
Chapter 4

Adjoint tomography based on

source subspace projection

Note

This chapter contains excerpts from a paper in preparation by Carl Tape, Malcolm Sam-

bridge, and Jeroen Tromp. Each author is an equal contributor to the paper. Sambridge

proposed using the subspace of sources. The concept was further developed by Tromp

within the theoretical framework of Tromp et al. (2005). My primary contribution was to

implement and test the source subspace projection method in comparison with a conjugate

gradient algorithm. I will also focus on joint source-structure inversions using the source

subspace method, in comparison with the conjugate gradient results in Tape et al. (2007).

4.1 Introduction

In adjoint tomography, for a given model m, one generally has access to the value of the

objective function, F (m), and its Fréchet derivative, ∂F/∂m, but not its second derivative

or Hessian, ∂2F/∂m∂m. From an inverse theory perspective, this implies that one has

to resort to conjugate-gradient based methods to determine the minimum of the objec-

tive function, rather than more rapidly converging and thus more desirable Gauss-Newton

methods. Numerically, the gradient may be obtained based upon just two simulations for

each earthquake: one calculation for the current model and a second, ‘adjoint’, calcula-

tion that uses time-reversed signals at the receivers as simultaneous, fictitious sources (e.g.,
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Tarantola, 1984, 1986; Akçelik et al., 2002, 2003; Tromp et al., 2005; Tape et al., 2007).

The calculation of the gradient is independent of the number of receivers, components, and

picks.

To increase the convergence rate of nonlinear inversion algorithms, Sambridge et al.

(1991) proposed an improvement to the conjugate gradient algorithm advocated by Taran-

tola (1986) for the nonlinear inversion of seismic reflection data. The Sambridge et al. (1991)

approach involves decomposing the gradient of the misfit function in terms of parts that

correspond to a particular parameter type, e.g., separating the contributions to the gradient

due to density, bulk-sound wave speed, shear wave speed, source location, and source mech-

anism. Collectively, these contributions to the gradient define a small subspace, and the

algorithm proceeds by minimizing the objective function within this subspace. By solving

a linearized problem within this subspace, at each iteration one only needs to invert a small

matrix, which is the projection of the full Hessian onto the subspace.

In this article we introduce an alternative to the Sambridge et al. (1991) algorithm,

which involves a projection onto the subspace spanned by the model parameters. Instead,

we will consider a strategy that involves projecting the gradient and Hessian of the objective

function onto the subspace spanned by the earthquakes; hence the phrase ‘source subspace

projection’. By performing projections in the data space the new approach differs from

all earlier applications of subspace methods in seismology, which carried out projections in

the model space (e.g. Kennett et al., 1988; Sambridge, 1990; Rawlinson et al., 2001). The

resulting source-projected Hessian is still manageable, having the dimension of the number

of earthquakes, which will be in the hundreds to thousands.

We compare the convergence rate of the classical conjugate gradient method with that

of the source subspace projection algorithm by repeating some of the 2D experiments pre-

sented by Tape et al. (2007). We demonstrate that the source subspace projection algorithm

involves only minor modifications of the classical conjugate gradient method, but that the

source subspace projection algorithm converges two to three times faster. The conjugate

gradient approach involves the determination of a trial model in the (conjugate) gradient

direction, followed by quadratic or cubic interpolation to determine the minimum of the

misfit function in the search direction. The calculation and associated storage and evalua-

tion of this trial model is avoided in the source subspace projection algorithm, thus saving

considerable compute time, I/O, and storage.
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4.2 Classical least-squares solutions

To set the stage, and to introduce the necessary notation, we begin by considering the

classical least-squares solution to an inverse problem (Tarantola, 2005). Let m0 denote

a reference a priori model and m a new model; these are M -dimensional vectors. The

prior M ×M symmetric, positive-definite model covariance matrix is denoted by Cm0
. The

N -dimensional data vector is denoted by d, and the associated N ×N symmetric, positive-

definite data covariance matrix is denoted by Cd. The prediction for the current model is

represented by the N -dimensional vector g(m).

