sampling and only simulating configurations in the start
state:

𝑄 𝑓

𝑄𝑠

=

∫
exp

[
−𝛽𝑈 𝑓 (q)

]
exp [𝛽𝑈𝑠 (q)] exp [−𝛽𝑈𝑠 (q)]𝑑q

𝑄𝑠

=

∫
exp

[
−𝛽Δ𝑈 𝑓 ,𝑠 (q)

]
𝑝𝑠 (q) 𝑑q

= ⟨exp
[
−𝛽Δ𝑈 𝑓 ,𝑠 (q)

]
⟩𝑠

=
1
𝑁𝑠

𝑁𝑠∑︁
𝑖

exp
[
−𝛽Δ𝑈 𝑓 ,𝑠 (q𝑖)

]
.

(1.20)

This is known as exponential averaging or Zwanzig relationship [14]. However, in
practice, this method is challenging due to the stringent requirement on substantial
phase space overlap between Γ𝑠 and Γ 𝑓 . Practically, this means that the conver-
gence of calculations requires prohibitively long simulation time to sample enough
configurations from simulations using𝑈𝑠.
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One solution is to perform enhanced sampling along the binding pathway, but this
information is often unavailable a priori. An alternative approach is to perform free
energy perturbation through alchemical transformations. Readers are referred to
Mey et al. [15], Pohorille et al. [16], and Klimovich et al. [17] for additional reviews
and guidelines.

In alchemical free energy calculations, intermediate states are generically defined
by a coupling parameter 𝜆 for the potentials 𝑈, such that 𝜆 = 0 corresponds to the
start state 𝑠 and 𝜆 = 1 corresponds to the end state 𝑓 . For comparative studies
such as the calculation of binding cooperativity, alchemical transformation defines
the relative presence of two molecular species to be compared at both bound and
unbound states.

Thermodynamic integration (TI) can be used to approximate the free energy differ-
ence by performing numerical integration along 𝜆:

𝑑𝐴𝜆

𝑑𝜆
= −𝛽−1 𝑑 ln

∫
exp [−𝛽𝑈 (𝜆, q)]𝑑q

𝑑𝜆

= −𝛽−1−𝛽
∫

exp [−𝛽𝑈 (𝜆, q)] 𝑑𝑈 (𝜆,q)
𝑑𝜆

𝑄𝜆
𝑑q

=

〈
𝑑𝑈 (𝜆, q)

𝑑𝜆

〉
𝜆

(1.21)

Δ𝐴 𝑓 ,𝑠 =

∫ 1

0

𝑑𝐴𝜆

𝑑𝜆
𝑑𝜆 =

∫ 1

0

〈
𝑑𝑈 (𝜆, q)

𝑑𝜆

〉
𝜆

𝑑𝜆. (1.22)

Another way to improve convergence along the idea of importance sampling is
through the use of the multistate Bennett acceptance ratio (MBAR) method [18] that
reweights the samples by the mixture distributions of all states [19]. The reweighted
probability of a configuration q is:

𝑝 (q) =
∑︁
𝜆

𝑁𝜆

𝑁
𝑝𝜆 (q) =

1
𝑁

∑︁
𝜆

𝑁𝜆
exp [−𝛽𝑈 (𝜆, q)]

𝑄𝜆
(1.23)

where 𝑁 =
∑
𝜆 𝑁𝜆 is the total number of samples drawn from all states.
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Using importance sampling,

𝑄𝜆 =

∫
exp [−𝛽𝑈 (𝜆, q)]𝑑q

=

∫
exp [−𝛽𝑈 (𝜆, q)]

𝑝 (q) 𝑝 (q) 𝑑q

=

〈
exp [−𝛽𝑈 (𝜆, q)]

𝑝 (q)

〉
=

1
𝑁

𝑁∑︁
𝑖

exp [−𝛽𝑈 (𝜆, q)]
1
𝑁

∑
𝜆 𝑁𝜆

exp [−𝛽𝑈 (𝜆,q)]
𝑄𝜆

=

𝑁∑︁
𝑖

exp [−𝛽𝑈 (𝜆, q)]∑
𝜆 𝑁𝜆

exp [−𝛽𝑈 (𝜆,q)]
𝑄𝜆

.

(1.24)

This gives a set of equations that yields solutions up to a multiplicative constant.
Since only the difference of free energies is of interest (eq. 1.17), one of the 𝑄𝜆 is
fixed at an arbitrary constant such as 1 to solve the rest.

Without the introduction of the intermediate states, MBAR reduces to the Bennett
acceptance ratio (BAR) approach [20], which was originally derived by constructing
a scaling function 𝛼 (q) that minimizes the variance of the estimated free energies
from

𝑄 𝑓

𝑄𝑠

=
1/𝑄 𝑓

∫
𝛼 (q) exp

[
−𝛽𝑈 𝑓 (q)

]
exp [−𝛽𝑈𝑠 (q)]

1/𝑄𝑠

∫
𝛼 (q) exp

[
−𝛽𝑈 𝑓 (q)

]
exp [−𝛽𝑈𝑠 (q)]

=
⟨𝛼 (q) exp [−𝛽𝑈𝑠 (q)]⟩ 𝑓
⟨𝛼 (q) exp

[
−𝛽𝑈 𝑓 (q)

]
⟩𝑠
.

(1.25)

A straightforward application of these free energy calculation methods is challenging
because perturbation of less than 10 heavy atoms is typically required for conver-
gence. However, calculating PROTAC binding cooperativity requires perturbation
at the scale of a protein domain. While coarse-graining (CG) can be used to reduce
the effective system size and smoothen the energy landscape, the large discrepancy
between the size of the proteins and the size of a PROTAC precludes an aggressive
and uniform approach that loses the resolution needed for structural and chemical
insights.

Therefore, Chapter 4 explores a CG approach at mixed scales and rigorously an-
alyzes the convergence properties of the alchemical free energy calculations for
PROTAC binding. A minimal forcefield 𝑈 is constructed to characterize the role
of the PROTAC linker length and protein shapes in cooperativity as a result of
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the configurational entropy. Future inclusion of more sequence-specific and PRO-
TAC configurational features in the CG forcefield, which may improve the method
towards more quantitative predictions, are discussed.
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C h a p t e r 2

MONTAGE ELECTRON TOMOGRAPHY OF VITRIFIED
SPECIMENS

Adapted from

(1) Peck, A.; Carter, S. D.; Mai, H.; Chen, S.; Burt, A.; Jensen, G. J. Montage
Electron Tomography of Vitrified Specimens. Journal of Structural Biology
2022, 214, 107860. DOI: 10.1016/j.jsb.2022.107860.
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Abstract

Cryo-electron tomography provides detailed views of macromolecules in situ. How-
ever, imaging a large field of view to provide more cellular context requires reducing
magnification during data collection, which in turn restricts the resolution. To cir-
cumvent this trade-off between field of view and resolution, we have developed a
montage data collection scheme that uniformly distributes the dose throughout the
specimen. In this approach, sets of slightly overlapping circular tiles are collected
at high magnification and stitched to form a composite projection image at each
tilt angle. These montage tilt-series are then reconstructed into massive tomograms
with a small pixel size but a large field of view. For proof-of-principle, we applied
this method to the thin edge of HeLa cells. Thon rings to better than 10 Å were
detected in the montaged tilt-series, and diverse cellular features were observed in
the resulting tomograms. These results indicate that the additional dose required
by this technique is not prohibitive to performing structural analysis to intermediate
resolution across a large field of view. We anticipate that montage tomography
will prove particularly useful for lamellae, increase the likelihood of imaging rare
cellular events, and facilitate visual proteomics.
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2.1 Introduction
Cryo-electron tomography (cryo-ET) is a powerful tool for studying macromolecular
structures in the near-native context of frozen-hydrated cells, unperturbed by stains
or fixatives [21, 22]. In this cryo-electron microscopy (cryo-EM) technique, a
series of projection images is recorded as a vitrified specimen is tilted in an electron
microscope. The resulting tilt-series is reconstructed into a tomogram, or volumetric
map of the specimen’s electrostatic potential. Cryo-ET has revealed important
details of cellular ultrastructure, and subtomogram averaging algorithms enable
determining the structures of macromolecular complexes at a resolution of 0.4-4 nm
[21]. Recent technical advances have extended the high-resolution potential of this
technique, yielding subtomogram averages of purified HIV-1 Gag particles to 3.1 Å
and in situ ribosomes to 3.7 Å [23, 24]. However, data must be collected at high
magnification to retain this high-resolution signal. The trade-off is a smaller field
of view, limiting the region that can be imaged to a tiny fraction of a cell.

In principle, montage tomography could permit imaging a large field of view without
sacrificing high-resolution details. For montage data collection, the beam is tiled
across a specimen and the recorded images are computationally stitched together
during reconstruction [25]. To date, montage tomography has only been performed
on resin-embedded samples, which resist radiation damage but suffer from artifacts
induced by chemical fixation [26–28]. By contrast, cryo-preserved specimens can
tolerate only a limited electron dose before being destroyed [29]. Historically this
dose sensitivity has been considered prohibitive to collecting montage data from
vitrified samples, as portions of the sample must be exposed multiple times to
facilitate stitching images during reconstruction.

Recent technical developments, however, motivate revisiting the potential of mon-
tage cryo-tomography. First, the highly stable optics of modern microscopes enable
precise control over the region being exposed [30]. Such precision is critical both
to prevent gaps between neighboring images and to avoid accidentally enlarging
the overlap region. Second, the ability to collect data using a circular beam with
fringe-free illumination allows for more efficient tiling strategies and reduces loss
of information due to corruption by Fresnel fringes [31, 32]. Third, the increased
sensitivity of modern detectors permits decreasing the exposure while achieving the
same signal-to-noise ratio [33–36]. Fourth, focused ion beam (FIB) milling has
significantly expanded the range of specimens that can be studied by cryo-ET but
is highly time-consuming, motivating efforts to image as much of the lamellae as
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possible [37–39]. In addition, there is growing recognition in the field that radiation
damage is a progressive phenomenon [40–42]. As a result, important features of
cellular biology remain observable even after receiving what was previously con-
sidered an intolerably high dose for vitrified samples. While other approaches like
serial blockface scanning electron microscopy (SBF-SEM) [43], soft X-ray tomog-
raphy [44, 45], and 3d focused ion beam scanning electron microscopy (FIB-SEM)
[46] also permit large volume imaging of cellular ultrastructure, montage cryo-ET
has the greatest potential to achieve reconstructions with subnanometer resolution.

Montage tomography of cryo-preserved specimens would further the potential of
cryo-ET by increasing the likelihood of imaging transient events and providing
significantly more cellular context for macromolecules of interest. Here we use
simulations to optimize a montage data collection scheme and develop strategies to
stitch tiles at each tilt angle into a composite projection image. We then harness
modern cryo-ET algorithms to reconstruct tomograms from these montage tilt-series
with a small pixel size but a large field of view. To demonstrate proof-of-principle,
we applied this technique to the thin edges of HeLa cells. Thon rings to better than
15 Å were observed at both low and intermediate tilt angles in the individual tiles
and detected to under 10 Å in the untilted projection images after stitching. The
reconstructed tomograms spanned a 3.3 𝜇m2 field of view and contained diverse
cellular features, including mitochondria, multilammelar vesicles, and microtubules.
These results indicate that despite the additional dose required by this method,
montage tomography enables capturing large fields of view for structural analysis at
the intermediate resolutions typical of cryo-ET data.

2.2 Optimization of tiling strategies
Given the sensitivity of biological samples to radiation damage [40–42], the success
of montage tomography depends on efficiently distributing the total exposure both
at each tilt angle and across the full tilt-series. The former is readily addressed for a
circular beam: the optimal strategy to pack circles in a plane uses a hexagonal tiling
scheme, in which circles are centered on the vertices of a regular hexagonal grid
and three neighboring circles intersect at a point (Fig. 2.1A) [2]. The question then
remains how to displace these hexagonally-packed circular tiles between tilt angles
to most uniformly spread the dose across the tilt-series. Applying global translations
and rotations to the hexagonal array of circles between tilt angles changes which
regions of the sample lie in an overlap region at each tilt angle, thereby reducing the
amount of sample that receives excess dose (Fig. 2.1B-C).
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G.

D.

C.A. B.

E. F.

No offsets Rotations only Translations only Rotations and translations

Figure 2.1: Optimization of a montage tiling strategy. (A) At each tilt angle, a
hexagonally-packed set of circular tiles is imaged. Applying a global (B) rotation or
(C) translation to the tiles between tilt angles changes which regions of the specimen
lie in an overlap region to more uniformly spread the dose. Global translation is
applied using one of three spiral patterns: (D) Archimedean, (E) sunflower, or
(F) “snowflake.” The positions of the central tile are indicated by black dots and
spiral outwards during the tilt-series. Tunable parameters for the patterns include
the maximum translation of the central tile (t_max) and the number of revolutions
(n_rev or n_steps). (G) The spatial distribution of the dose is mapped on the
specimen (upper). The variance (𝜎2) of the dose distribution is noted at the upper
right of the histograms (lower). For the “no offsets” strategy, tiles were rotated by
10◦ relative to the plane of the detector with no further offsets applied during the
tilt-series. For the “rotations only” strategy, a 20◦ clockwise rotation was applied
between tilt angles. For the “translations only” strategy, tiles were translated along
an Archimedean spiral with three revolutions and a maximum translation of 80% of
the beam radius for each tile.
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Since a priori it is unclear which combination of offsets would most efficiently
distribute dose, we used simulations to characterize hundreds of different tiling
strategies. These simulations used a right-handed coordinate system with the de-
tector oriented in the 𝑥𝑦 plane and the incoming electron beam directed along the
𝑧-axis (Fig. 2.8). A rectangular specimen with a width of 3,420 nm and depth of
400 nm was discretized into 4 nm cubic voxels and tilted about the 𝑥-axis following
a standard dose-symmetric tilt-scheme [47]. At each tilt angle, a 1 𝜇m diameter
beam was used to illuminate a set of hexagonally-packed circular tiles. Even with
fringe-free illumination, residual fringes were observed to affect up to 2% of the
outer edge of each tile (see below). To prevent gaps in the montage after discarding
this corrupted region, the overlap between tiles was increased relative to optimal
hexagonal packing such that a small fraction of voxels was exposed up to three times
at any tilt angle. We then computed the accumulated dose received by each voxel of
the specimen under tiling strategies that differed in the translational and rotational
offsets applied between tilt angles.

To systematically introduce translational offsets, we examined three basic spiral
patterns: an Archimedean spiral, in which adjacent points are equidistant along
the curve of the spiral (Fig. 2.1D); a sunflower or Fibonacci spiral, in which
points are distributed in concentric shells of equal area, and successive points are
placed in the largest angular gap between previous points [48] (Fig. 2.1E); and
a “snowflake” spiral, in which points are positioned on the vertices of concentric
hexagons that mirror the 6-fold symmetry of the packed circular tiles (Fig. 2.1F).
The positions of all tiles were uniformly shifted between successive tilt angles to
follow the path of the spiral while maintaining hexagonal packing at each tilt angle.
For the snowflake spiral, the pattern is repeated starting from the center if the
outermost position is reached before the final tilt angle. For all three spiral types,
one of the adjustable parameters was the maximum translation permitted for each
tile across the entire tilt-series (Fig. 2.9A); this was capped at a distance of one beam
radius to ensure that all but the outermost tiles remained fully in the field of view.
The second translational parameter was the number of revolutions or radial steps
respectively for the Archimedean spiral and snowflake pattern (Fig. 2.9B). For the
sunflower pattern, positions were dictated exclusively by the number of points and
maximum translation. A third translational parameter was an optional scaling of the
𝑥-axis displacements by 1/cos 𝛼, where 𝛼 is the tilt angle (Fig. 2.9C). This scaling
mimicked the 𝑦-axis elongation of circular tiles into ellipses at high tilt angles (Fig.
2.8), with the intent of preserving efficient circular symmetry.
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In addition to translational offsets, rotational offsets were systematically introduced
by varying three parameters. The first parameter was the starting angle, which
dictated the initial orientation of the hexagonal array of circular tiles in the plane of
the detector. The second parameter was the rotational step size, which determined
the magnitude of the global rotation applied to the hexagonally-packed tiles between
each tilt angle. Third, this global rotation was either applied continuously or in an
alternating fashion. For the continuous scheme, the hexagonally-arranged tiles were
rotated by the same amount and in the same direction between each tilt angle. For
the alternating scheme, global counterclockwise and clockwise rotations of the same
rotation step size were applied between successive tilt angles.

In total we simulated 576 snowflake, 546 spiral, and 286 sunflower patterns by sys-
tematically varying the parameters described above. The dose distributions received
by voxels of a discretized specimen during a simulated tilt-series are compared. Each
pattern was scored by the variance of the distributed dose, with superior patterns
characterized by low variance (Fig. 2.1G). Across all spiral types, we found that
translational offsets were more critical than rotational offsets to uniformly spread
the dose throughout the specimen (Figs. 2.1G, 2.10). Although the top-ranked
variant for the (Archimedean) spiral, sunflower, and snowflake patterns achieved
similar scores, we found that variants of the first consistently scored well for trans-
lational offsets of the same magnitude (Fig. 2.10). All variants were also observed
to perform similarly across different data collection schemes (Fig. 2.11). We thus
chose the best-performing spiral variant for experimental data collection. This pat-
tern was characterized by a maximum tile translation of 80% of the beam radius, 3
revolutions, no scaling of the 𝑥-axis translational component, a starting offset angle
of 10◦ of the hexagonally-arranged tiles in the plane of the detector, and continuous
rotations of 20◦ between tilt angles (Fig. 2.1G, right). These offsets reduced the
variance of the distributed dose by 20-fold compared to the corresponding pattern
without any offsets (𝜎2=0.003 versus 𝜎2=0.063).

2.3 Montage data collection and processing
Montage tilt-series collection
Montage tilt-series were collected on a Titan Krios G3i (Thermo Fisher Scientific)
equipped with fringe-free illumination [31], a Gatan imaging filter, and a K3 Summit
direct electron detector (Gatan). Data acquisition was performed using SerialEM
in electron-counting mode [3] by providing the software a custom script (see Code
Availability). Each tile was acquired using a circular beam of diameter 1.08 𝜇m,



20

such that the beam spanned the short edge of the detector at a pixel size of 2.65
Å. A beam-centering step was performed after collecting each tile to reduce drift
without applying additional exposure. At each tilt angle, 37 tiles were acquired:
one central tile, with three surrounding rings of hexagonally-packed tiles. The
beam coordinates were updated using SerialEM’s image shift function to follow
a spiral pattern as described in Section 2.2. Once the full complement of 37
tiles was collected at a particular tilt angle, the stage was rotated to the next tilt
angle following a grouped dose-symmetric tilt-scheme with a group size of 6◦, 2◦

increments between tilt images, and a tilt-range of ±60◦ [49]. Applying the above
data collection scheme at a constant defocus was predicted to yield a ∼8 𝜇m defocus
gradient at the highest tilt angles (Fig. 2.2A, left). To avoid this spread, we adjusted
the defocus with which each tile was collected based on that tile’s estimated 𝑧-height
in the microscope. Defocus values ranged from -5 to -11 𝜇m for different tilt-series,
and a total dose of 60-106 e−/Å2 was used. Each montage dataset took 4 hours to
collect, yielding 100 GB of raw data.

Tile pre-processing
Before stitching tiles into a composite image, Fresnel fringes and non-uniform illu-
mination must be accounted for. Fringe-free illumination (FFI) reduces but does not
entirely eliminate Fresnel fringes during image formation [31, 32]. Residual fringes
are particularly evident when data are collected at a defocus and magnification
typical for tomography, since current FFI set-ups are optimized for single-particle
cryo-EM applications instead. The number of observed fringes depends on both
defocus and the signal intensity of the specimen, so removing a fixed fraction of
the outer edge of each tile does not adequately eliminate the fringe-contaminated
region.

Given this variability, we developed the following heuristic approach to mask resid-
ual fringes. A 2-dimensional Gaussian bandpass filter was applied to each tile, using
kernel sizes of 2 and 6 nm. In the filtered tile, a high-intensity ring that spanned the
Fresnel fringes was observed at the edge of the illuminated region (Fig. 2.12A). A
circle was fit to this ring of pixels using least-squares optimization, and the start of
the Fresnel fringes was estimated as the ring’s inner radius. All pixels outside this
radius were masked (Fig. 2.12B-E).

In addition to residual fringes, we observed a consistent reduction in radial intensity
by ∼15% between the center and edge of each tile (Fig. 2.12B). Left uncorrected,
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Figure 2.2: CTF estimation reveals a stable defocus throughout the tilt-series and
Thon rings to better than 15 Å. (A) Defocus values were predicted based on the
tiles’ estimated heights in the microscope and are shown as a function of tilt angle
(left). By contrast, the per-tile defocus values estimated by CTFFIND4 showed a
relatively stable defocus gradient, as plotted for two representative tilt-series (middle
and right). This was accomplished by performing an autofocusing step prior to
collecting each tile to compensate for the predicted defocus gradient across each
tilt angle. (B) The 2D experimental spectrum (upper) and rotationally-averaged 1D
CTF fits (lower) are shown for representative tiles (left) or CTF-uncorrected stitched
projection images (right) at the indicated tilt angle.

this would artificially depress the intensity of the overlap regions during stitching.
We therefore applied a radial gain correction as follows. At each tilt angle, the
tiles’ radial intensity profiles were normalized to a value of 1 in the central region
of the tile and merged to generate a single intensity profile for the tilt angle. The
resulting radial intensity profile was median-filtered and applied as a gain reference,
with linear interpolation used to compute the correction factor at each pixel (Fig.
2.12B-E).
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Correcting for the contrast transfer function
Despite adjusting the focus on a per-tile basis to avoid an excessive defocus gradient
across the tilt-series, some variation in defocus between tiles was expected due
to microscope error. We therefore performed a contrast transfer function (CTF)
correction on individual tiles. We used CTFFIND4 (version 4.1.13) to estimate
each tile’s defocus [5] and ctfphaseflip to correct for the CTF [50]. The estimated
defocus values confirmed that the per-tile focus adjustment compensated for the large
changes in 𝑧-height due to montage collection and yielded a relatively stable defocus
throughout the tilt-series (Fig. 2.2A). The high-resolution limit of detected Thon
rings for most tiles ranged from 10-20 Å, with better resolution at lower tilt angles as
expected (Fig. 2.2B, left). To verify that the stitching procedure described below did
not degrade resolution, CTFFIND4 was also applied to the CTF-uncorrected stitched
images to assess the high-resolution limit of detectable Thon rings (Fig. 2.2B, right).
In the untilted stitched images, CTFFIND4 detected Thon rings to resolutions of
8.2, 9.3, and 12.1 Å for the three montage datasets presented in this work (Fig. 2.13).

Tile registration
We developed an image registration workflow tailored for montage cryo-tomograms
collected using a circular beam. Current software for processing montage data is
designed for resin-embedded specimens and unsuitable for two reasons. First, resin-
embedded samples are typically acquired using the full area of the detector, yielding
a large and rectangular overlap region between tiles [25]. By contrast, we employ
a more efficient tiling strategy of hexagonally-tiled circular beams to overcome
radiation sensitivity. This scheme results in lemon-shaped overlap regions that
change positions and orientations relative to the specimen at each tilt angle (Fig.
2.1B-C). Second, the algorithms used to perform automated landmark extraction and
alignment rely on high-contrast features that typify resin-embedded specimens but
are absent in cryo-tomograms even when collected at high defocus [51]. Although
gold fiducials can be added to the sample to provide high-contrast features, a high
concentration would be needed to ensure that sufficient markers are present in the
overlap regions for use during tile registration. Further, these fiducials reside on the
sample’s surface so may experience more severe warping or doming effects than the
cellular matter below.

To overcome low contrast, data collected with a pixel size of 2.65 Å were first
binned to 10.6 Å. After applying a correction for uneven radial illumination, tiles
were bandpass-filtered and masked to remove the unilluminated and Fresnel fringe-
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corrupted regions. For bandpass-filtering, we found that kernel sizes of roughly
6 and 19 nm enhanced features such as gold beads, membranes, and grid hole
boundaries that serve as useful landmarks for image registration. These features
were further selected for by thresholding; specifically, only pixels with intensities
in the bottom 15th percentile for each tile (belonging to high contrast features) were
retained.

Despite the stable optics of modern microscopes, some drift is expected during data
collection. To refine the tile positions from the beam coordinates supplied to the
microscope, we computed the translational shifts that maximized the normalized
cross-correlation between pairs of overlapping tiles, 𝑇 and 𝑇 ′, at each tilt angle:

arg max
𝑥,𝑦

∑
𝑖, 𝑗 𝑇 (𝑖, 𝑗) 𝑇 ′(𝑖 + 𝑥, 𝑗 + 𝑦)√︃∑

𝑖, 𝑗 𝑇 (𝑖, 𝑗)2 ∑
𝑖, 𝑗 𝑇

′(𝑖 + 𝑥, 𝑗 + 𝑦)2
(2.1)

where the sum is over all pixels at coordinates (𝑖, 𝑗) that are in register when 𝑇 ′ is
translated by (𝑥, 𝑦) while the position of 𝑇 remains fixed. The initial search was
performed in a box of length 30 nm centered on the beam coordinates used during
data collection. If the translational shift that maximized the cross-correlation score
was located at the edge of this box, the search box was re-centered to this position
and another search was performed. This calculation yielded the relative positions
for each pair of overlapping tiles.

