Appendix A

Supplemental Material for
“Finite-frequency tomography
using adjoint methods —
Methodology and examples using
membrane surface waves”

(Chapter 2)

Note

Table A.1 makes a qualitative comparison between “classical” tomography and “adjoint”

tomography. Table A.2 highlights all possible source-structure inversion experiments.
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A.1 From misfit function to adjoint source: 2D membrane-

wave example

Here we derive (2.48), following Tromp et al. (2005), which makes use of Green’s functions.
Alternatively, one could also use the Lagrange multiplier method (e.g., Liu and Tromp,
2006; Fichtner et al., 2006).

For ease of notation, we let x = (z,y) and consider a single event with R recording
receivers. The variation in the traveltime misfit function due to a model perturbation dm

is given by (2.7):
R

§F = —> AT, §T;. (A1)
r=1

The cross-correlation traveltime variation 07, can be written as (Luo and Schuster, 1990;

Marquering et al., 1999)

1

0T, =
" MT’I‘

/ b (0005, )55(x0. ) d, (A2)
0

where w, denotes the cross-correlation window, ds the change in displacement, and M,

the normalization factor defined as
T
M, = / wr (£)3(x,, )0 (x,, 1) dt, (A.3)
0

such that M, < 0 for a pulse with nonzero amplitude.
The equation of motion that is solved by the SEM algorithm is shown in (2.29). Using
the standard Green’s function approach, we write the wavefield generated by the point

source (2.30) as

s(x,t) = /Ot /Q G(x,x';t —t) f(x',t') d>x dt'. (A.4)

The change in displacement ds due to a change in the point force d f may be written as

t
5s(x,t):/0 /QG(x,xl;t—t/) Sf(x,t)d* dt’. (A.5)

Upon substitution of the perturbation (A.5) into (A.1)—(A.2) we find that the change in
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the traveltime misfit function may be expressed as'

/OT/Qéf(x,t/)

= /T/ Sf(x,t) st (x, T —t) d®x dt, (A7)
0 Q

oF

R T—t
1
ZATT / G(x,%x,; T —t' — t)w, (T — t)0ys(x,, T —t)dt| d*x dt’
r=1 MTT 0

where we have defined the adjoint wavefield by

st(x,t) = /0 t /Q G(x,x';t —t') fI(x',¢')d®x’ dt’ (A.8)

and the adjoint source by

R

1
flxt)y=> AT, wn(T = )0hs(x0, T = 1)0(x — xy). (A.9)

—1 Tr

Note that the spatial integration in (A.8) arises from the delta function in (A.9), and also
that the adjoint source includes the time-reversed synthetic velocity recorded at the rth

receiver.

A.2 The conjugate gradient algorithm

The gradient is not a vector but rather a tangent plane or set of level lines (Tarantola,
2005, p. 205). The metric (tensor) provides a means for selecting the steepest descent
vector; using a different metric will lead to a different steepest descent vector. The metric
also appears in the conjugate gradient algorithm, and thus the choices of metric will affect

the optimization.

!The 3D version of Equation (A.7) is given by

5F:/T/ of(x,t) -s'(x, T —t)d®xdt . (A.6)
o Jv
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A.2.1 Background and notation

The model covariance matrix C defines the relationship between the gradient § and the

corresponding steepest ascent vector g:

g - Cg, (A.10)

Clg (A.11)

[01=33
Il
R

m = Cm, (A.12)

m = C'm. (A.13)

The duality product between the steepest ascent vector and the gradient can be written in

several ways:

glg=g'Clg=|gl?, (A.15)
g’eg=(Cg)lg=g"Cg=gl3. (A.16)

This shows that the norm of the steepest ascent vector is equal to the norm of the gradient,

as expected.
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A.2.2 Algorithm

The conjugate gradient algorithm we use may be summarized as follows: given an initial
model m; calculate F(m®), g° = 9F/0m(m°), and set the initial conjugate gradient search

direction equal to minus the initial gradient of the misfit function,
p’ =g’ =-Cg’ (A.17)

If ||p°|| < €, where € is a suitably small number, then m is the model we seek to determine,

otherwise:

1. We denote a model in the direction of the search vector as, and its corresponding

gradient, as

mt = m"*+uph, (A.18)
. oF

Perform a line search to obtain the scalar v* that minimizes the function F*(v) where

Frw) = Fmb), (4.20)
N oFk . T
i'w) = S = (gh.p") = (&) p*. (A.21)
v
e Choose a test parameter v = —2F%(0)/3*(0), based on quadratic extrapolation.

Calculate the test model mf = m* + vFpt.

Calculate F(mf) and, for cubic interpolation, gF = 0F/0m(m}).

Interpolate the function F' k() by a quadratic or cubic polynomial and obtain

the v* that gives the (analytical) minimum value of this polynomial.

2. Update the model: m**! = mF + v*pF, then calculate

OF
k+1 _ sk+1 k+1
gim=Cg"" =C m (m"). (A.22)
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3. Update the conjugate gradient search direction: p*¥+! = —ghktl 4+ gk+lpk where

skl sk Jk+1 sk+l  ak\T ~ ak+1
g (8T 8L g") (87 &) CgT (A.23)

4. Tf ||p**1|| < ¢, then m**! is the desired model; otherwise replace k with k 4+ 1 and

restart from Step 1.

