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Abstract

This thesis presents the results of a numerical investigation of the stresses near an abrupt
change in thickness of a composite plate. The plate is a laminate of unidirectional,
continuous fiber plies. The study is aimed at gaining insight into the failure behavior of

co-cured stringer reinforced composite plates and shells.

The analysis is performed in a plane normal to the stringer axis. The problem
formulation is similar to plane strain. Because orthotropic materials are involved, a
solﬁtion method allowing three-dimensional displacements as functions of two spatial
variables is applied. The method is called plane-coupled strain. Failure is assumed to
initiate at the sharp 90° reentrant corner of the step-down geometry due to a rise in
stresses. The resulting stress singularity is characterized for different combinations of
stacking orders in the stepped plate. Stresses in the structure are determined by means of

the finite element method.

The results are presented in two parts: The first describes the differences obtained with
plane-coupled strain and classical plane strain; the second characterizing the stress
singularity. The more computer intensive plane-coupled strain solution produces
significantly different results for the stresses near the singularity. The character of the
stress singularity is found to be highly dependent on the fiber direction of the material at

the sharp corner.

The results for the stress singularity are used in an example failure criterion. Stacking
sequences are examined with respect to their susceptibility to failure under different

combinations of in-plane loading.
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1. Introduction

For decades, metals have been the materials of choice in the construction of
transportation vehicles. In general, metals are strong, stiff, tough, formable, and can be
used over a wide range of temperatures. Steel provided for durable cars, ships and trains;
the world's airline fleet was possible thanks to inexpensivef and lightweight aluminum;
the mastery of titanium allowed high powered jet engines and hypersonic flight. With the
advent of high performance fibers, substantial gains in performance and weight savings
became possible in the form of composite materials. However, fiber composites are slow
to feplace metal structures because of the lack of experience with the damage response
and the more complex stress analysis. The improvement in damage characteristics
remains in part the domain of material science, but structural engineering can improve the
understanding of the stresses in composite structures and their proper use. Better insight
into structural problems is still the key to exploit the full advantage of the given material

characteristics.

This thesis attempts to aid in understanding the failure of co-cured, stringer reinforced
composite plates. Stringers are very efficient in strengthening and stiffening thin plates
and shells used in the wings and fuselages of aircraft. Co-curing of the plate and the
stringers produces one integral part and seems to provide the best possible bond between
plate and stringers. However, the geometric discontinuities at the stringer attachments
can give rise to severe stress concentrations that are thought to be responsible for the
failure of such plates. Thus, this work attempts to better understand the effect of stress
risers at the plate-stringer interface, an understanding that can ultimately be used for safer

and more efficient designs.



Failure analysis is inherently dependent on the local swess field. Since structural
engineering concentrates on the overall load bearing capabilities of a structure. it is
desirable to find methods that characterize failure in terms of the applied loads on the
plate. One of the weak points in stringer reinforced plates is the flange termination of the
stringer. The stringer termination is equivalent to a change in the thickness of the plate.
Thus the generic problem of a step-down in plate thickness is studied in this thesis. The
step-down gives rise to high stresses at the reentrant corner between the base plate and

the stringer, which in turn are thought to be responsible for failure initiation.

In order to understand the mechanics of failure near the stringer-plate interface, it is
necessary to examine the stress field at the corner. One can either choose to employ an
arbitrary fillet radius or assume a sharp corner and characterize the resulting stress
singularity. A fillet radius can result in a realistic physical problem for metallic
structures. However, for composite structures the change in thickness is achieved by
terminating fibers, and a controlled curvature becomes impractical. A finite element
solution is employed to determine the nature of the stress singularity as a function of the
ply stacking order and the applied global loads. The analysis is performed in two-
dimensions only, but allows for a restricted, three-dimensional displacement field. Thus,
a method has been developed that links typical generalized plate stresses (moment,
tension,and shear) to the local stress field. The results obtained can subsequently be used

to find a failure criterion in conjunction with an experimental test series.

Composite materials are inhomogeneous by definition. Because of the very small size of
the fibers, it is impractical to model the different phases of the material in a macroscopic
investigation that addresses structural performance. Thus, a homogeneous material
description with properties equivalent to the composite material is used. The laminate

properties are not averaged across the plate thickness, but each ply is modeled separately.



2. Coordinate Conventions

To facilitate the following discussion, it is necessary to define coordinate systems. Figure
2.1. depicts the two coordinate systems frequently used. Index notation (xi, x3, X3) is
used for theory development, while coordinates x-y-z are used in the problem description

and presentation of results.

Stepped plate Cutout near corner

Figure 2.1. Coordinate systems

It should be noted, however, that the Cartesian coordinate system used for the global
model of the stepped plate differs from the conventional system used for plates. In this
study the coordinate names have been chosen to conform with the convention for plane
elasticity. The plane of the plate is formed by the x and z-axes, and the x and y-axes form

the plane of analysis.



Xn Stepped plate

Pasitive ply
orientation

Xn

Figure 2.2. Material coordinate system

Ply directions are stated as rotations about the y-axis (figure 2.2.). A ply with fibers
parallel to the x-axis is defined as a 0° ply. The sign convention follows the right-hand
rule. Results are reported with respect to the material coordinate system xg, Xm, Xn. The
coordinate axis xg is parallel to the fibers, axis xp is normal to the plate, and axis xp, is

orthogonal to the other two axes and in the plane of the plate.

ST units are used exclusively. The basic unit for length is the mm. The basic unit of force

is the N [kg / m s2], and thus pressure (stress) is given in MPa [N / mm?2].

Certain assumptions of the analysis depend on absolute size scales in the physical
problem. Specifically, one ply is assumed to be 0.125 mm thick (standard tape
thickness). Graphite fibers are the most commonly used in aerospace applications, and

they are assumed here to be the typical fibers with a diameter of 1-3 pum.



3. Problem Statement

3.1. The Generic Problem: Step-Down of a Composite
Plate

3.1.1. Motivation

This research is motivated by the failure of co-cured stringer reinforced composite plates.
Co-cured plates are the most efficient and most effective option to replace aluminum
plates in applications such as wing skins and fuselage panels. Different failure modes
have been observed in such plates, many occurring at or near the stringer attachments. It
is hoped that an improved understanding of the stresses and strains near the stringer

attachment will lead to better and safer designs.

The results presented in this thesis represent the beginning of a research investigation.
The purely numerical results may serve as a guide for a follow-on experimental
investigation. As a beginning, a better understanding of the stress concentrations near the
end of the stringer flange is sought. The problem can be thought of as a thickness
change in a plate. Therefore, the first goal of the investigation is a better understanding

of the generic problem.

3.1.2. The Step-Down Geometry

The problem of a thickness change in a plate arises in many applications. Stringers
attached 1o a plate, lap joints, or tailored structures (helicopter rotor blades, wing trailing
edges) are but a few examples (figure 3.1.). The reentrant corner inherent in all such

problems gives rise to a stress amplification. A sharp corner will lead to theoretically



unbounded stresses in linear, small displacement theory. One could also employ a finite
filler radius at the corner and thus keen the stresses finite. In metal stroctures a fillet has
load carrying capabilities and can actually be produced. For fiber composites a fillet
could only be a hypothetical geometry. Also, the size of the fibers may well be of the
same order as the fillet radius; this observation poses questions with regard to the
continuity of the material. It was judged that a sharp corner and a characterization of the

resulting stress singularity would be better suited for a composite plate.

