
Chapter 2

Finite-frequency tomography using

adjoint methods—Methodology

and examples using membrane

surface waves

Note

This chapter was published as a paper by C. Tape, Q. Liu, and J. Tromp in Geophys-

ical Journal International in 2007. Supplemental derivations and tables are included in

Appendix A.

Summary

We employ adjoint methods in a series of synthetic seismic tomography experiments to

recover surface-wave phase-speed models of southern California. Our approach involves

computing the Fréchet derivative for tomographic inversions via the interaction between a

forward wavefield, propagating from the source to the receivers, and an “adjoint” wavefield,

propagating from the receivers back to the source. The forward wavefield is computed using

a 2D spectral-element method (SEM) and a phase-speed model for southern California. A

“target” phase-speed model is used to generate the “data” at the receivers. We specify an

objective or misfit function that defines a measure of misfit between data and synthetics.
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For a given receiver, the remaining differences between data and synthetics are time re-

versed and used as the source of the adjoint wavefield. For each earthquake, the interaction

between the regular and adjoint wavefields is used to construct finite-frequency sensitivity

kernels, which we call event kernels. An event kernel may be thought of as a weighted

sum of phase-specific (e.g., P) banana-doughnut kernels, with weights determined by the

measurements. The overall sensitivity is simply the sum of event kernels, which defines the

misfit kernel. The misfit kernel is multiplied by convenient orthonormal basis functions that

are embedded in the SEM code, resulting in the gradient of the misfit function, i.e., the

Fréchet derivative. A nonlinear conjugate gradient algorithm is used to iteratively improve

the model while reducing the misfit function. We illustrate the construction of the gradient

and the minimization algorithm, and consider various tomographic experiments, including

source inversions, structural inversions, and joint source-structure inversions. Finally, we

draw connections between classical Hessian-based tomography and gradient-based adjoint

tomography.

2.1 Introduction

Seismic tomography is in a state of transition from ray-based inversions using 1D reference

models toward finite-frequency-kernel-based inversions using 3D reference models (Akçelik

et al., 2003; Zhao et al., 2005). The transition from ray- to kernel-based inversions has

been motivated in part by the pioneering studies of Marquering et al. (1999), Zhao et al.

(2000), and Dahlen et al. (2000), which were based on 1D reference models but showed

that seismological measurements are sensitive to structure away from the ray path and

are affected by wavefront healing. The transition from 1D to 3D reference models has

been motivated by computational advances coupled with success in modeling the forward

problem of seismic wave propagation in complex media (e.g., Komatitsch and Vilotte, 1998;

Komatitsch et al., 2002; Capdeville et al., 2003).

The purpose of this paper is to illustrate an approach for “3D–3D” seismic tomography,

by which we mean seismic tomography based on a 3D reference model, 3D numerical simula-

tions of the complete seismic wavefield, and finite-frequency sensitivity kernels. The success

of 3D–3D tomography depends largely on two factors: (1) the accuracy and efficiency of the

technique used to generate 3D synthetic seismograms, and (2) the efficiency of the inver-
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sion algorithm. We have implemented numerical methods — the spectral-element method

(SEM) — on parallel computers to simulate 3D seismic wave propagation at regional and

global scales (e.g., Komatitsch and Tromp, 1999; Komatitsch et al., 2004; Komatitsch and

Tromp, 2002a,b). The inverse problem can be cast as a minimization problem, where the

objective or misfit function measures some difference between data and synthetic seismo-

grams computed from a 3D model. Our approach to the inverse problem utilizes adjoint

methods (Tarantola, 1984; Talagrand and Courtier , 1987), which provide the gradient of

the misfit function but not its second derivatives, i.e., the Hessian. The efficiency of the

inverse algorithm is controlled by the computation of the gradient, which requires only two

3D simulations per earthquake (i.e., the gradient is independent of the number of receivers

or the number of measurements), as well as an effectively chosen gradient method.

The framework for 3D–3D tomographic inversions using adjoint methods was developed

in exploration geophysics (e.g., Tarantola, 1984; Gauthier et al., 1986; Mora, 1987; Pratt

et al., 1998; Pratt , 1999). These studies illustrated the computation of the gradient and the

related inversion technique using 2D heterogeneous models and 2D numerical algorithms.

Applications of 3D–3D tomographic techniques are presented in Bijwaard and Spakman

(2000), Zhao et al. (2005), Capdeville et al. (2005), and Akçelik et al. (2003), among others.

Bijwaard and Spakman (2000) performed 3D ray-tracing though 3D models to iteratively

improve a global P-wave model. Zhao et al. (2005) used fully numerical methods (finite

differencing) to compute traveltime misfit function gradients for 3D models of the greater

Los Angeles area. Capdeville et al. (2005), using synthetic data, demonstrated a technique

of stacking synthetic records that limits the number of forward simulations to one per event

(per model iteration); however, the technique requires modification when the data set is

incomplete, as is generally the case. Akçelik et al. (2003), using synthetic data, illustrated

a tomographic inversion using a finite-element method together with an adjoint approach

within a conjugate gradient framework. They also addressed multiscale approaches to the

inverse problem in an attempt to avoid reaching local minima during the inversion.

This paper is an extension of Tromp et al. (2005), which synthesized the work on adjoint

methods with studies in finite-frequency tomography (Marquering et al., 1999; Dahlen et al.,

2000; Zhao et al., 2000) and time-reversal imaging (Fink et al., 1989; Fink , 1992, 1997). In

Tromp et al. (2005) we illustrated how the computation of a sensitivity kernel for a particu-

lar model and a particular type of measurement could be achieved via the interaction of two
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wavefields, one constituting the “regular” wavefield traveling from source to receiver, and

the other constituting the “adjoint” wavefield traveling from receiver to source, constructed

by a suitable time-reversed synthetic seismogram recorded at the receiver. We performed

a simple source inversion to illustrate the conjugate gradient algorithm, whereby only the

gradient of the misfit function is used to iteratively invert for the source parameters. In this

paper, we use the conjugate gradient approach to illustrate wave-speed inversions, source

inversions, and joint (source and structure) inversions. In each example, the “observed”

seismograms are computed for a “target” model, and the synthetic seismograms are com-

puted from a current model that iteratively improves toward the target model over the

course of the inversion. All of the simulations illustrated in this paper were performed on a

single Linux PC.

We begin by highlighting the differences between classical and adjoint tomography in

the context of a minimization problem. We define classical tomography as a Newton inver-

sion scheme that computes model sensitivities for each measurement by constructing the

gradient and Hessian of the misfit function (Section 2.3) (e.g., Woodhouse and Dziewonski ,

1984; Ritsema et al., 1999). In adjoint tomography only the gradient is computed, and

it is computed via adjoint methods (e.g., Gauthier et al., 1986; Akçelik et al., 2003). In

Section 2.5 we illustrate the construction of a misfit kernel , which can be thought of as

the gradient of the misfit function. In Section 2.6 we show how this gradient is used in the

conjugate gradient algorithm to iteratively improve the model. We finish by showing several

tomographic experiments, including simultaneous source-structure inversions, as well as a

comparison between ray- and kernel-based classical inversions and adjoint tomography.

2.2 General formulation of the inverse problem

Our objective will be to minimize a measure of the misfit between a set of data, for example

waveforms or traveltimes, and a complementary set of synthetics. The generated synthetics

are based on a model m, for example a set of structural and source parameters, and our aim

is to reduce the misfit between the data and the synthetics by making (successive) model

corrections δm. We define the misfit function F (m) to be a measure of misfit between

the data and synthetics computed for model m. The function F is alternatively called an

“objective” or “cost” function. For example, F could represent least-squares measures of
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waveform or traveltime differences.

Let us suppose we have a particular model m, and we wish to obtain an updated

model m + δm that brings us closer to a minimum of the misfit function F (Nolet , 1987;

Tarantola, 2005, Appendix 6.22). We make a quadratic Taylor expansion of F (m + δm):

F (m + δm) ≈ F (m) + g(m)T δm +
1

2
δmTH(m) δm, (2.1)

where the gradient vector g(m) is defined in terms of the first derivative of the misfit

function (also known as the Fréchet derivative) by

g(m) =
∂F

∂m

∣

∣

∣

∣

m
, (2.2)

and the Hessian matrix H(m) is defined in terms of the second derivatives of the misfit

function by

H(m) =
∂2F

∂m∂m

∣

∣

∣

∣

m
. (2.3)

The “ |m” dependence is used to emphasize that the preceding variable is evaluated at

model m.

The gradient of (2.1) with respect to δm is given by

g(m + δm) ≈ g(m) + H(m) δm, (2.4)

which can be set equal to zero to obtain the (local) minimum of (2.1):

H(m) δm = −g(m). (2.5)

An updated model m+ δm may be obtained with or without the Hessian H. If the gra-

dient and Hessian (or approximate Hessian) are both available, then the inverse approach

is known as a Newton method; if only the gradient is available, then it is a gradient method

(e.g., steepest descent, conjugate gradient). In classical traveltime tomography, one gener-

ally has access to both the gradient g and the Hessian H of the misfit function, in which

case the model update δm may be obtained based on (2.5). For complex, heterogeneous

models, computation of the gradient is generally still feasible, but computation of the Hes-
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sian is not. In the absence of the Hessian, one can minimize the misfit function using only

the gradient (2.2) based on iterative methods.

2.3 Classical tomography

We begin by investigating 2D surface-wave traveltime tomography based on either ray or

finite-frequency sensitivity kernels. These classical inversions, which involve access to both

the gradient and the Hessian of the misfit function, serve as a reference and standard for

subsequent iterative inversions based on only the gradient (Section 2.6). In particular, we

will investigate how many iterations of the conjugate-gradient adjoint approach are required

to obtain a similar misfit to the data as an inversion based on knowledge of the gradient

and Hessian. Of course our ultimate goal is to use the adjoint approach to address inverse

problems for fully 3D reference models, when the calculation of the Hessian is generally

not feasible, and the experiments in this paper serve as a guide to the implementation and

convergence of such iterative inversions.

