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Abstract 

 

The Orbiting Carbon Observatory (OCO) mission was proposed to deliver the first 

temporally and spatially resolved global observations of CO2 to improve our 

understanding of the sources and sinks of CO2. A retrieval algorithm was developed to 

obtain the column-averaged dry-air mixing ratio of CO2 (
2COX ) from spectroscopic 

measurements of absorption in the 0.76 µm O2 A band and two near-infrared (NIR) bands 

of CO2 centered at 1.61 µm and 2.06 µm. An aerosol optical-property database was 

developed to aid with the retrievals. Principal-component analysis was used to speed up 

radiative transfer (RT) computations. To test the algorithm, column O2 was retrieved 

from measurements of absorption in the O2 A band over the sea surface. Using a single 

sounding, the column O2 was retrieved with an error of around 1%. Polarization was 

shown to have a significant impact on the retrieval-error budget. A new model based on 

computing two orders of scattering (2OS) was developed to compute polarization in the 

OCO spectral regions. The multiple-scattering, scalar model Radiant was combined with 

the 2OS model to create the R-2OS OCO RT model. Tests with simulated backscatter 

measurements at the OCO validation sites showed that the R-2OS model reduced the 

biases in retrieved 
2COX  to much lower than 1 ppm in most scenarios, compared to errors 

as high as 10 ppm using the scalar model. Aerosol vertical distribution, thin cirrus and 

surface bidirectional reflection need further study. 
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1.1 Background 

 

Atmospheric CO2 is an efficient greenhouse gas. The CO2 concentration has increased 

from 280 to 370 ppm since the beginning of the industrial era [IPCC, 1996; Schnell, King 

and Rosson, 2001]. There is growing apprehension that this will adversely alter the global 

climate [Cicerone et al., 2001; IPCC, 1996]. Measurements from a global network of 

surface stations [Chamard et al., 2001; Schnell, King and Rosson, 2001] indicate that the 

biosphere and oceans have absorbed almost half of the ~150 gigatons of carbon (GtC) 

emitted during the past 20 years. However, the nature and geographic distribution of 

these CO2 sinks and the processes controlling their variability are not adequately 

understood, precluding accurate predictions of their response to future climate or land use 

changes [Cicerone et al., 2001; IPCC, 1996]. These uncertainties largely impede efforts 

to predict future CO2 trends and their effects on climate. One major concern is that these 

sinks may saturate in the future, accelerating the buildup of atmospheric CO2 [Cox et al., 

2000; Friedlingstein et al., 2001]. In addition, CO2 monitoring treaties currently under 

consideration provide credits to nations for CO2 sequestration as well as emission 

reductions. Existing models and measurements also fail to explain why the atmospheric 

CO2 concentration increases vary from 1 to 8 GtC per year in response to steadily rising 

emission rates (figure 1.1) [Conway et al., 1994; Frolking et al., 1996; Houghton, 2000; 

Keeling et al., 1995; Lee et al., 1998; Le Quere et al., 2000; Randerson et al., 1997, 

1999]. 
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To address this concern, the Earth Science Enterprise (ESE) Strategic Plan has identified 

global maps of total column CO2 and carbon sources and sinks as required knowledge 

(objectives 1.2 and 1.3). It also recommends an exploratory CO2 column mission before 

2010. These measurements are one of the highest priorities of the evolving NASA 

Carbon Cycle Initiative and constitute critical needs identified by the interagency US 

Carbon Cycle Science Plan and the North American Carbon Program. 

 

 
 

Figure 1.1. (A) 40-year history of atmospheric CO2 buildup. (B) Observed variations in annual 

atmospheric CO2 accumulation (∆CO2) compared with fossil fuel emissions [Chamard et al., 2001; 

Schnell, King and Rosson, 2001]. Significant changes in carbon sequestration occur on annual 

time scales. 

 

1.2 Need for Space-Based Measurements 

 

Measurements from a network of surface stations (GLOBALVIEW-CO2 sampling 
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network, henceforth referred to as GV-CO2) [Gloor et al., 2000] are currently used to 

monitor atmospheric CO2 concentrations. As noted above, the GV-CO2 data show that 

only half to the CO2 that has been emitted into the atmosphere over the past few decades 

has remained there. The remainder has been absorbed by continental or oceanic carbon 

sinks, whose nature and geographic distribution are not known. Specifically, while the 

GV-CO2 data provide compelling evidence for a land-based carbon sink in the Northern 

Hemisphere [Battle et al., 2000; Bousquet et al., 2000; Ciais et al., 1995; Conway and 

Tans, 1999; Denning, Fung and Randall, 1995; Fan et al., 1998; Keeling and Shertz, 

1992; Morimoto et al., 2000; Pacala et al., 2001; Tans, Conway and Nakazawa, 1989], 

this network is too sparse to differentiate North American and Eurasian sinks or to 

estimate fluxes over the southern oceans [Bousquet et al., 2000; Enting, 1993; Fan et al., 

1998; Rayner and O’Brien, 2001]. 

 

The principal shortcoming of the ground-based network is its sparse spatial sampling. 

Accurate, time-dependent, spatially-resolved, global maps of the column-averaged CO2 

dry-air mole fraction (
2COX ) will dramatically improve our understanding of its surface 

sources and sinks. Modeling studies [Rayner and O'Brien, 2001] confirm that source-sink 

inversion algorithms employing global, space-based measurements of 
2COX  will 

outperform those using results from the GV-CO2 network if the space-based 

measurements have precisions better than 2.5 ppm on an 8° × 10° grid. Figures 1.2 and 

1.3 illustrate the resulting improvements in the retrieved carbon flux errors, respectively, 

on global and continental (~2 × 107 km2) scales, for 
2COX  errors of 1 ppm (0.3%). While 
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this accuracy is adequate to resolve the annually averaged 3–4 ppm gradients in the CO2 

mole fraction between the Northern and Southern hemispheres, substantially higher 

precision (<1 ppm) will be needed to resolve the much smaller (0.1–2 ppm) East–West 

gradients in this quantity (figure 1.4). 

 

 
 

Figure 1.2. Error in retrieved global carbon flux (GtC/yr) vs. space-based 
2COX  measurement 

precision [Rayner and O’Brien, 2001]. The Orbiting Carbon Observatory’s 1 ppm precision 

(circle) is needed to outperform the GV-CO2 network (dashed line). 

 

Missions currently operating and planned by NASA and its international partners will 

collect a broad range of data that are crucial to our understanding of the global carbon 

cycle, but no existing or planned missions will measure atmospheric CO2 with the 

sensitivity, precision and spatiotemporal resolution needed to characterize surface sources 

and sinks. The atmospheric infrared sounder (AIRS), tropospheric emission spectrometer 

(TES), cross-track infrared sounder (CrIS) and scanning imaging absorption spectrometer 

for atmospheric chartography (SCIAMACHY) can measure the CO2 column abundance, 

which can be combined with surface pressure estimates to yield 
2COX  estimates with 



 

 

7 

precisions of 3 to 4 ppm [Buchwitz, Rozanov and Burrows, 2000; Engelen et al., 2001]. 

While this information could yield new constraints on CO2 concentrations in poorly 

sampled regions, tracer transport models [Rayner and O’Brien, 2001] indicate that this 

precision will offer only limited improvements in estimates of CO2 fluxes relative to the 

existing GV-CO2 network. 
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Figure 1.3. Global maps of carbon flux errors for 26 continent/ocean-basin-sized zones retrieved 

from inversion studies. (A) Studies using data from the 56 GV-CO2 stations produce flux residuals 

that exceed 1 GtC/yr in some zones. (B) Inversion tests using global 
2COX  pseudodata with 1 ppm 

precision reduce the flux errors to <0.5 GtC/yr/zone [Rayner and O’Brien, 2001]. 

 

The Orbiting Carbon Observatory (OCO) mission [Crisp et al., 2004; Kuang et al., 2002] 

was proposed to make the first space-based measurements of atmospheric CO2 with the 

accuracy, precision, resolution, and coverage needed to characterize the geographic 

distribution of CO2 sources and sinks and quantify their variability. These measurements 

will revolutionize our understanding of the global carbon cycle. OCO will fly in a sun 
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synchronous polar orbit that provides global coverage with a 16-day repeat cycle. It will 

carry the total CO2 mapping spectrometer (TCO2MS), which comprises three bore-

sighted, high-resolution, grating spectrometers, designed to measure reflected sunlight in 

near-infrared (NIR) absorption bands of CO2 and O2. 

 

  

 

Figure 1.4. Global simulations of 
2COX  for July with 4° × 5° resolution and Gaussian noise at 0, 1, 

2, and 4 ppm. For noise exceeding 2 ppm, even the North–South hemispheric gradient is 

unrecognizable. 

 

These space-based measurements will be processed by a remote sensing retrieval 

algorithm and validated by an enhanced ground-based CO2 network to ensure a precision 

of ~0.3% on regional to continental scales. Chemical tracer transport models will use 

OCO 
2COX  data and other measurements to retrieve the spatial distribution of CO2 
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sources and sinks on regional scales and seasonal to interannual timescales over two 

annual cycles. 

 

During the OCO mission, concurrent observations of carbon monoxide (CO) and 

methane (CH4) from AIRS and TES, tropospheric ozone from TES; and formaldehyde 

(H2CO), CO, CH4, and nitrogen dioxide (NO2) from SCIAMACHY will be assimilated 

with OCO 
2COX  data to provide new constraints on carbon sources and sinks (e.g., CO 

vs. CO2 will allow separation of combustion and biogenic influences on CO2). The global 

coverage, spatial resolution, and accuracy of the OCO measurements will provide a 

quantitative basis for characterizing and monitoring processes influencing CO2 

sequestration and emission reduction. 

 

1.3 Thesis Organization 

 

The aim of this work is to develop and test algorithms for the retrieval of 
2COX  from 

backscatter measurements in the OCO spectral regions. The thesis is divided into three 

parts. Part I focuses on the background and motivation behind the OCO mission and 

expands on the salient features of the mission. In chapter 2, we discuss the spectroscopy 

of the absorption bands used by OCO and describe the measurement requirements and 

approach. Chapter 3 outlines the retrieval strategy, including a section on the 

fundamentals of radiative transfer (RT) and one on the inverse method. In part II, we 

develop tools to aid the RT modeling and conduct preliminary tests. Chapter 4 describes 
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the computation of aerosol optical properties and sensitivity studies to quantify errors due 

to incorrect knowledge of aerosol types. In chapter 5, we develop a technique based on 

principal component analysis (PCA) to speed up RT computations, while achieving 

accuracies necessary for CO2 source-sink retrievals. A preliminary study of column O2 

retrievals from aircraft measurements of reflected sunlight in the O2 A band is performed 

in chapter 6. The important problem of polarization as relevant to OCO is discussed in 

part III, and a method based on computing two orders of scattering (2OS) developed and 

tested to compute the polarization. In chapter 7, we discuss the errors caused by 

neglecting polarization in the OCO RT model. The 2OS model is developed in chapter 8. 

Chapter 9 describes sensitivity studies to compute 
2COX  errors using the 2OS model and 

compares them with the errors using a scalar model. The current status of the OCO 

retrieval algorithm and future work are summarized in chapter 10. 
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2.1 Objectives 

 

OCO is the first mission to make dedicated space-based observations of atmospheric 

CO2. The mission will address NASA's highest priority carbon cycle measurement 

requirement and generate the knowledge needed to improve projections of future 

atmospheric CO2. These measurements will be combined with data from the ground-

based network to characterize CO2 sources and sinks on regional scales on monthly to 

interannual time scales. This enhanced understanding is essential to improve predictions 

of future atmospheric CO2 increases and their impact on the Earth’s climate. 

 

The OCO satellite will fly in a 705 km altitude, near-polar, sun-synchronous orbit, 

providing global coverage every 16 days. It will fly just ahead of the Earth Observing 

System (EOS) Afternoon Constellation (A-Train), with a 1:26 PM equator crossing time. 

This orbit facilitates direct comparisons of OCO observations with complementary data 

taken by Aqua (e.g., AIRS temperature, humidity, and CO2 retrievals; MODIS clouds, 

aerosols, and ocean color), Aura (e.g., TES CH4 and CO), and other A-Train missions. 

This orbit's 16-day repeat cycle also facilitates monitoring 
2COX  variations on 

semimonthly time scales. The purpose of the sun-synchronous orbit is to remove the 

effect of diurnal changes in CO2 abundance, and to discriminate between seasonal 

variations and long-term changes. Further, it minimizes systematic errors along a given 

latitude circle contributed by variations in viewing geometry, and improves the 

measurement accuracy for small, East–West gradients in 
2COX . The early afternoon 
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equator crossing time is ideal for inferring surface sources and sinks from column CO2 

measurements because the planetary boundary layer is relatively deep, and CO2 is well 

mixed through the column. Also, the sun is high in the sky, maximizing the signal-to-

noise ratio (SNR) of the 
2COX  measurements. In addition, existing in situ data show that 

CO2 concentrations over land are usually near their diurnally averaged values at that time 

of the day. 

 

Contiguous spatial coverage is not needed to retrieve CO2 fluxes on regional (8° × 10°) to 

continental scales, but large numbers of spectra must be collected to ensure representative 

sampling in the presence of subgrid scale variability. High spatial resolution (1–2 km2) is 

also needed to maximize the probability of viewing the full CO2 column in regions 

occupied by patchy clouds [Wielicki and Parker, 1992]. To address these needs, each 

TCO2MS spectrometer will acquire 10 contiguous 1 km wide cross-track samples at a 

rate of 4.5 Hz, yielding an instantaneous field of view (IFOV) of 1 × 1.5 km2 for each 

spectrum (figure 2.1). This produces 45 soundings per second or 740 soundings per 

degree of latitude along the orbit track. The orbit track will cross each 4° × 5° sampling 

bin 3 or more times every 16 days, yielding >9000 soundings in each month. 

 

Because OCO implements an exploratory space-based measurement concept that has not 

yet been validated, measurements of CO2 from non-space-based instruments are 

necessary for validation purposes. Correlative data from CO2 surface [Schnell, King and 

Rosson, 2001; Tans, Fung and Takahashi, 1990] and flux tower [Bakwin et al., 1995, 
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1998; Goulden et al., 1996] networks, profile measurements from aircraft [Vay et al., 

1999; Weller et al., 1995; Yamamoto et al., 1996], soundings from ground-based solar-

viewing Fourier transform infrared (FTIR) spectrometers [Notholt, Meier and Peil, 1995; 

Wallace and Livingston, 1990], and other satellite experiments (e.g., Aqua) are all helpful 

for placing the OCO soundings in the correct chemical, spatial, and temporal context. 

Important correlative observations will include aspects of the CO2 behavior not 

observable by OCO (e.g., diurnal variations, vertical profiles), and related atmospheric 

variables (e.g., CO, CH4, aerosol) that will help constrain the 
2COX  data. Both in situ and 

remote sensing measurements are needed to interpret OCO retrievals. The in situ data 

will be used to understand diurnal, seasonal, and clear-sky biases. The remote sensing 

results will permit independent investigation of systematic errors due to cloud, aerosol, 

temperature, humidity, and viewing geometry. 

 

 

 

Figure 2.1. A Landsat image of Hilo Bay, Hawaii showing the OCO imaging approach. The small 

footprint enables OCO to observe the full atmospheric column in regions with patchy clouds. 
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The OCO mission will contribute to a large number of additional scientific investigations 

that are related to the global carbon cycle. These studies include dynamics of ocean 

carbon exchange; seasonal dynamics of northern hemisphere terrestrial ecosystems in 

Eurasia and North America; exchange of carbon between the atmosphere and tropical 

ecosystems due to plant growth, respiration, and fires; movement of fossil fuel plumes 

across North America, Europe, and Asia; effect of weather fronts, storms, and hurricanes 

on the exchange of CO2 between different geographic and ecological regions; and mixing 

of atmospheric gases across hemispheres. 

 

2.2 Measurement Requirements 

 

Clear definitions of accuracy, precision, and bias are essential to understand the science 

measurement requirements for OCO. The accuracy of an 
2COX  retrieval is defined by 

how well it agrees with the true value of the column-averaged dry-air mole fraction at a 

specific time and place. Accuracy is limited by both random and systematic errors. 

Random errors influence how well a measurement can be repeated, and therefore define 

the precision of a single sounding. A variety of random errors limit the precision of the 

OCO spectrometers, including photon noise, and detector read and thermal noise. Since 

these errors are uncorrelated, combining many measurements will improve precision. 

 

Measurement biases produce systematic offsets in 
2COX  estimates. In general, systematic 

errors cannot be reduced by combining measurements. For OCO, measurement biases 
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can be introduced by the instrument (e.g., uncertainties in the instrument line shape (ILS), 

zero offset, stray light contamination, detector nonlinearity) and by properties of the 

surface and atmosphere (uncertainties in cloud and aerosol opacity, temperature, surface 

pressure, surface reflectance, topography). Measurement biases have a range of spatial 

scales. Biases with small scales will be reduced by spatial averaging, while those with 

continental to hemispheric scales will not. The OCO 
2COX  measurements must have no 

significant geographically varying biases. 

 

Biases that are spatially and temporally invariant (e.g., errors in spectroscopic band 

strengths for CO2 or O2) compromise the accuracy, but not the precision. High precision 

(e.g., 1 ppm or 0.3%) is far more critical than accuracy for properly inferring CO2 sources 

and sinks from 
2COX . The 1 ppm requirement refers to the precision necessary for 

2COX  

retrievals on regional to hemispheric scales on monthly to annual time scales. 

 

Sampling bias is introduced if the spatial or temporal sampling provided by the 

instrument does not adequately resolve the processes that affect the observed quantity 

(i.e., unresolved spatial inhomogeneity, pole to pole and seasonal variations in solar 

insolation, changes in observation geometry, local time of day, persistent local cloud 

cover, etc.). With this definition, sampling biases do not contribute to errors in individual 

2COX  soundings, but they may introduce errors in the inversion of sources and sinks from 

these measurements. 
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2.3 Measurement Approach 

 

OCO obtains the CO2 and O2 column abundances necessary to derive time-dependent 

global 
2COX  estimates by recording high resolution NIR CO2 and O2 absorption spectra 

using sunlight reflected from the Earth’s surface [Crisp et al., 2004; Kuang et al., 2002; 

Miller et al., 2007; Park, 1997; Wallace and Livingston, 1990]. The absorption of 

sunlight by the NIR CO2 bands is most sensitive to the CO2 concentration in the 

boundary layer, where the effects of sources and sinks are most readily detected. 

Reflected sunlight can provide measurements with adequate sensitivities even at 

resolving powers high enough to separate individual absorption lines. Spectra of 

complete NIR bands will constrain systematic effects that might otherwise introduce 

biases in CO2 measurements. At NIR wavelengths, thermal emission from the surface, 

atmosphere and instrument are all negligible compared to reflected sunlight, simplifying 

RT and instrument calibration. Finally, this low-cost, low-risk technique requires no new 

technology development. 

 

Thermal infrared soundings can yield observations of CO2 from space, but these 

measurements have limited sensitivity to CO2 concentrations near the surface (figure 2.2) 

because the thermal contrast between the surface and near-surface atmosphere is usually 

small, and their precision (~1%) is insufficient to meet the 0.3% requirement [Engelen et 

al., 2001]. Solar occultation also lacks the ability to sense the boundary layer [Pak and 

Prather, 2001]. Lidar has been advocated for monitoring CO2 from space, but even the 
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best ground-based trace gas lidars do not have accuracies necessary for OCO, and 

existing lasers lack the power, reliability, and technical maturity needed to deliver 

precise, long-term CO2 measurements from space. 

 

 

 

Figure 2.2. A comparison of the averaging kernels for column CO2 soundings using NIR 

absorption of reflected sunlight and thermal IR emission. NIR measurements are much more 

sensitive to surface phenomena. 

 

2.4 Spectroscopy and Measurement Physics 

 

OCO will retrieve the CO2 column abundance from the 30013�00001 combination band 

of CO2 centered at 1.61 µm. The HITRAN notation is used here, where the numbers 

represent, in order, the vibrational quantum numbers; the value of l-type doubling 

[Ramsay, Rostas and Zare, 1975], representing the contribution of the bending mode to 

the angular rotation; and the location of the level in the Fermi resonating group. This 

weak band is ideal for CO2 column measurements because (1) this spectral range is 
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relatively free of absorption by other gases; (2) most of the spectral lines are not saturated 

even at high solar zenith angles, such that their absorption increases almost linearly with 

the CO2 abundance and path length (figure 2.3); and (3) the contribution functions in 

reflected sunlight are peaked at the surface, where most CO2 sources and sinks are 

located (figure 2.2). 

 

 

 

Figure 2.3. Simulated atmospheric transmission (solar zenith angle = 40°) for the three 

OCO spectrometers (instrument effects included), including all absorbing species in each 

interval (O2:green, CO2:black, H2O:blue). 

 

2COX , and not the CO2 column abundance, is needed to characterize CO2 sources and 

sinks because the column abundance varies with factors unrelated to CO2 fluxes (e.g., 

surface pressure). Measurements of a reference gas, whose concentration is uniform, 

constant, and well known, are needed to convert the observed CO2 column abundance to 

2COX . Molecular oxygen is the best available candidate. 
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where 0.2095 is the O2 volume mixing ratio (vmr). 
2COX  has a higher precision than 

column CO2 alone because many of the systematic errors affect the CO2 and O2 columns 

similarly (e.g., cloud, aerosol, surface pressure), and therefore cancel in the ratio of these 

quantities. 

 

The O2 1∆g band at 1.27 µm is near the 1.61 µm band, but this band is not suitable for 

full-column soundings from space because it produces intense, spatially variable airglow 

emission in the upper atmosphere [Noxon, 1982]. OCO will use bore-sighted, high 

spectral resolution observations in the O2 A band at 0.76 µm. The A band is the (0,0) band 

of the �� −+ ← gg Xb
11

 magnetic dipole transition [Wark and Mercer, 1965]. Aircraft 

studies [Mitchell and O’Brien, 1987; O’Brien, English and da Costa, 1997; O’Brien et al., 

1998] have shown that A band observations can provide surface pressure estimates with 

accuracies better than 1 mbar (0.1%), satisfying OCO measurement precision 

requirements. 

 

Airborne particles can absorb or scatter sunlight back to space before it traverses the full 

atmospheric column, precluding full-column CO2 measurements in regions occupied by 

opaque clouds. The O2 A band is sensitive to clouds and small aerosol particles 

[Heidinger and Stephens, 2000; Koelemeijer et al., 2001; O’Brien and Mitchell, 1992; 

Stephens and Heidinger, 2000]. The fact that the band contains both weak and strong 

lines (figure 2.3) provides additional information on the vertical distribution of clouds and 

aerosols. Bore-sighted O2 A band measurements are therefore required for characterizing 
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the cloud and aerosol abundance in each sounding, so that those with too much scattering 

can be rejected. For less opaque soundings (optical depths 0.03 < τ < 0.3), they help 

reduce errors in the 
2COX  retrievals by providing information about the photon path 

length distribution. The O2 A band thus helps minimize uncertainties associated with 

pointing errors or topography. 