The full mosaic for each tilt angle was then generated by fixing the central tile at the
origin and determining the coordinates of the surrounding six tiles relative to this
anchor tile (Fig. 2.1A). The position of each tile in the surrounding layer was esti-
mated as the mean of all pairwise positions weighted by the cross-correlation scores
between the tile of interest and each of its neighbors. Using the cross-correlation
coefficients as weights ensured that overlap regions with the highest contrast features
contributed most to tile positioning. The coordinates of the tiles in this first ring were
then fixed. Tiles in each successive concentric ring were positioned using the same
strategy, based on the consensus coordinates from pairwise registrations between
neighboring tiles in the ring under consideration and anchor tiles in the previously
fixed ring. Once the positions of the tiles in the outermost ring were determined, the
full registration procedure was repeated using the optimized positions as the tiles’
starting coordinates. Tile registration was then performed on the unbinned data,
using the optimized coordinates as the starting tile positions and a smaller search
space.
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Tiles were then stitched based on these optimized positions to generate a mosaic (Fig.
2.3, inset). For pixels lying in the overlap regions, the intensity values were selected
from the tile whose center was nearest to the pixel. Continuous cellular features
were observed in the overlap regions of the montage projection images, indicating
minimal radiation damage and robust stitching (Figs. 2.3 and 2.14). Occasionally
the combination of beam shift error and masking resulted in small gaps between
tiles; these missing pixels were filled by randomly sampling intensity values in
the surrounding region to prevent holes in the stitch. Each montage projection
image was then shifted to compensate for the spiraling translational offsets applied
between tilt angles, cropped to the maximal region imaged at all angles, and stacked
to generate a tilt-series. The size of each tilt-series was approximately 33 GB.

1 µm

Figure 2.3: Continuity of cellular features in the overlap regions indicates successful
stitching. The montaged projection image at 0◦ from a representative tilt-series is
shown in the upper left inset. The region boxed in red is visualized at higher detail
in the main image, with the boundaries of the circular tiles drawn in black. The clear
and continuous membranous features visible in the overlap regions between adjacent
tiles suggests both successful stitching and minimal radiation damage despite the
extra dose. The diameter of each circular tile is 1.08 𝜇m.

Methods for sample preparation and tomogram reconstruction are available in the
original publication from which this chapter is adapted.

2.4 Example montage cryotomograms
For proof-of-principle, we collected montage tilt-series from the thin edge of HeLa
cells and reconstructed them into tomograms. During data processing, Thon rings
to better than 15 Å were frequently observed on individual tiles (Fig. 2.2B) and
detected to better than 10 Å in the untilted stitched projection images for two of the
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three tomograms (Fig. 2.13). Distinct cellular features that spanned the overlap re-
gions were visible throughout the tilt-series (Figs. 2.3 and 2.14). These observations
suggest that radiation damage was not severe despite the additional dose required
for stitching. Consistent with this, there was no evidence of bubbling, a hallmark of
radiation damage, or unevenly distributed dose in the reconstructed volumes, which
were visually comparable to cryotomograms collected by standard data collection
protocols. Inspection of the montage tomograms revealed rich and diverse cellular
structures, including microtubules, multilamellar vesicles, mitochondria with cal-
cium granules [52], actin bundles, and ribosomes (Figs. 2.4-2.6 and 2.15). Movies
are available in the original publication.

Calcium  
granule Mitochondria

Ribosomes

Actin bundle

Vesicles

250 nm

Figure 2.4: Diverse cellular features are observed in an example cryo-tomogram
reconstructed from montage tilt-series. A slice is shown from a representative
montage tomogram that spans a 3.3 𝜇m2 field of view.
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Ribosomes

Microtubules

250 nm

Vesicles

Figure 2.5: Representative montage cryo-tomogram from the thin edge of a HeLa
cell. A tomographic slice spanning a 3.3 𝜇m2 field of view is visualized, with
cellular features of interest annotated.

To quantitatively assess data quality, we performed subtomogram averaging of
ribosomes picked from three tomograms collected at different defocus values. The
subtomogram average grossly resembled the reference structure, with a resolution
of 27 Å based on the Fourier shell correlation (FSC) between random half-sets (Fig.
2.7A-B). However, the observation of Thon rings to higher resolution — in some
cases to 10 Å in the stitched projection images — suggested the retention of higher
resolution signal in the montage tilt-series (Fig. 2.2B, right). It is possible that the
resolution of the subtomogram average could be improved by the inclusion of more
particles across a more finely sampled defocus range. Mapping the ribosomes back
onto the tomograms revealed that the particles used to generate the subtomogram
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250 nm

250 nm250 nm

Figure 2.6: Insets from representative montage cryo-tomograms. Close-up views
from the cryo-tomograms presented in Figs. 2.4 and 2.5 visualize the mitochondria
(upper) and microtubules (lower) in greater detail.

average were spread throughout the sample rather than localized to particular regions
(Figs. 2.7C-D), in keeping with the aim of evenly distributing the dose during data
collection.

2.5 Discussion
Here we present a tomographic data collection and processing workflow to acquire
montage tilt-series with a small pixel size but a large field of view. We used
simulations to determine an acquisition strategy that efficiently distributed additional
dose throughout the specimen and developed algorithms to stitch the recorded data
into seamless projection images. We then assessed the efficacy of this pipeline by
applying it to the thin edge of HeLa cells, yielding tomograms that spanned a 3.3
𝜇m2 field of view with a pixel size of 7.95 Å. The pixel size of the montage tilt-
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Ribosome  
(8.4 Å, EMD-0529)

Subtomogram 
average (27 Å)

Reference 
model (42 Å)

Figure 2.7: Ribosome subtomogram average and spatial distribution. (A) Isosur-
faces are shown from an 8.4 Å structure of the eukaryotic ribosome (left), the 42
Å reference map used during averaging (center), and the subtomogram average
from particles picked from three montage tomograms (right). (B) The Fourier shell
correlation between random half-sets indicated a resolution of 27 Å for this recon-
struction. (C-D) Particles (blue) used to generate the subtomogram average are
mapped to their positions in two tomograms (upper) and overlaid on representative
slices through these volumes (lower).

series, which would determine the Nyquist frequency of a subtomogram average,
was 2.65 Å. The observation of Thon rings to better than 10 Å in the untilted stitched
images indicated that the montage tilt-series retained signal to a resolution typical
of cryo-ET, despite the extra dose required for stitching that historically has been
considered prohibitive to this method’s success.

These results are a pioneering demonstration of montage tomography that we hope
will motivate further development of this technique. On the data acquisition side, we
anticipate that the next phase will involve expanding the spiral pattern to encompass
hundreds rather than just tens of tiles. This would dramatically expand the field
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of view, which in principle is only limited by aberrations associated with extreme
beam shifts and, for FIB-milled specimens, the accessible areas of lamellae. Such
massive montages would in turn require the development of new software to optimize
alignment and reconstruction. We anticipate that the optimal strategy will involve
cropping out subvolumes from the initial reconstruction and then using these as
fiducials to refine the tile alignments and estimated defocus, while also modeling
the global warping of the sample that occurs during data collection. This approach
would be an extension of the per-particle, per-tilt refinement employed by some
subtomogram averaging packages like emClarity and EMAN2 [23, 53, 54], and
similar to the multi-particle refinement scheme used by the software tool M to
model spatial deformations of the specimen [24]. Extending these algorithms to
montage data would not only maximize the signal extracted from the small montages
shown in this work, but also be invaluable for much larger montages, where warping
and doming are more severe.

Once such software is available to maximally exploit the montage technique, a
pressing question will be whether montage tomograms offer more information than
the corresponding single-exposure tomogram acquired at lower magnification. We
anticipate that the montage technique will retain higher resolution information,
in part because one of the principal resolution-limiting factors in cryoET is the
precision to which the defocus can be estimated for CTF correction. In principle,
montage tomography should permit more precise defocus determination because
the geometrical relationship between all tiles is known a priori, such that CTF
corrections can leverage all the available data, which far exceeds the amount of data
acquired for a single-exposure tomogram. The disadvantage of montage cryoET is
the additional exposure received by the overlap regions, but these are minimized
by an efficient tiling scheme and can still be integrated during reconstruction with
appropriate dose-weighting. We observed that only a small fraction (∼4%) of the
imaged sample must be discarded due to corruption by residual Fresnel fringes, but
fine-tuning of the FFI set-up may further reduce this. We expect that the benefits
provided by a more precise defocus estimation will outweigh the cost of this small
amount of wasted dose, though further software development is needed.

We also anticipate that montage tomography could prove particularly useful for
cellular lamellae. The FIB-milling required to produce these samples is challenging
and time-consuming, so maximizing the yield during data collection is a critical
concern [37–39]. By imaging a large field of view, this technique also increases the
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chances of capturing transient or infrequent cellular events. Finally, data collected
by this method will be a valuable resource for visual proteomics, which seeks to build
atlases of cellular structure at molecular resolution [55, 56]. As technical advances
continue to improve the high-resolution limit of cryo-ET, montage tomography
offers a way to provide more cellular context while retaining detailed views of
macromolecules in situ.

Data and code availability
Raw data are available at the Caltech Data Repository (https://data.calte
ch.edu) under accession IDs 2096, 2099, and 2103. The processed tilt-series
binned to 5.3 Å can be found in the Caltech Electron Tomography Database
(https://etdb.caltech.edu/). The code developed for data collection and
processing is available at https://github.com/apeck12/montage.
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2.6 Appendix

Figure 2.8: Coordinate system and axes conventions for simulating montage data
collection. All simulations use the standard right-handed Cartesian coordinate
system, with the origin at the center of the specimen (blue rectangular prism). The
specimen is tilted around the 𝑥-axis. A tilt angle 𝛼 is positive if the specimen
is tilted counterclockwise when viewed from the positive side of the 𝑥-axis. An
electron beam (yellow cylinder) is delivered to the specimen along the 𝑧-axis from
the positive side. The illuminated volume of the specimen is the cylinder outlined
by the orange ellipses. In projection the beam is circular at the first tilt angle of 0◦
and becomes increasingly elliptical at higher tilt angles, with the long axis of the
ellipse aligned with the 𝑦-axis of the detector.
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Figure 2.9: Global translational offsets of the tiles change which regions of the
specimen are imaged more than once during the tilt-series. For visual clarity, only
the central seven tiles (pink circles) are shown for before (solid) and (dashed) after
the indicated translation between successive tilt angles. Four parameters were tuned
to optimize the offsets. (A) The maximum translation for any tile during the tilt-
series was varied from 0 to 𝑟 (one beam radius). Examples are shown for maximum
translation of 0.5𝑟 (top) and 𝑟 (bottom). (B) The number of radial steps / revolutions
specifies how tightly packed the spiral pattern is. Each blue dot represents the
position of the central tile at each tilt angle. The large light blue circles represent
the region of allowed displacement as described in (A). For the snowflake pattern
(top), this parameter is the number of points between the center and edge of the
light blue circle. The pattern is repeated from the center if the outermost position
is reached before the final tilt angle. Archimedean spirals avoid this issue by fitting
all tilt angles into the light blue circles regardless of the number of revolutions
(bottom). (C) The 𝑥-axis component of all translations is optionally scaled by the
cosine of the current tilt angle. The difference is most evident at high-tilt angles.
This scaling is motivated by the elliptical projection of the beam at high tilt angles,
with the long-axis of the ellipse aligned with the 𝑦-axis (Fig. 2.8). Regions of
the specimen that were previously in the overlap region are more likely to be in
the overlap region again along the 𝑦-axis than 𝑥-axis. To compensate for this, an
additional 𝑥-axis translation was tested. As shown by the overlaid histograms on the
right, this strategy was effective for a basic spiral pattern.
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B.

C.
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Figure 2.10: Tiling pattern efficiency is more sensitive to translational than rotational
offsets between tilt angles. The changes in the position of the central tile between
tilt angles for the (A) Archimedean spiral, (B) sunflower, and (C) snowflake patterns
are shown at left. For each pattern, the position of the central tile at the first tilt angle
of 0◦ is noted, and its position follows an outward spiral (indicated by the grey line)
during the tilt-series. For the snowflake pattern, the original pattern is repeated after
the outermost point is reached. Translational parameters are noted at the upper left.
For each, t_max (red line) indicates the maximum displacement of the central tile
during the tilt-series. The parameters n_rev and n_steps correspond to the number
of revolutions and radial steps for the spiral and snowflake patterns, respectively.
Variants of each spiral pattern were simulated and ranked based on the variance (𝜎2)
of the normalized dose distribution. Variance scores are shown as a function of the
indicated translational parameters (center) and rotational parameters (right). For the
latter, parameters s_angle and rot_step respectively refer to the initial angular offset
of the hexagonally-packed tiles in the plane of the detector and the global rotation
applied between tilt angles. Simulations were performed using a tilt-range of ±60◦
with 3◦ increments between tilts, applying a 1/cos exposure scheme, and assuming
that Fresnel fringes contaminated 2% of the beam radius. The red arrows in (A)
indicate the top-ranked pattern.
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Figure 2.11: Tiling strategy efficiency is similar across different data collection
schemes. 546 unique variants of the spiral pattern were tested and scored by the
variance (𝜎2) of the accumulated dose distribution. The score of each pattern
for the indicated data acquisition scheme is compared to its score for a reference
data collection strategy of ±60◦ with 3◦ increments between tilt angles. Alternative
acquisition schemes used a tilt-range of±44◦ with 2◦ increments between tilt angles,
increased the dose as 1/cos of the tilt-angle, and/or increased the overlap between
neighboring tiles to account for Fresnel fringes spanning 2% of the beam’s radius.
The transparent pink box overlaid on the highest-ranked patterns (left) is shown in
the inset (right).
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Figure 2.12: Removal of the fringe-corrupted region and correction for uneven
radial illumination. (A) A representative tile is shown before (left) and after (center)
applying a bandpass filter. In the filtered tile, a high intensity ring (white) coincides
with the Fresnel fringes at the tile’s edge. (Right) The region boxed in red from
the unprocessed, bandpass-filtered, and masked tiles visualizes elimination of the
Fresnel fringes. (B) Radial intensity profiles for all 37 tiles from a representative
tilt angle are plotted in black, with the region judged to be corrupted by Fresnel
fringes plotted in grey. The radial gain factor used to correct uneven illumination is
plotted in red. (C) Inset of the shaded blue region in (B) that focuses on the edge
of the tiles affected by Fresnel fringes. (D) Radial intensity profiles of these tiles
after correcting for uneven radial illumination and masking the fringes and (E) the
corresponding inset.
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Figure 2.13: CTFFIND4 detects Thon rings to 8-12 Å in the untilted stitched
projection images. The 2D experimental spectrum (upper) and rotationally-averaged
1D CTF fits (lower) are shown for the CTF-uncorrected stitched projection images
collected at 0◦ from three different tomograms. The leftmost plots are also shown
in Fig. 2.2B but are reproduced here for comparison.

1 µm

Figure 2.14: Continuous cellular features are observed in the overlap regions at
intermediate tilt angles. As in Fig. 2.3, except the stitched tiles imaged at 30◦ are
visualized. The inset displays the full mosaic prior to cropping for reconstruction.
The region boxed in red is enlarged in the main image. The boundaries of the
1.08 𝜇m diameter circular tiles are outlined in black. The continuity of membrane
features in the overlap regions between adjacent tiles suggests minimal radiation
damage, even at an intermediate stage of data collection.
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Figure 2.15: Continuous cellular features in an orthoslice from a montage tomogram.
An orthoslice from the tomogram presented in Fig. 2.7 is shown, with cellular
features annotated.
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C h a p t e r 3

ASSESSING THE APPLICABILITY OF BAYESIAN INFERENCE
FOR MERGING SMALL MOLECULE MICROED DATA
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Abstract

Microcrystal electron diffraction (MicroED) is an emerging technique for character-
izing small molecule structures from nanoscale crystals. Merging data from multi-
ple crystals is a particularly challenging step in the microED workflow. A common
practice is to manually curate datasets and apply scaling programs conventionally
utilized in rotational X-ray diffraction (XRD), but this could be time-consuming
and risks introducing human bias in data analysis. Recently, a Bayesian inference
program named Careless [8] has demonstrated excellent performance in merging
macromolecular XRD data. Here, the applicability of Careless to small molecule
microED data is evaluated and an investigation of the impact of dataset curation
is performed. Benchmarking against XDS/XSCALE shows that Careless is an ef-
fective complementary approach that merges data to a higher 𝐶𝐶1/2 value at high
resolution. Furthermore, merging outcomes are not significantly improved by curat-
ing datasets either manually or with an automated extension to Careless, cautioning
against the common practice of manual dataset curation.
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3.1 Introduction
Structural characterization is critical for understanding small molecule properties
and advancing research in chemistry fields, including organic chemistry, natural
product chemistry, and drug discovery. For decades, single-crystal X-ray diffrac-
tion (SCXRD) has been the gold standard for determining the bond connectivity
of molecules with high precision. However, the need to obtain large (10–100 𝜇m)
single crystals has severely limited the applicability of SCXRD. To overcome this
limitation, new methods have been developed to solve structures from smaller crys-
tals [57, 58]. Synchrotrons now offer micro-focus beamlines that can reduce the
beam width to match micron-sized crystals [59]. X-ray free electron laser (XFEL)
facilities enable studying even smaller crystals using serial crystallography by de-
livering extremely bright, femtosecond-long pulses that have the additional benefit
of outrunning radiation damage [60]. However, few structures of small molecules
have been elucidated using these resources, and limited XFEL sources and micro-
focus beamlines render these techniques unsuitable for routine analysis compared
to in-house instruments, which offer rapid turnaround times.

Microcrystal electron diffraction (microED) [61], also known as continuous rota-
tional electron diffraction (cRED) [62] and a sub-method of 3D electron diffraction
(3D ED), provides a powerful alternative for small molecule structure determina-
tion [62–68]. Compared to photons, electrons interact more strongly with matter,
enabling this technique to measure diffraction signals from nanoscale crystals at
sub-Ångstrom resolution. For small molecules, such nanocrystals are generally far
easier to obtain than micron-sized or larger crystals required by other techniques,
and they can be found in seemingly amorphous powders as well as crude natural
products extracts [63, 69]. MicroED is also advantageous due to the broad avail-
ability of transmission electron microscopes (TEM) and the potential to use this
technique with increasing throughput [69–73]. However, the widespread adoption
of microED calls for improvements in data processing [74]. Current microED work-
flows typically leverage software such as XDS which was originally developed for
rotational XRD experiments [75], but several steps of microED data processing still
require time-consuming manual intervention.

A particularly challenging step of microED data processing is data merging. In
SCXRD, merging refers to the process where measured symmetry-equivalent re-
flection intensities are reduced to a set of unique values after being scaled to correct
systematic errors, a process also known as data reduction. The scaled and merged
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reflections can then be phased to solve the structure. In small molecule crystallog-
raphy, ab initio phasing is a standard practice, which requires accurate estimates of
the structure factor amplitudes at 1.2 Å or higher resolution [76] from the merging
output. Compared to SCXRD, merging in microED is inherently more challeng-
ing. The background noise is higher due to non-negligible diffuse and inelastic
scattering [77]. Dynamical scattering events increase the variation among intensi-
ties that should be theoretically equivalent, effectively contributing to the errors in
conventional merging [78, 79]. Moreover, most TEMs restrict the accessible tilt
range to less than ±70◦, resulting in a missing wedge of information where data
cannot be measured. Although crystallographic symmetry should in principle over-
come this low completeness, in practice, data from multiple crystals often need to
be merged due to radiation damage that compromises intensities in a way that is
reflection-dependent and non-monotonic in dose [80].

Multi-crystal merging is often a trial-and-error process conducted under the as-
sumption that few crystals are sufficiently isomorphous and of high enough quality
to yield correct ab initio phasing solutions and acceptable refinement statistics.
Thus, even though high multiplicity from redundant measurements is considered
helpful in macromolecular XRD [81], empirically, many microED small molecule
structures have been solved by merging only several crystals out of the tens to hun-
dreds collected. In other emerging fields of diffraction experiments such as serial
femtosecond crystallography (SFX) from multiple crystals, specialized software has
been developed [82, 83] to merge data that conventional methods find challenging.
Nevertheless, this is a computationally expensive approach. Small-wedge serial
crystallography has prompted iterative approaches [84, 85] that combine prelimi-
nary clustering and then outlier rejection [86]. In the microED field, clustering-
based heuristics [71, 87–89] and brute-force enumeration of dataset combinations
[73] have been deployed, but the manual curation of datasets remains a dominant
practice.

A recent machine learning (ML)-based merging program, Careless, promises a uni-
fying framework through Bayesian inference for any type of diffraction experiment
[8]. It has been successfully applied to a variety of macromolecular XRD experi-
ments but has not been validated in small molecule or microED studies. Compared
to conventional programs, Careless has the potential to be adapted for multi-crystal
merging with minimal human bias in selecting datasets or setting cutoff values for
clustering and filtering datasets. Here, we reprocess 17 molecules from previous
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studies on natural products and pharmaceutical compounds to test the applica-
bility of Careless in comparison to a conventional scaling and merging program
XDS/XSCALE [75]. In addition, the popular practice of manual dataset curation
motivates us to explore an extension to the ML algorithm that automates this pro-
cess. We compare the merging outcomes of dataset curation, whether manual or
automated, with a naive merging of all datasets. Finally, we show how well results
from different merging protocols are translated to ab initio structures using standard
phasing programs, and present recommendations to microED practitioners.

3.2 Results
Careless as an alternative merging tool for microED data
To assess whether Bayesian inference generalizes well to microED data processing,
we compile existing microED datasets comprised of a diverse set of 17 small
molecules (Fig. 3.5), from simple cases such as calcium oxalate (Fig. 3.5-15)
[69] to challenging cases such as fischerin (Fig. 3.5-5) [65]. They span a range of
crystallographic complexity, including 7 space groups and unit cell volumes from
103 to 104 Å3 (Table 3.5). 6 of the molecules were solved from single-crystal
datasets processed by XDS, and the rest were solved after individually processing
all datasets in XDS and then merging a manually curated subset in XSCALE [63,
65, 69, 90–92].

Careless is first evaluated using the single-crystal datasets and manually curated
datasets in multi-crystal merging. Previously published structures (Fig. 3.5 and
Table 3.5) are used as reference structures to assess merging performance. For con-
sistency, in multi-crystal merging, we adhere to the same dataset curation manually
done by the authors of the reference structures, and the effect of manual dataset
curation is examined in the next section (3.2). Merging outcomes are evaluated by
examining the internal consistency of the intensities measured by 𝐶𝐶1/2 as well as
𝐶𝐶𝐹𝑜𝐹𝑐 , which indicates the accuracy relative to calculated structure factors from
the reference structure (Methods section 3.4). To compare the average performance
of different merging protocols, we use a stringent criterion of whether the 95%
bootstrap confidence intervals (CI) for the mean overlap or not to assess statistically
significant differences.

Compared to XDS/XSCALE [75, 93], a conventional merging software, Careless
merging yields lower overall𝐶𝐶1/2 but comparable overall𝐶𝐶𝐹𝑜𝐹𝑐 for single-crystal
merging (Table 3.1) and multi-crystal merging (Table 3.2). This suggests that even
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though the Careless merging output is less precise among symmetry-equivalent
measurements, it is not necessarily less accurate. In the highest resolution bin
of each dataset, Careless performance is on average similar to XDS/XSCALE as
indicated by the 95% CIs of the 𝐶𝐶1/2 and 𝐶𝐶𝐹𝑜𝐹𝐶 of all 17 molecules (Table 3.3).