2.3.1 Theory

The traveltime misfit function may be expressed as

F (m) =
1

2

N
∑

i=1

[

T obs
i − Ti(m)

]2
, (2.6)

where T obs
i denotes the observed traveltime for the ith source-receiver combination, Ti(m)

the predicted traveltime based on the current model m, and N the number of traveltime

measurements. The variation of the misfit function (2.6) is given by

δF = −
N

∑

i=1

∆Ti δTi, (2.7)

where δTi is the theoretical traveltime perturbation and

∆Ti = T obs
i − Ti(m) (2.8)

denotes the traveltime anomaly. The sign convention for the traveltime anomaly follows

that of Dahlen et al. (2000) and Dahlen and Baig (2002), such that a negative traveltime
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indicates a delay in the synthetic arrival relative to the recorded arrival. Throughout this

paper, an uppercase delta, ∆, will denote a differential measurement, and a lowercase delta,

δ, will denote a mathematical perturbation.

In ray-based tomography, the predicted traveltime anomaly δTi along the ith ray path

may be related to fractional wave-speed perturbations δ ln c = δc/c based on the relationship

δTi = −
∫

ray
i

c−1 δ ln c ds, (2.9)

where ds denotes a segment of the ith ray.

Taking into account finite-frequency effects, Marquering et al. (1999), Zhao et al. (2000),

and Dahlen et al. (2000) demonstrate that the traveltime anomaly may alternatively be

related to relative wave-speed perturbations based on a finite-frequency sensitivity ker-

nel Ki(x) for the ith source-receiver combination by

δTi =

∫

V
Ki δ ln c d3x. (2.10)

Marquering et al. (1999) dubbed these finite-frequency kernels “banana-doughnut kernels”

on account of their shape in smooth, spherically symmetric Earth models for cross-correlation

traveltime measurements. These kernels are also referred to as “sensitivity,” “finite-frequency,”

or “Born” kernels. For our purposes, the key point is that a banana-doughnut kernel does

not incorporate the traveltime measurement, whereas the event and misfit kernels discussed

in Section 2.5 do incorporate measurements.

Unlike the ray-theoretical expression (2.9), equation (2.10) relates the traveltime anomaly

to 3D heterogeneity δ ln c throughout the entire Earth model, as seen through the kernel Ki.

The relations (2.9) and (2.10) are valid for any model. Frequently the model is chosen to be

one-dimensional because this makes the ray and finite-frequency kernel calculations much

simpler, but this is not required (Zhao et al., 2005).

Substituting (2.10) into (2.7), we express the variation of the traveltime misfit function

for finite-frequency tomography as

δF =

∫

V
K δ ln c d3x, (2.11)
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where the traveltime misfit kernel K(x) is a weighted sum of the kernels Ki(x):

K(x) = −
N

∑

i=1

∆Ti Ki(x), (2.12)

such that the weight associated with the kernel for the ith source-receiver combination Ki

is the corresponding traveltime anomaly ∆Ti. It is important to note the distinction that

misfit kernels K(x) depend on the data, whereas the banana-doughnut kernels Ki(x) are

data independent.

To make the tomographic inversions practical, we need to choose a finite set of basis

functions in which to expand our model. Let Bk(x), k = 1, . . . ,M , denote a set of M basis

functions. We expand our fractional phase-speed perturbations, δ ln c(x), into these basis

functions:

δ ln c(x) =

M
∑

k=1

δmk Bk(x), (2.13)

where δmk, k = 1, . . . ,M , represent the perturbed model coefficients, which are determined

in terms of the gradient g and Hessian H of the misfit function by (2.5).

Next, we determine g and H for this classical traveltime tomography problem. Substi-

tuting (2.13) into (2.9) and (2.10), respectively, we obtain

δTi =

M
∑

k=1

δmk Gik, (2.14)

where for ray theory,

Gik ≡ ∂Ti

∂mk

∣

∣

∣

∣

m
= −

∫

ray
i

c−1Bk ds, (2.15)

whereas for finite-frequency tomography,

Gik ≡ ∂Ti

∂mk

∣

∣

∣

∣

m
=

∫

V
KiBk d3x. (2.16)

We note that in either case Gik will depend on the source-receiver geometry (index i), the

choice of basis functions (index k), and the choice of reference model (m).
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Using (2.13) we express the variation in the misfit function (2.11) as

δF =
M
∑

k=1

∫

V
KBk d3x δmk. (2.17)

Upon comparing this result to

δF = g · δm =
M
∑

k=1

gk δmk, (2.18)

we deduce that the elements of the gradient vector, gk, are determined by

gk =
∂F

∂mk
=

∫

V
KBk d3x, k = 1, . . . ,M. (2.19)

This highlights the simple relationship between the misfit kernel and the gradient of the

misfit function. Substituting (2.12) into (2.19), we obtain

gk = −
N

∑

i=1

∫

V
KiBk d3x ∆Ti = −

N
∑

i=1

Gik ∆Ti, k = 1, . . . ,M, (2.20)

which in matrix notation becomes

g = −GTd. (2.21)

Here G is the N × M design matrix constructed using (2.15) for rays or (2.16) for finite-

frequency kernels, a superscript T denotes the transpose, and d is defined as an N -dimensional

data vector of cross-correlation traveltime measurements:

d = (∆T1, . . . ,∆Ti, . . . ,∆TN )T . (2.22)

Note that the data vector depends on model m through the synthetics.

The second derivatives of the misfit function are given by (2.3), and thus the elements

of the Hessian H are given by

Hkk′ =
∂2F

∂mk∂mk′

∣

∣

∣

∣

m
=

∂gk

∂mk′

∣

∣

∣

∣

m
=

N
∑

i=1

[

Gik′Gik + ∆Ti
∂2Ti

∂mk∂mk′

∣

∣

∣

∣

m

]

, (2.23)



CHAPTER 2. Finite-frequency tomography using adjoint methods 20

where Gik is defined in (2.16). We introduce an approximate Hessian H̃ by ignoring the

second-order terms:

H̃kk′ ≡
N

∑

i=1

GikGik′ , k, k′ = 1, . . . ,M, (2.24)

which in matrix notation is

H̃ ≡ GT G. (2.25)

Henceforth, we will refer to H̃ as the Hessian. This approximation, H̃ ≈ H, characterizes

the Gauss–Newton method and is exact if the model perturbations are linearly related to

the traveltime measurements.

Having established the gradient (2.21) and Hessian (2.25), the model correction δm is

determined by (2.5):

GT G δm = GTd, (2.26)

where δm is defined in (2.13), d is defined in (2.22), and G is defined according to (2.15)

or (2.16).

In general, the Hessian matrix (2.25) is not full rank, which means that its inverse does

not exist. To stabilize the inverse problem, one introduces a damping matrix D typically

involving the norm, gradient, or second derivative of the wave-speed perturbations, and a

damping parameter γ :

H̃γ = GTG + γ2D. (2.27)

The damping parameter γ is chosen in a subjective manner, generally by inspecting a graph

that trades off misfit of the solution against complexity of the model. Having stabilized the

inverse of the Hessian, the solution to (2.26) may now be expressed as

δm = (GTG + γ2D)−1GTd, (2.28)

from which the updated model, m + δm, may be obtained. In Section 2.10 we show how

(2.28) is obtained by adding a regularization term to the misfit function. More generally,
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for nonlinear inverse problems one uses an iterative Gauss–Newton method to minimize

the misfit function. In that case (2.28) is replaced by an iterative expression that relates

model k + 1 to model k and the initial model (e.g., Tarantola, 2005).

2.3.2 Experimental setup

We simulate 2D elastic wave propagation using a spectral-element method (SEM), which

combines the flexible spatial parameterization of finite-element methods with the accuracy

of pseudospectral methods (e.g., Komatitsch and Vilotte, 1998; Komatitsch and Tromp,

1999). For simplicity, we consider “membrane waves” (Tanimoto, 1990; Peter et al., 2007)

traveling in the x-y plane with a vertical (z) component of motion. The elastic wave equation

for the vertical component of displacement s(x, y, t) is given by

ρ ∂2
t s = ∂x(µ ∂xs) + ∂y(µ ∂ys) + f, (2.29)

where ρ(x, y) denotes the density distribution and µ(x, y) the shear modulus. The source

f(x, y, t) is given by

f(x, y, t) = h(t) δ(x − xs) δ(y − ys), (2.30)

where h(t) denotes the source time function and (xs, ys) the source location. All four

membrane edges are absorbing, and attenuation and anisotropy are not incorporated. The

relationship between membrane-wave phase speed, c, and rigidity is µ = ρc2.

We take southern California as our region of interest (Figure 2.1) in anticipation of

eventually improving the present 3D reference wave-speed models (Hauksson, 2000; Magis-

trale et al., 2000; Süss and Shaw , 2003). The modeled region is 480 km by 480 km. The

numerical simulations are carried out on a planar grid with Nglob = 25921 gridpoints. The

source time function of the point source (2.30) used in the simulations is a Gaussian of the

form

h(t) = (−2α3/
√

π) (t − ts) exp[−α2(t − ts)
2], (2.31)

where α = 2τ0/τ , τ0 = 2.628 s, τ = 20.0 s is the duration of h(t), and ts = 48.0 s is

the origin time (e.g., Figure 2.6a). The duration of each simulation is T = 240 s unless
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otherwise noted.

The synthetic records are computed using source locations of actual events (M ≥ 4)

recorded in southern California between 1990 and 2005 (Figure 2.1). The initial set of

synthetics is computed using a model with homogeneous phase speed c. In general, the

synthetics in our experiments are generated from a laterally varying model, while the data

are generated from what is designated as the “target” model. Computationally, the model

correction is expressed as a fractional perturbation, δc/c = δ ln c, with current phase speed

c. In the figures, however, each phase-speed model is plotted as a percent perturbation

from the phase-speed value for the initial model. In Section 2.8 we allow for additional

perturbations in the source parameters, so that in general the synthetics are computed

from a model with perturbed sources and perturbed structure.

2.3.3 2D tomographic example

To illustrate a classical tomographic inversion, we begin by choosing a set of basis functions,

Bk(x), in which to expand the fractional wave-speed perturbations δ ln c(x) (2.13). We

use spherical spline basis functions (Wang and Dahlen, 1995; Wang et al., 1998), which

are well-suited for regional models where multiscale parameterization is desired because of

nonuniform path coverage (e.g., Boschi et al., 2004). (We do not exploit the multiscale

aspects here.) An example of a spherical spline basis function is plotted in Figure 2.2b. We

choose M = 286 spherical spline basis functions to cover the southern California region.