 

However, O2 A band observations alone are not adequate for characterizing the scattering 

by water ice clouds and aerosols in the 1.61 µm CO2 band because their optical properties 

can vary substantially between these two bands. Spectra of the 20013�00001 

combination band of CO2 centered at 2.06 µm are required to constrain the wavelength 

dependence of cloud and aerosol optical properties. Unlike the weak 1.61 µm band, the 

CO2 absorption near 2.06 µm is produced by strongly saturated lines that have a 

relatively weak (square root) dependence on the CO2 concentration, but enhanced 

sensitivity to clouds and aerosols (figure 2.3). The 2.06 µm CO2 band also provides 

additional photon path length information to yield accurate estimates of 
2COX  in 

situations with thin cirrus and aerosol. Further, measurements of water vapor absorption 

lines and CO2 hot bands within the 2.06 µm region supply explicit constraints on these 

two atmospheric properties. This is essential because the strengths and widths of CO2 

absorption lines depend on T such that uncertainties >5 K in the temperature profile 

introduce 
2COX  errors of >1 ppm. H2O vmr must be known to +30% to avoid 

2COX  

biases of >1 ppm. 
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High-resolution spectroscopic measurements within the three bands also provide 

constraints on the airborne particle type. For example, the 2.06 µm band is on the edge of 

a strong water-ice absorption feature. If the ice is on the surface, it introduces a 

significant slope in the continuum, but has a much smaller effect on the line cores, while 

a cirrus ice cloud produces a strong signature in both the line cores and continuum. These 

differences can be exploited to identify the most likely aerosol type and correct for its 

effects on retrievals of 
2COX . 

 

The spectral range for each band includes the complete band as well as some continuum 

at both ends. By using the entire band, biases due to uncertainties in atmospheric 

temperatures (which affect the relative strengths of individual rotational transitions) are 

minimized. The continuum at the band edges provides additional information about the 

wavelength dependent optical properties of the surface reflectance and airborne particles. 

 

High spectral resolution is required to maximize sensitivity and minimize bias. For the 

CO2 spectrometers, a spectral resolving power, R = λ⁄∆λ ~ 21,000 (full width at half 

maximum (FWHM) ~ 7.5 × 10-5 µm), is necessary to separate individual CO2 lines from 

weak H2O and CH4 lines and from the underlying continuum (figure 2.3). Higher 

resolving powers can yield greater sensitivity, but they result in unacceptably low SNR 

for the instrument architecture at the spatial sampling scales adopted for OCO. For the O2 

A band, a resolving power of R ~ 17,500 (FWHM ~ 4.3 × 10-5 µm) is needed to resolve 

the O2 doublets from the continuum. The FWHM of the ILS must be resolved by >2 
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detector elements in each spectrometer to minimize spectral sampling errors. 

 

2.5 Viewing Modes 

 

OCO has three science observing modes. In nadir mode, the spectrometers will point 

toward the local nadir and collect data along the orbit track directly below the spacecraft. 

This mode provides the highest spatial resolution, and maximizes the probability of 

viewing cloud-free scenes in the presence of patchy clouds. It also simplifies spacecraft 

operations. In glint mode, the instrument will be pointed toward the spot where solar 

radiation is specularly reflected from the Earth’s surface. At high solar zenith angles over 

ocean, the glint signal can be more than an order of magnitude brighter than nadir, 

dramatically enhancing SNR [Cox and Munk, 1954; Kleidman et al., 2000]. Target-

tracking mode involves rolling the spacecraft to keep the spectrometers pointed at a fixed 

ground site for up to 12 minutes. This mode will facilitate and greatly extend coincident 

observations at ground-based validation sites and allow an assessment of possible biases 

due to the changing viewing geometry. Switching between the different modes will help 

identify biases between the observation modes and facilitate the coordination of OCO 

measurements with intensive field campaigns over land (e.g., North American Field 

Campaign) or ocean (e.g., JGOFS, SOLAS and follow-on experiments). 

 

There are also other viewing modes to assist in calibration. Nadir scans on the night side 

of the Earth will help with zero-level calibration. Pixel-to-pixel gain correction will be 
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done using flat-field images of a continuum lamp illuminating the diffuser plate. Viewing 

direct sunlight above the atmosphere provides absolute radiometric calibration and an 

accurate solar spectrum for use in retrievals. Wavelength calibration will be performed by 

producing a least-squares best fit to known positions of the absorption lines in each band, 

using constraints on the ILS derived from narrow stratospheric absorption lines in the 

limb-viewing mode. 

 

2.6 Correlative Measurements 

 

Errors in the spectroscopic line intensities and line widths will compromise the retrievals 

of 
2COX . Specifically, the absorption line intensities and air-broadened line widths must 

be determined to 0.3% or better accuracy for the vibration-rotation bands of CO2 and O2 

to minimize systematic errors when comparing remote observations with in situ data. 

Since these requirements cannot be met by existing spectral line databases, OCO includes 

a laboratory spectroscopy effort [Crisp et al., 2004]. 

 

CO2 sources and sinks must be inferred from small variations in 
2COX ; geographically 

varying biases as small as 1 ppm might thus be misinterpreted as sources and sinks. 

Eliminating biases to this level is a major challenge given the considerable variations in 

temperature, solar zenith angle, surface pressure and aerosol loading that will be 

encountered along the OCO measurement track. The OCO validation strategy ties the 

space-borne measurements of 
2COX  to in situ measurements. However, although in situ 
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data are highly accurate, their spatial averaging characteristics differ from those of OCO, 

making direct comparison of the measurements difficult. Ground-based FTIR 

spectrometers provide a transfer standard between the in situ measurements of CO2 and 

the space-borne measurements of 
2COX . 

 

Measurement biases can be quantified by rigorous comparison of the space-based 

observations to measurements of 
2COX  obtained from ground-based spectrometers 

located at a variety of locations. FTIR spectrometers are well suited to the validation of 

OCO data because they measure the same quantity (the column-averaged mole fraction) 

and use the same O2 and CO2 absorption bands [Notholt, Meier and Peil, 1995; Wallace 

and Livingston, 1990; Yang et al., 2002]. However, the ground-based spectra have a 

much higher resolving power and SNR than the TCO2MS observations, allowing a 

rigorous test of the models used in the analysis of OCO spectra. The ground based FTIR 

spectrometers use direct sunlight rather than reflected sunlight, making them much less 

sensitive to scattering by thin clouds and aerosols. FTIR data, therefore, provide a way to 

validate the treatment of clouds and aerosols used in the retrieval of 
2COX  from TCO2MS 

observations. The FTIR spectrometers can also take data throughout the day, providing 

information on the diurnal cycle of CO2 at several locations, facilitating the interpretation 

of satellite observations. 

 

Changes in viewing geometry may introduce latitude-dependent systematic errors, since 

high-latitude measurements will generally be made at higher solar zenith angles than 
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those at low latitudes. Measurements of 
2COX  from ground-based FTIR spectrometers 

covering a range of latitudes is, therefore, crucial to ensure that the space-borne 

measurements have no bias related to observing geometry. 

 

The accuracy of the ground-based measurements of 
2COX  can be assessed by comparison 

with colocated in situ flask measurements, tower observations, and profiles of CO2 from 

aircraft. The CO2 fluxes derived by assimilation and inversion models from the 
2COX  

measurements can be validated by comparing them with direct flux measurements from 

existing towers in terrestrial ecosystems [Baldocchi et al., 2001]. These sites quantify the 

flux of CO2 using the “eddy correlation” method that is based on high temporal resolution 

observations of CO2 and vertical velocity. 

 

Inversion and data assimilation models must correctly account for several types of 

sampling bias. These biases complicate the interpretation of the 
2COX  data, even in the 

absence of systematic measurement error. These include the diurnal bias that results from 

the fixed 1:26 PM OCO orbit, as well as a clear-sky bias which results from the fact that 

OCO can acquire full-column measurements only on cloud-free days, when 

photosynthesis is expected to be stronger than on cloudy days. 

 

Measurements of the CO2 vmr at various altitudes [Griffith et al., 2002] show large 

diurnal variations (30%) near the surface, decreasing rapidly with altitude (15% at 22 m). 

The net diurnal variation of the column-averaged CO2 is estimated to be ~0.5% peak-to-
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peak over active forested regions, the maximum vmr occurring ~1 hour after sunrise and 

the minimum ~1 hour before sunset [Chou et al., 2002]. On average, the 1:26 PM value 

of 
2COX  measured by OCO will be ~0.1% below the 24-hour mean. This may lead to the 

appearance that 
2COX  measured by OCO is smaller over active forests than the 

surrounding areas (which have a smaller diurnal variation of CO2), even if the diurnal 

mean values of the actual CO2 column are identical over both regions. The CO2 sink over 

active forests may be overestimated unless this bias is properly accounted for within 

inversion and data assimilation models. Figure 2.4 suggests that the diurnal bias of 
2COX  

is small (<0.3 ppm) compared to day-to-day variations (which are driven by synoptic 

scale forcings such as variations in the biospheric sink and shifting wind patterns), but 

potentially important when integrated over an annual cycle. 

 

 

 

Figure 2.4. (a) Calculated monthly mean, 24 h average 
2COX  (ppm) for May using the NCAR 

MATCH model driven by biospheric and fossil fuel sources of CO2. (b) 
2COX  differences (ppm) 

between the monthly mean, 24 h average and the 1:26 PM value. 
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Another source of sampling bias arises from the fact that the space-borne measurements 

of 
2COX  will be obtained only in cloud-free conditions. In many ecosystems, 

photosynthesis will be stronger on sunny days than on cloudy days; the value of 
2COX  

measured by OCO may hence be biased slightly lower than average. For example, in 

tropical regions, highly productive forest ecosystems may have a greater degree of cloud 

cover as compared with savannas and deserts. 

 

Seasonal biases will be especially severe at high latitudes, which receive essentially no 

coverage by the space-borne instrument in winter and during persistently cloudy periods. 

Since 
2COX  is generally below average in the summer, models used to assimilate these 

observations must correctly represent the seasonal behavior to avoid sampling bias. In 

situ measurements of CO2 are critical for characterizing sampling biases since they can 

be collected 24 hours per day, 365 days per year, rain or shine. 

 

2.7 Data Analysis 

 

The processing pipeline for OCO data delivered to the ground involves five steps: 

calibration, cloud clearing, binning, retrieval, and inversion/assimilation. First, the raw 

telemetry is decompressed, error corrected and merged. Calibration algorithms then use 

the calibration spectra (solar, lamp, dark) to linearize, flat field, and subtract offsets from 

the measured spectra. The calibrated radiances are then geolocated and screened by a 

cloud-clearing algorithm to identify pixels that are reasonably free of cloud and aerosol. 
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This is achieved by a fast, hierarchical, approach using just a few channels in the O2 A 

band spectrum to decide whether each scene is sufficiently cloud free to warrant further 

processing or not [Heidinger and Stephens, 2000; Koelemeijer et al., 2001; O’Brien and 

Mitchell, 1992; Stephens and Heidinger, 2000]. High-resolution cloud studies suggest 

that this procedure may reject 80 to 90% of all soundings [Rayner et al., 2002; Wielicki 

and Parker, 1992]. The remaining spectra are processed by the sorting algorithm, which 

bins similar spectra to reduce the number of full 
2COX  retrievals needed. Averaging of 

adjacent cloud-free pixels also reduces the number of spectra to be analyzed. 

 

A spectral fitting retrieval algorithm simultaneously fits these cloud free, averaged, 

spectra from the 3 spectrometers, to determine 
2COX , H2O vmr, temperature, surface 

pressure, surface reflectance, cloud and aerosol extinctions, in addition to various 

instrumental parameters. This process is relatively slow because the forward model must 

accurately represent the solar radiation field in an absorbing, multiply scattering 

atmosphere, plus the effects of the spectrometer on the incident radiation. Fortunately, the 

prior cloud clearing and the binning/averaging greatly reduces the number of spectra for 

which this retrieval has to be performed. The same retrieval algorithm will be used for 

both the satellite and ground-based FTIR spectra. 

 

The 
2COX  fields retrieved by OCO form the input to synthesis inversion and data 

assimilation models. Inverse models start from a 3-D solution of the continuity equation 

(the forward chemical tracer model or CTM) to derive a relationship between CO2 
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surface fluxes and the resulting atmospheric CO2 concentrations. By inverting the 

forward model, they derive optimized values of CO2 surface fluxes to match the 

constraints offered by an ensemble of observed atmospheric concentrations. The 

optimization accounts formally for errors in the observations, forward model, and initial 

(a priori) knowledge of the different carbon flux terms. Assimilation methods optimally 

combine OCO observations with short-range forecasts. The high frequency, global 

analyses rely on the accuracy of the model and knowledge of spatial correlations in the 

data to provide information in regions with no observations. The product of these models 

will be a complete, dynamically self-consistent 4-D atmospheric CO2 field. 
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3.1 Retrieval Pipeline 

 

Observations from the 3 OCO spectral regions constitute a single sounding. Each 

sounding will be analyzed with a retrieval algorithm, which will fit the measured spectra 

by adjusting the unknown atmospheric, surface and instrumental parameters. The 

retrieval algorithm consists of two parts: a forward model and an inverse method. The 

forward model is an approximate scheme to describe RT in the atmosphere, reflection by 

the surface and the effects of the instrument on the incident radiation. The inverse method 

adjusts the assumed state to better match the measurements. 

 

The principal characteristics and flow of the 
2COX  retrieval algorithm are presented 

schematically in figure 3.1. For each sounding, the retrieval process begins with an 

assumed environmental state, defined by the surface pressure Ps, surface reflectance a, 

vertical temperature profile T(z), mixing ratios of CO2, water vapor, and other trace 

gases, [X(z)], and cloud and aerosol optical depth distributions (τc and τa, respectively). 

These parameters can be initialized from known climatology, or from adjacent retrievals. 

This information is combined with pretabulated, wavelength-dependent gas, aerosol, and 

cloud optical properties. The gas absorption cross sections, σλ(p,T), in the three spectral 

regions are derived and tabulated as functions of p and T using a line-by-line model 

[Meadows and Crisp, 1996] and spectral line databases such as HITRAN [Rothman et al., 

2005]. For clouds and aerosols, the wavelength-dependent optical properties (absorption 

and scattering cross sections, and phase functions) for liquid water, water ice crystals, and 
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a wide variety of common aerosol types have been derived for a range of common size 

distributions using Mie scattering (liquid water, sulfates) [de Rooij and van der Stap, 

1984], T-Matrix (mineral dust) [Mishchenko and Travis, 1998], and geometric optics 

(cirrus cloud) [Yang and Liou, 1995, 1996a, 1996b, 1997] codes. These tabulated data are 

combined with the atmospheric and surface state parameters and information about the 

viewing geometry and solar zenith angle, and used in a multilayer, spectrum resolving 

(line-by-line), multiple-scattering scalar RT model [Christi and Stephens, 2004; Spurr 

and Christi, 2007], with a correction scheme for polarization [Natraj and Spurr, 2007] to 

generate angle-dependent radiance spectra for the three bands. These synthetic spectra are 

then processed with a solar model and a model that simulates the instrument’s spectral 

response to the incident radiation, and produces results that can be compared directly to 

the calibrated spectra. 

 

The inverse model compares the synthetic radiance spectra to the observations and uses 

an optimal estimation technique [Rodgers, 1976, 2000] to modify the assumed state 

parameters and produce an improved match to the measured spectra in all three spectral 

regions. These revised parameters are then reinserted into the RT model to generate a 

new synthetic spectrum, and this process is repeated until the observed and synthetic 

spectra achieve the best possible match. Finally, 
2COX  is computed from the best-match 

atmospheric state. 
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Figure 3.1. Schematic of the 
2COX  retrieval algorithm. 

 

3.2 Radiative Transfer 

 

In atmospheric transfer problems, it is convenient to use a dimensionless quantity called 

the optical depth, rather than the actual geometrical depth. The optical depth � can be 

defined as: 

 

 �= dlnστ ,         (3.1) 

 



 

 

48 

where � is the cross section of an individual molecule, n is the number density of 

molecules and l is the path length. The product of � and n is called the extinction 

coefficient k. The optical depth measures the amount of extinction a beam of light 

experiences travelling between two points. For historical reasons, the optical depth is 

defined to be 0 at the top of the atmosphere (TOA) and increases as we go toward the 

surface. 

 

The fundamental equation of radiative transfer (RTE), which was first postulated by 

Schwarzschild, is as follows: 

 

 ),,(),,(
),,( φµτφµτ

τ
φµτµ JII −=

d
d

,      (3.2) 

 

where � is the cosine of the zenith angle (measured from the upward vertical), φ  is the 

azimuthal angle (measured counterclockwise, looking down, from an arbitrary but fixed 

direction) and J is the source term. I is the diffuse (excluding the direct solar beam) 

radiance vector, which has the Stokes parameters [Chandrasekhar, 1960] I, Q, U and V as 

its components. Stokes parameter I is the intensity, Q and U describe the linearly 

polarized radiation, and V refers to the circularly polarized radiation. The Stokes 

parameters are defined with respect to a reference plane, usually taken to be the local 

meridian plane. 

 
The first term on the right-hand side of equation (3.2) represents attenuation due to 

absorption and scattering of a radiance stream as it propagates through the atmosphere, 



 

 

49 

and the source term represents the strengthening of the radiance stream. For solar 

radiation it arises from photons scattered in the path from all other directions. The 

presence of this scattering source term ensures that the radiation field is no longer merely 

a function of local sources and sinks, but of the entire atmospheric radiation field and of 

its transport over large distances. In practice this makes the solution much more difficult 

to obtain. If there is no source function, then the above equation reduces to the familiar 

Beer’s law. 

 

The source term J has the form: 

 

),,(),,(),,,(
4

)(
),,(

1

1

2

0

φµτµφφµτφφµµτ
π
τωφµτ

π

QI�J +′′′′′−′= � �
−

dd . (3.3) 

 

Here, ω is the single scattering albedo and �  the phase matrix for scattering. The first 

term in equation (3.3) represents multiple-scattering contributions. The inhomogeneous 

source term Q(�,µ,φ) describing single scattering of the (attenuated) solar beam can be 

expressed as: 

 

 ]exp[),(
4

)(
,,( 000 λτφφτ

π
τωτ −−−= I�Q ,��,�)� .    (3.4) 

 

Here, −µ0 is the cosine of the solar zenith angle (with respect to the upward vertical), φ0 is 

the solar azimuth angle and I0 is the Stokes vector of the incoming solar beam before 
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attenuation. λ is a geometrical factor. For plane parallel attenuation, λ =−1/µ0. In the 

pseudospherical formulation [Spurr, 2002] used for the OCO retrieval algorithm, all 

scattering is regarded as taking place in a plane parallel medium, but the solar beam 

attenuation is treated for a curved atmosphere. 

 

The phase matrix ΠΠΠΠ relates the scattering and incident Stokes vectors defined with 

respect to the meridian plane. The equivalent matrix for the Stokes vectors with respect to 

the scattering plane is the scattering matrix F. In this thesis, the scattering medium is 

considered to be macroscopically isotropic and symmetric [Hovenier, 1971], containing 

ensembles of randomly oriented particles having at least one plane of symmetry. For this 

case, F depends only on the scattering angle Θ between the scattered and incident beams. 

The phase matrix ΠΠΠΠ as defined here is related to F(Θ) through application of two rotation 

matrices L(π−i2) and L(−i1) [Hovenier, 1971]: 

 

)()()(),,,( 12 ii −Θ−=′−′ LFL� πφφµµτ .     (3.5) 

 

Using spherical trigonometry cosine laws, the scattering angle � can be obtained in terms 

of the directions of the incident and scattered radiation: 

 

 )'cos('11'cos 22 φφµµµµ −−−+=Θ ,     (3.6) 

 

where � and �’ are the cosines of the incident and scattered zenith angles, and φ  and 'φ  
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are the incident and scattered azimuthal angles respectively. The convention is adopted 

that � > 0 refers to upward radiance streams and � < 0 refers to downward radiance 

streams. 

 

For the cases considered here, F(Θ) has the well known form: 
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ab

ba

ab
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F .     (3.7) 

 

There are a number of ways in which the phase function )(1 Θa  may be normalized, but 

the most natural is that used by the astrophysicists. They treat the phase function as a 

probability distribution; consequently, their normalization condition requires the integral 

of the phase function over all angles to equal unity. 

 

 � =ΘΘΘ
π

0
1 1sin)(

2
1

da .       (3.8) 

 

For the special form of the scattering matrix given by equation (3.7), the dependence on 

scattering angle allows us to develop expansions of the six independent scattering 

functions in terms of a set of generalized spherical functions )(cos, Θl
nmS  [Mishchenko, 

Hovenier and Travis, 2000]: 
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0
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�
=
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M
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l Sb

0
2,02 )(cos)( ε .       (3.9f) 

 

The six sets of expansion coefficients {αl, βl, γl, δl, εl, ζl} must be specified for each 

moment l in terms of the cosine of the scattering angle, with {βl} referring to the phase 

function Legendre expansion coefficients. The number of terms M depends on the desired 

level of numerical accuracy. The phase matrix can be expanded in a Fourier series to 

separate the azimuthal dependence [Siewert, 1982]. The same separation is applied to the 

Stokes vector itself. The Stokes vector Fourier decomposition is: 
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=
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where: 
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}sin,sin,cos,{cos)( φφφφφ mmmmdiagm ====� .    (3.11) 

 

� is the Kronecker delta function and m is the Fourier component index. 

 

The phase matrix Fourier decomposition is: 
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2
1
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mm mm
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ml
m SC� , 

           (3.12) 

 

where: 

 

DDAAC ),(),(),( µµµµµµ ′′′′++++′′′′====′′′′ mmm ;     (3.13a) 

),(),(),( µµµµµµ ′′′′−−−−′′′′====′′′′ mmm DADAS ;     (3.13b) 
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This yields the following RTE for the mth Fourier component: 
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Here, the source term is written as: 
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The phase matrix expansion is expressed through the two matrices: 
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The “Greek matrices” lB  for 0 ≤ l ≤ M contain the sets of expansion coefficients that 

define the scattering law. The )(µm
lP matrices contain entries of normalized Legendre 

functions )(µm
lP and functions )(µm

lR and )(µm
lT  which are related to the generalized 

spherical functions [Siewert, 1982]. 

 

The OCO retrieval algorithm uses the pseudo-spherical, multiple-scattering RT code 

Radiant [Christi and Stephens, 2004; Spurr and Christi, 2007] to solve the RTE. Radiant 

uses an adding-eigenmatrix method. For a given atmospheric and surface state, we 

compute a monochromatic TOA reflectance spectrum with a grid size of 0.01 cm-1, which 
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resolves the individual O2 or CO2 lines in the measured spectral regions with ~2 points 

per minimum Doppler width [Bösch et al., 2006]. Radiant has a “layer-saving” feature 

that allows time efficient computation of the weighting functions, which need to be 

repeatedly calculated during the retrieval process. Radiant does not take into account the 

polarization of the light caused by atmospheric scattering processes and reflection by the 

Earth’s surface. We have developed a fast and accurate code to compute the polarization 

using a two orders of scattering model [Natraj and Spurr, 2007]. The 2OS model is also 

completely linearized, i.e., partial derivatives of the simulated radiance field with respect 

to atmospheric and surface parameters are calculated along with the radiance. The 2OS 

model is described in detail in chapter 7. 

 

3.3 Solar and Instrument Models 

 

The solar model is based on an empirical list of solar line parameters that allows 

computation of a solar spectrum with arbitrary spectral resolution and point spacing 

[Bösch et al., 2006]. The use of a solar model avoids resampling a measured solar 

spectrum which would otherwise cause spectral artifacts due to undersampling [Chance, 

Kurosu and Sioris, 2005]. 

 

The resolution at which we obtain the absorption spectrum is determined by the 

spectrometer characteristics. The instrument model [Bösch et al., 2006] simulates the 

instrument’s spectral resolution and spectral sampling by convolving the calculated, 
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highly resolved, monochromatic radiance spectrum with the ILS and subsequently with a 

boxcar function to take into account the spectral range covered by a detector pixel. The 

convolution can be expressed as: 

 

 � �
∆+

∆−

∞
=

2/

2/ 0 000
00

00

),()()('
νν

νν
νννννν ddFII ,     (3.17) 

 

where I and I’ refer to the radiances before and after passing through the instrument 

respectively, F is the ILS, �0 is the center frequency and ∆�0 is the frequency grid 

spacing. In practice, the inner integral is cut off at a finite distance from the center 

frequency. Typically, the cutoff distance is expressed in terms of a parameter called the 

full width at half maximum of the ILS. FWHM is given by the distance between points 

on the ILS at which the function reaches half its maximum value. 