Table 3.1: Single-crystal* merging results.

molecule AMG10
(13)

mannitol
(14)

calcium
oxalate

(15)

chryso-
phanol
(16)

6𝛽-
hydroxy-
eremoph-
ilenolide

(17)

X
D

S

highres† bin (Å) 0.9-0.85 1.01-0.95 1.01-0.95 0.9-0.85 0.9-0.85
Completeness
(%)

98.5 82.2 87.7 91.8 89.1
(98.6) (87.3) (88.9) (92.4) (95.1)

𝐶𝐶1/2 (%) 98.4 99.8 98.7 98.1 98.9
(57) (21.9) (74.8) (88) (38.9)

𝐶𝐶𝐹𝑜𝐹𝑐 (%) 76.6 95.4 86.8 88.1 89.4
(71.9) (61.2) (60.9) (85) (30.5)

phasing ✓‡ ✓‡ ✓‡ ✓‡ ✓‡

C
ar

el
es

s

highres bin (Å) 0.89-0.85 0.98-0.95 1-0.95 0.88-0.85 0.88-0.85
Completeness
(%)

99.7 84.6 89.8 92.2 89.7
(98) (86.2) (94.7) (92.6) (94.4)

𝐶𝐶1/2 (%) 87 97.9 92.9 92.2 94.7
(61) (27.5) (85.4) (78.1) (49.5)

𝐶𝐶𝐹𝑜𝐹𝑐 (%) 75.1 92.3 92.1 88.2 85
(80.9) (50.2) (55.7) (76.5) (38.6)

phasing ✓‡ ✓ ✓‡ ✓ ✓

∗ For biotin single-crystal results, see Table 3.2.
† Statistics in the highest resolution (highres) bin are shown in parentheses.
‡ Phased by SHELXT. Otherwise phasing is performed using SHELXD.
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Table 3.2: Multi-crystal merging results using manually selected datasets.

molecule demeth-
oxyvir-
idin (1)

calliter-
penone
acetate

(2)

pachy-
basin
(3)

Py-469
(4)

fischerin
(5)

peysso-
barican-
oside B

(6)
# crystals 2 3 3 2 4 3

X
D

S/
X

SC
A

LE

highres bin (Å) 1.04-1 1.04-1 0.93-
0.9

0.94-
0.9

1.09-
1.05

1.14-
1.1

Completeness
(%)

90 82.4 83.6 84.5 89.9 94.0
(95.9) (85.8) (81.9) (84.5) (91.1) (93.8)

𝐶𝐶1/2 (%) 97.1 97.8 98.7 98.8 99.2 99.1
(54) (84.2) (47.8) (84.7) (29.9) (31.1)

𝐶𝐶𝐹𝑜𝐹𝑐 (%) 71.7 94.2 92.7 77.9 90.4 92.5
(48.8) (88.4) (70.0) (85.1) (49.1) (72.9)

phasing ✓ ✓ ✓‡ ✓ ✓ ✓

C
ar

el
es

s

highres bin (Å) 1.04-1 1.04-1 0.93-
0.9

0.94-
0.9

1.09-
1.05

1.14-
1.1

Completeness
(%)

90.3 83.3 83.8 85 90 94.6
(96.7) (83.9) (81.9) (84.8) (90.6) (92.9)

𝐶𝐶1/2 (%) 92.7 96.2 96.1 91.9 83.6 93.8
(77.6) (90.5) (64.2) (88.9) (75.8) (77.4)

𝐶𝐶𝐹𝑜𝐹𝑐 (%) 81.6 92.4 91.4 79.8 73.3 92.7
(54.1) (79.1) (37.4) (79.3) (82.5) (83.4)

phasing ✓ ✓ ✓ ✓ ✓ ✓
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Table 3.2 continued

molecule YT-348
(7)

AMG3
(8)

AMG4
(9)

AMG7
(10)

AMG11
(11)

biotin
(12)

# crystals 9 2 2 3 2 1
X

D
S/

X
SC

A
LE

highres bin (Å) 1.04-1 1.04-1 1.04-1 1.03-1 0.93-
0.9

0.9-
0.85

Completeness
(%)

87.7 82.7 83.1 84.5 86.5 97.5
(87.6) (85.0) (85.3) (86.0) (91) (96.4)

𝐶𝐶1/2 (%) 98.7 98.4 99.1 95.2 97.4 96.8
(26.7) (74.6) (85.3) (85.6) (29.8) (80.3)

𝐶𝐶𝐹𝑜𝐹𝑐 (%) 89.4 94.1 95.9 76.4 90.5 86.9
(47.4) (83.4) (91.9) (88.6) (69) (70.7)

phasing ✓ ✓ ✓ ✓ ✓‡ ✓‡

C
ar

el
es

s

highres bin (Å) 1.04-1 1.04-1 1.04-1 1.03-1 0.93-
0.9

0.89-
0.86

Completeness
(%)

88.1 83.4 83.2 86.4 88.5 98.3
(88.8) (86.9) (83.7) (89.1) (87.5) (97.4)

𝐶𝐶1/2 (%) 94.3 91.8 95.1 89 90.5 92.4
(57.0) (78.7) (93.3) (77.7) (71.2) (62.3)

𝐶𝐶𝐹𝑜𝐹𝑐 (%) 87.8 92 95.3 87.2 89.9 87.6
(57.3) (78.1) (90.4) (80.8) (53.6) (43.3)

phasing ✓ ✓ ✓ ✓ ✓ ✓‡
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Table 3.3: 95% CI of bootstrapped mean of single-crystal and manually curated
merging results.

metric (%) XDS Careless
𝐶𝐶1/2 (overall) 97.58 - 98.66 90.56 - 93.87
𝐶𝐶1/2 (highres) 46.52 - 69.46 62.10 - 77.94
𝐶𝐶𝐹𝑜𝐹𝑐 (overall) 83.57 - 90.48 83.86 - 89.80
𝐶𝐶𝐹𝑜𝐹𝑐 (highres) 60.35 - 76.30 57.40 - 73.72

Effects of dataset curation on multi-crystal merging
After demonstrating that Careless achieves comparable accuracy given curated
datasets, we next sought to automate dataset curation within Careless. This was
motivated by current practices in the microED field, where multi-crystal merging
is commonly performed on datasets selected by manual inspection of the complete-
ness, 𝐶𝐶1/2, 𝑅merge, and other summary statistics. Manual curation of datasets
could be time-consuming with a large number of datasets collected and risk intro-
ducing human bias to data analysis. Nevertheless, a naive merge of all datasets may
compromise data quality. For effective comparisons, we first evaluate the impact of
manual curation relative to the baseline that omits dataset curation.

Naively merging all datasets that could be indexed to the expected space group
and unit cell maximizes the completeness (Fig. 3.1a) and multiplicity of the data.
Using the naive merging as a baseline for comparison, manual dataset curation has
the opposite effect on 𝐶𝐶1/2 for the two merging regimes studied: it is beneficial
for XDS/XSCALE but harmful for Careless (Fig. 3.1b). Within each merging
program, the effect of dataset curation is statistically significant for the overall
𝐶𝐶1/2 but less pronounced in the highest resolution bin. With uncurated merging,
Careless achieves similar overall 𝐶𝐶1/2 with XDS/XSCALE but has the additional
benefit of significantly better 𝐶𝐶1/2 in the highest resolution bin (Fig. 3.1b and
Table 3.4).

Among the four merging protocols — XDS/XSCALE vs. Careless using manually
curated vs. all datasets, the common practice of merging manually curated datasets
by XDS/XSCALE still gives the best overall 𝐶𝐶1/2, while merging all datasets by
Careless gives the best 𝐶𝐶1/2 in the highest resolution bin. Despite the different
performances according to 𝐶𝐶1/2, on average, 𝐶𝐶𝐹𝑜𝐹𝑐 is minimally affected both
overall and at high resolution regardless of the merging protocol used (Fig. 3.1c).
This suggests that the accuracy of merging is not significantly improved by manual
curation.
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Although we find that manual dataset curation does not benefit Careless, it is still
of interest to investigate whether a fully automated curation would improve the
outcome. This approach, referred to as MC-Careless for Multi-Crystal Careless,
uses ML principles to learn an optimal weighting among datasets to account for the
variability of data quality across datasets collected from different crystals (section
3.4). This weight modulates the effective uncertainty of the intensities during
model training for multi-crystal merging and is optimized jointly with the structure
factor amplitudes (Fig. 3.4). It provides an alternative to the manual curation
of datasets and reduces human bias in evaluating summary statistics and filtering
datasets. Nevertheless, MC-Careless achieves similar performance on both 𝐶𝐶1/2

and 𝐶𝐶𝐹𝑜𝐹𝑐 to the original Careless that naively merges all datasets (Fig. 3.1b and
c). This result is consistent with the observation above that manual curation of
datasets does not improve Careless merging outcomes.
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Figure 3.1: Statistics of multi-crystal merging with (Curated=True) and without
(Curated=False) manual dataset curation. Grey-shaded regions represent 95%
confidence intervals for the mean from bootstrapping. (a) Data completeness is
maximized when using all datasets. (b) Manual dataset curation has the opposite
effects on 𝐶𝐶1/2 in XDS/XSCALE and Careless. Automated curation by MC-
Careless does not improve results. Careless consistently achieves higher𝐶𝐶1/2 than
XDS/XSCALE in the highest resolution bin. (c) All merging protocols achieve
similar accuracy as indicated by 𝐶𝐶𝐹𝑜𝐹𝑐 .
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Table 3.4: Multi-crystal merging results using all datasets.

molecule demeth-
oxyvir-
idin (1)

calliter-
penone
acetate

(2)

pachy-
basin
(3)

Py-469
(4)

fischerin
(5)

peysso-
barican-
oside B

(6)
# crystals 6 9 6 21 89 16

X
D

S/
X

SC
A

LE

highres bin (Å) 1.04-1 1.04-1 0.93-
0.9

0.94-
0.9

1.09-
1.05

1.14-
1.1

Completeness
(%)

92.3 96.4 99.5 94.8 90.8 97.6
(99) (99.2) (100) (95.9) (91.4) (98.4)

𝐶𝐶1/2 (%) 92.6 80.8 97.5 85.3 99.5 95.4
(64) (66.4) (48.2) (64.3) (28.7) (45.2)

𝐶𝐶𝐹𝑜𝐹𝑐 (%) 80.7 87.2 92.1 86.6 90.9 89.9
(78.1) (86.8) (67.7) (89) (50.6) (57)

phasing ✓ ✓ ✓‡ ✓ ✓ ✓

C
ar

el
es

s

highres bin (Å) 1.04-1 1.04-1 0.93-
0.9

0.94-
0.9

1.09-
1.05

1.14-
1.1

Completeness
(%)

92.9 96.5 100 94.9 90.7 97.8
(97.8) (96.6) (100) (95.6) (91.3) (98.5)

𝐶𝐶1/2 (%) 91.9 94.9 96.5 98.1 97.5 95.5
(77.3) (90.8) (59.7) (93.4) (90.9) (75.7)

𝐶𝐶𝐹𝑜𝐹𝑐 (%) 78.1 90.7 89.7 92.1 90.7 91.3
(67) (87) (63.6) (89.5) (86) (77.5)

phasing ✓ ✓ ✓ ✓ × ✓

M
C

-C
ar

el
es

s

𝐶𝐶1/2 (%) 91.4 96.7 96.2 98.1 97.8 94.5
(80.8) (88.3) (57.2) (93.6) (90.8) (63.7)

𝐶𝐶𝐹𝑜𝐹𝑐 (%) 79.8 91 90.2 93.1 89.9 93.1
(66.6) (86.3) (62.6) (88.8) (84) (75.6)

phasing ✓ ✓‡ ✓ ✓ × ✓
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Table 3.4 continued

molecule YT-348
(7)

AMG3
(8)

AMG4
(9)

AMG7
(10)

AMG11
(11)

biotin
(12)

# crystals 17 18 21 10 8 3
X

D
S/

X
SC

A
LE

highres bin (Å) 1.04-1 1.04-1 0.93-
0.9

0.94-
0.9

1.09-
1.05

1.14-
1.1

Completeness
(%)

90.5 93.4 88.4 99.5 99.9 99.6
(90) (92.9) (89.9) (99.7) (100) (100)

𝐶𝐶1/2 (%) 98.5 99 98.7 94.1 97.5 94.6
(39.7) (79.3) (59.4) (72.6) (24.1) (36.5)

𝐶𝐶𝐹𝑜𝐹𝑐 (%) 91 94.9 95.1 87 91.3 87
(49.6) (87) (88.4) (87.4) (83.5) (54.1)

phasing ✓ ✓ ✓ ✓ ✓‡ ✓‡

C
ar

el
es

s

highres bin (Å) 1.04-1 1.04-1 0.93-
0.9

0.94-
0.9

1.09-
1.05

1.14-
1.1

Completeness
(%)

90.5 93.8 88.2 100 100 100
(90.9) (92.7) (89) (100) (100) (100)

𝐶𝐶1/2 (%) 92.4 98.7 98.5 90.9 95.3 96.4
(65.9) (94.5) (90.3) (81.7) (76.6) (86.2)

𝐶𝐶𝐹𝑜𝐹𝑐 (%) 84.8 95.4 95.6 90.4 79.7 90.7
(56.6) (86) (90.2) (88.8) (79.2) (68.5)

phasing ✓ ✓ ✓ ✓ ✓ ✓‡

M
C

-C
ar

el
es

s

𝐶𝐶1/2 (%) 89.7 98.3 97.2 92.3 95.2 97.1
(65.5) (92.7) (84.7) (83.4) (77.7) (77.6)

𝐶𝐶𝐹𝑜𝐹𝑐 (%) 80.4 95.5 95.3 90.6 91.2 84.4
(53.9) (87.1) (87.6) (85.9) (84.2) (70.5)

phasing ✓ ✓ ✓ ✓ ✓ ✓‡
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Phasing and initial maps
Finally, we perform ab initio phasing on the outputs from all five merging protocols
using SHELXT or SHELXD with the same phasing parameters that previously led to
the preliminary solutions of the reference structures. In the microED field, ab initio
phasing could be challenging, especially for large organic molecules lacking heavy
atoms [66]. The preliminary structure from ab initio phasing is often corrupted by
missing or extra atoms as well as mis-assignment of elements due to the difference
between X-ray and electron scattering [94, 95]. Consequently, naive structural
alignment with the reference structures for quantitative comparisons is difficult.
Here, we manually classify phasing as successful or not by inspecting the overall
connectivity or recognizable fragments for cases with disorder, and present several
visual examples of the raw phasing structures.

As expected from the analysis of 𝐶𝐶𝐹𝑜𝐹𝑐 in the section above, XDS/XSCALE
merging outcomes could be successfully phased for all 17 molecules regardless
of dataset curation (Fig. 3.2). Even though Careless merges data with similar
𝐶𝐶𝐹𝑜𝐹𝑐 to XDS/XSCALE, the outputs could be more challenging for conventional
phasing programs. In Careless, scaling and merging are jointly performed, which
requires estimating structure factors independent of scaling by physical factors [8].
A consequence of this modeling approach is that structure factors are outputted
on an arbitrary scale that is flat across resolution bins [8], whereas conventional
programs output intensities that decay over increasing resolution. Nevertheless,
correct structural information could still be retrieved from Careless outputs in most
cases (Fig. 3.2). At identical contour levels, the maps from phasing are often
sharper than those from XDS/XSCALE merging (Fig. 3.3), which is likely because
the parallel inference of scaling and structure factors in Careless has an analogous
effect to B-factor sharpening [96].

The only phasing solution from Careless outputs that contains almost no recogniz-
able fragments is the naive merging of fischerin (Fig. 3.5-5) datasets [65]. Despite
achieving comparable overall 𝐶𝐶𝐹𝑜𝐹𝑐 and further improvement in the highest res-
olution shell compared to the curated merging by Careless or either protocol of
XDS/XSCALE merging (Fig. 3.6), the phasing result is visually worse (Fig. 3.7).
This was a particularly difficult case where flexible molecular conformations and
preferred orientation of the crystals demanded recrystallization and more than 6
months of manual processing in previous work [65].
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chrysophanol (16)

Py-469 (4)

6β-hydroxyeremophilenolide (17)

YT-348 (7)

MC-CarelessCareless XDS/XSCALE

C
urated=False

C
urated=True

Single-crystal

Multi-crystal

Careless XDS/XSCALE

AMG7 (13)

AMG10 (10)

Figure 3.2: Representative examples of ab initio phasing outcomes (black) show
that correct structural information is extracted from XDS/XSCALE and Careless
merging outcomes by standard phasing programs regardless of dataset curation.
Reference structures (colored by elements) are presented for comparison.

3.3 Discussion and conclusion
The successful generalization from macromolecular XRD studies [8] to small
molecule microED data in this work highlights the flexibility and impact of Bayesian
inference in emerging structural studies. Through benchmarking against XDS/XSCALE,
we also show that this approach has some benefits in merging small molecule mi-
croED data. Careless merges reflections to higher 𝐶𝐶1/2 at high resolution, and
comparable accuracy with respect to the reference structure is achieved both overall
and at high resolution. Moreover, for the examples presented here, dataset curation,
whether manual or automated, is not necessary for Careless, as the naive merging of
all datasets achieves the best 𝐶𝐶1/2, comparable 𝐶𝐶𝐹𝑜𝐹𝑐 , and the highest complete-
ness. Thus, merging by Careless eliminates an opportunity for human bias in data
processing and maximally leverages information from all datasets. Even though
automated curation by MC-Careless does not further improve merging outcomes, it
shows that Careless could be easily extended for future methods development.

For microED practitioners, we caution against the common practice of manually
curating datasets. We find that 𝐶𝐶1/2 is elevated in XDS/XSCALE merging using
dataset curation inherited from previous work, yet we see no significant differences
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3.7 12.1B-factor (Å2)

calliterpenone monoacetate (2)

MC-Careless

C
urated=False

C
urated=True

peyssobaricanoside B (6)

3.2 15.8B-factor (Å2)

Careless XDS/XSCALE
Figure 3.3: Data merged by Careless and MC-Careless yield sharper 2𝐹𝑜 − 𝐹𝑐
maps after ab initio phasing. Example ab initio structures and maps from all 5
merging protocols are shown for calliterpenone acetate (left) and peyssobaricanoside
B (right). Reference structures are colored by atomic B-factors to show flexible parts
where phasing might be challenging.
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in 𝐶𝐶𝐹𝑜𝐹𝑐 or the ab initio phasing structures. Our findings suggest that data quality
is not always compromised when naively merging all datasets, indicating that useful
signal can be missed in manual curation of datasets. For example, the three lowest
overall 𝐶𝐶𝐹𝑜𝐹𝑐 from molecules Py-469 (Fig. 3.5-4) [65], demethoxyviridin (Fig.
3.5-1) [69], and AMG7 (Fig. 3.5-10) [90] are improved by more than 8% when
including all datasets in XDS/XSCALE merging (Tables 3.2 and 3.4). From a
practical perspective, the preliminary structures from ab initio phasing seem robust
against dataset curation, although the impact on refinement statistics is beyond the
scope of this work.

In conclusion, using experimental datasets from previous studies, we demonstrate
that Careless could robustly merge microED and small molecule crystallography
data. Careless could improve multi-crystal merging outcomes with reduced hu-
man bias and is a flexible framework for methods development in diffraction data
processing. In most cases examined here, Careless outputs lead to similar prelim-
inary structural solutions with sharpened initial maps compared to XDS/XSCALE
outputs. For challenging cases, additional optimization of merging and phasing
parameters might be necessary to obtain the correct phasing solutions. As Bayesian
inference and other ML approaches have only recently been introduced to crystal-
lography, continuing method developments are warranted. Additional case studies
and future investigation in refinement outcomes may help improve the integration
of Careless into existing data processing pipelines.

3.4 Methods
Merging algorithms
To contextualize the ML approach in Dalton et al. [8] and our extension to it to
automate dataset curation in Careless, we briefly describe the formalism of scaling
and merging in crystallography. Readers are referred to Aldama et al. [9] for a more
detailed review.

Merging by weighted average

Conventionally, the true intensity 𝐼h at Miller index h is estimated by computing
the weighted average of redundant measurements across all images after correcting
for systematic errors. This corresponds to the maximum likelihood estimate of the
mean intensity. The functional form of the weights 𝑤 determines the error model
with normally-distributed being the most common choice.
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Each measurement 𝐼h,𝑖 on image 𝑖 is corrected by estimating a scaling factor 𝐾h,𝑖:

𝐼h,𝑖 = 𝐾h,𝑖 𝐼h,𝑖 . (3.1)

Established programs in XRD data processing such as XDS [75, 93] and AIMLESS
[97] use sophisticated models to parameterize 𝐾ℎ,𝑖 and minimize the least-squares
loss for scaling and merging:

Φ =
∑︁

h

∑︁
𝑖

𝑤h,𝑖 (𝐼h − 𝐼h/𝐾h,𝑖)2. (3.2)

Merging by Bayesian inference

Careless works on the same premise in eq. (3.1) that systematic errors can be
corrected by scaling 𝐼h,𝑖, but uses an alternative inference approach. Under the
kinematical approximation, the true intensity is 𝐼h,𝑖 = 𝐹2

h , where 𝐹 denotes the
structure factor amplitude. Careless uses variational Bayesian inference [98, 99]
to reformulate merging as estimating 𝑝(𝐹, 𝐾 |𝐼), the posterior distribution of the
scaling and structure factors conditioned on the observed intensities. As 𝑝(𝐹, 𝐾 |𝐼)
is generally intractable, it is approximated by a parametric surrogate function 𝑞.
The standard modeling objective in variational Bayesian inference is to minimize
the difference between 𝑞 and 𝑝(𝐹, 𝐾 |𝐼) by maximizing the Evidence Lower BOund
(ELBO) [100]. The ELBO typically consists of an expected log-likelihood term that
encourages fitting 𝑞 to the data and a Kullback–Leibler (KL) term as a regularization
to penalize deviations from a prior distribution. The exact form used in Dalton et al.
[8] is:

ELBO = E𝑞 [log 𝑝(𝐼 |𝐹, 𝐾)] − 𝐷KL [𝑞𝐹 ∥𝑝(𝐹)] (3.3)

where 𝑞 is assumed to be factorizable,

𝑝(𝐹, 𝐾 |𝐼) ≃
∏

h

[
𝑞𝐹h

∏
𝑖

𝑞𝐾h,𝑖

]
, (3.4)

and 𝑞𝐾 is further parameterized by a multi-layer perceptron (MLP) that takes the
metadata of observed reflections as the input. Parameters of 𝑞𝐾 are optimized
without regularization from a prior distribution. A modified version of the Wilson
distribution — the intensity distribution if atoms are uniformly distributed within
the unit cell [10] — is used as the prior 𝑝(𝐹) for estimating the structure factor
amplitudes independent of the scale [8].
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Extending Careless for multi-crystal merging
The uncertainty of the observed intensity, 𝜎𝐼 , is important for estimating data quality
[97, 101] and directly affects merging in the conventional approach as described in
eq. (3.2). In the variational Bayesian inference approach, 𝜎𝐼 also modulates
the contribution of each measurement to the training loss. Specifically, the log-
likelihood term in eq. (3.3) is a parametric distribution where the mean is �̂� �̂�2

obtained from drawing Monte Carlo samples �̂� ∼ 𝑞𝐹 and �̂� ∼ 𝑞𝐾 , and the standard
deviation or scale in the case of Student’s t-distribution, is the 𝜎𝐼 estimated by
integration programs.

In MC-Careless, to account for the different quality of each dataset in multi-crystal
merging, we adjust the uncertainty of observed intensities 𝜎𝐼 inversely by a weight
𝑤 that is sparsely parameterized as a categorical distribution 𝑞𝑤 over the 𝑁 crystals
to merge (Fig. 3.4). The distribution is normalized such that 𝑤 averages to 1 across
all unmerged reflections. The contribution of a crystal to merging is decreased
as 𝑤 becomes smaller than 1, consequently increasing the uncertainty of observed
intensities from that crystal. The modified training objective is:

wELBO = E𝑞

[
log 𝑝

(
𝐼 |𝐹, 𝐾;

𝜎𝐼

𝑤

)]
− 𝐷KL [𝑞𝐹 ∥𝑝(𝐹)] − 𝐷KL [𝑞𝑤 ∥𝑝(𝑤)] (3.5)

where 𝑤 is learned jointly with 𝐹 and 𝐾 , and is regularized by a prior distribution
𝑝(𝑤). The prior distribution is the discrete uniform distribution that represents
no adjustment to 𝜎𝐼 and equal weights among crystals as treated in the naive
merging of all input datasets. Code that implements MC-Careless is available at
https://github.com/DorisMai/careless/tree/multi_xtal_sig.

Data processing workflow with XDS/XSCALE
Each rotational diffraction movie was collected in SER format and converted to
SMV as previously described [102]. Spot finding, indexing, integration, and cor-
recting/scaling are performed using XDS [75]. XDS is a standard crystallography
program that has proven effective for small molecule microED data [63], although
other programs such as DIALS [103, 104], Jana2020 [105], and CrysAlisPro [106]
are also applicable. The instruction file for initial processing by XDS is generated
using an in-house Python script (https://github.com/jess-burch/microed)
for greater automation as previously described [69, 90]. To benchmark merging
performance with minimal confounding errors from other processing steps, here all
datasets are reprocessed by XDS using previously reported space group and unit cell
parameters. XSCALE [75, 93] is used to merge data from multiple crystals. The
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Figure 3.4: Schematic of multi-crystal extension to Careless. (a) Probabilistic
graphical model of merging diffraction data using variational Bayesian inference
algorithm. Solid lines denote the generative process of the observed intensity 𝐼

from the scaling factor 𝐾 and structure factor amplitude 𝐹. Dashed lines represent
variational Bayesian inference of 𝐾 and 𝐹 parameterized by model parameters 𝜃,
where the uncertainty of 𝐼 is adjusted by a per-crystal weight 𝑤. (b) VI model
architecture. Posterior estimations of 𝐾 and 𝐹 are variationally approximated as 𝑞𝐾
and 𝑞𝐹 , and 𝑞𝐾 is further parameterized by an MLP transformation from the metadata
of unmerged reflections. Dashed lines denote the reparameterization process, where
samples �̂� and �̂� are drawn from 𝑞𝐾 and 𝑞𝐹 to compute the loss between observed
intensity 𝐼 and predicted intensity 𝐼 = �̂� �̂�2 with adjusted uncertainty 𝜎𝐼/𝑤.

resolution cutoff from previous work is used whenever possible in the reprocess-
ing but relaxed by 0.05 Å for 6𝛽-hydroxyeremophilenolide (Fig. 3.5-17), calcium
oxalate (Fig. 3.5-15), and peyssobaricanoside B (Fig. 3.5-6), by 0.1 Å for AMG3
(Fig. 3.5-8) and 4 (Fig. 3.5-9), and by 0.15 Å for AMG7 (Fig. 3.5-10) to reproduce
phasing outcomes.