Stringer l l
on plate
Trailing edge
L 1
< —
</] ——— l\l\_
{ e o
B — f J L.
Lap joint

Figure 3.1. Examples of composite structures with dropped plies

There exist a number of possibilities in achieving a change in thickness of a plate. Unlike
metals, composite structures do not allow a smooth and continuous change in thickness.
The fibers, which are the real load-carrying component of the composite, must be
terminated abruptly, which will, in turn, result in finite thickness changes. For practical
reasons (manufacturing), whole plies are terminated at once. Some techniques have been
suggested that may reduce the effects of the dropped plies (distribution of termination,
internal termination, angular shaving of plies at termination). However, these techniques

are more expensive to employ. Also, this investigation aims at understanding the physics



underlying the problem of "dropped plies" and should thus be limited to a simple
geometry. Thus it is assumed that all plies are terminated at the same lncation with a cut
normal to the plate (figure 3.2.). This geometry is also the easiest and cheapest to
manufacture, an important reason for stringer reinforced plates, because of the large

number of stringers required.

Stringer

X" Area of Interest
2

Plane of Analysis

Figure 3.2. Geometry of the problem

The analysis of the problem is performed in a plane (as explained later in section 4.1.).
The thickness (and thus the number of plies) of the plate and stringer are variable.
Although the analysis is mainly concerned with the behavior at the thickness change, it is
necessary to extend the analysis region sufficiently far from the region of interest so that
inaccuracies stemming from the application of the boundary conditions diminish (St.

Venant).



3.2. Boundary Conditions

3.2.1. Load Cases

Three different load cases are applied to each laminate. Together, they can be superposed
to yield results for any in-plane loading condition. Out-of-plane loading has specifically
been excluded from the calculations in order to keep the problem manageable. Pure in-
plane loading will allow verification of many failure criteria once ekpcrimental data

becomes available.

& Moment

@’ %

Tension
N2
@ Shear

)

Balancing
Moment

&

Figure 3.3. Load cases

The three load cases are sketched in figure 3.3. They represent typical generalized plate
stresses. The first case is equivalent to a pure bending moment around the z-axis applied
to the plate. This case is therefore called the Moment load case. The second case

(Tension) assumes uniform tension in the plate in the x-direction; in this case the moment



resulting from the asymmetric geometry is not balanced. The third case (Shear) applies a
pure transverse shear. A transverse load at one edge will result however, in a large
moment load at the step down. To separate the shear case clearly from the moment case,
the transverse load is balanced with an applied moment, such that at the step the net
moment will be zero. This combination of transverse and moment loading will result in a
pure shear condition at the step. From plate theory it can be seen that the shear load case

will exhibit an inflexion point at the step.

3.2.2. Displacement Boundary Conditions

All three loading cases share the same displacement boundary conditions in order to
allow superposition of the results. Both model edges are attached to rigid plates (figure
3.3.) and the boundary conditions (both loading and displacement) are applied to the end
plates. The displacement condition will introduce an error at the model edges. Thus the
model needs to extend far enough for the error to diminish sufficiently near the region of
interest (according to St. Venant's principle). The model edges have been chosen to be
five to ten plate thicknesses away from the step. Computatiohs have shown that the error

vanishes (is no longer detectable) within two laminate (plate + stringer) thicknesses.

3.3. Material Description

3.3.1. Model of the Material

The present study applies to any continuous, parallel fiber composite. Carbon-epoxy has
been chosen as a specific material class for this study because of its wide use.
Throughout the thesis, the term composite material stands for a lay-up of continuous,

parallel fiber composite plies. Composite materials are by definition inhomogeneous.
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The very small size of the fibers (1-3 pum) makes it impractical to model the different
phases of the material. Thus the material properties of the constituents must be suitably

combined to yield a homogeneous material with equivalent macroscopic properties.

Composite materials exhibit orthotropic characteristics. One of the planes of orthotropy
is normal to the fiber direction. For high quality composites (typical for carbon-epoxy in
aerospace applications), the other two orthogonal planes of symmetry can be chosen
arbitrarily because the materials are isotropic normal to the fibers. Such materials are

called transversely orthotropic.

3.3.2. Model of a Laminate

Structures made out of composite materials consist of distinct layers of materials which
contain fibers with different orientations. Each such layer is called a ply. Each ply is
very thin (0.125 mm) and several plies must be combined to obtain thicknesses suitable

for structural applications. Stacks of plies are called laminates.

Previous studies (Cohen, 1987; Starnes, 1982; Wang, 1984) have averaged the properties
of the individual plies across the thickness of the laminate and thus arrived at one
homogeneous material for the entire laminate. Some studies differentiated between the
material for the plate and the stringer. In this investigation each ply is modeled
separately. This approach is believed to lead to a more precise description of the stress
singularity at the corner. The properties of the two plies adjacent to the sharp corner will
contribute to the nature of the stress singularity, while the plies further away will
determine the relation between the globally applied loads (moment, tension, or shear) and

the local stress level at the singularity.
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Throughout the discussion, the term inhomogeneous refers to the laminate, and not the
material within each ply. The material in any ply is always modeled as a homogenecus,

transversely orthotropic material.

3.3.3. The Constitutive Law

Because the properties of the plies are not averaged over the thickness of the laminate, the
constitutive law needs to be developed for a single ply only. Also, since rotation of the
material axis is automatically performed by the finite element code, one needs to specify

the constitutive law only in the material frame (xf, Xm, Xg).

An orthotropic material is fully defined by nine independent constants. In terms of

engineering constants, the constitutive law reads

{e} = [S] {0}
[ 1 vi2 Vi3 ]
(1) ASI Ail 41 0 0 0 ()
11 1 Va3 11
0 0 0
€22 AEZ E3 022
€| gy O 0 0 1] o3
] = < g
3 ) %}12 0 0 C12
€23 1 023
. sym %}23 0
L 314 1 k031J
_ VG

Because the material is transversely orthotropic, the number of independent constants

reduces to five. This condition can be achieved by using the following relations.
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E3 = Ea
Vi3 = V12
G13 = G12

G23 = G23 (E1,E2,Vv12,Vv23).

In order to enter the material data into the finite element code, the constitutive law must

be stated in terms of strains.