The data are computed using the phase-speed model in Figure 2.1b, and the synthetics

are computed for a homogeneous phase-speed model with c = 3.78 km/s. We make cross-

correlation traveltime measurements between data and synthetics to obtain the data vector

d (2.22). The total number of measurements is N = Nevents ×Nreceivers = 25× 132 = 3300.

We illustrate the classical tomographic approach using both rays and banana-doughnut

kernels to represent the sensitivities of the measurements to the model parameters. Thus

we compute two N × M design matrices, Gray and Gker, respectively. Figure 2.2a–c shows

the computation of a single Gray
ik element, and Figure 2.2d–f shows an example for Gker

ik .

Figure 2.2 illustrates why the choice between kernels or rays may be moot, depending on

the resolution of the basis functions. The infinitesimally thin ray path is smeared out by the

relatively smooth basis functions. Thus, in our example, Gray ≈ Gker, and we will simply

use a generic G to denote either the ray or kernel design matrix.
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The (approximate) Hessian matrix, H̃ = GTG, and the gradient vector, g = −GTd,

are visualized in Figure 2.3. The Hessian and gradient are determined by the source-

receiver geometry and the banana-doughnut kernels (or ray paths), but only the gradient

is controlled by the data.

Figure 2.4 shows the model recovery using classical tomography based on a single it-

eration of the Gauss–Newton method. The recovered model is strongly dependent on the

damping parameter γ. When γ ≈ 0, the inverse is unstable and structure is artificially

introduced into regions where there is no coverage, i.e., the edges of the domain and the

oceans (Figure 2.4a). When γ → ∞, the recovered model is simply the initial model (Fig-

ure 2.4f), although the spatial pattern is that of the gradient (e.g., compare Figure 2.3c

with Figure 2.4g). The reason for this is that for large values of the damping parameter γ

the damped Hessian (2.27) is dominated by the damping matrix D, which in our case is

the identity matrix I. In this case the solution to the inverse problem given by (2.28) is

effectively a scaled version of the gradient g. For the example in Figure 2.4, the L-curve

suggests that γ = 10.0 is a reasonable model selection; this model is shown in Figure 2.4c

and Figure 2.20c.

2.4 Computation of the gradient and Hessian

Obtaining the Hessian involves computing banana-doughnut kernels Ki for each source-

receiver combination. Thus, the cost of computing the Hessian is the cost of computing

all the kernels. For a problem involving Nevents earthquakes, Nreceivers stations, Ncomp =

3 component seismograms, and Npicks measurements per seismogram one would need to

calculate Nevents × Nreceivers × Ncomp × Npicks kernels.

In adjoint tomography one computes a misfit kernel K from which only the gradient

is obtained. One of the primary benefits of adjoint tomography is that the misfit ker-

nel need not be computed by summing over individual banana-doughnut kernels for each

source-receiver pair, as in (2.12). Instead, the measurements, ∆Ti, are incorporated into

the adjoint source, which is used to compute the misfit kernel (Section 2.5). This kernel is

constructed via the interaction between a forward wavefield and an adjoint wavefield, re-

quiring only two simulations per earthquake (Tromp et al., 2005). So if our inverse problem

involves Nevents earthquakes, obtaining the gradient of the misfit function involves 2Nevents
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numerical simulations, i.e., this calculation is independent of the number of receivers, com-

ponents, and picks. The main drawback of adjoint tomography is that the Hessian is not

available, which means that iterative techniques must be used to determine the minimum

of the objective function.

Thus, a fundamental distinction between classical and adjoint tomography is whether

or not individual banana-doughnut kernels are computed. In the context of classical to-

mography, there are several ways to compute the kernels. For 1D Earth models, they

may be calculated cheaply and rapidly, in particular if approximate expressions are used

(Dahlen et al., 2000). Using normal modes, Zhao and Jordan (2006) computed global finite-

frequency kernels for spherically symmetric models. The kernels may be used to construct

the design matrix G, which has Nevents × Nreceivers × Ncomp × Npicks × M elements. The

parameterization of the model (2.13) must be carefully considered, since M scales G. Once

G is obtained, the Hessian follows from (2.25).

The computation of the kernels Ki for 3D models may be accomplished in two ways:

1. We may perform an adjoint simulation for every single measurement, which requires a

total of 2Nevents ×Nreceivers ×Ncomp ×Npicks simulations (two for each measurement).

For 3D models the numerical cost is prohibitive.

2. Alternatively, we may invoke source-receiver reciprocity and for every source and

receiver calculate and store Green’s functions as a function of both space and time.

This requires one to perform and store Nevents+3Nreceivers simulations: one simulation

for each event and one simulation for each receiver component. For realistic 3D

simulations the storage requirements are formidable, although for small problems the

approach is feasible, as demonstrated by Zhao et al. (2005).

Our goal is to improve fully 3D reference models. Therefore, to make the inverse prob-

lem tractable, we are forced to consider an approach based on knowledge of the value of

the misfit function F (m), its gradient g, but not its Hessian H̃. Minimization of the misfit

function based on this information may be accomplished using a nonlinear conjugate gra-

dient method, as discussed in Section 2.6. But first we demonstrate how we compute the

gradient using adjoint methods.
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2.5 The gradient: construction of a misfit kernel

In this section we demonstrate how we compute the gradient of the misfit function, g =

∂F/∂m, using adjoint methods. The gradient of the misfit function is obtained from (2.19):

gk =

∫

Ω
KBk d2x, (2.32)

where for the 2D examples in this paper the integration is over the model surface Ω. Given

the misfit kernel, K, and the basis functions, Bk, we can readily compute the gradient of

the misfit function. The misfit kernel can also be thought of as a sum of event kernels,

which we discuss next.

2.5.1 Event kernels

Tromp et al. (2005, Fig. 3) illustrated the construction of a data-independent banana-

doughnut kernel based on adjoint methods. In this paper, the kernels we show are misfit

kernels, whereby the adjoint source is constructed based in part on a set of measurements

between data and synthetics.

The construction of misfit kernels based on cross-correlation traveltime measurements is

outlined in Tromp et al. (2005, Section 4). For membrane waves, motion is restricted to the

vertical direction, and the source functions and wavefields are scalar quantities. The source

for the adjoint wavefield for a particular event is given by (Tromp et al., 2005, eq. 57)

f †(x, y, t) = −
Nr
∑

r=1

∆Tr
1

Mr
wr(T − t) ∂ts(xr, yr, T − t) δ(x − xr) δ(y − yr), (2.33)

where r is the receiver index, Nr is the number of receivers, ∆Tr is the cross-correlation

traveltime measurement over a time window wr(t), s(x, y, t) is the forward wavefield deter-

mined by (2.29), (xr, yr) is the location of the receiver, T is the length of the time series,

and Mr is a normalization factor. The key point is that the adjoint force comprises time-

reversed velocity seismograms, input at the location of the receivers and weighted by the

traveltime measurement associated with each receiver.

For a given earthquake (event), the interaction between the adjoint wavefield and the
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forward wavefield gives rise to the membrane event kernel

K(x, y) = −2µ(x, y)

∫ T

0

[

∂xs†(x, y, T − t)∂xs(x, y, t) + ∂ys
†(x, y, T − t)∂ys(x, y, t)

]

dt.

(2.34)

Note that the misfit between the data and synthetics is incorporated into the adjoint source

(2.33), which gives rise to the adjoint wavefield s†. Equation (2.34) is obtained from the

expression for an SH β-kernel in Tromp et al. (2005), which contains a product of the adjoint

and regular deviatoric strain tensors. In the case of the SH (or membrane) waves, there

are four nonzero components (two unique) of each deviatoric strain tensor, which leads to

(2.34).

Figures 2.5 and 2.6 show the construction of an event kernel for a single source–receiver

pair for a cross-correlation traveltime measurement. The source-receiver geometry and

forward wavefield are shown in the left column of Figure 2.5. The synthetics are computed

for a homogeneous reference model (c = 3.50 km/s), and the data are computed for a

uniformly perturbed “target” model with δ ln c = 0.1, i.e., c(1 + δ ln c) = 3.85 km/s. The

cross-correlation traveltime measurement at the receiver is ∆T = −9.72 s, indicating a late

arrival of the synthetics with respect to the data. The adjoint source function is constructed

by time-reversing the synthetic velocity recorded at the receiver and multiplying by ∆T

(Figure 2.6; eq. 2.33).

We now replace the homogeneous target model with the checkerboard target model in

Figure 2.7a. Figure 2.8 shows the construction of an event kernel for this target model

for multiple receivers, thereby incorporating multiple measurements. Just as in Figure 2.5,

the event kernel that forms in Figure 2.8 highlights the regions of the current model that

give rise to the (cross-correlation traveltime) discrepancies between the data and synthetics.

However, in Figure 2.8 this is more obvious since the model used to generate the data is

not simply a homogeneous perturbation but rather a large-scale checker pattern. The event

kernel in Figure 2.8 looks qualitatively similar to the phase-speed model in Figure 2.7,

except with the opposite sign, which is consistent with (2.11): for the variation of the misfit

function to be negative, we invoke a fast, positive (blue) structural perturbation where the

kernel is negative (red), and a slow, negative structural perturbation where the kernel is

positive.
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As shown in (2.33), the amplitude of the adjoint source at a particular receiver, r,

is determined in part by the traveltime measurement ∆Tr. Changing the values of ∆Tr

changes the weights of the corresponding individual banana-doughnut kernels that comprise

the event kernel, something that is explicit in the classical sense (2.12). It is possible

to incorporate some measure of weighting at the stage of constructing the adjoint source

in order to account for uneven coverage (Figure 2.1), as demonstrated in Takeuchi and

Kobayashi (2004). Another option is to weight the adjoint sources according to realistic

uncertainties associated with each measurement (Tarantola, 1984): a measurement with a

high uncertainty will have a small amplitude weight, and thus a relatively weak contribution

to the event kernel.

2.5.2 Misfit kernels and damping

We define the misfit kernel as the sum of the event kernels for a particular model. Thus,

the gradient of the misfit function, g, is obtained as in (2.32) using the misfit kernel K(x).

