
Chapter 3

Construction of finite-frequency

kernels using adjoint methods

Note

This chapter contains excerpts from “Seismic tomography, adjoint methods, time reversal,

and banana-doughnut kernels,” by Jeroen Tromp, Carl Tape, and Qinya Liu. My primary

contribution to this study was to adapt a 2D SEM wave propagation code to construct finite-

frequency kernels. In a series of numerical experiements, I illustrated the formation of finite-

frequency sensitivity kernels via the interaction between a forward wavefield (s), propagating

from source to receiver, with an adjoint wavefield (s†), propagating from receiver to source.

In this chapter, I have included some additional figures to complement those in Tromp et al.

(2005).

3.1 Kernel Gallery

Expressions for seisitivity kernels for a α-β-ρ parameterization of compressional wave speed

(α), shear wave speed (β), and density (ρ) are given by Tromp et al. (2005, Eq. 51):

K̄ρ(αβ) = K̄ρ(κµ) + K̄κ(µρ) + K̄µ(κρ),

K̄β(αρ) = 2

(

K̄µ(κρ) −
4

3

µ

κ
K̄κ(µρ)

)

,

K̄α(βρ) = 2

(

1 +
4

3

µ

κ

)

K̄κ(µρ) . (3.1)
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Appendix B shows similar expressions for parameterizations in κ-µ-ρ and c-β-ρ.

We use a two-dimensional (2D) elastic wave propagation code to illustrate the construc-

tion of sensitivity kernels using the adjoint methodology discussed in this paper. Each

kernel is based upon the interaction between a regular wavefield s and an adjoint wavefield

s
†. Changing the adjoint source f

† results in a different adjoint field s
† and, hence, different

kernels. For example, we can use the residuals between the data and the synthetics as the

waveform adjoint source to construct misfit kernels, or we can use the synthetic velocity

field as the traveltime adjoint source to construct banana-doughnut kernels. In this section

we present examples of finite-frequency traveltime kernels.

3.1.1 Model setup

We simulate 2D elastic wave propagation using a spectral-element method, which combines

the flexible spatial parameterization of finite-element methods with the accuracy of pseu-

dospectral methods (e.g., Komatitsch and Tromp, 1999). The source-receiver geometry and

the various SH and P-SV body-wave arrivals are illustrated in Figure 3.1. The top boundary

is a free surface, whereas the remaining three boundaries are absorbing to mimic a half space.

The model extends 200 km in width and 80 km in depth, and is homogeneous with density

ρ = 2600 kg m−3, bulk modulus κ = 5.20 × 1010 Pa, and shear modulus µ = 2.66 × 1010 Pa;

these values correspond to a compressional wave speed of α = 5800 m s−1 and a shear wave

speed of β = 3199 m s−1. We use a simple one-way treatment for the implementation of the

absorbing boundary conditions (Komatitsch and Tromp, 1999). For pedagogical reasons,

both the source and the receiver are located at a depth of 40 km to generate direct and

surface reflected waves, leading to a variety of interesting phases and associated kernels.

The source-time function used in the simulations is a Gaussian of the form

h(t) = (−2α3/
√

π) (t − t0) exp[−α2(t − t0)
2], (3.2)

where t0 = 8.0 s, α = 2τ0/τ , τ0 = 2.628 s, and τ is the duration of h(t) (e.g., Figure 3.2a).

The source duration is τ = 4.0 s in each example, with the exception of Figure 1.1, where

we also used τ = 8.0 s. In each simulation the source is applied in the x and y directions to

generate both P-SV and SH motions (which are of course completely decoupled). Changing

the orientation of the source results in different sensitivity kernels.
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3.1.2 Banana-doughnut kernels

Banana-doughnut traveltime kernels are constructed by using the time-reversed velocity

field at one particular receiver as the adjoint source. Kernels calculated in this manner may

be compared with the finite-frequency kernels presented in recent studies using ray-based

methods (e.g., Hung et al., 2000). As discussed earlier, the construction of each kernel is

based on the interaction between the time-reversed regular field and the adjoint field; hence

the “interaction field” can be thought of as propagating from the receiver to the source in

reverse time from t = T to t = 0.

