
Appendix C

Multitaper measurements for

adjoint tomography

C.1 Introduction

A multitaper measurements uses a set of optimal tapers design to extract frequency-

dependent measurements of traveltime and amplitude differences. Theory and examples of

multitaper measurements can be found in Zhou et al. (2004, 2005); Ekström et al. (1997);

Laske and Masters (1996); Thomson (1982), and also Percival and Walden (1993, p. 333–

347). The objective of this Appendix is to state the multitaper misfit functions (both

traveltime and amplitude), and then to derive the corresponding adjoint source, ala Tromp

et al. (2005).

C.2 Misfit functions, measurements, and adjoint sources

The conventions for the measurement, the Fourier transform, and the transfer function used

for multitaper measurements are related. First we specify the measurement convention

(Figure C.1), then we specify the Fourier convention, and these determine the convention

for the transfer function (Section C.3.2).

C.2.1 The misfit function and measurement convention

Our misfit functions consists of a set of discrete time windows covering the seismic dataset

of S earthquake sources, with Ns time windows for source index s. The total number of
173
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measurements is

N =

S∑

s=1

Ns . (C.1)

For traveltime and amplitude tomography we seek to minimize the objective functions

FP(m) = 1
2

S∑

s=1

Ns∑

p=1

1

Fsp

∫ ∞

−∞

Wsp(ω)

[
τobs
sp (ω) − τsp(ω,m)

σPsp(ω)

]2

dω , (C.2)

FQ(m) = 1
2

S∑

s=1

Ns∑

p=1

1

Fsp

∫ ∞

−∞

Wsp(ω)

[
ln Aobs

sp (ω) − ln Asp(ω,m)

σQsp(ω)

]2

dω , (C.3)

where p is the index for measurement window “pick,” and P and Q are labels denoting

measures of traveltime and amplitude, respectively. For example, τobs
sp (ω) − τsp(ω,m) rep-

resents the frequency-dependent traveltime difference between synthetics and data for one

time-windowed waveform on a single seismogram for source s. The frequency-dependent

uncertainty associated with the traveltime measurement is estimated by σPsp(ω). The func-

tion Wsp(ω) denotes a windowing filter whose width corresponds to the frequency range

over which the measurements are assumed reliable. A normalization factor Gsp is defined

as1

Gsp =

∫ ∞

−∞

Wsp(ω) dω. (C.4)

We can incorporate the measurement uncertainty and normalization factor into the fre-

quency filter by defining

WPsp(ω) ≡
Wsp(ω)

Gsp σ2
Psp(ω)

, (C.5)

WQsp(ω) ≡
Wsp(ω)

Gsp σ2
Qsp(ω)

, (C.6)

1In practice we define our measurement window according to positive angular frequencies only. Thus we
can write Equation (C.4) as

Gsp =

Z

∞

−∞

Wsp(ω) dω = 2

Z

∞

0

Wsp(ω)dω,

where Wsp(ω) is defined over positive frequencies only.
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and then the misfit functions (Eqs. C.2 and C.3) become

FP(m) = 1
2

S∑

s=1

Ns∑

p=1

∫ ∞

−∞

WPsp(ω)
[
τobs
sp (ω) − τsp(ω,m)

]2
dω , (C.7)

FQ(m) = 1
2

S∑

s=1

Ns∑

p=1

∫ ∞

−∞

WQsp(ω)
[
ln Aobs

sp (ω) − ln Asp(ω,m)
]2

dω . (C.8)

The variations of Equations (C.7) and (C.8) are given by

δFP(m) = −1
2

S∑

s=1

Ns∑

p=1

∫ ∞

−∞

WPsp(ω)∆τsp(ω,m) δτsp(ω,m) dω , (C.9)

δFQ(m) = −1
2

S∑

s=1

Ns∑

p=1

∫ ∞

−∞

WQsp(ω)∆ ln Asp(ω,m) δ ln Asp(ω,m) dω , (C.10)

where

∆τsp(ω,m) ≡ τobs
sp (ω) − τsp(ω,m) , (C.11)

