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ABSTRACT 

Wearable sweat sensors have the potential to revolutionize precision medicine as they can 

non-invasively collect molecular information closely associated with an individual’s health 

status. However, the majority of clinically relevant biomarkers cannot be continuously 

detected in situ using existing wearable approaches. Molecularly imprinted polymers 

(MIPs) are a promising candidate to address this challenge but haven’t yet gained 

widespread use due to their complex design and optimization process yielding variable 

selectivity. Despite their promise, MIPs have historically been known to be exceedingly 

difficult to optimize. Changes in the monomer/monomers used, polymerization solvent, 

and crosslinking agent have been shown to change the performance of MIP sensors 

significantly. This is particularly a concern in sweat-based sensors where the concentration 

of analytes is very low and chemical diversity is very high as a drop of sweat can contain 

vitamins, hormones, and amino acids. Consequentially, any sweat based sensor must 

exhibit high sensitivity (ability to detect low analyte concentrations) and selectivity (ability 

to distinguish one analyte from another). Computational methods have been introduced to 

design MIP sensitivity alone, however these prior methods do not cover all aspects 

essential for using a sensor in a wearable device such as selectivity optimization, detection 

of non-electroactive analytes, and scalable manufacturing. Here, we introduce a full 

computational method that allows for high throughput materials discovery for wearable 

devices. We will describe how to design novel sensing materials with QuantumDock, an 

automated computational framework for universal MIP development toward wearable 

applications. Then we delve into further technical details on signal transduction and 

scalable manufacturing approaches for these wearable devices. We present a number of 
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novel devices designed with these computational methods including a wearable non-

invasive phenylalanine monitoring system (the first of its kind), a wearable nutritional 

tracker ‘Nutritrek’ capable of monitoring a range of metabolic disorders, and an 

implantable pharmaceutical drug monitoring system for cancer patients. 
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C h a p t e r  1  

INTRODUCTION 
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Modern diagnostic procedures in healthcare typically require going into a doctor’s office 

and collecting biofluids such as blood or interstitial fluid which contain biomarkers. These 

biomarkers like glucose, A1C, cholesterol and a host of others are key for monitoring an 

individual’s metabolic health in the long term. Regular monitoring of these metabolites in 

annual intervals has been associated with increased life expectancy to a margin of 10 

years1. Currently clinicians only monitor these markers once a year, primarily due to the 

use of large and costly diagnostic equipment like high performance liquid chromatography, 

that resides in the hospital or off-site labs. This gives us the equivalent of a screenshot of 

human health. 

The dynamic nature of human health however requires greater resolution to understand 

disease development and progression. It is well documented that cancer survival rates are 

highest with early diagnosis2. Similarly for many diseases including diabetes prevention 

yields better patient outcomes than treatment3. To facilitate early detection, wearable 

medical devices have become essential in healthcare. Devices like Dexcom’s Glucometer 

and Abbott’s FreeStyle Libre have shown the potential of wearable to give health data on 

the resolution of minutes, showing patients how each of their meals and daily activities 

impacts their blood sugar levels. 

This concept of continuous monitoring can be carried further by monitoring more biomarkers 

than just glucose. Sweat-based wearables can non-invasively monitor biomarkers including 

ions, amino acids, hormones, and proteins in sweat.4,5,6 These biomarkers can be used to 

monitor diseases including cancer, cystic fibrosis, gout, stress, and metabolic disorders as 
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just a few examples.7-10 The detection of said biomarkers relies on accurate biosensors for 

biomarker detection. Typical biosensors rely on antibodies, enzymes, or ion-selective to 

facilitate either selective binding or reactions to the biomarker of interest. Despite their 

success thus far, each of these sensing mechanisms faces challenges that limit their realistic 

application in wearable systems. While enzymes and ion-selective electrodes can specifically 

detect certain molecules, they typically cannot detect trace level biomarkers. This capability 

is essential in the case of sweat biomarkers which can reach concentrations as low as the 

nanomolar range.11 Antibodies can exhibit lower detection limits but are limited to a single 

use making them incompatible for continuous health monitoring. Furthermore, these sensors 

are limited to a small set of biomarkers for which antibodies or enzymes already exist. 

Alternative techniques like differential pulse voltammetry (DPV) have been used to detect 

ultra-low concentrations of electroactive biomarkers from their oxidation current at a special 

voltage.8 This oxidation current increases with increasing analyte concentration. However, 

this technique as well is limited to a small set of electroactive biomarkers and has limited 

selectivity as interfering molecules with similar oxidation potentials can’t be distinguished 

limiting the prosect of use in biofluids. 

Molecularly imprinted polymers (MIPs) are a promising low-cost sensing solution that 

can join the highly sensitive detection capabilities of DPV with a selective and reusable 

sensing mechanism.12 These sensors are fabricated by electropolymerizing and subsequently 

eluting a biomarker from a functional polymer matrix, leaving biomarker-shaped imprints. 

Such imprints facilitate selective rebinding of biomarkers as shown in Figure 1-1a, 

increasing the device selectivity. When used in tandem with voltametric techniques like 
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DPV, MIPs can achieve very low detection limits. Their detection capability can be 

expanded to non-electroactive biomarkers by integrating a redox layer under the imprinted 

polymer layer. Subsequent rebinding in this case lowers the probes redox current enabling 

accurate detection of various molecules. In order to prepare the MIP-sensors with high 

sensitivity, mass-producible low-cost laser-engraved graphene electrodes can be used as their 

offer particularly high electron transfer rates and thus could achieve low detection limits 

(Figure 1-2).13 This can facilitate the detection of swear biomarkers like tryptophan and 

leucine at their trace physiological concentration, as shown in Figure 1-1b. Along with these 

superior sensing capabilities, MIPs can be used multiple times by eluting rebound biomarkers 

with an electric current, enabling reusable of these highly specific biosensors.  

These sensors have not gained mainstream acceptance as biosensors however due to their 

complex design process. Ones choice of functional monomer dramatically influences sensor 

selectivity rendering some MIPs ineffective in biofluids. Computational methods like density 

functional theory (DFT) and molecular docking (MD) are ideal tools for simplifying the MIP 

design process. These methods use ab-initio calculations to model physical interactions 

between molecules. They are commonly used in MIP development to rationally choose 

functional monomers by simulating binding energies between monomers and biomarkers. 

Figure 1-1: a) Selective absorption of biomarkers by a MIP layer b) Electrochemical 

detection of both an electroactive target Tryptophan and a non-electroactive target Leucine  
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Such binding energies can quickly be calculated between a target biomarker and a library 

of potential functional monomers in the design process. This method has produced a number 

of successful MIPs,14 but is fundamentally limited. Maximizing the biomarker-monomer 

binding energy may adversely impact selectivity by promoting non-selective binding, as a 

high binding energy to one biomarker may also imply a high binding energy to an unwanted 

interferent molecules. Selectivity in particular is traditionally still left to experimental 

optimization which costs a tremendous amount of time and resources. This metric however 

is critical for wearable sweat based devices where we must distinguish between classes of 

molecules with similar structure (i.e. amino acids) which MIPs do not inherently differentiate 

between easily.  

In the reminder of this thesis, we will detail each of the essential components of a wearable 

device including sensing modalities, signal transduction, sensor data analysis, and detail how 

computational methods like DFT can be used to accelerate each bottleneck of production. 

Will conclude with remarks on scaling manufacturing and future remarks on how 

computational methods will improve in the future of AI and machine learning. 

 

 

Figure 1-2: Large-scale low-cost fabrication of highly sensitive graphene-based sensor via 

laser engraving 
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C h a p t e r  2  

Biosensing modalities 
 

Materials from this chapter adapted from “Song, Y.; Mukasa, D.; Zhang, H.; Gao, W. Self-Powered 

Wearable Biosensors. Accounts of Materials Research, 2021, 2 (3), 184-197. 

https://doi.org/10.1021/accountsmr.1c00002.” 
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Introduction 

In recent years, wearable electronics have greatly improved the quality of daily life and have become 

indispensable tools1,2. Wearable devices targeted for detecting diversified biophysical and biochemical 

signals offer a noninvasive means for extracting physiological indicators3,4. The real-time monitoring 

of these indicators can provide valuable information for the early diagnosis and prevention of a number 

of health conditions such as cardiovascular diseases, gout, diabetes, and coronavirus disease 2019 

(COVID-19)5-8. Emerging nanotechnology, materials science, and flexible electronics have led to 

wearable biophysical sensors that are capable of monitoring human activities, body motion, and 

electrophysiological signals (e.g., electroencephalogram (EEG) and electrocardiogram (ECG))1,3. In 

addition, wearable biochemical sensors are emerging for noninvasive detection of molecular-level 

indicators (e.g., electrolytes and metabolites) from biofluids9,10.  

This chapter provides a systematic introduction and highlights recent advances of self-powered 

wearable biosensors in the field of personalized healthcare. Section 2.1 introduces sensing technologies 

and preparation methods of wearable biochemical sensors. Section 2.2 discusses wearable biophysical 

sensors that are available for noninvasively measuring biopotentials, physical motions, and optical 

signals associated with human activities. With the conformal attachment on the skin, they can detect 

various physical indicators. By exploiting different essential sensing elements, wearable biochemical 

sensors realize continuous tracking of chemical biomarkers from biofluids that indicate health status 

and allow for an early disease diagnosis.  
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2.1 Wearable Biochemical Sensors 

Considering that wearable biophysical sensors only monitor vital signs and physical activities, wearable 

biochemical sensors are essential to assess the human health state at the biomolecular level. Biofluids, 

such as saliva, tears, sweat, and interstitial fluids, are ideal analytes, as they can be retrieved 

noninvasively and contain a wealth of physiological information8. With techniques including 

potentiometry, amperometry, voltammetry, and impedance spectroscopy, wearable biochemical 

sensors can continuously monitor dynamic variations of biomarkers in biofluids9. Biomarkers 

including ions, metabolites, amino acids, hormones, and drugs can be detected to monitor or diagnose 

conditions like cystic fibrosis, gout, mental disorders, and drug abuse8.  

2.1.1 Enzymatic and Ion-Selective Sensors 

Metabolites and electrolytes in biofluids are excellent indicators of a healthy state and can provide 

warnings for various diseases38. For example, an imbalance of glucose leads to severe threats to human 

health for individuals afflicted with diabetes mellitus, and increased lactate levels can correspond to 

cardiac diseases, endotoxic shock, or liver disease. Concentrations of ions including sodium, potassium, 

and calcium are also markers for dehydration during exercise activities. Key metabolites such as 

glucose and lactate can be monitored with amperometric enzymatic sensors, while a number of 

electrolytes (e.g., Na+, K+, NH4
+, and Ca2+) can alternatively be detected via potentiometric ion-

selective sensors. Figure 2-1A demonstrates an electrochemical sensor array consisting of enzymatic 

and ion-selective sensors that can simultaneously monitor lactate and glucose as well as sodium and 

potassium ions in sweat via amperometric and potentiometric techniques, respectively14. In some 

special cases, a combination of enzymatic and potentiometric sensors is sometimes needed to realize 

an accurate detection of a given analyte. For example, an enzymatic urea sensor can be developed based 

on an NH4
+ ion-selective electrode (Figure 2-1B)17. The urease layer of the sensor converts urea to 
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NH4
+, which is subsequently detected. This combination of sensors allows for a real-time monitoring 

of urea in sweat. 

 

2.1.2 Voltammetric Sensor 

Voltammetric sensors are the most relevant methods for the rapid and accurate detection of 

electroactive analytes. Similar to amperometric sensors, voltammetric sensors adopt a three-electrode 

configuration. The measured potential dramatically increases at a redox potential within the 

Figure 2-1: Wearable biochemical sensors. (A) Enzymatic and ion-selective sensors for a 

continuous analysis of metabolites and electrolytes. Reproduced with permission from ref (14). 

Copyright 2016 Springer Nature. (B) Enzymatic sensors based on ion-selective electrodes for a 

continuous urea sensing. Reproduced with permission from ref (17). Copyright 2020 American 

Academy for the Advancement of Science. (C) Voltammetric sensor for a sensitive detection of 

uric acid and tyrosine. Reproduced with permission from ref (15). Copyright 2020 Springer Nature. 

(D) Bioaffinity sensor based on the antibody–antigen interactions for a cortisol analysis. 

Reproduced with permission from ref (42). Copyright 2020 Elsevier. 

2 
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oxidization/reduction range of the analytes. Electroactive analytes, such as certain drugs, amino acids, 

and vitamins, can be directly oxidized at a specific potential. To achieve a high sensitivity and low 

detection limits, pulsed techniques such as differential pulse voltammetry (DPV) are commonly used 

to measure analyte oxidation. Figure 2-1C illustrates a wearable voltammetric sensor for continuously 

monitoring the uric acid and tyrosine in human sweat15. The laser-engraved graphene (LEG) 

biochemical sensor exhibits great selectivity and sensitivity within the target’s physiological 

concentration range in sweat. For on-body validation, the integration of a multi-inlet microfluidic 

module and the LEG-based voltammetric sensors ensures a reliable analysis process with a high 

accuracy and temporal resolution. Combined with a preconcentration process, voltammetric sensors 

can also be used to monitor heavy metal ions (e.g., Cu2+, Zn2+, and Pb2+) in biofluids39.  

2.1.3 Bioaffinity Sensor 

Despite the current challenges for wearable implementation, bioaffinity sensors have emerged as an 

efficient and powerful analysis method for analyzing a broad spectrum of biomarkers, including 

protein, peptides, and hormones40-42. In general, bioaffinity sensors work via a specific detection of 

target-bioreceptor interactions (such as antigen–antibody binding). Figure 2-1D shows one example in 

which the antibody-based immunosensors are applied to monitor the dynamics of cortisol in 

biofluids42. Cortisol is linked to chronic stress, which enhances the threats of depression, anxiety, 

suicide, fragile immune system, and cardiovascular diseases. The fully integrated mHealth system is 

capable of measuring the cortisol diurnal cycle and the dynamic stress-response profile noninvasively 

on the body. 
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2.2. Wearable Biophysical Sensors 

2.2.1 Pressure and Strain Sensors 

Epidermal pressure and strains caused by the arterial pulse, human motion, and breathing rate are 

closely related to human physiological activity3. Soft wearable tactile sensors are also of great 

importance for applications in personalized healthcare, electronic skin, and prosthesis 

control24. Wearable pressure and strain sensors operate by detecting stimuli via changes in sensor 

material properties including piezoresistive, capacitive, piezoelectric, and triboelectric effects. 

Piezoresistive pressure sensors are prevalent due to their cost-efficient fabrication, simple designs, and 

easy acquisition of both static and dynamic responses. Active materials including conductive polymers, 

carbon nanotubes, graphene, and nanowires are promising candidates with mechanical robustness and 

electrical reliability25. Microstructure-engineered designs such as wrinkles, cracks, woven materials, 

and porous materials can greatly enhance the sensitivity by accommodating geometrical 

deformations25. The synergistic effect of actively conductive materials with intrinsic structure provides 

a feasible approach to obtain a satisfying performance. Capacitive pressure sensors perform with both 

high sensitivity and low hysteresis. The microstructured dielectric layer allows for the detection of 

subtle changes in pressure26. Piezoelectric and triboelectric pressure sensors provide suitable 

approaches to dynamic measurements with fast responses and high signal-to-noise ratios. Upon 

deformation, mechanical to electrical energy conversion occurs allowing for a quantification of applied 

pressure. Thus, wearable pressure sensors that exploit different sensing modalities have a broad utility 

in health monitoring, human–machine interfaces, and soft robotics applications24. Figure 2-2A shows 

a porous piezoresistive pressure sensor based on a carbon nanotube–poly(dimethylsiloxane) (CNT-

PDMS) conductive elastomer through a solution-evaporation fabrication method20. With an optimized 

dimension and content ratio, this pressure sensor achieves 0.51 kPa–1 in a 2 kPa linear region and 
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induces stable resistance responses in accordance to the joint bending states, as well as other muscle 

movements. 

The conventional strain sensors, mainly based on brittle materials, typically suffer from low 

stretchability and are inappropriate for the detection of human motion. Two mainstream strategies are 

available to construct stretchable conductive materials. The first involves introducing stretchability into 

intrinsically brittle materials to develop different geometric patterns, such as cracks and buckled 

structures27. The second strategy adopts percolating conductive nanomaterial networks including 

nanoparticles, nanowires, and nanotubes25. On the basis of these strategies, Figure 2-2B presents a 

highly robust and stretchable strain sensor by a three-dimensional (3D) self-assembly of carbon 

nanotubes and microsphere composites28. When the strain sensor is stretched, an applied stress induces 

the disconnection of overlapped carbon nanotubes due to the weak interfacial binding and large 

stiffness mismatch between the stretchable elastomer matrix and nanomaterials, resulting in an 

increasing electrical resistance. 

2.2.2 Temperature Sensor 

Body temperature is a critical indicator to monitor human activities and determine health conditions. It 

maintains an extraordinarily narrow range between 36 and 37 °C through thermoregulation, and 

abnormal changes provide insightful information related to cardiovascular health, cognitive condition, 

wound healing, and many other syndromes29. Traditional methods rely on simple thermometers and 

are not applicable for a continuous point-of-care use. Temperature-sensitive materials embedded in a 

flexible or stretchable substrate can exhibit a high sensitivity, fast response, long-term reliability, and 

skin compatibility. Zhu et al. present circuit design strategies to improve the accuracy and robustness 

of a wearable temperature sensor based on stretchable carbon nanotube transistors (Figure 2-2C)30. 

The stretchable temperature sensor circuit can trace sensor output as a function of temperature, and 

negligible change in the temperature output occurs under a repeatedly uniaxial strain of 15% in the 
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device. To further minimize the strain-induced errors, smaller feature sizes will enable the integration 

of instrumentation electronics closer to the sensor elements and thereby allow an accurate temperature 

monitoring under different stretching strains. 

2.2.3 Humidity Sensor 

Besides the measurement of the typically physical parameters mentioned above, the analysis of skin 

humidity can yield insights into various aspects of physiological health. A real-time measurement of 

the hydration levels of human skin can be used to monitor respiration and water evaporation31, which 

are important in monitoring disease states and in assessing factors related to an abnormal skin response. 

Figure 2-2D shows a wearable humidity sensor with a wrinkled CNT-PDMS, the resistance of which 

changes due to the presence of water molecules32. The wrinkled structure supports a more hydrophilic 

and anisotropic wetting surface with an enlarged surface area, thus enhancing the humidity sensing 

performance. Through the modulation of the CNT ratio, the wearable humidity sensor shows great 

sensitivity and reliable repeatability, especially in human motion or breathing monitoring. 

2.2.4 Electrophysiological Sensor 

Biopotential signals are effective indicators for medical diagnosis and health monitoring. Wearable 

electrophysiological sensors are available to measure biopotentials including ECG, EEG, 

electromyography (EMG), and electrooculography (EOG) noninvasively1,3. These informative signals 

can be used to monitor heart, brain, muscle, and eye activities, respectively. To acquire weak 

biopotential signals, wearable electrophysiological sensors with skin-compatible materials should 

perform with high signal-to-noise ratios, stable adhesion, and low motion artifacts for accurate signal 

processing33. Furthermore, functional materials with an optimal modulus, minimal skin irritation, and 

long-term usage offer compelling benefits to achieve a seamless and conformal contact with human 

skin. Son et al. employed self-healing electrodes as active components to fabricate a wearable ECG 
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sensor composed of three electrodes (Figure 2E)34. The sensor achieves ECG data acquisition through 

the percolated CNT network in a polymer matrix and is capable of returning to its original state within 

seconds even after the damage occurred. 