SH waves

We begin with the simplest case, the SH wavefield. The experimental setup is depicted in

Figure 3.1. Because both the source and the receiver are located at depth, there are two

possible arrivals, which we label S and SS. The source-time function used to generate the

regular wavefield is shown in Figure 3.2a, and the associated seismogram with distinct S

and SS arrivals is displayed in Figure 3.2b. Figure 3.3 illustrates the construction of the

K̄β(αρ) kernel from the interaction between the regular field s and the S adjoint field s
†,

whose source is shown in Figure 3.2d. Keep in mind that for increasing time t the regular

field propagates from the source to the receiver, whereas the adjoint field propagates from

the receiver to the source. Marching backward in time from t = T , the traveltime adjoint

source (located at the receiver) “turns on” at the precise moment that the regular S wavefield

passes over it (between Figure 3.3a and 3.3b). At each moment in time the two wavefields

are combined via (3.1) to form the “interaction” field, which is integrated to construct the

kernel. In other words, the interaction field represents the time-dependent integrand in the

kernel definition. Once the regular source is “extinguished,” no further contributions are

made toward K̄β(αρ). Note that K̄β(αρ) is cigar-shaped rather than banana-shaped because

the model is homogeneous, and there is no doughnut hole because we are dealing with 2D

rather than 3D kernels. We refer to this example as SHS, where SH designates participation

of only the y-component of the wavefields, and the subscript S denotes the phase that is

being reversed. The pulse is tapered within the time window wr using a Welch window

(Press et al., 1994).

Figures 3.4 and 3.5 show the effect of reversing different time windows of the synthetic
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velocity field. Reversing the SS pulse gives a kernel in the shape of a “folded-over cigar”

(Figure 3.5f). The ellipse surrounding the source and receiver represents SS scatterers with

comparable traveltimes to the SS wave reflected at the surface. Reversing the entire wave-

form (i.e., both pulses) illuminates the sensitivity regions of both S and SS (Figure 3.5gh).

Figure 3.6 shows all six kernels for the SHS scenario. These kernels are constructed

simultaneously via the process illustrated in Figure 3.3 for K̄β(αρ). Notice that the relative

amplitudes of the kernels are consistent with what is expected from the relationships in

(3.1). For example, since K̄κ(µρ) = 0 and K̄µ(κρ) ≈ −K̄ρ(κµ), we see that K̄ρ(αβ) = K̄µ(κρ) +

K̄κ(µρ) + K̄ρ(κµ) is very weak. Note that for SH waves we have K̄β(αρ) = 2 K̄µ(κρ).

Figure 1.1 (Chapter 1) illustrates the effect of changing the source duration, τ in (3.2), on

the kernels. We see that the width of the kernel shrinks at higher frequencies. We expect

this since in the limit of infinite frequency the kernel should collapse onto the ray path.

Note that the amplitude of the kernel increases with increasing frequency. This frequency

dependence was illustrated by Hung et al. (2000) using a different technique to construct the

kernels. Cross sections of the kernels (Figure 1.1d) help to highlight the Fresnel zones. In

the case of the SHS β-kernel, the broad, low-sensitivity red zone represents the first Fresnel

zone, whereas the sidelobes defined by the narrow, high-sensitivity green zone correspond

to the second Fresnel zone (e.g., Hung et al., 2000).

P-SV waves

The P-SV wavefield is more complicated than the SH wavefield (Figure 3.1), and even in the

homogeneous case Rayleigh waves arise through interactions at the free surface. Figure 3.7

illustrates the construction of the P-SV adjoint source for the PS+SP arrival, and Figures 3.8

and 3.9 show the corresponding formation of the K̄ρ(αβ), K̄α(βρ), and K̄β(αρ) kernels.

