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ABSTRACT 

        Vinyl carbocations are a class of dicoordinated carbocations. Due to their challenging 

generation, they have been less studied compared to tricoordinated carbocations. This 

thesis reports multiple novel reactivities involving vinyl carbocation intermediates. 

        The first chapter reviews methods for generating vinyl carbocations and past reports 

of vinyl carbocation C–H insertion. It then introduces a field guide to assist researchers in 

using vinyl carbocation C–H insertion in their synthesis, providing detailed information 

and optimal reaction conditions developed in our laboratory. 

        The second chapter describes a catalytic method for forming medium-sized rings via 

intramolecular Friedel-Crafts reactions of vinyl carbocation intermediates. These reactive 

species are catalytically generated through the ionization of vinyl toluenesulfonates by a 

Lewis acidic lithium cation/weakly coordinating anion salt. 

        The third chapter details selective [2+2] cycloadditions between vinyl carbocations 

and terminal alkenes, using a LiHMDS-mediated approach. This method allows for the 

efficient synthesis of strained cyclobutene-containing bicycles under mild conditions, 

demonstrating the versatile application of vinyl carbocations in constructing complex 

strained organic structures. 
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CHAPTER 1  
Introduction to Vinyl Carbocations and Their C–H Insertion Reactions

†

1.1 INTRODUCTION 

As a class of highly reactive intermediates, carbocations engage in a broad range of 

transformations and thus play a crucial role in the synthetic pathways of many complex 

molecules.1 Due to the influence of electronic and steric effects as well as hybridization 

states, the stabilities of different classes of carbocations vary significantly.  

Historically, more stabilized carbocations have been more well-studied as they are 

easy to access. In 1901, the highly p-stabilized triphenylmethyl (trityl) cation was the first 

carbocation discovered.2 Since then, other resonance-stabilized tricoordinated sp²-hybridized 

 
† Portions of this chapter are based on research performed in collaboration with Martin-Louis 

Y. Riu, Stasik Popov, and Benjamin Wigman. Portions of this chapter have been adapted 
from the manuscript currently under review for Eur. J. Org. Chem.: Riu, M.-L. Y.; Popov, 
S.; Wigman, B.; Zhao, Z.; Wong, J.; Houk, K. N.; Nelson, H. M. Carbon–Carbon Bond 
Forming Reactions of Vinyl Cations: A Field Guide. 
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carbocations, such as iminium cations3 and oxocarbenium cations4, have also been widely 

used in organic synthesis. 

In contrast, dicoordinated sp-hybridized vinyl carbocations have been less studied 

and have had limited applications in synthetic chemistry. It was initially thought that the 

energy of vinyl carbocations was too high for their generation and existence as intermediates. 

However, it later became evident that they were necessary to explain certain reactivities. In 

1944, Searles and coworkers first proposed an oxygen-stabilized vinyl carbocation 

intermediate in a hydrolysis reaction of acetylenic ethers to esters under acidic conditions.5 

Twenty years later, Grob and coworkers provided more solid evidence for vinyl carbocation 

intermediacy while studying the kinetics of hydrolysis reactions of a series of 1-

bromostyrenes with functional groups of varying electron richness on the aryl group.6 Since 

then, novel vinyl carbocation reactivity has continued to be explored. 

In this chapter, we will first review the general approaches used to generate vinyl 

carbocations. Following that, we will discuss a key reactivity that distinguishes vinyl 

carbocations from tricoordinated carbocations — the C–H insertion reaction. 

 

1.2 GENERATION OF VINYL CARBOCATIONS 

There are three primary approaches for accessing vinyl carbocation intermediates: 

(1) electrophilic addition to alkynes/allenes, (2) heterolysis of vinyl (pseudo)halides, and (3) 

decomposition of b-diazo alcohols. 

 The first method involves the addition of electrophiles to alkynes and allenes. 

Protons, as simple electrophiles, can induce this ionization. For instance, Melloni and 

coworkers demonstrated that a catalytic amount of methanesulfonic acid, a proton source, 
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was sufficiently acidic to ionize the alkyne precursor 1 into an allylic vinyl carbocation 2 

(Scheme 1.1A). This carbocation then underwent a Friedel-Crafts reaction, resulting in Z/E 

isomers of cyclization product 3.7 

Scheme 1.1 Generation of vinyl carbocations from electrophilic addition to 

alkynes/allenes. 

 

 

A carbocation can also induce the generation of vinyl carbocation intermediates 

through addition to alkynes. Modena and coworkers reported that when benzyl chloride 5 

was activated by aluminum chloride, an electrophilic attack on alkyne 4 formed vinyl 

carbocation intermediate 6 (Scheme 1.1B). This intermediate then underwent a Friedel–

Crafts reaction, yielding the final product 7.8 Furthermore, vinyl cations can be accessed by 

addition to allenes. For example, Puckett and coworkers reported that when allyl alcohol 8 
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was activated, a cyclization occurred to form vinyl carbocation intermediate 10, which was 

subsequently quenched by water to yield ketone 11 (Scheme 1.1B).9 

Other electrophilic heteroatoms such as phosphorus10, sulfur11, and halogens can also 

potentially induce the generation of vinyl carbocations through electrophilic addition to 

alkynes. For instance, McNeils and coworkers reported that when bromoalkyne 12 was 

treated with iodine (I2), an iodonium-stabilized vinyl carbocation 13 was first generated, 

leading to a Pinacol-type rearrangement on the vicinal alcohol to forge the rearrangement 

product 14 (Scheme 1.1C).12 

The second approach for generating vinyl carbocations involves the heterolysis of 

vinyl (pseudo)halides through solvolysis in polar solvents or activation by Lewis acids. Grob 

and coworkers reported that benzylic vinyl bromide 15 could undergo solvolysis in aqueous 

ethanol to yield ketone 17 (Scheme 1.2A). Further Hammett studies supported the 

intermediacy of vinyl carbocation 16.6 

Scheme 1.2 Generation of vinyl carbocations from heterolysis of vinyl (pseudo)halides. 

 

 

Additionally, Lewis acids can facilitate the heterolysis of vinyl (pseudo)halides in 

non-polar solvents. Nelson and coworkers reported that vinyl carbocation intermediate 19 
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could be generated from vinyl tosylate precursor 18 under the catalysis of the Lewis acid 

lithium tetrakis(pentafluorophenyl)borate (Li[B(C6F5)4]). The cationic intermediate was 

subsequently trapped by a nucleophilic silyl ketene acetal 20 to yield the coupling product 

21 (Scheme 1.2B).13 

Lastly, vinyl carbocations can be accessed through the decomposition of β-diazo 

alcohols. Brewer and coworkers reported that when β-hydroxy-α-diazo ketone 22 was treated 

with the Lewis acidic tris(pentafluorophenyl)borane, loss of the hydroxy group formed vinyl 

diazonium intermediate 23 (Scheme 1.3). This intermediate then rapidly eliminated N2 to 

yield a vinyl carbocation 24. Due to the destabilizing influence of the adjacent carbonyl 

group, 24 underwent a Wagner-Meerwein rearrangement to form a new vinyl carbocation 

25, which subsequently underwent a Friedel-Crafts reaction with a nucleophilic aryl group 

to forge the 5-membered ring in product 26.14 

Scheme 1.3 Generation of vinyl carbocations from decomposition of b-diazo alcohols. 

 

 

1.3 C–H INSERTION OF VINYL CARBOCATIONS 

Similar to most carbocation intermediates, vinyl carbocations can facilitate the 

cleavage and formation of carbon–carbon (C–C) bonds through reactions, such as cationic 
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rearrangements14 and Friedel-Crafts reactions with nucleophilic aromatic compounds7,8. 

Unlike tricoordinated carbocations, vinyl carbocation can induce carbon–hydrogen (C–H) 

activation at an sp3 carbon. While C–H functionalization is typically achieved under 

transition metal catalysis15, the use of vinyl carbocations offers a potential alternative metal-

free approach. 

One early example demonstrating the capability of vinyl carbocations to activate C–

H bonds was reported by Kucherov and coworkers in 1974 (Scheme 1.4). They observed that 

when acylium cation 27 reacted with alkyne 28, 2-cyclopentenone 30 was formed. An initial 

electrophilic addition from the acylium cation to the alkyne occurred to generate vinyl 

carbocation intermediate 29. Subsequently, this intermediate underwent either a 1,5-hydride 

shift followed by cyclization via cationic intermediate 31 or a concerted C–H activation to 

furnish product 30.16 

Scheme 1.4 Kucherov: C–H activation in the acylium-alkyne reaction. 

 

 

In 2006, Metzger and coworkers conducted further studies on the C–H insertion 

reactivity of vinyl carbocation intermediates with a similar system (Scheme 1.5). Initially, it 

was proposed that the activation of chloroformate 33 by an aluminum-based Lewis acid 
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induced electrophilic addition to alkyne 34, leading to the ionization of vinyl carbocation 35. 

This intermediate could then undergo trapping either by a chloride anion from ethyl 

aluminum chloride to form vinyl chloride 36, or by a hydride transfer from triethylsilane to 

form alkene 37. However, 36 and 37 were found to be minor side products (< 5% yield), 

while the major product was the cyclopentane-containing compound 39. Building on 

previous findings, it was suggested that vinyl carbocation 35 participated in a C–H activation 

reaction with pendant alkyl groups to generate the 5-membered ring observed in product 39. 

Quantum-mechanical calculations further supported the proposal of a concerted C–H 

insertion mechanism for this reaction.17 

Scheme 1.5 Metzger: Concerted C–H insertion reactions of vinyl carbocations. 

 

 

          In 2010, Yamamoto and coworkers reported one of the first examples demonstrating 

catalytic vinyl carbocation C–H insertion reactivity (Scheme 1.6). Using a catalytic amount 
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carbocation intermediate 41. This was followed by an intramolecular electrophilic addition 

to the alkyne, generating vinyl carbocation intermediate 42. Subsequently, C–H insertion 

occurred, resulting in the formation of a 5-membered ring, and product 43 was obtained upon 

deprotonation.18 

Scheme 1.6 Yamamoto: Catalytic vinyl carbocation C–H insertion reaction. 

 

 

In 2014, Gaunt and coworkers developed a copper-catalyzed system to harness vinyl 

carbocation C–H insertion reactivity using diaryliodonium salts and an alkyne precursor 

(Scheme 1.7). It was proposed that the diaryliodonium salt 45 was the source of electrophilic 

aryl groups to attack alkyne 44, resulting in the generation of a vinyl carbocation intermediate 

46. This intermediate then underwent a C–H insertion reaction, ultimately forming 

cyclopentene product 47.19 Notably, when enantioenriched alkyne 48 was employed, the 

stereochemical information from the precursor was largely preserved in the product 49 (95% 

ee). This finding suggested that this vinyl carbocation C–H insertion followed by a concerted 

mechanism as opposed to a stepwise 1,5-hydride shift and cyclization process. 
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Scheme 1.7 Gaunt: Copper-catalyzed vinyl carbocation generation and C–H insertion. 

 

 

C–H insertion reactivity has also been observed in cases where vinyl carbocation 

intermediates are generated from β-diazo alcohol precursors, as described in the third 

approach in section 1.2. In 2017, Brewer and coworkers reported that when β-hydroxy-α-
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generation of vinyl carbocation 52 was proposed (Scheme 1.8). This intermediate then 

rearranged to form new vinyl carbocation 53, which subsequently underwent C–H insertion 

to yield the final [5.3.0] bicyclic product 54.20 

Scheme 1.8 Brewer: Vinyl carbocation C–H insertion from b-diazo alcohol. 
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In 2018, Nelson and coworkers developed a system for generating vinyl carbocation 

intermediates and utilizing them in intermolecular C–H insertion reactions through silylium-

weakly coordinating anion (WCA) catalysis (Scheme 1.9). In their proposed catalytic cycle, 

a silylium cation was paired with the WCA in complex 61. The lack of coordination from 

the counterion enhanced the Lewis acidity of the silylium cation, facilitating the abstraction 

of the triflate group from vinyl triflate 55 to generate vinyl carbocation 58. Subsequently, 

cation 58 underwent C–H insertion, leading to the formation of a secondary carbocation 59  

Scheme 1.9 Nelson: Vinyl carbocation C–H insertion through silylium-WCA catalysis. 
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and the concurrent formation of a new C–C bond. A 1,2-hydride shift followed to generate 

the more stable tertiary carbocation 60. In the final step, triethylsilane was employed to 

deliver a hydride to the carbocation, yielding the cross-coupling product 57 and regenerating 

the silylium carborane complex 61.21 

This catalytic system was also applicable to intramolecular C–H insertions. For 

instance, vinyl triflate 62 could be transformed into the [3.3.0] bicyclic product 63 under 

these catalytic conditions. 

In 2019, Nelson and coworkers developed a milder catalytic system using lithium-

WCA to address the limitations of silylium-WCA catalysis, which had poor substrate 

compatibility due to the high Lewis acidity and reactivity of the silylium species (Scheme 

1.10). Commercially available trityl tetrakis(pentafluorophenyl)borate ([Ph3C]+[B(C6F5)4]–) 

was employed as the precatalyst, and upon introduction of LiHMDS, a metathesis reaction 

was proposed to generate the lithium catalyst [Li]+[B(C6F5)4]–. The lithium cation in this 

complex exhibited greater Lewis acidity compared to conventional lithium salts due to the 

lack of coordination by WCA [B(C6F5)4]–. Upon formation of a catalytically active lithium 

species, vinyl triflate 64 underwent ionization to forge vinyl carbocation intermediate 65. 

Subsequently, an intramolecular C–H insertion occurred, leading to the formation of a 5-

membered ring and tertiary carbocation 66. Finally, LiHMDS facilitated deprotonation to 

yield product 67 containing a tetrasubstituted olefin.22 The milder Lewis acidity of the lithium 

cation allowed the scope of the reaction to be expanded to tolerate a broader range of 

functional groups, including ethers, sulfonamides, and aryl halides, which were previously 

incompatible with silylium-WCA catalysis. 
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Scheme 1.10 Nelson: Vinyl carbocation C–H insertion through lithium-WCA catalysis. 
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Scheme 1.11 Nelson: Asymmetric vinyl carbocation C–H insertion. 
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conditions showed improved compatibility with heteroatom-containing substrates as lithium 

is a weaker Lewis acid compared to silylium.22 However, this approach faced limitations in 

achieving challenging ionizations that require strong Lewis acidity. The importance and 

potential of vinyl carbocation C–H insertion have prompted the creation of a field guide 

aimed at synthetic chemists interested in constructing C−C bonds through Lewis acid-WCA 

catalytic methods. This guide focuses on silylium- and lithium-initiated reactions that form 

C−C bonds using vinyl carbocations generated from vinyl triflates. The goal is to provide 

researchers with valuable context and expedite their selection of optimal reaction conditions 

and starting materials. 

1.4.1 Reaction conditions 

Ionization of vinyl triflates was achieved with either silylium-initiated (conditions A) 

or lithium-initiated (conditions B) condition where the generated Lewis acid is paired with 

WCA [HCB11C11]– or [B(C6F5)4]–. Under conditions A, the silylium-carborane initiator is 

formed in situ through a Bartlett-Condon-Schneider silicon-to-carbon hydride transfer25, 

where [Ph3C]+ [HCB11C11]– is combined with Et3SiH to form [Et3Si]+ [HCB11C11]– and 

Ph3CH.26 Stoichiometric Et3SiH functions as the terminal reductant, regenerating 

triethylsilylium that is paired with the catalytic [HCB11C11]– following hydride transfer. 

Similarly, under conditions B, [Ph3C]+[B(C6F5)4]– is combined with stoichiometric LiHMDS 

to form the initiator [Li]+[B(C6F5)4]–. The remaining equivalents of LiHMDS functions as a 

base, regenerating the catalytically active Li-WCA species after deprotonation of the 

carbocation intermediate. While LiHMDS is generally suitable for these reactions, it is 

susceptible to enamine formation through nucleophilic trapping of the vinyl carbocation. In 

some cases, LiHMDS may be replaced by LiH to circumvent this issue.  
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1.4.2 C–H insertion substrate study 

Under silylium conditions A, clean alkylation of cyclohexenyl triflate 77 was 

achieved, yielding bicyclohexyl 81 in 87% yield after 1.5 hours at 30 °C (Scheme 1.12).21 

However, under lithium-initiated basic conditions B, the desired product 82 was not 

obtained, indicating some other undesired pathway was outcompeting C–H insertion. 

Products derived from cyclopentenyl triflate 78, specifically cyclohexylation 

products 83 and 84, were not observed under either conditions A or B. This is consistent with 

the significant geometric strain associated with the corresponding 5-membered vinyl 

carbocation intermediate. Similarly, treatment of tetralone-derived triflate 80a with 

cyclohexane did not yield products 87 or 88 under conditions A or B, even after heating the 

triflates to >120 °C for an extended period of time. 

In the case of 4-bromoacetophenone-derived vinyl triflate 79, no desired products 

(85 and 86) were obtained under either conditions A or B. Conditions B resulted only in the 

formation of 4-bromoacetylene, while conditions A yielded an intractable mixture of 

products. 

Interestingly, cyclohexylation of benzosuberonyl triflate 80b under conditions A led 

to the formation of isomers 89 and 90 in 22% and 29% yield, respectively. Under conditions 

B, the cyclohexane adduct 91 was obtained as a single isomer but in a lower yield of 21%. 

The lower yield under conditions B may be attributed to the formation of an enamine via the 

undesired addition of LiHMDS to the vinyl carbocation. 
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Scheme 1.12 Investigation of vinyl carbocation intermolecular C–H insertion with 

cyclohexane. 
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Overall, these examples underscore the distinct reactivity observed between silylium 

and lithium-initiated conditions in inter- and intramolecular C–H insertion reactions, 

emphasizing the importance of selecting appropriate reaction conditions based on the 

substrate's structural and electronic properties. 

Scheme 1.13 Investigation of vinyl carbocation intramolecular C–H insertion. 
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insertion reactivity of vinyl carbocations, beginning with Kucherov's early observations and 

culminating in recent advancements by Nelson and coworkers is disclosed. These 

developments include novel catalytic systems designed to induce ionization of challenging 

vinyl carbocations, expand substrate scope, and enhance stereoselectivity. To promote 

exploration and broader application of vinyl carbocations as versatile synthetic building 

blocks in organic chemistry, the final part of the chapter discusses the successes and 

limitations in silylium and lithium-WCA catalysis pioneered by Nelson and coworkers for 

synthetic chemists with limited experience in vinyl carbocation generation and reactivity. 

Although vinyl carbocations possess significant potential for creating C–C bonds 

through the activation of otherwise inert C–H bonds, their application in generating complex 

structures remains somewhat constrained. In intramolecular vinyl carbocation C–H 

activation reactions, the formation of 5-membered rings is commonly observed, with 

occasional formation of 6-membered rings.22 This limitation underscores ongoing challenges 

in expanding the scope of reactions that utilize vinyl carbocations for synthesizing more 

intricate molecular architectures. 

Utilizing vinyl carbocation intermediates to construct complex and strained 

structures is a compelling endeavor; thus, my PhD studies have predominantly focused on 

exploring their reactivity through Li-WCA catalysis and via an IDPi organocatalytic 

platform. Firstly, I explored the formation of strained medium-sized rings through 

intramolecular Friedel–Crafts reactions mediated by vinyl carbocation intermediates. 

Secondly, I expanded the reactivity of vinyl carbocations to produce strained cyclobutene 

motifs via [2+2] cycloaddition mechanisms. Lastly, I disclose progress towards a catalytic 
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enantioselective formation of allenes using IDPi catalysis via vinyl carbocation 

intermediates. The following chapters will delve into detailed discussions of these reactions. 

 

1.6 CONTRIBUTION AND ACKNOWLEDGEMENT 

The chemical syntheses in section 1.4 were completed in collaboration with Dr. Martin Riu, 

Dr. Stasik Popov, and Dr. Ben Wigman. 

 

1.7 EXPERIMENTAL SECTION 

1.7.1 Materials and methods 

Unless otherwise stated, all reactions were performed in an MBraun glovebox under 

nitrogen atmosphere with ≤ 0.5 ppm O2 levels. All glassware and stir-bars were dried in a 

160 °C oven for at least 12 hours and dried under reduced pressure before use. All liquid 

substrates were either dried over CaH2 or filtered through dry neutral aluminum oxide. Solid 

substrates were dried overnight under high vacuum over P2O5. All solvents were rigorously 

dried prior to use. Benzene, trifluorotoluene, dichloromethane, o-dichlorobenzene, 

acetonitrile, and tetrahydrofuran were degassed and dried in a JC Meyer solvent system and 

stored inside a glovebox. Cyclohexane was distilled over potassium. o-Difluorobenzene was 

distilled over CaH2. Triethylsilane and triisopropylsilane were dried over sodium and stored 

inside a glovebox. [Ph3C][CHB11Cl11] was prepared according to a literature procedure.31 All 

other reagents were purchased from commercial suppliers and used as received. Preparatory 

thin layer chromatography (TLC) was performed using Millipore silica gel 60 F254 pre-

coated plates (0.25 mm) and visualized by UV fluorescence quenching. SiliaFlash P60 silica 

gel (230-400 mesh) was used for flash chromatography. AgNO3-Impregnated silica gel was 
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prepared by mixing with a solution of AgNO3 (150% v/w of 10% w/v solution in 

acetonitrile), removing solvent under reduced pressure, and drying at 120 °C. NMR spectra 

were recorded on a Bruker AV-300 (1H, 19F), Bruker AV-400 (1H, 13C, 19F), Bruker DRX-

500 (1H), and Bruker AV-500 (1H, 13C). 1H NMR spectra are reported relative to CDCl3 (7.26 

ppm) unless noted otherwise. Data for 1H NMR spectra are as follows: chemical shift (ppm), 

multiplicity, coupling constant (Hz), integration. Multiplicities are as follows: s = singlet, d 

= doublet, t = triplet, dd = doublet of doublet, dt = doublet of triplet, ddd = doublet of doublet 

of doublet, td = triplet of doublet, m = multiplet. 13C NMR spectra are reported relative to 

CDCl3 (77.0 ppm) unless noted otherwise. GC spectra were recorded on an Agilent 6850 

series GC using an Agilent HP-1 (50 m, 0.32 mm ID, 0.25 µm DF) column. GCMS spectra 

were recorded on a Shimadzu GCMS-QP2010 using a Restek XTI-5 (50 m, 0.25 mm ID, 

0.25 µm DF) column interface at room temperature. IR Spectra were record on a Perkin 

Elmer 100 spectrometer and are reported in terms of frequency absorption (cm−1). High 

resolution mass spectra (HR-MS) were recorded on a Waters (Micromass) GCT Premier 

spectrometer, a Waters (Micromass) LCT Premier, or an Agilent GC EI-MS, and are reported 

as follows: m/z (% relative intensity). Purification by preparative HPLC was done on an 

Agilent 1200 series instrument with a reverse phase Alltima C18 (5µ, 25 cm length, 1 cm 

internal diameter) column.  

1.7.2 Preparation of vinyl triflate precursors 

Triflates 77,21 78,21 79,21 80a,21 80b,29 92,22 and 9827 were prepared according to 

literature procedures.  
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2-propyl-3,4-dihydronaphthalen-1(2H)-one (S1) 

In a three-neck flask equipped with a Dean-Stark apparatus was added 3,4-

dihydronaphthalen-1(2H)-one (3.00 g, 20.5 mmol, 1 equiv), 1,1-dimethylhydrazine (3.70 g, 

61.6 mmol, 3 equiv), toluene (20 mL), and 4-methylbenzenesulfonic acid (0.35 g, 2.1 mmol, 

0.1 equiv). The reaction was refluxed at 130 °C overnight. Then it was diluted with diethyl 

ether and saturated NaHCO3 solution. After the separation of the organic phase and the 

aqueous phase, the aqueous phase was extracted with diethyl ether two more times. The 

combined organic phase was washed with brine, dried with mageniusm sulfate, filtered and 

concentrated in vacuo to give the hydrazone intermediate, which was used without further 

purification. 

In a flamed-dried flask was added diisopropylamine (2.53 g, 25.0 mmol, 1.15 equiv) 

and THF (108 mL). The solution was cooled down to –78 °C and n-butyllithium solution 

(2.53 M, 9.45 mL, 1.1 equiv) was added dropwise. After 1 min, the hydrazone intermediate 

(4.09 g, 21.7 mmol, 1 equiv) in THF (21 mL) was added dropwise. The reaction was then 

warmed up to 0 °C and kept for 30 min, then cooled back to –78 °C. n-Propyl iodide (4.06 

g, 23.9 mmol, 1.1 equiv) was added slowly into the reaction. The reaction was then warmed 

up to room temperature and stirred overnight. The reaction was quenched by cooling down 

to 0 °C followed by the addition of 2.5 M HCl (63 mL). This mixture was heated at 50 °C 

for 1 h. Then the solution was diluted with water and diethyl ether. After the separation of 

the organic phase and the aqueous phase, the aqueous phase was extracted with diethyl ether 

two more times. The combined organic phase was washed with saturated NaHCO3 solution 

O
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and brine, dried with magnesium sulfate, filtered, and concentrated under reduced pressure 

to give the crude product. This product was purified by silica flash column chromatography 

(5% diethyl ether in hexanes) to give ketone S1 as a yellow solid (2.1 g, 51% yield over 2 

steps). The NMR spectra of S1 matches previously reported data.30  

1H NMR (500 MHz, CDCl3) δ 8.07 (d, J = 7.9 Hz, 1H), 7.49 (t, J = 7.5 Hz, 1H), 7.34 (t, J 

= 7.1 Hz, 1H), 7.27 (d, J = 7.6 Hz, 1H), 3.04 (dt, J = 9.1, 5.0 Hz, 2H), 2.58 – 2.49 (m, 1H), 

2.28 (dq, J = 13.3, 4.8 Hz, 1H), 1.95 (tddd, J = 14.5, 10.7, 7.9, 5.2 Hz, 2H), 1.59 – 1.37 (m, 

3H), 1.01 (t, J = 7.2 Hz, 3H). 

 

2-propyl-3,4-dihydronaphthalen-1-yl trifluoromethanesulfonates (95) 

In a flame dried 100 mL round bottom flask was suspended sodium carbonate (0.84 

g, 8.0 mmol, 3 equiv) in anhydrous methylene chloride (27 mL). To this suspension was 

added ketone S1 (0.50 g, 2.7 mmol, 1.0 equiv) and the reaction was cooled to 0 °C. Triflic 

anhydride (0.82 g, 2.9 mmol, 1.1 equiv) was added dropwise at 0 °C and the reaction was 

allowed to warm up to room temperature.  Upon completion of the reaction, as assessed by 

thin layer chromatography (TLC) analysis, the reaction was quenched with water (15 mL). 

The layers were separated, and the product was extracted with diethyl ether (3 x 20 mL). The 

combined organics were dried over magnesium sulfate, filtered, and concentrated to give the 

crude material as brown oil. The crude product was purified by silica flash column 

chromatography (25% dichloromethane in hexanes) to give pure vinyl triflate 95 as a 

colorless oil (0.33 g, 39% yield). 
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1H NMR (400 MHz, CDCl3) δ 7.33 (d, J = 7.5 Hz, 1H), 7.25 – 7.18 (m, 2H), 7.15 (d, J = 

7.0 Hz, 1H), 2.83 (t, J = 6.9 Hz, 2H), 2.42 (t, J = 8.4 Hz, 2H), 2.36 (t, J = 7.4 Hz, 2H), 1.55 

(h, J = 7.6 Hz, 2H), 0.96 (t, J = 7.4 Hz, 3H). 

13C NMR (101 MHz, CDCl3) δ 140.4, 135.5, 133.6, 129.8, 128.1, 127.3, 126.7, 121.2, 

118.6 (q, 1JC–F = 321.1 Hz), 33.0, 27.5, 27.3, 20.2, 13.9. 

19F NMR (376 MHz, CDCl3) δ –73.7. 

HR-MS (FD-MS): C14H15F3O3S calculated 320.0694; Found 320.0693. 

1.7.3 Intermolecular C−H insertion reactions with cyclohexane under Si-

mediated conditions A 

General Procedure 

In a well-kept glovebox, (H2O, O2 < 0.5 ppm), a dram vial was charged with 

[Ph3C][HCB11Cl11]  (0.05 equiv) and this material was suspended in cyclohexane (enough to 

make a 0.1 M solution of vinyl triflate). Triethylsilane (1.5 equiv) along with a magnetic 

stirring bar were added to the mixture, and the mixture was shaken until it turned colorless. 

At this point, vinyl triflate (1.0 equiv) was added to the reaction mixture and was stirred at 

30–75 °C (see substrates for specific details). Upon completion, the reaction mixture was 

passed through a short plug of silica gel inside the glovebox and the plug was washed with 

hexanes. The combined filtrates were removed from the glovebox and volatile materials were 

removed under reduced pressure. Some substrates required further purification by silica 

column chromatography (see below) or preparative high pressure liquid chromatography 

(HPLC). 

Cyclohexane Addition Reactions Previously Reported by our Group 
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Cyclohexane addition product 81 was prepared from triflate 77, and the synthesis has 

been described.21 

 

5-cyclohexyl-6,7,8,9-tetrahydro-5H-benzo[7]annulene (89) and 6-cyclohexyl-6,7,8,9-

tetrahydro-5H-benzo[7]annulene (90) 

A dram vial was charged with [Ph3C][CHB11Cl11]  (3.8 mg, 0.005 mmol), and this 

material was dissolved in benzene (0.5 mL). Triethylsilane (17.4 mg, 0.150 mmol) and a 

magnetic stirring bar were added and the mixture stirred for 10 minutes. Vinyl triflate 80b 

(29.2 mg, 0.10 mmol, 1 equiv) was added to the reaction and stirred for 0.5 hours at 30 °C. 

The reaction mixture was removed from the glovebox and passed through plugged pipette 

containing a column of silica with ether. Volatile materials were removed under reduced 

pressure to give products 89 and 90 in 29% and 22% NMR yield, respectively. The crude 

product was purified by silica flash column chromatography (hexanes) to give a mixture of 

isomers 89 and 90. Separation of regioisomers was performed using semi-preparative HPLC 

(95:5 MeCN:water) to give pure 89 and 90 as colorless oils. 

Characterization for 89 

1H NMR (500 MHz, CDCl3) δ 7.13 – 6.96 (m, 4H), 3.03 – 2.93 (t, J = 13.0 Hz, 1H), 2.66 

(dd, J = 14.5, 6.4 Hz, 1H), 2.45 (td, J = 6.9, 6.5, 3.4 Hz, 1H), 2.07 – 1.96 (m, 2H), 1.96 – 

1.86 (m, 2H), 1.83 – 1.70 (m, 3H), 1.66 – 1.52 (m, 3H), 1.48 – 1.36 (m, 1H), 1.25 (ddd, J = 

29.6, 14.7, 8.1 Hz, 2H), 1.17 – 1.06 (m, 2H), 0.96 – 0.84 (m, 1H), 0.79 (dd, J = 12.0, 3.3 Hz, 

1H). 

Cy H H Cy

89 90
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13C NMR (126 MHz, CDCl3) δ 145.1, 141.9, 130.8, 130.1, 125.7, 125.4, 53.1, 36.5, 32.8, 

31.1, 29.1, 28.4, 26.6, 26.5, 26.1. 