 

3.4 Inverse Method 

 

The inverse method is based on optimal estimation theory [Rodgers, 1976, 2000]. The 

OCO algorithm retrieves several properties of the atmospheric and surface state x, such 

as temperature, humidity, surface pressure, surface reflectance and its first order spectral 

dependence, spectral shift, stretch/squeeze, cloud and aerosol optical depths, in addition 

to the CO2 vmr. 

 

The function f(x) represents the forward model, taking into account RT and the 
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instrument response. The measurement vector is denoted by y, and the measurement can 

be described as follows: 

 

 ε+= ),( bxy f ,        (3.18) 

 

where ε is the measurement error and b represents additional nonretrieved parameters. 

Parameters such as gaseous absorption cross sections or known atmospheric parameters 

(e.g., O2 vmr) are described by the vector b. 

 

Fitting the observed spectra using the model involves minimizing a cost function: 

 

 )()()]([)]([ 112
aa

T
a

T ff xxSxxxySxy −−+−−= −−
εχ ,   (3.19) 

 

where xa is the a priori state vector, Sa is the a priori covariance matrix and Sε is the 

measurement error covariance matrix. The measurement errors are assumed to have no 

correlation between different pixels, i.e., Sε  is a diagonal matrix. 

 

Since the number of quantities that can be independently determined from the 

measurements is typically smaller than the number of state vector elements, the inverse 

problem does not have a unique solution and it is necessary to constrain the solution 

space. This is achieved by using the a priori state vector and covariance matrix, which 

provide information about the climatological mean of x and its expected variability and 
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correlations. These constraints can be estimated from climatological data (temperature 

and humidity profiles, surface pressure), measurements (CO2 profile) or Markov 

descriptions (cloud and aerosol profiles) [Rodgers, 2000]. Care must be exercised when 

employing a priori constraints. While good a priori data are needed for fast convergence, 

too much information in the a priori can bias the retrieval. The challenge is to find the 

right balance. 

 

Because of the nonlinear nature of the retrieval problem, we use an iterative Gauss-

Newton scheme to minimize the cost function. This is a special case of the Levenberg-

Marquardt method [Rodgers, 2000]. The state vector update dxi+1 is given by: 

 

 )]())(([])1[( 11111
1 aiai

T
ii

T
iaii f xxSxySKKSKSdx −−−++= −−−−−

+ εεγ , (3.20) 

 

where Ki is the weighting function, or Jacobian: 
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,         (3.21) 

 

and γi is the Levenberg-Marquardt parameter. If γi = 0, the iteration becomes Gauss-

Newton. γi is chosen at each step to minimize the cost function. 

 

To test for convergence, we use a parameter dσi
2, which is effectively the square of the 

state vector update in units of the solution variance: 
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iid dxSdxσ ,        (3.22) 

 

where the solution variance 1ˆ −S  is given by: 
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ε .     (3.23) 

 

If dσi
2 > dσi-1

2, there is divergence. In this case, γi is increased and equation (3.20) is 

solved again. Convergence is reached if dσi
2 << n (dimension of the state vector). 

However, convergence does not mean that the right result has been obtained, since the 

nonlinearity of the problem means that we could have hit a local minimum. A chi-square 

fit is done to confirm that the true solution has indeed been achieved. 
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where i refers to the spectral band, j is the pixel in the band under consideration, x̂  is the 

final computed state, 2
jεσ  is the variance of the measurement error for the jth pixel in the 

ith band and mi is the number of pixels in the ith band. If 2
iχ  > 1 in any of the bands, then 

we do not have a good fit. 

 

2COX  is obtained by averaging the CO2 profile, weighted by the pressure weighting 
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function, h, such that: 

 

xh ˆ
2

T
COX = .         (3.25) 

 

The formal error variance in the retrieved 
2COX  is therefore given by: 

 

hSh ˆ2
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T
X CO

=σ .        (3.26) 
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Chapter 4 

 

Aerosol Characterization 
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4.1 Introduction 

 

Aerosols play an important role in determining global climate by changing the way 

radiation is transmitted through the atmosphere. Direct scattering and absorbing 

interaction between atmospheric aerosols and incoming solar radiation may influence the 

radiative forcing and explain the difference between observed and modeled temperature 

trends. Energy balance models have shown the cooling effect of aerosols. They act by 

modifying the local and planetary albedo. Aerosols also indirectly influence the radiation 

balance by acting as cloud condensation nuclei and thus dramatically affecting the optical 

properties of clouds. 

 

Aerosols affect the global budgets of O3, OH, and CH4 by altering photolysis rates and by 

direct chemical interactions with these species [Balis et al., 2002; Bian, Prather and 

Takamura, 2003; Dickerson et al., 1997; He and Carmichael, 1999]. Scattering by 

aerosols can also introduce errors in the retrieved column amount of trace gases by 

adding uncertainty to the photon path length (figure 4.1) [Bril et al., 2007; Kuang et al., 

2002]. In the OCO context, the 1 ppm precision required for retrieved column CO2 makes 

it imperative to characterize aerosols accurately. Relevant aerosol parameters need to be 

retrieved to minimize biases in the retrieval. Aerosol scattering behavior is determined by 

their macrophysical optical properties such as single scattering albedo and phase 

function, which in turn depend on their microphysical properties (refractive index and 

size distribution). This provides motivation for creating a database of aerosol optical 
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properties. The focus is on the spectral regions to be measured by the OCO mission. 
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Figure 4.1. Photon path length enhancement by aerosol scattering. 

 

4.2 Global Climatology 

 

Kahn, Banerjee and McDonald [2001] used results from a collection of global transport 

models to identify climatologically probable groupings of component aerosols. They 

boiled down the transport model results to a small number of aerosol component 

groupings, which they called mixing groups, which encompass the climatologically 
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probable combinations of component aerosols for all locations and months. They found 

that five mixing groups were needed to span the climatology, with each group being 

further subdivided based on the relative proportion of the component aerosols. A total of 

13 types were enough to adequately describe the observed global aerosol climatology 

(figure 4.2). 

 

 

 

 

Figure 4.2. Global map for July, showing the spatial distribution of the 13 representative air mass 

types (extracted from Kahn, Banerjee and McDonald [2001]). 

 

All the mixing groups contain sulfate particles. Those groups that contain sea-salt 

particles are called maritime; continental refers to those groups that do not have sea salt 
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among the four most abundant component particles but do have accumulation mode dust. 

The other aerosol components contributing to each group determine whether the 

classification is dusty, carbonaceous or black carbon. The color scheme is the following: 

most common maritime classes appear in shades of blue; the most common continental 

classes are brown. For those that remain, classes rich in black carbon are gray, those 

having high carbonaceous aerosol fraction are green, and the ones abundant in coarse 

dust are yellow. 

 

4.3 Optical Properties 

 

The aerosol optical properties for spherical particles were computed using a Mie 

scattering code [de Rooij and van der Stap, 1984]. The refractive indices for sulfate and 

sea salt were calculated using a FORTRAN code developed by Lacis [2001] based on 

interpolating and extrapolating laboratory measurements [Nilsson, 1979; Shettle and 

Fenn, 1979; Toon, Pollack and Khare, 1976; Volz, 1972]. The change in refractive index 

with relative humidity was modeled by the formulas developed by Tang and Munkelwitz 

[1991, 1994, 1996]. The real and imaginary refractive indices of water were interpolated 

utilizing tabulated data from Downing and Williams [1975], Hale and Querry [1973], 

Kou, Labrie and Chylek [1993], and Palmer and Williams [1974]. The sulfate particles 

were hydrated to equilibrium at 70% relative humidity for continental air mass types and 

to 80% for maritime air masses [Kahn, Banerjee and McDonald, 2001]. The sea salt 

particles were hydrated to 80% [Kahn, Banerjee and McDonald, 2001]. The refractive 
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indices for carbonaceous aerosol and black carbon were obtained from Kahn, Banerjee 

and McDonald [2001], and Shettle and Fenn [1979], respectively. The carbonaceous 

particles were hydrated to 97% [Kahn, Banerjee and McDonald, 2001]. 

 

For the non-spherical mineral dust, the T-matrix technique [Mishchenko and Travis, 

1998] was employed to compute the optical properties. The refractive index was taken 

from Shettle and Fenn [1979]. The dust particles were assumed to be a mixture of 

randomly oriented prolate and oblate spheroids. A uniform distribution of aspect ratios 

centered at 1.8 was used for both prolate and oblate spheroids [Mishchenko et al., 1997]. 

The particle size distribution was assumed to be lognormal [Kahn, Banerjee and 

McDonald, 2001]: 
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,     (4.1) 

 

where the width parameter σ  and characteristic radius rc are taken from Kahn, Banerjee 

and McDonald [2001], and N(r) is the number density of particles at radius r. Lower and 

upper limits were imposed on the particle radii to avoid a physically unrealistic 

dependence of the optical cross sections and scattering properties on phantom small or 

large particles [Kahn, Banerjee and McDonald, 2001; Mishchenko et al., 1997]. 

 

The optical properties were computed for 6 wavelengths, viz., 755 nm, 785 nm, 1.58 µm, 

1.65 µm, 2.03 µm and 2.09 µm, corresponding to the edges of the OCO spectral regions. 
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Polarization was also fully accounted for because for NIR retrievals it could be a 

significant component of the error budget, especially for polarization-sensitive 

instruments such as those on OCO [Natraj et al., 2007]. Figures 4.3 show the phase 

function and linear polarization at 755 nm for the 13 Kahn types. The different line styles 

represent different types. It is clear that polarization has a wide spread and cannot be 

neglected in the analysis. In particular, there is a huge variation in the linear polarization 

for the scattering angles of interest in remote sensing applications based on measuring 

reflected radiance at TOA. 

 

 

 

Figure 4.3(a). Phase function at 755 nm for the 13 Kahn mixing types. 
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Figure 4.3(b). Linear polarization at 755 nm for the 13 Kahn mixing types. 

 

4.4 RT Simulations 

 

RT computations were performed for a scene over Park Falls, Wisconsin, USA, in July. 

The solar zenith angle for this case is about 31°, which corresponds to a 150° scattering 

angle for nadir viewing. The aerosol extinction was assumed to attenuate exponentially, 

with a scale height of about 1 km and a total optical depth of 0.1. The multiple-scattering 

code Radiant [Christi and Stephens, 2004; Spurr and Christi, 2007] was used, with a 

single scattering approximation for polarization. The ILS was assumed to be Lorentzian, 
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with resolving powers of 17,000 for the O2 A band and 20,000 for the CO2 bands. 

 

Weighting functions were computed for the OCO spectral regions to determine the 

change in observed radiance when the aerosol extinction optical depth was changed 

(figure 4.4). The color coding is such that mixing groups with similar weighting function 

behavior in all the bands are represented by the same color. This is a very rough 

classification; however, it is clear that the 13 different aerosol types do not all have 

different radiative effects. 

 

 

Figure 4.4. Weighting functions for (top) O2 A band; (middle) 1.61 µm CO2 band; (bottom) 2.06 

µm CO2 band 
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4.5 Retrieval Groups 

 

An attempt was made to split the different mixing types into groups based on the 

variation of the single scattering albedo and extinction cross section with wavelength. 

The idea was to identify the effect of the Kahn types on CO2 retrievals. In figure 4.5, the 

effective radius (which is effectively a measure of the extinction cross section) is plotted 

against aerosol type. If the outer boxes have the same color, it means that the single 

scattering albedos for those aerosol types are very similar in all three bands. Similarly, if 

the inner boxes have the same color, the weighting functions for the respective aerosol 

types are similar in all the spectral regions. 

 

The results indicate that effective radius is a very important driver of the weighting 

function behavior. However, there are cases where the effective radius is very similar but 

the weighting functions are not. This is because of the differences in single scattering 

albedo. For example, types 3a and 3b do not belong to the same retrieval group because 

the latter is more absorbing than the former (due to significantly greater amount of 

carbonaceous aerosol), even though they are very similar otherwise Similar 

considerations explain why 3b and 5b are in one group, and 5a and 5c in another. We 

conclude that the different aerosol microphysics drives the radiative behavior. 
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Figure 4.5. Retrieval grouping based on aerosol microphysics. Outer rectangular boxes denote 

single scattering albedo behavior and filled inner boxes indicate weighting function behavior. 

 

4.6 Error Analysis 

 

The OCO retrieval algorithm was used to compute the errors in 
2COX  due to an incorrect 

assumption of aerosol type. Three scenarios were considered. First, all optical properties 

(extinction cross section, single scattering albedo and scattering matrix) were wrongly 

estimated. Second, only the single scattering albedo was assumed to be incorrect. Third, 

only an incorrect scattering matrix was used. Figure 4.6 shows the errors for the three 
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scenarios. The plots on the left show the errors when type 8 is replaced successively by 

other types. The three panels correspond to the scenarios described above. The plots on 

the right show the same errors when type 9 is the correct type. Note that types 1–13 in the 

plots refer to Kahn types 1a–5c in order. 

 

 

Figure 4.6. 
2COX  error caused by incorrect assumption of aerosol type. (top) all properties varied; 

(middle) only single scattering albedo varied; (bottom) only phase function varied. 

 

It is clear that the 
2COX errors depend significantly on aerosol type. The errors are 

typically of the order of tenths of a part per million. The single scattering albedo is a 

minor source of errors. The scattering matrix and spectral extinction are most critical and 
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their effects can partly compensate each other. Clearly, the huge variation in linear 

polarization, and to a lesser extent, phase function, at backscattering angles contributes to 

the errors from imperfect knowledge of the scattering matrix. There is also a large 

variation in the extinction cross section between types. The variation in single scattering 

albedo is much smaller. 

 

4.7 Conclusions 

 

Weighting function behavior of basic aerosol mixing groups was used to group the 

aerosols based on their effect on CO2 retrievals. It was seen that single scattering albedo 

and effective radius were the major drivers of this behavior. Sensitivity tests indicated 

that choosing a wrong aerosol type could introduce errors, with the scattering matrix and 

spectral extinction being the dominant factors. 

 

The above results suggest that retrieving aerosol properties might help in minimizing 

biases in CO2 retrievals. However, the aerosol optical properties and spectral behavior are 

determined by the microphysical properties of the underlying aerosol components. Thus, 

it is equivalent to retrieve microphysical properties such as refractive index and 

characteristic radius. Another possible approach is to describe the spectral behavior of 

optical properties by eigenvectors inferred from large ensembles of aerosol components. 

More tests need to be done with different viewing geometries to see if the retrieval 
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groups determined above remain the same. Further, more realistic aerosol vertical 

profiles also need to be considered. 
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Abstract 

 

RT computation is the rate-limiting step in most high spectral resolution remote sensing 

retrieval applications. While several techniques have been proposed to speed up RT 

calculations, they all suffer from accuracy considerations. We propose a new method, 

based on PCA of the optical properties of the system, that addresses these concerns. 

Taking atmospheric transmission in the O2 A band as a test case, we reproduced the TOA 

reflectance spectrum, obtained using the multiple-scattering code DISORT, with an 

accuracy of 0.3%, while achieving an order of magnitude improvement in speed. 

 

Keywords: RT, PCA, empirical orthogonal function, remote sensing, retrieval, O2 A 

band 
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5.1 Introduction 

 

It is well known that RT computation is the bottleneck in remote sensing retrieval 

problems. The timely retrieval of atmospheric trace gas concentrations from space-borne 

spectral measurements of radiation reflected through the earth’s atmosphere [Kuang et 

al., 2002] requires computationally efficient sampling techniques in order to accurately 

model the spectral absorption and scattering signatures of the gases under study. 

 

The first applications of spectral sampling techniques to atmospheric modeling date back 

to the 1930s (see Liou [2002] for a historical account). Since then such techniques have 

been improved a great deal. A popular scheme is the k-distribution method, which 

involves grouping spectral intervals according to absorption coefficient (k) strength 

[Ambartzumian, 1936; Arking and Grossman, 1972; Kondratyev, 1969; Lacis and 

Hansen, 1974; Yamamoto, Tanaka and Asano, 1970]. An extension of this method is the 

correlated k-distribution method, by which the frequency order of absorption coefficients 

for one gas rearranged by strength at one altitude is the same as that at another. [Fu and 

Liou, 1992; Goody et al., 1989; Lacis and Oinas, 1991; Lacis, Wang and Hansen, 1979; 

Stam et al., 2000]. 

 

The drawback of the correlated k-distribution method is that it assumes that atmospheric 

optical properties are spectrally correlated at all points along the optical path, such that 

spectral intervals with similar optical properties at one level of the atmosphere will 
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remain similar at all other levels. This assumption is rigorously valid for homogeneous, 

isobaric, isothermal optical paths, but it usually breaks down for realistic inhomogeneous, 

nonisothermal, atmospheric optical paths. This loss of correlation can sometimes 

introduce significant radiance errors. 

 

Spectral mapping methods [Meadows and Crisp, 1996; West, Crisp and Chen, 1990] 

have also been proposed to enhance computational speed. Like the correlated k-

distribution method, spectral mapping methods gain their efficiency by identifying 

spectral intervals that have similar optical properties. These intervals are then gathered 

into bins, and a single monochromatic multiple-scattering calculation can be performed 

for each bin. Spectral mapping methods make no assumptions about the spectral 

correlation along the optical path. Instead, these methods perform a level-by-level 

comparison of monochromatic atmospheric and surface optical properties, and combine 

only those spectral regions that actually remain in agreement at all points along the 

inhomogeneous optical path. The disadvantage here is that fine spectral binning is 

required to maintain accuracy in the RT calculation, but this results in minimal gains in 

computational efficiency and comes at the expense of a significantly more complex 

retrieval code. Coarse spectral binning, on the other hand, provides excellent 

computational efficiency increases at the expense of significant reduction in the accuracy 

of the calculated radiances. Also, since different bins are used for the calculation of the 

base state and the perturbed state (when doing finite difference partial differentiation), 

there are discontinuities in the partial derivatives. 
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Thus, there is clearly a need for an alternative scheme that does not compromise on 

accuracy while enhancing computational efficiency. 

 

5.2 Model Description 

 

In our analysis, we seek an accurate and efficient characterization of NIR absorption in 

the O2 A band centered at 760 nm. O2 A band observations can provide surface pressure 

estimates with accuracies of ~1 mbar [Mitchell and O’Brien, 1987]. The presence of 

strong and weak absorption lines also makes it useful for characterizing the vertical 

distribution of clouds and aerosols [O’Brien and Mitchell, 1992]. We use a 23-level 

model atmosphere, obtained from the ECMWF data for a sub-tropical northern 

hemisphere (15° N) summer [Uppala et al., 2005], with 15 levels in the stratosphere and 

the remaining in the troposphere (see table 5.1). The levels are spaced linearly in 

log(pressure) from 1 mbar to 1 bar. The pressure, temperature and mixing ratio are level 

quantities. The corresponding layer values are assumed to be the mean of the values at 

the levels bounding the layer. Rayleigh scattering by air molecules and scattering by 

aerosols are taken into account. High altitude cirrus is not considered here. The total 

aerosol optical depth and the surface albedo are assumed to be 0.05 and 0.2 respectively. 

Varying the aerosol optical depth distribution had negligible impact on both the 

qualitative nature of the empirical orthogonal functions (EOFs) and the error in 

reproducing the O2 A band spectrum. The spectroscopic data are taken from the 

HITRAN2K line list [Rothman et al., 2003]. 
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Table 5.1. Model atmosphere 

 

Level Pressure (hPa) Temperature (K) O2 Mass Mixing Ratio 

0 1.000× 100 262.5 0.234 

1 1.369× 100 260.6 0.233 

2 1.874× 100 257.0 0.234 

3 2.565× 100 251.5 0.234 

4 3.511× 100 245.1 0.234 

5 4.806× 100 240.2 0.233 

6 6.579× 100 236.5 0.232 

7 9.006× 100 233.2 0.233 

8 1.233× 101 229.9 0.234 

9 1.688× 101 226.4 0.233 

10 2.310× 101 222.8 0.233 

11 3.162× 101 218.7 0.232 

12 4.329× 101 213.9 0.232 

13 5.926× 101 208.2 0.232 

14 8.111× 101 202.7 0.233 

15 1.110× 102 201.8 0.232 

16 1.520× 102 209.9 0.229 

17 2.081× 102 222.9 0.232 

18 2.848× 102 238.6 0.233 

19 3.899× 102 254.7 0.231 

20 5.337× 102 269.8 0.231 

21 7.305× 102 285.7 0.230 

22 1.000× 103 300.1 0.231 
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5.3 Multiple-Scattering Codes 

 

Two codes were used to generate the O2 A band spectrum: the multi-stream, line-by-line 

multiple-scattering code DISORT [Stamnes et al., 1988], and a multiple-scattering code 

which uses only two streams (one up, one down), henceforth called TWOSTR [Kylling, 

Stamnes and Tsay, 1995]. DISORT and TWOSTR, which are extremely well tested and 

documented, are available for download from the NASA Goddard website 

ftp://climate1.gsfc.nasa.gov/wiscombe/Multiple_Scatt/. A report that describes the 

features of DISORT and explains its usage can also be found there. 

 

DISORT is on average two to three orders of magnitude slower than TWOSTR. Figures 

5.1 show the TOA reflectance spectrum obtained from DISORT, the correlation between 

the DISORT and scaled TWOSTR spectra, and the difference between the two 

calculations. The scaling of the TWOSTR spectrum is done as follows: 

 

A least squares fit is done to the DISORT and TWOSTR reflectances to find the linear 

regression coefficients m (slope) and c (y-intercept), i.e.: 

 

cDISORTmFITTEDTWOSTR += *_ .     (5.1) 

 

The scaled TWOSTR reflectances (hereafter the word scaled is dropped) are then 

obtained using: 
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m
cTWOSTR

SCALEDTWOSTR
−=_ .     (5.2) 

 

 

 

Figure 5.1(a). Upwelling reflectance spectrum at TOA obtained from DISORT. � (cm-1) = �0 + ∆�, 

�0 = 12950 cm-1. 

 

It is clear that the TWOSTR spectrum has a very good correlation with that from 

DISORT. Let D(i) and T(i) be the reflectances produced by DISORT and TWOSTR 

respectively at the ith wavenumber. We observe that D(j)−D(k) is much larger than 

[D(j)−T(j)]−[D(k)−T(k)], where j and k are any two wavenumbers. In other words, the 

variance is much lower for the residual than for the reflectances directly obtained from 
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DISORT. As explained in section 5.5, this feature is exploited by performing PCA on the 

residual between DISORT and TWOSTR reflectances. Our method combines the 

strengths of PCA and the TWOSTR RT model. The P and R branches of the O2 A band 

were considered separately because of the different line shapes in each branch, due to line 

mixing in the R branch. 

 

 

 

Figure 5.1(b). Correlation plot between DISORT and TWOSTR TOA reflectance spectra. 
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Figure 5.1(c). Difference between TWOSTR and DISORT TOA reflectance spectra. � : P branch, 

×: R branch. The residuals have been plotted as a function of the DISORT reflectance to show 

systematic deviations more clearly. 

 

5.4 Empirical Orthogonal Functions 

 

A good discussion of PCA can be found in Camp et al. [2003] and Huang et al. [2002]. 