Data processing workflow with Careless
Data preprocessing

XDS_ASCII.HKL files from reprocessing as described above are converted to .mtz
format using careless.xds2mtz before merging. Each dataset is then standardized
such that the intensity 𝐼 has unit variance. This is achieved by scaling the observed
intensities 𝐼′h,𝑖 and uncertainty 𝜎′

𝐼h,𝑖
by 𝑘 , where

𝑘 =
1√︄∑

h,𝑖

(
𝐼′h,𝑖−𝐼′

)2

𝑁unmerged

. (3.6)
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This standardization supports stable training. Unit cell parameters are averaged
across all crystals to be merged.

Model training

Metadata features used for model training include the image number, resolution, and
X/Y positions of each observed intensity on the image. For multi-dataset merging,
intensities from all datasets are concatenated, and the index of the source dataset is
supplied as an additional feature. A non-negative scaling factor is enforced during
model training. Training steps are 30,000 and 50,000 for single-crystal and multi-
crystal merging, respectively. Training for all cases can run on an NVIDIA Tesla
P100 GPU in under 1.5 hours, with the exception of merging all 89 fischerin (Fig.
3.5-5) datasets which could take 7.5 hours.

Hyperparameter selection

The original training objective of Careless described by eq. (3.3) is approximated
using Monte Carlo sampling with 1 sample per training step as the default:

ELBO ≈
𝑆∑︁
𝑠=1

[∑︁
𝑖

∑︁
h

log 𝑝
(
𝐼𝑖,h |𝐹h, 𝐾𝑖,h, 𝜎𝐼 ; 𝜈

)
−
∑︁

h
(log 𝑞𝐹 − log 𝑝 (𝐹))

]
.

(3.7)
We increase to 𝑆 = 20 Monte-Carlo samples to improve convergence with a minimal
increase in total training time. The log-likelihood term in eq. (3.7) is modeled as
Student’s t-distribution with the degree of freedom 𝜈 as a hyperparameter to adjust
the sensitivity to outliers. This error model becomes a normal distribution as 𝜈
approaches infinity and becomes a Cauchy distribution when 𝜈 = 1. We keep
𝜈 = 16, which was found to be optimal by cross-validation in Dalton et al. [8] and
empirically robust by other users of Careless.

The relative weight between the log-likelihood term and the KL term in eq. (3.7)
defaults to the average multiplicity of the datasets 𝑚 = 𝑁unmerged/𝑁merged. As of
Careless version 0.3.4, this weight is adjustable through the hyperparameter 𝜆𝐹 .
Empirically, we find that a small value of 𝜆𝐹 generally works well, possibly because
observed intensities in small molecule 3D ED do not always obey ideal statistics
described by the Wilson distribution (Fig. 3.8) which is used as a prior distribution
in Careless as described in eq. (3.3). In this work, 𝜆𝐹 = 0.01 is used for all cases,
except for fischerin (Fig. 3.5-5) datasets where the optimal value between 0.01 and
0.001 is chosen by cross-validation.
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In MC-Careless, we also introduce 𝜆𝑤 to adjust the relative weight of the second
KL term in eq. (3.5) such that:

wELBO ≈
∑︁
𝑠

[∑︁
𝑖

∑︁
h

log 𝑝
(
𝐼𝑖,h |𝐹h, 𝐾𝑖,h,

𝜎𝐼

𝑤𝑖,h
; 𝜈
)

− 𝑚𝜆𝐹
∑︁

h
(log 𝑞𝐹 − log 𝑝 (𝐹))

− 𝑚𝜆𝑤
∑︁
𝑖

∑︁
𝑖,h

(log 𝑞𝑤 − log 𝑝 (𝑤))
]
.

(3.8)

The optimal value of 𝜆𝑤 is found over 0.001, 0.01, 0.1, 1, and 10 by cross-validation.

Evaluation of merging outcomes
Merging quality is assessed based on the following metrics: completeness, 𝐶𝐶1/2,
and 𝐶𝐶𝐹𝑜𝐹𝑐 . Both the overall statistic and the statistic in the highest resolution
bin are reported. Resolution bins are determined by default in XDS/XSCALE
and in Careless to distribute reflections evenly across 10 bins. The complete-
ness and 𝐶𝐶1/2 are extracted from CORRECT.LP (single-crystal) or XSCALE.LP
(multi-crystal) for XDS/XSCALE outputs and from careless.completeness and
careless.cchalf for Careless outputs.

The 𝐶𝐶𝐹𝑜𝐹𝑐 metric is calculated as the uncertainty-weighted Pearson correlation
coefficient between the estimated structure factor amplitude 𝐹𝑜 from merging and
the 𝐹𝑐 calculated from the reference structures. The CCDC numbers of reference
structures are available in Table 3.5 of the supplementary information. 𝐹𝑐 is cal-
culated using gemmi, accounting for electron form factors and anisotropic atomic
displacement parameters. An additional non-negative global B-factor is fit when
calculating 𝐶𝐶𝐹𝑜𝐹𝑐 because Careless outputs 𝐹𝑜 on the same scale across resolution
bins, unlike XDS/XSCALE and other conventional data reduction programs.

Preliminary structures from ab initio phasing
Intensities merged by XDS/XSCALE are converted to SHELX format using the
XDSCONV program. Intensities merged by Careless are scaled and reformatted by
a separate Python script that uses reciprocalspaceship [107] to parse the .mtz
output file from Careless. Ab initio phasing is then performed using SHELXT [108]
or SHELXD [109], using parameters from previous work that led to the reference
structures. We run SHELXD on 32 CPUs for 15 minutes for all cases except for
fischerin (Fig. 3.5-5) where the run time is extended to 1 hour. 2𝐹𝑜 − 𝐹𝑐 maps from
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ab initio phasing are generated using the shelx2map program, and visualized in
Pymol [110] with contouring at 1.5𝜎 and carving at 1.2Å.

3.5 Data availability
MicroED data used in this work are available at 10.5281/zenodo.12775590, 10.5
281/zenodo.12797270, 10.5281/zenodo.8206533, 10.5281/zenodo.10059
796, 10.5281/zenodo.10059842, and 10.5281/zenodo.10059864, except for
AMG3, AMG4, AMG7, AMG10, and AMG11, which are available upon request.
Specific datasets used in single-crystal merging and manually curated multi-crystal
merging are described in curated_movie_id.csv in 10.5281/zenodo.12775590.
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3.6 Appendix
Table 3.5: Space group, unit cell information, and CCDC numbers.

molecule space
group

volume∗

(Å3)
unit cell lengths (Å) and angles (◦)† CCDCcurated all

1 18 1514.2
a = 21.34 ± 0.03
b = 6.60 ± 0.06
c = 10.83 ± 0.06

a = 21.57 ± 0.24
b = 6.56 ± 0.05
c = 10.94 ± 0.24

2246158

2 5 2018.5

a = 13.84 ± 0.04
b = 6.37 ± 0.04
c = 23.70 ± 0.26
𝛽 = 105.70 ± 0.29

a = 13.85 ± 0.13
b = 6.39 ± 0.05
c = 23.73 ± 0.23
𝛽 = 106.07 ± 0.63

2246153

3 14 1084.9

a = 3.83 ± 0.02
b = 12.74 ± 0.01
c = 22.22 ± 0.03
𝛽 = 92.08 ± 0.54

a = 3.83 ± 0.02
b = 12.75 ± 0.02
c = 22.25 ± 0.04
𝛽 = 92.01 ± 0.50

2246159

4 20 4838.6
a = 5.24 ± 0.01
b = 26.81 ± 0.16
c = 34.59 ± 0.04

a = 5.24 ± 0.03
b = 26.92 ± 0.18
c = 34.61 ± 0.35

2038723

5 5 14266

a = 35.52 ± 0.63
b = 20.34 ± 0.29
c = 18.59 ± 0.16
𝛽 = 96.37 ± 0.21

a = 35.55 ± 0.58
b = 20.37 ± 0.31
c = 18.63 ± 0.51
𝛽 = 95.96 ± 0.90

2020516

6 19 4100.8
a = 7.05 ± 0.07
b = 10.82 ± 0.04
c = 53.60 ± 0.27

a = 7.13 ± 0.15
b = 10.96 ± 0.29
c = 55.21 ± 3.47

2251540

7 4 2069.8

a = 17.79 ± 0.12
b = 5.73 ± 0.04
c = 21.89 ± 0.30
𝛽 = 113.31 ± 0.62

a = 17.79 ± 0.11
b = 5.73 ± 0.04
c = 21.77 ± 0.31
𝛽 = 113.09 ± 0.59

2332145

8 18 4029.9
a = 23.04 ± 0.03
b = 37.78 ± 0.42
c = 4.61 ± 0.01

a = 23.11 ± 0.13
b = 38.25 ± 0.45
c = 4.62 ± 0.02

2116696

9 18 3972.5
a = 23.05 ± 0.00
b = 37.99 ± 0.27
c = 4.63 ± 0.00

a = 23.03 ± 0.10
b = 38.00 ± 0.45
c = 4.63 ± 0.02

2116691

10 4 1291.4

a = 10.55 ± 0.10
b = 10.19 ± 0.02
c = 12.46 ± 0.18
𝛽 = 110.21 ± 0.72

a = 10.54 ± 0.07
b = 10.19 ± 0.05
c = 12.56 ± 0.15
𝛽 = 110.30 ± 0.47

2116689

11 5 995.4

a= 21.91 ± 0.04
b = 6.44 ± 0.02
c = 7.01 ± 0.00
𝛽 = 90.95 ± 0.01

a = 21.83 ± 0.13
b = 6.42 ± 0.02
c = 7.05 ± 0.03
𝛽 = 90.88 ± 0.19

2116692
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molecule space
group

volume∗

(Å3)
unit cell lengths (Å) and angles (◦)∗

CCDCcurated all

12 19 1121
a = 5.25
b = 10.40
c = 20.98

a = 5.29 ± 0.03
b = 10.47 ± 0.04
c = 21.23 ± 0.18

1876036

13 19 983.6
a = 7.46
b = 8.13
c = 16.25

N/A 2116687

14 19 864.2
a = 4.94
b = 9.03
c = 19.2

N/A 2246165

15 87 1130.5
a = 12.36
b = 12.36
c = 7.40

N/A 2246152

16 19 2253.9
a = 3.92
b = 23.25
c = 24.73

N/A 2246157

17 20 2711
a = 7.12
b = 13.36
c = 28.50

N/A 2246154

Figure 3.5: Chemical structures of all 17 molecules.
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Figure 3.6: Comparison of all merging protocols on each molecule. Single-crystal
cases are plotted as curated merging.

5.7 39.5B-factor (Å2)

MC-Careless

C
urated=False

C
urated=True

Careless XDS/XSCALE

fischerin (5)

Figure 3.7: Ab initio phasing outcomes for fischerin datasets. The preliminary
structures are rotated and shifted manually to align with the reference structure
(bottom right) for visual comparison, except for the naive merge using Careless,
where the phasing quality is too poor to perform structural alignment.
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Figure 3.8: Cumulative distributions of normalized intensities (𝐼obs) for centric (c)
and acentric (a) reflections in single-crystal datasets. Values are extracted from
CORRECT.LP in XDS and plotted against the ideal values derived from the Wilson
distribution.
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C h a p t e r 4

EXPLORING PROTAC COOPERATIVITY WITH
COARSE-GRAINED ALCHEMICAL METHODS

Adapted from

(1) Mai, H.; Zimmer, M. H.; Miller, T. F. Exploring PROTAC Cooperativity with
Coarse-Grained Alchemical Methods. The Journal of Physical Chemistry B
2023, 127, 446–455. DOI: 10.1021/acs.jpcb.2c05795.
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Abstract

Proteolysis targeting chimera (PROTAC) is a novel drug modality that facilitates
the degradation of a target protein by inducing proximity with an E3 ligase. In
this work, we present a new computational framework to model the cooperativ-
ity between PROTAC-E3 binding and PROTAC-target binding principally through
protein-protein interactions (PPIs) induced by the PROTAC. Due to the scarcity and
low resolution of experimental measurements, the physical and chemical drivers
of these non-native PPIs remain to be elucidated. We develop a coarse-grained
(CG) approach to model interactions in the target-PROTAC-E3 complexes, which
enables converged thermodynamic estimations using alchemical free energy cal-
culation methods despite an unconventional scale of perturbations. With minimal
parameterization, we successfully capture fundamental principles of cooperativity,
including the optimality of intermediate PROTAC linker lengths that originates from
configurational entropy. We qualitatively characterize the dependency of coopera-
tivity on PROTAC linker lengths and protein charges and shapes. Minimal inclusion
of sequence- and conformation-specific features in our current forcefield, however,
limits quantitative modeling to reproduce experimental measurements, but further
development of the CG model may allow for efficient computational screening to
optimize PROTAC cooperativity.
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4.1 Introduction
Proteolysis targeting chimera (PROTAC) has emerged as a promising drug modality
that elicits protein degradation by hĳacking the ubiquitin-proteasome system (UPS),
a major regulatory component of cells. In the UPS pathway, E3 ligases transfer
ubiquitins onto aberrant proteins to mark them for degradation by proteasomes. A
PROTAC molecule exploits this pathway with two binding moieties that tether the
target protein and an E3 ligase together. The tethered target protein thus becomes
a neo-substrate of the E3 ligase and is subsequently ubiquitinated for proteasomal
degradation. PROTACs require a lower dose than conventional small-molecule
inhibitors because of their catalytic nature and they have the potential to target the
undruggable proteome [111, 112]. Since the first proof-of-concept in 2001 [113],
the number of proteins successfully degraded by PROTACs has grown rapidly, and
examples of such proteins include kinases and gene regulators that are implicated in
cancer. As of 2021, at least 13 PROTACs are in or approaching clinical trials [114].

Despite increasing applications, there is a lack of guidance on designing PROTACs
due to the unique mode of action [115–117]. In particular, a critical step in the
degradation process is the formation of the ternary complex of target-PROTAC-E3.
The ternary complex involves molecular interactions beyond the binary bindings
between the two warheads of a PROTAC and the two proteins. The selectivity
[118–120] and stability [121–124] of the ternary complex can both be improved
through favorable protein-protein interactions (PPIs) between the target protein and
the E3 ligase. For certain targets, the degradation outcome can be very different
depending on whether cereblon (CRBN) or von Hippel-Lindau (VHL), the two most
heavily used E3 ligases, more efficiently and selectively form a productive complex
with the target [121, 125–127]. As more warheads for E3 ligases are designed [128–
131], choosing which of the more than 600 E3 ligases in humans [132] optimally
interact with the target protein will become important [133, 134]. While PPIs depend
on the sequences and the structures of the proteins, PROTACs can also modulate
the PPIs by restricting the distance and relative orientation between the target and
the E3 ligase, effectively changing the entropic component of PPIs.

Because of this three-body interplay and the transient nature of the ternary complex,
a complete characterization of the PPIs as a function of the PROTAC, the target
protein, and the E3 ligase is intractable. A few proteomics studies [126, 127, 135]
on kinase degradation have used PROTACs with promiscuous warheads such that the
PROTAC-induced PPIs differentially affect the degradation outcome of hundreds
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of proteins. These studies reported the fold change of protein abundance due to
PROTAC treatment, but analysis can be complicated by secondary interactions
[134] and numerous other factors such as the permeability of the PROTAC, half-
lives of the target proteins, cellular localization, and reactions downstream of ternary
complex formation [136]. Other studies [118, 119, 137–140] have focused on
specific target-E3 pairs and examined the effect of changing PROTAC properties
such as the linker length. They measured the difference in the strength of PROTACs
binding to the target or the E3 ligase due to the presence of the other protein.
This difference, termed binding cooperativity, reflects the strength of PROTAC-
mediated PPIs. However, few generalizable patterns have emerged and systematic
experimental characterizations remain scarce.

Computational modeling based on docking or atomistic molecular dynamics (MD)
has complemented experimental work [119, 139] and displayed promising prospects,
but there are several limitations to current methodologies. Although standard
docking protocols don’t handle three-body problems, several workflows have been
adapted ad hoc for PROTAC [141–145]. Docking studies rank ternary complex
conformations by scoring functions biased for naturally evolved PPIs and bench-
mark against the few crystal structures of PROTAC-induced ternary complexes
[146–148]. The results can be inaccurate as PROTAC-induced PPIs are non-native
and exhibit plasticity [119, 149]. In contrast, atomistic MD is physically grounded
to capture non-native PPIs. However, the size of the ternary complex modeled at
an atomistic resolution significantly limits the timescale of simulations, such that
naively simulating PPIs can be prohibitively slow. Sophisticated enhanced sam-
pling techniques and distributed computing are needed to sample an ensemble of
low-energy conformations that are consistent with experimental data [150]. Due to
the difficulties in modeling the ternary complex, direct calculation of the binding
cooperativities was not attempted until two recent studies [151, 152] that explored
the molecular mechanics with the generalized Born and surface area continuum
solvation (MM/GBSA).

Here, we seek an orthogonal approach that combines coarse-grained MD (CGMD)
and alchemical free energy calculation methods to study PROTAC cooperativities.
On the spectrum of computational tools, docking and atomistic MD are positioned at
the empirical and first-principle ends, respectively, and finding a compromise in the
middle of this spectrum is a promising direction. Compared to atomistic modeling,
coarse-graining reduces the effective size of the model and smoothens the energy
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surface, enabling simulations at a much longer timescale necessary for the PROTAC-
mediated complexes. While CGMD may struggle to recapitulate the molecular basis
of lock-and-key bindings, such strong and specific interactions are less imperative
in non-native PPIs induced by PROTACs. Moreover, PROTAC binding reduces
the ways proteins can interact with each other, differentiating and simplifying the
problem studied here from the formidable task of modeling general protein-protein
binding. In docking, such constraints are challenging to incorporate into the scoring
functions and are approximated through separate steps to filter compatible PPI poses
and PROTAC geometries. While CGMD excludes many degrees of freedom from
the PROTAC, proteins, and solvent entropy, this effect of configurational entropy
on PPIs from PROTAC mediation can be directly captured. Finally, we calculate
binding energies using alchemical methods, which circumvents the computational
challenge of directly sampling binding and unbinding events between the PROTAC
and proteins. We demonstrate the computational amenity of an unconventional
application of alchemical methods motivated by the PROTAC systems, and take
advantage of the physical interpretability of the CGMD + alchemical approach to
explore the principles of PROTAC binding cooperativity.

4.2 Methods
CGMD setup of PROTAC-protein complexes
The binary and ternary PROTAC-protein complexes are coarse-grained at two res-
olutions to efficiently sample complex conformational changes while retaining suf-
ficient details for structural insight. Specifically, a major focus of this work is to
characterize the entropic effect of the length of PROTACs on the strength of induced
PPIs, necessitating modeling the PROTAC linker at a higher resolution than the rest
of the system. Proteins are coarse-grained by mapping every three amino acids onto
a large bead of 𝜎 = 0.8 nm diameter, which is approximately the Kuhn length of
polypeptides [153–156]. Binding moieties at the two ends of a PROTAC are each
represented by a large bead, whereas the linker region is modeled as a Gaussian
chain at the resolution of a PEG unit (𝜎𝑠 = 0.35 nm [157]) or three heavy atoms.
Several experimental works that used flexible linear linkers motivate our modeling
approach for the PROTAC linker, including Chan et al. [138] where an alkane linker
was varied in step sizes of our linker beads and Zorba et al. [139] where a PEG
linker is modified at smaller length steps such that linker lengths ranging from 1 to
6 𝜎𝑠 in our modeling correspond to the PROTAC (1), (3), (5), (6), (8), and (10).
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A minimal forcefield is used to describe the internal and interactive forces, and a full
description can be found in the Supporting Information (Section 4.5). The three-
dimensional structure of a protein is maintained by a bottom-up fitted elastic network
model (Fig. 4.6), which allows conformational flexibility [158, 159]. Protein beads
can have additional properties to describe PPIs beyond volume exclusion (Fig. 4.5).
When modeling electrostatic interactions, for example, a protein bead has the net
charges of the triplet of residues that it is coarse-grained from. PROTACs are
modeled as Gaussian polymers with volume exclusion, and the warhead beads are
attached to the binding pockets of proteins through harmonic springs. Modeling
PROTAC interactions beyond warhead binding is out of the scope of this work.
Thus, under current setup, PROTAC beads have 0 charge and no affinity to any other
beads.

The orientation between the E3 ligase and the target protein is initialized such that
the two binding pockets face each other, with a fully extended PROTAC tethering
in between (Fig. 4.1a). The binding moiety beads of PROTAC are placed at
the center of each binding pocket, which is defined by the residues within 4 or
5 Å from the PROTAC warhead in experimental structures. Thus, setting up the
initial coordinates of a ternary complex requires the following inputs: structures of
each protein, residues at the two PROTAC binding pockets, and the length of the
PROTAC linker. To calculate the difference in PROTAC binding energies due to
PPIs, simulations of binary target/E3-PROTAC complexes are also needed. Binary
complexes are prepared by removing a protein from the initialized ternary complex.

Thermodynamic framework of alchemical perturbation
The binding cooperativity of a PROTAC is mathematically defined as exp

(
ΔΔ𝐺
𝑅𝑇

)
,

where 𝑅 is the gas constant, 𝑇 here refers to the temperature in the context of an
energetic scale and refers to the target protein elsewhere,ΔΔ𝐺 = Δ𝐺

binary
𝑇𝑃

−Δ𝐺 ternary
𝑇𝑃

,
and Δ𝐺

ternary
𝑇𝑃

and Δ𝐺
binary
𝑇𝑃

are the free energies of the PROTAC (𝑃) binding to the
target protein (𝑇) with and without the presence of the E3 ligase (𝐸). Because
of the thermodynamic cycle (Fig. 4.1b), the same ΔΔ𝐺 can be obtained from
Δ𝐺

binary
𝐸𝑃

− Δ𝐺
ternary
𝐸𝑃

. Favorable PPIs stabilize the ternary complex and facilitate
PROTAC binding to both proteins. Thus, they lower Δ𝐺 ternary

𝑇𝑃
and Δ𝐺

ternary
𝐸𝑃

, which
leads to larger ΔΔ𝐺 and more positive cooperativity.

Alchemical free energy calculation methods exploit alternative thermodynamic cy-
cles to obtain ΔΔ𝐺 without simulating binding and unbinding processes. For
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Figure 4.1: Schematic of the simulation setup for PROTAC-mediated complexes.
(a) The target-PROTAC-E3 ternary complex is initialized with a fully extended
PROTAC as drawn. The proteins are coarse-grained at the resolution of three amino
acids per bead, approximately 0.8 nm. PROTAC warhead beads are represented by
beads of the same size, whereas the linker is coarse-grained at a higher resolution.
(b) PPIs affect how cooperative target-PROTAC and PROTAC-E3 bindings are and
are reflected in the free energy difference between PROTAC-E3 binding with and
without the target (Δ𝐺binary

𝐸𝑃
− Δ𝐺

ternary
𝐸𝑃

). This free energy difference, ΔΔ𝐺, can
also be obtained by comparing target-PROTAC binding with and without the E3
(Δ𝐺binary

𝑇𝑃
− Δ𝐺

ternary
𝑇𝑃

) as shown by the thermodynamic cycle. Under the alchemical
setup, ΔΔ𝐺 can be alternatively obtained by the free energy difference between the
red vertical processes, which represent coupling the target (Δ𝐺binary

couple_𝑇 −Δ𝐺
ternary
couple_𝑇

in (c)) or the E3 (Δ𝐺binary
couple_𝐸 − Δ𝐺

ternary
couple_𝐸 in (d)) to the PROTAC and the PROTAC

pre-bound to the other protein. In the initial states in (c) and (d), the dotted lines
represent the target or the E3 whose interactions with the rest of the system are turned
off except for the harmonic constraints (black lines) to the PROTAC warhead.

simplicity, in this work, all ΔΔ𝐺s are calculated using the cycle in Fig. 4.1c, which
we describe in detail here, but one should arrive at the same result using the mir-
roring cycle in Fig. 4.1d. By the definition of a thermodynamic cycle, we have
Δ𝐺

binary
𝐸𝑃′ − Δ𝐺

ternary
𝐸𝑃′ = Δ𝐺

binary
couple_𝑇 − Δ𝐺

ternary
couple_𝑇 , where Δ𝐺

binary
couple_𝑇 and Δ𝐺

ternary
couple_𝑇

represent the free energies of coupling 𝑇 to 𝑃 and to the target-PROTAC bound
complex 𝐸𝑃. In the initial states of both coupling processes (vertical processes
in red in Fig. 4.1c), 𝑇 is bound to 𝑃 but is a dummy molecule at an ideal state.
Specifically, multiple harmonic springs connect the binding pocket beads in 𝑇 to
the warhead bead of 𝑃, and 𝑇 itself is an elastic network model consisting of only
harmonic springs. All other interactions between 𝑇 and the rest of the system —
whether 𝑃 or 𝐸𝑃 — are turned off. Coupling 𝑇 simply means turning on these
inter-molecular interactions, while the binding pocket springs remain unperturbed.