{c} = [C] {€}
[C] = [S]]

Inverting [S], one arrives at the following matrix [C] for a transversely orthotropic

material:

B (va=1)
Ei(va—D+2E,vh

—-E{E; Vi -EiEaViz
Ei(vs—1)+2E, v, Ei(via—1)+2E, v,

E2(E2 vk —E1) —E2(E2vi —E1Vy)

Vt+DQEVE+E1VarE)  (VastD)(2E2 V+E1Ves—E))
E2(Ez2 vi,— E)

Vart)(2E2VR+E 1Vo3—E1)
sym

0 0

00

0 0 O

G, 0 O
Gy O
G

The shear modulus G323 is determined by the following equation (Jones, 1975):

Gz = (Ci1 - Ci2)/2
_Eif{,_Eivi2(-2vi)
2 Ei(v3—1)+2E; v},

|
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3.3.4. Material Constants

Results obtained in this study are intended to relate to results of a subsequent
experimental study. It was thus important to use parameters of a readily available
material. T300/BP907 is chosen because it has been used at GALCIT before in
specimens supplied by the NASA Langley Research Center, the likely source of
specimens for the experimental study. Parameters of an alternate material with stronger
orthogonal properties (fiber/matrix stiffness ratio), IM7/8551-7, are used in one case.
The known properties of both materials are given in table 3.1. (Waas, 1987). No value
for v23 was available and has arbitrarily been taken as 0.33 for T300/BP907 and 0.30 for
IM7/8551-7.

Table 3.1. Material Parameters

Material E; [GPa] E> (GPa] Gi2 [GPa] vi2 Va3
T300/BP907 111 13.0 6.40 0.38 0.33
IM7/8551-7. 141 6.69 3.17 0.33 0.30

3.4. Rays into the Singularity

In order to study the nature of the singularity at the reentrant corner, stresses along four
straight lines (called "rays" from here on) which originate at the corner are collected
(figure 3.4.). The rays are chosen to be in the plane of the ply (Ray 1 and Ray 3), or
perpendicular to the plies (Ray 2 and Ray 4). Some stress components cannot be used for
the results evaluation, either because they are zero (at the free boundaries, Ray 1 and Ray

2), or because there is a material (lamina) interface (Ray 3 for some laminates).



14

A Ray 2
f Stringer
3 Ray 1
— o
Ray 3
Plate
\ Ray 4

Figure 3.4. Rays at the Corner

3.5. Laminate Stacking Order

A total of 23 different stacking orders have been considered. The different cases are
listed in Table 3.2. The table also includes the thickness of the base plate and the step-
down thickness ratio. Further, the fiber directions of the plies at the corner are listed
separately. The plies at the corner are also referred to as interface plies because they
form the interface between the stringer and the plate. The stacking orders have been
chosen to form an initial data base in order to aid in making decisions for any follow-on
experimental testing. One may want to analyze other possibilities after the initial results

of the experiments are available.

All base-plate laminates used are quasi-isotropic, symmetric and balanced. The plate is
eight plies strong (1.0 mm) for 17 laminates and 16 plies strong (2.0 mm) for the other six
laminates. A variety of stacking orders were used for the stringer laminates. Some
stringer laminates were also quasi-isotropic, but the majority of the stringer laminates
were assumed to be part of a reinforcing mechanism. The assumed stringers are thought
to increase the bending stiffness around the x-axis. Thus 90° plies are used either to
strengthen the flanges of an I-beam stringer, or as flat strips (figure 3.5.a and b). A

combination of +45° plies is used in the web of an I-beam stringer to obtain high stiffness
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hear (3.5.c). The *45° plies are usually not terminated at the base of the web, but

ms

.

rather are divided and hent to form part of the flange (Ggurc 2.6.).

b)

90° Plies
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Table 3.2, Stacking Orders
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Case Plate Layup Stringer Layup Plate Step Interface
Identification Thickness Ratio Plate /
[mml] Stringer
IS isotropic isotropic 1.0 2.0 isotro:)?=
1 [90/0/+451s [90/0/F45]s 1.0 20 90/90
2,2A2R,2AR [90/45/0/-45]g [90/45/0/-45]s 1.0 20 90/90
3,3R [45/0/-45/90]s [-45/90/45/0]s 1.0 20 45/-45
4 [90/0/F45]s [F453/90/0] 1.0 20 90/-45
5,5R [90/0/F45]s [F45/0/90] 1.0 1.5 90/-45
6 [90/0/+45]s [F45/£45/0/90] 1.0 1.75 90/-45
7 [90/0/F45]s [F45] 1.0 1.25 90/-45
3 [90/0/F451s [90/0/7453/0/90] 1.0 225 90/90
9 [90/0/F45]s [0/F45/905] 1.0 1.625 90/0
10 [90/0/¥45]s [F45/907] 1.0 1.5 90/-45
11 [90/-45/0/45]s [F45/905] 1.0 1.5 90/-45
12 [90/-45/0/451s (+45/F45/905] 1.0 1.75 90/+45
13 [0/-45/90/451s [909/+45]s 1.0 20 0/90
14 [0/-45/90/45]s [90/+45]s 1.0 1.75 0/90
15 [(0/90)2/F4551s [90/0/¥451s 2.0 1.5 0/90
16 [(0/90)2/+452]s [902/+45]s 20 L5 0/9
17 [(0/90)2/F455]s [F45/90,] 20° 125 0/-45
18 [(0/90)2/¥455]s [904] 20 1.25 0/90
19 [(90/0)2/7455]s [904] 20 1.25 90/90
20 [902/02/-452/4521s  [904] 2.0 1.25 90/90
21 [90/0/F45]s [90,] 1.0 1.25 90/90
22 [90/0/745]s [90] 1.0 1.125 90/90
23 [45/0/-45/90]s [45/0/-45/90]s 1.0 20  45/45
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4. Solution Method

4.1. Plane Strain and Composite Materials

Plane strain assumptions have long been used in structural analysis. Plane strain leads to
an exact formulation of a two-dimensional elasticity problem, allowing accurate
modeling of stresses, strains and displacements in the interior of an appropriate body
under in-plane loading (figure 4.1.). In the past, plane strain assumptions have yielded a
great number of useful analytic solutions. Because plane strain does not allow coupling
of in-plane and out-of-plane stresses, solutions are generally only valid for isotropic,
homogeneous solids. The following section briefly reviews the principals of plane strain

in preparation for a choice of deformations appropriate to the problem at hand.

N Plane of
3 " Analysis

Figure 4.1. Prismatic body suitable for plane strain analysis
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4.1.1. The Theory of Plane Strain

Plane strain is based on the following premises:

- There exists no x3-dependence for stress or strain.
- The normal strain in the x3-direction (€33) is constant throughout the body.

- There are no body forces acting in the x3-direction.

These assumptions accurately constrain the field equations of a prismatic body, infinitely
long in the x3 direction. The body is loaded normal to its generators only, without
variance in the x3-direction (figure 4.1.). Plain strain can also be used for stations in the
interior of a finite length prismatic body, which are sufficiently removed from the end
surfaces (St. Venant's Principle). Thus one can identify the spatial dependence of the

field quantities

u; = ug (X1, X2)
uy = uz(x1,X2)
gj = &jj (x1,%2)

Gij = Gjj (X1, X2).

If, in accordance with typical practice, we further set €33 = C = constant, integration of

€33 yields

uz3 = Cx3 + A (X1, X2).