Peixoto and Oort [2002] give an excellent physical and mathematical interpretation, in 

section 4.3 and appendix B respectively, of their book Physics of Climate. Here the data 

set consists of s optical properties in M atmospheric layers at N wavenumbers, denoted by 
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Fil, where i varies from 1 to sM and l varies from 1 to sN. The EOFs, sM1kk ...,,, =� , 

are unit eigenvectors of the mean-removed covariance matrix C (of dimension sM×sM) 

whose elements are given by: 

 

 ))(( jjliilij FFFFC −−= ,       (5.3) 

 

where the overbar denotes an average over all wavenumbers. The variance associated 

with the kth EOF, Vk, is obtained from the diagonal elements of C. 

 

 kkk CV = .         (5.4) 

 

If �k is the eigenvalue corresponding to the kth eigenvector, then the scaled EOF k�  can 

be defined as: 

 

 kkk �� λ= .         (5.5) 

 

Note that the scaled EOFs (hereafter simply referred to as EOFs) have the same 

dimension as the optical properties and can hence be more easily interpreted than the 

EOFs. Further, the EOFs are just a new basis to represent the original data, so there is no 

loss of information provided that a complete set is used. As will be shown below, a few 

EOFs are sufficient to reproduce nearly all the information. In practice, PCA is 

performed in logarithmic space for reasons of computational efficiency (see appendix for 
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further illustration). 

 

The principal components (PCs), Pk, are the projections of the original data set onto the 

associated EOFs (scaled by the eigenvalue). 

 

�
=

=
sM

i k

ilki
kl

F
P

1 λ
ε

,        (5.6) 

 

where kiε  is the ith component of the kth EOF and Pkl is the lth component of the kth PC. 

 

The fundamental properties that characterize any RT problem are the optical depth dττττ, 

the single-scattering albedo ωωωω, the surface reflectance and the phase function. We assume 

for simplicity that the latter two do not vary with wavenumber (although this is not a 

necessary assumption, the variations are negligible over the width of a molecular 

absorption band). So, in our analysis, the number of optical properties s considered is 

two. The first M components of each EOF are for the optical depth while components 

M+1 to 2M are for the single-scattering albedo. 

 

As with spectral mapping techniques, our aim is to reduce the number of RT calculations 

by grouping wavenumbers at which the optical properties are similar. The challenge then 

is to find a way to do the grouping. Figure 5.2 shows the layer optical depth and single-

scattering albedo profiles, with different lines denoting different wavenumbers. It is clear 

from this figure that the maximum variability in the optical depth occurs in the bottom 
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half of the atmosphere while that of the single-scattering albedo is fairly uniform 

(ignoring very small values which have negligible impact on the reflectance). Keeping 

this in mind, our grouping criteria are as follows: 

 

• c1 < ln(2 τ 2) < c2 , where �
=

≡
22

11
2

i
idττ  is the cumulative optical depth of the lower 

half of the atmosphere (layers 11 to 22); 

• c3  < ω1 < c4  where ω1 is the single-scattering albedo of the top layer, 

 

where c1, c2, c3 and c4 are to be picked by the user. 

 

A particular choice of the parameters c1, c2, c3, and c4 defines a “case”. In other words, it 

is a range of optical properties (i.e., a group of wavenumbers) corresponding to a single 

EOF calculation. The EOFs and PCs are then calculated using equations (5.5) and (5.6). 

With proper case selection, the first few EOFs can capture more than 99% of the total 

variance. Figures 5.3 and 5.4 show the first two EOFs (and the corresponding PCs) for 

the sample case where c1 = 0.25, c2 = 0.5, c3 = 0.7 and c4 = 1 (in the P branch). The 

reconstruction of the monochromatic reflectances from the EOFs and PCs is discussed in 

the following section. 
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Figure 5.2. Layer optical depth (d�) and single-scattering albedo (ω) profiles. The 

different lines represent different wavenumbers. For clarity of presentation, the profiles 

are shown only for every 25th wavenumber (pixels 1, 26, 51, ..., 10601). 

 

As will be shown in the appendix, the EOFs reflect the vertical variations in the gas 

density and the half width of the spectral lineshape, while the PCs display the dependence 

of the line shape on frequency. The reason this approach works so well is that any point 

in a molecular absorption band can be considered to be some part of a strong line (center, 

near wing or far wing) or a combination of the above (due to line overlap); the EOFs for a 

single strong line thus have all the features expected in the entire band. Indeed, the results 
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indicate that line overlap can be accounted for, to a very good approximation, by a linear 

combination of the EOFs corresponding to the individual lines. 

 

For each case, the optical depth profile at the wavenumbers associated with that case can 

be reconstructed from the EOFs and PCs as follows: 

 

 

 

Figure 5.3(a). EOF1. The computed EOF1 has been split into two, corresponding to the 

layer optical depth (d�) and single-scattering albedo (ω), for ease of visualization. 
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Figure 5.3(b). PC1. � (cm-1) = �0 + ∆�, �0 = 12950 cm-1. PC1 shows the deviation of the 

optical properties (in EOF1 units) from the mean profile. 
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Figure 5.4(a). EOF2. The computed EOF2 has been split into two, corresponding to the 

layer optical depth (d�) and single-scattering albedo (ω), for ease of visualization. 
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Figure 5.4(b). PC2. � (cm-1) = �0 + ∆�, �0 = 12950 cm-1. PC2 shows the deviation of the 

optical properties (in EOF2 units) from the mean profile. 
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,       (5.7) 

 

where d�il is the total optical depth of layer i at the lth wavenumber, M = 22 and the 

overbar denotes the mean over all wavenumbers. In practice, three or four terms are 

enough to reproduce the optical depth to the desired accuracy. A similar procedure can be 

performed for the single-scattering albedo. 

 

5.5 Mapping to TOA Reflectance 

 

For each case, the TOA reflectances are calculated for the mean optical properties 

associated with that case, using DISORT and TWOSTR. The difference is denoted as Id. 

A similar calculation is then done for a perturbation of magnitude one EOF, with the 

result denoted as )(kI d
+  if the perturbation is positive and )(kI d

−  if the perturbation is 

negative. k refers to the EOF being considered. The first and second order differences 

with respect to the EOF, kIδ  and kI2δ  respectively, are calculated as follows: 

 

 
2

)()( kIkI
I dd

k

−+ −
=δ ;        (5.8) 

 )(2)(2 kIIkII dddk
−+ +−=δ .       (5.9) 

 

The TOA reflectance for the lth wavenumber, lI , is then calculated using: 
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where TS
lI  is the TOA reflectance for the lth wavenumber, calculated using TWOSTR. 

 

Equation (5.10) illustrates why it is better to use the residual between DISORT and 

TWOSTR reflectances, rather than that computed directly from DISORT, for PCA. The 

above expansion assumes that the reflectance has a quadratic relationship with the PCs. 

Clearly, the smaller the variance in the reflectances, the better the approximation would 

be. We found that four EOFs were sufficient to reproduce the reflectance to the accuracy 

desired. The error in the above three-term expansion is )( 33
klk PIO δ . By choosing the 

cases such that the change in the reflectance, for a perturbation in optical properties of 

magnitude one EOF, is less than a percent, we can keep the error to a few tenths of a 

percent. 

 

5.6 Recovering the O2 A Band 

 

An error criterion of less than 1.0% was chosen for all but the most saturated lines, to 

simulate expected results for space-based detection [O’Brien et al., 1998]. The total 

number of monochromatic wavenumber grid points for the RT calculation was 10616; 

only 105 cases were needed to perform PCA. As mentioned in section 5.5, for each case a 

DISORT and a TWOSTR call are made for the mean optical properties and for 
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perturbations of magnitude one EOF (positive and negative) for each EOF used to map 

back to the reflectance. Since we use four EOFs to reconstruct the reflectance, a total of 

1+2*4 = 9 DISORT (and 9 TWOSTR) calls are required for each case. In addition, since 

PCA is done on the residual between DISORT and TWOSTR reflectances, there is an 

additional TWOSTR call for every wavenumber to recover the TOA reflectance, as is 

evident from equation (5.10). However, since PCA and TWOSTR calculations 

themselves take negligible time compared to a full multi-stream RT calculation, this 

method offers us an order of magnitude improvement in speed. 

 

In the above analysis, very stringent accuracy criteria have been employed. Relaxing that 

would offer even more savings in computation time. Figures 5.5 and 5.6 show the O2 A 

band spectra obtained using DISORT and PCA, and the residuals. Figures 5.7 and 5.8 

show the same spectra after convolution with an ILS that is a sum of Lorentzians. 

Clearly, the residuals are much smaller after convolution. This implies that the errors 

from PCA are mostly random. Also, the fractional residuals are very close to zero near 

the continuum and are highest in the centre of strong lines, as one would expect. 
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Figure 5.5. Reflectance spectrum calculated from PCA (high resolution). � (cm-1) = �0 + 

∆�, �0 = 12950 cm-1. 
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Figure 5.6. (top) Residuals (high resolution); (bottom) Fractional residuals (high 

resolution). � (cm-1) = �0 + ∆�, �0 = 12950 cm-1. 
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Figure 5.7. Reflectance spectrum calculated from PCA (after convolution). � (cm-1) = �0 

+ ∆�, �0 = 12950 cm-1. 
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Figure 5.8. (top) Residuals (after convolution); (bottom) Fractional residuals (after 

convolution). � (cm-1) = �0 + ∆�, �0 = 12950 cm-1. 

 

5.7 Conclusions 

 

A novel technique based on PCA has been introduced to increase the computational 

efficiency of RT calculations in an absorbing, scattering atmosphere. It was observed that 

the first few EOFs accounted for most of the variability in the system. Using the optical 

depth and the single-scattering albedo as the EOF parameters, the O2 A band was 

reproduced using the new technique. Using the correlation between a two-stream and a 
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multi-stream approach, the O2 A band spectrum was reproduced with an accuracy of 

0.3% while achieving an order of magnitude speed improvement. The PC method has 

great potential for use in practical RT codes and warrants further consideration. 
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Appendix: PCA of the Profiles of Optical Depth and Single-

Scattering Albedo for a Lorentzian Layer Lineshape 

 

Here we apply PCA to a highly idealized case. By this simple example, we illustrate the 

practical reason behind applying PCA in logarithmic space and the physical meaning of 

EOF decomposition of the profiles of spectrally-dependent optical properties. 

 

For a uniformly distributed gas in an isothermal atmosphere, we divide the atmosphere 

into M layers such that the ith layer has thickness Li. For simplicity, we assume a 

Lorentzian line shape for each layer. Then the gas absorption optical depth profile, g
ildτ , 

can be written as: 

 

 
])[( 22

0 il

i
ii

g
il

vv
SLd

απ
αρτ

+−
= ,      (5.A1) 

 

where i denotes the ith layer from the surface, l denotes the lth spectral point, 	i is the gas 

density in the ith layer, S is the line strength, 
i is the half width of the Lorentzian line 

shape in the ith layer, and vl = l�+v0, where v0 is the wavenumber of the line center and 

∆ is the wavenumber grid spacing. If we approximate the mean pressure of each layer by 

the pressure at the midpoint of the layer, then we have: 
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where Pi is the mean pressure in layer i, H is the scale height (which is a constant for an 

isothermal atmosphere), and subscript 0 denotes the surface. Substituting equations 

(5.A3) and (5.A4) into equation (5.A1), we have: 
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Ignoring the correction factor for anisotropy, the Rayleigh scattering optical depth 

profile, s
ildτ , can be written as: 

 

 iil
s
il Lnd στ = ,        (5.A6) 

 

where σl is the Rayleigh scattering cross section at vl and ni is the number density in the 

ith layer. At the near-IR and visible spectral regions, for a single absorption line, l∆ << v0; 

therefore, we can simply treat σl as constant, σ0. For example, based on Bates’ formula 

[Bates, 1984], the difference between the Rayleigh scattering cross sections at 12949 cm-1 

and 12951 cm-1 is only 0.04%. The single-scattering albedo can then be written as: 
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where a
ildτ  is the aerosol scattering optical depth profile, NA is Avogadro’s number, and 

M is the molar mass of air. The aerosols are assumed to be purely scattering, which is a 

good approximation for aerosols like sulfate. Putting the single-scattering albedo and the 

total optical depth together, we have: 
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where X is the matrix for which PCA is to be performed, i=1, 2, 3, …, M and l = −N, …, 

−2, −1, 0, 1, 2, …, N. Each element of X is a 2-D vector, the two components being the 

layer optical depth and single-scattering albedo respectively. The columns of X show the 

variations of the gas density and the Lorentzian line shape with altitude; the rows show 

the dependence of the Lorentzian line shape on frequency. 
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The following reasonable values are assigned to the parameters involved in the problem: 

3
0 /29.1 mkg=ρ , 1

0 1.0 −= cmα , gcmS /00223.0=  (strong line in the O2 A band), 

1005.0 −=∆ cm , hPaP 10000 = , 227
0 101.1 cm−×=σ , molgM /29= , 22=M and 150=N . 

The pressure profile is obtained from table 5.1 and the altitude profile by then using the 

hydrostatic equation ( kmH 8= ). Note that subscript 0 here refers to the surface but in 

table 5.1, it refers to TOA. The aerosol scattering optical depth profile is the same as that 

used in the O2 A band PCA. 

 

The fractions of variance, as well as the cumulative fractions of variance, explained by 

the 6 leading EOFs are listed in table 5.A1. The first EOF is absolutely dominant in the 

variance. 6 leading EOFs together can explain more than 99.999% of the total variance. 

 

If we apply PCA to the column vectors of ln(X) instead of X, then the 3 leading EOFs 

can explain 99.92% of the total variance, very close to the amount of variance explained 

by the 6 leading EOFs when the analysis is applied to X. Therefore, fewer EOFs are 

needed in logarithmic space than in real space to capture the same fraction of the total 

variance. This is because the variance of Xil could be very large in the real space: for a 

given layer, from the line wing (l = ±N) to the line center (l = 0), the values of Xil could 

differ by as much as three orders of magnitude. In the logarithmic space, the variance of 

Xil would not be that large: the difference between the maximum and minimum of Xil is 

still within one order of magnitude. Accuracy of the reconstructed profiles is directly 

related to the fraction of the total variance captured by the leading EOFs used in the 
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reconstruction. Therefore, given the extremely heavy computational load in practical 

retrievals and required accuracy for forward radiative modeling, doing PCA and 

reconstruction in logarithmic space is more efficient than doing them in real space. 

 

Table 5.A1. Variance explained by six leading EOFs 

 

 PCA on X PCA on ln(X) 

 Fraction of 

Variance 

Cumulative 

Fraction of 

Variance 

Fraction of 

Variance 

Cumulative 

Fraction of 

Variance 

EOF1 7.96536×10-1 7.96536×10-1 8.81154×10-1 8.81154×10-1 

EOF2 1.23927×10-1 9.20463×10-1 1.10397×10-1 9.91551×10-1 

EOF3 5.65170×10-2 9.76980×10-1 7.66840×10-3 9.99219×10-1 

EOF4 1.80746×10-2 9.95055×10-1 7.25571×10-4 9.99945×10-1 

EOF5 3.79672×10-3 9.98851×10-1 3.09480×10-5 9.99976×10-1 

EOF6 9.27283×10-4 9.99779×10-1 2.16236×10-5 9.99997×10-1 

 

The leading 2 EOFs and the corresponding PCs derived from PCA of X in logarithmic 

space are plotted in figures 5.A1 and 5.A2. The PCs have zero mean and unitary standard 

deviations. Remarkably, the EOFs (figures 5.A1a, 5.A2a) retain the features obtained in 

the full-band EOFs (figures 5.3a, 5.4a). This indicates that a single strong line captures all 

the features of an entire molecular absorption band. The corresponding PCs are 

symmetric with respect to the line center and the line center is the global 

minimum/maximum for all PCs. Besides the global maximum at the line center, PC1 
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(figure 5.A1b) has no local minimum and maximum while PC2 (figure 5.A2b) has two 

local maxima symmetric to the line center minimum. 

 

 

 

Figure 5.A1(a). EOF1. The computed EOF1 has been split into two, corresponding to the 

layer optical depth (d�) and single-scattering albedo (ω), for ease of visualization. 
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Figure 5.A1(b). PC1. � (cm-1) = �0 + ∆�, �0 = 13001.70984 cm-1. PC1 shows the 

deviation of the optical properties (in EOF1 units) from the mean profile. 

 



 

 

118 

 

 

Figure 5.A2(a). EOF2. The computed EOF2 has been split into two, corresponding to the 

layer optical depth (d�) and single-scattering albedo (ω), for ease of visualization. 
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Figure 5.A2(b). PC2. � (cm-1) = �0 + ∆�, �0 = 13001.70984 cm-1. PC2 shows the 

deviation of the optical properties (in EOF2 units) from the mean profile. 

 

In summary, as far as the accuracy of reconstructing optical properties is concerned, PCA 

and reconstruction in logarithmic space is more computationally efficient than in real 

space. In this highly simplified case, the results obtained from PCA mainly reflect the 

variations of the gas density and the Lorentzian half width with respect to altitude, as well 

as the dependence of the Lorentzian line shape on frequency. 
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Chapter 6 

 

Column O2 Retrieval from O2 A Band Measurements 
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6.1 Introduction 

 

O’Brien et al. [1997, 1998] recorded high-precision, high-resolution O2 A band spectra 

using an airborne grating spectrometer to assess the feasibility of remote sensing of 

surface pressure from a space-based platform. They used a grating spectrometer with a 

focal ratio of f/2.3 and a resolving power R ~ 13,000. This is quite comparable to the 

OCO A band channel, which has a focal ratio of f/2 and a resolving power R ~ 17,000. 

Aircraft observations were acquired near Darwin and Aspendale, Australia, in the early 

1990s. Profiles were flown between 500 and 1000 hPa, and in situ sensors were used to 

monitor the atmospheric pressure, temperature and dew point (figure 6.1). The A band 

spectra were taken by observing sunlight specularly reflected from the ocean surface 

(glint). The OCO glint mode uses the same measurement approach. 

 

 

 

Figure 6.1. (left) The CSIRO airborne A band spectrometer; (right) The flight profile for 18 

December, 1993 indicating the altitude changes for each leg [O’Brien et al., 1998]. The 

individual legs were selected so that the sun glint would always be broadside to the plane. 
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O’Brien et al. [1998] showed, using differential absorption techniques, that these airborne 

spectra could be used to retrieve the surface pressure with a precision of ~0.1% under a 

wide range of surface and atmospheric conditions (figure 6.2). This precision exceeds the 

OCO measurement goal of 0.3% by about a factor of three. Furthermore, O’Brien et al. 

[1998] concluded that variations in the reflectance over the spectrometer footprint would 

be unlikely to cause pressure errors exceeding ~0.1%. 

 

 

 

Figure 6.2. Uncertainties (∆p) in surface pressure retrieved from the CSIRO O2 A band 

spectrometer on the June 12, 1994 flight. 

 

Retrieval of column O2 (or equivalently, surface pressure, since oxygen is well mixed) 

from O’Brien’s measurements provides an ideal test case for the OCO retrieval algorithm 

since the mixing ratio of O2 is known and constant (so we already have the correct 

answer if the pressure profile is known). Any differences between the retrieval and the 

“truth” must then be due to inadequacies in the measurement or analysis methods. 
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6.2 Modeling of the Instrument and Surface 

 

Analysis of O’Brien’s spectra requires incorporation of an instrument simulation model 

to accommodate the wavelength dependent throughput, spectral dispersion, sampling, and 

ILS of the CSIRO instrument. The transfer function t(x) of the instrument was given by 

O’Brien [private communication] as the convolution of the entrance slit transfer function 

with that of the detector pixels. 
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where x is the physical distance along the detector, and 2a is the distance between 

successive detector pixels (25 �m in this case). The distance can be converted to 

wavelength by a linear transformation. The transfer function is symmetric, so the 

specification above is sufficient. 

 

The measurements were taken over the sea surface, which is highly non-Lambertian 

(different reflectivities in different directions). For such surfaces, we need to specify the 

bidirectional reflectance distribution function (BRDF), which is a specification of 

reflectance in terms of both incident and reflected-beam geometry; i.e., the ratio of the 

reflected radiance in the viewing direction to the irradiance in the incident direction. For 
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the sea surface, the BRDF has been modeled by Cox and Munk [1954]. The BRDF model 

assumes an isotropic Gaussian probability distribution of wave-facet slopes, with the 

slope related to the near-surface wind speed by an empirical formula. Details of the 

formulation are given in chapter 8. For the purposes of this study, shadowing by surface 

waves has been neglected. 

 

6.3 Results 

 

As a first cut, a straightforward retrieval was performed using a preliminary version of 

the OCO retrieval algorithm, assuming the instrument was well calibrated. The discrete 

ordinate RT solver DISORT [Stamnes et al., 1988] was used to compute the radiances 

and calculation efficiency improved by spectral binning [Meadows and Crisp, 1996]. 

Figure 6.3 shows the results. The black line refers to the computed radiances and the 

green line denotes the observed radiances. The residuals (computed–observed) are 

represented by the black line at the bottom. The radiances are normalized by the 

maximum value so that they range between 0 and 1. The root mean square (rms) residual 

is 8.8%, which is clearly not good enough. 

 

A closer look at the results reveals that there is a wavelength grid mismatch between the observed 

and calculated radiances. This mismatch occurs because the optical properties of the 

instrument change with time due to temperature changes, thus changing the wavelength-

diode mapping. This in turn is caused by the expansion with temperature which changes 
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the orientation/distance between grating and slit, etc. Also evident is the fact that the 

continuum is not aligned. This arises from improper calibration of the spectrometers. 

 

 
 

Figure 6.3. Reflected light from the sea surface (sun glint) over the ocean near Darwin, Australia in 

the O2 A band spectral region at ~500 mbar. The black and green lines denote observed and 

computed spectra respectively. The black line at the bottom is the difference between the above 

spectra. The instrument has been assumed to be well calibrated. 

 

To correct for these effects, the O2 A band spectra were fitted using the GFIT line-by-line 

code [Toon et al., 1999]. Included in the simultaneous fit were the 16O2, 16,17O2 and 16,18O2 

isotopomers of molecular oxygen, H2O and solar lines. Spectral parameters including line 
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positions and strengths for 16O2 were obtained from Brown and Plymate [2000] while the 

parameters for the other O2 isotopomers were obtained from Camy-Peyret [private 

communication]. Other fitted parameters included the continuum level (the spectrum 

value in the absence of atmospheric or solar absorbers), the first-order tilt of the 

continuum level, the shift of the frequency scale relative to the tabulated frequencies of 

the O2 lines, and the zero-level offset. The tilt accounts for a number of factors which 

induce a wavelength dependence in the continuum level, including Rayleigh scattering, 

ozone absorption, and variation of the instrument responsivity with frequency. The zero-

level offset (a small fraction of a percent) arises from errors in the instrument phase 

correction and detector nonlinearity. 

 

The wavelength grid was piecewise scaled and the continuum fitted using the following 

two-parameter form: 
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where Icorr and I are the corrected and computed radiances respectively at wavelength 

xobs, and CL and CT are the continuum level and continuum tilt respectively. 

 

Figure 6.4 shows the improved fit, with an rms residual of 2.3%. Contributions from the isotopes 

of oxygen (green and orange lines) as well as trace gases like water vapor (light blue line) have 

been included. The dark blue line shows the total computed radiance. The top panel is the 
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residual. It is to be noted that the O2 isotopic composition is well known and considered constant 

for the purpose of this study. 

 

 
 

Figure 6.4. Reflected light from the sea surface (sun glint) over the ocean near Darwin, Australia in 

the O2 A band spectral region at ~500 mbar. The blue diamonds and the dark blue line denote 

observed and computed spectral respectively. The orange and green lines are the contributions 

from oxygen isotopes. The light blue line is the contribution from water vapor. The residual 

between the computed and observed spectra are shown at the top. Wavelength scaling, continuum 

and zero-offset corrections have been accounted for. 