2.2.5 Optical Vital Sign Monitor 

Optical sensors capture the amount of light either transmitted or scattered and convert signal changes 

into electrical outputs. Wearable optical sensors have utilized nanostructured materials like quantum 

dots, nanocrystals, two-dimensional (2D) materials, and perovskite materials to provide clinically 

relevant information for disease diagnosis and treatment35. Optical analysis of the blood flow, for 

example, allows for the calculation of key physiological parameters such as arterial oxygen saturation 

via pulse oximetry and heart rate variability via photoplethysmography (PPG)36. An example in Figure 

2-2F shows a wearable optical sensor powered by a near-field communication (NFC) technology for a 

wireless optical characterization of the skin37. Arterial pulse waves temporally modulate the 

backscattered light, and the measured signals reveal both systolic peaks and dicrotic notches, which are 

relevant to both remote diagnostics and health warnings. Wearable optical sensors require a high 

photoresponse sensitivity and flexibility to ensure an efficient transport of photogenerated carriers and 

minimize motion artifacts. Ultimately these sensors must be able to measure parameters such as flow 

rate, pulse wave velocities, and heart disease. Integrating a device with both wearable optical sensors 
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and other biophysical sensors can facilitate a multimodal network of sensors across the body, allowing 

for a more complete assessment of one’s health status. 

 

Figure 2-2: Wearable biophysical sensors. (A) Porous CNT-PDMS based piezoresistive pressure 

sensor for body motion monitoring. Reproduced with permission from ref (20). Copyright 2018 

Elsevier. (B) Strain sensor with immobilized MWCNT networks for finger gesture recognition. 

Reproduced with permission from ref (28). Copyright 2017 Wiley-VCH. (C) Stretchable 

temperature sensor for strain-independent temperature sensing. Reproduced with permission from 

ref (30). Copyright 2018 Springer Nature. (D) Wrinkled CNT-PDMS as a humidity sensor for hand 

approaching detection. Reproduced with permission from ref (32). Copyright 2019 American 

Chemical Society. (E) Self-healable electrocardiogram sensor for measurement of cardiac signals. 

Reproduced with permission from ref (34). Copyright 2018 Springer Nature. (F) Epidermal optical 

sensor for heart rate and mean arterial pressure recording. Reproduced with permission from 

ref (37). Copyright 2016 American Academy for the Advancement of Science. 
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C h a p t e r  3  

WEARABLE SENSOR DATA ANALYSIS 

Materials from this chapter adapted from “Min, J.; Tu, J.; Xu, C.; Lukas, H.; Shin, S.; Yang, Y.; 

Solomon, S. A.; Mukasa, D.; Gao, W. Skin-Interfaced Wearable Sweat Sensors for Precision Medicine. 

Chemical Reviews 2023, 123 (8), 5049–5138. https://doi.org/10.1021/acs.chemrev.2c00823.” 
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Data processing is a critical aspect of wearable sweat sensors that enables the extraction of valuable 

health information from a wave of raw and unstructured sensor readouts. On the low level, data 

processing algorithms such as data smoothing, curve fitting, or peak detection enable the accurate 

calibration of biomarker concentrations from raw sensor data. On the higher level, these biomarker 

concentrations can be processed through learning algorithms to establish personalized baseline and 

cautionary biomarker levels, enabling personalized and preventative healthcare. 

3.1. Multimodal Sensors 

3.1.1. Multiplexed Data Acquisition 

Given the success in the biosensor field, the natural next step is to integrate sensors onto wearable 

devices. By measuring multiple electrochemical or physical sensor readouts, one can potentially obtain 

an array of information ranging from skin temperature, heart rate, and blood pressure to more complex 

biochemical measurements used in the diagnosis of diseases like cancer or COVID.3,4,9,12,13 To achieve 

this diagnostic power, wearable sweat sensors must be integrated with multiple sensing modalities. 

Simultaneous monitoring of ECG signals and sweat lactate concentrations have been reported, for 

example (Figure 3-1a).5 ECG is well-known for its applications in cardiovascular health, while lactate 

can be used as an index of physical exhaustion. Coupling these two pieces of information into a single 

device gives health professionals both insight into tissue oxygenation from lactate and exertion from 

measured heart rates. Similarly, a laser-scribed sensor patch has been reported with the capability of 

measuring caffeine, uric acid, and glucose in sweat while accurately measuring heart rate and heart rate 

variation (Figure 3-1b).14 More recently, work has been done to push multimodal devices to not only 

detect sweat biomarkers (alcohol) but also interstitial fluid biomarkers (glucose) in hopes of painting a 

more complete picture of a user’s health (Figure 3-1c).10 In addition to multiplex biomarker detection, 

vital sign sensing of blood pressure and heart rate has been successfully integrated with biochemical 

sensors including lactate, alcohol, glucose, and caffeine.9 The device thoughtfully utilizes ultrasonic 
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transducers for vital monitoring. Such transducers not only allow for that accurate measurement of 

these vitals, but were shown to exhibit minimal crosstalk with chemical sensors given an optimal 

operating distance away from these sensors. Further, the coupling of these sensors paints a picture of a 

user’s health status by quantifying alcohol and caffeine consumption while also measuring exertion 

levels from vital sensors. As the field has progressed, multiple sensing modalities have been 

implemented in devices as to achieve cheaper and easier device implementation. While the previously 

mentioned devices have a high degree of accuracy, they all rely on electrochemical analysis for which 

compartments like potentiostats, batteries, or Bluetooth radios are costly. Further, when such bulky 

components are inflexible, they can limit the potential to miniaturize the wearable device. A thin, 

flexible colorimetric device has been reported with the capability of measuring pH, sweat rate, chloride, 

lactate, and glucose (Figure 3-1d).7 By utilizing a biofuel cell-based sensor in conjunction with NFC-

based sensor readout and wireless communication, the need for a battery was removed, rendering the 

device battery-free. Multiple sensing modalities have also opened doors for the classification of more 

complex biophysical states. Stress states have been predicted with a sweat-based wearable device by 

measuring multiple stressed-related biomarkers (Figure 3-1e).8 By integrating a lateral flow 

immunoassay with fluorescence-based assays, simultaneous measurement of sweat cortisol and 

ascorbic acid levels is achieved. Cortisol, being well-known as the stress biomarker, can reveal an 

individual’s stress levels while ascorbic acid (i.e., vitamin C) can correlate to immune response and 

potentially can be used in the treatment evaluation. 
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3.1.2. Sensor Crosstalk and Calibration 

Another essential feature of multimodal sensors is their capability to self-calibrate other sensors on a 

wearable device, rendering the entire wearable system more accurate. Most of the aforementioned 

sensors, for example, rely on enzyme-based sensing, which can be influenced by operating temper-

atures.1,15−17 On-skin temperature sensors could therefore serve a dual purpose to both measure skin 

temperature for diagnostic and calibrating sensor reading (Figure 3-2a).2 This strategy was employed 

Figure 3-1: Multimodal data acquisition. a, Multimodal ECG and sweat lactate measuring device. 

Reproduced with permission from ref (5) under CC BY 4.0. Copyright 2016 Imani et al. b, Laser 

engraved biosensor with multiple sensing modalities and a high degree of flexibility. Scale bar, 1 

cm. Reproduced with permission from ref (14). Copyright 2022 The American Association for the 

Advancement of Science. c, Wearable device with both sweat and ISF sensing capabilities. 

Reproduced with permission from ref (10) under CC BY 4.0. Copyright 2018 Wiley. d, 

Colorimetric wearable device with glucose and lactate sensors. Reproduced with permission from 

ref (7). Copyright 2019 The American Association for the Advancement of Science. e, Stress 

detecting wearable device integrated with lateral flow immunoassay. Reproduced with permission 

from ref (8) under CC BY 4.0. Copyright 2020 Proceedings of the National Academy of Sciences. 
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in a wearable sensor array for the continuous measurement of sweat glucose and lactate.18 With the 

measured temperature and known temperature’s influence on enzymatic sensor performance, glucose 

and lactate measurements can be calibrated. Similarly, a wearable system for the collection of exercise 

sweat to avoid hypoglycemic shock in diabetics has been reported.19 Again, glucose measurements are 

normalized via temperature readouts showing the impact this method has on the wearable field. 

Resistive temperature sensors should, however, take into consideration the effect of strain-responsive 

change in resistance as shown in laser-engraved graphene sensors.3 

Serpentine patterns could be adapted into temperature sensor designs to reduce the strain-induced 

change in resistance. Chemical sensors in particular face many challenges with interferences from the 

complex matrix in biofluids, including various coexisting biomarkers which may skew the quantitation 

of the target biomarker. Reports have shown that the ionic strength of sweat (i.e., Na+ concentrations) 

has the potential to influence a sensor’s output signal (Figure 3-2b).4,20 Moreover, as sweat rate could 

influence certain biomarker levels during exercises, sweat Na+ level (which showed a linear correlation 

with sweat rate) may be used to further calibrate sensors for continuous personalized monitoring. In 

addition, chemical measurements are susceptible to further signal drift depending on their chemical 

environment. For example, when NH4+ level interferes with urea sensor reading, quantitation of urea 

would require simultaneous measurement of NH4+ and real-time calibration (Figure 3-2c).11 In 

addition to certain ions, pH could pose an influence on sweat chemical sensing. For example, glucose 

oxidase was shown to be affected by pH and requires pH calibration in real time (Figure 3-2d).6 

Multimodal physiochemical sensing systems are highly promising for realizing precision medicine. 

The collected vital sign or physical parameter data could be used for calibrating the chemical sensor 

readings. Moreover, such data could supplement the molecular information and provide a 
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comprehensive picture of an individual’s health state, which is a crucial step in realizing precision 

medicine. 

3.2. Machine Learning-Based Data Analysis 

Wearable devices, in particular sweat sensors, have the potential to generate a spectrum of medical 

data, with each recorded biomarker painting an incomplete picture about the health of the patient. 

Artificial intelligence (AI), specifically machine learning (ML), offers a way to organize this 

information in an interpretable or useful manner. In the literature, ML has been applied to synthesize 

on-body biochemical profiles to predict the presence of diseases,21 mental disorders,22 emotional 

states,23 drug intake, and nutritional levels24,25 only using analytes in the sweat. By optimizing the 

expected ML accuracy, one can further determine which chemicals hold predictive information,26,27 

Figure 3-2: Figure 40. Sensor crosstalk and calibration. a, Influence of temperature on glucose and 

lactate sensors. Reproduced with permission from ref (2). Copyright 2016 Springer Nature. b, 

Influence of electrolyte (Na+) level on tryptophan biosensor response. Reproduced with permission 

from ref (4). Copyright 2022 Springer Nature. c, Influence of ammonium (NH4
+) on urea 

biosensors. Reproduced with permission from ref (11). Copyright 2020 The American Association 

for the Advancement of Science. d, Influence of pH on glucose biosensors. Reproduced with 

permission from ref (6). Copyright 2016 Springer Nature. 
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how to organize sensors on a patch,28 as well as the optimal placement of sensors on the skin.28 Each 

of these experiments can be broadly broken up into the following sections (Figure 3-3a): sensor design, 

on-body experiments, data processing, feature extraction, ML model selection, and updating 

experimental parameters.29 So far, this review has discussed the process of sensor design, on-body 

experiments, and data processing. The following section will go into feature extraction, ML model 

selection, and updating experimental parameters. To achieve these goals, there are three general 

subcategories of ML algorithms one can utilize: supervised learning, unsupervised learning, and 

reinforcement learning. Unsupervised and reinforcement learning utilize unlabeled data (unmarked 

samples), requiring a large amount of data to make predictions. In a laboratory setting, this can be 

impractical for many emerging technologies still in the prototype stage that cannot generate a large 

quantity of high-quality data. Furthermore, these two methods are error-prone and can misinterpret 

ground truth for early experiments as the ML model is being refined. Because of these limitations, in 

this section, we will focus on supervised learning, the most common examples being convolutional 

neural networks (CNNs), support vector machines (SVMs), k-nearest neighbors (KNNs), logistical 

regression, and artificial neural networks. 

3.2.1. Curse of Dimensionality 

In machine learning, features refer to measurable properties or characteristics about an experiment. As 

there is no standard method to extract features, it is rather important to understand how features can 

broadly affect ML models. For supervised learning in wearable devices, each sweat analyte (such as 

uric acid) acts as an independent variable (feature) that potentially correlates with a quantifiable or 

observable event (e.g., gout). The more data one collects about a feature the more defined this 

association appears. From this point of view, a feature represents information added to a model. This 

leads many to believe that adding more information (features) to a model yields a better prediction. The 

following section will explore this idea further, highlighting the benefits and consequences of feature 
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extraction. The main deterrent for extracting features is that each piece of information carries an 

additional degree of freedom when solving for the underlying trend. In plain words, when building a 

model, each feature is not considered in isolation, but is rather compared against all existing inputs. As 

shown in Figure 3-3, as the dimensionality (number of features) increases, the feature space grows 

exponentially. Practically, with 4 datapoints evenly sampled across 1 feature, one would require 16data 

points to achieve the same level of confidence in a 2-dimentional feature-space. For a fixed data set, 

this leads to a trade-off: adding more information to the model vs adding more uncertainty about the 

connections between this information. Unfortunately, there is no universal standard limit to the number 

of features one should use for a given number of points. This is because in practice most data cannot 

be controlled and evenly sampled across a feature; rather, one might see duplicates or clusters inside a 

feature dimension. In practice, this means that adding more features tends to initially increase the 

accuracy due to more information in the model; however, there exists a point when the accuracy will 

decrease with each new feature added. This occurs because in a small data set the model cannot extract 

meaningful trends from the feature-space. This phenomenon is referred to as the curse of 

dimensionality, also known as the peaking phenomenon or Hughes phenomenon. In plain terms, there 

exists a feature dimension where the average predictive power of any classifier degrades when 

increasing the feature space. Unfortunately, collecting data for novel sensors can often be arduous due 

to experimental error, time, as well as finding enough distinctive and representative subjects. Therefore, 

machine learning problems using wearable devices are often feature-limited by a small data set. If data 

is not limited, collecting more points will add certainty to the model’s final prediction, leading to the 

alternative question: how much data is too much. Luckily, there is no upper limit to the amount of data 

one could collect, as more data creates more certainty in the analysis. Nonetheless, in practice, one 

finds that the initial points drastically change the model’s accuracy until it reaches a steady state. To 

determine if enough data has been collected, it is best to withhold some samples from the model as a 
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validation set or test set and check whether their input has a significant effect on the model’s final 

performance. The best way to improve a model’s accuracy, without adding more data, is to improve 

the feature extraction procedure, thereby reducing noise in the feature set. In machine learning, 

gathering clean, robust features from signals is preferred overutilizing extra, unnecessary information 

to make the same prediction  

3.2.2. Feature Selection 

To remove features from a model, one must select the combination of features with the most 

nonoverlapping and relevant information to the prediction. There are a variety of well-known 

algorithms to accomplish this goal. The simplest method is to brute force try each feature combination, 

selecting the set that performs the best. Brute-force feature selection is widely used in the literature and 

has been applied to determine biomarkers in brain−machine interfaces,33 to detect COVID-19 from 

acoustic waves,34 and to detect breast cancer from images. This is because for a static model brute force 

feature selection is guaranteed to yield an optimal solution across multiple training sessions; however, 

it is computationally and time intensive, making it unreasonable for selecting information from a large 

feature pool, a large data set, or on a complex model due to the training time. Fortunately, there are 

alternative feature selection algorithms that can handle these cases, the most popular choices being 

principal component analysis (PCA), linear discriminant analysis (LDA), and Shapley additive 

explanations (SHAP). In contrast to brute-force selection, LDA and PCA use a mathematical approach 

to eliminate features. PCA accomplishes this by transforming potentially correlated features into a basis 

set of orthogonal components using an eigenvalue decomposition. The final features are a linear 

combination of the original set. Like the brute-force method, PCA analysis can be used in similar 

situations to predict breast cancer,35 categorize gene expression from different cell lines (Figure 3-

3b),30 and analyze COVID-19.36 Furthermore, PCA analysis has been used to find sweat metabolite 

combinations that are indicative of lung cancer.26,37 Meanwhile, LDA reduces the feature dimension 
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by looking for a subspace of features that maximizes the separation between two classifications. Like 

PCA, LDA has also been commonly used to detect breast cancer biomarkers.38,39 Given that both 

methods have been applied to similar problems, one might wonder when one algorithm is preferred. 

PCA analysis is an unsupervised algorithm, making it optimal when working with unlabeled data or 

when looking for patterns in the features. In contrast, LDA works well when classifying data into 

groups. When both algorithms can be applied, LDA works better when the feature space is noisy, as 

PCA analysis will not overlook noise when creating a basis set in the feature space. Recently, SHAP 

has become another popular feature selection tool. The SHAP analysis utilizes a game theory approach 

to explain an individual feature’s contribution to the final prediction.40 The SHAP value of feature A is 

calculated by taking the difference between the model’s output with feature A and the average output 

after iterating through the feature-space of A.40 SHAP values can be applied to discrete features for the 

detection of drugs in sweat41 as well as in images to find important structural features for the activity 

prediction of chemicals27 (Figure 3-3c). Despite providing greater insight into each feature, one 

drawback to the SHAP analysis is how computationally expensive the analysis is for many features due 

to training the model across the entire feature’s dimension. There are many other feature selection 

algorithms not discussed in this section such as local interpretable model-agnostic explanations 

(LIME),42 single feature importance (SFI), and mean decrease accuracy (MDA). Some researchers 

have found that utilizing an aggregation of feature extraction techniques can improve the search for 

optimal feature combinations. Using an ensemble of feature selection methods will correct for any 

biases in one algorithm. The ensemble approach has been used in discovering important metabolites in 

a mouse’s liver.43 More research into ensemble feature selection methods will mitigate the problem of 

missing important features and aid in creating a more robust biomarker discovery tool; however, the 

biggest limitation of this technique is the computational time required for large feature pools 
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3.2.3. Model Selection  

There are a variety of machine learning models presented in the literature, each with broad, overlapping 

applications in the wearable space, which often make it hard to select the optimal algorithm to use. For 

quantifying chemicals in sweat, CNNs can measure lactate with an F1 score of 0.990,24 decision trees 

can measure glucose with a root mean squared of 0.1 mg/dL,44 KNNs can improve drifting errors in 

cortisol detection,45 and KNNs can measure tyrosine and uric acid (Figure 3-3d).31 On-body sensors 

have diagnosed depression from a random forest algorithm,32 emotional states from support vector 

machines,23,46 and stress from logistical regression.47 From measuring chemicals in the sweat to 

psychological states, the use of different ML algorithms for similar problems highlights an important 

question: does the specific ML architecture matter when most algorithms are interchangeable while 

still maintaining ahigh accuracy. The simple answer is that ML models do not create the final trends in 

the input variables; rather, ML is a tool that connects information from the input-space to an observable 

output, if such a connection exists. As a tool, models can achieve the same results while taking different 

paths. In this regard, the choice of model often depends on situational parameters such as 

time/computational efficiency, interpretability, and reproducibility. In terms of efficiency, the rate 

limiting factor in the training time is model complexity. The benefit of complex neural architectures is 

that they have greater flexibility to adapt to any subtleties present in the feature space. This makes them 

extremely good at finding weak trends within the data, such as identifying ethnicity and age from sweat 

lipid profiles using a gradient boosting tree ensemble.48 Unfortunately, complex models also require 

more data for training and risk overfitting noisy sensors. Furthermore, if the model is too complex, it 

becomes hard to create an interpretable mathematical expression relating the feature space to the final 

output. Using a complex 7-convolution layer CNN, a wearable device was able to monitor Parkinson’s 

disease.49 In this complex case, machine learning demonstrates the relevance of input features, but not 

why they are relevant. This makes it hard to reproduce and validate the outcome, due to small 
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differences in the input space (i.e., electrodes, subjects, and sensing technique) as well as possible 

randomness inherent in the algorithm. A common example of poor interpretability, yet widely 

applicable, is deep learning networks, which have previously been used to surpass the limit of detection 

of six different metal ions in sweat.50 Model selection is a trade-off between simple architectures and 

high accuracy; however, it has underlying dependence on whether the model is meant to be 

interpretable, easily reproducible, and efficient. 