The function A (X , X2) represents an out-of-plane displacement function. At this point,

plane strain assumptions would set A (x; , x2) equal to zero. For the present study, the
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out-of-plane displacement function is of interest and it will be retained for the following

discussion. Using &jj = 1/2 (ujj + uj3) , one can write the displacement-strain relations as

€11 = ul,l
€22 = U222
e33 = C

€12 = €1 = (U2 + u2,1)

£33 = €32 = YA

€31 = €13 = 2 Aj3.

Introducing the constitutive law for an isotropic, homogeneous body using the Lamé

constants, one obtains the following stress-strain relations.

i1 =R +2wur,1 + Auw2 + AC

022=@QA+2wWu2 + Au,1 + AC

033 = A +2WC + A(u1,1 + u22)
c12 = uu2 + u21)

G623 = HA2

031 = LAj3,

Thus the shearing components G23, G31, €23, and €31 are independent of the other
components. Further, 633 depends on the in-plane components solely through Poisson's
ratio, while €33 is known. Therefore neither enters the solution for the in-plane

components (G511, 022, 012 and €11, €22, €12).
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In the classical plane strain case for isotropic solids, the out-of-plane displacement A (x1 ,
x2) is set equal to zero. Problems such as anti-plane shear or twict of prismatic, isotropic
bodies represent the complement to plane strain problems. For these cases, the body is
loaded out-of-plane, and the resulting deformation will also be purely out-of-plane. In
effect, such problems determine the out-of-plane displacement function A (x3 , x2) and
the shear component G23, G31, €23, and €31. The solutions for the in-plane and out-of-
plane components of appropriate bodies can be detefmined separately for any

combination of in-plane and out-of-plane loading; they are decoupled.

4.1.2. Introducing Composite Materials into Classical Plane Strain Problems

If anisotropic materials are introduced into classical plane strain problems, decoupling is
in general no longer possible. For example, with orthotropic materials (e.g., composites),
decoupling occurs only when one of the material axes is orthogonal to the plane of
analysis (0° or 90° plies). To illustrate the coupling effect, let us look at the constitutive
law for an orthotropic material. If the material coordinate system of an orthotropic
material coincides with the x1-x2-x3 coordinate system, the constitutive law reads in

matrix form:

(611) [an aiz a3 O 0 0 Tfen)
622 azp ap O 0 0 |lex
033 azz O 0 0 |less

) L — $TN
012 ass O 0 |len
623 sym ass 0 llex
(O31) L ae6 |(€31)

Since all components in the upper right quadrant are zero, the out-of-plane shear

components 623, 031, €23, and €31 are decoupled from the in-plane components, and thus
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the out-of-plane displacement function A (x , x2) does not enter the solution. However,
if the material axes are rotated out of the plane of analysis, the constitutive !aw will

change as a result of the rotation around the x7-axis (in-plate rotation).

(on] [bun bz bz 0 0 by |{en)
022 bz by O 0 b |len
JG33>___ biz 0 0 b <€33}
O12 bas b 0 |lep
023 sym bss 0 |leas
o31) | bes | €31

The relation between the matrix components and the rotation angle can be found in many
text books, for example Lekhnitzkii (1963). In this case, the solution of the in-plane

components clearly depends on the out-of-plane displacement function A (x1 , x3).

The above two examples illustrate clearly that, despite appropriate geometry and loading,
classical plane strain cannot in general be used for fiber composite laminates. Therefore
a solution method is needed that couples the out-of-plane displacement function to the in-

plane components.

4.1.3. Plane-Coupled Strain

Since the geometry of the plate step-down problem can be formulated in terms of the
spatial variables x1 and x3, and because the incorporation of composites prohibits the use
of classical plane strain, an expanded two-dimensional theory was used. Since this theory
retains the mathematical two-dimensional aspect of plane strain, but allows for coupling
of in-plane and out-of-plane components, it is called Plane-Coupled Strain Theory. The

following paragraphs describe the assumptions of plane-coupled strain.
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Plane-coupled strain can be thought of as the "plane strain theory for composite
materials". It allows analysis in only two spatial variables, while 2dmitting three
displacement components. The theory of plane-coupled strain assumes the displacement

field

u; = ug (%1, X%2)

uy = up (X1, Xx2)

u3 = u3 (X1, X2).

A constant strain €33 in the body can be included by adding a term Cx3 to uz. Also, the
boundary conditions are not allowed to vary with x3, and the body geometry must follow
the same restrictions as for plane strain. For isotropic solids and orthotropic solids, for
which the planes of material symmetry coincide with the coordinate planes, this theory
also provides the stresses and strains accurately and completely and can be used to
formulate both plane strain and out-of-plane problems (anti-plane shear, twist)

simultaneously.

For inhomogeneous, anisotropic bodies, plane-coupled strain can involve inaccuracies.
For composite plates specifically, the laminate must be symmetric and balanced;
otherwise, the plate could twist or bend with respect to the xj-axis, and neither
displacement is admissible under the assumptions of plane-coupled strain. Furthermore,
plane-coupled strain allows the inclusion of some types of out-of-plane loading (e.g.,
shear in the plane of the plate). This possibility has not been explored in this work. No
attempt has been made to obtain analytical solutions for plane-coupled strain. Instead, a
finite element description was sought for immediate use in the plate step-down

problem.attempt has been made to obtain analytical solutions for plane-coupled strain.
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4.1.4. Plane-Coupled Strain and the Finite Element Method

Since plane-coupled strain admits displacements in the x3-direction, a typical plane strain
element will not suffice. One could either define a new element or use a three-
dimensional element, properly constrained, to simulate the new element. The latter
course was chosen. The following section describes how a three-dimensional element is

constrained to conform with the assumptions of plane-coupled strain.

Figure 4.3. depicts an eight noded solid element. Nodes 101 through 104 lie in the x1-x3
plaﬁc (back), and nodes 201 through 204 in the x'1-x"2 plane (front). The x'{-x'7 plane is
parallel to and off-set from the x3-x3 plane by a distance ¢ . In theory, ¢ can be chosen
arbitrarily, but in practice ¢ must be chosen to conform with the aspect ratio limitations of
the element. Nodes 101 and 201 have the same X and Y coordinates and are called a
corresponding pair. The same holds for nodes 102 and 202, 103 and 203, and all other

node pairs in the model.

104 < /
204 102
//r 202

201 X3

101

A

Figure 4.2. Solid finite element
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Each node of the element has three degrees of freedom. Constraints are applied to the
_ movement between the two nodes of a rorresponding pai~, enforcing the assumptions of -
plane-coupled strain. No restrictions are placed on the movement of the pair as a whole.
Because all the field variables are functions of x; and x3 only, each corresponding pair is
constrained such that both nodes have the same displacement in the x1 and x2 coordinate
directions. Displacement in the x3 direction is constrained such that the difference

between the two nodes is constant. This holds true for all corresponding pairs.

u3z (201) - uz3 (101) = Ar = constant
u3 (202) - u3z (102) = Ar = constant
u3 (203) - u3z (103) = At = constant,

etc.

The constant At is related to the element thickness ¢ and the strain €33 by

Atfy = €33 =C

The constraints between corresponding nodes are enforced by supplying the finite

element code with additional equations, which will delete degrees of freedom from the

solution matrix.

