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ABSTRACT

We introduce two novel computational methodologies, ActiveSVM and Active Cell
Inference, aimed at reducing the costs and enhancing the efficiency of single-cell
mRNA sequencing and spatial transcriptomics, respectively. ActiveSVM employs
an active learning approach to identify minimal yet highly informative gene sets
for cell-type classification, physiological state identification, and genetic perturba-
tion responses in single-cell datasets. By focusing on misclassified cells through
an iterative process, ActiveSVM efficiently scales to analyze over a million cells,
demonstrating around 90% accuracy across various datasets, including cell atlas
and disease characterization studies.

Active Cell Inference complements this by utilizing ordered gene sets, developed
through ActiveSVM, to streamline spatial genomics measurements. This end-to-
end pipeline significantly reduces measurement time and costs by up to 100-fold in
scientific and clinical settings. It optimizes the gene probing process by identify-
ing well-classified cells early, allowing for targeted gene application based on cell
classification certainty. This method’s efficacy is further enhanced by a temporal
scaling calibration scheme, improving calibration accuracy throughout its iterative
process.

Both methodologies were rigorously tested on the expansive Human Cell Atlas
dataset, using the advanced computational tool, CellxGene-Census, involving over
60 million cells. This integration facilitated the creation of precise gene sets for
various human tissues, dramatically improving the efficiency and reliability of these
cutting-edge genomic techniques. Together, ActiveSVM and Active Cell Inference
represent significant advancements in the application of genomics to clinical diag-
nostics, therapeutic discovery, and genetic screens, promising substantial reductions
in the operational complexities and costs associated with next-generation sequencing
technologies.
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C h a p t e r 1

INTRODUCTION

1.1 Background and Motivation
Single-cell genomics is a powerful technique in genomics that examines individual
cells in different tissues, capturing their unique genetic information. Unlike tradi-
tional methods that blend and average data from many cells, this approach highlights
the distinct roles and functions of each cell. This field has grown quickly due to break-
throughs in DNA and RNA amplification from single cells, enhanced sequencing
technologies, and advanced bioinformatics. These advancements allow scientists to
detect minor genetic differences and expression patterns between cells, identify rare
cell types, and trace cell lineage in developmental studies. Consequently, single-cell
genomics has become essential for exploring complex biological processes in health
and disease. It provides detailed insights into cancer, neurological disorders, and
immune system dynamics, contributing to a detailed map of human cell biology and
advancing personalized medicine by targeting specific cellular issues.

Single-cell mRNA sequencing has advanced to routinely profile thousands of cells
in each experiment. However, despite its potential to unravel complex biological
questions, the high cost of sequencing limits its application in preliminary exper-
iments like drug and genetic screens, as well as in budget-sensitive clinical tests.
To mitigate costs, targeted mRNA sequencing has been developed, focusing on key
genes to cut costs by as much as 90

In gene regulation, cells orchestrate their gene expression through programs gov-
erned by common transcription factors, leading to correlated expressions within
these groups. This correlation allows for reconstructing a cell’s transcriptional state
by analyzing a select few critical genes. Yet selecting these genes computationally
can be demanding, especially with the large data volumes produced by single-cell
sequencing.

Addressing this, we developed ActiveSVM, an innovative computational approach
that selects a minimal yet effective gene set for identifying cell types and transcrip-
tional states. ActiveSVM refines its gene selection through a cyclic process that
classifies cells, assesses misclassifications, and enhances the gene set iteratively.
This method leverages active learning by consulting an SVM classifier’s output to
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focus on misclassified cells, thereby ensuring the biological relevance of the selected
genes.

ActiveSVM excels in scalability, handling data sets with millions of cells by con-
centrating on those poorly classified in initial assessments. We have successfully
applied this method to various large-scale single-cell studies, effectively identifying
small and potent gene sets for tasks ranging from distinguishing cell types in human
blood and mouse brain to pinpointing disease markers and region-specific genes
in spatial transcriptomics. This approach not only confirms known markers but
also discovers novel genes, showcasing the utility of active learning in managing
large-scale genomic data efficiently.

Spatial genomics measures the expression of RNA in single cells with spatial resolu-
tion using imaging. Right now, the problem is that spatial genomics measurements
image many genes in many cells and imaging time is limiting the scaling of spatial
genomics to clinical diagnostics. Active acquisition methods can optimize imaging
protocols so that the minimum amount of imaging is performed on a sample to
accomplish a given clinical task. In many cases, the goal of spatial genomics is
to identify the cell types within a given region of sample, for example identifying
immune cells within a tumor. For immunotherapy, determining the abundance of
T cell and within the tumor and identifying whether the tumor is well or poorly
infiltrated a critical.

Here we developed active cell inference and active data acquisition protocol which
uses ordered gene sets and a classifier to classify cell types within a sample while
minimizing the number of genes that must be imaged per cell. We demonstrate
that active inference can reduce aging time dramatically by a factor of 10 to 100
enabling cell classification with this few as 10 genes per cell on average. We
demonstrate that acquisition cost varies by tissue with the kidney requiring 10 times
more rounds of imaging for comprehensive type classification then the tissues.
Finally, we demonstrate that acquisition cost can be modulated dependent on the
certainty required in the cell identification task.

1.2 Single-cell Genomics
Single-cell genomics is a powerful and rapidly advancing field of genetic research
that enables scientists to examine the genomic material at the level of individual cells.
This approach provides a high-resolution view of genetic diversity and function
within a mixed population of cells, which is crucial for understanding complex
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biological systems and diseases.

Origins and Development
The development of single-cell genomics has been driven by advancements in mi-
crofluidic technology, sophisticated imaging techniques, and high-throughput se-
quencing. Traditional genomic studies, which often analyze bulk samples con-
taining numerous cells, tend to obscure the distinct genetic identities and states of
individual cells. Single-cell genomics emerged to address these limitations, offering
a more granular view of genomics (Tang et al., 2009) (Stuart and Satĳa, 2019).

Techniques and Technologies
Key technologies in single-cell genomics include single-cell RNA sequencing (scRNA-
seq), single-cell DNA sequencing, and more recently, single-cell epigenomic se-
quencing. These technologies allow researchers to explore not only the genetic code
but also the active gene expression and regulatory mechanisms at the single-cell
level.

Single-cell RNA sequencing (scRNA-seq) provides a snapshot of the active genes
within a cell at the moment of sampling, offering insights into the cell’s functional
state.(Hebenstreit, 2012).

Single-cell DNA sequencing is used to examine the genomic variations, such as
mutations and rearrangements, within individual cells, which is particularly useful
in cancer research.(Navin et al., 2011).

Single-cell epigenomics focuses on detecting chemical modifications of the DNA
and histones that regulate gene expression without altering the underlying DNA
sequence.(Assaf Rotem et al., 2015).

Applications
The applications of single-cell genomics are vast and transformative across various
fields:

In developmental Biology, it helps in mapping cellular differentiation pathways and
understanding the complex dynamics of embryonic development.

In oncology, single-cell techniques are crucial for identifying tumor heterogeneity,
tracking the evolution of cancer cells, and developing targeted therapies.(Trapnell et
al., 2014). It helps in identifying intra-tumor heterogeneity and in the development
of targeted therapies.(Tirosh et al., 2016).
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In immunology, researchers can define the phenotypes of immune cells more pre-
cisely and understand their roles in health and disease.

In neuroscience, single-cell genomics enables the classification of neuron types and
helps in mapping complex neural circuits.(Villani et al., 2017). It facilitates neuron
type classification and neural circuit mapping.(Zeisel et al., 2015).

Challenges and Future Directions
While single-cell genomics is highly informative, it faces challenges such as techni-
cal noise and the need for complex data analysis. Future efforts will likely focus on
enhancing data accuracy and developing better computational tools to handle large
datasets.(Stegle, Teichmann, and Marioni, 2015).

In summary, single-cell genomics offers unparalleled insights into the molecular
mechanics of individual cells, driving advances in many biomedical fields and
potentially revolutionizing clinical diagnostics and personalized medicine. (Regev
et al., 2017).

1.3 Spatial Genomics
Spatial genomics is an innovative field that combines the power of genomic analysis
with the precise localization of genetic activity within tissues. This approach allows
scientists to not only understand what genes are active in a sample but also where
those genes are expressing within the tissue’s architecture. This spatial context adds
a crucial dimension to genomic data, enhancing our understanding of the complex
interplay between cells and their microenvironments in health and disease.

The technology behind spatial genomics involves techniques that maintain the spa-
tial integrity of a tissue sample while performing high-throughput genomic or tran-
scriptomic analysis. By mapping the gene expression profiles to specific locations,
researchers can observe how cells and their genes interact within their native envi-
ronments. This is particularly valuable in complex tissues like the brain or tumors,
where the spatial arrangement of cells contributes significantly to function and
disease progression.

Spatial genomics applications are broad, ranging from oncology, where it can help
identify the tumor microenvironment and its impact on cancer progression, to neu-
roscience, where it elucidates the organization of cell types in the brain. It’s also
proving invaluable in developmental biology, providing insights into how cells dif-
ferentiate and organize during growth.
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For example, the work of Ståhl et al., 2016 introduced a methodology that com-
bines histological analysis with high-throughput RNA sequencing. This approach
allows for the visualization and quantitative analysis of gene expression across tissue
sections, providing a powerful tool for biomedical research.

Similarly, the technology has been further refined and utilized in studies such as those
by Rodriques et al., 2019, who demonstrated the ability to capture the transcriptome
of tissues with precise spatial resolution, significantly enhancing the understanding
of tissue architecture and function.

These examples illustrate how spatial genomics is transforming our ability to corre-
late genetic activity with specific locations within tissues, enhancing the potential
for breakthroughs in personalized medicine and targeted therapy development.
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C h a p t e r 2

ACTIVESVM: DISCOVERS MINIMAL GENE-SETS FOR
CLASSIFYING CELL-TYPES AND DISEASE STATES WITH

SINGLE-CELL MRNA-SEQ

Sequencing costs currently prohibit the application of single-cell mRNA-seq to many
biological and clinical analyses. Targeted single-cell mRNA-sequencing reduces se-
quencing costs by profiling reduced gene sets that capture biological information
with a minimal number of genes. Here, we introduce an active learning method
(ActiveSVM) that identifies minimal but highly-informative gene sets that enable
the identification of cell-types, physiological states, and genetic perturbations in
single-cell data using a small number of genes. Our active feature selection proce-
dure generates minimal gene sets from single-cell data through an iterative cell-type
classification task where misclassified cells are examined at each round of analysis
to identify maximally informative genes through an ‘active’ support vector machine
(ActiveSVM) classifier. By focusing computational resources on misclassified cells,
ActiveSVM scales to analyze data sets with over a million single cells. We demon-
strate that ActiveSVM feature selection identifies gene sets that enable 90% cell-type
classification accuracy across a variety of data sets including cell atlas and disease
characterization data sets. The method generalizes to reveal genes that respond
to genetic perturbations and to identify region specific gene expression patterns in
spatial transcriptomics data. The discovery of small but highly informative gene
sets should enable substantial reductions in the number of measurements necessary
for application of single-cell mRNA-seq to clinical tests, therapeutic discovery, and
genetic screens.

2.1 Introduction
Single-cell mRNA-seq methods have scaled to allow routine transcriptome-scale
profiling of thousands of cells per experimental run. While single cell mRNA-seq
approaches provide insights into many different biological and biomedical prob-
lems, high sequencing costs prohibit the broad application of single-cell mRNA-seq
in many exploratory assays such as small molecule and genetic screens, and in
cost-sensitive clinical assays. The sequencing bottleneck has led to the development
of targeted mRNA-seq strategies that reduce sequencing costs, by up to 90%, by
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focusing sequencing resources on highly informative genes for a given biological
question or an analysis (Heimberg et al., 2016; H. C. Fan, G. K. Fu, and Fodor,
2015; Replogle et al., 2020; Marshall et al., 2020; Riemondy et al., 2019). Com-
mercial gene-targeting kits, for example, reduce sequencing costs through selective
amplification of specific transcripts using ∼ 1000 gene-targeting primers.

Cells modulate gene expression through the regulation of transcriptional programs
or modules that contain multiple genes regulated by common sets of transcription
factors (Heimberg et al., 2016). Genes within transcriptional modules exhibit
correlated gene expression due to co-regulation. Correlations in gene expression
can enable the transcriptional state of a cell to be reconstructed through the targeted
mRNA profiling of a small number of highly informative genes (Heimberg et al.,
2016; Replogle et al., 2020). However, such targeted sequencing approaches require
computational methods to identify highly informative genes for specific biological
questions, systems, or conditions. A range of computational approaches including
differential gene expression analysis and principal components analysis (PCA) can
be applied to identify highly informative genes (Heimberg et al., 2016). Yet current
methods for defining minimal gene sets are computationally expensive to apply
to large single-cell mRNA-seq data sets and often require heuristic user-defined
thresholds for gene selection (Delaney et al., 2019; F. Wang et al., 2019). As an
example, computational approaches based upon matrix factorization (PCA,Non-
negative matrix factorization), are typically applied to complete data sets and so are
computationally intensive when data sets scale into the millions of cells (Bhaduri
et al., 2018). Further, gene set selection after matrix factorization requires heuristic
strategies for thresholding coefficients in gene vectors extracted by PCA or NNMF,
and then asking whether the selected genes retain core biological information.

Here, inspired by active learning(Felder and Brent, 2009) approaches, we develop a
computational method that selects minimal gene sets capable of reliably identifying
cell-types and transcriptional states through an ‘active’ support vector machine
classification task (ActiveSVM) (Rückstieß, Osendorfer, and Smagt, 2011; Noble,
2006). The ActiveSVM algorithm constructs a minimal gene set through an iterative
cell-state classification task. At each iteration, ActiveSVM applies the current gene
set to classify cells into classes that are provided by unsupervised clustering of cell-
states or by used-supplied experimental labels. The procedure analyzes cells that are
misclassified with the current gene set, and, then, identifies maximally informative
genes that are added to the growing gene set to improve classification. Traditional
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active learning algorithms query an oracle for training examples that meet a criteria
(Settles, 2009). The ActiveSVM procedure actively queries the output of an SVM
classifier for cells that classify poorly, and then performs detailed analysis of the
specific misclassified cells to select maximally informative genes. By selecting
minimal gene sets through a well-defined, classification task, we ensure that the
gene sets discovered by ActiveSVM retain biological information.

The central contribution of ActiveSVM is that the method can scale to large single-
cell data sets with more than one million cells. ActiveSVM scales to large data
sets because the procedure focuses computational resources on poorly classified
cells. Since the algorithm only analyzes the full-transcriptome of cells that classify
poorly with the current gene set, the method can be applied to large data sets
to discover small sets of genes that can distinguish between cell-types at high
accuracy. We demonstrate that ActiveSVM can analyze a mouse brain data set
with 1.3 million cells and requires only hours of computational time. In addition
to scaling, the ActiveSVM classification paradigm generalizes to a range of single-
cell data analysis tasks including the identification of disease markers, genes that
respond to Cas9 perturbation, and the identification of region specific genes in
spatial transcriptomics.

In conventional SVM based feature selection, the user would first train an SVM
classifier on the complete data set and then select features according to the absolute
values of the individual gene weights 𝑤 (Chang and Lin, 2008) requiring analysis of
the complete data set as well as heuristic strategies for defining weight thresholds.

To demonstrate the performance of ActiveSVM, we apply the method to a series of
single-cell genomics data sets and analysis tasks. We identify minimal gene sets
for cell-state classification in human peripheral blood mononuclear cells (PBMCs)
(G. X. Zheng et al., 2017), the megacell mouse brain data set (Genomics, 2017),
and the Tabula Muris mouse tissue survey(Consortium et al., 2018). We identify
disease markers that distinguish healthy and multiple myeloma patient PBMCs (S.
Chen et al., 2020). To highlight the generality of the method, we apply ActiveSVM
to identify genes impacted by Cas9 based gene-knock down in perturb-seq (Dixit
et al., 2016) and demonstrate that ActiveSVM can identify gene sets that mark
specific spatial locations of a tissue through analysis of spatial transcriptomics data
(Eng et al., 2019). Gene sets constructed by ActiveSVM are both small and highly
efficient, for example, classifying human immune cell types within PMBCs using
as few as 15 genes and classifying 55 cell-states in Tabula Muris with < 150 genes.
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The gene sets we discover include both classical markers and genes not previously
established as canonical cell-state markers. Conceptually, ActiveSVM demonstrates
that active sampling strategies can be applied to enable the scaling of algorithms to
the large data sets generated single-cell genomics.

2.2 Method
In the conventional Sequential Feature Selection (SFS) (Rückstieß, Osendorfer, and
Smagt, 2011), features are selected one-by-one in a greedy strategy to optimize an
objective function. Here, we develop an active SVM (ActiveSVM) feature selection
method, where we only analyze the subset of incorrectly classified cells at the
current step and then select the new gene features based upon those cells. This
active learning strategy enables the efficient computation of small gene sets across
large data sets by minimizing the total number of cells and genes that are analyzed.

A common work-flow in single-cell mRNA-seq experiments defines a series of
cell-states or cell-types using unsupervised clustering of cells (Wolf, Angerer, and
Theis, 2018; Macosko et al., 2015). We developed a computational framework
based on support vector machine (SVM) classifier to identify minimal gene sets
that distinguish a set of cell-states in single-cell data. The procedure is an ‘active’
formulation of classical Sequential Feature Selection (SFS) (Rückstieß, Osendorfer,
and Smagt, 2011). In the conventional SFS approach, features are selected one-by-
one in a greedy fashion to optimize an objective function. To reduce computational
burden, we propose an active feature selection framework where we only use the
subset of incorrectly classified cells at current step and then select additional features
based upon those cells. The active learning strategy enables efficient computation
of minimal gene sets across large data sets by minimizing the total number of cells
and genes that are analyzed.

The algorithm can accept the cell-state labels that are typically derived from unsu-
pervised clustering. We, then, utilize the cell-state labels to identify a minimal set
of marker genes that can retain the separation between cell-states with a minimal set
of gene features. We note that our method can also accept user supplied cell-type
labels as input if a user seeks to identify new genes that separate cell-states based
upon biologically curated markers.

In summary, our algorithm is applied to single-cell gene expression data and takes,
as input, gene expression data and cell-type labels. Alternatively, we generate the
cell-type labels using unsupervised clustering. Our procedure, then, starts with
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an empty gene set, an empty cell set and a list of candidate genes and cells. The
algorithm iteratively selects genes and classifies cells using identified genes by
training an SVM model to classify cell-types. The algorithm identifies cells in the
data set that classify poorly given the current gene set, and uses those cells to select
additional genes to improve classification accuracy on the entire data set.

In single cell gene expression data, we use 𝑥 ( 𝑗)
𝑖

∈ R to denote the measurement
of the 𝑗-th gene of the 𝑖-th cell. We assume the classification labels are given
and consider a data-set {𝑥𝑖, 𝑦𝑖}𝑖∈{1,...,𝑁} contains 𝑁 cells with total 𝑀 genes, where
𝑥𝑖 = [𝑥 ( 𝑗)

𝑖
] 𝑗∈{1,...,𝑀} and 𝑦𝑖 ∈ Z𝑁 are labels. The labels could be binary or multi-class

and can be derived from clustering. We also denote the gene expression vector of
𝑖-th cell with part of genes as 𝑥 (𝐷)

𝑖
= [𝑥 ( 𝑗)

𝑖
] 𝑗∈𝐷 , where 𝐷 ⊂ {1, . . . , 𝑀}. And we

use 𝐽 and 𝐼 to refer to the set of selected genes and cells.

First, to seed the gene list, the algorithm selects 𝑐 cells at random out of the total set
of 𝑁 cells and adds them to the cell set. The parameter 𝑐 is determined by the user.
The algorithm, then, trains an SVM on the cell set, which defines an SVM margin
𝑤 that optimally separates cells into classes that are consistent with labels on this
seed set. A gene selection strategy we developed, max margin rotation, evaluates
all candidate genes based on the margin 𝑤 and one gene with the highest score is
added to the gene set. A second SVM model is, then, learned given the current gene
set, and, we identify cells that classify poorly given the current gene list. Then we
sample 𝑐 misclassified cells to identify genes that improve classification in the next
step of our procedure. The integrated algorithm is shown in Algorithm 1.
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Algorithm 1: ActiveSVM
Input: 𝑐, 𝑘 ∈ N, 𝐽 = ∅
Output: 𝐽
Randomly or ‘balanced’ select 𝑐 cells 𝐼 ⊂ {1, . . . , 𝑁}, |𝐼 | = 𝑐
Train a 1-D SVM model on training set 𝐼 for each candidate gene:
{ℎ( 𝑗)

𝑤,𝑏
} 𝑗∈{1,...,𝑀}

𝑙𝑜𝑠𝑠 𝑗 =
∑
𝑖∈𝐼 max{0, 1 − 𝑦𝑖ℎ( 𝑗)𝑤,𝑏 (𝑥

( 𝑗)
𝑖

)}
Select one gene 𝑗0 ∈ {1, . . . , 𝑀} with lowest 𝑙𝑜𝑠𝑠 𝑗
𝐽 = 𝐽 ∪ { 𝑗0}
repeat

Optimize (1) and get optimal solution {𝛼∗
𝑖
}𝑁
𝑖=1

Get the the set of misclassified cells 𝑆 ⊂ {1, . . . , 𝑁} with 𝛼∗
𝑖
= 𝐶

if min-complexity then
Randomly or ‘balanced’ select 𝑐 cells 𝐼 ⊂ 𝑆, where |𝐼 | = 𝑐;

else
if min-cell then

𝑐′ = min{𝑐, |𝐼 ∩ 𝑆 |};
Randomly or ‘balanced’ select 𝑐 − 𝑐′ cells 𝐼′ ⊂ 𝑆 \ 𝐼, where
|𝐼′| = 𝑐 − 𝑐′;
𝐼 = 𝐼 ∪ 𝐼′

end
end
𝑤 =

∑
𝑖⊂𝐼 𝛼

∗
𝑖
𝑦𝑖𝑥

(𝐽)
𝑖

𝑤𝑝𝑎𝑑𝑑𝑒𝑑 = [𝑤, 0]
For each 𝑗 ∈ {1, . . . , 𝑀} \ 𝐽, optimize (4) and get optimal solution
{𝛼∗( 𝑗)

𝑖
}𝑖∈𝐼

𝑤 𝑗 =
∑
𝑖∈𝐼 𝛼

∗( 𝑗)
𝑖

𝑦𝑖𝑥
(𝐽∪{ 𝑗})
𝑖

𝜗 𝑗 = arccos cos 𝜗 𝑗 = arccos <𝑤 𝑗 ,𝑤𝑝𝑎𝑑𝑑𝑒𝑑>

∥𝑤 𝑗 ∥∥𝑤𝑝𝑎𝑑𝑑𝑒𝑑 ∥
Select one gene 𝑗∗ ∈ {1, . . . , 𝑀} \ 𝐽 with largest 𝜗 𝑗
𝐽 = 𝐽 ∪ { 𝑗∗}

until |𝐽 | ≥ 𝑘

The two novel components of the method are the strategies to evaluate and select
genes and cells at each iteration. Specifically, we identify cells that classify poorly
and use misclassified cells to identify highly informative genes. To select highly
informative genes given the misclassified cells, a range of different strategies can
be applied. In the conventional SVM, the procedure would sort features according
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to the absolute values of the components of weight 𝑤.(Chang and Lin, 2008) we
developed a gene selection strategy, Max Margin Rotation (MMR), that evaluates all
candidate genes and selects the gene that induces maximum rotation of the margin
𝑤. The ActiveSVM algorithm continues iteration until a max gene number, 𝑘 , is
reached. The max gene number 𝑘 can be set as any integer smaller than 𝑀 and
can be set to small values during exploratory analysis and to larger values for more
exhaustive exploration of a data set. The integrated algorithm is shown in Algorithm
1 and visualized as Figure 2.1.

The most important feature of our ActiveSVM procedure is that the algorithm must
never load an entire data set into memory. At each step, the procedure performs
classification of cells using a minimal gene set, and then performs detailed (all
genes) analysis of only a subset of misclassified cells. Due to the design of the
procedure, ActiveSVM can analyze large data sets that do not easily fit in memory.
In conventional SVM based feature selection, the user would first train an SVM
classifier on the complete data set and then select features according to the absolute
values of the components of weight 𝑤 (Chang and Lin, 2008). We note that
conventional feature selection procedures typically apply classification accuracy for
feature selection. Conventional SFS often selects features based upon improvement
in classification accuracy. We found empirically that MMR provides improved
classification results and so selected MMR as our gene selection strategy.

Based on the above outline of ActiveSVM, we can formalize the specific, math-
ematical gene and cell selection strategies into two defined rules. Assume the
SVM classifier notation of one observation is ℎ𝑤,𝑏 (𝑥 (𝐷)𝑖

) = 𝑔(𝑤𝑇𝑥 (𝐷)
𝑖

+ 𝑏) for any
𝑖 ∈ {1, 2, . . . , 𝑁} and 𝐷 ⊂ {1, 2, . . . , 𝑀} with respect to observation 𝑥 ∈ R|𝐷 |,
where 𝑤 ∈ R|𝐷 | and 𝑏 ∈ R are parameters (the margin and bias respectively). Here,
𝑔(𝑧) = 1 if 𝑧 ≥ 0, and 𝑔(𝑧) = −1 otherwise. And the loss function is Hinge Loss
(Rosasco et al., 2004) loss𝑖 = max{0, 1 − 𝑦𝑖 (𝑤𝑇𝑥 (𝐷)𝑖

+ 𝑏)}, where 𝑦𝑖 ∈ R is the
ground truth label of observation 𝑥𝑖.

Cell selection: identification of maximally informative cells
We formalize the ActiveSVM procedure and define mathematical rules that encode
our specific gene and cell selection strategies. For notation, in single-cell gene
expression data, we use 𝑥 ( 𝑗)

𝑖
∈ R to denote the measurement of the 𝑗-th gene of

the 𝑖-th cell. We assume the classification labels are given and consider a data-set
{𝑥𝑖, 𝑦𝑖}𝑖∈{1,...,𝑁} contains 𝑁 cells with total 𝑀 genes, where 𝑥𝑖 = [𝑥 ( 𝑗)

𝑖
] 𝑗∈{1,...,𝑀} and
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Figure 2.1: Figure A shows the gene selection workflow with single cell gene
expression dataset. The purpose is to select a gene set from n candidate genes for
cell classification based on SVM. First a subset of cells are randomly sampled for
selecting the first gene. Then we train n single 1-D SVM models for each candidate
gene, where the training set is only the set of randomly sampled cells at previous
step. The gene (the green one) corresponding to the SVM with highest accuracy
is selected. Then the least classifiable cells of this selected 1-D SVM should be
the training set to select the second gene. Based on this, n-1 2-D SVM are trained,
where one dimension is the selected green gene and the other dimension is each
unselected candidate gene. The gene (the purple one) corresponding to the SVM
with largest twist angle of SVM weight is the second selected gene. The procedure
repeats many times and the final gene set would be built. The gene matrix at the last
row shows the part of training data we use. The total size of data should be much
smaller than the entire original dataset. Figure B is the details of twist angle when
selecting the third gene. The mis-classified cells are sampled from the selected 2-D
SVM to train 3-D SVMs. 𝑤 is the weight of the 2-D SVM. For each unselected
candidate gene, a 3-D SVM is trained, where two dimensions are the same genes
with the selected 2-D SVM and the second dimension is the new candidate gene.
The new weight of each 3-D SVM is 𝑤′ and the twist angle 𝜃 is the angle between
𝑤 and 𝑤′. The number of 3-D SVMs and their corresponding twist angles is totally
n-2. The gene corresponding to the 3-D SVM weight with largest twist angle 𝜃 is
selected.
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𝑦𝑖 ∈ Z are labels. The labels could be binary or multi-class and can be derived from
clustering. We also denote the gene expression vector of 𝑖-th cell with part of genes
as 𝑥 (𝐷)

𝑖
= [𝑥 ( 𝑗)

𝑖
] 𝑗∈𝐷 , where 𝐷 ⊂ {1, . . . , 𝑀}. And we use 𝐽 and 𝐼 to refer to the set

of selected genes and cell set.

We adopt the SVM classifier notation of one observation is ℎ𝑤,𝑏 (𝑥 (𝐷)𝑖
) = 𝑔(𝑤𝑇𝑥 (𝐷)

𝑖
+

𝑏) for any 𝑖 ∈ {1, 2, . . . , 𝑁} and 𝐷 ⊂ {1, 2, . . . , 𝑀} with respect to observation 𝑥 ∈
R|𝐷 |, where 𝑤 ∈ R|𝐷 | and 𝑏 ∈ R are parameters (the margin and bias respectively).
Here, 𝑔(𝑧) = 1 if 𝑧 ≥ 0, and 𝑔(𝑧) = −1 otherwise. And the loss function is Hinge
Loss(Rosasco et al., 2004) loss𝑖 = max{0, 1 − 𝑦𝑖 (𝑤𝑇𝑥 (𝐷)𝑖

+ 𝑏)}, where 𝑦𝑖 ∈ R is the
ground truth label of observation 𝑥𝑖.

For the cell selection strategy, we identify cells with the largest SVM classification
loss. In SVM classification, samples separable in 𝑛-D are also separable in (𝑛 +
1)-D as they are at least separated by the same boundary with zero at the (𝑛 +
1)-th dimension. Therefore, to improve the classification accuracy with a new
gene, we should only consider the misclassified cells. We identify such cells
through analysis of the dual form of the classical SVM classification problem.
After solving the primal optimization problem of soft margin SVM, we have the
dual optimization problem with a non-negative Lagrange multiplier 𝛼𝑖 ∈ R for each
inequality constraint.(Bottou and Lin, 2007).

max
𝛼

𝑁∑︁
𝑖=1

𝛼𝑖 −
1
2

𝑁∑︁
𝑖1,𝑖2=1

𝑦𝑖1𝑦𝑖2𝛼𝑖1𝛼𝑖2 < 𝑥
(𝐽)
𝑖1
, 𝑥

(𝐽)
𝑖2

>

s.t. 0 ≤ 𝛼𝑖 ≤ 𝐶
𝑁∑︁
𝑖=1

𝛼𝑖𝑦𝑖 = 0

(2.1)

Here 𝑥 (𝐽)
𝑖

refers to the measurement of the 𝑖-th cell with all selected genes, and
𝐶 ∈ R is a hyper-parameter we set to control the trade-offs between size of margin
and margin violations when samples are non-separable.

We solve the optimal solution 𝛼∗ and apply the Karush-Kuhn-Tucker(KKT) dual-
complementarity conditions (Gordon and Tibshirani, 2012) to obtain the following
results where 𝑤 ∈ R|𝐽 | and the intercept term 𝑏 ∈ R are optimal.
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𝛼∗𝑖 = 0 ⇒ 𝑦𝑖 (𝑤𝑇𝑥 (𝐽)𝑖
+ 𝑏) > 1

𝛼∗𝑖 = 𝐶 ⇒ 𝑦𝑖 (𝑤𝑇𝑥 (𝐽)𝑖
+ 𝑏) < 1

0 < 𝛼∗𝑖 < 𝐶 ⇒ 𝑦𝑖 (𝑤𝑇𝑥 (𝐽)𝑖
+ 𝑏) = 1.

(2.2)

Therefore, for each cell, the Lagrange multiplier 𝛼𝑖 indicates whether the cell falls
within the SVM margin defined by the vector 𝑤. 𝛼𝑖 > 0 means 𝑦𝑖 (𝑤𝑇𝑥𝑖 + 𝑏) ≤ 1,
i.e. cells are on or inside the SVM margin. Hence, we can directly select cells with
𝛼𝑖 > 0. In practice, we typically only select cells with 𝛼𝑖 = 𝐶, which indicates
incorrectly classified cells.

Using this mathematical formulation, we develop two different versions of the Ac-
tiveSVM procedure, the min-complexity strategy and min-cell strategy, for distinct
goals. The min-complexity strategy minimizes the time and memory consumption
when computational resources are restricted or where a user desires to reduce run-
time. In the min-complexity strategy, a fixed number of cells is sampled among
all misclassified cells and used as the cell set for gene selection in each iteration.
Therefore, a small number of cells can be analyzed at each round and typically only
few cells might be selected repeatedly. The two strategies are discussed in more
detail in the Methods section. We also developed random and balanced strategies
for sampling cells across a series of cell-states with varying cell membership.

Gene selection by maximizing margin rotation
To select maximally informative genes at each round, we analyze misclassified
cells and identify genes that would induce the largest rotation of the classification
margin. Our procedure is inspired by the active learning method, Expected Model
ChangeSettles, 2009 twist angle induced in 𝑤 when we add a new dimension (gene)
to the classifier. Assume 𝐽 is the set of genes we have selected so far. Once we
add a gene into the |𝐽 |-dimensional data space, the parameter 𝑤 will have one more
dimension. The rotation of margin measures how much 𝑤 twists after adding the
new dimension compared with weight in the previous iteration.

Specifically, assume 𝐽 is the set of genes we have selected so far. We derive the
corresponding 𝑤 from the optimal solution 𝛼∗.(Bottou and Lin, 2007) After solving
the dual optimization problem (1), we have:

𝑤 =
∑︁
𝑖∈𝐼
𝛼∗𝑖 𝑦𝑖𝑥

(𝐽)
𝑖
. (2.3)
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Then we pad 𝑤 with zero to get a |𝐽 + 1|-dimensional weight 𝑤𝑝𝑎𝑑𝑑𝑒𝑑 , whose first
|𝐽 | dimensions is 𝑤 and the |𝐽 + 1|-th dimension is zero.

For each candidate gene 𝑗 , we train a new |𝐽 + 1|-dimensional SVM model and have
weight 𝑤 𝑗 ,where 𝑗 ∈ {1, . . . , 𝑀} \ 𝐽. That is to say, for candidate gene 𝑗 , we solve
the dual optimization problem (4) and find a new optimal multiplier 𝛼∗( 𝑗) . Note that
we only use the selected cells here, 𝑖1, 𝑖2 ∈ 𝐼.

max
𝛼

∑︁
𝑖∈𝐼
𝛼
( 𝑗)
𝑖

− 1
2

∑︁
𝑖1,𝑖2∈𝐼

𝑦𝑖1𝑦𝑖2𝛼
( 𝑗)
𝑖1
𝛼
( 𝑗)
𝑖2

⟨𝑥 (𝐽∪{ 𝑗})
𝑖1

, 𝑥
(𝐽∪{ 𝑗})
𝑖2

⟩

s.t. 0 ≤ 𝛼( 𝑗)
𝑖

≤ 𝐶∑︁
𝑖∈𝐼
𝛼
( 𝑗)
𝑖
𝑦𝑖 = 0

(2.4)

Then we have 𝑤 𝑗 as shown in equation (5):

𝑤 𝑗 =
∑︁
𝑖∈𝐼
𝛼
∗( 𝑗)
𝑖

𝑦𝑖𝑥
(𝐽∪{ 𝑗})
𝑖

. (2.5)

The angle 𝜃 𝑗 between 𝑤 𝑗 and 𝑤𝑝𝑎𝑑𝑑𝑒𝑑 is the expected angle the margin rotates,
corresponding to the 𝑗-th candidate gene. Then the 𝑗-th gene with largest angle
𝜃 𝑗 will be selected. We measure the angle between two vectors using cosine
similarity(P. Xia, L. Zhang, and F. Li, 2015):

𝜗 𝑗 = arccos cos 𝜗 𝑗 = arccos
⟨𝑤 𝑗 , 𝑤𝑝𝑎𝑑𝑑𝑒𝑑⟩

∥ 𝑤 𝑗 ∥∥ 𝑤𝑝𝑎𝑑𝑑𝑒𝑑 ∥ . (2.6)

Therefore, a new gene, which maximizes 𝜗 𝑗 , is selected to maximize the expected
model change.

Multi-class ActiveSVM
For multi-class classification, the SVM is handled according to a one-vs-rest scheme,
where a separate classifier is fit for each class, against all other classes. Margin
rotation is represented as the sum of weight components in each class dimension.
Hence with 𝑍 classes, we get 𝑍 weight components corresponding to 𝑍 one-vs-the-
rest classification decision boundaries. Assume the weight component for class 𝑧 of
the previous |𝐽 |-dimensional SVM model is 𝑤 (𝑧) . Denote the |𝐽 + 1|-dimensional
weight after zero-padding of 𝑤 (𝑧) as 𝑤 (𝑧)

𝑝𝑎𝑑𝑑𝑒𝑑
and the new |𝐽 +1|-dimensional weight

component of class 𝑧 with 𝑗-th gene as 𝑤 (𝑧)
𝑗

, where 𝑧 ∈ 1, . . . , 𝑍 . Then we have:
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𝜗
(𝑧)
𝑗

= arccos cos 𝜗(𝑧)
𝑗

= arccos
⟨𝑤 (𝑧)

𝑗
, 𝑤

(𝑧)
𝑝𝑎𝑑𝑑𝑒𝑑

⟩

∥ 𝑤 (𝑧)
𝑗

∥∥ 𝑤 (𝑧)
𝑝𝑎𝑑𝑑𝑒𝑑

∥
(2.7)

𝜗 𝑗 =

𝑍∑︁
𝑧=1

𝜗
(𝑧)
𝑗
. (2.8)

Min-cell and min-complexity cell selection strategies
In the min-cell strategy, to reduce the number of unique cells required, the misclas-
sified cells already used in previous steps are given the highest priority to select
again. Therefore, the min-cell strategy attempts to re-use cells across rounds of
iteration and aims to minimize the total number of unique cells we acquire during
the entire procedure. The min-cell strategy can be applied to limit the number of
cells required to perform the analysis in settings where cell acquisition might be
limiting including in the analysis of rare cell populations or in clinical data sets.

For the min-cell strategy, assume we select 𝑐 cells for each iteration and there are
𝑎+ 𝑏 misclassified cells at the current iteration, where 𝑎 cells have been used at least
once in previous iterations while 𝑏 cells are new cells. If 𝑎 ≥ 𝑐, we do not need to
add any new cells to current cell set. If 𝑎 < 𝑐, we sample 𝑐 − 𝑎 cells among the
𝑏 new cells. Then the algorithm uses the whole selected cell set for the next gene
selection step. When using the min-cell strategy, cells tend to be re-used many times
and the curve of number of unique cells we acquire converges to a fixed value along
with the number of genes we select. In experiments, the number of cells selected for
each step, 𝑐, is a hyper-parameter set by the user. Typically, the parameter can be set
to a small number using the min-complexity strategy, as a sufficient number of new
cells is considered in the procedure. Selecting a small number of cells each round
reduces computational complexity. In the min-cell strategy it can be advantageous
to select a larger number of total cells to guarantee diversity of training cells while
still bounding the total number of cells used.