FTIR (Neat film NaCl): 3059, 3014, 2920, 2850, 2669, 1490, 1447, 1368, 1318, 1266, 1211, 

1188, 1159, 1106, 1080, 1033, 977, 939, 756, 746, 549. 

HR-MS (ESI-MS) m/z: [M]+ Calc’d for C17H24 228.1878; Found 228.1876. 

Characterization for 90 

1H NMR (500 MHz, CDCl3) δ 7.16 – 7.12 (m, 4H), 2.91 – 2.75 (m, 3H), 2.70 (d, J = 14.1 

Hz, 1H), 2.01 – 1.95 (m, 1H), 1.94 – 1.88 (m, 1H), 1.85 – 1.62 (m, 6H), 1.51 – 1.41 (m, 

1H), 1.40 – 1.18 (m, 6H), 1.16 – 1.07 (m, 1H). 

13C NMR (126 MHz, CDCl3) δ 143.2, 142.4, 129.1, 128.7, 125.9, 125.8, 43.8, 40.2, 36.4, 

35.5, 29.7, 27.4, 26.85, 26.83, 26.80. 

FTIR (Neat film NaCl): 3062, 3016, 2919, 2849, 1603, 1493, 1449, 1351, 1050, 927, 909, 

894, 749, 734, 726. 

HR-MS (EI-MS) m/z: [M]+ Calc’d for C17H24 228.1878; Found 228.1873. 

1.7.4 Intermolecular C−H insertion reactions with cyclohexane under 
Li-mediated conditions B 

General Procedure 

In a well-kept glovebox, (H2O, O2 < 0.5 ppm), a dram vial was charged with 

[Ph3C][B(C6F5)4]  (0.05 equiv, 0.0025 mmol). Cyclohexane (0.5 mL) was added followed 

by LiHMDS (12.5 mg, 0.075 mmol, 1.5 equiv). Vinyl triflate (0.050 mmol, 1.0 equiv) was 

added and the reaction mixture was stirred at 30–120 °C. The reaction progress was closely 

monitored by TLC and/or GC. Upon completion of reaction, the mixture was diluted with 

ether and passed through a plug of silica gel in a pipette. The filtrate was concentrated to give 
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the crude material. The crude material was purified by silica flash chromatography to give 

the pure product.  

 

9-cyclohexyl-6,7-dihydro-5H-benzo[7]annulene (91) 

In a well-kept glovebox, (H2O, O2 < 0.5 ppm), a dram vial was charged with 

[Ph3C][B(C6F5)4] (2.3 mg, 0.05 equiv, 0.0025 mmol). Cyclohexane (2.0 mL) was added 

followed by LiHMDS (12.5 mg, 0.075 mmol, 1.5 equiv). Triflate 80b (14.6 mg, 0.050 mmol, 

1.0 equiv) was added and the reaction mixture stirred at 70 °C for 1 hour. At this point, the 

mixture was diluted with ether and passed through a plug of silica gel in a pipette. The filtrate 

was concentrated to give the crude material in 21% NMR yield. The crude material was 

purified by silica flash chromatography (hexanes) to give product 91.   

1H NMR (500 MHz, CDCl3) δ 7.25 – 7.21 (m, 2H), 7.19 – 7.12 (m, 2H), 5.84 (td, J = 7.3, 

1.4 Hz, 1H), 2.50 (t, J = 7.1 Hz, 2H), 2.37 (t, J = 11.5 Hz, 1H), 2.02 (p, J = 7.1 Hz, 2H), 

1.81 – 1.71 (m, 5H), 1.69 (d, J = 13.1 Hz, 1H), 1.37 – 1.09 (m, 6H). 

13C NMR (500 MHz, CDCl3) δ 147.1, 141.9, 141.4, 128.4, 126.2, 125.9, 125.8, 122.1, 43.5, 

34.5, 33.0, 32.0, 26.9, 26.6, 24.2. 

HR-MS (EI-MS) m/z: [M]+ Calc’d for C17H22 226.1721; Found 226.1711. 

1.7.5 Intramolecular C−H insertion reactions under Si-mediated 

conditions A 

General Procedure and Comments 
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In a well-kept glovebox, (H2O, O2 < 0.5 ppm), a dram vial was charged with 

[Ph3C]+[HCB11Cl1]– (0.02 equiv) and this material was suspended in cyclohexane to form a 

0.033 M solution. Triethylsilane (1.5-4.5 equiv) along with a magnetic stirring bar were 

added to the mixture, and the mixture was shaken until it turned colorless. At this point, vinyl 

triflate (1.0 equiv) was added to the reaction mixture and was stirred at 30 °C. Upon 

completion, the reaction mixture was passed through a short plug of silica gel inside the 

glovebox and the plug was washed with hexanes. The combined filtrates were removed from 

the glovebox and volatile materials were removed under reduced pressure. Some substrates 

required further purification by silica column chromatography (see below). Compound 93 

was prepared from vinyl triflate 92, and the synthesis is described.22  

 

2,3,3a,4,5,9b-hexahydro-1H-cyclopenta[a]naphthalene (93) 

In a well-kept glovebox, (H2O, O2 < 0.5 ppm), a dram vial was charged with 

[Ph3C]+[HCB11Cl1]– (0.92 mg, 0.0010 mmol, 0.02 equiv.) and this was suspended in 

cyclohexane (1.5 mL). Triethylsilane (36 µL, 0.225 mmol, 4.5 equiv) was added along with 

a magnetic stirring bar to the suspension. The suspension was stirred for 5 minutes at 30 °C. 

Vinyl triflate 92 (16 mg, 0.050 mmol, 1 equiv) was added to the reaction and it was stirred 

at 30 °C for 15 minutes. The reaction mixture was passed through a plug of silica with 

hexanes. The resulting solution was brought outside of the glovebox and concentrated to give 

crude tricyclic compound 93 in 37% NMR yield using nitromethane as an internal standard. 

Attempts to further purify 93 by column chromatography were unsuccessful. NMR data 

matches previously reported spectra.31  

H
H
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1H NMR (400 MHz, CDCl3) δ 7.15 – 6.98 (m, 4H), 3.36 (td, J = 8.0, 2.7 Hz, 1H), 2.86 

(ddd, J = 15.9, 8.8, 3.8 Hz, 1H), 2.73 (dt, J = 16.2, 8.4 Hz, 1H), 2.18 (dtd, J = 12.1, 8.0, 

3.8 Hz, 1H), 1.67 (dq, J = 12.5, 8.7 Hz, 1H), 1.45 – 1.12 (m, 7H). 

13C NMR (101 MHz, CDCl3) δ 146.68, 142.94, 124.88, 124.60, 123.27, 122.81, 44.48, 30.83, 

30.77, 30.46, 26.10, 21.63, 13.23. 

HR-MS (FD-MS): C13H16 calculated 172.1252; Found 172.1266. 

1.7.6 Intramolecular C−H insertion reactions under Li-mediated 
conditions B 

General Procedure and Comments 

In a well-kept glovebox, (H2O, O2 < 0.5 ppm), a dram vial was charged with 

[Ph3C][B(C6F5)4]  (0.05 equiv). Dichloromethane or 1,2-difluorobenzene was added 

followed by LiHMDS (1.5 equiv). Vinyl triflate (1.0 equiv) was added, and the mixture 

stirred with heat (30 °C or 70 °C, depending on the substrate). Upon completion of the 

reaction, the mixture was removed from the glovebox, where it was diluted with diethyl ether 

and passed through a short plug of silica. Volatile materials were removed from the filtrate 

and the resulting crude material was further purified by column chromatography. C−H 

insertion product 94 was prepared from vinyl triflate 92 in dichloromethane at 30 °C, and the 

synthesis is described in detail in ref.22 C−H insertion product 100 was prepared from vinyl 

triflate 98 in 1,2-difluorobenzene at 70 °C using LiH (3 equiv) in place of LiHMDS, and the 

synthesis is described in detail in ref.27 
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Accessing Medium-sized Rings via Vinyl Carbocation Intermediates

‡

 
‡ This chapter is adapted from the published work: Zhao, Z.; Popov, S.; Lee, W.; Burch, J. 

E.; Delgadillo, D. A.; Kim, L.-J.; Shahgholi, M.; Lebrón-Acosta, N.; Houk, K. N.; Nelson, 
H. M. Accessing Medium-sized Rings via Vinyl Carbocation Intermediates. Org. Lett. 
2024, 26, 1000-1005. 
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2.1 INTRODUCTION 

Cyclic structural motifs are ubiquitous in natural products, pharmaceuticals, and 

other industrially relevant compositions of matter.1,2 Amongst them, 5- and 6-membered 

rings are the most common cyclic structures due to their ease of preparation.3,4 In contrast, 

medium-sized rings (8–11 membered rings) are often more difficult to access, where 

methods commonly utilized to forge 6- or 5-membered rings fail. Unlike macrocycles 

(≥12-membered rings), medium-sized rings suffer from torsional and transannular strain; 

therefore, their annulation reactions can be less favorable and sluggish.3–7 As a result, 

medium-sized rings appear less in synthetic molecules, hindering their utility across a 

broad swath of applications. 

Despite their challenging formation, compounds with medium-sized rings are 

abundant in natural products.8,9 For some bioactive compounds bearing medium-sized 

cyclic motifs, it has been proposed that the unique balance of structural rigidity and broad 

conformational space enables higher binding affinities to biological targets relative to small 

ring analogs.10 Despite these facts, the number of methods for medium-sized ring formation 

remains limited in organic synthesis. Ring expansion from smaller rings is widely used to 

generate medium-sized rings; however, these reactions need careful design depending on 

the structure of the medium-sized ring desired and usually require several synthetic steps 

towards well-poised, smaller ring precursors.11 For direct annulation methods, catalytic 

ring-closing metatheses and cross-coupling reactions are the most common, but precious 

noble metals such as palladium and ruthenium are required as catalysts.12,13 Medium-sized 

ring formation through radical intermediates has also been reported, although 
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stoichiometric radical sources are commonly used.12,13  As a result, it is still of great interest 

to develop catalytic and metal-free annulation reactions to access medium-sized rings. 

 

2.2 MODEL SUBSTRATE STUDY 

Vinyl tosylate 101 was selected as our model substrate (Scheme 2.1). A sulfonamide 

was introduced into the aniline-derived scaffold to protect the Lewis basic amine moiety, a 

common functional group in many bioactive molecules.14,15 We proposed that vinyl tosylate 

101 would transform to tetrahydroazocine 103 under lithium-WCA catalysis. Medium-sized 

ring 103 features an exo-alkene on the 8-membered ring, which is reminiscent of commercial 

drugs pizotifen,16 amitriptyline,17 and cyproheptadine,18 albeit these comprise more readily 

prepared 7-membered rings (Scheme 2.2). The established route to these drugs features a key 

intramolecular Friedel–Crafts acylation of a carboxylic acid to forge their core 7-membered 

ring. As there are few reports to build larger medium-sized rings via Friedel–Crafts 

acylation,19,20 our complementary method provides access to underexplored chemical space 

via vinyl carbocation intermediates. 

             Recognizing that electron-deficient arenes are sluggish nucleophiles, we questioned 

if electrophilic vinyl carbocation species could engage them in Friedel–Crafts reactions. 

Therefore, we began optimization with vinyl tosylate 101 to study the Friedel–Crafts 

reactions with electrophilic vinyl cation species (Table 2.1). When vinyl tosylate 101 was 

subjected to 10 mol% of lithium tetrakis(pentafluorophenyl)borate ([Li]+[B(C6F5)4]–) (104) 

in 1,2-dichlorobenzene (o-DCB) at 140 °C, tetrahydroazocine 103 was formed in 40% yield 
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Scheme 2.1 Medium-sized ring formation via vinyl carbocation intermediates. 

 

 

Scheme 2.2 Commercial drugs with exo-alkene on a 7-membered ring. 

 

(entry 1). The structure of product 103 was confirmed using microcrystal electron diffraction 

(microED).21 Since a significant amount of starting material remained after long reaction 

times (entry 1), we hypothesized that adding a lithium base could help regenerate the lithium 

catalyst and improve the reaction yield. Indeed, adding an excess of LiH increased the yield 

to 74% (entry 2). In contrast, the presence of lithium bis(trimethylsilyl)amide (LiHMDS), 

which was used in previous reports,22,23 was detrimental to the reaction, forming the product 

in 21% yield (entry 3). Performing the reaction without [Li]+[B(C6F5)4]– did not provide any 

tetrahydroazocine 103 (entry 4). Lower loadings of [Li]+[B(C6F5)4]– gave lower yields of the 
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product (entries 5, 6), highlighting the essential role of [Li]+[B(C6F5)4]– in this catalytic 

cyclization. Solvents other than o-DCB were also examined but were found inferior (entries 

7–9). Hydrogen bonding catalyst 105, which our group had previously applied in the 

ionization of vinyl triflates, gave diminished yields (entries 10,11).23 

Table 2.1 Optimization of the reaction conditions to build medium-sized rings. 

 

entry catalyst 
(mol%) 

base 
(equiv) 

solvent temperature 
(°C) 

yield 
(%) 

1 104 (10) none o-DCB 140 40 

2 104 (10) LiH (5) o-DCB 140 74 

3 104 (10) LiHMDS (1.5) o-DCB 140 21 

4 none LiH (5) o-DCB 140 n.d. 

5 104 (5) LiH (5) o-DCB 140 49 

6 104 (1) LiH (5) o-DCB 140 24 

7 104 (10) LiH (5) o-DFB 92 n.d. 

8 104 (10) LiH (5) mesitylene 140 50 

9 104 (10) LiH (5) DMF 140 n.d. 

10 105 (10) LiH (5) o-DCB 140 19 

11 105 (10) LiHMDS (1.5) o-DCB 140 n.d. 

* Yields determined by using 1,4-dioxane as an internal standard. 
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2.3 SUBSTRATE STUDY 

With the optimized conditions, we set out to explore the substrate scope. First, we 

tested various ring sizes. Similar to vinyl tosylate 101, the substrate with a non-substituted 

aryl nucleophile also gave the 8-membered ring product 106 in moderate yield (Scheme 2.3). 

A 9-membered ring was also formed under this system giving tetrahydroazonine 107 with a 

yield of 82%. However, 10-membered ring formation proved difficult, as hexahydroazecine 

108 was not observed under the reaction conditions. We also found that the sulfonamide 

could be replaced with other functional groups. For example, thioether 109 was obtained 

with a moderate yield of 46%, and medium-sized carbocycle 110 could be synthesized in 

81% yield. The 9-membered ring ether 111 could be produced in 65% yield with an electron-

rich arene as the nucleophile. Substitution effects on the aryl nucleophile were also studied. 

Phenyl groups with the dimethylamino and methoxy groups could give the 8-membered ring 

products with good yields (112 and 113). Notably, tert-butyldimethylsilyl (TBS) protected 

phenol was also tolerated under the reaction conditions as 79% yield of 114 was obtained. 

Unfortunately, when the strong electron-withdrawing group trifluoromethyl was present on 

the aryl group, product 115 was not formed. With a weak electron-withdrawing group, such 

as bromine, the medium-sized ring product 116 could be obtained smoothly in 79% yield. 

The electronic effect of the aryl ring vicinal to the vinyl tosylate in the starting material was 

also examined. With an electron-donating methoxy group, product 117 was formed with 78% 

yield. Conversely, product 118 was not obtained because the respective vinyl tosylate with 

an electron-withdrawing trifluoromethyl group had no reactivity, which could be due to the 

challenging ionization to the vinyl cation intermediate. Furthermore, heterocycles could also  
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Scheme 2.3 Scope of Li-WCA catalyzed medium-sized ring formation. 

 

be used in the reaction. Thiophene was tolerated, yielding the 8-membered ring product 119 

and 120 in 73% and 85% yield, respectively. The two aryl groups fused with the medium-

sized ring in the product were important to this cyclization. Product 121 could not be formed 
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when only one fused aryl ring was on the 8-membered ring. Reducing sp2 carbon in the 

medium-sized ring in 121 (4 sp2 carbon atoms instead of 5) might introduce more 

transannular strain and make the cyclization more challenging.7 To show the reaction is 

scalable, tetrahydroazocine 106 was synthesized with 66% yield on the scale of 1 mmol (0.4 

g). 

 

2.4 MECHANISTIC STUDY 

Scheme 2.4 Possible mechanistic pathways of the medium-sized ring formation. 
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Because forming medium-sized rings through direct cyclization is challenging, we 

decided to study the reaction mechanism further. Lithium-WCA catalysis systems employing 

[Li]+[B(C6F5)4]– have been demonstrated to ionize vinyl sulfonates to vinyl carbocations.22 

Here, we proposed three possible pathways in forming 8-membered ring 127 from the vinyl 

carbocation 122 (Scheme 2.4). Path 1 is a conventional Friedel–Crafts reaction of the vinyl 

carbocation where the medium-sized ring intermediate 123 is formed in one step. In Path 2, 

the vinyl carbocation reacts with the aromatic p-system at the ipso carbon to form a 7-

membered ring in 124, which often harbors less ring strain than the corresponding 8-

membered ring. A 1,2-shift of the alkyl group then occurs to expand the ring to give 

intermediate 123. Alternatively, in Path 3, a concerted insertion of the vinyl carbocation into 

an aryl C–H bond is operative, mechanistically analogous to the insertion of vinyl 

carbocations into alkyl C–H bonds.22–24 

In order to differentiate the potential mechanisms of Path 1 and Path 2, these 

proposed pathways were evaluated by density functional theory (DFT) calculations (Scheme 

2.5). INT1 can undergo the hypothetical Friedel–Crafts reaction via TS-m (16.3 kcal/mol) 

to form 8-membered ring INT2-m (Path 1). For the other putative mechanism shown in 

Path 2, INT1 goes through 7-membered ring formation via TS-p (15.7 kcal/mol) and 

subsequent 1,2-alkyl shift TS-R (9.4 kcal/mol). Potentially owing to ring strain and 

stabilization from oxonium resonance, arenium INT2-p is thermodynamically more stable 

than INT2-m. The alkyl shift of INT2-p is energetically feasible, given that the 

deprotonation step is not attainable from INT2-p. These calculations support the anisyl 

substituent (113, Scheme 2.3) proceeding through either Path 1 or Path 2 since DDG‡ is only 

0.6 kcal/mol. Because of the small energy difference between Path 1 and Path 2, we carried 
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out further computations to probe the influence of electronic effects (Scheme 2.6). Here, we 

found that the formation of 8-membered ring INT2-p’ originating from the electron-rich 

carbon para to methoxy group was considerably favorable relative to both Path 1 and Path 

2 from INT1, suggesting a strong electronic bias in INT1. 

Scheme 2.5 Computational investigation of the medium-sized ring formation via vinyl 

carbocations. 
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Scheme 2.6 Computational investigation of methoxy group position influence on the 

medium-sized ring formation. 

 

 

Therefore, vinyl tosylate 128 was designed to experimentally probe the influence of 
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Scheme 2.7 Experimental mechanistic study with branched vinyl tosylate precursors. 
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product-determining step would provide a larger ratio between 132-d5 and 132-d4. Overall, 
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2.5 CONCLUSION 

In conclusion, we have discovered a method to access medium-sized rings via vinyl 

carbocation intermediates. Vinyl tosylates are used as the precursor and ionized into vinyl 

carbocations under the Li-WCA catalysis system. It is followed by an intramolecular 

Friedel–Crafts reaction with aryl nucleophiles to form medium-sized rings. These 

discoveries further demonstrate the application of vinyl cations in chemical synthesis. 
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2.7 EXPERIMENTAL SECTION 

2.7.1 Materials and methods 

Unless otherwise stated, all reactions were performed in a VAC glovebox under 

nitrogen atmosphere with ≤ 3.0 ppm O2 levels. All glassware and stir-bars were dried in a 

160 °C oven for at least 12 hours and dried in vacuo before use. All liquid substrates were 

rigorously dried (over CaH2 or filtered through dry neutral aluminum oxide) before use. Ethyl 
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ether, tetrahydrofuran, dichloromethane, dimethylformamide, toluene, and hexanes were 

degassed and dried in a JC Meyer solvent system. Acetonitrile, triethylamine, and pyridine 

were distilled over CaH2. 1,2-dichlorobenzene was degassed and dried in a JC Meyer solvent 

system and stored inside the glovebox for benchtop Friedel-Crafts reactions. Solid substrates 

were dried over P2O5. [Li]+[B(C6F5)4]– salts were synthesized according to literature 

procedure.45 Thin layer chromatography (TLC) was performed using Millipore silica gel 60 

F254 pre-coated plates (0.25 mm) and visualized by UV fluorescence quenching. SiliaFlash 

P60 silica gel (230-400 mesh) was used for flash chromatography. NMR spectra were 

recorded on a Bruker AV-400 (1H, 13C), Bruker DRX-500 (1H, 13C), and Bruker AV-500 

(1H, 13C). 1H NMR spectra are reported relative to CDCl3 (7.26 ppm) unless noted otherwise. 

Data for 1H NMR spectra are as follows: chemical shift (ppm), multiplicity, coupling 

constant (Hz), and integration. Multiplicities are as follows: s = singlet, d = doublet, t = 

triplet, dd = doublet of doublet, dt = doublet of triplet, ddd = doublet of doublet of doublet, 

td = triplet of doublet, tt = triplet of triplet, quint = quintet, sept = septet, and m = multiplet. 

13C NMR spectra are reported relative to CDCl3 (77.0 ppm) unless noted otherwise. IR 

Spectra were record on a Perkin Elmer 100 spectrometer and are reported in terms of 

frequency absorption (cm-1). High resolution mass spectra (HR-MS) were recorded on a 

Waters (Micromass) GCT Premier spectrometer, a Waters (Micromass) LCT Premier, an 

Agilent GC EI-MS, and are reported as follows: m/z (% relative intensity). Purification by 

preparative HPLC was done on an Agilent 1200 series instrument with a reverse phase 

Alltima C18 (5m, 25 cm length, 1 cm internal diameter) column. Unless noted otherwise, 

aluminum dry bath heating blocks were used as the heating source for the reactions that 

require heating. 
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2.7.2 Preparation of vinyl tosylate substrates 

 

Representative scheme for the reaction between Grignard reagent and aryl nitrile.  

General procedure 1: Magnesium (3.0 equiv) was put into a flame-dried three-neck flask 

equipped with a condenser. THF (12.3 equiv) was then added into the flask. Alkyl bromide 

(1.0 equiv) was added slowly into the flask to keep the solution under gentle reflux. After the 

formation of the Grignard reagent, cooled the solution down to 0 °C and 2-aminobenzonitrile 

(3.0 equiv) in THF (36.9 equiv) was added dropwise. The reaction was run overnight. After 

this the reaction was quenched with water and concentrated hydrochloric acid to make the 

pH down to 1. Then it was extracted with ethyl ether three times. The combined organic 

phase was washed with saturated sodium bicarbonate solution and brine. It was dried with 

magnesium sulfate, filtered, and concentrated to give the crude product. The crude product 

was purified via flash column chromatography to give the product. 

 

(2-aminophenyl)(cyclohexyl)methanone (S2). 

Synthesized according to general procedure 1 starting from 2-aminobenzonitrile (3.00 g, 

0.0254 mol). Crude product was purified via flash column chromatography using 20% ethyl 

ether in hexanes to give the product as a yellow solid (2.51 g, 48.6% yield). 

1H NMR data matches previous report.25 
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1-(2-aminophenyl)-2-methylpropan-1-one (S3). 

Synthesized according to general procedure 1 starting from 2-aminobenzonitrile (4.00 g, 

0.0423 mol). Crude product was purified via flash column chromatography using 10% ethyl 

ether in hexanes to give the product as a yellow solid (5.45 g, 78.9% yield). 

1H NMR data matches previous report.26 

 

(2-aminophenyl)(cyclopentyl)methanone (S4). 

Synthesized according to general procedure 1 starting from 2-aminobenzonitrile (9.24 g, 

0.0783 mol). Crude product was purified via flash column chromatography using 10% ethyl 

ether in hexanes to give the product as a white solid (13.32 g, 88.8% yield). 

1H NMR data matches previous report.27 

 

Representative scheme for N-tosylation of anilines.  

General Procedure 2: To a round bottom flask was added aniline (1.0 equiv) followed by 

DCM (13.0 equiv) and pyridine (7.0 equiv). This was cooled to 0 °C and then tosyl chloride 

(1.42 equiv) was added. The reaction was warmed up to room temperature and stirred for 12 

hours. The reaction was diluted with additional DCM (15 equiv) and water. The layers were 

separated and the aqueous later was extracted twice more with DCM. The combined organics 

were washed 1M aqueous HCl, water, and brine in that order and the dried over magnesium 
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sulfate, filtered, and concentrated. The crude product was purified by flash column 

chromatography to give pure material as a white solid.  

 

N-(2-(cyclohexanecarbonyl)phenyl)-4-methylbenzenesulfonamide (S5).  

Synthesized according to general procedure 2 starting from the corresponding aniline S2 

(14.9 g, 0.0733 mol). Crude product was purified via flash column chromatography using 

20% ethyl acetate in hexanes to give sulfonamide S5 as a white solid (26.2 g, 80% yield).  

1H NMR data matches previous report.28 

 

N-(2-isobutyrylphenyl)-4-methylbenzenesulfonamide (S6).  

Synthesized according to general procedure 2 starting from the corresponding aniline S3 

(4.00 g, 0.0245 mol). Crude product was purified via flash column chromatography using 

30% ethyl acetate in hexanes to give sulfonamide S6 as a white solid (5.15 g, 66% yield).  

1H NMR data matches previous report.28 

 

N-(2-(cyclopentanecarbonyl)phenyl)-4-methylbenzenesulfonamide (S7). 

Synthesized according to general procedure 2 starting from the corresponding aniline S4 

(11.8 g, 0.0625 mol). Crude product was purified via flash column chromatography using 

20% ethyl acetate in hexanes to give sulfonamide S7 as a white solid (10.43 g, 48.59% yield).  
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1H NMR data matches previous report.29 

 

Representative scheme for N-alkylation of sulfonamides.  

General Procedure 3: To an oven dried 20 mL scintillation vial was added sulfonamide (1.0 

equiv) followed by DMF (13.0 equiv). To the solution was added and potassium carbonate 

(2.0 equiv) and alkyl iodide/bromide (2.0 equiv unless noted) under a stream of N2. The vial 

was sealed and heated to 100 °C for 24 h. The reaction mixture was cooled to rt, diluted with 

water and ether. The layers were separated, and the aqueous layer was extracted with ether 

(3x). The combined organics were washed with water (3x) and brine (1x) then dried over 

MgSO4, filtered, and concentrated to give crude product. The crude product was purified by 

flash column chromatography. 

 

Representative scheme for N-alkylation of sulfonamides.  

General Procedure 4 (KOtBu): The corresponding ketone (1 equiv) was dissolved in THF 

(36.9 equiv) and cooled to 0 °C. To this was added a solution of potassium tert-butoxide (1.5 

equiv) in THF (18.4 equiv). This was stirred 1.5 hours and then tosic anhydride (1.5 equiv) 

was added and the reaction was warmed up to rt. After 4 hours, the reaction mixture 

(generally a thick slurry) was diluted with ethyl acetate. This was washed with water (x1) 

and brine (x1) then dried over MgSO4, filtered, and concentrated to give crude vinyl tosylate. 

This was purified by flash column chromatography to give pure vinyl tosylate. 
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General Procedure 5 (LiHMDS/DMEA): Followed established literature procedure16. 

Inside a glovebox, LiHMDS (2.0 equiv) was dissolved in dry toluene (20.8 equiv) inside a 

round bottom flask which was then removed from the glovebox. To this was added distilled 

N,N-dimethylethylamine (DMEA, 2.0 equiv) and ketone (1.0 equiv) in dry toluene (9.4 

equiv). After stirring for 20 minutes, tosic anhydride (2.0 equiv) in DCM (39.0 equiv) was 

added and this was stirred for one hour at room temperature. The reaction was then diluted 

with diethyl ether and 0.25 M aqueous NaOH. The layers were separated and the aqueous 

was extracted with diethyl ether (x3). The combined organics were washed with brine, dried 

over MgSO4, filtered, and concentrated to give crude vinyl tosylate. This was purified by 

flash column chromatography to give pure vinyl tosylate. 

 

1-(2-bromoethyl)-2-chlorobenzene (S8). 

1-chloro-2-vinylbenzene (3.45 g, 3.15 mL, 25.0 mmol) in hexanes (112.5 mL) was stirred at 

0 °C and the air was bubbled through the solution for 1h. Hydrobromic acid in acetic acid 

(9.19 mL, 52.5 mmol, 33% w/V) was then added, and the reaction went in the closed flask 

for 20 min. The reaction solution was washed with saturated sodium bicarbonate solution 

and brine. Then it was dried with sodium sulfate and concentrated to give the crude product. 

The product was purified via flash column chromatography using hexanes to give the product 

as a colorless liquid (3.85 g, 70.2% yield).  

1H NMR data matches previous report.30 
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N-(2-chlorophenethyl)-N-(2-(cyclohexanecarbonyl)phenyl)-4-

methylbenzenesulfonamide (S9). 

Synthesized according to general procedure 3 starting from the corresponding sulfonamide 

S5 (0.54 g, 0.0015 mol) and 1-(2-bromoethyl)-2-chlorobenzene S8 (1.31 g, 0.00600 mol). 

Crude product was purified via flash column chromatography using 25% ethyl ether in 

hexanes to give sulfonamide S9 as a white powder (0.50 g, 67% yield). 

1H NMR (400 MHz, CDCl3) δ 7.59 (dd, J = 7.6, 1.8 Hz, 1H), 7.48 (d, J = 8.3 Hz, 2H), 7.39 

(ddd, J = 7.5, 7.5, 1.3 Hz, 1H), 7.33 (ddd, J = 7.8, 7.8, 1.8 Hz, 1H), 7.29 (m, 1H), 7.23 (d, J 

= 8.0 Hz, 2H), 7.17 (m, 3H), 6.78 (dd, J = 7.9, 1.2 Hz, 1H), 3.95 (m, 1H), 3.49 (m, 1H), 3.42 

(tt, J = 10.8, 3.4 Hz, 1H), 3.10 (m, 1H), 2.94 (m, 1H), 2.41 (s, 3H), 2.11 (m, 1H), 1.94-1.56 

(m, 5H), 1.46-1.22 (m, 4H). 

13C NMR (101 MHz, CDCl3) δ 206.8, 143.6, 141.8, 136.8, 136.0, 135.5, 134.2, 131.0, 130.6, 

129.5, 129.4, 129.3, 128.2, 128.1, 128.0, 127.0, 51.3, 49.3, 32.8, 29.2, 26.0, 25.9, 21.4. 

FTIR (Neat film NaCl): 3065, 2928, 2853, 1690, 1596, 1444, 1351, 1159, 1092, 580 

HR-MS (ESI-MS) m/z: [M+Na]+ Calc’d for C28H30ClNO3SNa 518.1533; Found 518.1528. 
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(2-((N-(2-chlorophenethyl)-4-

methylphenyl)sulfonamido)phenyl)(cyclohexylidene)methyl-4-

methylbenzenesulfonate (101). 