Following Tarantola (2005), consider the a posteriori probability density function in the

model space:

σm = const. exp[−F (m)], (4.1)

where

2F (m) = [g(m) − d]TC−1

d
[g(m) − d] + (m − m0)

TC−1
m0

(m − m0). (4.2)

If the function g(m) can be linearized around m0, we may write

g(m) ≈ g(m0) + G(m − m0), (4.3)

where G denotes the N × M partial derivative matrix

G =
∂g

∂m
. (4.4)

Now let us introduce the notation

∆m = m − m0, (4.5)

∆d = d − g(m0). (4.6)

Then to first order in ∆m and ∆d (4.2) becomes

2F ≈ (G∆m − ∆d)TC−1

d
(G∆m − ∆d) + ∆mTC−1

m0
∆m, (4.7)
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and thus the a posteriori probability density function is approximately Gaussian, such

that (Tarantola, 2005)

∆m = (GTC−1

d
G + C−1

m0
)−1GTC−1

d
∆d = Cm0

GT(GCm0
GT + Cd)

−1∆d. (4.8)

Using a quasi-Newton method, we may use the iterative algorithm (Tarantola, 2005)

mn+1 = mn + λn(GT

nC−1

d
Gn + C−1

m0
)−1(GT

nC−1

d
∆dn − C−1

m0
∆mn)

= mn − λn∆mn + λnCm0
GT

n(GnCm0
GT

n + Cd)
−1(∆dn + Gn∆mn), (4.9)

where λn ≈ 1, ∆dn = d − g(mn), and ∆mn = mn − m0.

4.3 Source subspace projection method

In the source subspace projection approach, we project the problem onto the subspace

spanned by the sources as follows. We partition the data vector as follows:

∆d = (∆di, i = 1, N) = {(∆dsp, p = 1, Ns) , s = 1, S} , (4.10)

where S is the total number of sources, Ns is the number of measurements per source, and

∆dsp is the pth measurement for source s. Then the total number of data, N , is defined in

terms of the number of sources, S, and the number of picks per source, Ns, by

N =

S
∑

s=1

Ns. (4.11)

Because the data covariance matrix Cd is symmetric and positive-definite we can define

its square root, which will be denoted by C
1/2

d
, and its inverse by C

−1/2

d
. We will assume

that the data covariance matrix Cd is block diagonal, with S symmetric positive-definite

blocks Cds of size Ns × Ns. We define a set of S orthonormal N -dimensional vectors

pT

s = (0 · · · 0∆ds1 · · ·∆dsNs
0 · · · 0), (4.12)



CHAPTER 4. Adjoint tomography based on source subspace projection 87

where the Ns-dimensional vector ∆d̄
T

s = (∆ds1 · · ·∆dsNs
) is determined by

∆d̄s = C
−1/2

ds ∆ds. (4.13)

If we further assume that the data covariance matrix Cds associated with source s is diagonal

with elements σ2
sp, which implies that C

1/2

ds is also diagonal with elements σsp, then (4.13)

implies

∆dsp = ∆dsp/σsp. (4.14)

It is easily shown that

pT

s ps′ = δss′

Ns
∑

p=1

(∆dsp/σsp)
2. (4.15)

We now define the S × N projection operator P by

PT = (p1 · · · pS). (4.16)

We will see in what follows that this choice of projection operator fits beautifully with the

adjoint approach to calculating the gradient of an objective function.