Balancing cell-sampling across cell-classes
In addition to the min-cell and min-complexity options, we also include two version
of cell sampling strategies. The first one is uniform, random sampling. Another
option is cell ‘balanced’ sampling that can be applied to balance sampling across
a series of cell classes. In the ‘balanced’ strategy, we sample a fixed number of
cells from each cell class, and for classes with insufficient cells we sample all the
cells in the class. Mathematically, assume there are 𝑍 classes and 𝑆 is the set of all
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misclassified cells this step. We should sample 𝑐′ cells from a candidate cell set,
𝑆′, for the current iteration. In min-complexity strategy, 𝑐′ = 𝑐 and the candidate
cell set, 𝑆′, should be 𝑆 itself. For the min-cell strategy, 𝑐′ = 𝑐 − min{𝑐, |𝐼 ∩ 𝑆 |},
where 𝐼 is the cell set before current iteration, and the candidate cell set 𝑆′ = 𝑆 \ 𝐼.
Assume 𝑆′ = ∪𝑍

𝑧=1𝑆
′
𝑧, where 𝑆′𝑧 are the set of cells in class 𝑧, and |𝑆′𝑧 | ≤ |𝑆′(𝑧+1) |

for any 𝑧 ∈ {1, 2, ..., 𝑍 − 1}. We sample cells in order from class 1 to class 𝑍 and
denote 𝑃𝑧 as the union set of all selected cells from all classes after class 𝑧. Then,
for class 𝑧, if |𝑆′𝑧 | ≤ (|𝑆′| − |𝑃𝑧−1 |)/(𝑍 − 𝑧 + 1), we select all cells in 𝑆′𝑧. Otherwise,
if |𝑆′𝑧 | > ( |𝑆′| − |𝑃𝑧−1 |)/(𝑍 − 𝑧 + 1), we randomly sample ( |𝑆′| − |𝑃𝑧−1 |)/(𝑍 − 𝑧 + 1)
cells in 𝑆′𝑧. The procedure repeats for all classes and then we have 𝑃𝑍 as the cells
we select at this iteration.

Incorporation of cell labels derived from unsupervised analysis, experimental
conditions, or biological knowledge
The goal of ActiveSVM is to discover minimal gene sets for extracting biological
information from single-cell data sets. To define minimal gene sets, we apply a
classification task in which we find genes that enable a SVM classifier to distinguish
single-cells with different labels (𝑦𝑖). In practice, explicit cell-type labels are often
not known for a data set. An extremely common work-flow in single-cell genomics
applies Louvain clustering algorithms to identify cell classes and visualizes these
cell classes in UMAP or t-SNE plots (Macosko et al., 2015; Wolf, Angerer, and
Theis, 2018). The cell clusters output by clustering work-flows in commonly used
single-cell analysis frameworks provide a natural set of labels for down-stream anal-
ysis. In fact, ActiveSVM can, then, identify specific marker genes for interpreting
the identified cell-clusters and determining their biological identify. More broadly,
cell-class labels can be quite general including the identity of a genetic perturbation
(Figure 2.6), the spatial location of a cell (Figure 2.7). We can imagine the appli-
cation of ActiveSVM to a broad set of additional labels including membership to a
differentiation trajectory or lineage tree (Street et al., 2018).

2.3 Time and Memory Complexity
Memory complexity of ActiveSVM
One of the key contribution of ActiveSVM is that it substantially saves memory
usage because only a small part of data is used at each iteration. The entire dataset
can be stored in disk and the algorithm only loads two small matrices into memory:
a 𝑁 × |𝐽 | matrix of all cells with the currently selected genes and a |𝐼 | ×𝑀 matrix of
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the cell set with all genes. The memory complexity is O(𝑀 +𝑁) while the memory
complexity of algorithms using the entire dataset is at least O(𝑀𝑁). The min-cell
strategy minimizes the total number of unique cells required to reduce the cost of
data measurement, acquisition, and storage.

Time complexity of ActiveSVM
The time complexity of the complete procedure depends primarily on the training
of SVM. The standard time complexity of SVM training is usually O(𝑀𝑁2) (Abdi-
ansah and Wardoyo, 2015). Assume that we plan to select 𝑘 ∈ N genes in total and
use the cell set 𝐼𝑖 of poorly classified cells at 𝑖-th iteration, where 𝑘, 𝑘2 ≪ 𝑀 and
|𝐼𝑖 |, |𝐼𝑖 |2 ≪ 𝑁 are constants. Then the computational complexity of ActiveSVM is:

O(
𝑘∑︁
𝑖=1

(𝑖 · 𝑁2 + (𝑀 − 𝑖) · (𝑖 + 1) · |𝐼𝑖 |2)) ∼ O(𝑁2 + 𝑀).

The key reduction in total complexity occurs because each step is performed using 𝑁
cells with of order 𝑘, 𝑘2 ≪ 𝑀 genes or using order𝑀 genes with |𝐼𝑖 | cells. Therefore,
the polynomialO(𝑀𝑁2) is reduced to two separate steps that are individuallyO(𝑁2)
and O(𝑀).

And in practice, we implement ActiveSVM using the linear SVM library LIBLIN-
EAR(R.-E. Fan et al., 2008), whose time complexity is O(𝑀𝑁). Therefore, and the
corresponding time complexity of ActiveSVM with LIBLINEAR is:

O(
𝑘∑︁
𝑖=1

(𝑖 · 𝑁 + (𝑀 − 𝑖) · (𝑖 + 1) · |𝐼𝑖 |)) ∼ O(𝑁 + 𝑀).

In the gene selection part, the margin rotation angles of all candidate genes can
be computed in parallel, which also accelerates the algorithm. The complexity
provides a substantial improvement in marker gene selection methods especially for
large-scale datasets.

Computational Infrastructure
To analyze computational requirements of ActiveSVM, we performed analysis using
an r5n.24xlarge, a type of EC2 virtual server instance on AWS, with 96 virtual
central processing units (vCPU) and 768 GiB memory on Linux system. The
instance allowed us to track run time and memory usage. As an example, for the
largest data set analysis, we applied ActiveSVM to select 50 genes on the largest
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dataset, mouse brain ‘megacell’ dataset, which contains 1306127 cells and 27998
genes, using ActiveSVM and some other popular feature selected methods, including
correlation coefficient, mutual information, feature importance by decision tree, and
conventional SVM. The peak memory usage of ActiveSVM is 2111 MB while other
methods all consume more than 78600 MB. The run time of the min-complexity
method is about 69 minutes and of the min-cell method is about 243 minutes.
Each comparison method takes more than 4 days on the same server machine. The
run time and peak memory usage of ActiveSVM on all six datasets are shown in
Supplementary Table 2.1. The ActiveSVM package used for the brain megacell
dataset only loads the selected genes and cells into memory at each iteration while
other two experiments called the package loading the entire dataset. Both packages
are provided in Code Availability Section.

2.4 Datasets and Experiments
We test our ActiveSVM feature-selection method on four single-cell mRNA-seq
datasets: a dataset of peripheral blood mononuclear cells (PBMCs) (G. X. Zheng
et al., 2017), the megacell 1.3 million cell mouse brain data set (Genomics, 2017),
the Tabula Muris mouse tissue survery dataset (Consortium et al., 2018), and a mul-
tiple myeloma human disease dataset (S. Chen et al., 2020). Later, we demonstrate
generalization of the strategy to additional types of single-cell data analysis, includ-
ing a perturb-seq dataset where genes impacted by Cas9 based genetic perturbation,
and a spatial transcriptomics dataset by seqFish+.

For each analysis, we show the classification accuracy of the test set along with
the number of genes we select. We also compare the classification performance to
several widely-used feature selection methods, including conventional SVM, corre-
lation coefficient (Taylor, 1990), mutual information (Vergara and Estévez, 2014),
Chi-square (McHugh, 2013), feature importance by decision tree (Safavian and
Landgrebe, 1991), and randomly sample genes, showing that ActiveSVM obtains
the highest accuracy. All of the comparison methods select genes one by one and
select a new gene with the largest score in terms of the corresponding evaluation
functions while using the same number of cells as our method. However, all meth-
ods randomly sample cells at each iteration without an active learning approach.
For perturb-seq and seqFish+ datasets, we also show the accuracy performance of
comparison methods, where the entire dataset is used. Specifically, conventional
SVM based feature selection also called naive SVM selects the gene with largest
weight component, which is the most popular SVM feature selection method. In our
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application of ActiveSVM, we tested both the min-cell strategy and min-complexity
strategies as well as randomly sampling and ’balanced’ sampling.

In each experiment, the data set was first pre-processed and normalized using
standard single-cell genomics strategies (See Data Pre-processing). The entire
dataset was, then, randomly split into training set with the size of 80% and test set
with the size of 20%. For conventional and ActiveSVM, we found the approximately
optimal parameter by grid-search (Syarif, Prugel-Bennett, and Wills, 2016) across
lists of candidate values for some key parameters in the framework of 3-fold cross
validation (Arlot and Celisse, 2010). The optimal parameters were fixed during all
iterations. For the comparison methods, we use 3-fold cross validation grid-search
to obtain the optimal parameters at each single iteration. We also implemented
the algorithms called min_complexity_cv and min_acquisition_cv that apply
grid-search and cross validation for each single SVM trained in each iteration (see
Code Availability). The parameter setting details are shown in the Parameters
section.

In our evaluation, besides accuracy curves with proportion confidence interval(L. D.
Brown, Cai, and DasGupta, 2001), we also show the distribution of gene markers
we selected and the relation with classification target. The subplots include the
gene expression values on t-SNE projection, the mean of each class, histogram
distribution, violin plot, the correlation coefficient heatmap, etc.

To indicate the efficiency, we also recorded the run time, peak memory usage, and
the total number of unique cells we used of ActiveSVM on these datasets.

Pre-processing
For PBMC, Tabula Muris, Multiple-Myeloma datasets, they were pre-processed
for a prior publication (S. Chen et al., 2020) via column normalizaition. In each
experiment, we removed the columns and rows where all values are zero. Then,
gene expression matrices were first columns normalized and log transformed. For a

cell 𝑖, each gene 𝑥 ( 𝑗)
𝑖

(gene 𝑗 in cell 𝑖) is first normalized as 𝑥 ( 𝑗)
𝑖

=
𝑥
( 𝑗 )
𝑖∑𝑀

𝑖=1 𝑥
( 𝑗 )
𝑖

where 𝑀

is the number of genes in the transcriptome. And then we did 𝑙2-normalization for
each cell, which means scaling each cell vector individually to unit 𝑙2-norm.

For Mega-cell data set, perturb-seq, spatial transcritomics data sets, we removed the
columns and rows where all values are zero. Then we performed 𝑙2-normalization
along each cell.
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Parameter Optimization
For conventional and ActiveSVM, we found the approximately optimal parameter
by grid-search (Syarif, Prugel-Bennett, and Wills, 2016) across lists of candidate
values for some key parameters in the framework of 3-fold cross validation (Arlot
and Celisse, 2010). The optimal parameters were fixed during all iterations. For
the comparison methods, we use 3-fold cross validation grid-search to obtain the
optimal parameters at each single iteration. We also implemented the algorithms
called min_complexity_cv and min_acquisition_cv that apply grid-search and
cross validation for each single SVM trained in each iteration (see Code Availability).

Here we provide the algorithm parameters we used for ActiveSVM in Appendix A
Table A.1-A.3. Besides the training set and test set, there are 15 user-defined hyper-
parameters in ActiveSVM, five of which are about the feature selection procedure
and the other ten are commonly-used parameters for linear SVM classifier. The
detailed description about all parameters of ActiveSVM are detailed described in
the integrated package page https://pypi.org/project/activeSVC/.

As for comparison methods, correlation coefficient, mutual information, and chi-
squared methods don’t have specific parameters to set. We implemented them with
scikit-learn(Pedregosa et al., 2011) package ’SelectKBest’. For feature importance
scores from decision tree and naive SVM, we did grid-search on key parameters
based on 3-fold cross validation at each step. The parameters of decision tree are
𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛 and 𝑚𝑖𝑛_𝑠𝑎𝑚𝑝𝑙𝑒𝑠_𝑙𝑒𝑎 𝑓 and of naive SVM are 𝑡𝑜𝑙 and 𝐶.

Time and Memory Usage
To indicate the efficiency, we also recorded the run time, peak memory usage, and
the total number of unique cells we used of ActiveSVM on these datasets. We
used r5n.24xlarge (Amazon, n.d.[c]), a type of EC2 (Amazon, n.d.[a]) virtual server
instance on AWS (Amazon, n.d.[b]), with 96 virtual central processing units (vCPU)
and 768 GiB memory on Linux (Torvalds, n.d.) system. For example, we selected 50
genes on the largest dataset, mouse brain ‘megacell’ dataset, which contains 1306127
cells and 27998 genes, using ActiveSVM and some other popular feature selected
methods, including mutual information, feature importance by decision tree, and
conventional SVM. The peak memory usage of ActiveSVM is 2111 MB while other
methods all consume more than 78600 MB. The run time of the min-complexity
method is about 69 minutes and of the min-cell method is about 243 minutes. Each
comparison method takes more than 4 days on the same server machine. The run

https://pypi.org/project/activeSVC/
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time and peak memory usage of ActiveSVM on all six datasets are shown in Table
2.1. The ActiveSVM package used for the brain megacell dataset only loads the
selected genes and cells into memory at each iteration while other two experiments
called the package loading the entire dataset. Both packages are provided in the
Code Availability Section.

Data Availability
All data used in the paper has been previously published. Source Data for main
figures (except Figure 1) and extended data figures is available with this manuscript.

The PBMC Single-cell RNA-seq data have been deposited in the Short Read Archive
under accession number SRP073767 by the authors of (G. X. Zheng et al., 2017).
Data are also available at http://support.10xgenomics.com/single-cell/datasets.

The original Tabula Muris dataset is available at https://figshare.com/projects/Tab
ula_Muris_Transcriptomic_characterization_of_20_organs_and_tissues_from_
Mus_musculus_at_single_cell_resolution/27733.

The original multiple myeloma PBMC data, containing 2 healthy donors and 4
multiple myeloma donors, is available at https://figshare.com/articles/dataset/Pop
Align_Data/11837097/3.

The 10x genomics Megacell data set is available at http://support.10xgenomics.co
m/single-cell/datasets.

The perturb-seq data set (Dixit et al., 2016) is available at https://www.ncbi.nlm.n
ih.gov/geo/query/acc.cgi?acc=GSM2396856

The spatial transcriptomics data (Eng et al., 2019) is available https://github.com/C
aiGroup/seqFISH-PLUS.

Code Availability
Our method is integrated as a install-able Python package called activeSVC. The
installation instructions and user guidance are shown at https://pypi.org/project/a
ctiveSVC. The source codes of activeSVC and some demo examples are publicly
available on GitHub at https://github.com/xqchen/activeSVC and Zenodo (xqchen,
2022).

In addition we created Google Colaboratory project for three examples that PBMC
demo is at https://colab.research.google.com/drive/16h8hsnJ3ukTWAPnCB58
1dwj-nN5oopyM?usp=sharing, Tabula Muris demo is at https://colab.research.g

 http://support.10xgenomics.com/single-cell/datasets
https://figshare.com/projects/Tabula_Muris_Transcriptomic_characterization_of_20_organs_and_tissues_from_Mus_musculus_at_single_cell_resolution/27733
https://figshare.com/projects/Tabula_Muris_Transcriptomic_characterization_of_20_organs_and_tissues_from_Mus_musculus_at_single_cell_resolution/27733
https://figshare.com/projects/Tabula_Muris_Transcriptomic_characterization_of_20_organs_and_tissues_from_Mus_musculus_at_single_cell_resolution/27733
https://figshare.com/articles/dataset/PopAlign_Data/11837097/3
https://figshare.com/articles/dataset/PopAlign_Data/11837097/3
 http://support.10xgenomics.com/single-cell/datasets
 http://support.10xgenomics.com/single-cell/datasets
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM2396856
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM2396856
https://github.com/CaiGroup/seqFISH-PLUS.
https://github.com/CaiGroup/seqFISH-PLUS.
https://pypi.org/project/activeSVC
https://pypi.org/project/activeSVC
https://github.com/xqchen/activeSVC
https://colab.research.google.com/drive/16h8hsnJ3ukTWAPnCB581dwj-nN5oopyM?usp=sharing
https://colab.research.google.com/drive/16h8hsnJ3ukTWAPnCB581dwj-nN5oopyM?usp=sharing
https://colab.research.google.com/drive/1SLehIKIQqpjK6BzEKc9m0y3uJ_LBqRzA?usp=sharing
https://colab.research.google.com/drive/1SLehIKIQqpjK6BzEKc9m0y3uJ_LBqRzA?usp=sharing
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oogle.com/drive/1SLehIKIQqpjK6BzEKc9m0y3uJ_LBqRzA?usp=sharing, and
PBMC cross-validation demo is at https://colab.research.google.com/drive/1fhQ
8GD3NyzB3w0vof9WimXK6BLqDNuDC?usp=sharing.

The Python package provides six callable functions: (1) 𝑚𝑖𝑛_𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦; (2)
𝑚𝑖𝑛_𝑎𝑐𝑞𝑢𝑖𝑠𝑖𝑡𝑖𝑜𝑛, the min-cell strategy; (3) 𝑚𝑖𝑛_𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦_𝑐𝑣, which use cross
validation (Arlot and Celisse, 2010) and grid-search (Syarif, Prugel-Bennett, and
Wills, 2016) to train the best SVM estimator at each iteration; (4)𝑚𝑖𝑛_𝑎𝑐𝑞𝑢𝑖𝑠𝑖𝑡𝑖𝑜𝑛_𝑐𝑣,
the min-cell strategy with cross validation and grid-search; (5)𝑚𝑖𝑛_𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦_ℎ5𝑝𝑦,
for large h5py data files, it only loads the part of data, the rows and columns of
selected genes and cells, instead of loading the entire dataset into memory; (4)
𝑚𝑖𝑛_𝑎𝑐𝑞𝑢𝑖𝑠𝑖𝑡𝑖𝑜𝑛_ℎ5𝑝𝑦, is similar with 𝑚𝑖𝑛_𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦_ℎ5𝑝𝑦 but uses min-cell
strategy. All include the algorithm for both randomly and ’balanced’ sampling.
We implement the SVM classifier with the LinearSVC package from scikit-learn
(Pedregosa et al., 2011) library, which is implemented in term of LIBLINEAR
(R.-E. Fan et al., 2008). And we use parfor package to parallelize for-loops to
accelerate algorithm for large datasets. There are three hyper-parameters to set: bal-
ance (boolean), num_features (int), and num_samples (int), to identify the sampling
strategy, the number of genes to select, and the number of cells in each iteration.

In the GitHub project, we use the PBMC dataset (G. X. Zheng et al., 2017) and
Tabula Muris dataset (Consortium et al., 2018) as examples to show the procedure
and its performance of 𝑚𝑖𝑛_𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 and 𝑚𝑖𝑛_𝑎𝑐𝑞𝑢𝑖𝑠𝑖𝑡𝑖𝑜𝑛. We also have the
test examples of 𝑚𝑖𝑛_𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦_𝑐𝑣 and 𝑚𝑖𝑛_𝑎𝑐𝑞𝑢𝑖𝑠𝑖𝑡𝑖𝑜𝑛_𝑐𝑣 on PBMC dataset
and the demo projects of 𝑚𝑖𝑛_𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦_ℎ5𝑝𝑦 and 𝑚𝑖𝑛_𝑎𝑐𝑞𝑢𝑖𝑠𝑖𝑡𝑖𝑜𝑛_ℎ5𝑝𝑦 on
1.3 millions mouse brain ‘megacell’ dataset(Genomics, 2017). The notebooks
contain downloading dataset, preprocessing, and selecting genes with our method.
Additionally, we created Google Colaboratory project for these two examples that
PBMC demo is at https://colab.research.google.com/drive/16h8hsnJ3ukTWAPn
CB581dwj-nN5oopyM?usp=sharing, Tabula Muris demo is at https://colab.resear
ch.google.com/drive/1SLehIKIQqpjK6BzEKc9m0y3uJ_LBqRzA?usp=sharing,
and PBMC cross-validation demo is at https://colab.research.google.com/drive/1f
hQ8GD3NyzB3w0vof9WimXK6BLqDNuDC?usp=sharing.

https://colab.research.google.com/drive/1SLehIKIQqpjK6BzEKc9m0y3uJ_LBqRzA?usp=sharing
https://colab.research.google.com/drive/1SLehIKIQqpjK6BzEKc9m0y3uJ_LBqRzA?usp=sharing
https://colab.research.google.com/drive/1SLehIKIQqpjK6BzEKc9m0y3uJ_LBqRzA?usp=sharing
https://colab.research.google.com/drive/1fhQ8GD3NyzB3w0vof9WimXK6BLqDNuDC?usp=sharing
https://colab.research.google.com/drive/1fhQ8GD3NyzB3w0vof9WimXK6BLqDNuDC?usp=sharing
https://colab.research.google.com/drive/16h8hsnJ3ukTWAPnCB581dwj-nN5oopyM?usp=sharing
https://colab.research.google.com/drive/16h8hsnJ3ukTWAPnCB581dwj-nN5oopyM?usp=sharing
https://colab.research.google.com/drive/1SLehIKIQqpjK6BzEKc9m0y3uJ_LBqRzA?usp=sharing
https://colab.research.google.com/drive/1SLehIKIQqpjK6BzEKc9m0y3uJ_LBqRzA?usp=sharing
https://colab.research.google.com/drive/1fhQ8GD3NyzB3w0vof9WimXK6BLqDNuDC?usp=sharing
https://colab.research.google.com/drive/1fhQ8GD3NyzB3w0vof9WimXK6BLqDNuDC?usp=sharing
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2.5 Results
Active feature selection on human PBMC data
To test the performance of ActiveSVM, we used the method to extract classifying
gene subsets for human PBMCs. We analyzed a single-cell transcriptional profiling
data set for 10194 cells (G. X. Zheng et al., 2017) with 6915 genes. We used Louvain
clustering (Blondel et al., 2008) to identify T-cells, activated T/NK cells, B-cells,
and Monocytes (Figure 2.2(c)).

The min-cell strategy classified the 5 major cell-types at greater than 85% accuracy
with as few as 15 total genes (Figure 2.2(a)) and the test accuracy of min-cell,
with both randomly sampling and ’balanced’ sampling, also reached much higher
accuracy than the comparison methods.

A key benefit of the active learning strategy is that a relatively small fraction of
the data set is analyzed, so that the procedure can generate the gene sets while
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only analyzing 298 cells (Figure 2.2(d)). At each iteration, a specific number of
misclassified cells (𝑐 = 100) are selected but the total number of cells used does not
increase in increments of 100, since some cells are repeatedly misclassified and are
thus repeatedly used for each iteration.

In addition to enabling cell-type classification of the data set, the ActiveSVM gene
sets provide a low-dimensional space in which to analyze the data. When we
reduced our analysis to consider only the top 100 genes selected by the ActiveSVM
algorithm, we were able to generate a low-dimensional representations of the cell
population (t-SNE) that preserved critical structural features of the data, including
the distinct cell-type clusters (Figure 2.2(c)).

The procedure generates gene sets that contain known and novel markers, each
plotted individually in a t-SNE grid (Figure 2.2(e)(f)). For instance, MS4A1 and
CD79 are well-established B-cell markers, and IL7R and CD3G are well-established
T-cell markers. However, we also find genes which are not commonly used as
markers, but whose expression is cell-type specific. For instance, we find highly
monocyte-specific expression of FPR1, which encodes N-formylpeptide receptor,
which was recently discovered to be the receptor for plague effector proteins (Osei-
Owusu et al., 2019). We also find T-cell/NK-cell specific expression of a long
noncoding RNA, LINC00861, whose function is unknown but has been correlated
with better patient outcome in lung adenocarcinoma (Sage et al., 2020). The marker
genes are generally highly specific for individual cell types, but some mark multiple
cell types (i.e. MARCH1, which marks monocytes and B-cells).

Scaling of ActiveSVM feature selection to million cell dataset
To demonstrate the scaling of the ActiveSVM feature selection method to large single
cell mRNA-seq data sets, we applied the method to extract compact gene sets from
the 10x genomics the ‘megacell’ demonstration data set (Genomics, 2017). The
megacell dataset was collected by 10x genomics as a scaling demonstration of their
droplet scRNA-seq technology. The data set contains full transcriptome mRNA-seq
data for 1.3 million cells from the developing mouse brain profiled at embryonic day
18 (E18) (Genomics, 2017). The data set is one of the largest single cell mRNA-seq
data sets currently available. The size of the data set has been a challenge for data
analysis, and a previous analysis paper was published that developed sub-sampling
methods that extract marker genes and cell-types by extracting sub-sets of of the
data set containing ∼ 100, 000 cells (Bhaduri et al., 2018).
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Figure 2.2: Scaling of ActiveSVM feature selection to 1.3 million cell mouse
brain data set (a) The test accuracy of min-complexity strategy that selects 50
genes using 20 cells each iteration; (b) The test accuracy of min-cell strategy that
selects 50 genes using 100 cells each iteration; (c) The total number of unique cells
used vs gene set size with both the min-complexity and the min-cell strategy; (d) The
t-SNE plots of the entire filtered dataset with 10 classes by k-means clustering; (e)
Expression level of the gene markers from previously published analysis overlaid on
t-SNE plot; (f) Expression level of the gene markers selected by ActiveSVM overlaid
on t-SNE plot, where the first row are the genes that have similar distribution with
gene markers from previously analysis and other genes are new markers correlated
with the classification target. (g) Correlation matrix of literature markers (y-axis)
from (Bhaduri et al., 2018) versus ActiveSVM selected genes (x-axis).
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We applied our ActiveSVM method to extract minimal genes sets for classifying
the 10 classes of cells that were extracted through k-means (Likas, Vlassis, and
Verbeek, 2003) clustering in the internal analysis of the data (Figure 2.3(a)(b)). The
min-complexity algorithm used 20 cells at each iteration and the min-cell algorithm
selected 100 cells each loop. The min-cell algorithm acquired fewer unique cells,
as cells are selected repeatedly (Figure 2.3(c)). On this dataset, both algorithms
use ’balanced’ sampling for both min-complexity and min-cell strategies. As the
dataset is too large to produce t-SNE, we randomly sampled 30, 000 cells and find
the tSNE projection, which is shown with the input cell clusters in Figure 2.3(d).

While the size of the data set has presented challenges for conventional sampling
methods, the ActiveSVM algorithm must only acquire from memory a small num-
ber of genes or cells at each round of analysis, and therefore, the method avoids
computing across the entire 1.3 million cells and ∼ 30, 000 gene data set. We found
that it was possible to run ActiveSVM on a conventional lap-top. For decreasing
compute time, we analyzed the megacell data set on an AWS instance r5n.24xlarge.
On this instance, ActiveSVM ran in 69 minutes for the min-complexity strategy
and 243 minutes for the min cell strategy. As a comparison, naive SVM required
greater than four days of computation to run on all 1.3 million cells on the same
AWS instance (Table 2.1).

To provide a bench-marking for ActiveSVM, we instead compared the accuracy of
ActiveSVM to a data set where we allow ActiveSVM to run on the data set;we extract
the number of analyzed cells, and then provide this same number of cells to the other
methods shown in figure 3(a)(b). Applying the other methods to sub-sampled data,
allowed us to extract the classification accuracy as a bench-marking for ActiveSVM.

In addition to performing the classification task, the ActiveSVM procedure discovers
gene sets that achieve ∼ 90% classification accuracy with only 50 genes. The
procedure discovered a series of cluster specific marker genes that extend prior
analysis. For example, the analysis in (Bhaduri et al., 2018) identified marker
genes through sub-sampling and prior biological literature. A set of genes identified
previously is shown in Figure 2.3(e). The ActiveSVM analysis discovered several
of the same markers as the previous work (Reln, Vim, Igfbp7) (Figure 2.3(f)).

Further, ActiveSVM extended previous analysis by identifying additional markers
that correlate with the previously analysis as well as marker genes of additional
cell states. The development of radial glial cells, in particular, has been of intense
recent interest because radial glial cells are the stem cells of the neocortex in mouse



30

and human (Pollen et al., 2015). Careful molecular analysis has defined markers
of radial glial cells including Vim. ActiveSVM identified a group of genes whose
expression correlates with Vim across the E18 mouse brain. Our analysis identified
an additional set of genes expressed in the same cell population as Vim including,
Dbi (Diazepam Binding Inhibitor, Acyl-CoA Binding Protein), Hmgb2, and Ptn. A
correlation matrix (Figure 2.3(g)) showing the correlation of ActiveSVM identified
genes (x-axis) with literature markers (y-axis) discussed in (Bhaduri et al., 2018)
reveals the existence of Vim correlated genes. The Vim genes were of interest
because they include additional transcription factors Hmgb2 (Pollen et al., 2015)
and also a core group of genes, Ptn and Fabp7 (also Brain Lipid Binding Protein),
two components of a radial glia signaling network (Anthony et al., 2005; M. G.
Andrews, L. Subramanian, and Kriegstein, 2020; Pollen et al., 2015) that has been
identified as a core regulatory module supporting the proliferation and stem cell
state in the radial glial cell population.

The neural progenitor transcription factor Neurod6 marked a separate cell population
that we identified to contain genes including Neurod2 (a transcription factor) and
Sox11 (a transcription factor) as well as glial transcription factors Nfib and Nfix and
the receptor Gria2 (Glutamate Ionotropic Receptor AMPA Type Subunit 2). The
marker genes observed in Neurod6 expressing cells were anti-correlated with the
Vim correlated markers suggesting that ActiveSVM identified two distinct regulatory
modules. Structurally, the tubulin proteins Tuba1b and Tuba1a were expressed in
Vim and Neurod6 populations respectively. In addition to genes correlated or anti-
correlated with existing markers, ActiveSVM identified markers of additional cell
populations including Meg3, a long non-coding RNA expressed in cluster 2.

Broadly, the analysis of the ‘megacell’ mouse brain data set demonstrates that
ActiveSVM scales to analyze a large data set with > 1 million cells. The analysis of
such large data sets has been challenging with conventional approaches that attempt
to store the entire set in memory for analysis. Previous analysis of the 10x megacell
dataset found that sub-samples with greater than 100, 000 cells would yield an out
of memory error on a server node with 64 cores, a 2.6 GHz processor, and 512 GB
of RAM (Bhaduri et al., 2018).

ActiveSVM iterates through analysis of cells and genes while focusing computa-
tional resources on poorly classified cells, and so ActiveSVM does not load the
entire dataset into memory but can read cells and genes from disk as needed. Fur-
ther, through iterative analysis, ActiveSVM identifies known marker and regulatory
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Figure 2.3: Minimal gene sets for cell-type classification in the Tabula Muris
mouse tissue survey (A) Classification results of 150 genes selected using the min-
complexity strategy with 20 cells each iteration. (B) 500 genes selected using the
min-cell strategy with 200 cells per iteration. Results for standard and balanced
strategy shown with comparison methods and confidence intervals. The subplots
contain: classification accuracy vs gene set size using the min-complexity strategy
(a) and min-cell strategy (f); the t-SNE plots of the entire filtered dataset (b)(h); the
t-SNE plots of the gene set selected using min-complexity strategy with randomly
sampling (c) and ’balanced’ sampling (d), and gene set selected using the min-cell
strategy (i); the expression level overlaid on t-SNE projection for genes selected by
min-complexity (e) and by min-cell (j); and the total number of unique cells used vs
gene set size with the min-cell strategy (g).

genes, genes that correlate with known markers as well as marker genes of addi-
tional cell populations that could provide a starting point for future experimental
investigations.
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Identifying gene sets for cell-type classification in the Tabula Muris tissue survey
In addition to analyzing a data set with a large number of total cells, we sought to
benchmark performance of ActiveSVM feature selection on a data set with a large
number of distinct cell types. We applied ActiveSVM to the Tabula Muris mouse
tissue survey, a droplet-based scRNA-sequencing data-set, that contains 55,656
single cells across 58 annotated cell types, and 12 major tissues (Consortium et al.,
2018). For each cell, 8,661 genes are measured. In our analysis, we used the supplied
cell-type labels, agnostic of tissue type. Thus, cells labeled ‘macrophage’ from the
spleen are considered to belong to the same class as cells labeled ‘macrophage’ from
the mammary gland.

Even with a large number of cell types, ActiveSVM can construct gene sets that
achieve high accuracy (> 90%), compared to other methods (Figure 2.4(a)(f)). To
construct a gene set of size 500, ActiveSVM feature selection used fewer than 800
unique cells (Figure 2.4(g)) or an average of 14 cells per cell type. We were able
to recreate the clustering patterns from the original data (Figure 2.4(b)(h)) when
analyzing the cells within the low dimensional t-SNE space spanned by the selected
150 genes (Figure 2.4(c)(d)) or 500 genes (Figure 2.4(i)).

Our approach allowed us to construct a set of marker genes able to identify mouse
cell types across disparate tissues. Even when analyzing a large number of cell
types, we were able to identify highly cell-type specific genes, such as CD3D, a
well-established T-cell marker, or TRF (transferrin), which is selectively secreted by
hepatocytes (Guan et al., 2020), or LGALS7 (galectin-7), which is specific for basal
and differentiated cells of stratified epithelium (Magnaldo, Fowlis, and Darmon,
1998). However, given the functional overlap between different cell types, the genes
within our set include many that mark multiple cell types. For instance, H2-EB1
(Stables et al., 2011), a protein important in antigen presentation, is expressed in
B-cells and Macrophages, both of which are professional antigen presenting cells
(APCs). Our analysis also identified cell type-specific expression for a number of
poorly studied genes, such as granulocyte- and hepatocyte- specific expression of
1100001G20RIK (also known as Wdnm-like adipokine), which has previously only
been associated with adipocytes (Wu and Smas, 2008).
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Figure 2.4: Gene set selection for healthy vs disease classification in multiple
myeloma dataset. (A) classification results of 40 genes selected by min-complexity
strategy using 20 cells each iteration. (B) 40 genes selected using Min-cell strategy
with 100 cells per iteration. Results for standard and balanced strategy shown with
comparison methods and confidence intervals. As in Figure 2.4, each sub-figure,
sub-panels show the number of acquired cells per iteration, tSNE visualizations of
using the complete data set, visualizations using only the ActiveSVM extracted data
set, and marker genes identified by ActiveSVM.
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Extraction of gene sets for classification of disease state in peripheral blood
cells from multiple myeloma patient samples
To analyze ActiveSVM as a tool for the discovery of disease-specific markers,
we used single-cell data from peripheral blood immune cells collected from two
healthy donors and four patients who have been diagnosed with multiple myeloma
(MM)(S. Chen et al., 2020). MM is an incurable cancer of plasma cells, known as
myeloma cells, that over-proliferate in the bone marrow. Although myeloma cells
are typically the target of analysis because they are the causative agent of disease,
peripherally circulating immune cells also contain signatures of disease, including
a depleted B-cell population (Rawstron et al., 1998; Magalhães et al., 2013), an
increased myeloid-derived suppressor cell count (Malek et al., 2016), and T-cell
immunosenescence (Suen et al., 2016; Magalhães et al., 2013).

We sought to further define transcriptional markers that distinguish healthy periph-
eral immune cells from the cells of MM patients. We performed feature selection
using heterogeneous populations of cells labeled only by disease state. The data set
contains 35159 with 32527 genes (Table 2.1).

We compared the classification accuracy for ActiveSVM vs the other methods (Fig-
ure 2.5(a)(f)), and found that ActiveSVM achieved high accuracy in a limited number
of steps and consistently outperformed the other methods. We tested ActiveSVM
with two different cell sampling strategies, randomly sampling, and ’balanced’ sam-
pling, in which equal numbers of cells from each cell type are sampled to correct for
artifacts due to different cell-type proportions between samples. We noted that al-
though the balanced approach gave higher classification accuracy at early iterations,
these differences are no longer apparent after selecting 20 genes (Figure 2.5(a)).

Non-overlapping cell-type clusters were identified for healthy and MM cells in
the original dataset in t-SNE projections (Figure 2.5(b)(h)). The non-overlapping
clusters are replicated in t-SNEs constructed from 40 genes selected using both the
min-complexity strategy (Figure 2.5(c)(d)) and the min-cell strategy (Figure 2.5(i)).

Analysis of the function of the genes identified by ActiveSVM revealed most regulate
house-keeping functions, suggesting that global shifts in translation and motility
are disrupted in multiple myeloma patients. Translation-associated markers include
Eukaryotic Translation Initiation Factor 1 (EIF1), Eukaryotic Translation Elongation
Factor 1 Alpha 1 (EEF1A1), and prefoldin subunit 5 (PFDN5). Motility associated
genes include ACTB, putative anti-adhesion molecule CD52, and actin-sequestering
protein TMSB4X.
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We also found both known and novel markers of MM within the peripheral blood
immune cells. Our analysis identified TPT1, previously associated with MM (Ge
et al., 2011), and RACK1 (also known as GNB2L1), a scaffolding protein that
coordinates critical functions including cell motility, survival and death, which is
broadly upregulated in peripheral immune cells from MM patients. Although this
gene has been previously associated with myeloma cells (Xiao et al., 2018), its
regulation had not been reported in peripherally circulating immune cells. Our
ability to discover MM-specific genes within peripheral immune cells suggests a
broader use for discovering disease-specific genes across many different types of
pathologies.

Interestingly, the procedure also identifies multiple members of the S100 Calcium
Binding Protein Family (S100A8, S100A9 and S100A6, and S10084) (C. Xia et al.,
2018; M. Liu et al., 2021; Dobreva et al., 2020) as members of the genes sets
that separate MM vs healthy samples. The S100 protein family defines a module
of genes that are associated with the induction of stress response pathways. The
expression of S100 genes is prognostic for a number of diseases. Specifically, a
recent study found that S100A4 expression correlates with poor patient survival in
mulitple myeloma and that S100A8, and S100A9 are markers that correlate with poor
response of multiple myeloma patients to treatment with proteasome inhibitors and
the and histone deacetylase inhibitor panobinostat (M. Liu et al., 2021). The result
demonstrates that ActiveSVM can automatically define groups of genes that have
clinical association with disease progression and treatment outcome. The minimal
gene sets generated by ActiveSVM could provide useful targeted sequencing panels
for a variety of clinical tasks.

ActiveSVM identifies genes impacted by Cas9 based genetic perturbation
The previous analyses above have demonstrated that ActiveSVM identifies minimal
gene sets for cell-state identification across a range of single-cell mRNA-seq data
sets. We next demonstrate that ActiveSVM provides a more general analysis tool
with potential applications to a range of single-cell genomics analysis tasks. To
demonstrate generalization of ActiveSVM based gene set selection across single-
cell genomics tasks, we applied the method to identify marker genes in two additional
applications: perturb-seq and spatial transcriptomics.