Synthesized according to general procedure 4 starting from the corresponding ketone S9 

(1.47 g, 2.96 mmol). Crude product was purified via flash column chromatography using 

benzene to give vinyl tosylate 101 as a white solid (0.66 g, 34% yield). 

*1H NMR had poor resolution at room temperature, so 1H NMRs are reported below at 70 

°C. 

1H NMR (500 MHz, CDCl3, 70 °C) δ 7.71 (d, J = 7.8 Hz, 2H), 7.57 (d, J = 7.8 Hz, 2H), 7.44 

(br s, 1H), 7.31 (m, 2H), 7.25 (m, 3H), 7.09 (m, 2H), 7.04 (d, J = 7.8 Hz, 3H), 6.97 (m, 1H), 

3.60 (m, 1H), 3.44 (m, 1H), 2.79 (m, 1H), 2.59 (m, 1H), 2.49 (m, 1H), 2.43 (s, 3H), 2.32 (m, 

1H), 2.26 (s, 3H), 2.10 (m, 2H), 1.68 (br s, 2H), 1.59 (br s, 2H), 1.51 (br s, 2H). 

13C NMR (126 MHz, CDCl3) δ 144.4, 143.4, 139.0, 136.8, 136.39, 136.36, 135.6, 134.5, 

134.1, 133.6, 130.9, 129.4, 129.3, 128.4, 128.0, 127.79, 127.76, 126.8, 50.8, 32.3, 30.6, 28.7, 

27.0, 26.7, 26.2, 21.4, 21.3. 

FTIR (Neat film NaCl): 3066, 2973, 2928, 2855, 1597, 1475, 1444, 1356, 1176, 1160, 656, 

571, 552. 

HR-MS (ESI-MS) m/z: [M+Na]+ Calc’d for C35H36ClNO5S2Na 672.1621; Found 672.1607. 

 

N-(2-isobutyrylphenyl)-4-methyl-N-(3-phenylpropyl)benzenesulfonamide (S10). 

Synthesized according to general procedure 3 starting from the corresponding sulfonamide 

S6 (2.00 g, 0.00630 mol) and (3-iodopropyl)benzene (2.32 g ,0.00945 mol). Crude product 
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was purified via flash column chromatography using 30% ether in hexanes to give 

sulfonamide S10 as a white solid (2.60 g, 95% yield).  

*NMR had poor resolution at room temperature, so NMRs are reported below at 70 °C. 

1H NMR (500 MHz, CDCl3, 70 °C) δ 7.55 (d, J = 7.5 Hz, 1H), 7.49 (s, 2H), 7.35 (t, J = 7.5 

Hz, 1H), 7.30 (t, J = 7.6 Hz, 1H), 7.23 (d, J = 7.6 Hz, 4H), 7.15 (t, J = 7.4 Hz, 1H), 7.09 

(d, J = 7.3 Hz, 2H), 6.79 (s, 1H), 3.64 – 3.55 (m, 3H), 2.59 (t, J = 7.5 Hz, 2H), 2.41 (s, 3H), 

1.98 – 1.85 (m, 2H), 1.24 (s, 3H), 1.23 (s, 3H). 

13C NMR (126 MHz, CDCl3, 70 °C) δ 207.4, 143.5, 141.7, 141.0, 137.2, 135.8, 130.5, 

129.3, 129.2, 128.3, 128.2, 128.0, 127.9, 125.9, 51.6, 39.3, 33.1, 29.5, 21.3, 18.8. 

 FTIR (Neat film NaCl): 3063, 3027, 2971, 2932, 2871, 1694, 1596, 1348, 1161, 980, 700, 

658, 576. 

HR-MS (CI-MS) m/z: [M+H]+ Calc’d for C26H30NO3S 436.1946; Found 436.1946. 

 

2-methyl-1-(2-((4-methyl-N-(3-phenylpropyl)phenyl)sulfonamido)phenyl)prop-1-en-1-

yl-4-methylbenzenesulfonate (S11). 

Synthesized according to general procedure 4 starting from the corresponding ketone S10 

(2.60 g, 0.00597 mol). Crude product was purified via flash column chromatography using 

25% diethyl ether in hexanes to give vinyl tosylate S11 as a yellow solid (1.10 g, 31% yield).  

1H NMR (400 MHz, CDCl3) δ 7.53 (app d, J = 8.2 Hz, 4H), 7.40 (s, 1H), 7.31 – 7.21 (m, 

6H), 7.20 – 7.15 (m, 1H), 7.12 (d, J = 8.1 Hz, 2H), 7.03 (d, J = 6.9 Hz, 2H), 6.92 (s, 1H), 

3.41 – 3.18 (m, 2H), 2.42 (s, 3H), 2.36 (t, J = 7.6 Hz, 2H), 2.33 (s, 3H), 1.80 (s, 3H), 1.76 

– 1.65 (m, 2H), 1.60 (s, 3H). 
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 13C NMR (101 MHz, CDCl3) δ 144. 5, 143.3, 140.9, 138.9, 138.0, 136.4, 134.1, 133.6, 

129.9, 129.6, 129.3, 129.28, 129.26, 128.23, 128.21, 127.96, 127.91, 127.7, 125.8, 51.0, 

32.9, 29.1, 21.5, 21.4, 20.3, 18.6. 

 FTIR (Neat film NaCl): 3063, 3027, 2971, 2932, 2871, 1694, 1596, 1495, 1348, 1161, 980, 

700, 658, 576. 

HR-MS (ESI-MS) m/z: [M+H]+ Calc’d for C33H36NO5S2 590.2035; Found 590.2061. 

 

 

1-(2-fluorophenyl)-2-methylpropan-1-one (S12). 

Magnesium (0.602 g, 24.8 mmol) was put into a flame-dried three-neck flask equipped with 

a condenser. THF (24 mL) was then added into the flask. 2-bromopropane (3.02 g, 2.33 mL, 

24.8 mmol) was added slowly into the flask to keep the solution under gentle reflux. After 

the formation of the Grignard reagent, cooled the solution down to 0 °C and 2-

fluorobenzonitrile (2.21 g, 20.6 mmol) in THF (20 mL) was added dropwise. The reaction 

was run overnight. After this the reaction was quenched with water and concentrated 

hydrochloric acid to make the pH down to 1. Then it was extracted with ethyl ether three 

times. The combined organic phase was washed with saturated sodium bicarbonate solution 

and brine. It was dried with magnesium sulfate, filtered, and concentrated to give the crude 

product. The crude product was purified via flash column chromatography using 2% ethyl 

acetate in hexanes to give the product as an oil (1.35 g, 39.3% yield). 
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1H NMR data matches previous report.31 

 

2-methyl-1-(2-(phenethylthio)phenyl)propan-1-one (S13). 

2-phenylethane-1-thiol (1.96 g, 1.91 mL, 14.2 mmol), 1-(2-fluorophenyl)-2-methylpropan-

1-one (S12) (1.18 g, 7.10 mmol), sodium carbonate (3.01 g, 28.4 mmol), and DMF (7 mL) 

was added to a flask. The solution was heated at 100 °C in the silicone oil bath overnight. 

After this, ethyl acetate and water was added into the solution. After the separation, the 

organic phase was washed with water three times and then washed with brine. The organic 

phase was dried with sodium sulfate and concentrated to give the crude product. The crude 

product was purified with flash column chromatography with 2% ethyl acetate in hexanes to 

give the product S13 as a pale-yellow oil (0.53 g, 26% yield). 

1H NMR (400 MHz, CDCl3) δ 7.61 (d, J = 7.7 Hz, 1H), 7.41 (m, 2H), 7.30 (m, 2H), 7.22 (m, 

4H), 3.44 (sept, J = 6.8 Hz, 1H), 3.15 (m, 2H), 2.94 (m, 2H), 1.20 (d, J = 6.9 Hz, 6H). 

13C NMR (101 MHz, CDCl3) δ 207.3, 140.3, 138.3, 137.9, 131.2, 128.9, 128.6, 128.5, 128.1, 

126.5, 124.8, 38.2, 35.0, 34.9, 18.8. 

FTIR (Neat film NaCl): 3061, 3027, 2969, 2930, 2870, 1691, 1585, 1454, 1431, 1214, 1075, 

974, 738, 697. 

HR-MS (CI-MS) m/z: [M+H]+ Calc’d for C18H21OS 285.1313; Found 285.1323. 

 

2-methyl-1-(2-(phenethylthio)phenyl)prop-1-en-1-yl 4-methylbenzenesulfonate (S14). 
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Synthesized according to general procedure 5 starting from the corresponding ketone S13 

(0.34 g, 0.0012 mol). Crude product was purified via flash column chromatography using 

40% ether in hexanes to give vinyl tosylate S14 as a pale yellow oil (0.29 g, 55% yield). 

1H NMR (400 MHz, CDCl3) δ 7.46 (d, J = 8.4 Hz, 2H), 7.29 (m, 2H), 7.23 (m, 2H), 7.16 (m, 

3H), 7.07 (m, 2H), 7.02 (d, J = 7.7 Hz, 2H), 2.97 (m, 2H), 2.79 (m, 2H), 2.29 (s, 3H), 1.92 

(s, 3H), 1.60 (s, 3H). 

13C NMR (101 MHz, CDCl3) δ 143.9, 140.3, 139.6, 137.7, 134.4, 133.5, 132.6, 129.1, 129.0, 

128.6, 128.4, 128.2, 127.8, 127.3, 126.5, 124.8, 35.4, 34.2, 21.5, 19.9, 18.4. 

FTIR (Neat film NaCl): 3062, 3032, 2918, 2856, 1598, 1496, 1454, 1364, 1176, 1086, 1071, 

990, 823, 809, 792. 

HR-MS (ESI-MS) m/z: [M+Na]+ Calc’d for C25H26O3S2Na 461.1221; Found 461.1209. 

 

N-(2-isobutyrylphenyl)-4-methyl-N-phenethylbenzenesulfonamide (S15). 

Synthesized according to general procedure 3 starting from the corresponding sulfonamide 

S6 (2.00 g, 0.0063 mol) and (2-iodoethyl)benzene (2.19 g. 0.00945 mol). Crude product was 

purified via flash column chromatography using 30% ether in hexanes to give sulfonamide 

S15 as a white solid (1.70 g, 64% yield).  

*NMR had poor resolution at room temperature, so NMRs are reported below at 70 °C. 

1H NMR (500 MHz, CDCl3, 70 °C) δ 7.58 (d, J = 7.6 Hz, 1H), 7.53 (d, J = 7.8 Hz, 2H), 

7.37 (t, J = 7.5 Hz, 1H), 7.33 (t, J = 7.7 Hz, 1H), 7.23 (d, J = 7.3 Hz, 4H), 7.17 (d, J = 7.3 

Hz, 1H), 7.09 (d, J = 7.4 Hz, 2H), 6.85 (d, J = 7.7 Hz, 1H), 3.82 (s, 2H), 3.58 (sept, J = 6.9 

Hz, 1H), 2.90 (s, 2H), 2.40 (s, 3H), 1.24 (s, 3H), 1.23 (s, 3H). 
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 13C NMR (126 MHz, CDCl3, 70 °C) δ 207.2, 143.6, 141.6, 138.2, 137.0, 135.7, 130.6, 

129.3, 129.2, 128.5, 128.4, 128.0, 127.9, 126.4, 53.3, 39.2, 34.8, 31.4, 18.8. 

FTIR (Neat film NaCl): 2924, 1693, 1596, 1455, 1349, 1163, 1093, 1056, 1033, 1017, 815, 

688, 579. 

HR-MS (CI-MS) m/z: [M+H]+ Calc’d for C25H28NO3S 422.1790; Found 422.1790. 

 
2-methyl-1-(2-((4-methyl-N-phenethylphenyl)sulfonamido)phenyl)prop-1-en-1-yl-4-

methylbenzenesulfonate (S16). 

Synthesized according to general procedure 4 starting from the corresponding ketone S15 

(1.70 g, 0.00403 mol). Crude product was purified via flash column chromatography using 

25% diethyl ether in hexanes to give vinyl tosylate S16 as a yellow solid (0.76 g, 33% yield).  

1H NMR (400 MHz, CDCl3) δ 7.65 – 7.59 (m, 2H), 7.56 (d, J = 8.0 Hz, 2H), 7.51 – 7.44 (m, 

1H), 7.38 – 7.29 (m, 2H), 7.29 – 7.23 (m, 2H), 7.23 – 7.14 (m, 3H), 7.07 (d, J = 8.1 Hz, 2H), 

6.93 (d, J = 6.5 Hz, 3H), 3.60 (d, J = 10.9 Hz, 1H), 3.36 (td, J = 13.0, 4.9 Hz, 1H), 2.73 (td, 

J = 12.7, 5.3 Hz, 1H), 2.48 (td, J = 12.7, 4.8 Hz, 1H), 2.42 (s, 3H), 2.29 (s, 3H), 1.81 (s, 3H), 

1.65 (s, 3H). 

13C NMR (101 MHz, CDCl3) δ 144.5, 143.5, 139.0, 138.5, 137.9, 136.1, 134.1, 133.8, 130.2, 

129.5, 129.4, 129.1, 128.6, 128.3, 128.2, 127.9, 126.3, 53.1, 34.5, 21.6, 21.5, 20.4, 18.69. 

FTIR (Neat film NaCl): 3064, 3028, 2921, 1598, 1487, 1446, 1352, 1305, 1190, 1177, 1161, 

1093, 1083, 814.  

HR-MS (ESI-MS) m/z: [M+Na]+ Calc’d for C32H33NO5S2Na 598.1698; Found 598.1689. 
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2-isobutyrylphenyl trifluoromethanesulfonate (S17). 

1-(2-Hydroxyphenyl)-2-methylpropan-1-one (9.60 g, 58.5 mmol, 1.0 equiv) was dissolved 

in pyridine (56.9 g, 58.0 mL, 720 mmol, 12.0 equiv) and cooled to 0 °C. Triflic anhydride 

(19.8 g, 70.2 mmol, 1.2 equiv) was added dropwise. The reaction was warmed up to rt and 

stirred for 12h. Ethyl acetate (150 mL) was added to the reaction it was washed with aqueous 

1M CuSO4 (50 mL x 4) and brine (100 mL x 1). The organic layer was dried over MgSO4, 

filtered and concentrated to give crude aryl triflate. Crude material was purified by silica 

flash column chromatography using 5% ethyl acetate in hexanes to give pure aryl triflate as 

yellow oil S17 (12.9 g, 75% yield). Spectral data match those reported in the literature.32 

 
2-methyl-1-(2-(3-phenylprop-1-yn-1-yl)phenyl)propan-1-one (S18). 

Ph(PPh3)2Cl2 (237 mg, 0.337 mmol) and CuI (64.2 mg, 0.337 mmol) were added into a 

flame-dried Schlenk flask. Triethylamine (46 mL) and 2-isobutyrylphenyl 

trifluoromethanesulfonates (S17) (2.00 g, 6.74 mmol) were then added under nitrogen 
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atmosphere. And at last prop-2-yn-1-ylbenzene (2.34 g, 2.52 mL, 20.2 mmol) was added and 

the reaction was heated at 70 °C in the silicone oil bath overnight. The reaction was cooled 

down to room temperature and quenched with saturated ammonium chloride solution. The 

mixture was extracted with ethyl acetate three times, and the combined organic phase was 

washed with water two times and brine. It was dried with magnesium sulfate, filtered, and 

concentrated to give the crude product. The crude product was purified via flash column 

chromatography using 10% ethyl ether in hexanes to give the product S18 as an oil (0.62 g, 

35% yield). 

1H NMR (400 MHz, CDCl3) δ 7.51 (dd, J = 7.5, 1.4 Hz, 1H), 7.46 (dd, J = 7.5, 1.4 Hz, 1H), 

7.37 (m, 6H), 7.26 (tt, J = 7.8, 1.6 Hz, 1H), 3.85 (s, 2H), 3.62 (sept, J = 6.9 Hz, 1H), 1.12 (d, 

J = 6.8 Hz, 6H). 

13C NMR (101 MHz, CDCl3) δ 208.9, 142.2, 136.3, 133.5, 130.2, 128.6, 128.0, 127.8, 127.6, 

126.8, 121.2, 92.7, 81.0, 39.1, 26.0, 18.5. 

FTIR (Neat film NaCl): 3386, 3063, 3030, 2972, 2932, 2873, 2199, 1768, 1690, 1593, 1454, 

1214, 980, 757, 698. 

HR-MS (ESI-MS) m/z: [M+Na]+ Calc’d for C19H18ONa 285.1255; Found 285.1243. 

 

2-methyl-1-(2-(3-phenylpropyl)phenyl)propan-1-one (S19). 

Alkyne S18 (0.750 g, 2.86 mmol) was dissolved in ethanol (50 mL). Pd/C (0.103 g, 0.0972 

mmol, 10% Pd) was then added. Hydrogen gas was blown into the solution for a while and 

the reaction was run under hydrogen atmosphere (1 atm) overnight. The reaction solution 

was filtered through celite and concentrated to give the crude product. The crude product 
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was purified by flash chromatography with 4% ether in hexanes to give the product S19 (0.63 

g, 83% yield). 

1H NMR (400 MHz, CDCl3) δ 7.48 (d, J = 7.8 Hz, 1H), 7.36 (t, J = 7.0 Hz, 1H), 7.31-7.21 

(m, 4H), 7.21-7.14 (m, 3H), 3.30 (sept, J = 6.9 Hz, 1H), 2.76 (m, 2H), 2.68 (t, J = 7.8 Hz, 

2H), 1.93 (m, 2H), 1.16 (d, J = 6.9 Hz, 6H). 

13C NMR (101 MHz, CDCl3) δ 209.6, 142.3, 141.7, 138.8, 130.7, 130.5, 128.5, 128.3, 127.4, 

125.8, 125.7, 39.1, 35.9, 33.5, 33.4, 18.7. 

FTIR (Neat film NaCl): 3062, 3026, 2969, 2931, 2869, 1686, 1454, 1221, 976, 745, 633. 

HR-MS (ESI-MS) m/z: [M+H]+ Calc’d for C19H23O 267.1749; Found 267.1750. 

 

2-methyl-1-(2-(3-phenylpropyl)phenyl)prop-1-en-1-yl 4-methylbenzenesulfonate (S20). 

Synthesized according to general procedure 5 starting from the corresponding ketone S19 

(0.64 g, 0.0024 mol). Crude product was purified via flash column chromatography using 

20% ethyl acetate in hexanes to give vinyl tosylate S20 as a white solid (0.32 g, 32% yield). 

1H NMR (400 MHz, CDCl3) δ 7.33 (d, J = 8.4 Hz, 2H), 7.27 (t, J = 7.4 Hz, 2H), 7.19 (m, 

2H), 7.15 (m, 1H), 7.11 (d, J = 6.8 Hz, 2H), 7.07 (t, J = 7.4 Hz, 1H), 6.98 (d, J = 8.2 Hz, 2H), 

6.97 (t, J = 6.2 Hz, 1H), 2.57 (m, 1H), 2.53 (t, J = 7.7 Hz, 2H), 2.34 (m, 1H), 2.29 (s, 3H), 

1.93 (s, 3H), 1.68 (quint, J = 8.0 Hz, 2H), 1.57 (s, 3H). 

13C NMR (101 MHz, CDCl3) δ 143.9, 142.3, 142.0, 140.9, 134.5, 132.6, 132.3, 129.1, 128.8, 

128.4, 128.3, 127.6, 127.0, 125.7, 125.2, 35.7, 32.6, 32.0, 21.5, 19.9, 18.4. 

FTIR (Neat film NaCl): 3065, 3026, 2922, 2859, 1599, 1496, 1453, 1367, 1081, 990, 823, 

810. 
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HR-MS (ESI-MS) m/z: [M+Na]+ Calc’d for C26H28O3SNa 443.1657; Found 443.1649. 

 

2-(4-(dimethylamino)phenyl)ethan-1-ol (S21). 

2-(4-aminophenyl)ethan-1-ol (2.06 g, 15.0 mmol) in acetonitrile (150 mL) was added 

formaldehyde (37% in water, 11.2 mL, 150 mmol), sodium cyanoborohydride (2.83 g, 45.0 

mmol), and acetic acid (0.987 mL, 17.2 mmol). After 3 h, the reaction was basified to pH 7-

8 with saturated sodium bicarbonate solution. The mixture was extracted with ethyl acetate 

three times. The combined organic phase was washed with brine, dried with magnesium 

sulfate, and concentrated to give the crude product. The crude product was purified via flash 

column chromatography using 20% methanol in ethyl ether with 5% triethylamine to give 

the product S21 as yellow oil (2.43 g, 98.0% yield). 

1H NMR data matches previous report.33 

 
4-(2-bromoethyl)-N,N-dimethylaniline (S22). 

2-(4-(dimethylamino)phenyl)ethan-1-ol S21 (1.65 g, 10.0 mmol) and carbon tetrabromide 

(4.97 g, 15.0 mmmol) were dissolved in DCM (30 mL). It was cooled to 0 °C, and a solution 

of triphenylphosphine (2.62 g, 10.0 mmol) in DCM (20 mL) was added into it. The reaction 

was warmed to room temperature and run overnight. It was washed with water, and after 

separation the aqueous phase was extracted with DCM two times. The combined organic 

phase was dried with magnesium sulfate and then filtered. It was concentrated to give the 

crude product. The crude product was purified via flash column chromatography using 11% 
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ethyl ether in hexanes with 5% triethylamine to give bromide S22 as white solid (1.10 g, 

48.2% yield). 

1H NMR data matches previous report.34 

 
N-(2-(cyclohexanecarbonyl)phenyl)-N-(4-(dimethylamino)phenethyl)-4-

methylbenzene sulfonamide (S23). 

Synthesized according to general procedure 3 starting from the corresponding sulfonamide 

S5 (0.86 g, 0.0024 mol) and 4-(2-bromoethyl)-N,N-dimethylaniline S22 (1.09 g, 0.00482 

mol). Crude product was purified via flash column chromatography using 20% ethyl acetate 

in hexanes to give sulfonamide S23 as a white powder (0.50 g, 41% yield). 

*NMR had poor resolution at room temperature, so 1H NMR is reported below at 60 °C. 

1H NMR (500 MHz, CDCl3, 60 °C) δ 7.56 (d, J = 7.6 Hz, 1H), 7.52 (d, J = 8.0 Hz, 2H), 7.36 

(dd, J = 7.4, 7.4 Hz, 1H), 7.32 (dd, J = 7.8, 7.8 Hz, 1H), 7.23 (d, J = 8.0 Hz, 2H), 6.96 (d, J 

= 8.2 Hz, 2H), 6.80 (d, J = 7.9 Hz, 1H), 6.66 (d, J = 8.1 Hz, 2H), 3.73 (br s, 2H), 3.40 (tt, J 

= 11.2, 3.4 Hz, 1H), 2.90 (s, 6H), 2.77 (m, 2H), 2.41 (s, 3H), 2.01 (br s, 2H), 1.83 (d, J = 12.6 

Hz, 2H), 1.70 (d, J = 12.5 Hz, 1H), 1.46 (br s, 2H), 1.37 (m, 2H), 1.28 (m, 1H). 

13C NMR (126 MHz, CDCl3) δ 207.4, 149.4, 143.7, 141.9, 136.8, 134.7, 130.7, 129.7, 129.4, 

129.4, 128.5, 128.1, 128.1, 127.1, 113.0, 53.4, 49.2, 40.8, 33.8, 29.7, 28.6, 26.0, 21.6. 

FTIR (Neat film NaCl): 2925, 2854, 1691, 1522, 1350, 1163, 1033, 577. 

HR-MS (ESI-MS) m/z: [M+Na]+ Calc’d for C30H36N2O3SNa 527.2344; Found 527.2333. 
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cyclohexylidene(2-((N-(4-(dimethylamino)phenethyl)-4-

methylphenyl)sulfonamido)phenyl) methyl 4-methylbenzenesulfonate (S24). 

Synthesized according to general procedure 5 starting from the corresponding ketone S23 

(0.34 g, 0.00067 mol). Crude product was purified via flash column chromatography using 

50% ether in hexanes with 5% triethylamine to give vinyl tosylate S24 as a white solid (0.18 

g, 41% yield). 

*NMR had poor resolution at room temperature, so 1H NMR is reported below at 70 °C. 

1H NMR (500 MHz, CDCl3, 70 °C) δ 7.69 (d, J = 7.7 Hz, 2H), 7.57 (d, J = 7.8 Hz, 2H), 7.43 

(br s, 1H), 7.29 (m, 2H), 7.26 (d, J = 7.6 Hz, 2H), 7.08 (d, J = 7.9 Hz, 2H), 6.98 (d, J = 6.6 

Hz, 1H), 6.79 (d, J = 8.0 Hz, 2H), 6.62 (d, J = 8.0 Hz, 2H), 3.56 (m, 1H), 3.39 (m, 1H), 2.90 

(s, 6H), 2.61 (m, 1H), 2.49 (m, 1H), 2.43 (s, 3H), 2.40 (m, 1H), 2.31 (s, 3H), 2.28 (m, 1H), 

2.11 (m, 1H), 2.04 (m, 1H), 1.69 (br s, 2H), 1.59 (br s, 2H), 1.50 (m, 2H). 

13C NMR (126 MHz, CDCl3) δ 149.3, 144.2, 143.4, 139.2, 136.7, 136.2, 135.5, 134.2, 133.6, 

129.4, 129.4, 129.4, 129.3, 128.7, 128.3, 128.1, 127.8, 126.4, 125.5, 112.8, 53.2, 40.8, 33.4, 

30.6,  28.7, 27.0, 26.7, 26.2, 21.6, 21.6. 

FTIR (Neat film NaCl): 3032, 2929, 2857, 1616, 1597, 1522, 1445, 1352, 1188, 1176, 1161, 

1093, 807, 789, 572, 555. 

HR-MS (ESI-MS) m/z: [M+H]+ Calc’d for C37H43N2O5S2 659.2614; Found 659.2619. 
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1-(2-iodoethyl)-4-methoxybenzene (S25). 

Iodine (3.96 g, 15.6 mmol) and triphenylphosphine (4.09g, 15.6 mmol) was added to DCM 

(24 mL). To the solution was added imidazole (1.15 g, 16.9 mmol) in DCM (10 mL) and 

stirred together for 15 min. Then the alcohol (1.98 g, 13.0 mmol) in DCM (5 mL) was added 

and it was stirred overnight. The reaction was washed with sodium thiosulfate solution, and 

the organic phase was dried with magnesium sulfate and filtered. The solution was then 

concentrated to give the crude product. The crude product was purified by flash column 

chromatography using 5% ethyl ether in hexanes to give the product as a white solid (3.15 g, 

92.5% yield). 

1H NMR data matches previous report.35 

 

N-(2-(cyclohexanecarbonyl)phenyl)-N-(4-methoxyphenethyl)-4-

methylbenzenesulfonamide (S26). 

Synthesized according to general procedure 3 starting from the corresponding sulfonamide 

S5 (1.02 g, 0.00286 mol) and 1-(2-iodoethyl)-4-methoxybenzene S25 (1.50 g, 0.00572 mol). 

Crude product was purified via flash column chromatography using 40% ether in hexanes to 

give sulfonamide S26 as a white powder (1.22 g, 86.7% yield). 

*NMR had poor resolution at room temperature, so NMRs are reported below at 70 °C. 
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1H NMR (500 MHz, CDCl3, 70 °C) δ 7.54 (m, 3H), 7.37 (t, J = 7.4 Hz, 1H), 7.32 (t, J = 7.8 

Hz, 1H), 7.24 (d, J = 7.8 Hz, 2H), 6.99 (d, J = 7.4 Hz, 2H), 6.82 (d, J = 8.1 Hz, 1H), 6.78 (d, 

J = 6.9 Hz, 2H), 3.76 (s, 3H), 3.75 (br s, 2H), 3.36 (m, 1H), 2.81 (br s, 2H), 2.41 (s, 3H), 2.01 

(br s, 2H), 1.83 (m, 2H), 1.69 (m, 1H), 1.36 (m, 5H). 

13C NMR (126 MHz, CDCl3, 70 °C) δ 206.6, 158.4, 143.4, 141.9, 136.9, 136.0, 130.3, 129.4, 

129.2, 129.1, 128.3, 127.9, 127.8, 114.1, 55.1, 53.6, 49.2, 33.9, 29.0, 25.9, 25.7, 21.2. 

FTIR (Neat film NaCl): 3032, 2930, 2853, 1691, 1513, 1350, 1248, 1162, 578 

HR-MS (ESI-MS) m/z: [M+H]+ Calc’d for C29H34NO4S 492.2209; Found 492.2229. 

 

cyclohexylidene(2-((N-(4-methoxyphenethyl)-4-

methylphenyl)sulfonamido)phenyl)methyl 4-methylbenzenesulfonate (S27). 

Synthesized according to general procedure 5 starting from the corresponding ketone S26 

(0.58 g, 0.0012 mol). Crude product was purified via flash column chromatography using 

40% ether in hexanes to give vinyl tosylate S27 as a white solid (0.43 g, 56% yield). 

*NMR had poor resolution at room temperature, so NMRs are reported below at 50 °C. 

1H NMR (500 MHz, CDCl3, 50 °C) δ 7.67 (d, J = 7.9 Hz, 2H), 7.57 (d, J = 8.2 Hz, 2H), 7.43 

(br s, 1H), 7.31 (m, 2H), 7.26 (d, J = 6.6 Hz, 2H), 7.09 (d, J = 8.0 Hz, 2H), 6.96 (br s, 1H), 

6.83 (d, J = 8.6 Hz, 2H), 6.74 (d, J = 8.6 Hz, 2H), 3.76 (s, 3H), 3.59 (ddd, J = 13.2, 5.5, 5.5 

Hz, 1H), 3.38 (ddd, J = 12.2, 5.0, 5.0 Hz, 1H), 2.66 (ddd, J = 12.8, 5.4, 5.4 Hz, 1H), 2.44 (m, 
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2H), 2.43 (s, 3H), 2.31 (s, 3H), 2.29 (m, 1H), 2.12 (m, 1H), 2.03 (m, 1H), 1.67 (m, 2H), 1.54 

(m, 4H). 

13C NMR (126 MHz, CDCl3, 50 °C) δ 158.1, 144.2, 143.2, 139.2, 136.6, 136.5, 135.5, 134.4, 

133.5, 130.5, 129.4, 129.3, 129.2, 129.1, 128.1, 127.9, 127.6, 113.8, 55.1, 53.0, 33.5, 30.4, 

28.5, 26.8, 26.6, 26.1, 21.3, 21.2. 

FTIR (Neat film NaCl): 3029, 2971, 2928, 2855, 1611, 1597, 1512, 1364, 1175, 1157, 788, 

656, 570, 552. 

HR-MS (ESI-MS) m/z: [M+Na]+ Calc’d for C36H39NO6S2Na 668.2117; Found 668.2093. 

 

 

(4-bromophenoxy)(tert-butyl)dimethylsilane (S28). 