3.2.4. Machine Learning Inspired Designs 

After selecting a model, one can further extend the analysis to update experimental parameters. This is 

achieved by monitoring a model’s accuracy change while varying different experimental attributes. 

Through this technique, one can find a combination of optimal antigen sensors to diagnose 

Lymedisease,28 find the best placement of electrodes on the skin,28 as well as optimize the material, 

structural, and excitation characteristics of gas sensors.51 Upon finding an optimal configuration, one 

must recollect new data, extract features, and retrain the model (Figure 3-3e).32 This process can be 

repeated multiple times, performing a gradient-descent search as one refines the final experimental 

parameters. When performed on a single subject, this method can aid in the development of a more 

personalized device for the patient. 

3.2.5. Machine Learning Discussions 

Machine learning can be applied to the development of physiochemical sensors, personalized 

healthcare, and biomarker discovery.51 When developing machine learning models for wearable 

devices, there are a variety of factors to consider from input features to model architecture. Adding 

robust, nonoverlapping information is the best way to increase the accuracy of a model; however, 

selecting these features can often be challenging as different feature selection algorithms may favor 

specific combinations. Feature selection is further limited by the choice of model. When constructing 

a machine learning model, simple architectures with a small subset of features provide greater insight 
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into the underlying mechanisms of how the feature-space maps the health of the patient. Therefore, 

while itis attractive to work on complex designs with many features, limiting the scope of the analysis 

can afford a deeper understanding of how each feature pairing affects the final diagnosis and health of 

the patient. The application of machine learning in wearable sweat biosensors is still a budding field. It 

is well-known in the machine learning community that features can greatly impact the final accuracy. 

Further investigations should look into biochemical features that can be extracted from wearable 

devices, especially considering the accuracy improvements that have already been seen in multimodal 

wearable devices when one considers the impacts of sweat rate, ionic strength, pH, and skin 

temperature. There is great potential for a device which measures these signals to improve the accuracy, 

as well as the sensitivity or selectivity, of coexisting chemical sensors. Another significant problem 

Figure 3-3: Data processing and machine learning. a, Broad overview of the machine learning 

experimental pipeline from biosensor fabrication to industry application. Reproduced with 

permission from ref (617). Copyright 2021 Wiley. b, Principal component analysis (PCA) analysis 

that can categorize different cell lines based on gene expression. Reproduced with permission from 

ref (618) under CC BY 4.0. Copyright 2016 Lenz et al. c, Shapley additive explanations (SHAP) 

analysis of two kinase inhibitors, displaying functional groups that help (red) or hurt (blue) its 

potency. Reproduced with permission from ref (615) under CC BY 4.0. Copyright 2020 

Rodríguez-Pérez et al. d, Flowchart for extracting features from electrochemical measurements, 

training a model, and predicting analyte concentrations. Reproduced with permission from 

ref (619). Copyright 2022 Elsevier. e, Generic training process for a neural network. Reproduced 

with permission from ref (620). Copyright 2020 American Chemical Society. 
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affecting the accuracy is noise in the form of motion artifact. Removing these artifacts to enable a 

system to measure the underlying signal could be of particularly high impact and help push wearable 

devices to the market. 
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C h a p t e r  4  

QUANTUMDOCK: COMPUTATIONAL DESIGN OF NUTRIONAL SENSORS 

Materials from this chapter adapted from “Mukasa, D.; Wang, M.; Min, J.; Yang, Y.; Solomon, S. 

A.; Han, H.; Ye, C.; Gao, W. A Computationally Assisted Approach for Designing Wearable 

Biosensors toward Non-Invasive Personalized Molecular Analysis. Advanced Materials 2023, 35 
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4.1: Introduction 

Wearable sensors have great potential to revolutionize the field of personalized medicine as they can 

continuously and non-invasively monitor an individual's physiological and health status.[1-9] While 

commercially available wearable health monitors mainly track physical vital signs, wearable sweat 

biosensors could offer rich health information at molecular levels.[10-23] Continuous analysis of sweat 

biomarkers including amino acids, vitamins, metabolites, drugs, hormones, and proteins could have 

a profound impact in remote monitoring and management of a variety of health conditions such as 

stress, gout, metabolic disorders, cardiovascular diseases, and cancers.[24-40, 21] Most currently 

reported wearable electrochemical sweat biosensors can only monitor a limited group of small 

molecules (e.g., glucose, lactate, and ions) using enzymatic or ion-selective sensors.[24-30] The 

majority of clinically relevant biomarkers in sweat cannot be detected in situ using these wearable 

sensing approaches. Bioaffinity sensors based on bioreceptors such as antibodies can be highly 

sensitive and selective, but are limited to single-point use and usually require additional sample 

preparation or washing steps.[41-44] 

Molecularly imprinted polymers (MIPs) are synthetic bioreceptors fabricated via the polymerization 

of functional monomers in the presence of the target analyte.[45, 46] Subsequent elution of the template 

molecule from the polymer matrix leaves target analyte-shaped imprints that can act as artificial 

antibodies to facilitate selective target rebinding. The integration of an additional redox probe in the 

sensor design can transduce such rebinding recognition into measurable electrochemical 

signals.[35, 47] We recently demonstrated continuous monitoring of circulating metabolites and 

nutrients such as branched-chain amino acids in human sweat by combining MIPs with mass-

producible laser-engraved graphene (LEG).[35] Despite the great promise of using MIPs in wearable 

sweat biosensing, MIPs have not yet gained widespread use in the field of biosensors due to their 
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complex design and optimization process.[48] The choice of functional monomers and cross-linkers 

dramatically influences sensor selectivity and overall performance, rendering many MIPs ineffective 

for biofluid analysis due to the lack of selectivity. Considering the large library of monomer and 

target biomarker choices, experimental optimization of new MIPs is extremely time-consuming, 

costly, and substantially impedes the broad application of MIP-based wearable sensor in personalized 

healthcare. 

Computational approaches such as semiempirical calculations and density functional theory (DFT) 

have great potential to simplify and accelerate the MIP design process. Although fast, semiempirical 

methods utilize the neglect of diatomic differential overlap approximation which is known to 

significantly underestimate binding affinities, limiting the ability to correlate to experimental results. 

DFT enables researchers to utilize highly accurate quantum mechanics simulations to probe 

molecular interactions between a potential monomer and biomarker. Traditionally DFT has been 

used to calculate binding energies between monomers and target biomolecules, since maximizing 

this quantity maximizes the amount of target molecules to be absorbed which in return maximizes 

MIP sensitivity.[49-51] However, finding the most stable binding configuration between two 

biomolecules tends to be a time intensive task, further slowing down the MIP design process. Further, 

previous studies lack experimental validation for biomarker analysis and have not fully addressed the 

fundamentally limiting factor in MIP performance for in situ wearable sensing applications – 

selectivity. 

In this work, we introduce QuantumDock, an automated computational framework for universal MIP 

development toward a wide range of wearable biosensing applications (Figure 4-11a). 

QuantumDock utilizes quantum theory, specifically DFT, to probe molecular interactions between 

monomers and the target/interference molecules. QuantumDock employs a novel theory to optimize 
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selectivity: A molecular docking approach is employed to find the most stable binding geometries 

and to calculate a novel selectivity metric for the optimal choice of monomer (and cross-linker when 

necessary), enabling accelerated MIP fabrication (Figure 4-11b–g; Figure A1, Appendix A). 

Through these innovations, QuantumDock addresses all previously discussed shortcomings of 

semiempirical calculations and traditional DFT and is the first standardized method for calculating 

binding energies reproducibly with a modern level of theory (Table A1, Appendix A). In addition 

to optimizing the choice of existing monomers, QuantumDock also has the potential to explore 

various unknown monomers/molecules for general MIP design with potentially higher selectivities 

than traditionally used monomers. Using an essential amino acid phenylalanine (Phe) as the 

exemplar, we experimentally validated the model using solution-synthesized MIP nanoparticles 

(NPs) and demonstrated for the first time – the correct prediction of the exponential relation between 

binding energy difference and selectivity in MIPs. This is particularly important for wearable sensor 

field as for practical in situ body fluid analysis, selectivity is the main limiting factors of the MIP 

design. Moreover, we designed a skin-interfaced wearable sweat sensing system and demonstrated 

the potential usage of a QuantumDock-optimized MIP wearable sensor for personalized nutritional 

and healthcare applications (Figure 4-11h,i). 



 

 

52 

 

 

4.2 Results and Discussion 

4.2.1 The Process of QuantumDock-Based MIP Development 

Chemically selective interactions are observed naturally in antibodies, proteins, and alike. The 

physical basis of this phenomena has been characterized extensively, particularly with selective 

isotope binding. Simply put, selective binding occurs when a target molecule (Tar) binds stronger to 

Figure 4-11: QuantumDock, a rational bioaffinity biosensor design approach for wearable 

molecular monitoring. a) QuantumDock-enabled molecularly imprinted polymer (MIP)-based 

wearable biosensor design and optimization for circulating biomarker monitoring toward 

personalized healthcare. LEG, laser-engraved graphene. b–g) The general procedures of 

QuantumDock-based MIP design: chemical database generation b), molecular docking c), 

density functional theory (DFT)-based binding energy calculation d), binding site and ground 

state identification e), target/interference-monomer property calculation for selectivity evaluation 

f), repeated computational optimization across targets and monomers libraries g). E, binding 

energy; Tar, target; Int, interferent; Mono, monomer; S, selectivity. h) The role of phenylalanine 

(Phe) in phenylketonuria (PKU) development. i) A fully-integrated wearable sensor based on 

QuantumDock-enabled Phe MIP for wireless Phe sensing toward PKU and nutritional 

monitoring. Scale bar, 1 cm. 
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a candidate material than an interferant molecule (Int) in their respective ground states. The strength 

of binding is quantified via the binding energy (E), hence selective binding is encapsulated by the 

inequality 𝐸𝑇𝑎𝑟 > 𝐸𝐼𝑛𝑡  or ∆𝐸 = 𝐸𝑇𝑎𝑟 −  𝐸𝐼𝑛𝑡 > 0. For systems of molecular biomarkers, the ground 

state geometric configuration can be quite elusive to find. Biomolecules have multiple sites in which 

non-covalent interactions including hydrogen bonds, ionic bonds, and van der Waals interactions can 

take place (Figures A2 and A3, Appendix A). Finding the ground state, or the most stable 

interaction, between a target molecule and monomer can take a long time especially when the number 

of monomers and targets is very large (Figure 4-11b). Failing to do an exhaustive search for the 

ground state however, can yield inaccurate selectivity predictions. 

To approach this issue QuantumDock employs an exhaustive yet computationally efficient docking 

approach in which a monomer is docked to a potential binding site on a target molecule until all 

binding sites have been probed (Figure 4-11c). All noncovalent interactions that can occur in a pre-

polymerized MIP solution (hydrogen bond, electrostatic, and van der Waals) are considered in this 

step. The energy near every binding site is quickly calculated over hundreds of potential molecular 

orientations using a fast-screening method, enabling an exhaustive search of the potential energy 

surface for its strongest binding sites (Figure 4-11d,e). The most stable geometric conformations 

from this screening step are used in a final DFT calculation to determine the true ground state energies 

and binding selectivities (Figure 4-11f). This process can be repeated across all targets and 

monomers in a computational library until the optimal choices are found (Figure 4-11g). It should 

be clarified that the main application of QuantumDock is not to discover new monomers never 

reported before, but rather is to identify the most suitable monomer/cross-linker choices (over many 

monomers that could be used to prepare a biomarker MIP) with highest selectivity performance over 

the many potential interferences (particularly those with similar molecular structures) in their specific 

biosensing applications. The QuantumDock-based MIP optimization can serve as a universal 
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approach for designing next-generation wearable biosensors that can monitor a broad spectrum of 

biomarkers related to various health conditions. 

4.2.2 Quantum Dock-Enabled Computational Phe MIP Optimization 

Being an essential amino acid, Phe plays an important role in the production of tyrosine and multiple 

crucial neurotransmitters (e.g., dopamine, norepinephrine, and epinephrine).[52] It is also a well-

known biomarker for phenylketonuria (PKU), an inherited disorder in which the human body is 

unable to process Phe to tyrosine, causing an array of bodily harm.[53, 54] Despite the importance and 

urgent demand of personalized Phe monitoring, its wearable sensing in human subjects via sweat 

analysis has not been demonstrated. As such we chose Phe as a model biomarker for MIP 

development. Using the QuantumDock procedure, we docked 7 commonly used monomers to Phe 

including pyrrole (PYR), 4-vinmylbenzoic acid (4VB), acrylamide (ACM), methacrylic acid (MAA), 

aniline (ANI), 3-aminophenylboronic acid (APB), and o-phenylenediamine (OPD) for MIP 

fabrication (Figure 4-12a). Although many of the monomers we chose here could be used to prepare 

the Phe MIP based on past reports, there is no study on comparing the selectivity performance of 

these monomers over the major interferences (particularly those with similar molecular structures). 

Potential binding orientations between Phe and each monomer were first screened using 

semiempirical quantum mechanical calculations (Figure 4-12b). Such methods are particularly 

advantageous as they allow for quick yet fairly accurate approximations of binding energies in 

monomer-biomarker complexes, taking on the order of seconds to calculate molecular energies. 

Results from this screening correctly revealed two potential binding sites on Phe on the carboxyl 

(COOH) and amine (NH2) functional groups. Semiempirical calculations are however historically 

known to have less accuracy than more intricate DFT calculations for calculating binding energies 

as they compromise accuracy for speed.[55, 56] This inaccuracy could lead to downstream errors where 
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the predicted sensitivities and selectivities would be poorly ranked, emphasizing the need for more 

accurate DFT energy calculations (Figure A4, Appendix A). Subsequent DFT energy calculations 

on the most stable screened molecules indicate that the carboxylic group on Phe tends to form the 

most stable bonds with all monomers in our study (Figure 4-12c,d; Figure S3, Appendix A). This 

is because Phe is highly charged and has both a hydrogen bond donor and acceptor making a 

relatively stronger and larger binding site for strong hydrogen bonds, in agreement with molecularly 

electrostatic potential calculation (Figure 4-12e). 
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The ground state binding energy, being the most stable or most negative calculated energy, is stored 

from these DFT calculations (Figure 4-12f; Figure A5, Appendix A). Following this quantum dock 

method, we find these final ground state energies to be highly reproducible (Figure A6, Appendix A). 

Traditionally the ground state binding energy has been used to optimize MIP sensitivity, with higher 

binding energies indicating a MIP will bind more target molecules to its surface. This subsequently 

Figure 4-12: QuantumDock-based computational Phe MIP optimization. a) The procedure of 

QuantumDock-based Phe-monomer ground state configuration. H-bond, hydrogen bond. b) 

Semiempirical energy calculations based on 100 docked monomer-Phe complexes for each 

monomer. PYR, pyrrole; 4-VB, 4-vinmylbenzoic acid; ACM, acrylamide; MAA, methacrylic 

acid; ANI, aniline; APB, 3-aminophenylboronic acid; OPD, o-phenylenediamine. c,d) DFT 

energy calculations on the most stable screened molecules based on Phe-monomer NH2 site c) 

and Phe-monomer COOH site d). e) Electrostatic potential of a Phe molecule. f) DFT-calculated 

binding energy of Phe-monomer. g) Colored mapping of the binding energy differences between 

Phe-monomer and interference-monomer complexes. Tyr, tyrosine; Val, valine; Leu, leucine; Ile, 

isoleucine; DA, dopamine. h) H-bonds formed in Phe-OPD complexes (ratio 1:1, 1:2, 1:3, and 

1:4). i) Binding energies of Phe/OPD and Leu/OPD (target vs monomer ratio 1:1, 1:2, 1:3, and 

1:4), and corresponding bonding energy differences. j) Binding energies of Phe/cross-linker. 

BMA, butyl methacrylate; EGDMA, ethylene glycol dimethylacrylate; TRIM, 

trimethylolpropane trimethacrylate; DVB, divinylbenzene. 

 



 

 

57 

aids detection of low concentrations when less target molecules are present in solution. Despite the use 

of this metric in theory, there is not much variation amongst our calculated binding energies. Of the 7 

monomers used in this study, 5 (APB, ACM, OPD, MAA, VB4) had binding energies to Phe within 

the top quartile of calculated energies, indicating relatively low variance from monomer to monomer. 

Therefore, only using a high binding energy as a metric for monomer choice in MIP fabrication does 

not significantly slim our number of monomer choices. We therefore turn to evaluating theoretically 

calculated selectivity's to make greater distinction between molecules. Since selectivity (S) can be 

calculated as 𝑆 ∝  𝑒𝑥𝑝(ΔE/kb𝑇) , where kB and T are Boltzmann constant and temperature 

respectively, we calculate the binding energy difference ΔE between monomer/target and 

monomer/interferent as a metric to rank our monomer selection. Selectivity calculations indicate that 

clearly OPD, MAA, and 4VB on average have the highest potential of being selective against multiple 

interferants with a similar chemical structure to Phe including tyrosine (Tyr), valine (Val), leucine 

(Leu), isoleucine (Ile), and dopamine (DA) (Figure 4-12g). Such results also confirm that even though 

monomer PYR was also used in literature to prepare Phe MIP, the PYR MIPs suffer from bad 

selectivity against most chemically similar molecules. By evaluating 5 less commonly used monomers 

which include 1,2-ethanediol (12E), acrylic acid (ACA), phenol (PHN), 2-vinylpyridine (2VP), 2-

aminophenol (2AM), we demonstrate that multiple new monomers perform better selectivity for Phe 

against chemically similar molecules (i.e., three other amino acid: Leu, Ile, and Val) than multiple more 

commonly used monomers (e.g., PYR and APB) (Figures A7 and A8, Appendix A), indicating the 

powerful capability of the QuantumDock for exploring new MIP design. It should be also noted that 

QuantumDock is fully capable of exploring unknown monomers along with those that have been 

previously reported. To demonstrate this, we have simulated two further classes of unknown monomers 

that can be used in MIP fabrication (Figures A7–A9, Appendix A): The first being 3 monomers 

(methacrylamide, vinyl acetate, and 1-vinylimidazole) that have never been used to make a MIP; The 
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second set of molecules are generated using Generative Examination Networks (GEN),[57] a popular 

neural network capable of generating simplified molecular input line entry system (SMILES) strings 

(text based encodings of molecules).[57] QuantumDock can interpret these novel SMILES strings, 

generate their 3D conformations, and test their selectivity against our previously listed interferants. The 

combination of a generative algorithm with QuantumDock shows the algorithms full potential of being 

able to generate, and screen through countless monomers for MIP development. Screening through a 

larger number of monomers opens up the possibility of finding novel monomers with higher selectivity 

and sensitivity. Interestingly enough, the novel topology of molecules generated via the GEN neural 

network shows much higher selectivities than the typical monomers used in MIP fabrication 

(Figures A8 and A9, Appendix A). 