Perturb-seq is an experimental method for performing Cas9-based genetic screens
with single-cell mRNA-seq read-outs. In perturb-seq, cells are induced with libraries
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Figure 2.5: Application of ActiveSVM to identify genes expression changes
following Cebp knock-down with perturb-seq The results of classification on
perturb-seq data (Dixit et al., 2016) where cells are labeled and classified as Cebp
sgRNA transduced or not-transduced with a guide RNA. (a-b) accuracy of entire
dataset with min-complexity strategy, where comparison methods use the same
number of cells as ActiveSVM in (a) and use the entire dataset in (b). (c) correlation
matrix showing pair-wise correlation coefficients for genes in Cebp perturbed cells.
Correlation matrix identifies two gene modules. (d) Distributions of gene expression
in Cebp sgRNA transduced (orange) or not transduced (blue) cells. Selected genes
from modules in (c) shown and organized so that genes whose expression increases
with Cebp perturbation are on top and repressed genes are on the bottom of the
figure.
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of guide RNA’s that target the Cas9 protein to cut and silence specific genes (Dixit
et al., 2016; Replogle et al., 2020). Perturb-seq is performed in a pooled fashion so
that a pooled set of sgRNA molecules is delivered to a cell population. Individual
cells stochastically take-up specific guide RNAs, and the guide RNAs target Cas9
cuts and silences genes in the genome. Following the perturbaation experiment,
single-cell mRNA-seq is applied to read both the transcriptome of each cell and the
identify of the delivered sgRNA through sequencing. The advantage of the perturb-
seq method is that many knock-out experiments can be performed simultaneously.
However, a challenge is that noise impacts the measurement of guide RNA identify,
and, further, the cutting of the genome by the Cas9 molecule is not complete. Due to
measurement and experimental noise, identifying the impact of genetic perturbation
on a cell population can be challenging, and various methods have been developed
to boost signal (Replogle et al., 2020). We applied ActiveSVM to identify a minimal
gene set as well as down-stream effects of gene knock-down in perturb-seq data.

We specifically applied ActiveSVM to analyze public data collected from mouse
dendritic cells with transcription factor knock-downs (Dixit et al., 2016). The
experiment analyzed cells in which transcription factors has been knocked-down
using perturb-seq in mouse dendritic cells stimulated for 3 hours with LPS, a signal
that mimics bacterial infection.

To apply ActiveSVM to the data, we focused our analysis on knock-down of Cebp
an pioneer transcription factor. We pre-processed the data to identify cells induced
with sgRNA against Cebp and non-induced cells, and used transduced and non-
transduced as our cell-labels. We applied ActiveSVM to select a minimal gene set
that could classify transduced versus non-transduced cells. ActiveSVM identified
minimal gene sets (50 genes) that achieved 80% classification accuracy on the Cebp
sgRNA cell label. As we applied the class-balanced model to obtain the classification
accuracy and there are only about 20 transduced cells in test set, we show the
accuracy on entire dataset instead of test set. On this noisy dataset, ActiveSVM
worked better than comparison methods with the condition that ActiveSVM only
used a small subset of data while comparison methods performed on the entire
dataset (Figure 2.6(b)).

We found that the discovered gene set could be decomposed into two modules of
correlated genes (Figure 2.6c). Figure 2.6(c) shows a clustered correlation matrix
for the 50 identified genes. Gene expression distributions for cells in transduced
vs non-transduced cells demonstrated that the modules represented two groups of
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genes. One group (including Pf4, Ccl4, Ccl6, Lyz2) was repressed by Cebp knock-
down, and the second gene group was activated by Cebp knock-down including
(Ccl17, Cd74, H2-Ab1) (Figure 2.6d).

In both cases, the identified gene sets contained known targets of Cebp, the per-
turbed transcription factor. For example, Fth1 (ferritin, heavy polypeptide 1), Cst3,
Tmsb4x, Lgals3, Ccl4, and Cd74 are all previously identified as direct binding
targets of Cebp as determined by Chip-seq (Rouillard et al., 2016). Since Cebp
knock-down leads to both up-regulation and down-regulation of genes, the results
suggest that the factor can play both activating and repressive roles consistent with
prior literature (Pei and Shih, 1990).

Our analysis of the perturb-seq data set, therefore, demonstrates that ActiveSVM
can be applied as a useful tool for the identification of genes modulated by perturb-
seq experiments. ActiveSVM can return minimal genes sets that contain functional
information. Moreover, perturb-seq has been a main application of gene targeting
approaches (Replogle et al., 2020). Therefore, ActiveSVM could provide a method
for identifying minimal gene sets that can be applied to increase the scale of perturb-
seq data collection.

ActiveSVM defines region specific markers in spatial transcriptomics data
Finally, to further demonstrate the generality of the ActiveSVM approach, we applied
the procedure to identify minimal gene sets for classification of cells by spatial
location in spatial transcriptomics data. Spatial transcriptomics is an emerging
method for measuring mRNA expression within single cells while retaining spatial
information and cellular proximity within a tissue. As an example, in SeqFish+,
an imaging based spatial transcriptomics method, cells are imaged in their tissue
environment, and mRNA transcripts are counted using single-molecule imaging
of mRNA spots (Eng et al., 2019). In all spatial transcriptomics applications, a
common goal is the identification of genes that mark specific spatial locations within
a tissue sample. Additionally, spatial imaging methods are commonly limited by
imaging time. While Seqfish+ can profile 10, 000 mRNA molecules per cell, the
identification of reduced gene sets would reduce imaging time and throughput.

We applied ActiveSVM to identify genes associated with specific spatial locations in
the mouse brain. We used a seqFISH+ data set in which the authors profile 10, 000
mRNA molecules in 7 fields of view (FOV) in the mouse brain (Eng et al., 2019).
Fields of view correspond to spatially distinct regions of the mouse cortex as well
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Figure 2.6: Application of ActiveSVM to identify region specific marker genes
in the mouse brain with spatial transcriptomic data The results of classification
where cells are labeled according to fields of view (FOV) in (Eng et al., 2019).
(a-b) test accuracy with min-complexity strategy, where comparison methods use
the same number of cells as ActiveSVM in (a) and use the entire dataset in (b).
Fields of view 1-5 correspond to 5 regions of the mouse cortex, additional fields of
view are labeled SVZ (sub-ventricular zone) and ChP (chordid plexus). (c) tSNE
of cell transcriptomes for all cells (d) number of cells used per iteration (e) Sample
of identified genes where each sub-panel shows mean expression across FOV/brain
regions for selected gene, a tSNE plot colored by expression of selected gene, a violin
plot of single cell gene expression values for selected gene in FOV/brain region, and
spatial plots of each field of view where dots represents cells in 2D imaging slice,
cells are colored by intensity of selected gene and units are in millimeters.
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as the sub-ventricular zone and chordid plexus. We used the spatial location labels
provided by Eng et al., 2019 to identify seven different brain locations (Fields of view
1-5 corresponding to Cortex Layers 2/3 through Layer 6; FOV 6 is sub-ventricular
zone, and FOV 7 is chordid plexus). Applying the spatial location labels as class
labels, we applied ActiveSVM to identify genes that could allow classification of
single-cells by their location in one of the seven classes and to define marker genes
that correspond to specific spatial locations.

We identified gene sets of< 30 genes that enabled location classification with greater
than 85% accuracy with min-complexity strategy (Figure 2.7(a)). ActiveSVM used
only 10 cell at each iteration but worked better than comparison methods who
performed on the entire dataset (Figure 2.7(b)).

In the spatial application, the result means that the∼ 30 genes are sufficient to classify
single-cells as belonging to one of the 7 spatial classes. In Figure 2.7, we show
the mean expression of identified genes across cortical fields of view corresponding
to a sweep through cortical layers 2/3 through 6 as well as SVZ and CP. Our
analysis identifies markers Prex1 that are specific to the upper cortical layers of the
brain. Efhd2, a calcium binding protein linked to Alzheimer’s disease and dementia,
was similarly expressed in lower cortical layers (Vega, 2016; Borger et al., 2014).
Finally, Pltp, a Phospholipid transfer protein, was localized to the chordid plexus. In
Figure 2.7(e), we show the spatial distribution of these genes including their mean
expression across regions, violin plots documenting expression distribution, and
renderings of the single-cells within the field of view and the relative expression of
each gene.

The spatial analysis demonstrates that a broad range of different experimental vari-
ables can be applied as labels. In each case ActiveSVM discovers genes that allow
classification of cells according to labels and identifies interesting genes. Regional
gene marker identification is a major task in seqFish data analysis and ActiveSVM is
able to identify genes enriched in different brain regions automatically. Such spatial
information could provide interesting new insights into disease processes mediated
by genes like Efhd2.

2.6 Discussion
In this chapter, we introduce ActiveSVM as a feature selection procedure for dis-
covering minimal gene sets in large single-cell mRNA-seq datasets. ActiveSVM
extracts minimal gene sets through an iterative cell-state classification strategy. At
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each round the algorithm applies the current gene set to identify cells that classify
poorly. Through analysis of misclassified cells, the algorithm identifies maximally
informative genes to incorporate into the target gene set. The iterative,active strategy
reduces memory and computational costs by focusing resources on a highly informa-
tive subset of cells within a larger data set. By focusing computational resources on
misclassified cells, the method can run on large data sets with more than one million
cells. We demonstrate that ActiveSVM is able to identify compact gene sets with
tens to hundreds of genes that still enable highly accurate cell-type classification.
We demonstrate that the method can be applied to a variety of different types of
data set and single-cell analysis tasks including perturb-seq data analysis and spatial
transcriptomic marker gene analysis.

Conceptually, we refer to our strategy ‘active’ because it actively selects data exam-
ples (here cells) at each iteration for detailed analysis . Our algorithm specifically
selects cells that within the margin of the SVM classifier, and uses these poorly clas-
sified cells to search for maximally informative genes (features). In traditional active
learning strategies, an algorithm is typically called active when it can directly query
an oracle for data examples that meet a criteria (Settles, 2009; Settles, 2011). In the
tradition of active learning, our ActiveSVM procedure queries the SVM classifier
for cells that have been misclassified, and then expends computational resources to
analyze all genes within that limited subset of cells to discover informative genes.
Thus, while our algorithm cannot query the biological system directly for cells that
meet a specific criteria, the algorithm queries the data set itself for informative ex-
amples, and therefore we refer to it as ‘active’. Our current work focuses on a single
classification method, the support vector machine, as the computational engine.
Active learning methods can be applied more broadly to additional classification
strategies like neural network based classification as well as to additional types of
analysis like data clustering and gene regulatory network inference.

Our method also has some conceptual similarity to boosting methods (Schapire,
2003; Schapire, 1999). Boosting algorithms (e.g AdaBoost) train a series of ’weak’
learners for a classification tasks, and then combine these weak classifiers to gen-
erate a strong classifier. In boosting a single weak learner may initially obtain
moderate performance on a task. The performance of weak learners is improved
through iterative training of additional learners and focusing their training on dif-
ficult data examples, for example, misclassified examples. The boosting algorithm
constructs a final, strong classifier by combining the results of the ensemble of
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weak classifiers through a weighted majority vote. Our method is distinct from
conventional boosting, because we search for a minimal set of features in our data
that allows a single SVM classifier to achieve high-accuracy classification. How-
ever, ActiveSVM feature selection shares conceptual ideas with boosting in that
both methods focus analysis on challenging examples and combine information to
achieve strong classification from initially weak classifiers.

ActiveSVM provides an iterative strategy for extracting a compact set of highly in-
formative genes from large single cell data sets. Biologically, recent work highlights
the presence of low-dimensional structure within the transcriptome (Heimberg et al.,
2016). Low-dimensional structure emerges in gene expression data because cells
modulate their physiological state through gene expression programs or modules
that contain large groups of genes. Since genes within transcriptional modules have
highly correlated expression, measurements performed on a small number of highly
informative signature genes can be sufficient to infer the state of a cell (Cleary et al.,
2017). Low-dimensional structure can be exploited to decrease measurement and
analysis costs since a small fraction of the transcriptome must be measured to infer
cellular state. We developed ActiveSVM as a scalable strategy for extracting high
information content genes within a sharply defined task, cell-state classification.

In ActiveSVM we apply an active learning strategy to reduce the computational and
memory requirements for analyzing single-cell data sets by focusing computational
resources on ’difficult to classify’ cells. In the future, active learning strategies could
be applied directly at the point of measurement. In genomics measurement resources
often limit the scale of data acquisition. In future work we aim to develop strategies
that can improve the on-line acquisition of single-cell data. Active strategies could
be implemented at the point of measurement by only sequencing or imaging the
content of cells that meet a criteria. Even more broadly, it might be possible
to induce a biological system to generate highly informative examples through
designed experimental perturbation (Jiang, Sivak, and Thomson, 2019).
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C h a p t e r 3

ACTIVECELLINFERENCE: DECREASE ACQUISITION COST
IN SPATIAL GENOMICS

Spatial transcriptomics assigns cell types and states to their locations in histological
sections at single-cell and subcellular resolutions by measuring the expression of a
predefined set of genes. The high temporal cost of measurements is a major limiting
factor in introducing spatial genomics into clinical practice. We present Active
Cell Inference, an end-to-end pipeline that uses ordered gene sets to enable fast
and low cost spatial genomics measurements in scientific and clinical settings. The
developed algorithm identifies well-classified cells that require no further probing,
reducing the number of cells each gene marks, which in turn reduces measurement
costs by 10 to 100 fold.

Our Active Cell Inference procedure starts with a set of all cells and an ordered gene
set from developed ActiveSVM (Chapter II). The algorithm iteratively classifies
cells with cell-types or states labels using probed genes from the ordered gene set
by training a SVM model with probability calibration and identifies uncertainty of
cells. Cells that are certainly well-classified and require no additional gene markers
are removed from the set. Subsequently, the next genes to be probed are marked in
cells that are misclassified or classified unreliably, to improve classification accuracy
and certainty.

To refine the sequence of predictions made by our model, I implemented a temporal
scaling calibration scheme based on Platt scaling (Platt et al., 1999) integrated with
vector scaling (Guo et al., 2017). Our experimental assessments demonstrate that
this calibration method significantly improves the probability calibration throughout
the iterative process of the algorithm.

Furthermore, we applied this algorithm to the expansive Human Cell Atlas dataset
(Regev et al., 2017) using the advanced computational tool, CellxGene-Census
(Biology et al., 2023), which includes data on over 60 million cells. This integration
has enabled us to establish precisely targeted gene sets for various human tissues,
greatly enhancing the efficiency of the Active Cell Inference process. This strategy
has consistently delivered highly reliable and accurate results across different human
tissues.
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3.1 Introduction
Spatial genomics is an advanced technique that measures RNA expression at the
single-cell level, with the added dimension of maintaining spatial context through
imaging. This methodology is pivotal for understanding the complex spatial ar-
rangements and interactions of cells within a specific tissue or environment. The
challenge currently facing the field is the extensive amount of time required to image
a large number of genes across numerous cells. This bottleneck significantly im-
pedes the broader application of spatial genomics, particularly in clinical diagnostics
where speed and scalability are crucial. (Moffitt et al., 2016) (Lubeck et al., 2014).

A common objective of spatial genomics is to identify and classify different cell types
within a sample. For instance, in oncology, a critical application is the identification
of immune cells, such as T cells, within a tumor. This information is essential
for evaluating the immune response to the tumor and for tailoring immunotherapy
treatments. Immunotherapy relies heavily on understanding whether a tumor is
densely infiltrated by immune cells or not, as this can influence the effectiveness of
treatment strategies. Therefore, the ability to accurately and efficiently determine the
presence and abundance of specific cell types within a tumor using spatial genomics
is of paramount importance for advancing personalized medicine and improving
patient outcomes (Ståhl et al., 2016) (Rodriques et al., 2019).

For example, in tumor analysis, spatial genomics can illuminate the distribution and
types of immune cells across different regions of a tumor. This granularity helps
in discerning patterns of immune evasion by cancer cells and identifying potential
targets for immunotherapy. By pinpointing where immune cells are located and
how densely they populate various tumor areas, researchers can better assess the
immunological landscape of the cancer. This assessment is critical in deciding
whether a tumor is likely to respond to immunotherapies that rely on boosting the
body’s immune response to cancer cells.

Active acquisition methods represent a promising solution to this challenge. These
methods involve optimizing imaging protocols to ensure that only the necessary
amount of imaging is performed to achieve specific clinical outcomes. By priori-
tizing efficiency, these techniques can significantly reduce the time and resources
required for spatial genomics studies, making them more feasible for clinical appli-
cations. (K. H. Chen et al., 2015).

Enhancing the capabilities of spatial genomics further, active acquisition strategies
not only streamline imaging processes but also enable the detailed examination of
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cellular microenvironments in health and disease. This is especially relevant in
the field of oncology, where understanding the cellular composition of tumors can
provide insights into tumor behavior and response to therapies. (J. H. Lee et al.,
2014) (Eng et al., 2019).

Moreover, the ability to perform this analysis efficiently—by reducing the imaging
load without compromising the quality of data—can significantly accelerate the
transition from experimental research to practical, clinical applications. Active
acquisition methods, by focusing imaging efforts on gene markers most relevant
to the clinical question at hand, ensure that the data collected is both scientifically
robust and clinically relevant.

This targeted approach not only conserves valuable laboratory resources but also
opens the door for real-time spatial genomic diagnostics. In the clinical setting, such
diagnostics could be transformative, enabling the rapid stratification of patients to
appropriate therapies based on the spatial molecular signatures of their tumors.
For instance, patients whose tumors show high levels of T cell infiltration might
be excellent candidates for aggressive immunotherapeutic regimens, whereas those
with poor infiltration might require alternative strategies.

In essence, the integration of active acquisition methods with spatial genomics
represents a significant leap towards personalized medicine, where the precise cel-
lular and molecular characteristics of a patient’s disease can guide therapy choices.
This convergence promises to refine our understanding of disease pathology at an
unprecedented scale, potentially ushering in a new era of targeted and effective
treatment strategies across various medical disciplines.

We have devised an active cell inference and data acquisition protocol utilizing
ordered gene sets and classifiers to efficiently identify cell types within a sample,
significantly reducing the number of genes imaged per cell. Our approach has
successfully decreased imaging time by a factor of 10 to 100, allowing for cell
classification with an average of just 10 genes per cell. Our findings indicate that
imaging costs differ among tissue types; for instance, kidney tissues require ten
times more imaging rounds than other tissues for accurate cell type classification.
Additionally, we observed that the cost of acquisition can be tailored based on the
precision needed for cell identification.

I’ll introduce the probability calibration in the section Probability Calibration. The
proposed ActiveCellInference and temporal scaling are explained in detail in the
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Methods section. Datasets and experiments are described in the next two section.
And the results of experiments are detailed in two subsections: (1) the accuracy
relative to the number of genes selected and the average number of genes needed per
cell, demonstrating that the algorithm maintains high accuracy even with a reduced
number of genes; (2) a comparison between temporal scaling and Platt scaling,
highlighting differences in scalability and efficiency.

3.2 Probability Calibration
In classification tasks, accurately predicting class labels and assessing the probability
associated with these labels is essential. This probability serves as a measure of
confidence in the predictions. However, some models either provide inaccurate
probability estimates or lack the capability to offer such predictions at all. To resolve
this, calibration modules are employed to either improve the model’s probability
estimates or to add functionality for predicting probabilities.

A well-calibrated probabilistic classifier produces results that can be directly in-
terpreted as confidence levels. For instance, a perfectly calibrated classifier that
predicts with an 80% confidence should have about 80% of such predictions turn
out to be correct.

Let’s consider a classifier �̂�𝑖 = 𝑓 (𝑋𝑖) derived from dataset {𝑋𝑖, 𝑦𝑖}𝑁𝑖=0, where 𝑦𝑖 ∈
{1, ..., 𝐾} are ground-truth labels. The goal is for the probability calibration �̂� to
mirror the true probability accurately. Perfect calibration can be described by the
equation:

P( �̂� = 𝑦 |�̂� = 𝑝) = 𝑝,∀𝑝 ∈ [0, 1] . (3.1)

Achieving this level of precision in calibration is typically unattainable in practical
settings due to the limited sample sizes in datasets. This limitation necessitates the
use of empirical methods to approximate this ideal. In the upcoming sections, I will
introduce proxy metrics that evaluate how closely empirical probability estimates
match this ideal calibration, and discuss several well-established techniques for
probability calibration.

Evaluating Calibration
I will discuss two commonly used calibration errors for multiclass classification
settings and one visualization technique to assess the effectiveness of probability
calibration.
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These three evaluation methods rely on comparing the model’s predicted probability
with the actual sample accuracy. This comparison is conducted by dividing the
predictions into 𝑀 interval bins, where each bin represents a probability range of
size 1

𝑀
. For each bin, the average predicted probability of the samples is calculated,

and the actual sample accuracy is determined by the fraction of correct predictions
in that bin, specifically, the proportion of samples correctly identified as belonging
to the positive class. Let 𝐵𝑚 represent the set of samples whose predicted confidence
falls within the interval 𝐼𝑚 = (𝑚−1

𝑀
, 𝑚
𝑀
]. The expected sample accuracy for 𝐵𝑚 is

then calculated by:

𝑎𝑐𝑐(𝐵𝑚) =
1

|𝐵𝑚 |
∑︁
𝑖∈𝐵𝑚

1( �̂�𝑖 = 𝑦𝑖)

while the average predicted probability in each bin is:

𝑐𝑜𝑛 𝑓 (𝐵𝑚) =
1

|𝐵𝑚 |
∑︁
𝑖∈𝐵𝑚

�̂�𝑖 .

The good calibration in empirical sense means 𝑎𝑐𝑐(𝐵𝑚) = 𝑐𝑜𝑛 𝑓 (𝐵𝑚). The calibra-
tion gap of a bin is the absolute difference between 𝑎𝑐𝑐(𝐵𝑚) and 𝑐𝑜𝑛 𝑓 (𝐵𝑚).

𝑔𝑎𝑝(𝐵𝑚) = |𝑎𝑐𝑐(𝐵𝑚) − 𝑐𝑜𝑛 𝑓 (𝐵𝑚) |.

Reliability Diagrams (DeGroot and Fienberg, 1983) (Wilks, 1990), also referred to
as calibration curves, illustrate the accuracy of calibration in probabilistic predictions
from a binary classifier. The y-axis indicates the expected sample accuracy, and the
x-axis represents the predicted probability of the model. For a model that is perfectly
calibrated, the curve should ideally follow the identity function, where the predicted
probabilities align precisely with the actual outcomes. Deviations from this line,
typically marked in red on the diagrams, highlight a calibration gap, signaling that
the model is miscalibrated.

Expected Calibration Error (ECE) (Naeini, Cooper, and Hauskrecht, 2015) is the
weighted mean of the calibration gaps of all bins. More precisely,

𝐸𝐶𝐸 =

𝑀∑︁
𝑚=1

|𝐵𝑚 |
𝑁

𝑔𝑎𝑝(𝐵𝑚).

Maximum Calibration Error (MCE) (Naeini, Cooper, and Hauskrecht, 2015)
is especially important in high-stakes settings where precise confidence measures
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are crucial. This metric aims to minimize the greatest discrepancy between the
predicted confidence and actual accuracy, enhancing reliability in critical situations.

𝑀𝐶𝐸 = max
𝑚={1,...𝑀}

𝑔𝑎𝑝(𝐵𝑚).

Calibration Methods
Probability calibration models for classification refine a classifier to provide true
likelihood estimates or probabilities of classification, rather than just class labels.
These models are generally categorized into parametric and nonparametric types. In
this section, I’ll discuss three well-known methods: Platt scaling (Platt et al., 1999),
which is a parametric approach, and Isotonic Regression (Zadrozny and Elkan,
2002) and Histogram Binning (Zadrozny and Elkan, 2001), which are nonparametric
methods. In addition to these, there are several other effective calibration techniques
applicable in various scenarios, such as Bayesian Binning (Naeini, Cooper, and
Hauskrecht, 2015), Beta Calibration (Kull, Silva Filho, and Flach, 2017), and
methods that utilize Gaussian processes (Küppers, Schneider, and Haselhoff, 2022)
(Song et al., 2019).

Platt Scaling Platt scaling is a well-known method for calibrating probabilities in
classification tasks. It uses the outputs from the original classifier, represented as 𝑓𝑖,
as inputs to a logistic regression model. This model is defined by parameters 𝛼 and
𝛽, and it is optimized by minimizing the Negative Log Likelihood (NLL) between
the predicted outputs and the actual labels 𝑦𝑖. The resulting calibrated probability
is computed using the sigmoid function in the logistic regression model, expressed
as:

𝑝𝑖 = 𝜎(𝛼 𝑓𝑖 + 𝛽) =
1

1 + 𝑒𝑥𝑝(𝛼 𝑓𝑖 + 𝛽)
.

Here, 𝑦𝑖 represents the true label of the 𝑖-th sample, and 𝑓𝑖 is the score provided by
the original, uncalibrated classifier for this sample. The parameters 𝛼 and 𝛽 are real
numbers optimized through maximum likelihood estimation.

In scenarios involving multi-class classification, it’s common to calibrate each class
separately using a one-vs-rest strategy. Studies often indicate that replacing the
sigmoid function with the softmax function can improve results for multi-class
classification. However, in datasets where class distribution is imbalanced, both
sigmoid and softmax approaches may introduce bias in the probability estimates,
often favoring the majority class disproportionately due to the skewed distribution.
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To address the challenges of imbalanced multi-class classification, vector scaling and
matrix scaling are suggested as solutions by (Guo et al., 2017). These approaches
are similar to multinomial logistic regression, where a weight matrix W and a
bias vector b are optimized. Vector scaling simplifies the calibration process by
zeroing out all elements not directly involved in calibration, effectively reducing the
number of parameters to be trained. This technique can be seen as an extension
of Platt scaling applied within a one-vs-rest framework, but with a focus on jointly
optimizing the weights. The probability in this method is calculated as follows:

𝑝𝑖 = 𝜎(W 𝑓𝑖 + b).

Isotonic Regression Isotonic regression is a non-parametric technique that con-
structs a step-wise non-decreasing function. It is designed to minimize the difference
between the predicted probabilities and the actual labels, as illustrated by the equa-
tion below:

min
𝑁∑︁
𝑖=1

(𝑦𝑖 − 𝑓𝑖)

subject to 𝑓𝑖 ≥ 𝑓 𝑗 whenever 𝑓𝑖 ≥ 𝑓 𝑗

(3.2)

Histogram Binning Histogram binning organizes the output space of a model into
𝑀 distinct bins, using either equal-width or equal-frequency techniques to ensure
a uniform distribution of data across these bins. Each bin receives a calibrated
probability designed to minimize the mean squared error (MSE) within that specific
segment. This probability is set to reflect the proportion of positive outcomes
observed in the bin. Consequently, when a new test instance lands in one of
these bins, it inherits the calibrated probability assigned to that bin, which helps to
standardize the accuracy of predictions throughout the model’s output spectrum.

3.3 Method
The Active Cell Inference method sequentially uses genes from a pre-defined, or-
dered gene set as probes and trains SVM models with probability calibration to
assess classification confidence of cells. Cells identified with high certainty are sys-
tematically removed from further analysis, as they do not require additional probing.
The dynamic filtration of cells based on the confidence of their classification ensures
that only cells requiring more gene markers remain in focus, thereby reduces the
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Figure 3.1: Active Cell Inference: Starting with 𝑁 cells and an ordered gene set of
𝑀 genes, this method uses SVM models and probability calibration to sequentially
classify cells. Cells meeting a high certainty threshold are removed, minimizing
further analysis. The process continues until all cells meet the classification criteria
or a minimal number remains, guiding targeted gene probing in spatial genomics.

measurement cost of spatial genomics. Moreover, we have derived ready-to-use
ordered gene sets for all human organs from the Human Cell Atlas dataset, enabling
direct application of the Active Cell Inference method on human tissues.

In detail, the iterative process starts with a complete cell set with 𝑁 cells and an
ordered gene set with 𝑀 genes. At 𝑘-th step, a SVM model is trained with the
cell set and the first 𝑘 genes. Probability calibration models are instrumental in
evaluating and quantifying the level of certainty associated with the classification
of each cell. The cells with classification certainty higher than preset threshold are
removed from the cell set, requiring no further gene probing. The process continues
until all cells are well-classified, or the number of remaining cells is negligible,
or it meets a user-defined criterion for a specific task. The integrated algorithm is
shown in Algorithm 2. This procedure guides spatial data measurement, allowing
biologists to target cells with specific gene probes as instructed by our algorithm.
The framework are shown in Figure 3.1.
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In this framework, various probability calibration methods are applicable. Rec-
ognizing the sequence of classification outputs, I have developed a modification
of Platt scaling called temporal scaling, which enhances calibration by utilizing a
broader range of historical data rather than solely relying on the outputs from the
current iteration. Experiments demonstrate that this approach surpasses traditional
Platt scaling in terms of performance within this iterative framework.

The algorithm applies to single-cell gene expression data with annotations or clus-
tering labels. Cell labels can be derived from unsupservised analysis, experimental
meta-data, or biological knowledge of cell-type marker genes. Notably, our method
can also integrate user-supplied labels for specific spatial genomics tasks.

The ordered gene set we used here is derived from ActiveSVM, a iterative gene
selection algorithm based on SVM. ActiveSVM generates ordered gene sets from
single-cell data through an iterative cell-type classification task where only misclas-
sified cells are examined at each round. To refine this process for our Active Cell
Inference approach, we have enhanced ActiveSVM with classification probability
calibration. Rather than limiting our attention to merely misclassified cells, we
now prioritize cells that exhibit the highest uncertainty in their classification. This
strategic adjustment ensures the resultant gene set is optimally aligned with the re-
quirements of Active Cell Inference, thereby improving its efficiency and accuracy
in identifying pertinent genes for spatial genomics analysis.
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Algorithm 2: Active Cell Inference
Input: 𝑋 ∈ R𝑁×𝑀 , 𝑋 𝑗

𝑖
∈ R: the sample of 𝑖-th cell and 𝑗-th gene,

𝑦 ∈ {1, ..., 𝐾}𝑁 ; test set 𝑋′ ∈ R𝑁 ′×𝑀 , 𝑋′ 𝑗
𝑖
∈ R: the sample of 𝑖-th cell

and 𝑗-th gene; threshold 𝑐 ∈ (0, 1); 𝑇 ∈ N is the size of sliding window;
𝐾 ∈ N is the number of classes; ordered gene set 𝐽; set of all cells 𝐼;
stop criterion 𝑆

𝑗 = 1
repeat

Train SVM on 𝑋 𝑗

𝑖
, ∀𝑖 ∈ 1, ..., 𝑁

Get optimal𝑊 𝑗 ∈ R𝐾×𝑀 , 𝑏 𝑗 ∈ R𝐾

𝑓
𝑗

𝑖
= 𝑋𝑖𝑊

𝑇 + 𝑏, ∀𝑖 ∈ 1, ..., 𝑁
Train temporal scaling model on [ 𝑓 𝑚𝑎𝑥(0, 𝑗−𝑇)

𝑖
, ..., 𝑓

𝑗

𝑖
], ∀𝑖 ∈ 1, ..., 𝑁

Get optimal𝑊′ 𝑗 , 𝑣 𝑗 , 𝑏′ 𝑗

𝑗 = 𝑗 + 1
until 𝑗 > |𝐽 |
𝑗 = 1
repeat

𝑓 ′ 𝑗
𝑖
= 𝑋′

𝑖
𝑊𝑇 + 𝑏, ∀𝑖 ∈ 1, ..., 𝑁′

𝐹′ 𝑗
𝑖
= [ 𝑓 𝑚𝑎𝑥(0, 𝑗−𝑇)

𝑖
, ..., 𝑓

𝑗

𝑖
]

�̂�𝑖 = 𝜎(W′𝐹′ 𝑗
𝑖
v + b′), ∀𝑖 ∈ 1, ..., 𝑁′

𝑝𝑖 = 𝑚𝑎𝑥(�̂�𝑘𝑖 ), 𝑘 ∈ 1, ...𝐾 , , ∀𝑖 ∈ 1, ..., 𝑁′

𝐼′ = {𝑖 |𝑝𝑖 >= 𝑐}
𝐼 = 𝐼 \ 𝐼′

𝑗 = 𝑗 + 1
until 𝑗 > |𝐽 | or 𝐼 = ∅ or 𝑆

Temporal Scaling
Various probability calibration methods can be effectively integrated into our frame-
work. Notably, both Platt scaling and Isotonic Regression have shown impressive
performance in our experiments using the Human Cell Atlas (HCA) dataset.

Given that the classification outputs in our iterative framework are produced in a
sequential manner, I have developed a method known as temporal scaling to enhance
probability calibration. This method extends Platt scaling by considering a broader
history of outputs, rather than just the current iteration. It incorporates a sliding
window mechanism with a fixed length to capture the sequence of outputs over
time. Let’s assume there are 𝑁 samples (cells), 𝐾 classes, and the sliding window
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has a length of 𝑇 . The output of the classifier is denoted as 𝑓 ∈ R𝑁×𝐾×𝑇 , and the
classification output matrix for each sample is 𝑓𝑖 ∈ R𝐾×𝑇 . The calibration is then
applied using the following formula:

𝑝𝑖 = 𝜎(W 𝑓𝑖v + b).

Here, 𝜎 represents the softmax function, suitable for multi-class classification tasks.
W ∈ R𝐾×𝐾 s a diagonal weight matrix used in vector scaling, which adjusts the
calibration for different classes to address biases in imbalanced datasets. It has
non-zero diagonal elements to minimize the complexity of the model. The vector
v ∈ R𝑇 is a temporal kernel that processes the sequence data, with the same kernel
being shared across all classes to further reduce parameter count. Additionally,
b ∈ R𝐾 is the bias vector. Altogether, the model has 2𝐾 + 𝑇 parameters, making it
a compact yet effective solution for probability calibration in simple models.

Temporal scaling has proven to be more effective than traditional Platt scaling in
this context, demonstrating enhanced performance in our iterative setup. Detailed
results of this approach are presented in the Results section.

Preset Threshold
In our iterative framework, a preset threshold for classification certainty determines
which cells require further analysis with additional gene probes. Cells that meet
or exceed this certainty threshold—calculated based on the calibrated probabil-
ity—require no further probing and are classified using all genes selected up to that
point. Cells below this threshold proceed to the next round to query more gene
probes.

The calibrated probability reflects the proportion of samples that are correctly classi-
fied among all evaluated samples. For instance, if the calibrated probability is 80%,
theoretically, 80% of the samples within this grouping should be correctly classified.
However, due to imperfections in calibration, there might be a discrepancy between
this theoretical accuracy and the actual observed accuracy. Interestingly, samples
that meet an 80% certainty threshold often possess a higher true certainty, leading
to experimental classification accuracies that exceed the theoretical threshold.

In practice, setting the certainty threshold slightly below the desired accuracy level
is advisable. This approach has been validated across experiments involving over
60 different tissues, where the empirical accuracy typically aligns closely with the
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preset threshold. Additionally, setting a lower threshold can reduce the average
number of genes needed per cell, optimizing the efficiency of the classification
process.

Stop Criterion
The iterative process allows for flexible termination, meaning it can be halted at any
stage. This process typically continues until all cells are accurately classified, the
number of unclassified cells becomes minimal, or it satisfies a specific user-defined
criterion relevant to the task at hand. Such criteria might include limitations on the
total number of genes utilized, a convergence point in the number of cells classified,
overall classification accuracy, or other relevant metrics.

3.4 Datasets
The experiments were conducted on every single human organ tissue sample avail-
able in the Human Cell Atlas (HCA) dataset. The ordered gene sets, derived through
the ActiveSVM algorithm, were tailored based on the convergence of ActiveSVM
accuracy for each specific tissue. I analyzed the classification accuracy of all cells
and the average number of genes required per cell, revealing that the ActiveCellInfer-
ence algorithm consistently achieved high classification accuracy with a minimal
number of genes.

Additionally, I tested temporal scaling against traditional Platt scaling to compare
their performance concerning the Expected Calibration Error (ECE) and Maximum
Calibration Error (MCE). The evaluation metrics demonstrated that temporal scaling
significantly enhances probability calibration performance.

I also examined variations among different organs, identifying the number of cell
types and the size of sub-datasets as the primary factors influencing classification
performance and the average gene requirement per cell.

The experiments leveraged the expansive Human Cell Atlas dataset, employing both
the ActiveSVM for feature selection and ActiveCellInference for cell classification
across all organ tissues. For efficient data handling, I utilized the Census cloud-based
dataset access tool to query sliding sub-datasets within the analysis pipelines.

Human Cell Atlas Dataset
The Human Cell Atlas (HCA) is a pivotal global research initiative aimed at creating
a comprehensive map of all cell types in a healthy human body across various
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life stages. This atlas is expected to significantly enhance our understanding of
human biology and has the potential to drive substantial advancements in health and
medicine.

The dataset comprises over 61.5 million cells collected from more than 8.7 thousand
donors across 455 projects facilitated by 761 labs worldwide, involving tissues from
61 human organs such as the brain, heart, lungs, and many more. Each cell has
been analyzed for 60,664 genes. This extensive and well-annotated dataset allows
for detailed exploration and comparison across a vast range of cell types and tissues,
as detailed in Tables 3.1 and 3.2.

The HCA not only aims to delineate the complex roles and functions of individual
cells and their genetic profiles but also serves as a monumental project on the scale of
the Human Genome Project. It is akin to creating a "Google Maps" for human cells,
providing not just a genomic blueprint but also a functional landscape of how cells
utilize these genetic instructions. This atlas is revolutionizing our understanding of
the 37.2 trillion cells in the human body and their implications in health and disease.

Researchers are compiling this comprehensive cell map, focusing initially on key
biological systems like the lungs and brain. The data, accessible via the HCA Data
Portal, will eventually encompass 10 billion cells from all body tissues, transforming
the landscape of global health research.

Census
For these experiments, I accessed human organ sub-datasets from the HCA using
the computational tool Census API, which provides efficient, cloud-based access
to structured HCA datasets. This tool facilitates rapid interaction with the data,
allowing researchers to query and analyze single-cell RNA data seamlessly. By
employing a cell-based slicing and querying approach through TileDB-SOMA,
researchers can acquire data slices in formats like AnnData, Seurat, or SingleCell-
Experiment, greatly enhancing the efficiency of data analysis. For this project, I
used the stable Census dataset version dated "2023-05-15".

Census supports the handling of larger-than-memory data slices, which means the
algorithm processes only manageable sub-datasets at each iteration rather than the
entire dataset, significantly reducing memory load and computational demands.
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3.5 Experiment Details
In this subsection, I’ll provide a comprehensive overview of the experimental setup,
including dataset preprocessing, parameter optimization, and the computational
infrastructure used.

Pre-processing
The initial dataset consists of raw read counts matrix. To ensure consistency, I
excluded datasets from the Smart-seq2 assay technique due to its differing data
format from more recent methods. For each human organ tissue sub-dataset, I
removed all columns and rows where values were entirely zero. The gene expression
matrices were first column-normalized and then log-transformed. For cell 𝑖 and

gene 𝑗 , normalization was performed as 𝑥 ( 𝑗)
𝑖

=
𝑥
( 𝑗 )
𝑖∑𝑀

𝑖=1 𝑥
( 𝑗 )
𝑖

where 𝑀 is the total number

of genes. Subsequently, each cell vector was scaled to unit 𝑙2-norm through 𝑙2-
normalization, enhancing the efficiency of model training and optimization.