In the DCM (50mL) solution of the 4-bromophenol (9.94 g, 57.8 mmol) and triethylamine 

(7.26 g, 71.7 mmol) was added the DCM (50mL) solution of tert-butyldimethylsilyl chloride 

(13.0 g, 86.7 mmol). After a day, the reaction was done. It was then diluted and washed with 

water 2 times until the aqueous phase was strongly acidic. The organic phase was then 
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washed with sat. NaHCO3, dried with MgSO4, filtered, and concentrated in vacuo. The crude 

product was purified by column chromatography with 2.4% diethyl ether in hexanes as a 

colorless liquid (15.95g, 96.1% yield).  

1H NMR matches previous report.36 

 
2-(4-((tert-butyldimethylsilyl)oxy)phenyl)ethan-1-ol (S29). 

In a 3-neck flask equipped with a condenser was added S28 (5.40 g, 18.8 mmol) and THF 

(38 mL). The solution was cooled down to –78°C. n-BuLi (2.06 M in hexanes, 10.0 mL, 20.7 

mmol) was added dropwise, and the reaction was left at –78°C for 30 min after the addition. 

Then ethylene oxide (2.5 M in THF, 15.0 mL, 37.6 mmol) was added dropwise at –78°C. 

The reaction was warmed to 0°C for 30 min, and then it was heated at 40°C for 30 min, 

which was followed by reflux for 1 h. After the reaction was complete, the solution was 

concentrated in vacuo and then diluted with DCM and washed with 1M HCl (40 mL). The 

aqueous phase was extracted with DCM 2 times. The combined organic phase was washed 

with sat. NaHCO3 and brine, dried with MgSO4, filtered, and concentrated in vacuo. The 

crude product was purified by column chromatography with 50% hexanes and 50% diethyl 

ether to give the product S29 as a pale-yellow oil (1.72 g, 36.2% yield). 

1H NMR matches previous report.36 

 

(4-(2-bromoethyl)phenoxy)(tert-butyl)dimethylsilane (S30). 
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S29 (1.72 g, 6.81 mmol) was dissolved in DCM (17 mL) and the solution was cooled down 

to 0°C. After 10 min, triphenylphosphine (2.14 g, 8.18 mmol) and N-bromosuccinimide (1.46 

g, 8.18 mmol) was added into the solution. After 4 hours, the reaction was complete and 

quenched by sat. NaHCO3. The solution was extracted with DCM 3 times. The combined 

organic phase was washed with brine, dried with MgSO4, filtered, and concentrated in vacuo. 

The crude product was purified by column chromatography with 2.4% diethyl ether in 

hexanes to give the product S30 as a colorless liquid (1.67 g, 77.7% yield). 

1H NMR (400 MHz, CDCl3) δ 7.06 (d, J = 8.6 Hz, 2H), 6.78 (d, J = 8.5 Hz, 2H), 3.52 (t, J = 

7.8 Hz, 2H), 3.09 (t, J = 7.8 Hz, 2H),  0.98 (s, 9H), 0.19 (s, 6H). 

13C NMR (101 MHz, CDCl3) δ 153.5, 130.6, 128.6, 119.1, 37.7, 32.3, 24.6, 17.2, –5.5. 

FTIR (Neat film NaCl): 2956, 2929, 2857, 1608, 1508, 1471, 1463, 1252, 911, 837, 779. 

HR-MS (CI-MS) m/z: [M]+ Calc’d for C14H23OSiBr 314.0701; Found 314.0708. 

 
N-(4-hydroxyphenethyl)-N-(2-isobutyrylphenyl)-4-methylbenzenesulfonamide (S31). 

Synthesized according to general procedure 3 starting from the corresponding sulfonamide 

S6 (1.26 g, 0.00396 mol) and (4-(2-bromoethyl)phenoxy)(tert-butyl)dimethylsilane S30 

(1.49 g, 0.00476 mol). Crude product was purified via flash column chromatography using 

25% acetone in hexanes to give sulfonamide S31 as a white powder (0.63 g, 36% yield). 

1H NMR (400 MHz, CDCl3) δ 7.59 (dd, J = 7.6, 1.8 Hz, 1H), 7.46 (d, J = 8.1 Hz, 2H), 7.40 

(td, J = 7.5, 1.3 Hz, 1H), 7.34 (td, J = 7.6, 1.8 Hz, 1H), 7.23 (d, J = 8.0 Hz, 2H), 6.96 (d, J = 

8.1Hz, 2H), 6.77 – 6.70 (m, 3H), 3.95 (br, 1H), 3.66 (hepta, J = 6.9 Hz, 1H), 3.46 (br, 1H), 

2.88 (br, 1H), 2.62 (br, 1H), 2.41 (s, 3H), 1.36 – 1.06 (m, 6H). 
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13C NMR (101 MHz, CDCl3) δ 207.3, 153.3, 142.8, 140.5, 135.7, 133.7, 129.8, 129.0, 128.8, 

128.7, 128.5, 127.2, 127.0, 126.4, 114.4, 52.2, 38.2, 32.8, 20.5, 18.2 (br), 17.6 (br) 

FTIR (Neat film NaCl): 3377, 2973, 2931, 2871, 1690, 1614, 1595, 1516, 1444, 1347, 1214, 

1159, 1090, 981, 815, 657, 577. 

HR-MS (ESI-MS) m/z: [M+Na]+ Calc’d for C25H27NO4SNa 460.1535; Found 460.1558. 

 
N-(4-((tert-butyldimethylsilyl)oxy)phenethyl)-N-(2-isobutyrylphenyl)-4-

methylbenzenesulfonamide (S32). 

S31 (0.51 g, 1.2 mmol) and triethylamine (0.16 mL, 1.2 mmol) were added in DCM (6 mL). 

Tert-butyldimethylsilyl chloride (0.18 g, 1.2 mmol) was also dissolved in DCM (6 mL) and 

the solution was added into the first solution slowly. Reaction was monitored by TLC and 

additional tert-butyldimethylsilyl chloride (0.09 g, 0.6 mmol) and triethylamine (0.08 mL, 

0.6 mmol) were added each time until S31 was completely consumed. The reaction was then 

diluted with DCM, washed with 1M HCl, saturated NaHCO3 solution, and brine in order. 

The organic phase was dried with MgSO4, filtered, and concentrated in vacuo. Crude product 

was purified via column chromatography using 20% diethyl ether in hexanes to give 

sulfonamide S32 as a yellow oil (0.53 g, 82% yield). 

1H NMR (400 MHz, CDCl3) δ 7.59 (dd, J = 7.6, 1.8 Hz, 1H), 7.46 (m, 2H), 7.39 (td, J = 7.5, 

1.3 Hz, 1H), 7.33 (td, J = 7.6, 1.8 Hz, 1H), 7.23 (d, J = 8.4 Hz, 2H), 6.94 (d, J = 8.6 Hz, 2H), 

6.75 (dd, J = 7.9, 1.3 Hz, 1H), 6.71 (d, J = 8.6 Hz, 2H), 3.99 (br, 1H), 3.67 (hepta, J = 6.9 

Hz, 1H), 3.48 (br, 1H), 2.88 (br, 1H), 2.62 (br, 1H), 2.41 (s, 3H), 1.33 – 1.09 (m, 6H), 0.96 

(s, 9H), 0.17 (s, 6H). 
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13C NMR (101 MHz, CDCl3) δ 207.1, 153.3, 142.7, 140.5, 135.7, 133.8, 129.8, 129.6, 128.7, 

128.6, 128.4, 127.2, 127.0, 126.4, 119.1, 52.1, 38.2, 32.9, 24.7, 20.5, 17.2, –5.5. 

FTIR (Neat film NaCl): 2957, 2929, 2858, 1694, 1596, 1510, 1471, 1350, 1260, 1163, 914. 

HR-MS (ESI-MS) m/z: [M+Na]+ Calc’d for C31H41NO4SSiNa 574.2423; Found 574.2432. 

 

1-(2-((N-(4-((tert-butyldimethylsilyl)oxy)phenethyl)-4-

methylphenyl)sulfonamido)phenyl)-2-methylprop-1-en-1-yl 4-methylbenzenesulfonate 

(S33). 

Synthesized according to general procedure 6 starting from the corresponding ketone S32 

(0.43 g, 0.00078 mol). Crude product was purified via flash column chromatography using 

14% acetone in hexanes to give vinyl tosylate S33 as a white solid (0.49 g, 89% yield). 

1H NMR (400 MHz, CDCl3) δ 7.62 (s, 2H), 7.55 (d, J = 8.0 Hz, 2H), 7.47 (s, 1H), 7.39 – 

7.29 (m, 2H), 7.27 (s, 2H), 7.08 (d, J = 8.1 Hz, 2H), 6.91 (s, 1H), 6.78 – 6.73 (m, 2H), 6.69 

– 6.65 (m, 2H), 3.56 (br s, 1H), 3.34 (td, J = 12.9, 4.8 Hz, 1H), 2.62 (td, J = 12.8, 5.4 Hz, 

1H), 2.45–2.33 (m, 1H), 2.42 (s, 3H), 2.31 (s, 3H), 1.81 (s, 3H), 1.64 (s, 3H), 0.97 (s, 9H), 

0.17 (d, J = 0.7 Hz, 6H). 

13C NMR (101 MHz, CDCl3) δ 153.0, 143.5, 142.4, 138.0, 136.9, 135.2, 133.1, 132.8, 130.1, 

129.2, 128.5, 128.43. 128.40, 127.2, 127.0, 118.8, 52.2, 32.6, 24.7, 20.53, 20.52 19.4, 17.7, 

17.2, –5.4. 

FTIR (Neat film NaCl): 2955, 2927, 2856, 1598, 1509, 1353, 1258, 1189, 1177, 1159, 1083, 

912, 804, 573. 

HR-MS (ESI-MS) m/z: [M+Na]+ Calc’d for C38H47NO6S2SiNa 728.2512; Found 728.2511. 
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1-bromo-4-(2-bromoethyl)benzene (S34) 

2-(4-bromophenyl)ethan-1-ol (2.01 g, 10.0 mmol) in DCM (25 mL) was cooled down to 0 

°C. Triphenylphosphine (3.15 g, 12.0 mmol) and N-bromosuccinimide (2.14 g, 12.0 mmol) 

was then added into the solution and it was stirred overnight to room temperature. The 

reaction was quenched by saturated sodium bicarbonate solution. It was then separated, and 

the aqueous phase was extracted with DCM three times. The combined organic phase was 

dried with magnesium sulfate and concentrated to give the crude product. The crude product 

was purified via flash chromatography to give the product S34 as a cloudy oil (2.45 g, 92.8% 

yield). 

1H NMR data matches previous report.37 

 

N-(4-bromophenethyl)-N-(2-(cyclopentanecarbonyl)phenyl)-4-

methylbenzenesulfonamide (S35). 

Synthesized according to general procedure 3 starting from 2.91 mmol of the corresponding 

sulfonamide S7 (1.00 g, 0.00291 mol) and 1-bromo-4-(2-bromoethyl)benzene S34 (1.52 g, 

0.00582 mol). Crude product was purified via flash column chromatography using 40% ether 

in hexanes to give sulfonamide S35 as a white powder (1.06g, 69% yield). 

*NMR had poor resolution at room temperature, so NMRs are reported below at 70 °C. 
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1H NMR (500 MHz, CDCl3, 70 °C) δ 7.59 (d, J = 7.6 Hz, 1H), 7.51 (d, J = 8.4 Hz, 2H), 7.38 

(t, J = 7.5 Hz, 1H), 7.35 (d, J = 6.4 Hz, 2H), 7.33 (t, J = 7.6 Hz, 1H), 7.23 (d, J = 7.9 Hz, 

2H), 6.96 (d, J = 7.8 Hz, 2H), 6.84 (d, J = 7.9 Hz, 1H), 3.77 (br s, 2H), 3.63 (quint, J = 8.0 

Hz, 1H), 2.86 (br s, 2H), 2.42 (s, 3H), 1.93 (br s, 4H), 1.76 (m, 2H), 1.62 (m, 2H). 

13C NMR (126 MHz, CDCl3, 70 °C) δ 206.2, 143.3, 142.3, 137.4, 136.7, 136.1, 131.4, 130.4, 

130.2, 129.2, 129.0, 128.7, 127.9, 127.8, 120.2, 53.1, 50.3, 34.3, 30.3, 26.1, 21.2. 

FTIR (Neat film NaCl): 3064, 3028, 2952, 2867, 1690, 1595, 1488, 1440, 1348, 1159, 572. 

HR-MS (EI-MS) m/z: [M+Na]+ Calc’d for C27H28BrNO3SNa 548.0871; Found 548.0877. 

 

(2-((N-(4-bromophenethyl)-4-

methylphenyl)sulfonamido)phenyl)(cyclopentylidene)methyl 4-

methylbenzenesulfonate (S36). 

Synthesized according to general procedure 5 starting from the corresponding ketone S35 

(0.92 g, 0.00175 mol). Crude product was purified via flash column chromatography using 

40% ether in hexanes to give vinyl tosylate S36 as a white solid (0.72 g, 61% yield). 

*NMR had poor resolution at room temperature, so NMRs are reported below at 70 °C. 

1H NMR (500 MHz, CDCl3, 70 °C) δ 7.63 (m, 4H), 7.48 (d, J = 7.4 Hz, 1H), 7.31 (m, 4H), 

7.26 (d, J = 8.0 Hz, 2H), 7.13 (d, J = 7.8 Hz, 2H), 6.94 (d, J = 7.6 Hz, 1H), 6.83 (d, J = 7.8 

Hz, 2H), 3.54 (m, 2H), 2.63 (m, 3H), 2.43 (s, 3H), 2.35 (s, 3H), 2.26 (m, 3H), 1.65 (br s, 4H). 
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13C NMR (126 MHz, CDCl3, 70 °C) δ 144.3, 143.3, 141.9, 138.5, 137.6, 136.6, 135.2, 133.2, 

131.3, 130.3, 130.2, 130.1, 129.3, 129.2, 129.1, 129.0,  128.0, 128.0, 127.9, 120.0, 52.7, 33.9, 

30.8, 30.1, 26.2, 25.8, 21.2, 21.2. 

FTIR (Neat film NaCl): 3070, 3032, 2957, 2869, 1597, 1488, 1352, 1189, 1176, 1160, 806, 

788, 659, 572, 553. 

HR-MS (EI-MS) m/z: [M+Na]+ Calc’d for C34H34BrNO5S2Na 702.0959; Found 702.0975. 

 

N-(2-(cyclohexanecarbonyl)phenyl)-4-methyl-N-(2-(thiophen-2-

yl)ethyl)benzenesulfonamide (S37). 

Synthesized according to general procedure 3 starting from the corresponding sulfonamide 

S5 (1.50 g, 0.00420 mol) and 2-(2-iodoethyl)thiophene (1.50 g, 0.00630 mol). Crude product 

was purified via flash column chromatography using 15% ether in hexanes to give 

sulfonamide S37 as a white solid (0.80 g, 40% yield).  

1H NMR (500 MHz, CDCl3) δ 7.59 (dd, J = 7.7, 1.7 Hz, 1H), 7.48 (d, J = 8.3 Hz, 2H), 7.39 

(td, J = 7.5, 1.2 Hz, 1H), 7.34 (td, J = 7.7, 1.7 Hz, 1H), 7.24 (d, J = 8.3 Hz, 2H), 7.10 (dd, 

J = 5.1, 1.2 Hz, 1H), 6.88 (dd, J = 5.1, 3.4 Hz, 1H), 6.76 – 6.73 (m, 2H), 4.04 (br s, 1H), 

3.60 (br s, 1H), 3.35 (tt, J = 11.4, 3.4 Hz 1H), 3.25 (br s, 1H), 3.00 (br s, 1H), 2.41 (s, 3H), 

2.10 (br s, 1H), 1.92 (br s, 1H), 1.87 – 1.77 (m, 2H), 1.69 (d, J = 12.5 Hz, 1H), 1.63 – 1.53 

(m, 1H), 1.41 – 1.18 (m, 4H). 

13C NMR (126 MHz, CDCl3) δ 206.8, 143.7, 141.4, 140.0, 136.5, 134.6, 130.8, 129.4, 

129.3, 128.2, 127.8, 127.7, 126.8, 125.2, 123.7, 53.1, 49.0, 28.8, 25.8, 21.4. 
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FTIR (Neat film NaCl): 3068, 2929, 1854, 1690, 1596, 1444, 1350, 1162, 1092, 907, 728.  

HR-MS (ESI-MS) m/z: [M+Na]+ Calc’d for C26H29NO3S2Na 490.1487; Found 490.1496. 

 

cyclohexylidene(2-((4-methyl-N-(2-(thiophen-2-

yl)ethyl)phenyl)sulfonamido)phenyl)methyl 4-methylbenzenesulfonate (S38). 

Synthesized according to general procedure 3 starting from the corresponding ketone S37 

(0.55 g, 0.0012 mol). Crude product was purified via flash column chromatography using 

30% diethyl ether in hexanes to give vinyl tosylate S38 as a yellow solid (0.49 g, 67% yield).  

1H NMR (500 MHz, CDCl3, 55 °C) δ 7.67 (d, J = 7.9 Hz, 2H), 7.56 (d, J = 8.4 Hz, 2H), 7.55 

(br s, 1H), 7.44 – 7.26 (m, 5H), 7.15 – 7.04 (m, 2H), 6.93 (br s, 1H), 6.87 – 6.85 (m, 1H), 

6.60 (s, 1H), 3.65 (ddd, J = 13.7, 12.0, 5.3 Hz, 1H), 3.46 (ddd, J = 13.8, 12.0, 5.0 Hz, 1H), 

2.95 (ddd, J = 14.5, 12.2, 5.3 Hz, 1H), 2.75 (ddd, J = 14.5, 11.9, 4.9 Hz, 1H), 2.51 – 2.40 (m, 

1H), 2.43 (s, 3H), 2.32 – 2.25 (m, 1H), 2.31 (s, 3H), 2.20 – 2.00 (m, 2H), 1.80 – 1.66 (m, 

2H), 1.66 – 1.50 (m, 4H). 

13C NMR (126 MHz, CDCl3, 55 °C) δ 144.4, 143.6, 140.8, 139.3, 136.8, 136.5, 135.6, 

134.5, 133.7, 129.5, 129.4, 129.2, 128.3, 128.0, 127.9, 126.8, 125.0, 123.5, 52.9, 30.6, 28.7, 

27.0, 26.8, 26.3, 21.5. 

 FTIR (Neat film NaCl): 2930, 2925, 2856, 1492, 1356, 1175, 1093, 802, 573. 

HR-MS (ESI-MS) m/z: [M+NH4]+ Calc’d for C33H39N2O5S3 639.2021; Found 639.2044. 
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1-(2-amino-4,5,6,7-tetrahydrobenzo[b]thiophen-3-yl)-2-methylpropan-1-one (S39). 

Cyclohexanone (1.25 g, 12.7 mmol, 1.0 equiv) was added to a 100 mL schlenk followed by 

a-cyano isopropyl ketone (1.70 g, 15.3 mmol, 1.2 equiv) and this was dissolved in ethanol 

(20 mL). To this solution was added S8 (3.92 g, 15.3 mmol, 1.2 equiv) and piperidine (1.30 

g, 15.3 mmol, 1.2 equiv). The reaction vessel was sealed and heated to 65 °C in the silicone 

oil bath for 48 hours. Upon completion, the reaction was cooled to r.t. and poured onto ice. 

After the ice melted, the resultant suspension was filtered and washed with water followed 

by pentane. The light yellow solid (2.54 g, ca. 89%) was dried under vacuum and carried 

forward to the next step without further purification.  

 
N-(3-isobutyryl-4,5,6,7-tetrahydrobenzo[b]thiophen-2-yl)-4-

methylbenzenesulfonamide (S40). 

Synthesized from the crude material S39 (2.54 g, ca. 11.3 mmol) from the previous step 

according to a slightly modified general procedure 2 using 26 equiv of DCM (18 mL) instead 

of 13 equiv. The crude product was purified by flash column chromatography using 30% 

ether/hexanes to give roughly a 7:1 mixture of desired sulfonamide S40 to ditosylated 
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sulfonamide (2.80 g, ca. 60% yield desired). This was carried forward without additional 

purification. Representative 1H NMR shifts of desired product shown below.  

1H NMR (300 MHz, CDCl3) δ 11.60 (s, 1H), 7.75 (d, J = 8.3 Hz, 2H), 7.24 (d, J = 8.3 Hz, 

2H), 3.12 (sept, J = 6.7 Hz, 1H), 2.74 – 2.59 (m, 4H), 2.38 (s, 3H), 1.82 – 1.72 (m, 4H), 

0.99 (d, J = 6.7 Hz, 6H). 

 
N-(3-isobutyryl-4,5,6,7-tetrahydrobenzo[b]thiophen-2-yl)-4-methyl-N-

phenethylbenzenesulfonamide (S41). 

Synthesized according to general procedure 3 starting from the corresponding sulfonamide 

S40 (2.80 g, 0.00742 mol) (7:1 mixture) and (2-iodoethyl)benzene (2.57 g, 0.0111 mol). 

Crude product was purified via flash column chromatography using 20% ether in hexanes 

and then recrystallization from boiling DCM/hexanes (1:1) to give sulfonamide S41 as 

yellow crystalline solid (1.35 g, 38% yield).  

*NMR had poor resolution at room temperature, so NMRs are reported below at 70 °C. 

1H NMR (500 MHz, CDCl3, 70 °C) δ 7.55 (d, J = 8.3 Hz, 2H), 7.30 – 7.21 (m, 5H), 7.20 – 

7.15 (d, J = 8.3 Hz, 2H), 4.15 – 3.21 (br s, 2H), 3.55 (quint, J = 6.9 Hz, 1H), 2.92 (t, J = 

8.5 Hz, 2H), 2.71 – 2.51 (br s, 2H), 2.64 (t, J = 6.1 Hz, 2H), 2.42 (s, 3H), 1.94 – 1.68 (m, 

4H), 1.13 (s, 6H). 

13C NMR (126 MHz, CDCl3, 70 °C) δ 204.4, 144.3, 140.0, 137.9, 137.5, 134.4 (d, J = 2.9 

Hz), 133.1, 129.5, 128.7, 128.6, 128.4, 126.7, 54.6, 39.4, 34.9, 25.2, 25.1, 22.9, 22.4, 21.6. 

 FTIR (Neat film NaCl): 3206, 3029, 2931, 2868, 1685, 1597, 1560, 1454, 1356, 1167, 1091, 

1059, 662, 575. 

HR-MS (ESI-MS) m/z: [M+Na]+ Calc’d for C27H31NO3S2Na 504.1643; Found 504.1660. 
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2-methyl-1-(2-((4-methyl-N-phenethylphenyl)sulfonamido)-4,5,6,7-

tetrahydrobenzo[b]thiophen-3-yl)prop-1-en-1-yl 4-methylbenzenesulfonate (S42). 

Synthesized according to a slightly modified general procedure 5 starting from the 

corresponding ketone S41 (1.35 g, 0.00280 mol). Followed procedure with exception that 10 

mL of PhMe was used for ketone solution and 14 mL DCM used for tosic anhydride due to 

poor solubility of ketone. Crude product was purified via flash column chromatography using 

20% diethyl ether in hexanes to give vinyl tosylate S42 as a white solid (0.39 g, 22% yield).  

1H NMR (500 MHz, CDCl3, 70 °C) δ 7.69 (d, J = 7.9 Hz, 2H), 7.63 (d, J = 8.0 Hz, 2H), 7.26 

– 7.19 (m, 7.7 Hz, 4H), 7.17 (app q, J = 7.0 Hz, 1H), 7.12 (d, J = 8.0 Hz, 2H), 7.00 (d, J = 

7.4 Hz, 2H), 3.65 (td, J = 12.8, 12.4, 5.4 Hz, 1H), 3.50 (td, J = 12.7, 5.0 Hz, 1H), 2.86 (dd, J 

= 16.4, 5.5 Hz, 1H), 2.80 – 2.61 (m, 4H), 2.45 – 2.35 (m, 1H), 2.41 (s, 3H), 2.33 (s, 3H), 1.98 

– 1.81 (m, 4H), 1.79 (s, 3H), 1.61 (s, 3H). 

13C NMR (126 MHz, CDCl3, 70 °C) δ 144.3, 143.5, 138.6, 136.8, 136.7, 135.2, 134.7, 134.6, 

133.1, 131.1, 129.5, 129.5, 129.4, 128.7, 128.4, 128.3, 127.8, 127.4, 126.3, 54.2, 34.8, 25.4, 

25.0, 23.5, 22.8, 21.4, 21.3, 20.0, 18.5. 

FTIR (Neat film NaCl): 3199, 3063, 3028, 2932, 2858, 1598, 1453, 1351, 1176, 1162, 1092, 

1059, 813, 661, 580, 547. 

HR-MS (ESI-MS) m/z: [M+Na]+ Calc’d for C34H37NO5S3Na 658.1732; Found 658.1712. 
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2-methyl-1-(2-(3-phenoxyprop-1-yn-1-yl)phenyl)propan-1-one (S43). 

Copper iodide (6.43 mg, 0.034 mmol, 0.01 equiv) and Pd(PPh3)4 (39.0 mg, 0.034 mmol, 0.01 

equiv) were added to a Schlenk flask and vacuum/backfilled three times. This was dissolved 

in DMF (12 mL) and added diisopropylamine (1.02 g, 10.1 mmol, 3 equiv) aryl triflate S17 

(1.00 g, 3.38 mmol, 1.0 equiv) and (prop-2-yn-1-yloxy)benzene (1.34 g, 10.1 mmol, 3.0 

equiv). The resulting solution was heated to 80 °C in the silicone oil bath for 16 hours. The 

reaction was cooled to r.t and diluted with 30 mL of H2O. This was then extracted with 

diethyl ether (3 x 40 mL). The combined organics were washed with 1M aqueous HCl (50 

mL), water (50 mL), and brine (50 mL). Afterwards, the organic layer was dried over MgSO4, 

filtered, and concentrated to give crude alkyne. This was purified by silica flash column 

chromatography using 3% ether in hexanes to give desired product S43 as an orange oil (540 

mg, 58% yield). 

1H NMR (600 MHz, CDCl3) δ 7.53 – 7.46 (m, 2H), 7.42 – 7.35 (m, 2H), 7.34 – 7.30 (m, 

2H), 7.01 (ddd, J = 9.1, 7.0, 0.9 Hz, 3H), 4.94 (s, 2H), 3.53 (sept, J = 6.9 Hz, 1H), 1.09 (d, J 

= 6.9, 6H). 

13C NMR (151 MHz, CDCl3) δ 208.0, 157.6, 141.9, 133.8, 130.3, 129.5, 128.6, 127.7, 121.5, 

119.9, 114.9, 88.7, 85.4, 56.4, 38.9, 18.4. 

FTIR (Neat film NaCl): 3063, 2971, 2932, 2871, 1691, 1598, 1589, 1494, 1211, 1033, 752, 

590. 

HR-MS (CI-MS) m/z: [M]+ Calc’d for C19H18O2 278.1307; Found 278.1307. 
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2-methyl-1-(2-(3-phenoxypropyl)phenyl)propan-1-one (S44). 

To a 25 mL roundbottom flask was added 10% Pd/C (70.4 mg, 0.066 mmol, 0.034 equiv) 

and suspended in 8 mL of ethanol. To this was added alkyne S43 (0.540 g, 1.94 mmol, 1.0 

equiv) and the reaction was sparged with hydrogen gas for 10 minutes. After the sparging, a 

new hydrogen balloon was attached and reaction stirred for 18 hours. At this point, the 

reaction was filtered through celite and concentrated. The crude material was purified by a 

short silica plug with 5% ether in hexanes to give pure ketone S44 as a light yellow oil (0.230 

g, 1.94 mmol, 42% yield). 

1H NMR (600 MHz, CDCl3) δ 7.53 (dd, J = 7.7, 1.3 Hz, 1H), 7.38 (td, J = 7.5, 1.3 Hz, 1H), 

7.33 – 7.19 (m, 4H), 6.94 (td, J = 7.3, 1.1 Hz, 1H), 6.91 (d, J = 8.8 Hz, 2H), 4.00 (t, J = 6.2 

Hz, 2H), 3.36 (sept, J = 6.9 Hz, 1H), 2.96 – 2.79 (m, 2H), 2.26 – 1.97 (m, 2H), 1.18 (d, J = 

6.9 Hz, 6H). 

13C NMR (151 MHz, CDCl3) δ 209.3, 158.9, 141.1, 138.6, 130.9, 130.7, 129.4, 127.6, 125.8, 

120.5, 114.5, 67.0, 38.9, 31.3, 30.2, 18.7. 

FTIR (Neat film NaCl): 3067, 2930, 2869, 1686, 1599, 1497, 1469, 1243, 1037, 976, 751, 

591. 

HR-MS (CI-MS) m/z: [M+H]+ Calc’d for C19H23O2 283.1698; Found 283.1700. 

 

2-methyl-1-(2-(3-phenoxypropyl)phenyl)prop-1-en-1-yl 4-methylbenzenesulfonate 

(S45). 
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Synthesized according to general procedure 5 starting from the corresponding ketone S44 

(0.23 g, 0.00082 mol). Crude product was purified via flash column chromatography using 

30% ether in hexanes to give vinyl tosylate S45 as a white solid (90 mg, 25% yield).  

1H NMR (500 MHz, CDCl3) δ 7.36 (d, J = 8.4 Hz, 2H), 7.31 – 7.24 (m, 1H), 7.26 – 7.25 (m, 

1H), 7.23 – 7.19 (m, 1H), 7.16 (td, J = 7.5, 1.6 Hz, 1H), 7.09 (td, J = 7.5, 1.4 Hz, 1H), 7.01 

(t, J = 8.0 Hz, 3H), 6.93 (t, J = 7.4 Hz, 1H), 6.84 (d, J = 7.7 Hz, 2H), 3.87 – 3.79 (m, 2H), 

2.77 – 2.65 (m, 1H), 2.51 – 2.40 (m, 1H), 2.31 (s, 3H), 1.91 (s, 3H), 1.90 – 1.83 (m, 2H), 

1.55 (s, 3H). 

13C NMR (126 MHz, CDCl3) δ 158.9, 143.9, 141.1, 140.7, 134.5, 132.7, 132.3, 129.4, 

129.1, 128.9, 128.8, 127.5, 127.2, 125.4, 120.5, 114.4, 66.8, 29.7, 29.1, 21.5, 19.8, 18.3. 

 FTIR (Neat film NaCl): 3065, 2923, 2870, 1600, 1497, 1367, 1245, 1177, 1080, 1037, 990.  

HR-MS (ESI-MS) m/z: [M+Na]+ Calc’d for C26H28O4SNa 459.1606; Found 459.1619. 

 

1-(4-methoxy-2-((4-methyl-N-phenethylphenyl)sulfonamido)phenyl)-2-methylprop-1-

en-1-yl 4-methylbenzenesulfonate (S46). 

Synthesized according to general procedure 5 starting from the cooresponding ketone N-(2-

isobutyryl-5-methoxyphenyl)-4-methyl-N-phenethylbenzenesulfonamide (0.548 g, 0.00158 

mol). Crude product was purified via flash column chromatography using 1:1 

hexanes:diethyl ether to give vinyl tosylate S46 as a yellow solid (0.31 g, 32% yield). 