 

The ILS from O’Brien’s instrument was never characterized well enough for the 

precision sought in this work. Further improvements can hence be made by considering 

ILS fits. A wide Lorentzian was added to the ILS provided by O’Brien, which assumed 

zero response beyond 1–2 cm-1. The best fit for the wide Lorentzian had a width of ~10 

cm-1 and amplitude of 0.02 (the peak of O’Brien’s ILS is ~1.75). The width of O’Brien’s 

ILS was also fitted which give a number 7% larger than that given by him. This 
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demonstrates the ability of the retrieval algorithm to compensate for imperfect ILS 

knowledge as part of the retrieval process. 

 

The rms residual is now reduced to 1.4% (figure 6.5). The residues are mostly systematic. 

The calculations fail to capture the shape of the line pileup at the high frequency limit of 

the R branch band head. This is likely due to line mixing. Also, there is a huge residual at 

0.772 �m. This is a solar feature not accounted for by the model. 

 

 

 

Figure 6.5. Reflected light from the sea surface (sun glint) over the ocean near Darwin, Australia in 

the O2 A band spectral region at ~500 mbar. The black and maroon lines denote observed and 

computed spectra respectively. The black line at the bottom is the difference between the above 

spectra. The ILS has been fitted. 
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The column O2 was retrieved to ~1% precision. Clearly, by averaging sufficient 

soundings, the random errors can be minimized and precisions of around 0.1% are 

potentially achievable. This suggests that the technology and physical insight required to 

retrieve 
2COX  with precisions better than 0.3% exist. 

 

A thought experiment was conducted to simulate the effect of accounting for the solar 

feature and removing line mixing. Figure 6.6 indicates that the residuals can be decreased 

to 1.1%. It might thus be worthwhile to explore ways to model line mixing. 

 

 
 

Figure 6.6. Same as figure 6.5 except that line mixing has been assumed to be modeled perfectly. 
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6.4 Conclusions 

 

To test the OCO retrieval algorithm, column O2 (surface pressure) was retrieved from 

sunglint measurements over ocean of absorption in the O2 A band. A preliminary version 

of the retrieval code was employed based on using the discrete ordinate RT solver 

DISORT for computing the radiances, augmented by a spectral binning algorithm to 

reduce computational time. It was observed that the instrument was improperly 

calibrated. To account for this, the continuum level and tilt, the wavelength grid, and the 

zero-level offset were fitted. This resulted in a much better fit between the computed and 

measured spectra. The column O2 was retrieved with an error of around 1%. Spectral 

averaging using multiple soundings will reduce random errors; it is thus possible to 

reduce the error to 0.1%. This indicates that it is possible to retrieve 
2COX  with precisions 

better than 0.3%. Line mixing remains an issue to be resolved. 
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Polarization in the OCO Retrieval Algorithm 
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Chapter 7 

 

Errors from Neglecting Polarization 

 

(Natraj, V., R. J. D. Spurr, H. Bösch, Y. Jiang, and Y. L. Yung, Evaluation of errors from 

neglecting polarization in the forward modeling of O2 A band measurements from space, 

with relevance to CO2 column retrieval from polarization-sensitive instruments, J. Quant. 

Spectrosc. Radiat. Transfer, 103(2), 245–259, doi: 10.1016/j.jqsrt.2006.02.073, 2007) 
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Abstract 

 

Sensitivity studies have been performed to evaluate the errors resulting from ignoring 

polarization in analyzing spectroscopic measurements of the O2 A band from space, using 

OCO as a test case. An 11-layer atmosphere, with both gas and aerosol loading, and 

bounded from below by a Lambertian reflecting surface, was used for the study. The 

numerical computations were performed with a plane parallel vectorized discrete ordinate 

RT code. Beam and viewing geometry, surface reflectance and aerosol loading were 

varied one at a time to evaluate and understand the individual errors. Different behavior 

was observed in the line cores and the continuum because of the different paths taken by 

the photons in the two cases. The errors were largest when the solar zenith angle was 

high, and the aerosol loading and surface reflectance low. To understand the effect of 

neglecting polarization on CO2 column retrievals, a linear error analysis study was 

performed on simulated measurements from the OCO spectral regions, viz., the 1.61 µm 

and 2.06 µm CO2 bands and the O2 A band. It was seen that neglecting polarization could 

introduce errors as high as 10 ppm, which is substantially larger than the required 

retrieval precision of ~2 ppm. A variety of approaches, including orders of scattering, 

spectral binning and the use of lookup tables are being explored to reduce the errors. 

 

Keywords: reflected, TOA, intensity, polarization, errors, O2 A band, OCO 
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7.1 Introduction 

 

The radiation reflected or transmitted by a planetary atmosphere contains information 

about the atmospheric constituents through their absorption and scattering signatures. 

Radiance measurements within gaseous absorption bands can thus be used to retrieve the 

vertical distribution of the absorbing gases, clouds and aerosols. In particular, the 

potential of spectroscopic observations of the O2 A band to retrieve the surface pressure 

[O’Brien, English and da Costa, 1997; O’Brien et al., 1998] and cloud top altitude 

[Koelemeijer et al., 2001; Kuze and Chance, 1994; O’Brien and Mitchell, 1992; Rozanov 

and Kokhanovsky, 2004; Rozanov, Kokhanovsky and Burrows, 2004] has been 

established. 

 

Most remote sensing retrievals ignore the effect of polarization. While this is very often a 

very good approximation, there may be situations when measurements of polarization can 

provide additional information. Applications include retrieval of tropospheric ozone 

[Hasekamp and Landgraf, 2002; Hasekamp, Landgraf and van Oss, 2002; Jiang et al., 

2004; Liu et al., 2005], cirrus clouds [Takano and Liou, 1989a, 1989b, 1995] and aerosols 

[Deuze, et al., 2000; Jiang et al., 2003; Levy, Remer and Kaufman, 2004; Mishchenko 

and Travis, 1997]. Polarized RT calculations are also important for the interpretation of 

satellite-based measurements such as those from the Global Ozone Monitoring 

Experiment (GOME) [Hasekamp and Landgraf, 2002; Hasekamp, Landgraf and van Oss, 

2002; Knibbe et al., 2000; Koelemeijer et al., 2001; Liu et al., 2005; Rozanov, 

Kokhanovsky and Burrows, 2004] and SCIAMACHY [Krijger and Tilstra, 2003; 
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Schutgens and Stammes, 2002; Tilstra et al., 2003]. Being ultraviolet (UV) instruments, 

where Rayleigh scattering is significant, they are sensitive to the polarization of the 

reflected radiation; hence, retrievals based on these measurements require consideration 

of polarization in addition to the intensity of the light incident on the detector. 

 

Stam et al. [1999] did a theoretical investigation of the behavior of the linear polarization 

of reflected and transmitted light in the O2 A band for a few simple model atmospheres. 

They identified different regimes of behavior based on the gas absorption optical depth. 

In this chapter, we take into account their findings and perform sensitivity studies to 

assess the effect of ignoring polarization on CO2 column retrievals, using simulated 

measurements from polarization-sensitive space-based instruments, such as those to be 

acquired by OCO [Crisp et al., 2004]. 

 

In section 7.2, we give a brief description of vector RT theory. Details of the numerical 

model are discussed in section 7.3. In section 7.4, we elaborate on the atmospheric and 

surface setup, as well as the solar and viewing geometries. In section 7.5, we use OCO as 

a test case and examine the effects of polarization on the upwelling radiance in the O2 A 

band at TOA for the different scenarios described in section 7.4. In section 7.6, we 

perform a linear sensitivity analysis on simulated measurements from the OCO spectral 

regions to get an order of magnitude estimate of the retrieval error in column CO2 

resulting from neglecting polarization. Conclusions for operational retrieval algorithms 

are drawn in section 7.7. 
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7.2 Digest of Vector RT Theory 

 

In the absence of thermal emission, the RTE can be written as [Chandrasekhar, 1960]: 

 

 ),,(),,(),,( φτφτφτ
τ

uuuu JII −=
∂
∂

,      (7.1) 

 

where u,τ andφ denote the optical thickness (measured downward from the upper 

boundary), the cosine of the polar angle (measured from the upward vertical) and the 

azimuthal angle (measured counterclockwise, looking down, from an arbitrary but fixed 

direction), respectively. Knowledge of the absolute azimuth angle is not necessary 

because of rotational symmetry with respect to the vertical axis. I is the diffuse 

(excluding the direct solar beam) radiance vector, which has the Stokes parameters 

[Chandrasekhar, 1960] I, Q, U and V as its components. Stokes parameter I is the 

intensity, Q and U describe the linearly polarized radiation, and V refers to the circularly 

polarized radiation. All Stokes parameters have the dimension of radiance and are 

defined with respect to a reference plane, usually taken to be the local meridian plane. 

The dependence on wavelength is implicit in this and all subsequent equations. The 

degree of polarization p of the radiation is defined as: 

 

 
I
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p

222 ++
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The circular polarization can generally be ignored for most atmospheric applications. If 
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the Stokes parameter U is also equal to zero (or not measured) the following definition of 

the degree of (linear) polarization is relevant. 

 

 
I
Q

p
−= .         (7.3) 

 

For p > 0, the radiation is polarized perpendicular to the reference plane. For p < 0, the 

radiation is polarized parallel to the reference plane. 

 

The source term J has the form: 
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whereω denotes the single scattering albedo (ratio of scattering to extinction optical 

depth) and P is called the phase matrix, which is related to two other matrices called the 

Mueller matrix and the scattering matrix. The former is the linear transformation 

connecting the incident and (singly) scattered Stokes vectors in the scattering plane. For 

scattering by a small volume containing an ensemble of particles, the ensemble-averaged 

Mueller matrix is called the scattering matrix. When transforming from the scattering 

plane to the local meridian plane, we obtain the phase matrix. The scattering matrix is 

normalized such that the average of the phase function (which is the (1,1) matrix 

element) over all directions is unity. We restrict our attention to scattering matrices of the 

form considered by Hovenier [1971]. This type with only six independent elements is 
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valid in the following situations [Hovenier and van der Mee, 1983]: 

 

(1) scattering by an ensemble of randomly oriented particles, each with a plane of 

symmetry 

(2) scattering by an ensemble of particles and their mirror particles in equal number 

and random orientation 

(3) Rayleigh scattering 

 

The first term on the right-hand side of equation (7.4) accounts for the integrated 

scattering of the diffuse light from all directions into the viewing direction and the 

inhomogeneous term Q describes single scattering of the attenuated direct solar beam. 

This term can be expressed as: 

 

 0/
000 ),,(

4
),,( µτφφµ

π
ωφτ −−−= euu IPQ ,     (7.5) 

 

where 00 u=µ , 0u is the cosine of the solar zenith angle, 0φ is the solar azimuth and 0I is 

the Stokes vector of the incoming solar beam. This is the standard formulation for a plane 

parallel atmosphere. 

 

When Rayleigh scattering and particulate scattering are both present, the effective single 

scattering albedoω is a weighted sum of the molecular single scattering albedo (which is 

equal to 1) and the single scattering albedos sω of the s aerosol/cloud types: 
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where rτ is the Rayleigh scattering optical depth and sτ is the extinction optical depth of 

the ths aerosol/cloud type. A similar procedure is used to obtain the effective scattering 

matrix, except that the normalization here is over the total scattering optical depth. 

 

We seek a solution to equation (7.1) subject to the top and bottom boundary conditions 

(no downwelling diffuse radiance at TOA and known BRDF at the surface) and 

continuity at the layer interfaces. The total radiance vector is of course the sum of the 

diffuse and direct components, where the direct radiance vector Idir is given by: 

 

 )()(),,( 00
/

0
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whereδ refers to the delta function. The incident solar radiation is assumed to be 

unidirectional and unpolarized. 

 

7.3 Numerical Vector Model: VLIDORT 

 

The multiple-scattering multi-layer vector discrete ordinate code VLIDORT (Spurr, 

2007) was used for all simulations of the Stokes vector. This code is a vector companion 

to the LIDORT suite of linearized scalar discrete ordinate models [Spurr, 2002, 2003, 

2004; Spurr, Kurosu and Chance, 2001]. In common with other vector codes, including 



 

 

147 

the doubling-adding code of de Haan, Bosma and Hovenier [1987] and the VDISORT 

codes [Schultz and Stamnes, 2000; Schultz, Stamnes and Weng, 1999], VLIDORT uses 

an analytical Fourier decomposition of the phase matrix [Siewert, 1981, 1982; Vestrucci 

and Siewert, 1984] in order to isolate the azimuthal dependence in the RTE. 

 

For the solution of the homogeneous vector RTE for each Fourier term, VLIDORT 

follows the formalism of Siewert [2000], in which it was demonstrated that full accuracy 

for homogeneous solutions can only be obtained with the use of a complex-variable 

eigen-solver module to determine solutions to the coupled linear differential equations. 

For the inhomogeneous source terms due to scattering of the solar beam, the particular 

solution is obtained using algebraic substitution methods employing a reduction in the 

order of the coupled equations. Particular solutions are combined with the real parts of 

the homogeneous solutions in the boundary value problem to determine the complete 

Stokes vector field at quadrature (discrete ordinate) polar directions. The numerical 

integrations are performed using double-Gauss quadrature. Output at user-defined off-

quadrature polar angles and arbitrary optical thickness values is obtained using the source 

function integration technique due to Chandrasekhar [1960]. 

 

VLIDORT has the ability to calculate the solar beam attenuation (before scattering) in a 

curved refracting atmosphere, even though the scattering itself is treated for a plane 

parallel medium. This is the pseudospherical approximation as used in the LIDORT 

[Spurr, 2002] and SDISORT [Dahlback and Stamnes, 1991] codes, and it enables 

accurate results to be obtained for SZAs up to 90 degrees. In this paper, we do not 
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consider SZA values greater than 70 degrees, and the plane parallel source term 

expression shown in equation (7.5) is sufficient. 

 

VLIDORT was verified through extensive comparisons with existing benchmarks for the 

one-layer slab problem. For the Rayleigh atmosphere, the tables of Coulson, Dave and 

Sekera are appropriate [Coulson, Dave and Sekera, 1960]. For the slab problem with 

aerosol sources, Siewert [2000] has provided several benchmark results for the discrete 

ordinate solution; his results have in turn been verified against output from other vector 

models (see, e.g., Wauben and Hovenier [1992]). 

 

7.4 Scenarios for the O2 A band 

 

The atmosphere is assumed to be plane parallel, consisting of homogeneous layers, each 

of which contains gas molecules and aerosols (there is no aerosol in the top two layers). 

We use 11 layers (see table 7.1), with the altitudes and level temperatures corresponding 

to the US standard model atmosphere [1976]. The altitude, pressure and temperature are 

level quantities. The corresponding layer values are assumed to be the mean of the values 

at the levels bounding the layer. The top four layers are in the stratosphere, with the rest 

in the troposphere. Since oxygen is a well-mixed gas throughout most of the atmosphere, 

a constant vmr of 0.209476 was assumed [McClatchey et al., 1972]. The spectroscopic 

data were taken from the HITRAN2K line list [Rothman et al., 2003]. The aerosol types 

in the planetary boundary layer (lowest two layers) and free troposphere (next five layers) 

have been chosen to correspond to the urban and tropospheric models developed by 
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Shettle and Fenn [1979], with an assumption of moderate humidity (70%). For the 

stratosphere, in correspondence with standard practice, a 75% solution of H2SO4 was 

assumed with a modified gamma size distribution [World Climate Research Programme, 

1986]. The complex refractive index of the sulfuric acid solution was taken from the 

tables prepared by Palmer and Williams [1975]. The single scattering properties for the 

above aerosol types were computed using a Mie scattering code [de Rooij and van der 

Stap, 1984] that generates coefficients for the expansion in generalized spherical 

functions. The atmosphere is bounded below by a Lambertian reflecting surface. 

Computations were done for SZAs of 10, 40 and 70 degrees, viewing zenith angles of 0, 

35 and 70 degrees and relative azimuth angles of 0, 45, 90, 135 and 180 degrees. 

Variations in surface reflectance (0.05, 0.1 and 0.3) and aerosol extinction optical depth 

(0, 0.0247 and 0.247) have also been considered. The baseline case corresponds to a 

surface reflectance and aerosol extinction optical depth of 0.3 and 0.0247 respectively. 

 

Figure 7.1 shows the total molecular absorption optical depth (solid line), shown at high 

(line-by-line) spectral resolution, the Rayleigh scattering optical depth (dotted line) and 

the aerosol extinction optical depth (dashed line) of the 11-layer atmosphere (for the 

baseline case) as a function of wavelength in the O2 A band. Aerosol scattering has been 

assumed to be invariant in wavelength, which is a good approximation over the width of 

a molecular absorption band. It can be seen that while the Rayleigh scattering is also 

fairly constant, the molecular absorption shows strong variations with wavelength. 
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Table 7.1. Model atmosphere 

 

Level Altitude (km) Pressure (mbar) Temperature (K) 

0 50.0 7.798× 10-1 270.7 

1 40.0 2.871× 100 250.4 

2 30.0 1.197× 101 226.5 

3 20.0 5.529× 101 216.7 

4 12.0 1.940× 102 216.7 

5 10.0 2.650× 102 223.3 

6 8.0 3.565× 102 236.2 

7 6.0 4.722× 102 249.2 

8 4.0 6.166× 102 262.2 

9 2.0 7.950× 102 275.2 

10 1.0 8.988× 102 281.7 

11 0.0 1.013× 103 288.2 

 

Figure 7.2 shows the aerosol vertical profile for the baseline case. Changing the aerosol 

extinction optical depth corresponds to applying a scaling factor to the above profile. The 

aerosol scattering phase function F11 and the degree of linear polarization (for 

unpolarized incident light) −F21/F11 for the urban aerosol are plotted in figure 7.3, along 

with the corresponding plots for Rayleigh scattering. The other aerosol types exhibit 

similar behavior, with the major difference being the single scattering albedos. The 

diffraction forward peak is clearly visible. Twice refracted rays account for much of the 

forward scattering. The negative polarization peak at about 160 degrees is the rainbow, 

caused by internal reflection. The enhanced intensity in the backscattering direction is the 

glory. Although aerosol particles are less polarizing than air molecules, the scattering 

optical depth for aerosols is typically 5–6 times the Rayleigh scattering optical depth in 
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this part of NIR; polarization effects in the O2 A band are therefore not straightforward to 

delineate. 

 

 

 

Figure 7.1. Molecular absorption optical depth (solid line), Rayleigh scattering optical 

depth (dotted line) and aerosol extinction optical depth (dashed line) of the model 

atmosphere. 

 

Intensity and polarization spectra are shown in figure 7.4 for a case with SZA, viewing 

zenith angle and relative azimuth angle equal to 40, 35 and 180 degrees respectively. The 

surface reflectance and aerosol extinction optical depth correspond to the baseline 

scenario. 
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Figure 7.2. Aerosol vertical profile. 
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Figure 7.3. (top tow, left to right) aerosol scattering phase function and degree of linear 

polarization; (bottom row, left to right) Rayleigh scattering phase function and degree of 

linear polarization. 
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Figure 7.4. Intensity (top) and polarization (bottom) spectra of the O2 A band. The SZA, 

viewing zenith angle and relative azimuth angle are 40, 35 and 180 degrees respectively. 

The surface reflectance and aerosol extinction optical depth are 0.3 and 0.0247 

respectively. 

 

7.5 Results 

 

Before discussing the results, it is necessary to define the error plotted in figures 7.5–7.8. 

The OCO instrument is designed to measure only the radiation perpendicular to the plane 

containing the incoming solar beam and the beam entering the instrument, i.e., I−Q. 

Neglecting polarization in the RT computations thus creates a disparity between 
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calculation and measurement. The error made by a scalar approximation can be expressed 

as: 
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where the subscript s denotes a scalar computation. It is more instructive to rewrite the 

above equation in the following manner: 
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Clearly, the error is influenced by errors in the intensity and degree of linear polarization. 

However, calculations show that the error in the intensity is for most practical cases less 

than 0.5%. It is not insignificant only in the case of extremely high aerosol loading and 

even then only in the continuum (where the total error is much lower than in the 

absorption line cores). For this reason, plots of Is/I are not shown, though the plotted error 

takes into account this factor. Generally, greater polarization induces greater error. From 

the above definition, it is clear that scalar-vector errors will be larger when the radiation 

is polarized parallel to the reference plane. Even a 100% positive polarization creates 

only a 50% error (assuming no error in the intensity), but the error can grow beyond limit 

if the polarization is highly negative. This is a clear consequence of measuring only the 

perpendicularly polarized radiation. 
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In figure 7.5, the rows represent, from top to bottom, gas absorption optical depths of 

0.000113, 0.818 and 103.539, respectively. These characterize the three different regimes 

of interest pointed out by Stam et al. [1999], viz., the continuum, an intermediate region 

and the core of a very strong line in the O2 A band. The columns are, from left to right, 

the intensity I, the degree of linear polarization −Q/I and the percentage error if 

polarization is neglected, respectively. In all the orthographic projections, the viewing 

zenith angle increases radially outward from 0 to 70 degrees while the relative azimuth 

angle increases counterclockwise from 0 degree at the nadir position. The zenith position 

represents an angle of 180 degrees. The solar and viewing zenith angles were not 

increased beyond 70 degrees to avoid complications due to curvature of the beam paths. 

 

The line core behavior corresponds to single scattering in a Rayleigh atmosphere. The 

absorption is too strong for photons to hit the surface. The intensity and polarization 

depend only on the scattering angle and, in the case of the latter, the angle between the 

scattering and meridional planes. As the gas absorption optical depth decreases, photons 

penetrate more and more of the atmosphere until they hit the surface and bounce back. 

The Lambertian nature of the surface randomizes the orientation of the reflected beam 

and reduces polarization. The intensity, on the other hand increases because, unlike for 

the line cores, light is reflected back from the surface in addition to being scattered by the 

air molecules. 

 

In figures 7.6–7.8 the same quantities are plotted as in figure 7.5, except that only the 

variation in the principal plane is shown. Negative viewing angles correspond to a 
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relative azimuth angle of 180 degrees. In figure 7.6, the SZA is varied, with the aerosol 

extinction optical depth and surface reflectance fixed at 0.0247 and 0.3 respectively. The 

solid, dotted and dashed lines correspond to SZAs of 10, 40 and 70 degrees respectively. 

At the continuum, the intensity decreases as the SZA increases because of greater 

attenuation of the direct beam. The polarization, on the other hand, increases because less 

light reaches the surface and its depolarizing effect is reduced. The net result is that the 

error increases. Departures from this general trend are due to the predominance of single 

scattering (as opposed to multiple scattering) for certain viewing geometries, as described 

in Stam et al. [1999]. The behavior in the line cores is more complicated, being driven by 

single scattering, and thus the geometry. 

 

As the aerosol loading increases (figure 7.7), the intensity increases in the line core due to 

greater scattering while the polarization decreases because the aerosol is less polarizing 

than air molecules. The behavior is more complicated in the continuum, where there are 

contributions from reflected light from the surface and multiply scattered light from the 

atmosphere. Increasing the aerosol loading increases the total extinction depth and causes 

more multiple scattering. The former reduces the number of photons reaching the surface, 

resulting in less light being reflected back. The latter has the opposite effect. Depending 

on which effect is stronger, the intensity can increase or decrease. A similar argument 

could be made for the polarization. 

 

Finally, the surface reflectance has no effect in the line cores, where light does not reach 

the surface (figure 7.8). Decreasing the reflectance lowers the continuum brightness, 
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because less light is reflected from the surface, and increases the polarization because of 

reduced contribution from the surface relative to the atmosphere. The Lambertian nature 

of the surface also results in greater angular variation in both the intensity and 

polarization at lower reflectances. This is again in agreement with the results from Stam 

et al. [1999]. 