When all movement in the x3-direction is constrained, the element will behave according
to classical plane strain assumptions. This fact can be used to determine the difference

between a plane strain solution and plane-coupled strain.
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4.2. Stress Singularity at the Corner

The sharp reentrant corner at the step-down of the plate will exhibit a stress singularity.
The nature of the singularity could be used in a failure criterion. An analytic solution has
been provided by M. L. Williams, that is valid for a corner in an isotropic, homogeneous,
infinite plate (Williams, 1952). Several different schemes have been proposed to arrive at
solutions for a reentrant corner with an orthotropic material; some schemes also include a
material interface at the corner (Cohen, 1987). None of the proposed methods are
applicable to this research, because they do not provide for the consequences of plane-
coupled strain. Since this study is based on a finite element solution for the stress state in
the body, the method employed to determine the nature of the singularity is based on

results from the finite element calculations.

4.2.1. The Expected Character of the Solution near the Comer

The solution provided by Williams (1952) for an isotropic plate/plane is used as a guide
for the solution to the present problem. The geometry of a corner in an infinite plate is

illustrated in figure 4.3. The angle of the reentrant corner is given by ¢. Forr

asymptotically approaching zero, the stress components are given by

cij = P ®)r-k

The Wjjs are called intensity coefficients in this thesis, and k is called the severity of the
singularity. For an isotropic material, the severity k depends on the angle of the corner

and the boundary conditions at the edges but is independent of material parameters and

the angular position 6.
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For orthotropic materials (possibly including a material interface), the solution is still
expected to follow the same relation, bnt the severity k can no be longer assumed to be
independent of the material properties. It was also found that k is dependant on 6. The

following section describes the method used in this study to determine the ¥j;'s and k.

Figure 4.3. Cormner in an infinite plate/plane

4.2.2. Method

The stresses at the corner will approach the assumed solution asymptotically as r
approaches zero. Therefore, it is necessary to properly scale the region of interest with
respect to the overall size of the geometry. The method used to determine the severity k
and intensity coefficients of the singularity relies on a very fine finite element mesh near
the corner, capable of resolving stresses over several magnitudes of size scale. It is
important to note that the resolution of the finite element mesh is carried much farther
than is physically sensible. The only purpose of the very fine mesh is to determine the
character of the singularity, and no claim on the physical reality of the stresses close to

the corner is made.
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Stress plotted on a log-log scale along lines of constant 8 (rays) should appear as a
straight line with slope -k (the severity of the stress singularity) and a zero offeet of log
¥ (the intensity coefficient). Both k and 'V are determined by fitting a straight line to the
log-log stress data. Figure 4.4. shows a sketch of a log-log stress plot. The portion of
the graph corresponding to the elements closest to the corner deviates from the straight
line due to the breakdown of the numerical solution. Farther away, the graph deviates
because the stress field is not dominated by the singularity. Thus only the center portion
of the graph can be used for determining k and '¥. The quality of this solution method is

discussed along with the results of the investigation in section 5.2.1.

A tog(s)
\\

~—"

log (¥)

— ', | -
0 log (r)

Figure 4.4. Sketch of a stress log-log plot
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5. Results

The presentation of results is divided into three parts. Section 5.1. compares plane-

coupled strain with classical plane strain results. Section 5.2. discusses the results for the
stress singularity at the reentrant corner. Finally, section 5.3. presents one possible way
of using the data obtained to link the globally applied loads to a local failure criterion for

the stress singularity.

5.1 The Effects of using Plane-Coupled Strain

This section discusses the merits of using plane-coupled strain versus classical plane
strain. Results from finite element calculations employing plane-coupled strain are
compared with results for identical geometries and loading conditions but with the out-of-
plane displacement set to zero (classical plane strain assumptions). Three different
stacking orders have been examined using both classical plane strain and plane-coupled
strain assumptions. First, plots of the out-of-plane displacements are presented. They
portray the overall behavior of the laminate under plane-coupled strain. Second, stresses
in the body obtained with plane-coupled strain and classical plane strain are compared.
Third, the changing nature of the stress singularity at the réentrant corner is discussed.

(This last part uses data that is presented in more detail in the following section, 5.2.)

5.1.1. Out-of-Plane Displacement

The three typical figures presented here, figures 5.1, 5.2, and 5.3, show qualitative plots
of the surface topology of the out-of-plane displacement function A (x3 , x2) for three

different combinations of stacking orders and loading conditions.
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Figure 5.1. Out-of-plane displacement function; Case 3, moment loading;
Stacking orders: Plate [+45/0/-45/90]s, Stringer [-45/90/+45/0/0/+45/90/-45]

Figure 5.2. Out-of-plane displacement function; Case 13, tension loading;
Stacking orders: Plate [0/-45/90/+45]s, Stringer [90/90/+45/-45/-45/+45/90/90]
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Figure 5.3. Out-of-plane displacement function; Case 2, shear loading;
Stacking orders: Plate [90/+45/0/-45]s, Stringer [90/+45/0/-45/-45/0/+45/90]

The mesh on the figures is the finite element mesh used for the analysis. Each ply has
been divided into four elements through the thickness. This particular view angle was
chosen to best display the area around the corner. The shading levels on the graphs
correspond to equal uz-displacement levels, and the numbers indicate relative
displacement magnitudes. The three figures collectively represent the phenomena that
have been observed in a number of such plots. All cases (sfacking orders) in this study
assume a zero axial strain €;,. Therefore the plots are equivalent to the uz-displacements.

The following phenomena deserve special attention:

- Only $£45° plies give rise to u3z-displacements and u3-displacement gradients.

The high gradients give rise to high shear stresses G623 and G3j.

Displacement gradients are especially high at +45° /-45° interfaces.
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- For the moment and tension load cases, A (x1 , x2) tends to zero away from
the step. For the shear load case, A (x1 , x2) is non-;zero and constant with
respect to xj away from the step. Whether the out-of-plane displacement
function tends to zero in an undisturbed stress field (away from the step)
depends on the components of the stress field itself. For example, in-plane
shear is coupled with out-of-plane shear through the constitutive law and
will, in turn, affect the function A (xj, x2). It can be expected that any
disturbance on the laminate will give rise to out-of-plane shear stresses 023
and 31. Attachments, holes, or lateral loads will produce this effect and

could all cause the laminate to fail internally.

- At the free edge where the stringer plies are terminated, the largest
displacement gradients do not necessarily occur at the edge itself but
somewhat inside of the body. Thus free edge delaminations could initiate

internally at a ply interface.

- For some cases (figures 5.1. and 5.2), the reentrant corner can be loaded in

anti-plane shear, similar to mode IIT cracks.

Although these phenomena are interesting in and of themselves, they need to be

quantified in order to judge their impact on the accuracy of the solution.