1H NMR (400 MHz, CDCl3) δ 7.58 (d, J = 7.9 Hz, 2H), 7.51 (d, J = 8.2 Hz, 2H), 7.31 (br s, 

1H), 7.21–7.18 (m, 2H), 7.17 – 7.07 (m, 3H), 7.03 (d, J = 8.1 Hz, 2H), 6.86 (d, J = 7.6 Hz, 

2H,), 6.85 – 6.77 (m, 1H), 6.39 (br s, 1H), 3.66 (s, 3H), 3.53 (ddd, J = 12.2, 12.2, 6.0 Hz, 

MeO N
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1H), 3.29 (ddd, J = 13.6, 12.2, 4.9 Hz, 1H), 2.66 (ddd, J = 12.6, 12.6,  5.3 Hz, 1H), 2.50 – 

2.38 (m, 1H), 2.35 (s, 3H), 2.24 (s, 3H), 1.71 (s, 3H), 1.56 (s, 3H). 

13C NMR (101 MHz, CDCl3) δ 159.0, 143.5, 142.5, 139.1, 137.5, 136.8, 135.12 133.4, 133.2, 

128.4, 128.4, 127.7, 127.3, 127.2, 126.9, 125.3, 114.0, 112.2, 54.4, 52.1, 33.5, 20.5, 20.5, 

19.5, 17.7. 

 FTIR (Neat film NaCl): 3028, 2924, 1686, 1603, 1569, 1496, 1456, 1352, 1305, 1291, 1189, 

1176, 1162, 1093, 1034, 985, 948, 830, 814, 786, 756, 695, 658, 567. 

HR-MS (ESI-MS) m/z: [M+Na]+ Calc’d for C33H35NO6S2Na 628.1804; Found 628.1814. 

 

 
2-(4-methoxybenzyl)oxirane (S47). 

1-allyl-4-methoxybenzene (5.00 g, 33.7 mmol) was dissolved in DCM (68 mL) and the 

solution was cooled down to 0 °C. m-chloroperoxybenzoic acid (9.98 g, 40.5 mmol, 70%) 

was added portion wise over 10 min. The reaction was stirred under room temperature 

overnight. It was then quenched with saturated NaHSO3 solution. After the separation, the 

organic phase was washed with saturated NaHCO3 solution and brine. It was then dried with 

MgSO4, filtered, and concentrated in vacuo to get the product as an orange liquid S47 (4.42 
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g, 79.8% yield). The product S47 was used in the next step without further purification. 

Spectral data match those reported in the literature.38 

 

1-(3-methoxyphenyl)-3-(4-methoxyphenyl)propan-2-ol (S48). 

In a flamed-dried 3-neck flask was added magnesium (0.51 g, 21.1 mmol) and THF (22 mL). 

A small amount of iodine was added to assist the initiation of Grignard reagent formation. 1-

bromo-3-methoxybenzene (3.78 g, 20.2 mmol) was added into the reaction slowly to keep a 

gentle reflux of the reaction. Upon completion of the addition, the reaction was left stirred 

for 1 hour. Then copper iodide (0.38 g, 2.02 mmol) was added into the reaction and it was 

cooled down to 0 °C. S47 (2.21 g, 13.5 mmol) in THF (22 mL) was added slowly into the 

reaction, and it was then warmed up to room temperature overnight. The reaction was 

quenched with saturated NH4Cl solution at 0 °C and then diluted with diethyl ether. After 

the separation, the aqueous phase was extracted with diethyl ether two more times. The 

combined organic phase was washed with brine, dried with MgSO4, filtered, and 

concentrated in vacuo to give the crude product. The crude product was purified via flash 

column chromatography using 1:1 diethyl ether and hexanes to give the product S48 as a 

yellowish oil (2.64 g, 72% yield).  

1H NMR (400 MHz, CDCl3) δ 7.25 – 7.20 (m, 1H), 7.15 (d, J = 8.7 Hz, 2H), 6.86 (d, J = 8.6 

Hz, 2H), 6.84 – 6.80 (m, 1H), 6.80 – 6.76 (m, 2H), 4.02 (tt, J = 8.1, 4.7 Hz, 1H), 3.80 (s, 3H), 

3.80 (s, 3H), 2.82 (ddd, J = 12.7, 7.8, 4.6 Hz, 2H), 2.71 (ddd, J = 13.6, 8.1, 5.0 Hz, 2H). 

13C NMR (101 MHz, CDCl3) δ 160.1, 158.6, 140.4, 130.70, 130.67, 129.9, 122.1, 115.4, 

114.3, 112.2, 73.9, 55.6, 55.5, 43.7, 42.8. 
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FTIR (Neat film NaCl): 3436, 2995, 2936, 2835, 1610, 1583, 1511, 1488, 1245, 1035, 806, 

781, 696. 

HR-MS (FD-MS) m/z: [M]+ Calc’d for C17H20O3 272.1412; Found 272.1410. 

 

1-(2-bromo-3-(4-methoxyphenyl)propyl)-3-methoxybenzene (S49). 

In a flask was added S48 (1.32 g, 4.85 mmol), DCM (15 mL) and carbon tetrabromide (2.41 

g, 7.27 mmol). The solution was cooled down to 0 °C. Triphenylphosphine (1.27 g, 4.85 

mmol) was dissolved in DCM (10 mL) in another flask and slowly added to the reaction. The 

reaction was warmed up to room temperature overnight. It was then quenched with DCM 

and water. After the separation, the aqueous phase was extracted with DCM two more times. 

The combined organic phase was washed with brine, dried with MgSO4, filtered, and 

concentrated in vacuo to give the crude product. The crude product was purified via flash 

column chromatography using 2% diethyl ether in hexanes to give the product S49 as a 

colorless liquid (0.56 g, 34% yield). 

1H NMR (400 MHz, CDCl3) δ 7.23 (t, J = 8.1 Hz, 1H), 7.12 (d, J = 8.2 Hz, 2H), 6.85 (d, J = 

8.7 Hz, 2H), 6.82 – 6.77 (m, 2H), 6.76 – 6.74 (m, 1H), 4.33 (tt, J = 8.1, 5.8 Hz, 1H), 3.80 (s, 

3H), 3.80 (s, 3H), 3.22 – 3.04 (m, 4H). 

13C NMR (101 MHz, CDCl3) δ 159.9, 158.8, 140.4, 130.8, 130.6, 129.8, 121.9, 115.4, 114.2, 

112.3, 57.8, 55.6, 55.5, 45.2, 44.4. 

FTIR (Neat film NaCl): 2989, 2870, 1393, 1143. 

HR-MS (FD-MS) m/z: [M]+ Calc’d for C17H19O2Br 334.0568; Found 334.0563. 
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1-(2-mercaptophenyl)-2-methylpropan-1-one (S50). 

In a flamed dried 3-neck flask was added 2-mercaptobenzoic acid (2.00 g, 13.0 mmol) and 

THF (26 mL). Lithium hydride (0.31 g, 39 mmol) was added slowly, and the reaction was 

refluxed for 45 min. Then the solution was cooled down to 0 °C. Isopropyllithium (0.7 M in 

pentane, 18.5 mL, 13.0 mmol) was added slowly to the solution. After 12 hours, the reaction 

was quenched with saturated NH4Cl solution. The solution was then acidified with 3 M HCl 

until the aqueous phase did not crash out solid anymore. It was then diluted with water and 

diethyl ether. After the separation, the aqueous phase was extracted with diethyl ether two 

more times. The combined organic phase was washed with brine, dried with MgSO4, filtered, 

and concentrated in vacuo to give the crude product. The crude product was purified via flash 

column chromatography using 12.5% diethyl ether in hexanes to give the product S50 as a 

yellow liquid (1.73 g, 74% yield). 

1H NMR (300 MHz, CDCl3) δ 7.78 (d, J = 7.9 Hz, 1H), 7.32 – 7.09 (m, 3H), 4.17 (s, 1H), 

3.47 (hept, J = 6.8 Hz, 1H), 1.16 (d, J = 6.9 Hz, 6H). 

13C NMR (101 MHz, CDCl3) δ 205.4, 137.3, 132.7, 132.0, 131.9, 130.3, 124.7, 36.3, 19.1. 

FTIR (Neat film NaCl): 2971, 2931, 2871, 2537, 1665, 1587, 1558, 1468, 1220, 1083, 988, 

739. 

HR-MS (FD-MS) m/z: [M]+ Calc’d for C10H12OS 180.0609; Found 180.0603. 
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1-(2-((1-(3-methoxyphenyl)-3-(4-methoxyphenyl)propan-2-yl)thio)phenyl)-2-

methylpropan-1-one (S51). 

In a flamed Schlenk flask was charged with NaH (89 mg, 2.2 mmol, 60% dispersion in 

mineral oil) and THF (11 mL). The reaction was cooled down to 0 degree and S50 (0.40 g, 

2.2 mmol) was added dropwise. The reaction was then warmed to room temperature and left 

for 15 minutes. After, S49 (1.1 g, 3.3 mmol) was added and the reaction was refluxed at 66 

°C in the silicone oil bath overnight. After the reaction was complete, the reaction was diluted 

with diethyl ether and water. After the separation of the two phases, the aqueous phase was 

extracted with diethyl ether two more times. The combined organic phase was washed with 

1M NaOH, saturated NH4Cl, and brine. It was then dried with MgSO4, filtered, and 

concentrated in vacuo. The crude product was purified by column chromatography to get the 

product S51 as a pale-yellow oil (0.57 g, 59% yield). 

1H NMR (400 MHz, CDCl3) δ 7.30 (td, J = 7.6, 1.4 Hz, 2H), 7.24 (td, J = 7.6, 1.6 Hz, 1H), 

7.15 (td, J = 7.4, 1.3 Hz, 1H), 7.11 (t, J = 7.9 Hz, 1H), 6.99 (d, J = 8.5 Hz, 2H), 6.73 (d, J = 

8.0 Hz, 2H), 6.66 (dd, J = 7.9, 2.1 Hz, 2H), 6.60 (t, J = 2.0 Hz, 1H), 3.71 (s, 6H), 3.49 (pent, 

J = 7.0 Hz, 1H), 3.21 (hept, J = 6.8 Hz, 1H), 2.79 – 2.63 (m, 4H), 1.04 (d, J = 6.9 Hz, 6H). 
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13C NMR (101 MHz, CDCl3) δ 209.1, 159.6, 158.2, 142.6, 140.7, 134.5, 132.0, 131.0, 

130.24, 130.21, 129.3, 127.9, 126.2, 121.6, 115.0, 113.7, 111.7, 55.3, 55.2, 52.1, 40.6, 39.7, 

39.6, 18.45, 18.43. 

 FTIR (Neat film NaCl): 2962, 2929, 1691, 1611, 1602, 1584, 1512, 1465, 1438, 1261, 1248, 

1037, 978. 

HR-MS (ESI-MS) m/z: [M+Na]+ Calc’d for C27H30O3SNa 457.1813; Found 457.1820. 

 
1-(2-((1-(3-methoxyphenyl)-3-(4-methoxyphenyl)propan-2-yl)thio)phenyl)-2-

methylprop-1-en-1-yl 4-methylbenzenesulfonate (128). 

Synthesized according to a slightly modified general procedure 5 starting from the 

corresponding ketone S51 (0.56 g, 0.0013 mol). Crude product was purified via flash column 

chromatography using 33% diethyl ether in hexanes to give vinyl tosylate 128 as a yellowish 

oil (0.42 g, 54% yield).  

1H NMR (400 MHz, CDCl3) δ 7.37 (dd, J = 8.4, 2.8 Hz, 2H), 7.25 – 7.09 (m, 3H), 7.07 (d, J 

= 7.2 Hz, 2H), 7.01 (dd, J = 8.5, 1.9 Hz, 2H), 6.91 (dd, J = 8.3, 3.5 Hz, 2H), 6.83 – 6.75 (m, 

2H), 6.75 – 6.70 (m, 1H), 6.68 (d, J = 7.6 Hz, 1H), 6.64 (s, 1H), 3.79 (m, 3H), 3.77 (m, 3H), 

3.44 (tt, J = 7.4, 3.7 Hz, 1H), 2.80 – 2.51 (m, 4H), 2.20 (m, 3H), 1.93 (m, 3H), 1.57 (s, 3H). 

(Some singlet peaks split likely due to the existence of rotamers.) 

13C NMR (101 MHz, CDCl3) δ 158.5, 157.1, 142.8, 140.0, 139.7, 138.8, 136.1, 133.3, 131.8, 

130.3, 130.0, 129.2, 128.9, 128.2, 127.9, 127.0, 126.6, 124.4, 120.6, 114.1, 112.6, 110.4, 
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54.2, 54.1, 50.1, 39.5, 38.6, 20.4, 18.9, 17.5. (Some peaks split likely due to the existence of 

rotamers.) 

FTIR (Neat film NaCl): 2915, 1600, 1584, 1512, 1463, 1455, 1436, 1364, 1248, 1189, 1176, 

1085, 1036, 990, 823, 809, 793, 740. 

HR-MS (ESI-MS) m/z: [M+NH4]+ Calc’d for C34H40NO5S2 606.2348; Found 606.2336. 

 
 

 

2-benzyloxirane (S52). 

Allylbenzene (5.00 g, 42.3 mmol) was dissolved in DCM (84 mL) and the solution was 

cooled down to 0 °C. m-chloroperoxybenzoic acid (12.5 g, 50.8 mmol, 70%) was added 

portion wise over 10 min. The reaction was stirred under room temperature overnight. It was 

then quenched with saturated NaHSO3 solution. After the separation, the organic phase was 

washed with saturated NaHCO3 solution and brine. It was then dried with MgSO4, filtered, 

and concentrated in vacuo to get the product as a pale yellow liquid S52 (3.05 g, 53.7% 

yield). The product S52 was used in the next step without further purification. Spectral data 

match those reported in the literature.38 
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1-phenyl-3-(phenyl-d5)propan-2-ol (S53). 

In a flamed-dried 3-neck flask was added magnesium (0.87 g, 35.7 mmol) and THF (36 mL). 

A small amount of iodine was added to assist the initiation of Grignard reagent formation. 1-

bromobenzene-2,3,4,5,6-d5 (5.52 g, 34.1 mmol) was added into the reaction slowly to keep 

a gentle reflux of the reaction. Upon completion of the addition, the reaction was left stirred 

for 1 hour. Then copper iodide (0.65 g, 3.4 mmol) was added into the reaction and it was 

cooled down to 0 °C. S52 (3.05 g, 22.7 mmol) in THF (36 mL) was added slowly into the 

reaction, and it was then warmed up to room temperature overnight. The reaction was 

quenched with saturated NH4Cl solution at 0 °C and then diluted with diethyl ether. After 

the separation, the aqueous phase was extracted with diethyl ether two more times. The 

combined organic phase was washed with brine, dried with MgSO4, filtered, and 

concentrated in vacuo to give the crude product. The crude product was purified via flash 

column chromatography using 33% diethyl ether in hexanes to give the product S53 as a 

colorless liquid (4.37 g, 88.5% yield).  

1H NMR (400 MHz, CDCl3) δ 7.36 – 7.28 (m, 2H), 7.25–7.21 (ddd, J = 7.0, 3.4, 1.6 Hz, 3H), 

4.08 (tt, J = 8.2, 4.7 Hz, 1H), 2.88 (ddd, J = 13.7, 4.8, 1.1 Hz, 2H), 2.77 (ddd, J = 13.7, 8.2, 

0.8 Hz, 2H). 

13C NMR (101 MHz, CDCl3) δ 138.5, 138.3, 129.4, 129.0 (t, J = 24 Hz), 128.6, 128.1 (t, J = 

24 Hz), 126.5, 126.0 (t, J = 24 Hz), 73.6, 43.4, 43.3. 

FTIR (Neat film NaCl): 3407, 3027, 2916, 2273, 1600, 1569, 1496, 1454, 1384, 1355, 1189, 

1176, 1068, 1030, 988, 821, 747, 699, 545. 

HR-MS (FD-MS) m/z: [M]+ Calc’d for C15H11OD5 217.1515; Found 217.1523. 
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1-(2-bromo-3-phenylpropyl)benzene-2,3,4,5,6-d5 (S54). 

In a flask was added S53 (3.36 g, 15.5 mmol), DCM (20 mL) and carbon tetrabromide (7.69 

g, 23.2 mmol). The solution was cooled down to 0 °C. Triphenylphosphine (6.08 g, 23.2 

mmol) was dissolved in DCM (13 mL) in another flask and slowly added to the reaction. The 

reaction was warmed up to room temperature overnight. It was then quenched with DCM 

and water. After the separation, the aqueous phase was extracted with DCM two more times. 

The combined organic phase was washed with brine, dried with MgSO4, filtered, and 

concentrated in vacuo to give the crude product. The crude product was purified via flash 

column chromatography using 2% diethyl ether in hexanes to give the product S54 as a 

colorless liquid (3.00 g, 63.0% yield, 91% purity). 

*The product had 9% of alkene side product from elimination, but was used directly in the 

next synthetic step. 

1H NMR (500 MHz, CDCl3) δ 7.36 – 7.16 (m, 5H), 4.37 (tt, J = 8.2, 5.7 Hz, 1H), 3.22 (ddd, 

J = 14.3, 5.8, 1.3 Hz, 2H), 3.14 (ddd, J = 14.3, 8.2, 1.8 Hz, 2H). 

 
2-methyl-1-(2-((1-phenyl-3-(phenyl-d5)propan-2-yl)thio)phenyl)propan-1-one (S55). 

In a flamed Schlenk flask was charged with NaH (0.27 g, 6.7 mmol, 60% dispersion in 

mineral oil) and THF (22 mL). S50 (0.80 g, 4.4 mmol) was added dropwise. The reaction 

was stirred for 15 minutes under room temperature. After, S54 (1.9 g, 6.7 mmol) was added 

Br
D5

O

S
D5



Chapter 2 – Accessing Medium-sized Rings via Vinyl Carbocation Intermediates 

 

101 

and the reaction was refluxed at 66 °C in the silicone oil bath overnight. After the reaction 

was complete, the reaction was diluted with diethyl ether and water. After the separation of 

the two phases, the aqueous phase was extracted with diethyl ether two more times. The 

combined organic phase was washed with 1M NaOH, saturated NH4Cl and brine. It was then 

dried with MgSO4, filtered, and concentrated in vacuo. The crude product was purified by 

column chromatography to get the product S55 as a pale yellow oil (0.75 g, 45% yield). 

1H NMR (400 MHz, CDCl3) δ 7.39–7.35 (m, 2H), 7.31 (t, J = 7.6 Hz, 1H), 7.29–7.27 (m, 

1H), 7.25 – 7.16 (m, 3H), 7.14 (d, J = 6.9 Hz, 2H), 3.60 (penta, J = 7.0 Hz, 1H), 3.27 (hepta, 

J = 6.9 Hz, 1H), 2.90 – 2.76 (m, 4H), 1.10 (d, J = 6.9 Hz, 6H). 

13C NMR (101 MHz, CDCl3) δ 208.0, 141.6, 138.0, 137.8, 133.3, 131.0, 129.2, 128.2, 

127.3, 126.9, 125.4, 125.2, 50.9, 39.6, 39.5, 38.6, 17.4. 

 FTIR (Neat film NaCl): 2967, 2925, 2850, 2273, 1692, 1585, 1496, 1454, 1435, 1382, 1342, 

1261, 1215, 1077, 1029, 977, 747, 700, 544. 

HR-MS (FD-MS) m/z: [M]+ Calc’d for C25H21OSD5 379.2018; Found 379.2011. 

 
2-methyl-1-(2-((1-phenyl-3-(phenyl-d5)propan-2-yl)thio)phenyl)prop-1-en-1-yl-4-

methylbenzenesulfonate (131). 

Synthesized according to a slightly modified general procedure 5 starting from the 

corresponding ketone S55 (0.76 g, 0.0020 mol). Crude product was purified via flash column 
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chromatography using 33% diethyl ether in hexanes to give vinyl tosylate 131 as a yellowish 

oil (0.50 g, 47% yield).  

1H NMR (400 MHz, CDCl3) δ 7.30 (d, J = 8.8 Hz, 2H), 7.23–7.20 (m, 1H), 7.19 – 6.95 (m, 

9H), 6.82 (d, J = 8.0 Hz, 2H), 3.42 (p, J = 7.0 Hz, 1H), 2.77 – 2.49 (m, 4H), 2.12 (s, 3H), 

1.86 (s, 3H). 

13C NMR (101 MHz, CDCl3) δ 142.8, 138.7, 138.3, 138.0, 136.1, 134.0, 133.3, 131.8, 128.9, 

128.2, 128.1, 127.93, 127.91, 127.3, 127.2, 127.0, 126.6, 125.4, 125.3, 124.4, 49.9, (39.47, 

39.42, 39.37, 39.32), 20.4, 18.9, 17.5. (The secondary alkyl carbon split to 4 peaks likely due 

to the existence of rotamers.) 

FTIR (Neat film NaCl): 2920, 2853, 2362, 2273, 1634, 1598, 1496, 1454, 1436, 1364, 1189, 

1176, 1085, 1069, 990, 821, 807, 792, 740, 701, 669, 590, 561, 546. 

HR-MS (FD-MS) m/z: [M]+ Calc’d for C32H27O3S2D5 533.2107; Found 533.2099. 

2.7.3 Friedel-Crafts reactions 

 

General Procedure 6: In the glovebox, lithium tetrakis(pentafluorophenyl)borate (0.1 

equiv), lithium hydride (5.0 equiv), and vinyl tosylate (1.0 equiv) were dissolved into 1,2-

dichlorobenzene (618 equiv) to generate a 0.0143 M solution for the vinyl tosylate. The 

reaction was heated under 140 °C overnight. The reaction solution was directly purified via 

flash column chromatography using hexanes and then ethyl acetate to get rid of 1,2-

dichlorobenzene. Then the crude product was purified via flash column chromatography 

again to get the pure product. 

OTs

R1

R1

X
R2

n

[Li]+[B(C6F5)4]– (cat)
LiH

1,2-dichlorobenzene
140 °C X

R1
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8-chloro-12-cyclohexylidene-5-tosyl-5,6,7,12-tetrahydrodibenzo[b,e]azocine (103). 

Synthesized according to general procedure 6 starting from the corresponding vinyl tosylate 

101 (0.150 g, 0.000231 mol). Crude product was purified via flash column chromatography 

using 10% ethyl ether in hexanes to give the product 103 as a white powder (0.080 g, 73% 

yield). 

1H NMR (400 MHz, CDCl3) δ 7.85 (d, J = 7.8 Hz, 2H), 7.36 (d, J = 7.9 Hz, 2H), 7.25 (m, 

2H), 7.18 (m, 1H), 7.08 (m, 3H), 6.90 (d, J = 8.0 Hz, 1H), 4.31 (dd, J = 15.3, 6.9 Hz, 1H), 

3.56 (dd, J = 14.9, 6.9 Hz, 1H), 3.36 (dd, J = 15.1, 9.4 Hz, 1H), 2.80 (dd, J = 15.3, 9.4 Hz, 

1H), 2.46 (s, 3H), 2.21 (m, 2H), 2.06 (m, 2H), 1.87 (m, 1H), 1.57 (m, 5H). 

13C NMR (101 MHz, CDCl3) δ 146.1, 145.4, 143.2, 140.5, 139.4, 139.2, 136.7, 133.9, 130.1, 

130.0, 129.8, 128.7, 128.1, 127.8, 127.7, 127.6, 127.4, 127.3, 50.3, 33.7, 31.8, 31.5, 28.1, 

27.8, 26.5, 21.6. 

FTIR (Neat film NaCl): 3062, 2925, 2852, 1560, 1482, 1446, 1349, 1158, 1092, 569. 

HR-MS (ESI-MS) m/z: [M+Na]+ Calc’d for C28H28ClNO2SNa 500.1427; Found 500.1436. 

 

12-(propan-2-ylidene)-5-tosyl-5,6,7,12-tetrahydrodibenzo[b,e]azocine (106). 

Synthesized according to general procedure 6 at 140 °C for 36 hours starting from the 

corresponding vinyl tosylate S16 (28.6 mg, 0.0500 mmol). Crude product was purified via 

TsN
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flash column chromatography using a gradient of 1-15% diethyl ether in hexanes to give 

arene 106 as white solid (11.3 mg, 56% yield).  

Performing the reaction with S16 (572 mg, 1.00 mmol) in a Schlenk heating at 140 °C in the 

silicone oil bath outside the glovebox gave the product 106 as a white solid (265 mg, 66% 

yield). 

*NMR had poor resolution at room temperature, so NMR spectra are reported below at 75 

°C. 

1H NMR (500 MHz, DMSO-d6, 75 °C) δ 7.70 (d, J = 7.8 Hz, 2H), 7.38 (d, J = 7.9 Hz, 2H), 

7.30 – 7.16 (m, 2H), 7.15 – 7.00 (m, 6H), 3.60 (br s, 2H), 2.97 (br s, 2H), 2.39 (s, 3H), 1.68 

(s, 3H), 1.56 (s, 3H).  

13C NMR (126 MHz, DMSO-d6, 75 °C) δ 143.7, 143.5, 139.7, 138.9, 138.7, 134.5, 131.6, 

130.5, 130.3, 128.9, 128.4, 127.8, 127.7, 127.3, 127.2, 51.5 (br s), 37.5 (br s), 21.9, 21.4, 

21.1. 

FTIR (Neat film NaCl):  3065, 2955, 2923, 2854, 1738, 1599, 1484, 1447, 1348, 1325, 1159, 

1092, 1020, 813, 717, 568, 549. 

HR-MS (CI-MS) m/z: [M]+ Calc’d for C25H25NO2S 403.1606; Found 403.1620. 

 

13-(propan-2-ylidene)-5-tosyl-6,7,8,13-tetrahydro-5H-dibenzo[b,e]azonine (107). 

Synthesized according to general procedure 6 at 140 °C for 36 hours starting from the 

corresponding vinyl tosylate S11 (29.5 mg, 0.0500 mmol). Crude product was purified via 

flash column chromatography using a gradient of 1-15% diethyl ether in hexanes to give the 

product 107 as white solid (17.1 mg, 82% yield).  
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1H NMR (500 MHz, CDCl3) δ 7.80 – 7.72 (m, 2H), 7.40 (d, J = 7.6 Hz, 1H), 7.34 (d, J= 8.1 

Hz, 2H), 7.28 (t, J = 7.5 Hz, 1H), 7.17 (d, J = 7.2 Hz, 1H), 7.15 – 6.96 (m, 4H), 6.72 (d, J = 

8.0 Hz, 1H), 3.64 – 3.43 (m, 2H), 2.71 – 2.48 (m, 2H), 2.46 (s, 3H), 1.79 (s, 3H), 1.60 (s, 

3H), 1.57 – 1.47 (m, 2H). 

13C NMR (126 MHz, CDCl3) δ 158.0, 142.4, 139.6, 137.5, 132.8, 131.7, 131.0, 129.1, 128.8, 

127.9, 126.8, 125.9, 123.9, 122.3, 73.7, 31.6, 29.6, 21.4, 21.1. 

FTIR (Neat film NaCl): 3062, 2973, 2920, 2859, 1597, 1483, 1445, 1350, 1161, 1083, 814, 

754, 697. 

HR-MS (CI-MS) m/z: [M+H]+ Calc’d for C26H28NO2S 418.1841; Found 418.1840. 

 
12-(propan-2-ylidene)-7,12-dihydro-6H-dibenzo[b,e]thiocine (109). 

Synthesized according to general procedure 6 starting from the corresponding vinyl tosylate 

S14 (21.9 mg, 0.0500 mmol). Crude product was purified via flash column chromatography 

using 5% ethyl ether in hexanes to give the product 109 as an oil (6.1 mg, 46% yield). 

1H NMR (400 MHz, CDCl3) δ 7.35 (d, J = 7.5 Hz, 1H), 7.23 (d, J = 7.6 Hz, 1H), 7.17 (t, J 

= 7.5 Hz, 2H), 7.12 (t, J = 7.2 Hz, 1H), 7.10 – 7.03 (m, 3H), 3.50 – 3.25 (m, 2H), 3.09 – 

2.85 (m, 2H), 1.71 (s, 3H), 1.61 (s, 3H). 

 13C NMR (101 MHz, CDCl3) δ 140.1, 136.1, 136.0, 132.0, 131.8, 130.9, 130.2, 129.7, 

127.1, 127.0, 126.9, 126.8, 37.8, 33.1, 21.6, 21.1. 

FTIR (Neat film NaCl): 2917, 2850, 1664, 1484, 1463, 1444, 1260, 1018, 798, 749. 

HR-MS (FD-MS) m/z: [2M]+ Calc’d for C36H36S2 532.2258; Found 532.2257. 

S
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12-(propan-2-ylidene)-5,6,7,12-tetrahydrodibenzo[a,d][8]annulene (110). 

Synthesized according to general procedure 6 starting from the corresponding vinyl tosylate 

S20 (105 mg, 0.250 mmol). Crude product was purified via flash column chromatography 

using 5% ethyl ether in hexanes to give the product 110 as a white powder (50 mg, 81% 

yield). 

1H NMR (400 MHz, CDCl3) δ 7.20 – 7.01 (m, 8H), 2.87 (app d, J = 55.2 Hz, 4H), 2.26 (br 

s, 1H), 1.65 (s, 6H), 1.55 – 1.39 (m, 1H). 

13C NMR (101 MHz, CDCl3) δ 144.3, 140.7, 136.9, 129.7, 128.8, 127.9, 126.5, 126.4, 37.9 

(br), 29.1 (br), 20.7. 

FTIR (Neat film NaCl): 3058, 3012, 2978, 2922, 2847, 1483, 1444, 1371, 1062, 1041, 769, 

747. 

HR-MS (CI-MS) m/z: [M]+ Calc’d for C19H20 248.1565; Found 248.1562. 

 

13-(propan-2-ylidene)-6,7,8,13-tetrahydrodibenzo[b,e]oxonine (111). 

Synthesized according to general procedure 6 at 140 °C for 48 hours starting from the 

corresponding vinyl tosylate S45 (21.8 mg, 0.0500 mmol). Crude product was purified via 

flash column chromatography using a gradient of 0-4% diethyl ether in hexanes to give the 

product 111 as colorless oil (8.6 mg, 65% yield).  
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1H NMR (500 MHz, CDCl3) δ 7.32 (d, J = 5.7 Hz, 1H), 7.20 – 7.05 (m, 5H), 6.98 (dd, J = 

14.7, 7.6 Hz, 2H), 4.05 – 3.98 (m, 1H), 3.45 – 3.31 (m, 2H), 2.66 (d, J = 12.9 Hz, 1H), 2.14 

(tt, J = 9.8, 4.1 Hz, 1H), 1.73 (s, 3H), 1.72 – 1.65 (m, 1H), 1.60 (s, 3H). 

13C NMR (126 MHz, CDCl3) δ 157.9, 142.3, 139.6, 137.5, 132.7, 131.7, 131.0, 129.1, 128.8, 

127.9, 126.7, 125.9, 123.9, 122.3, 73.6, 31.6, 29.5, 21.4, 21.0. 

FTIR (Neat film NaCl): 3062, 3017, 2923, 2857, 1598, 1570, 1483, 1445, 1380, 1238, 1061, 

754, 741, 630. 

