Appendix E

Polarity problems at selected stations in southern California

Note

I am fortunate to have had close contact with the Southern California Data Center. I thank Ellen Yu, Egill Hauksson, and Kate Hutton for discussions regarding the matters presented in this appendix. The key results are summarized in Table E.1.

E.1 Overview

Our tomography study for southern California has aimed to incorporate three-component waveform data from all available broadband stations for 234 earthquakes, $M_{\rm w} = 3.5$ -5.5, over the time period 1998–2009. For these earthquakes we have generated synthetic seismograms using a 3D crustal model provided by the Southern California Earthquake Center, which we improved with 16 iterations in a tomographic inversion. Based on thousands of comparisons between synthetic and recorded seismograms, I have discovered a problem with the polarity of certain stations for specific epochs. The polarity problem is summarized in Table E.1 and in the following figures. I demonstrate the problematic records using the seismograms filtered at relatively long periods (bandpass 6–30 s), which are not as sensitive to possible "site effect," i.e., strong heterogeneity in the immediate region of the station. Because the station coverage in southern California is dense, it is usually possible to find a nearby station to the problematic one, in order to demonstrate the problem. One example

Table E.1: Southern California station–epochs with problematic polarity. "Earthquake dates" indicates the earliest and latest earthquakes within my dataset that exhibit the identified polarity problem on records bandpassed 6–30 s. These dates were used to identify the problematic epochs for each station.

	Earthqua	ake dates	Corresponding Epochs		Channels	
Station	Earliest	Latest	Start	End	(BH_)	Figures
CRP.CI	2003-12-25	2006-06-30	2003.297	2003.301	Z, E, N	E.1
			2003.301	2006.114		
			2006.114	2006.212		
HWB.AZ	2003-05-24	2008-07-29	2003.099	2004.056	Z, E, N	E.3–E.4
			2004.056	99999		
BVDA2.AZ	2003-05-24	2007 - 02 - 09	2003.133	2004.056	Z, E, N	E.5-E.6
			2004.056	99999		
PER.CI	2003-12-04	2009-01-31	2003.141 2003.147		E, N	E.7–E.9
			2003.147 2006.157			
			2006.157	2008.305		
			2008.305	99999		
BTP.CI	2002-10-29	2003-03-11	2002.297	2003.071	E, N	E.10–E.12
NSS2.CI	2004-09-29	2005-09-02	2004.077	2006.125	E, N	E.13–E.15
109C.TA	2004-07-14	2005-10-18	2004.125 2005.101		E, N	E.16–E.18
			2005.101	2007.242		
OSI.CI	1998-01-05	1998-10-27	1995.179(?)	2002.196(?)	E(?)	E.19–E.22

is shown in Figures E.7–E.9 for station PER.CI for an earthquake on 2008.12.06. From stations MSJ.CI to PER.CI to RVR.CI, I sweep the azimuth in a clockwise manner. The records for MSJ and RVR are similar, but the station in between, BTP, has the polarity flipped for both the transverse (T) and radial (R) components.

Most of the stations with reported polarity problems are not exhibiting the problems at present. In other words, the problems are restricted to specific epochs of the stations, and may be restricted to particular components as well (Table E.1). Of course, it is most important that the stations are providing accurate waveforms at present time, in order to properly record future earthquakes. However, it is also important that the waveforms in the past are accurate as well, since these waveforms may be used to improve the current 3D structure model or to simulate past earthquakes. In most of the cases presented below, it would be a relatively simple matter of adjusting the sign within the station response files (i.e., dataless seed files), and then the waveforms would be usable.

I also observed a problem with station amplifications for three stations recording events prior to 2000 (Section E.3). Detecting systematic amplifications is more subtle than detecting the polarity problems. An example of the amplification is shown in Figures E.23–E.25: the relative-low amplitude on all three components at VCS (Figure E.24) is not observed at stations in azimuthal directions on either side of VCS (Figures E.23 and E.25).

E.2 Station–epochs with probable incorrect polarity (Figures E.1–E.22)

- CRP.CI: Figure E.1. From the 3D synthetics, it appears that the seismograms (all three components) are "good", but flipped upsidedown. In Figure E.2, I show the effect of simply flipping the sign of CONSTANT in the pole-zero file. A sign flip appears to solve the problem for this station. NOTE: CRP.CI is fine as of 2006.11.03 (10215753).
- HWB.AZ: Figures E.3–E.4. From the 3D synthetics, it appears that the seismograms (all three components) are "good", only flipped upsidedown.

