
Appendix A

Supplemental Material for

“Finite-frequency tomography

using adjoint methods —

Methodology and examples using

membrane surface waves”

(Chapter 2)

Note

Table A.1 makes a qualitative comparison between “classical” tomography and “adjoint”

tomography. Table A.2 highlights all possible source-structure inversion experiments.
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A.1 From misfit function to adjoint source: 2D membrane-

wave example

Here we derive (2.48), following Tromp et al. (2005), which makes use of Green’s functions.

Alternatively, one could also use the Lagrange multiplier method (e.g., Liu and Tromp,

2006; Fichtner et al., 2006).

For ease of notation, we let x = (x, y) and consider a single event with R recording

receivers. The variation in the traveltime misfit function due to a model perturbation δm

is given by (2.7):

δF = −
R∑

r=1

∆Tr δTr. (A.1)

The cross-correlation traveltime variation δTr can be written as (Luo and Schuster , 1990;

Marquering et al., 1999)

δTr =
1

MTr

∫ T

0

wr(t)∂ts(xr, t)δs(xr, t) dt, (A.2)

where wr denotes the cross-correlation window, δs the change in displacement, and MTr

the normalization factor defined as

MTr =

∫ T

0

wr(t)s(xr, t)∂
2
t s(xr, t) dt, (A.3)

such that MTr < 0 for a pulse with nonzero amplitude.

The equation of motion that is solved by the SEM algorithm is shown in (2.29). Using

the standard Green’s function approach, we write the wavefield generated by the point

source (2.30) as

s(x, t) =

∫ t

0

∫

Ω

G(x,x′; t − t′) f(x′, t′) d2x′ dt′. (A.4)

The change in displacement δs due to a change in the point force δf may be written as

δs(x, t) =

∫ t

0

∫

Ω

G(x,x′; t − t′) δf(x′, t′) d2x′ dt′. (A.5)

Upon substitution of the perturbation (A.5) into (A.1)–(A.2) we find that the change in
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the traveltime misfit function may be expressed as1

δF =

∫ T

0

∫

Ω

δf(x, t′)

[
R∑

r=1

∆Tr
1

MTr

∫ T−t′

0

G(x,xr;T − t′ − t)wr(T − t)∂ts(xr, T − t) dt

]
d2x dt′

=

∫ T

0

∫

Ω

δf(x, t) s†(x, T − t) d2xdt, (A.7)

where we have defined the adjoint wavefield by

s†(x, t) ≡
∫ t

0

∫

Ω

G(x,x′; t − t′) f †(x′, t′) d2x′ dt′ (A.8)

and the adjoint source by

f †(x, t) ≡
R∑

r=1

∆Tr
1

MTr
wr(T − t)∂ts(xr, T − t)δ(x − xr). (A.9)

Note that the spatial integration in (A.8) arises from the delta function in (A.9), and also

that the adjoint source includes the time-reversed synthetic velocity recorded at the rth

receiver.

A.2 The conjugate gradient algorithm

The gradient is not a vector but rather a tangent plane or set of level lines (Tarantola,

2005, p. 205). The metric (tensor) provides a means for selecting the steepest descent

vector; using a different metric will lead to a different steepest descent vector. The metric

also appears in the conjugate gradient algorithm, and thus the choices of metric will affect

the optimization.

1The 3D version of Equation (A.7) is given by

δF =

Z

T

0

Z

V

δf(x, t) · s†(x, T − t) d3
xdt . (A.6)
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A.2.1 Background and notation

The model covariance matrix C defines the relationship between the gradient ĝ and the

corresponding steepest ascent vector g:

g = Cĝ , (A.10)

ĝ = C−1 g. (A.11)

Similarly, for the model vector,

m = Cm̂ , (A.12)

m̂ = C−1 m. (A.13)

The L2-norm can be defined over either space:

‖m‖2 =
(
mT C−1 m

)1/2
=

(
(Cm̂)T C−1 (Cm̂)

)1/2

=
(
m̂T CT C−1 C m̂

)1/2

=
(
m̂T C m̂

)1/2
=

(
m̂T Ĉ

−1
m̂

)1/2

= ‖m̂‖
2
, (A.14)

where

Ĉ = C−1.