HR-MS (CI-MS) m/z: [M]+ Calc’d for C19H20O 264.1514; Found 264.1512. 

 
12-cyclohexylidene-N,N-dimethyl-5-tosyl-5,6,7,12-tetrahydrodibenzo[b,e]azocin-10-

amine (112). 

Synthesized according to general procedure 6 starting from the corresponding vinyl tosylate 

S24 (32.9 mg, 0.0500 mmol). Crude product was purified via flash column chromatography 

using 10% ethyl ether in hexanes to give the product 112 as a white powder (0.015 g, 62% 

yield). 

*NMR had poor resolution at room temperature, so NMRs are reported below at 75 °C in 

DMSO-d6. 

1H NMR (500 MHz, DMSO-d6, 75 °C) δ 7.75 (d, J = 7.8 Hz, 2H), 7.43 (d, J = 7.8 Hz, 2H), 

7.33 (d, J = 7.6 Hz, 1H), 7.24 (t, J = 7.6 Hz, 1H), 7.13 (t, J = 7.9 Hz, 1H), 6.95 (d, J = 8.0 

Hz, 1H), 6.88 (dd, J = 8.3, 2.5 Hz, 1H), 6.56 – 6.35 (m, 2H), 4.19 – 4.09 (m, 1H), 3.20 (d, J 

= 12.0 Hz, 1H), 2.83 (d, J = 2.7 Hz, 7H), 2.74 – 2.64 (m, 1H), 2.42 (d, J = 2.8 Hz, 3H), 2.18 

– 1.92 (m, 4H), 1.59 – 1.45 (m, 6H). 
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13C NMR (126 MHz, DMSO-d6, 75 °C) δ 149.2, 142.7, 139.0, 138.3, 137.5, 131.13, 130.1, 

129.5, 129.4, 127.5, 126.7, 125.9, 112.2, 110.5, 51.5 (br), 36.0 (br), 30.9, 30.5, 27.2, 26.8, 

25.7, 20.5. 

FTIR (Neat film NaCl): 2922, 2850, 1604, 1505, 1483, 1445, 1341, 1156, 1091, 869, 716, 

651, 569, 548. 

HR-MS (ESI-MS) m/z: [M+H]+ Calc’d for C30H35N2O2S 487.2419; Found 487.2413. 

 

12-cyclohexylidene-10-methoxy-5-tosyl-5,6,7,12-tetrahydrodibenzo[b,e]azocine (113). 

Synthesized according to general procedure 6 starting from the corresponding vinyl tosylate 

S27 (32.3 mg, 0.0500 mmol). Crude product was purified via flash column chromatography 

using 10% ethyl ether in hexanes to give the product 113 as a white powder (0.018 g, 76% 

yield). 

*NMR had poor resolution at room temperature, so NMRs are reported below at 75 °C in 

DMSO-d6. 

1H NMR (500 MHz, DMSO-d6, 75 °C) δ 7.73 (d, J = 7.6 Hz, 2H), 7.41 (d, J = 7.8 Hz, 2H), 

7.32 (d, J = 7.6 Hz, 1H), 7.23 (dd, J = 7.5, 7.5 Hz, 1H), 7.12 (ddd, J = 7.6, 7.6, 1.6 Hz, 1H), 

6.98 (d, J = 8.2 Hz, 1H), 6.93 (d, J = 8.0 Hz, 1H), 6.68 (s, 1H), 6.65 (d, J = 8.2 Hz, 1H),  4.41 

(br s, 1H), 3.68 (s, 3H), 3.21 (br s, 1H), 2.75 (br s, 1H), 2.48 (m, 1H), 2.41 (s, 3H), 2.16-2.02 

(m, 2H), 2.02-1.90 (m, 2H), 1.74 (br s, 1H), 1.58-1.44 (m, 5H). 

13C NMR (126 MHz, DMSO-d6, 75°C) δ 158.6, 143.6, 139.9, 139.0, 138.9, 131.4, 131.2, 

131.1, 130.4, 130.2, 128.4, 127.8, 127.6, 114.8, 112.3, 55.6, 52.0, 36.9, 31.7, 31.3, 27.9, 27.6, 

26.5, 21.4. 
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FTIR (Neat film NaCl): 2922, 2851, 1602, 1572, 1484, 1446, 1343, 1157, 1093, 1039, 874, 

813, 737, 717, 651, 569, 549. 

HR-MS (ESI-MS) m/z: [M+Na]+ Calc’d for C29H31NO3SNa 496.1922; Found 496.1930. 

 

10-((tert-butyldimethylsilyl)oxy)-12-(propan-2-ylidene)-5-tosyl-5,6,7,12-

tetrahydrodibenzo[b,e]azocine (114). 

Synthesized according to general procedure 6 starting from the corresponding vinyl tosylate 

S33 (35.3 mg, 0.0500 mmol). Crude product was purified via flash column chromatography 

using 10% ethyl ether in hexanes to give the product 114 as a white powder (0.021 g, 79% 

yield). 

1H NMR (400 MHz, CDCl3) δ  7.83 (br s, 2H), 7.39 – 7.17 (m, 4H), 7.09 (t, J = 7.5 Hz, 1H), 

6.99 – 6.81 (m, 2H), 6.64 – 6.48 (m, 2H), 4.21 (br s, 1H), 3.33 (br s, 1H), 2.83 (br s, 1H), 

2.68 (br s, 1H), 2.44 (s, 3H), 1.77 (s, 3H), 1.65 (s, 3H), 0.96 (s, 9H), 0.16 (s, 6H). 

13C NMR (101 MHz, CDCl3) δ 154.7, 143.5, 139.9, 139.2, 134.0, 132.8, 132.1, 131.2, 130.4, 

130.0, 129.0, 128.0, 127.7, 125.9, 120.8, 118.4, 52.4, 38.1, 26.1, 22.1, 21.9, 21.3, 18.6, –4.1.  

FTIR (Neat film NaCl): 2955, 2928, 2856, 1600, 1489, 1347, 1258, 1159, 1093, 877. 

HR-MS (ESI-MS) m/z: [M+NH4]+ Calc’d for C31H43N2O3SSi 551.2764; Found 551.2759. 

 

10-bromo-12-cyclopentylidene-5-tosyl-5,6,7,12-tetrahydrodibenzo[b,e]azocine (116). 
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Synthesized according to general procedure 6 starting from the corresponding vinyl tosylate 

S36 (34.0 mg, 0.0500 mmol). Crude product was purified via flash column chromatography 

using 10% ethyl ether in hexanes to give the product 116 as a white powder (0.020 g, 79% 

yield). 

*NMR had poor resolution at room temperature, so NMRs are reported below at 75 °C in 

DMSO-d6. 

1H NMR (500 MHz, DMSO-d6, 75 °C) δ 7.73 – 7.59 (m, 2H), 7.38 (dd, J = 7.6, 1.7 Hz, 3H), 

7.33 (s, 1H), 7.28 (dd, J = 8.1, 2.2 Hz, 1H), 7.25 (t, J = 7.5 Hz, 1H), 7.15 (td, J = 7.7, 1.6 Hz, 

1H), 7.06 (d, J = 8.1 Hz, 2H), 3.82 (br s, 2H), 2.99 (br s, 2H), 2.39 (s, 3H), 2.23 (br s, 2H), 

2.00 (br s, 2H), 1.64 (app s, 4H). **CH2 next to nitrogen is very broad and hard to 

see/integrate.  

13C NMR (126 MHz, DMSO-d6, 75 °C) δ 142.9, 138.9, 132.1, 130.5, 129.68, 129.4, 129.2, 

128.9, 127.2, 126.8, 119.3, 50.5 (br), 35.9 (br), 30.8, 30.6, 29.6, 25.6, 25.5, 20.6.  

FTIR (Neat film NaCl): 2952, 2924, 2857, 1454, 1347, 1158, 1091, 1077, 717, 568. 

HR-MS (ESI-MS) m/z: [M+Na]+ Calc’d for C27H26BrNO2SNa 530.0765; Found 530.0781.  

 

3-methoxy-12-(propan-2-ylidene)-5-tosyl-5,6,7,12-tetrahydrodibenzo[b,e]azocine (117) 

Synthesized according to general procedure 6 at 140 °C for 24 hours starting from the 

corresponding vinyl tosylate S46 (30.3 mg, 0.0500 mmol). Crude product was purified via 
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flash column chromatography using 3:1 hexanes:diethyl ether to give the product 117 as 

white solid (0.017 g, 78% yield).  

1H NMR (500 MHz, CDCl3) δ 7.85 (br s, 2H), 7.35 (br s, 2H), 7.21–6.92 (m, 5H), 6.79 (br 

s, 1H), 6.44 (br s, 1H), 4.27 (br s, 1H), 3.64 (s, 3H), 3.46 (br s, 1H), 2.89–2.69 (m, 2H), 2.50–

2.22 (m, 3H), 1.80 (s, 3H), 1.62 (s, 3H). 

13C NMR (101 MHz, CDCl3) δ 157.4, 142.2, 131.9, 129.5, 128.6, 127.7, 126.7, 126.6, 126.0, 

125.6, 113.4, 112.3, 54.2, 50.7, 37.7, 20.7, 20.5, 20.0.	

FTIR (Neat film NaCl): 2989, 2870, 1605, 1495, 1443, 1381, 1347, 1287, 1157, 1143, 1091, 

813, 688, 584. 

HR-MS (ESI-MS) m/z: [M]+ Calc’d for C26H27NO3SNa 456.1609; Found 456.1596. 

 

11-cyclohexylidene-6-tosyl-4,5,6,11-tetrahydrobenzo[b]thieno[3,2-e]azocine (119). 

Synthesized according to general procedure 6 at 140 °C for 20 hours starting from the 

corresponding vinyl tosylate S38 (31.1 mg, 0.0500 mmol). Crude product was purified via 

flash column chromatography using a gradient of 0-30% diethyl ether in hexanes to give the 

product 119 as white solid (16.5 mg, 73% yield).  

1H NMR (500 MHz, CDCl3) δ 7.79 (d, J = 8.3 Hz, 2H), 7.34 (d, J = 8.0 Hz, 2H), 7.26 – 

7.20 (m, 2H), 7.14 – 7.04 (m, 1H), 6.92 (d, J = 5.1 Hz, 1H), 6.88 – 6.82 (m, 1H), 6.77 (d, 

J = 5.1 Hz, 1H), 4.15 (ddd, J = 14.5, 5.5, 2.1 Hz, 1H), 3.48 (ddd, J = 15.8, 10.5, 2.1 Hz, 

1H), 2.98 (dd, J = 14.4, 10.3 Hz, 1H), 2.81 (dd, J = 15.7, 5.3 Hz, 1H), 2.46 (s, 3H), 2.27 – 

2.14 (m, 3H), 2.12 (dd, J = 8.4, 4.4 Hz, 1H), 1.87 – 1.79 (m, 1H), 1.73 – 1.65 (m, 1H), 1.63 

– 1.48 (m, 4H). 

TsN

S
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13C NMR (126 MHz, CDCl3) δ 145.9, 143.2, 142.0, 141.0, 139.3, 138.4, 135.0, 130.3, 

130.2, 129.6, 128.6, 128.1, 127.6, 127.4, 125.5, 120.8, 51.4, 32.0, 31.6, 31.1, 28.4, 27.9, 

26.6, 21.5. 

 FTIR (Neat film NaCl): 3062, 2921, 2851, 1598, 1483, 1343, 1157, 1094, 864, 737, 726, 

661. 

HR-MS (ESI-MS) m/z: [M+H]+ Calc’d for C26H28NO2S2 450.1561; Found 450.1562. 

 

13-(propan-2-ylidene)-7-tosyl-5,6,7,9,10,11,12,13-

octahydrobenzo[e]benzo[4,5]thieno[2,3-b]azocine (120).  

Synthesized according to general procedure 6 at 120 °C for 20 hours starting from the 

corresponding vinyl tosylate S42 (31.8 mg, 0.0500 mmol). Crude product was purified via 

flash column chromatography using a gradient of 1-20% diethyl ether in hexanes to give the 

product 120 as white solid (19.6 mg, 85% yield).  

1H NMR (500 MHz, CDCl3) δ 7.84 (d, J = 7.8 Hz, 2H), 7.32 (d, J = 7.9 Hz, 2H), 7.21 – 7.04 

(m, 4H), 4.26 (dd, J = 15.1, 7.1 Hz, 1H), 3.41 (dd, J = 15.0, 9.7 Hz, 1H), 3.00 – 2.71 (m, 2H), 

2.71 – 2.47 (m, 4H), 2.44 (s, 3H), 1.86 – 1.79 (m, 2H), 1.75 (s, 3H), 1.75 – 1.67 (m, 2H), 

1.60 (s, 3H). 

13C NMR (126 MHz, CDCl3) δ 143.6, 143.4, 143.1, 139.1, 137.8, 134.8, 133.7, 132.9, 132.7, 

130.4, 129.6, 128.9, 128.39, 127.6, 126.8, 126.7, 51.7, 38.9, 25.1, 25.0, 23.3, 22.7, 21.6, 21.3, 

21.0. 

FTIR (Neat film NaCl): 3059, 2986, 2929, 2857, 2843, 1484, 1441, 1341, 1159, 1091, 731, 

659, 545. 

TsNS
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HR-MS (ESI-MS) m/z: [M+Na]+ Calc’d for C27H29NO2S2Na 486.1537; Found 486.1538. 

2.7.4 Mechanism studies 

2.7.4.1 8-membered ring formation vs 7-membered ring formation 

 

 

 

9-methoxy-6-(4-methoxybenzyl)-12-(propan-2-ylidene)-7,12-dihydro-6H-

dibenzo[b,e]thiocine (129) 

In the glovebox, lithium tetrakis(pentafluorophenyl)borate (3.4 mg, 0.0050 mmol, 0.1 equiv), 

lithium hydride (2.0 mg, 0.25 mmol, 5.0 equiv), and vinyl tosylate 128 (29.4 mg, 0.0500 

mmol, 1.0 equiv) were dissolved into 1,2-dichlorobenzene (2.5 mL) to generate a 0.02 M 

solution for the vinyl tosylate. The reaction was heated under 140 °C overnight. The reaction 

solution was directly purified via flash column chromatography using hexanes and then ethyl 

acetate to get rid of 1,2-dichlorobenzene. Then the crude product was purified via preparative 

TLC to get the product. The yield was determined by NMR with nitromethane as the internal 

standard from the crude reaction. 

OTs

S

MeO

OMe LiF20 (10 mol%)
LiH (5 equiv)

1,2-DCB, 140 °C
S

OMe

OMe

S

OMe

OMe
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1H NMR (400 MHz, CDCl3) δ 7.24 – 7.13 (m, 2H), 7.09 – 7.01 (m, 3H), 6.99 – 6.89 (m, 

1H), 6.83 (d, J = 8.4 Hz, 2H), 6.78 – 6.58 (m, 2H), 6.56 – 6.37 (m, 1H), 4.05–3.90 (m, 1H), 

3.79 (s, 3H), 3.76 – 3.66 (m, 3H), 3.36 – 3.17 (m, 1H), 2.91 – 2.64 (m, 3H), 1.70 (br, 3H), 

1.60 – 1.56 (m, 3H). 

IR (Neat film NaCl): 2907, 2851, 2834, 1603, 1583, 1511, 1496, 1463, 1440, 1245, 1177, 

1155, 1114, 1035, 807, 752. 

HR-MS (FD-MS) m/z: [M]+ Calc’d for C27H28O2S 416.1810; Found 416.1804. 

* 13C NMR was complicated due to the existence of rotamers.  

Despite the reaction forming 129/130 is complicated with multiple products, LC-MS shows 

the isolated 129 is the major Friedel-Crafts product (MW = 417) based on the UV (second 

row, Figure 2.1) and EIC chromatogram (third row, Figure 2.1).  
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Figure 2.1 The LC-MS trace of the reaction forming 129. (first row: TIC chromatogram; 

second row: UV (254 nm) chromatogram; third row: EIC (MW = 417) chromatogram; 

method: 75%:25% water:ACN (0.01 min) to 26%:74% water:ACN (9.80 min) to 

100% ACN (9.81 min)) 

 

 

The 1H NMR of 129 is also complicated (Figure 2.2). A zoom-in into the aromatic region of 

the 1H NMR shows there are two characteristic doublets each with 2 protons (one is 

overlapped with one other proton signal) which is corresponding to a para-substituted 

aromatic ring (Figure 2.3). This pattern is only seen if 129 is formed, instead of 130 which 

has no para-substituted aromatic rings. 

 

 

 

 

 

129 

129 
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Figure 2.2 1H NMR (400 MHz, CDCl3) of compound 129. 
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Figure 2.3 1H NMR (400 MHz, CDCl3) of compound 129 (zoom-in of 7.7–6.1 ppm). 

 

 

 

2.7.4.2 Friedel-Crafts reactions vs C–H insertions 

 

OTs

S
LiF20 (10 mol%)

LiH (5 equiv)

1,2-DCB, 140 °C
D5 S

D5

S

D4

132-d5 132-d4
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In the glovebox, lithium tetrakis(pentafluorophenyl)borate (3.4 mg, 0.0050 mmol, 0.1 equiv), 

lithium hydride (2.0 mg, 0.25 mmol, 5.0 equiv),  and vinyl tosylate 131 (26.7 mg, 0.0500 

mmol, 1.0 equiv) were dissolved into 1,2-dichlorobenzene (2.5 mL) to generate a 0.02 M 

solution for the vinyl tosylate. The reaction was heated under 140 °C overnight. The reaction 

solution was directly purified via flash column chromatography using hexanes and then ethyl 

acetate to get rid of 1,2-dichlorobenzene. Then the crude product was purified via preparative 

TLC to get the product. 

1H NMR shows the product is the desired 8-membered ring product from the Friedel-Crafts 

reaction (Figure 2.4). 
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Figure 2.4 1H NMR (400 MHz, CDCl3) of the mixture product 132-d5 and 132-d4. 

 

 

The HR-MS of this 132-d5 and 132-d4 mixture showed their ratio is around 1:1 (Figure 2.5). 
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Figure 2.5 HR-MS report of products 132. 

 

2.7.5 Computational studies 

2.7.5.1 Computational methods 
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Density functional theory (DFT) computations were performed with Gaussian 16.39 

The wB97X-D functional was used to optimize molecular geometries.40 Geometry 

optimizations were completed with the def2-SVP basis set41 and the SMD solvation model 

accounting for the effect of o-dichlorobenzene.42 Frequency calculations were conducted at 

the same level of theory used for the geometry optimizations in order to obtain thermal Gibbs 

free energies and characterize the stationary points on the potential energy surface. Single 

point energies were obtained using the def2-TZVPP basis set.41 Intrinsic reaction coordinate 

(IRC) calculations were performed to verify that a transition state (TS) connects the reactant 

and the product on the potential energy surface. 

Conformation searches were executed by Grimme’s Conformer-Rotamer Ensemble 

Sampling Tool (CREST) to find the lowest energy conformers.43 CYLview was employed 

to visualize molecular structures.44  

2.7.5.2 Energies and Cartesian coordinates of calculated structures 

Table 2.2 Energies of the optimized structures (wB97X-D/def2-SVP/SMD=o-

dichlorobenzene). 

Structure E ZPE H T.S G(T) 

INT1 

INT2-m 

INT2-p 

TS-R 

TS-m 

TS-p 

INT1’ 

INT2-p’ 

-1684.511784 

-1684.517623 

-1684.540119 

-1684.510634 

-1684.487656 

-1684.487267 

-1684.514887 

-1684.543812 

0.488122 

0.488675 

0.491438 

0.489840 

0.487587 

0.487612 

0.488449 

0.491621 

-1683.967990 

-1683.974546 

-1683.994980 

-1683.967969 

-1683.945750 

-1683.945149 

-1683.971117 

-1683.998548 

0.159247 

0.154411 

0.151622 

0.148111 

0.154876 

0.155956 

0.157303 

0.151343 

-1684.127237 

-1684.128957 

-1684.146602 

-1684.116080 

-1684.100626 

-1684.101105 

-1684.128420 

-1684.149891 
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TS-p’ -1684.493320 0.488175   -1683.950954   0.15397 -1684.104924   

 

Table 2.3 Single point energies (wB97X-D/def2-TZVPP/SMD=o-dichlorobenzene) 

Structure E 

INT1 

INT2-m 

INT2-p 

TS-R 

TS-m 

TS-p 

INT1’ 

INT2-p’ 

TS-p’ 

-1686.093476 

-1686.094830 

-1686.117135 

-1686.088536 

-1686.069921 

 -1686.070019 

-1686.094658 

-1686.122058 

-1686.076146 

2.7.5.3 Cartesian coordinates for structures of Table 2.2 and Table 2.3. 

INT1 

Charge: 1 

 

C     1.010925     2.218217    -1.610785 

C     0.888011     3.600868    -1.684825 

C     0.210187     4.350815    -0.706262 

C    -0.374103     3.697303     0.351702 

C    -0.316478     2.271450     0.429751 

C     0.444571     1.523471    -0.537879 

N     0.574344     0.151369    -0.403093 

S     1.240534    -0.519113     1.029589 
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O     1.194203     0.518883     2.049986 

O     0.585558    -1.794229     1.246058 

C     2.929708    -0.785623     0.579620 

C     3.371549    -2.078045     0.312049 

C     4.701369    -2.267857    -0.057593 

C     5.584951    -1.187605    -0.163886 

C     5.105490     0.103562     0.114899 

C     3.786097     0.315549     0.489808 

H     3.430847     1.322746     0.716836 

H     5.784797     0.956458     0.043497 

C     7.021660    -1.390179    -0.553025 

H     7.223482    -2.434283    -0.827385 

H     7.687923    -1.119712     0.281271 

H     7.291539    -0.746886    -1.404319 

H     5.057500    -3.279536    -0.265035 

H     2.688551    -2.924943     0.395747 

C     0.712378    -0.702418    -1.594856 

H     0.790888    -1.735254    -1.232421 

C    -0.477762    -0.578117    -2.540632 

C    -1.098495     1.623801     1.343579 

C    -1.973173     1.084349     2.132742 

C    -3.414738     1.027430     1.680255 

C    -1.629881     0.505254     3.478936 
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H    -0.583323     0.672749     3.751446 

H    -1.824503    -0.577544     3.443986 

H    -4.016044     1.643889     2.365127 

H    -3.552030     1.384320     0.652382 

H    -0.462577     0.401803    -3.040463 

H    -0.312790    -1.321454    -3.338441 

H     1.652051    -0.484128    -2.127471 

H    -0.917341     4.238263     1.128153 

H     0.152969     5.436495    -0.790447 

H     1.361960     4.121703    -2.519950 

H     1.580810     1.686461    -2.372265 

C    -1.834140    -0.787041    -1.905689 

C    -2.066767    -1.776631    -0.947512 

C    -2.922183     0.008100    -2.293961 

C    -3.332292    -1.981330    -0.394548 

H    -1.246763    -2.406969    -0.596763 

C    -4.189605    -0.182453    -1.757917 

H    -2.772852     0.796478    -3.037410 

C    -4.406662    -1.179930    -0.797314 

H    -3.461738    -2.762167     0.355452 

H    -5.030543     0.443607    -2.063332 

H    -2.294354     0.948427     4.235009 

H    -3.764044    -0.012269     1.751470 
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O    -5.656905    -1.278375    -0.304044 

C    -5.934805    -2.265893     0.658738 

H    -5.336706    -2.126185     1.575709 

H    -6.997576    -2.166593     0.912768 

H    -5.756794    -3.281764     0.266712 

 

There are no imaginary frequencies 

--------------------------------------------------------------------- 

 

INT2-m  

Charge: 1              

 

C     1.321834     2.259574    -1.336273 

C     0.919234     3.493721    -1.840293 

C    -0.383603     3.942277    -1.622329 

C    -1.280294     3.157272    -0.899534 

C    -0.882914     1.927444    -0.365420 

C     0.431861     1.482840    -0.592325 

N     0.807780     0.204790    -0.085104 

S     1.832928     0.088172     1.220559 

O     2.066516     1.442537     1.698495 

O     1.293378    -0.926627     2.118241 

C     3.361183    -0.547587     0.569836 
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C     4.306478     0.345254     0.061170 

C     5.490189    -0.153149    -0.469991 

C     5.749505    -1.532447    -0.499073 

C     4.786237    -2.403191     0.024924 

C     3.595103    -1.920984     0.563489 

H     2.857753    -2.606563     0.984278 

H     4.972415    -3.479923     0.018009 

C     7.046987    -2.051496    -1.052754 

H     7.319974    -1.530139    -1.982038 

H     6.996131    -3.129771    -1.257334 

H     7.864903    -1.884023    -0.333277 

H     6.234095     0.542863    -0.865829 

H     4.119562     1.420377     0.091749 

C     0.461962    -1.046179    -0.765712 

H     0.258235    -1.812196    -0.003403 

C    -0.721099    -0.961125    -1.735958 

C    -1.830311     1.042812     0.375746 

C    -1.842634     0.938545     1.718293 

C    -2.649723    -0.076187     2.479912 

C    -1.016081     1.837009     2.592490 

H    -1.660407     2.284902     3.366766 

H    -0.515464     2.640218     2.039340 

H    -2.028512    -0.496153     3.285925 
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H    -3.523601     0.391197     2.962269 

H    -0.620805    -0.067107    -2.370902 

H    -0.618921    -1.824746    -2.405347 

H     1.323971    -1.391586    -1.362799 

H    -2.302953     3.505553    -0.733977 

H    -0.704492     4.907628    -2.019762 

H     1.622093     4.102388    -2.413040 

H     2.332351     1.889121    -1.517057 

C    -2.112916    -0.999418    -1.170088 

C    -2.913650    -2.102460    -1.391330 

C    -2.721524     0.173879    -0.507001 

C    -4.256432    -2.138932    -0.995420 

H    -2.503070    -2.974017    -1.904754 

C    -4.113275     0.055796    -0.075242 

H    -2.915441     0.786787    -1.440008 

C    -4.887211    -1.051922    -0.356033 

H    -4.823826    -3.045681    -1.214977 

H    -4.561144     0.907250     0.441873 

H    -0.245481     1.249584     3.113838 

H    -2.997748    -0.917891     1.865022 

O    -6.165977    -1.031629     0.024720 

C    -6.985995    -2.159648    -0.220877 

H    -7.977400    -1.908388     0.172891 
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H    -6.608341    -3.053719     0.301288 

H    -7.070168    -2.367452    -1.299929 

 

There are no imaginary frequencies 

--------------------------------------------------------------------- 

 

INT2-p 

Charge: 1 

  

C     1.740215     2.398813    -0.817479 

C     1.593455     3.784488    -0.865930 

C     0.378507     4.365953    -0.503788 

C    -0.685113     3.569459    -0.079027 

C    -0.546053     2.180434     0.001746 

C     0.677889     1.610361    -0.381259 

N     0.753531     0.188630    -0.385799 

S     1.433502    -0.621936     0.890869 

O     1.468681     0.302999     2.012076 

O     0.735735    -1.901098     1.006589 

C     3.104931    -0.969233     0.403403 

C     3.384893    -2.126565    -0.322042 

C     4.689759    -2.356906    -0.748160 

C     5.719354    -1.451584    -0.456651 
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C     5.407118    -0.299892     0.280229 

C     4.108813    -0.051901     0.714306 

H     3.875767     0.842935     1.293905 

H     6.197442     0.415094     0.522067 

C     7.132451    -1.723699    -0.891432 

H     7.663793    -0.791986    -1.133023 

H     7.163564    -2.384512    -1.769085 

H     7.692144    -2.220259    -0.081856 

H     4.914382    -3.262922    -1.316423 

H     2.593815    -2.844668    -0.545002 

C     0.084916    -0.509261    -1.475693 

H     0.014097    -1.571624    -1.211463 

C    -1.297917     0.074414    -1.765617 

C    -1.637562     1.296460     0.503406 

C    -2.080542     1.405312     1.774162 

C    -3.235943     0.621862     2.338892 

C    -1.416779     2.300540     2.785746 

H    -0.438003     2.673189     2.464629 

H    -1.278981     1.738794     3.723645 

H    -4.017446     0.397899     1.602782 

H    -2.888091    -0.326268     2.781781 

H    -1.204684     1.052630    -2.256887 

H    -1.809549    -0.591931    -2.475189 
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H     0.680574    -0.436284    -2.400872 

H    -1.633376     4.029406     0.208412 

H     0.256122     5.450195    -0.552600 

H     2.424969     4.409126    -1.198974 

H     2.675512     1.920050    -1.115198 

C    -2.233637     0.271849    -0.501148 

C    -2.370673    -1.094165     0.071677 

C    -3.505870     0.791349    -1.075730 

C    -3.461960    -1.877319    -0.108491 

H    -1.503390    -1.492271     0.607945 

C    -4.615706     0.033352    -1.219405 

H    -3.496216     1.822576    -1.438801 

C    -4.601709    -1.330210    -0.776110 

H    -3.482680    -2.894660     0.279577 

H    -5.529355     0.416239    -1.675409 

H    -2.063233     3.161076     3.025829 

H    -3.709372     1.193410     3.151022 

O    -5.680055    -2.001275    -1.007329 

C    -5.815838    -3.378799    -0.625683 

H    -5.744299    -3.476844     0.465711 

H    -6.811983    -3.678933    -0.964784 

H    -5.049550    -3.987394    -1.124410 
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There are no imaginary frequencies 

--------------------------------------------------------------------- 

 

TS-R 

Charge: 1 

 

C     1.507565     2.369705    -0.722466 

C     1.198449     3.692647    -1.028379 

C    -0.126734     4.125529    -0.990087 

C    -1.138759     3.235715    -0.637921 

C    -0.839778     1.914270    -0.291680 

C     0.498517     1.484863    -0.340837 

N     0.763106     0.111704    -0.073120 

S     1.708963    -0.359213     1.215005 

O     1.827685     0.795488     2.091786 

O     1.148583    -1.609977     1.707728 

C     3.314130    -0.722075     0.543230 

C     3.565241    -1.981026    -0.000195 

C     4.812952    -2.238935    -0.563152 

C     5.816355    -1.261980    -0.581046 

C     5.539653    -0.009518    -0.011797 

C     4.298843     0.267605     0.550338 

H     4.096575     1.240789     1.001089 
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H     6.314336     0.761462    -0.004783 

C     7.170002    -1.547003    -1.169002 

H     7.168743    -2.477669    -1.752745 

H     7.922488    -1.649200    -0.370530 

H     7.499394    -0.724729    -1.821549 

H     5.012093    -3.223855    -0.992348 

H     2.798626    -2.757557     0.024630 

C     0.498969    -0.867920    -1.125653 

H     0.385620    -1.854877    -0.655473 

C    -0.755530    -0.524582    -1.923746 

C    -1.939316     0.998874     0.150476 

C    -2.125759     0.736781     1.479759 

C    -3.173098    -0.151384     2.056446 

C    -1.267374     1.400463     2.513933 

H    -0.541847     2.116320     2.118050 

H    -0.717780     0.623719     3.069268 

H    -3.139214    -0.124211     3.152408 

H    -4.178918     0.157068     1.730701 

H    -0.645307     0.438533    -2.437350 

H    -0.849586    -1.285128    -2.715382 

H     1.346146    -0.919194    -1.831726 

H    -2.178095     3.572658    -0.611256 

H    -0.374267     5.159738    -1.237842 
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H     1.994892     4.383055    -1.313416 