For both ActiveSVM and ActiveCellInference, datasets were randomly split into
training and test sets in a 4:1 ratio. The training set for ActiveSVM was utilized
for selecting gene markers, with their effectiveness validated on the test set. In
ActiveCellInference, training involved SVM and calibration model training, ideally
performed on independent datasets to avoid biased calibrators. We used 3-fold cross-
validation, where two folds trained the SVM and the third trained the calibration
model based on SVM output. This cycle was repeated three times, and the final
calibration models were averaged from these iterations.

Normalization transformations were applied column-by-column or row-by-row us-
ing stored means and standard deviations, facilitated by the Census API, which loads
only necessary data subsets into memory for each iteration.

Parameter Optimization
Parameter tuning for ActiveSVM and ActiveCellInference was conducted via a grid
search (Syarif, Prugel-Bennett, and Wills, 2016) across lists of candidate values
for key parameters within a 5-fold cross-validation framework (Arlot and Celisse,
2010). The optimal parameters, once determined, were consistently used throughout
all iterations.

Thresholds for different organs varied based on the accuracy profile of ActiveSVM,
generally set at 80%, 90%, or 95%. Organs with lower accuracy from ActiveSVM
had reduced thresholds, such as 70% or 65%. Details of the preset thresholds for all



57

organs are provided in Tables 3.1 and 3.2.

The temporal scaling sliding window size was set to 3, which proved most effective
across most tissues. The "liblinear" solver was used to optimize the probability
calibration models.

Computational Infrastructure
All experiments were conducted on computational clusters accessed via the Open
OnDemand service portal (Hudak et al., 2018), supported by the US National
Science Foundation (Alexandria, n.d.). For ActiveSVM, each experiment utilized
4 virtual central processing units (vCPUs) with 512 GiB of memory on a Linux
system. For ActiveCellInference, each experiment was allocated 1 vCPU with 256
GiB of memory. This setup provided the necessary computational resources to
handle the extensive data processing and analysis requirements of our experiments.

3.6 Ready-to-use ActiveSVM Gene Sets
I have developed ready-to-use gene sets and cell inference pipelines using the Hu-
man Cell Atlas datasets. For each human organ, an ordered set of gene markers
was established using the ActiveSVM feature selection algorithm. Given that the
organ tissue dataset comprises a vast collection of single-cell mRNA-seq datasets,
the resulting gene set is both reliable and generalizable, suitable for any new tissue
samples from the same human organ. The associated probability calibration mod-
els and SVM classifiers are also designed to be generalizable across new spatial
genomics tissues.

For each organ, I have documented the classification accuracy for both the training
and test sets, alongside the number of genes selected by the algorithm. Comprehen-
sive lists of genes for all organs are available in Appendix C: Full Lists of ActiveSVM
Gene Sets for HCA Data. The quantity of gene markers in each set varies among
different organs, with the required number of genes correlating positively with the
size of the datasets and the diversity of cell types present. Additionally, the final ac-
curacy is influenced by the dataset’s noise levels and the reliability of its annotations.
These factors similarly affect the outcomes of the ActiveCellInference experiments.

The gene sets for all organs were curated through ActiveSVM. Details regarding
the size of the dataset, the number of cell types, and the extent of the genes in the
ActiveSVM gene sets can be found in Tables 3.1 and 3.2. Further information about
the gene sets are shown in Appendix A and B.
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Table 3.1: Size of Dataset, ActiveSVM Gene Set, Genes used in ActiveCellInfer-
ence, and preset threshold

Organ dataset cell gene set genes threshold
size types size used

abdomen 32635 9 50 20 0.8
abdominal wall 5154 8 60 29 0.97
adipose tissue 93319 28 120 60 0.6
adrenal gland 437955 43 350 70 0.95
ascitic fluid 108287 10 70 60 0.9

axilla 6484 10 120 14 0.97
bladder organ 32470 26 80 60 0.8

blood 8841851 143 300 250 0.6
bone marrow 303147 109 200 150 0.6

brain 9300186 100 350 250 0.8
breast 1555995 51 100 115 0.8
colon 508127 112 300 300 0.7

digestive system 2710 9 200 28 0.8
embryo 79012 23 80 80 0.9

endocrine gland 397653 109 300 150 0.8
esophagogastric junction 12771 29 150 9 0.9

esophagus 170900 73 300 200 0.8
exocrine gland 37162 28 100 100 0.8

eye 760892 79 200 194 0.9
fallopian tube 164336 25 80 80 0.7
gallbladder 9769 20 100 50 0.9

heart 1559696 71 600 200 0.6
immune system 50982 22 300 300 0.7

intestine 167838 44 120 120 0.8
kidney 712494 112 500 400 0.7

lamina propria 23687 30 80 80 0.8
large intestine 106196 101 200 180 0.6

liver 564748 115 300 300 0.7
lung 2882265 188 400 260 0.6

lymph node 402978 109 300 300 0.6
mucosa 26060 18 120 120 0.8

musculature 133866 75 150 150 0.8
nose 313887 75 350 350 0.7

omentum 222303 42 150 150 0.9
ovary 194433 32 100 100 0.9

pancreas 182746 47 100 100 0.8
paracolic gutter 8012 9 30 30 0.9
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Table 3.2: Size of Dataset, ActiveSVM Gene Set, Genes used in ActiveCellInfer-
ence, and preset threshold. (Continued)

Organ dataset cell gene set genes threshold
size types size used

parietal peritoneum 10546 9 30 29 0.95
peritoneum 86704 9 60 60 0.9

placenta 94204 42 150 35 0.8
pleura 19695 20 200 17 0.97

pleural fluid 25331 23 100 100 0.8
prostate gland 136295 57 100 100 0.6

reproductive system 389407 42 250 200 0.9
respiratory system 368376 106 300 300 0.8

saliva 14502 13 600 100 0.7
scalp 19408 8 150 100 0.95

skeletal system 12329 24 100 50 0.9
skin of body 177132 100 260 260 0.8

small intestine 829526 153 500 290 0.6
spinal cord 30106 38 150 25 0.8

spleen 359155 105 270 270 0.7
stomach 278277 73 500 300 0.9

testis 13211 24 175 60 0.9
tongue 13629 12 100 100 0.9
trunk 23646 8 150 40 0.95
ureter 2390 11 100 1 0.9

urinary bladder 6266 8 100 20 0.97
uterus 285234 37 120 100 0.8

vasculature 31218 23 70 70 0.8
yolk sac 40544 41 120 120 0.9

3.7 Results: Accuracy and Gene Utilization Per Cell
This section is divided into several subsections, each illustrating how Active-
CellInference accurately selects the appropriate cells using a minimal number of
gene markers, achieving high classification accuracy.

ActiveCellInference’s accuracy is defined as the cumulative accuracy of all cells
classified in previous iterations. Classification occurs when the probability calibra-
tion model indicates no further genes are necessary for a cell. For instance, if 10
cells are resolved in the first round with 9 correctly classified and 1 misclassified,
and in the second round 20 cells are settled with 15 correctly classified, then the
accuracy at the end of the second round would be calculated as 9+15

10+20 .
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In the final iteration, I implement an early stop of the algorithm, opting to classify all
remaining unclassified cells with the genes utilized up to that point. Consequently,
for most organs, there is a slight decline in accuracy in the last round, as many of
these cells require more genes than those available when the algorithm is prematurely
halted.

The subsections are organized as follows: (1) Results along with the increasing num-
ber of genes, including the accuracy and the fraction of all classified cells in previous
rounds; (2) Comparison the accuracy of ActiveSVM and ActiveCellInference; (3)
The final results after the last iteration, including the accuracy of all classified cells
and the average number of genes queried per cell.

Results with Increasing Number of Genes
Figure 3.2 illustrates the accuracy of ActiveCellInference as it correlates with the
number of genes utilized, while Figure 3.3 displays the proportion of cells classified
in all previous iterations relative to the total number of cells in each respective organ.

Initially, the accuracy is approximately equal to the preset threshold and remains
largely consistent throughout the successive iterations until the final round. Most
organs demonstrate an accuracy exceeding 80%, maintaining this high level of
accuracy consistently across the process.

For all organs, ActiveCellInference successfully classifies over 70% of the cells,
as shown in the sub-figures depicting the fraction of classified cells. Some or-
gans achieve well over 90% classification accuracy with fewer than 50 genes used.
Throughout the iterations, the fraction of classified cells gradually increases, though
the rate of increase slows over time. This indicates that most cells are classified at
an early stage with a relatively small number of genes.

Comparison of Accuracy Between ActiveSVM and ActiveCellInference
Figure 3.4 illustrates the comparative accuracy of ActiveSVM and ActiveCellInfer-
ence, with the number of genes used plotted on the x-axis. ActiveSVM’s accuracy
demonstrates a gradual increase, whereas ActiveCellInference achieves high accu-
racy right from the start and maintains this level consistently until the final round.
This performance suggests that ActiveCellInference effectively identifies and selects
the appropriate cells in each iteration, ensuring that cells requiring additional genes
are accurately targeted and that the gene querying process concludes precisely when
the cells are well-classified.
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(a)

(b)

Figure 3.2: The line plot (a) and heatmap (b) of the classification accuracy of all
classified cells in all previous rounds.
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(a)

(b)

Figure 3.3: The line plot (a) and heatmap (b) of the fraction of all classified cells in
all previous rounds over the total number of cells.
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(a)

(b)

Figure 3.4: Compare the accuracy of ActiveCellInference (a) and ActiveSVM (b).
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Further detailed comparisons for all organs are displayed in Figures 3.5 and 3.6,
where the accuracy of ActiveCellInference is represented by orange lines and that
of ActiveSVM by blue lines, again with the number of genes used along the x-
axis. This visual comparison underscores the efficiency and effectiveness of Ac-
tiveCellInference in reaching and maintaining high accuracy levels across different
organ datasets.

Final Results
Figure 3.7 displays two sets of accuracy measurements: one for cells classified by the
end of the iterative process and another after classifying all remaining unclassified
cells in the final round. As expected, the accuracy for the latter group is higher due
to the inclusion of all cells.

The accuracy for most organs exceeds 80%, aligned with the predefined thresholds
set for most organs at levels such as 80%, 90%, or 95%. Several organs even achieve
accuracies surpassing 95%. Lower accuracy levels are observed in organs with
either a large number of cells, a wide variety of cell types, or where the datasets
and annotations are particularly noisy. For instance, the prostate gland dataset
exhibits notably low classification accuracy due to its noise levels, despite utilizing
all available genes. Similarly, the lung dataset’s vast size and numerous cell types
pose significant challenges to achieving high accuracy with a limited number of
genes.

The average number of genes required per cell varies significantly across different
organs, as shown in the results. This variation is based on the application of
ActiveCellInference using the complete ActiveSVM gene set without implementing
an early stop strategy. In practice, while the ureter dataset requires as few as one gene,
the respiratory system may need upwards of 130 genes for effective classification.
Generally, for most organs, the algorithm successfully classifies all cells using only
tens of genes on average.

3.8 Results: Temporal Scaling vs. Platt Scaling
In my analysis, I evaluated the temporal scaling method I developed for Active-
CellInference against the traditional Platt Scaling using Expected Calibration Error
(ECE). ECE is a commonly used metric for assessing probability calibration mod-
els, measuring the expected calibration gap, which is the discrepancy between the
expected sample accuracy and the average predicted probability for each bin.
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Figure 3.5: Comparison between the accuracy of ActiveCellInference and Ac-
tiveSVM of all organs.
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Figure 3.6: Comparison between the accuracy of ActiveCellInference and Ac-
tiveSVM of all organs.
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(a) (b)

(c)

Figure 3.7: (a) The accuracy of all cells classified by ActiveCellInference; (b) The
accuracy of all cells classified by ActiveCellInference with all unclassified cells
classified at the last round; (c) The average number of genes queried per cell.

These comparative experiments were conducted across 31 human organs, with
temporal scaling showing significant improvements in ECE over Platt Scaling. The
results for some of these organs are displayed in Figure 3.8, illustrating the enhanced
calibration performance achieved through temporal scaling.

3.9 Discussion
ActiveCellInference offers a versatile iterative framework designed to facilitate
active cell acquisition in spatial genomics, enhancing the efficiency and cost-
effectiveness of spatial sequencing processes. While the framework initially employs
Support Vector Machines (SVM) for classification, it is flexible enough to incor-
porate any classification model as its computational engine. Similar probability
calibration methods that are used with SVM can also be adapted to work with other
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Figure 3.8: The Expected Calibration Error (ECE) values for Temporal Scaling and
Platt Scaling across 31 organs are depicted here. The x-axis represents the number
of genes. Orange lines indicate temporal Scaling, while blue lines represent Platt
Scaling. Temporal Scaling demonstrates a lower calibration error compared to Platt
Scaling for almost all the organs evaluated.
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classifiers within this framework, ensuring robustness in predictions.

Additionally, the framework is not limited to classification models alone; it can in-
tegrate regression models to predict continuous outputs. However, adapting regres-
sion models requires alternative approaches to measure uncertainty, as traditional
probability calibration techniques are not suitable. Techniques such as predictive
variance from Gaussian processes or bootstrapping methods can be employed to
estimate uncertainty in regression contexts.

Although the ActiveCellInference acquisition process is not universally applicable
to all spatial sequencing techniques, it significantly contributes to the development
of more cost-effective and advanced methods. It guides the strategic design of gene
probes, potentially reducing the complexity and expenses associated with current
spatial sequencing techniques. The ongoing development in this area suggests that
more refined and economically feasible spatial sequencing technologies are likely
to emerge, driven by innovations such as ActiveCellInference, which streamline
genomic analyses and make high-resolution spatial genomics more accessible.
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C h a p t e r 4

DISSCUSSION AND OUTLOOK

We introduce and detail the implementation of two advanced methodologies, Ac-
tiveSVM and ActiveCellInference, both of which enhance the efficiency and preci-
sion of genomic analyses through innovative feature selection and active learning
strategies.

ActiveSVM operates on large single-cell mRNA-seq datasets, utilizing an iterative
cell-state classification approach to refine and minimize gene sets effectively. By
selectively focusing on cells that poorly classify under current models, ActiveSVM
iteratively integrates maximally informative genes, thereby optimizing the compu-
tational resources by concentrating efforts on a subset of highly informative cells.
This method allows the handling of extensive datasets, showcasing its capability
to identify compact gene sets that achieve high accuracy in cell-type classification
across various genomic tasks, including perturb-seq data analysis and spatial tran-
scriptomics. Conceptually, ActiveSVM embodies the principles of active learning
by targeting data examples (cells) that need further analysis to refine classification
accuracy, paralleling concepts in boosting methods where the focus is on challenging
examples to enhance overall model performance.

Complementing this, ActiveCellInference provides a robust iterative framework for
active cell acquisition in spatial genomics, designed to integrate seamlessly with
various classification or regression models. This flexibility allows the framework
to adapt to different analytical needs, including the prediction of continuous out-
puts. ActiveCellInference enhances the efficiency and cost-effectiveness of spatial
sequencing by guiding the strategic design of gene probes and reducing the complex-
ity and expenses associated with spatial sequencing techniques. Despite its specific
application constraints, the potential for broader application and methodological
refinement suggests a promising future for more advanced genomic technologies.

Both methodologies leverage the inherent low-dimensional structure found within
transcriptomes, where significant information about cellular states can be inferred
from a small subset of genes. This understanding allows for a reduction in the scale
of necessary measurements, significantly lowering the costs and complexity of data
acquisition. Future directions for these strategies include their application at the
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measurement phase, potentially using active learning to select only those cells that
meet specific criteria for sequencing or imaging, thereby optimizing resource use
and operational efficiency.

By integrating ActiveSVM’s feature selection capabilities with ActiveCellInfer-
ence’s framework for spatial genomics, these methodologies not only streamline
genomic analysis but also pave the way for significant advancements in how we ap-
proach complex disease understanding and personalized medicine. The continuous
development and application of these strategies are set to revolutionize genomic
studies, making high-resolution analyses more accessible and impactful in both
research and clinical settings.

In the future, the active acquisition framework, which focuses on both gene and cell
selection, presents a promising avenue for transitioning advanced sequencing tech-
niques into clinical applications. Currently, the high costs associated with single-cell
sequencing techniques limit their practical use in real-world settings. However, by
selectively targeting specific genes and cells that provide the most informative data,
this approach could significantly reduce the financial burden associated with com-
prehensive genomic analyses.

This proactive strategy could not only streamline the sequencing process but also
enhance its affordability, making these advanced technologies accessible for routine
clinical diagnostics and personalized medicine. The implementation of such targeted
sequencing methods promises to bring high-throughput genomic technologies to
the forefront of clinical practice, where they can be used for more precise disease
diagnosis, treatment monitoring, and the development of tailored therapies.

By refining the selection process to focus only on the most crucial genetic infor-
mation needed for specific clinical outcomes, we can maximize the efficiency and
efficacy of genomic sequencing. This approach would not only lower costs but also
reduce the time and resources required for data processing and analysis, further en-
hancing the practicality of these techniques for everyday clinical use. The continued
development and refinement of such frameworks hold the potential to revolutionize
how we integrate genomic data into healthcare, bridging the gap between high-tech
research methodologies and patient-centered clinical solutions.
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A p p e n d i x A

OPTIMAL PARAMETERS FOR ACTIVESVM EXPERIMENTS

In this appendix, we detail the algorithm parameters employed in our ActiveSVM
experiments, which are listed in Tables A.1 to A.3. ActiveSVM incorporates 15
user-defined hyperparameters: five are specific to the feature selection process, while
the remaining ten are standard parameters used in linear SVM classifiers. Compre-
hensive descriptions of all ActiveSVM parameters are available on the integrated
package page at https://pypi.org/project/activeSVC/.

https://pypi.org/project/activeSVC/
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Table A.3: Parameters of ActiveSVM (perturb-seq and seqFish datasets).

perturb-seq seqFish
(min-complexity) (min-complexity)

𝑛𝑢𝑚_ 𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑠 50 30
𝑛𝑢𝑚_𝑠𝑎𝑚𝑝𝑙𝑒𝑠 500 10
𝑖𝑛𝑖𝑡_ 𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑠 1 1
𝑖𝑛𝑖𝑡_𝑠𝑎𝑚𝑝𝑙𝑒𝑠 1000 10
𝑏𝑎𝑙𝑎𝑛𝑐𝑒 True False
𝑝𝑒𝑛𝑎𝑙𝑡𝑦 ’l2’ ’l2’
𝑙𝑜𝑠𝑠 squared_hinge squared_hinge
𝑑𝑢𝑎𝑙 True True
𝑡𝑜𝑙 1e-6 1
𝐶 1.0 10

𝑓 𝑖𝑡_𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 True True
𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡_𝑠𝑐𝑎𝑙𝑖𝑛𝑔 1 1
𝑐𝑙𝑎𝑠𝑠_𝑤𝑒𝑖𝑔ℎ𝑡 ’balanced’ None
𝑟𝑎𝑛𝑑𝑜𝑚_𝑠𝑡𝑎𝑡𝑒 None None
𝑚𝑎𝑥_𝑖𝑡𝑒𝑟 1,000,000 100,000
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A p p e n d i x B

READY-TO-USE GENE SET FIGURES

Figures A.1 through A.9 showcase the plots of ActiveSVM gene sets for all organs.
In these figures, the left sub-figures display the UMAP visualizations of cell types.
The middle sub-figures illustrate the accuracy of the ActiveSVM gene sets, with the
x-axis representing the number of genes used. The right sub-figures highlight the
first four genes selected for each organ. Comprehensive lists detailing the ordered
gene sets for all organs are available in Appendix C: Full Lists of ActiveSVM Gene
Sets for HCA Data.
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Figure B.1: The cell types umaps (left), the accuracy of ActiveSVM gene set
(middle), and the first four genes expression umap (right).
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Figure B.2: The cell types umaps (left), the accuracy of ActiveSVM gene set
(middle), and the first four genes expression umap (right).
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Figure B.3: The cell types umaps (left), the accuracy of ActiveSVM gene set
(middle), and the first four genes expression umap (right).
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Figure B.4: The cell types umaps (left), the accuracy of ActiveSVM gene set
(middle), and the first four genes expression umap (right).
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Figure B.5: The cell types umaps (left), the accuracy of ActiveSVM gene set
(middle), and the first four genes expression umap (right).
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Figure B.6: The cell types umaps (left), the accuracy of ActiveSVM gene set
(middle), and the first four genes expression umap (right).
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Figure B.7: The cell types umaps (left), the accuracy of ActiveSVM gene set
(middle), and the first four genes expression umap (right).
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Figure B.8: The cell types umaps (left), the accuracy of ActiveSVM gene set
(middle), and the first four genes expression umap (right).
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Figure B.9: The cell types umaps (left), the accuracy of ActiveSVM gene set
(middle), and the first four genes expression umap (right).
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A p p e n d i x C

FULL LISTS OF ACTIVESVM GENES SETS FOR HCA DATA

• abdomen: SRGN, CNTNAP1, TYROBP, TCF4, GAPDH, CD63, CD74,
IGFBP7, CST3, CD69, B2M, CLU, PTPRC, YBX3, SSR4, EEF1B2, PARP12,
NDUFA4, IFITM3, ARHGDIB, FOS, TSC22D3, HS6ST1, HSP90AB1,
HPGD, VIM, FTL, SEL1L3, SEC11C, TAMALIN, ANKRD11, ARL4C, SE-
LENOH, CD2, TRABD, BCL11A, NFATC2IP, CD79A, C1orf56, HDAC9,
JCHAIN, IGKC, SGSM2, NCF1, C1orf54, SIL1, RAP1GAP2, ADGRG6,
BASP1, SCARF1

• abdominal wall: KRT18, JCHAIN, IGKC, TYROBP, FCER1G, CST3, IGHG1,
LYZ, WFDC2, COL3A1, GZMB, COL1A1, NEAT1, CXCR4, FTH1, CD79A,
GPR183, TIMP1, IGHM, COTL1, IFITM3, COL1A2, CCL5, IGLC2, CD52,
MT2A, IFI27, VIM, MS4A1, C1S, MGP, TM4SF1, TPT1, S100A4, TXN,
C3, IGHG3, TSC22D3, IL32, CYBA, SPARC, IRF8, TNFAIP2, CD83,
TMSB4X, GNLY, SOD2, CD69, KLF2, IDO1, CD63, BASP1, LTB, FOS,
TXNIP, CORO1A, MDK, IGFBP7, SLPI, CD74, POU2F2, C15orf48, IER3,
EEF1A1, KRT19, PTPRC, JUNB, GSN, CCDC80, JUN, TRAC, HSPB1,
BTG1, CLEC2D, PPA1, CXCL10, KLF6, JUND, MT1E, NFKBIA, FYB1,
LAPTM5, RNF213, S100A6, SYNGR2, CD79B, NKG7, ATP1B1, RGS1,
GBP2, IRF1, FAU, C1R, LCN2, PDLIM1, SKIL, KRT8, CD2, TNFRSF13C,
TUBA1B

• adipose tissue: DCN, SERPINF1, APOD, S100A6, H3-3B, FAU, B2M, PT-
PRC, NEAT1, TAGLN, CD36, ZEB2, UTRN, FRMD4B, RORA, RBMS3,
ARHGAP15, IQGAP2, BNC2, COL4A2, TNFAIP3, ANKRD44, NKG7,
CHST11, HSPA1A, HBA2, SKAP1, C5AR1, ANKS1B, HSP90AA1, EEF1A1,
CLU, SORBS1, TNS3, COX7B, GON4L, ZFP36L2, NRXN1, C6orf62,
CALD1, TUBA4A, ABCA6, ATP5PO, COL8A1, LDB2, TPM1, RGCC,
FCGR2B, CD53, RAC2, SYNE2, ZNF772, C3, CDR2, TIAM1, HNRNPA2B1,
ARMCX3, PFKP, TP53, RGS2, ARHGDIB, CCL4L2, MCTP2, MTRNR2L12,
SOX5, SMYD3, SREBF2, USP53, CDC23, RAN, REXO4, ARHGAP30,
VWA5A, SPP1, SLC25A6, CALM3, INPP5E, CD48, CRIM1, PRKG1,
MTRNR2L6, PABPC1, TMSB4XP4, ADD3, PRM1, PRKCB, S100A8, IN-



94

SIG1, FAM160B2, EPOR, CNN2, MBNL1, SNHG9, TNF, MARK3, VTRNA2-
1, CCL18, RNF19B, CCDC192, PKHD1L1, ELOC, ZC2HC1A, PLPP5,
EZR, TFRC, ODF2, RAP1GAP2, DOCK5, FGFBP2, P2RX1, SUPT5H,
RNF44, IKZF1, HSD17B11, ADM, VTRNA1-3, TFPI, CHI3L1, LBP, FLJ37453

• adrenal gland: RBFOX1, ATP5F1E, ACTG1, SRGN, EEF1A1, B2M, H19,
TMSB10, DNAJB1, FTH1, VIM, TUBA1B, TMSB4X, COL1A2, FTL,
CD74, CHGB, COX7C, COL3A1, RACK1, LDB2, ATP5PF, ANXA2, LGALS1,
IGFBP7, CALM2, HBG2, S100A4, ACTB, MEG3, IFITM3, CST3, TPT1,
PTMA, HSPA1B, CHGA, SAT1, TUBA1A, IGF2, DLC1, APOE, STMN1,
SERF2, COL1A1, ZEB2, MYL6, CYP17A1, HBA2, NDUFA4, GAPDH,
NPM1, HSP90AA1, S100A10, H3-3B, SPARC, CTSB, FAU, CD36, ZFP36,
MYL12A, S100A8, UBA52, GPC6, STAR, HSP90AB1, CD63, TXN, PABPC1,
UBB, UBC, RBMS3, GNAS, PFN1, CFL1, ITM2B, PPIA, ATP5MG, SNHG5,
ACTA2, CCL2, BTG1, FLT1, EEF1B2, S100A6, LDHB, STMN2, HMGB2,
ANXA1, UBL5, GADD45B, COX4I1, ZFP36L1, FOS, DUSP1, H2AZ1,
HSPE1, NACA, HMGB1, CALD1, HSPD1, PPIB, SKP1, C1QA, EIF1,
NEAT1, HSP90B1, GSTP1, JUNB, HSPB1, CADM1, PSAP, PSMA7, IGFBP5,
RBM47, JUN, DLK1, ARHGDIB, TCF4, KLF6, HSPA1A, ZFP36L2, PRDX2,
NAP1L1, MT2A, COX7A2, TMEM258, LYZ, HBA1, MBNL1, DCN, ZFAS1,
TIMP3, COX5B, CALM1, PRDX1, PCDH9, MGST3, DPP6, PFDN5, NPC2,
HSPA8, EEF2, FOSB, THBS1, PLXDC2, OST4, RAN, DNAJA1, MT1G,
COX6B1, APP, HNRNPA1, LAPTM5, PEBP1, RGS1, GPX1, MYL12B,
SLC2A3, COX6C, EMCN, SRP14, CHCHD2, SNHG29, AIF1, HES1, MTATP6P1,
OAZ1, HNRNPA2B1, SLC25A5, HINT1, UQCR10, BEX3, PKM, HN-
RNPC, YWHAB, LDHA, TMA7, TYROBP, G0S2, S100A11, PLIN2, CXCL8,
PLAT, RHOA, TMBIM6, TOMM7, SEC62, COX8A, KCNQ5, ROBO2,
DYNLL1, P4HB, ARPC2, NRXN1, TM4SF1, SON, EIF4A2, PDIA6, ARL6IP1,
C1QB, IFITM2, HSPA5, HBG1, DDX5, BSG, SOD1, ARHGAP15, FDX1,
SEC61B, ARL15, IGKC, ALDOA, ATP5MC2, SUB1, BTF3, TUBB, ARPC3,
MIF, COMMD6, SH3BGRL3, HNRNPK, POMP, SOX4, NDUFS5, ENO1,
SSR4, TSC22D3, TIMP1, CALR, NDUFB4, SLC25A37, UQCR11, DBI,
ROBO1, RGS5, MRPL33, HSBP1, ID2, NUCKS1, CREM, A2M, RBP1,
UQCRQ, UQCRH, UQCRB, CYSTM1, IGFBP4, SNRPE, PTPRC, SRSF3,
NFKBIA, GAS5, SNRPD2, DHCR24, ITM2C, TENM3, RTN4, CTSD,
SLIRP, COX7B, ATP1B3, SAP18, ERH, WSB1, NDUFB1, CALM3, POLR2L,
CD164, LAPTM4A, S100A9, CXCR4, RBM39, ELOB, YWHAE, LYVE1,
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YWHAZ, QKI, PRKG1, PTP4A1, CD81, ATP5F1B, ATP5MC3, C7, APOA1,
MYL9, ATP5ME, RAP1B, CCL4, CLU, CKS2, PRDX3, CLIC1, SOD2,
CNBP, PDIA3, EGR1, LSAMP, SLC25A3, PTGES3, TAGLN2, CDKN1C,
NDUFA1, FCGRT, SLC25A6, COX6A1, APLP2, TPM4, EEF1D, EIF4G2,
PEG10, MGP, APOC1, GPX4, FAM155A, UBE2D3, ATP6V1G1, ATP5MK,
NDUFB9, FABP1, PSME1, ID3, MORF4L1, SAMHD1, DDIT4, PF4, EDF1,
TRMT112, FKBP1A, CD59, MEF2C, MDK, COX5A, MGST1, HNRNPD,
DAD1, SDCBP, SCARB1, MEIS2, HNRNPDL, EIF4A3, SRSF7, CDC42,
CBX3, SUMO2, NDUFB2, SPARCL1, GNG5, WDR83OS, ESD, SNX3

• ascitic fluid: CST3, CTDP1, CPT2, TIMP1, IGHM, CD74, MS4A6A, FCER1G,
LST1, ARHGDIB, MEF2C, MPEG1, KIT, IGKC, IRF8, CD52, TYROBP,
CSDE1, GZMB, CD86, UNC119, IMPA2, CD37, LYZ, EVI2B, SRGN,
TBKBP1, PKIB, ABCA7, ALDH2, SFTPD, JCHAIN, PTPRC, TXN, PI4K2A,
FLVCR1-DT, VMO1, RHEX, SMOC1, HSD11B1-AS1, CPNE1, SPCS1,
CXCR4, MREG, ADCY7, GCSAML, S100A9, RFC5, SPP1, TYMP, CD2,
CD163, SYNCRIP, APOBR, DTHD1, ITGAX, IRF7, EIF3F, TNFRSF1B,
CD79A, LILRB2, IKZF1, S100A8, ZDHHC18, C9orf139, KIF16B, MMP25,
GPRIN3, FTL, NAGPA

• axilla: FAM87B, FAM41C, SAMD11, IGFBP7, FTH1, CD74, IL32, B2M,
S100A9, FTL, BTG1, MGP, SRGN, TPT1, VWF, VIM, AIF1, SPP1, CST3,
UBB, CCL5, HSP90AB1, CXCR4, SPARC, RACK1, SAT1, IFITM3, H3-3B,
MYL6, S100A10, SPARCL1, PCP4, EEF1A1, UBC, JUND, GNG11, EIF1,
CALD1, S100A6, HSPB1, PTPRC, HSPA1A, TYROBP, LYZ, FCER1G,
S100A4, CALM1, EZR, FKBP1A, TIMP1, BGN, CD52, CCL4, LTB, MS4A1,
FOS, HSP90AA1, ADIRF, SOD2, HMGN2, ANXA2, TXN, NACA, CYBA,
CD9, CSTB, LGALS1, GAPDH, REL, CD7, ACTB, SOX18, CD63, H3-
3A, PSAP, HSBP1, ZFP36L2, CXCL8, CAV1, RAMP3, FABP5, MGST3,
TAGLN, ATP6V1G1, DNAJA1, NFKBIA, GNAS, TUBA1B, DAD1, S100A11,
CTSB, SSR4, STK17B, ITM2B, NUCKS1, STMN1, BRI3, NR2F2, GPX1,
PTMA, HINT1, TIMP3, ID1, A2M, PLAUR, AREG, RGS1, ATP6V0B,
IL1B, TYMP, BNIP3L, POU2AF1, ATP5IF1, PTMS, HES6, ACTA2, ATP5F1E,
CKB, NDUFS5, GPX4

• bladder organ: EEF1A1, CD81, JUND, SRGN, IFITM3, CD74, NEAT1,
TIMP3, SPARCL1, ADIRF, B2M, CST3, MGST2, PSAP, TPM2, ANXA2,
CYSTM1, DCN, SH3BP5, GRN, APOLD1, S100P, DDX5, CTSB, PECAM1,
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RGL2, ESD, IFI27, AQP1, ATP5ME, MTATP6P1, SLC25A6, SOX18, TCIM,
GLUL, PFN1, ACTA2, SPINK1, CD52, CAPG, AGR2, SPTBN1, HES1,
TM4SF1, HSPB7, FTLP3, TSC22D1, LAPTM5, ESAM, FGD5, SPIB, TPSB2,
MS4A6A, ELF3, PLVAP, CTD-2287O16.1, CSTA, CTSS, TMSB4X, PLN,
SERPINA1, GADD45B, FCER1G, SELE, IGHM, RAPGEF4, S100A2, C1orf162,
WDR83OS, FLT1, MYH7, ATXN3, MYL12A, INPPL1, ADCY10P1, CD99,
NAPSB, PCAT19, AGGF1, TNFSF4

• blood: CD74, CD3D, FCER1G, TMSB4X, TYROBP, B2M, LTB, SNHG29,
EEF1G, NKG7, H3-3A, MTRNR2L12, IL32, S100A4, TXNIP, DUSP1,
S100A9, H3-3B, BTG1, CCL5, CD52, IFITM1, LYZ, EEF1A1, CD8A, AIF1,
FOS, ALDOA, CRIP1, LGALS1, COTL1, S100A8, CYBA, ACTB, CST3,
IL7R, JUND, GAPDH, FTL, ARID5B, NEAT1, CD8B, PTPRCAP, CD99,
TMSB10, FTH1, GNLY, JCHAIN, JUN, VIM, ANXA1, EIF4A1, KLF2,
ZFP36L2, HNRNPA1, GAS5, TLE5, IFITM2, LSP1, ITGB1, NFKBIA,
NME2, CD3E, JUNB, TAGLN2, PLAC8, PPBP, TUBA1B, IFITM3, CXCR4,
SRGN, GABARAP, MTRNR2L8, H2AZ1, NOP53, SEPTIN7, SAT1, SELL,
KLF6, TSC22D3, GZMB, HSP90B1, HSP90AB1, PTPRC, EMP3, LDHB,
HCST, S100A10, PNRC1, CD37, AHNAK, TPT1, ZFP36, GZMA, SLC25A6,
ENO1, CD69, EIF3E, S100A6, LAPTM5, ZFAS1, SARAF, PABPC1, HINT1,
ID2, HSPA8, OST4, EEF1B2, SUB1, TRAC, YWHAZ, IL2RG, DDX5,
OAZ1, MYL12A, UBC, YBX1, TNFAIP3, IGKC, IER2, ISG20, FYB1,
MT2A, ATP5F1A, ITM2B, NAP1L1, CTSW, DUSP2, PPDPF, ACTG1,
RAC2, CCNI, PCBP2, HSPA5, HNRNPC, ZFP36L1, NCL, PNISR, PSAP,
UBB, IRF1, LY6E, MIF, HMGB1, HNRNPU, HSP90AA1, FXYD5, FLNA,
TUBA1A, ATP5F1D, GSTP1, TPM3, PCBP1, HBB, COMMD6, ALOX5AP,
PTMA, RNASEK, CALR, UQCRB, CD7, PPIB, KLRB1, ARPC1B, CD48,
ARL4C, EEF2, STK17B, CORO1A, TOMM7, ANP32B, PLAAT4, COX5B,
UQCRH, C12orf57, ISG15, S100A11, TRBC2, LDHA, RAP1B, GMFG,
HMGN1, H1-4, MBNL1, RBM39, RNF213, EZR, MYH9, SSR4, IGHM,
CST7, HMGN2, SF1, COX7C, HNRNPA2B1, FAU, SH3BGRL3, UCP2,
SRSF5, GNAS, ITGB2, ANKRD12, PPIA, ARHGDIB, CALM2, CLIC1,
PRRC2C, ARPC2, MYL6, GPSM3, RSRP1, CDC42, GPX4, SLC2A3, EID1,
LIMD2, EIF1, SEC61B, CALM1, SOD1, SMCHD1, PSME2, SAMHD1,
CHCHD2, NPM1, TCF25, H4C3, TPI1, ARL6IP4, H1-10, TMA7, GSTK1,
PPP1R15A, SEPTIN9, PRR13, MORF4L1, SON, GADD45B, PKM, PSME1,
PSMB9, CD63, CD44, CCND3, UQCR11, TGFB1, ATP5F1E, PDIA3,
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PARK7, RNASET2, MCL1, GUK1, FUS, MTDH, PRDX5, ARGLU1, RI-
POR2, LCP1, CCNL1, DDX24, CD47, UBE2D3, EIF3K, NACA, XBP1,
ANAPC16, ACTR3, EIF5A, CIRBP, PTP4A2, DDIT4, SRSF7, IFI6, LITAF,
CELF2, JAK1, TMEM123, DBI, VAMP8, ATP5MK, NDUFA4, ERP29,
ITGA4, SKP1, BTG2, SYNE2, FOSB, SERBP1, CSDE1, SSR2, SERF2,
SERP1, CNN2, CYTIP, RHOA, COX7A2, SRRM2, DAZAP2, TRBC1,
KMT2E, RSL24D1, RGS10, HCLS1, HNRNPDL, COX4I1, GYPC, ELOB,
YWHAB, NOSIP, DDX17, GDI2, AKAP13, SNHG5, UXT, ATP6V0C,
LEPROTL1, ATP5MC2, COX6C, TXN, PFN1, TAPBP, RAC1, TUBB,
SLC25A3, TRIR

