List of Figures

1.1	Frequency dependence of sensitivity kernels	5
1.2	Sensitivity kernel for a crustal P wave	6
1.3	The frequency dependence of the seismic wavefield $\ldots \ldots \ldots \ldots \ldots$	7
1.4	Iterative improvement in seismic waveforms, I \ldots \ldots \ldots \ldots \ldots \ldots	8
1.5	Iterative improvement in seismic waveforms, II	9
1.6	Reflected Rayleigh wave at the Tehachapi Mountains	10
2.1	Source–receiver geometry for southern California	47
2.2	Example computation of G_{ik} using rays and kernels $\ldots \ldots \ldots \ldots$	48
2.3	Hessian matrix $\tilde{\mathbf{H}} = \mathbf{G}^T \mathbf{G}$	49
2.4	Model recovery and damping in classical tomography	50
2.5	Formation of an event kernel for a single receiver	51
2.6	Construction of an adjoint source function	52
2.7	Experimental setup for data and synthetics	53
2.8	Formation of an event kernel for multiple receivers	54
2.9	Construction of a misfit kernel	55
2.10	Smoothing the misfit kernel	56
2.11	Conjugate gradient algorithm, Part 1	57
2.12	Conjugate gradient algorithm, Part 2	59
2.13	Recovery of a Rayleigh wave phase-speed model	60
2.14	Effect of the number of events	61
2.15	Effect of the degree of smoothing and scalelength of heterogeneity \ldots .	62
2.16	Source recovery for unperturbed wave-speed structure	63
2.17	Joint inversion for source and structural parameters	64
2.18	Source recovery during a joint inversion	65

2.19	Mapping source errors onto structure and vice versa $\ldots \ldots \ldots \ldots \ldots$	66
2.20	Misfit comparison of classical and adjoint tomography $\ldots \ldots \ldots \ldots$	67
3.1	Sketch of 2D model setup and ray paths	72
3.2	SH seismograms	73
3.3	SH_S sequence of $\mathbf{s}-\mathbf{s}^{\dagger}$ interaction	74
3.4	SH_S sequence of $\mathbf{s}-\mathbf{s}^{\dagger}$ interaction	75
3.5	Reversing different time windows of the SH wavefield	76
3.6	Six SH kernels for reversing S	77
3.7	P-SV seismograms	78
3.8	$\mathrm{P}\text{-}\mathrm{SV}_{\mathrm{PS+SP}} \text{ sequence of } \mathbf{s}\text{-}\mathbf{s}^\dagger \text{ interaction } \ldots \ldots$	79
3.9	$\mathrm{P}\text{-}\mathrm{SV}_{\mathrm{PS+SP}} \text{ sequence of } \mathbf{s}\text{-}\mathbf{s}^\dagger \text{ interaction } \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	80
3.10	Nine P-SV kernels for reversing PS+SP	81
3.11	Reversing different time windows of P-SV	82
4.1	Initial and target source and structure for subspace experiments	91
4.2	Structure inversion using source subspace method	92
4.3	Source inversion using source subspace method	93
5.1	Example seismogram for windowing algorithm, I	104
5.2	Example seismogram for windowing algorithm, II	105
5.3	Example of window selection results for southern California, I	106
5.4	Example of window selection results for southern California, II $\ldots \ldots$	107
5.5	Example of window selection results for southern California, III	108
5.6	Example of window selection results for southern California, IV	109
6.1	Southern California topography and bathymetry	139
6.2	Earthquake sources and stations	141
6.3	Iterative seismogram fit	142
6.4	Vertical cross sections and seismograms	143
6.5	Horizontal cross sections of $V_{\rm S}$ tomographic models	145
6.6	Horizontal cross sections of $V_{\rm B}$ tomographic models	146
6.7	Seismogram fits for selected paths in the final model	147