There is something peculiar about HWB.AZ records. By 2008.12.06 (14408052), HWB.AZ records look great, but the PZ file is the same as before. This suggests that HWB.AZ was changed, but the dataless seed file was not updated.

- BVDA2.AZ: Figures E.5–E.6. From the 3D synthetics, it appears that the seismograms (all three components) are "good", only flipped upsidedown.
- PER.CI: Figures E.7–E.9. From stations MSJ.CI to PER.CI to RVR.CI, I sweep the azimuth in a clockwise manner. The records for MSJ and RVR are similar, but the station in between, BTP, has the polarity flipped for both the transverse (T) and radial (R) components. The earthquake occurred near Hector Mine on 2008.12.06.
- BTP.CI: Figures E.10–E.12. From stations ALP.CI to BTP.CI to OSI.CI, I sweep the azimuth in a clockwise manner. The records for ALP and OSI are similar, but the station in between, BTP, has the polarity flipped for both the transverse (T) and radial (R) components.
- NSS2.CI: Figures E.13–E.15. From stations CTC.CI to NSS2.CI to THX.CI, I sweep the azimuth in a clockwise manner. The records for CTC and THX are similar, but the station in between, NSS2, has the polarity flipped for both the transverse (T) and radial (R) components.
- 109C.TA: Figures E.16–E.18. From stations SDR.CI to 109C.TA to SDG.CI, I sweep the azimuth in a clockwise manner. It appears that something is wrong with the horizontal components for 109C.TA, though it may not be a simply sign error or switch between the E and N components.
- OSI.CI. Figures E.19 and E.22. The pattern for OSI.CI suggests that only the east component has a polarity problem, or that there was some misalignment of the horizontal components. For earthquakes from an easterly direction, the problem is more apparent on the radial component (Figures E.19 and E.20). For earthquakes from a northerly direction, the problem is more apparent on the transverse component (Figures E.21 and E.22).

There is something peculiar about the 1998 OSI.CI records. All of the problematic records occur in 1998, but the PZ file indicates the same epoch through 2002. This suggests that OSI.CI was changed, but the dataless seed file was not updated. Also, even *between* the earliest (1998-01-05) and latest (1998-10-27) identified problematic records, there are some *good* records: 9064093 (1998-08-16) and 9065468 (1998-08-20).

Detailed list of seismograms exhibiting polarity problems

Figures E.1 and E.2 show one example for one station (CRP.CI). I will now list all the paths for which the polarity on **all three components** appears to be flipped:

- CRP.CI. 9968977 9983429 10059745 10097009 10100053 10148421 14073800 14077668 14095540 14095628 14096196 14116972 14138080 14151344 14155260 14165408 14169456 14178236 14178248 14186612 14236768
- HWB.AZ. 9967901 10100053 10215753 13966396 14095628 14096196 14151344 14155260 14178184 14178188 14178212 14178236 14178248 14179292 14179736 14236768 14263712 14263716 14383980
- 3. BVDA2.AZ. 9967901 10215753 10230869 13966396 14095540 14095628 14169456
 14178184 14178188 14178212 14178236 14178248 14179288 14179292 14179736 14186612
 14233632 14236768 14263544 14263712 14263716

Figures E.7–E.9 shows one example for one station (PER.CI). I will now list all the paths for which the polarity on the **horizontal components only** appears to be a problem:

- 1. **BTP.CI**. 9854597 9882325 9882329 13935988 13936812 13938812 13945908
- PER.CI. 9967901 9968977 9983429 10006857 10059745 10063349 10097009 10100053 10148421 10215753 10230869 10370141 14007388 14072464 14073800 14077668 14095540 14095628 14096196 14116972 14118096 14133048 14138080 14151344 14158696 14169456 14178184 14178188 14178212 14178236 14178248 14179288 14179292 14179736 14186612 14236768 14239184 14263544 14383980 14408052 10370141 14418600
- NSS2.CI. 10059745 10097009 14095628 14138080 14151344 14155260 14178184 14178188 14178248 14179292 14179736
- 4. 109C.TA. 10059745 10097009 10100053 10148421 14073800 14095628 14116972 14118096 14138080 14151344 14155260 14169456 14178184 14178188 14178212 14178236 14178248 14179288 14179292 14179736 14186612
- 5. OSI.CI (BHE only?). 3298292 (BHR) 9038699 (BHR) 9069997 (BHR) 9044650 (BHT) 9045109 (BHT) 9045697 (BHT)