Furthermore, calculations in which the monomer template ratio was modified showed a much more 

efficient means of increasing both monomer template binding energies and binding energy 

differences (Figure 4-12h,i). Increasing the number of monomers in the monomer template ratio 

allowed more binding sites on the Phe template to be accessed, increasing the binding energy and 

binding energy difference of the target-monomer complex. This increase seems to have diminishing 

returns once binding sites become saturated, the binding energy of the target-monomer complex stops 

increasing as rapidly. Finally, we calculate the binding energies between Phe and various potential 

cross-linkers for use of study (Figure 4-12j). It is well established that cross-linkers with low binding 

energies to the target molecule have the best potential for MIP fabrication.[58] Cross-linkers which 

bind poorly to the target molecule are less likely to nonspecifically bind to it in the polymerization 

process, and in effect more likely to contribute to the rigidity of the final polymer structure as 

intended. We therefore chose divenylbenze (DVB) as our cross-linker of choice. Its low binding 

energy to Phe can be attributed to it not having any hydrogen bond donor or acceptor atoms, making 

it an optimal candidate. 
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4.2.3 Experimental Validation of QuantumDock Using Solution-Synthesized MIP NPs 

To experimentally validate the QuantumDock-based computationally optimized MIP, a series of MIP 

NPs were synthesized and characterized by the binding/adsorption amount toward target and 

interferent molecules. All MIP NPs were prepared in a solution containing Phe, monomer and cross-

linker molecules of choice under 60 °C with azobisisobutyronitrile as the initiator (Figure 4-13a). 

Methanol was added into water (4:1 (v/v)) as a solvent to maximize the binding energy (Figure S10, 

Supporting Information). Non-imprinted polymer nanoparticles (NIP NPs) were fabricated following 

the same procedure with the exclusion of the Phe template molecule. The resultant MIP NPs have a 

size of ≈50 nm according to the scanning electron microscopy (SEM) image (Figure 4-13b). Energy 

dispersive X-ray (EDX) analysis of the MIP NPs before and after target extraction showed a sharp 
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decrease at the carbon alpha emission lines after Phe extraction (Figure 4-13c), suggesting the 

successful extraction of Phe molecules. Such target extraction was further validated by conducting 

ultraviolet–visible spectroscopy (UV–vis) before and after extraction on a sample containing MIP 

NPs. The absorbance peak at ≈270 nm wavelength was consistent with Phe's UV-absorption maxima 

decreases after target extraction (Figure 4-13d). It should be noted that the peak is however still 

present as there will be some Phe molecules trapped inside the polymer matrix after extraction.  

Figure 4-13: Experimental validation of QuantumDock-optimized Phe MIP using solution- 

synthesized NPs. a) Solution synthesis process of Phe MIP NPs. b) Scanning electron microscopy 

(SEM) image of Phe-PYR MIP NPs. Scale bar, 200 nm. c) Energy-dispersive X-ray spectroscopy 

results of carbon elements in the Phe-PYR MIP NPs before and after target extraction. d) 

Ultraviolet–visible spectroscopy (UV–vis) absorbance of Phe-PYR MIP NPs before and after 

template extraction. e) UV–vis absorbance of Phe-PYR MIP NPs after incubation of 500 µM–

20 mM Phe. Insets, calibration plots with a linear fit. f) The maximum adsorption amount (Qe) of 

Phe-PYR MIP NPs over incubation time. g) Qe of Phe/monomer MIP NPs upon incubation in 

500 µM–20 mM Phe. h) The relationship between Qe of the Phe MIP NPs and calculated Phe-

monomer binding energies. i) The relationship between Qe of the Phe MIP NPs and calculated Phe-

cross-linker binding energies. j,k) Selectivity of Phe MIP NPs based on different monomers over 

interferents DA j) and Trp k). All error bars represent the s.d. from three measurements. 
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Isotherm experiments were conducted to investigate the binding dynamics of Phe to various MIP 

NPs fabricated with different monomers. A linear relationship was identified between the absorbance 

peak height at ≈270 nm and the Phe concentration in the range between 500 µM and 

20 mM (Figure 4-13e). The maximal absorption of each MIP NPs Qe was calculated as Qe = (C0-

Ct)/(m/V) where m/V is the MIP NP density, C0 is the initial target molecule solution concentration, 

and Ct is the concentration recorded after incubating MIP NPs in solution. An incubation time of at 

least 6 min was determined to be optimal as Qe tended to maximize at this time, indicating the system 

had reached thermodynamic equilibrium (Figure 4-13f). Qe results show a distinction between each 

monomer with MAA being highest on average and PYR the lowest next to its NIP counterpart 

(Figure 4-13g). These results are in agreement with the DFT calculations of the binding energy 

between monomers and Phe (Figure 4-13h), indicating that when a target molecule binds stronger 

to a MIP binding site, more of said target molecules will bind to the MIP. This effect can be used to 

increase the MIP's sensitivity by binding more of the target even at low concentrations, hence 

increasing the resulting sensor signal response. Further, we have successfully validated that cross-

linkers with low binding energy to template molecules lead to higher Qe (Figure 4-13i). 

Further studies were carried out to probe the MIPs capability to selectively bind to Phe over other 

interfering molecules. Selectivity 𝑆 =  𝑄𝑒
𝑇𝑎𝑟/𝑄𝑒

𝐼𝑛𝑡 is measured as the amount of target molecules a 

MIP particle can absorb (𝑄𝑒
𝑇𝑎𝑟) divided by the amount of interferant molecules the MIP is capable 

of absorbing (𝑄𝑒
𝐼𝑛𝑡). This selectivity metric directly indicates a MIPs capability to preferentially bind 

its imprinted target molecule over any potentially coexisting interferant. To our knowledge no such 

study has probed into the correlation using this measured selectivity nor any theoretical description 

of selectivity. As illustrated in Figure 4-13j,k, using DA and Trp as the exemplar interferents 

(Figure A11, Appendix A), our selectivity results of the Phe MIP NPs verified the previously 

described theoretical derivation of selectivity which states that selectivity is exponentially 
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proportional to the binding energy difference. This result is especially interesting as it shows 

optimizing selectivity computational can quickly yield significant improvements in a MIPs 

selectivity, hence drastically increasing a biosensors performance. It should be noted that the binding 

energy difference calculated by the intermediate binding states could lead to large prediction error 

(Figure A12, Appendix A). Therefore, QuantumDock's capability to reproducibly find the most 

stable ground state binding energies is critical for selectivity prediction. 

4.2.4 Electrochemical Graphene Sensor Development toward Continuous Sweat Phe Monitoring 

Applying the QuantumDock-optimized MIPs to wearable biosensors, we developed a flexible 

electrochemical biosensor using the Phe MIP as the bio-receptor to specifically capture free Phe 

molecule in the sweat (Figure 4-14a). Considering the low concentration of Phe in human sweat 

(µM level), flexible laser-engraved graphene (LEG) on a polyimide substrate was chosen as the 

electrode material to increase the sensor sensitivity and skin conformability as it has a large surface 

area, high electrochemical catalytic activity, high mechanical flexibility, and can be mass-producible 

at a large scale (Figures A13 and A14, Appendix A).[33, 59] To prepare the biosensor, the Phe MIP 
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layer was directly electro-polymerized onto an LEG electrode followed by the target extraction. The 

selective recognition molecule into the imprinted polymeric layer can be further converted to a 

measurable electrochemical signal by incorporating a redox active reporter (RAR) layer between the 

Phe MIP film and the LEG electrode. The target adsorption reduces the exposure of the RAR (nickel 

hexacyanoferrate here) to the sample matrix and further block the electron transfer and thus leads to 

Figure 4-14: Characterization of electrochemical graphene-based Phe sensor. a) The mechanism 

of the electrochemical Phe MIP sensor based on the laser-engraved graphene (LEG) and the 

redox-active reporter (RAR). b) SEM image of an LEG-RAR-MIP electrode. Scale bar, 1 µm. 

c,d) Differential pulse voltammetry (DPV) c) and electrochemical impedance spectroscopy (EIS) 

d) results of an LEG-RAR electrode, an LEG-RAR-MIP electrode before target extraction, and 

an LEG-RAR-MIP electrode after target extraction. Z, impedance; Z’, resistance; Z’’, reactance. 

e, DPV voltammograms and the corresponding calibration curves of Phe detection using the 

LEG-RAR-MIP sensors. f) DPV peak height of current density of the Phe sensor under 

mechanical deformation. Error bars represent the s.d. from three sensors. g) DPV voltammograms 

of an LEG-RAR-MIP Phe sensor before and after incubation in Phe and Leu. h) The target (Phe) 

to interference signal ratios of the LEG-RAR-OPD, LEG-RAR-APB, and LEG-RAR-PRY MIP 

sensors. i) Calibration strategies of the wearable LEG-MIP sensors involving a two-step DPV-

scan calibration for automatic in situ Phe analysis. j) In situ continuous sensing and regeneration 

of an LEG–RAR–MIP Phe sensor in Phe solutions. k,l) Color maps showing the dependence of 

the LEG-RAR-MIP Phe sensor response on pH k) and Na+ l) concentrations. All error bars 

represent the s.d. from three sensors. 
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a decreased redox signal (Figure 4-14a). The SEM image of the Phe sensor clearly shows a highly 

porous 3D structure of the LEG covered uniformly by a polymeric MIP film and RAR NPs (Figure 4-

14b).  

The successful MIP electrochemical sensor preparation was characterized and validated using 

differential pulse voltammetry (DPV) (Figure 4-14c). The LEG-RAR displayed the highest 

reduction peak of RAR which decreased substantially after polymerization of the polymer film (LEG-

RAR-MIP-before) due to the RAR blockage by the polymer; the extraction of the template molecule 

(Phe) led to the target selective cavities and increased exposure of the RAR site to the sample matrix, 

resulting in an increased reduction signal (Figure 4-14c). In addition, the MIP sensor preparation 

was further validated using open-circuit potential-electrochemical impedance spectroscopy (OCP-

EIS): the electrode resistance in Nyquist plots decreased after the extraction of the template, 

suggesting the increased exposure for RAR to the sample matrix (Figure 4-14d). 

For Phe quantification, DPV was used to measure the RAR's reduction peak of the LEG-RAR-MIP 

Phe sensor, where the decrease in the peak current correlated with an increase in Phe concentration. 

A log-linear relationship between the decreased peak current density height of the DPV 

voltammograms and Phe concentration (Figure 4-14e) was achieved with a sensitivity of 

353.94 nA mm−2 per decade of concentration, when OPD was used as the monomer. The flexible 

LEG sensors demonstrated stable electrochemical performance under mechanical deformation 

(Figure 4-14f). Moreover, the sensor showed excellent selectivity toward other analytes with similar 

structures such as Leu: a substantially higher DPV reduction peak decrease was observed for Phe 

detection compared to that obtained after incubation with interferent Leu (Figure 4-14g). Overall, 

compared with APB and PYR MIP-based sensors, the OPD MIP-based sensors show improved 

selectivity for the detection of Phe over common physiological-level interferents (Figure 4-14h; 
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Figure A15, Appendix A), consistent with the QuantumDock's computational results on 

ΔE (Figure 4-12g). 

To enable automatic Phe detection in human sweat toward non-invasive wearable sensing, we 

utilized here an in-situ calibration strategy involving two-step DPV scans: the first scan was 

performed to determine the background signal before target recognition while the second scan was 

performed after incubation to determine the reduction signal change; in situ regeneration was realized 

by applying constant current to the MIP electrode to repel the bound Phe molecules (Figure 4-14i). 

Continuous and repetitive Phe detection between low concentration and high concentration can thus 

be realized automatically (Figure 4-14j). Considering that the variations of individual's sweat 

composition could affect the in situ Phe measurement, we characterized the dependence of pH or 

solution conductivity (Na+) on the response of the Phe sensor, as illustrated in Figure 4-14k,l. 

Considering that both pH and Na+ have substantial influence on the Phe sensor reading, it is important 

to simultaneously monitor pH and Na+ levels for in situ accurate sweat analysis. 

4.2.5 Development of the Fully-Integrated Wearable and Flexible Phe Sensor Patch 

To enable the continuous Phe monitoring, a wireless wearable sensor patch was developed based on 

our previously established platform[33] that contains two carbachol-loaded LEG iontophoresis 

electrodes for prolonged localized on-demand sweat induction, a laser-engraved microfluidic module 

for sweat sampling, and a sensor array consisting of a QuantumDock-optimized LEG-OPD MIP Phe 

sensor (Figure 4-15a–c; Figure A16, Appendix A). The integrated system can perform on-demand 

iontophoresis, multimodal electrochemical sensing, and wireless communication (Figure 4-15d; 

Figure A17,Appendix A). Electrochemical ion-selective pH and Na+ sensors are intergraded into 

the wearable sensor patch to realize accurate wearable Phe analysis in sweat monitoring via real-time 

sensor calibration in real time (Figure 4-15e,f). The accuracy of the wearable Phe sensor patch for 
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analyzing raw human sweat was verified using the gold standard gas chromatography-mass 

spectrometry (GC-MS): a very high correlation between the results from sensors and from GC-MS 

was observed (Figure 4-15g). The sensor patch is able to autonomously induce sweat through 

iontophoresis (to deliver carbachol below the skin) at rest without the need for vigorous exercise; a 

microfluidic module was used to efficiently sample the fresh sweat generated from the sweat gland 

due to the nicotinic effects of carbachol to facilitate the real-time sweat analysis (Figure 4-15h; 

Figure A18). 
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Clinical on-body evaluation of the wearable system toward personalized nutritional monitoring was 

performed via sensing of sweat Phe in human subjects at rest with and without Phe supplement intake. 

Figure 4-15: Design and in vivo evaluation of the fully-integrated wearable flexible MIP-based 

Phe sensor. a,b) Schematic a) and layer assembly b) of the wearable microfluidic Phe sensor patch 

for autonomous sweat induction, sampling, and biosensing. CE, counter electrode; RE, reference 

electrode; IP, iontophoresis. d) Block diagram of electronic system of the wearable Phe sensor. 

CPU, central processing unit; POT, potentiometry; In-Amp, instrumentation amplifier; MCU, 

microcontroller; TIA, trans-impedance amplifier; WE, working electrode. e,f) Calibration plots 

obtained using the wearable system from the Na+ e) and pH f) sensors. g) Validation of Phe 

sensors for raw sweat samples (n = 21) analysis against gas chromatography–mass spectrometry 

(GC-MS). h) On-body evaluation of the microfluidic patch for efficient sweat induction and 

sampling at rest. Timestamps represent the period (min) after a 5 min iontophoresis session. Black 

dye was used in the reservoir to facilitate the direct visualization of sweat flow in the 

microfluidics. Scale bar, 5 mm. i,j) Autonomous Phe monitoring of two healthy subjects using 

the wearable sensors at a fasting state. k,l) Autonomous Phe monitoring of two healthy subjects 

using the wearable sensors after Phe intake. For i–l) a 5 min iontophoresis was performed in the 

beginning of the trial followed by multiplexed data recording. Temperature, pH, Na+ was 

recorded simultaneously for signal calibration. 
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The DPV signal from the Phe sensor worn on the subjects’ wrist was wirelessly transmitted along with 

temperature, pH and Na+ sensor readings to the interface that automatically performed calibration for 

the accurate quantification of sweat Phe (Figure 4-15i–l; Figure A19 ). As expected, rapidly rising Phe 

levels in sweat were observed from all two subjects after Phe supplement intake while the Phe levels 

remained stable during the fasting studies. This represents the first demonstration of continuous non-

invasive wearable sweat Phe sensing in human subjects. Such a good capability indicates the great 

potential for non-invasive Phe monitoring using the wearable sensor and opens the door for PKU 

management through personalized sensor-guided dietary intervention. 

4.3 Conclusion 

We demonstrated a computational framework – QuantumDock – for optimizing MIP performance 

toward a wide range of wearable biosensing applications. Through DFT-based probing of 

intermolecular interactions between monomers and the targets/interferents, we were able to develop 

MIP-based sensors with enhanced selectivity, a crucial factor for in situ wearable biomarker analysis. 

Through the screening a number of molecules, we demonstrated that QuantumDock also has the 

potential to explore a wide range of commonly used and unknown monomers for designing better 

MIPs. We successfully validated the QuantumDock-based MIP design and optimization using 

solution-synthesized MIP NPs. We further show the potential for generative artificial intelligence in 

materials design by using GEN to generate novel monomers with significantly higher theoretical 

selectivities than commonly used MIP monomers. Based on the QuantumDock-optimized MIP, we 

also developed a laser-engraved graphene-based wearable electrochemical Phe sensor capable of 

autonomous sweat extraction, sampling, and sensing without the need for vigorous exercise. The first 

wearable non-invasive Phe monitoring in human subjects revealed the high potential of such 

technology for personalized nutritional and healthcare applications. As QuantumDock is a universal 

sensor optimization approach that can be easily adapted toward other important biomarkers in human 
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body fluids, we envision that it will enable the demonstration of high-performance MIP sensors for 

the analysis of a wide range of biomarker and facilitate the realization of practical wearable 

healthcare applications. 
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APPENDIX A 

Selectivity thermodynamic derivation Computational MIP design has historically been based around 

the calculation of a binding energy E which indicates how strongly a target molecule will bind to a 

potential monomer. With strong binding energies, stable target-monomer complex can for in the pre-

polymerization solution and remain bound through the polymerization process. After subsequent 

elution of the target from the polymer matrix a well-defined imprinted site remains with a high affinity 

for target molecules in solution. This model however leaves out consideration on how to make a MIP 

more selective which, to date, no group has explicitly proposed a theoretical basis for, nor experimental 

validation. Selective binding has been studied with ideal gasses, particularly with selective isotope 

binding[29]. The theoretical basis of this binding event treats two molecules, indexed i, as ideal gasses 

competing to bind to an absorbing material. Hence the molecules have a chemical potential: 

𝜇𝑖
𝑓𝑟𝑒𝑒

= 𝑘𝑏𝑇𝑙𝑛(𝑛𝑖𝜆𝑖/𝑞𝑖
𝑖𝑛𝑡)  

and an absorbed chemical potential: 

𝜇𝑖
𝑎𝑏𝑠 = 𝐸𝑖

0+ 𝑘𝑏𝑇𝑙𝑛(𝜌𝑖𝜆𝑖/𝑞𝑖
𝑖𝑛𝑡)  

where 𝐸𝑖 0 denotes ground state energy of molecule i in the presence of the absorbing material, 𝑞𝑖 𝑖𝑛𝑡 

the internal partition function, 𝜆𝑖 the de Broglie wavelength, 𝑛𝑖 the density of free particles, and 𝜌𝑖 the 

density of absorbed molecules[10–13]. Given ample time to reach thermodynamic equilibrium (i.e. 𝜇𝑖 

𝑓𝑟𝑒𝑒 = 𝜇𝑖 𝑏𝑜𝑢𝑛𝑑) the ratio of absorbed i molecules to free molecules is 

𝜌𝑖

𝑛𝑖
= 𝜆𝑖

−2exp (𝐸𝑖
0/𝑘𝑏𝑇). 

Taking note that  

𝜆𝑖 = √2𝜋ℏ2/𝑚𝑖𝑘𝑏𝑇   

selectivity’s functional form clearly becomes 
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𝑆 =
𝜌1

𝜌2
/

𝑛1

𝑛2
 =

𝑚2

𝑚1
exp ([𝐸2

0 − 𝐸1
0]/ 𝑘𝑏𝑇) =

𝑚2

𝑚1
exp (Δ𝐸/𝑘𝑏𝑇)  

 

QuantumDock-enabled Phe MIP optimization QuantumDock uses the Orca software for the bulk of its 

calculations[14]. The docking procedure relies on semiempirical calculations in which we identify 

potential binding sites (namely hydrogen bond donor or acceptor atoms) and place our 

monomer/crosslinker within proximity of this site. Configurations with hydrogen bonds will present 

lower energies due to attractive nature of the bond. As such, single point energies are calculated using 

the semiempirical PM3 method. This method has the advantage of being relatively more accurate than 

other semiempirical calculations, but still has the capability to calculate energies quickly (normally 

with the order of seconds per geometry). This enables the probing of hundreds of geometries without 

the need for more expensive DFT methods.  As previously noted however, semiempirical calculations 

have poor accuracy compared to experiments (Supplementary Fig. 3), hence necessitating more 

expensive DFT calculations. The same binding energy calculation at the level of theory of DFT 

drastically increases the time to complete a calculation, taking anywhere from 5–100+ hours depending 

on the number of atoms being simulated. To limit the total computational time only the 20 most stable 

configurations from the previous docking step are probed further using geometry optimization at the 

DFT level of theory. We utilize the B3LYP function with a 6-31**++ basis set and D3BJ dispersion 

corrections as it strikes the perfect balance between computational cost and notable accuracy. Final 

binding energies were calculated using the standard formula  

𝐸𝐵𝑖𝑛𝑑𝑖𝑛𝑔 = 𝐸𝐶𝑜𝑚𝑝𝑙𝑒𝑥 − (𝐸𝑇𝑎𝑟/𝐼𝑛𝑡 + ∑𝐸𝑀𝑜𝑛𝑜/𝐶𝑟𝑜𝑠𝑠𝑙𝑖𝑛𝑘𝑒𝑟). 