 

Though we have not considered non-Lambertian surfaces, a short discussion is in order. 

In the case of polarizing surfaces Q/I in the continuum will increase relative to the 

Lambertian surface case because light can penetrate to the surface. The Q/I inside the 

absorption bands will increase less. Therefore the difference between Q/I in and outside 

the absorption bands will decrease, making the errors due to a scalar approximation 

smaller. 

 

Clearly, the most pathological case is that of a Rayleigh scattering atmosphere bounded 

by a Lambertian surface with extremely low reflectance, with the sun at a very low 

elevation. It is worthwhile to note that all the above conclusions are based on line-by-line 

calculations. Convolution with a typical ILS could reduce the errors significantly. 
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Figure 7.5. Orthographic plots showing variation of intensity (left column), linear 

polarization (middle column), and error if polarization is neglected (right column) for 

gas absorption optical depths of 0.000113 (top row), 0.818 (middle row) and 103.539 

(bottom row). The viewing angle increases radially from 0 to 70 degrees and the relative 

azimuth angle increases anticlockwise from 0 at the nadir position, with zenith 

representing 180 degrees. The SZA, surface reflectance and aerosol extinction optical 

depth are 40 degrees, 0.3 and 0 respectively. 
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Figure 7.6. Variation of intensity (left column), linear polarization (middle column), and 

error if polarization is neglected (right column) for gas absorption optical depths of 

0.000113 (top row), 0.818 (middle row) and 103.539 (bottom row) as a function of 

viewing angle in the principal plane. Positive viewing angles are for a relative azimuth 

angle of 0 degrees while negative viewing angles are for a 180 degree relative azimuth 

angle. Solid, dotted and dashed lines represent SZAs of 10, 40 and 70 degrees 

respectively. The surface reflectance and aerosol extinction optical depth are 0.3 and 

0.0247 respectively. 



 

 

161 

 

 

Figure 7.7. Same as figure 7.6 except that the SZA is 40 degrees and the solid, dotted and 

dashed lines represent aerosol extinction optical depths of 0, 0.0247 and 0.247 

respectively. 
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Figure 7.8. Same as figure 7.6 except that the SZA is 40 degrees and the solid, dotted and 

dashed lines represent surface reflectances of 0.05, 0.1 and 0.3 respectively. 

 

7.6 Linear Sensitivity Analysis 

 

It is important to recognize that what we really need to know for the OCO mission is the 

effect of neglecting polarization when translated to errors in the retrieved CO2 column. 

These errors can be assessed by performing a linear error analysis study [Rodgers, 2000]. 

In general, linear error analysis allows quantification of errors caused by uncertainties in 

the forward model parameters, i.e., parameters that are not retrieved, or by inadequacies 
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in the forward model itself (forward model errors), such as neglecting polarization. 

Forward model errors are typically systematic and result in a bias in the retrieved 

parameters x. This bias can be expressed as: 

 

FGx ∆=∆ ,         (7.10) 

 

where G is the gain matrix that represents the mapping of the measurement variations 

into the retrieved vector variations and ∆F is the error in the modeling made by the scalar 

approximation. 

 

sIQIF −−=∆ )( ,        (7.11) 

 

where I, Q and Is are as defined before except that they are vectors over the detector 

pixels. 

 

The linear error analysis was carried out with the OCO Level 2 retrieval algorithm. This 

algorithm has been developed to retrieve 
2COX  from space-based measurements of the 

OCO spectral bands [Kuang et al., 2002]. The retrieval algorithm iteratively adjusts a set 

of atmospheric/surface/instrument parameters by alternate calls to a forward model and 

an inverse method. The forward model computes a high spectral resolution, 

monochromatic, TOA radiance spectrum. Repeated calls to the scalar RT code Radiant 

[Christi and Stephens, 2004] are used to generate the spectrum. The calculated spectrum 

is then convolved with the OCO ILS, which has been assumed to be Lorentzian with 
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resolving powers of 17,000 for the O2 A band and 20,000 for the CO2 bands respectively. 

The inverse method is based on optimal estimation [Rodgers, 2000] and uses a priori 

information to constrain the retrieval problem. Weighting functions describing the change 

of the measured spectrum with respect to a change in the retrieved parameters are 

calculated using finite differences. The OCO algorithm simultaneously fits the spectra of 

the 3 absorption bands, each containing ~900 spectral points, and retrieves a set of 61 

parameters for a 12-level atmosphere. These retrieved parameters are the vertical profiles 

of CO2 vmr, H2O vmr, temperature, aerosol optical depth as well as surface pressure, 

surface reflectance and its spectral dependence, spectral shift and squeeze/stretch. The a 

priori covariance for CO2 has been computed using the MATCH/CASA model [Olsen 

and Randerson, 2004], scaled to obtain a column variability of about 4.6 ppm to avoid 

overconstraining the retrieval. For all other retrieval parameters, ad hoc constraints have 

been used, with no cross-correlation between different parameters. 

 

We simulated nadir OCO spectra for Park Falls, Wisconsin, USA, for January (SZA = 

75.1°) and July (SZA = 34.8°). Temperature and humidity profiles and surface pressure 

were taken from the ECMWF ERA-40 dataset [Uppala et al., 2005] and CO2 profiles 

from the MATCH/CASA model calculations. For the January and July scenes, we 

assumed complete snow cover and conifer vegetation respectively. The calculation was 

carried out for a total aerosol optical depth of 0.1 using the aerosol types given in section 

7.4. SNRs of 360, 250 and 180 were used for the O2 A band, the 1.61 µm CO2 band and 

the 2.06 µm CO2 band respectively. We applied the retrieval algorithm to the simulated 

spectra starting with the known, true solution, i.e., we assumed that the iterative retrieval 
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scheme had already converged. The retrieval and smoothing errors and the gain matrix 

are calculated by the retrieval algorithm. The smoothing error describes the error in the 

retrieved parameters due to the limited sensitivity of the retrieval to fine structures of 

atmospheric profiles. The analysis of smoothing errors requires knowledge about the real 

atmospheric variability; we calculated the CO2 covariance using the MATCH/CASA 

model and scaled it to approximate a 2 ppm column variability observed from aircraft 

measurements [Hoffman, Peterson and Rosson, 1996]. The error in the radiance made by 

the scalar approximation ∆F was computed using VLIDORT for the same two scenarios. 

Errors due to the usage of two different RT codes are negligible. VLIDORT (when run in 

scalar mode) and Radiant agree to 5 decimal places or better for the intensities, and 

generally 4 significant figures for the weighting functions. 

 

The obtained retrieval and smoothing errors and the error due to neglecting polarization 

are summarized in table 7.2. We found that in July the largest error was the retrieval 

error; the smoothing error was negligible and the error due to neglecting polarization was 

comparable to the retrieval error. On the other hand, for the January scenario, the error 

caused by ignoring polarization was the dominant error term; it was roughly 4 times the 

retrieval error and 7 times the smoothing error. Most real scenarios might be expected to 

fall in between these extremes. Considering that the required CO2 retrieval precision for 

OCO is ~2 ppm, it is evident that polarization will play a significant role in the error 

budget. Also, as shown in figures 7.5, 7.6 and 7.8, the effect of neglecting polarization 

depends on the surface reflectance and measurement geometry and is hence likely to 

result in a regionally varying bias in the retrieved CO2 columns. As pointed out by 
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Rayner and O’Brien [2001], it is critical to avoid such a bias since it will give rise to 

large systematic errors in a subsequent inversion for carbon sources and sinks. 

 

Table 7.2. Errors for January and July scenes in Park Falls 

 

Scenario Retrieval Error (ppm) Polarization Error (ppm) Smoothing Error (ppm) 

January 1.8 7.4 1.0 

July 0.4 0.4 0.1 

 

7.7 Conclusions 

 

Sensitivity studies were performed to evaluate the errors resulting from ignoring 

polarization in simulations of backscatter measurements of the O2 A band by space-based 

instruments such as that on OCO. Beam and viewing geometry, surface reflectance and 

aerosol loading were systematically varied. Different behavior was observed in the line 

cores and the continuum because of the different paths taken by the photons in the two 

cases. The maximum errors were found for a Rayleigh scattering atmosphere bounded by 

a poorly reflecting Lambertian surface, when illuminated by a low sun. 

 

A linear error analysis study of simulated measurements from the OCO absorption bands 

showed that neglecting polarization could introduce errors as high as 10 ppm, which is 

substantially larger than the required retrieval precision of ~2 ppm. The retrieval error 

budget could thus be potentially dominated by polarization. On the other hand, it is 

impractical to do full vector retrievals because of the computational cost. It is thus 
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imperative to find ways to minimize the error without actually doing a complete Stokes 

vector calculation. 

 

There are a variety of approaches to save time compared to a full vector calculation and 

get more accurate results than if polarization were ignored. Since multiple scattering 

tends to remove polarization features, the Stokes parameters Q and U could be computed 

using one or two orders of scattering (which take negligible time), with a correction for 

the intensity such as that proposed by Sromovsky [2005]. Alternatively, one could use 

spectral binning (see, e.g., Meadows and Crisp [1996], for a scalar case) to reduce the 

number of RT calculations. Another possibility is to create lookup tables for a wide 

variety of scenarios and simply use them to interpolate for intermediate scenarios. 
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Abstract 

 

We calculate the reflection matrix for the first two orders of scattering in a vertically 

inhomogeneous, scattering-absorbing medium. We take full account of polarization and 

perform a complete linearization (analytic differentiation) of the reflection matrix with 

respect to both the inherent optical properties of the medium and the surface reflection 

condition. Further, we compute a scalar-vector correction to the total intensity due to the 

effect of polarization; this correction is also fully linearized. The solar beam attenuation 

has been computed for a pseudospherical atmosphere. 

 

Results from the 2OS model have been tested against scalar intensities for an 

inhomogeneous atmosphere, and against Stokes vector results for a homogeneous 

atmosphere. We have also performed backscatter simulations of reflected sunlight in the 

O2 A band for a variety of geometries, and compared our results with those from a full 

vector multiple-scattering code. Our results are exact in the center of strong lines and 

most inaccurate in the continuum, where polarization is least significant. The s- and p-

polarized radiances are always computed very accurately. The effect of gas absorption 

optical depth, solar zenith angle, viewing geometry, surface albedo and wind speed (in 

the case of ocean glint) on the intensity, polarization and corresponding weighting 

functions have been investigated. It is shown that the 2OS model provides fast and 

reliably accurate polarization corrections to the scalar-model radiance and weighting 

function fields. 
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8.1 Introduction 

 

Several RT models have been developed to compute the intensity and polarization of 

light reflected or transmitted by planetary atmospheres [de Haan, Bosma and Hovenier, 

1987; Hansen and Travis, 1974; Mishchenko, 1990; Schultz, Stamnes and Weng, 1999; 

Spurr, 2006]. In remote sensing applications based on backscattered light measurements, 

calculations of multiple scattering with full treatment of polarization are computationally 

very expensive. Since multiple scattering is depolarizing, a low-order scattering 

approximation is often used to compute the high-frequency Fourier components of the 

Stokes vector. Hovenier [1971] developed analytic expressions, involving only angular 

integrations, to compute the first two orders of scattering for a homogeneous layer with 

polarization included. Kawabata and Ueno [1988] used the Invariant Imbedding 

technique to compute the first three orders of scattering in vertically inhomogeneous 

plane-parallel layers. However, they neglected polarization. 

 

In this chapter, we extend the Kawabata and Ueno model to compute the first- and 

second- order reflection matrices for vertically inhomogeneous scattering media with 

polarization included. To enable accurate computations for the range of solar viewing 

angles encountered in nadir-view remote sensing applications, atmospheric 

transmittances for the incoming solar beam are treated for a curved spherical-shell 

atmosphere [Spurr, 2002]. Polarization induces a change in the intensity; to account for 

this, we compute a correction to the scalar intensity. In this paper, we derive results for 
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reflection, but it is straightforward to obtain analogous expressions for transmission. We 

also limit ourselves to a beam source of unpolarized incident light (e.g., sunlight). 

 

For remote sensing inverse problems based on non-linear iterative fitting methods such as 

optimal estimation [Rodgers, 2000], the RT forward model should be able to generate 

both the simulated backscatter intensity and any number of associated weighting 

functions (partial derivatives of the intensity with respect to retrieved and other 

atmospheric and surface properties). In this regard, we have performed a complete 

linearization (analytic differentiation) of the 2OS model, both for the reflection matrix 

and for the intensity correction. 

 

In this chapter, we present the theoretical formulation for the simultaneous computation 

of the reflection matrix, the intensity correction and the corresponding weighting function 

fields. In section 8.2, we summarize the Invariant Imbedding equations, and in section 8.3 

we derive the second-order scattering solutions with polarization. Section 8.4 deals with 

the linearization. In section 8.5 we discuss aspects of the performance of our 2OS 

numerical RT code, and its validation. In section 8.6, we present a series of results for an 

application based on measurements of reflected sunlight in the O2 A band. In the next 

chapter, we will present further applications of the 2OS model for remote sensing 

retrievals [Natraj et al., 2007]. 
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8.2 Basic Theory 

 

8.2.1 Invariant Imbedding Analysis 

 

We use the notation in Kawabata and Ueno [1988], with additional terms to account for 

polarization. The Stokes vector ),( φµI  of light reflected by a vertically inhomogeneous 

scattering-absorbing medium of optical thickness �—measured from the bottom of the 

atmosphere (BOA)—can be expressed in terms of a reflection matrix ),,;( 00 φφµµτ −−R : 

 

 0000 ),,;(),( FRI φφµµτµφµ −−= ,      (8.1) 

 

where F0 is the Stokes vector of the TOA incident radiation, µ− and 0µ are the cosine of 

the viewing and incident zenith angles (with respect to the downward vertical) and 0φφ −  

is the relative azimuth angle between the viewing and incident directions. The azimuth 

dependence is expressed by means of a Fourier series expansion: 

 

)](sin),;()(cos),;([2

),;(),,;(),,;(

00,2
1

00,2

0
0

,200100

φφµµτφφµµτ

µµτφφµµτφφµµτ

−−+−−

+−+−−=−−

�
=

mm m
s

M

m

m
c

c

RR

RRR
,  (8.2) 

 

where the subscripts 1 and 2 refer to the order of scattering, while c and s refer to the 

cosine and sine components of the Fourier series respectively. Aerosols and other 
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scattering particles typically have a strong diffraction peak. On the other hand, multiple 

scattering tends to wash out strong scattering features. Hence, it is desirable to perform an 

exact computation of the single scattering for the particular viewing geometry; in 

equation (8.2), the exact first order scattering contribution is determined separately. This 

is not only more accurate but also reduces the computational burden (see section 8.5). M 

is the number of Fourier components necessary to achieve Fourier series convergence. 

 

The intensity correction, Icorr, is defined as: 

 

 ),,;(|),,;(),,;( 00)1,1(0000 φφµµτφφµµτφφµµτ −−−−−≡−− RI corr R , (8.3) 

 

where )1,1(00 |),,;( φφµµτ −−R  is the (1,1) element of ),,;( 00 φφµµτ −−R  and 

),,;( 00 φφµµτ −−R  is the (scalar) reflection function. This can also be expanded in a 

Fourier series: 
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m
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1
000

0
00 )(cos),;(2),;(),,;( φφµµτµµτφφµµτ . (8.4) 

 

The expansion above does not involve sine terms because both the (1,1) element of the 

reflection matrix and the reflection function are even functions of the relative azimuth 

angle [Hansen and Travis, 1974]. 

 

The first order of scattering does not contribute to the intensity correction, since for 
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unpolarized incident light, the single scattered intensity is dependent only on the (1,1) 

element of the reflection matrix; the latter is the same with or without polarization. The 

sum of the intensity from a scalar multiple-scattering calculation and the intensity 

correction computed above approximates the intensity with polarization included. 

 

For 2≤p , the contribution to the reflection matrix from the pth order of scattering, pR , 

obeys the integro-differential equation [Hansen and Travis, 1974]: 
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where � is the single scattering albedo, P  is the phase matrix (see section 8.2.2 for 

expressions to evaluate the phase matrix and its Fourier components), [ ]λτ−exp  is the 

direct beam atmospheric transmittance factor and z is the altitude. Equation (8.5) is valid 

in the pseudospherical approximation, where all scattering is regarded as taking place in a 

plane parallel medium, but the solar beam attenuation is treated for a curved atmosphere. 

For a plane parallel attenuation, 01 µλ ==== ; in the curved atmosphere case, expressions for 

λ  are derived in section 8.3.1. 

 

The various terms on the right-hand side of equation (8.5) denote the following 
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processes: direct transmission after p reflections, transmission (with illumination from 

below) after p-1 reflections and p-1 reflections after transmission. To calculate the 

transmission matrix, the only difference is that the last step in the photon history is 

downward. The equivalent processes would then be: direct transmission after p 

transmissions, transmission after p-1 transmissions and p-1 reflections (with illumination 

from below) after reflection. 

 

Equation (8.5) can be expanded in a Fourier series to obtain: 
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where the subscripts c and s refer to the cosine and sine Fourier components, and m
cp ,S  

and m
sp ,S  are scattering source terms. The sine terms are identically zero for m = 0. The 

first and second order scattering source terms are given by the following expressions: 
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where m
cP  and m

sP  are, respectively, the cosine and sine components of the mth term in 

the Fourier expansion of the phase matrix P. Integrating equations (8.6) over the optical 

depth from nτ  to τ , we obtain the following cosine and sine reflection matrices: 
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Starting from the scalar equivalent of equation (8.5), we can derive the Fourier 
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components, m
cpR , , of the reflection functions, appropriate to the intensity correction: 
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where the source function terms are given by: 
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m
cP  is the mth term in the Fourier expansion of the phase function. The Fourier 

components of the intensity correction can then be approximated as: 

 

 ),;(|),;(),;( 0,2)1,1(0,20 µµτµµτµµτ −−−=− m
c

m
c

m
corr RI R ,    (8.11) 

 

where )1,1(0,2 |),;( µµτ −m
cR  is the (1,1) element of ),;( 0,2 µµτ −m

cR . 

 

In equations (8.7) through (8.10), all integrals over the polar direction half spaces are 
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approximated by summations using Gaussian quadrature [Thomas and Stamnes, 1999]. 

The quadrature has Ng points, with abscissae and weights {{{{ }}}}kk w,µ±±±± , k = 1, ..., Ng, in the 

upwelling and downwelling polar hemispheres. 

 

8.2.2 Expansion of the Phase Matrix 

 

We divide the atmosphere into N horizontally homogeneous layers (N+1 levels), where 

TOA is the N+1th level. The optical properties are assumed to be constant within a layer. 

We then define the symbol n�  to indicate the sun-satellite geometry appropriate to a 

given layer n: 

 

),,( nnnn ϕαϑ=� ,        (8.12) 

 

where nϑ , nα  and nϕ  are the local solar zenith angle, the local line of sight zenith angle 

and the local relative azimuth angle between two planes containing these directions, 

respectively, at the bottom boundary of layer n. Ray tracing in a curved atmosphere (with 

or without refraction) may be used to determine all n�  given the input geometry at TOA. 

In the pseudo-spherical approximation, all scattering is considered to be in a plane-

parallel atmosphere; only the solar beam attenuation is treated for spherical curvature. In 

this case, )),(cos,(cos 0
1

0
1 φφµµ −−= −−

n�  for all points along the upward nadir from 

BOA. The scattering angle Θn can be computed using spherical trigonometry: 
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nnnnnn ϕαϑαϑ cossinsincoscoscos +=Θ .     (8.13) 

 

For a non-refracting atmosphere, the scattering angle is a constant and is given by the 

value at TOA: 

 

)cos(11cos 0
22

00 φφµµµµ −−−+−=Θn .    (8.14) 

 

For scattering matrices where the elements are functions only of the scattering angle, and 

where there are at most six independent elements [Hansen and Travis, 1974], the 

scattering matrix expansion is given in terms of a set of generalized spherical functions 

)(cos, n
l

nmS Θ  [Mishchenko, Hovenier and Travis, 2000]. The six independent elements 

are: 
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�
=

Θ−=Θ
L

l
n

l
nln Sb

0
2,02 )(cos)( ε  .      (8.15f) 

 

There are six sets of expansion coefficients {αnl, βnl, γnl, δnl, εnl, ζnl}, where {βnl} are the 

phase function Legendre expansion coefficients as required for scalar-only computations 

neglecting polarization. The functions {a1,a2,a3,a4} and {b1,b2} are elements of the 

scattering matrix Fn: 
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The corresponding expansion coefficient matrix Bnl is: 
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The Stokes vector is defined with respect to a reference plane (usually taken to be the 

local meridian plane). To transform the Stokes vectors from the scattering plane to the 

local meridian planes containing the incident and scattered beams, we need rotation 

matrices L(π−σ2) and L(−σ1), where σ1 and σ2 are the angles of rotation [Mishchenko, 

Hovenier and Travis, 2000]. 



 

 

191 

The phase matrix )( nn ��  is then given by: 

 

 )()()()( 12 σσπ −Θ−= LFL�� nnnn .      (8.18) 

 

The phase matrix can be decomposed into its Fourier components [Siewert, 1982]: 
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The full phase matrix (with an exact specification of the scattering law) will be used to 

calculate the exact first-order scattering term, while the truncated form of the phase 

matrix using the Fourier component expansion in equations (8.19) will be used for 

computing the second order of scattering. 

 

m
cP  and m

sP  are given by: 
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where ', µµµ ±−=i  and 0,'µµµ ±=j . 

 

The m
l� matrices contain entries of normalized Legendre functions m

lP  and functions 

m
lR and m

lT , which are related to the generalized spherical functions [Siewert, 1982]. 
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8.3 Solution for the First Two Orders of Scattering 

 

8.3.1 Solar Beam Attenuation in a Curved Atmosphere 

 

The assumption of a plane parallel medium breaks down for solar zenith angles or line of 

sight viewing angles approaching 90°; it then becomes necessary to make some 

allowance for the sphericity of the atmosphere. This is particularly important for polar-

orbiting satellite instruments, for which large solar zenith angles are frequently 

encountered. In a stratified spherical-shell medium, the intensity field changes with 

angular variables (solar and line of sight zenith angles, relative azimuth angle between 

planes containing the line of sight and solar directions) in addition to the zenith variation 

with optical depth. The pseudospherical assumption ignores these angular derivatives; 

only the variation of intensity with the vertical coordinate is considered. 

 

In a plane parallel atmosphere, the direct beam attenuation is given by [ ]0/exp µτ− . In a 

spherical-shell atmosphere, the attenuation factor is [ ])(exp τκ− , where κ  is the slant 

optical depth. The cumulative slant optical depth nκ  to the bottom boundary of layer n 

can be expressed as: 
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where nkκ  are the slant optical thickness values for layers k above and equal to n, and snk 

and ek are the layer path lengths and layer extinctions respectively. For straight-line paths, 

the path lengths may be expressed easily in terms of vertical altitudes. In a refractive 

atmosphere, they can be calculated by repeated application of Snell’s law. Slant path 

transmittances are taken to be exact at layer boundaries, with a simple exponential in 

optical thickness to approximate the attenuation across layers [Spurr, 2002]: 
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For a curved atmosphere, the layer-specific “average secant” nλ  takes the place of the 

solar cosine secant; in the plane-parallel case, we have 1
0
−−−−==== µλn  for all n. In a 

pseudospherical RT model, scattering takes place along the local vertical from the BOA 

point. It has been shown [Caudill et al., 1997; Dahlback and Stamnes, 1991] that the 

pseudospherical approximation provides a useful and sufficiently accurate RT intensity 

simulation for solar zenith angles up to 90°, provided that the line of sight is reasonably 

close to the nadir. The advantage of this approach is that it utilizes the speed and 

flexibility of the plane-parallel formalism, and avoids the more complex and 

computationally intensive full spherical RT treatment. 