Next I list all the events above in order of increasing origin time, with each problematic station listed on the following line(s). Note that these records are only the ones that I have identified directly as having a problem. I expect that records at the same stations during the same epochs would exhibit the **polarity problem** as well.

9038699	1998-01-05	18:14:06	Mw	3.9	-117.7178	33.9462	12.98	km
9044650	1998-03-06 OSI.CI-E	07:36:35	Mw	4.0	-117.6505	36.0737	7.93	km
9045109	1998-03-07 OSI.CI-E	00:36:46	Mw	4.5	-117.6200	36.0912	6.99	km
9045697	1998-03-08	15:28:41	Mw	3.7	-117.6133	36.0827	4.81	km
3298292	1998-03-11 0SI CI-E	12:18:51	Mw	4.2	-117.2222	34.0355	16.19	km
9069997	1998-10-27 OSL_CI-E	01:08:40	Mw	4.4	-116.8418	34.3208	6.02	km
9854597 B	2002-10-29 STP.CI-EN	14:16:54	Mw	4.4	-116.2650	34.8068	7.89	km
9882325 B	2003-01-25 TP.CI-EN	09:11:02	Mw	3.9	-118.6632	35.3152	4.41	km
9882329 B	2003-01-25 TP.CI-EN	09:16:10	Mw	4.2	-118.6585	35.3128	4.12	km
13935988 B	2003-02-22 TP_CI-EN	12:19:10	Mw	4.8	-116.8460	34.3103	4.55	km
13936812 B	2003-02-22	19:33:45	Mw	4.2	-116.8482	34.3097	4.87	km
13938812 B	2003-02-25	04:03:04	Mw	4.0	-116.8407	34.3137	3.84	km
13945908 B	2003-03-11 STP.CI-EN	19:28:17	Mw	4.2	-116.1303	34.3582	8.08	km
13966396 HW	2003-05-24 B.AZ-ZEN	02:04:28	Mw	4.1	-115.5538	32.9475	8.72	km
14007388	2003-12-04	06:15:52	Mw	3.5	-117.5664	35.6352	2.13	km
9967901 P	2003-12-23 PER.CI-EN	18:17:11	Mw	4.5	-121.0428	35.6493	7.20	km
HW RVDA	2 AZ-ZEN							
9968977 P	2003-12-25 PER.CI-EN	11:50:01	Mw	4.3	-120.8385	35.5487	8.18	km
CR 9983429 P	P.CI-ZEN 2004-02-14 PER.CI-EN	12:43:11	Mw	4.5	-119.1412	35.0118	11.81	km
10006857 P	2004-05-09 PER_CI-EN	08:57:17	Mw	4.2	-120.0142	34.4135	10.97	km
14072464 P	2004-07-09 PER CI-EN	04:43:45	Mw	3.7	-115.7441	32.5392	10.37	km
14073800 P	2004-07-14 PER.CI-EN	00:53:52	Mw	3.8	-116.0520	33.7152	12.20	km
10 CB	9C.TA-EN							
14077668 P	2004-07-24 PER.CI-EN	12:55:19	Mw	4.0	-119.4365	34.3885	8.66	km
CR 14095540	P.CI-ZEN 2004-09-29	17:10:04	Mw	4.8	-120.5134	35.9528	10.69	km
P CR	PER.CI-EN							
BVDA	2.AZ-ZEN							
14095628 NS	2004-09-29 S2.CI-EN PER_CI-EN	22:54:54	Mw	4.8	-118.6292	35.3852	7.66	km
10	9C.TA-EN							
UN HW	IP.CI-ZEN IB.AZ-ZEN							
BVDA	2.AZ-ZEN							
14096196	2004-09-30	18:54:29	Mw	4.6	-120.5403	35.9821	9.87	km
CR	P.CI-ZEN							
HW	B.AZ-ZEN							
10059745	2004-11-13	17:39:16	Mw	3.8	-116.8413	34.3533	10.31	km
NS P 10	SZ.CI-EN PER.CI-EN 9C.TA-EN							
CR 10063349	P.CI-ZEN 2004-11-29	01:54:14	Mw	4.0	-120,4963	35,9437	10.19	km
P	PER.CI-EN							
14116972 P	2005-01-06 PER.CI-EN	14:35:27	Mw	4.1	-117.4438	34.1272	5.04	km
10	9C.TA-EN							
CR 14118096 ¤	2005-01-12 EB_CI-FN	08:10:46	Mw	3.9	-116.3912	33.9578	8.51	km
P 10	9C.TA-EN							