6.9 Traveltime misfit analysis	152
6.10 Coverage for the $V_{\rm S}$ tomographic model $\ldots \ldots \ldots$	153
6.11 Coverage for the $V_{\rm B}$ tomographic model $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	154
C.1 The measurement convention	191
D.1 Source mechanisms: 1 through 8 out of 294	197
D.2 Source mechanisms: 9 through 16 out of $294 \dots \dots \dots \dots \dots \dots \dots \dots$	198
D.3 Source mechanisms: 17 through 24 out of 294 \ldots \ldots \ldots \ldots	199
D.4 Source mechanisms: 25 through 32 out of 294 \ldots \ldots \ldots \ldots \ldots	200
D.5 Source mechanisms: 33 through 40 out of 294	201
D.6 Source mechanisms: 41 through 48 out of 294	202
D.7 Source mechanisms: 49 through 56 out of 294 \ldots \ldots \ldots \ldots \ldots	203
D.8 Source mechanisms: 57 through 64 out of 294	204
D.9 Source mechanisms: 65 through 72 out of 294	205
D.10 Source mechanisms: 73 through 80 out of 294	206
D.11 Source mechanisms: 81 through 88 out of 294	207
D.12 Source mechanisms: 89 through 96 out of 294	208
D.13 Source mechanisms: 97 through 104 out of 294	209
D.14 Source mechanisms: 105 through 112 out of 294	210
D.15 Source mechanisms: 113 through 120 out of 294	211
D.16 Source mechanisms: 121 through 128 out of 294	212
D.17 Source mechanisms: 129 through 136 out of 294	213
D.18 Source mechanisms: 137 through 144 out of 294	214
D.19 Source mechanisms: 145 through 152 out of 294	215
D.20 Source mechanisms: 153 through 160 out of 294	216
D.21 Source mechanisms: 161 through 168 out of 294	217
D.22 Source mechanisms: 169 through 176 out of 294	218
D.23 Source mechanisms: 177 through 184 out of 294	219
D.24 Source mechanisms: 185 through 192 out of 294	220
D.25 Source mechanisms: 193 through 200 out of 294	221
D.26 Source mechanisms: 201 through 208 out of 294	222
D.27 Source mechanisms: 209 through 216 out of $294 \ldots \ldots \ldots \ldots \ldots$	223
xiii	

D.28 Source mechanisms: 217 through 224 out of 294	224
D.29 Source mechanisms: 225 through 232 out of 294	225
D.30 Source mechanisms: 233 through 240 out of 294	226
D.31 Source mechanisms: 241 through 248 out of 294	227
D.32 Source mechanisms: 249 through 256 out of 294	228
D.33 Source mechanisms: 257 through 264 out of 294	229
D.34 Source mechanisms: 265 through 272 out of 294	230
D.35 Source mechanisms: 273 through 280 out of 294	231
D.36 Source mechanisms: 281 through 288 out of 294	232
D.37 Source mechanisms: 289 through 294 out of 294	233
E 1 Polority problem for station CPP CL I	0/2
E.1 Totality problem for station CRP.CL II	740 044
E.2 Polarity problem for station HWB A7 I)/5
E.4 Delevity problem for station HWP AZ II	740 046
E.4 Totality problem for station HWB.AZ, H	240 247
E.5 Forarity problem for station BVDA2.AZ, I	741)10
E.0 Polarity problem for station BVDA2.AZ, II	240 240
E.7 Polarity problem for station PER.CI, I	249 050
E.8 Polarity problem for station PER.CI, II	200 0E 1
E.9 Polarity problem for station PER.CI, III	501 201
E.10 Polarity problem for station B1P.CI, I	:0Z
E.11 Polarity problem for station B1P.CI, II	203 NF 4
E.12 Polarity problem for station B1P.CI, III	204 254
E.13 Polarity problem for station NSS2.CI, I	255 250
E.14 Polarity problem for station NSS2.CI, II	256
E.15 Polarity problem for station NSS2.CI, III	:57
E.16 Polarity problem for station 109C.TA, 1	258
E.17 Polarity problem for station 109C.TA, II	259
E.18 Polarity problem for station 109C.TA, III	260
E.19 Polarity problem for station OSI.CI, I	261
E.20 Polarity problem for station OSI.CI, II	262
E.21 Polarity problem for station OSI.CI, III	263

E.22 Polarity problem for station OSI.CI, IV	. 264
E.23 Amplification problem for station VCS.CI, I	. 265
E.24 Amplification problem for station VCS.CI, II	. 266
E.25 Amplification problem for station VCS.CI, III	. 267
E.26 Amplification problem for station SMTC.AZ, I $\ldots \ldots \ldots \ldots \ldots$. 268
E.27 Amplification problem for station SMTC.AZ, II	. 269
E.28 Amplification problem for station BAR.CI, I	. 270
E.29 Amplification problem for station BAR.CI, II	. 271