Chapter 1

Introduction

This thesis involves the development and application of adjoint methods to the seismic
tomographic inverse problem. The success of an inverse problem depends primarily on the
quality and coverage of the data, and on the accuracy of the forward modeling tool within the
inverse problem. Our forward modeling tool is the spectral-element method (SEM), which
has been developed for regional and global scales of seismic wave propagation (Komatitsch
and Vilotte, 1998; Komatitsch and Tromp, 2002a,b; Komatitsch et al., 2004).

The remaining chapters emphasize the inverse problem, so we will briefly state the
essential equations of the forward problem of seismic wave propagation. The equation of
motion for an anelastic Earth is given by
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where p(x) denotes the density distribution, s(x,t) the seismic wavefield, T(x,t) the stress
tensor, and f(x,t) the earthquake source. (We neglect rotation and self-gravitation.)

If the medium is elastic, then we apply Hooke’s law
T=c:Vs, (1.2)

which states that the stress is linearly related to the displacement gradient Vs (strain)

through the fourth-order elastic tensor c(x).
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If the elastic medium is isotropic, then the elements of ¢ are described by two parameters:
Ciklm = (’{ - %:u)éjkélm + ,u(éjlékm + 5jm5kl)7 (13)

where p(x) is the shear modulus and x(x) is the bulk modulus.

In general, the SPECFEM3D software (Komatitsch and Tromp, 2002a; Komatitsch et al.,
2004) takes into account the full complexity of seismic wave propagation, including attenu-
ation, full anisotropy, topography, and ocean loads, as well as asymmetries relevant for very
long-period waves, such as Earth’s ellipticity and self-gravitation. In this thesis, the SEM
(2D and 3D version) has been used primarily for elastic, isotropic Earth models. Attenu-
ation is only implemented within the sedimentary basins in the Los Angeles region for 3D

wavefield simulations.

1.1 The inverse problem (and thesis overview)

The forward modeling tool within our tomographic inverse problem is the SEM, either
in a 2D wave propagation code (Tromp et al., 2005; Tape et al., 2007) or a 3D version
(Komatitsch et al., 2004). The challenge for tomographers is how to harness the accuracy
of these forward-modeling methods for the inverse problem. One approach is to utilize
so-called adjoint methods (Tarantola, 1984; Talagrand and Courtier, 1987; Courtier and
Talagrand, 1987), which are related to concepts developed in seismic imaging (Claerbout,
1971; McMechan, 1982). Tromp et al. (2005) demonstrated the theoretical connections
between adjoint methods, seismic tomography, time reversal imaging (e.g., Fink, 1997),
and finite-frequency “banana-doughnut” kernels (e.g., Dahlen et al., 2000).

Chapter 2 (Tape et al., 2007) extends the study of Tromp et al. (2005) in the direction
of an iterative inverse problem based on adjoint methods. The 2D synthetic inversion
experiments are performed using three different approaches: (1) a gradient-based fully
numerical approach using adjoint methods — we call this “adjoint tomography”; (2) a
classical approach using finite-frequency kernels; and (3) a classical approach using rays.
By “classical,” we mean that a model is expanded into basis functions, and the sensitivity
of each measurement is described using rays or kernels derived from a simple (homogeneous
or 1D) reference model (e.g., Table A.1).

Chapter 3 contains excerpts from Tromp et al. (2005) that demonstrate the ability of
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the adjoint approach to isolate the volumetric region that a seismic waveform “sees” as it
propagates through a (1D or 3D) reference model. We implemented adjoint methods within
a 2D SEM code, and then designed and conducted series of numerical experiments. (For
a quick visual understanding of how finite-frequency kernels are formed via the interaction
between the forward wavefield and the adjoint wavefield, one should begin with Chapter 3.)

The frequency dependence of the seismic wavefield plays a critical role in the forward
and inverse problems, and we illustrate some basic features in Figures 1.1 and 1.2. A seismic
waveform containing longer-period energy will sample (or “see”) a broader region along the
path between the source and station (Figure 1.1). Thus, by making measurements over
multiple frequency bands, we should be able to better sample the model, and to make
changes that are required by the data. With the implementation of adjoint methods within
a 3D SEM code (Liu and Tromp, 2006), it became possible to visualize finite-frequency
kernels that could be complicated, even for simple 1D layers models (Figure 1.2). These
adjoint capabilities within the 3D SEM code provided the possibility for a full inverse
problem using actual data (Chapter 6).

Chapter 4 presents an approach to compute an optimal model update for a given iter-
ation within the inverse problem. The approach relies on subspace projection techniques
(Kennett et al., 1988; Sambridge et al., 1991), and it does not require any additional forward
or adjoint wavefield simulations.

In preparation for a tomographic inversion that begins with an initial 3D reference
model, Maggi et al. (2009) developed an automated algorithm for picking measurement
time windows containing recorded and synthetic waveforms. Chapter 5 contains excerpts
from Maggi et al. (2009), emphasizing examples for southern California.

Chapter 6 presents an application of adjoint tomography to southern California. A
preview of this study is exemplified in Figures 1.3-1.5. Figure 1.3 demonstrates the highly
variable frequency content within a three-component seismogram. It also shows the appear-
ance of the wavefield over different period ranges.