• bone marrow: HBG1, HBG2, SLC25A6, B2M, CST3, EEF1A1, CD74,
LYZ, AIF1, NKG7, STMN1, CD52, CD63, SRGN, DUSP1, CD99, FTH1,
TMSB4X, FOS, S100A4, CXCR4, MPO, S100A8, NPM1, S100A6, TUBA1B,
VIM, BTG1, S100A10, PTMA, SNHG29, ZFP36L2, TYROBP, HBB, SELL,
GAS5, IGHM, HMGB1, LGALS1, HSP90AB1, EEF1G, ACTG1, ACTB,
HSPA1A, FTL, IL32, TAGLN2, H2AZ1, TMSB10, CD37, HSP90AA1,
JUND, CYBA, H3-3A, HCST, MTRNR2L12, JUN, COTL1, H3-3B, GAPDH,
IGLL1, HSP90B1, IGKC, IL7R, ENO1, S100A9, S100A11, SOX4, DUSP2,
IFITM2, GSTP1, GPX1, DDIT4, FAU, FCER1G, YBX1, ITGA4, NEAT1,
ZFAS1, HMGB2, TPT1, H4C3, CD8A, PRDX2, TXNIP, SAT1, ANXA2,
CD44, JUNB, LTB, ARHGDIB, HERPUD1, CST7, CD69, EEF1B2, NFK-
BIA, ITGB2, SNHG6, KLF6, UBC, HINT1, PSAP, HSPA1B, TUBB, AL-
DOA, PLEK, PLAC8, HMGN2, MACROH2A1, CCL5, BTG2, ANXA1,
ZFP36L1, SNHG32, RACK1, CALM1, MIF, SEC61B, HBA2, IRF8, TFRC,
PTPRC, VCAN, ATP5F1E, LAPTM5, CD164, CD81, YBX3, XBP1, RCSD1,
ZFP36, CTSW, RSL1D1, SNHG8, ITM2C, HNRNPA1, H1-10, OAZ1, PABPC1,
ITGB1, IER2, MTRNR2L8, DNAJB1, GNLY, HSPA8, NAP1L1, TUBB4B,
IFITM3, HSPB1, CLIC1, SERF2, CALR, BLVRB, EEF2, CD24, AREG,
ANP32E, LSP1, CD47, ATP5IF1, NACA, CSF3R, AZU1, IGFBP7, FXYD5,
CORO1A, HSPA5, ITM2A, LDHA, MSI2, SLC3A2, NUCB2, SH3BGRL3,
H1-2, CLC, TSPO, UBA52, ZEB2, ARPC3, PCNA, GZMA, PPIA, DDX5,
PPIB, TSC22D3, RETN, TRAC, UBB, EIF3E, GNAS, KLF2, TALDO1,
LBR, HNRNPA2B1, CTSS

• brain: ADGRL3, DLG2, CNTNAP2, PTPRD, NPAS3, RACK1, NRXN1,
NEAT1, EEF1A1, TUBA1A, FTH1, B2M, PLXDC2, RORA, ERBB4, SLC1A3,
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PTPRZ1, MEF2C, PTPRK, NFIB, QKI, GPM6A, LRP1B, CELF2, NLGN1,
TMSB10, FTL, ROBO2, APOE, ACTG1, NTM, NFIA, RBMS3, CST3,
VIM, TMSB4X, ROBO1, LSAMP, PTN, MAP1B, SAT1, GRID2, CALM2,
TCF4, RASGEF1B, MAML2, KCND2, VCAN, SPARCL1, SPP1, TUBA1B,
NRXN3, XIST, CD74, PLCG2, ZBTB20, GPC6, UTRN, CLU, ATP5F1E,
SNHG14, PRKG1, IGFBP7, FOXP1, HMGB1, RBFOX1, ACTB, SEPTIN7,
CADM2, SOX5, MEG3, GRIK2, PHACTR1, PCDH9, SLC8A1, H3-3B,
PSAP, MEIS2, KCNIP4, HSP90AA1, AUTS2, ZEB2, EVL, LHFPL3, GAPDH,
FRMD4A, CALM1, ALCAM, BTG1, CPE, BASP1, SOX4, CD63, S100A6,
DLC1, DOCK4, THSD7A, PDE4B, LRRTM4, LRRC4C, UBC, NACA,
DPP10, FOS, CNTN5, ANKRD12, GNAS, ADARB2, DDX5, RTN4, HN-
RNPA2B1, GRIA4, TPT1, TSC22D1, CTSB, FAU, STMN1, SYT1, DSCAM,
ITM2B, GALNTL6, HSPA1A, GSTP1, MT2A, GPM6B, JUND, H3-3A, PT-
PRG, HSP90AB1, CYRIB, MBNL1, CFL1, PDE4D, HNRNPU, PNISR,
RELN, WSB1, DDX17, FABP7, PTMA, JMJD1C, JAK1, PDE1A, PRKCA,
NXPH1, NKAIN3, MLLT3, PTPRM, ZEB1, JUN, ELMO1, DST, CTNNA2,
STMN2, MACF1, DLGAP1, SRGN, CADM1, SEC62, BPTF, AGAP1, UNC5C,
TENM2, SPARC, TRPM3, NUCKS1, ANK2, SFPQ, HNRNPDL, NAP1L1,
RTN3, APP, PKM, GLUL, CCNI, APLP2, CTNND2, NRG1, ZNF385D,
YWHAE, DCC, IGKC, NKAIN2, MAGOH, LPP, CCDC88A, CACNA2D1,
PPP3CA, NCAM2, NDUFA4, CKB, CSMD1, RALYL, MYL6, EEF2, FXYD6,
DYNLL1, TCF12, HSP90B1, NAV3, PTGDS, AKAP9, AKAP13, RTN1,
CHST11, N4BP2L2, YBX1, GNAQ, CD81, SRGAP1, ZNF804A, FYN,
PABPC1, UBB, SYNE2, HNRNPH1, DPP6, TTC3, CIRBP, SEM1, SGCZ,
EIF1, EIF4A2, CHD9, PPIA, SON, KMT2E, RAC1, YWHAB, MARCHF1,
NELL2, JUNB, SEC61G, SGK1, HNRNPC, CNTNAP5, NRIP1, COX4I1,
EEF1D, DPYSL2, MSI2, BICD1, MAP2, CALD1, PRKCB, S100A9, PT-
PRN2, CUX1, SERF2, PRDX1, ID2, TMEM14B, LUC7L3, TTC28, HDAC9,
FUS, C11orf58, NRG3, MYCBP2, RBM39, ANK3, MTCO2P22, GNB1,
DBI, BEX3, SNTG1, GRIA2, H4C3, CCND2, KAZN, PBX1, YWHAZ,
HMGN1, ATP2B1, COX6A1, SRSF11, PRRC2C, RNF130, MEF2A, C1QB,
DMD, NNAT, PEBP1, UBA52, FTX, PCDH15, PAM, OAZ1, MAGI2, NAV2,
TNRC6A, FOXN3, ATP5ME, DNAJB1, PPP2R2B, HSPA8, PTK2, SMYD3,
CAPZB, CLASP2, SYNE1, ARID1B, ZFAND3, ARL6IP1, RHOB, MED13L,
EGR1, FGF14, TMBIM6, ATP5MC2, TNRC6B, SRSF5, ANKS1B, SOX2-
OT, CHL1, ATRX, ATP1B1, BAZ2B, CTSD, FABP5, CEP170, CALR,
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PSMA7, KCNH7, EPS8, RBPJ, MORF4L1, CCL4, SARAF, CAMTA1,
UNC5D, KIDINS220, RUNX1T1, HNRNPA1, EIF4G2, LDLRAD4, TXNIP,
PLCB1, SRP14, SELENOW, FMNL2, NOVA1, BTF3, MTSS1, OSBPL8,
ARID4B, GRIK1, RERE, BSG, LGALS1, XRCC5, TMTC2, LINGO1, GPC5,
KTN1, FAM155A, SOX6, TUBB2B, HSPB1, APOD, OXR1, TOMM7,
PITPNC1, ZFP36L1, PFDN5, IL1RAPL1, ARGLU1, PHIP, SETBP1, SKP1,
KIRREL3, UCHL1, TIMP1

• breast: CD24, SRGN, CYBA, CD74, B2M, IGFBP7, TM4SF1, PTMA,
EEF1G, IL7R, CST3, FTH1, CCL5, ANXA1, TMSB10, S100A4, TPT1,
JUN, CD44, JUND, SAT1, MT2A, HSPA1A, VIM, PTPRC, ACTB, SOD2,
CALD1, TXNIP, SPARCL1, MGP, ZEB2, FABP4, CEBPB, S100A10, MTRNR2L12,
BTG1, EEF1A1, JUNB, TMSB4X, NEAT1, NFKBIA, FTL, PABPC1, DUSP1,
APOD, KLF6, TYROBP, IL32, LGALS1, FOS, ZFP36L2, GAPDH, H3-3B,
SNHG29, HSP90AA1, TCF4, RGS1, PLCG2, ARID5B, IGKC, S100A11,
CEBPD, EEF1B2, ID2, HSP90AB1, DCN, KLF2, CXCL8, CCL4, ACTG1,
KRT17, REL, FAU, HMGB1, GNLY, S100A6, ITM2B, LMNA, TXN, ANKRD28,
TSC22D3, LDHA, RACK1, UBA52, H2AZ1, EIF1, IFITM2, C11orf96,
PLIN2, DDX5, CXCR4, TUBA1B, LRRFIP1, IER2, LAPTM5, CREM,
TPM1, HERPUD1, EMP1, FOSB, FABP5, ITGB1, ISG20, HSPA1B, TIMP3,
H3-3A, EZR, UBB, NAMPT, SQSTM1, UBC, TSHZ2, ZFP36, YBX3

• colon: SCHLAP1, PIGR, LGALS4, IFITM3, SRGN, CD74, TMSB4X,
GAPDH, CST3, VIM, FOS, B2M, FTH1, RACK1, S100A6, LGALS1, H3-
3A, CYBA, S100A10, PHGR1, TXNIP, HSPA1A, EEF1A1, TPT1, TFF3,
HNRNPA1, IL32, ACTB, JCHAIN, TPM1, NEAT1, TMSB10, BTG1, MTRNR2L12,
HSP90AA1, JUND, MARCKSL1, SAT1, KLF6, JUNB, MT2A, FTL, JUN,
EEF1D, FABP5, HSPB1, TSPAN8, H4C3, CD63, PFN1, TUBA1A, H3-3B,
SLC25A6, CD24, PABPC1, S100A11, GSTP1, KRT8, PTMA, ATP5F1E,
IGHA1, EEF1B2, ID2, ZFP36, SH3BGRL3, MDK, LGALS3, TUBB, PPDPF,
OAZ1, HMGN2, NPM1, IGFBP7, UBA52, ACTG1, ANXA1, FABP1, UBC,
ITM2B, KRT18, ATP5MK, EEF2, HSPA8, ATP5MG, CD9, UBB, ZFP36L1,
S100A4, GNAS, FOSB, TUBA1B, TAGLN2, HSPA1B, DUSP1, COL3A1,
TXN, CALM2, HSP90AB1, LTB, IFI27, UQCRB, ATP5MC2, FAU, SSR4,
H2AZ1, CFL1, CD52, LYZ, MYL12A, MARCKS, DDX5, ZFP36L2, LMNA,
ANXA2, IER2, NACA, MYL6, NFKBIA, CKB, SERF2, CCL5, STMN1,
FOXP1, HMGB1, HERPUD1, C15orf48, YBX1, PNRC1, RGS1, CALM1,
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MUC2, HINT1, BTG2, COX7C, ARPC3, COX8A, ID3, ALDOA, DNAJB1,
YWHAZ, EIF3K, EIF1, DBI, SELENOP, COX4I1, TOMM7, PFDN5, IRF1,
HES1, IGKC, PSAP, HNRNPA2B1, LITAF, RBM3, HSP90B1, UQCRH,
ATP5MJ, DSTN, RAC1, CXCR4, HMGB2, MIF, SRSF7, CXCL14, GNG5,
TYROBP, HSPA5, FXYD3, YWHAB, LDHA, ARPC2, ARPC1B, SRP14,
COX7B, FCGBP, GSN, CCNI, CSTB, SLC25A5, BTF3, CYCS, LDHB,
KLRB1, HSPE1, SRSF5, SOX4, IGLL5, CDC42, TIMP1, PPIA, EIF4A1,
MT1G, ENO1, ATP5MC3, HNRNPH1, UQCR11, RBFOX2, ITM2C, PEBP1,
COX5B, NOP53, EGR1, DYNLL1, RHOA, HMGN1, EPCAM, NDUFA4,
ZG16, SELENOW, SOD1, NAP1L1, FKBP1A, COX6C, NCL, ARHGDIB,
EIF4A2, OST4, IFITM2, KRT19, COTL1, COX6B1, CLIC1, RAN, CIRBP,
SKP1, EIF3E, TPM4, CD99, CALR, PSME1, GPX1, SLC12A2, PNISR,
ATP5F1D, ZFAS1, MCL1, TMA7, HNRNPK, CHCHD2, NDUFA1, SARAF,
TPI1, VAMP8, TNFAIP3, TMBIM6, SRSF2, SSR2, CTSD, DDX17, SET,
SUB1, ELOB, SLC25A3, UBE2D3, HSPD1, GADD45B, MYL12B, ATP5ME,
PCBP2, SUMO2, PLA2G2A, IL7R, HNRNPA3, COMMD6, ATF3, COX6A1,
RBM39, POLR2L, GUK1, SOD2, DAZAP2, AGR2, SEC61B, TSC22D3,
HNRNPDL, ID1, PPP1R15A, SNU13, ACTA2, COX5A, HNRNPU, SERBP1,
CAPZB, GZMA, ATP5IF1, PRDX5, PGK1, AKAP13, HNRNPC, COX7A2,
CD44, NBEAL1, CHCHD10, EZR, MICOS10, SON, FUS, TMEM59, ND-
UFA13, EIF3D

• digestive system: COL3A1, ACTA2, S100A10, IGFBP7, CALD1, MDK,
RAMP2, COL1A1, B2M, ZFP36, MEIS2, TPM1, FOS, TUBA1A, COL1A2,
FTL, KLF2, SFRP1, PLAT, MCAM, COL4A1, ACTG2, FABP1, IER2,
MEST, H2AZ1, MAGED2, IGFBP2, TUBB2B, SEPTIN7, MEF2C, HSPA6,
SPARC, HNRNPA1, TMSB4X, CST3, TUBA1B, IGFBP5, EEF1A1, HSPA5,
AKAP12, VIM, GADD45B, CENPF, C11orf96, TMSB10, HSPA1B, SAT1,
NPM1, HMGB2, CD74, TAGLN2, CXCL12, EGFL7, IRF1, FABP5, IGFBP4,
MEG3, PHOX2B, HSPA1A, BEX3, LMNA, JUN, PTMS, KCNQ1OT1,
AIF1, TUBB, ID3, PHGR1, MT1H, NEAT1, TSHZ2, H3-3B, CCN1, LGALS1,
RGS16, CCN2, ID4, TCF4, PPP1R15A, WSB1, TFPI, PRDX2, MT1G,
TAGLN, DDIT4, STMN1, HES4, TOP2A, PLD3, EGR1, TPT1, JUNB,
SPARCL1, CD81, LGALS3, COL4A2, EIF3E, SRGN, CTSL, FTH1, COL6A3,
HSPB1, EIF5, HNRNPDL, EEF1B2, ATP1B1, HMGN2, UBC, HMGB1,
DSTN, HAND2, ZFP36L1, ZFP36L2, S100A11, CCL2, SUMO2, COX4I1,
HBG2, MYLK, MARCKS, PFN1, UBA52, NR2F2, OAZ1, PNRC1, NEDD8,
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DDX24, TUBB4B, NTS, PDE5A, LRRFIP1, TCEAL9, BTG1, HSP90AB1,
HSP90AA1, ATF3, PBX1, PARK7, CCL4, DDX17, CKB, LAPTM4A,
ZEB2, TCF21, SERTAD1, EEF1D, NASP, PLP1, FOSB, BSG, CD24, BPTF,
RHOA, IRF2BP2, ELAVL4, JUND, CEBPD, TIMP1, MYL9, TMSB15A,
PFDN5, MFAP4, KRT8, ELOB, MYH9, PTMA, TYMS, GPC6, PA2G4,
OGN, UQCR10, CALM1, H4C3, CNN3, FST, COL6A2, RAC1, ACTG1,
CD99, GEM, HSPE1, LTBP4, DUSP2, ITM2C, ATP5F1E, ACTB, EIF1B,
H1-0, KLF6, UBE2S, XBP1, DNAJB1, HBA1, BTG2, BASP1, YWHAQ,
MAP1B, BGN, ASPN

• embryo: DLX6-AS1, TMPRSS15, MANSC1, TTTY10, C1QTNF5, TPRG1-
AS1, PTPRN2, ENC1, SCNN1G, SOX18, DCN, LGALS3, MAGOH, TTTY14,
STK38, TAGLN, FABP7, CCND2, LYVE1, CXCL14, ACTA2, AQP1, DEFA3,
VTN, WNT2, GPM6A, ZNF302, UGCG, RCN3, ARL4A, ZNF783, LUM,
UBB, RFC2, STK36, TGFBR3, HBA1, HSD3BP5, FERMT1, PEBP1, TJP1,
SGCA, ESYT2, MPO, XYLT2, RAB27B, DES, FBRSL1, ANXA5, TUBA3D,
HGF, ASAH1, NFKBIL1, VWF, HBG2, PDE9A, SOX10, MFSD14B, CDV3,
SP140L, CCN2, NMRAL1, HNRNPDL, LGR5, KRIT1, APOD, PIN1, HOXA11,
DEK, OLFM3, DHCR24, SPARC, GTF2IRD1, BCAN, COL1A1, MAP2K5,
RBP1, CD63, MIF-AS1, CTNNAL1

• endocrine gland: CD8B, CD3E, CD3D, AIF1, CD74, SRGN, BTG1, STMN1,
CD52, CXCR4, S100A4, B2M, JUND, EEF1A1, VIM, DNAJB1, LGALS1,
ACTB, NEAT1, IGKC, CD99, IFITM2, IL7R, IL32, CST3, ZFP36, HSPB1,
GAS5, ARHGDIB, FOS, S100A6, TXNIP, IGFBP7, CD7, MTRNR2L12,
EEF1B2, PABPC1, FTH1, SOX4, ITM2A, HSP90AA1, LAPTM5, TMSB10,
HSPA1A, TMSB4X, SLC25A6, ZFP36L2, ANXA1, CYBA, FTL, JUN,
TRBC2, MZB1, MT2A, H4C3, LTB, GSTP1, LEF1, LDHB, JUNB, H3-
3A, NFKBIA, S100A11, ID3, ZFP36L1, ARPC3, IFITM3, DUSP1, RGS1,
IFITM1, ZFAS1, TRBC1, TPT1, ID2, TUBA1B, TSC22D3, ALDOA, GPX1,
PTPRC, SNHG6, MIF, GAPDH, GPR183, CORO1A, SAT1, HSPA1B, IER2,
TCF7, LSP1, EEF2, KLF6, S100A10, ACTG1, H2AZ1, TUBA1A, SPARCL1,
GNAS, LDHA, CCL4, IGLC2, XIST, TOMM7, CALR, SARAF, PSAP,
HCST, EMP3, PLAC8, DDIT4, NR4A1, HMGA1, MYL12A, DDX5, FOSB,
CD63, RGS2, UBB, SATB1, KLF2, SELL, CD37, BTG2, CD69, ITM2C,
LYZ, ITM2B, HSPA5, MYL6, CD1E, HSPA8, HMGB1, OST4, SH3BGRL3,
NUCB2, TAGLN2, ATP5F1E, HSPE1, TUBB, PRDX2, SOD1, NACA,
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GADD45B, HMGN2, FYB1, HSPH1, H3-3B, IL2RG, UBC, PTMA, PPDPF,
CLIC1, HSP90B1, UQCRB, TXN, TNFAIP3, MTATP6P1, GLUL, NR4A2,
CD44, CALM2, GYPC, TRAC, BIRC3, CALM1, ENO1, COL1A1, PNRC1,
SNHG29, SLC2A3, FABP5, PFN1, UBA52, RGS10, JCHAIN, NPM1, YBX1,
DNAJA1, HNRNPA1, HSP90AB1, BTF3, HNRNPA2B1, PPIA, PCBP2,
FXYD5, DUSP2, YWHAZ, EVL, SRSF5, TPI1, C12orf57, HNRNPDL,
HMGB2, CD3G, NCL, LIMD2, GMFG, PPIB, MGP, NOP53, ID1, DYNLL1,
FKBP5, TIMP3, NAP1L1, ARL4C, COTL1, LCP1, SOD2, CCL5, EIF3F,
VAMP8, EZR, CREM, GNG5, POMP, PFDN5, TSC22D1, CCL2, SUB1,
SEPTIN7, MBNL1, TCF4, MARCKSL1, COX7C, EIF3E, FOXP1, PSMA7,
MYH9, ELOB, SFPQ, CIRBP, CELF2, PKM, ANXA2, REL, SRP14, PRDX1,
ZNF331, TPM4, MS4A1, GSN, GUK1, HSPD1, HINT1, IFI16, CSTB,
EIF4A2, GPX4, SERF2, HBG2, CFL1, PCBP1, AREG, NDUFB2, HN-
RNPC, SON, MCL1, ATP5ME, HERPUD1, FUS, ARPC1B, TIMP1, PSME2,
COX7A2, ATP5PO, PRDX6, CD2, RAN, SRSF7, DBI, COX6C, LRRFIP1,
PPP1R15A, TMBIM6, GIMAP7, OAZ1, WSB1, CYCS, TYROBP, PTP4A2,
ISG15, ELF1, COMMD6, BCL11B, TFDP2, EIF1, DEK, MDK, NDUFB1,
CDC42, SNHG8, EGR1, IRF1, RAC2, LY6E, HNRNPM, SH3BGRL, PARK7,
SRSF2, TRA2B

• esophagogastric junction: TFF1, CLU, CD74, CST3, B2M, LYZ, TMSB4X,
S100A4, SRGN, KRT19, LIPF, CXCR4, FTL, SLPI, ACTB, PCSK1N, IGHA1,
CD69, CD9, MT2A, SPARCL1, EEF1A1, CCL5, CYSTM1, KRT13, HBB,
KRT8, NEAT1, FTH1, PSCA, GHRL, ANXA1, SSR4, RGS1, IGFBP7,
S100A9, AGR2, PTMA, CYBA, JUN, BTG1, CCL4, S100A8, PGC, CSTA,
VIM, SAT1, FABP5, S100A2, ITM2B, S100A6, IL32, TMSB10, RACK1,
IGLC2, KLF6, CLDN5, PERP, MT1X, ID2, TPT1, HSPB1, KRT14, SLC25A6,
S100P, ANXA2, JUNB, TFF2, S100A11, KRT15, PIGR, ADIRF, UQCRB,
RHCG, ZFP36L2, COX4I1, KLF2, S100A10, OAZ1, ZFP36, CD24, SLC25A5,
ARPC2, LCN2, LGALS3, EEF1D, ATP5MG, CSTB, COX7A2, GAPDH,
TCN1, SPINK1, HSPA1A, TXNIP, LGALS1, NFKBIA, S100A14, CD52,
GSTP1, ALOX5AP, HSPA8, ID3, GADD45B, ZFP36L1, TACSTD2, PTPRC,
FOS, DUSP1, VAMP8, RNASE1, PFDN5, AREG, EIF1, CD63, FXYD3,
SPRR3, AQP3, WFDC2, IFI27, HSP90AA1, FAU, SFN, LY6E, IGLC3, UBC,
CCNL1, KRT6A, TM4SF1, HERPUD1, MT1G, CIRBP, KRT5, CAPG,
ACTG1, BTG2, TMEM59, PPDPF, SRSF7, CITED2, IER2, COX6A1, IFITM2,
ENO1, TSC22D3, KRT4, CA2, MT1E, H3-3B, DNAJB1, MYL12A
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• esophagus: KRT13, S100A14, TMSB4X, B2M, EEF1A1, VIM, S100A6,
LYZ, GAPDH, FAU, CD74, TPT1, NEAT1, HSPB1, S100A8, ANXA1,
FTH1, ACTB, EMP1, SPARCL1, FOS, SRGN, H3-3A, EIF1, KRT19, FTL,
SAT1, LPP, TXNIP, ZFP36, DUSP1, CST3, S100A2, IGFBP7, BTG1, TMSB10,
S100A4, RACK1, TSC22D3, MT2A, UBA52, ITM2B, NFKBIA, PTMA,
CD63, CYBA, H3-3B, TFF1, UBC, GSTP1, JUNB, ZFP36L1, ID2, S100A10,
CXCR4, CLU, DDX5, ZFP36L2, IGKC, IFITM3, SERF2, JUN, PTPRG,
ACTG1, AGR2, FKBP5, S100A9, HSP90AA1, GSN, SSR4, TPM1, SLPI,
NACA, MYL6, FABP5, TIMP3, HSPA1A, FOXP1, CFL1, IER2, HMGB1,
KLF6, LGALS1, TMA7, PRKG1, TFF3, MYH11, TSHZ2, HNRNPA1,
EEF2, PABPC1, S100A11, CCL5, SRSF5, SLC25A6, UBB, ID1, EEF1B2,
TUBA1B, DDIT4, CD9, XIST, PSAP, MEF2C, CALM2, ANXA2, MBNL1,
CALD1, ATP5F1E, IGHA1, TIMP1, WSB1, OAZ1, NAP1L1, IFI27, SH3BGRL3,
GADD45B, A2M, SLC2A3, RAB11A, MT1E, HNRNPDL, RBPMS, RGS2,
SCGB3A1, MYL12A, APP, TPSB2, ATP5MG, ADIRF, CD44, CD24, COX7C,
SRP14, HNRNPA2B1, EEF1D, HINT1, CALM1, CSTA, AKAP13, CELF2,
IFITM2, CYSTM1, HSPA8, ARHGAP26, EZR, ID3, KRT14, PTPRC, IER3,
PFDN5, COX4I1, CIRBP, JMJD1C, TOMM7, SERP1, BTF3, LMNA, N4BP2L2,
CD59, PPIA, LDHA, TM4SF1, RBM47, KRT8, AHNAK, DSTN, LRRFIP1,
SOCS3, RBM39, NPM1, SEPTIN7, MCL1, HBB, SPTBN1, GLUL, PFN1,
DCN, H2AZ1, PLXDC2, SLC25A5, PPDPF, ALDOA, IGLC2, ARPC2,
LGALS3, SOD2, ATP5ME, TAGLN2, KRT15, CYRIB, EIF4A2, RTN4,
CCNI, LAPTM5, HES1, SORBS1, CSTB, ZBTB20, RGS1, JTB, TSC22D1,
CCL4, VMP1, NR4A1, KRT5, MGP, YWHAZ, SRSF7, ARPC3, BTG2,
HERPUD1, RBMS3, IL32, DYNLL1, ARHGAP15, SRSF2, DDX17, SPRR3,
FOSB, DNAJB1, TXN, COX7A2, IGLC3, PSMA7, RORA, GNAS, PNRC1,
CALR, UBE2D3, CD69, MIF, AREG, TCF4, ACTN4, HSP90AB1, PNISR,
ZFAS1, SIPA1L1, RNASE1, TUBA1A, FRMD4B, PKM, TPI1, EGR1, HN-
RNPH1, FTX, FN1, HSPA1B, CHCHD2, HNRNPK, SARAF, TACSTD2,
TMBIM6, PCBP1, FUS, NDUFA4, TMEM59, EIF3E, HSPE1, MACF1,
UQCRQ, HMGN3, ATF3, SKP1, FCHSD2, TNRC6B, COX6B1, HNRNPC,
CTNNB1, FXYD3, GPX1, MT1X, ENO1, UQCRH, GNLY, DBI, RBPJ,
IGFBP5, ZEB2, DDX3X, COL1A2, POLR2L, PRDX1, RAC1, KRT4, SF1,
SRSF3, BPIFB1, PIGR, RSRP1, PTGES3, ARGLU1, CYCS, CEMIP2, DST,
SRSF11, CTSB, HSP90B1, TUBB4B

• exocrine gland: MTCO1P12, STATH, CXCR4, CD74, SPARCL1, CD63,



104

SRGN, CALD1, NEAT1, CYBA, IGFBP7, TMSB4X, NDUFS2, GSN, IGHA1,
ACTG1, TM4SF1, LDHA, HMGB2, MTATP6P1, TCF4, PECAM1, FOSB,
IGLC2, COL4A2, GNG11, DDIT4, MEF2C, S100A4, EPAS1, MTND1P23,
IGFBP4, SLC2A3, SOCS2, TFPI, IL7R, PTP4A3, CELF2, CLEC2B, HILPDA,
SLC8A1-AS1, CSRP2, ITGA5, ITGA1, JCAD, PLXDC2, TPM2, APOLD1,
ADAMTS4, PLPP3, ZEB2, CSTA, CCL4, A2M, FYN, TNFRSF1B, CXCL12,
KIF14, PMP22, THBD, ZAP70, RAMP2, CSF3R, KLRD1, TGFB1I1, KCNE4,
CTC-425O23.5, AC073254.1, TRAF1, ADAMTS2, ADAP2, CENPF, TMEM204,
GIMAP7, GIMAP8, CD2, THBS2, PDGFRA, CD93, KCTD12, AC108004.3,
DOK2, MT1A, PJVK, HOXB2, TGFB3, TDRD6, ZNF366, PRR16, AMY2A,
PRDM1, CCL5, XCL1, CETN4P, GIMAP1, TENM1, HAS2, COL5A1,
CSPG4P12, RFLNB

• eye: PDE6A, SYT1, CKB, CADM2, ANK2, TRPM3, TMSB4X, PDE4D,
NEAT1, NRXN3, LSAMP, B2M, KAZN, TCF4, CLU, VIM, GPM6A, GAPDH,
CADM1, PAX6, IGFBP7, FTH1, SAT1, EEF1A1, KIAA1217, DLG2, HES1,
MEG3, GLUL, PLCB4, TIMP3, H3-3B, SYNE2, TRPM1, S100A6, HSP90AA1,
ANK3, ROBO2, CH507-528H12.1, DST, RORA, CALM2, ZBTB20, CST3,
PTPRG, MAP1B, RORB, ANXA1, MSI2, TMSB10, FTL, CRYAB, SLC2A3,
ZEB2, PCDH9, TPT1, EPB41L2, DMD, CADPS, MACF1, PLXDC2, ACTB,
NRG3, SRGN, FOS, GNAS, MEF2C, BTG1, ANXA2, CALD1, CNTN4,
SAG, DCN, RTN4, PRKG1, MTATP6P1, EBF1, FOXP2, MBNL1, CALM1,
MYL6, CELF2, UBC, NCKAP5, SPARC, NTM, RIMS2, ENO1, PTGDS,
AKAP9, JMJD1C, LRMDA, PTPRD, APP, KCNMA1, TSC22D1, PCP4,
UBB, NLGN1, VAMP2, SPP1, MAGI2, HSPB1, IQGAP2, JUND, FHIT,
ITM2B, AUTS2, CTNNA2, SYNE1, MAGI1, WWOX, WSB1, SNHG14,
SNHG29, IGFBP5, PTMA, SPARCL1, FMN1, TUBA1A, FKBP5, GSTP1,
EIF1, TXNIP, FRMD4A, HMGB1, PTPRM, CAMK1D, PKM, ARL15,
FSTL5, NFIB, JUN, RCVRN, NEBL, MT2A, HSPA1A, GPC6, FOXP1,
ZFP36L1, ZNF385D, DLC1, MGP, ALDOA, XIST, GRID2, S100A4, PRR4,
CAMTA1, MACROD2, PRKCA, YBX3, HSP90AB1, TF, N4BP2L2, DDX17,
AGAP1, AKAP12, LDHA, NFIA, ACTG1, PARD3, ABLIM1, MAML2,
KCNIP4, GADD45B, SON, NDUFA4, GRIA4, DOCK4, DCT, PPP2R2B,
KRT5, ST6GALNAC3, SORBS2, CXCL14, APLP2, FOXN3, JUNB, CPE,
DSCAM, ARID5B, TUBA1B, GUK1, RERE, ANKRD12, UNC119, THSD7A,
ASPH, SPTBN1, PNISR, RABGAP1L, ERBB4, CCSER1
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• fallopian tube: KRT18, CLDN4, IGFBP7, SRGN, B2M, CD74, SPARCL1,
CYBA, S100A6, PTMA, FTL, DSTN, FTH1, PTPRC, TMSB4X, EZR,
NEAT1, LGALS1, ANXA1, IGKC, VIM, TMSB10, DCN, BTG1, MEF2C,
HSPA1A, SYAP1, MTATP6P1, CBX3, IGLC2, CLU, CTSS, SLC26A3,
TASL, GNAS, SPINT2, CXCL8, EIF1, SLC38A2, STOM, MTRNR2L8,
SYNE2, TFF3, CKS2, CTD-2287O16.1, ADAP2, ALOX5AP, IGLC3, MCTP1,
BTK, ATP6V1B2, ATF7IP, VTRNA1-3, S100A9, IGHA1, CFLAR, RCSD1,
FCER1G, CNOT2, IL1B, HERPUD2, GSAP, TM6SF1, ITPR2, IGSF6,
TUBB4B, PCLO, PIK3CG, GPX1, HSPE1P2, KIF5C-AS1, WFDC2, AC016739.2,
HIP1R, FCER1A, AP1S3, CHD7, GOLGA8B, TMSB4XP8, RHEX

• gallbladder: SERPINB2, MMP7, SERPINA1, VIM, FCER1G, IGFBP7,
TM4SF1, PSAP, TFF3, LAPTM5, CCL21, CRYAB, LGALS1, LYZ, DCN,
CTSB, CXCL8, TM4SF4, ADIRF, TMSB4X, EFEMP1, TYROBP, THBS1,
REG1A, HSPB1, TAGLN, AGR2, LUM, SPINK1, PLA2G2A, ALOX5AP,
MGP, NAMPT, TFF1, HMOX1, GPX2, CLU, SPP1, CALM2, PCAT19,
CLEC2B, BCL2A1, C1QA, IFITM3, PLAUR, FOS, UQCRQ, CD74, MT2A,
IER3, PTMA, CD59, CD24, CREM, SKP1, CDKN1A, CREG1, C1R, C5AR1,
S100A4, ACTG1, GZMB, FABP4, SDCBP, SPARCL1, NNMT, RGS2, ID3,
TSC22D1, MGST1, CD55, EREG, SERF2, RNASE1, GNG5, G0S2, TPSB2,
GC, PPIA, TRBC2, POMP, CCN1, ATP5MK, HSP90AA1, MMP19, FKBP1A,
EEF1D, HSPA6, CD9, CTSD, DDX3X, ARPC2, CNBP, TMSB10, NDUFS5,
IFI27, DSTN, CD99, ACTB, FTL

• heart: NEGR1, LAMA2, CACNA1C, PTPRC, UBA52, SAT1, SPARCL1,
B2M, NEAT1, CALD1, TTN, IGFBP7, CD36, DLC1, PTPRM, TPM1,
RBMS3, ARHGAP15, LDB2, PLXDC2, SORBS1, VIM, PRKG1, FTL,
ACTB, IFITM3, MYL2, ZEB2, COL3A1, FRMD4A, TMSB10, CELF2,
SRGN, LRMDA, EEF1A1, MYL7, COL1A2, TMSB4X, VWF, UTRN, TCF4,
EBF1, FTH1, LINGO1, RYR2, DST, PITPNC1, TXNIP, DCN, ANK3,
S100A10, CD74, SLC8A1, ANKRD44, FKBP5, BTG1, MEF2C, CBLB, PT-
PRG, HBG2, FRMD4B, LGALS1, AKAP13, TIMP3, XIST, DDX5, GNAS,
FOXP1, RORA, PLCB1, HSP90AA1, IQGAP2, RBPJ, SYNE2, MBNL1,
NRP1, S100A6, DDX17, TPT1, MAML2, ELMO1, BCL2, CCND3, PTMA,
TNNT2, MT2A, CDH19, SPTBN1, VCAN, ZBTB20, ZBTB16, ID3, LRP4,
ACTG1, GAPDH, ITM2B, LPP, ACTC1, FOS, NFIB, CALM2, S100A4,
FCHSD2, MGP, NPPA, ABLIM1, QKI, FOXN3, N4BP2L2, ARGLU1, SRRM2,
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PDLIM5, TFPI, MACF1, DMD, PDE3A, CH17-189H20.1, WSB1, FNDC3B,
KIAA1217, PLCG2, RABGAP1L, IL32, SSH2, GSN, WWOX, FABP4,
SPARC, SON, COL4A1, AUTS2, HMGB1, MED13L, NFIA, ARL15, FTX,
FN1, HSPB1, FOXO1, ARHGAP24, HSP90B1, LDLRAD4, NRXN1, MAST4,
PSAP, MYL12A, PRKCH, PABPC1, PRKAG2, PDE4DIP, HNRNPA2B1,
MAN1A1, MYL6, DPYD, TNRC6B, RBM6, CST3, ARHGAP26, LHFPL6,
JMJD1C, PDZD2, DUSP1, HNRNPH1, ANKRD11, SORBS2, SMYD3,
ANXA1, TIMP1, FHL2, VMP1, HSPG2, MAGI1, H3-3B, TGFBR2, TRIO,
FBXL7, FYN, MAP1B, PDE3B, CHD9, MAP4, DIAPH2, ZFHX3, CFLAR,
LUC7L3, UBB, BNC2, MYH9, RBM39, RERE, LRRFIP1, STARD13,
SIK3, EIF4G3, SBF2, ENG, TUBA1B, AKT3, PDK4, SEPTIN7, CCNI,
JAK1, TSC22D3, MYL9, TBC1D5, APP, COL1A1, RBMS1, INPP4B,
ETS1, JUND, SYNE1, ST6GAL1, PBX1, IGFBP5, TCF12, DOCK8, IL6ST,
ANKRD1, HMGN3, IMMP2L, CALM1, ASAP1, CRYAB, DLEU2, HSP90AB1,
MYCBP2, CUX1, UBC, ANXA2, ARID1B, CEBPD, PTEN, S100A8, EXT1,
HIF1A, KMT2E, ATXN1, PFN1, EIF1, PPP1R12A, KTN1, PPP3CA, GPHN,
SIPA1L1, MB, RTN4, ZFP36L2, F13A1, HBA2, PPP6R3, CPM, CYBA,
HIPK2, RHOA, SOX5, ADAMTS9, CTSB, GRK5, FUS, PDE4D, KANSL1,
ZFP36L1, UBE2E2, MYH7, MECOM, PRRC2C, HDAC9, ZFAND3, AOAH,
TTC28, CAPZB, EXOC4, LIMS1, RAB11A, RGS5, TM4SF1, A2M, NKTR,
ZFP36, TTC17, SRPK2, PLEKHA5, TNNI3, ANKRD12, PALLD, TACC1,
CIRBP, ARPC2, NFKBIA, NEXN, LRBA, TSHZ2, GNAQ, AKAP9, COL4A2,
AHNAK, SPIDR, IFI27, DOCK4, MEF2A, STAG1, PPP2R5C, PTK2, PNISR,
ERC1, CAMK2D, RASAL2, ID2, NAMPT, KMT2C, ITPR2, ZEB1, PP-
FIBP1, RSRP1, ABCA8, MKLN1, PACS1, JUNB, HSPA1A, CTNNA3,
FABP5, SMCHD1, GBE1, NIBAN1, EGFL7, VPS13B, SLC25A4, JUN,
NCOA1, ZNF638, CACNB2, ASH1L, DSTN, PLA2G5, ACACB, GOLGA4,
LAMB1, SERF2, ROCK1, ATP2A2, ZSWIM6, YBX3, PICALM, CSNK1A1,
AFF1, ACTA2, ELF1, PRKCE, PCDH9, FHIT, ZCCHC7, NR3C1, YBX1,
PLCL1, CD99, AC007319.1, FRYL, RASGEF1B, HNRNPC, WNK1, EPS8,
TCF25, CCNH, ID1, GNB1, PARD3, TBC1D22A, MTSS1, DDIT4, DLG2,
H3-3A, FBXW7, SAMHD1, MGST3, STAT3, LMNA, NACA, SLC9A9,
ETV6, TRPS1, PARP8, UQCRH, CAV1, EXOC6B, SRSF11, PKM, PAM,
EEF1D, CD63, LDHB, CHST11, DEK, SLC2A3, SRSF5, SRSF7, RUNX1,
AFF4, DTNA, RBPMS, IGFBP4, PRKN, ITFG1, DES, MAGI2, KLF6,
EPB41L2, LARGE1, UBE2D3, DYNLL1, PIP4K2A, RSF1, FOXO3, BIRC6,
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PLPP1, HNRNPDL, PDXDC1, SSBP2, UBE2R2, AAK1, SCAF11, CMIP,
HNRNPH3, FAF1, HSPA8, BCAS3, MGAT5, MARK3, PDE1C, KLF12,
SIK2, ZNF609, AFF3, PEAK1, GPATCH8, USP34, COX4I1, ACTA1, LIMCH1,
RAB1A, RBMX, LTBP1, HNRNPU, BACH1, BPTF, HERC1, NCOA3, C7,
FNBP1, RAPGEF1, ARID5B, SRSF2, HIP1, PDE7A, PSD3, PCM1, FILIP1,
ZNF292, TNNC1, CDC42BPA, CDH13, GNLY, CYRIB, JPX, POSTN,
NEBL, ATP5F1E, BTBD9, MTDH, IGF1R, CDC42, MBD5, CTBP2, S100A11,
ITGB1, SVIL, SOS1, DENND1A, PAN3, ANAPC16, CARMIL1, REV3L,
CH507-528H12.1, ANKRD17, EPS15, IQGAP1, TAGLN, CSGALNACT1,
SLC1A3, NPM1, USP15, NRXN3, SRSF3, INSR, NUMB, NCOR1, PIK3R1,
RACK1, PHACTR2, CCNY, EHBP1, CD9, TMBIM6, RBM25, GAS7,
RNF149, HNRNPA3, ZFPM2, CTNNB1, RAP1B, APBB2, MUC20-OT1,
COL6A2, BMPR2, PCNX1, FBXO11, MAP4K4, SPAG9, MAML3, FAU,
NFE2L2, NIPBL, YWHAE, TSC22D1, PTGES3, CLIC4, MYBPC3, TRAPPC9,
GPBP1, NFAT5, LDB3, RAD51B, TAOK3, FGD4, CTNNA1, GLUL, TJP1,
ARID4B, CERS6, NR4A1, HNRNPA1, RNASE1, ADGRB3, CAMK1D,
COMMD1, RAP1A, RB1, TMTC1, CDK13, CCDC91, SCN7A, TBL1XR1,
MSN, PDE8A, RAB2A, NAALADL2, VPS13D, ATM, SEPTIN2, CAMTA1,
PAFAH1B1, AOPEP, TTC3, MEIS2, SRP14, RHOB, ENO1, ATRX, RAPGEF2,
ADK, TUBA1A, IFITM2, HERC4, RCSD1, ARHGAP10, SETX, SH3D19,
C20orf194, PECAM1, FRY, PTPRE, JARID2, RNF130, FGF12, SUB1,
ITSN1, CDKAL1, BAZ2B, CEP350, ACTR2, WAC, NF1, RNF115, EPC1,
COX7C, ADD3, NAV1, CFL1, NUCKS1, PHACTR1