5.1.2. Differences between Classical Plane Strain and Plane-Coupled Strain

This section describes the differences in stresses over the entire body. Two figures, 5.4.
and 5.5., show the percentage difference for two stress components. Figure 5.6. displays
the size of one of the out-of-plane shear components (G31) with respect to the in-plane

shear 012. The figures show the area immediately around the step. The "mesh" on the

figures is not the finite element mesh but a representation of the plies.
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Figure 5.4. Case 2R vs. Case 2 [% difference]; Oxx, tension loading;
Stacking orders: Plate [90/45/0/-45]s; Stringer [90/0/-45/+45/+45/-45/0/90]
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The solution using plane-coupled shear is taken as the reference solution, because it is the
more accurate stress formulation. Figures 5.4 and 5.5 display the percentage deviation of
the classical plane strain solution with respect to the plane-coupled strain solution. Only
in-plane stress components (Oxx, Oyy, Oxy) and Oz, can be compared since the out-of-
plane shear stresses, Gzx and Ggy, are identically zero for classical plane strain. The two
figures are representative of several more plots produced. In principal, the difference in
stresses is small. One must be careful not to interpret the apparently large percentage
differences in some areas as large error. For example, the plate portion in figure 5.5
shows large differences. However, since the plate is loaded by a pure moment, the shear
stress in the plate should be exactly zero. Thus, the apparent differences in the plate
portion can be attributed to inaccuracies in the finite element solution, greatly
exaggerated because the data is close to zero. The same holds true for the stresses near
the free edges. Areas of nonzero stresses show small differences, see for example the Gyx
stresses in the plate portion of figure 5.4. In summary, one notes that a plane-coupled
strain solution is not expected to differ from a classical plane strain solution by more than
5% for the in-plane stresses (Oxx, Oyy, Oxy) and Oz;. (This statement is valid only for the
global stress field. At the stress singularity, the differences can be greatly amplified, as

shown later.)

The merits of using plane-coupled strain become more apparent in figure 5.6. Here the
out-of-plane shear stress oy is plotted as a percentage value of the in-plane shear Oxy at
the same location. Again, the results near free edges are erroneous because the in-plane
shear is theoretically zero. For £45° plies, the out-of-plane shear stress is comparable in

size with the in-plane shear and certainly cannot be neglected.



34

Figure 5.6. Case 5, 0zx compared 10 Oxy [%]; shear loading;
Stacking orders: Plate [90/0/-45/+45]s; Stringer [-45/+45/0/90]

5.1.3. The Differing Nature of the Stress Singularity

This section refers to data discussed in detail in the following chapter. The reader may

chose to come back to this section later.

With respect to the intensity coefficients, the principal difference between the stacking
orders is the type of ply interface at the corner. Case 2 has no interface at the corner and
the plies are orthogonal to the plane of analysis. Case 3 has a +45° / -45° interface at the
corner, while case 5 has a 90° / -45° interface. For case 2, an alternate material with
stronger orthogonal material characteristics has also been considered, called case 2A.
The cases following classical plane strain assumptions are marked with an R (restricted).
The intensity coefficients for all cases are plotted in figures 5.8.a through 5.8.f. The

following observations may be made:
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- For cases 2 and 2A, the differences in intensity coefficients between classical
plane strain and plane-coupled strain are small. There is no material
interface at the corner, and the material coordinates are aligned with the
basic coordinate system. However, the nearest ply interface will give rise to
out-of-plane deformations and will thus influence the stress level at the
comer. For the moment and tension load case, the differences are of the

order of 1%; for the shear load case, the differences are of the order of 10%.

- The alternate material (case 2A) exhibits a greater difference. It can be
expected that the difference in stresses will be greater the larger the
fiber/matrix stiffness ratio.

- For cases 3 and 5, the intensity coefficients are significantly different. Also,
the out-of-plane shear stresses are large (of the same order as the other

stress components).

The severity of the stress singularity for all stacking orders are summarized in table 5.1.
The main difference here is the fact that for classical plane strain the severity is the same

for all components and rays, whereas for plane-coupled strain the severity is a function of

0.

5.1.4. Summary

The discussion in this section shows that plane-coupled strain results can differ
significantly from classical plane strain results. Also, plane-coupled strain allows for
phenomena that do not appear in classical plane strain. The difference in displacement of
the overall plate could be small, a point that has not been examined. But locally the
differences in stresses are so large that plane-coupled strain should be used for the

formulation of any failure criterion.
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5.2. The Stress Singularity

5.2.1. Isotropic Test Case and Accuracy of the Solution Method

An isotropic test case, designated as case IS, is used to calibrate the solution method and
to judge its accuracy. The test case employs the same geometry and loading conditions
as the orthotropic cases, but an isotropic constitutive law is substituted. For a reentrant
corner of 90°, free edges and in plane loading (see section 4.2.1.) k can be determined by

solving the eigen equation

A = £sin(Giamd)

k =1-A.

Thus k is evaluated as k = 0.45552. This value is taken as a reference for the following
discussion. The k-values for the composite materials are stated later on as percentage

deviations from this reference value.

With a goal of at least 2% accuracy in the determination of k, the required size scale of
the finite element mesh at the corner must be found. One must also find a suitable

interval over which to fit the straight line on the log-log stress plots in order to determine

the k and W¥ijj's.

The resuits of the calibration can best be seen by way of an example log-log stress plot, in

this case the fiber-normal stresses off of case 2 in tension loading (figure 5.7). The
smallest finite elements have edge lengths of 1010 mm. The stresses are accurately
resolved to within 10~ mm from the corner. The straight line fit is performed between

10-8 and 106 mm away from the comner. This mesh provides accurate results for the
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majority of the cases. Usually, at distances greater than 10-4, the solution deviates
significantly from the assumed power law (straight ine on log-log scals), duc to the
vicinity of ply boundaries. As a reference size scale, consider that the next ply interface
occurs at about 10-1 mm (0.125 to be exact). The number of elements in the radial
direction per magnitude is 15. Thus the straight line fit uses 30 data points. Since the
intensity coefficients Wjj cannot be determined analytically, the correlation of the
experimental power k with Williams' solution is used as a guide to the overall accuracy of

the solution method.
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Figure 5.7. Example log-log stress plot; Case 2, Tension, G¢r

For each case a total of 72 values for the intensity coefficients and the severity k are
determined. There are six stress components for each of the four rays in the three

different load cases. Some of the data must be dismissed because stresses are averaged
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across a material interface or should be zero due to a traction free boundary (see section

3.4.).

For the isotropic test case, 36 values for k can be used to gauge the accuracy of the
solution method (zero traction on rays 1 and 2, out-of-plane shear stresses identically
zero). Twenty-four values fall within 0.5% of the reference value of 0.45552, 9 values
between 0.5% and 1.0%, and 3 values between 1.0% and 1.5%. The spread is thought to
be equivalent to random experimental scatter, because the solution appears to depend on
the boundary conditions and the range used for the straight line fit in a quasi random
fashion (similar to computer generated quasi random numbers). Thus, if sufficient data
are available, the solution for k can be determined, with some degree of confidence, to
within 0.5%. Otherwise, k can be stated to be within 2%. The same degree of accuracy
is assumed for the intensity coefficients. However, since the straight line fit is performed
on a log-log scale, and the intensity coefficients are stated on a linear scale, the error
needs to be converted also. Thus a logarithmic error of 0.5% corresponds to a linear error

of 1.1%, and a logarithmic error of 2% corresponds to a linear error of 4.7%.