Figure 2.9 shows the construction of a misfit kernel for 25 events. Note that features of

each event kernel are very different, even for the simple checkerboard model in this example

(Figure 2.7). Only after summing the event kernels does the pattern (Figure 2.9h) begin to

resemble the model used to generate the data (Figure 2.9i).

We apply a smoothing operator to the misfit kernels in order to remove spurious am-

plitudes in the immediate vicinity of the sources and receivers (Figure 2.10). This is ac-

complished by convolving (in 2D) the unsmoothed misfit kernel with a Gaussian of the

form

G(x, y) =
4

π Γ2
e−4 (x2+y2)/Γ2

, (2.35)

where Γ is the full-width of the Gaussian, defined such that at a (polar) distance r = Γ/2,

the Gaussian has amplitude G(r) = G(0)e−1; thus Γ is the scalelength of smoothing (Fig-

ure 2.10). The choice of Γ is somewhat analogous to the choice of damping parameter γ for

the inversion of the Hessian (eq. 2.27), which involves a degree of subjectivity. In the adjoint

method, subjectivity may be removed by selecting Γ according to the shortest wavelengths

of the waves. It seems sensible to smooth the kernels using scalelengths somewhat less than

the wavelengths of the seismic waves resolved in the numerical simulation.
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There will exist short-scalelength features and fringes in kernels based on more compli-

cated 2D or 3D models, such as the fringes shown in Tromp et al. (2005, Figure 9) for the

P-SV wavefield or in Zhou et al. (2004, Figure 13b). The smoothing operation will tend to

remove these sub-resolution features from the kernel. An alternative approach to smoothing

the inversion is to add an explicit damping term to the misfit function (e.g., Akçelik et al.,

2002, 2003), as outlined in Section 2.10. This approach leads to an additional term in the

expression for the gradient, which represents the desire to obtain a smooth model. We

prefer to convolve the misfit kernel with a simple Gaussian that represents the resolution

of the simulation, and this is the approach we will take in this paper.

2.5.3 Basis functions

As shown in (2.32), the calculation of the gradient of the misfit function requires a choice of

model parameterization. Which basis functions should one use? In the classical tomographic

example discussed in Section 2.3.3 we used M = 286 spherical spline basis functions to

parameterize the model (see Figure 2.2). In adjoint tomography, where the wavefields

and kernels are represented on discretized grids, we can use the basis functions embedded

in the numerical method itself, for example for the SEM we use Lagrange polynomials

(Komatitsch and Tromp, 1999). This has the advantage that no restrictions are placed on

the wavelengths of the model, other than that they need to be resolvable by the waves used

in the inversion. This approach increases the number of model parameters dramatically

compared to a classical inversion, but because we do not need to invert a Hessian in the

adjoint approach this is of no consequence.

Any smooth function f(x), where x = (x, y), that is sufficiently resolved by the SEM

mesh can be expressed in discrete form as

f(x) =

Nglob
∑

k=1

fkLk(x), (2.36)

where k = 1, . . . , Nglob is the index of the Nglob global node points, fk = f(xk) is the

functional value at global node xk, and Lk(x) is a global function defined by

Lk(x) =







lα(ξ(x, y)) lβ(η(x, y)) if xk ∈ Ωe and k|Ωe
= (α, β),

0 if xk 6∈ Ωe.
(2.37)
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Here lα and lβ are Lagrange polynomials of degree α and β, respectively. We use degree 4

polynomials, i.e., 5 Gauss-Lobatto-Legendre points, in the 2D simulations presented in this

paper. The invertible mapping from the reference square with points (ξ, η), with −1 ≤ ξ ≤ 1

and −1 ≤ η ≤ 1, to the deformed quadrilateral spectral-element Ωe with points (x, y) may be

written in the form ξ = ξ(x, y), η = η(x, y) (e.g., Komatitsch and Vilotte, 1998; Komatitsch

and Tromp, 1999). Note that functions Lk(x) corresponding to global grid points xk located

on the edges or corners of elements have nonzero contributions from all elements that share

the global point. At the kth node,

Lk(xk) = 1, (2.38)

in accordance with (2.36).

The functions Lk(x) are orthogonal but not orthonormal. We may obtain a set of

orthonormal basis functions Bk(x) based on the definition

Bk(x) = Lk(x)/Ak, (2.39)

where Ak is the square-root-area associated with the kth node:

A2
k =

∫

Ω
L2

k(x) d2x. (2.40)

The Bk are orthonormal in the sense that

∫

Ω
Bk(x)Bk′(x)d2x = δkk′ , (2.41)

and any function can be expanded in terms of these basis functions. For example, we may

expand the misfit kernel K(x) in terms of the basis functions Bk(x) as

K(x) =

Nglob
∑

k=1

K̃kBk(x). (2.42)
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The expansion coefficients K̃k are determined by

K̃k =

∫

Ω
K(x)Bk(x) d2x =

∫

Ω

∑

k′

Kk′Lk′(x)Bk(x) d2x =
∑

k′

Kk′Ak′

∫

Ω
Bk′(x)Bk(x) d2x

= KkAk (2.43)

where Kk = K(xk) is the value of the misfit kernel at a global grid point, and we have used

(2.36) and the orthonormality relation (2.41).

Now let us assume we have computed a misfit kernel K(x). In discrete form, we can

write K(xk) = Kk, since K is defined on the Nglob = 25921 global nodes of the SEM

mesh. Upon comparing (2.32) with (2.43), we see that, using the basis functions (2.39), the

gradient of the misfit function is simply

gk = KkAk. (2.44)

This provides a trivial step from the discretized kernel to the gradient. Using the M = Nglob

basis functions in (2.39), the model parameters (2.13) are therefore

δmk = δ ln ckAk, (2.45)

where δ ln ck is the discrete version of δ ln c(x).
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2.6 Optimization: iterative improvement of the model

In the previous section we showed how to compute the gradient of the misfit function by

summing event kernels (Figure 2.9) and subsequently multiplying by the basis functions

of the model (2.32). In this section we illustrate how iterative improvements to the model

may be determined based on a nonlinear conjugate gradient algorithm (Fletcher and Reeves,

1964). We demonstrated this algorithm for a simple source inversion in Tromp et al. (2005,

Section 8.1). In Section 2.6.2 we consider a 2D tomographic example.

2.6.1 Conjugate gradient algorithm

The algorithm we use may be summarized as follows: given an initial model m0, calculate

F (m0), g0 = ∂F/∂m(m0), and set the initial conjugate gradient search direction equal

to minus the initial gradient of the misfit function, p0 = −g0. If ||p0|| < ǫ, where ǫ is a

suitably small number, then m0 is the model we seek to determine, otherwise:

1. Perform a line search to obtain the scalar νk that minimizes the function F̃ k(ν) where

F̃ k(ν) = F (mk + νpk)

g̃k(ν) =
∂F̃ k

∂ν
=

∂F

∂m

(

mk + νpk
)

· pk

• Choose a test parameter νk
t = −2F̃ k(0)/g̃k(0), based on quadratic extrapolation.

• Calculate the test model mk
t = mk + νk

t p
k.

• Calculate F (mk
t ) and, for cubic interpolation, gk

t = g(mk
t ).

• Interpolate the function F̃ k(ν) by a quadratic or cubic polynomial and obtain

the νk that gives the (analytical) minimum value of this polynomial.

2. Update the model : mk+1 = mk + νkpk, then calculate gk+1 = ∂F/∂m(mk+1).

3. Update the conjugate gradient search direction: pk+1 = −gk+1 + βk+1pk, where

βk+1 = gk+1 · (gk+1 − gk)/(gk · gk).

4. If ||pk+1|| < ǫ, then mk+1 is the desired model; otherwise replace k with k + 1 and

restart from 1.
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A key decision is the choice of the test parameter, νk
t , which determines how far one

should go in the direction of the search direction (initially the negative gradient) to obtain

the test model. We assume a quadratic form of the misfit function and determine νk
t based

on this assumption. Computation of F (m) (misfit) and g(m) (misfit kernel) are expensive

in the tomographic problem, and thus we must limit the number of computations as much

as possible. Some of these aspects are addressed in Section 2.6.3.

2.6.2 2D tomographic example

Using (2.6), we can define the average traveltime anomaly for a particular model:

∆T =
√

2F (m)/N. (2.46)

This gives some physical meaning to the F -values in the plots in this section. Figure 2.11a–i

shows one cycle of the conjugate gradient algorithm for the 2D tomographic example. Part

(a) shows the phase-speed model used to generate the data (the “target” model), and (b)

shows the initial phase-speed model, m0, used to generate the initial synthetics. The phase

speed of the initial model is c = 3.50 km/s, the period of the source in the simulations is

τ = 20 s, and thus the reference wavelength is approximately λ = cτ = 70 km.

Figure 2.11c shows the (smoothed) gradient for this model. The gradient is represented

by the slope g̃0(0) of a line passing through [0, F̃ (0)] (Figure 2.11d). Quadratic extrapolation

with a parabolic minimum at (ν0
t , 0) gives the ν-value for a new test model (Figure 2.11d,

Section 2.11). Figure 2.11e shows the test model, m0
t , for which we compute the gradient

via the process shown in Figures 2.7–2.10, but now the model is no longer homogeneous.

The gradient, shown in Figure 2.11f, is then depicted as the slope of a line passing through

[ν0
t , F̃ (ν0

t )] (Figure 2.11g).

Next, in Figure 2.11g we approximate F̃ 0(ν) by a cubic polynomial, P 0(ν), passing

through two points, [0, F̃ 0(0)] and [ν0
t , F̃ (ν0

t )], and having slopes at these points corre-

sponding to the respective gradients. In other words, six values are needed to obtain an

analytical minimum of the cubic function: the two models (represented by ν = 0 and ν0
t ),

the misfits of these models, and the derivatives at these points (see Section 2.11). The

minimum, [ν0, P 0(ν0)], indicates the expected value of the misfit for the updated model

given by m1 = m0 − ν0g0, which is shown in Figure 2.11h and represented by the point
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(ν0 = 1.2 × 104, 0) in Figure 2.11g. Figure 2.11i shows the decrease in the misfit function

going from m0 to m1. The dashed curve is determined based on the nine iteration points

in Figure 2.12.