∆ ln Asp(ω,m) ≡ ln Aobs
sp (ω) − ln Asp(ω,m) , (C.12)

are the measured traveltime difference and amplitude difference between data and synthet-

ics, and δτ(ω,m) and δ ln A(ω,m) are the traveltime and amplitude perturbations with

respect to changes in the model parameters. The conventions in Equations (C.11) and

(C.12) are such that ∆τ(ω) > 0 corresponds to a delay in the data, i.e., the data at fre-

quency ω arrive late with respect to the synthetics at frequency ω (Figure C.1). Similarly,

∆ ln A(ω) > 0 corresponds to an amplification of the data with respect to the synthetics,

for frequency ω. These are the same conventions used in defining the cross-correlation

measurements of (Dahlen et al., 2000; Dahlen and Baig , 2002).

Reduction for a single measurement (N = 1)

The notation is simpler if we consider a single event, a single receiver, a single component,

and a single phase. In that case, the misfit functions are

FP(m) = 1
2

∫ ∞

−∞

WP(ω)
[
τobs(ω) − τ(ω,m)

]2
dω , (C.13)

FQ(m) = 1
2

∫ ∞

−∞

WQ(ω)
[
lnAobs(ω) − ln A(ω,m)

]2
dω , (C.14)
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where

WP(ω) ≡
W (ω)

Gσ2
P(ω)

, (C.15)

WQ(ω) ≡
W (ω)

Gσ2
Q(ω)

. (C.16)

The variations of Equations (C.13) and (C.14) are given by

δFP(m) = −

∫ ∞

−∞

WP(ω)∆τ(ω,m) δτ(ω,m) dω , (C.17)

δFQ(m) = −

∫ ∞

−∞

WQ(ω)∆ ln A(ω,m) δ ln A(ω,m) dω , (C.18)

where

∆τ(ω,m) ≡ τobs(ω) − τ(ω,m) , (C.19)

∆ ln A(ω,m) ≡ ln Aobs(ω) − ln A(ω,m) . (C.20)

Reduction for frequency-independent measurements

For frequency-independent measurements (and uncertainties), we have

∆τ(ω) = τobs − τ(m) , (C.21)

∆ ln A(ω) = lnAobs − ln A(m) , (C.22)

σP(ω) = σP , (C.23)

σQ(ω) = σQ . (C.24)

The misfit functions (Eqs. C.13 and C.14) become

FP(m) = 1
2

[
τobs − τ(m)

]2 ∫ ∞

−∞

WP(ω) dω = 1
2

[
τobs − τ(m)

σP

]2

(C.25)

FQ(m) = 1
2

[
ln Aobs − ln A(m)

]2 ∫ ∞

−∞

WQ(ω) dω = 1
2

[
ln Aobs − ln A(m)

σQ

]2

(C.26)

which are the traveltime and amplitude cross-correlation misfit functions, FT(m) and FA(m),

shown in Tromp et al. (2005), but also including measurement uncertainties.
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The variations in Equations (C.25) and (C.26) are then

δFP(m) =

[
−

∆τ(m)

σ2
P

]
δτ(m) , (C.27)

δFQ(m) =

[
−

∆ ln A(m)

σ2
Q

]
δ ln A(m) . (C.28)

Uncertainty estimate (σ) based on cross-correlation measurements

Suppose we measure traveltime and amplitude anomalies based on the cross-correlation

Γ(τ) =

∫
s(t − τ) d(t) dt, (C.29)

where d denotes the observed seismogram and s the synthetic. Let δT denote the cross-

correlation traveltime anomaly and δ ln A the amplitude anomaly. We seek to determine

σT and σA for these quantities. Therefore we write

d(t) = (1 + δ ln A ± σA) s(t − δT ± σT) . (C.30)

Expanding the second term to first order, we obtain

d(t) ≈ (1 + δ lnA ± σA) [s(t − δT ) ± σT ṡ(t − δT )]

= (1 + δ lnA ± σA) s(t − δT ) ± σT (1 + δ ln A ± σA) ṡ(t − δT )

= (1 + δ lnA) s(t − δT ) ± σA s(t − δT ) ± σT (1 + δ ln A) ṡ(t − δT ) ± σT σA ṡ(t − δT ).