72

Attaching a dummy 𝑇 instead of having 𝑇 dissociated results in a systematic error
in the horizontal free energies of 𝐸𝑃 binding (Δ𝐺binary

𝐸𝑃′ and Δ𝐺
ternary
𝐸𝑃′ in Fig. 4.1c)

such that the ΔΔ𝐺 is unaffected. This is because the attachment of dummy 𝑇 occurs
via only one bead on 𝑃, except which there are no other forcefield terms involving
both physically present beads and dummy beads. In the configurational partition
function, energy terms describing the geometries of the physically present part of
the system can therefore be separated from the term involving the dummy 𝑇 and the
attachment junction. The latter term is the same whether the physically present part
is 𝑃 or 𝐸𝑃, such that the unphysical contribution from attaching dummy 𝑇 cancels
out in ΔΔ𝐺.

Free energy calculations
Alchemically changing a protein from a dummy state to full coupling involves
turning on the interaction potentials between the protein and the rest of the system in
the forcefield. The interactions are turned on in stages by sequentially scaling each
kind of interaction potential using a coupling parameter 𝜆. Intramolecular potentials
(e.g., the elastic network model of each protein) and intermolecular potentials not
perturbed at the current stage are unaffected by the 𝜆 scaling. For the electrostatic
potential, the start state (no electrostatics) and the end state (full electrostatics)
correspond to 𝜆elec = 0 and 1, respectively. Intermediate states are interpolated such
that the potential is defined as𝑈𝜆elec = (1−𝜆elec)𝑈no_elec+𝜆elec𝑈elec = 𝜆elec𝑈elec. For
numerical stability, the electrostatic potential is only perturbed in the presence of
volume exclusion [16, 17], which is modeled by Weeks-Chandler-Andersen (WCA)
potential. To turn on Lennard-Jones (LJ) or variants of LJ potentials (e.g., WCA),
a soft-core scaling [15] with 𝜆LJ is used for numerical stability:

𝑈𝜆LJ

(
𝑟𝑖 𝑗

)
= 4𝜖𝜆LJ

©«
1(

𝛼 (1 − 𝜆LJ) +
(
𝑟𝑖 𝑗
𝜎𝑖 𝑗

)6
)2 − 1

𝛼 (1 − 𝜆LJ) +
(
𝑟𝑖 𝑗
𝜎𝑖 𝑗

)6

ª®®®®¬
,

where 𝛼 = 0.5, 𝑟𝑖 𝑗 is the distance between beads 𝑖 and 𝑗 , and 𝜎𝑖 𝑗 is the sum of
the radii of beads 𝑖 and 𝑗 . The number of intermediate states and the spacing of
the coupling parameter values depend on the difficulty to obtain converged free
energy calculations. For the electrostatic potential, a linear pathway where 𝜆elec

ranges from 0 to 1 with a step size of 0.125 is a simple and effective approach.
For LJ and related potentials, because most of the free energy changes occur near
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the start state of 𝜆LJ = 0 (Fig. 4.2b,c), we introduce intermediate states at 𝜆LJ =

0.005, 0.01, 0.015, 0.02, 0.04, 0.06, 0.08, 0.1, 0.2, 0.3, 0.5, 0.7, and 0.9.

The Δ𝐺 of turning on each kind of interaction is calculated using thermodynamic
integration (TI) [160], Bennett acceptance ratio (BAR) method [20] and the multi-
state BAR (MBAR) method [18]. TI and BAR/MBAR are distinct formulations
for free energy calculations, and we verify that these methods converge to similar
values. The system in CGMD is evolved using overdamped Langevin dynamics
with a diffusion coefficient of 253 nm2/s and a timestep of 30 ns for stable inte-
gration. At each state, at least 64 trajectories of 6 s long are generated to sample
the conformations of the complexes. After collecting the samples from trajectories,
post-processing involves calculating 𝜕𝑈

𝜕𝜆
and Δ𝑈𝑖 𝑗 for all 𝑖, 𝑗 = 1, 2, ..., 𝐾 states as

inputs for TI, BAR, and MBAR.

4.3 Results and discussion
Alchemical perturbation of protein domains is feasible with CGMD
The binding cooperativity of PROTAC due to PPIs is a unique challenge that calls
for an unconventional application of alchemical free energy calculation methods.
Alchemical methods are mainly used to determine the binding energies between
small-molecule ligands and proteins, and typically no more than 10 heavy atoms are
perturbed for efficient and accurate calculations. In protein-protein binding, recent
applications and development focus on quantifying the relative free energy changes
from small-scale perturbations such as mutations of single residues [161–165]. To
our knowledge, the only case that alchemically calculates PPIs in a three-body setting
compares how analogs of inhibitors change aberrant multimerization of the HIV-1
integrase [166]. Their proposed thermodynamic framework involves calculating the
relative free energy difference by perturbing small molecules that directly participate
at a fixed PPI interface. This framework is more readily extendable to molecular
glues that modulate PPIs in a similar way. PROTACs, however, due to a more
modular design, are typically larger linear molecules. The flexibility of the linker is
often nontrivial, such that the two proteins cannot be kept bound at a fixed interface.
This configurational entropic concern necessitates an unusually large perturbation
at the scale of a protein rather than a small molecule to calculate the binding
cooperativity, testing the computational limit of alchemical methods.

To explore the feasibility of the CG alchemical approach, we calculate the free en-
ergy of turning on the steric repulsions between a target protein and a PROTAC-E3
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complex (Δ𝐺 ternary(sterics)) in the absence of other inter-molecular potentials. We
choose Bruton’s tyrosine kinase (BTK) as the target (only the kinase domain mod-
eled), CRBN as the E3, and the PROTAC (10) from [139], which are respectively
modeled by 87, 124, and 8 beads in the CG model. Together they form the largest
target-PROTAC-E3 complex simulated in this work. We compare the calculations
using different percentages of the simulation data collected in the time-forward and
time-reversed directions. The calculated values of Δ𝐺 ternary(sterics) plateau starting
around the midpoint of the simulation time, indicating numerical convergence (Fig.
4.2a). The time-forward and -reversed estimations are within 1 standard deviation
(std) at the midpoint, and the time-reversed estimations remain stable after the mid-
point. The observed behavior of the estimates over time suggests that unequilibrated
samples at the beginning of the trajectories have been removed, and the remaining
frames sample from similar distributions rather than distinct metastable states with
slow transition rates [17].

Three methods, TI, BAR, and MBAR are used to separately estimate the free
energies. The accuracy of all three methods depends on the number and the spacing
of alchemical states. BAR and MBAR reweight conformations sampled from one
state by their probability in another state to estimate the free energy differences.
Having similar probability distributions between states, i.e., phase space overlap,
is therefore critical to the estimation. Unlike BAR/MBAR, TI estimates the free
energies by numerically integrating ⟨ 𝜕𝑈

𝜕𝜆
⟩, the ensemble average of the derivative of

the potential energy𝑈 along the alchemical pathway defined by 𝜆. Depending on the
curvature of ⟨ 𝜕𝑈

𝜕𝜆
⟩, choices of intermediate states specified by 𝜆 and the integration

scheme together introduce integration errors in addition to the statistical errors in
estimating the ensemble average per state.

We choose an alchemical pathway that involves 12 intermediate states in addition to
the start and end states, such that Δ𝐺 ternary(sterics) =

∑13
𝑖=1 Δ𝐺𝜆𝑖 ,𝜆𝑖+1 , where Δ𝐺𝜆𝑖 ,𝜆𝑖+1

is the free energy of changing the WCA potential between neighboring states 𝜆𝑖 and
𝜆𝑖+1. With a total of 14 states unevenly spaced, the phase space overlap between
neighboring states is sufficient (Fig. 4.7) for efficient reweighting-based estimations.
For TI, the trapezoid rule of numerical integration is used for its simplicity and
robustness. Although the quadrature errors result in a slight overestimation of
Δ𝐺 ternary(sterics), the 𝜕𝑈/𝜕𝜆 curve is sufficiently smooth such that TI and MBAR
largely agree. In addition to the global agreement on Δ𝐺 ternary(sterics), TI, BAR,
and MBAR also locally agree with each other on all Δ𝐺𝜆𝑖 ,𝜆𝑖+1 along the alchemical
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pathway (Fig. 4.2c). We emphasize that TI and BAR/MBAR rely on distinct types
of input data and processing procedures, and their consistency even at the most
granular level of calculations further validate our CG alchemical approach.
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Figure 4.2: Calculation of Δ𝐺 ternary(sterics) by alchemical perturbation of BTK in
the ternary complex of BTK-PROTAC (10)-CRBN. (a) TI and MBAR both reach
apparent convergence in the time-forward and time-reversed directions with no
pathological signs. The grey band in each panel represents the final estimation using
100% data ±0.1 𝑘𝑇 as a threshold for error tolerance, where 𝑘 is the Boltzmann
constant. (b) TI estimation is shown as the blue area under the curve of ⟨𝜕𝑈/𝜕𝜆⟩.
(c) TI, BAR, and MBAR agree for all intermediate Δ𝐺s between adjacent states. All
error bars of computational results here and in subsequent figures represent ±1 std.
Color coding for TI, BAR, and MBAR results are the same in subsequent figures
unless otherwise stated.

Analyses of estimations over simulation time and using different free energy cal-
culation methods indicate that convergence of perturbing a protein can be achieved
within reasonable computation time, significantly pushing the boundaries of apply-
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ing alchemical methods. As parallelization can be done over the alchemical states
and over trajectories for each state, the time to run one trajectory is the main lim-
iting factor in the wall-clock computation time of applying our method. Criteria
to determine how long a trajectory should be run are described in the Supporting
Information (Section 4.5). For this work, depending on the size of the system, 3–14
CPU hours per trajectory of ternary complexes are sufficient.

Minimal forcefield captures entropic effects in PROTAC-mediated PPIs
Encouraged by the proof-of-concept calculations above for Δ𝐺 ternary, we also cal-
culate Δ𝐺binary and complete our calculations for the ΔΔ𝐺 of the thermodynamic
cycle. We follow the sign convention of ΔΔ𝐺 such that a positive value rep-
resents positive cooperativity. The BTK-CRBN system modeled here has been
experimentally shown to lack large cooperativity, and introducing PROTACs in Hy-
drogen/Deuterium Exchange experiments didn’t reveal significant profile changes
that would indicate the presence of stable PPIs. As the starting point for our method
development, we focus on this system due to its apparent simplicity and the availabil-
ity of experimental characterization over a large range of PROTAC linker lengths.
We characterize ΔΔ𝐺 changes over PROTAC lengths because this relies on cap-
turing the fundamental physics of the tertiary interactions (Fig. 4.3a-c) rather than
sequence- or conformation-specific properties.

Two forcefield setups are used to describe PPIs and the resulted ΔΔ𝐺 trends over
PROTAC linker lengths are compared. In the first setup, we calculate the baseline
ΔΔ𝐺 in the absence of PPIs other than volume exclusion. In the second setup,
nonspecific attractions between BTK and CRBN beads are added and explored at
two strengths. The intrinsic PPIs without PROTAC mediation should be weak such
that in the limit of infinite linker length the ΔΔ𝐺 is negligible. The attenuation of
weak PPIs with increasing PROTAC linker lengths originates from configurational
entropy. As the PROTAC becomes longer, it experiences a greater loss of configura-
tional freedom upon binding to proteins to induce PPIs (Fig. 4.3b and c), incurring
an entropic cost. We examine this configurational entropic effect by modeling ΔΔ𝐺

at linkers ranging from 1 to 6 beads (𝜎𝑠) long, which correspond to approximately
3.5 Å to 21 Å.

In the first setup, the steric cores of the proteins should penalize PROTAC binding
and result in negative cooperativities. This is because some conformations that are
accessible to the PROTAC in a binary PROTAC-protein complex become inacces-
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sible in the ternary complex due to steric clashes (Fig. 4.3a). As the linker length
increases and steric clashes are attenuated, the cooperativity should become less
negative. We verify that such a monotonically increasing trend of negative ΔΔ𝐺 is
obtained in our model (Fig. 4.3d). Steric penalties on ΔΔ𝐺 are most obvious at the
region of short linker lengths (1–3 beads), after which the benefit from extending the
linker length becomes increasingly marginal, and we expect that beyond the simu-
lated window of linker lengths, ΔΔ𝐺 will eventually plateau near 0. This ΔΔ𝐺 trend
is consistent with a recent effort to tabulate PROTAC linker length structure-activity
relationships (SAR), which suggests that steric clashes at short linker lengths often
result in a steep decrease in activity [148].

After validating the baseline trend, we next examine how the cooperativity trend is
changed by the addition of favorable PPIs through LJ potentials. Increasing the well
depth of LJ (𝜖LJ) increases the strength of this nonspecific attraction, which is kept
weak (Fig. 4.5) to approximate van der Waals forces. At the attraction strength of
𝜖LJ = 0.125 𝑘𝑇 , the ΔΔ𝐺 curve is elevated compared to the previous curve without
attraction (Fig. 4.3d), as favorable PPIs are expected to enhance cooperativity.
Nevertheless, at this attraction strength, steric penalties still dominate and ΔΔ𝐺s
remains negative. Even though adding an LJ potential brings an additional penalty
when beads overlap, shorter PROTACs still benefit more from the attractive part of
LJ than longer PROTACs, resulting in a flatter ΔΔ𝐺 trend as compared with the
purely repulsive interactions.

An appropriate combination of repulsive and attractive forces may generate a non-
monotonicΔΔ𝐺 trend, such that intermediate linker lengths promote optimal cooper-
ativity by minimizing steric clashes while maximally sampling attractive PPIs[148].
As the attraction strength increases to 𝜖LJ = 0.2 𝑘𝑇 , intermediate-length PROTACs
exhibit not only positive ΔΔ𝐺s but the values can be comparable and even slightly
higher than that of the longest PROTAC (Fig. 4.3d). Within the limited window
of linker lengths, only the initial part of the decaying tail of a non-monotonic ΔΔ𝐺

trend is observed. We expect that beyond the simulated window of linker lengths,
configurational entropic penalties will continue driving ΔΔ𝐺 down towards 0.

Experimentally, the linker length at 3 beads uniquely enables weak positive cooper-
ativity for BTK-CRBN, whereas our results at 𝜖LJ = 0.2 𝑘𝑇 remain biased towards
favoring longer linkers and are not as sensitive to linker length changes. To see
whether these characteristics are specific to the choice of the system, we then ex-
amine the ΔΔ𝐺 trends for a different system (Fig. 4.3e), BRD4BD2-VHL, where
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Figure 4.3: PROTAC linker length changes ΔΔ𝐺 through modulating the effective
strength of PPIs. The top three schematics illustrate the scenarios where a PROTAC
linker is (a) too short to enable favorable contacts between the target (blue) and the
E3 (green), (b) at an optimal length, and (c) sufficiently long but less frequently
in a configuration that induces weak favorable PPIs (red dots). The ΔΔ𝐺 trends
over PROTAC linker lengths are calculated for two target-E3 pairs, (d) BTK-CRBN
and (e) BRD4BD2-VHL, under varying strengths of non-specific attractions between
proteins. The solid lines represent the baseline ΔΔ𝐺 trends where only volume
exclusion is modeled between the two proteins, and the dotted lines show the trends
where nonspecific attractions are added. The strengths (𝜖LJ) of attractions are
indicated by different colors. Higher 𝜖LJ represents stronger attractions, and the
baselines can also be considered as results at 𝜖LJ = 0. Results at 𝜖LJ = 0.125 and
0.2 𝑘𝑇 are plotted for BTK-CRBN and results at 𝜖LJ =0.125, 0.15, 0.175, 0.2, and
0.25 𝑘𝑇 are plotted for BRD4BD2-VHL. All calculations shown are obtained using
MBAR, and results using TI and BAR are superimposed in Figure 4.9.

experimentally, the linker length at 3 beads can also optimize the cooperativity [138].
Due to the smaller size of the system, we can afford to calculate ΔΔ𝐺s at three more
attraction strengths. Similar to BTK-CRBN, in the absence of attractions, negative
ΔΔ𝐺 monotonically increases over the linker length, and adding nonspecific attrac-
tions results in flatter and higher ΔΔ𝐺 curves. Within the narrow window of short
linker lengths, scanning the attractive strength 𝜖LJ from 0.125 to 0.25 𝑘𝑇 , however,
does not recapitulate the optimal linker length at 3 beads. This result suggests that
enhancing nonspecific attractions in the minimal model is insufficient to compensate
for the steric penalties while remaining sensitive to entropic penalties from the linker
length.
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We demonstrate that the minimal CG model directly captures configurational en-
tropic effects on weak nonspecific PPIs through analyzingΔΔ𝐺 trends over PROTAC
linker lengths. Beyond this entropic effect, combining repulsive and attractive inter-
actions at various strengths changes the behaviors of cooperativity trends and can
shift the optimal linker length, as shown in BTK-CRBN. Nevertheless, chemically
specific interactions or specific sampling of certain PPIs is needed to model op-
timal positive cooperativity at an experimentally relevant range and resolution of
PROTAC linker lengths.

Electrostatics in PROTAC-mediated PPIs exhibit plasticity
As a step towards more realistic modeling of cooperativity, we seek chemically
specific PPIs to include and further explore the BRD4BD2-VHL system due to the
availability of experimental structural information. Crystal structures of the ternary
complexes have revealed specific interactions that are proposed as the molecular
basis for the observed positive cooperativity and selectivity against other structural
homologs [118, 167]. As shown in the previous subsection, these interactions
between proteins cannot be approximated by nonspecific attractions that contribute
to the cooperativity with low sensitivity to linker length and no protein sequence
dependence.

The structural findings such as salt bridges at the PPI interface and the mutational
studies involving charged residues on BRD4BD2 and homologs [118] motivate us
to approach chemical specificity through modeling electrostatic interactions. As
CGMD uses an implicit solvent, we choose the Debye-Hückel (DH) potential to
describe electrostatics in consideration of screening effects under physiological
conditions. Within the BRD4BD2-VHL system, incorporating charges of protein
beads results in a monotonic trend of negative ΔΔ𝐺s with increasing linker length,
(Fig. 4.4a) similar to the baseline obtained using steric repulsions only (Fig. 4.3e).
Since charges are perturbed separately in ΔΔ𝐺 calculations for numeric stability,
in the following discussions, we further investigate our ΔΔ𝐺 results by isolating
the final stage (Δ𝐺 ternary(charges)) in which charges are turned on in the presence of
sterics.

Breaking down the ΔΔ𝐺s by each energy component shows that at all three linker
lengths, Δ𝐺 ternary(charges) is slightly negative, indicating a mildly favorable process,
but the penalty from steric repulsions overwhelmingly dominates electrostatic con-
tributions by an order of magnitude (Fig. 4.4c). As PROTAC linker length increases
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from 2 to 4 beads, the contribution from Δ𝐺 ternary(charges) monotonically diminishes.
We consider the possibility that the screening of charges is too strong to model more
favorable PPIs and tune the screening parameter in the DH potential at the linker
length of 3 beads. Nevertheless, significantly weakening the screening strength
leads to a much more unfavorable Δ𝐺 ternary(charges) (Fig. 4.4c) because both the
target protein and the E3 ligase have net positive charges. It is also possible that
our level of coarse-graining loses the spatial resolution required for this system to
capture detailed interactions like salt bridge formation as observed in the crystal
structures [118, 167].

In addition to the small contribution toΔΔ𝐺,Δ𝐺 ternary(charges) itself exhibits plasticity
because conformational sampling at the stage of charge perturbation in alchemical
free energy calculations is biased by the potentials turned on in previous stages. The
presence of steric repulsions combined with nonspecific attractions at the strength
of 𝜖LJ = 0.2 𝑘𝑇 , for example, has doubled the Δ𝐺 ternary(charges) obtained at the linker
length of 3 beads without nonspecific attractions (Fig. 4.4c). Interestingly, this
change in Δ𝐺 ternary(charges) is on top of the favorable contribution from nonspecific
attractions in the previous calculation stage (Δ𝐺 ternary(other)) before the inclusion of
protein charges. For this particular ternary complex, nonspecific attractions and
electrostatic interactions work synergistically.

Our dissection of the electrostatic component in ΔΔ𝐺 under different simulation se-
tups suggests that a more holistic parameterization is needed to accurately evaluate
chemically specific PPIs. For BRD4BD2-VHL, incorporating hydrophobic interac-
tions will be of particular interest as there is stacking of hydrophobic residues at the
PPI interface observed in the crystal structures [118, 167]. Hydrophobic interactions
may also introduce non-additive free-energy contributions with electrostatics in a
similar manner seen with the nonspecific attractions. It is also worth noting that
the favorable PPIs revealed by crystal structures are enabled by PROTACs using a
JQ1 warhead, which imposes a different linker attachment angle (i.e., exit vector)
from an I-BET726 warhead (Fig. 4.11).[138] Our current forcefield does not model
the PROTAC linker with angular terms to specify the exit vectors, which leads to a
ΔΔ𝐺 trend that matches well with the worse-performing I-BET726 set of PROTACs
(Fig. 4.4a). As rigidifying PROTACs is a common strategy to optimize the co-
operativity by entropically enhancing certain PPIs[140, 167], parameterizing linker
conformations will improve modeling the specificity in PROTAC-mediated PPIs.
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Figure 4.4: Electrostatic contributions to the cooperativity in the BRD4BD2-VHL
system are small and context-dependent. All calculations shown are obtained using
MBAR, and results using TI and BAR are shown in Figure 4.10. (a) Calculations of
ΔΔ𝐺s over PROTAC linker lengths are shown with the experimental measurements
[138] (black) converted to our units. Experimental results at 2, 3, and 4 linker
beads correspond to MZ4, MZ1, and MZ2 for PROTACs using JQ1 warhead and
MZP-61, MZP-54, MZP-55 for PROTACs using I-BET726 warhead. (b) Waterfall
plot breakdown of ΔΔ𝐺 calculations. At each linker length, bars in each triplet
correspond to Δ𝐺binary (grey), −Δ𝐺 ternary(other) (light purple), and −Δ𝐺 ternary(charges)

(turquoise), and are arranged in a cumulative manner such that the end position
marks the resulted ΔΔ𝐺 (orange). Δ𝐺 ternary(other) denotes the free energy change of
turning on interaction energy components other than the electrostatics, which only
include steric repulsions in this panel. (c) ΔΔ𝐺 breakdowns at linker length 3 under
different forcefield parameterizations are superimposed for comparison. Reducing
the screening effect by ten-fold (charges*) significantly increases Δ𝐺 ternary(charges)

(cyan), which leads to a very negative ΔΔ𝐺. Introducing non-specific attractions
(𝜖LJ = 0.2 𝑘𝑇) not only reduces Δ𝐺 ternary(other) (dark purple) but also doubles
Δ𝐺 ternary(charges) (steel blue), resulting in a positive ΔΔ𝐺.

4.4 Conclusions
We explore a novel computational approach to model the binding cooperativity
of PROTACs by combining CGMD and alchemical free energy calculations. The
plasticity of PROTAC-mediated PPIs motivates an unconventional application of
alchemical methods at a perturbation scale that is rarely attempted. We show
that with coarse-graining, converged estimates from various free energy calculation
methods are attainable within a reasonable amount of computation time. Our results
expand the possibility of more creative use of alchemical methods. The feasibility
and efficiency of the CG alchemical approach enable us to probe multiple energy
components under the alchemical framework and characterize how PROTAC linker
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lengths modulate PPIs under different setups to produce distinct cooperativity trends.
In addition to validating the benefit of using long linkers to avoid steric clashes, we
demonstrate with a simple addition of nonspecific attractions between BTK and
CRBN that the binding cooperativity can be promoted by shortening the PROTAC
linker. Our minimal model is capable of unveiling such changes in cooperativity
that are rooted in the configurational freedom of the ternary complexes rather than
chemical properties.