A.2.3 Inversion details of Tape et al. (2007)

Here we show how the description of the CG algorithm in Tape et al. (2007) leads to the
general expressions in Section A.2. We use the tilde notation (e.g., m) to distinguish the
notation in Tape et al. (2007) from the notation previously discussed.

From the CG algorithm (Section A.2.2), the first test model is given by
_ _ _ _ ~ ~0
m =m’+7)p’=m’ -7/ Cg , (A.24)

where the step length is
2F ()

@?Y?ig' (A.25)

Vt:_

In Tape et al. (2007) we expanded the model into orthonormal basis functions and scaled

the source parameters in a manner that allowed us to use

C=I (A.26)

in Equations (A.24) and (A.25).
The model vector and gradient vector are shown within the schematic expression for the

(test) model update,

om = m% @’ = -3, (A.27)

which is expanded as
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cryvg | [ evvmg K V7T
CH Vi) T CYVVi/ T KP Vi J
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where J is a constant, and the values from Tape et al. (2007) are

G, = 7=20s, (A.29)
Gp. = A=170,000m, (A.30)
Gy, = A=170,000m, (A.31)
5., = A=70,000m. (A.32)

These terms are analogous to the uncertainties in the prior model parameters. For southern

California tomography, reasonable values are

o, = 0.5s, ( )
0z, = 2000.0m, (A.34)
oy, = 2000.0 m, (A.35)

(A.36)

0., = 2000.0m.
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We now define the scaling vector w as

TNV

TNV

J/INVi
IV

JIVVi

I/ Vi

Uts

Ox,

Oys

Oz,

(A.37)



CHAPTER A. Supplement: Finite-frequency tomography using adjoint methods 164

With W = diag(w), we multiply Equation (A.28) by W, and the (test) model update is

then

Wom = wm” -wm’=-Wilg ,

ct Y J/NVL K¢ VWi J J? K¢
cyr cy JINV: KE VvV, J J? Kf
o oY J/IN Vi KG Vi J J? K§
By BY J/NVW KPVWiJ J? K¢
BY BY J/NV; KB Vi J J? K¢
BY BY, J/IN Vi KE\/VyJ J? K§
()Y (T)Y o1, Ky oy, (G1,)* Ki°
WS\II/I o (XS)(:L)t B (XS)? _ _DO 5903 Kfs 5% _ _go (5%)2 Kfé
- - t - t
(}/S)gt (YS)(I) O-ys K,iyé O-ys (O-ys)z K,iyé
(Zs))! (Zs)} 0z, Ky 05, (7-.)* K7
(Ts)gt (Ts)g &ts K};S ats (5ts)2 K};S
(Xs)gt (Xs)g 5553 K:;Cs 5555 (5-'55)2 K‘g:&
(}/S)gt (Ys)g 5ys K:gs 5ys (5ys)2 K:gs
(ZS)(s]t (Zs)g &Zs K§S &Zs (523)2 K§S
(T)% (T)% o1, Kg &y, (G1,)° K&
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L (ZS)%t ] | (ZS)% | L &Zs 1 L K;S &Zs | | (523)2 K;S |
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This can be rearranged as

Wom = wm” - wm’ = Wig , (A.39)
om = m”% -m’=-W7) éo (A.40)
2w | kCw

2V || KOV

IV | | KG Va
J2 IV KB,

J?IV; KBV

IV | | KBy

(G1,)? Ky
~ \2 s
om — —0 (0z.) Ky
- t
(Gy.) Ky
(525 )2 Klzs
(G1,)? K
(&xs )2 K,;ES
(&ys )2 K'?SJS
(525 )2 I(SZ‘s
(51,)? Kg
(&xs )2 Kgs
(Gy.) Ky
(525 )2 Kg’s

= 0Cgl. (A.41)
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Thus, the “old” method is equivalent to the new method, but using a diagonal covariance
matrix defined by C’ instead of by Equation (A.42). Furthermore, 70 will differ from v,

since a difference covariance matrix is present.

LA A%
o2V |V

o2V /| Vy
oLV /W

A AL
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Table A.1:

Comparison between two generic tomography approaches, ‘classical’ and ‘ad-

joint’. The reference model is expanded in terms of basis functions By (x). K;(x) denotes
the data-independent kernel for the ith source-receiver pair, while K (x) denotes the data-
dependent misfit kernel computed via adjoint methods.

classical tomography

adjoint tomography

reference model 1D 3D
physical domain 3D 3D
Born approximation yes yes

forward modelling technique

e.g., ray theory, modes, or

banana-doughnut kernels

fully numerical

(e.g., SEM)

gradient method g=-G'd gk = [, KB dx
Gir, = fv K;B;, d*x

Newton method G'Gom~ —g (too costly)

number of iterations 1 multiple

Table A.2: Source inversions, structure inversions, and joint inversions. T07 = Tape et al.

(2007).

type pert pert invert invert comments TO7
source | structure | source | structure figure

1  source Y N Y N basic source inversion 16
2 structure N Y N Y basic structure inversion | 17a—c
3 joint Y Y Y Y basic joint inversion 17d—f
4 structure Y Y N Y map src error to structure | 19a—c
5 structure Y N N Y map src error to structure | (none)
6  source Y Y Y N map structure error to src | 19d—f
7 source N Y Y N map structure error to src | (none)
8 joint Y N Y Y map src error to structure | (none)
9 joint N Y Y Y map structure error to src | (none)