Thus, to first order in σT and σA, this may be written as

d(t) − (1 + δ ln A) s(t − δT ) = ±σT(1 + δ lnA) ṡ(t − δT ) ± σA s(t − δT ). (C.31)

If we assume the errors are uncorrelated, we find that

σ2
T =

∫
[d(t) − (1 + δ ln A) s(t − δT )]2 dt
∫

[(1 + δ ln A) ṡ(t − δT )]2 dt

, (C.32)

σ2
A =

∫
[d(t) − (1 + δ ln A) s(t − δT )]2 dt

∫
[s(t − δT )]2 dt

. (C.33)
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Because σT and σA appear in the denominator of the adjoint source, one must specify a

nonzero water-level value for each. Otherwise, for a perfect cross-correlation measurement,

σT = σA = 0, and the adjoint source (and therefore event kernel) will blow up. The

water-level is an input parameter in mt_measure_adj.f90.

C.2.2 Multitaper measurements

Each windowed pulse on an individual seismogram is characterized by a (complex) transfer

function from the modeled synthetics to the observed data:

T (ω) s(ω) = d(ω). (C.34)

Note that the transfer function is the same, whether the data and synthetics are in dis-

placement, velocity, or acceleration, etc:

T (ω) iωs(ω) = iωd(ω) ,

−T (ω)ω2s(ω) = −ω2d(ω) .

Here, the convention ds/dt ↔ iωs(ω) is consistent with the Fourier convention in Sec-

tion C.3.2.

Consider a single record of synthetics and data, s(t) and d(t), windowed in time over

a particular phase and both preprocessed in the same way, e.g., filtered over a particular

frequency window. The tapered versions are given by

sj(t) = s(t)hj(t) , (C.35)

dj(t) = d(t)hj(t) , (C.36)

where hj(t) is the taper.

Following Laske and Masters (1996), we use the multitaper method of Thomson (1982),

which uses prolate spheroidal eigentapers (Slepian, 1978) for the hj(t). The transfer function

T (ω) between the data and synthetics is given by (see Section C.3.1)

T (ω) =

∑
j dj(ω) s∗j(ω)

∑
j sj(ω) s∗j (ω)

. (C.37)

This function may be computed directly from the data and synthetics, and then represented
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in terms of the real functions, ∆τ(ω) and ∆ ln A(ω):

T (ω) =

∑
j dj(ω) s∗j (ω)

∑
j sj(ω) s∗j(ω)

= exp[−iω ∆τ(ω)] [1 + ∆ ln A(ω)] , (C.38)

∆τ(ω) =
−1

ω
tan−1

(
Im [T (ω)]

Re [T (ω)]

)
, (C.39)

∆ ln A(ω) = |T (ω)| − 1 . (C.40)

The sign convention in (C.38) is consistent with (C.19)–(C.20) and with the Fourier con-

vention ∂t ↔ iω (Sections C.3.2 and C.3.3).

C.2.3 Multitaper adjoint sources

The units on various quantities in this section are shown in Table C.1.

