CHARACTERIZING $\alpha\mbox{-}SYNUCLEIN$ MEMBRANE BOUND STRUCTURE

Thesis by

Bert Tsunyin Lai

In Partial Fulfillment of the Requirement

for the Degree of

Doctor of Philosophy

California Institute of Technology

Pasadena, California

2008

(Defended April 29, 2008)

© 2008

Bert Lai

All Rights Reserved

ACKNOWLEDGEMENTS

As I am writing my thesis, I am just very grateful to so many people for this experience. I have learned so much from various people. First of all, I would like to thank Prof. Harry Gray for granting me this wonderful opportunity. I am constantly inspired by his enthusiasm towards science. To Dr. Jay Winkler, I am deeply grateful to have a chance to learn from him, his vast amount of knowledge, his attitude towards science, and his quest for perfection.

To Prof. Judy Kim, thank you for inspiring me to be the best graduate student I can be. But, my project would not have gone this far without the guidance of Dr. Jennifer Lee. I have also had a great opportunity to work with some brilliant undergraduate students, namely Dustin Hawker, Stephanie Schulze, and Matthew Robinson. My learning process has also become much more enjoyable with my three wonderful colleagues, Crystal Shih, Melanie Pribisko, and Dr. Gitrada Arjara.

For my personal life, I would like to thank my family for being supportive for everything I do and letting me be who I am. To the Agnews, thank you for making me feel so welcomed. To my seven closest friends from LSC (Benne Chan, Marcus Chan, William Fung, Ivan Lai, Arthur Mok, Joey Siu, and Caran Wong), thank you for making high school so memorable. To Silvia Li and Carole Agelopas, thank you for being there for me during my journey to find the real me. To Ariele Hanek, Heather Wiencko, and Katie Brennen, thank you for everything during the past 5 years. Finally, to Kitty Lai-Agnew, thank you for your unconditional love. But my life will never be completed without Heather Agnew, who appreciates me for my virtues, but loves me for my flaws.

iii

ABSTRACT

A feature of Parkinson's disease is the presence of fibrillar protein deposits composed mostly of α -synuclein and calcium ions in the brain's substantia nigra region. Although α -synuclein is natively unfolded, the N-terminal region of the protein is highly helical in the presence of membrane mimics, such as acidic phospholipid vesicles and SDS micelles. The C-terminal region of α -synuclein is known to bind to calcium ions and modulates aggregation. In this thesis, the structure of α -synuclein variants, incorporated with tryptophan and 3-nitrotyrosine as donor and energy acceptor pairs, have been characterized in the presence of SDS micelles, small unilammelar vesicles, and calcium ions by various techniques. Distance distributions extracted from time-resolved fluorescence energy-transfer measurements provide site-specific information on the protein conformations. In addition, similar studies using mutants linked to early onset Parkinson's disease were also performed to investigate the structural effect caused by these mutations. Furthermore, single tryptophan mutants have been designed as fluorescent reporters. The locations of these different tryptophan residues in the bilayer were probed by lipids labeled with bromine and dinitrophenol quenchers. Finally, preliminary studies of the intramolecular structure of α -synuclein aggregates have been carried out, while elucidation of intermolecular α -synuclein aggregate structures was made possible by the synthesis of new dyes that allow for long-range fluorescent energy transfer.

iv

TABLE OF CONTENTS

Acknowledgements	iii
Abstract	iv
Table of Contents	V
List of Tables, Figures, and Schemes	viii
CHAPTER 1: α-Synuclein: Background, Methods, and Init	ial Studies1
Introduction	2
Materials and Methods	
Results and Discussions	9
Acknowledgement	
References	16
CHAPTER 2: Phospholipid Interaction Sites of α-Synuclein	Determined by
Tryptophan	18
Abstract	19
Introduction	20
Methods	21
Results and Discussions	24
Acknowledgement	
References	
CHAPTER 3: α-Synuclein Membrane-bound Structures Ch	aracterized by
Fluorescence Energy-transfer Kinetics	44
Abstract	45
Introduction	46