• immune system: B2M, CD79A, CD74, MS4A1, JUNB, EEF1A1, VIM,
IFITM1, ACTB, NFKBIA, CD3D, TXNIP, TCL1A, KLF6, CD52, IL32,
IFITM2, KLF2, CD7, BTG1, TMSB10, SRGN, ZFP36, KLRB1, FTH1,
GAPDH, S100A4, HSPA1A, DUSP2, TMSB4X, ZFP36L2, FTL, CD37,
LAPTM5, LTB, TPT1, JUN, UBC, H3-3A, ATP5MG, FOS, COTL1, CD83,
BTF3, CD3E, FXYD5, TNFAIP3, ISG20, RAC2, HSP90AB1, SELL, RGS1,
PPP1R15A, IGHM, HMGB1, CYBA, S100A10, MYL6, CD69, EZR, HSPE1,
CD27, PFDN5, SERF2, HCST, TRBC2, CORO1A, PLAC8, TSC22D3,
DDX5, LDHB, HSP90AA1, COX4I1, HSPA1B, FCMR, CST3, EEF1B2,
ACTG1, SAT1, HMGN2, SUB1, H4C3, PABPC1, CCL5, FYB1, PTPRCAP,
SH3BGRL3, TPI1, NPM1, GPR183, CD79B, UCP2, LSP1, EIF1, SARAF,
GSTP1, MYL12A, HMGN1, FAU, LIMD2, SNRPD2, PPIA, DNAJB1, EIF3G,
CD99, BANK1, PKM, H3-3B, IER2, DUSP1, BCL2A1, C12orf57, MIF,
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SUMO2, IFITM3, HERPUD1, IL7R, OAZ1, EEF1D, EEF2, YWHAZ, CXCR4,
NOP53, HNRNPA1, TUBA1B, CLIC1, RGS13, EVL, S100A6, ARHGDIB,
PGK1, SLC25A5, SSR4, SELENOH, PTPRC, HSPA8, CALM1, STMN1,
JAK1, RAN, PFN1, DNAJA1, TOMM7, NCL, SSR2, CCNI, NCF1, CALR,
CD44, UBA52, CD48, SYNGR2, GNLY, FDCSP, PSME2, EIF3E, GMFG,
YPEL5, MCL1, RNASET2, CAP1, HNRNPA2B1, SRSF5, COMMD6, RACK1,
ZFAS1, ITM2B, JUND, DBI, PNRC1, FOXP1, FOSB, LCP1, TCF7, TUBB,
CTSH, SYNE2, TPR, SF3B2, RNF19A, C9orf16, MAF, TAGLN2, SNHG8,
SEPTIN7, RGS2, ATP5IF1, TRBC1, CD8B, LAT, H2AZ1, ARPC2, MAR-
CKSL1, ARPC3, PSME1, EIF3L, UBB, ZFP36L1, POLD4, CFL1, ENO1,
EIF5, SRSF7, TMEM123, ANP32B, LCK, HIGD2A, RGS10, WIPF1, NDUFB11,
PCBP2, GADD45B, DDIT4, NACA, YWHAB, HSPB1, PRDX1, SPOCK2,
AREG, PPDPF, HSPD1, CYTIP, STK17A, DAZAP2, HNRNPC, EIF3K,
CD22, HMGB2, EIF3H, ELF1, CNN2, CD53, CD2, NKG7, YBX1, ID2,
NR4A2, MAP3K8, CR2, COX8A, SF1, ANKRD12, ODC1, PNISR, SAP18,
PTPN6, ITGB2, IRAG2, GPSM3, CD19, RBM39, COX7C, BTG2, CORO1B,
MYL12B, PTMA, ITM2A, HINT1, LITAF, SEPTIN9, GYPC, PPP1CC,
COX5B, PDIA6, SLC25A3, EIF3F, GCC2, IKZF3, CSTB, UQCR10, SRSF2,
TCEA1, SKP1, CSDE1, ABRACL, MT2A, REL, EIF4A2, EMP3, TPM3,
CALM2, SLC2A3, PGAM1, FUS, PARP1, TBCA, PTGES3, RESF1, GABARAP,
RIPOR2, POLR2L, CUTA, LDHA, MYH9, DPP7, EGR1, ALOX5AP, DDX17,
STAT3, HSPA5

• intestine: FTH1, EEF1A1, PIGR, B2M, LGALS4, CD74, NEAT1, UTRN,
ACTG1, S100A6, CFL1, TMSB4X, FOXP1, RBFOX2, ZSWIM6, DYNLL1,
ACTN4, TOMM7, PCBD2, TUBA1B, NACA, MAGI1, SEC61G, NFIA,
HSPA5, VIM, IFITM2, LPP, HBG2, VAMP8, PLCG2, MDK, COL3A1,
CST3, MGAT5, SH3BGRL3, DNAJB1, TMSB4XP4, GAPDH, KRT8, SRGN,
CHGA, DPYSL2, SNRPD2, ANKRD11, TMED10, SOX4, ATXN1, SON,
PLAC8, COX7A2, FKBP2, RGS2, ZFAS1, CUX1, LILRB1, FYB1, CXCR4,
CREB3L2, PHYKPL, AIF1, SAFB2, KLF6, VPS13D, RBX1, ROMO1,
COL1A2, RBM5, PBX1, SLC17A5, AUTS2, COL1A1, BTG2, OLR1, COPS9,
CCT4, PRKG1, NFKBIA, CTSW, RARRES2, IGF2R, FLRT2, STMN1,
ALOX5AP, LAPTM5, ERICH1, UQCR11, JUNB, RBM39, AGAP1, NUDT1,
P4HB, TSHZ2, S100A9, GMDS, FAU, RERE, SNHG14, ARL4C, IRF1,
TMSB4XP8, ANKRD37, XIST, HP1BP3, NAPSB, HIVEP3, CIRBP, FOS,
SAT1, VTI1A, TPT1, GABPB1, ISG15, PFDN5, SLC9A9, CLDN5, TPM4,
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ZNF3, RELN, SNHG8

• kidney: ATP1B1, PTMA, TMSB4X, IGFBP7, B2M, CD74, IGFBP5, NEAT1,
S100A6, ZBTB20, VIM, CD24, MEIS2, MECOM, SRGN, CST3, HSPA1A,
SAT1, EEF1A1, DUSP1, SPP1, IFITM3, FOS, H3-3A, SPARC, CALD1,
TXNIP, DDX5, GPX3, PDE4D, FTL, ACTG1, LDHB, APP, S100A4, IL32,
PAX8, ACTB, HSPB1, CA12, HNRNPA1, PKHD1, CD9, UBB, JUN, MT2A,
HES1, TMSB10, DEFB1, LGALS1, MTATP6P1, GAPDH, TIMP3, MGP,
S100A11, DNAJB1, PFN1, JUNB, ID2, FTH1, ITM2B, HSP90AA1, HSPE1,
EEF2, SLC8A1, BTG1, COL1A1, TPT1, PABPC1, H3-3B, LRMDA, KLF6,
TSC22D1, NACA, FOXP1, WSB1, CALM2, SYNE1, PTPRC, SYNE2,
ADIRF, UTRN, IGF2, ATP1A1, NBEAL1, EMCN, XIST, UBC, TUBB,
UMOD, ATP5F1E, CD63, PSAP, CYBA, ALDOA, RTN4, ANXA2, APOE,
MYL12A, MEF2C, ZFP36L1, ERBB4, FXYD2, GSTP1, NDUFA4, CELF2,
HMGB1, PRKG1, ZFP36, RACK1, PTPRG, TPM1, GNAS, IFITM2, MTRNR2L12,
ZFP36L2, LDB2, PPDPF, HSPA1B, CFL1, TUBA1B, NPM1, ADGRF5,
S100A10, ZEB2, N4BP2L2, ATP5MG, CH507-513H4.1, JUND, DNAJA1,
NFKBIA, FOSB, HSP90B1, PNISR, FAU, HSP90AB1, RHOB, CLU, SOX4,
BICC1, WNK1, BEX3, TIMP1, COX4I1, TSC22D3, FKBP5, CCL4, UQCRB,
WFDC2, RBM39, DDX17, CALM1, COX7A2, HBB, MBNL1, SPTBN1,
HNRNPA2B1, HSPA5, HERPUD1, ARHGAP29, EGR1, CTSC, ID1, SERF2,
MYL6, ID3, VMP1, MIF, TACC1, KIAA1217, MT1G, EIF1, CIRBP, TPM4,
UBA52, CALR, EEF1D, CXCR4, MSI2, SLC25A6, ARL15, ITM2C, COBLL1,
DSTN, TMBIM6, ARPC3, GPX1, HSPA8, LAPTM4A, SKP1, PPIA, CRYAB,
LRRFIP1, CCSER1, PFDN5, SLC12A1, EIF4G2, SRP14, COX7C, CD52,
HSPD1, BCAM, EPS8, TYROBP, YBX1, SON, HINT1, HNRNPC, NAP1L1,
UBE2D3, STMN1, NFIA, LUC7L3, RBPMS, ATP5PO, SNHG29, COX7B,
HNRNPH1, ST6GAL1, EEF1B2, PKM, TXN, PLCB1, DDIT4, ITGB1,
RORA, LDHA, ATF3, NR4A1, PLPP1, ARHGDIB, PLCL1, IER2, DYNLL1,
SELENOP, EIF4A2, SRSF5, TCF4, VCAN, IGKC, HNRNPK, GATA3, GLS,
GSN, GPX4, RGS2, YWHAB, JMJD1C, TOMM7, AKAP12, MAML2,
PBX1, LITAF, NDUFA13, ARGLU1, OAZ1, HMGB2, HNRNPDL, NPC2,
KCNQ1OT1, TGFBR2, S100A9, CCNI, RHOA, MAGI1, YWHAZ, SEC62,
TMA7, RERE, MYL12B, COL3A1, SLC2A3, ATP6V0E1, MORF4L1, ATP5MC2,
SQSTM1, MT1X, PCBP2, GADD45B, TUBA1A, LPP, SRRM2, SUB1,
BTF3, CTSD, HIPK2, RAC1, KTN1, NUCKS1, YWHAE, MGST3, AKAP13,
ARPC2, NFE2L2, CD81, KMT2E, PRDX1, MACF1, MAGI2, COMMD6,
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SH3BGRL3, C12orf75, BTG2, PTGES3, AC013463.2, H2AZ1, A2M, ATP6V0B,
CEBPD, ANXA1, COL1A2, HNRNPU, BSG, CD59, MTRNR2L8, HSPH1,
HIF1A, SOD2, PEBP1, FTX, KAZN, HBA2, ACTN4, COX6C, RNASE1,
RAN, FUS, NDUFA1, NEDD4L, ATP5MJ, PRKCA, AKAP9, CDC42, ZFAND5,
TMEM59, CLIC1, NDUFS5, DBI, CLK1, SLC25A5, CREM, ENO1, NFAT5,
LMNA, GPC3, CAMTA1, PPP1R15A, COX8A, CHCHD2, SH3BGRL, RAP1B,
OST4, ATP1B3, CCN2, HMGN1, UQCRH, NAMPT, ANKRD12, AIF1,
RGS1, COX5B, EIF3E, LYZ, PLXDC2, COL4A2, ATP5IF1, ZFAS1, PPIB,
CD164, PCDH9, CTSB, SRSF7, INSR, MRPL33, SARAF, OXR1, FOXN3,
PSMB1, EIF3H, CHCHD10, COX6B1, ESRRG, SLIT3, ADD3, ARID5B,
SEPTIN7, SOD1, GLUL, IER3, CYB5A, PNRC1, SFPQ, RSRP1, TRA2A,
MDK, MRPS6, NCOA7, HMGN2, AQP2, RBMS1, UBL5, EMP3, PRRC2C,
PTPRM, QKI, SRSF3, PDIA3, TPI1, SEM1, CAPZB, SRSF11, PICALM,
SLIT2, COX6A1, S100A8, PSMA7, POLR2L, ATP5PF, SLC25A3, UQCR10,
SUMO2, EZR, NCL, ATRX, TNRC6B, UQCRQ, KCNIP4, MYCBP2, THSD7A,
CYSTM1, EIF3K, PSME1, TAGLN2, SLC38A2, ZBTB16, NKTR, DST,
HMGN3, NR2F2-AS1, JAK1, RASGEF1B, EBF1, BST2, ATP6V1G1, ATP5MK,
COTL1, ANXA5, TCEAL9, AHNAK, PLPP3, FHIT, NRP1, POMP, RBM8A,
SEC61B, ELOB, ANK3, STAT3, PPP1CB, TTC3, CLIC4, MSN, LIMCH1,
MED13L, HSPA6, GABARAP, UQCR11, ATP5ME, ANAPC16, TRA2B,
FAM107B, NDUFB2, MCL1, SERBP1, SNRPD2, ATP6AP2, CUBN, CCL5,
SSR2, HNRNPA3, TLE5, SSR4, CHD9, TMEM258, RDX, ZNF207, DNAJB6,
SEPTIN2, EIF5B

• lamina propria: AHNAK, SH3BP5, CD74, SRGN, COTL1, CCL5, FTH1,
JUND, KLRB1, NEAT1, TYROBP, EEF1B2, TMSB10, TPT1, CD52, IFI30,
CST3, SEC31A, SLC11A2, PTPRC, FOSB, XBP1, TNFRSF18, MCUR1,
JCHAIN, DAPK1, AREG, SOX4, SORL1, FCER1G, FTX, MATN2, IRF8,
SMS, SELL, CACFD1, C1orf162, GPR183, ALDH2, FABP5, APOC1, IGHA2,
CCAR2, C5orf24, IGHA1, HEBP1, BRIP1, FGR, CPSF4, IGHV3-33, SIRT5,
JRKL, FOXC1, TRBV11-2, MLC1, TPSB2, SMC4, FREM1, ZNF154, SMYD4,
FXYD7, GARS1-DT, FCGR2A, RBM39, AP000704.5, SGK1, S1PR5, GNA15,
BTG1, SMIM2-IT1, AQP3, TOX2, SLC20A1, DPY30, CPM, TBXAS1,
PRDM1, TP53INP2, STAM, SAA1

• large intestine: JCHAIN, LGALS4, KRT8, VIM, MTRNR2L12, SRGN,
PHGR1, FOS, NEAT1, CD74, FTH1, S100A6, B2M, EEF1A1, IFITM3,
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JUN, MT2A, JUND, PIGR, IGHA1, HSPB1, TFF3, ACTB, CST3, SAT1,
HSPA1A, TMSB4X, TMSB10, LGALS1, YBX1, DUSP1, FTL, TPM1,
EEF1B2, S100A10, BTG1, MIF, CCL5, COL1A2, IGKC, SLC25A6, FABP5,
FABP1, GAPDH, KRT18, ZFP36, TXNIP, KRT19, HSP90AA1, H3-3A,
SPARCL1, LGALS3, JUNB, PABPC1, HSPA1B, MT1G, ZFP36L2, HES1,
IL32, CD9, TPT1, SOX4, H4C3, CD52, MDK, ID1, XIST, ID2, FOSB, H3-
3B, SH3BGRL3, IGFBP7, PTMA, COL3A1, UBC, PFN1, KLF6, DDX5,
HSP90AB1, ATP5F1E, HSPA5, CD63, ATP5ME, RACK1, CYBA, HMGN2,
EZR, HSPA8, ACTG1, PFDN5, NFKBIA, IGLC2, MTATP6P1, IER2, ANXA2,
TSC22D3, HSP90B1, ZFP36L1, UBB, TUBA1B, IFITM1, HNRNPA1, CALM2,
COX7C, CALM1, SELENOP, FKBP1A, CD24, DNAJB1, DDIT4, S100A11,
MARCKSL1, NPM1, PPDPF, MT1E, AKAP13, ITM2B, EEF1D, H2AZ1,
NACA, CFL1, LMNA, GSTP1, LDHA, IL7R, AGR2, GSN, PSAP, NR4A1,
GNAS, ELF3, WSB1, CKB, PPP1R15A, MUC2, ITM2C, BTG2, EIF1,
ID3, ATP5MC2, HSPD1, IGLC3, COX6C, FUS, CD99, TUBA1A, UQCRB,
OAZ1, HMGB1, HSPE1, SRRM2, TXN, FAU, MYL6, CLIC1, CXCR4,
C15orf48, RHOB, MYH9, EEF2, HINT1, CLDN4, UBA52, COX4I1, TOMM7,
HNRNPA2B1, CHCHD2, TPI1, SSR4, FXYD3, TAGLN2, GADD45B, SQSTM1,
SELENOW, CALR, DDX17, EPCAM, TMBIM6, COL1A1, TSPAN8, PNRC1,
RBM39, PCBP2, C12orf57, IFITM2, SARAF, STMN1, NUCKS1, PPIA,
FOXP1, CALD1, PRDX5, AHNAK, PEBP1

• liver: ALB, ACTG1, ACTB, S100A4, TYROBP, NEAT1, S100A11, B2M,
CST3, VIM, CD74, JUND, FTL, H3-3A, HP, FOS, HSPA1A, TPT1, MTRNR2L12,
JUN, S100A9, HSP90AB1, SERPINA1, STMN1, HBG1, XIST, NKG7,
S100A6, IFITM3, TMSB4X, IGFBP7, SAT1, EEF1G, HBG2, PTPRC, HSPD1,
HMGB1, RTN4, RUNX1, SRGN, FTH1, DUSP1, CXCR4, DNAJB1, PDE4D,
EEF1A1, DNASE1L3, ZEB2, EEF1B2, MT2A, GAPDH, APOA2, HBA2,
UBC, TUBA1B, RORA, MIF, SAA1, HNRNPA2B1, ZFP36L2, CCL5, LYZ,
APOE, S100A8, HSPA1B, HNRNPA1, APOC1, KLF6, CTSB, SH3BGRL3,
HSP90AA1, NFKBIA, ATP5F1E, MEG3, HSPB1, CD52, MTRNR2L8,
PTMA, ZFP36, TMSB10, EEF2, LDB2, UBA52, EIF4A1, UTRN, FKBP5,
BTG1, ID2, CALR, PSAP, HSP90B1, ZFP36L1, PRDX1, MBNL1, ITM2B,
IFITM2, S100A10, GPC6, FCER1G, TXNIP, PCBP2, MYL6, EGFL7, DDX5,
PABPC1, PFN1, FAU, JUNB, FOXP1, HSPA8, CCL4, HNRNPU, NAMPT,
EIF1, MTSS1, APOB, AIF1, RSRP1, YBX1, ZBTB20, UBB, HNRNPH1,
PRDX2, TIMP1, GNAS, APOA1, NPM1, GYPC, SLC25A5, NAP1L1, RBM39,
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CD63, IL32, H3-3B, PIP4K2A, IQGAP2, HSPE1, HINT1, ANXA1, TM-
BIM6, RTF1, CYBA, HBA1, HNRNPDL, H4C3, LRMDA, LGALS1, HN-
RNPC, RAP1B, DDX17, APOC3, MS4A6A, CD36, PNISR, FGB, GSTP1,
FOSB, CALM1, DUSP2, SLC2A3, COX7C, TNFAIP3, RSL1D1, MYL12A,
BLVRB, SOD2, CELF2, PRDX6, ARPC2, TUBB, PPIB, ATP5ME, HMGN2,
JMJD1C, PLCB1, N4BP2L2, TCF4, CD37, RAC1, PNRC1, MACF1, TAGLN2,
ARHGDIB, FUS, PLAC8, HSPA5, CALM2, TSC22D3, CD69, CD99, SRSF7,
LDHB, SRSF11, AKAP13, HMGB2, PEBP1, SRRM2, PPIA, GPC3, NCL,
TPM4, RELN, UQCRQ, EIF3E, WSB1, LDHA, HBB, VAMP8, SLC25A37,
ZFAS1, KLF2, POLR2L, SERF2, LRRFIP1, IGKC, SLC25A6, SNX3, JCHAIN,
RTN3, SOD1, RACK1, ATP5IF1, RHOA, IL6ST, P4HB, PPDPF, HNRNPA3,
C1QB, LCP1, EEF1D, DDIT4, PARK7, JAK1, SF1, MYH9, TACC1, YW-
HAZ, NACA, AFF3, SLC25A3, PCBP1, ATRX, SON, UQCRB, OAZ1,
ITGA4, H2AZ1, SCP2, PFDN5, LAPTM5, GNLY, TAOK3, NFIA, NME2,
ANP32B, GPX1, MCL1, GLUL, SRSF5, CFL1, MGST1, SMCHD1, RSRC2,
SFPQ, TMA7, SELENOP, CFLAR, PKM, DNAJA1, CIRBP, TBCA, MTDH,
CAST, C3, CPS1, RERE, NDUFA4, ELF1, PHF3, RABGAP1L, ARGLU1,
FGA, ENO1, COX6C, MSI2, PSMA7, SLC40A1, HERPUD1, NFKBIZ, LPP,
VMP1, PDIA3, HP1BP3, MED13L, UQCR11, ATP5MC2, IER2, RAB11A,
ARPC1B, SRP14

• lung: B2M, SRGN, CALD1, CLIC1, CD9, CST3, H3-3B, TYROBP, MTND1P22,
CD74, IFITM3, H3-3A, EEF1B2, MTCO2P22, VIM, IGFBP7, SAT1, LGALS1,
EEF1A1, S100A10, ZEB2, S100A6, S100A4, SLC25A6, FTL, S100A11, PT-
PRC, CLU, GABARAP, SFTPB, EZR, TUBA1A, NEAT1, FOS, TMSB4X,
ATP5F1E, MGP, MTRNR2L12, MT2A, CRIP1, RGCC, PFN1, ANXA2,
DSTN, DCN, IL32, ANXA1, HSPA1A, BTG1, ACTG1, CELF2, SOD2,
SLPI, GSTP1, DDX5, JUN, RNASE1, TMSB10, CD99, TXNIP, TPT1,
ZFAS1, CYBA, JUND, TIMP1, TUBA1B, FTH1, GAPDH, CD63, LGALS3,
ZFP36L1, TCF4, CCL5, CALM2, ACTB, SNHG29, SPARC, DUSP1, FAU,
STMN1, IFITM2, CALM1, FN1, PABPC1, MTCO3P18, KLF6, ARID5B,
HSP90AA1, EEF1G, IER2, ZFP36, NFKBIA, EPAS1, PLXDC2, AKAP13,
ARHGDIB, HSPB1, SCGB3A2, XBP1, PTMA, ZFP36L2, PPDPF, CEBPD,
CTSB, SSR4, EEF2, MIF, CD52, LY6E, SFTPC, NAP1L1, UBB, SYNE2,
TSC22D3, S100A8, ITM2B, MACF1, JUNB, FOXP1, DYNLL1, MBNL1,
HSP90AB1, CD44, RACK1, RORA, KLF2, ID2, YBX1, TAGLN2, MTATP6P29,
ALCAM, LDHA, UBA52, SCGB3A1, LPP, CCL4, TIMP3, CFLAR, IFI27,
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WSB1, GLUL, PSAP, HNRNPA2B1, FOSB, SPARCL1, UBC, ARGLU1,
MYL6, SERF2, HMGB1, HSP90B1, LYZ, CFL1, FKBP5, SCGB1A1, RBM39,
APOE, LAPTM5, SON, HINT1, GNAS, CSTB, LMNA, NAMPT, UTRN,
HNRNPA1, A2M, CALR, NPC2, KMT2E, ARPC2, TMBIM6, COL1A2,
EGR1, IGKC, CXCR4, DST, PNISR, PPIA, VMP1, JMJD1C, TNRC6B,
TPM4, DDX17, NKG7, CTSD, ARID4B, TXN, HNRNPU, PDE4D, PCBP2,
LRRFIP1, RNF213, PKM, HNRNPH1, NPM1, CAST, SH3BGRL3, HSPA8,
MYL12A, CCNI, SPTBN1, EIF1, CAPZB, GADD45B, XIST, LUC7L3,
N4BP2L2, RTN4, GSN, SLC2A3, TUBB4B, LITAF, DDIT4, NUCKS1,
NACA, UQCRB, S100A9, HMGN2, ARPC3, NBEAL1, EEF1D, KTN1,
ENO1, RGS1, MCL1, HNRNPK, CHCHD2, MAML2, NDUFA4, AKAP9,
TUBB, SRP14, AUTS2, ZBTB20, APP, KRT19, HNRNPC, FCER1G, SRSF5,
SQSTM1, RHOB, ITGB1, RBMS3, MTND2P13, FYB1, DNAJB1, COX7C,
HMGN3, IFITM1, DPYD, GPX1, MSN, LDHB, SYNE1, HNRNPDL, SOX4,
SRRM2, RBPJ, PRKG1, H2AZ1, CAV1, CIRBP, TMA7, OAZ1, GPX4,
SARAF, DNAJA1, HSPA5, PSME1, SRSF11, PNRC1, PRRC2C, MYH9,
YWHAZ, CD81, CD55, CCNL1, PFDN5, RSRP1, ALDOA, AREG, RBMS1,
CTSC, ANKRD12, PHIP, UBE2D3, RAB11FIP1, MTDH, PDIA3, ACTN4,
PRDX1, SMCHD1, EIF3E, FOXN3, COL1A1, PPIB, CEBPB, ATP5MG,
TFPI, HIF1A, NKTR, SRSF7, TACC1, LCP1, PPP1R15A, SRSF3, HMGN1,
SEPTIN7, ATP5MC2, PTGES3, COX6C, BPTF, YWHAE, SKP1, IGFBP5,
SF3B1, RAC1, RHOA, IL7R, CCL2, ACTA2, DDX3X, NCL, TPM3, BTG2,
CDC42, LAPTM4A, MORF4L1, KMT2C, EIF4A2, AHNAK, ANXA5, EIF4G2,
GNAQ, EMP3, FKBP1A, MT1X, GPBP1, IQGAP1, MYL12B, COX4I1,
FNDC3B, MECOM, WWOX, TSC22D1, RAP1B, CYRIB, ATP5ME, APOC1,
PCM1, CTNNB1, BTF3, TNFAIP3, HSPE1, ISG15, YWHAB, IGLC2,
C1QA, C4orf3, NFE2L2, SLC25A3, CPM, SFPQ, MDK, DOCK4, MTND4P33,
HNRNPA3, CHD2, AFF3, IFI16, SCAF11, HERPUD1, CSDE1, FABP5,
CSNK1A1, VAMP5, SEC62, COTL1, HOPX, SEPTIN9, NCOR1, LDB2,
SH3BGRL, GOLGA4, EDF1, APLP2, CXCL2, RGS2, SUMO2, TRA2B,
ARL6IP5, HSPA1B, DEK, NDUFB1, NOP53, ATRX, RUNX1, FUS, GCC2

• lymph node: CD74, IL7R, EEF1A1, CD3E, SRGN, B2M, TMSB4X, EEF1G,
MTRNR2L12, CD69, CD52, JUND, TYROBP, NKG7, TXNIP, VIM, FTL,
CXCR4, ATP5F1E, SAT1, IFITM1, FOS, CCL5, ACTB, BTG1, NFKBIA,
FTH1, LTB, S100A4, SNHG29, TMSB10, PTPRC, RACK1, IL32, IGKC,
ANXA1, JUNB, TSC22D3, NEAT1, KLF6, COTL1, CORO1A, KLF2, JUN,
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RGS1, CD7, HSP90AA1, DUSP2, TPT1, ZFP36, PABPC1, SH3BGRL3,
TNFAIP3, MT2A, LAPTM5, ARHGDIB, MTCO3P18, S100A6, ZFP36L2,
FYB1, CST3, IFITM2, SLC25A6, GAPDH, TUBA1B, CD79A, CD3D,
HSPA1A, GAS5, AREG, EIF1, DUSP1, GZMK, S100A10, H3-3B, HER-
PUD1, GPR183, DNAJB1, HSPA8, PTPRCAP, KLRB1, EEF1B2, ZFP36L1,
LGALS1, OAZ1, GSTP1, H4C3, ACTG1, UBC, CD37, NPM1, MS4A1,
CYBA, SARAF, FAU, CLIC1, CD8A, IFITM3, UBB, IER2, HSP90AB1,
NAP1L1, EIF4A1, NOP53, H2AZ1, NBEAL1, PFN1, HSP90B1, ITM2B,
LSP1, HNRNPA1, HSPA5, PTMA, S100A11, CD99, ZNF331, TUBB, LIMD2,
PPIB, LDHB, RGCC, CRIP1, EEF2, PPIA, IGLC2, TUBA1A, ATP5MC2,
CD44, HBB, HSPE1, CCL4, CALM1, HCST, ID2, ISG20, TRAC, NCL,
HNRNPA2B1, HSPB1, LCP1, SLC2A3, GMFG, BTG2, SNHG6, ARL4C,
TRBC2, HSPA1B, SRSF7, MTCO2P22, PNRC1, MIF, STK4, DDIT4, H1-
10, CALM2, DDX5, RAC2, RBM39, ATP5MG, SELL, PFDN5, ARPC1B,
HMGB1, LRRFIP1, ARPC2, YBX1, SSR4, CST7, FOSB, MCL1, PPP1R15A,
PCBP2, ZFAS1, C12orf57, MYL12A, FXYD5, CFL1, CD27, H3-3A, TOMM7,
RNASET2, UBA52, HINT1, ETS1, RESF1, SERP1, DDX24, ARPC3, UCP2,
RGS2, PCBP1, EMP3, ALDOA, CD83, MYL6, SQSTM1, ITM2A, UQCRB,
STK17A, TAGLN2, TPI1, APOE, COX4I1, LITAF, HMGB2, GIMAP7,
SUB1, SON, LDHA, ANKRD12, CYCS, SRSF5, PPDPF, EVL, GNAS,
PNISR, STK17B, STAT3, FOXP1, EZR, CCR7, BIRC3, GABARAP, HMGN2,
SERF2, IGHM, RNASEK, HNRNPU, ITGB2, AHNAK, IRF1, EEF1D,
CYTIP, RSRP1, GPX1, CSTB, CD2, SRRM2, HNRNPDL, GNLY, RAN,
CD8B, PSAP, FUS, FKBP5, CD63, CIRBP, SLC25A5, EIF5, PPP2R5C,
SUMO2, HSPD1, NME2, TRIR, GADD45B, SOD2, SMAP2, CDC42, N4BP2L2,
TRBC1, COX7A2, YWHAB, BTF3, MBNL1, COX6B1, CD81, JAK1, SD-
CBP, YWHAZ, USP15, CAPZB, IL2RG, ELOB, TXN, COX7C, TPM3,
SEC62, ARL6IP5, GPX4, SF1, MTRNR2L8, PRDX1, LYZ, COMMD6,
HMGN1, XBP1, XIST, NR4A2, JCHAIN, HNRNPA3, SFPQ, NACA, SSR2,
DDX17, RHOB, EIF4A2, SRSF2, SYNE2, RNF213, SRSF11

• mucosa: LAMA2, EIF2AK4, PPL, KRT13, PDZRN3, PARD3, EBF1, ANK3,
ANKRD44, CELF2, ELMO1, PTPRG, ZEB2, BCL2, PLXDC2, RIPOR2,
SLC8A1, ZBTB20, TNFAIP8, ARHGAP15, RBMS3, CDC42SE2, RNF144A,
XKR4, AUTS2, IKZF1, PRKCB, GNG2, PLCL1, STAB1, NFATC2, TPM1,
CHST11, IQGAP2, CD53, HIP1, STAT5B, DOCK10, PDE4D, MERTK,
PRKG1, TMC8, ADAM12, AFF3, RBPJ, CD96, FLNA, CALD1, KIR-
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REL3, FMNL1, CSF2RA, RGL1, LDB3, CD247, CD37, NCKAP1L, TOX,
MYL9, LPCAT1, ITGA1, COL6A2, FN1, SLIT3, TPSB2, WDR86, ACTA2,
COL6A1, CYTIP, MB21D2, SH3PXD2B, PKNOX2, ATP1A2, LDLRAD4,
PIP4K2A, ABTB2, SHROOM1, FCGR2A, JADE2, ABCA6, MITF, AC007193.10,
THBS1, RCAN2, MS4A6A, FYN, ST6GALNAC3, ADGRD1, SEMA3C,
GABARAPL1, HCK, MRC1, GNAO1, PDE7B, PTPRM, SPI1, AATK,
NR2F2, PDE3A, PLCL2, ARHGAP22, ARHGAP29, CPED1, CH17-340M24.3,
RCSD1, KANK2, ID2, FHL1, DOK2, AC062021.1, SGIP1, MN1, SLC6A16,
RFTN1, SLCO2A1, ABCG1, NPR2, CTB-161M19.4, SFMBT2, MMEL1,
CACNA2D2

• musculature: TTN, B2M, TMSB4X, FTH1, NEAT1, MTRNR2L12, IFITM3,
SRGN, FKBP5, SNHG6, ATP5MG, PTPRC, HNRNPDL, CD74, ATP5F1E,
EEF1B2, S100A4, UBC, IGFBP7, SAT1, SKAP1, CXCR4, TMSB10, HSP90AA1,
N4BP2L2, CD36, RBM47, TSC22D3, ARHGDIB, TYROBP, TXNIP, PRKCB,
CLK1, CYBA, VIM, JUN, SNX29, MTATP6P1, UBA52, PHC3, BANK1,
ELMO1, MYO1F, ZNF451, CFLAR, C1GALT1, SOX4, NFKBIA, RAP1A,
IQGAP2, PIP4K2A, ANKRD12, HPS1, RNASE1, STAT4, LPP, MGST3,
ITM2C, MRPL1, PTEN, AIP, DEPTOR, MGAT1, TMEM245, DNAJC6,
ADCY7, HMGB1, UTRN, FOS, KMT2B, ZFP36L2, LDLRAD4, ARHGAP15,
MIF, SCAF8, UBB, OGA, PRKCE, SBF2, FAU, BCAS3, HMGN1, CD63,
UBR3, LAMC1, DOCK8, ZDHHC14, DCLRE1C, CPM, CIRBP, NPM1,
SOD2, LY6E, PNKD, MTSS1, HSP90AB1, ARHGAP9, DMXL2, GJA4,
CAPG, IKZF1, NR4A2, MADD, CNOT10, TAF15, CREM, EIF4H, HCLS1,
HERPUD1, C1QA, MAP3K5, BTG1, RAD23A, CPQ, FOXP1, BUD31,
PSTPIP2, MARCKS, SORL1, LAPTM5, ADRM1, GPM6B, ING5, ATP1B3,
SF3A1, UQCRB, RGS6, CCL3, LAMA2, CAPN2, ST6GAL1, SERPINB9,
TNNI1, HBG1, INPP5D, RBM27, PDK2, MT2A, GNG11, SNCA, DDX54,
TMEM60, VCPIP1, TGFBR3, ATP6V1B2, ABCD4, CRYZ, ADGRA3,
GREB1L, SOX5