Following Tromp et al. (2005), we must express the misfit function variations in (C.17)–

(C.18) in terms of the perturbed seismograms δs. The tapered data, dj(t), can be expressed

as

dj = d hj = (s + δs)hj = s hj + δs hj = sj + δsj , (C.41)

where we have defined the tapered, perturbed synthetics as

δsj = δs hj . (C.42)

Substituting (C.41) into (C.37), we obtain

T (ω) =

∑
j [sj(ω) + δsj(ω)] s∗j(ω)
∑

j sj(ω) s∗j (ω)
= 1 +

∑
j δsj s∗j∑
j sj s∗j

. (C.43)

If we write

T (ω) = exp[−iω δτ(ω)] [1 + δ ln A(ω)] , (C.44)

and make a first-order approximation for exp[−iω δτ(ω)], we have

T (ω) ≈ [1 − iω δτ(ω)] [1 + δ ln A(ω)] ≈ 1 − iω δτ(ω) + δ ln A(ω) , (C.45)
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and thus, from (C.43) and (C.45),

T (ω) − 1 =

∑
j δsj s∗j∑
j sj s∗j

≈ −iω δτ(ω) + δ ln A(ω) , (C.46)

δτ(ω) =
−1

ω
Im

(∑
j δsj s∗j∑
j sj s∗j

)
, (C.47)

δ ln A(ω) = Re

(∑
j δsj s∗j∑
j sj s∗j

)
. (C.48)

Using the identities in Appendix C.3.4, we obtain

δτ(ω) =
−1

ω
Im

(∑
j δsj s∗j∑
j sj s∗j

)

= Im

(
−1

ω

∑
j δsj s∗j∑
j sj s∗j

)

= Re

(
i

ω

∑
j δsj s∗j∑
j sj s∗j

)

= Re

(
−

i

ω

∑
j sj δs∗j∑
j sj s∗j

)
, (C.49)

δ ln A(ω) = Re

(∑
j δsj s∗j∑
j sj s∗j

)

= Re

(∑
j sj δs∗j∑
j sj s∗j

)
. (C.50)

Inserting these expressions for the transfer function into (C.17)–(C.18), and omitting

the explicit dependence on m, we have

δFP = −

∫ ∞

−∞

WP(ω)∆τ(ω) Re

(
−i

ω

∑
j sj δs∗j∑
j sj s∗j

)
dω

= Re



∫ ∞

−∞

WP(ω)∆τ(ω)
∑

j

(
i

ω

sj∑
k sks

∗
k

)
δs∗j(ω) dω




= Re



∫ ∞

−∞

WP(ω)∆τ(ω)
∑

j

pj(ω) δs∗j (ω) dω


 , (C.51)
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δFQ = −

∫ ∞

−∞

WQ(ω)∆ ln A(ω) Re

(∑
j sj δs∗j∑
j sj s∗j

)
dω

= Re



∫ ∞

−∞

WQ(ω)∆ ln A(ω)
∑

j

(
−sj∑
k sks

∗
k

)
δs∗j (ω) dω




= Re



∫ ∞

−∞

WQ(ω)∆ ln A(ω)
∑

j

qj(ω) δs∗j (ω) dω


 , (C.52)

where

pj(ω) ≡
i

ω

sj∑
k sks

∗
k

=
iω sj∑

k(iωsk)(−iωs∗k)
=

iω sj∑
k(iωsk)(iωsk)∗

, (C.53)

qj(ω) ≡
−sj∑
k sks

∗
k

= iω pj(ω), (C.54)

where in (C.53) we have used the property (Eq. C.87) −iz∗ = (iz)∗. Note that pj and qj

are based on the (tapered) synthetics alone, and that, based on our Fourier convention in

Section C.3.2,

qj(t) = ṗj(t). (C.55)

Furthermore, note that the time-domain terms in (C.53) are all ṡj(t), the derivative of the

tapered synthetics.

We now use Plancherel’s theorem (Section C.3.4), one version of which is

∫ ∞

−∞

f(ω) g∗(ω) dω = 2π

∫ ∞

−∞

f(t) g∗(t) dt, (C.56)
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to convert (C.51)–(C.52) into the time domain:

δFP = Re



∫ ∞

−∞

WP(ω)∆τ(ω)
∑

j

pj(ω) δs∗j (ω) dω




= Re



∑

j

∫ ∞

−∞

[WP(ω)∆τ(ω) pj(ω)] δs∗j (ω) dω




=
∑

j

∫ ∞

−∞

2π [WP(t) ∗ ∆τ(t) ∗ pj(t)] δsj(t) dt

=
∑

j

∫ ∞

−∞

2π [WP(t) ∗ ∆τ(t) ∗ pj(t)] hj(t) δs(t) dt

=

∫ ∞

−∞



2π

∑

j

hj(t) [WP(t) ∗ ∆τ(t) ∗ pj(t)]



 δs(t) dt

=

∫ ∞

−∞

f †
P(t) δs(t) dt , (C.57)

δFQ = Re



∫ ∞

−∞

WQ(ω)∆ ln A(ω)
∑

j

qj(ω) δs∗j (ω) dω




= Re



∑

j

∫ ∞

−∞

[WQ(ω)∆ ln A(ω) qj(ω)] δs∗j (ω) dω




=
∑

j

∫ ∞

−∞

2π [WQ(t) ∗ ∆ ln A(t) ∗ qj(t)] δsj(t) dt

=
∑

j

∫ ∞

−∞

2π [WQ(t) ∗ ∆ ln A(t) ∗ qj(t)] hj(t) δs(t) dt

=

∫ ∞

−∞



2π

∑

j

hj(t) [WQ(t) ∗ ∆ ln A(t) ∗ qj(t)]



 δs(t) dt

=

∫ ∞

−∞

f †
Q(t) δs(t) dt , (C.58)

where δsj(t) = hj(t) δs(t) is the tapered, perturbed time series, ∆τ(t) and ∆ ln A(t) are

the time domain versions of (C.39)–(C.40), and we have defined our adjoint sources for
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multitaper traveltime measurements (P) and multitaper amplitude measurements (Q) as2

f †
P(t) ≡

∑

j

hj(t) [2π WP(t) ∗ ∆τ(t) ∗ pj(t)] , (C.59)

f †
Q(t) ≡

∑

j

hj(t) [2π WQ(t) ∗ ∆ ln A(t) ∗ qj(t)] . (C.60)

The frequency domain versions of (C.59)–(C.60) are

f †
P(ω) =

∑

j

hj(ω) ∗ [2π WP(ω)∆τ(ω) pj(ω)] , (C.61)

f †
Q(ω) =

∑

j

hj(ω) ∗ [2π WQ(ω)∆ ln A(ω) qj(ω)] . (C.62)

We also define the following functions:

Pj(t) ≡ 2π WP(t) ∗ ∆τ(t) ∗ pj(t) , (C.63)

Qj(t) ≡ 2π WQ(t) ∗ ∆ ln A(t) ∗ qj(t) , (C.64)

Pj(ω) ≡ 2π WP(ω)∆τ(ω) pj(ω) , (C.65)

Qj(ω) ≡ 2π WQ(ω)∆ ln A(ω) qj(ω) . (C.66)

These lead to succint expressions for the adjoint sources:

f †
P(t) ≡

∑

j

hj(t)Pj(t) , (C.67)

f †
Q(t) ≡

∑

j

hj(t)Qj(t) , (C.68)

f †
P(ω) =

∑

j

hj(ω) ∗ Pj(ω) , (C.69)

f †
Q(ω) =

∑

j

hj(ω) ∗ Qj(ω) . (C.70)

2Note that we have not written the time-dependence using the time-rerversal convention, i.e., T − t.
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Table C.1: Units for adjoint quantities for multitaper measurements. The misfit functions
FP(m) and FQ(m) (and FT(m) and FA(m)) are unitless if we take into account the units
for the σ terms. In practice, the adjoint sources have a m−3 or m−2 quantity as well, due
to the 3D or 2D volume for the delta function, δ(x), that is applied at the source location.
Bottom two rows are for adjoint sources based on cross-correlation measurements.