Quantitative modeling of the cooperativity, however, remains difficult due to the lack
of specificity in the minimal model. Previous studies have recognized the challenges
brought by non-native PROTAC-mediated PPIs that are often weak, transient, and
pliable, and have called for a paradigm shift towards an ensemble-based characteri-
zation beyond a handful of docked or crystal poses. [119, 144, 149]. While thermo-
dynamic properties such as the binding cooperativity are inherently ensemble-based,
we note that both accurate sampling of PPI conformations according to chemical
properties and efficient computation to sample a diverse set of conformations are
important for calculations. Currently, tuning the strength of nonspecific attractions
cannot approximate favorable PPIs while retaining sensitivity to entropic constraints
from the PROTAC linker length. Simply adding electrostatic interactions based on
amino acid charges proved insufficient to capture the cooperativity trend enabled by
JQ1-based PROTACs in BRD4BD2-VHL. Additional parameterizations are needed
to capture chemically specific PPIs.

Two main avenues are worth exploring for future improvement of our method —
PROTAC linker conformations and protein sequence-dependence. Among a myriad
of PROTAC properties [116] that we leave out, structural features such as the exit
vector [138] and the linker rigidity [140, 167] in addition to the linker length can
both entropically constrain the sampling of PPIs. Meanwhile, energy components
of PPIs other than electrostatic interactions, notably the hydrophobic effects, are
currently overlooked. Different energy components may have non-additive effects
in optimizing the absolute cooperativity and relative cooperativities between target
homologs such as BRD4BD2 and BRD4BD1. Although coarse-graining enables
efficient computation, parameterization for both directions of forcefield development
will be a major hurdle to overcome. This can be bottom-up using shorter-timescale
higher-resolution simulations, similar to that of the CG ENM (Fig. 4.6) in this work.
A top-down fitting might also become possible with rapidly growing experimental
studies that develop platforms [168] for empirical SAR of PROTAC linkerology
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[169, 170] or leverage promiscuous PROTACs and target homologs and mutants to
investigate the molecular basis of specificity [171].
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4.5 Appendix
CGMD Forcefield
The complete potential energy function for a ternary complex is

𝑈 (𝒙; 𝒃, 𝒒) = 𝑈ENM (𝒙𝐸 ) +𝑈ENM (𝒙𝑇 ) +𝑈spring (𝒙𝑃) +𝑈WCA (𝒙𝑃)
+𝑈bind (𝒙𝑃, 𝒙𝑇 ; 𝒃) +𝑈bind (𝒙𝑃, 𝒙𝐸 ; 𝒃)
+𝑈WCA (𝒙𝑃, 𝒙𝑇 ) +𝑈WCA (𝒙𝑃, 𝒙𝐸 ) +𝑈WCA (𝒙𝐸 , 𝒙𝑇 )
+𝑈elec (𝒙𝐸 , 𝒙𝑇 ; 𝒒) +𝑈LJ (𝒙𝐸 , 𝒙𝑇 ; 𝜖LJ)

(4.1)

where 𝒙𝐸 , 𝒙𝑇 , and 𝒙𝑃 indicate the coordinates of the E3 ligase, the target protein,
and the PROTAC, respectively, 𝒒 represent the charges of protein beads, and 𝒃 are
indicators of whether protein beads are at the binding pocket or not. All PROTAC
beads are modeled with 0 charge and no attraction to the proteins. All parameters
and variables are defined using a length scale of the large bead (𝜎 = 0.8 nm) and an
energy scale of 𝜖 = 𝑘𝑇 where 𝑘 is the Boltzmann constant and 𝑇 = 310 K.

Internal energy terms

Interactions within a protein are modeled by an elastic network model (ENM) such
that every pair of beads within distance 𝑅𝑐 is connected by a harmonic spring:

𝑈ENM (𝒙) =
∑︁

(𝑖, 𝑗)∈𝐷
𝑘spring

(
Δ𝑥𝑖 𝑗 − 𝑑𝑖 𝑗

)2
(4.2)

where 𝑘spring is the spring constant, 𝑑𝑖 𝑗 is the optimal distance between 𝑥𝑖 and 𝑥 𝑗 ,
and 𝐷 = {(𝑖, 𝑗) |𝑑𝑖 𝑗 < 𝑅𝑐}. The optimal distance between a pair of beads is its
initial distance in the experimental structure. Experimental structures used in this
work include VHL (PDB: 5T35[118] chain D), BRD4BD2 (PDB: 5T35[118] chain
A), CRBN (PDB: 6BOY[119] chain B), and BTK (PDB: 6W7O[140] chain A), and
Schrödinger Maestro [173] is used to fill in missing atoms and perform energy min-
imization before building the CG ENM. Additional details on the parameterization
are described in a separate section below.

PROTAC is modeled as a linear molecule, where adjacent beads are connected
by springs (𝑈spring (𝒙𝑃)) and non-adjacent beads are subjected to steric repulsions
(𝑈WCA (𝒙𝑃)).

Interaction energy terms

PROTAC-protein interactions consist of binding interactions modeled by springs
between a binding moiety bead in the PROTAC and all beads in the corresponding
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binding pocket (𝑈bind (𝒙𝑃, 𝒙𝑇 ; 𝒃) and𝑈bind (𝒙𝑃, 𝒙𝐸 ; 𝒃) in eq.(4.1)) and steric repul-
sions (𝑈WCA (𝒙𝑃, 𝒙𝑇 ) and𝑈WCA (𝒙𝑃, 𝒙𝐸 )) between the remaining parts of PROTAC
and protein. Steric repulsions in intra-PROTAC, PROTAC-protein, and inter-protein
interactions are all modeled by the Weeks-Chandler-Andersen (WCA) potential, a
shifted and truncated version of Lennard-Jones (LJ) potential.

Protein-protein interactions are captured by the steric repulsions (𝑈WCA (𝒙𝐸 , 𝒙𝑇 )),
and depending on the modeling purpose, electrostatics (𝑈elec (𝒙𝐸 , 𝒙𝑇 ; 𝒒)) or non-
specific attractions (𝑈LJ (𝒙𝐸 , 𝒙𝑇 ; 𝜖LJ)). The electrostatic interaction is modeled by
a Debye-Hückel (DH) potential. The functional forms and parameterization of both
potentials can be found in [153]. When reducing the screening of electrostatics
between BRD4BD2 and VHL, the Debye length 𝜅 is multiplied by 10. The solvent in
our system is treated implicitly. Nonspecific attractions aimed at broadly including
Van der Waals forces and hydrophobic interactions are modeled by LJ potentials.
The strength of the attraction is kept under that of electrostatic interactions (Fig.
4.5). The well depth of LJ, 𝜖LJ, is currently set to be the same for all pairs of beads
for nonspecific attraction. For future efforts, minor modifications to the formula
[174] and parameterization of 𝜖LJ to depend on the Wimley-White hydrophobic-
ity scale, for example, can capture more sequence-specific interactions such as the
hydrophobic effects.
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Figure 4.5: The strengths of various interaction potentials are plotted over the
distance between protein beads. The two vertical dashed grey lines bound the
distance between 1 and 2 𝜎. The electrostatic potentials (DH) are plotted for beads
with +1 and +1 charges or +1 and -1 charges.
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Parameterization of ENM

ENM is a model that represents the tertiary structure of a protein by connecting every
pair of protein beads within a certain distance cutoff 𝑅𝑐 by a Hookean spring of
spring constant 𝑘spring. Despite the simplicity of its parameterization, slow modes in
ENM can capture biologically significant conformational changes [158, 159]. This
structure-based model can also be used in combination with other physics-driven
forcefields to model macromolecular complexes. Protein-protein associations and
viral capsid assembly have both been successfully modeled by using Elnedyn, an
ENM at the resolution of 1 residue per bead [175], on top of the MARTINI CG
forcefield. By fitting to atomistic simulations, Elnedyn preserves both structural
properties and dynamics within each protein subunit for the CG simulations.

We follow a similar protocol and fit our CG ENM parameters in eq.(4.2) to Elne-
dyn simulations results. Three proteins — IKZF1ZF2 (PDB: 6H0F [176] chain C),
BRD4BD1 (PDB: 6BOY [119] chain C), and CRBN (PDB: 6BOY [119] chain B) —
are chosen for the fitting to represent the range of protein sizes based on the publicly
available crystal structures of PROTAC-mediated ternary complexes. Elnedyn is
supported as an option in the MARTINI 2 CG forcefield [175], and we use the de-
fault parameters to generate Elnedyn simulations of these proteins with GROMACS
version 5.0.7. Two equilibration stages were run, first at 1 fs timestep for 50 ps, and
then at 10 fs timestep for 1 ns. Then, only the dynamics stage was used for fitting,
which was run at 10 fs timestep for 40 ns. Four metrics are used to examine how
well a particular combination of 𝑘spring and 𝑅𝑐 captures information in Elnedyn sim-
ulations: the difference of time-averaged root-mean-squared-deviation (ΔRMSD),
bead-averaged root-mean-squared-fluctuation (ΔRMSF), Kullback–Leibler (KL) di-
vergence of the RMSD distributions, and the root-mean-squared inner product of
the principal components (RMSIP) of the trajectories.

Within a single metric, we usually observe a degeneracy within a certain region
of 𝑘spring and 𝑅𝑐 values (Fig. 4.6), and this was also observed in Elnedyn fitting
to atomistic simulations [175]. This is because increasing either 𝑘spring or 𝑅𝑐 can
increase the stiffness of a protein and, therefore, can compensate for each other to
some extent. Nevertheless, despite the degeneracy, given the wide range of protein
sizes, there is no single combination of 𝑘spring and 𝑅𝑐 values that works best for
all three proteins. We chose 𝑘spring = 100𝜖/𝜎2 and 𝑅𝑐 = 2.0𝜎 as they are near
the optimal degeneracy region under most metrics and consistent with the values of
Elnedyn parameters (𝑘spring = 124.25𝜖/𝜎2 and 𝑅𝑐 = 1.125𝜎). This combination
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of 𝑘spring and 𝑅𝑐 was selected without a global optimization function that combines
all four metrics, and should be subjected to finer tuning if a specific system is of
interest.
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Figure 4.6: Fitting results of ENM parameters arranged by proteins (rows) and
evaluation metrics (columns). Numbers in parenthesis next to protein names are the
number of CG beads. For each plot, blue regions indicate 𝑘spring and 𝑅𝑐 values that
result in good fitting, and red regions indicate significant differences between our
simulations and Elnedyn simulations. Each column shares the same colorbar range.
In general, the boxed regions around 𝑘spring = 100𝜖/𝜎2 and 𝑅𝑐 = 2.0𝜎 has good
fitting.

Analysis of alchemical free energy calculations
We perform various checks to address two common concerns in alchemical sim-
ulations: 1) are there sufficient intermediate states along the alchemical reaction
pathway, and 2) are there sufficient samples from each state for accurate free energy
calculations. The BTK-PROTAC (10)-CRBN complex is used as an example for
the analysis below.

We first validate that there are sufficient intermediate states for a converged estima-
tion of Δ𝐺 ternary(WCA). The convergence of free energy calculations depends on the
overlap of the phase space, i.e., the distribution of sampled conformations, between
neighboring states. Substantial overlap is achieved when the neighboring states are
similar, which requires a fine spacing of the coupling parameter values. In practice,
distributions of quantities such as Δ𝑈 and 𝜕𝑈/𝜕𝜆 that are directly involved in free
energy estimations are often treated as proxies for the high-dimensional phase space
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[16]. The similarity between distributions is quantified by KL divergence, where 0
indicates identical distributions and ≫ 1 suggests concerning differences. Based on
this metric, all neighboring states have substantial overlap, as the Kullback–Leibler
(KL) divergence values of Δ𝑈 and of 𝜕𝑈/𝜕𝜆 distributions both stay below 1 (Fig.
4.7a).

Bennett’s overlapping histogram [20] provides another qualitative test for the overlap
of Δ𝑈 distributions. The difference between 𝑔𝜆𝑖+1 (Δ𝑈𝜆𝑖 ,𝜆𝑖+1) = 𝑃𝜆𝑖 (Δ𝑈𝜆𝑖 ,𝜆𝑖+1) +
(1 − 𝐶) Δ𝑈𝜆𝑖 ,𝜆𝑖+1 and 𝑔𝜆𝑖 (Δ𝑈𝜆𝑖 ,𝜆𝑖+1) = 𝑃𝜆𝑖+1 (Δ𝑈𝜆𝑖 ,𝜆𝑖+1) − 𝐶Δ𝑈𝜆𝑖 ,𝜆𝑖+1 is plotted over
Δ𝑈𝜆𝑖 ,𝜆𝑖+1 values, where𝐶 is an arbitrary constant between 0 and 1 and 𝑃𝜆𝑖 (Δ𝑈𝜆𝑖 ,𝜆𝑖+1)
and 𝑃𝜆𝑖 (Δ𝑈𝜆𝑖 ,𝜆𝑖+1) are the distributions of Δ𝑈𝜆𝑖 ,𝜆𝑖+1 obtained by sampling from
neighboring alchemical states 𝜆𝑖 and 𝜆𝑖+1, respectively. Continuous oscillations
of 𝑔𝜆𝑖+1 (Δ𝑈𝜆𝑖 ,𝜆𝑖+1) − 𝑔𝜆𝑖 (Δ𝑈𝜆𝑖 ,𝜆𝑖+1) around the estimated Δ𝐺𝜆𝑖 ,𝜆𝑖+1 over a range of
Δ𝑈𝜆𝑖 ,𝜆𝑖+1 values suggests good overlap (Fig. 4.7b) [17]. For states of higher 𝜆LJ

values, higher energetic penalty of steric repulsions prevents sampling over a wide
range of Δ𝑈 values, but the KL divergence and visualization of the distributions
(Fig. 4.7a,c) both indicate the quality of the overlap.
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Figure 4.7: Phase space overlap in calculatingΔ𝐺 ternary(WCA) for BTK-CRBN in Fig.
2. (a) Overlap ofΔ𝑈 and 𝜕𝑈/𝜕𝜆 distributions between adjacent states are quantified
by the KL divergence. (b) Example Bennett’s overlapping plots for 𝜆LJ = 0, 0.005
states (left) and 𝜆LJ = 0.7, 1 states (right). The grey bands represent Δ𝐺𝜆𝑖 ,𝜆𝑖+1 ±1 std
estimated using BAR. (c) Example distributions of Δ𝑈𝑖,𝑖+1 are shown with Gaussian
smoothing (red and blue solid curves) for better visualization.

Next, we examine sampling within each state. For each state, a simulation needs to
be post-processed to discard the initial unequilibrated part and then subsampled to
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Figure 4.8: Detecting equilibration and autocorrelation time in calculating
Δ𝐺 ternary(WCA) for BTK-CRBN in Fig. 2. (a) Δ𝑈𝜆𝑖 ,𝜆𝑖+1 over simulation time and (b)
the autocorrelation of Δ𝑈𝜆𝑖 ,𝜆𝑖+1 from 𝜆LJ = 0 (left) and 𝜆LJ = 1 (right). The red
curves and the shaded regions represent the average value ±1 standard deviation
based on 64 independent trajectories. The vertical dashed lines in this example
mark 0.9 s in (a) and 0.63 s in (b). The horizontal dotted lines in (b) mark the 0
autocorrelation value.

obtain de-correlated data for accurate uncertainty quantification of the free energy
estimation. Thus, the length of the simulations is dictated by the equilibration
time, autocorrelation time, and the number of de-correlated samples needed for
converged estimations. We examine the values of Δ𝑈, 𝜕𝑈/𝜕𝜆, and other collective
variables over the simulation time, which typically equilibrate after 0.9 s (Fig. 4.8a).
To find out the decorrelation time, we discard the initial 0.9 s of simulations and
plot the autocorrelation functions of these variables over different time lags up to
half of the simulation time to ensure that the autocorrelation is calculated from a
sufficient number of samples. The autocorrelation times all plummet to 0 before
0.63 s (Fig. 4.8b). Both equilibration time and decorrelation time are longer for
simulations in lower value of 𝜆LJ states that retain more memory of previously
sampled configurations due to lower energetic costs. Currently, the equilibration
and autocorrelation cutoffs depend on each system. For convenience, we used the
same cutoffs for all 𝜆 states. In the future, this can be customized for each state
to maximize the number of samples, especially from states of high 𝜆 values that
requires less equilibration and decorrelation time (Fig. 4.8b).



90

BTK-CRBN BRD4BD2-VHL(a) (b)

Linker beads (!!)
2 3 432 4 5 61

Linker beads (!!)

∆∆
"
($
%)

0

-2

-4

-6

-8

1.5

0.5

-0.5

-1.5

-2.0

-1.0

0.0

1.0

BTK-CRBN BRD4BD2-VHL(a) (b)

Linker beads (!!)
2 3 432 4 5 61

Linker beads (!!)

∆∆
"
($
%)

0

-2

-4

-6

-8

1.5

0.5

-0.5

-1.5

-1.0

0.0

1.0

Figure 4.9: ΔΔ𝐺s calculated by TI and BAR are superimposed onto the MBAR
results shown in Figure 3 to show that all three alchemical free energy calculation
methods agree within noise.
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Figure 4.10: ΔΔ𝐺s calculated by TI and BAR agree with MBAR results shown
in Figure 4 for the BRD4BD2-VHL system modeled with protein charges included.
(a) ΔΔ𝐺s at each PROTAC linker length calculated by TI and BAR are broken
down using waterfall plots similar to Figure 4b. In each triplet, columns from left
to right correspond to Δ𝐺binary, −Δ𝐺 ternary(other), and −Δ𝐺 ternary(charges). Columns
are arranged cumulatively such that the end point of a triplet of columns represent
the final ΔΔ𝐺 value calculated by the corresponding method. MBAR ΔΔ𝐺 values
with ±1 standard deviation are shown as horizontal yellow bands for reference. (b)
TI and MBAR calculations of the electrostatic contribution to ΔΔ𝐺 under different
forcefield setups at the linker length of 3 beads agree with each other. Note that
Δ𝐺 ternary(charges) is shown here rather than −Δ𝐺 ternary(charges) in panel (a).
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JQ1

I-BET726

linker

E3 ligand

Figure 4.11: The structure of MZ1, which is a PROTAC with linker length of 3 beads
using a JQ1 warhead, extracted from the ternary crystal structure (PDB: 5T35[118])
and the structure of I-BET726 warhead extracted from the crystal structure of a
binary complex (PDB: 4BJX[177]) are superimposed to highlight the difference in
exit vectors (black arrows).



92

BIBLIOGRAPHY

(1) Bracewell, R. N. Strip Integration in Radio Astronomy. Australian Journal
of Physics 1956, 9, 198–217. DOI: 10.1071/ph560198.

(2) Kershner, R. The Number of Circles Covering a Set. American Journal of
Mathematics 1939, 61, 665–671. DOI: 10.2307/2371320.

(3) Mastronarde, D. SerialEM: A Program for Automated Tilt Series Acquisition
on Tecnai Microscopes Using Prediction of Specimen Position. Microscopy
and Microanalysis 2003, 9, 1182–1183. DOI: 10.1017/S1431927603445
911.

(4) Wade, R. H. A Brief Look at Imaging and Contrast Transfer. Ultrami-
croscopy 1992, 46, 145–156. DOI: 10.1016/0304-3991(92)90011-8.

(5) Rohou, A.; Grigorieff, N. CTFFIND4: Fast and accurate defocus estimation
from electron micrographs. Journal of Structural Biology 2015, 192, 216–
221. DOI: 10.1016/j.jsb.2015.08.008.

(6) Thon, F. Notizen: Zur Defokussierungsabhängigkeit des Phasenkontrastes
bei der elektronenmikroskopischen Abbildung. Zeitschrift für Naturforschung
A 1966, 21, 476–478. DOI: 10.1515/zna-1966-0417.

(7) Hagen, W. J. H.; Wan, W.; Briggs, J. A. G. Implementation of a Cryo-
Electron Tomography Tilt-Scheme Optimized for High Resolution Subto-
mogram Averaging. Journal of Structural Biology 2017, 197, 191–198. DOI:
10.1016/j.jsb.2016.06.007.

(8) Dalton, K. M.; Greisman, J. B.; Hekstra, D. R. A Unifying Bayesian Frame-
work for Merging X-Ray Diffraction Data. Nature Communications 2022,
13, 1–13. DOI: 10.1038/s41467-022-35280-8.

(9) Aldama, L. A.; Dalton, K. M.; Hekstra, D. R. Correcting Systematic Errors in
Diffraction Data with Modern Scaling Algorithms. Acta Crystallographica
Section D: Structural Biology 2023, 79, 796–805. DOI: 10.1107/S20597
98323005776.

(10) Wilson, A. J. C. The Probability Distribution of X-Ray Intensities. Acta
Crystallographica 1949, 2, 318–321. DOI: 10.1107/S0365110X4900081
3.

(11) Srinivasan, R.; Parthasarathy, S. Some Statistical Applications in X-Ray
Crystallography; Elsevier Science & Technology Books, 1976.

(12) Howells, E. R.; Phillips, D. C.; Rogers, D. The Probability Distribution of
X-Ray Intensities. Ii. Experimental Investigation and the X-Ray Detection
of Centres of Symmetry. Acta Crystallographica 1950, 3, 210–214. DOI:
10.1107/S0365110X50000513.



93

(13) Rees, D. C. The Influence of Twinning by Merohedry on Intensity Statistics.
Acta Crystallographica Section A: Crystal Physics, Diffraction, Theoretical
and General Crystallography 1980, 36, 578–581. DOI: 10.1107/S05677
39480001234.

(14) Zwanzig, R. W. High-Temperature Equation of State by a Perturbation
Method. I. Nonpolar Gases. The Journal of Chemical Physics 1954, 22,
1420–1426. DOI: 10.1063/1.1740409.

(15) Mey, A. S. J. S.; Allen, B.; Macdonald, H. E. B.; Chodera, J. D.; Kuhn, M.;
Michel, J.; Mobley, D. L.; Naden, L. N.; Prasad, S.; Rizzi, A.; Scheen, J.;
Shirts, M. R.; Tresadern, G.; Xu, H. Best Practices for Alchemical Free
Energy Calculations. Living Journal of Computational Molecular Science
2020, 2, 18378. DOI: 10.33011/livecoms.2.1.18378.

(16) Pohorille, A.; Jarzynski, C.; Chipot, C. Good Practices in Free-Energy Cal-
culations. The Journal of Physical Chemistry B 2010, 114, 10235–10253.
DOI: 10.1021/jp102971x.

(17) Klimovich, P. V.; Shirts, M. R.; Mobley, D. L. Guidelines for the Analysis
of Free Energy Calculations. Journal of Computer-Aided Molecular Design
2015, 29, 397–411. DOI: 10.1007/s10822-015-9840-9.

(18) Shirts, M. R.; Chodera, J. D. Statistically Optimal Analysis of Samples from
Multiple Equilibrium States. The Journal of Chemical Physics 2008, 129,
124105. DOI: 10.1063/1.2978177.

(19) Shirts, M. R. Reweighting from the Mixture Distribution as a Better Way to
Describe the Multistate Bennett Acceptance Ratio. arXiv 2017, 1704.00891,
ver. 4. DOI: 10.48550/arXiv.1704.00891.

(20) Bennett, C. H. Efficient Estimation of Free Energy Differences from Monte
Carlo Data. Journal of Computational Physics 1976, 22, 245–268. DOI:
10.1016/0021-9991(76)90078-4.

(21) Tocheva, E. I.; Li, Z.; Jensen, G. J. Electron Cryotomography. Cold Spring
Harb Perspectives in Biology 2010, 2, a003442. DOI: 10.1101/cshpersp
ect.a003442.

(22) Böhning, J.; Bharat, T. A. M. Towards High-Throughput In Situ Struc-
tural Biology Using Electron Cryotomography. Progress in Biophysics and
Molecular Biology 2021, 160, 97–103. DOI: 10.1016/j.pbiomolbio.2
020.05.010.

(23) Himes, B. A.; Zhang, P. emClarity: Software for High-Resolution Cryo-
Electron Tomography and Subtomogram Averaging. Nature Methods 2018,
15, 955–961. DOI: 10.1038/s41592-018-0167-z.



94

(24) Tegunov, D.; Xue, L.; Dienemann, C.; Cramer, P.; Mahamid, J. Multi-
Particle Cryo-EM Refinement with M Visualizes Ribosome-Antibiotic Com-
plex at 3.5 Å in Cells. Nature Methods 2021, 18, 186–193. DOI: 10.1038
/s41592-020-01054-7.

(25) Mastronarde, D. N. Automated Electron Microscope Tomography Using
Robust Prediction of Specimen Movements. Journal of Structural Biology
2005, 152, 36–51. DOI: 10.1016/j.jsb.2005.07.007.

(26) Noske, A. B.; Costin, A. J.; Morgan, G. P.; Marsh, B. J. Expedited Ap-
proaches to Whole Cell Electron Tomography and Organelle Mark-Up In
Situ in High-Pressure Frozen Pancreatic Islets. Journal of Structural Biology
2008, 161, 298–313. DOI: 10.1016/j.jsb.2007.09.015.

(27) Rog-Zielinska, E. A.; Johnston, C. M.; O’Toole, E. T.; Morphew, M.; Ho-
enger, A.; Kohl, P. Electron Tomography of Rabbit Cardiomyocyte Three-
Dimensional Ultrastructure. Progress in Biophysics and Molecular Biology
2016, 121, 77–84. DOI: 10.1016/j.pbiomolbio.2016.05.005.