14133048 2005-03-22	08:55:05	Mw 3.6	-116.2515	33.2884	4.74 km
14138080 2005-04-16	19:18:13	Mw 4.6	-119.1940	34.9987	10.16 km
NSS2.CI-EN					
PER.CI-EN 109C.TA-EN					
CRP.CI-ZEN					
10097009 2005-05-06	02:29:09	Mw 4.0	-119.1958	35.0023	13.01 km
PER.CI-EN					
109C.TA-EN					
10100053 2005-05-16	07:24:37	Mw 4.2	-120.4792	35.9269	9.15 km
PER.CI-EN					
109C.TA-EN CRP.CI-ZEN					
HWB.AZ-ZEN					
14151344 2005-06-12 NSS2 CI-EN	15:41:46	Mw 5.1	-116.5675	33.5380	13.91 km
PER.CI-EN					
109C.TA-EN					
HWB.AZ-ZEN					
14155260 2005-06-16	20:53:25	Mw 4.8	-117.0072	34.0612	14.19 km
NSS2.CI-EN 109C.TA-EN					
CRP.CI-ZEN					
HWB.AZ-ZEN 14158696 2005-06-27	22.17.33	Mw 3.6	-117,0232	34.0615	13.63 km
PER.CI-EN	22111100		11110202	0110010	10100 1
14165408 2005-07-24 CRP CI-ZEN	12:59:42	Mw 3.8	-119.7527	33.6853	3.85 km
14169456 2005-08-06	05:40:33	Mw 3.9	-118.0652	36.1488	3.67 km
PER.CI-EN					
CRP.CI-ZEN					
BVDA2.AZ-ZEN	~~ ~~ ~~				
14178184 2005-08-31 NSS2.CI-EN	22:47:45	Mw 4.7	-115.6207	33.1544	4.50 km
PER.CI-EN					
109C.TA-EN HWB AZ-ZEN					
BVDA2.AZ-ZEN					
14178188 2005-08-31	22:50:24	Mw 4.4	-115.6098	33.1639	1.59 km
PER.CI-EN					
109C.TA-EN					
HWB.AZ-ZEN BVDA2.AZ-ZEN					
14178212 2005-08-31	23:07:16	Mw 4.3	-115.6157	33.1548	5.01 km
PER.CI-EN 109C.TA-EN					
HWB.AZ-ZEN					
BVDA2.AZ-ZEN 14178236 2005-08-31	23.27.32	Mur 4, 1	-115 5924	33, 1748	3.95 km
PER.CI-EN	20121102		11010021	0011110	0100 1
109C.TA-EN CRP_CI-ZEN					
HWB.AZ-ZEN					
BVDA2.AZ-ZEN	02.20.11	Mr. 1 2	-115 5060	22 1710	E OE Im
NSS2.CI-EN	23:32:11	MW 4.3	-115.5969	33.1712	5.05 KM
PER.CI-EN					
CRP.CI-ZEN					
HWB.AZ-ZEN					
BVDA2.AZ-ZEN 14179288 2005-09-01	13:48:25	Mw 3.8	-115.6168	33.1538	4.74 km
PER.CI-EN					
109C.TA-EN BVDA2 A7-7EN					
14179292 2005-09-01	13:50:20	Mw 4.4	-115.6064	33.1643	2.63 km
NSS2.CI-EN PER CI-EN					
109C.TA-EN					
HWB.AZ-ZEN					
14179736 2005-09-02	01:27:20	Mw 5.0	-115.6295	33.1479	4.90 km
NSS2.CI-EN					
109C.TA-EN					
HWB.AZ-ZEN					
DVDA2.AZ-ZEN 14186612 2005-09-22	20:24:48	Mw 4.4	-119.0247	35.0178	10.24 km
PER.CI-EN					
109C.TA-EN CRP.CI-ZEN					
BVDA2.AZ-ZEN					
10148421 2005-10-18 PER_CI-EN	07:31:03	Mw 4.1	-116.7715	34.0182	18.32 km
109C.TA-EN					
CRP.CI-ZEN					