 

In the following exposition, we have stayed with the notation used in Kawabata and Ueno 

[1988], with some changes to account for the pseudospherical treatment. For simplicity, 

we have assumed a non-refractive atmosphere. 
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8.3.2 First-Order Scattering 

 

We define the following functions: 

 

 [ ])(exp);( 11 nnn yy τττ −−≡Ψ ++ .      (8.23) 
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We also define: 
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Layer dependence of the optical depth, single scattering albedo and phase matrix 

decomposition is implicit. The expressions below reduce to those derived by Hovenier 

[1971] for the case of a plane-parallel single-layer medium. 

 

The cosine and sine terms for the first order of scattering are given below: 
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For the intensity correction, we have the following contributions: 
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The above expressions refer to the first-order terms that arise during the computation of 

the second order of scattering. The exact first-order computation will be done separately 

in section 8.3.4. 
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8.3.3 Second-Order Scattering 

 

Similar expressions pertain to the second-order scattering. The cosine terms are given by: 
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where: 
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The sine-series contributions to the second-order scattering are: 
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Lastly, we have the reflection functions for the intensity correction: 
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The Fourier components of the intensity correction at TOA can be obtained from 

equations (8.11), (8.29) and (8.31): 
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8.3.4 Exact Solution for First-Order Scattering 

 

In this case, the reflection matrix at the top of layer n is based on an exact single scatter 

source term: 
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Here, the phase matrix )( nn ��  is evaluated using an exact specification of the scattering 

law based on the use of complete sets of expansion coefficients (cf. section 8.2.2). 
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8.3.5 Boundary Conditions 

 

The recurrence relations in Sections 8.3.3 and 8.3.4 all start with values of the reflection 

matrices at the surface. The surface boundary condition requires a complete specification 

of the first-order BRDF at the surface; second order of scattering reflection functions are 

zero. Thus we have: 
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where Rg is the surface BRDF, and 0�  is given by the following expression: 

 

{ })),arccos(),(arccos( 000 φφµµ −−=� .     (8.35) 

 

Two commonly encountered surface types are Lambertian and ocean sun glint. The 

Lambertian BRDF is (Ag is the Lambertian albedo): 
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We compute the ocean sun glint BRDF using a modified Kirchhoff approximation 

[Mishchenko and Travis, 1997] based on an isotropic Gaussian probability distribution of 

wave-facet slopes: 
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where the mean square slope 2s  is related to the near-surface wind speed W (in m/s) by 

the following well-known empirical formula [Cox and Munk, 1954]: 

 

 Ws 00512.0003.02 2 += .       (8.38) 

 

Shadowing by surface waves is taken into account using a symmetrical bidirectional 

shadowing function ),( βαS  for facet incident and reflected normal angles α and β 

[Tsang, Kong and Shin, 1985]: 
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where: 
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Here, erfc(x) is the complementary error function. Fourier components of the ocean sun 

glint BRDF, m
cg ,R  and m

sg ,R , are obtained by Gaussian quadrature. Details of the ocean 

surface reflection matrix computation are described in Tsang, Kong and Shin [1985]. 

 

8.3 Linearization 

 

In remote sensing inverse problems, it is usually necessary for the forward model to be 

able to generate sensitivity (or weighting) functions, i.e., partial derivatives of the 

simulated radiance field with respect to atmospheric and surface parameters that are 

retrieved or are sources of error in the retrieval. In this chapter, we use the term 

“linearization” as a synonym for analytic differentiation of the radiation field. We 

distinguish between weighting functions defined with respect to atmospheric variables 

(section 8.4.1), and those defined with respect to surface variables (section 8.4.2). 

 

8.4.1 Atmospheric Profile Linearization 

 

We define the linearization operator with respect to some variable ξk in layer k as 
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follows: 

 

 
k

kL
ξ∂
∂≡ .         (8.40) 

 

The 2OS model requires as input the layer optical thickness values nnn ττ −−−−==== −−−−1∆ , the 

total single scattering albedos nω and the matrix nlB  of expansion coefficients in 

equation (8.17). These are the inherent optical properties (IOPs). For the linearization, we 

require the set of derivative or linearized inputs: 

 

][ nnn Lu ω≡ ,  ][ nnn Lv ∆≡≡≡≡ ,  ][ nlnnl L Bz ≡ .   (8.41) 

 

The IOPS and their linearizations in equation (8.41) are the end points in the chain-rule 

differentiation of the reflection matrices. 

 

We note that for a variable ξk in layer k there are no derivatives in layers above k; in other 

words, knQL nk >>>>∀∀∀∀==== ,0][  for any quantity nQ defined in layer n (layers are numbered 

from the surface upward). In the pseudospherical treatment, derivatives of the solar beam 

secant factors nknkL σλ ≡][  may be found by differentiating equation (8.22); for details of 

this procedure, see, e.g., Spurr [2006]. For plane parallel attenuation, knnk ,,0 ∀∀∀∀====σ , 

since 1
0
−−−−==== µλn . 
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The linearization of the complete second-order fields is a straightforward exercise based 

on repeated chain-rule differentiation. Here, we derive the results for the exact single 

scatter reflection functions (cf. section 8.3.4); the analysis for the second order functions 

and the intensity correction may be found in the appendix. 

 

For the exact first order reflection matrix terms, we first rewrite equation (8.33) as: 

 

)(),(),(),(),( 1111 nnnnnnnnnnn EQLL ���R�R λµωλµ +=++ ,  (8.42) 

 

where Ln+1 is the top of layer n. In equation (8.42), we have: 
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Equation (8.42) can now be differentiated: 
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We note that: 
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nnknknnknnnnnnk HvQQL λµσδλµλµλµ ≡∆++−= − ;  (8.45) 

 

 nknnk uL δω =][ ;        (8.46) 

 

 nknknlnnk fL �z�� ≡= δ)()]([ ;      (8.47) 

 

 

( )

),(

)(4
),(

)(4
)),(1(

)(4
),(

),(1
)(4)(4

)],([

1

1

21

2

1

1

21

1

1

1

nnk

n

nnkn

n

nnnk

n

nnkn

nn
n

nkn

n

nk
nnk

F

HQ

H

QEL

λµ
λµ

λµλµ
λµ

λµσµ
λµ

λµλµ

λµ
λµ

σλµ
λµ

σµλµ

≡
+

−
+

−=

+

−−��
�

�
��
�

�

+
−

+
=

−

−

−

−

−

−

−

−

−

−

.  (8.48) 

 

Here, nkδ  is the Kronecker delta function. In equation (8.47), the phase matrix can be 

expressed in terms of input expansion coefficients nlB  (cf. equations 8.15–8.18), so its 

linearization will be a known function )( nlf z  of the IOP coefficient derivatives nlz . 

 

With the help of the above auxiliary definitions, equation (8.44) can now be written as: 
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8.4.2 Surface Property Linearization 

 

Let η be a surface property for which we wish to find the weighting function. In our case, 

η is either the albedo for a Lambertian surface or the wind speed for an ocean sun glint 

surface. We define the surface linearization operator as follows: 

 

 
ηη ∂
∂≡L .         (8.50) 

 

The atmospheric profile IOPs do not depend on η, so atmospheric scattering source terms 

will have no derivatives with respect to this variable. Thus, linearization of reflection 

matrices with respect to η will propagate upward from the derivatives of the surface 

BRDFs with respect to η. The linearized surface boundary condition can be written as: 

 

 )]',([)]',;0([ ,,1 µµµµ ηη −=− m
cg

m
c LL RR ;     (8.51a) 

 )],'([)],';0([ 0,0,1 µµµµ ηη −=− m
cg

m
c LL RR ;     (8.51b) 

 )]',([)]',;0([ ,,1 µµµµ ηη −=− m
sg

m
s LL RR ;     (8.51c) 

 )],'([)],';0([ 0,0,1 µµµµ ηη −=− m
sg

m
s LL RR ;     (8.51d) 

 0)],;0([ 0,2 =− µµη
m

cL R ;       (8.51e) 

 0)],;0([ 0, =− µµη
m

spL R ;       (8.51f) 

 )]([)];0([ 001 �R�R gLL ηη = .      (8.51g) 
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For a Lambertian surface, all the above derivatives would be identically zero except for 

the (1,1) elements of )]',;0([ 0
,1 µµη −cL R , )],';0([ 0

0
,1 µµη −cL R  and )];0([ 01 �RηL  (these 

are equal to 1). 

 

For the sun glint case (for which η is the wind speed W), we must first differentiate the 

Gaussian probability distribution of wave facet slopes and the shadow term in equations 

(8.37) and (8.39) with respect to the mean square of the slopes 2s . Chain-rule 

differentiation using the empirical linear relation between and 2s  and W (equation (8.38)) 

furnishes the correct linearization. 

 

8.5 The 2OS Model: Performance Considerations and 

Validation 

 

A number of optimizations have been used to increase the speed and accuracy of the 2OS 

numerical RT code. First, the Fourier coefficients of the phase matrix are computed using 

the expansion coefficients of the scattering matrix and generalized spherical functions [de 

Haan, Bosma and Hovenier, 1987]. This is much faster and more accurate than 

integrating over the azimuth. Second, we perform an exact first order of scattering using 

all the expansion coefficients; the second order of scattering then uses the Fourier 

coefficients computed with the first L+1 expansion coefficients, where L is the number of 

half-space quadrature streams. This technique substantially reduces the computational 

burden. Third, quantities that do not depend on the Fourier component (such as 
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);( 1
1 nn λµτ +Ψ −

+ ) are calculated outside the Fourier loop. Fourth, second-order 

calculations only require the Fourier coefficients of the phase matrix to be evaluated for 

four sets of directional cosines: )',( µµ −− , )',( µµ− , ),'( 0µµ−  and ),'( 0µµ , where 'µ  

indicates a quadrature value. This reduces the number of floating point operations by 

about ½L. For unpolarized incident light (such as sunlight), Stokes parameters I and Q do 

not depend on the sine component of the second-order reflection matrix m
s,2R . Thus, m

s,2R  

is calculated only if U or V needs to be computed. Finally, special limiting cases (such as 

small layer optical thickness, zenith angles close to 0°, and zenith angles very close to 

each other or to quadrature angle values), are handled using appropriate Taylor series 

expansions. 

 

To validate our code, we took the five-layer model from Kawabata and Ueno [1988] and 

reproduced the Fourier coefficients of the reflection function due to the first two orders of 

scattering as shown in Table II of that reference. The published results are in fact 

erroneous, and this was corroborated by the authors in a private communication. The new 

results using our method are presented in table 8.1. 

 

The results for all orders of scattering were obtained using a doubling-adding vector RT 

code [de Haan, Bosma and Hovenier, 1987]. The results produced with the expressions 

given in this paper are reasonable in view of the fact that the sum of the contributions 

from the first two orders of scattering become increasingly close to those for all orders of 

scattering as we go to the higher-order Fourier terms. 
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Table 8.1. Fourier coefficients of the reflection function for the 5-layer problem from 

Kawabata and Ueno [1988] 

 

m All Orders 1st+2nd Orders 

0 1.16205(0)a 2.64969(-1) 

1 -1.15467(-2) -1.14072(-2) 

2 6.78485(-4) 6.76188(-4) 

3 -4.75188(-5) -4.74920(-5) 

4 5.88287(-6) 5.88180(-6) 

 

a To be read as 1.16205×100 

 

For the linearizations, all scalar intensity and reflection matrix analytic derivatives were 

validated by comparing them against derivative estimates using finite difference 

techniques. Further validation tests were carried out against a full vector model for the O2 

A band application; these are described in the next section. 

 

8.6 Application to Reflected Sunlight Measurements in the O2 

A Band 

 

The O2 A band is used in remote sensing to retrieve surface pressure [O’Brien, English 

and da Costa, 1997; O’Brien et al., 1998] and cloud top height [Koelemeijer et al., 2001; 
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Kuze and Chance, 1994; O’Brien and Mitchell, 1992; Rozanov and Kokhanovsky, 2004; 

Rozanov, Kokhanovsky and Burrows, 2004]. We computed the intensity correction and 

Stokes parameter Q at TOA for various geometries at gas absorption optical depths of 

3.36×10-3, 1.0 and 464.0 (representing the continuum, optical depth unity and center of a 

strong line, respectively). The aerosol extinction and Rayleigh scattering optical depths 

were 0.12 and 0.025, respectively. We used an 11-layer atmosphere, with the altitudes 

and level temperatures corresponding to the US Standard Model Atmosphere [1976]. The 

atmosphere is bounded below by a Lambertian reflecting surface with albedo 0.3. 

 

The gas absorption cross sections for the above calculations were computed assuming a 

Voigt line profile, with spectroscopic data taken from the HITRAN 2004 database 

[Rothman et al., 2005]. A constant value of 0.2095 was used for the O2 vmr. The 

Rayleigh scattering cross section was computed using the following standard equation 

[van de Hulst, 1957]: 

 

 
ρ
ρ

λ
πσ

76
36

)2(
)1(24

22

22

24

3

−
+

+
−=

n
n

Nr ,       (8.52) 

 

where rσ , λ , N, n and ρ  are, respectively, the Rayleigh scattering cross section per 

molecule, the wavelength (in microns), the molecular density, the refractive index and the 

depolarization factor (set to 0.0279 for air [Young, 1980]). 

 

The tropospheric aerosol was chosen to correspond to the climatological mixing group 4a 
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of Kahn, Banerjee and McDonald [2001], which is typical of much of North America. 

For the stratosphere (top 5 layers), a 75% solution of H2SO4 was assumed with a 

modified gamma size distribution [World Climate Research Programme, 1986]; the 

complex refractive index of the sulfuric acid solution was taken from the tables of Palmer 

and Williams [1975]. Single scattering properties for the spherical-particle aerosols (such 

as sulfates and carbonaceous aerosols) were computed using a Mie scattering code [de 

Rooij and van der Stap, 1984] that generates coefficients for the expansion in generalized 

spherical functions. Accumulated and coarse dust properties were obtained using a T-

matrix code [Mishchenko and Travis, 1998]. A scale height of 1 km was assumed. 

 

We compared our results with those obtained using a full multiple-scattering discrete 

ordinate vector RT code [Spurr, 2006]. Figures 8.1 and 8.2 show, respectively, the 

reflectance spectrum and the error using the 2OS model. The solar, viewing and relative 

azimuth angles are 50, 30 and 60 degrees respectively. The pseudospherical 

approximation was employed for the calculations. Clearly, the results using our model are 

exact in the line cores and most inaccurate (~30% error in the Stokes parameter Q) in the 

continuum. However, the continuum is a region dominated by multiple scattering and 

polarization is least significant there. This suggests that, while the 2OS model may not 

always provide Stokes parameter Q with sufficiently high accuracy, the polarization 

(−Q/I), or one of its orthogonal components (I±Q), can be obtained very accurately. 

 

We tested this hypothesis for various solar zenith angles from 10 to 80 degrees, viewing 

angles 0 and 60 degrees, azimuth angles 0 and 90 degrees and surface albedos 0.05 and 
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0.5. Figures 8.3(a) and (b) show the errors in the intensity and the component of radiance 

polarized perpendicular to the principal plane, (I−Q)/2 (hereafter referred to as the 

polarized radiance), for nadir viewing and surface albedo 0.05. The upper panels in these 

plots show the errors using the 2OS model, while the lower panels show errors using the 

scalar approximation. As the solar zenith angle increases, the scattering angle increases; 

hence the polarization increases and the errors are larger. Also, at small solar zenith 

angles, the errors in the polarized radiance (using the 2OS model) go from larger in 

regions of small gas absorption (continuum) to smaller in regions of high gas absorption 

(line cores). This is because in the continuum there is multiple scattering while in the line 

cores the atmosphere is opaque and what we see is primarily single scattering in the 

upper atmosphere. However, the reverse behavior is seen at very high solar zenith angles. 

Here, the high scattering angle contributes to increased scattering in the line cores, while 

increased attenuation of the solar beam decreases the contribution from the surface in the 

continuum. 

 

Figures 8.4–8.6 show the same errors for different viewing geometries and surface 

albedos. It is clear that higher surface albedos give rise to smaller errors. An interesting 

feature for non-nadir viewing geometries is that we need to consider rotation angles (to 

transform from the solar and viewing planes to the scattering plane). The rotation angles 

go from below 90° at low solar zenith angles to above 90° at high solar zenith angles, 

causing a reversal in the sign of polarization; the radiation goes from being 

predominantly s-polarized to p-polarized. The improvement using the 2OS model is 

evident in all the plots, especially for the polarized radiance, where there is an order of 
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magnitude reduction in the errors. 

 

 

 

Figure 8.1. TOA reflectance spectrum in the O2 A band. (Upper panel) Stokes parameter 

I; (Lower panel) Stokes parameter Q. The solid lines represent vector multiple-scattering 

calculations. The dashed line for the Stokes parameter I is the sum of the intensity 

correction from the 2OS model and the scalar intensity. For the Stokes parameter Q, the 

dashed line represents the results from 2OS computations. The solar, viewing and 

relative azimuth angles are 50, 30 and 60 degrees respectively. 
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Figure 8.2. Relative errors (%) using the 2OS model. (Upper panel) Stokes parameter I; 

(Lower panel) Stokes parameter Q. The error in the Stokes parameter I is the difference 

between the sum of the intensity correction from the 2OS model and the scalar intensity, 

and the intensity from a full vector multiple-scattering calculation. The solar, viewing 

and relative azimuth angles are 50, 30 and 60 degrees respectively. 
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Figure 8.3(a). Errors in the intensity using the 2OS model (upper panel) and scalar 

model (lower panel) for nadir viewing scenario with surface albedo 0.05. 
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Figure 8.3(b). Errors in the polarized radiance for the same scenario as in figure 8.3(a). 
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Figure 8.4(a). Same as figure 8.3(a) except that the surface albedo is 0.5. 
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Figure 8.4(b). Same as figure 8.3(b) except that the surface albedo is 0.5. 

 



 

 

219 

 

 

Figure 8.5(a). Same as figure 8.3(a) except that the viewing angle is 60 degrees and the 

azimuth angle 90 degrees. 
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Figure 8.5(b). Same as figure 8.3(b) except that the viewing angle is 60 degrees and the 

azimuth angle 90 degrees. 
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Figure 8.6(a). Same as figure 8.5(a) except that the surface albedo is 0.5. 
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Figure 8.6(b). Same as figure 8.5(b) except that the surface albedo is 0.5. 

 

The accuracy of the weighting functions with respect to gas absorption optical depth was 

investigated for several solar zenith angles (figure 8.7) and optical depths (figure 8.8). 

The surface albedo was assumed to be 0.3 and nadir viewing geometry was employed. In 

figure 8.7, the solid, dotted and dashed lines refer to solar zenith angles 10, 40 and 70 

degrees respectively. In figure 8.8, they denote gas absorption optical depths 4.55, 1.07 

and 0.01 respectively. From upper left to lower right, the different panels represent errors 

in the weighting functions for the intensity using the 2OS and scalar models and 

polarized radiance using the same models. Clearly, the 2OS model gives an order of 

magnitude (or more) reduction in the errors. 
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Figure 8.7. Errors in the weighting functions with respect to gas absorption optical depth 

for the intensity using the 2OS (upper left panel) and scalar models (upper right panel) 

and the polarized radiance using the same models (lower panels). The solid, dotted and 

dashed lines refer to solar zenith angles of 10, 40 and 70 degrees respectively. The gas 

absorption optical depth is 1.07. 
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Figure 8.8. Same as figure 8.7 except that the solar zenith angle is 40 degrees. The solid, 

dotted and dashed lines refer to gas absorption optical depths of 4.55, 1.07 and 0.01 

respectively. 

 

Similar tests were done for ocean glint scenarios using two wind speeds (4 m/s in figure 

8.9 and 8 m/s in figure 8.10). The difference between this case and the Lambertian one is 

that the ocean surface is highly polarizing. In some cases, the polarization due to the 

surface can be higher than that due to atmospheric scattering (see, e.g., lower panels in 

figures 8.3(b) and 8.9(b)). Increasing wind speed is analogous to decreasing surface 

albedo; errors are thus larger at higher wind speeds. Figures 8.11 show the weighting 
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functions for the intensity (upper panels) and polarized radiance (lower panels) with 

respect to the wind speed. The gas absorption optical depth is 0.01, 1.07 and 4.55 in 

Figures 8.11 (a), (b) and (c), respectively. Except for the largest solar zenith angle, the 

2OS model gives results very close to those from a full vector multiple-scattering 

calculation. 

 

 

 

Figure 8.9(a). Same as figure 8.3(a) but with results for an ocean sun glint scenario with 

wind speed of 4 m/s. 
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Figure 8.9(b). Same as figure 8.3(b) but with results for an ocean sun glint scenario with 

wind speed of 4 m/s. 
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Figure 8.10(a). Same as figure 8.9(a) except that the wind speed is 8 m/s. 
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Figure 8.10(b). Same as figure 8.9(b) except that the wind speed is 8 m/s. 
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Figure 8.11(a). Errors in the weighting functions with respect to wind speed for the 

intensity using the 2OS (upper left panel) and scalar models (upper right panel) and the 

polarized radiance using the same models (lower panels). The solid, dotted and dashed 

lines refer to wind speeds of 4, 8 and 12 m/s respectively. The gas absorption optical 

depth is 0.01. 
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Figure 8.11(b). Same as figure 8.11(a) except that the gas absorption optical depth is 

1.07. 
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Figure 8.11(c). Same as figure 8.11(a) except that the gas absorption optical depth is 

4.55. 

 

Finally, the effect of sphericity was investigated by increasing the solar zenith angle close 

to 90 degrees. Figures 8.12 (a) and (b) show the errors in the intensity and polarized 

radiance for nadir viewing and surface albedo 0.3. The upper panel in these plots shows 

the errors using the 2OS model and the lower panel shows the errors using the scalar 

approximation. The 2OS model gives excellent results up to a solar zenith angle of about 

80 degrees. 
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Figure 8.12(a). Same as figure 8.3(a) except that the surface albedo is 0.3. The solid, 

dotted and dashed lines refer to gas absorption optical depths of 4.55, 1.07 and 0.01, 

respectively. The effect of sphericity is being tested here. 
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Figure 8.12(b). Same as figure 8.3(b) except that the surface albedo is 0.3. The solid, 

dotted and dashed lines refer to gas absorption optical depths of 4.55, 1.07 and 0.01, 

respectively. The effect of sphericity is being tested here. 

 

8.6 Concluding Remarks 

 

We have developed a polarized RT model to calculate the reflection matrix for the first 

two orders of scattering in vertically inhomogeneous, scattering-absorbing media. Solar 

beam attenuation has been treated for a curved spherical-shell atmosphere. In addition, 

the model computes a scalar-vector intensity correction induced by polarization. This 



 

 

234 

correction is intended for use in conjunction with the results from a scalar multiple-

scattering calculation to approximate the full Stokes-vector intensity with polarization 

included. We have also performed a complete analytic differentiation (linearization) of 

the RT equations, allowing the model to deliver weighting functions with respect to any 

atmospheric or surface parameters. 

 

Intensity results have been compared with those from Kawabata and Ueno [1988] for 

scalar intensity, and against vector output from Hovenier [1971] for a homogeneous 

plane-parallel atmosphere. We have also performed backscatter simulations of reflected 

sunlight in the O2 A band for a variety of geometries, and compared our results with those 

from a full vector multiple-scattering code [Spurr, 2006]. The effects of gas absorption 

optical depth, solar zenith angle, viewing geometry, surface albedo and wind speed (in 

the case of ocean glint) on the intensity, polarized radiance and respective weighting 

functions have been investigated. In all cases, the 2OS model provides a reliable and 

accurate correction to the intensity field and aassociated weighting function derivatives. 