H     2.537896     2.015621    -0.783890 

C    -2.049635    -0.570949    -1.164012 

C    -2.552210    -1.832626    -0.751164 

C    -2.927117     0.587043    -1.045857 

C    -3.889182    -2.006270    -0.511871 

H    -1.883990    -2.695844    -0.741924 

C    -4.345698     0.349699    -0.772401 

H    -2.775762     1.363623    -1.805335 

C    -4.821835    -0.908587    -0.550259 

H    -4.248424    -3.013243    -0.294170 

H    -5.030421     1.199261    -0.773826 

H    -1.921553     1.907089     3.241578 

H    -3.041428    -1.198778     1.739346 

O    -6.133683    -1.067342    -0.340050 

C    -6.676337    -2.360667    -0.151888 

H    -6.280080    -2.840618     0.757507 

H    -7.757788    -2.222889    -0.035791 

H    -6.492064    -3.009032    -1.023823 

 

1 imaginary frequency: –140.91 cm–1 

--------------------------------------------------------------------- 
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TS-m     

Charge: 1 

 

C     1.659123     2.141509    -0.929783 

C     1.492579     3.515355    -1.118783 

C     0.274249     4.136655    -0.834452 

C    -0.789750     3.387624    -0.348538 

C    -0.622506     2.010765    -0.116431 

C     0.607649     1.383636    -0.429280 

N     0.672182    -0.030959    -0.328444 

S     1.427139    -0.745150     0.973115 

O     1.316441     0.204485     2.070364 

O     0.872842    -2.084971     1.083774 

C     3.140799    -0.887355     0.534458 

C     4.030514     0.113010     0.922302 

C     5.362779     0.023056     0.526399 

C     5.818130    -1.050994    -0.248925 

C     4.900139    -2.047088    -0.616535 

C     3.567136    -1.976537    -0.228669 

H     2.866465    -2.765639    -0.507387 

H     5.239516    -2.897643    -1.213092 

C     7.259173    -1.157000    -0.663275 

H     7.809437    -0.229646    -0.453367 
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H     7.346213    -1.379646    -1.737335 

H     7.756488    -1.976946    -0.120805 

H     6.063991     0.803666     0.831028 

H     3.685471     0.950362     1.531098 

C     0.426572    -0.798207    -1.548687 

H     0.300490    -1.850637    -1.261705 

C    -0.819894    -0.296388    -2.276190 

C    -1.630891     1.246456     0.538851 

C    -2.037764     0.835670     1.716367 

C    -3.043306    -0.204859     2.091750 

C    -1.365796     1.551216     2.878337 

H    -2.158806     1.975975     3.513074 

H    -0.679272     2.346821     2.569758 

H    -2.931361    -0.450106     3.155370 

H    -4.065252     0.169694     1.934330 

H    -0.685108     0.749396    -2.588288 

H    -0.901659    -0.876838    -3.208604 

H     1.291282    -0.728880    -2.231564 

H    -1.749140     3.856515    -0.122222 

H     0.155883     5.209092    -0.998095 

H     2.322721     4.106135    -1.511555 

H     2.602151     1.654566    -1.185183 

C    -2.114563    -0.446282    -1.520394 
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C    -2.609605    -1.723512    -1.213762 

C    -2.957723     0.663060    -1.252688 

C    -3.903320    -1.908333    -0.752258 

H    -1.984479    -2.600278    -1.398507 

C    -4.272120     0.477047    -0.785060 

H    -2.694346     1.643975    -1.651176 

C    -4.752829    -0.801160    -0.531645 

H    -4.253918    -2.922783    -0.559331 

H    -4.925845     1.335295    -0.621523 

H    -0.804876     0.803959     3.456987 

H    -2.906330    -1.118242     1.502651 

O    -6.004689    -0.899974    -0.064022 

C    -6.548566    -2.174208     0.209694 

H    -7.569201    -2.003181     0.572537 

H    -5.975693    -2.700547     0.990940 

H    -6.592316    -2.800454    -0.696515 

 

1 imaginary frequency: –297.45 cm–1 

--------------------------------------------------------------------- 

 

TS-p 

Charge: 1 
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C     1.678658     2.167778    -0.878696 

C     1.460934     3.535673    -1.061209 

C     0.212652     4.107971    -0.801815 

C    -0.830398     3.317741    -0.337453 

C    -0.611780     1.946318    -0.107902 

C     0.645416     1.368167    -0.408245 

N     0.745471    -0.041377    -0.317029 

S     1.520341    -0.756225     0.969275 

O     1.419449     0.187070     2.072924 

O     0.976448    -2.100556     1.079509 

C     3.228201    -0.886726     0.503705 

C     3.643360    -1.960507    -0.286954 

C     4.969359    -2.020590    -0.699420 

C     5.891781    -1.029409    -0.329318 

C     5.448231     0.027988     0.474976 

C     4.122656     0.107420     0.895547 

H     3.786338     0.932439     1.525714 

H     6.153184     0.804166     0.782298 

C     7.324920    -1.123438    -0.773017 

H     7.391738    -1.324599    -1.852759 

H     7.834453    -1.952632    -0.256565 

H     7.876988    -0.198933    -0.555403 

H     5.299718    -2.858545    -1.318482 
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H     2.939616    -2.745729    -0.568944 

C     0.383245    -0.810078    -1.506172 

H     0.250590    -1.856335    -1.201834 

C    -0.888631    -0.268527    -2.153872 

C    -1.578337     1.150325     0.559731 

C    -2.062531     0.834814     1.736809 

C    -3.144488    -0.117499     2.135096 

C    -1.376840     1.564767     2.884272 

H    -0.596843     2.262241     2.561736 

H    -0.924960     0.807052     3.540867 

H    -4.113491     0.191047     1.720204 

H    -2.921174    -1.130962     1.778625 

H    -0.738911     0.769685    -2.484866 

H    -1.045964    -0.845666    -3.079306 

H     1.198295    -0.772663    -2.249389 

H    -1.809769     3.748392    -0.121447 

H     0.057096     5.175854    -0.963992 

H     2.275302     4.161449    -1.432389 

H     2.644759     1.720123    -1.118262 

C    -2.161503    -0.367896    -1.344747 

C    -2.595990    -1.635724    -0.890011 

C    -3.122003     0.675427    -1.361258 

C    -3.911093    -1.871945    -0.545850 
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H    -1.890667    -2.469212    -0.867780 

C    -4.446986     0.452757    -0.990773 

H    -2.845305     1.648222    -1.773601 

C    -4.858378    -0.822418    -0.599472 

H    -4.206883    -2.872270    -0.229468 

H    -5.179313     1.260917    -1.019815 

H    -2.148948     2.108316     3.450173 

H    -3.228315    -0.140695     3.228219 

O    -6.143702    -0.965998    -0.271783 

C    -6.632534    -2.231315     0.129344 

H    -6.132213    -2.584942     1.045078 

H    -7.700800    -2.096695     0.336187 

H    -6.513348    -2.981363    -0.668965 

 

1 imaginary frequency: –232.18 cm–1 

--------------------------------------------------------------------- 

 

INT1' 

Charge: 1 

 

C     0.873986     2.381439    -1.254939 

C     0.757846     3.761624    -1.120733 

C     0.044298     4.355027    -0.065401 
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C    -0.578524     3.549501     0.859243 

C    -0.526130     2.128935     0.719890 

C     0.260601     1.536289    -0.328918 

N     0.371573     0.153860    -0.411073 

S     1.077271    -0.712051     0.886440 

O     0.934737     0.110607     2.078963 

O     0.519903    -2.052248     0.843173 

C     2.787384    -0.769319     0.446111 

C     3.572353     0.368579     0.646703 

C     4.908586     0.331638     0.268380 

C     5.471401    -0.821162    -0.301821 

C     4.657093    -1.947429    -0.479426 

C     3.314692    -1.931997    -0.111875 

H     2.688568    -2.815396    -0.247060 

H     5.081518    -2.857688    -0.909200 

C     6.910646    -0.836368    -0.731865 

H     7.529618    -0.202188    -0.081625 

H     7.004459    -0.445722    -1.758491 

H     7.320447    -1.855855    -0.727081 

H     5.532906     1.213922     0.427821 

H     3.150472     1.266129     1.103230 

C     0.494985    -0.501060    -1.726299 

H     0.517523    -1.581446    -1.535058 
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C    -0.658929    -0.167138    -2.663097 

C    -1.332124     1.359686     1.513899 

C    -2.234481     0.770473     2.232913 

C    -3.670646     0.807738     1.758341 

C    -1.933058     0.062866     3.527022 

H    -2.466323     0.579498     4.339182 

H    -0.860680     0.033628     3.744517 

H    -4.044473    -0.224083     1.694316 

H    -4.265609     1.347959     2.510116 

H    -0.590936     0.880844    -2.991217 

H    -0.493505    -0.768342    -3.572587 

H     1.453018    -0.242832    -2.206586 

H    -1.146382     3.970348     1.690404 

H    -0.009390     5.440946     0.017845 

H     1.264154     4.401325    -1.847225 

H     1.472604     1.965139    -2.064654 

C    -2.058179    -0.425454    -2.145747 

C    -2.303874    -1.300683    -1.079467 

C    -3.136656     0.208834    -2.769646 

C    -3.612332    -1.534503    -0.643015 

H    -1.472865    -1.785391    -0.569574 

C    -4.442793    -0.045078    -2.345215 

H    -2.954932     0.900597    -3.596174 
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C    -4.689281    -0.911822    -1.287977 

H    -5.281248     0.447815    -2.843265 

H    -2.324948    -0.963000     3.463531 

H    -3.783176     1.296823     0.783091 

H    -5.703359    -1.108679    -0.934688 

O    -3.916587    -2.320602     0.411373 

C    -2.869123    -2.948140     1.115194 

H    -3.331506    -3.478344     1.957095 

H    -2.335369    -3.678106     0.483531 

H    -2.138826    -2.219041     1.502671 

 

There are no imaginary frequencies 

--------------------------------------------------------------------- 

 

INT2-p'                                           

Charge: 1 

 

C     1.494789     2.042645    -1.376370 

C     1.318957     3.290026    -1.970197 

C     0.100729     3.956456    -1.837627 

C    -0.939426     3.373928    -1.115433 

C    -0.771418     2.132158    -0.494081 

C     0.463535     1.471708    -0.628093 
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N     0.603000     0.183063    -0.028017 

S     1.610140    -0.020008     1.284452 

O     1.868246     1.303543     1.830318 

O     1.019284    -1.062140     2.113244 

C     3.141514    -0.657429     0.641142 

C     4.169829     0.231383     0.323940 

C     5.352844    -0.265566    -0.212292 

C     5.528852    -1.639380    -0.434977 

C     4.482990    -2.508817    -0.098344 

C     3.292856    -2.029446     0.442973 

H     2.492204    -2.718442     0.717449 

H     4.603704    -3.583269    -0.257040 

C     6.824602    -2.164067    -0.987612 

H     7.241474    -1.483000    -1.743607 

H     6.697276    -3.157218    -1.440395 

H     7.572937    -2.257453    -0.183597 

H     6.161088     0.427582    -0.458652 

H     4.045715     1.300534     0.504636 

C     0.218884    -1.025106    -0.757630 

H     0.031867    -1.819095    -0.021629 

C    -1.006386    -0.866756    -1.660970 

C    -1.879876     1.452351     0.241985 

C    -1.963366     1.453216     1.585964 
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C    -2.929443     0.606506     2.373305 

C    -1.070909     2.310956     2.436484 

H    -1.690329     2.888010     3.143220 

H    -0.452403     3.006170     1.856917 

H    -2.498458     0.384531     3.360634 

H    -3.881114     1.133029     2.553000 

H    -0.845825    -0.030394    -2.357802 

H    -1.039746    -1.781581    -2.268336 

H     1.045714    -1.356865    -1.411409 

H    -1.896913     3.892113    -1.021154 

H    -0.042439     4.933685    -2.303995 

H     2.132252     3.738507    -2.544569 

H     2.437782     1.504270    -1.489888 

C    -2.355673    -0.701595    -1.013508 

C    -3.165934    -1.788862    -0.855848 

C    -2.846193     0.666005    -0.665089 

C    -4.520730    -1.630318    -0.443553 

H    -2.793254    -2.780539    -1.112593 

C    -4.267224     0.742812    -0.251854 

H    -2.834550     1.212291    -1.634172 

C    -5.076477    -0.334803    -0.190064 

H    -4.654812     1.735960    -0.012479 

H    -0.397493     1.679688     3.035387 
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H    -3.146996    -0.353837     1.888421 

H    -6.127921    -0.265832     0.090552 

O    -5.337935    -2.622994    -0.303816 

C    -4.929175    -3.983059    -0.504773 

H    -5.815047    -4.588929    -0.290798 

H    -4.614021    -4.134916    -1.546293 

H    -4.119596    -4.243264     0.190227 

 

There are no imaginary frequencies 

--------------------------------------------------------------------- 

 

TS-p' 

Charge: 1 

 

C     1.564688     2.053575    -1.241333 

C     1.494838     3.405227    -1.591358 

C     0.376917     4.177533    -1.266903 

C    -0.686977     3.603318    -0.584291 

C    -0.613430     2.252583    -0.193428 

C     0.518274     1.470157    -0.540796 

N     0.477171     0.079918    -0.252231 

S     1.255552    -0.496894     1.107824 

O     1.269861     0.607392     2.055794 
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O     0.618666    -1.761007     1.440474 

C     2.926042    -0.827497     0.611062 

C     3.892873     0.165167     0.763143 

C     5.189514    -0.081172     0.318310 

C     5.532962    -1.303236    -0.273875 

C     4.539901    -2.286569    -0.403716 

C     3.240750    -2.060385     0.035468 

H     2.480093    -2.837671    -0.057148 

H     4.792992    -3.250584    -0.852138 

C     6.930376    -1.571099    -0.758453 

H     7.597650    -0.721787    -0.558669 

H     6.935840    -1.766438    -1.842229 

H     7.349515    -2.462748    -0.267192 

H     5.952077     0.691832     0.440041 

H     3.635663     1.116795     1.231211 

C     0.192596    -0.835397    -1.358696 

H     0.009166    -1.827564    -0.924947 

C    -1.021287    -0.382002    -2.167848 

C    -1.609482     1.662829     0.617660 

C    -2.019148     1.306231     1.804839 

C    -3.035049     0.286743     2.207822 

C    -1.330220     2.059779     2.933383 

H    -2.114438     2.516767     3.556202 
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H    -0.640930     2.837724     2.586518 

H    -2.834496    -0.026839     3.240497 

H    -4.046060     0.717458     2.170839 

H    -0.830506     0.607273    -2.608825 

H    -1.115229    -1.079235    -3.014412 

H     1.062843    -0.911593    -2.034256 

H    -1.572653     4.186988    -0.327473 

H     0.336072     5.228933    -1.555744 

H     2.323112     3.858283    -2.140101 

H     2.429734     1.450556    -1.523257 

C    -2.333152    -0.363926    -1.420822 

C    -2.918793    -1.570351    -1.024345 

C    -3.029941     0.845445    -1.205440 

C    -4.222190    -1.588817    -0.512760 

H    -2.369042    -2.500043    -1.175403 

C    -4.353268     0.810846    -0.705189 

H    -2.671801     1.762183    -1.671990 

C    -4.948445    -0.383431    -0.374195 

H    -4.907511     1.745397    -0.595873 

H    -0.770366     1.328697     3.533053 

H    -2.995340    -0.590625     1.554334 

H    -5.967390    -0.430116     0.013383 

O    -4.860361    -2.695837    -0.135437 
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C    -4.206094    -3.946445    -0.221148 

H    -4.913008    -4.691265     0.162802 

H    -3.951024    -4.196544    -1.263633 

H    -3.292853    -3.963990     0.395636 

 

1 imaginary frequency: –281.76 cm–1 

--------------------------------------------------------------------- 
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CHAPTER 3 

Lithium-mediated Selective [2+2] Cycloadditions via Vinyl Carbocations 

3.1 INTRODUCTION 

Cyclobutene motifs with strained 4-membered carbocycles1 are versatile blocks in 

organic synthesis and are critical structures in various natural products.2,3 The [2+2] 

cycloaddition reaction offers a straightforward and efficient method for synthesizing these 

strained structures, allowing the formation of two bonds in a single step.4 Alkenes and 

alkynes are the most common precursors for [2+2] cycloadditions. However, due to orbital 

symmetry restrictions described by the Woodward-Hoffmann rules,5 most [2+2] 

cycloadditions require photochemical conditions.6 

Transition metals such as gold7, palladium8, and cobalt9 can activate alkyne species 

and facilitate [2+2] cycloadditions with alkene partners under thermal conditions (Scheme 

3.1A). Lewis acids can also promote some thermal [2+2] cycloadditions, although polarized 

alkynes, such as ynones10,11 and terminal alkynes12, are often required for these reactions 
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(Scheme 3.1B). A concerted thermal [2+2] cycloaddition can also be achieved when ketenes 

react with other ketenes or alkenes (Scheme 3.1C).13 

Scheme 3.1 Thermal [2+2] cycloadditions with alkenes and alkynes. Me, methyl; tBu, 
tert-butyl. 

 
 

 
As highly electron-deficient species, vinyl carbocations are also reactive towards 

alkenes, potentially yielding [2+2] cycloaddition products. This type of reactivity was 

previously reported by Griesbaum14, Olah15, and Hanack16. However, these reactions 

typically require strong Brønsted acids, such as hydrogen chloride and fluorosulfuric acid, or 

stoichiometric noble metal Lewis acids and often present selectivity issues. For example, in 

the presence of silver tetrafluoroborate (AgBF4), a vinyl carbocation generated from the 

readily ionizable vinyl bromide 133, which reacted with cyclohexene to yield the 

cyclobutene product 134. However, side products such as vinyl fluoride 135 and ring-

opening product 136, induced by the nucleophilic trapping of fluorides, were also observed 

(Scheme 3.2A).16a Developing a system with better selectivity towards [2+2] cycloaddition 

products following vinyl cation generation is thus of great interest. 
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Scheme 3.2 [2+2] cycloadditions via vinyl carbocations. (A) Silver-initiated [2+2] 
cycloaddition of the vinyl bromide and cyclohexene (B) Lithium-initiated C–H 
insertions of vinyl carbocations (C) This work: Lithium-initiated [2+2] cycloaddition 
of vinylogous triflates. An, para-anisyl. 

 

 

 
Our laboratory has developed a Lewis acid-weakly coordinating anion (WCA) 

approach to induce challenging ionizations from vinyl sulfonates to access vinyl carbocation 

intermediates.17–21 When the precatalyst trityl tetrakis(pentafluorophenyl)borate 

([Ph3C]+[B(C6F5)4]–) and lithium additive lithium bis(trimethylsilyl)amide (LiHMDS) are 

added together, a metathesis reaction is proposed to occur, forming the lithium-WCA pair 

([Li]+[B(C6F5)4]–). The lithium in this highly Lewis acidic pair abstracts the 

trifluoromethanesulfonate (triflate) group from the vinyl triflate precursor 137 (Scheme 
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3.2B).18 In this catalytic system, the nucleophilicities of both the WCA species [B(C6F5)4]– 

and the sterically hindered LiHMDS are weak. Therefore, the high-energy vinyl cation 

intermediate 138 is not prone to nucleophilic quenching, and the C–H functionalization 

product 139 is furnished.  

 

3.2 MODEL SUBSTRATE STUDY 

Utilizing the Li-WCA system, we extended this system to vinyl cation [2+2] 

cycloadditions (Scheme 3.2C). After initial experiments, we identified that vinyl triflate 140 

could undergo cycloaddition to yield [4.2.0] bicycle 141. Therefore, we used vinyl triflate 

140 as a model substrate to optimize the reaction conditions (Table 3.1). 

Inspired by the previously reported lithium-WCA catalytic conditions from our 

laboratory18, we found that using 10 mol% [Li]+[B(C6F5)4]– and 1.2 equivalents of LiHMDS 

in cyclohexane (CyH) produced compound 141 in 40% yield (entry 1) after 30 minutes at 30 

°C. Increasing the equivalents of LiHMDS to 2.2 improved the yield to 54% (entry 2).  The 

[Li]+[B(C6F5)4]– catalyst was necessary to initiate the reaction, as no reaction occurred with 

only LiHMDS in CyH (entry 3). The reaction yield was further enhanced to 72% when using 

the aromatic, electron-deficient trifluorotoluene (PhCF3) solvent (entry 4). Surprisingly, in 

the absence of the expensive [Li]+[B(C6F5)4]– catalyst, LiHMDS initiated the reaction in 

PhCF3 with an 84% yield (entry 5). Other common lithium bases, such as lithium tert-

butoxide (LiOtBu) (entry 6), lithium diisopropylamide (LDA) (entry 7), and lithium hydride 

(LiH) (see experimental section) were evaluated, but they either failed to induce the 

ionization of the vinyl triflate precursor or resulted in complex mixtures. Subsequently, 

trimethylsilylamide bases were evaluated. Sodium bis(trimethylsilyl)amide (NaHMDS) 
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dropped the yield to 47% (entry 8), while no reaction was observed with potassium 

(KHMDS) (entry 9) or protic bis(trimethylsilyl)amide (H-HMDS) (see experimental 

section). Lastly, a solvent screen was undertaken. Most halogenated solvents, including 

dichloromethane and 1,2-dichloroethane, or nucleophilic solvents, such as tetrahydrofuran 

(THF) (entry 10), acetonitrile and diethyl ether, resulted in low or no yield of product 141 

(see experimental section). In the end, we decided to use entry 5 as the optimized conditions 

for further studies. 

Table 3.1 Optimization of the [2+2] cycloaddition reaction. 

 
entry Lewis acid additive solvent yield (%) 

1 [Li]+[B(C6F5)4]– (10 mol%) + LiHMDS (1.2 equiv) CyH 40 

2 [Li]+[B(C6F5)4]– (10 mol%) + LiHMDS (2.2 equiv) CyH 54 

3 LiHMDS (2.2 equiv) CyH no reaction 

4 [Li]+[B(C6F5)4]– (10 mol%) + LiHMDS (2.2 equiv) PhCF3 72 

5 LiHMDS (2.2 equiv) PhCF3 84 

6 LiOtBu (2.2 equiv) PhCF3 no reaction 

7 LDA (2.2 equiv) PhCF3 n.d. 

8 NaHMDS (2.2 equiv) PhCF3 47 

9 KHMDS (2.2 equiv) PhCF3 n.d. 

10 LiHMDS (2.2 equiv) THF n.d. 

* Yield determined by 1H NMR using nitromethane as an internal standard. TfO, 
trifluoromethanesulfonate; Et, ethyl; Cy, cyclohexyl; Ph, phenyl; LiHMDS, lithium 
bis(trimethylsilyl)amide; LDA, lithium diisopropylamide; NaHMDS, sodium 

Me

OTf

OEt

O

Lewis acid additive

solvent (0.02 M)
30 °C
30 min

OEtO
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bis(trimethylsilyl)amide; KHMDS, potassium bis(trimethylsilyl)amide; THF, 
tetrahydrofuran. 
 

3.3 SUBSTRATE STUDY 

With the optimized conditions (entry 5, Table 3.1), we set out to explore the substrate 

scope (Scheme 3.3). Starting from model substrate 140, we achieved an isolated yield of 81% 

for product 141. We also examined the influence of different ester substitutions on the 

reaction, obtaining methyl ester 143 and isopropyl ester 144 in 70% and 56% yield, 

respectively. Additionally, we studied the steric effect of the vicinal aryl group on the vinyl 

triflate. Vinyl triflate precursors with meta- and ortho-methylated aryl groups generated their 

corresponding products 145 and 146 in 67% and 59% yield, respectively. Regarding the 

electronic effects of the aryl group, besides moderately electron-rich tolyl groups, an 

electron-neutral phenyl group, and a moderately electron-poor para-fluorophenyl group 

were well tolerated, forming products 147 and 148 in 74% and 61% yield, respectively. 

Product 149, containing a [3.2.0] bicycle, was generated with a slightly decreased yield of 

55%. Unfortunately, attempts to synthesize the more strained [2.2.0] or [5.2.0] derivatives 

151 and 152 were unsuccessful.  

Moreover, substrates with different carbonyl-based functional groups other than an 

ester could also undergo this type of [2+2] cycloaddition reaction. Product 150, bearing a 

ketone, was furnished in 35% yield. Vinyl triflate derivatives with amide or nitrile groups 

were evaluated, but products 153 and 154 were not observed. 

In closing, the high selectivity of this [2+2] cycloaddition was limited to terminal 

alkenes. When the influence of alkene substitution on reactivity was studied with a vinyl 

triflate with 1,2-disubstituted alkene, a complex mixture was formed and compound 155 was 

not observed. 
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Scheme 3.3 Scope of the [2+2] cycloaddition reaction from vinylogous triflate 
precursors under LiHMDS. The reaction was performed on 0.05 mmol scale unless 
otherwise specified. All yield were isolated yield unless specified. All structures were 
characterized by NMR. iPr, isopropyl; Bu, n-butyl. 
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aryl groups compared to the vinyl triflates utilized in this reaction. Consequently, the 

activation energy required for the abstraction of triflate to generate the vinyl carbocation was 

very high, and precursor 156 remained stable and did not undergo ionization. 

Further evidence of the cationic intermediate was obtained when vinyl triflate 159 

was subjected to LiHMDS in benzene solvent (Scheme 3.4B). Product 160 was observed in 

32% yield along with a mixture of side products. Gas chromatography-mass spectrometry 

(GC-MS) analysis identified these minor products as the Friedel-Crafts adducts of benzene 

onto the vinyl carbocation intermediate. This result further supports the intermediacy of the 

vinyl carbocation in the cycloaddition mechanism. 

Scheme 3.4 Scope of the [2+2] cycloaddition from vinylogous triflate precursors under 
LiHMDS. The reaction was performed on 0.05 mmol scale unless otherwise specified. 
All yield were isolated yield unless specified. All structures were characterized by 
NMR. 
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synthetic chemists with mild conditions and quick access to strained cyclobutene-containing 

[4.2.0] and [3.2.0] bicycles from vinylogous triflate precursors, further demonstrating the 

versatile application of vinyl carbocations in constructing strained systems. 

 

3.6 CONTRIBUTION AND ACKNOWLEDGEMENT 

 The substrate study in section 3.3 was completed in collaboration with Nils H. Rendel. 

 

3.7 EXPERIMENTAL SECTION 

3.7.1 Materials and methods 

Unless otherwise stated, all reactions were performed in a MBraun glovebox under 

nitrogen atmosphere with ≤ 3.0 ppm O2 levels. All glassware and stir-bars were dried in a 

160 °C oven for at least 12 hours and dried in vacuo before use. All liquid substrates were 

rigorously dried (over CaH2 or filtered through dry neutral aluminum oxide) before use. Ethyl 

ether, tetrahydrofuran, dichloromethane, 1,2-dichloroethane, acetonitrile, benzene, and 

toluene were dried in a JC Meyer solvent system. Trifluorotoluene were distilled over CaH2 

and degassed. [Li]+[B(C6F5)4]– salts were synthesized according to literature procedure.22 

Thin layer chromatography (TLC) was performed using Millipore silica gel 60 F254 pre-

coated plates (0.25 mm) and visualized by UV fluorescence quenching. SiliaFlash P60 silica 

gel (230-400 mesh) was used for flash chromatography. NMR spectra were recorded on a 

Varian 500, a Bruker Ascend 400 with Prodigy cryoprobe, or a Varian Oxford 300. Data for 

1H NMR spectra are as follows: chemical shift (ppm), multiplicity, coupling constant (Hz), 
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and integration. Multiplicities are as follows: s = singlet, d = doublet, t = triplet, dt = doublet 

of triplet, ddd = doublet of doublet of doublet, ddt = doublet of doublet of triplet, td = triplet 

of doublet, tt = triplet of triplet, tdt = triplet of doublet of triplet, q = quartet, qd = quartet of 

doublet, qt = quartet of triplet, p = pentet, hept = septet, and m = multiplet. IR Spectra were 

record on a Thermo Scientific Nicolet iS50 FT-IR and are reported in terms of frequency 

absorption (cm-1). Unless noted otherwise, silicone oil bath was used as the heating source 

for the reactions that require heating. 

3.7.2 Preparation of vinyl triflate substrates 

 

Representative scheme for vinyl triflate substrates synthesis.  

General Procedure 7: A three-neck flask was charged with sodium hydride (4 equiv). THF 

(to make a 0.33 M solution of ketone S56) and dialkyl carbonate (4 equiv) were added into 

the flask through a syringe. Ketone S56 (1 equiv) was then added slowly into the reaction 

solution, and the solution was heated to reflux. After 18 hours, the reaction was cooled down 

to 0 °C and quenched with conc. hydrochloric acid slowly until pH = 1. The mixture was 

extracted with diethyl ether 3 times. The combined organic phase was washed with brine, 

dried with magnesium sulfate, filtered, and then concentrated in vacuo. The crude product 

was purified via flash column chromatography with hexanes and diethyl ether as eluents to 

get the pure product S57. 
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General Procedure 8: A 3-neck flask was charged with acetone (to make a 0.33 M solution 

of ester S57), ester S57 (1 equiv), potassium carbonate (1.5 equiv), and alkyl iodide (2 equiv).  

The solution was refluxed for 18 hours. Then, acetone was removed in vacuo, and water and 

diethyl ether were added to dilute the mixture. After the separation, the aqueous phase was 

extracted with diethyl ether 2 more times. The combined organic phase was washed with 

brine, dried with magnesium sulfate, filtered, and concentrated in vacuo. The crude product 

was purified via flash column chromatography with hexanes and diethyl ether as eluents to 

get the pure product S58. 

General Procedure 9: In a flame-dried Schlenk flask, sodium hydride (1.8 equiv) was mixed 

with toluene (9 equiv). b-keto ester S58 was dissolved in toluene (9 equiv) and the solution 

was added to sodium hydride slurry via syringe. The reaction was heated at 85 °C for 1.5 

hours. After it was cooled down to 0 °C, triflic anhydride (1.5 equiv) was added dropwise 

via syringe. After 1 hour, the reaction was quenched with water and diluted with 

dichloromethane. After the separation, the aqueous phase was extracted 2 more times with 

dichloromethane. The combined organic phase was washed with brine, dried with sodium 

sulfate, decanted, and concentrated in vacuo. The crude product was purified via flash 

column chromatography with 5% triethylamine in hexanes and diethyl ether as eluents to get 

the pure product S59. 

 

ethyl 2-(p-tolyl(((trifluoromethyl)sulfonyl)oxy)methylene)oct-7-enoate (140). 