5.2.3. The Severity of the Singularity

For an isotropic material and a classical plane strain solution, the severity k is a well
defined number, valid for all stress components. However, for orthotropic materials and
a plane-coupled strain solution, no similar assumptions regarding the severity can be
made. The Williams solution is only valid for pure in—I;lanc loading. Figures 5.1.
through 5.3 show clearly that out-of-plane deformation occurs locally. It can be expected

that the severities are superposition of in-plane and out-of-plane loading results.
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Plate Ply Stringer Ply Cases Major Severity ~ Minor Severity
Direction Direction [deviation from  [deviation from
isotropic k-value] isotropic k-value)
90 90 1,2, 24,8, 3% 27%
19, 20, 21, 22
90 0 9 7% -8%
0 90 13, 14, 15, 16, -5.5% -49%
18
90 +45 4,5,6,7, 10, 3% 7% to 16%
11,12
0 +45 17 . 6% -6% to -2%
45 +45 23 -6% to 3% -4% to 4%
+45 F45 3 -20% to 2% -7% to 4%
T verity of th ingularity, classical pl i
Plate Ply Stringer Ply Cases Severity
Direction Direction [deviation from
isotropic k-value]
90 90 2R, 2AR 3%
90 +45 SR 7%
+45 F45 3R 2%

The severity of the singularity appears to be a function of the material orientation for both
the plate and stringer material. Table 5.1. is organized according to different interface
permutations. The severities are not stated as absolute values, but rather as percentage
deviations from the isotropic reference value of 0.45552. In this way, the differences

among stacking orders become more apparent. As with most data in the results section,
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the stresses are stated in the local material system (xf, Xm, Xpn). For some types of
interfaces, either the data were very inconsistent, or only one layup is sxamincd 45445
and +45/%45). For the other stacking orders, two distinctly different severities, or groups
of severities, have been observed. The one value, called the major severity, holds for the
normal stresses and one of the shear stresses, usually the in-plane shear. The second
value, called the minor severity, holds for the remaining two shear stresses, usually the

out-of-plane shear components.

The variance in the severities is usually within 1%, and never higher than 2%, for the
majority of the cases involving either 0° or 90° plies, and for all the restricted cases
(following classical plane strain assumptions). For cases that include +45° plies, the
variance in the severity is much greater. +45° plies give rise to local out-of-plane

loading, and this effect is believed to be responsible for the gfeater spread in results.

The following statements list interesting phenomena in the above severities. They show

the need for further studies into the effects of plane-coupled strain.

- All four classical plane strain cases have only a single severity for all stress -
components, whereas the corresponding plane-strain solution reveals as least
two distinct values. The classical plane strain cases also exhibit relatively
small deviations from the isotropic severity k. It may be assumed that the

variance in severity is a phenomenon of the assumed displacement field.

- For the cases involving +45° plies, no pattern in the values of the severities
is easily recognizable. For cases with a plate direction of 90° and a stringer

direction of +45°, the variance in the minor value is about +5%.
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It is not clear how the variance in the severity influences the intensity coefficients or a

failure criterion. This effect has not been taken into account in the following discussion.

5.2.4. Comparison of Intensity Coefficients

The second component in the characterization of the stress singularity is the intensity
coefficients. The intensity coefficients are functions of 8 and the applied loads and can
be used to compare the expected stresses near the corner between different stacking

orders, providing the severity k is constant.

The intensity coefficients are plotted in figures 5.8.a through 5.8.1. The figures present
normalized values of the stresses, resolved in the material coordinate system. The
material coordinates are chosen because they allow a more descriptive evaluation of the
stresses. The values are normalized with respect to one value for all stress components
on all rays within each load case. The reference value is arbitrarily taken as the intensity
coefficient for oxx along ray 1 in the isotropic test case IS. The intensity coefficients are

plotted as percentages of this reference value.

The six cases with a thicker plate layup, cases 15 through 20, are normalized such that the
average stresses through the thickness are equivalent to the stresses in the thinner plates.
Thus one obtains a linear relation between the thickness ratio and the applied tension and
shear loads, and a quadratic relation between the thickness ratio and the applied moment
loads. This normalization of the plate thickness is better suited to a comparison of the
global load carrying capabilities of the plate. In order to compare the intensity
coefficients between two equivalent geometries (e.g., cases 20 and 21), a different

normalization must be used, that takes into account the severity of the stress singularity.
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5.3. Example of a Failure Criterion

This section examines one possible failure criterion using the intensity coefficient found
in this study. This example studies the trade-off between the three load cases (moment,
tension, and shear) that could lead to delamination at the interface between the plate the

the stringer.

Let us assume (on the basis of possible physical reasoning) that the laminate will fail at
the interface at the corner if the combined intensity coefficient for Gyy (= Opp) on ray 3
(interface ray) reaches a critical value. Since the three load cases can be superposed
linearly, any linear combination of the intensity coefficients which reaches a critical value
will be presumed to result in failure. If we designate this critical intensity coefficient as
Yerit., the intensity coefficient for the moment case as ¥y, for the tension as W', and for

the shear as Wg, one can then write the condition for failure as:

YMm + YT + ¥s 2 Wit -

Consider a three-dimensional space. Let the base vectors be formed by the intensity
coefficients of the three load cases (figure 5.9.). We can then plot the above equality as a
plane, called the failure plane. Any point in the space above the failure plane will result
in failure. Let us further define the unit normal to the failure plane as the failure normal.
The direction of the failure normal can be used to determine the susceptibility of a

laminate to failure with respect to the global load cases.
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Failure Normal

Figure 5.9. Failure plane and failure normal

Figure 5.10. displays the end points of the failure normals for the different stacking
orders. The figure is an octaheadral view of the failure space. The octaheadral vector
{1,1,1} is perpendicular to the plane of the page. The intensity coefficients have been
normalized, such that the failure normal of the isotropic test case IS is parallel to the
octaheadral vector, and thus is plotted at the center of the plane, coincident with the
origin. The plot only reveals the relation between the contributions of the different load

cases and not their absolute values.

In order to aid in the interpretation of figure 5.10., let us look at an example. Consider
case 16. The failure normal for case 16 is shifted in the direction of positive tension.
This means that the tension-axis intercept of the failure plane occurs at a lower value with
respect to the reference case IS. Thus laminate 16 is expected to be more robust in

tension than in shear or moment loading.
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Figure 5.10. End-points of failure normals

It is interesting to note that the use of plane-coupled strain reveals a greater strength in
shear than do the corresponding classical plane strain cases. Also, the coincidence of the
end points for cases 20 and 21 (case 20 is twice as strong in all geometric dimensions)

indicates good convergence of the finite element calculations.
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6. Suggestions for Future Research

With these initial results, a host of avenues for continuing research can be taken. This

chapter suggests some possible ways to improve and expand on this work.