 Intermediate geometries found in this step clearly indicate the problem QuantumDock solves. Namely 

that biomolecules have multiple binding site for strong hydrogen bond interactions, but one tends to be 

the strongest, i.e. the ground state energy (Supplementary Fig. 1). This is especially made evident by 

looking at molecularly electrostatic potential calculations, which are traditionally used to indicate 
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where highly charged areas are on a molecule, hence locations where hydrogen bond formation is likely 

(Supplementary Fig. 2). Results quantify the complex nature of biomolecules with each biomolecule 

having multiple highly charged areas. Monomers tend to bind to a particular functional group on 

biomolecules, but this exact functional group and pose between two molecules is only determined with 

certainty after conducting an exhaustive docking procedure. 

Using the QuantumDock framework we can calculate accurate ground state binding energies between 

various targets/interferences and potential monomers (Supplementary Fig. 4). Energies calculated 

using the QuantumDock method show high reproducibility with final binding energies being found 

repeatedly within less than 0.1 kJ mol-1, which can be attributed to the underlying precision of the 

ORCA software (Supplementary Fig. 5). This indicates QuantumDock finds the same binding 

geometry to be the most stable repeatedly, which builds our confidence that this is indeed the true 

ground state, hence enabling us to calculate reliable binding energies between many biomolecules and 

monomers of interest.  QuantumDock’s capabilities can be easily extended to solvation calculations, in 

which the binding energy between two molecules is calculated in a solvent solution rather than vacuum 

(Supplementary Fig. 8). A clear trend seen from these calculations shows that binding energies tend to 

increase in strength with decreasing dielectric constant of the solvent used, hence motivating our choice 

of methanol for our polymerization solvent. Stronger binding energies in the pre-polymerized solution 

enable a more stable target-monomer complex which has a higher likelihood of surviving the 

polymerization process and making a well-defined imprinted site in the subsequent MIP. 
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Methods Materials and reagents:  

Potassium ferricyanide (CAS No. 13746-66-2) and nickel(II) acetate tetrahydrate (CAS No. 6018-89-

9) were purchased from Acros Organics. Trisodium citrate dihydrate (CAS No. 6132-04-3), 

phenylalanine (CAS No. 63-91-2), tryptophan (CAS No. 73-223), leucine (CAS No. 61-90-5), alanine 

(CAS No. 56-41-7), isoleucine (CAS No. 73-32-5), methionine (CAS No. 63-68-3), valine(CAS No. 

72-18-4), acetonitrile (CAS No. 75-05-8), 3aminophenylboronic acid (CAS No. 30418-59-8), aniline 

(CAS No. 62-53-3), pyrrole (CAS No. 109-97-7), acrylamide (CAS No. 79-06-1), methacrylic acid 

(CAS No. 79-41-4), 4-vinylbenzoic acid (CAS No. 1075-49-6), o-phenylenediamine (CAS No. 95-54-

5), 1,2-ethanediol (12E, CAS NO. 107-21-1), acrylic acid (ACA, CAS NO. 79-10-7), phenol (PHN, 

CAS NO. 203-632-7), 2vinylpyridine (2VP, CAS NO. 100-69-6), and 2-aminophenol (2AM, CAS NO. 

100-69-6) were purchased from Sigma-Aldrich. L-tyrosine (CAS No. 60-18-4) and iron(III) chloride 

(CAS No. 7705-08-0) were purchased from Alfa Aesar. Acetic acid (CAS No. 64-19-7), methanol 

(CAS No. 67-56-1), and sodium chloride (CAS No. 7647-14-5) were purchased from Thermo Fisher 

Scientific. Medical adhesives were purchased from 3 M and Adhesives Research. Polyimide (PI) films 

(75 μm thick) were purchased from DuPont. PET films (12 μm thick) were purchased from McMaster-

Carr. Synthesis of the NiHCF particles. Nickel(II) acetate tetrahydrate (37.25  mg, 149.75 µmol) and 

trisodium citrate dihydrate (66 mg, 224.5 µmol) were dissolved in 5 mL of water and was injected  

(20.0 mL min-1) into 5 mL of potassium hexacyanoferrate(III) (32.75 mg, 99.25 µmol)  aqueous 

solution. The reaction was carried out under room temperature (22 ºC) for 24 h and then centrifuged at 

10000 revolutions per minute (rpm) for 10 minutes with centrifuge (Eppendorf Centrifuge 5424). The 

supernatant was discarded, and the precipitated nanoparticles were rinsed with water (4x30 mL). 

Subsequently, they were redispersed in water (Vortex mixer) and the centrifugation step was repeated 

at least three times. The resulting orange solution in water was kept under 4 ℃ for further use. 

Fabrication and preparation of the laser-engraved graphene (LEG) sensors: The LEG electrodes were 
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fabricated following our previous report on a PI film with a 50 W CO2 laser cutter (Universal Laser 

System).[1] The optimized parameters for the graphene electrodes and electronic connections were 

power 8%, speed 15%, and points per inch (PPI) 1,000 in raster mode with three time scan. The 

reference electrode, Ag was electrodeposited onto the LEG directly with electrochemical workstation 

(CHI 840D) with multi-current steps at −0.01 mA for 150 s, −0.02 mA for 50 s, −0.05 mA for 50 s, 

−0.08 mA for 50 s and −0.1 mA for 200 s using a plating solution containing 0.25 M silver nitrate, 0.75 

M sodium thiosulfate and 0.5 M sodium bisulfite; 0.1 M FeCl3 in 0.1 M HCl solution was further 

dropped on the Ag surface for 30 s and washed the solution with water; then 1.5 μL reference cocktail 

prepared by dissolving 79.1 mg of polyvinyl butyral and 50 mg of NaCl in 1 ml of methanol was 

dropped on the Ag/AgCl electrode and dried overnight. The Na+ working electrode was prepared as 

follows: Na+-selective membrane cocktail was first prepared by dissolving 1 mg of Na ionophore X, 

0.55 mg sodium tetrakis[3,5bis(trifluoromethyl)phenyl]borate, 33 mg polyvinyl chloride and 65.45 mg 

bis(2-ethylhexyl) sebacate into 660 μL of tetrahydrofuran; 0.6 μL cocktail was drop-casted onto the 

LEG electrode and dried overnight. To obtained Na+ sensor was conditioned overnight in 100 mM 

NaCl before use. The pH sensor was fabricated by electro-polymerization of 0.1 M aniline in 0.1 M 

HCl aqueous solution through 100 segments of cyclic voltammetry (-0.2 to 1 V at a scan rate of 50 mV 

s-1). To prepare the Phe MIP sensor, 1 µL of the NiHCF particle dispersion was firstly drop casted 

onto the surface of LEG electrode, and dried under 90 ℃ for 5 h, then, the Phe selective MIP membrane 

is synthesized by electro-polymerization. The polymerization solution was prepared by dissolving 5 

mM Phe molecular as template, 20 mM of different monomers in 95% of 0.01 M phosphate-buffered 

saline (PBS) (pH 6.5) and 5% acetonitrile. The Phe imprinted polymer was electrochemically 

polymerized on the NiHCF modified LEG electrode with CV deposition using the prepared 

polymerization solutions. The Phe template molecules were extracted by soaking the electrode into an 

acetic acid/methanol mixture (7:3 v/v) for 1 h. Subsequently, the LEG-NiHCFMIP was rinsed with 
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distilled water and conditioned in air and room temperature (22 ºC) overnight. Subsequently, the LEG-

NiHCF-MIP was immersed into a phosphate buffer solution for repetitive CV scans (0 to 0.8 V with a 

scan rate of 50 mV s-1) until a stable response was obtained.   MIP nanoparticles (NPs) synthesis and 

characterization. MIP NPs were fabricated and characterized with ultraviolet–visible spectroscopy 

(UV-vis) (Thermo Scientific NanoDrop) to experimentally confirm our computational results. All MIP 

NPs were fabricated using a standardized experimental procedure described as follows (except the use 

of different monomer/crosslinker for a specific type of MIP NPs). The target molecule Phe was added 

along with the monomer of choice (pyrrole, methylacrylic acid, acrylamide, or 4-vinylbenzoic acid) in 

10 mL 1:4 deionized-water:methanol (v:v) and mixed until completely dissolved. 40 mM of crosslinker 

(divinylbenzene, butyl methacrylate, or ethylene glycol dimethylacrylate) was then added and mixed 

until dissolved. 25 mM of initiator (azobisisobutyronitrile) was then added to solution and the container 

is purged with nitrogen for 10 minutes at low pressure to avoid decarboxylation. The polymerization 

was then started by water bath at 60 ºC for 5 hours. Extraction of the template then took place by adding 

5 mL acetic acid:methanal (7:3 v/v) and stirring overnight. The following day the particle solution was 

then washed with water 3 times at 7000 rpm for 2 minutes at a time, then washed one more time with 

methanol at 7000 rpm for 2 minutes and dried at 30 ºC until dry. The dried particles were then crushed 

by a probe sonicator (CGOLDENWALL) to a fine powder (around 100 nm in diameter) for subsequent 

testing. Materials characterization. The morphology of materials was characterized by field-emission 

scanning electron microscopy (SEM, Nova 600). Energy-dispersive X-ray spectroscopy (EDS) 

analyses were performed using a JEOL JEM-ARM300CF S/STEM system (300 keV). Characterization 

of the LEG sensor performance. A set of electrochemical sensors were characterized in solutions of 

target analytes. All the in vitro sensor characterizations were performed through CHI 840D. The 

response of pH sensor was characterized with open circuit potential measurements in the standard 

Mcllvaine’s buffer solutions with different pH value. The response of the Na+ sensor was characterized 
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with open circuit potential measurements in the solutions containing varied Na+ levels. DPV analysis 

was performed for all the LEG-NiHCF-MIP PHE sensor characterizations in 0.01 M PBS (pH 6.5) or 

in raw sweat. The negative DPV condition were as follows: 0.8 to 0 V; incremental potential, 0.01 V; 

pulse amplitude, 0.05 V; pulse width, 0.05 s; pulse period, 0.5 s; and sensitivity, 1 × 10−5 A V−1. For 

in situ sweat analyte measurement, background and signal curves were recorded before and after 

incubation; the signal current was obtained as the difference of the peak amplitudes between the post-

incubation signal and the background current curves.  Fabrication and characterization of microfluidic 

channels. The microfluidic module was fabricated using a 50 W CO2 laser cutter (Universal Laser 

System).[1] Briefly, layers of doublesided and single-sided medical adhesives (3M) were patterned 

with channels, inlets, the iontophoresis gel outlines and reservoirs. For all microfluidic layers, the 

iontophoresis gel outlines were patterned to enable the current flow from the top PI electrode layer. 

The bottom layer, which 10 mL 1:4 deionized-water:methanol (v:v) and mixed until completely 

dissolved. 40 mM of crosslinker (divinylbenzene, butyl methacrylate, or ethylene glycol 

dimethylacrylate) was then added and mixed until dissolved. 25 mM of initiator (azobisisobutyronitrile) 

was then added to solution and the container is purged with nitrogen for 10 minutes at low pressure to 

avoid decarboxylation. The polymerization was then started by water bath at 60 ºC for 5 hours. 

Extraction of the template then took place by adding 5 mL acetic acid:methanal (7:3 v/v) and stirring 

overnight. The following day the particle solution was then washed with water 3 times at 7000 rpm for 

2 minutes at a time, then washed one more time with methanol at 7000 rpm for 2 minutes and dried at 

30 ºC until dry. The dried particles were then crushed by a probe sonicator (CGOLDENWALL) to a 

fine powder (around 100 nm in diameter) for subsequent testing. Materials characterization. The 

morphology of materials was characterized by field-emission scanning electron microscopy (SEM, 

Nova 600). Energy-dispersive X-ray spectroscopy (EDS) analyses were performed using a JEOL JEM-

ARM300CF S/STEM system (300 keV). Characterization of the LEG sensor performance. A set of 
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electrochemical sensors were characterized in solutions of target analytes. All the in vitro sensor 

characterizations were performed through CHI 840D. The response of pH sensor was characterized 

with open circuit potential measurements in the standard Mcllvaine’s buffer solutions with different 

pH value. The response of the Na+ sensor was characterized with open circuit potential measurements 

in the solutions containing varied Na+ levels. DPV analysis was performed for all the LEG-NiHCF-

MIP PHE sensor characterizations in 0.01 M PBS (pH 6.5) or in raw sweat. The negative DPV 

condition were as follows: 0.8 to 0 V; incremental potential, 0.01 V; pulse amplitude, 0.05 V; pulse 

width, 0.05 s; pulse period, 0.5 s; and sensitivity, 1 × 10−5 A V−1. For in situ sweat analyte 

measurement, background and signal curves were recorded before and after incubation; the signal 

current was obtained as the difference of the peak amplitudes between the post-incubation signal and 

the background current curves.  Fabrication and characterization of microfluidic channels. The 

microfluidic module was fabricated using a 50 W CO2 laser cutter (Universal Laser System).[1] 

Briefly, layers of doublesided and single-sided medical adhesives (3M) were patterned with channels, 

inlets, the iontophoresis gel outlines and reservoirs. For all microfluidic layers, the iontophoresis gel 

outlines were patterned to enable the current flow from the top PI electrode layer. The bottom layer, 

which the digital-to-analogue converter (DAC) (DAC8552, Texas Instruments) over a serial peripheral 

interface to set the control voltage of the current source. The current source output is checked by a 

comparator (TS391, STMicroelectronics), and the microcontroller is interrupted through its general-

purpose input/output pin at output failure. The protection circuit consists of a current limiter 

(MMBF5457, ON Semiconductor) and analogue switches (MAX4715, Maxim Integrated; ADG5401, 

Analog Devices). The microcontroller’s general-purpose input/output is also used to enable or disable 

the iontophoresis circuit. For the optimized design, a 100-μA current (~2.6 μA mm−2) was applied for 

on-body iontophoresis sweat induction using the flexible microfluidic patch. Sweat sensing. The sweat 

sensing circuitry can perform DPV, as well as potentiometric and temperature measurements. A 
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potentiostat circuit is constructed by a control amplifier and a transimpedance amplifier (AD8606, 

Analog Devices). A series voltage reference (ISL60002, Renesas Electronics) and a DAC (DAC8552, 

Texas Instruments) is used to generate a dynamic potential bias across the reference and working 

electrode. Two instrumentation amplifiers (INA333, Texas Instruments) are used for potentiometric 

measurements, and a voltage divider is used for the resistive temperature sensor. All analogue voltage 

signals are acquired by the microcontroller’s built-in analogue-to-digital converter (ADC) channels, 

processed and then transmitted over Bluetooth to a user device. Human subject recruitment. The 

validation and evaluation of the sweat sensor were performed using human subjects in compliance with 

all the ethical regulations under protocols (ID: 19-0892) that were approved by the institutional review 

board at California Institute of Technology (Caltech). The participating subjects (aged over 18 years) 

were recruited from Caltech campus through advertisement. All subjects gave written informed consent 

before study participation. For wearable sensor evaluation, healthy subjects with a body mass index 

(BMI) of 18.5– 24.9 kg m−2 with fasting serum glucose <100 mg dl−1 were recruited. GC–MS analysis 

for sensor validation. GC–MS analysis of the PHE in the collected sweat samples was performed using 

EZ:Faast kit from Phenomenex, which enables sample preparation, derivatization and GC–MS analysis 

of free AAs. A Varian Saturn 2000 was used for the GC–MS runs. One microlitre of prepared sample 

solution was injected for GC in helium carrier gas at 1.0 ml min−1 constant flow with a pulse pressure 

of 20 pounds per square inch for 0.2 min, with the oven programmed from 110 °C to 320 °C at 32 °C 

min−1. The mass chromatography was set with source at 240 °C, quad at 180 °C and auxiliary at 310 

°C with a scan range of 45–450 m/z at a sampling rate of 3.5 scans s−1. Selected ion monitoring was 

used, which records the ion current at selected masses that are characteristic of the certain AA in an 

expected retention time. The internal standard (IS; norvaline) was added during the sample 

derivatization process to account for potential evaporation-induced increase in peak detection; the IS 

norvaline peak height is recorded at its ion number 158 at 1.65 min. The PHE peak height recorded 
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from raw data spectrum was calibrated with respect to the IS in the same run: normalized PHE peak 

height = PHE peak height/ IS peak height. With normalized peak heights of different levels of PHE 

standards, calibration plots were constructed.  System evaluation with PHE supplement intake. For on-

body test, the subjects reported to the lab after fasting overnight. The subjects’ arms were cleaned with 

alcohol swabs and gauze before the sensor patches were placed on the body. The subjects were provided 

PHE supplement (1 g each) for the intake study. In contrast, the control study was performed on the 

subjects without any supplementary intake. Five-minute iontophoresis was applied on the subjects. 

During the on-body trial, the data from the sensor patches were wirelessly sent to the user interface via 

Bluetooth. When the subjects started sweating, the sensor system continuously acquired and 

transmitted pH, sodium and temperature sensor data. Every minute, the electronic system initiated a 

transient voltage bias between the reference and working electrodes. When the bias triggered a current 

above an experimentally determined threshold, the system would start a CV cleaning cycle and then 

the first DPV scan as the initial background without target incubation. The DPV scan was repeated 7 

min later as the post-incubation curve. Between the two scans, pH and sodium sensor data were 

continuously recorded while the temperature was continuously recorded throughout the whole testing. 

Right after the post-incubation DPV, another cycle started with an IT cleaning/regeneration step, 

followed by an initial background DPV scan. The collected pH, sodium and DPV data were wirelessly 

transmitted to a user device via Bluetooth in real time, where the molecular data were extracted, 

calibrated and converted to concentration levels.  

Statistical  Analysis.  

For UV-vis-based molecular absorption (Fig. 3e and Supplementary Fig. 9), maximum adsorption 

amount (Qe) (Fig. 3f–i), and selectivity study (Fig. 3j,k and Supplementary Fig. 9), all the error bars 

represent the s.d calculated from three measurements. The fitting curves in Supplementary Figs. 9 and 

10 represent trendlines obtained via linear oven programmed from 110 °C to 320 °C at 32 °C min−1. 