Synthesized according to General Procedure 7, 8, and 9. 
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1H NMR (400 MHz, CD2Cl2) δ 7.29 (d, J = 8.3 Hz, 2H), 7.25 (d, J = 7.9 Hz, 2H), 5.72 (ddt, 

J = 16.9, 10.2, 6.7 Hz, 1H), 4.97 – 4.86 (m, 2H), 4.30 (q, J = 7.1 Hz, 2H), 2.38 (s, 3H), 

2.33 – 2.22 (m, 2H), 1.98 – 1.90 (m, 2H), 1.48 – 1.38 (m, 2H), 1.37 – 1.26 (m, 5H).	

13C NMR (101 MHz, CD2Cl2) δ 165.5, 147.3, 141.3, 138.5, 129.3, 129.2, 128.6, 128.2, 

118.2 (q, J = 322 Hz), 114.4, 61.9, 33.2, 29.8, 28.2, 27.8, 21.3, 13.9.	

19F NMR (282 MHz, CD2Cl2) δ -75.00.	

FTIR (Neat film NaCl): 2980, 2936, 2864, 1727, 1642, 1611, 1511, 1421, 1368, 1298, 1209, 

1140, 1023, 973, 914, 846, 639. 

HR-MS (FD-MS) m/z: [M]+ Calc’d for C19H23O5F3S 420.1218; Found 420.1223. 

 
methyl 2-(p-tolyl(((trifluoromethyl)sulfonyl)oxy)methylene)oct-7-enoate (S61). 

Synthesized according to General Procedure 7, 8, and 9. 

1H NMR (500 MHz, CD2Cl2) δ 7.28 (d, J = 7.9 Hz, 2H), 7.25 (d, J = 7.8 Hz, 2H), 5.84 – 

5.52 (m, 1H), 4.99 – 4.85 (m, 2H), 3.83 (s, 3H), 2.38 (s, 3H), 2.29 (t, J = 7.8 Hz, 2H), 1.95 

(q, J = 7.2 Hz, 2H), 1.43 (p, J = 7.7 Hz, 2H), 1.31 (p, J = 7.6 Hz, 2H).	

13C NMR (101 MHz, CD2Cl2) δ 165.9, 147.6, 141.3, 138.4, 129.3, 129.1, 128.4, 128.1, 

118.1 (J = 321.2 Hz), 114.3, 52.2, 33.1, 29.8, 28.2, 27.8, 21.2.	

19F NMR (376 MHz, CD2Cl2) δ -75.01.	

FTIR (Neat film NaCl): 3077, 2929, 2860, 1730, 1642, 1610, 1510, 1419, 1301, 1208, 1138, 

1024, 978, 912, 840, 761, 727, 641, 606. 

HR-MS (FD-MS) m/z: [M]+ Calc’d for C18H21O5F3S 406.1062; Found 406.1059. 

OTf O
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N-methoxy-N,4-dimethylbenzamide (S62). 

1-Ethyl-3-(3-dimethylaminopropyl)carbodiimidium chloride (EDC, 14.1 g, 73.4 

mmol, 2 equiv), 4-dimethylaminopyridine (DMAP, 0.45 g, 3.7 mmol, 0.1 equiv), O,N-

dimethylhydroxylaminium chloride (3.94 g, 40.4 mmol, 1.1 equiv), DCM (74 mL, to make 

a 0.5 M solution of the carboxylic acid), and 4-methylbenzoic acid (5.00 g, 36.7 mmol, 1 

equiv) were added to a flask. Triethylamine (10.2 mL, 2 equiv) was then added slowly. 

After 18 hours, the reaction was quenched with water. After the separation, the organic 

phase was washed with 1 M HCl solution 2 times, saturated sodium bicarbonate solution, 

and brine. It was then dried with magnesium sulfate and concentrated in vacuo. The crude 

product S62 was used in the next step without further purification. 

 

isopropyl 3-oxo-3-(p-tolyl)propanoate (S63). 

Tetrahydrofuran (THF, 60 mL) and diisopropylamine (2.54 mL, 18.0 mmol, 3 

equiv) were added into a Schlenk flask. The solution was cooled down to –78 °C and n-

butyllithium solution (2.38 M, 7.82 mL, 18.6 mmol, 3.1 equiv) was added dropwise. After 

1 minute, isopropyl acetate (2.1 mL, 18 mmol, 3 equiv) was added into the solution at –

78 °C. The solution was stirred under this temperature for another 15 minutes. Then, S62 

(1.08 g, 6.00 mmol, 1 equiv) in THF (12 mL) was added at –78 °C and the solution was 

stirred for another 15 minutes. Then it was warmed up to 0 °C and stirred for 18 hours 

O

OH N
Me

O
OMe

EDC
MeONHMe•HCl

DMAP

Et3N, DCM

S62

O
1. iPr2NH, nBuLi
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warming up to 25 °C. The reaction was quenched with saturated sodium bicarbonate 

solution and diluted with diethyl ether and water. After the separation, the aqueous phase 

was extracted with diethyl ether 2 more times. The combined organic phase was washed 

with brine, dried with magnesium sulfate, filtered, and concentrated in vacuo. The crude 

product was purified via flash column chromatography with hexanes:diethyl ether = 5:1 as 

eluents to get the pure product S63 (0.77 g, 58% yield). 

 
isopropyl 2-(p-tolyl(((trifluoromethyl)sulfonyl)oxy)methylene)oct-7-enoate (S64). 

Synthesized according to General Procedure 8 and 9 from S63. 

1H NMR (400 MHz, CD2Cl2) δ 7.28 (d, J = 8.3 Hz, 2H), 7.24 (d, J = 8.1 Hz, 2H), 5.72 (ddt, 

J = 16.9, 10.2, 6.7 Hz, 1H), 5.15 (p, J = 6.3 Hz, 1H), 4.96 – 4.84 (m, 2H), 2.38 (s, 3H), 

2.32 – 2.21 (m, 2H), 2.01 – 1.88 (m, 2H), 1.47 – 1.38 (m, 2H), 1.32 (d, J = 6.6 Hz, 6H), 

1.34 – 1.24 (m, 2H).	

13C NMR (101 MHz, CD2Cl2) δ 165.0, 146.9, 141.2, 138.5, 129.3, 129.2, 128.9, 128.2, 

118.2 (q, J = 321 Hz), 114.4, 70.0, 33.2, 29.9, 28.3, 27.7, 21.5, 21.3.	

19F NMR (376 MHz, CD2Cl2) δ -74.86.	

FTIR (Neat film NaCl): 3078, 2981, 2931, 2862, 1723, 1661, 1642, 1611, 1511, 1453, 1421, 

1389, 1375, 1354, 1295, 1276, 1247, 1205, 1182, 1138, 1103, 1024, 970, 844, 606. 

HR-MS (FD-MS) m/z: [M]+ Calc’d for C20H25O5F3S 434.1375; Found 434.1379. 

 

ethyl 2-(m-tolyl(((trifluoromethyl)sulfonyl)oxy)methylene)oct-7-enoate (S65). 
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Synthesized according to General Procedure 7, 8, and 9. 

1H NMR (400 MHz, CD2Cl2) δ 7.29 – 7.19 (m, 2H), 7.18 – 7.11 (m, 2H), 5.66 (ddt, J = 

16.9, 10.2, 6.6 Hz, 1H), 4.90 – 4.80 (m, 2H), 4.24 (q, J = 7.1 Hz, 2H), 2.30 (d, J = 0.8 Hz, 

3H), 2.27 – 2.16 (m, 2H), 1.95 – 1.81 (m, 2H), 1.46 – 1.34 (m, 2H), 1.30 – 1.22 (m, 5H). 

13C NMR (101 MHz, CD2Cl2) δ 165.4, 147.2, 138.6, 138.4, 131.3, 131.0, 129.7, 128.7, 

128.4, 126.3, 122.8, 118.1 (q, 1JC–F = 322 Hz), 114.3, 113.3, 61.8, 53.6, 33.1, 29.7, 28.2, 

27.6, 21.0, 13.8. 

19F NMR (282 MHz, CD2Cl2) δ -75.02. 

FTIR (Neat film NaCl): 2930, 1727, 1421, 1368, 1301, 1243, 1207, 1139, 1017, 981, 913, 

852, 823, 761, 710, 606. 

HR-MS (FD-MS) m/z: [M]+ Calc’d for C19H23O5F3S 420.1218; Found 420.1227. 

 

ethyl 2-(o-tolyl(((trifluoromethyl)sulfonyl)oxy)methylene)oct-7-enoate (S66). 

Synthesized according to General Procedure 7, 8, and 9. 

1H NMR (400 MHz, CD2Cl2) δ 7.37 (td, J = 7.4, 1.7 Hz, 1H), 7.32 – 7.19 (m, 3H), 5.69 

(ddt, J = 17.1, 10.4, 6.7 Hz, 1H), 4.94 – 4.82 (m, 2H), 4.32 (qd, J = 7.1, 1.5 Hz, 2H), 2.31 

(s, 3H), 2.28 – 2.22 (m, 1H), 2.03 (dt, J = 13.7, 7.7 Hz, 1H), 1.90 (qt, J = 7.0, 1.4 Hz, 2H), 

1.46 – 1.37 (m, 2H), 1.36 (t, J = 7.2 Hz, 3H), 1.30 – 1.23 (m, 2H).	

13C NMR (101 MHz, CD2Cl2) δ 165.4, 147.0, 138.5, 137.9, 130.9, 130.8, 130.6, 130.2, 

129.9, 125.8, 118.1 (q, J = 322 Hz), 114.4, 62.0, 33.2, 29.7, 28.3, 27.3, 19.1, 13.9.	

19F NMR (376 MHz, CD2Cl2) δ -75.56.	
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FTIR (Neat film NaCl): 3075, 2931, 2860, 1728, 1641, 1602, 1421, 1369, 1300, 1248, 1209, 

1180, 1140, 1018, 969, 912, 843, 769, 730, 606. 

HR-MS (FD-MS) m/z: [M]+ Calc’d for C19H23O5F3S 420.1218; Found 461.1231. 

 

methyl 2-(phenyl(((trifluoromethyl)sulfonyl)oxy)methylene)oct-7-enoate (S67). 

Synthesized according to General Procedure 7, 8, and 9. 

1H NMR (400 MHz, CD2Cl2) δ 7.53 – 7.33 (m, 5H), 5.71 (ddt, J = 17.0, 10.3, 6.7 Hz, 1H), 

4.97 – 4.81 (m, 2H), 3.84 (s, 3H), 2.36 – 2.23 (m, 2H), 1.94 (tdt, J = 8.2, 6.7, 1.4 Hz, 2H), 

1.48 – 1.37 (m, 2H), 1.34 – 1.25 (m, 2H).	

13C NMR (101 MHz, CD2Cl2) δ 165.9, 147.4, 138.5, 131.1, 130.8, 129.3, 128.7, 128.7, 

118.2 (J = 321 Hz), 114.5, 52.4, 33.2, 29.8, 28.3, 27.8.	

19F NMR (376 MHz, CD2Cl2) δ -75.07.	

FTIR (Neat film NaCl): 3076, 2931, 2860, 1732, 1642, 1491, 1421, 1302, 1280, 1249, 1209, 

1139, 979, 913, 838, 700, 627, 616. 

HR-MS (FD-MS) m/z: [M]+ Calc’d for C17H19O5F3S 392.0905; Found 392.0901. 

 
 

methyl 2-((4-fluorophenyl)(((trifluoromethyl)sulfonyl)oxy)methylene)oct-7-enoate 

(S68). 

Synthesized according to General Procedure 7, 8, and 9. 
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1H NMR (500 MHz, CD2Cl2) δ 7.47 – 7.38 (m, 2H), 7.22 – 7.12 (m, 2H), 5.72 (ddt, J = 

16.9, 10.2, 6.6 Hz, 1H), 4.97 – 4.84 (m, 2H), 3.84 (s, 3H), 2.35 – 2.21 (m, 2H), 1.99 – 1.90 

(m, 2H), 1.50 – 1.40 (m, 2H), 1.37 – 1.27 (m, 2H).	

13C NMR (101 MHz, CD2Cl2) δ 165.62, 163.85 (J = 252.3 Hz), 146.24, 138.34, 131.58 (J 

= 8.9 Hz), 129.14, 127.24 (J = 3.6 Hz), 118.0 (J = 321.7 Hz), 115.9 (J = 22.2 Hz), 114.41, 

52.33, 33.09, 29.73, 28.19, 27.63.	

19F NMR (376 MHz, CD2Cl2) δ -75.03, -109.16.	

FTIR (Neat film NaCl): 3079, 2932, 2861, 1731, 1642, 1604, 1508, 1420, 1290, 1280, 1207, 

1159, 1137, 1100, 1017, 979, 964, 912, 849, 829, 814, 762, 734, 605. 

HR-MS (FD-MS) m/z: [M]+ Calc’d for C17H18O5F4S 410.0811; Found 410.0807. 

 

ethyl 2-(p-tolyl(((trifluoromethyl)sulfonyl)oxy)methylene)hept-6-enoate (S69). 

Synthesized according to General Procedure 7, 8, and 9. 

1H NMR (400 MHz, CD2Cl2) δ 7.29 (d, J = 8.4 Hz, 2H), 7.24 (d, J = 8.2 Hz, 2H), 5.68 (ddt, 

J = 16.9, 10.2, 6.6 Hz, 1H), 4.97 – 4.76 (m, 2H), 4.30 (q, J = 7.1 Hz, 2H), 2.38 (s, 3H), 

2.33 – 2.24 (m, 2H), 2.01 – 1.90 (m, 2H), 1.56 – 1.49 (m, J = 7.6 Hz, 2H), 1.34 (t, J = 7.1 

Hz, 3H). 

13C NMR (101 MHz, CD2Cl2) δ 165.5, 147.5, 141.3, 137.8, 129.3, 129.2, 128.4, 128.2, 

118.2 (q, J = 322 Hz), 114.9, 61.9, 33.1, 29.5, 27.6, 21.3, 13.9.	

19F NMR (376 MHz, CD2Cl2) δ -74.95.	
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FTIR (Neat film NaCl): 3079, 2980, 2933, 1728, 1661, 1643, 1611, 1511, 1421, 1369, 1300, 

1209, 1140, 1023, 973, 840, 609. 

HR-MS (FD-MS) m/z: [M]+ Calc’d for C18H21O5F3S 406.1062; Found 406.1070. 

 

2-benzoyl-1-phenylocta-1,7-dien-1-yl trifluoromethanesulfonate (S70). 

Synthesized according to General Procedure 8 and 9. 

1H NMR (500 MHz, CD2Cl2) δ 8.06 – 7.93 (m, 2H), 7.65 (td, J = 7.3, 1.5 Hz, 1H), 7.59 – 

7.42 (m, 7H), 5.65 (ddt, J = 17.1, 10.7, 6.7 Hz, 1H), 4.89 – 4.79 (m, 2H), 2.44 – 2.33 (m, 

2H), 1.88 (q, J = 7.1 Hz, 2H), 1.39 (tt, J = 8.0, 6.2 Hz, 2H), 1.28 (dt, J = 15.2, 7.6 Hz, 2H).	

13C NMR (101 MHz, CD2Cl2) δ 194.4, 143.6, 138.4, 135.6, 134.8, 134.4, 130.9, 130.7, 

129.6, 129.5, 129.0, 128.9, 118.0 (J = 322.2 Hz), 114.5, 33.2, 30.6, 28.4, 27.3.	

19F NMR (376 MHz, CD2Cl2) δ -74.92.	

FTIR (Neat film NaCl): 3065, 2931, 2859, 1670, 1597, 1449, 1417, 1317, 1274, 1208, 1136, 

954, 922, 840, 695, 606. 

HR-MS (FD-MS) m/z: [M]+ Calc’d for C22H21O4F3S 438.1113; Found 438.1092. 

3.7.3 [2+2] cycloaddition 

 

General Procedure 10: In the glovebox, LiHMDS (2.2 equiv) was added in a dram vial. 

Trifluorotoluene (to make a 0.02 M solution of the vinyl triflate) was then added to dissolve 

LiHMDS. Finally, the vinyl triflate (1 equiv) was added. The reaction was stirred for 30 

Ph
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minutes in a heating block at 30 °C. It was then brought outside of the glovebox. The reaction 

solution was directly loaded onto the silica gel to purify the cycloaddition product via flash 

column chromatography with hexanes and diethyl ether as eluents. 

 

ethyl 8-(p-tolyl)bicyclo[4.2.0]oct-7-ene-1-carboxylate (142). 

Prepared from 0.050 mmol vinyl triflate 140 according to General Procedure 10. The crude 

reaction was purified via flash column chromatography (hexanes:diethyl ether = 10:1) to 

afford product 142 as a pale yellow oil (11 mg, 81% yield). 

1H NMR (400 MHz, CDCl3) δ 7.24 (d, J = 7.7 Hz, 2H), 7.11 (d, J = 7.7 Hz, 2H), 6.47 (d, 

J = 1.2 Hz, 1H), 4.15 (q, J = 7.1 Hz, 2H), 3.06 (t, J = 4.5 Hz, 1H), 2.33 (s, 3H), 2.30 – 2.17 

(m, 1H), 2.07 – 1.93 (m, 2H), 1.90 – 1.75 (m, 1H), 1.69 – 1.58 (m, 3H), 1.50 – 1.48 (m, 

1H), 1.19 (t, J = 7.1 Hz, 3H).	

13C NMR (101 MHz, CDCl3) δ 175.9, 148.3, 138.0, 131.4, 130.9, 129.4, 125.3, 60.8, 52.6, 

43.3, 26.6, 24.3, 21.7, 18.0, 17.8, 14.6.	

FTIR (Neat film NaCl): 3026, 2935, 2865, 1719, 1508, 1446, 1365, 1269, 1235, 1160, 1110, 

1095, 1064, 1050, 807. 

 

methyl 8-(p-tolyl)bicyclo[4.2.0]oct-7-ene-1-carboxylate (143). 
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Prepared from 0.050 mmol vinyl triflate S61 according to General Procedure 10. The crude 

reaction was purified via flash column chromatography (hexanes:diethyl ether = 10:1) to 

afford product 143 as a pale yellow oil (9 mg, 70% yield). 

1H NMR (500 MHz, CDCl3) δ 7.23 (d, J = 8.0 Hz, 2H), 7.12 (d, J = 7.9 Hz, 2H), 6.49 (d, 

J = 1.3 Hz, 1H), 3.68 (s, 3H), 3.07 (t, J = 4.7 Hz, 1H), 2.36 – 2.27 (m, 1H), 2.34 (s, 3H), 

2.00 (dt, J = 14.1, 5.3 Hz, 1H), 1.84 (ddt, J = 15.4, 10.3, 5.2 Hz, 1H), 1.70 – 1.59 (m, 2H), 

1.54 – 1.44 (m, 3H).	

13C NMR (101 MHz, CDCl3) δ 176.4, 148.2, 138.1, 131.5, 130.8, 129.5, 125.3, 52.5, 52.2, 

43.4, 26.5, 24.3, 21.7, 18.0, 17.7.	

FTIR (Neat film NaCl): 3025, 2942, 2864, 1723, 1508, 1456, 1433, 1270, 1256, 1239, 1182, 

1161, 1065, 1051, 808. 

HR-MS (FD-MS) m/z: [M]+ Calc’d for C17H20O2 256.1458; Found 256.1465. 

 

isopropyl 8-(p-tolyl)bicyclo[4.2.0]oct-7-ene-1-carboxylate (144). 

Prepared from 0.050 mmol vinyl triflate S64 according to General Procedure 10. The crude 

reaction was purified via flash column chromatography (hexanes:diethyl ether = 10:1) to 

afford product 144 as a pale yellow oil (8 mg, 56% yield). 

1H NMR (500 MHz, CDCl3) δ 7.25 (d, J = 7.0 Hz, 2H), 7.11 (d, J = 7.8 Hz, 2H), 6.46 (d, 

J = 1.2 Hz, 1H), 5.03 (hept, J = 6.3 Hz, 1H), 3.05 (t, J = 4.7 Hz, 1H), 2.33 (s, 3H), 2.27 

(ddd, J = 13.8, 8.7, 6.6 Hz, 1H), 1.98 (dt, J = 14.1, 5.5 Hz, 1H), 1.84 (ddd, J = 13.5, 10.1, 

5.2 Hz, 1H), 1.67 – 1.59 (m, 2H), 1.55-1.47 (m, 3H), 1.20 (d, J = 6.3 Hz, 3H), 1.15 (d, J = 

6.2 Hz, 3H).	
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13C NMR (101 MHz, CDCl3) δ 175.0, 148.1, 137.5, 131.0, 130.6, 129.0, 125.1, 67.5, 52.5, 

42.9, 26.2, 24.0, 21.7, 21.4, 17.8, 17.5.	

FTIR (Neat film NaCl): 2979, 2935, 2865, 1716, 1271, 1241, 1108, 809. 

HR-MS (FD-MS) m/z: [M]+ Calc’d for C19H24O2 284.1771; Found 284.1775. 

 

ethyl 8-(m-tolyl)bicyclo[4.2.0]oct-7-ene-1-carboxylate (145). 

Prepared from 0.050 mmol vinyl triflate S65 according to General Procedure 10. The crude 

reaction was purified via flash column chromatography (hexanes:diethyl ether = 10:1) to 

afford product 145 as a pale yellow oil (9 mg, 67% yield). 

1H NMR (400 MHz, CDCl3) δ 7.22 – 7.12 (m, 3H), 7.05 (d, J = 7.4 Hz, 1H), 6.53 (d, J = 

1.3 Hz, 1H), 4.15 (q, J = 7.1 Hz, 2H), 3.06 (t, J = 4.7 Hz, 1H), 2.38 – 2.25 (m, 4H), 2.00 

(dt, J = 14.0, 5.4 Hz, 1H), 1.88 – 1.77 (m, 1H), 1.69 – 1.58 (m, 2H), 1.53 – 1.44 (m, 2H), 

1.34 – 1.26 (m, 1H), 1.19 (t, J = 7.1 Hz, 3H).	

13C NMR (101 MHz, CDCl3) δ 175.83, 148.48, 138.24, 133.49, 132.42, 128.93, 128.62, 

125.97, 122.54, 60.75, 52.68, 43.39, 26.56, 24.34, 21.79, 18.07, 17.77, 14.57.	

FTIR (Neat film NaCl): 2930, 2861, 1719, 1456, 1234, 1158, 1051, 783. 

HR-MS (FD-MS) m/z: [M]+ Calc’d for C18H22O2 270.1614; Found 270.1620. 

 

ethyl 8-(o-tolyl)bicyclo[4.2.0]oct-7-ene-1-carboxylate (146). 

CO2Et
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Prepared from 0.050 mmol vinyl triflate S66 according to General Procedure 10. The crude 

reaction was purified via flash column chromatography (hexanes:diethyl ether = 10:1) to 

afford product 146 as a pale yellow oil (8 mg, 59% yield). 

1H NMR (400 MHz, CDCl3) δ 7.21 – 7.10 (m, 3H), 7.08 – 7.05 (m, 1H), 6.42 (d, J = 1.3 

Hz, 1H), 4.16 (qd, J = 7.1, 0.8 Hz, 2H), 3.05 (t, J = 4.4 Hz, 1H), 2.44 (s, 3H), 2.41 – 2.25 

(m, 1H), 2.01 – 1.93 (m, 1H), 1.92 – 1.75 (m, 1H), 1.71 – 1.58 (m, 2H), 1.53 – 1.46 (m, 

2H), 1.29 – 1.23 (m, 1H), 1.19 (t, J = 7.1 Hz, 3H).	

13C NMR (101 MHz, CDCl3) δ 176.1, 148.4, 137.9, 137.4, 132.1, 131.2, 127.6, 126.9, 

126.0, 60.8, 53.6, 43.9, 26.4, 24.5, 22.6, 18.2, 17.9, 14.6.	

FTIR (Neat film NaCl): 3065, 2935, 2864, 1719, 1489, 1460, 1365, 1250, 1235, 1161, 1116, 

1095, 1065, 1049, 760, 722. 

HR-MS (FD-MS) m/z: [M]+ Calc’d for C18H22O2 270.1614; Found 270.1614. 

 

methyl 8-phenylbicyclo[4.2.0]oct-7-ene-1-carboxylate (147). 

Prepared from 0.050 mmol vinyl triflate S67 according to General Procedure 10. The crude 

reaction was purified via flash column chromatography (hexanes:diethyl ether = 10:1) to 

afford product 147 as a pale yellow oil (9 mg, 74% yield). 

1H NMR (400 MHz, CDCl3) δ 7.29 – 7.22 (m, 4H), 7.18 – 7.14 (m, 1H), 6.49 (d, J = 1.3 

Hz, 1H), 3.61 (s, 3H), 3.06 – 2.95 (m, 1H), 2.24 (ddd, J = 15.4, 8.9, 5.5 Hz, 1H), 1.94 (dt, 

J = 14.1, 5.5 Hz, 1H), 1.86 – 1.72 (m, 1H), 1.64 – 1.51 (m, 2H), 1.44 (ddd, J = 8.1, 5.7, 3.7 

Hz, 3H).	

O
O
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13C NMR (101 MHz, CDCl3) δ 176.3, 148.3, 133.5, 132.7, 128.8, 128.2, 125.3, 52.6, 52.3, 

43.5, 26.6, 24.3, 18.0, 17.7.	

FTIR (Neat film NaCl): 2981, 2945, 2865, 1723, 1447, 1433, 1270, 1237, 1162, 1064, 1052, 

761, 695. 

HR-MS (FD-MS) m/z: [M]+ Calc’d for C16H18O2 242.1301; Found 242.1303. 

 

methyl 8-(4-fluorophenyl)bicyclo[4.2.0]oct-7-ene-1-carboxylate (148). 

Prepared from 0.050 mmol vinyl triflate S68 according to General Procedure 10. The crude 

reaction was purified via flash column chromatography (hexanes:diethyl ether = 10:1) to 

afford product 148 as a pale yellow oil (8 mg, 61% yield). 

1H NMR (500 MHz, CDCl3) δ 7.35 – 7.29 (m, 2H), 7.04 – 6.96 (m, 2H), 6.48 (d, J = 1.2 

Hz, 1H), 3.69 (s, 3H), 3.08 (t, J = 4.7 Hz, 1H), 2.29 (ddd, J = 14.9, 10.2, 5.2 Hz, 1H), 1.98 

(dt, J = 13.8, 5.1 Hz, 1H), 1.85 (ddt, J = 15.7, 10.6, 5.2 Hz, 1H), 1.71 – 1.60 (m, 2H), 1.54 

– 1.45 (m, 3H).	

13C NMR (101 MHz, CDCl3) δ 176.18, 162.71 (d, 1JC–F = 262.1 Hz), 147.24, 132.08 (d, J = 

2.6 Hz), 129.83 (d, J = 3.4 Hz), 127.17 (d, J = 8.1 Hz), 115.80 (d, 2JC–F = 21.5 Hz), 52.64, 

52.31, 43.43, 26.58, 24.22, 17.96, 17.66. 

FTIR (Neat film NaCl): 2944, 2906, 2866, 1723, 1681, 1661, 1506, 1271, 1232, 1158, 831, 

818. 

HR-MS (FD-MS) m/z: [M]+ Calc’d for C16H17O2F 260.1207; Found 260.1214. 

CO2Me

F
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ethyl 7-(p-tolyl)bicyclo[3.2.0]hept-6-ene-1-carboxylate (149). 

Prepared from 0.050 mmol vinyl triflate S69 according to General Procedure 10. The crude 

reaction was purified via flash column chromatography (hexanes:diethyl ether = 10:1) to 

afford product 149 as a pale yellow oil (7 mg, 55% yield). 

1H NMR (500 MHz, CDCl3) δ 7.25 (d, J = 8.0 Hz, 2H), 7.12 (d, J = 7.9 Hz, 2H), 6.25 (d, 

J = 1.0 Hz, 1H), 4.27 – 4.11 (m, 2H), 3.29 (d, J = 7.0 Hz, 1H), 2.34 (s, 3H), 1.93 (ddd, J = 

16.1, 12.4, 6.5 Hz, 2H), 1.81 (dt, J = 12.2, 6.2 Hz, 1H), 1.70 (ddt, J = 18.0, 12.0, 6.0 Hz, 

1H), 1.58 (d, J = 6.0 Hz, 1H), 1.52 – 1.38 (m, 1H), 1.21 (t, J = 7.1 Hz, 3H).	

13C NMR (101 MHz, CDCl3) δ 175.0, 144.3, 137.8, 129.6, 129.1, 127.8, 125.0, 60.5, 60.2, 

50.3, 27.8, 26.3, 24.3, 21.4, 14.3.	

FTIR (Neat film NaCl): 2935, 2855, 1720, 1508, 1445, 1366, 1300, 1259, 1145, 1083, 1034, 

824, 804. 

HR-MS (ESI-MS) m/z: [M]+ Calc’d for C17H20O2 256.1458; Found 256.1460. 

 

phenyl(8-phenylbicyclo[4.2.0]oct-7-en-1-yl)methanone (150). 

Prepared from 0.050 mmol vinyl triflate S70 according to General Procedure 10. The crude 

reaction was purified via flash column chromatography (hexanes:diethyl ether = 10:1) to 

afford product 150 as a pale yellow oil (5 mg, 35% yield). 

1H NMR (500 MHz, CDCl3) δ 7.92 – 7.83 (m, 2H), 7.53 – 7.47 (m, 1H), 7.46 – 7.33 (m, 

6H), 7.32 (d, J = 1.4 Hz, 1H), 6.64 (d, J = 1.2 Hz, 1H), 3.17 (t, J = 4.5 Hz, 1H), 2.48 (dt, J 

O
O

Ph
Ph

O
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= 14.7, 7.5 Hz, 1H), 2.11 (dt, J = 14.4, 5.6 Hz, 1H), 2.01 (ddt, J = 13.9, 10.8, 5.3 Hz, 1H), 

1.91 – 1.82 (m, 1H), 1.72 (ddd, J = 17.5, 11.5, 5.6 Hz, 1H), 1.64 (dt, J = 12.0, 6.3 Hz, 3H).	

13C NMR (101 MHz, CDCl3) δ 205.0, 150.2, 138.1, 133.8, 132.0, 132.0, 128.9, 128.5, 

128.4, 128.3, 125.8, 59.0, 43.8, 26.7, 24.7, 18.3, 18.1.	

FTIR (Neat film NaCl): 3057, 2933, 2862, 1667, 1597, 1577, 1507, 1490, 1446, 1423, 1238, 

1219, 1028, 758, 695. 

HR-MS (FD-MS) m/z: [M]+ Calc’d for C21H20O 288.1509; Found 288.1507. 

3.7.4 Reaction optimization 

 

Lewis acid screen yield (%) 

2.2 equiv LiH no reaction 

2.2 equiv LiOtBu no reaction 

2.2 equiv LDA n.d. 

2.2 equiv NaHMDS 47 

2.2 equiv KHMDS n.d. 

2.2 equiv H-HMDS no reaction 

 

solvent yield (%) 

Me

OTf

OEt

O

additive

PhCF3 (0.02 M) OEtO

Me

Me

OTf

OEt

O

LiHMDS (2.2 equiv)

solvent (0.02 M) OEtO

Me
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benzene 32 + Friedel-Crafts product 

chloroform n.d. 

1,2-dichloroethane 60 

tetrahydrofuran n.d. 

acetonitrile n.d. 

diethyl ether 36 

dichloromethane 39 
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