In the source subspace projection method, we consider the a posteriori model space

probability density function

σ̃m = const. exp[−F̃ (m̃)], (4.17)

where

2F̃ ≈ [PC
−1/2

d
(G∆m̃ − ∆d)]T[PC

−1/2

d
(G∆m̃ − ∆d)] + ∆m̃TC−1

m0
∆m̃. (4.18)

Note that in comparison to the classical expression (4.2) this amounts to using an inverse

data covariance matrix C
−1/2

d
PTPC

−1/2

d
, rather than C−1

d
. In terms of the S ×M ‘projected

gradient’

G̃ ≡ PC
−1/2

d
G, (4.19)
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and the ‘projected data vector’

∆d̃ = PC
−1/2

d
∆d, (4.20)

we have

2F̃ ≈ (G̃∆m̃ − ∆d̃)T(G̃∆m̃ − ∆d̃) + ∆m̃TC−1
m0

∆m̃. (4.21)

Again the a posteriori probability density function is approximately Gaussian, such that

∆m̃ = (G̃
T
G̃ + C−1

m0
)−1G̃

T
∆d̃ = Cm0

G̃
T
(G̃Cm0

G̃
T

+ I)−1∆d̃. (4.22)

Note that compared to (4.8) the projected data covariance matrix

C̃d = (PC
−1/2

d
)Cd(PC

−1/2

d
)T = I, (4.23)

has become the S × S identity matrix, because the data covariance matrix Cd is absorbed

in the definition (4.19) of G. Note also that the model update (4.22) only requires the

inversion of a positive-definite S × S matrix.

Using a quasi-Newton method, we may use the iterative algorithm (Tarantola, 2005)

m̃n+1 = m̃n + λn(G̃
T

G̃ + C−1
m0

)−1(G̃
T

∆d̃n − C−1
m0

∆m̃n)

= m̃n − λn∆m̃n + λnCm0
G̃

T

n(G̃nCm0
G̃

T

n + I)−1(∆d̃n + G̃n∆m̃n), (4.24)

where λn ≈ 1, ∆d̃n = PC
−1/2

d
∆dn, and ∆m̃n = m̃n − m0, to determine successive model

updates. Because (G̃
T

G̃ + C−1
m0

) is an M × M matrix and (G̃nCm0
G̃

T

n + I) a generally much

smaller S × S matrix, in practice we use the second equality in (4.24).

4.3.1 Significance of the source-projected gradient

In this section we investigate the significance of the source-projected partial derivative ma-

trix G̃ given by (4.19). To make the connection between this gradient and adjoint methods,

let us consider a specific problem involving N cross-correlation traveltime anomalies ∆Ti,

i = 1, . . . , N , with associated standard deviations σi, i = 1, . . . , N . Let us further assume

that we are dealing with a structural inversion, and that the model m is expanded in M
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basis functions Bk(x), k = 1, . . . ,M , such that

m(x) =
M
∑

k=1

mkBk(x). (4.25)

In this case the partial derivative matrix G has elements

Gik =
∂Ti

∂mk
=

∫

V
Ki(x)Bk(x) d3

x, (4.26)

where V denotes the model volume and Ki(x) the finite-frequency sensitivity kernel asso-

ciated with observation i (e.g., Dahlen et al., 2000; Tromp et al., 2005).

In the particular case of cross-correlation traveltime anomalies, the source subspace

projection operator P is given by (4.16), where

∆dsp = ∆Tsp/σsp. (4.27)

It is now straightforward to show that the source-projected data vector ∆d̃ (4.20) has

elements

(∆d̃)s =
Ns
∑

p=1

(∆Tsp/σsp)
2, (4.28)

and that the elements of the source-projected gradient G̃ (4.19) are given by

(G̃)sk = (PC
−1/2

d
G)sk =

∫

V





Ns
∑

p=1

(∆Tsp/σ
2
sp)Ksp(x)



 Bk(x) d3
x = −

∫

V
Ks(x)Bk(x) d3

x,

(4.29)

where we have defined the event kernel (Tromp et al., 2005; Tape et al., 2007)

Ks(x) = −

Ns
∑

p=1

(∆Tsp/σ
2
sp)Ksp(x). (4.30)

These kernels are calculated based upon the interaction between the regular wavefield s and
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an adjoint wavefield s
† that is generated by the adjoint source

f
†
s(x, t) = −

Ns
∑

p=1

(∆Tsp/σ
2
sp)

1

Msp
∂tssp(T − t)]δ(x − xsp), (4.31)

where Msp is a normalization factor, and xsp denotes the receiver location associated with

source s and pick p. The calculation of the event kernels involves only two numerical

simulations per earthquake.