Figure 2.11 thus constitutes one iteration of the conjugate gradient algorithm. The

process is repeated, and the results are shown in Figure 2.12. Each iteration produces a

model that looks qualitatively more similar to the target model shown in Figure 2.11a, and

generates a lower value of the misfit function (2.6). We draw a best-fitting hyperbola to the

log10 values to highlight the convergence.

We next use the seismologically more interesting Rayleigh wave phase-speed model in

Figure 2.1. In comparison with Figure 2.11a, this model has variable scalelength and lower

amplitude perturbations. The weaker perturbations result in a lower initial misfit, F (m0) =

1182.0 s2. Figure 2.13 shows the recovery of an interior portion of the model, where path

coverage is good. The basic features in the target phase-speed model (Figure 2.20a) are

recovered by the third iteration (Figure 2.13d). The two sets of points in the Figure 2.13f

are discussed in the next section. The model obtained after the first iteration, model m1

shown in Figure 2.13b, looks very similar to the model obtained based on a classical Hessian-

based inversion with heavy damping shown in Figure 2.4g. This reflects the fact that in the

conjugate gradient approach one is effectively working with an initial approximation to the

Hessian that is the identity matrix.

2.6.3 Variations on the conjugate gradient algorithm

Based on the conjugate gradient algorithm outlined in Section 2.6.1, we require 4Nevents

numerical simulations for each iterative improvement of the model: synthetics for m0, the

gradient for m0, synthetics for test model m0
t , and the gradient for m0

t . This information is

used to compute the analytical minimum for a cubic polynomial. An alternative approach is

to perform 3Nevents numerical simulations per iteration by neglecting the gradient of the test

model and using a quadratic polynomial to compute an analytic minimum (Section 2.11)

A comparison of these two approaches is shown in Figure 2.20f. The initial model for

both cases has a misfit of F (m0) = 1182.0 s2 for N = 3300 seismograms, corresponding to

an average traveltime anomaly of ∆T (m0) = 0.85 s (eq. 2.46). Using 4Nevents simulations

with a cubic polynomial, we obtain a negligible advantage in terms of a better convergence

of F (m): for example, F (m8
cubic) = 3.52 s2 whereas F (m8

quad) = 3.75 s2 (Figure 2.20). To
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the eye, the recovered models mk
cubic and mk

quad are indistinguishable.

An additional part of the conjugate gradient algorithm that can be adjusted is the selec-

tion of the test model, which we discuss in Section 2.11. Finally, we note that entrapment

into local minima is common in the conjugate gradient method, as addressed in Akçelik

et al. (2002, 2003). Such local minima may be avoided by using multiscale methods (Bunks

et al., 1995). Alternatively, by starting at longer periods, which constrain the long wave-

length heterogeneity, and gradually moving to shorter periods, which constrain smaller scale

structures, one can also try to avoid local minima.

2.7 Tomographic experiments

The greater the number of events used in the inversion, the better the recovery of the model.

Figure 2.14 shows the recovery of the model in Figure 2.15i using 5, 15, and 25 sources,

respectively.

Figure 2.15 examines the effect of the smoothing parameter, Γ, on the recovery of three

different phase-speed models, each having a scalelength of structural heterogeneity that is

proportional to the reference wavelength. Using a smaller Γ we resolve shorter-scalelength

structures, whether they are in the target phase-speed model or not. When the scalelength

of the smoothing exceeds that of the structure (Γ > Λ), the structure is smoothed out, as

expected (Figure 2.15l).

The introduction of random errors into the cross-correlation traveltime measurements,

∆Ti, has essentially no impact on model recovery in our examples. For example, we denote

a 50% error in the measurements by ∆T ′
i = ∆Ti (r + 0.5), where r ∈ [0, 1] is a random

number, ∆Ti is the “actual” measurement, and ∆T ′
i is the randomized measurement used

in the inversion. In terms of the adjoint method, the introduction of random errors has the

effect of changing the amplitude of the various banana-doughnut kernels that comprise the

event kernel. Because the coverage in this example is very good, several similar kernels are

“stacked” in constructing the event kernel, and thus the random errors effectively cancel.

2.8 Source, structure, and joint inversions

The traveltime differences between data and synthetics may be due to an inaccurate struc-

tural model, inaccurate source models, or some combination of both. In this section we
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illustrate the simultaneous inversion for structural and source parameters using adjoint

methods and the conjugate gradient algorithm. We first describe and illustrate the basic

source inversion and then address the joint inversion.

2.8.1 Basic source inversion

A perturbation of the point source (2.30) may be written in the form

δf(x, y, t) = −ḣ(t)δts δ(x−xs) δ(y−ys)+h(t)(δxs ∂xs
+δys ∂ys

)[δ(x−xs) δ(y−ys)], (2.47)

where δts denotes a perturbation in the origin time, (δxs, δys) a perturbation in the source

location, and ḣ(t) = ∂h/∂t = −∂h/∂ts.

Based on the theory outlined in Tromp et al. (2005, Section 8), a change in the traveltime

misfit function (2.7) due to a change in the point source is given by

δF =

∫ T

0

∫

Ω
δf(x, y, t)s†(x, y, T − t) dxdy dt, (2.48)

where s† denotes the adjoint wavefield, whose sources are time-reversed, measurement-

weighted seismograms, injected at the receivers, just as in the case of the structure inversions

(2.33). (Here the traveltime measurement is affected by source perturbations only.) Upon

substituting (2.47) we obtain

δF = − δts

∫ T

0
ḣ(t) s†(xs, ys, T−t) dt + (δxs ∂xs

+δys ∂ys
)

∫ T

0
h(t) s†(xs, ys, T−t) dt. (2.49)

We may express (2.49) in terms of the gradient as δF = g · δm, where

m =











(xk
s − x0

s)/λ

(yk
s − y0

s)/λ

(tks − t0s)/τ











, (2.50)

g =











λ
∫ T
0 h(t) ∂xs

s†(xs, ys, T − t) dt

λ
∫ T
0 h(t) ∂ys

s†(xs, ys, T − t) dt

−τ
∫ T
0 ḣ(t) s†(xs, ys, T − t) dt











. (2.51)

Here m is a three-parameter nondimensionalized model vector describing the source. The

source origin time ts is scaled by the reference period τ , and the source coordinates are
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scaled by the reference wavelength λ = c τ , where c is the reference phase speed. The

gradient vector, g, depends on the model m through the adjoint wavefield s†: by perturbing

the source, the measurement between data and synthetics changes, and thus the adjoint

wavefield changes correspondingly.

In the experiments in Section 2.6, the sources for the data and synthetics were identical,

whereas the structure was not. We now consider the effects of source perturbations, where

the point sources for the initial synthetics are mislocated and initiate at an incorrect time.

Tromp et al. (2005, Fig. 12) demonstrated a two-parameter source inversion based on

an adjoint method and the conjugate gradient algorithm. In that example, the two source

parameters described the magnitude vector of the point source. In Figure 2.16 we illustrate

a three-parameter source inversion for δm = (δxs, δys, δts). The structural models for the

data and synthetics are identical. We use the adjoint method to compute the gradient (2.51)

of the misfit function (2.6). Using the conjugate gradient algorithm, we recover the source

by the third iteration.

Finally, we emphasize that all of the equations in this section apply generally for any

measurement, for example waveforms or amplitudes. The computed values for the expres-

sions will differ, however, because the adjoint source f † (and the corresponding adjoint

wavefield s†) will vary for each measurement.

2.8.2 Joint inversions

In a joint inversion the sources and structure are initially different from the “target” sources

and structure, and we seek to determine both. If we consider the three-parameter source

inversion in Figure 2.16, then the model vector for the joint inversion is δm = [δmstr ; δmsrc]

with dimension Nstructure + 3Nevent. The misfit function is given by (2.6). We adjust the

gradient of the misfit function at each iteration according to a constant, J , computed from

the initial gradient:

gk =
[

Jgk
str ; gk

src

]

, (2.52)
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denoting a concatenation of the structure gradient gstr computed via (2.32) and the source

gradient gsrc computed via (2.51). The scaling factor J is given by

J = ‖g0
src‖2 / ‖g0

str‖2, (2.53)

where ‖ · ‖2 denotes the L2-norm of the enclosed vector. The motivation behind (2.52)

is that we want the source parameters and structural parameters to have about the same

contribution in the gradient in the conjugate gradient algorithm. The exact choice of J ,

e.g., L1- versus L2-norm, is not important. Note that the factor J is chosen once and for

all based on the initial structural and source gradients. Also, the gradients (gk, gk
str, gk

src)

are all with respect to the misfit function (2.6), evaluated at model mk.

Figure 2.17 compares a basic source inversion with a joint inversion. In the joint inversion

the initial structural model is homogeneous, and the sources are mislocated randomly within

5 km of the target source and have an inaccurate origin time within the range ±1 s. The two

misfit curves in Figure 2.17d show that the joint inversion does almost as well as the basic

structure inversion; in fact, it lags the misfit by only one or two iterations. In the final model

only the sources on the edges of the grid contain location and timing errors (Figure 2.19c to

Figure 2.17f), which is expected since there are few, if any, paths to constrain the structure.

Figure 2.18 shows the recovery of a single source during the joint inversion. It takes

approximately 16 iterations to fully recover the source (instead of the 3 iterations in Fig-

ure 2.16 for the basic source inversion), although most of the source location is still recovered

in the first few iterations. This increase is, of course, due to the gradual improvement of

the structural parameters, which initially differ by up to 10% from the target structure.

In an inversion with real data, the initial model is bound to be deficient both in terms

of structure and sources. Thus, a joint inversion is a logical approach. Figure 2.19 shows

the consequences of neglecting either source or structure in the inversion. In Figure 2.19a–c

we invert for structure and assume that the sources are accurate, when in fact they are

perturbed as shown in (c). The misfit curve in (a) shows that the conjugate gradient

approach appears to be working: the misfit decreases as the structure iterates to updated

models. However, it is clear that Figure 2.19b does not represent the true structure, since

we know the target model we are trying to recover, as well as its associated misfit curve for

the basic structure inversion. This illustrates how (fixed) errors in the source parameters are
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mapped into errors in the structural parameters. Figure 2.19d–f shows the opposite scenario:

the structure is fixed and assumed to be accurate, and we allow the source parameters to be

perturbed to reduce the traveltime misfit. The source parameters adjust themselves from

Figure 2.19c (initial) to Figure 2.19f (final) while reducing the misfit.