14236768 2006-06-30 PER.CI-EN CRP.CI-ZEN HWB.AZ-ZEN BVDA2 A7-ZEN	00:28:06	Mw 4.1	-116.0220	33.2450	3.84 km
14239184 2006-07-10 PER CI-EN	02:54:43	Mw 3.7	-117.1103	33.8567	16.77 km
10215753 2006-11-03 PER.CI-EN HWB.AZ-ZEN BUDA2 AZ-ZEN	15:56:43	Mw 4.1	-116.0520	32.7165	14.76 km
14263544 2006-11-29 PER.CI-EN	12:17:35	Mw 3.7	-115.9628	32.8423	3.37 km
14263712 2006-11-29 HWB.AZ-ZEN	21:10:55	Mw 4.0	-115.9672	32.8385	7.16 km
BVDA2.AZ-ZEN 14263716 2006-11-29 HWB.AZ-ZEN	21:12:52	Mw 3.6	-115.9672	32.8377	3.43 km
BVDA2.AZ-ZEN 10230869 2007-02-09 PER.CI-EN	03:33:43	Mw 3.9	-116.1357	33.2220	20.99 km
BVDA2.AZ-ZEN 14383980 2008-07-29 PER.CI-EN	18:42:16	Mw 5.4	-117.7610	33.9530	14.23 km
14408052 2008-12-06 PER CI-EN	04:18:43	Mw 5.0	-116.4190	34.8130	6.10 km
10370141 2009-01-09 PER.CI-EN	03:49:46	Mw 4.4	-117.3040	34.1070	14.20 km
14418600 2009-01-31 PER.CI-EN	21:09:22	Mw 3.9	-117.7860	35.4130	8.50 km

E.3 Station–epochs with probable incorrect amplification (Figures E.23–E.29)

- VCS.CI: Figures E.23–E.25. The relative-low amplitude on all three components at VCS (Figure E.24) is not observed at stations in azimuthal directions on either side of VCS (Figures E.23 and E.25).
- SMTC.AZ: Figures E.26 and E.27. The relative-low amplitude for BHZ and BHT at SMTC.AZ (Figure E.24) is not observed at adjacent station SWS.CI (Figure E.26).
- BAR.CI: Figures E.28 and E.29. It is possible that for BAR.CI the amplification problem is only with the east component. This inference is based on the fact that the amplification is observed primarily on the transverse component for north-south paths (Figures E.28 and E.29), and it is observed primarily on the radial component for east-west paths (9075803, 9154092).

Detailed list of seismograms exhibiting amplification problems

- VCS.CI: 7112721 9044494 9044650 9045109 9064093 9064568 9069997 9070083
- SMTC.AZ: 3317364 9075803 9086693

BAR.CI: 9075803 (R) 9154092 (R) 3320736 (T) 3321426 (T) 3321590 (T) 9085734 (T) 9109287 (T) 9109442 (T) 9109636 (T) 9110685 (T) 9112735 (T) 9114763 (T) 9114812 (T) 9114858 (T) 9117942 (T) 9119414 (T) 9140050 (T)

Next I list all the events above in order of increasing origin time, with each problematic station listed on the following line(s). Note that these records are only the ones that I have identified directly as having a problem. I expect that records at the same stations during the same epochs would exhibit the **amplification problem** as well.