• nose: H3-3B, SLPI, KRT19, WFDC2, CD74, IFITM1, EEF1B2, ACTB,
S100A6, B2M, SAT1, FTH1, FOS, TMSB4X, CST3, SRGN, AQP3, HSPB1,
FTL, S100A4, VIM, EEF1A1, PIGR, RACK1, IFITM3, CLIC1, NEAT1,
CD9, ANXA1, CLU, SERPINB3, TPT1, LGALS3, S100A10, TMSB10,
BTG1, GAPDH, S100A11, LCN2, S100A2, MTRNR2L12, TXN, LY6E,
NACA, LYPD2, EZR, SH3BGRL3, ZFP36L1, TUBA1A, CCL5, LYZ, ACTG1,
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PTMA, ENSG00000275110.1, FAU, PRSS23, NFKBIA, H3-3A, S100A8,
JUN, CYBA, GSTP1, ITM2B, CTSB, MT2A, BPIFA1, IFI27, HSP90AA1,
IFITM2, PFN1, MIF, ALDOA, PABPC1, TXNIP, XBP1, ZFP36, AGR2,
HMGB1, EEF1D, S100A9, GLUL, PTPRC, PSAP, CTSD, LGALS1, ATP5MG,
TYROBP, ATP5F1E, UBC, CAPS, UBB, MUC5AC, CD44, CALM2, KLF6,
ZFP36L2, PKM, HINT1, HSP90AB1, PPDPF, COX6C, JUNB, TPI1, HN-
RNPA2B1, CALM1, PPIB, SERF2, ARPC2, UBA52, KRT8, SSR4, PFDN5,
MYL6, IGHA1, DDX5, BPIFB1, HSPA5, GPX1, EEF2, GSN, COX7A2,
TSPAN1, SLC25A5, CD63, SQSTM1, GNLY, IL32, PRDX5, TUBA1B,
COX6A1, F3, DUSP1, AHNAK, TFF3, CD52, ANXA2, MTRNR2L8, TM-
BIM6, COX4I1, COX7C, TUBB4B, HSP90B1, MT1X, PRDX1, NDUFA4,
SCGB3A1, PSME1, PPIA, IGFBP7, CXCL8, HSPA8, CCNI, CSTB, TMA7,
SLC25A6, C12orf57, PNRC1, ELOB, PSCA, TAGLN2, APLP2, MYL12B,
LAPTM5, SRP14, ATP5MC2, ENO1, MYL12A, DDIT4, KRT18, FXYD3,
CIRBP, SKP1, FUS, TIMP1, S100P, TPM4, HNRNPA1, ISG15, EIF1, FABP5,
OAZ1, FOSB, CFL1, MUC16, IER2, DSTN, TACSTD2, MSMB, BTF3,
CIB1, ATP1A1, ARPC3, H2AZ1, UQCRQ, SARAF, TNFSF10, CD55,
DUSP2, PCBP2, YBX1, GABARAP, RNF213, ISG20, RHOA, ELF3, HN-
RNPDL, JCHAIN, NPC2, GADD45B, RBM3, KRT7, CTSC, ZFAS1, RAC1,
SPINT2, COTL1, CANX, SON, CD7, PSMB9, COMMD6, DYNLL1, YW-
HAZ, ARHGDIB, GUK1, ATP6V1G1, PSMA7, PERP, EPAS1, GNAS,
TOMM7, MCL1, COX8A, DDX17, SEC62, MYH9, POSTN, CCL4, TMEM59,
IL7R, HMGN2, KRT5, COX5B, NPM1, GPX4, VMO1, SYNE2, UBL5,
HMGN1, OST4, EID1, RARRES1, SERPINB1, NCL, UQCRB, CTSS,
SEC61B, EIF3K, UCP2, ALDH1A1, MUC4, KTN1, IRF1, ATRX, SNRPD2,
LRRFIP1, PARK7, SOD2, ATP6V0C, PPP1R15A, YWHAB, TSC22D3,
SERP1, CHCHD2, SRSF5, DAZAP2, POLR2L, PDIA3, ATP5ME, C15orf48,
TCF25, NKG7, EIF4G2, PEBP1, VAMP8, NAP1L1, CD99, ALOX15, ARL6IP5,
ARGLU1, SELENOH, ATP6V0E1, LCP1, SUMO2, ATP6V0B, CALR,
TYMP, LDHB, NDUFB4, UQCR11, CSDE1, HERPUD1, NDUFA1, TPM3,
CTSH, RBM39, SYNGR2, FXYD5, ANXA5, ADIRF, DBI, H4C3, PCBP1,
CDC42, CD164, BTG2, TSPO, SRSF11, PLAAT4, CAST, HNRNPU, ID3,
TMEM123, CNBP, SLC25A3, COX6B1, GNG5, ANKRD12, GRN, DNAJA1,
GSTK1, UQCR10, HNRNPK, TNFAIP3, RAB11FIP1, ALDH3A1, NOP53,
PSME2, SCGB1A1, RNASET2, HNRNPH1, APP, ATP5MF, MS4A1, ATP5MC3,
REEP5, COX7B, ANXA11, SGK1, SAA1, EIF5, CD46, P4HB, ITGB1
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• omentum: SRGN, LAPTM5, MTRNR2L12, PTPRC, CD74, EEF1G, PTMA,
HBB, SNHG29, NEAT1, FTL, FCER1G, VIM, KLRK1, IFITM3, SAMSN1,
B2M, ARHGDIB, PTPRCAP, LCP1, GAPDH, SERPING1, MTATP6P1,
S100A8, ZFP36, JUN, CTSB, CREM, CCL4, CXCL8, FTH1, CD69, GABARAP,
SNHG6, S100A4, TM4SF1, OGN, SNHG1, TMSB4X, LGALS1, TYROBP,
ZNF271P, CYBRD1, DNAJB1, ANXA1, MGP, CCDC80, BCL2A1, TCF4,
C1orf35, PLAUR, DDX5, TOB1, HP, RGS2, EFEMP1, EGR1, HMGB1,
RNF11, SNHG5, SLPI, ADH1B, RNASEK, ITLN1, IGFBP7, CCDC18-AS1,
ALOX15, DCN, RALB, CLU, TMSB4XP4, ARGLU1, ZNF16, AQP9, CPB1,
SOX4, CMTM2, PLIN2, ALDOA, VNN3, CCNL1, PLA2G2A, PRNP, C3,
ATP6V0C, PATL1, CTD-2287O16.1, FCGR3B, SPARCL1, C3orf86, CBY1,
SEMA3C, MEDAG, COL1A2, EEF1A1, LRIG3, CLN8, MLLT10, AC004057.1,
TMSB4XP8, BDH2, ITPKB, LMCD1-AS1, SMIM3, SCARNA9, SELENOP,
MACO1, LGMN, SH3BP5, ARRB1, SDS, TRIM47, RBAK, CD36, SER-
PINF1, PELATON, JAG1, ARL4A, SOCS6, LYVE1, RASSF10, ERN1,
SNHG16, THBD, IL7R, SH2D3C, ADIRF, GEM, INF2, THSD7A, S1PR1,
COX7A1, ABCB1, SLC8B1, IL1B, BEGAIN, CROCC, TPSAB1, CACNA1C,
ACVR1C, SOST, GREM2, HES1, GPR183, GJB6, GLE1, PLVAP, TFPI2,
CXCL2, COL4A1

• ovary: SRGN, CD74, CYBA, TYROBP, RGS1, VIM, IGFBP7, B2M, FTL,
EEF1A1, GAS5, NEAT1, CXCR4, TMSB4X, FABP5, TMSB10, UBB,
JUNB, XIST, S100A6, TSC22D3, HSPE1, FTH1, SKP1, SNRPE, IFITM3,
BEX3, TPT1, FOS, STMN1, RNASE1, DSTN, GPX1, NDUFA4, ANXA1,
DUSP6, CST3, ZMYND8, CD36, SOX4, MTATP6P1, PDCD5, HBA2, JUN,
PCLAF, TMEM163, ATP5F1E, LGALS1, MTRNR2L12, TBXAS1, TN-
FAIP3, PIK3R6, HPGDS, CD44, ADIPOR1, EIF4A2, PABPC1, ALAS2,
GPR183, CH17-373J23.1, ZNF75A, RASGEF1B, DCN, ARL6IP1, CXCL8,
HSPB1, NCF1, HNRNPL, HBB, SLC25A6, RNF213, RSBN1, S100A4,
RASGRP2, MEF2C, KLF6, SYNE2, ISG20, PTMA, MAGED2, SULT1B1,
SON, GAPDH, LAPTM4A, GTSF1, MRPL42, COX6B1, NDUFA1, SRSF7,
DGCR2, NAA16, TMEM128, NONO, CALD1, TBPL1, AGTPBP1, PLCG2,
GSTA1, IGKC, MT2A

• pancreas: TTR, ATP5F1E, H3-3B, SSR4, VIM, GMFG, FTL, SPINK1, B2M,
DDX5, LGALS1, IFITM3, CD74, TUBA1A, STMN1, PABPC1, EEF1A1,
ZFP36L1, SPARC, H2AZ1, SNHG6, EGR1, ZFP36, S100A4, SFPQ, DNAJA1,
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INS, DST, HBG2, GAS5, ATP11A, DDB1, RGS2, CD53, FOS, LDHB,
SNHG5, RBPJ, HMGB1, S100B, NEAT1, DCN, TCF4, JMJD1C, AIF1,
ZMYND8, PRSS2, SOX4, SRGN, LST1, NREP, CXCL13, TIMP2, LSP1,
S100A11, AUTS2, SBF2, ACTN4, EVL, EGFL6, NRXN1, RAC2, XIST,
FERMT3, ZEB2, PTN, MAML3, IGFBP5, PTMAP5, HCST, TMEM117,
FN1, SOX2-OT, ANXA6, CCL4, LAPTM5, TMSB4XP8, FOSB, MBNL1,
ZC3H11A, EFEMP1, GNAI2, STMN4, FTX, BMPR2, IGFBP4, SST, REG1A,
HBA1, IGF2, HMGA2, EFNA5, LMBR1, RERE, TMSB4XP4, DPYSL3,
C1QB, STK32B, CARD8, TRAC, NNAT, MAF, GGTA1, RAD51B, KCTD7

• paracolic gutter: B2M, PGM1, CAPN7, GRN, APP, IRF8, CD69, CST3,
FTH1, FAM3C, LAPTM5, CTSB, SOX4, SPARC, TMEM176B, CSF2RA,
SERPINB9, IFITM3, TMEM62, ACTN1, NFIA, TLR2, QTRT1, LTC4S,
CXCL12, CD83, MTHFD1L, S100A6, TAGLN2, PPFIBP1

• parietal peritoneum: IGKC, IGFBP7, CD9, CD74, TYROBP, CD69, CD63,
XBP1, RAC2, PTPRC, MZB1, DYNLL1, IGLC2, CEBPB, JCHAIN, ACTG1,
TCF4, RHEX, VIM, FTL, H1-3, PPP4R3A, IGLC3, IGHG3, GID8, RBPJ,
IFITM2, CD40LG, SOCS1, SH3BGRL

• peritoneum: SRGN, UBXN11, ANXA2, IFITM3, CD74, CD69, APP, IGKC,
PTPRC, A2M, MARCKSL1, FTL, CALR, TYROBP, CXCR4, TCF4, FAU,
ACTG1, FCER1G, NAP1L1, PECAM1, C20orf85, KIT, GZMB, PLCG2,
ZNF780A, RGS2, CD93, CD37, FOXN2, IFI30, BCL2A1, CD84, FLT4,
CD53, CLEC14A, CTSG, CCDC18, C1orf162, CLDN5, MMP25, DOCK3,
FCN3, HERPUD1, IRF8, TIE1, LAIR1, SPN, IGLC2, CCDC88A, RAL-
GPS2, CYSLTR1, SLC11A1, FAM169A, ASCL4, ECT2L, AC006129.2,
CSF2RA, CCL5, AIF1

• placenta: FTL, FTH1, VIM, TMSB4X, DCN, GNLY, IGF2, HSPB1, EEF1A1,
COL3A1, KRT18, IFITM3, B2M, NEAT1, IGFBP7, CD74, LAMA2, TUBB,
PTMA, SAT1, HBA2, FOS, SRGN, CGA, S100A4, GPX1, CCL4, TY-
ROBP, ACTB, TPT1, CDKN1C, ADAM12, SPP1, APOE, CST3, LGALS1,
S100A6, MEG3, SOD2, FN1, H19, TUBA1B, GPX3, JUNB, NKG7, ID2,
DLK1, IFI6, CSH1, COL1A1, TIMP3, TMSB10, ANXA1, BTG1, S100A10,
CCL3, S100A11, PLCB1, ACTA2, PSAP, ACTG1, ZBTB20, VCAN, DAB2,
IFITM2, MT2A, TIMP1, IGFBP3, COTL1, FLT1, GAPDH, LUM, H3-3A,
COL6A2, KLF6, IGKC, UBC, CALD1, GPC3, HPGD, TXN, PEG10, TPM1,
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ITM2B, RNASE1, HBG2, EGFL7, LYZ, ZFP36L1, COL4A1, JUN, ZEB2,
EPAS1, CTSB, CXCR4, F13A1, CYBA, AIF1, PAPPA, IL32, SLC25A6,
COL4A2, C1QA, CXCL14, DNAJB1, UBE2D2, DUSP1, SLC2A1, ZFP36L2,
ANXA2, H3-3B, SLC2A3, KRT19, TFPI, HSP90AA1, PAEP, CTSD, HINT1,
SELENOP, HBA1, NFKBIA, PLXDC2, MBNL1, MGP, HNRNPA2B1, UBB,
HMGB2, CD52, CXCL8, CCL5, ZFP36, GSTP1, YBX1, PFN1, CALM2,
RGS1, HSPA1B, BSG, COL6A1, EEF2, IL6ST, SERPINE1, XIST, RTN4,
NUPR1, S100A9, SERPINA1, CYP19A1, WSB1, PRKG1

• pleura: ITLN1, S100P, CD74, LYZ, ARHGDIB, FTL, S100A9, DEFA4,
TIMP1, PSAP, HP, CTSB, HSPA1A, CD163, B2M, COL3A1, SLPI, IGKC,
DCN, COL6A3, S100A8, SRGN, CXCL14, CXCL8, C3, TMSB10, IGFBP7,
MT1E, SEMA3C, HSP90AA1, CD52, IFITM3, TPT1, GSN, HSPE1, FTH1,
EEF1A1, MTATP6P1, MT1X, SSR4, CCL4, GPNMB, TSC22D3, AIF1,
MT2A, ANXA1, EIF1, C1S, HSP90B1, TMSB4X, GLUL, CD63, UBB,
AREG, DUSP1, TXN, MS4A6A, RNASE1, VIM, CXCL2, CCDC80, IGLC2,
TIMP2, PRG4, LCP1, ANXA2, BCL2A1, ALOX5AP, LCN2, MMP2, PFDN5,
ADIRF, SNHG5, IFITM2, HNRNPK, CREM, NNMT, NAMPT, PFN1, PLAC8,
TGFBR2, GNLY, CCL21, DEFA3, SH3BGRL3, EFEMP1, COMMD6, RGS2,
H3-3B, COX6C, NEAT1, ATP5MG, MGP, IL1B, IGFBP6, HNRNPA2B1,
PTMA, NPC2, S100A4, ADH1B, ATP5MK, BTF3, PABPC1, MPO, TIMP3,
PLA2G2A, SFRP2, SARAF, UBC, SOD2, SCARA5, HSPA1B, SPARC,
CXCL12, GSTP1, TUBA1B, FABP4, ACTG1, FKBP5, S100A10, GNAS,
LUM, S100A6, SDCBP, FOSB, IGHG1, EEF1B2, MFAP5, MGST1, HSPA8,
DNAJA1, ACTB, EGR1, CXCR4, FAU, NR4A1, YWHAB, ITM2B, CCL20,
SPARCL1, CCL5, MRC1, PLAC9, MYL12A, ATP5MC2, EIF4G2, ATP5MJ,
TMBIM6, MCL1, S100A12, CTSS, LST1, ATP5ME, RACK1, C1QA, COL1A2,
RAN, YBX1, ID2, PNRC1, RHOA, EID1, CFL1, G0S2, EIF5, SAMHD1,
COL1A1, MT1G, SNRPD2, HNRNPC, EREG, APP, SLC2A3, SRP14, SAMSN1,
TPI1, SELENOP, FSTL1, COX6B1, CXCL3, H2AZ1, LITAF, CST3, NFK-
BIA, DBI, PPIA, HSPB1, TYROBP, MFAP4, TOMM7, ZFP36L1, UBE2D3,
APOD, CALM2, FPR1, ELOB, SELENOK, UBA52, ANXA5, LTF

• pleural fluid: CD74, CST3, FTL, TMSB4X, TYROBP, MTCO2P22, EEF1A1,
SSR3, TMSB10, PHACTR1, S100A8, MARCKS, VMO1, ATP1B1, MT-
CYBP19, B2M, ARHGAP24, TCF4, ZNF93, GTSE1, GSN, DMD, IGHM,
BCL11A, RNF40, HSPB1, BCAT1, ATP5F1E, CSF2RA, MOB1B, BEND5,
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NKX2-1, CENPE, FABP5, PKIB, CTSL, FCER1G, ALOX5, HAMP, AP000459.7,
RNASE1, A2M, PIR, NKG7, PTGR1, PELATON, SMPDL3A, SPP1, SPIB,
LYZ, RAD52, MYCN, GRN, ZDHHC23, BOLA2B, ZNF532, CCL5, IGLC3,
ZNF736, H4C3, NNAT, MNDA, LGMN, LAPTM4B, BLVRB, SEM1, YBX3,
IFT81, IFITM3, DHRS9, CD68, EFNB1, CD300LF, CSF1R, WASH9P,
IL32, TUBA1B, TIMP1, IER5L, ZNF124, S100A9, ENPP2, ACRBP, GAB2,
ADAMDEC1, PTGS1, C1orf162, GNG11, ETV5, LGALS2, GLUL, APOC1,
GSTO1, CD180, CLEC10A, C1QB, CYP2S1, TP63, ACOT9, CD302

• prostate gland: KLK3, TPT1, FAU, FTH1, SRGN, VIM, CD74, LGALS1,
IGFBP7, MYL12A, PSAP, HSP90AA1, CXCR4, SAT1, TXNIP, BTG1,
S100A4, MBNL1, PTPRC, TIMP1, TMSB4X, CALD1, LAPTM5, NEAT1,
TSC22D3, TCF4, LPP, SP100, SSH2, B2M, TGFBR2, CELF2, DOCK8,
GPX1, DUSP1, SPARCL1, ZEB2, ELMO1, FTL, STK4, CCL4, CCL5,
PIKFYVE, FCER1G, SARAF, JUN, SSR4, PLAC8, GNAQ, HNRNPH1,
GMFG, SAMSN1, HSPD1, FYN, TIMP3, UTRN, ZFP36L2, CD37, HN-
RNPA2B1, APBB1IP, UBE3D, ZBTB20, ACAP1, MT2A, GYPC, KLRD1,
NKG7, PTMA, CDC42SE2, RGS1, GADD45B, GIMAP4, REL, EPB41L3,
IKZF1, KYNU, MYL9, HGF, LHFPL6, KDM2B, KLF2, WSB1, PTP4A1,
UTP11, MEF2C, KLF12, ZCCHC10, NFIA, CAVIN2, RORA, PKHD1L1,
TFPI, TYROBP, IER5, CADPS, ARHGAP24, GNLY, FNBP1, FLI1, FMN1

• reproductive system: COL1A1, SPARC, MDK, B2M, CD74, RNASE1,
VIM, TMSB4X, S100A11, FTL, HSPB1, IFITM3, MTRNR2L8, LGALS1,
SPRR2F, IGF2, ANXA2, DNAJB1, KRT14, IFITM2, EEF1A1, MTRNR2L12,
ZFP36L1, MARCKSL1, S100A6, S100A10, CST3, FOS, FTH1, ARHGDIB,
STMN1, COL1A2, TMSB10, IGFBP7, BST2, SRGN, DLK1, DCN, JUN,
ZFP36, BTG1, EEF1B2, TUBA1B, TYROBP, HSPA1A, APOE, MIF, BEX1,
SAT1, CD9, HSP90AA1, JUNB, NFKBIA, IFITM1, TIMP1, ID3, PTMA,
MYL9, AIF1, GNAS, FABP5, ACTB, NPY, SOX4, H3-3B, H4C3, NEAT1,
MT2A, COL3A1, S100A8, PLP2, PRXL2A, HSPA8, LY6E, IGFBP2, BCAM,
KRT10, HMGN2, SNHG8, TXNIP, PRDX2, SH3BGRL3, H1-0, CAV1,
NPM1, HNRNPA1, PSAP, S100A4, ITM2B, PPDPF, CD63, BEX3, RBP1,
MARCKS, DUSP2, MEF2C, PCBP1, GPC3, HMGB2, NPC2, IGFBP4,
HSPA1B, TUBA1A, UBB, DUSP1, SPINT2, MEG3, H1-10, CD99, IER2,
TAGLN2, RHOB, CYBA, DDIT4, PERP, ANXA5, PKM, ZFAS1, GADD45B,
PFN1, TPT1, SELENOP, NREP, TPM2, LAPTM4A, HSPE1, CKS2, ACTG1,
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TPM1, PCBP2, KLF6, UBC, ATP5F1E, KRT8, GYPC, APOA1, GATM,
MAGED2, TSPO, CALM2, H2AZ1, CRABP2, EGR1, TSC22D3, NR2F2,
ANXA1, VCAN, HSPD1, PPP1R15A, CALR, MGST3, HMGB1, MFAP2,
GABARAP, MYL6, SLC25A5, GSTP1, TPM4, GAPDH, SEPTIN7, GRN,
FCGRT, CCN1, IGFBP5, DMKN, ENO1, PRDX1, CEBPD, YBX1, HSP90B1,
TXN, HOPX, PNRC1, ID1, GSTA1, NCL, TUBB4B, HMGA1, NME2,
EMP3, SOD1, PPIB, DUT, S100A9, CALD1, HMGA2, CTSC, LDHA,
TPI1, COMMD6, MEST, ZFP36L2, SLC40A1, UQCRB, CITED2, KRT18,
ID2, HSP90AB1, C12orf57, DDX5, NDUFS5, FXYD5, DDX24, SPP1,
LSP1, TSC22D1, TKT, CD81, HSPA5, COTL1, EEF1G, CYSTM1, GLUL,
SLC2A3, HNRNPA2B1, ATP5ME, GSN, DEK, DST, CALM1, CLIC1,
POSTN, SRSF9, TUBB, SQSTM1, PLD3, NAP1L1, RAC1, AHNAK, BTG2,
BTF3, CCL4, EEF2, MYL12A, PPIA, CD24, H3-3A, SFRP1, COL6A2,
COX6B1, COX6C, DYNLL1, CPE, KDELR1, NR4A1, SERPINF1, MT1X,
DBI, RGS2, ATP5MK

• respiratory system: LYPD2, WFDC2, SLPI, H3-3B, CD74, VIM, FTH1,
B2M, PTMA, NEAT1, CST3, TMSB4X, KRT19, S100A6, S100A4, S100A11,
ACTB, SCGB3A1, IFITM3, CD9, H3-3A, SAT1, EEF1B2, CD63, SCGB1A1,
HSP90AA1, ANXA1, TPT1, IGFBP7, BTG1, S100A10, RACK1, GAPDH,
CLIC1, LYZ, EPAS1, FTL, PTPRC, ZBTB20, MT2A, TMSB10, SRGN,
EEF1A1, LGALS1, FOS, JUN, LCN2, UBA52, CSTB, CYBA, SERPINB3,
CELF2, CALM2, S100A9, TIMP3, TXN, TXNIP, FAU, PIGR, ACTG1,
CLU, TIMP1, KLF6, S100A2, LGALS3, ZFP36L1, ITM2B, MTRNR2L12,
IFITM1, DSTN, SOX4, ALCAM, CD44, IFITM2, CALM1, BPIFB1, PRSS23,
MSMB, GSTP1, CD55, ANXA2, SOD2, ZFP36, UBC, HSP90AB1, GNAS,
PABPC1, NPM1, UBB, JUNB, SFTPC, MIF, TUBA1B, PFDN5, SSR4, LPP,
PFN1, ZFP36L2, EZR, FABP5, GSN, GLUL, SAA1, CCL5, H2AZ1, DDX17,
ELF3, TFF3, AQP3, HSPB1, MGP, CTSB, RAB11FIP1, EEF2, NPC2,
EEF1D, DDX5, CFL1, SLC25A6, YBX1, DYNLL1, HSP90B1, DUSP1,
COX7C, SERF2, MBNL1, LY6E, GPX1, ALDOA, NFKBIA, TCF4, MYL6,
CXCL8, JUND, TSC22D3, HMGB1, CTSC, SQSTM1, RORA, TUBB4B,
ATP5F1E, CALD1, LRRFIP1, SH3BGRL3, MT1X, KRT17, ATP5MC2,
HSPA8, HMGN3, IGKC, PPDPF, NAP1L1, COX7A2, PSAP, LITAF, AKAP13,
EIF1, LMNA, TUBA1A, IFI27, FOSB, HNRNPA2B1, PKM, RTN4, VMP1,
ARPC2, PTPRG, HSPA5, MYL12B, UQCRQ, BTF3, TACSTD2, SYNE2,
TMBIM6, S100A8, SPARCL1, TMA7, OAZ1, PSME1, PPIA, GADD45B,
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AHNAK, PRDX1, MDK, SRP14, SARAF, IGFBP5, FOXP1, DST, XBP1,
CAST, SLC25A5, NACA, PRDX5, FKBP5, RGCC, AGR2, ATP1A1, MUC5AC,
HNRNPA1, MYL12A, ZEB2, PNRC1, FUS, NAMPT, MGST1, GPX4, IER2,
NDUFA4, ANXA5, CEBPD, CCL4, ADIRF, UQCRB, YWHAZ, TUBB,
PNISR, CXCL1, COX6C, HINT1, RHOA, ENO1, APP, TOMM7, PCBP2,
MACF1, CD99, C15orf48, N4BP2L2, ID3, CFLAR, SLC38A2, CD24,
EIF4A2, ASH1L, SRSF11, SFTPB, DDIT4, COX4I1, UBE2D3, ATP5IF1,
APLP2, ARPC3, TYROBP, SKP1, TAGLN2, PLXDC2, JMJD1C, RAR-
RES1, KRT18, CIRBP, NFE2L2, TSPO, CHST9, SON, NCL, LDHB, POMP,
UBL5, H4C15, MUC16, SET, SEC61G, HNRNPDL, TNFAIP3, TMEM59,
HNRNPU, KRT7, APOD, UQCR11, JAK1, CIB1, ARHGDIB, IL32, TPI1,
MYH9, NUCB2, SERPINB1, CDC42, PEBP1, RNF213, CXCL17, UTRN,
TPM4, CD52, HERPUD1, COMMD6, GNG5, RAC1, CYB5A, HMGN2,
ATP6V0E1, ID2, MCL1, FXYD3, CTNNB1, PPIB, RBM47, SEC62, AKAP9

• saliva: SRGN, CXCL8, S100A9, FTL, CD74, VIM, S100A8, FCER1G,
ANXA1, IFITM2, C15orf48, NEAT1, LGALS3, S100A10, SLPI, TMSB4X,
FGF23, TIMP1, B2M, NAMPT, TMSB10, S100A11, SAT1, CCL4, S100A6,
FTH1, CSTB, IL1RN, WFDC2, MTRNR2L12, CXCL2, TACSTD2, FOS,
ACTB, JUNB, EMP1, DUSP1, EEF1A1, CEBPB, FABP5, ZFP36, MAR-
CKS, LGALS1, S100P, PLAUR, PCBP1, TXN, H3-3B, CTSB, PTPRC, IL1B,
KRT19, CCL3, KATNBL1, CCL3L1, CTSD, MT2A, JUN, NFKBIA, EMP3,
GADD45B, ITM2B, MXD1, ALOX5AP, LYN, TYROBP, LCN2, CD44,
SERF2, ZFP36L1, MTRNR2L8, PNRC1, G0S2, CTSS, PFN1, CXCR4,
ACTG1, EIF1, H3-3A, EGR1, CD9, CD55, SCGB1A1, S100A4, FOSB,
IFITM3, CCL4L2, ISG15, ITGAX, GLUL, EREG, DDX5, SPRR3, PTMA,
PPP1R15A, GSTP1, NFKBIZ, LITAF, PHACTR1, TPM4, IFI6, HMOX1,
CDC42EP3, TPT1, FAU, IFI27, APOC1, MYL6, CST3, TNFAIP3, F3,
TSC22D3, CD24, SQSTM1, BASP1, ZEB2, OAZ1, LMO7, HSP90AA1,
MTRNR2L1, AREG, CCL5, SLC25A37, MAFF, TUBA1A, CXCL3, NOP10,
HSPA1A, RAB11FIP1, LLNLF-96A1.1, ASAH1, KLF6, DDIT3, HSPA5,
JUND, PPIF, ZFP36L2, CXCL1, IFRD1, COTL1, GMFB, UBC, SRSF3,
KLF2, IER2, RNF213, CD63, GPCPD1, GPM6A, ARPC3, BCL2A1, KDM6B,
PSAP, AIF1, BRI3, IFIT2, SLC11A1, ATP6V0B, TUBB4B, PLEK, MYL12A,
CALM1, YBX3, HES4, NPC2, SRSF5, UBA52, ANXA2, ISG20, CLDN4,
HSPA1B, SGK1, IER3, HNRNPH1, MIDN, RAC1, LAPTM5, TMBIM6,
MUC4, CALR, SDCBP, ATP6V1F, RHOB, SERPINB9, PELI1, PPP1CB,
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MTRNR2L11, PLAU, CYBA, ID2, BTG1, MCL1, TOB1, CCL20, PI3,
FPR1, SPP1, HIF1A, NIBAN1, BRD2, UBE2D3, RESF1, FAM177A1,
ATP6V1G1, ADM, PMAIP1, YWHAZ, NACA, KLF4, FYB1, CYSTM1,
IRF1, TALDO1, PTGS2, HNRNPC, KMT2E, LCP2, DDX3X, LCP1, PHLDA1,
SERP1, SERPINA1, VMP1, CD83, SUB1, NABP1, FCGR2A, C5AR1,
SERPINB1, ATP5F1A, IER5, TPI1, MAP1LC3B, MAP2K3, TMEM59, LR-
RFIP1, CTSC, ATP2B1-AS1, CD164, SRSF2, BTN3A2, STXBP2, SLC38A2,
ATP13A3, RAB7A, SAMSN1, GNLY, TRIB1, TAGLN2, TNFAIP2, APOE,
FXYD3, APLP2, CLIC1, POLR2A, RTN4, SELENOK, GRN, ADGRE5,
ZFAND5, ATP5F1E, TSPAN1, PRRG3, PHLDA2, GNG5, B4GALT1, PROK2,
AQP9, RNF13, CD47, CXCL16, TXNIP, ABHD5, IRS2, GUK1, DDX17,
CTSL, CCNL1, KCNQ1OT1, ZFAS1, CPEB4, GK, SERPINB2, ACTR3,
DNAJB6, CAPS, WTAP, RILPL2, KRT17, EFHD2, CDC42, ARPC5, ELF3,
SKIL, SLC43A2, BPIFB1, RSAD2, GBP1, ANKRD12, CCRL2, ETS2,
CLEC2B, MTRNR2L10, LRRC75A, H1-10, CSF3R, DNAJA1, MYL12B,
HNRNPA2B1, PABPC1, DNAJB1, S100A12, STK4, RHOA, IRF2BP2,
ECM1, GAPDH, PLCG2, CFLAR, CIB1, SLC2A3, MYO10, SH3BGRL3,
ANXA5, HSP90AB1, MARCHF6, JARID2, ARRB2, PRDX5, DYNLL1,
HM13, SLC16A3, FNTA, RACK1, MAL, CLEC7A, AGR2, PLSCR1, HINT1,
HCAR2, EEF1D, JMJD1C, SNX10, CD53, MDM4, HOPX, CHCHD2, HN-
RNPU, PFDN5, SMCHD1, MYADM, GBP2, HSP90B1, H2AC6, PTPRE,
CEBPD, BCL6, UBB, SOX4, RBMS1, GABARAPL2, PPIA, ANP32A,
ELOB, ACSL1, ARPC2, ZNF292, GPRC5A, RASGEF1B, CREM, RBM39,
SPRR2A, EIF5, PKM, GPX4, RGS2, SRP14, NR4A2, VEGFA, ATP6V0E1,
CSNK1A1, PERP, CYRIB, SMG1, CFL1, RGCC, LYZ, PTP4A2, MAP3K2,
HSPE1, REL, YWHAB, PPP1R15B, DAZAP2, LDHA, HSPA8, VAPA,
CD59, UBE2B, HCST, BTG2, PIM3, ABCA1, SPI1, RNF149, IFIT3, NCALD,
FUS, WSB1, TSPO, CALM2, CREBRF, STK17B, HERPUD1, ASAP1,
PARP14, ZNF207, TMEM154, ATXN1, IGSF6, PLEKHB2, FOXP1, NFE2L2,
NCF1, CPD, BZW1, ATP2B1, UBL5, SLC20A1, HMGB1, TMEM258,
COX6B1, SON, AC058791.1, BTBD9, SPAG9, COX8A, FOSL2, CDKN1A,
N4BP2L2, GMFG, RALA, YPEL5, RBM47, SYAP1, UBE2S, TPM3, SER-
PINB3, GSTO1, CD48, CMTM6, LY96, H1-2, EVI2B, CYTH4, DNTTIP2,
TMA7, PLAC8, TANK, ERBIN, OPHN1, TNFAIP6, LYPD2, ATF3, HSPH1,
CLTC, TNFRSF1B, OSBPL8, ANKRD36C, CD68, GRINA, CTNNB1, AAK1,
MGAT1, EZR, RIOK3, ARF1, FAM133B, ATP5MG, SERINC1, IVNS1ABP,
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GPBP1, TAX1BP1, UGCG, PPP1R10, LIMS1, EIF4A2, EIF5A, CSRNP1,
JPT1, FGR, FNDC3B, CNNM2, ITGB8, ZNRF1, PDLIM5, COX7C, PLIN2,
LSP1, PELATON, CD14, CORO1C, EIF4E, RAP1B, RND3, CCR1, TFRC,
FAM107B, C4orf3, GSN, RB1CC1, TREM1, SOCS3, SUSD6, MUC16,
GLIPR2, MAFB, MBP, ARHGDIB, CCNI, CLEC4E, RBM3, YWHAE,
PLEKHA3, SRRM2, RAB21, OGA, KCNJ2, INSIG1, EIF4A1, COMMD6,
MAP3K8, ABCC9, MAPK6, COX4I1, HNRNPA3, NCF2, RBPJ, THUMPD3-
AS1, LPP, YIPF4, TNFSF14, HSPB1, ACTR2, CHD2, CYTOR, LIMK2,
GSTA1, CAST, GNAS, AP1M1, ENO1, TYMP, RAB1A, WBP2, ALPL,
INTS6, HNRNPH3, C15orf40, FOXO3, TMPRSS11B, HNRNPF, OXSR1,
CLK1, NEDD4L, TOR1AIP2, AKAP13, KCNJ15, TIMP2, RBM23, GCA,
CHMP1B, BAZ1A, RSRC2, YBX1, SLC35E3, PPP2R5C, UBALD2, YPEL3,
PRR13, RNF141, KLF10, SARAF, MX1, ATP6V1D, FGF13, SP110, RYBP,
CAPZA1, AQP3, MTRNR2L6, TAPBP, PFKFB3, SKP1, ATP6AP2, RNMT,
ATP6V1B2, RTN3, LPCAT1, LUCAT1, TNFSF13B, SP100, TRA2A, TMEM123,
GNAI2, MNDA, HES1, QKI, ARHGAP26, TNFRSF14, TMEM50A, NINJ1,
BHLHE40, EIF1B, NDUFV2, IFI16, ZFAND6, CANX, BTF3, LAPTM4A,
ANXA11, SEPTIN7, OSM, SMAD2, ZFYVE16, ELOC, H2AZ1, ARID5B,
C9orf72, USP15, ELF1, TMBIM4, WAC, USP8, FNIP1, UPP1, ZNF121,
ARL6IP1, CSF1, LMNA, DDX60L, CTA-212A2.3, SPG7, RIT1, DYNC1H1,
RSRP1, EHD1, NAP1L1, CNBP, ERGIC1, CAPN2, DUSP6, NFAT5, BID,
FLNA, PCF11, HSPA6, ARF6, PNPLA8, TOP1, SYNE2, PRRC2C, TXNRD1,
CAPZB, P2RX4, DUSP5, UBE2D1, RAB2A, CSTA, PICALM, ANKRD28,
NUMB, DDX3Y, BAG1, STAT3, C6orf62, CIR1, AZIN1, DUSP4, KCNK6,
LRP10, CITED2, RASSF5, SLAMF7, GBP5, LST1, PLEKHG2, SLA, LEP-
ROT, SPRR2D, KRT23, PRDM1, KRT18, IDS, PSMA7, UQCRB, HN-
RNPH2, VASP, IQGAP1, HNRNPK, FLOT1, RAB11A, PIGR, PTP4A1,
GNS, EIF4A3, YTHDC1, ITGB1, NFKB1, PTBP3, AKIRIN2, RHOG,
PPDPF, HEXIM1, GNAI3, HMGA1, CEACAM6, RBBP6, PGK1, PTEN,
PLK3, METRNL, TGFB1, ARL4C, NPM1, MYLIP, CAPZA2, FKBP1A,
BST2, NKG7, WARS1, SERTAD1, MDM2, NBN, RRAGC, COX6C, FN1,
UBE2R2, TMOD3

• scalp: KRT10, LGALS1, VIM, CXCL14, CALML3, S100A2, KRT14,
APOE, ATP1B3, S100A9, KRT5, KRT15, AQP3, CALML5, LY6D, SAT1,
TUBA1B, CD74, SPINK5, NFKBIA, STMN1, IFI27, S100A6, CSTB, TAC-
STD2, S100A8, HOPX, DSP, H2AZ1, KRT1, KRTDAP, RBP1, TMSB4X,



125

TK1, SBSN, HES1, DST, FTL, MGST1, EEF1A1, TMEM45A, HMGB2,
KRT2, S100A7, SOSTDC1, HMGN2, ALDH1A1, TXNIP, DCT, ZFP36,
IER3, DEFB1, TPPP3, DEK, IFITM3, DUT, CD59, ADM, IGFBP7, GPX4,
TMSB10, S100A14, TM4SF1, KRT16, ID1, CCND1, ANXA1, FOS, CCL27,
CALD1, CHCHD10, CSTA, CST3, CAV1, PTTG1, HSPA1A, HINT1, FABP5,
TPT1, KRT17, ID2, BRD2, HMGB1, SLPI, IGFBP3, KRT6A, CCL2, RGS2,
TUBB, HNRNPA1, SOD1, ATP1B1, PMAIP1, LGALS7, CEBPB, DMKN,
FGFBP1, NDRG1, SFRP1, JUN, KLF6, S100A16, SOX4, DAPL1, LSM3,
PCNA, EEF2, IER2, TYMP, DUSP1, MAFB, ZFP36L2, CXADR, TPM1,
ADRB2, PNRC1, B2M, KLK11, MT2A, FRZB, KLF4, DBI, MYC, SFN,
ANXA5, SPRR1B, CKS1B, S100A10, CLDN4, PMEL, TUBA1A, COL17A1,
EMP2, PCLAF, FTH1, LGALS3, CRNDE, IMPDH2, CD63, PTMS, HSP90AA1,
C12orf75, C1orf21, AOPEP, TOMM7, ID3, JUNB, EPHB6, MZT2A, GAPDH