	Methods	49
	Results and Discussions	50
	Acknowledgement	60
	References	60
CHA	PTER 4: Calcium Binding Behavior of α-Synuclein's C-terminal Tail.	62
	Abstract	63
	Introduction	64
	Methods	67
	Results and Discussions	69
	Acknowledgement	99
	References	99
CHA	PTER 5: Structural Effect on α-Synuclein Caused by Two Single-poin	nt
Muta	tions Related to Familial Parkinson's Disease	102
	Abstract	103
	Introduction	104
	Methods	106
	Results and Discussions	106
	Acknowledgement	125
	References	125
CHA	PTER 6: Highly Fluorescent Dye for α-Synuclein Aggregation Studies	s 127
	Abstract	128
	Introduction	129
	Materials and Methods	132

	Results and Discussions	141
	Acknowledgement	
	References	
CHAI	PTER 7: α-Synuclein Intramolecular Aggregation Studies	155
	Abstract	156
	Introduction	157
	Methods	
	Results and Discussions	160
	Acknowledgement	
	References	175

LIST OF TABLES, FIGURES, AND SCHEMES

CHAPTER 1: α-Synuclein: Background, Methods, and Initial Studies

Figure 1.1: Human α-Syn Sequence	4
Figure 1.2: Structures of Lipids Used	10
Figure 1.3: CD Spectra of Wild-type of α-Syn in Various Environments	11
Figure 1.4: Steady-state Fluorescence Spectra of α-Syn Mutant	13
Figure 1.5: α-Syn Insertion Monitored by Steady-state Fluorescence	15

CHAPTER 2: Phospholipid Interaction Sites of α-Synuclein Determined by

Tryptophan

Figure 2.1: Trps' Steady-state Spectra in buffer and SUVs26
Figure 2.2: Time-resolved Fluorescent Kinetics of Trps in Buffer and SUVs30
Figure 2.3: N-terminal Trps' Decay Rate Distributions in Buffer and SUVs 31
Figure 2.4: C-terminal Trps' Decay Rate Distributions in Buffer and SUVs32
Figure 2.5: N-terminal Trps' Decay Rate Distributions in Brominated SUVs33
Figure 2.6: C-terminal Trps' Decay Rate Distributions in Brominated SUVs34
Figure 2.7: Decay Rate Distributions of Mutants in 10 % DNP SUVs35
Figure 2.8: Anisotropy Decay Curves for Trps in SUVs
Figure 2.9: Approximate Location of Trps in α-Syn in SUVs40
Table 2.1: Trp Fluorescence in Buffer and SUVs
Table 2.2: Emission and Lifetime Ratios of Trps in Brominated SUVs
HADTED 2

CHAPTER 3: α -Synuclein Membrane Bound Structures Characterized by

Fluorescence Energy-transfer Kinetics

Figure 3.1: α-Syn Bound to SDS Micelles Bound Structure	8
\mathcal{O}^{-}	

Figure 3.2: DLS Correlation Function of 1:1 POPC:POPA SUVs
Figure 3.3: D-A Distance Distributions for α -Syn N-terminal Helix Mutants 5
Figure 3.4: D-A Distance Distributions for α-Syn C-terminal Helix Mutants 5
Figure 3.5: D-A Distance Distributions for α-Syn Turn Mutants
Table 3.1: Fluorescence Maxima of α -Syn Mutants in Buffer and Membranes5