9044494 V(1998-03-06 CS.CI-ZEN	05:47:40	Mw 4.9	-117.6405	36.0778	7.17 km
9044650 V(1998-03-06 CS.CI-ZEN	07:36:35	Mw 4.0	-117.6505	36.0737	7.93 km
9045109 V(1998-03-07 CS.CI-ZEN	00:36:46	Mw 4.5	-117.6200	36.0912	6.99 km
9064093 V(1998-08-16	13:34:40	Mw 4.4	-116.9232	34.1245	5.98 km
9064568 V(1998-08-20 CS_CI-ZEN	23:49:58	Mw 4.1	-117.6502	34.3737	9.51 km
7112721 V(1998-10-01 CS.CI-ZEN	18:18:15	Mw 4.2	-116.9158	34.1155	5.40 km
9069997 V(1998-10-27 CS_CI-ZEN	01:08:40	Mw 4.4	-116.8418	34.3208	6.02 km
9070083 V(1998-10-27 CS_CI-ZEN	15:40:16	Mw 3.8	-116.8455	34.3202	5.48 km
9075803 SN	1999-01-13 MT.AZ-ZEN	13:20:56	Mw 4.2	-115.9248	32.7190	8.00 km
9085734	BAR.CI-E 1999-05-05 BAR.CI-E	02:17:46	Mw 3.6	-116.3697	34.0725	2.58 km
9086693	1999-05-14	08:22:07	Mw 3.9	-116.3623	34.0375	3.98 km
3317364 SN	1999-05-14 MT_AZ-ZEN	10:52:35	Mw 4.1	-116.3582	34.0378	4.01 km
3320736	1999-10-16 BAB_CI-E	12:57:21	Mw 5.3	-116.2465	34.4368	7.96 km
9109287	1999-10-16 BAB_CI-E	18:01:57	Mw 4.0	-116.3013	34.7087	6.65 km
9109442	1999-10-16 BAB_CI-E	20:13:37	Mw 4.3	-116.2793	34.6940	3.18 km
9109636	1999-10-16 BAR.CI-E	22:53:41	Mw 4.1	-116.3570	34.7097	9.52 km
9110685	1999-10-17 BAR.CI-E	16:22:48	Mw 4.1	-116.1375	34.3465	3.96 km
9112735	1999-10-19 BAR.CI-E	12:20:44	Mw 4.0	-116.3442	34.7110	9.34 km
3321590	1999-10-21 BAR.CI-E	01:54:34	Mw 4.8	-116.3955	34.8735	3.33 km
9114763	1999-10-22 BAR.CI-E	12:40:52	Mw 3.7	-116.2085	34.3300	11.53 km
9114812	1999-10-22 BAR.CI-E	16:08:48	Mw 4.8	-116.4060	34.8620	3.02 km
9114858	1999-10-22 BAR.CI-E	16:48:22	Mw 3.8	-116.3820	34.8292	5.15 km
9117942	1999-10-29 BAR.CI-E	12:36:37	Mw 4.0	-116.2707	34.5200	2.90 km
3321426	1999-11-03 BAR.CI-E	02:55:05	Mw 3.6	-116.2888	34.8031	6.06 km
9119414	1999-11-03 BAR.CI-E	03:27:57	Mw 3.9	-116.3570	34.8470	5.90 km
9140050	2000-02-21 BAB_CI-E	13:49:43	Mw 4.1	-117.2432	34.0588	16.34 km
9154092	2000-06-14 BAR.CI-E	19:00:20	Mw 4.3	-115.5035	32.8898	8.73 km

Data (Black) and Synthetics (Red) -- bandpass 6 s to 30 s

Figure E.1: Data (black) and synthetics (red), 6–30 s, from 10059745 to CRP.CI. The measurement algorithm selects a large time shift for the Rayleigh wave, but this is due to the station error, not to the source or structure. Compare with Figure E.2.

Data (Black) and Synthetics (Red) -- bandpass 6 s to 30 s

Figure E.2: Data (black) and synthetics (red), 6–30 s, from 10059745 to CRP.CI. In this case, I have flipped the sign of the constant value in the pole-zero file. Compare with Figure E.1.

Figure E.3: Data (black) and synthetics (red), 6–30 s, from 14179736 to DPP.CI. Compare with Figure E.4.

Figure E.4: Data (black) and synthetics (red), 6–30 s, from 14179736 to HWB.AZ. The measurement algorithm selects a large time shift for the radial-component Rayleigh wave, but this is due to the station error, not to the source or structure. Compare with Figure E.3.