Notice how the interactions SP∼P† and PS∼S† form the right portion of the sensitivity

kernel, e.g., at t = 32.0 s (Figure 3.8b), whereas the left portion results from the interactions

P∼SP† and S∼PS†, e.g., at t = 16.0 s (Figure 3.8d). This can be deduced by matching up

the portions of the regular and adjoint wavefields that are contributing to the interaction

field. These interactions “paint” the resultant sensitivity kernel.

Figure 3.10 shows all nine kernels for the P-SVPS+SP scenario. We have included the

c-β-ρ parameterization, where c is bulk sound speed, in addition to the κ-µ-ρ and α-β-ρ

cases. These expressions are derived in Appendix B.
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Figure 3.11 shows the effect of reversing four distinct time windows of the P-SV synthetic

velocity field: the P, PP, PS+SP, and SS arrivals. In Figure 3.11b we see that the α-kernel

for P-SVP is wider than the β-kernel for SHS (Figure 3.5c) for the same source period.

This is due to the relatively longer wavelengths of the P waves: λα = αT > λβ = β T .

Figures 3.11c-f illustrate examples of α and β kernels for the P-SVPP, P-SVPS+SP, and

P-SVSS scenarios. Note that, as expected, the α-kernel for the SS wave (Figure 3.11e) is

insignificant relative to the β-kernel (Figure 3.11f).
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Figure 3.1: Sketch of the 2D model dimensions and the source-receiver geometry (after
Tromp et al., 2005, Figure 1). The solid line denotes a free surface, whereas dashed lines
are absorbing boundaries. The source is indicated by the ⋆ and the receiver by the 2. Left:
The two possible ray paths for the SH wavefield are labeled S and SS. The ▽ denotes the
SS bounce point. Right: The possible body-wave ray paths for the P-SV wavefield. The
ray paths are based on a homogeneous model.
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Figure 3.2: Construction of the adjoint source-time function used in calculating SH banana-
doughnut kernels (Tromp et al., 2005, Figure 2). All traces represent the y-component.
(a) Source for the regular wavefield. (b) Regular seismogram recorded at the receiver.
(c) Velocity seismogram at the receiver. (d) Source for the adjoint wavefield constructed by
time-reversing (c) and Welch tapering the S arrival. Note that this includes the normaliza-
tion factor MT ≤ 0 defined in Tromp et al. (2005).
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Figure 3.3: Sequence of interactions between the regular and adjoint SH wavefields during
the construction of the banana-doughnut kernel K̄β(αρ) (Tromp et al., 2005, Figure 3). This
particular K̄β(αρ) kernel is for SHS, i.e., the SH β–kernel obtained by time-reversing the
S arrival. The regular and adjoint sources are shown in Figure 3.2; the model is a homo-
geneous half space. Each row represents an instantaneous interaction between the regular
and adjoint fields. From the left column to the right column are shown the regular field,
the adjoint field, the interaction field, and the instantaneous sensitivity to shear velocity
perturbations, K̄β(αρ). The K̄β(αρ) kernel is constructed by integrating the interaction field,
shown in the third column, over time. (a) At this point in time there is no interaction be-
tween the regular field and the adjoint field, since the S wave has yet to reach the receiver.
(b) Adjoint wavefield “lights up” as the regular wavefield S phase passes over the receiver
(traveling toward the source in reverse time). The label S∼S† indicates interaction between
the regular and adjoint S waves, respectively. (c)–(d) The sensitivity kernel forms via the
interaction between the regular and adjoint wavefields. (e) Time of regular source initiation,
before which no interaction occurs. The source is labeled by the ⋆ and the receiver by the
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Figure 3.4: Same as Figure 3.3, but here we have time-reversed the SS arrival (top) and
the entire record (bottom).
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Figure 3.5: The effect of time window selection on sensitivity kernels, using K̄β(αρ) (SH)
as an example (after Tromp et al., 2005, Figure 5). (a) Source for the regular wavefield.
(b) Velocity recorded at the receiver showing the arrivals S and SS. (c) Adjoint source for
SHS, constructed by time-reversing S in (b) and normalizing by MT defined in Tromp et al.