 

 

86 

The mass chromatography was set with source at 240 °C, quad at 180 °C and auxiliary at 310 °C with 

a scan range of 45–450 m/z at a sampling rate of 3.5 scans s−1. Selected ion monitoring was used, 

which records the ion current at selected masses that are characteristic of the certain AA in an expected 

retention time. The internal standard (IS; norvaline) was added during the sample derivatization process 

to account for potential evaporation-induced increase in peak detection; the IS norvaline peak height is 

recorded at its ion number 158 at 1.65 min. The PHE peak height recorded from raw data spectrum was 

calibrated with respect to the IS in the same run: normalized PHE peak height = PHE peak height/ IS 

peak height. With normalized peak heights of different levels of PHE standards, calibration plots were 

constructed.  System evaluation with PHE supplement intake. For on-body test, the subjects reported 

to the lab after fasting overnight. The subjects’ arms were cleaned with alcohol swabs and gauze before 

the sensor patches were placed on the body. The subjects were provided PHE supplement (1 g each) 

for the intake study. In contrast, the control study was performed on the subjects without any 

supplementary intake. Five-minute iontophoresis was applied on the subjects. During the on-body trial, 

the data from the sensor patches were wirelessly sent to the user interface via Bluetooth. When the 

subjects started sweating, the sensor system continuously acquired and transmitted pH, sodium and 

temperature sensor data. Every minute, the electronic system initiated a transient voltage bias between 

the reference and working electrodes. When the bias triggered a current above an experimentally 

determined threshold, the system would start a CV cleaning cycle and then the first DPV scan as the 

initial background without target incubation. The DPV scan was repeated 7 min later as the post-

incubation curve. Between the two scans, pH and sodium sensor data were continuously recorded while 

the temperature was continuously recorded throughout the whole testing. Right after the post-

incubation DPV, another cycle started with an IT cleaning/regeneration step, followed by an initial 

background DPV scan. The collected pH, sodium and DPV data were wirelessly transmitted to a user 

device via Bluetooth in real time, where the molecular data were extracted, calibrated and converted to 



 

 

87 

concentration levels. Statistical  Analysis. For UV-vis-based molecular absorption (Fig. 3e and 

Supplementary Fig. 9), maximum adsorption amount (Qe) (Fig. 3f–i), and selectivity study (Fig. 3j,k 

and Supplementary Fig. 9), all the error bars represent the s.d calculated from three measurements. The 

fitting curves in Supplementary Figs. 9 and 10 represent trendlines obtained via linear 
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Figure A-1: The graphical user interface (GUI) of the QuantumDock. 
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Figure A-2: The hydrogen bonds and calculated Phe-monomer binding energy 
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Figure A-3: Molecular electrostatic potential (MEP) calculations of 7 

targets/interference molecules. Unit, kJ·mol-1. 
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Figure A-4: Binding energies between 7 monomers and Phe using semiempirical theory and 

DFT. 
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Figure A-5: DFT-calculated binding energy of Phe-monomer and interferent- monomer. 
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Figure A-6: Reproducibility of the QuantumDock framework. All error bars represent the 

s.d. from three trials. 
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Figure A-7: QuantumDock-based computational Phe MIP optimization using less 

commonly used monomers. a, Semiempirical energy calculations based on 100 docked 

monomer-Phe complexes for each monomer. 2AM, 2-aminophenol; 2VP, 2-vinylpyridine; 12E, 

1,2-ethanediol; ACA, acrylic acid; PHN, phenol; MAM, methacrylamide; 1VD, vinyl acetate; 

VIM, 1-vinylimidazole; GN1 and GN2, two molecules generated by the Generative Examination 

Networks (GEN) as shown in Supplementary Fig. 9. b,c, DFT energy calculations on the most 

stable screened molecules based on Phe-monomer NH2 site (b) and Phe-monomer COOH site 

(c). 
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Figure A-8: QuantumDock-calculated binding energy and binding energy differences. a, 

DFT-calculated binding energy of Phe-monomer. b, Colored mapping of the binding energy 

differences between Phe-monomer and interference-monomer complexes. Three other amino 

acids including Leu, Ile, and Val were used as the interference molecules. 
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Figure A-9: GN1 and GN2, two molecules generated by the GEN. 
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Figure A-10: Phe-PYR binding energies calculated in varying solvents. DMF, 

dimethylformamide; DMSO, dimethyl sulfoxide. 
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Figure A-11: Calibrations of the studied target and interferent molecules in solutions with 

varied concentrations using UV-Vis. All error bars represent the s.d. from three measurements. 
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Figure A-12: Selectivity of Phe MIP NPs based on different monomers over interferent 

DA based on intermediate state. All error bars represent the s.d. from three measurements. 

 

 

 

 

  

 

 

 



 

 

100 

 

 

Figure A-13: Microscopic characterization of the laser-engraved graphene (LEG). a,b, 

Scanning electron microscope (SEM) images of the LEG. Scale bars, 200 and 10 µm for a and 

b, respectively. c, High-angle annular dark-field scanning transmission electron microscopy 

(HAADF-STEM) and element mapping images of the LEG. Scale bar, 1 µm. 
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Figure A-14: Electrochemical characterization of the LEG electrode. Differential pulse 

voltammetry (DPV) of an LEG electrode, a glassy carbon electrode (GCE), a inkjet-printed Au 

electrode, and a cleanroom evaporated Au electrode in a solution containing 5 mM [Fe(CN)6]3− 

and 0.2 M KCl. 
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Figure A-15: Calibrations of the electrochemical Phe sensors prepared with APB and PYR. 

a,b, DPV voltammograms (a) and the corresponding calibration curves (b) of Phe detection 

using APB as the monomer. c,d, DPV voltammograms (c) and the corresponding calibration 

curves (d) of Phe detection using PYR as the monomer. ΔJ, peak height difference of the current 

density. All error bars represent the s.d. from three sensors. 
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Figure A-16: Fabrication process of the multifunctional flexible wearable sensor patch. 
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a 

 

 

b 

 

 

 

 

 

c 

Figure A-17: The fully integrated wireless wearable system. a, Image of the wearable system. 

The wearable sensor consisting of a flexible, disposable microfluidic sensor patch and a flexible 

printed circuit board. b,c, Calibration plot for Phe analysis using the integrated system. 
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Figure A-18: On-body evaluation of the microfluidic flexible sensor patches for carbagel 

based iontophoretic sweat stimulation and sampling at rest. Timestamps represent the period 

(min) after a 5-min iontophoresis session. Black dye was used in the reservoir to facilitate the 

direct visualization of sweat flow in the microfluidics. Scale bars, 3 mm. 
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Figure A-19: DPV signal recorded during the on-body Phe monitoring in a healthy subject 

without intake (a) and after intake (b) at 14, 28, and 63 minutes. 
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C h a p t e r  5 :  A  W e a r a b l e  E l e c t r o c h e m i c a l  B i o s e n s o r  f o r  t h e  

M o n i t o r i n g  o f  m e t a b o l i t e s  a n d  N u t r i e n t s  

 

Materials from this chapter adapted from “Wang, M.; Yang, Y.; Min, J.; Song, Y.; Tu, J.; Mukasa, D.; Ye, 

C.; Xu, C.; Heflin, N.; McCune, J. S.; Hsiai, T. K.; Li, Z.; Gao, W. A Wearable Electrochemical Biosensor 

for the Monitoring of Metabolites and Nutrients. Nature Biomedical Engineering 2022, 6, 1225–1235. 

https://doi.org/10.1038/s41551-022-00932-7” 
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5.1 Introduction 

Circulating nutrients are essential indicators for overall health and body function1. Amino acids (AAs), 

sourced from dietary intake, gut microbiota synthesis, and influenced by personal lifestyles, are 

important biomarkers for a number of health conditions (Fig. 5-1a)2. Elevated branched-chain amino 

acids (BCAAs) including leucine (Leu), isoleucine (Ile), and valine (Val), are associated with obesity, 

insulin resistance, and the future risk of type 2 diabetes mellitus (T2DM), cardiovascular diseases 

(CVDs), and pancreatic cancer3–5. Deficiencies in AAs (e.g., arginine and cysteine) could hamper the 

immune system by reducing immune-cell activation6. Tryptophan (Trp), tyrosine (Tyr) and 

phenylalanine (Phe) are precursors of serotonin and catecholamine neurotransmitters (dopamine, 

norepinephrine, and epinephrine), respectively, and play an important role in the function of complex 

neural systems and mental health7,8. A number of metabolic fingerprints (including Leu, Phe, and 

vitamin D) are linked to COVID-19 severity9,10; health disparities in nutrition also correlate well with 

the alarming racial and ethnic disparities that are worsened by COVID-19 vulnerability and 

mortality11; moreover, organ and tissue dysfunction induced by SARS-CoV-2 could result in an 

increased incidence of cardiometabolic diseases12.  

Metabolic profiling and monitoring are a key approach to enabling precision nutrition and precision 

medicine13. Current gold standards in medical evaluation and metabolic testing heavily rely on blood 

analyses that are invasive and episodic, often requiring physical visits to medical facilities, labor-

intensive sample processing and storage, and delicate instrumentation (e.g., gas chromatography-mass 

spectrometry (GC-MS))14. As the current COVID-19 pandemic remains uncontrolled around the world, 

there is a pressing need for developing wearable and telemedicine sensors to monitor an individual’s 

health state and to enable timely intervention under home- and community-based settings15–23; it is also 

increasingly important to monitor a person’s long-term cardiometabolic and nutritional health status 

after recovery from severe COVID-19 infection using wearables to capture early signs of potential 

endocrinological complications such as T2DM12.  

Sweat is an important body fluid containing a wealth of chemicals reflective of nutritional and metabolic 

conditions24–27. The progression from blood analyses to wearable sweat analyses could provide great 
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potential for non-invasive, continuous monitoring of physiological biomarkers critical to human 

health28-38. However, currently reported wearable electrochemical sensors primarily focus on a limited 

number of analytes including electrolytes, glucose, and lactate, due to the lack of a suitable continuous 

monitoring strategy beyond ion-selective and enzymatic electrodes or  direct oxidation of electroactive 

molecules25–27,34-40 . Thus, most clinically relevant nutrients and metabolites in sweat are rarely explored 

and undetectable by existing wearable sensing technologies. Moreover, current wearable biosensors 

usually require vigorous exercise to access sweat; although a few recent reports use pilocarpine gel-

based iontophoresis for sedentary sweat sampling22,30,36, this approach suffers from short sweat periods 

and low sensing accuracy due to the mixing of sweat and gel fluid and the lack of dynamic sweat 

sampling. 

Here we present a universal wearable biosensing strategy based on a judicious combination of the mass-

producible laser-engraved graphene (LEG), electrochemically synthesized redox-active nanoreporters 

(RARs), molecularly imprinted polymer (MIP)-based ‘artificial antibodies’, as well as unique in situ 

regeneration and calibration technologies (Fig. 5-1b). Unlike bioaffinity sensors based on antibodies or 

classic MIPs which are generally one-time use and require multiple washing steps in order to transduce 

the bioaffinity interactions in standard ionic solutions41,42, this approach enables the demonstration of 

sensitive, selective, and continuous monitoring of a wide range of trace-level biomarkers in biofluids 

including all nine essential AAs as well as vitamins, metabolites, and lipids commonly found in human 

sweat (Appendix B Table 1). Seamless integration of this unique approach with in situ signal 

processing and wireless communication leads to a powerful wearable sweat sensing technology 

‘NutriTrek’ that is able to perform personalized and non-invasive metabolic and nutritional monitoring 

toward timely intervention (Fig. 5-1b). The incorporation of the carbachol iontophoresis-based sweat 

induction and efficient microfluidic-based surrounding sweat sampling enables prolonged autonomous 

and continuous molecular analysis with high temporal resolution and accuracy across activities, during 

physical exercise and at rest. Using five essential or conditionally essential AAs (i.e., Trp, Try, and three 

BCAAs (Leu, Ile, Val)) as exemplar nutrients, we corroborated the system in several human trials by 
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enrolling both healthy subjects and patients toward personalized monitoring of central fatigue, standard 

dietary intakes, nutrition status, metabolic syndrome risks, and COVID-19 severity. 

5.2 Design and overview of the autonomous wearable biosensor technology 

The flexible and disposable sensor patch consists of two carbachol-loaded iontophoresis electrodes, a 

multi-inlet microfluidic module, a multiplexed MIP nutrient sensor array, a temperature sensor, and an 

electrolyte sensor (Fig. 5-1c–f and Fig. B1). All flexible electrode and sensor designs are based on the 

LEG which has large surface area, excellent electrochemical properties, and can be produced at a large 

scale directly on a polyimide substrate via CO2 laser engraving (Fig. B2). The sensor patch can be easily 

attached to skin with conformal contact and interfaces with a miniaturized electronic module for on-

demand iontophoresis control, in situ signal processing and wireless communication with the user 

interfaces through Bluetooth (Fig. 5-1g and Figs. B3 and B4). A custom mobile app ‘NutriTrek’ was 

developed to process, display, and store the dynamic metabolic information monitored by the wearable 

sensors (Fig. 5-1h). The wearable system was also integrated into a smartwatch with an electronic paper 

display (Fig. 5-1i and Fig. B5).  

 

5.2.1 Biosensor design and evaluation for universal metabolic and nutritional analysis 

Universal detection of AAs and other metabolites/nutrients with high sensitivity and selectivity was 

achieved through careful design of the selective binding MIP layer on the LEG. MIPs are chemically 

synthesized receptors formed by polymerizing functional monomer(s) with template molecules. 

Although MIP technology has been proposed for sensing, separation and diagnosis42,43, it has not yet 

been demonstrated for continuous wearable sensing as classic MIP sensors require washing steps for 

sensor regeneration and the detection is generally performed in standard buffer or redox solutions. In 

our case, the functional monomer (e.g., pyrrole) and crosslinker (e.g., 3-Aminophenylboronic acid) 

initially form a complex with the target molecule; following polymerization, their functional groups are 

embedded in the polymeric structure on the LEG; subsequent extraction of the target molecules reveals 

binding sites on the LEG-MIP electrode that are complementary in size, shape, and charge to the target 

analyte (Fig. B6). Two detection strategies – direct and indirect – are designed based on the 
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electrochemical properties of the target molecules (Fig. 5-2). Optimizations and characterizations of the 

LEG-MIP sensors are detailed in Appendix B Note 1 and Figs. B7–13. 

 

 

For 

electroactive molecules in sweat, the oxidation of bound target molecules in the MIP template can be 

directly measured by differential pulse voltammetry (DPV) in which the peak current height correlates 

Figure 5-1: a, Circulating nutrients such as AAs are associated with various physiological and 

metabolic conditions. b, Schematic of the wearable ‘NutriTrek’ that enables metabolic 

monitoring through a synergistic fusion of LEG, RARs and artificial antibodies. c,d, Schematic 

(c) and layer assembly (d) of the microfluidic ‘NutriTrek’ patch for sweat induction, sampling 

and biosensing. T, temperature. e,f, Images of a flexible sensor patch (e) and a skin-interfaced 

wearable system (f). Scale bars, 5 mm (e) and 2 cm (f). g, Block diagram of electronic system of 

‘NutriTrek’. The modules outlined in red dashes are included in the smartwatch version. CPU, 

central processing unit; POT, potentiometry; In-Amp, instrumentation amplifier; MCU, 

microcontroller; TIA, trans-impedance amplifier; IP, iontophoresis; CE, counter-electrode; RE, 

reference electrode; WE, working electrode. h, Custom mobile application for real-time 

metabolic and nutritional tracking. i, ‘NutriTrek’ smartwatch with a disposable sensor patch and 

an electrophoretic display. Scale bars, 1 cm (top) and 5 cm (bottom). 
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to analyte concentration (Fig. 5-2a). Considering that multiple electroactive molecules can be oxidized 

at similar potentials, this LEG-MIP approach addresses both sensitivity and selectivity issues. For 

example, Tyr and Trp, two AAs with close redox potentials (~0.7 V), could be detected selectively with 

this strategy (Fig. 5-2b,c and Fig. B14). Linear relationships between peak height current densities and 

target concentrations with sensitivities of 0.63 µA µM−1 cm−2 and 0.71 µA µM−1 cm−2 respectively for 

the LEG-MIP Tyr and Trp sensors were observed (Fig. B15). It is worth noting that choices of 

monomer/crosslinker/template ratios and incubation periods have substantial influences on sensor 

response while sample volume does not (Fig. B10). The Tyr and Trp sensors can be readily and 

repeatably regenerated in situ without any washing step with a high-voltage amperometry (IT) that 

oxidizes the bound targets at their redox potentials (Fig. 5-2d). 

As the majority of metabolites and nutrients (e.g., BCAAs) are non-electroactive and cannot easily be 

oxidized under operational conditions, we herein utilize an indirect detection approach involving an 

RAR layer sandwiched between the LEG and MIP layers to enable rapid quantitation (Fig. 5-2e). The 

selective adsorption of the target molecules onto the imprinted polymeric layer decreases the exposure 

of the RAR to the sample matrix. Controlled-potential voltammetric techniques such as DPV or linear 

sweeping voltammetry (LSV) can be applied to measure the RAR’s oxidization or reduction peak, where 

the decrease in peak height current density corresponds to an increase in analyte levels. For example, 

using Prussian Blue nanoparticles (PBNPs) as the RAR (Fig. B11), we developed a MIP-LEG Leu 

sensor with a log-linear relationship between the peak height decrease and Leu concentration and a 

sensitivity of 702 nA mm-2 per decade of concentration (Fig. 5-2f). We established this approach to 

quantify the physiologically relevant range of all nine essential AAs (i.e., Leu, Ile, Val, Trp, Phe, 

histidine (His), lysine (Lys), methionine (Met), and threonine (Thr)) (Fig. 5-2g and Fig. B16) as well as 

a number of vitamins, metabolites, and lipids (vitamins B6, C, D3, and E, glucose, uric acid, creatine, 

creatinine, and cholesterol) (Fig. 5-2h and Fig. B17). In addition to these nutrients and metabolites, this 

approach can be easily reconfigured to enable the monitoring of a broad spectrum of biomarkers ranging 

from hormones (e.g., cortisol) to drugs (e.g., immunosuppressive drug mycophenolic acid) (Fig. B18 

and Appendix B Tables 2 and 3). Most of these targets are undetectable continuously by any existing 
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wearable technology. Considering that a total level of multiple nutrients (e.g., total BCAAs) is often an 

important health indicator, a multi-template MIP approach can be used to enable accurate and sensitive 

detection of the total concentration of multiple targets with a single sensor (Fig. 5-2i,j). These indirect 

LEG-RAR-MIP sensors can be regenerated in situ upon constant potential applied to the working 

electrode repels the bound target molecules from the MIP layer with prolonged re-usability (Fig. 5-2k).  

The LEG-MIP sensors show stable responses during repeatable use: The PBNPs-based RAR showed 

stable redox signals throughout 60 repetitive cyclic voltammetry (CV) scans (Fig. 5-2l and Fig. B11); 

minimal output changes were observed throughout a 42-day storage period (Fig. B19a,b); the sensors 

also showed no substantial relative signal shift when used continuously over 5 days (Fig. B19c). 

Compared to traditional MIP preparation processes, the electrodeposited MIP layer on the mass-

producible LEG leads to high reproducibility in both selectivity, sensitivity, and device to device 

consistency (Figs. B20 and B21). The choice of LEG as the MIP deposition substrate also showed 

advantages in sensor sensitivity as compared to classic electrodes such as glassy carbon electrode, 

printed carbon electrode, and Au electrode (Fig. B22). Other RARs such as the anthraquinone-2-

carboxylic acid (AQCA) can also be used for indirect AA sensing with stable performance (negatively 

scanned DPV was used here to monitor AQCA reduction) (Fig. 5-2m and Fig. B23). As illustrated in 

Fig. 5-2n, the LEG-AQCA-MIP sensors could be directly regenerated in a raw human sweat sample, 

resolving a main bottleneck of wearable biosensing. The MIP-LEG AA sensors have excellent 

selectivity for other analytes in sweat (including AAs with similar structures) at physiologically relevant 

concentrations (Fig. 5-2o, Fig. B24, and Appendix B Table 3). The LEG-MIP technology showed a 

comparable sensitivity with the current gold standard laboratory-based GC-MS44 (Fig. B25); the sensor 

measurements in raw human sweat samples have been validated against GC-MS (Fig. 5-2p, Figs. B26 

and B27). 
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5.2.2 Materials and reagents.  