6.1. Analvtical Analysis

The numerical results have shown a number of unexpected phenomena. A closer look at
the problem with analytical means may improve the understanding of the physics
invblved. For example, the relationship between the severity of the stress singularity and
plane-coupled strain could be investigated. At this point, it is not clear what factors
influence the severity. The introduction of plane-coupled strain also provides for

phenomena that are not present in classical plane strain.

6.2. Experimental Work

One main goal of the research program is to predict failure of the structure. In order to
allow a prediction via a numerical method, any failure criterion must be calibrated with
respect to experimental test results. The test matrix should involve stacking orders with
different fiber directions at the reentrant corner. The effect of the fiber direction on

failure may be the single most important variable for a failure criterion.

6.3. Improved Numerical Method

The current method of using a solid element to simulate a plane-coupled strain element is

not very efficient. The eliminated degrees of freedom do not enter the calculation, but
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they still require memory, produce a lot of duplicated data output, and slow the finite
element computation. A newly defined plane-conpled strain element weuld also
circumvent the aspect ratio limitations inherent in a problem with vastly differing element

sizes.

The possibility of creating a singularity element could also be investigated. Such an
element would replace the large number of elements currently used to define the stress
singularity by incorporating additional degrees of freedom for the severity of the

singularity. The element would be similar to a crack tip element.
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7. Concluding Remarks

This investigation has attempted to further the understanding of the failure behavior of
co-cured, stringer reinforced composite plates. Specifically, the generic problem of a
step-down in thickness of a composite plate has been studied, and methods for studying
the problem have been developed. Data for several laminate stacking orders have been

collected to aid in the development of a possible follow-on experimental investigation.

One goal has been to relate the loads applied on the plate to a local failure criterion.
Failure is expected to initiate near the sharp reentrant corner at the step-down. A failure
criterion could involve the characteristics of the stress singularity at the corner. The
method used to determine characteristics of the stress singularity relies on a fine finite
element mesh and produces results that appear reliable to at least 5%. That accuracy
seems sufficient to reveal unique phenomena of the step-down geometry in composite

structures.

In order to limit the computations, a two-dimensional formulation of the stress field has
been sought. The assumed geometry and loading conditions on the plate are such that a
plane strain formulation could be used for an isotropic material. However, the use of
fiber composite materials requires a more elaborate theory that does not restrict out-of-
plane displacements. This theory, called plane-coupled strain, allows an exact two-
dimensional stress formulation for in-plane loading conditions. Results obtained for the
stresses at the reentrant corner using plane-coupled strain can differ significantly from
results obtained with classical plane strain. Plane-coupled strain reveals phenomena that
are not observed in classical plane strain. Studies on free-edge delaminations may also

benefit from using plane-coupled strain.
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The methods have been applied to 23 different stacking sequences. This data base
reflects the great variety of possible stacking orders. Failnre will depend not cnly on the
applied loads but also on the stacking order. It can be expected that the fiber direction of
the material at the reentrant corner will be very important for failure. It is conceivable
that a structure can be strengthened by rearranging the stacking sequence without
compromising stiffness or cost of manufacture. The data for the different stacking

sequences can be used effectively to determine an initial test matrix for a follow-on

experimental investigation.
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Appendix I: Computing Tools

This appendix lists all hard and software products used for this thesis. All products are
licensed to either the California Institute of Technology, the Guggenheim Aeronautical

Laboratories, or the author.

This work has been performed on two computer systems. Compute intensive tasks have
been delegated to a VAX-Cluster (Digital Equipment Corp.). Data reduction and
presentation have been mainly performed on an Apple Corp. Macintosh computer system.
Thé following section lists all software products used, including version number,
supplier, and the tasks for which they have been used. System software and utilities are

not listed separately (operating system, programing languages).
MSC/NASTRAN 66a, The MacNeal-Schwendler Corporation: Finite element
calculation.

PATRAN 2.4, PDA Engineering: Pre- and post processing of the finite element data;
data reduction.

MACSYMA, Symbolics Inc.: Manipulation of matrices (constitutive law).

Igor 1.12, WaveMetrics: Data processing, reduction and presentation; curve fitting
(stress singularity).

MathType 2.10, Design Science, Inc.: Presentation.

Microsoft Word 4.0, Microsoft Corporation: Data reduction; presentation.
Microsoft Excel 2.2, Microsoft Corporation: Data processing and reduction.
MacDraw II 1.1, Claris Corporation: Presentation.

Cricket Graph 1.3, Cricket Software: Presentation.

VersaTerm-Pro 3.0, Abelbeck Software: Terminal emulation; data transfer.



Appendix II: Implementation of Plane-
Coipled Stiain i INastran

There are two options available to implement the plane-coupled strain in a finite element
solution. The first option involves the definition of a new element. The second option
uses a standard three-dimensional element and constrains it properly to obtain the desired
properties. The second option is used in this investigation. This appendix describes the
implementation of plane-coupled strain in MSC/NASTRAN. The reader is expected to
be familiar with the code and its nomenclature. For a generic description of plane-
coupled strain consult section 4.1. of the main text. A short Fortran program was written
to convert a two-dimensional mesh into a mesh suitable for plane-coupled strain. A

program listing is not provided here, but rather some of the techniques used are presented.

It is best to start with a fully functional input deck for a two-dimensional analysis. The
Fortran program then converts all two-dimensional elements into solid elements and
applies appropriate constraints on them. It will then be necessary to supply the converted
data deck with appropriate element property cards (including material and coordinate
cards). Applied loads may need to be modified since the plane-strain model does not
necessarily have unit thickness. All other cards can be used as is (SPC, GRDSET,

PARAM, etc.).

Two-dimensional elements are converted into their 3-D equivalents according to the

following table.



CQUAD4 -->  CHEXA (with 8 nodes)
CQUADS -->  CHEXA (with 16 nodes)
CTRIA -->  CPENTA

To convert the solid elements to plane-coupled strain elements, constraints are applied
using multipoint constraint cards (MPC1). See also section 4.1.4. Three MPC1 cards

are necessary for each node of the two-dimensional deck.

Each node of the two-dimensional model is duplicated. The original node is called the
primary node, the duplicated one the secondary node. The secondary node is positioned
at the same x and y coordinates as the primary but offset in the z-direction by the slab
thickness t. It is convenient to have all secondary node identification numbers offset by
an equal amount (which must be higher than the largest primary node identification
number). This way is becomes easy to determine the connectivity of the solid elements.
It is possible to prescribe a known and constant z-strain by adding a scalar grid SPOINT
and including it in the MPC1-card for the z-displacement. This option is not used in this
investigation. It is assumed that the plate problem uses different property identification
entries to distinguish between different plies. New property cards must be provided for

the solid elements.

Because all elements of the new deck must have the same thickness, one can have
difficulties with respect to aspect ratio limitations of the elements. MSC does not
recommend aspect ratios which exceed 100 for the solid elements. This limitation would
restrict the ratio of the longest to the smallest element edge in the plate problem to 10000.
However, for nearly rectangular elements, this limit can be increased. For this work,
aspect ratios of up to 1000 have been used for nearly rectangular elements without

noticeable degradation in element performance.