The duality product between the steepest ascent vector and the gradient can be written in

several ways:

〈g, ĝ〉 = gT ĝ = gTC−1 g = ‖g‖2

2
, (A.15)

〈g, ĝ〉 = gT ĝ = (Cĝ)T
ĝ = ĝTC ĝ = ‖ĝ‖2

2
. (A.16)

This shows that the norm of the steepest ascent vector is equal to the norm of the gradient,

as expected.
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A.2.2 Algorithm

The conjugate gradient algorithm we use may be summarized as follows: given an initial

model m0, calculate F (m0), ĝ0 = ∂F/∂m(m0), and set the initial conjugate gradient search

direction equal to minus the initial gradient of the misfit function,

p0 = −g0 = −Cĝ0. (A.17)

If ||p0|| < ǫ, where ǫ is a suitably small number, then m0 is the model we seek to determine,

otherwise:

1. We denote a model in the direction of the search vector as, and its corresponding

gradient, as

mk
ν ≡ mk + νpk , (A.18)

ĝk
ν ≡ ∂F

∂m

(
mk

ν

)
. (A.19)

Perform a line search to obtain the scalar νk that minimizes the function F̃ k(ν) where

F̃ k(ν) = F (mk
ν) , (A.20)

g̃k(ν) =
∂F̃ k

∂ν
=

〈
ĝk

ν ,p
k
〉

=
(
ĝk

ν

)T
pk . (A.21)

• Choose a test parameter νk
t = −2F̃ k(0)/g̃k(0), based on quadratic extrapolation.

• Calculate the test model mk
t = mk + νk

t p
k.

• Calculate F (mk
t ) and, for cubic interpolation, ĝk

t = ∂F/∂m(mk
t ).

• Interpolate the function F̃ k(ν) by a quadratic or cubic polynomial and obtain

the νk that gives the (analytical) minimum value of this polynomial.

2. Update the model : mk+1 = mk + νkpk, then calculate

gk+1 = C ĝk+1 = C
∂F

∂m
(mk+1). (A.22)
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3. Update the conjugate gradient search direction: pk+1 = −gk+1 + βk+1pk, where

βk+1 =

〈
ĝk+1 − ĝk, gk+1

〉
〈
ĝk,gk

〉 =

(
ĝk+1 − ĝk

)T
Cĝk+1

(
ĝk

)T
C ĝk

. (A.23)

4. If ||pk+1|| < ǫ, then mk+1 is the desired model; otherwise replace k with k + 1 and

restart from Step 1.

A.2.3 Inversion details of Tape et al. (2007)

Here we show how the description of the CG algorithm in Tape et al. (2007) leads to the

general expressions in Section A.2. We use the tilde notation (e.g., m̃) to distinguish the

notation in Tape et al. (2007) from the notation previously discussed.

From the CG algorithm (Section A.2.2), the first test model is given by

m̃
0
t = m̃

0 + ν̃0
t p̃

0 = m̃
0 − ν̃0

t C̃ ˜̂g0
, (A.24)

where the step length is

ν̃0
t = −

2F
(
m̃

0
)

(
˜̂g0

)T
C̃ ˜̂g0

. (A.25)

In Tape et al. (2007) we expanded the model into orthonormal basis functions and scaled

the source parameters in a manner that allowed us to use

C̃ = I (A.26)

in Equations (A.24) and (A.25).

The model vector and gradient vector are shown within the schematic expression for the

(test) model update,

δ̃m = m̃
0t − m̃

0 = −ν̃0
t

˜̂g0
, (A.27)

which is expanded as
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δ̃m =




C0t
1

√
V1/J

...

C0t
i

√
Vi/J

...

C0t
H

√
VH/J

B0t
1

√
V1/J

...

B0t
i

√
Vi/J

...

B0t
H

√
VH/J

(Ts)
0t
1 / σ̃ts

(Xs)
0t
1 / σ̃xs

(Ys)
0t
1 / σ̃ys

(Zs)
0t
1 / σ̃zs

...

(Ts)
0t
s / σ̃ts

(Xs)
0t
s / σ̃xs

(Ys)
0t
s / σ̃ys

(Zs)
0t
s / σ̃zs

...