• skeletal system: COL5A2, B2M, FTL, TMSB4X, FTH1, EEF1A1, S100A6,
TMSB10, CST3, CD74, SRGN, SPP1, LYZ, PCOLCE, UBB, MIA, COL1A1,
LUM, S100A8, HAPLN1, PPIA, MATN1, HBA2, MYL6, LGALS1, ND-
UFA4, COL3A1, MGP, S100A4, COX6C, ACTB, EPYC, NACA, DCN,
ATP5MC2, FOS, MYL12A, AIF1, IFITM3, VIM, HSP90AA1, SAT1, COX7B,
SERF2, HBG2, GAS5, HSPB1, TPT1, COL1A2, COX7A2, RACK1, EEF1B2,
ATP5MK, OST4, ANXA2, S100A9, SEC61G, ATP5MJ, EIF1, PTMA,
MYL12B, TIMP1, DDX5, ANXA1, TMA7, COL2A1, POSTN, COX4I1,
STMN1, H3-3B, IGFBP7, COL12A1, CKS2, CALM2, NPM1, HSPA8,
YBX1, COX7C, SNHG29, FAU, MTATP6P1, ARPC3, ATP5F1E, RGS2,
EMP3, UBC, CFL1, SH3BGRL3, ECRG4, ITM2A, ATP5MF, ACTA2,
LAPTM4A, COL5A1, ATP5ME, CSTB, ACTG1, SF3B6, CCL4, ATP5MG

• skin of body: COL1A2, SPARC, LGALS1, B2M, SRGN, NEAT1, VIM,
CD74, TMSB4X, FTL, S100A6, EEF1A1, HSPB1, ACTB, NFKBIA, S100A10,
DCN, FOS, SAT1, S100A4, CST3, TXNIP, PTMA, DNAJB1, TMSB10,
BTG1, ACTG1, MT2A, ZFP36L1, TPT1, H3-3B, DUSP1, FTH1, LINGO1,
S100A11, HSP90AA1, NPM1, ANXA1, HSPA1A, TSC22D3, GAPDH,
IFITM1, H2AZ1, HBA2, ZFP36, CD99, JUNB, ZFP36L2, GSN, ANXA2,
HMGN2, IGFBP7, ARHGDIB, COL3A1, EEF1B2, GSTP1, KLF6, PFN1,
TCF4, LTB, STMN1, TUBA1B, IFITM2, CD44, CXCL14, CD52, GLUL,
HERPUD1, ITM2B, H3-3A, HSPE1, GADD45B, CD63, HSPA1B, LYZ,
TIMP1, IL32, ATP5MC2, CD9, JUN, SOD2, LDHB, UBC, MIF, EIF3E,
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TXN, H4C3, HMGB1, SLC25A6, UBB, FKBP5, CXCL8, HSPA8, HN-
RNPA1, CALM2, PPDPF, IFITM3, EIF1, PABPC1, TUBB, PNRC1, IL7R,
DDIT4, COL1A1, DDX5, LMNA, PSAP, NR4A1, CCL4, HMGB2, AIF1,
PPIA, HBA1, TIMP3, ID3, SLC2A3, TUBA1A, PCBP2, COL6A2, NACA,
PPP1R15A, HSP90AB1, LAPTM4A, KRT14, MYL6, SH3BGRL3, FOXP1,
PTPRC, CALM1, LDHA, KRT10, EEF2, JUND, CYBA, SERF2, ARID5B,
DUSP2, CALD1, TAGLN2, MEF2C, HSPD1, CIRBP, HSP90B1, SUB1,
CXCR4, AHNAK, RASGEF1B, SOX4, FUS, GNAS, TSPO, ZFAS1, CD55,
EMP3, ENO1, ARPC2, IER2, GABARAP, SDCBP, HNRNPH1, ITM2A,
FXYD5, ZEB2, HNRNPA2B1, HNRNPA3, SQSTM1, LGALS3, SLC38A2,
CD37, HMGN3, MTRNR2L12, EEF1D, ACTA2, CLIC1, YBX1, SRSF7,
FABP5, RHOA, PPIB, YWHAZ, DDX17, ALDOA, TPM4, WSB1, KMT2E,
BTF3, FCER1G, TNFAIP3, LAPTM5, RTN4, NAP1L1, HSPA5, YBX3,
PFDN5, CREM, GPX4, TPI1, PRDX1, CFD, RGS1, SKP1, HNRNPC,
HINT1, RBPJ, MBNL1, CHCHD2, HNRNPDL, EIF4A2, S100A9, DMKN,
DST, COX6C, RORA, EZR, JMJD1C, DSTN, SARAF, SON, DYNLL1,
PRDX2, NR4A2, RHOB, TMBIM6, FAU, HNRNPK, SLC25A5, CBX3,
SRSF11, RNASE1, ATP5F1E, NAMPT, CALR, SRSF5, GPR183, ANXA5,
RSRP1, DNAJA1, CSTB, OAZ1, PTGES3, TMA7, RBM39, CELF2, LSP1,
OST4, SNHG8, GYPC, CCL2, AKAP12, RAN, MYL12B, CFL1, UQCRB,
CCNI, ID2, SFPQ, PKM, ATP5ME, LY6E, SELENOK, SSR4, RGS2, CXCL2,
ATP5MG, SEPTIN7, CAPZB, SLC25A3, ELOB, MYL12A, STK4, CNBP,
RAC1, NCL, MORF4L1, DUT, SEC62, CAV1, MCL1, ELF1, HMGA1,
UBA52, RACK1, PDE4D, AREG

• small intestine: TMSB4X, SRGN, B2M, KRT8, LGALS4, IFITM3, IL32,
VIM, CST3, CD74, TXNIP, HSPA1A, NEAT1, SELENOP, LGALS1, S100A10,
S100A6, MTRNR2L12, JUND, PHGR1, ACTB, FTL, MDK, MIF, HSPB1,
FOS, TMSB10, SLC25A6, REG1A, STMN1, EEF1A1, HSPA1B, DUSP1,
SH3BGRL3, BTG1, MARCKSL1, KLF6, TPM1, JCHAIN, YBX1, ID2,
MT2A, TFF3, JUN, HSP90AA1, SAT1, CALM1, JUNB, PTMA, TPT1,
COL3A1, CD63, EEF2, EEF1B2, TUBA1A, MT1G, CYBA, FTH1, LYZ,
S100A4, OAZ1, HNRNPA1, ZFP36L2, TUBA1B, IGHA1, ITM2B, PABPC1,
FABP5, DDX5, UBC, APOA1, UBB, MYL6, ZFP36L1, ZFP36, H3-3B,
TSC22D3, GSTP1, GPX1, ALDOA, HMGN2, ATP5ME, FAU, PPDPF,
HSPA8, UBA52, FABP1, PPIA, RGS1, FOSB, ID3, LTB, CALM2, S100A11,
H3-3A, HSP90B1, ACTG1, TXN, PRDX1, SARAF, NOP53, ATP5F1E,
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NFKBIA, PFN1, CLIC1, COL1A2, NDUFA4, EGR1, SSR4, H4C3, GAPDH,
IER2, IL7R, DNAJB1, HSPA5, SRP14, CXCR4, ATP5MG, DEFA5, CCL5,
IFI27, HINT1, GNAS, HSP90AB1, H2AZ1, EEF1D, ADIRF, ZFAS1, SERF2,
SRSF5, IGKC, ANXA2, H1-10, RBP2, PNRC1, MYL12A, EIF4A1, PIGR,
NACA, HMGB1, COX7C, NAP1L1, SELENOW, LGALS3, LDHB, HSPD1,
CALR, RACK1, TAGLN2, MARCKS, IGFBP7, XIST, SET, IFITM2, CIRBP,
TOMM7, MCL1, CD9, HERPUD1, COX4I1, GABARAP, KRT18, OST4,
HMGB2, SUB1, LDHA, FABP6, XBP1, UQCR11, COX7A2, RAC1, HN-
RNPU, TMA7, HSPE1, EIF3E, PNISR, ATP5IF1, SPARCL1, EIF1, ATP5PO,
COTL1, SOX4, PPP1R15A, PSMA7, CFL1, ANXA1, SRSF7, DYNLL1,
KLRB1, CCNI, TMEM258, SRSF3, UBL5, PFDN5, SLC25A5, ITM2C,
YWHAB, BTG2, HNRNPH1, NPM1, MT1X, GNG5, EZR, TPI1, CRIP1,
CD69, YWHAZ, CDC42, HBA2, NPC2, HNRNPA2B1, POLR2L, N4BP2L2,
SEC61B, UQCRB, AGR2, TYROBP, PCBP2, MYL12B, SKP1, COMMD6,
ATP5MC2, TUBB, ARPC1B, COX6A1, ARPC2, PPIB, DBI, EIF4A2, HES1,
EIF5, SQSTM1, ATP5MJ, CD52, POMP, ARPC3, FUS, SNHG8, COX7B,
ACTA2, HMGN1, PTPRC, SRRM2, COL1A1, PEBP1, RHOB, TMBIM6,
EIF4G2, COX6C, NBEAL1, CYCS, COX6B1, ATP5F1D, DDIT4, NR4A1,
RGS2, TMEM59, EIF3L, ENO1, ELOB, GPX4, TIMP1, NDUFA1, NCL,
EDF1, ATP1A1, ANAPC16, CD99, PSAP, OLFM4, SRSF2, DDX17, BTF3,
TNFAIP3, SEPTIN7, SEC62, SUMO2, ATP6V0E1, RBM39, MTRNR2L8,
C12orf57, SERP1, PRDX2, PRDX5, GADD45B, SOD1, REG4, MT1E,
VMP1, COX5B, PSME1, RAN, CD164, ATP5MK, DCN, SEC61G, SE-
LENOK, CCNL1, FKBP1A, FCGRT, CD44, SON, RBM3, SF1, ARGLU1,
CTSD, GUK1, DSTN, SERBP1, PCBP1, IRF1, CHCHD10, TPM4, VAMP2,
RHOA, PTMS, EIF3K, UQCRH, HNRNPK, WSB1, SLC25A3, PTP4A2,
RTN4, KTN1, LMNA, SNX3, MZT2B, PRR13, NDUFB11, CHCHD2, ID1,
UQCRQ, CEBPD, ARHGDIB, PSME2, PDIA3, HNRNPDL, TPM3, ND-
UFA13, DNAJA1, RSRP1, IFITM1, CSTB, TUBB4B, EEF1G, AHNAK,
HNRNPC, CHGA, ELF3, C9orf16, ATP6V1G1, MBNL1, PPP1CB, GZMA,
KLF2, RAP1B, ANKRD12, ST13, SFPQ, NDUFB2, C4orf3, NDUFB1,
CUTA, TCF4, SNRPG, ATP5F1B, KRT19, NDUFS5, MORF4L1, CD7,
RBMX, ARPC5, NDUFC2, HNRNPA3, RRBP1, EIF3F, EID1, CD3D, ATP5PF,
P4HB, DAD1, LUC7L3, PDIA6, PRRC2C, MRPS21, ALDH1A1, CALD1,
TSPAN8, UBE2D3, NDUFA11, CNBP, COX8A, MYL9, UQCR10, ARL6IP4,
PPA1, DAZAP2, PAPOLA, VAMP8, ATF3, LAPTM4A, BRD2, NOP10,
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RABAC1, GPR183, DEK, SPCS2, SSR2, ARL6IP1, MTDH, PARK7, TIMP3,
KCNQ1OT1, FOXP1, CITED2, ATP5MF, ANP32B, PKM, NUCKS1, SNHG7,
TBCA, CANX, ATP5MC3, UBE2B, SRSF11, SNRPD2, AKAP9, PGK1,
EIF1AX, PTGES3, TLE5, YWHAE, YPEL5, CKLF, SPINK4, SOD2, FKBP2,
SEM1, COX17, MICOS10, DDX3X, TOP1, APOA4, SPCS1, KMT2E, ERH,
CD81, ATF4, ARF1, HMGN3, REL, BIRC3, LRRFIP1, ATP1B1, NDUFB4,
KRTCAP2, SELENOS, HSBP1, EIF3H, SERPINA1, GSN, SF3B6, HIGD2A,
SDCBP, TRA2B, EMP3, MPHOSPH8, C19orf53, DDX24, JTB, SOCS3,
LMO4, ANXA5, MYH9, MGST3, NDUFA3, GSTK1, CTNNB1, CAPZB,
JPT1, GNAI2, GCC2, GRN, HBB, EIF5A, LSM7, HNRNPF, WDR83OS,
RN7SKP176, YWHAH, SELENOH, DUT, NEDD8, TCF25

• spinal cord: MOBP, ADGRB3, PCDH9, ZBTB20, CD74, TXN, UBA52,
B2M, AIF1, S100A11, AHSP, DPP10, NEAT1, RBMS3, S100A4, HBG2,
HMGB1, LYZ, TPT1, COL3A1, SRGN, PPIA, RORA, LGALS1, S100A6,
LSAMP, NDUFA4, SPP1, SPARC, PTGDS, TMSB4X, S100A8, FTL, SNRPG,
PTPRG, CFL1, IFITM2, GAS5, VIM, ARHGDIB, TUBA1B, DSCAM, COX6C,
GAP43, MTATP6P1, ANXA2, COX7B, NACA, DCN, ACTG1, ATP5MG,
UQCR10, ACTB, DYNLL1, HMGB2, FTH1, TMSB10, QKI, UQCRB,
NPM1, EEF1A1, PTN, A2M, GAPDH, COL11A1, H2AZ1, UBB, HBA2,
SERF2, PFDN5, PTMA, SLC1A3, BEX3, TMSB15A, GMFG, NDUFB6,
PLAC8, MGST3, MYL12A, HINT1, CST3, CD52, MGP, NDUFB1, VCAN,
CLU, EEF1B2, PABPC1, HSP90AA1, SLIRP, TMA7, SH3BGRL3, CXCL8,
ATP5MC2, MLLT11, ATP5PF, DEFA3, UQCRH, PPIB, CALM1, COL1A2,
IL1RAPL1, FYN, LHFPL6, FCER1G, SNRPD2, CALM2, TUBB, COX7A2,
SNRPE, SKP1, S100A10, NOP10, COX7C, UBL5, HNRNPA1, OST4, S100A9,
HBA1, FAU, NDUFA1, UCHL1, PTPRC, SEC62, FN1, COX6B1, CTSB,
GLUL, SNRPF, CD63, PTTG1, ATP5MJ, GSTP1, COMMD6, HSP90AB1,
CHCHD2, ATP6V0E1, YWHAB, TMEM108, SON, ATP5MK, PSMA7,
PLP1, BANF1, SNHG6, GPC5, COX4I1, RBX1, SEM1, HNRNPA2B1

• spleen: TMSB4X, B2M, SRGN, IL32, CD74, EEF1A1, BTG1, TYROBP,
H3-3A, FOS, LTB, NKG7, ACTG1, IGKC, VIM, IL7R, AIF1, S100A4,
EEF1G, LGALS1, HSPA1A, MS4A1, CCL5, FTL, PTPRC, JUND, S100A6,
HBA2, CD52, JUN, CCL4, STMN1, NEAT1, MTRNR2L12, HSPB1, FTH1,
GSTP1, ZFP36, NFKBIA, TXNIP, SAT1, LYZ, CD69, ZFP36L1, IGHM,
S100A8, DNAJB1, KLF6, GAPDH, IFITM2, SLC25A6, LDHB, XBP1,
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TMSB10, H4C3, HSP90AA1, JUNB, CST3, FCER1G, CD7, ACTB, HBA1,
ANXA1, KLF2, CYBA, ID2, KLRB1, DUSP1, IFITM1, CD3E, H2AZ1,
HSP90B1, EEF1B2, ZFP36L2, SLC2A3, CXCR4, EEF2, IGLC2, TUBA1B,
HSPA8, UBB, TPT1, LAPTM5, H3-3B, TNFAIP3, HMGB1, UBC, ZEB2,
PLAC8, DUSP2, CORO1A, PPP1R15A, CD3D, HERPUD1, HINT1, LCP1,
HNRNPA1, FYB1, FOSB, CALR, SNHG29, DDIT4, ARHGDIB, FXYD5,
S100A10, HSPA1B, NAP1L1, CD37, GADD45B, ZFAS1, S100A11, HBG2,
PFN1, PPIB, TSC22D3, COL1A1, HMGN2, NPM1, GNLY, CD63, HSPA6,
PTMA, S100A9, MYL6, COTL1, IFITM3, CALM1, EIF1, NCL, XIST,
AREG, JCHAIN, TUBB, DDX5, HSPD1, HNRNPU, IER2, TRBC2, HSPE1,
HSPH1, UQCRB, CD99, SRSF7, ENO1, PNRC1, TAGLN2, EEF1D, CMC1,
ITM2B, YWHAZ, BTG2, MYL12A, BTF3, HMGB2, EIF3E, MBNL1,
HBG1, HBB, CD79A, HSPA5, YBX1, SARAF, PABPC1, SEPTIN7, LSP1,
LIMD2, OAZ1, PCBP2, ALDOA, CD44, PSAP, RAC2, HCST, ARL4C,
SH3BGRL3, ISG20, SAMHD1, SSR4, EIF4A2, GAS5, HSP90AB1, NUCKS1,
DNAJA1, NFKBIZ, AKAP13, PPDPF, GLUL, RAP1B, CST7, ITGA4, LDHA,
CALM2, FUS, IGHA1, RBM39, MT2A, SERF2, SUB1, UCP2, ANP32B,
CCL3, TUBA1A, NR4A2, DDX17, SRRM2, FOXP1, ATP5F1E, EMP3,
HMGA1, COX7C, MYH9, HNRNPA2B1, MIF, TPM4, ARPC3, TMBIM6,
EIF4A1, GNAS, ARPC2, CLIC1, PKM, EVL, IGHG1, ARPC1B, BIRC3,
DDX3X, NUCB2, PNISR, SMCHD1, GYPC, NOP53, HNRNPC, TOMM7,
UBA52, SYNE2, FAU, UQCRH, PFDN5, RGS1, CSTB, OST4, CTSW, PPIA,
SRSF5, GPX4, CCNI, ATP5MC2, FNBP1, HNRNPA3, NR4A1, CIRBP,
DYNLL1, ATP5PO, RGS2, GNAI2, CFL1, RHOB, SELL, LITAF, C12orf57,
PRDX1, HMGN1, SRSF11, PTGES3, PRRC2C, EIF3L, RACK1, NME2,
ANKRD12, EZR, PDIA6, SF1, PPP1R2, CITED2, PSME1, ETS1, PEBP1,
SOD1, GABARAP, RNASET2

• stomach: TFF1, AGR2, SRGN, TMSB4X, B2M, ACTG1, EEF1A1, CST3,
SSR4, VIM, FTH1, CYSTM1, CALM2, S100A6, CD74, FAU, FTL, NEAT1,
JUN, IFITM3, TMSB10, H3-3A, SPINK1, FOS, PGC, TPT1, HSPB1, ACTB,
UBA52, SAT1, KRT8, BTG1, CD63, JCHAIN, HNRNPA1, LYZ, PTMA,
PABPC1, IGFBP7, EEF1B2, CALM1, JUNB, IGHA1, COL1A1, RACK1,
KRT19, CLDN18, TUBA1B, S100A10, HSP90AA1, COX7A2, HSPA1A,
SOX4, MT2A, CCL4, UBB, GAPDH, H3-3B, CFL1, DNAJB1, IGFBP5,
LGALS1, FOSB, ITM2B, EGR1, MDK, IGKC, GSTP1, IFI27, HBA2, UBC,
NACA, TM4SF1, HSPD1, CYBA, NFKBIA, LIPF, FOXP1, CLU, DUSP1,
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ANXA1, EZR, COX7C, JUND, KLF6, NPM1, SLC25A6, HSP90AB1, CHGA,
GHRL, ATP5F1E, ZFP36L2, ZFP36, FABP5, PSAP, HNRNPA2B1, PFN1,
TUBA1A, EEF1D, OST4, SH3BGRL3, HES1, S100A4, MYL6, STMN1,
SEC62, DDX5, RAB11FIP1, LMNA, YBX1, ARPC2, ANXA2, SLC25A5,
TXN, RGS2, TIMP1, CCL5, TCF4, EEF2, HSPE1, SERF2, OAZ1, PPDPF,
IER2, LDHB, PPIA, PTPRC, GAS5, GAST, CXCL8, ZFP36L1, PHGR1,
COL1A2, EIF1, HMGB1, S100A11, TFF3, SPARCL1, SON, COX7B, HSP90B1,
SOD1, H2AZ1, ZFAS1, GNAS, MT1G, TMBIM6, ATP5MG, HSPA8, COX4I1,
NAP1L1, SUMO2, POMP, SRP14, RBM39, ELF3, ID2, KRT18, PFDN5,
ARGLU1, TOMM7, IGF2, IFITM2, TXNIP, XIST, SUB1, DCN, LAPTM4A,
HNRNPU, YWHAZ, NUCKS1, NDUFA4, DSTN, DNAJA1, GADD45B,
KLF2, HSPA5, PEBP1, GLUL, MUC5AC, TFF2, PRDX1, SNHG8, EIF4A2,
SYNE2, SDCBP, UQCRQ, UQCRH, BTF3, MYL12A, TSC22D1, SRSF7,
NCL, GSN, LMO4, UQCRB, COX8A, PPIB, RAC1, RHOA, CALR, TMA7,
HINT1, CDC42, EIF3E, AKAP13, MARCKSL1, RGS1, NDUFA1, ID3,
NFIB, CSTB, UBL5, MTATP6P1, ID1, HNRNPH1, LGALS3, HSPA1B,
HNRNPK, SQSTM1, JMJD1C, COX6C, MYL12B, H19, IGLC2, FUS,
UBE2D3, CREM, SELENOK, PSMA7, TAGLN2, PPP1R15A, NR4A1,
HMGB2, CIRBP, EDF1, ANKRD11, ADIRF, PDIA3, PARK7, HNRNPC,
COX5B, PRDX2, COMMD6, HERPUD1, COX6A1, TPM4, PNRC1, TIMP3,
ARPC3, SRSF5, PDE4D, ARHGDIB, IL32, COX6B1, HBB, ATP5ME,
DDIT4, MIF, CXCR4, SKP1, SLC38A2, CCNI, ATF3, RNASE1, ATP1B1,
LDHA, TUBB4B, MEG3, ATP5MC2, ATP5MK, SPARC, IGFBP2, ACTN4,
WSB1, REG1A, SPTBN1, PTMS, YWHAE, RAP1B, TPM3, APP, LPP,
NPC2, ATF4, EIF4G2, VMP1, MEIS2, TTC3, HNRNPDL, TRA2B, TSC22D3,
BTG2, TMEM59, MGST3, RAN, IGLC3, ATP6V1G1, ENO1, ESRRG,
SLC2A3, SARAF, POLR2L, CAPZB, ITGB1, SST, TBCA, STAT3, CD44,
MAGI1, CHCHD2, PPP1CB, MT1E, SEC61B, CLIC1, USP34, SF3B6, BSG,
SERBP1, RBM47, SAP18, FKBP1A, YWHAB, HMGN2, NCOR1, AKAP9,
PNISR, ELOB, SERP1, TPM1, PCBP2, ZBTB20, PSCA, CCNL1, GPX4,
ATP1B3, DYNLL1, RBMX, CD59, LRRFIP1, ATP5PO, SRSF3, CYCS,
ARF4, LUC7L3, PKM, COTL1, COL3A1, CAST, NDRG1, SELENOW,
MTDH, TMEM258, ANP32B, ALDH1A1, CD9, PRRC2C, HMGN1, NFE2L2,
CTNNB1, NDUFB1, AUTS2, SEC61G, MCL1, PTGES3, ATP5MJ, KMT2E,
XBP1, LAMTOR5, NDUFS5, IRF1, TSPO, ANXA5, HBG2, IGHM, TGFBR2,
SCAF11, CTSB, DDX17, DSP, EIF3H, KTN1, TUBB, GNG5, SFPQ, GKN1,
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MECOM, ALDOA, SRSF11, CALD1, HSPH1, RTN4, SNRPD2, NDUFB2,
C12orf57, SELENOP, TRA2A, MGP, HNRNPF, CMIP, SRRM2, CSDE1,
ARID4B, MT1X, MUC6, VAMP2, MZT2B, TRAM1, EIF3K, EIF5B, GNB1,
N4BP2L2, MORF4L1, IER3, GPBP1, GUK1, ARPC1B, AKAP12, RAB1A,
PGA5, TNFAIP3, ATP5F1B, ANAPC16, HSPA9, DDX3X, TYROBP, PCBP1,
UQCR11, DBI, MYH9, C4orf3, CD24, EMP1, H4C3, LUM, RRBP1, APOA1,
ATP5MC3, SRSF2, MORF4L2, IL7R, ATP6V0E1, SSR2, PPP3CA, ITM2C,
SET, S100P, NDUFC2, RBM25, CD52, SNRPG, EVL, RERE, MIDN, LAPTM5,
SOCS3, RHOB, GABARAPL2, CKS2, DEK, EPCAM, SNX3, ANKRD12,
RBM3, ARL6IP1, NAMPT, PHIP, NDUFB9, NDUFA13, RORA, ERH,
NEDD8, DST, MUC1, ANXA10, CTSD, SKAP2, HPGD, PSME1, PAP-
OLA, HNRNPUL1, SPRY1, EIF2S2, PDLIM1, SLC25A3, DNAJB6, EMP3,
HNRNPA3, CNBP, GNAI2, HNRNPA0, SOD2, ELF1, TNRC6B, ESD,
TRMT112, HNRNPM, TPI1, ST13, UBXN4

• testis: FOS, COL1A1, TMSB4X, EEF1A1, HSP90AA1, COL1A2, B2M,
EEF1B2, FTL, TMSB10, NACA, COL3A1, IGFBP7, IFITM3, CALM2,
TUBA1A, GPC3, GNAS, RACK1, S100A8, ACTG1, HBA1, SAT1, GAS5,
VIM, DCN, NPM1, PRDX1, ACTB, TUBB, S100A10, A2M, RNASE1,
S100A9, STMN1, HMGB2, BEX3, CST3, TMEM123, TM4SF1, LGALS1,
SRP14, ITM2C, ATP5MG, CFL1, TPT1, MYL6, GSTP1, NREP, BEX1,
HNRNPA1, SEM1, SUB1, HMGN1, PABPC1, CD81, H2AZ1, ACTA2,
ZFP36L1, SEC61G, SNRPE, EIF4G2, FTH1, EEF2, MDK, UBB, LAPTM4A,
SNHG29, EIF1, IFITM2, CTSB, SRGN, HINT1, UBA52, PTMA, COX6C,
DUSP1, ARPC3, TCEAL9, FAU, DDX5, ITM2B, BTF3, JUNB, COX7C,
SOX4, SOD1, TUBA1B, SERF2, RAN, HSPA1A, ENO1, EGR1, RGS2,
SELENOP, UQCRQ, SPARC, PFN1, JUN, HNRNPA2B1, TMA7, DYNLL1,
HBG2, RBP1, HNRNPDL, MEG3, PSMA7, DDX17, ATP5MC3, MARCKS,
SLC25A5, FN1, SRSF3, HBE1, HMGB1, CALM1, CIRBP, PSAP, PCP4,
SLC25A3, DLK1, GLUL, WSB1, LAMTOR5, UBC, GNG5, YWHAE,
TSC22D1, GNG11, NPY, NDUFA4, ATP5F1E, MGST3, MYL12A, ZFP36,
CD99, ID3, PPIA, COX7B, NDUFB6, S100A11, ATP5F1A, UQCRB, SKP1,
PGK1, ATP6V1G1, MEST, CKS2, GAPDH, SLC25A6, NDUFB9, NDUFS5,
NDUFB4, PEG3, UBE2C, NOP10, C11orf58, S100A6, HSPB1, TIMP1,
LDHA, ATP5F1C, ATP5PF, PRDX2, AIF1, HNRNPK, JUND, TMEM258,
ZFAS1, EIF4A2, COL4A2, UBL5, H3-3B, ATP5MJ, SDCBP, NDFIP1, FC-
GRT, HSPD1, HSBP1, HSPE1
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• tongue: S100A7, LRRN3, S100A8, VIM, SPARCL1, CAV1, PCAT19,
IGFBP7, EPAS1, MSRB3, ANXA1, MT1X, C11orf96, FN1, BHMT2, NPR1,
NLGN4X, LGALS1, ACTG1, SORBS2, LAMA2, CCDC68, IL6, IFI44L,
NBEA, DEPP1, FAM107A, ANTXR2, PTPRB, HOXD1, ITGA1, HRCT1,
NES, SFN, FAM110D, SOCS3, SBSN, SRGN, IGKC, ZFPM2, APBB1IP,
LYPLAL1-AS1, SLC2A3, LAPTM5, SLA, XIST, LIMD2, SYTL2, CRACR2B,
TNIP3, SPOCD1, ANXA9, PTPN7, PTPRC, DEFB4B, BMX, PDK4, GIMAP6,
CXCL12, FCER1A, HSPB7, MYO7B, DBI, GPR65, TNFRSF9, ITGAM,
KRT14, TGM2, CA4, NOTCH4, RAMP2, S1PR1, LPIN2, KRT23, CHCHD2,
CHCHD10, RBP1, CRCT1, KRT4, ALS2CL, KRT1, GAK, IFFO2, U2AF2,
LZTFL1, TCF7L2, PISD, ALDH6A1, ENDOD1, MROH1, RABEP2, MCAM,
BOLA2B, TBL1XR1, PTTG1, SAT2, LSM10, SESN3, ZCCHC10, NDUFA2

• trunk: KRT1, VIM, TUBA1B, KRT14, CXCL14, SAT1, CD74, DMKN,
APOE, ATP1B3, KRT15, KRT5, S100A10, DUT, CALML5, LY6D, GAPDH,
CALML3, CCL27, TMEM45A, S100A2, LGALS1, TPPP3, KRT2, KRT-
DAP, HMGB2, ZFP36L2, MT1X, GADD45B, KRT17, KRT10, S100A6,
SYT8, LYPD3, S100A4, PCNA, DCT, EEF1A1, COL17A1, SPINK5, GATA3,
GPX4, RACK1, STMN1, HSPA1B, CRABP2, B2M, FTL, DDIT4, SBSN,
HMGN2, KRT6A, HOPX, CEBPB, TYMS, SLPI, CST3, FGFBP1, FTH1,
RND3, DEK, MT2A, FABP5, TXNIP, TACSTD2, POSTN, PERP, TM4SF1,
KLF4, UBR4, DEFB1, HES1, PTTG1, NPM1, TGFBI, SFN, HEXIM1,
MYC, H2AZ1, CSTB, LSP1, IRF1, PTMA, RANBP1, ADM, SGK1, EEF2,
CITED2, DSP, TMSB4X, LGALS7B, CAV1, PCLAF, RBP1, CD59, CSTA,
H3-3B, DST, DEGS1, RRM1, HSPA1A, NUCKS1, ID1, FXYD3, TYRP1,
BRD2, S100A14, DUSP1, CLEC2B, TSC22D3, ENO1, NDUFA4L2, PRXL2A,
CA2, JUN, APP, HSPB1, CHCHD10, SOSTDC1, CCND1, PPDPF, NCL,
ID4, MT1E, TUBA4A, ARL4D, HINT1, PKP1, C19orf33, GLUL, DSC3,
ETS2, H1-0, MCM3, LDHB, AREG, ATP1A1, TUBB4B, MZT2B, CLDN4,
DSC1, SOCS3, AHNAK2, EPHB6, ZFAS1, RNH1, KLF6, MLANA, CD63,
EGFR

• ureter: SAMD11, JCHAIN, DCN, CD74, IGKC, IGLC2, IGHG1, IGHA1,
SRGN, MGP, CXCL8, IGHG2, LGALS1, LUM, GPR183, SFRP4, TMSB10,
TMSB4X, ADIRF, FOS, S100A4, FCER1G, FTL, RGS1, CST3, BCL2A1,
NFKBIA, IL1B, MS4A6A, IGKV3-15, CFD, CTSC, S100A2, SPINK1, FAU,
SKP1, DNAJB1, MTND2P28, RNASE6, C1QB, APOC1, CCL4, EEF1A1,
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FXYD3, UBC, TMEM59, SOD2, CD63, B2M, IFITM3, EEF1D, ATRAID,
EGR1, CSTB, COMMD6, ATP5MC2, CALM2, PSAP, LY86, TMEM258,
SDS, C1QA, HSPB1, GPNMB, VAMP8, UPK1B, COX6C, CXCL1, SPCS1,
CPVL, STX7, DUSP4, CD83, ATP1B3, FAM219B, WDR83OS, HSPH1,
NDUFA1, PLAUR, ICAM1, CDC42, ID3, HNRNPR, LAPTM4A, ATP5IF1,
GNAI3, APH1A, UROD, PCBP1, MZT2B, UQCRH, GNG12, ATP6V0B,
ODC1, CSDE1, MDH1, TAGLN2, CFH, SLC20A1, OST4

• urinary bladder: MT2A, SRGN, SPINT2, CXCR4, SLPI, FTH1, WFDC2,
NEAT1, CD69, VEGFA, LGALS1, FTL, CCL4, CD74, KRT7, IFITM3,
B2M, CCL5, CXCL8, SPARC, ACTB, S100A6, NDRG1, IFI27, BTG1,
IGFBP7, ACTG1, FOS, RARRES1, S100A9, MT3, COL4A1, HILPDA,
CST3, TMSB4X, LCN2, CLU, MT1E, H3-3B, ERRFI1, NUPR1, HP, SAT1,
MT1X, APLP2, IGFBP3, NFKBIA, XIST, ERO1A, VIM, HSPA5, CCL20,
PGK1, PFN1, CA12, ANXA2, NAMPT, HINT1, LOX, CALM1, IER3,
IFITM2, HSPG2, MMP7, HSP90B1, EGFL7, GNG11, CD81, RHOA, C15orf48,
N4BP2L2, C3, SELENOS, S100A10, SERPINB4, P4HA1, SQSTM1, SKP1,
CRIP2, IGFBP2, PABPC1, HERPUD1, TXNIP, FKBP1A, GLUL, SOD2,
LY6E, HSP90AB1, DSTN, TIMP1, A2M, HSPB1, TPI1, WSB1, SELENOW,
CXCL3, ENG, CD9, DDX5, FN1

• uterus: SRGN, PTPRC, TMSB10, IFITM3, FTH1, C11orf96, CXCL8, LGALS1,
CD74, B2M, NEAT1, MTATP6P1, MT2A, ACTB, PTMA, IGFBP7, GAS5,
FOS, SNHG6, TPM2, GADD45B, TSC22D3, SLPI, FTL, LCP1, THBD,
TXN, ITM2C, SPARCL1, HSPB1, SNHG29, TCF4, GEM, SNHG5, CREM,
RGS2, IFI27, CLEC2B, TMSB4X, MT1A, FXYD5, PKM, GABPB1-IT1,
TNFAIP8, SNHG1, S100A4, POLR2J3, FTLP3, PRNP, CALD1, MTCO1P12,
ADIRF, TYMP, CCL3L1, PLCG2, JUN, DANCR, ADAMTS4, TXNIP,
XIST, EEF1A1, CXCR4, SLC2A3, CHASERR, RAB33A, BST2, CCDC3,
FCER1G, FCHSD2, SNHG3, FCER1A, A2M, MGP, SGTB, IRF7, TNFAIP6,
GMFG, DDIT4, SNHG17, KRT14, IGKC, ACTA2-AS1, VEGFA, NBPF8,
CCL2, SAMHD1, ACAP1, SERPINE1, CCL3, FZD10-AS1, KLF2, DLEU2,
S100A6, ALOX5, TIMP3, CHSY1, BMP2, CD37, ALOX5AP, TGFBR3,
S100A2, IL18BP, SNCG, RNU6ATAC39P, APOD, FAM3D, GXYLT1, GJA4,
TRAF1, XXbac-BPG283O16.9, FLNA, B3GAT1, PLAC8, AC004057.1,
UBBP4, ATM, GPR183, ARHGAP4, CAV1, ID2, ERF, TAGLN, LY86,
TPT1, ID3, AQP1, USP44
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• vasculature: SFRP2, TIMP3, CSRP1, B2M, MGP, SRGN, GPX1, GAS5,
TUBA4A, TSC22D3, SERPING1, MTATP6P1, PPP2R5C, C3, TPT1, SPARCL1,
PRG4, CXCR4, HSPA8, YBX3, CEACAM6, RGS1, SNHG29, BIRC3,
TSPAN5, DCAF12, RGS2, RASSF6, SLC25A37, CXCL16, MTCO1P12,
RBM12, RHBDF2, PLAU, SNHG5, CD74, BZW1P2, FBXO48, GLUL,
STK4, MT1F, MYL9, CPB1, FCER1G, GMFG, AREG, RBM38, CPA3,
IQCB1, CHST11, EDEM1, CCL5, TMEM71, FTH1, RHOH, IGHG2, KLHL6,
POU2AF1, IGKC, PUM2, IGLC3, IGLC2, ACTB, PCED1B-AS1, HSPG2,
CD48, TGM1, ADIRF, ZBED2, LEF1

• yolk sac: HBG1, FRZB, IFITM3, VIM, FTL, CST3, SRGN, HSPA1A, CD74,
CCL4, S100A6, LYZ, FOS, ZFP36L1, MT1G, EEF1A1, JUNB, LSP1,
HBA1, SPARC, RNASE1, EGFL7, NR4A2, HSPA1B, NFKBIA, MAR-
CKSL1, S100A11, PRSS57, TTR, CD52, JCHAIN, LGALS1, H4C3, FTH1,
TMSB4X, CCL4L2, DLK1, MPO, STMN1, S100A4, JUN, HBE1, SPP1,
IFITM2, COL3A1, BTG2, LTB, MEG3, DDIT4, S100A10, CD164, GATA2,
HSPB1, NR4A1, ACTB, ANXA2, CD99, ACY3, TYROBP, ACTG1, APOE,
UBE2C, S100A9, DNAJB1, IL1B, TUBA1B, TMSB10, MDK, C1QC, IGFBP7,
HBA2, SELENOP, SAT1, IER2, PPP1R15A, TAGLN2, CD34, HMGB2,
FCGRT, MTRNR2L12, FXYD5, GYPC, SAMHD1, ID3, APOA1, HBD,
CORO1A, TUBB, CXCL3, DUSP2, CYTL1, TYMS, MT2A, ZFP36L2,
TPM1, EEF1B2, DAB2, GNG11, IFITM1, CD37, ITM2C, TIMP3, PTMA,
GAPDH, ZFP36, SOX4, RETN, CNRIP1, FCER1G, PTTG1, H2AC6, NACA,
APOA2, CALM1, B2M, BLVRB, EGR1, HMGA1, CCL3, KLF6
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POCKET MATERIAL: MAP OF CASE STUDY SOLAR
SYSTEMS
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