(2005). (d) K̄β(αρ) for reversing S only. (e) Adjoint source for SHSS, constructed by time-
reversing SS in (b) and normalizing by MT. (f) K̄β(αρ) for reversing SS only. Each point
on the ellipse represents a scattering point for a path with a comparable traveltime to the
SS path. The SS bounce point is labeled by the ▽, the source by the ⋆, and the receiver by
the 2.
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Figure 3.6: The six SHS banana-doughnut kernels. Each kernel is constructed simultane-
ously as shown in Figure 3.3 for K̄β(αρ). Note that K̄α(βρ) = K̄κ(µρ) = 0, K̄β(αρ) = 2K̄µ(κρ),
K̄µ(κρ) ≈ −K̄ρ(κµ), and K̄ρ(αβ) ≈ 0 for SH propagation.
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Figure 3.7: Construction of the adjoint source-time function used in calculating P-
SV banana-doughnut kernels. (a) Source-time function responsible for the regular wave-
field (x-component; the z-component is zero). (b) Regular seismogram (x-component).
(c) Velocity seismogram (x-component). (d) Source-time function for the adjoint source
constructed by time-reversing (c) and Welch tapering the PS+SP arrival (x-component).
Note that this includes the normalization factor MT defined in Tromp et al. (2005). This
is the source-time function used in Figure 3.8.
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Figure 3.8: Sequence of interactions between the regular and adjoint P-SV wavefields to
produce the banana-doughnut kernel K̄ρ(αβ). This particular K̄ρ(αβ) is for P-SVPS+SP, i.e.,
the P-SV ρ-kernel obtained by time-reversing the PS+SP arrival. Given the geometry in
Figure 3.1, the SP and PS phases arrive simultaneously, at nearly the same time as the
S arrival (Figure 3.7b). The x-z grid in each snapshot is 200 km in width and 80 km in
depth. Wavefield snapshots capture the x-component of displacement. We use labels ⋆
for the source, 2 for the receiver, and ▽ for the PS (right) and SP (left) bounce points.
See Section 3.1.2 for details, and compare with Figure 3.3. (a) No interaction between the
regular and adjoint fields, since the PS+SP phase has yet to reach the receiver. (b) Adjoint
wavefield “lights up” as the regular wavefield PS+SP phase, depicted by the X-shaped
crossing of the two green wavefields, passes over the receiver (traveling toward the source).
(c)–(d) Sensitivity kernel forms via the interaction between the regular and adjoint fields.
(e) Time of regular source initiation, before which no interaction occurs.
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Figure 3.9: Same forward and adjoint wavefields as in Figure 3.8, but here we show the
formation of the α-kernel (top) and the β-kernel (bottom).
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Figure 3.10: P-SVPS+SP banana-doughnut kernels for three different model parameteriza-
tions (see Appendix B). Each kernel is constructed simultaneously, as shown in Figure 3.8.
Notice that the predominant shape of the K̄α(βρ) kernel is that of two adjacent, folded-over
“cigars,” the right one for PS and the left for SP. The labels ▽ denotes the PS (right) and
SP (left) bounce points.
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Figure 3.11: The effect of time-window selection on sensitivity kernels, using K̄α(βρ) as
an example. See Figure 3.1 for labeling and Section 3.1.2 for details. (a) Velocity recorded
at the receiver (x-component) showing the consecutive arrivals of P, PP, PS+SP, and SS.
The S phase is expected to arrive nearly simultaneous with PS+SP, but is insignificant on
this component. In (b)–(f) we Welch taper one of the pulses and time-reverse it as the
adjoint source via the method explained in Figure 3.7. The color scale varies for each plot
according to the value “max.” (b) K̄α(βρ) for reversing the P arrival (P-SVP, max = 1.0).
(c) K̄α(βρ) for reversing the PP arrival (P-SVPP, max = 5.0). (d) K̄α(βρ) for reversing the
PS+SP arrival (P-SVPS+SP, max = 1.5). (e) K̄α(βρ) for reversing the SS arrival (P-SVSS,
max = 2.75). (f) K̄β(αρ) for reversing the SS arrival (P-SVSS, max = 2.75).