Figure E.5: Data (black) and synthetics (red), 6–30 s, from 14179736 to BOR.CI. Compare with Figure E.6.

Data (Black) and Synthetics (Red) -- bandpass 6 s to 30 s

Figure E.6: Data (black) and synthetics (red), 6–30 s, from 14179736 to BVDA2.AZ. The measurement algorithm mistakenly selects the large time shifts for the Rayleigh wave, but this is due to the station error, not to the source or structure. Compare with Figure E.5.

Figure E.7: Data (black) and synthetics (red), 6–30 s, from 14408052 to MSJ.CI. Compare with Figure E.8.

Figure E.8: Data (black) and synthetics (red), 6–30 s, from 14408052 to PER.CI. Compare with Figures E.7 and E.9.

Figure E.9: Data (black) and synthetics (red), 6–30 s, from 14408052 to RVR.CI. Compare with Figure E.8.

Figure E.10: Data (black) and synthetics (red), 6–30 s, from 14138080 to ALP.CI. Compare with Figure E.11.

Figure E.11: Data (black) and synthetics (red), 6–30 s, from 14138080 to BTP.CI. Compare with Figures E.10 and E.12.

Figure E.12: Data (black) and synthetics (red), 6–30 s, from 14138080 to OSI.CI. Compare with Figure E.11.

Figure E.13: Data (black) and synthetics (red), 6–30 s, from 14138080 to CTC.CI. Compare with Figure E.14.

Figure E.14: Data (black) and synthetics (red), 6–30 s, from 14138080 to NSS2.CI. Compare with Figures E.13 and E.15.

Figure E.15: Data (black) and synthetics (red), 6–30 s, from 14138080 to THX.CI. Compare with Figure E.14.

Figure E.16: Data (black) and synthetics (red), 6–30 s, from 14138080 to SDR.CI. Compare with Figure E.17.

Figure E.17: Data (black) and synthetics (red), 6–30 s, from 14138080 to 109C.TA. Compare with Figures E.16 and E.18.

Figure E.18: Data (black) and synthetics (red), 6–30 s, from 14138080 to SDG.CI. Compare with Figure E.17.

that the polarity problem on this east-west-oriented path is most apparent on the radial component. Compare with Figure E.20.

Data (Black) and Synthetics (Red) -- bandpass 6 s to 30 s

Figure E.20: Data (black) and synthetics (red), 6–30 s, from 3298292 to OSI.CI. Compare with Figure E.12.

Figure E.21: Data (black) and synthetics (red), 6–30 s, from 9045109 to BTP.CI. Compare with Figure E.22.

Data (Black) and Synthetics (Red) -- bandpass 6 s to 30 s

Figure E.22: Data (black) and synthetics (red), 6–30 s, from 9045109 to OSI.CI. Note that the polarity problem on this north-south-oriented path is most apparent on the transverse component. Compare with Figure E.21.

Data (Black) and Synthetics (Red) -- bandpass 6 s to 30 s

Figure E.23: Data (black) and synthetics (red), 6–30 s, from 9064093 to OSI.CI. Compare with Figure E.24.

Data (Black) and Synthetics (Red) -- bandpass 6 s to 30 s

Figure E.24: Data (black) and synthetics (red), 6–30 s, from 9064093 to VCS.CI. The amplification problem is on all three components. Compare with Figures E.25 and E.23.

Data (Black) and Synthetics (Red) -- bandpass 6 s to 30 s

Figure E.25: Data (black) and synthetics (red), 6–30 s, from 9064093 to BTP.CI. Compare with Figure E.24.

Figure E.26: Data (black) and synthetics (red), 6–30 s, from 9086693 to SWS.CI. Compare with Figure E.27.

Data (Black) and Synthetics (Red) -- bandpass 6 s to 30 s

Figure E.27: Data (black) and synthetics (red), 6–30 s, from 9086693 to SMTC.AZ. The amplification problem is most apparent on the vertical and transverse components for this north-south path. Compare with Figure E.26.

Figure E.28: Data (black) and synthetics (red), 6–30 s, from 9114812 to JCS.CI. Compare with Figure E.29.

that the amplification problem on this north-south-oriented path is only on the transverse component. Compare with Figure E.28.