(28) Koning, R. I.; Zovko, S.; Bárcena, M.; Oostergetel, G. T.; Koerten, H. K.;
Galjart, N.; Koster, A. J.; Mieke Mommaas, A. Cryo Electron Tomography
of Vitrified Fibroblasts: Microtubule Plus Ends In Situ. Journal of Structural
Biology 2008, 161, 459–468. DOI: 10.1016/j.jsb.2007.08.011.

(29) Baker, L. A.; Rubinstein, J. L. Radiation Damage in Electron Cryomi-
croscopy. Methods in Enzymology 2010, 481, 371–388. DOI: 10.1016
/S0076-6879(10)81015-8.

(30) Chreifi, G.; Chen, S.; Metskas, L. A.; Kaplan, M.; Jensen, G. J. Rapid
Tilt-Series Acquisition for Electron Cryotomography. Journal of Structural
Biology 2019, 205, 163–169. DOI: 10.1016/j.jsb.2018.12.008.

(31) Konings, S.; Kuĳper, M.; Keizer, J.; Grollios, F.; Spanjer, T.; Tiemeĳer,
P. Advances in Single Particle Analysis Data Acquisition. Microscopy and
Microanalysis 2019, 25, 1012–1013. DOI: 10.1017/S143192761900579
8.

(32) Weis, F.; Hagen, W. J. H. Combining High Throughput and High Quality for
Cryo-Electron Microscopy Data Collection. Acta Crystallographica Section
D: Biological Crystallography 2020, 76, 724–728. DOI: 10.1107/s20597
98320008347.

(33) Bammes, B. E.; Rochat, R. H.; Jakana, J.; Chen, D. H.; Chiu, W. Direct
Electron Detection Yields Cryo-EM Reconstructions at Resolutions Beyond
3/4 Nyquist Frequency. Journal of Structural Biology 2012, 177, 589–601.
DOI: 10.1016/j.jsb.2012.01.008.

(34) Milazzo, A. C.; Cheng, A.; Moeller, A.; Lyumkis, D.; Jacovetty, E.; Polukas,
J.; Ellisman, M. H.; Xuong, N. H.; Carragher, B.; Potter, C. S. Initial Evalua-
tion of a Direct Detection Device Detector for Single Particle Cryo-Electron



95

Microscopy. Journal of Structural Biology 2011, 176, 404–408. DOI: 10.1
016/j.jsb.2011.09.002.

(35) Kuĳper, M.; van Hoften, G.; Janssen, B.; Geurink, R.; De Carlo, S.; Vos,
M.; van Duinen, G.; van Haeringen, B.; Storms, M. FEI’s Direct Electron
Detector Developments: Embarking on a Revolution in Cryo-TEM. Journal
of Structural Biology 2015, 192, 179–187. DOI: 10.1016/j.jsb.2015.0
9.014.

(36) McMullan, G.; Faruqi, A. R.; Henderson, R. Direct Electron Detectors.
Methods in Enzymology 2016, 579, 1–17. DOI: 10.1016/bs.mie.2016.0
5.056.

(37) Marko, M.; Hsieh, C.; Schalek, R.; Frank, J.; Mannella, C. Focused-Ion-
Beam Thinning of Frozen-Hhydrated Biological Specimens for Cryo-Electron
Microscopy. Nature Methods 2007, 4, 215–217. DOI: 10.1038/nmeth101
4.

(38) Rigort, A.; Bauerlein, F. J.; Villa, E.; Eibauer, M.; Laugks, T.; Baumeister,
W.; Plitzko, J. M. Focused Ion Beam Micromachining of Eukaryotic Cells
for Cryoelectron Tomography. Proceedings of the National Academy of
Sciences 2012, 109, 4449–4454. DOI: 10.1073/pnas.1201333109.

(39) Mahamid, J.; Pfeffer, S.; Schaffer, M.; Villa, E.; Danev, R.; Cuellar, L. K.;
Förster, F.; Hyman, A. A.; Plitzko, J. M.; Baumeister, W. Visualizing the
Molecular Sociology at the HeLa Cell Nuclear Periphery. Science 2016,
351, 969–972. DOI: 10.1126/science.aad8857.

(40) Glaeser, R. M. Specimen Behavior in the Electron Beam. Methods in Enzy-
mology 2016, 579, 19–50. DOI: 10.1016/bs.mie.2016.04.010.

(41) Bartesaghi, A.; Aguerrebere, C.; Falconieri, V.; Banerjee, S.; Earl, L. A.;
Zhu, X.; Grigorieff, N.; Milne, J. L. S.; Sapiro, G.; Wu, X.; Subramaniam, S.
Atomic Resolution Cryo-EM Structure of 𝛽-Galactosidase. Structure 2018,
26, 848–856. DOI: 10.1016/j.str.2018.04.004.

(42) Hattne, J.; Shi, D.; Glynn, C.; Zee, C. T.; Gallagher-Jones, M.; Martynowycz,
M. W.; Rodriguez, J. A.; Gonen, T. Analysis of Global and Site-Specific
Radiation Damage in Cryo-EM. Structure 2018, 26, 759–766. DOI: 10.10
16/j.str.2018.03.021.

(43) Lippens, S.; Kremer, A.; Borghgraef, P.; Guérin, C. J. Serial Block Face-
Scanning Electron Microscopy for Volume Electron Microscopy. Methods
in Cell Biology 2019, 152, 69–85. DOI: 10.1016/bs.mcb.2019.04.002.

(44) Le Gros, M. A.; McDermott, G.; Cinquin, B. P.; Smith, E. A.; Do, M.; Chao,
W. L.; Naulleau, P. P.; Larabell, C. A. Biological Soft X-ray Tomography
on Beamline 2.1 at the Advanced Light Source. Journal of Synchrotron
Radiation 2014, 21, 1370–1377. DOI: 10.1107/S1600577514015033.



96

(45) Loconte, V.; Singla, J.; Li, A.; Chen, J. H.; Ekman, A.; McDermott, G.; Sali,
A.; Le Gros, M.; White, K. L.; Larabell, C. A. Soft X-ray Tomography to
Map and Quantify Organelle Interactions at the Mesoscale. Structure 2022,
DOI: 10.1016/j.str.2022.01.006.

(46) Xu, C. S.; Hayworth, K. J.; Lu, Z.; Grob, P.; Hassan, A. M.; García-Cerdán,
J. G.; Niyogi, K. K.; Nogales, E.; Weinberg, R. J.; Hess, H. F. Enhanced
FIB-SEM Systems for Large-Volume 3D Imaging. eLife 2017, 6, DOI: 10
.7554/eLife.25916.

(47) Hagen, W. J. H.; Wan, W.; Briggs, J. A. G. Implementation of a Cryo-
Electron Tomography Tilt-Scheme Optimized for High Resolution Subto-
mogram Averaging. Journal of Structural Biology 2017, 197, 191–198. DOI:
10.1016/j.jsb.2016.06.007.

(48) Swinbank, R.; James Purser, R. Fibonacci Grids: A Novel Approach to
Global Modelling. Quarterly Journal of the Royal Meteorological Society
2006, 132, 1769–1793. DOI: 10.1256/qj.05.227.

(49) Chreifi, G.; Chen, S.; Jensen, G. J. Rapid Tilt-Series Method for Cryo-
Electron Tomography: Characterizing Stage Behavior during FISE Acqui-
sition. Journal of Structural Biology 2021, 213, 107716. DOI: 10.1016/j
.jsb.2021.107716.

(50) Xiong, Q.; Morphew, M. K.; Schwartz, C. L.; Hoenger, A. H.; Mastronarde,
D. N. CTF Determination and Correction for Low Dose Tomographic Tilt
Series. Journal of Structural Biology 2009, 168, 378–387. DOI: 10.1016
/j.jsb.2009.08.016.

(51) Saalfeld, S.; Fetter, R.; Cardona, A.; Tomancak, P. Elastic Volume Recon-
struction From Series of Ultra-Thin Microscopy Sections. Nature Methods
2012, 9, 717–720. DOI: 10.1038/nmeth.2072.

(52) Wolf, S. G.; Mutsafi, Y.; Dadosh, T.; Ilani, T.; Lansky, Z.; Horowitz, B.;
Rubin, S.; Elbaum, M.; Fass, D. 3D Visualization of Mitochondrial Solid-
Phase Calcium Stores in Whole Cells. elife 2017, 6, DOI: 10.7554/eLife
.29929.

(53) Ni, T.; Frosio, T.; Mendonça, L.; Sheng, Y.; Clare, D.; Himes, B. A.; Zhang,
P. High-Resolution In Situ Structure Determination by Cryo-Electron To-
mography and Subtomogram Averaging Using emClarity. Nature Protocols
2022, 17, 421–444. DOI: 10.1038/s41596-021-00648-5.

(54) Chen, M.; Bell, J. M.; Shi, X.; Sun, S. Y.; Wang, Z.; Ludtke, S. J. A Complete
Data Processing Workflow for Cryo-ET and Subtomogram Averaging. Na-
ture Methods 2019, 16, 1161–1168. DOI: 10.1038/s41592-019-0591-8.

(55) Nickell, S.; Kofler, C.; Leis, A. P.; Baumeister, W. A Visual Approach to
Proteomics. Nature Reviews Molecular Cell Biology 2006, 7, 225–230. DOI:
10.1038/nrm1861.



97

(56) Moebel, E.; Martinez-Sanchez, A.; Lamm, L.; Righetto, R. D.; Wietrzynski,
W.; Albert, S.; Larivière, D.; Fourmentin, E.; Pfeffer, S.; Ortiz, J.; Baumeis-
ter, W.; Peng, T.; Engel, B. D.; Kervrann, C. Deep Learning Improves
Macromolecule Identification in 3D Cellular Cryo-Electron Tomograms.
Nature Methods 2021, DOI: 10.1038/s41592-021-01275-4.

(57) Smith, J. L.; Fischetti, R. F.; Yamamoto, M. Micro-Crystallography Comes
of Age. Current Opinion in Structural Biology 2012, 22, 602–612. DOI:
10.1016/j.sbi.2012.09.001.

(58) Gemmi, M.; Mugnaioli, E.; Gorelik, T. E.; Kolb, U.; Palatinus, L.; Boullay,
P.; Hovmöller, S.; Abrahams, J. P. 3D Electron Diffraction: The Nanocrys-
tallography Revolution. ACS Central Science 2019, 5, 1315–1329. DOI:
10.1021/acscentsci.9b00394.

(59) Grimes, J. M.; Hall, D. R.; Ashton, A. W.; Evans, G.; Owen, R. L.; Wagner,
A.; McAuley, K. E.; von Delft, F.; Orville, A. M.; Sorensen, T.; Walsh,
M. A.; Ginn, H. M.; Stuart, D. I. Where Is Crystallography Going? Acta
Crystallographica Section D: Structural Biology 2018, 74, 152–166. DOI:
10.1107/S2059798317016709.

(60) Chapman, H. N. et al. Femtosecond X-Ray Protein Nanocrystallography.
Nature 2011, 470, 73–77. DOI: 10.1038/nature09750.

(61) Shi, D.; Nannenga, B. L.; Iadanza, M. G.; Gonen, T. Three-Dimensional
Electron Crystallography of Protein Microcrystals. eLife 2013, 2, ed. by
Harrison, S. C., e01345. DOI: 10.7554/eLife.01345.

(62) Wang, Y.; Takki, S.; Cheung, O.; Xu, H.; Wan, W.; Öhrström, L.; Ken Inge,
A. Elucidation of the Elusive Structure and Formula of the Active Phar-
maceutical Ingredient Bismuth Subgallate by Continuous Rotation Electron
Diffraction. Chemical Communications 2017, 53, 7018–7021. DOI: 10.10
39/C7CC03180G.

(63) Jones, C. G.; Martynowycz, M. W.; Hattne, J.; Fulton, T. J.; Stoltz, B. M.;
Rodriguez, J. A.; Nelson, H. M.; Gonen, T. The CryoEM Method MicroED
as a Powerful Tool for Small Molecule Structure Determination. ACS Central
Science 2018, 4, 1587–1592. DOI: 10.1021/acscentsci.8b00760.

(64) Gruene, T. et al. Rapid Structure Determination of Microcrystalline Molec-
ular Compounds Using Electron Diffraction. Angewandte Chemie Interna-
tional Edition 2018, 57, 16313–16317. DOI: 10.1002/anie.201811318.

(65) Kim, L. J.; Ohashi, M.; Zhang, Z.; Tan, D.; Asay, M.; Cascio, D.; Rodriguez,
J. A.; Tang, Y.; Nelson, H. M. Prospecting for Natural Products by Genome
Mining and Microcrystal Electron Diffraction. Nature Chemical Biology
2021, 17, 872–877. DOI: 10.1038/s41589-021-00834-2.



98

(66) Bruhn, J. F. et al. Small Molecule Microcrystal Electron Diffraction for
the Pharmaceutical Industry–Lessons Learned From Examining Over Fifty
Samples. Frontiers in Molecular Biosciences 2021, 8, 648603. DOI: 10.3
389/fmolb.2021.648603.

(67) Park, J.-D.; Li, Y.; Moon, K.; Han, E. J.; Lee, S. R.; Seyedsayamdost, M. R.
Structural Elucidation of Cryptic Algaecides in Marine Algal-Bacterial
Symbioses by NMR Spectroscopy and MicroED. Angewandte Chemie Inter-
national Edition 2022, 61, e202114022. DOI: 10.1002/anie.202114022.

(68) E. Gorelik, T.; E. Tehrani, K. H. M.; Gruene, T.; Monecke, T.; Niessing, D.;
Kaiser, U.; Blankenfeldt, W.; Müller, R. Crystal Structure of Natural Product
Argyrin-D Determined by 3D Electron Diffraction. CrystEngComm 2022,
24, 5885–5889. DOI: 10.1039/D2CE00707J.

(69) Delgadillo, D. A. et al. High-Throughput Identification of Crystalline Nat-
ural Products from Crude Extracts Enabled by Microarray Technology and
microED. ACS Central Science 2024, 10, 176–183. DOI: 10.1021/acsce
ntsci.3c01365.

(70) Cichocka, M. O.; Ångström, J.; Wang, B.; Zou, X.; Smeets, S. High-
Throughput Continuous Rotation Electron Diffraction Data Acquisition Via
Software Automation. Journal of Applied Crystallography 2018, 51, 1652–
1661. DOI: 10.1107/S1600576718015145.

(71) Wang, B.; Zou, X.; Smeets, S. Automated Serial Rotation Electron Diffrac-
tion Combined with Cluster Analysis: An Efficient Multi-Crystal Workflow
for Structure Determination. IUCrJ 2019, 6, 854–867. DOI: 10.1107/S20
52252519007681.

(72) Lightowler, M.; Li, S.; Ou, X.; Cho, J.; Li, A.; Hofer, G.; Xu, J.; Yang, T.;
Zou, X.; Lu, M.; Xu, H. Phase Identification and Discovery of Hidden Crystal
Forms in a Polycrystalline Pharmaceutical Sample Using High-Throughput
3D Electron Diffraction. ChemRxiv 2023, ver. 1. DOI: 10.26434/chemrx
iv-2023-2rh9j.

(73) Unge, J.; Lin, J.; Weaver, S. J.; Sae Her, A.; Gonen, T. Compositional
Analysis of Complex Mixtures using Automatic MicroED Data Collection.
Advanced Science 2024, 11, 2400081. DOI: 10.1002/advs.202400081.

(74) Powell, S. M.; Novikova, I. V.; Kim, D. N.; Evans, J. E. AutoMicroED: A
Semi-Automated MicroED Processing Pipeline. bioRxiv 2021, ver. 1. DOI:
10.1101/2021.12.13.472146.

(75) Kabsch, W. XDS. Acta Crystallographica Section D: Biological Crystallog-
raphy 2010, 66, 125–132. DOI: 10.1107/S0907444909047337.

(76) Sheldrick, G. M. Phase Annealing in SHELX-90: Direct Methods for Larger
Structures. Acta Crystallographica Section A: Foundations of Crystallogra-
phy 1990, 46, 467–473. DOI: 10.1107/S0108767390000277.



99

(77) Nannenga, B. L.; Gonen, T. Protein Structure Determination by MicroED.
Current Opinion in Structural Biology 2014, 27, 24–31. DOI: 10.1016/j
.sbi.2014.03.004.

(78) Palatinus, L.; Petříček, V.; Corrêa, C. A. Structure Refinement Using Preces-
sion Electron Diffraction Tomography and Dynamical Diffraction: Theory
and Implementation. Acta Crystallographica Section A: Foundations and
Advances 2015, 71, 235–244. DOI: 10.1107/S2053273315001266.

(79) Khouchen, M.; Klar, P. B.; Chintakindi, H.; Suresh, A.; Palatinus, L. Optimal
Estimated Standard Uncertainties of Reflection Intensities for Kinematical
Refinement from 3D Electron Diffraction Data. Acta Crystallographica Sec-
tion A: Foundations and Advances 2023, 79, 427–439. DOI: 10.1107/S20
53273323005053.

(80) Saha, A.; Mecklenburg, M.; Pattison, A. J.; Brewster, A. S.; Rodriguez,
J. A.; Ercius, P. Mapping Electron Beam-Induced Radiolytic Damage in
Molecular Crystals. arXiv 2024, 2404.18011, ver. 1. DOI: 10.48550/arXi
v.2404.18011.

(81) Karplus, P. A.; Diederichs, K. Assessing and Maximizing Data Quality in
Macromolecular Crystallography. Current Opinion in Structural Biology
2015, 34, 60–68. DOI: 10.1016/j.sbi.2015.07.003.

(82) Uervirojnangkoorn, M.; Zeldin, O. B.; Lyubimov, A. Y.; Hattne, J.; Brewster,
A. S.; Sauter, N. K.; Brunger, A. T.; Weis, W. I. Enabling X-Ray Free Electron
Laser Crystallography for Challenging Biological Systems from a Limited
Number of Crystals. eLife 2015, 4, ed. by Harrison, S. C., e05421. DOI:
10.7554/eLife.05421.

(83) White, T. A.; Mariani, V.; Brehm, W.; Yefanov, O.; Barty, A.; Beyerlein,
K. R.; Chervinskii, F.; Galli, L.; Gati, C.; Nakane, T.; Tolstikova, A.; Ya-
mashita, K.; Yoon, C. H.; Diederichs, K.; Chapman, H. N. Recent Develop-
ments in CrystFEL. Journal of Applied Crystallography 2016, 49, 680–689.
DOI: 10.1107/S1600576716004751.

(84) Beilsten-Edmands, J.; Winter, G.; Gildea, R.; Parkhurst, J.; Waterman, D.;
Evans, G. Scaling Diffraction Data in the DIALS Software Package: Al-
gorithms and New Approaches for Multi-Crystal Scaling. Acta Crystallo-
graphica Section D: Structural Biology 2020, 76, 385–399. DOI: 10.1107
/S2059798320003198.

(85) Gildea, R. J.; Beilsten-Edmands, J.; Axford, D.; Horrell, S.; Aller, P.; Sandy,
J.; Sanchez-Weatherby, J.; Owen, C. D.; Lukacik, P.; Strain-Damerell, C.;
Owen, R. L.; Walsh, M. A.; Winter, G. Xia2.multiplex: A Multi-Crystal
Data-Analysis Pipeline. Acta Crystallographica Section D: Structural Biol-
ogy 2022, 78, 752–769. DOI: 10.1107/S2059798322004399.



100

(86) Assmann, G.; Brehm, W.; Diederichs, K. Identification of Rogue Datasets
in Serial Crystallography. Journal of Applied Crystallography 2016, 49,
1021–1028. DOI: 10.1107/S1600576716005471.

(87) Giordano, R.; Leal, R. M. F.; Bourenkov, G. P.; McSweeney, S.; Popov,
A. N. The Application of Hierarchical Cluster Analysis to the Selection
of Isomorphous Crystals. Acta Crystallographica Section D: Biological
Crystallography 2012, 68, 649–658. DOI: 10.1107/S090744491200684
1.

(88) Foadi, J.; Aller, P.; Alguel, Y.; Cameron, A.; Axford, D.; Owen, R. L.;
Armour, W.; Waterman, D. G.; Iwata, S.; Evans, G. Clustering Procedures
for the Optimal Selection of Data Sets from Multiple Crystals in Macro-
molecular Crystallography. Acta Crystallographica Section D: Biological
Crystallography 2013, 69, 1617–1632. DOI: 10.1107/S0907444913012
274.

(89) Yamashita, K.; Hirata, K.; Yamamoto, M. KAMO: Towards Automated Data
Processing for Microcrystals. Acta Crystallographica Section D: Structural
Biology 2018, 74, 441–449. DOI: 10.1107/S2059798318004576.

(90) Burch, J. E.; Smith, A. G.; Caille, S.; Walker, S. D.; Wurz, R.; Cee, V. J.;
Rodriguez, J.; Gostovic, D.; Quasdorf, K.; Nelson, H. M. Putting MicroED
to the Test: An Account of the Evaluation of 30 Diverse Pharmaceutical
Compounds, 2021, DOI: 10.26434/chemrxiv-2021-h3tqz.

(91) Chhetri, B. K.; Mojib, N.; Moore, S. G.; Delgadillo, D. A.; Burch, J. E.;
Barrett, N. H.; Gaul, D. A.; Marquez, L.; Soapi, K.; Nelson, H. M.; Quave,
C. L.; Kubanek, J. Cryptic Chemical Variation in a Marine Red Alga as Re-
vealed by Nontargeted Metabolomics. ACS Omega 2023, 8, 13899–13910.
DOI: 10.1021/acsomega.3c00301.

(92) Abad, A. N. D.; Seshadri, K.; Ohashi, M.; Delgadillo, D. A.; de Moraes, L. S.;
Nagasawa, K. K.; Liu, M.; Johnson, S.; Nelson, H. M.; Tang, Y. Discovery
and Characterization of Pyridoxal 5’-Phosphate-Dependent Cycloleucine
Synthases. Journal of the American Chemical Society 2024, 146, 14672–
14684. DOI: 10.1021/jacs.4c02142.

(93) Kabsch, W. Integration, Scaling, Space-Group Assignment and Post-Refinement.
Acta Crystallographica Section D: Biological Crystallography 2010, 66,
133–144. DOI: 10.1107/S0907444909047374.

(94) Mott, N. F.; Bragg, W. L. The Scattering of Electrons by Atoms. Proceedings
of the Royal Society of London. Series A, Containing Papers of a Mathemat-
ical and Physical Character 1997, 127, 658–665. DOI: 10.1098/rspa.1
930.0082.

(95) Dorset, D. L. Electron Crystallography. Acta Crystallographica Section B:
Structural Science 1996, 52, 753–769. DOI: 10.1107/S01087681960055
99.



101

(96) DeLaBarre, B.; Brunger, A. T. Considerations for the Refinement of Low-
Resolution Crystal Structures. Acta Crystallographica Section D: Biological
Crystallography 2006, 62, 923–932. DOI: 10.1107/S0907444906012650.

(97) Evans, P. R.; Murshudov, G. N. How Good Are My Data and What Is the
Resolution? Acta Crystallographica Section D: Biological Crystallography
2013, 69, 1204–1214. DOI: 10.1107/S0907444913000061.

(98) Blei, D. M.; Kucukelbir, A.; McAuliffe, J. D. Variational Inference: A Re-
view for Statisticians. Journal of the American Statistical Association 2017,
112, 859–877. DOI: 10.1080/01621459.2017.1285773.

(99) Jordan, M. I.; Ghahramani, Z.; Jaakkola, T. S.; Saul, L. K. An Introduction
to Variational Methods for Graphical Models. Machine Learning 1999, 37,
183–233. DOI: 10.1023/A:1007665907178.

(100) Kingma, D. P.; Welling, M. Auto-Encoding Variational Bayes. arXiv 2014,
1312.6114, ver. 10. DOI: 10.48550/arXiv.1312.6114.

(101) Evans, P. R. An Introduction to Data Reduction: Space-Group Determi-
nation, Scaling and Intensity Statistics. Acta Crystallographica Section D:
Biological Crystallography 2011, 67, 282–292. DOI: 10.1107/S0907444
91003982X.

(102) Hattne, J.; Reyes, F. E.; Nannenga, B. L.; Shi, D.; de la Cruz, M. J.; Leslie,
A. G. W.; Gonen, T. MicroED Data Collection and Processing. Acta Crystal-
lographica Section A: Foundations and Advances 2015, 71, 353–360. DOI:
10.1107/S2053273315010669.

(103) Winter, G.; Waterman, D. G.; Parkhurst, J. M.; Brewster, A. S.; Gildea, R. J.;
Gerstel, M.; Fuentes-Montero, L.; Vollmar, M.; Michels-Clark, T.; Young,
I. D.; Sauter, N. K.; Evans, G. DIALS: Implementation and Evaluation of
a New Integration Package. Acta Crystallographica Section D: Structural
Biology 2018, 74, 85–97. DOI: 10.1107/S2059798317017235.