frequency domain time domain

[h̃(ω)] = [h(t)] s [h(t)] = [h̃(ω)] s−1

s(ω), d(ω), δs(ω) m s s(t), d(t), δs(t) m

ṡ(ω) m ṡ(t) m s−1

WP(ω) s−1 WP(t) s−2

WQ(ω) s WQ(t) none

∆τ(ω) s ∆τ(t) none

∆ ln A(ω) none ∆ ln A(t) s−1

pj(ω) m−1 pj(t) m−1 s−1

qj(ω) m−1 s−1 qj(t) m−1 s−2

f †
P(ω) m−1 f †

P(t) m−1 s−1

f †
Q(ω) m−1 f †

Q(t) m−1 s−1

f †
T(ω) m−1 f †

T(t) m−1 s−1

f †
A(ω) m−1 f †

A(t) m−1 s−1

C.3 Miscellaneous

C.3.1 Deriving the transfer function

The transfer function, T (ω) = Tr(ω) + i Ti(ω) between data, d, and synthetics, s, is found

by minimizing the objective function

F [T (ω)] = 1
2

∑

j

|dj(ω) − T (ω) sj(ω)|2 ,
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where the sum over j represents the multitapers of Section C.2.2. Expanding this into real

and imaginary parts, we have

F (T ) = 1
2

∑

j

|dj − Tsj|
2

= 1
2

∑

j

(dj − Tsj)(d
∗
j − T ∗s∗j )

= 1
2

∑

j

[dj − (Tr + i Ti) sj ]
[
d∗j − (Tr − i Ti) s∗j

]

= 1
2

∑

j

[
dj d∗j − (Tr − i Ti) dj s∗j − (Tr + i Ti) d∗j sj + (T 2

r + T 2
i ) sj s∗j

]

= 1
2

∑

j

[
dj d∗j − Tr dj s∗j + i Ti dj s∗j − Tr d∗j sj − i Ti d∗j sj + T 2

r sj s∗j + T 2
i sj s∗j

]

= 1
2

∑

j

[
dj d∗j + Tr

(
−dj s∗j − d∗j sj

)
+ Ti

(
i dj s∗j − i d∗j sj

)
+ T 2

r sj s∗j + T 2
i sj s∗j

]
.

The derivatives with respect to the real and imaginary parts of the transfer function are

given by

∂F

∂Tr

= 1
2

∑

j

[
−dj s∗j − d∗j sj + 2Tr sj s∗j

]
= −1

2

∑

j

(
d∗j sj + dj s∗j+

)
+ Tr

∑

j

sj s∗j ,

∂F

∂Ti
= 1

2

∑

j

[
i dj s∗j − i d∗j sj + 2Ti sj s∗j

]
= −

i

2

∑

j

(
d∗j sj − dj s∗j

)
+ Ti

∑

j

sj s∗j .

Setting each equation equal to zero and solving for Tr and Ti gives:

Tr =

1
2

∑
j

(
dj s∗j + d∗j sj

)

∑
j sj s∗j

,

Ti =

i
2

∑
j

(
d∗j sj − dj s∗j

)

∑
j sj s∗j

.

Thus, we obtain (C.37):

T = Tr + i Ti =

1
2

∑
j

(
dj s∗j + d∗j sj

)

∑
j sj s∗j

−

1
2

∑
j

(
d∗j sj − dj s∗j

)

∑
j sj s∗j

=

1
2

∑
j

(
dj s∗j + d∗j sj − d∗j sj + dj s∗j

)

∑
j sj s∗j

=

∑
j dj s∗j∑
j sj s∗j

.
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C.3.2 Conventions for measurements, Fourier transform, and transfer

function

We define our measurements according to the conventions in (C.19)–(C.20), such that a

positive traveltime measurement, ∆τ > 0, corresponds to a delay in the data with respect

to the synthetics.

We define forward and inverse Fourier transforms

F [h(t)] = h̃(ω) =

∫ ∞

−∞

h(t) e−iωt dt , (C.71)

F−1
[
h̃(ω)

]
= h(t) =

1

2π

∫ ∞

−∞

h̃(ω) eiωt dω . (C.72)

Note that this convention follows that of Dahlen and Tromp (1998, p. 109), and that the

units conversion is

[
h̃(ω)

]
= [h(t)] s,

which is reflected in Table C.1.