CHAPTER 4: Calcium Binding Behavior of α-Synuclein's C-terminal Tail

Figure 4.1: Integrated Fluorescence Intensities at Different [Ca²⁺].....71 Figure 4.3: Distributions of Trp Fluorescent Decay Rates with DNP SUVs.....75 Figure 4.4: Time-resolved Anisotropy Decays for Trp-only Mutants in SUVs..77 Figure 4.5: Electron Transfer Decays for W94/Y136 and W94/Y113.....80 Figure 4.6: Electron Transfer Decays for W94/Y125 and W101/Y125......81 Figure 4.7: Electron Transfer Decays for W101/Y74 & Y136 and W125/Y13682 Figure 4.8: D-A Distance Distributions for W125/Y136 & W94/Y136 in solⁿ...84 Figure 4.9: D-A Distance Distributions for W94/Y125 & W101/Y136 in solⁿ...85 Figure 4.10: D-A Distance Distributions for W101/Y74 & W94/Y113 in solⁿ...87 Figure 4.13: D-A Distance Distributions for W101/Y125 & W94/Y113 in SUV 91 Figure 4.14: D-A Distance Distributions for W94/Y125 & W94/Y136 in SUV 92 Figure 4.15: D-A Distance Distributions for W101/Y136 & W125/Y136 in SUV 94 Figure 4.16: CD Spectra of D-A Mutants95 Figure 4.17: Pictorial Representation of Proposed C-terminal Tail Structure....97

Μ	Mutations Related to Familial Parkinson's Disease		
Cl	CHAPTER 5: Structural Effect on α -Synuclein Caused by Two Single-point		
	Table 4.1: Electron Transfer Rates for α-Syn Mutants	. 79	
	Figure 4.18: Amino Acid Sequence of the C-terminal Tail of α-Syn	98	

Figure 5.1: D-A Distributions of W4/Y19/A53T and Y19/W39/A53T...... 107 Figure 5.2: D-A Distributions of Y74/W94 and Its Disease-related Mutants.... 110 Figure 5.3: D-A Distributions of Y39/W94 and Its Disease-related Mutants.... 111 Figure 5.4: D-A Distributions of W39/Y55 and Its Disease-related Mutants.... 113 Figure 5.5: The Effect of A30P and A53T on the N-terminal Mutants..... 115 Figure 5.6: D-A Distributions of W125/Y136/A30P (and A53T) in HEPES.....117 Figure 5.7: D-A Distributions of W94/Y113/A30P (and A53T) in HEPES......118 Figure 5.8: D-A Distributions of W94/Y125/A30P (and A53T) in HEPES......120 Figure 5.9: D-A Distributions of W94/Y125/A30P (and A53T) in SUVs...... 121 Figure 5.10: D-A Distributions of W94/Y113/A30P (and A53T) in SUVs...... 122 Figure 5.11: D-A Distributions of W125/Y136/A30P (and A53T) in SUVs...... 124

CHAPTER 6: Highly Fluorescent Dye for α-Synuclein Aggregation Studies

Figure 6.1: Structures of Fluorescent Labels and Model Complexes	.131
Figure 6.2: FPLC Trace of Dansyl-labeled Protein Purification	. 143
Figure 6.3: FPLC Trace of the Double-labeled Protein	.144
Figure 6.4: Overlapping between Fluorescent Dyes and Cyt <i>c</i>	147
Figure 6.5: Fluorescence Spectra of phI-SHark Labeled Cyt c	. 148
Figure 6.6: Fluorescence Decay Rates of phI-SHark Labeled Cyt c	. 149
Figure 6.7: Fluorescence Spectra of phI-SHark Model Complex	.151

	Figure 6.8: Fluorescence Decay Rates of phI-SHark Model Complex	152
	Figure 6.9: Overlapping between phI-SHark and Nitrophenol	153
	Table 6.1: Fluorescence Characteristics of Dyes.	146
Cl	HAPTER 7: α-Synuclein Intramolecular Aggregation Studies	
	Figure 7.1: Absorption Spectra of Aggregation Mixtures	161
	Figure 7.2: Supernatant Protein Concentration of Aggregation Experiment	162
	Figure 7.3: Absorption Spectra for the Supernatants	163
	Figure 7.4: Thioflavin T Fluorescence Spectra	165
	Figure 7.5: Normalized Integrated Intensities for Thioflavin T Studies	166
	Figure 7.6: Steady-state Trp Fluorescence Spectra	.168
	Figure 7.7: Steady-state Trp Fluorescence Spectra for Supernatants	169
	Figure 7.8: CD Spectra of Reaction Mixtures and Supernatants	171
	Figure 7.9: SDS-PAGE for Reaction Mixtures and Supernatants	172
	Figure 7.10: Size-exclusion Study for Reaction Mixtures and Supernatants	174