(Ts)
0t
S / σ̃ts

(Xs)
0t
S / σ̃xs

(Ys)
0t
S / σ̃ys

(Zs)
0t
S / σ̃zs




−




C0
1

√
V1/J

...

C0
i

√
Vi/J

...

C0
H

√
VH/J

B0
1

√
V1/J

...

B0
i

√
Vi/J

...

B0
H

√
VH/J

(Ts)
0
1 / σ̃ts

(Xs)
0
1 / σ̃xs

(Ys)
0
1 / σ̃ys

(Zs)
0
1 / σ̃zs

...

(Ts)
0
s / σ̃ts

(Xs)
0
s / σ̃xs

(Ys)
0
s / σ̃ys

(Zs)
0
s / σ̃zs

...

(Ts)
0
S / σ̃ts

(Xs)
0
S / σ̃xs

(Ys)
0
S / σ̃ys

(Zs)
0
S / σ̃zs




= −ν̃0
t




KC
1

√
V1 J

...

KC
i

√
Vi J

...

KC
H

√
VH J

KB
1

√
V1 J

...

KB
i

√
Vi J

...

KB
H

√
VH J

Kts
1 σ̃ts

Kxs

1 σ̃xs

Kys

1 σ̃ys

Kzs

1 σ̃zs

...

Kts
s σ̃ts

Kxs

s σ̃xs

Kys

s σ̃ys

Kzs

s σ̃zs

...

Kts
S σ̃ts

Kxs

S σ̃xs

Kys

S σ̃ys

Kzs

S σ̃zs




, (A.28)
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where J is a constant, and the values from Tape et al. (2007) are

σ̃ts ≡ τ = 20 s , (A.29)

σ̃xs
≡ λ = 70, 000 m , (A.30)

σ̃ys
≡ λ = 70, 000 m , (A.31)

σ̃zs
≡ λ = 70, 000 m. (A.32)

These terms are analogous to the uncertainties in the prior model parameters. For southern

California tomography, reasonable values are

σts = 0.5 s , (A.33)

σxs
= 2000.0 m , (A.34)

σys
= 2000.0 m , (A.35)

σzs
= 2000.0 m . (A.36)
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We now define the scaling vector w as

w ≡




J/
√

V1

...

J/
√

Vi

...

J/
√

VH

J/
√

V1

...

J/
√

Vi

...

J/
√

VH

σ̃ts

σ̃xs

σ̃ys

σ̃zs

...

σ̃ts

σ̃xs

σ̃ys

σ̃zs

...

σ̃ts

σ̃xs

σ̃ys

σ̃zs




. (A.37)
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With W = diag(w), we multiply Equation (A.28) by W, and the (test) model update is

then

Wδ̃m = Wm̃0t − Wm̃0 = −W ν̃0
t

˜̂g0
,

Wδ̃m =




C0t
1

...

C0t
i

...

C0t
H

B0t
1

...

B0t
i

...

B0t
H

(Ts)
0t
1

(Xs)
0t
1

(Ys)
0t
1

(Zs)
0t
1

...

(Ts)
0t
s

(Xs)
0t
s

(Ys)
0t
s

(Zs)
0t
s

...

(Ts)
0t
S

(Xs)
0t
S

(Ys)
0t
S

(Zs)
0t
S




−




C0
1

...

C0
i

...

C0
H

B0
1

...

B0
i

...

B0
H

(Ts)
0
1

(Xs)
0
1

(Ys)
0
1

(Zs)
0
1

...

(Ts)
0
s

(Xs)
0
s

(Ys)
0
s

(Zs)
0
s

...

(Ts)
0
S

(Xs)
0
S

(Ys)
0
S

(Zs)
0
S




= −ν̃0
t




J/
√

V1

...

J/
√

Vi

...

J/
√

VH

J/
√

V1

...

J/
√

Vi

...

J/
√

VH

σ̃ts

σ̃xs

σ̃ys

σ̃zs

...

σ̃ts

σ̃xs

σ̃ys

σ̃zs

...

σ̃ts

σ̃xs

σ̃ys

σ̃zs







KC
1

√
V1 J

...

KC
i

√
Vi J

...

KC
H

√
VH J

KB
1

√
V1 J

...

KB
i

√
Vi J

...