4.3.2 Comparison with the conjugate gradient method

In a traditional conjugate gradient method, the first model update is in the opposite di-

rection of the gradient of the cross-correlation traveltime misfit function (e.g., Tarantola,

2005; Tape et al., 2007), i.e.,

∆mk ≈ −ν
M
∑

k′=1

(Cm)kk′

S
∑

s=1

∫

V
Ks(x)Bk′(x) d3

x, (4.32)

where the scalar ν determines the step length and thus the location of the trial model. Note

how the ‘metric’ Cm turns the dual vector γ̂k′ =
∫

V Ks(x)Bk′(x) d3
x, i.e., the gradient, into

a vector: γ = Cmγ̂ (see e.g., Tarantola, 2005). Upon comparing this expression with the

source subspace projection result (4.22), i.e.,

∆m̃k ≈

M
∑

k′=1

S
∑

s=1

(Cm)kk′(G̃)sk′∆µs = −(Cm)kk′

S
∑

s=1

∆µs

∫

V
Ks(x)Bk′(x) d3

x, (4.33)

where the S-dimensional vector ∆µ is determined by

∆µ = (G̃Cm0
G̃

T
+ I)−1∆d̃, (4.34)

we see how the source subspace projection method ‘preconditions’ the model update by

combining the event Fréchet derivatives
∫

V Ks(x)Bk′(x) d3
x with weights ∆µs.
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4.4 2D synthetic experiments

In Figures 4.1–4.3 we compare the source-subspace (SS) inversion with a conjugate-gradient

(CG) inversion. In Figure 4.2, m01 for SS (d) is much closer to the target model that the

CG version (a). This can be seen visually, as well as in the misfit values in (h). A key

distinction is that the CG models require an additional evaluation of the misfit function at

each step (e.g., Tape et al., 2007). At m02, for example, CG has used 7 forward simulations,

while SS has used only 5.

Figure 4.3 demonstrates that the SS and CG algorithms perform similarly for the case

of a three-parameter inversion for location and origin time.
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Figure 4.1: Initial and target structure and sources for subspace experiments. Target
synthetic seismograms are generated using the target structure or target sources. Initial
synthetics are generated using the initial structure or initial sources. Through iterative
minimization of a misfit function, the initial model moves in the direction of the target
model.
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(a)  CG: Structure m1 
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Figure 4.2: Comparison between conjugate-gradient (CG) and source-subspace synthetic
inversions for structure parameters. (a)–(c) Conjugate-gradient models m01, m02, and m04.
(d)–(f) Source-subspace (SS) models m01, m02, and m04. (g) Target structure. (h) Misfit
function evaluations for each model. White circles are for CG models; black circles are for
SS models.



CHAPTER 4. Adjoint tomography based on source subspace projection 93

(a)  CG: Error in initial source m0 

32˚ 32˚

33˚ 33˚

34˚ 34˚

35˚ 35˚

36˚ 36˚

(b)  CG: Error in source m1 (c)  CG: Error in final source m2 

10-1

100

101

102

0 2 4 6 8

 k, model number 
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(e)  Subspace: Error in source m1 
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Figure 4.3: Comparison between conjugate-gradient and source-subspace synthetic in-
versions for source parameters. The three source parameters in the inversion experiment
are (xs, ys) location and origin time (ts). (a) Initial source errors for both the conjugate-
gradient (CG) and source-subspace (SS) inversions. (b)–(c) CG source errors for models
m01 and m02. (d) Reduction in misfit for CG (white circles) and SS (black circles). The
performance of CG and SS is essentially the same for the source inversion.