The Fourier transform of ḣ(t) can be determined using integration by parts,

∫
u dv = [u v] −

∫
v du,

with dv = ḣ(t) dt, u = e−iωt, v = h(t), and du = −iω e−iωtdt. Thus, we can write

F
[
ḣ(t)

]
=

∫ ∞

−∞

ḣ(t) e−iωt dt

=
[
h(t) e−iωt

]∞
−∞

−

∫ ∞

−∞

h(t) (−iω) e−iωt dt

= iω

∫ ∞

−∞

h(t) e−iωt dt

= iω F [h(t)] . (C.73)

This process can be iterated for the nth derivative to yield

F
[
h(n)(t)

]
= (iω)n F [h(t)] . (C.74)

Note that (C.73)–(C.74) will depend on the Fourier convention.
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The transfer function is defined according to T (ω) s(ω) = d(ω) (Eq. C.34). The conven-

tion for the measurements and the Fourier convention imply that the transfer function is

to be written as

T (ω) = e−iω∆τ ,

where we have ignored the amplitude measurement and have assumed that ∆τ is constant

over all ω. Then, the data in the frequency and time domain are given by

d(ω) = s(ω) e−iω∆τ , (C.75)

d(t) = F−1 [d(ω)] =
1

2π

∫ ∞

−∞

s(ω) e−iω∆τ eiωt dω =
1

2π

∫ ∞

−∞

s(ω) eiω(t−∆τ) dω = s(t − ∆τ).

(C.76)

For example, for data arriving early with ∆τ = −3, we have d(t) = s(t+3), indicating that

the data are advanced by 3 seconds with respect to the synthetics.

C.3.3 Implementation of conventions for measurement, Fourier, and trans-

fer function

In practice, the original data are shifted by the cross-correlation measurement, ∆T , prior

to making the multitaper measurement. In other words, d(ω) = d0(ω) eiω ∆T , where d0 are

the original, unshifted data. This convention is checked as follows:

d(t) = F−1 [d(ω)] =
1

2π

∫ ∞

−∞

d0(ω) eiω∆T eiωt dω =
1

2π

∫ ∞

−∞

d0(ω) eiω (t+∆T ) dω = d0(t+∆T ) ,

(C.77)

that is, d0(t) = d(t − ∆T ). For example, for (original) data arriving early with respect to

the synthetics, with ∆T = −3, then we have d0(t) = d(t + 3), indicating that the original

data are advanced by 3 seconds with respect to the shifted data.

In the measurement code, the transfer function we compute is T ′(ω) = e−iω∆τ ′

, with

T ′(ω) s(ω) = d(ω). (Again, we ignore amplitudes for clarity.) Thus, the shifted data, d(t),

are aligned in phase with the synthetics by a uniform shift with magnitude |∆T |. Then we
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can express the unshifted data as

d0(ω) = e−iω ∆T d(ω)

= e−iω ∆T T ′(ω) s(ω) = e−iω ∆T e−iω∆τ ′

s(ω) = e−iω (∆T+∆τ ′) s(ω) = T (ω) s(ω) ,

(C.78)

where T (ω) represents the transfer function from the synthetics to the unshifted data,

and ∆τ ′ represents the frequency-dependent perturbations from the frequency-independent

cross-correlation measurement ∆T , such that

∆τ(ω) = ∆τ ′(ω) + ∆T. (C.79)

Thus, we can write the phases as

−ω ∆τ ′(ω) = tan−1

(
Im [T ′(ω)]

Re [T ′(ω)]

)
, (C.80)

−ω ∆τ(ω) = −ω
(
∆τ ′(ω) + ∆T

)
= tan−1

(
Im [T ′(ω)]

Re [T ′(ω)]

)
− ω ∆T , (C.81)

and the corresponding traveltimes as

∆τ ′(ω) =
−1

ω
tan−1

(
Im [T ′(ω)]

Re [T ′(ω)]

)
, (C.82)

∆τ(ω) =
−1

ω
tan−1

(
Im [T ′(ω)]

Re [T ′(ω)]

)
+ ∆T . (C.83)

Compare (C.83) with (C.39). The use of T ′(ω) instead of T (ω) gives rise to the inclusion

of ∆T .