This thesis marks the beginning of an endeavor into seismic tomography using adjoint
methods. Future work will undoubtedly refine the current procedures and include addi-
tional complexity. First, we will implement — or possibly invert for — attenuation in

southern California in regions of tomographically documented sedimentary basins.! Sec-

! Attenuation is already implemented in the basins of Komatitsch et al. (2004) and Lovely et al. (2006)
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ond, we will consider crustal anisotropy (e.g., Christensen and Mooney, 1995; Paulssen,
2004) and boundary surfaces (e.g., Fuis et al., 2003; Yan and Clayton, 2007; Bleibinhaus
et al., 2007) as inversion parameters. The prospects of inverting for these parameters are
discussed in Sieminski et al. (2007) for anisotropy and in Dahlen (2005) and Tromp et al.
(2005) for boundary surfaces.

Finally, we will apply seismic reflection imaging techniques (e.g., Kiyashchenko et al.,
2007) to identify and quantify lateral and vertical reflectors in southern California. Fig-
ure 1.6 shows an example of a Rayleigh-wave reflection off of the Tehachapi Mountains.
The reflected waveform is not apparent in the synthetic seismogram from the initial 3D
model (mgp) but is in the final model (myg). The ability to capture such waveforms on
individual seismograms demonstrates the possibility of enhancing tomographic coverage by

delving deeper into seismograms while using the same set of earthquakes and stations.
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Figure 1.1: Frequency dependence of sensitivity kernels (after Tromp et al., 2005, Figure 6).
(a) Two source-time functions for the regular wavefield with durations of 7 = 8.0 s (gray)
and 7 = 4.0 s (black) (see Eq. 3.2). (b) Kg(a) for 7 = 8.0 s. (c) Kg(ap) for 7 = 4.0 s.
D = 33 km is the width of the first Fresnel zone, estimated as D ~ v/ AL = /BT L, where
T = 3.4 s is the dominant period of the seismic wave, and § = 3.2 km/s is the shear
wavespeed and L = 100 km is the path length. (d) Depth cross sections of (b) and (c) at
a horizontal distance of z = 100 km. As expected, the higher-frequency kernel is narrower
in width and greater in amplitude. See Chapter 3 for details on how these kernels were
constructed.
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Figure 1.2:  Sensitivity kernel for a crustal P wave in a 1D southern California model
(Kanamori and Hadley, 1975; Wald et al., 1995). The time window highlighted in the ver-
tical and radial components of the seismograms corresponds to the volumetric sensitivity
kernel, shown in two perpendicular cross sections. S is the source location, and R is the re-
ceiver. The dots mark the layer boundaries of the 1D model at 5.5, 16.0, and 32.0 km, with
the bottom at 60.0 km. This sensitivity kernel indicates that the P arrival is a combination
of Pn, diffracted along the Moho, and PmP, reflected at the Moho. Several factors, listed
in the upper right, influence the nature of the sensitivity kernel, which can be interpreted
as follows: “Given a cross-correlation traveltime measurement, AT, between observed and
simulated seismic waveforms (bandpass period range 2-30 s) within the selected time win-
dow, the sensitivity kernel illuminates the volumetric region of the Vp wavespeed model
that should be perturbed in order to reduce AT.” (However, this does not ensure that the
wavespeed perturbation is a step in the direction of the actual wavespeed structure, because
the AT could have arisen from an incorrect description of the earthquake source.)
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Figure 1.3: The frequency dependence of the seismic wavefield. (a) Cross section of adjoint
tomography crustal model myg (Chapter 6) from event 14186612 to station FMP.CI. SA, San
Andreas fault; MC, Malibu Coast fault. (b) Data (black) and 3D synthetics (red), filtered
in the period range 6-30 s. Z, vertical component, R, radial component, T, transverse
component. (c¢) Same as (b), for the period range 3-30 s. (d) Same as (b), for the period
range 2-30 s.
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Figure 1.4: Iterative improvement in seismic waveforms. (a) Initial 3D model mygg, final

3D model mjg, and the difference between the two models, In(mis/mqo). (b) Data (black)
and 3D synthetics (red), filtered in the period range 6-30 s. Z, vertical component, R,
radial component, T, transverse component. Left column: synthetics generated using the
standard 1D southern California model (Kanamori and Hadley, 1975; Wald et al., 1995).
Center column: synthetics generated using mqo, the 3D model of Komatitsch et al. (2004).
Right column: synthetics generated using myg, the 16th iteration of the crustal model.
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Same seismograms as in Figure 1.4b, but for the period ranges 3-30 s (a)

and 2-30 s. Z, vertical component, R, radial component, T, transverse component. Left
column: synthetics generated using the standard 1D southern California model (Kanamori
and Hadley, 1975; Wald et al., 1995). Center column: synthetics generated using mgg, the
3D model of Komatitsch et al. (2004). Right column: synthetics generated using mjg, the
16th iteration of the crustal model.
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Figure 1.6: Reflected Rayleigh wave at the Tehachapi Mountains. The manually-picked
measurement windows shown in (c¢) and (f) highlight two different surface waves. All seis-
mograms are filtered in the period range 3-30 s. (a) Map showing earthquake source
(10992159) and station coverage. Black box shows the region in (d) and (g). (b) Data
(black) and mygy 3D synthetics (red). (c) Data (black) and mg 3D synthetics (red). Syn-
thetic waveform within the time window follows the propagation path shown in (d). The
phase of the synthetic waveform is about right (AT = 1.7 s), but the amplitude is much to
large Aln A = —1.5. (d) Horizontal cross section at 4 km depth of a volumetric sensitivity
kernel corresponding to the windowed synthetic waveform in (c). The path illuminates the
“direct” Rayleigh wave, though the path does not lie on the great circle between source and
station. (e)—(g) Same as (b)—(d), but highlighting the second time window, which is only
apparent in the myg synthetics. The Rayleigh wave reflects at the Tehachapi Mountains,
near the southernmost San Joaquin basin, before reaching SMM.