(104) Clabbers, M. T. B.; Gruene, T.; Parkhurst, J. M.; Abrahams, J. P.; Waterman,
D. G. Electron Diffraction Data Processing with DIALS. Acta Crystallo-
graphica Section D: Structural Biology 2018, 74, 506–518. DOI: 10.1107
/S2059798318007726.

(105) Petříček, V.; Palatinus, L.; Plášil, J.; Dušek, M. Jana2020 – a New Version
of the Crystallographic Computing System Jana. Zeitschrift für Kristallo-
graphie - Crystalline Materials 2023, 238, 271–282. DOI: 10.1515/zkri
-2023-0005.

(106) Ito, S.; White, F. J.; Okunishi, E.; Aoyama, Y.; Yamano, A.; Sato, H.;
Ferrara, J. D.; Jasnowski, M.; Meyer, M. Structure determination of small
molecule compounds by an electron diffractometer for 3D ED/MicroED.
CrystEngComm 2021, 23, 8622–8630. DOI: 10.1039/D1CE01172C.



102

(107) Greisman, J. B.; Dalton, K. M.; Hekstra, D. R. Reciprocalspaceship: A
Python Library for Crystallographic Data Analysis. Journal of Applied Crys-
tallography 2021, 54, 1521–1529. DOI: 10.1107/S160057672100755X.

(108) Sheldrick, G. M. SHELXT – Integrated Space-Group and Crystal-Structure
Determination. Acta Crystallographica Section A: Foundations and Ad-
vances 2015, 71, 3–8. DOI: 10.1107/S2053273314026370.

(109) Usón, I.; Sheldrick, G. M. Advances in Direct Methods for Protein Crys-
tallography. Current Opinion in Structural Biology 1999, 9, 643–648. DOI:
10.1016/S0959-440X(99)00020-2.

(110) Schrödinger, LLC The PyMOL Molecular Graphics System, Version 2.5,
2022.

(111) An, S.; Fu, L. Small-Molecule PROTACs: An Emerging and Promising
Approach for the Development of Targeted Therapy Drugs. EBioMedicine
2018, 36, 553–562. DOI: 10.1016/j.ebiom.2018.09.005.

(112) Burslem, G. M.; Crews, C. M. Proteolysis-Targeting Chimeras as Thera-
peutics and Tools for Biological Discovery. Cell 2020, 181, 102–114. DOI:
10.1016/j.cell.2019.11.031.

(113) Sakamoto, K. M.; Kim, K. B.; Kumagai, A.; Mercurio, F.; Crews, C. M.;
Deshaies, R. J. PROTACs: Chimeric Molecules That Target Proteins to
the Skp1–Cullin–F Box Complex for Ubiquitination and Degradation. Pro-
ceedings of the National Academy of Sciences 2001, 98, 8554–8559. DOI:
10.1073/pnas.141230798.

(114) Mullard, A. Targeted Protein Degraders Crowd into the Clinic. Nature Re-
views Drug Discovery 2021, 20, 247–250. DOI: 10.1038/d41573-021-0
0052-4.

(115) Maniaci, C.; Ciulli, A. Bifunctional Chemical Probes Inducing Protein–Protein
Interactions. Current Opinion in Chemical Biology 2019, 52, 145–156. DOI:
10.1016/j.cbpa.2019.07.003.

(116) Troup, R. I.; Fallan, C.; Baud, M. G. J. Current Strategies for the Design
of Protac Linkers: A Critical Review. Exploration of Targeted Anti-tumor
Therapy 2020, 1, 273–312. DOI: 10.37349/etat.2020.00018.

(117) Alabi, S.; Crews, C. Major Advances in Targeted Protein Degradation: PRO-
TACs, LYTACs, and MADTACs. Journal of Biological Chemistry 2021,
100647. DOI: 10.1016/j.jbc.2021.100647.

(118) Gadd, M. S.; Testa, A.; Lucas, X.; Chan, K.-H.; Chen, W.; Lamont, D. J.;
Zengerle, M.; Ciulli, A. Structural Basis of PROTAC Cooperative Recogni-
tion for Selective Protein Degradation. Nature Chemical Biology 2017, 13,
514–521. DOI: 10.1038/nchembio.2329.



103

(119) Nowak, R. P.; DeAngelo, S. L.; Buckley, D.; He, Z.; Donovan, K. A.; An,
J.; Safaee, N.; Jedrychowski, M. P.; Ponthier, C. M.; Ishoey, M.; Zhang,
T.; Mancias, J. D.; Gray, N. S.; Bradner, J. E.; Fischer, E. S. Plasticity in
Binding Confers Selectivity in Ligand-Induced Protein Degradation. Nature
Chemical Biology 2018, 14, 706–714. DOI: 10.1038/s41589-018-0055
-y.

(120) Smith, B. E.; Wang, S. L.; Jaime-Figueroa, S.; Harbin, A.; Wang, J.; Ham-
man, B. D.; Crews, C. M. Differential PROTAC Substrate Specificity Dic-
tated by Orientation of Recruited E3 Ligase. Nature Communications 2019,
10, 131. DOI: 10.1038/s41467-018-08027-7.

(121) Riching, K. M.; Mahan, S.; Corona, C. R.; McDougall, M.; Vasta, J. D.;
Robers, M. B.; Urh, M.; Daniels, D. L. Quantitative Live-Cell Kinetic Degra-
dation and Mechanistic Profiling of PROTAC Mode of Action. ACS Chemi-
cal Biology 2018, 13, 2758–2770. DOI: 10.1021/acschembio.8b00692.

(122) Roy, M. J.; Winkler, S.; Hughes, S. J.; Whitworth, C.; Galant, M.; Farnaby,
W.; Rumpel, K.; Ciulli, A. SPR-Measured Dissociation Kinetics of PRO-
TAC Ternary Complexes Influence Target Degradation Rate. ACS Chemical
Biology 2019, 14, 361–368. DOI: 10.1021/acschembio.9b00092.

(123) Farnaby, W. et al. BAF Complex Vulnerabilities in Cancer Demonstrated
Via Structure-Based PROTAC Design. Nature Chemical Biology 2019, 15,
672–680. DOI: 10.1038/s41589-019-0294-6.

(124) Du, X.; Volkov, O. A.; Czerwinski, R. M.; Tan, H.; Huerta, C.; Morton,
E. R.; Rizzi, J. P.; Wehn, P. M.; Xu, R.; Nĳhawan, D.; Wallace, E. M.
Structural Basis and Kinetic Pathway of RBM39 Recruitment to DCAF15
by a Sulfonamide Molecular Glue E7820. Structure 2019, 27, 1625–1633.e3.
DOI: 10.1016/j.str.2019.10.005.

(125) Lai, A. C.; Toure, M.; Hellerschmied, D.; Salami, J.; Jaime-Figueroa, S.; Ko,
E.; Hines, J.; Crews, C. M. Modular PROTAC Design for the Degradation
of Oncogenic BCR-ABL. Angewandte Chemie International Edition 2016,
55, 807–810. DOI: 10.1002/anie.201507634.

(126) Bondeson, D. P.; Smith, B. E.; Burslem, G. M.; Buhimschi, A. D.; Hines, J.;
Jaime-Figueroa, S.; Wang, J.; Hamman, B. D.; Ishchenko, A.; Crews, C. M.
Lessons in PROTAC Design from Selective Degradation with a Promiscuous
Warhead. Cell Chemical Biology 2018, 25, 78–87.e5. DOI: 10.1016/j.c
hembiol.2017.09.010.

(127) Donovan, K. A. et al. Mapping the Degradable Kinome Provides a Resource
for Expedited Degrader Development. Cell 2020, 183, 1714–1731.e10. DOI:
10.1016/j.cell.2020.10.038.

(128) Spradlin, J. N. et al. Harnessing the Anti-Cancer Natural Product Nimbolide
for Targeted Protein Degradation. Nature Chemical Biology 2019, 15, 747–
755. DOI: 10.1038/s41589-019-0304-8.



104

(129) Ward, C. C.; Kleinman, J. I.; Brittain, S. M.; Lee, P. S.; Chung, C. Y. S.;
Kim, K.; Petri, Y.; Thomas, J. R.; Tallarico, J. A.; McKenna, J. M.; Schirle,
M.; Nomura, D. K. Covalent Ligand Screening Uncovers a RNF4 E3 Ligase
Recruiter for Targeted Protein Degradation Applications. ACS Chemical
Biology 2019, 14, 2430–2440. DOI: 10.1021/acschembio.8b01083.

(130) Zhang, X.; Crowley, V. M.; Wucherpfennig, T. G.; Dix, M. M.; Cravatt,
B. F. Electrophilic PROTACs That Degrade Nuclear Proteins by Engaging
DCAF16. Nature Chemical Biology 2019, 15, 737–746. DOI: 10.1038/s
41589-019-0279-5.

(131) Kuljanin, M.; Mitchell, D. C.; Schweppe, D. K.; Gikandi, A. S.; Nusinow,
D. P.; Bulloch, N. J.; Vinogradova, E. V.; Wilson, D. L.; Kool, E. T.; Mancias,
J. D.; Cravatt, B. F.; Gygi, S. P. Reimagining High-Throughput Profiling of
Reactive Cysteines for Cell-Based Screening of Large Electrophile Libraries.
Nature Biotechnology 2021, 39, 630–641. DOI: 10.1038/s41587-020-0
0778-3.

(132) Li, W.; Bengtson, M. H.; Ulbrich, A.; Matsuda, A.; Reddy, V. A.; Orth, A.;
Chanda, S. K.; Batalov, S.; Joazeiro, C. A. P. Genome-Wide and Functional
Annotation of Human E3 Ubiquitin Ligases Identifies MULAN, a Mito-
chondrial E3 that Regulates the Organelle’s Dynamics and Signaling. PLOS
ONE 2008, 3, e1487. DOI: 10.1371/journal.pone.0001487.

(133) Jevtić, P.; Haakonsen, D. L.; Rapé, M. An E3 Ligase Guide to the Galaxy
of Small-Molecule-Induced Protein Degradation. Cell Chemical Biology
2021, DOI: 10.1016/j.chembiol.2021.04.002.

(134) Scholes, N. S.; Mayor-Ruiz, C.; Winter, G. E. Identification and Selectivity
Profiling of Small-Molecule Degraders Via Multi-Omics Approaches. Cell
Chemical Biology 2021, DOI: 10.1016/j.chembiol.2021.03.007.

(135) Huang, H.-T. et al. A Chemoproteomic Approach to Query the Degradable
Kinome Using a Multi-kinase Degrader. Cell Chemical Biology 2018, 25,
88–99.e6. DOI: 10.1016/j.chembiol.2017.10.005.

(136) Rodriguez-Rivera, F. P.; Levi, S. M. Unifying Catalysis Framework to Dis-
sect Proteasomal Degradation Paradigms. ACS Central Science 2021, DOI:
10.1021/acscentsci.1c00389.

(137) Maniaci, C.; Hughes, S. J.; Testa, A.; Chen, W.; Lamont, D. J.; Rocha, S.;
Alessi, D. R.; Romeo, R.; Ciulli, A. Homo-PROTACs: Bivalent Small-
Molecule Dimerizers of the VHL E3 Ubiquitin Ligase to Induce Self-
Degradation. Nature Communications 2017, 8, 830. DOI: 10.1038/s4
1467-017-00954-1.

(138) Chan, K.-H.; Zengerle, M.; Testa, A.; Ciulli, A. Impact of Target War-
head and Linkage Vector on Inducing Protein Degradation: Comparison
of Bromodomain and Extra-Terminal (BET) Degraders Derived from Tri-
azolodiazepine (JQ1) and Tetrahydroquinoline (I-BET726) BET Inhibitor



105

Scaffolds. Journal of Medicinal Chemistry 2018, 61, 504–513. DOI: 10.1
021/acs.jmedchem.6b01912.

(139) Zorba, A. et al. Delineating the Role of Cooperativity in the Design of Potent
PROTACs for BTK. Proceedings of the National Academy of Sciences 2018,
115, E7285–E7292. DOI: 10.1073/pnas.1803662115.

(140) Schiemer, J. et al. Snapshots and Ensembles of BTK and cIAP1 Protein
Degrader Ternary Complexes. Nature Chemical Biology 2021, 17, 152–
160. DOI: 10.1038/s41589-020-00686-2.

(141) Drummond, M. L.; Henry, A.; Li, H.; Williams, C. I. Improved Accuracy
for Modeling PROTAC-Mediated Ternary Complex Formation and Targeted
Protein Degradation via New In Silico Methodologies. Journal of Chemical
Information and Modeling 2020, 60, 5234–5254. DOI: 10.1021/acs.jci
m.0c00897.

(142) Zaidman, D.; Prilusky, J.; London, N. PRosettaC: Rosetta Based Modeling
of PROTAC Mediated Ternary Complexes. Journal of Chemical Information
and Modeling 2020, 60, 4894–4903. DOI: 10.1021/acs.jcim.0c00589.

(143) Weng, G.; Li, D.; Kang, Y.; Hou, T. Integrative Modeling of PROTAC-
Mediated Ternary Complexes. Journal of Medicinal Chemistry 2021, 64,
16271–16281. DOI: 10.1021/acs.jmedchem.1c01576.

(144) Bai, N.; Miller, S. A.; Andrianov, G. V.; Yates, M.; Kirubakaran, P.; Karan-
icolas, J. Rationalizing PROTAC-Mediated Ternary Complex Formation
Using Rosetta. Journal of Chemical Information and Modeling 2021, 61,
1368–1382. DOI: 10.1021/acs.jcim.0c01451.

(145) Bai, N.; Riching, K. M.; Makaju, A.; Wu, H.; Acker, T. M.; Ou, S.-C.;
Zhang, Y.; Shen, X.; Bulloch, D.; Rui, H.; Gibson, B.; Daniels, D. L.; Urh,
M.; Rock, B.; Humphreys, S. C. Modeling the CRL4A Ligase Complex
to Predict Target Protein Ubiquitination Induced by Cereblon-Recruiting
PROTACs. Journal of Biological Chemistry 2022, 101653. DOI: 10.1016
/j.jbc.2022.101653.

(146) Moreira, I. S.; Fernandes, P. A.; Ramos, M. J. Protein–Protein Docking
Dealing with the Unknown. Journal of Computational Chemistry 2010, 31,
317–342. DOI: 10.1002/jcc.21276.

(147) Gromiha, M. M.; Yugandhar, K.; Jemimah, S. Protein–Protein Interactions:
Scoring Schemes and Binding Affinity. Current Opinion in Structural Biol-
ogy 2017, 44, 31–38. DOI: 10.1016/j.sbi.2016.10.016.

(148) Bemis, T. A.; La Clair, J. J.; Burkart, M. D. Unraveling the Role of Linker
Design in Proteolysis Targeting Chimeras. Journal of Medicinal Chemistry
2021, DOI: 10.1021/acs.jmedchem.1c00482.



106

(149) Eron, S. J.; Huang, H.; Agafonov, R. V.; Fitzgerald, M. E.; Patel, J.; Michael,
R. E.; Lee, T. D.; Hart, A. A.; Shaulsky, J.; Nasveschuk, C. G.; Phillips, A. J.;
Fisher, S. L.; Good, A. Structural Characterization of Degrader-Induced
Ternary Complexes Using Hydrogen–Deuterium Exchange Mass Spectrom-
etry and Computational Modeling: Implications for Structure-Based Design.
ACS Chemical Biology 2021, DOI: 10.1021/acschembio.1c00376.

(150) Dixon, T. et al. Atomic-Resolution Prediction of Degrader-mediated Ternary
Complex Structures by Combining Molecular Simulations with Hydrogen
Deuterium Exchange. bioRxiv 2021, ver. 1. DOI: 10.1101/2021.09.26
.461830.

(151) Li, W.; Zhang, J.; Guo, L.; Wang, Q. Importance of Three-Body Problems
and Protein–Protein Interactions in Proteolysis-Targeting Chimera Model-
ing: Insights from Molecular Dynamics Simulations. Journal of Chemical
Information and Modeling 2022, DOI: 10.1021/acs.jcim.1c01150.

(152) Liao, J.; Nie, X.; Unarta, I. C.; Ericksen, S. S.; Tang, W. In Silico Modeling
and Scoring of PROTAC-Mediated Ternary Complex Poses. Journal of
Medicinal Chemistry 2022, 65, 6116–6132. DOI: 10.1021/acs.jmedche
m.1c02155.

(153) Niesen, M. J. M.; Wang, C. Y.; Lehn, R. C. V.; Miller, T. F. Structurally
Detailed Coarse-Grained Model for Sec-Facilitated Co-Translational Protein
Translocation and Membrane Integration. PLOS Computational Biology
2017, 13, e1005427. DOI: 10.1371/journal.pcbi.1005427.

(154) Zhang, B.; Miller, T. F. Long-Timescale Dynamics and Regulation of Sec-
Facilitated Protein Translocation. Cell Reports 2012, 2, 927–937. DOI: 10
.1016/j.celrep.2012.08.039.

(155) Hanke, F.; Serr, A.; Kreuzer, H. J.; Netz, R. R. Stretching Single Polypep-
tides: The Effect of Rotational Constraints in the Backbone. EPL (Euro-
physics Letters) 2010, 92, 53001. DOI: 10.1209/0295-5075/92/53001.

(156) Staple, D. B.; Payne, S. H.; Reddin, A. L. C.; Kreuzer, H. J. Model for
Stretching and Unfolding the Giant Multidomain Muscle Protein Using
Single-Molecule Force Spectroscopy. Physical Review Letters 2008, 101,
248301. DOI: 10.1103/PhysRevLett.101.248301.

(157) Cruje, C.; Chithrani, D. B. Polyethylene Glycol Density and Length Affects
Nanoparticle Uptake by Cancer Cells. Journal of Nanomedicine Research
2014, 1, 00006. DOI: 10.15406/jnmr.2014.01.00006.

(158) Lezon, T. R.; Shrivastava, I. H.; Yang, Z.; Bahar, I. Handbook on Biolog-
ical Networks; World Scientific Lecture Notes in Complex Systems, 2009;
Vol. 10, DOI: 10.1142/9789812838803_0007.



107

(159) Ricardo Batista, P.; Herbert Robert, C.; Maréchal, J.-D.; Ben Hamida-
Rebaï, M.; Geraldo Pascutti, P.; Mascarello Bisch, P.; Perahia, D. Con-
sensus Modes, a Robust Description of Protein Collective Motions from
Multiple-Minima Normal Mode Analysis—Application to the HIV-1 Pro-
tease. Physical Chemistry Chemical Physics 2010, 12, 2850–2859. DOI:
10.1039/B919148H.

(160) Kirkwood, J. G. Statistical Mechanics of Fluid Mixtures. The Journal of
Chemical Physics 1935, 3, 300–313. DOI: 10.1063/1.1749657.

(161) Clark, A. J.; Gindin, T.; Zhang, B.; Wang, L.; Abel, R.; Murret, C. S.; Xu, F.;
Bao, A.; Lu, N. J.; Zhou, T.; Kwong, P. D.; Shapiro, L.; Honig, B.; Friesner,
R. A. Free Energy Perturbation Calculation of Relative Binding Free Energy
between Broadly Neutralizing Antibodies and the gp120 Glycoprotein of
HIV-1. Journal of Molecular Biology 2017, 429, 930–947. DOI: 10.1016
/j.jmb.2016.11.021.

(162) Clark, A. J.; Negron, C.; Hauser, K.; Sun, M.; Wang, L.; Abel, R.; Friesner,
R. A. Relative Binding Affinity Prediction of Charge-Changing Sequence
Mutations with FEP in Protein–Protein Interfaces. Journal of Molecular
Biology 2019, 431, 1481–1493. DOI: 10.1016/j.jmb.2019.02.003.

(163) Patel, D.; Patel, J. S.; Ytreberg, F. M. Implementing and Assessing an
Alchemical Method for Calculating Protein–Protein Binding Free Energy.
Journal of Chemical Theory and Computation 2021, 17, 2457–2464. DOI:
10.1021/acs.jctc.0c01045.

(164) La Serra, M. A.; Vidossich, P.; Acquistapace, I.; Ganesan, A. K.; De Vivo,
M. Alchemical Free Energy Calculations to Investigate Protein–Protein In-
teractions: the Case of the CDC42/PAK1 Complex. Journal of Chemical
Information and Modeling 2022, 62, 3023–3033. DOI: 10.1021/acs.jci
m.2c00348.

(165) Nandigrami, P.; Szczepaniak, F.; Boughter, C. T.; Dehez, F.; Chipot, C.;
Roux, B. Computational Assessment of Protein–Protein Binding Specificity
within a Family of Synaptic Surface Receptors. The Journal of Physical
Chemistry B 2022, DOI: 10.1021/acs.jpcb.2c02173.

(166) Sun, Q.; Ramaswamy, V. S. K.; Levy, R.; Deng, N. Computational Design of
Small Molecular Modulators of Protein–Protein Interactions with a Novel
Thermodynamic Cycle: Allosteric Inhibitors of HIV-1 Integrase. Protein
Science 2021, 30, 438–447. DOI: 10.1002/pro.4004.

(167) Testa, A.; Hughes, S. J.; Lucas, X.; Wright, J. E.; Ciulli, A. Structure-
Based Design of a Macrocyclic PROTAC. Angewandte Chemie International
Edition 2020, 59, 1727–1734. DOI: 10.1002/anie.201914396.

(168) Hendrick, C. E.; Jorgensen, J. R.; Chaudhry, C.; Strambeanu, I. I.; Brazeau,
J.-F.; Schiffer, J.; Shi, Z.; Venable, J. D.; Wolkenberg, S. E. Direct-to-Biology
Accelerates PROTAC Synthesis and the Evaluation of Linker Effects on



108

Permeability and Degradation. ACS Medicinal Chemistry Letters 2022, 13,
1182–1190. DOI: 10.1021/acsmedchemlett.2c00124.

(169) J. Maple, H.; Clayden, N.; Baron, A.; Stacey, C.; Felix, R. Developing
Degraders: Principles and Perspectives on Design and Chemical Space.
MedChemComm 2019, 10, 1755–1764. DOI: 10.1039/C9MD00272C.

(170) Ermondi, G.; Vallaro, M.; Caron, G. Degraders Early Developability As-
sessment: Face-to-Face with Molecular Properties. Drug Discovery Today
2020, 25, 1585–1591. DOI: 10.1016/j.drudis.2020.06.015.

(171) Gopalsamy, A. Selectivity through Targeted Protein Degradation (TPD).
Journal of Medicinal Chemistry 2022, 65, 8113–8126. DOI: 10.1021/ac
s.jmedchem.2c00397.

(172) Towns, J.; Cockerill, T.; Dahan, M.; Foster, I.; Gaither, K.; Grimshaw, A.;
Hazlewood, V.; Lathrop, S.; Lifka, D.; Peterson, G. D.; Roskies, R.; Scott,
J. R.; Wilkins-Diehr, N. XSEDE: Accelerating Scientific Discovery. Com-
puting in Science & Engineering 2014, 16, 62–74. DOI: 10.1109/MCSE.2
014.80.

(173) Madhavi Sastry, G.; Adzhigirey, M.; Day, T.; Annabhimoju, R.; Sherman,
W. Protein and Ligand Preparation: Parameters, Protocols, and Influence
on Virtual Screening Enrichments. Journal of Computer-Aided Molecular
Design 2013, 27, 221–234. DOI: 10.1007/s10822-013-9644-8.

(174) Liwo, A.; Ołdziej, S.; Pincus, M. R.; Wawak, R. J.; Rackovsky, S.; Scheraga,
H. A. A United-Residue Force Field for Off-Lattice Protein-Structure Sim-
ulations. I. Functional Forms and Parameters of Long-Range Side-Chain
Interaction Potentials from Protein Crystal Data. Journal of Computational
Chemistry 1997, 18, 849–873. DOI: 10.1002/(SICI)1096-987X(19970
5)18:7<849::AID-JCC1>3.0.CO;2-R.

(175) Periole, X.; Cavalli, M.; Marrink, S.-J.; Ceruso, M. A. Combining an Elas-
tic Network With a Coarse-Grained Molecular Force Field: Structure, Dy-
namics, and Intermolecular Recognition. Journal of Chemical Theory and
Computation 2009, 5, 2531–2543. DOI: 10.1021/ct9002114.

(176) Sievers, Q. L.; Petzold, G.; Bunker, R. D.; Renneville, A.; Słabicki, M.;
Liddicoat, B. J.; Abdulrahman, W.; Mikkelsen, T.; Ebert, B. L.; Thomä, N. H.
Defining the Human C2H2 Zinc Finger Degrome Targeted by Thalidomide
Analogs Through CRBN. Science 2018, 362, eaat0572. DOI: 10.1126/sc
ience.aat0572.

(177) Wyce, A. et al. BET Inhibition Silences Expression of MYCN and BCL2 and
Induces Cytotoxicity in Neuroblastoma Tumor Models. PLOS ONE 2013,
8, e72967. DOI: 10.1371/journal.pone.0072967.