Uric acid, L-tyrosine, silver nitrate, iron chloride (III), dopamine hydrochloride, choline chloride, 

creatinine, pantothenic acid calcium salt, citrulline, pyridoxine, and lactic acid were purchased from 

Alfa Aesar. Sodium thiosulfate pentahydrate, sodium bisulfite, tryptophan, leucine, alanine, 

Figure 5-2: a, Direct detection of electroactive molecules using LEG–MIP sensors. b,c, DPV 

voltammograms of the LEG–MIP sensors for direct Tyr (b) and Trp (c) detection. Insets, 

calibration plots with a linear fit. ∆J, peak height current density. d, In situ continuous sensing 

and regeneration of an LEG–MIP Trp sensor in 50 µM Trp. e, Indirect molecular detection using 

LEG–RAR–MIP sensors. f, LSV voltammograms of indirect Leu detection with LEG–PBNP–

MIP sensors. Inset, calibration plot with a linear fit. g,h, Indirect detection of all essential AAs 

(g) and multiple vitamins, lipids and metabolites (h) using LEG–PBNP–MIP sensors. Dashed 

lines represent linear-fit trendlines. VC, vitamin C; VB6, vitamin B6; VD3, vitamin D3; VE, 

vitamin E. i, Schematic of multi-MIP AA sensors. j, LSV voltammograms of an LEG multi-MIP 

sensor for BCAA quantification. Inset, calibration plot with a linear fit. k, In situ continuous 

sensing and regeneration of an LEG–PBNP–MIP Leu sensor in 50 µM Leu. l, Repetitive CV 

scans of an LEG–PBNP electrode in 0.1 M KCl. m, DPV voltammograms of indirect Leu 

detection with LEG–AQCA–MIP sensors. Inset, the calibration plot. n, In situ regeneration of an 

LEG–AQCA–MIP Leu sensor in a raw sweat sample. o, Selectivity of the Trp, Tyr, Leu, Ile, Val 

and BCAA sensors against other AAs. p, Validation of Tyr, Trp and Leu sensors for analysing 

raw exercise sweat samples (n = 20) against GC–MS. All error bars represent the standard 

deviation (s.d.) from three sensors. 
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isoleucine, methionine, valine, lysine, thiamine hydrochloride, serine, sulfuric acid, hydrochloric acid, 

anthraquinone-2-carboxylic acid (AQCA), 3-Aminophenylboronic acid (APBA), aniline, o-

phenylenediamine (o-PD), methylene blue (MB), thionine, 2-(N-morpholino)ethanesulfonic acid 

hydrate (MES), ethanolamine, N-(3-dimethyl-aminopropyl)-N’-ethylcarbodiimide (EDC), N-

hydroxysulfosuccinimide sodium salt (sulfo-NHS), bovine serum albumin (BSA), 

tris(hydroxymethyl)aminomethane hydrochloride (Tris-HCl), streptavidin-peroxidase conjugate 

(strep-POD, Roche), and hydroquinone (HQ) were purchased from Sigma Aldrich. Carboxylic acid-

modified-magnetic beads (Dynabeads®, M-270) were obtained from Invitrogen. Potassium 

ferricyanide (III), and potassium ferrocyanide (IV) was purchased from Acros Organics. Acetic acid, 

methanol, sodium acetate, sodium chloride, sodium dihydrogen phosphate, potassium chloride, 

potassium hydrogen phosphate, urea, L-ascorbic acid and dextrose (D-glucose) anhydrous, glycine, 

arginine, inositol, ornithine, aspartic acid, threonine, histidine, riboflavin, creatine, phenylalanine, 

nicotinic acid, folic acid, glutamic acid, and hydrogen peroxide (30% (w/v)) were purchased from 

Thermo Fisher Scientific. Insulin capture antibody and biotinylated detector antibody were purchased 

from R&D systems (Human/Canine/Porcine Insulin DuoSet ELISA). Screen printed carbon electrodes 

(SPCE) and magnetic holder were purchased from Metrohm DropSens. Medical adhesives were 

purchased from 3M and Adhesives Research. Polyimide (PI) films (75 μm thick) were purchased from 

DuPont. PET films (12 μm thick) were purchased from McMaster-Carr. 

 

5.2.3 Fabrication and preparation of the LEG sensors 

The LEG electrodes were fabricated on a polyimide film with a thickness of 75 μm (DuPont) with a 50 

W CO2 laser cutter (Universal Laser System). When engraving the PI with a CO2 laser cutter, the 

absorbed laser energy is converted to local heat and thus leads to a high localized temperature (>2500 

°C), chemical bonds in the PI network are broken and thermal reorganization of the carbon atoms 

occurs, resulting in sheets of graphene structures. The optimized parameters for the graphene 

electrodes and electronic connections were power 8%, speed 15%, points per inch (PPI) 1000 in raster 

mode with 3-time scan. For the active sensing area of the temperature sensor, the optimized 
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parameters were power 3%, speed 18%, PPI 1000 in vector mode with 1-time scan. To prepare the 

reference electrode, Ag was first modified on the corresponding graphene electrode by multi-current 

electrodeposition with electrochemical workstation (CHI 832D) at -0.01 mA for 150 s, -0.02 mA for 

50 s, -0.05 mA for 50 s, -0.08mA for 50 s, and -0.1 mA for 350 s using a plating solution containing 

0.25 M silver nitrate, 0.75 M sodium thiosulfate and 0.5 M sodium bisulfite. 0.1 M FeCl3 solution was 

further dropped on the Ag surface for 30 s to obtain the Ag/AgCl electrode, and then 3 µL PVB 

reference cocktail prepared by dissolving 79.1 mg of PVB, 50 mg of NaCl in 1 mL of methanol was 

dropped on the Ag/AgCl electrode and dried overnight. The Na+ selective electrode was prepared as 

follows: 0.6 µL of Na+ selective membrane cocktail prepared by dissolving 1 mg of Na ionophore X, 

0.55 mg Na-TFPB, 33 mg PVC and 65.45 mg DOS into 660 µL of THF was drop-casted onto the 

graphene electrode and dried overnight. To obtain the desired stable Na+ sensing performance for 

long-term continuous measurements, the obtained Na+ sensor was conditioned overnight in 100 mM 

NaCl. 

The fabrication process of the LEG-MIPs sensor array is illustrated in Fig. B6. All the MIP layers are 

synthesized by electro-polymerization. The polymerization solution was prepared by dissolving 5 mM 

template (e.g., target amino acid), 12.5 mM aminophenylboronic acid (APBA) and 37.5 mM pyrrole 

into 0.01 M phosphate buffer saline (PBS) (pH=6.5). For multi-MIP BCAA sensor, 5 mM of each 

target (i.e., Leu, Ile, and Val) was used. Prior to MIP deposition, the LEG was activated in 0.5 M 

H2SO4 with CV scans for 60 segments (-1.2–1 V with a scan rate of 500 mV s-1). For the direct-

detection LEG-MIP sensors, the target imprinted polymer was electrochemically synthesized on the 

LEG electrode with CV deposition (0–1 V for 10 cycles, 50 mV s-1) using the prepared polymerization 

solution. The target molecules were extracted by soaking the electrode into an acetic acid/methanol 

mixture (7:3 v/v) for 1 hour. Subsequently, the resulting electrode was immersed into 0.01 M 

phosphate buffer saline (pH=6.5) for repetitive CV scans (0.4–1 V with a scan rate of 50 mV s-1) until 

a stable response was obtained. For LEG-non-imprinted polymer (NIP), the electrode was prepared 

following the same procedure as LEG-MIP except that there was no template added in the 

polymerization solution.  
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For the indirect-detection MIP sensors, electrochemically synthesized redox-active nanoreporters 

(RARs) (e.g., Prussian Blue nanoparticles (PBNPs) or anthraquinone-2-carboxylic acid (AQCA)) was 

first modified on the LEG electrode. The PBNPs RAR on the LEG was prepared with cyclic 

voltammetry (20 cycles) (-0.2 to 0.6 V with a scan rate of 50 mV s-1) in an aqueous solution 

containing 3 mM FeCl3, 3 mM K3Fe(CN)6, 0.1 M HCl and 0.1 M KCl. A PBNP layer with appropriate 

redox signal is necessary to produce a good sensitivity for the final MIP sensors; to achieve this stable 

and suitable redox signal, the LEG-electrode was rinsed with distilled water after the initial PB 

deposition and the PB electrodeposition step was repeated for two more times until a stable 70 µA 

LSV peak in 0.1 M KCl solution was achieved. Subsequently, the LEG-PB was rinsed with distilled 

water and immersed into a solution containing 0.1 M HCl and 0.1 M KCl for repetitive CV scans (-

0.2–0.6 V with a scan rate of 50 mV s-1) until a stable response was obtained. To prepare the AQCA 

RAR on the LEG, the LEG electrode was first incubated in 50 µL PBS (pH=6.5) with 5 mM AQCA at 

4 ºC overnight. Subsequently, the LEG-AQCA was rinsed with distilled water and immersed into a 

phosphate buffer solution for repetitive CV scans (-0.8–0 V with a scan rate of 50 mV s-1) until a 

stable response was obtained. For the indirect-detection LEG-PB-MIP sensors, an additional PB 

activation process was conducted right after the template extraction (IT scan at 1 V in 0.5 M HCl for 

600 s), followed by an LEG-PB-MIP sensor stabilization process in 0.1 M KCl (CV scans at -0.2–0.6 

V with a scan rate of 50 mV s-1). It should be noted that for the LEG-AQCA-MIP sensor, only 3 CV 

cycles polymerization was used to prepare the MIP layer, and the sensor was stabilized in 0.01 M 

phosphate buffer saline (PBS) (pH=6.5) (CV scans at -0.8–0 V with a scan rate of 50 mV s-1). 

The morphology of materials was characterized by scanning electron microscopy (SEM, Nova Nano 

SEM 450) and transmission electron microscope (TEM, Talos S-FEG FEI, USA). The Raman 

spectrum of the electrodes with different modification were recorded using a 532.8 nm laser with an 

inVia Reflex (Renishaw). Fourier transform infrared (FT-IR) spectra were measured using IR 

spectrometer (Nicolet 6700). 
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5.2.4 Characterization of the LEG sensor performance 

A set of electrochemical sensors were characterized in solutions of target analytes. All the in vitro 

sensor characterizations were performed through CHI 832D. The response of the Na+ sensor was 

characterized with open circuit potential measurements in the solutions containing varied Na+ levels. 

DPV analysis was performed for all the direct-detection LEG-MIP sensor characterizations in 0.01 M 

PBS (pH 6.5) or in raw sweat. DPV conditions: range, 0.4–1 V; incremental potential, 0.01 V; pulse 

amplitude, 0.05 V; pulse width, 0.05 s; pulse period, 0.5 s; and sensitivity, 1 × 10−5 A V-1. For in vitro 

indirect-detection of the target molecules based on the LEG-PB-MIP sensors, LSV analysis (0.4–0 V) 

was performed in 0.1 M KCl. The LSV conditions: range, 0.4–0 V; scan rate, 0.005 V s-1; sample 

interval, 0.001 V; quiet time, 2 s, and sensitivity, 1 × 10−4 A V-1. For in vitro indirect-detection of the 

target molecules based on the LEG-AQCA-MIP sensors, negative DPV analysis (0–-0.8 V) was 

performed in 0.01 M PBS. The negative DPV conditions: 0–-0.8 V; incremental potential, 0.01 V; 

pulse amplitude, 0.05 V; pulse width, 0.05 s; pulse period, 0.5 s; and sensitivity, 1 × 10−5 A V-1. For in 

situ sweat analyte measurement, background and signal curves were recorded before and after 

incubation; the signal current was obtained as the difference of the peak amplitudes between the post-

incubation signal and the background current curves (Fig. 5-3a–d and Fig. B29). The temperature 

sensor characterization was carried out on a ceramic hot plate (Thermo Fisher Scientific) (Fig. B28). 

The sensor response was recorded using a parameter analyzer (Keithley 4200A-SCS) and compared 

with the readings from an infrared thermometer (LASERGRIP 800; Etekcity).  

To evaluate the performance of the various electrode substrates for MIP-based AA sensing, LEG, 

printed carbon electrode (PCE), Au electrode (AuE), and glassy carbon electrode (GCE) were chosen. 

The GCEs were purchased from CH Instruments. The PCEs were printed on the PI substrate using a 

Dimatix Materials Printer DMP-2850 (Fujifilm, Minato, Japan) with a commercial carbon ink from 

NovaCentrix. The AuEs were fabricated via E-beam evaporation: 20 nm of Cr and 100 nm of Au were 

deposited onto an O2-plasma pretreated PET substrate. MIP films were prepared with CV deposition 

(0–1 V for 10 cycles, 50 mV s-1). 
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1.3 Conclusion 

Circulating metabolic biomarkers, such as AAs and vitamins, have been associated with various health 

conditions, including diabetes and CVDs. Metabolic profiling using wearable sensors has become 

increasingly crucial in precision nutrition and precision medicine, especially in the era of the COVID-

19 pandemic, as it provides not only insights into COVID-19 severity but also guidance to stay 

metabolically healthy to minimize the risk of potential COVID-19 infection. As the pandemic remains 

rampant throughout the world and regular medical services are at risk of shortage, there is an urgent 

need to develop and apply wearable sensors that can monitor health conditions via metabolic profiling 

to achieve at-home diagnosis and timely intervention via telemedicine. However, current wearable 

electrochemical sensors are limited to a narrow range of detection targets owing to lack of continuous 

sensing strategies beyond ion-selective and enzymatic electrodes. Though various bio-affinity-based 

sensors have been developed to detect a broader spectrum of targets using antibodies or MIPs, they 

generally require multiple washing steps or provide only one-time use; these limitations have 

hampered their useability in wearable devices. Moreover, the majority of wearable biosensors rely on 

vigorous exercise to access sweat and are not suitable for daily continuous use. 

By integrating mass-producible LEG, electrochemically synthesized RARs and ‘artificial antibodies’, 

we have demonstrated a powerful universal wearable biosensing strategy that can achieve selective 

detection of a broad range of biomarkers (including all essential AAs, vitamins, metabolites, lipids, 

Figure 5-3: a, Illustration of a multi-functional wearable sensor patch. ISE, ion-selective 

electrode. b–d, The two-scan sensor calibration strategy enabling selective Trp sensing in situ in 

the presence of Tyr. ∆I, peak height current; ∆I′, peak height difference caused by target 

recognition. Solid and dashed curves in c and d represent linear-fit trendlines. 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 



 

 

124 

hormones and drugs) and reliable in situ regeneration. Furthermore, to enable continuous and on-

demand metabolic and nutritional monitoring across the activities, we have integrated the LEG–MIP 

sensor array and iontophoresis-based sweat induction into a wireless wearable technology, with 

optimized multi-inlet microfluidic sudomotor axon reflex sweat sampling, in situ signal processing, 

calibration and wireless communication. Using this telemedicine technology, we have demonstrated 

the wearable and continuous monitoring of post-prandial AA responses to identify risks for metabolic 

syndrome. The high correlation between sweat and serum BCAAs suggests that this technology holds 

great promise for use in metabolic syndrome risk monitoring. The substantial difference in Leu 

between COVID-19-positive and COVID-19-negative blood samples indicates the potential of using 

this technology for at-home COVID-19 management. We envision that this wearable technology 

could play a crucial role in the realization of precision nutrition through continuous monitoring of 

circulating biomarkers and enabling personalized nutritional intervention. This technology could also 

be reconfigured to continuously monitor a variety of other biomarkers towards a wide range of 

personalized preventive, diagnostic and therapeutic applications. 
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A p p e n d i x  B  
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Supplementary Note 1 | Optimization and characterization of the LEG-MIP biosensors 

 

Characterization of the MIP sensor preparation.  

The preparation of the LEG-MIP sensors was characterized electrochemically with differential pulse 

voltammetry (DPV) in 0.1 M KCl solution containing 2.0 mM K4Fe(CN)6/K3Fe(CN)6 (1:1) (Fig. 

B7a). The LEG displayed a high oxidation peak owing to its large electrochemically active surface 

area. The redox peak substantially decreased after the MIP film deposition (co-polymerization of 

APBA and pyrrole in the presence of Trp here) due to the fact that the less conducting polymer layer 

blocked the LEG from the redox reporter solution. The template molecules were removed during 

template extraction step, leaving behind imprinted cavities that are complementary, both chemically 

and sterically to the template molecules. These cavities allow reporter ions to reach the 

electrolyte/electrode interface, resulting in a rise of the redox peak current. 

Raman spectrum was also used to study the surface roughness of the LEG-MIP sensor during 

preparation process. Raman intensity is influenced by the scattering of the exciting light from the 

sample surface, and thus decreases with the increase of surface roughness. As shown in Fig. B7b, 

Raman intensity of C=C backbone stretching increased after polymerization (smooth surface), and then 

decreased after template extraction (rough surface), indicating the residual cavities on the surface 

resulted from the template extraction
1
. To further validate the successful preparation of the MIP layer, 

a non-imprinted polymer (NIP) film was prepared on the LEG as the control. The standard MIP 

template extraction procedure and further incubation in 50 µM Trp did not lead to substantial signal 

change of the LEG-NIP in the standard redox solution (Fig. B7c). 

For the preparation of the LEG-RAR-MIP sensors, redox reporters such as Prussian blue (PB) and 

anthraquinone-2-carboxylic acid (AQCA) were deposited between the MIP and graphene layers. For 

the PB RAR, the preparation process was characterized electrochemically with linear sweep 

voltammetry (LSV) in 0.1 M KCl as illustrated in Fig. B7d. The LEG-PB displayed a high reduction 

peak of PB which decreased after deposition of the polymer film (co-polymerization of APBA and 
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pyrrole in the presence of Leu here) due to the PB blockage by the polymer. The extraction of the 

template molecules (with CV sweeping in 0.1 M HCl and 0.1 M KCl) leads to the target selective 

cavities and increases the exposure of the PB film to the electrolyte solution, resulting an increased 

redox signal. 

The Raman spectra of the LEG-PB-MIP Leu showed similar behavior as the LEG-MIP Trp sensor: 

Raman intensity of C=C backbone stretching increased after polymerization on LEG-PB, and then 

decreased after template extraction, the residual cavities were left on the surface resulted from the 

template extraction (Fig. B7e). To further validate the successful preparation of the MIP layer on the 

LEG-PB, a NIP film was prepared on the LEG-PB as the control. The standard MIP template extraction 

procedure and further incubation in 50 µM Leu did not lead to substantial signal change of the LEG-

PB-NIP (Fig. B7f). 

Electrochemical kinetics of the LEG-MIP electrodes.  

The electrochemical kinetic process on the modified electrode plays an important role in understanding 

whether the reaction process at the modified electrode is controlled by adsorption and/or diffusion. 

Cyclic voltammetry (CV) was used to study the effect of scan rate on the peak current for both the 

direct and indirect detection LEG-MIP sensors (Fig. B8). 

Since the electroactive target (e.g., Trp) can be directly oxidized at a given voltage, the LEG-MIP Trp 

sensor was evaluated in 0.01 M PBS containing 50 μM Trp (Fig. B8a,b). A linear dependence was 

obtained between the anodic peak current and scan rate, indicating that the oxidation of Trp on the 

direct detection MIP sensor is controlled by adsorption processes. On the other side, the redox peak of 

the RAR (e.g., PB) can be directly used to study the electrode kinetics in 0.1 M KCl (Fig. B8c,d). In 

this case, both anodic and cathodic peak currents showed proportional relationships to square root of 

the scan rate, suggesting that electrochemical redox reactions at LEG-PB-MIP Leu sensor were a 

diffusion- controlled process2. The relation between measured peak height current density Jpa (μA mm-

2) and scan rate v (mV s-1) for direct and indirect detection MIP sensors are as follows: 
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LEG-MIP Trp sensors:                 Jpa = 0.1718 + 0.006v 

LEG-PB MIP Leu sensors: Jpa, anodic = -8.338 + 3.5031√𝑣 

                                                             Jpa, cathodic = 5.007 – 3.458√𝑣 

The above results explain the reasons why the current signal has a linear relationship with the 

concentration of the target in direct detection, while it is log-linear with the target levels in indirect 

detection. To minimize the influence of oxidation reactions of common sweat interferants, the reduction 

peak of PB is chosen for further analyzing of in direct detection. 