2.9 Discussion

2.9.1 Three types of sensitivity kernels

We have designated three types of sensitivity kernels: “banana-doughnut kernels,” “event

kernels,” and “misfit kernels.” A banana-doughnut kernel (e.g., Marquering et al., 1999) is

a phase-specific (e.g., P) kernel for an individual source-receiver combination; for our pur-

poses, the key point is that this kernel does not incorporate the measurement. Alternative

names include “finite-frequency,” “Born,” and “sensitivity” kernel. An event kernel can be

thought of as a sum of individual banana-doughnut kernels, such that each kernel in the sum

is weighted by its corresponding measurement. Using the adjoint approach, however, the

event kernel is not computed by summing banana-doughnut kernels, but rather in one single

simulation through the interaction between the forward wavefield and an adjoint wavefield

generated by simultaneous fictitious sources for all available arrivals at all available stations

(Section 2.5.1). A misfit kernel is simply the sum of event kernels, and may be thought

of as a graphical representation of the gradient of the misfit function. In classical tomog-

raphy, the banana-doughnut kernels are used to compute the gradient and (approximate)

Hessian of the misfit function for the Newton approach to the inverse problem. In adjoint

tomography, only the misfit kernels are used in the inverse problem.

2.9.2 Classical tomography versus adjoint tomography

In this paper, “classical tomography” refers to Hessian-based inversions, whereby the Hes-

sian is constructed from individual source-receiver paths, either in terms of rays or finite

frequency kernels. The Hessian matrix, with a damping parameter γ, can be inverted to

obtain structural models. We compute the traveltime anomalies, and thus F , via (2.6), and

then compare these values with those obtained from gradient-derived models.

Figure 2.20 shows a comparison among models produced using classical tomography,

mray (ray-based inversion) and mker (kernel-based inversion), and the model produced using
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adjoint tomography, m16 (16 conjugate gradient iterations). All three models are only subtly

different from the target model used to generate the data (Figure 2.20a). The misfit for

each approach is summarized in Figure 2.20e. The misfit values for the classical models,

F (mray) = 5.26 s2 and F (mker) = 4.90 s2, correspond to average traveltime anomalies of

∆T (mray) = 0.056 s and ∆T (mker) = 0.055 s (eq. 2.46), indicating that each recovered

model explains almost all of the traveltime differences between a homogeneous model and

the target model in Figure 2.1b. Two points regarding the two F -values are important:

(1) they are essentially the same, which is expected, since the Hessian used in each inversion

is very similar (Figure 2.3a); (2) they are met by the conjugate gradient approach by

the seventh conjugate gradient iteration. In other words, F (mray) ≈ F (mker) ≈ F (m7);

after seven conjugate gradient iterations, we recover a model equivalent to what could be

recovered by having the (ray- or kernel-based) Hessian. It is important to note that mray,

mker, and m1 are based on the homogeneous reference model m0, but for k > 1, the adjoint

tomography models mk are based on heterogeneous models.

Figure 2.20 might suggest that classical tomography “does pretty well” in comparison

with adjoint tomography. This is more or less true for the simple examples in this paper.

However, seismic tomography is transitioning from simple 1D reference models to fully 3D

reference models. The calculation of a Hessian for 3D reference models is generally not an

option, and thus one must resort to iterative, gradient-based algorithms. The results in this

paper illustrate that for the problems considered here, such iterative techniques work quite

efficiently and converge quickly.

The main advantages of the adjoint tomography approach are fivefold. First, all the

complexities that are considered in the forward problem (e.g., Komatitsch and Tromp,

2002a,b) can be considered in the inversion. For example, in this paper we have shown

finite-frequency sensitivity kernels based on heterogeneous models. But one could also

consider fully anisotropic Earth models with 21 elastic parameters for essentially the same

numerical cost as an isotropic simulation involving just two parameters. Second, the style of

tomography — traveltime, amplitude, waveform — is determined by the choice of the misfit

function (Tromp et al., 2005). Given the choice of measurement, one simply determines

the associated adjoint source that gives rise to the corresponding kernel. Third, any time

segment where the data and synthetics match reasonably well is suitable for a measurement.

One does not need to label a particular phase, like P or SS, because the adjoint simulation
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will reveal how this particular measurement (or time window) “sees” the Earth model, and

the resulting sensitivity kernel will reflect this view. Fourth, the model parameterization

is trivial (2.43) and requires only a conservative level of smoothing to remove numerical

artifacts in the kernels near the sources and receivers (Section 2.5.2). Furthermore, structure

can only be introduced in regions where the kernel (or gradient) is nonzero. This is in

contrast to classical tomography, where both the selection of basis functions and the choice

of damping involve a certain degree of undesired subjectivity. Finally, the approach scales

linearly with the number of earthquakes but is independent of the number of receivers and

the number of arrivals that are used in the inversion.

With southern California in mind, say we have Nevents = 150 earthquakes, Nreceivers =

150 SCSN stations, Ncomp = 3 components per seismogram, and Npicks = 4 time-windowed

measurements per component, for a total of NeventsNreceiversNcompNpicks = 270, 000 mea-

surements. An adjoint approach would require 2Nevents = 300 simulations to compute one

misfit kernel. A complete 7-iteration conjugate gradient inversion based on cubic interpola-

tion would require 7 × 3Nevents = 3150 total simulations. By comparison, a Hessian-based

inversion would require individual kernels for the 270,000 measurements, which, for 3D

models, is neither computationally feasible nor practical.

2.9.3 Feasibility of 3D–3D tomography

This paper is a step toward “3D–3D tomography,” denoting 3D heterogeneity within the

reference models and a 3D physical domain for the model, from which we compute finite-

frequency sensitivity kernels. (Based on this labeling, the classical tomographic examples

in this paper are 0D–2D, whereas the adjoint tomographic examples are 2D–2D.) Presently

our SEM codes are set up to compute 3D–3D sensitivity kernels on both regional and global

scales (Liu and Tromp, 2006, 2008). In this paper we have highlighted some aspects of the

inversion process that will be key to limiting the number of wavefield simulations required

in the inversion.

Let us estimate the computational cost of a regional-scale tomographic inversion. As

discussed, for 150 earthquakes we require 3150 total simulations for a 7-iteration inversion.

Each simulation takes approximately 35 minutes on 72 nodes (144 processors). Thus we

can perform 40 runs per day on 72 nodes, and more than 500 runs per day on a 1000-

node machine. Therefore, on this kind of hardware the whole inversion can theoretically be
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completed in about one week.

To avoid reaching a local minimum in the optimization procedure, we intend to start

by using longer-period waveforms, which existing 3D models fit reasonably well, and work

our way toward shorter periods. As we improve the model and increase the frequency

contents of the waveforms, we expect to not only improve the fit to the current data used

to constrain the model, but also to steadily increase the number of picks that is used in

the inversion, i.e., more and more parts of the seismograms are expected to be used and

matched in the iterative inversion process. Unlike Akçelik et al. (2003), our emphasis will be

on matching targeted, frequency-dependent body-wave traveltimes and surface-wave phase

anomalies, rather than entire waveforms. Waveform tomography is largely controlled by

amplitude differences, which are notoriously difficult to fit in seismology. Traveltime or

phase, on the other hand, is a robust measure of misfit that has been used for decades to

constrain local, regional and global Earth models. From our perspective, the progression

from ray-based traveltime tomography to finite-frequency “banana-doughnut” tomography

to frequency-dependent adjoint tomography is very natural.

2.10 Appendix A: Regularization

Here we review the fact that stabilizing the Hessian matrix (as in eq. 2.5) via damping is

equivalent to adding a regularization term R to the misfit function (2.6):

FR(m) = F (m) + R(m), (2.54)

whose gradient is, using (2.20),

∂FR

∂mk
=

∂F

∂mk
+

∂R

∂mk
= −

N
∑

i=1

Gik ∆Ti +
∂R

∂mk
. (2.55)

There are many options for regularization. For illustrative purposes, we consider regu-

larization according to the wave-speed model itself:

R = 1
2γ2

∫

V
(δ ln c)2 d3x, (2.56)

where γ is the damping parameter. Substituting (2.13), and then differentiating with respect
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to the kth model parameter, we obtain

R = 1
2γ2

M
∑

k=1

δmk

M
∑

k′=1

δmk′Dkk′, (2.57)

∂R

∂mk
= γ2

M
∑

k′=1

δmk′Dkk′ , (2.58)

where the M × M damping matrix D is given by

Dkk′ =

∫

V
Bk Bk′ d3x. (2.59)

If the basis functions are orthonormal, then D = I, the identity matrix. Substituting (2.58)

into (2.55), we obtain

∂FR

∂m
= −GTd + γ2Dδm, (2.60)

where D is, for example, (2.59) or (2.63). Substituting this for g(m) into (2.5), with

H = GTG, we obtain

(

GTG + γ2D
)

δm = GTd, (2.61)

which leads to (2.28). Equation (2.61) is known as “Tikhonov” regularization or “ridge

regression,” and is based on minimizing an L2-norm measure of D δm (e.g., Hansen, 1998,

Ch. 5). (Typically these two labels refer to the case D = I.)

Instead, if we regularize using the gradient of the wave-speed model (e.g., Akçelik et al.,

2003), we obtain

R = 1
2γ2

∫

V
∇(δ ln c) · ∇(δ ln c) d3x, (2.62)

then the damping matrix is

Dkk′ =

∫

V
(∇Bk) · (∇Bk′) d3x. (2.63)
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Regularization according to the roughness of the model (e.g., Zhou et al., 2005) leads to

R = 1
2γ2

∫

V

(

∇2δ ln c
)2

d3x, (2.64)

Dkk′ =

∫

V

(

∇2Bk

) (

∇2Bk′

)

d3x. (2.65)

Different norms or constraints, as well as combinations of constraints (resulting in multiple

damping parameters), may be used in forming R(m). For example, Akçelik et al. (2002)

advocated the use of L1-based, “total variation” regularization, which avoids smoothing of

sharp gradients in material properties. Akçelik et al. (2003) applied L1 regularization for

the structure gradients and L2 regularization for the source gradients.