KB
H

√
VH J

Kts
1 σ̃ts

Kxs

1 σ̃xs

Kys

1 σ̃ys

Kzs

1 σ̃zs

...

Kts
s σ̃ts

Kxs

s σ̃xs

Kys

s σ̃ys

Kzs

s σ̃zs

...

Kts
S σ̃ts

Kxs

S σ̃xs

Kys

S σ̃ys

Kzs

S σ̃zs




= −ν̃0
t




J2 KC
1

...

J2 KC
i

...

J2 KC
H

J2 KC
1

...

J2 KC
i

...

J2 KC
H

(σ̃ts)
2 Kts

1

(σ̃xs
)2 Kxs

1

(σ̃ys
)2 Kys

1

(σ̃zs
)2 Kzs

1

...

(σ̃ts)
2 Kts

s

(σ̃xs
)2 Kxs

s

(σ̃ys
)2 Kys

s

(σ̃zs
)2 Kzs

s

...

(σ̃ts)
2 Kts

S

(σ̃xs
)2 Kxs

S

(σ̃ys
)2 Kys

S

(σ̃zs
)2 Kzs

S




.

(A.38)
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This can be rearranged as

Wδ̃m = Wm̃
0t − Wm̃

0 = −W ν̃0
t

˜̂g0
, (A.39)

δm = m0t − m0 = −W ν̃0
t

˜̂g0
(A.40)

δm = −ν̃0
t




J2/V1

...

J2/Vi

...

J2/VH

J2/V1

...

J2/Vi

...

J2/VH

(σ̃ts)
2

(σ̃xs
)2

(σ̃ys
)2

(σ̃zs
)2

...

(σ̃ts)
2

(σ̃xs
)2

(σ̃ys
)2

(σ̃zs
)2

...

(σ̃ts)
2

(σ̃xs
)2

(σ̃ys
)2

(σ̃zs
)2







KC
1 V1

...

KC
i Vi

...

KC
H VH

KB
1 V1

...

KB
i Vi

...

KB
H VH

Kts
1

Kxs

1

Kys

1

Kzs

1

...

Kts
s

Kxs

s

Kys

s

Kzs

s

...

Kts
S

Kxs

S

Kys

S

Kzs

S




= −ν̃0
t C′ ĝ0 . (A.41)
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Thus, the “old” method is equivalent to the new method, but using a diagonal covariance

matrix defined by C′ instead of by Equation (A.42). Furthermore, ν̃0
t will differ from ν0

t ,

since a difference covariance matrix is present.

c =




σ2
C V /V1

...

σ2
C V /Vi

...

σ2
C V /VH

σ2
B V /V1

...

σ2
B V /Vi

...

σ2
B V /VH

σ2
ts

σ2
xs

σ2
ys

σ2
zs

...

σ2
ts

σ2
xs

σ2
ys

σ2
zs

...

σ2
ts

σ2
xs

σ2
ys

σ2
zs




. (A.42)
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Table A.1: Comparison between two generic tomography approaches, ‘classical’ and ‘ad-
joint’. The reference model is expanded in terms of basis functions Bk(x). Ki(x) denotes
the data-independent kernel for the ith source-receiver pair, while K(x) denotes the data-
dependent misfit kernel computed via adjoint methods.

classical tomography adjoint tomography

reference model 1D 3D

physical domain 3D 3D

Born approximation yes yes

forward modelling technique e.g., ray theory, modes, or fully numerical

banana-doughnut kernels (e.g., SEM)

gradient method g = −GT d gk =
∫
V KBk d3x

Gik =
∫
V KiBk d3x

Newton method GTG δm ≈ −g (too costly)

number of iterations 1 multiple

Table A.2: Source inversions, structure inversions, and joint inversions. T07 = Tape et al.

(2007).

type pert pert invert invert comments T07

source structure source structure figure

1 source Y N Y N basic source inversion 16

2 structure N Y N Y basic structure inversion 17a–c

3 joint Y Y Y Y basic joint inversion 17d–f

4 structure Y Y N Y map src error to structure 19a–c

5 structure Y N N Y map src error to structure (none)

6 source Y Y Y N map structure error to src 19d–f

7 source N Y Y N map structure error to src (none)

8 joint Y N Y Y map src error to structure (none)

9 joint N Y Y Y map structure error to src (none)