C.3.4 Plancherel’s theorem

Parseval’s theorem applied to Fourier series is known as Rayleigh’s theorem or Plancherel’s

theorem. The following derivation of Plancherel’s theorem is adapted from the Mathworld

website.

The exact representation of the theorem depends on the Fourier convention. Using the
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Fourier conventions in Equations (C.71) and (C.72), we have

f(t) =
1

2π

∫ ∞

−∞

f̃(ω) eiωt dω ,

f∗(t) =
1

2π

∫ ∞

−∞

f̃∗(ω) e−iωt dω ,

f̃(ω) =

∫ ∞

−∞

f(t) e−iωt dt ,

f̃∗(ω) =

∫ ∞

−∞

f∗(t) eiωt dt .

Consider the following derivation:

∫ ∞

−∞

f(t) g∗(t) dt =

(
1

2π

)2 ∫ ∞

−∞

[∫ ∞

−∞

f̃(ω) eiωt dω

] [∫ ∞

−∞

g̃∗(ω′) e−iω′t dω′

]
dt

=

(
1

2π

)2 ∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

f̃(ω) g̃∗(ω′) eit(ω−ω′)dω dω′ dt

=
1

2π

∫ ∞

−∞

∫ ∞

−∞

f̃(ω) g̃∗(ω′)

[
1

2π

∫ ∞

−∞

eit(ω−ω′)dt

]
dω dω′

=
1

2π

∫ ∞

−∞

∫ ∞

−∞

δ(ω − ω′)f̃(ω) g̃∗(ω′) dω dω′

=
1

2π

∫ ∞

−∞

f̃(ω) g̃∗(ω) dω.

If g(t) = f(t) (and thus g∗(t) = f∗(t)), then we obtain Plancherel’s Theorem,

∫ ∞

−∞

|f(t)|2 dt =
1

2π

∫ ∞

−∞

∣∣∣f̃(ω)
∣∣∣
2

dω, (C.84)

which states that the integral of the squared modulus of a function is equal to the integral

of the squared modulus of its spectrum.
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Miscellaneous formulas

Considering two complex numbers,

z = a + bi ,

w = c + di ,

we can derive the following expressions:

Re [iz] = Re [i(a + bi)] = Re [ai − b] = −b = Im[−ai − b] = Im[−z] , (C.85)

Re
[
i−1z

]
= Re [−iz] = Im[z] , (C.86)

−iz∗ = −i(a − bi) = −b + ai = (−b + ai)∗ = [i(a + bi)]∗ = (iz)∗ , (C.87)

Re [zw∗] = Re [(a + bi)(c − di)]

= Re [ac − adi + bci + bd]

= ac + bd

= Re [ac + adi − bci + bd]

= Re [(a − bi)(c + di)]

= Re [z∗w] . (C.88)

Using Equations (C.87) and (C.88), we obtain

Re [izw∗] = Re [(iz)∗w] = Re [−iz∗w] . (C.89)
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SYN

SYNDATA
DATA

src rec

v
0

src rec
slow

v
0

 v < v
0

MODEL

REALITY

src rec

v
0

src rec
fast

v
0

 v > v
0

MODEL

REALITY

∆T = Tdat - Tsyn > 0

DlnA = ln(Adat / Asyn) = ln(Adat) - ln(Asyn) > 1

∆T = Tdat - Tsyn < 0

DlnA = ln(Adat / Asyn) = ln(Adat) - ln(Asyn) < 1

∆T
∆T

Figure C.1: The measurement convention for traveltime differences, ∆T , and amplitude
differences ∆ lnA. See Section C.2.1.