2.11 Appendix B: Details of the conjugate gradient algo-

rithm

The computation of the misfit value F (m) and gradient g takes 2Nevents simulations. Be-

cause each simulation is expensive, it is important to limit the number of simulations in the

inverse problem, which we approach using a conjugate gradient algorithm (Section 2.6.1).

Two possible areas to aid in this are the selection of the trial step νt and the choice of the

polynomial (quadratic or cubic) to use in the interpolation. In this section we have omitted

the superscript k on quantities to avoid clutter.

2.11.1 Selection of the trial step

The trial step, or test parameter, νt, determines how far away from the current model to go

in the search direction in order to obtain a test model (and, possibly, test gradient). Given

the misfit value, F (m), and the gradient, g(m), for the current model, the user is faced

with determining how far to step in the search direction away from the current model to

obtain a test model, for which an additional misfit value will be computed. The gradient

vector g is represented in the conjugate gradient algorithm as a slope, g̃(0), and the misfit

function in the search direction by F̃ (ν). In the algorithm, we select the test parameter by

interpolating F̃ (ν) using a quadratic polynomial, Q(ν):

Q(ν) = aν2 + bν + c, (2.66)
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where a, b, and c are determined using the value (r1) and slope (g1) for the current model,

and a test model location such that the value (r2) and slope (g2) of Q(ν) at νt are both

zero (see Figure 2.11d). The four values are given by

r1 ≡ Q(0) = F̃ (0) = F (m),

g1 ≡ Q′(0) = g̃(0),

r2 ≡ Q(νt) = 0,

g2 ≡ Q′(νt) = 0.

These equations can be used to determine the coefficients of Q(ν):

a = −g1/(2νt) = g2
1/(4r1),

b = g1,

c = r1,

as well as the test parameter

νt =
−2r1

g1
=

−2F (m)

g̃(0)
, (2.67)

which is the value used in the algorithm discussed in Section 2.6.1.

The “test model parabola” Q(ν) is chosen such that its vertex lies on F = 0; however,

one could choose the vertex at some F > 0 that is determined based on the change in

misfit from a previous step. The quadratic extrapolation through F = 0 is perhaps too

conservative, and computational savings — in the form of better convergence — could be

obtained by exploring the choice of the initial step.

2.11.2 Quadratic versus cubic interpolation

As discussed in Section 2.6.3, the tomographer is faced with the choice of using a second-

or third-order polynomial, P (ν), in the interpolation scheme within the conjugate gradient

algorithm. Here we outline the formulas required to compute an analytical minimum, νmin,

using each interpolation scheme.

With an order-3 polynomial, one must have four quantities in addition to the test

parameter νt: the misfit and gradient for the current model, F (m) and g, and the misfit
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and gradient for the test model, F (mt) and gt. These values are converted into scalar values

for an interpolating polynomial P (ν):

ν1 = 0,

ν2 = νt,

p1 ≡ P (ν1) = F (m),

g1 ≡ P ′(ν1) = g̃(0),

p2 ≡ P (ν2) = F (mt),

g2 ≡ P ′(ν2) = g̃(νt).

The cubic polynomial can be written in terms of these quantities as

P (ν) = a (ν − ν1)
3 + b (ν − ν1)

2 + c (ν − ν1) + d, (2.68)

where

a = [−2(p2 − p1) + (g1 + g2)(ν2 − ν1)] / (ν2 − ν1)
3 ,

b = [3(p2 − p1) − (2g1 + g2)(ν2 − ν1)] / (ν2 − ν1)
2 ,

c = g1,

d = p1.

An analytical minimum of P (ν) can be obtained when |c| > 0:

νmin =







ν1 + [−b + (b2 − 3ac)1/2] / (3a) a 6= 0 and b2 − 3ac > 0

−c/(2b) a = 0 and b 6= 0; b2 − 3ac < 0.
(2.69)

With an order-2 polynomial, the gradient of the test model — gt or g2 — is not required.

In this case, the quadratic polynomial can be written in terms of (2.68) as

P (ν) = a (ν − ν1)
2 + b (ν − ν1) + c, (2.70)
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where

a = [(p2 − p1) − g1(ν2 − ν1)] /
(

ν2
2 − ν2

1

)

,

b = g1,

c = p1 − aν2
1 − bν1.

The analytical minimum of P (ν) is simply

νmin = −b/(2a). (2.71)

Based on our experiments, the quadratic interpolation is preferred over the cubic interpola-

tion, since it costs 3Nevents per iteration (versus 4Nevents) and performs only slightly worse

(Figure 2.13f).
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(b)  Rayleigh wave phase speed map 

Figure 2.1: Source–receiver geometry for the numerical experiments in this study. The
I symbols denote the locations of 25 earthquakes (each has a M ≥ 4.0 and occurred
between 1990 and 2005); the ◦ symbols denote the locations of 132 broadband receivers in
the Southern California Seismic Network (SCSN). The earthquakes are selected to obtain
relatively uniform coverage; all SCSN receivers in the area are included. (a) Topography
and bathymetry in the region. (b) Phase speed map for 20 s Rayleigh waves, based on the
regional model of Hauksson (2000), modified with the Moho map of Zhu and Kanamori

(2000). This phase speed map is used to generate synthetic data used in some of the
inversion experiments.
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Figure 2.2: Example computation for an element, Gik, of the design matrix G, using rays
(a-c) and finite-frequency kernels (d-f). The row index i is the source-receiver combination,
the column index k is the basis function index. The source is denoted by the I, the
receiver is denoted by the △, and the ◦ shows the center-point of the spherical spline
in (b) or (e). (a) Ray path for event number 1 and receiver number 126 (Figure 2.1),
corresponding to the i = 126 index of the N = 3300 ray paths. (b) B203(x), the spherical
spline basis function for index k = 203. Also shown are the center-points of the M = 286
spherical splines. (c) Spline B203 evaluated along the ray path. The value of the phase
speed for the reference model is constant, so Gik = (−1/c)

∫

ray
i

Bk ds (eq. 2.15). In this

example Gik = −1/(3780m s−1) (2.45 × 104 m) = −6.46 s. (d) Cross-correlation traveltime
sensitivity kernel for event number 1 and receiver number 126 (Figure 2.1), corresponding
to the i = 126 index of the N = 3300 kernels. (e) B150(x), the spherical spline basis
function for index k = 150. Also shown are the center-points of the M = 286 spherical
splines. (f) The function K126(x)B150(x). The integral of this function gives the value
Gik =

∫

Ω K126 B150 d2x = −1.03 s. (See Section 2.2.)
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Figure 2.3: The Hessian matrix and gradient vector for a classical tomography inversion.
(a) The Hessian matrix, H̃ = GTG, for the source-receiver geometry shown in Figure 2.1,
using finite-frequency kernels based on cross-correlation traveltime measurements. Each
element of G is constructed as shown in Figure 2.2d-f. The Hessian matrix computed using
rays, as shown in Figure 2.2a-c, is indistinguishable from the one shown in this figure. In
practice, a damping matrix is added to the Hessian to stabilize the inversion (2.27). (b) The
diagonal elements of the Hessian matrix, H̃ii, expanded in the spherical spline basis functions
to illuminate the spatial pattern (e.g., Zhou et al., 2005, Figure 3). This map is a proxy for
spatial coverage and depends on the source-receiver geometry, the basis functions, and the
sensitivity kernels. (c) The gradient vector, g = −GTd, expanded in the spherical spline
basis functions, whereby d includes cross-correlation traveltime measurements between data
computed for the target phase-speed model in Figure 2.1b and synthetics computed for a
homogeneous phase-speed model (c = 3.78 km/s). The I symbols denote the sources, and
the ◦ symbols denote the receivers.
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Figure 2.4: Model recovery and damping in classical tomography, illustrated for an in-

version using 3300 banana-doughnut kernels. Each model is computed via m = −H̃
−1
γ g,

where H̃γ = GTG + γ2I is the Hessian matrix with damping parameter γ, and g = −GTd

is the gradient vector (Figure 2.3c). The undamped Hessian matrix, H̃0, is shown in Fig-
ure 2.3a-b. (a)–(f) Recovered phase-speed models for various values of γ. The color scale
for each model is shown below (i). (g) Same as (f), but with a more saturated color scale
to show its resemblance to the gradient (Figure 2.3c). (h) L-curve illustrating the trade-off
between misfit norm and model norm, that is, ‖Gm − d‖2 versus ‖m‖2. Note that this
measure of misfit is not the same as dTd, the misfit function in (2.6). The γ values for the
model-points are spaced by uniform log10 increments. (i) Target phase-speed model used
to generate the data (Figure 2.1b). The I symbols denote the sources, and the • symbols
denote the receivers. See Section 2.3.3.
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Figure 2.5: Sequence of interactions between the regular and adjoint wavefields during the
construction of a traveltime cross-correlation event kernel K(x). The I symbol denotes the
source, and the △ symbol denotes the receiver. Each row represents the time-step indicated
on the left. In this case, with only a single receiver and a uniform model perturbation, the
event kernel resembles a banana-doughnut kernel Ki(x). The event kernel is constructed
via the interaction between the forward wavefield (first column) and the adjoint wavefield
(second column). The interaction field (third column) is the instantaneous product of the
two wavefields, which is integrated to form the event kernel (fourth column). The event
kernel shows the region of the current model that gives rise to the discrepancy between the
data and the synthetics. The regular source function and adjoint source function are shown
in Figure 2.6.
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Figure 2.6: Construction of an adjoint source function used in calculating the membrane
surface-wave event kernel in Figure 2.5. The traveltime sign convention is shown in (2.8),
such that ∆T < 0 represents a delay of the synthetics with respect to the data. The duration
of the simulation is T = 175 s.
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Figure 2.7: Experimental setup for the event kernel shown in Figure 2.8. The data are
computed using the target phase-speed model, and the synthetics are computed using the
initial model. The minimum and maximum percent perturbations in the target model are
±10%. The red star is the event location, and the circles denote the 132 receivers. For
plotting purposes, the gridpoints are converted to longitude-latitude points, which results
in the nonrectangular appearance of the boundary of the grid.
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Figure 2.8: Formation of an event kernel for multiple receivers. The phase-speed models
used to generate the data and synthetics are shown in Figure 2.7. See Figure 2.5 for
details. In comparison with Figure 2.5, here the event is in a different location, there are
132 receivers instead of one, and the data are generated from a checkerboard model, not a
uniformly perturbed model.
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(a)  Event kernel  01 / 25 (b)  Event kernel  02 / 25 (c)  Event kernel  03 / 25 