Theoretical and experimental optimization of MIP composition.  

MIPs can either rely on covalent or non- covalent interactions. In the case of a wearable sensor which 

should be capable of regeneration for continuous monitoring, weak reversible non-covalent 

interactions are ideal. There are multiple of monomers which are capable of forming non-covalent 

bonds with amino acids (e.g., Trp and Leu), however we narrowed our search to electroactive 

monomers since sensor fabrication with such monomers requires only electropolymerization on the 

working electrode in the presence of the desired template molecules. In addition, electroactive 

monomers efficiently transduce binding events, thus improving detectability
3
. Thus, the formulations 

such as choices of monomers and monomer/template ratios have substantial influence on the sensitivity 

and the selectivity of the MIP sensor. 

Taking the Trp sensor design as an example, we utilized density functional theory (DFT) calculations 

to quantify the binding energy between Trp and six commonly used electroactive monomers: 

aminophenylboronic acid (APBA), aniline, ethylenedioxythiophene (EDOT), phenylene, pyrrole, and 

thiophene (Fig. B9a,b). The calculations were carried out using the ORCA software
4
. The 

semiempirical Austin Model 1 (AM1) was used first to achieve a rough estimate of geometric optimal 

configurations. The higher level B3LPY functional with a 5-31(d,p) basis set was then used to calculate 
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final geometric configurations and binding energies. Binding energies were calculated with the typical 

formula: 

∆E= EMonomer-ETemplate – (ETemplate+EMonomer) 

The DFT simulated bonding energies of the monomer-target complexes were demonstrated in Fig. 

B9b. To maximize sensitivity of the MIP it is common to select the monomer which has the highest 

binding affinity to Trp. Further, it has been previously demonstrated that the co-polymerization of a 

monomer with high affinity and a monomer with low affinity (crosslinker) to the template can produce 

highly selective MIPs by mitigating non-selective binding
5
. APBA exhibits the highest interaction 

energy with the Trp, indicating that APBA is an ideal crosslinker or co-monomer for Trp MIP. The 

choice of pyrrole (which has lowest interaction energy) and APBA as the monomer and crosslinker 

could leads to MIPs with both high selectivity and high regeneration capability. 

Our experimental data demonstrates that the choice of APBA/aniline also leads to high sensitivity 

(reflected by the current peak height of the LEG-MIP sensor in 50 μM Trp) compared to other 

individual monomers and other monomer/crosslinker combinations (Fig. B9c). The ratio of template, 

crosslinker, and monomer is another key parameter MIP quality. Based on the experimental data 

illustrated in Fig. B9d, the ratio of 1:2.5:7.5 (template/crosslinker/monomer) led to the optimal 

sensitivity for Trp detection. 

Optimization of the LEG-MIP recognition in vitro.  

To obtain the optimal sensor performance for rapid sample analysis, the influences of sample 

incubation time and volume were evaluated experimentally. As demonstrated in Fig. B10a,b, the 

current density of the peak height of the LEG-MIP Trp sensors increases rapidly with the increase of 

incubation time initially, and then gradually stabilizes after 5 min (with an optimal incubation time of 

7 min), indicating the saturated adsorption for Trp. Unlike the incubation time, sample volumes 

(between 0.028–1.1 μL mm-2) didn’t show substantial influence on the sensor response as illustrated 

in Fig. B10c,d. 
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Characterization of the RARs for indirect MIP detection.  

The microstructure and element composition of the LEG-RARs were characterized in Fig. B11. The 

LEG displayed an ultra-thin 3D flakes with few-layer features while the C and N elements obtained by 

laser pyrolysis of PI were evenly distributed in the flakes (Fig. B11a). PB RAR nanoparticles with a 

diameter of about 100 nm were successfully immobilized on the graphene surface as illustrated in Fig. 

B11b,e. The PB RAR maintained its microstructure after 60 cycles of electrochemical cycling (Fig. 

B11c). The successful modification and electrochemical stability of AQCA were also confirmed by 

FTIR and element mapping (Fig. B11d,f). 

The high demand for electrochemical stability of wearable sensors in practical applications poses high 

requirements for RARs. Therefore, the performance of four RARs including PB, AQCA, MB, and 

thionine before and after repetitive LSV or DPV scans was investigated (Fig. B12). As summarized in 

Fig. B12e, PB and AQCA displayed best stability among these four. 
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Figure B1: Fabrication process of the multifunctional flexible wearable sensor patch. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

137 

a 
 

 

 

 

b 

 

500 1000 1500 2000 2500 3000 3500 4000 

Raman shift (cm-1) 

c d 

 

 

 

 

G 

2D 

D 

In
te

ns
it

y 
(a

.u
.) 

Figure B2: Characterization of the LEG. a, Optical image of a flexible LEG sensor patch 

array fabricated via low-cost and mass-producible CO2 laser engraving. Scale bar, 1 cm. b, 

Raman spectra of the LEG. c,d, High-angle annular dark-field scanning transmission electron 

microscopy (HAADF-STEM) (c) and bright-field transmission electron microscopy (TEM) 

image (d) of the LEG. Scale bars, 1 µm and 500 nm, respectively. 
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Figure B3: Integrated flexible NutriTrek prototype for personalized nutritional monitoring. 

a,b, Optical photos of a wearable NutriTrek prototype consisting of a flexible, disposable 

microfluidic sensor patch (a) for autonomous sweat stimulation and sweat analysis and a flexible 

printed circuit board (FPCB) (b) for in situ electrochemical control, signal processing, and 

wireless communication. Scale bars, 5 mm (a) and 1 cm (b). c,d, Optical photos of the integrated 

system on the body. Scale bars, 5 cm (c) and 1 cm (d). e, Optical photo of a flexible NutriTrek 

patch interfacing with the custom cell phone app for real-time data collection. Scale bar, 3 cm. 
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Figure B4: The detailed circuit diagram of the NutriTrek. 
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Figure B5: Fully integrated NutriTrek smartwatch for personalized nutritional 

monitoring. a,b, Top view (a) and bottom (b) view photos of a smartwatch PCB connected to 

the MIP sensor. Scale bars, 1 cm. c, Photo of an electrophoretic display-mounted smartwatch 

without a 3D printed case that displays the sensor reading in real-time. Scale bar, 5 mm. d,e, 

Photos of a fully assembled NutriTrek smartwatch. Scale bars, 1 cm (d) and 2 cm (e). 
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Figure B6: Schematic of the preparation procedure and detection mechanism of the LEG- MIP AA sensors. 

Left panel, electroactive AA sensor with direct detection mechanism; Right panel, AA sensor with indirect detection 

mechanism. 
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Figure B7: Characterization and validation of the MIP sensor preparation. a, DPV 

voltammograms of the LEG, the LEG-MIP before template (Trp) extraction, and the LEG-MIP 

after template (Trp) extraction in 0.1 M KCl solution containing 2.0 mM 

K4Fe(CN)6/K3Fe(CN)6 (1:1). b, Raman spectra of the LEG, the LEG-MIP before template 

(Trp) extraction, and the LEG-MIP after template (Trp) extraction. c, DPV voltammograms of 

the LEG, the LEG-non-imprinted polymer (NIP), the LEG-NIP after template extraction 

procedure, and the LEG-NIP after extraction procedure (followed by a 7-min incubation in 50 

μM Trp) in 0.1 M KCl solution containing 2.0 mM K4Fe(CN)6/K3Fe(CN)6 (1:1). d, LSV 

voltammograms of the LEG, the LEG-PB-MIP before template (Leu) extraction, and the LEG-

PB-MIP after template (Leu) extraction in 0.1 M KCl. e, Raman spectra of the LEG, the LEG-

PB, the LEG-PB-MIP before template (Leu) extraction, and the LEG-PB-MIP after template 

(Leu) extraction. f, LSV voltammograms of the LEG, the LEG-PB-NIP, the LEG-PB-NIP after 

template extraction procedure, and the LEG-PB-NIP after template extraction procedure 

(followed by a 7-min incubation in 50 μM Leu) in 0.1 M KCl. 
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Figure B8: Characterization of the electrochemical kinetics of the LEG-MIP electrodes. 

a,b, Cyclic voltammograms (a) of an LEG-MIP Trp sensor at the scan rates from 10 to 200 mV 

s−1 in 50 μM Trp, and the corresponding plot (b) of anodic peak current densities versus scan 

rate. c,d, Cyclic voltammograms (c) of an LEG-PB-MIP Leu sensor in 0.1 M KCl at the scan 

rates from 10 to 300 mV s−1 and the corresponding plot (d) of anodic and cathodic peak current 

densities versus square-root of scan rate. Solid lines in b,d represent linear fit trendlines. 
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Figure B9: Theoretical and experimental optimization of the MIP composition. a, Density 

functional theory (DFT)-optimized geometries of the monomer (Pyr)/target (Trp) bonding. b, 

DFT simulated bonding energies of the monomer-target complexes. c,d, Current density of the 

peak height (∆J) of the Trp MIP sensors based on different monomer/target combinations (c) 

and different target/crosslinker/monomer ratios (d) in 50 μM Trp. Ratios of 

target/(crosslinker)/monomer in c, 1:(2.5):7.5; APBA was used as the crosslinker for c and d. 

Error bars represent the s.d. from 3 sensors. 
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Figure B10: Evaluation of the effect of incubation time and sample volume on the LEG- 

MIP sensor performance. a,b, DPV voltammograms (a) and current density of the peak height 

(∆J) (b) of the Trp sensors in 50 μM Trp with varied 1–20 min incubation time. c,d, DPV 

voltammograms (c) and current density of the peak height (∆J) (d) of the Trp sensors in 50 μM 

Trp with varied sample volumes. Error bars in b and d represent the s.d. from 3 sensors. 
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Figure B11: Microscopic characterization of the RARs on the LEG. a, HAADF-STEM and 

element mapping images of the LEG. Scale bar, 2 μm. b,c, HAADF-STEM element mapping 

images of the PB nanoparticles (as an RAR) on the LEG before (b) and after (c) 60 cyclic 

voltammetry (CV) cycles. Scale bars, 100 nm. d, Fourier-transform infrared spectroscopy 

(FTIR) of the LEG, the LEG-AQCA before and after 60 cycles of cyclic voltammetry (CV) 

scan. e,f, Energy dispersive X-ray (EDX) spectroscopy of the LEG-PB 
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Figure B12: Electrochemical characterization of the RARs on the LEG. a, Repetitive LSVs 

of the PB modified LEG electrodes. b–d, Repetitive negative DPVs of the AQCA (b), MB (c), 

and thionine (d) modified LEG electrodes. e, Relative peak signal changes of PB, AQCA, MB, 

and thionine RAR-modified LEG electrode under repeating voltammetric scans. DPV 

conditions for b–e: scan range, -0.2–-0.8 V, 0.2–-0.6 V and 0.1–-0.6 V, respectively, for AQCA, 

MB, and Thionine; scan rate, 5 mV s-1; sample interval, 1 mV; quiet time, 2 s; sensitivity, 1 × 

10−4 A V-1. 
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Figure B13: Characterizations of the LEG-MIP sensor regeneration. a, Schematic of the 

LEG-MIP sensor regeneration for direct electroactive molecule detection. b, DPV voltammograms 

of an LEG-MIP Trp sensor before and after regeneration in 50 µM Trp (IT under a fixed potential 

of 0.7 V for 12 s). c, Comparison of regeneration efficiency of the LEG-MIP Trp sensors using 

controlled voltammetry (i.e., DPV, LSV, IT, CV) after 12 s. d, Time consumption of the LEG-

MIP Trp sensors to reach 100 % recovery. e, Schematic of the LEG-PB-MIP sensor regeneration 

for indirect detection. f, LSV voltammograms of an LEG- PB-MIP Leu sensor before and after 

regeneration in 50 µM Leu (IT under a fixed potential of -0.2 V for 50 s). g, Comparison of 

regeneration efficiency of the LEG-PB-MIP Leu sensors using controlled voltammetry (i.e., DPV, 

LSV, IT, CV) after 50 s. h, Time consumption of the LEG-PB-MIP Leu sensors to reach 80% 

signal change recovery. Error bars in c and g represent the s.d. from 3 sensors. 
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Figure B14: Selectivity studies of the LEG-MIP sensors for detecting two electroactive 

amino acids: Trp and Tyr. a–c, DPV voltammograms of a bare LEG electrode (a), an LEG-

MIP Trp electrode (b), and an LEG-MIP Tyr electrode (c) in 50 μM Trp, 50 μM Tyr, and 50 

μM Trp + 50 μM Tyr. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 



 

 

150 

 

 

 
 

Figure B15: Schematic illustration of the sensitivity calculation of the LEG-RAR-MIP 

sensor. S, sensitivity of the sensor; B, background peak current height; A, the electrode area; 

J1 and J2: peak current height of the LSV obtained in the presence of the analyte with 

concentrations of C1 and C2, respectively. 
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Figure B16: LSV voltammograms of the LEG-PB-MIP sensors for indirect detection of all 

nine essential amino acids. 
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Figure B17: LSV voltammograms of the LEG-PB-MIP sensors for indirect detection of 

multiple vitamins, metabolites, and lipids. 
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Figure B18: LSV voltammograms and the corresponding calibration curves of the LEG-PB-MIP 

sensor for indirect detection of cortisol and mycophenolic acid. Dashed lines in b,d represent 

linear fit trendlines. 
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Figure B19: Characterization of the long-term storage stability of the LEG-MIP sensors. 

a,b, Current density of the peak height (∆J) of the LEG-MIP Trp sensors for detecting 50 µM 

Trp (a) and the LEG-PB-MIP Leu sensors for detecting 50 µM Leu (b) over a 6-week storage 

period. Error bars represent the s.d. from 3 sensors. c, Long term stability of the LEG-MIP for 

continuous use. Three different LEG-MIP Trp sensors were tested in parallel every hour for six 

consecutive hours a day over five consecutive days. 
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Figure B20: Characterization of the reproducibility of the LEG-MIP sensors from five 

different batches. a, Device-to-device variations in MIP film preparation on LEG. ∆J represents 

current density of the peak height in the voltammograms (DPV here) of the LEG, the LEG-MIP 

before template (Trp) extraction, and the LEG-MIP after template (Trp) extraction in 0.1 M KCl 

solution containing 2.0 mM K4Fe(CN)6/K3Fe(CN)6 (1:1). Error bars represent the s.d. from 3 

sensors. b,c, Sensitivity reproducibility of the LEG-MIP sensors. Batch-to-batch comparison of the 

sensitivity (∆J) of the Trp LEG-MIP sensors (b) and the Leu LEG-PB-MIP sensors (c) in the 

presence of 50 μM target. Error bars represent the s.d. from 3 sensors. d,e, Selectivity reproducibility 

of the LEG-MIP sensors. Batch-to-batch comparison of the selectivity of the Trp LEG-MIP sensors 

(d) and the Leu LEG-PB-MIP sensors (e) over other amino acids. 50 μM was used for each amino 

acid. 
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Figure B21: Microscopic and electrochemical characterization of the surface of the LEG- MIP 

electrodes. a–e, SEM characterization of the surface of LEG-MIP Trp electrodes from 5 different 

batches. Scale bars, 100 µm and 10 µm for upper and lower rows, respectively. f–j, Electrochemical 

characterization of the surface of LEG-MIP Trp electrodes from 5 different batches. Cdl, 

electrochemical double layer capacitance. Cyclic voltammograms were obtained for each LEG-MIP 

Trp electrode at the scan rates in PBS (pH 6.5). Current density in the calibration plot represents the 

oxidation current height at 0.6 V. Error bars represent the s.d. from 3 sensors. Solid lines in calibration 

plots represent linear fit trendlines. 
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Figure B22: Comparison of the performance of the MIP sensors based on different 

electrodes: LEG, printed carbon electrode (PCE), Au electrode (AuE), and glassy carbon 

electrode (GCE). a,b, DPV voltammograms (a) and ∆J (b) of the Trp MIP sensors before (dotted 

line) and after (solid line) incubation in 50 μM Trp. c,d, LSV voltammograms (c) and ∆J (d) of the 

Leu PB-MIP sensors before (dotted line) and after (solid line) incubation in 50 μM Leu. Error bars 

represent the s.d. from 3 electrodes. 
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Figure B23: Characterization of the performance of the LEG-AQCA-multi-MIP BCAA 

sensor. a,b, Negative DPV voltammograms (a) and the corresponding calibration plot (b) of an 

LEG-AQCA- multi-MIP sensor for BCAA quantification. Error bars represent the s.d. from 3 

sensors. Solid line in b represent a linear fit trendline. c,d, In situ regeneration of an LEG-

AQCA-MIP BCAAs sensor in PBS buffer containing 60 μM total BCAAs (1:1:1) (c) and a raw 

sweat sample collected from a healthy subject (d). 
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Figure B24: Selectivity of the LEG-MIP Trp sensors and the LEG-PB-MIP Leu sensors 

over other major analytes in human sweat. a,b, The selectivity of the Trp LEG-MIP sensors 

(a) and the Leu LEG-MIP sensors (b). I and I0 represent the peak amplitude obtained from the 

LEG-MIP sensors, and the average peak amplitude obtained from the starting target solution, 

respectively. The concentrations of the initial Trp, Leu and other sweat analytes are based on 

Supplementary Table 2. Trp and Leu concentrations were increased by 50% in the end. Error 

bars represent the s.d. from 3 independent measurements. 
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Figure B25: Evaluation of the LEG-MIP sensor for low concentration amino acid analysis. 

Error bars represent the s.d. from 3 sensors. Dashed lines in b,d represent linear fit trendlines. 
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Figure B26: GC-MS analyses of the Tyr, Try, Leu, Ile and Val in standard analyte solution. 

Each amino acid (200 µM added) displays a characteristic specific peak at its specific ion number. 

a, Merged spectrum of all ion numbers displaying all amino acids detectable by the EZ:Faast 

amino acid kit. b, Characteristic peak of Tyr in Ion 164. c, Characteristic peak of Leu, Ile and Trp 

in Ion 130. d, Characteristic peak of Val in Ion 158. 
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Figure B27: GC-MS analyses of human sweat and serum samples collected at the same time. 

Serum and sweat samples are diluted for 4 and 6.66 times, respectively. Merged spectra of all ion 

numbers are shown here. Compared to sweat, merged spectra of all ion numbers in serum 

displayed more peaks showing more amino acid peaks. 
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Figure B28: The performance of the LEG-MIP sensor under varied temperature and 

electrolyte levels. a, Color map showing the dependence of the LEG-MIP Trp sensor response 

on Trp and Na+ concentrations. b, Open circuit potential responses of an LEG-based Na+ sensor 

in the presence of varied Na+ concentrations. Inset, calibration plot of an LEG-based Na+ sensor. 

c, Color map showing the dependence of the LEG-MIP Trp sensor response on Trp and 

temperature. d, Calibration plot of an LEG- based temperature sensor in the physiological 

temperature range. Solid calibration lines in b,d represent linear fit trendlines. 
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Figure B29: In situ calibration strategies of the wearable LEG-MIP sensors involving a two-

step DPV-scan calibration and real-time temperature/electrolyte calibrations. (A and B) In 

situ calibration strategies of the MIP-LEG sensor with direct detection mechanism (a) and the 

MIP-RAR (AQCA used here for wearable sensing)-LEG sensor with indirect detection 

mechanism (b) to obtain accurate reading continuously during on-body use. 
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