 

(d)  Event kernel  04 / 25 
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Figure 2.9: Construction of a misfit kernel. (a)–(g) Individual event kernels, each con-
structed via the method shown in Figure 2.8 (which shows Event 5). The color scale for
each event kernel is shown beneath (g). (h) The misfit kernel is simply the sum of the 25
event kernels. (i) The source-receiver geometry and target phase-speed model. There are a
total of N = 25× 132 = 3300 measurements that are used in constructing the misfit kernel.
(See Section 2.5.)
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(a)  Unsmoothed kernel for m0 (b)  Smoothed kernel,  Γ = 60.0 km 

 

(c)  Residual  =  (a) - (b) 

 

(d)  Smoothed kernel,  Γ = 15.0 km 

 

 

(e)  Residual  =  (a) - (d) 

Figure 2.10: Smoothing the misfit kernel. (a) Unsmoothed misfit kernel (Fig. 2.9h). (b)–
(c) Smoothed misfit kernel, with residual, obtained via convolution of a Gaussian function
(bottom left inset) with (a). The parameter Γ = 60 km controls the width of the Gaussian
and, thus, the degree of smoothing; its value is plotted as a line next to the Gaussian.
(d)–(e) Same as (b)–(c), but for less smoothing (Γ = 15 km). Note that the source and
receiver labels are not plotted in the residual plots. (See Section 2.5.2.)
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Figure 2.11: (Caption on following page)
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Figure 2.11 (previous page): The conjugate gradient algorithm applied to a 2D tomographic

example. An extended explanation can be found in Section 2.6.2. The algorithm is repeated

to obtain the models in Figure 2.12. (a) Target phase-speed model used to generate the data.

(b) Phase-speed model used to generate the initial synthetics. The period of the source is

τ ≈ 20 s, the reference wave speed is c = 3.50 km/s, and thus the reference wavelength

is λ ≈ 70 km. (c) Misfit kernel — corresponding to the gradient of the misfit function —

constructed as illustrated in Figures 2.8–2.10, with smoothing parameter Γ = 30 km. This

kernel highlights the regions of model (b) that need to be improved to reduce the misfit

between data and synthetics. (d) Representation of the misfit of the initial model (b) and

the initial gradient (c) in the conjugate gradient algorithm. The misfit is denoted by the

•, and the gradient is denoted by the red dashed line. The white circle indicates the test

model obtained by quadratic extrapolation of the gradient through F = 0. (e) Test model

m0
t corresponding to the white circle in (d). (f) Gradient associated with the test model

in (e). (g) Cubic interpolation of two misfit values, F (m0) and F (m0
t ), and two gradients,

shown in (c) and (f). The analytical minimum provides ν0, the distance away from m0 (b)

in the direction of (c) that is taken to obtain the first updated model, m1. (h) First updated

model, m1, corresponding to the white circles in (g) with ν0 = 1.24 × 104. (i) Misfit values

for the first two models. The red dashed curve is taken from Figure 2.12f.
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(a)  Phase speed model m1 (b)  Phase speed model m2 (c)  Phase speed model m3 

 

(d)  Phase speed model m4 

 

(e)  Phase speed model m8 
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Figure 2.12: Iterative improvement of the reference phase-speed model using the conjugate
gradient algorithm illustrated in Figure 2.11. An extended explanation can be found in
Section 2.6.2. The first iteration in Figure 2.11 produces m1 (a), which becomes the current
model, from which we obtain m2 (b), and so on. The red dashed hyperbolic curve in (f) is
drawn to accentuate the reduction in misfit.
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Figure 2.13: Adjoint tomography recovery of a Rayleigh wave phase-speed model (Fig-
ure 2.20a). Here we show an interior portion of the southern California region with sufficient
path coverage. The color scale for each model is shown below (e). (a) Initial phase-speed
model m0. Faults of Jennings (1994) are drawn only for scale. (b)–(e) Iterations m1, m2,
m3, and m16. (f) Reduction in the misfit function (2.6) using cubic interpolation (•) versus
quadratic interpolation (◦) in the conjugate gradient algorithm (Section 2.6.3).
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m8,  Nevents = 5,  ∆T = 0.218 s m8,  Nevents = 15,  ∆T = 0.207 s m8,  Nevents = 25,  ∆T = 0.182 s 

Figure 2.14: Effect of the number of events on the recovery of the phase-speed models.
Data are generated from the phase-speed model in Figure 2.15i. The average traveltime
anomaly, ∆T , is computed from the misfit function value, F (m8), using (2.46). As expected,
∆T decreases as we increase the number of events.
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(a) Target phase speed model  (n = 3) (e) Target phase speed model  (n = 2) (i) Target phase speed model  (n = 1) 

 

(b) Recovered  (m8,  Γ = 30.0 km) 

 

(f) Recovered  (m8,  Γ = 30.0 km) 

 

(j) Recovered  (m8,  Γ = 30.0 km) 

 

(c) Recovered  (m8,  Γ = 60.0 km) 

 

(g) Recovered  (m8,  Γ = 60.0 km) 

 

(k) Recovered  (m8,  Γ = 60.0 km) 

 

(d) Recovered  (m8,  Γ = 90.0 km) 

 

(h) Recovered  (m8,  Γ = 90.0 km) 

 

(l) Recovered  (m7,  Γ = 90.0 km) 

Figure 2.15: Effect of the degree of smoothing and scalelength of heterogeneity on the
recovery of the phase-speed models. The factor n is given by Λ = nλ, where Λ is the
scalelength of heterogeneity and λ = cτ = 70 km is the reference wavelength. The smoothing
parameter, Γ, is constant for each row. (See Figure 2.10 and Section 2.7.)



CHAPTER 2. Finite-frequency tomography using adjoint methods 63

δxs (km)

δy
s  (km

)

δt
0
 (

s
)

model number (iteration)

χ
 (
m

) 
 (

s
2
)

2 310

0

0

0

-1

-0.2

-0.4

-0.6

-0.8

-1.0

-1.2

-1.4

-1.6

-1.8

-1

1

-2
-3-4

-5-6

m0

m0

(m0)

(m0)

m1

m1

mdat

m2

m3

(a) (b)

N

10-2

10-1

100

101

102

103

-7

Figure 2.16: Basic source inversion: source recovery using an unperturbed (fixed) wave-
speed structure. The model vector, m = (δxs, δys, δts), represents the source with respect
to the initial model, where (xs, ys) is the location and ts is the origin time. The data are
generated using the target source model mdat. The initial source model for the synthetics,
m0, initiates 0.53 s late with respect to the data and is mislocated by 4.93 km at an azimuth
of N85.8◦E with respect to the data. The initial source parameters are randomly chosen
from a mislocation “patch” with a 5 km radius and a timing error range of ±1 s. (a) Iterative
improvement of the source model toward the target source model. White circles show the
projections of the model points onto horizontal and vertical planes, respectively; these are
shown to aid in the perspective. (b) Reduction in the traveltime cross-correlation misfit
(2.6) for the source models shown in (a). (See also Figure 2.18.)
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Figure 2.17: Joint inversion for source and structural parameters. The initial structural
model is homogeneous. The traveltime cross-correlation misfit function values in (a) and
(d) are computed from (2.6). The data are generated using Figure 2.15e. (a) Reduction in
misfit for a basic structure inversion, i.e., one in which the structure of the initial model
differs from that of the data, but the sources are always identical to those that generated
the data. (b) Recovered model m16. Color scale is shown in (e). (c) Error in recovered
source parameters. In the basic source inversion, the sources for the data and synthetics
are identical and hence there is no error. Key is shown in (f). (d) Reduction in misfit for
a joint inversion. The lower dashed curve is the basic structure inversion in (a). (e) Re-
covered model m16. Subtle differences from (b) can be seen near the edges. (f) Error in
recovered source parameters. The initial error in the source parameters is shown in Fig-
ure 2.19c. Sources near the edges have the largest remaining error. The recovery of the
source parameters for the event labeled S is shown in Figure 2.18.
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Figure 2.18: Source recovery of a particular event during the joint inversion shown in
Figure 2.17d-f. The source location is denoted by the S in Figure 2.17f. By the sixteenth
iteration, the source is nearly identical to the source used to generate the synthetics. The
recovered structure is shown in Figure 2.17e. Compare with Figure 2.16a, which is the same
source perturbation, (4.93 km, −0.53 s), but for a basic source inversion.
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Figure 2.19: Mapping source errors onto structure and vice versa. The initial source and
structural model parameters are different from the target source and structural parameters.
The traveltime cross-correlation misfit function values in (a) and (d) are computed from
(2.6); the number of values is <17, because the stopping criterion for the conjugate gradient
algorithm was reached. The data are generated using Figure 2.15e. (a) Reduction in misfit
for a structure inversion, whereby the source errors are fixed. The lower dashed curve is the
basic structure inversion in Figure 2.17a. (b) Recovered model m14. Color scale is shown
in (e). Note the discrepancy with Figure 2.17b. (c) Error in source parameters used in
the inversion. Key is shown in (f). (d) Reduction in misfit for a source inversion, whereby
the structure errors are fixed. The lower dashed curve is the basic structure inversion in
Figure 2.17a. (e) Structure model used in the inversion. (f) Error in recovered source
parameters. The initial error in the source parameters is shown in (c).
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(a)  Target model (data) (b)  Model from rays, γ = 10.00 (c)  Model from kernels, γ = 10.00 
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Figure 2.20: Comparison of recovered phase-speed models for classical and adjoint to-
mography. (a) Target model used to generate the data; expanded version is shown in
Figure 2.1b. (b) Recovered model mray using classical, ray-based inversion. The damping
parameter γ is defined in (2.27). (c) Recovered model mker using classical, kernel-based in-
version (Figure 2.4c). (d) Recovered model m16 using the adjoint method and a conjugate
gradient algorithm (Figure 2.13e). (e) Misfit comparison for the three approaches (eq. 2.6).
The horizontal lines denote the misfit computed for the ray- and kernel-based models shown
in (b) and (c). (See Section 2.9.2 for details.)