 

It is worth noting that the 2OS computation is two orders of magnitude faster than a full 

vector calculation and adds only about 10% CPU overhead to a multiple-scattering scalar 

intensity calculation. This consideration is important for operational retrievals based on 

ab initio forward model RT simulations. It can enable accurate polarized-light 

simulations to be made without the use of a prohibitively slow full Stokes vector 

computation, or the use of an intensity correction lookup table. 
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Appendix 

 

Linearization of the second order contributions to the reflection matrices follows the 

principles laid down in Section 8.4. 

 

We consider the cosine contributions first. Eq. (8.29a) can be rewritten as: 
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The Fourier components of the phase matrices can be expressed in terms of input 

expansion coefficients Bnl (cf. Eqs. (8.20)), so their linearizations will be known 

functions of the coefficient derivatives znl. We express this as follows: 

 

m
nknknl

mm
ck gL GzP ≡= δ)(][ ; (8.A2a) 

m
nknknl

mm
sk jL JzP ≡= δ)(][ . (8.A2b) 
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Now we differentiate Eq. (8.A1) to yield: 
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The only new quantities to be determined are the linearizations: 
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 ][ 3,3
m

k
m

nk L VW ≡ ; (8.A4c) 

 ][ 4,4
m

k
m

nk L VW ≡ . (8.A4d) 

 

We evaluate the following quantities first: 
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 )',(])')[(',()]',([ 1 xHvxxQxQL nknknnnk µδµµµ ≡+−= − ; (8.A5c) 

 

From Eqs. (8.24), (8.43a) and (8.A5), we derive the following: 
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Further, we note that: 
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Eqs. (8.26) and (8.27) can now be differentiated to obtain: 

 

 

m
nk

nknnnnk
m
c

m
nknn

nkn
m

c

nn
m

ckn
m

ck

uxExF

xE

xHL

xQLLLL

,3

,1

,11,1

])',()',()[',(

)',()',(

)',()',;(

)',()]',;([)]',;([

S

P

G

R

RR

≡

+−

+−

+−

+−=−+

δµωµµµ
µµµω

µµµ

µµµµµ

; (8.A8a) 

 

m
nk

nknnnnnnk
m
c

m
nknnn

nnkn
m

c

nnn
m

ckn
m

ck

uEF

E

HL

QLLLL

,1

0

0

0,1

0,101,1

]),'(),'()[,'(

),'(),'(

),'(),';(

),'()],';([)],';([

S

P

G

R

RR

≡

+−

+−

+−

+−=−+

δλµωλµµµ
µµλµω

λµµµ

λµµµµµ

; (8.A8b) 

 

m
nk

nknnnnk
m
s

m
nknn

nkn
m

s

nn
m

skn
m

sk

uxExF

xE

xHL

xQLLLL

,4

,1

,11,1

])',()',()[',(

)',()',(

)',()',;(

)',()]',;([)]',;([

S

P

J

R

RR

≡

+−

+−

+−

+−=−+

δµωµµµ
µµµω

µµµ

µµµµµ

; (8.A8c) 



 

 

240 

 

m
nk

nknnnnnnk
m
s

m
nknnn

nnkn
m

s

nnn
m

skn
m

sk

uEF

E

HL

QLLLL

,2

0

0

0,1

0,101,1

]),'(),'()[,'(

),'(),'(

),'(),';(

),'()],';([)],';([

S

P

J

R

RR

≡

+−

+−

+−

+−=−+

δλµωλµµµ
µµλµω

λµµµ

λµµµµµ

. (8.A8d) 

 

The above expressions can be used to evaluate the quantities in Eqs. (8.A4): 
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The sine terms can be similarly evaluated. We obtain: 
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This completes the linearization for the vector reflection matrices. Now we consider the 

cosine-only contribution required for the intensity correction. Defining: 
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 ][ 1,1 VLW k
m
nk ≡ ; (8.A11c) 

 ][ 3,3 VLW k
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nk ≡ , (8.A11d) 

 

we get the relations: 
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where m
nkG  is the (1,1) element of m

nkG . 

 

We also obtain the following relation for the Fourier component, m
cR ,2 , of the scalar 

reflection function: 
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Finally, Eqs. (8.32), (8.A3) and (8.A13) can be used to calculate the linearization of the 

Fourier components of the intensity correction at TOA: 
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Abstract 

 

In the previous chapter, we introduced a novel technique to compute the polarization in a 

vertically inhomogeneous, scattering-absorbing medium using a two orders of scattering 

RT model. The 2OS computation is an order of magnitude faster than a full multiple-

scattering scalar calculation and can be implemented as an auxiliary code to compute 

polarization in operational retrieval algorithms. In this chapter, we employ the 2OS 

model for polarization in conjunction with the scalar RT model Radiant to simulate 

backscatter measurements in NIR spectral regions by space-based instruments such as 

that on OCO. Computations are performed for 6 different sites and 2 seasons, 

representing a variety of viewing geometries, surface and aerosol types. The aerosol 

extinction (at 13000 cm-1) was varied from 0 to 0.3. The radiance errors using the 

Radiant/2OS (R-2OS) RT model are an order of magnitude (or more) smaller than errors 

arising from the use of the scalar model alone. In addition, we perform a linear error 

analysis study to show that the errors in 
2COX  using the R-2OS model are much lower 

than the “measurement” noise and smoothing errors appearing in the inverse model. On 

the other hand, we show that use of the scalar model alone induces 
2COX  errors that could 

dominate the retrieval error budget. 
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9.1 Introduction 

 

Satellite measurements have played a major role in weather and climate research for the 

past few decades, and will continue to do so in the future. For most remote sensing 

applications, interpretation of such measurements requires accurate modeling of the 

interaction of light with the atmosphere and surface. In particular, polarization effects due 

to the surface, atmosphere and instrument need to be considered. Aben et al. [1999] 

suggested the use of high spectral resolution polarization measurements in the O2 A band 

for remote sensing of aerosols in the Earth’s atmosphere. Stam et al. [2000] showed that 

for polarization-sensitive instruments, the best way to minimize errors in quantities 

derived from the observed signal is by measuring the state of polarization of the observed 

light simultaneously with the radiances themselves. Hasekamp, Landgraf and van Oss 

[2002] demonstrated the need to model polarization effects in ozone profile retrieval 

algorithms based on moderate-resolution backscattered UV sunlight measurements. Jiang 

et al. [2004] proposed a method to retrieve tropospheric ozone from measurements of 

linear polarization of scattered sunlight from the ground or from a satellite. 

 

Typically, trace gas retrieval algorithms neglect polarization in the forward model RT 

simulations, mainly because of insufficient computer resources and lack of speed. This 

can result in significant loss of accuracy in retrieved trace gas column densities, 

particularly in the UV, visible and NIR spectral regions, because of appreciable light 

scattering by air molecules, aerosols and clouds. It has been shown that neglecting 
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polarization in a Rayleigh scattering atmosphere can produce errors as large as 10% in 

the computed intensities [Lacis et al., 1998; Mishchenko, Lacis and Travis, 1994]. 

 

The inclusion of polarization in forward modeling has been handled by methods such as 

the use of lookup tables [Wang, 2006], or the combination of limited polarization 

measurement data with interpolation schemes [Schutgens and Stammes, 2003]. Such 

methods have been implemented with reasonable success for certain applications. 

However, there are situations where the required retrieval precision is very high, so that 

such simplifications will fail to provide sufficient accuracy. For instance, it has been 

shown that retrieving the sources and sinks of CO2 on regional scales requires the column 

density to be known to 2.5 ppm (0.7%) precision to match the performance of the 

existing ground-based network [Rayner and O'Brien, 2001] and to 1 ppm (0.3%) to 

reduce flux uncertainties by 50% [Miller et al., 2007]. Recent improvements in sensor 

technology are making very high precision measurements feasible for space-based remote 

sensing. Clearly, there is a need for polarized RT models that are not only accurate 

enough to achieve high retrieval precision, but also fast enough to meet operational 

requirements regarding the rate of data turnover. 

 

In chapter 8 [Natraj and Spurr, 2007], we presented the theoretical formulation for the 

simultaneous computation of TOA reflected radiance and the corresponding weighting 

function fields using a two orders of scattering RT model. In this paper, we apply the 

2OS polarization model in conjunction with the full multiple-scattering scalar RT model 

Radiant [Benedetti, Gabriel and Stephens, 2002; Christi and Stephens, 2004; Gabriel, 
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Christi and Stephens, 2006; Spurr and Christi, 2007] for the simulation of polarized 

backscatter measurements I = (I, Q, U, V) in the spectral regions to be measured by the 

OCO mission [Crisp et al., 2004]. The purpose of the 2OS model is to supply a correction 

to the total scalar intensity delivered by Radiant, and to compute the other elements (Q, 

U, V) in the backscatter Stokes vector. The 2OS model provides a fast and accurate way 

of accounting for polarization in the OCO forward model. The R-2OS combination 

model thus obviates the need for prohibitively slow full vector multiple scatter 

simulations. 

 

The R-2OS scheme is a simplification of the forward model. For the OCO retrieval error 

budget, it is important to quantify the errors in 
2COX  and ancillary state vector elements 

such as surface pressure induced by this forward model assumption. The magnitude of 

the forward model errors are established as the differences between total backscatter 

radiances from the R-2OS forward model and those calculated by means of the full vector 

RT model VLIDORT [Spurr, 2006]. In order to ensure consistency, we note that the 

Radiant model as used in the OCO retrieval algorithm has been fully validated against the 

scalar LIDORT code [Spurr, Kurosu and Chance, 2001; Spurr, 2002] and also VLIDORT 

operating in scalar mode (polarization turned off); this validation is discussed in Spurr 

and Christi [2007]. 

 

This chapter is organized as follows. In section 9.2, we give a brief description of the 

2OS model. In section 9.3 we describe the test scenarios and introduce the solar and 

instrument models. The spectral radiance errors are analyzed in section 9.4. In section 9.5 
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we study the usefulness of the R-2OS model for CO2 retrievals by calculating 
2COX  

errors using a linear sensitivity analysis procedure. We conclude with an evaluation of the 

implication of these results for the OCO mission in section 9.6. 

 

9.2 The 2OS Model 

 

Multiple scattering is known to be depolarizing [Hansen, 1971; Hansen and Travis, 

1974]. It follows, then, that the major contribution to polarization comes from the first 

few orders of scattering. Ignoring polarization leads to two types of error. The first kind 

is due to the neglect of the polarization components (Q, U, V) of the Stokes vector. The 

second, and subtler, type of errors is that the scalar intensity is different from the intensity 

with polarization included in the RT calculation. The significance of the second kind of 

error is that even if the instrument is completely insensitive to polarization, errors would 

still accrue if polarization is neglected in the RT model. 

 

A single scattering RT model provides the simplest approximation to the treatment of 

polarization. However, for unpolarized incident light, polarization effects on the intensity 

are absent in this approximation. Hence, the second type of errors mentioned above 

would still remain unresolved with this approximation. RT models with three (and 

higher) orders of scattering give highly accurate results, but involve nearly as much 

computation as that required for a full multiple-scattering treatment (see, e.g., Kawabata 

and Ueno [1988] for the scalar three-orders case). The 2OS treatment represents a good 
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compromise between accuracy and speed when dealing with polarized RT. 

 

In our 2OS model, the computational technique is a vector-treatment extension (to 

include polarization) of previous work done for a scalar model [Kawabata and Ueno, 

1988]. Full details of the mathematical setup are given in chapter 8 [Natraj and Spurr, 

2007]. The following relation summarizes the approach: 
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where I, Q, U and V are the Stokes parameters, and subscripts sca and 2OS refer 

respectively to a full multiple-scattering scalar RT calculation and to a vector 

computation using the 2OS model. Icor is the scalar-vector intensity correction computed 

using the 2OS model. Note that the 2OS calculation only computes correction terms due 

to polarization; a full multiple-scattering scalar computation is still required to compute 

the intensity. 

 

The advantage of this technique is that it is fully based on the underlying physics and is 

in no way empirical. If the situation is such that two orders of scattering are sufficient to 

account for polarization, this method would be exact. There are some situations, such as 

an optically thick pure Rayleigh medium or an atmosphere with large aerosol or ice cloud 

scattering, where the approach will fail. However, for most NIR retrievals, this is likely to 
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be a very accurate approximation. Validation of the 2OS model has been done against 

scalar results for an inhomogeneous atmosphere [Kawabata and Ueno, 1988] and vector 

results for a homogeneous atmosphere [Hovenier, 1971]. In chapter 8 [Natraj and Spurr, 

2007], we performed backscatter simulations of reflected sunlight in the O2 A band for a 

variety of geometries, and compared our results with those from the VLIDORT model. In 

these simulations, the effects of gas absorption optical depth, solar zenith angle, viewing 

geometry, surface reflectance and wind speed (in the case of ocean glint) on the intensity, 

polarization and corresponding weighting functions were investigated. Finally, we note 

that the 2OS model is completely linearized, i.e., the weighting functions or Jacobians 

(analytic derivatives of the radiance field with respect to atmospheric and surface 

properties) are simultaneously computed along with the radiances themselves. 

 

9.3 Simulations 

 

In this work, we use the spectral regions to be measured by the OCO instrument to test 

the 2OS model. This includes the 0.76 µm O2 A band, and two vibration-rotation bands of 

CO2 at 1.61 µm and 2.06 µm [Kuang et al., 2002]. 6 different locations and 2 seasons 

were considered for the simulations (see figure 9.1 for geographical location map). These 

6 sites are all part of the ground-based validation network for the OCO instrument [Bösch 

et al., 2006; Crisp, Miller and DeCola, 2006; Washenfelder et al., 2006;]. For each 

location/season combination, 12 tropospheric aerosol loadings were specified (extinction 

optical depths 0, 0.002, 0.005, 0.008, 0.01, 0.02, 0.03, 0.04, 0.05, 0.1, 0.2, 0.3 at 13000 
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cm-1). Details of the geometry, surface and tropospheric aerosol types for the various 

scenarios are summarized in table 9.1. 

 

 

 

Figure 9.1. Geographical location map of test sites. The color bar denotes 
2COX  for Jul 1 

(12 UT) calculated using the MATCH/CASA model [Olsen and Randerson, 2004]. The 

coordinates of the locations are as follows: Ny Alesund (79° N, 12° E), Park Falls (46° 

N, 90° W), Algeria (30° N, 8° E), Darwin (12° S, 130° E), South Pacific (30° S, 210° E) 

and Lauder (45° S, 170° E). 
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Table 9.1. Scenario description 

 

 Solar Zenith 

Angle (degrees) 

Surface Type Aerosol Type 

Algeria Jan 1 57.48 Desert (0.42,0.5,0.53) Dusty Continental (4b) 

Algeria Jul 1 21.03 Desert (0.42,0.5,0.53) Dusty Continental (4b) 

Darwin Jan 1 23.24 Deciduous 

(0.525,0.305,0.13) 

Dusty Maritime (1a) 

Darwin Jul 1 41.44 Deciduous 

(0.525,0.305,0.13) 

Black Carbon 

Continental (5b) 

Lauder Jan 1 34.22 Grass (0.47,0.3,0.11) Dusty Maritime (1a) 

Lauder Jul 1 74.20 Frost (0.975,0.305,0.145) Dusty Maritime (1b) 

Ny Alesund Apr 

1 

80.77 Snow 

(0.925,0.04,0.0085) 

Dusty Maritime (1b) 

Ny Alesund Jul 1 62.43 Grass (0.47,0.3,0.11) Dusty Maritime (1b) 

Park Falls Jan 1 72.98 Snow 

(0.925,0.04,0.0085) 

Black Carbon 

Continental (5b) 

Park Falls Jul 1 31.11 Conifer 

(0.495,0.235,0.095) 

Dusty Continental (4b) 

South Pacific Jan 

1 

24.62 Ocean (0.03,0.03,0.03) Dusty Maritime (1a) 

South Pacific Jul 

1 

58.84 Ocean (0.03,0.03,0.03) Dusty Maritime (1b) 

 

Note: The surface reflectance in the O2 A band, 1.61 µm CO2 band and 2.06 µm CO2 

band are given in parentheses after the surface type. For the aerosol types, the values in 

parentheses are the mixing groups assigned by Kahn, Banerjee and McDonald [2001]. 
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The atmosphere comprises 11 optically homogeneous layers, each of which includes gas 

molecules and aerosols. The 12 pressure levels are regarded as fixed, and the altitude grid 

is computed recursively using the hydrostatic approximation. Spectroscopic data are 

taken from the HITRAN 2004 line list [Rothman et al., 2005]. The tropospheric aerosol 

types have been chosen according to the climatology developed by Kahn, Banerjee and 

McDonald [2001]. The stratospheric aerosol is assumed to be a 75% solution of H2SO4 

with a modified gamma-function size distribution [World Climate Research Programme, 

1986]. The complex refractive index of the sulfuric acid solution is taken from the tables 

prepared by Palmer and Williams [1975]. For spherical aerosol particles, the optical 

properties are computed using a polydisperse Mie scattering code [de Rooij and van der 

Stap, 1984]; in addition to extinction and scattering coefficients and distribution 

parameters, this code generates coefficients for the expansion of the scattering matrix in 

generalized spherical functions (a requirement of all the RT models used in this study). 

For non-spherical aerosols such as mineral dust, optical properties are computed using a 

T-matrix code [Mishchenko and Travis, 1998]. The atmosphere is bounded below by a 

Lambertian reflecting surface. The surface reflectances are taken from the ASTER 

spectral library [1999]. Note that all RT models in this paper use a pseudo-spherical 

approximation, in which all scattering is regarded as taking place in a plane-parallel 

medium, but the solar beam attenuation is treated for a curved atmosphere. The pseudo-

spherical treatment is based on the average-secant approximation (see, e.g., Spurr 

[2002]). 

 

The OCO instrument is a polarizing spectrometer measuring backscattered sunlight in the 
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O2 A band, and the CO2 bands at 1.61 µm and 2.06 µm [Crisp, Miller and DeCola, 2006; 

Haring et al., 2004, 2005]. OCO is scheduled for launch in December 2008, and will join 

NASA’s “A-train” along a sun-synchronous polar orbit with 1:26 PM local equator 

crossing time, about 5 minutes ahead of the Aqua platform [Crisp, Miller and DeCola, 

2006]. OCO is designed to operate in three modes: nadir, glint (utilizing specular 

reflection over the ocean) and target (to stare over a fixed spot, such as a validation site), 

and has a nominal spatial footprint dimension of 1.3 km ×  2.3 km in the nadir mode. The 

OCO polarization axis is always perpendicular to the principal plane, so that the 

backscatter measurement is, in terms of Stokes parameters, equal to I-Q. 

 

In the OCO retrieval algorithm, the complete forward model describes all physical 

processes pertaining to the attenuation and scattering of sunlight through the atmosphere 

(including reflection from the surface) to the instrument. Thus, the forward model 

consists of the RT model, a solar model and an instrument model. The R-2OS RT model 

computes a monochromatic TOA reflectance spectrum at a wavenumber resolution of 

0.01 cm-1; this is sufficient to resolve the individual O2 or CO2 lines in the OCO spectral 

regions with ~2 points per minimum Doppler width. The OCO solar model is based on an 

empirical list of solar line parameters which allows computation of a solar spectrum with 

arbitrary spectral resolution and point spacing [Bösch et al., 2006]. The instrument model 

simulates the instrument's spectral resolution and spectral sampling by convolving the 

highly resolved monochromatic radiance spectrum with the ILS, and subsequently with a 

boxcar function to take into account the spectral range covered by a detector pixel. The 

ILS is assumed to be Lorentzian with FWHM 2.25×10-5 �m, 4.016×10-5 �m and 
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5.155×10-5 �m for the 0.76 �m O2 A band, 1.61 �m CO2 band and 2.06 �m CO2 band, 

respectively. 

 

9.4 Forward Model Uncertainties 

 

For the three OCO spectral bands, figures 9.2–9.4 show the forward model radiance 

errors caused by the R-2OS model. Results are shown for July scenarios in South Pacific 

(figure 9.2), Algeria (figure 9.3) and Ny Alesund (figure 9.4). These are scenarios with 

low solar zenith angle and low surface reflectance, low solar zenith angle and moderate 

surface reflectance, and high solar zenith angle, respectively. The errors in the O2 A band, 

the 1.61 µm CO2 band and 2.06 µm CO2 band are plotted in the top, middle and bottom 

panels respectively. The black, blue, cyan, green and red lines refer to aerosol extinction 

optical depths (at 13000 cm-1) of 0, 0.01, 0.05, 0.1 and 0.3 respectively. In calculating 

these errors, the “exact” radiance is taken to be that computed with VLIDORT. The 

“exact” radiance spectra for the July scenario in South Pacific are plotted in figure 9.5. 

 

The plots reveal a number of interesting features. It is clear that the errors in the O2 A 

band are orders of magnitude larger than those in the CO2 bands; this is not surprising, 

since scattering is a much bigger issue in the O2 A band. Further, the spectral error 

behavior is different for the three cases. For low solar zenith angle and moderate to high 

surface reflectance (figure 9.3), scattering first increases as gas absorption increases with 

line strength; this is on account of the corresponding reduction in the amount of light 
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directly reflected from the surface. With a further enhancement of gas absorption, a point 

is reached where the effect of the surface becomes negligibly small, and any subsequent 

increase in gas absorption leads to a reduction in the orders of scattering. As a 

consequence, there is a maximum error in the intensity when the orders of scattering are 

maximized. For Stokes parameter Q, this effect would not show up since there is no 

contribution from (Lambertian) reflection at the surface. Further, for small angles, the 

intensity effect dominates over the Q effect and the radiance errors show a maximum at 

intermediate gas absorption. If the surface reflectance is reduced to a low level (figure 

9.2), the effect of direct reflected light becomes very small, and the I and Q errors behave 

similarly, with the result that the errors are maximized when gas absorption is at a 

minimum. The same effect occurs if the solar zenith angle is increased (figure 9.4). 

Increasing aerosol extinction reduces the surface contribution; hence, the spectral 

behavior for high aerosol amounts is the same as that for low surface reflectance or high 

solar zenith angle. 

 

On the other hand, the errors (at constant gas absorption) increase with augmenting 

aerosol extinction, except in the high solar zenith angle case (figure 9.4), where they 

decrease at first and reach minimum values for certain low aerosol amounts. This special 

case can be explained as follows. Small aerosol amounts have the effect of reducing the 

contribution of Rayleigh scattering relative to aerosol scattering. The former is 

conservative, while the latter is not. The net effect is that scattering is reduced. However, 

at a certain point, the contribution from Rayleigh scattering becomes insignificant, and 

further increase in aerosol extinction simply increases the overall scattering and the level 



 

 

266 

of error. 

 

 

 

Figure 9.2. Radiance errors using the R-2OS model for South Pacific in January. The 

black, blue, cyan, green and red lines refer to aerosol extinction optical depths (at 13000 

cm-1) of 0, 0.01, 0.05, 0.1 and 0.3 respectively. The top, middle and bottom panels are for 

the O2 A band, the 1.61 µm CO2 band and the 2.06 µm CO2 band respectively. 
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Figure 9.3. Same as figure 9.2 but for Algeria in January. 
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Figure 9.4. Same as figure 9.2 but for Ny Alesund in April. 
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Figure 9.5. “Exact” radiance spectra for South Pacific in January. The black, blue, cyan, 

green and red lines refer to aerosol extinction optical depths (at 13000 cm-1) of 0, 0.01, 

0.05, 0.1 and 0.3 respectively. The top, middle and bottom panels are for the O2 A band, 

the 1.61 µm CO2 band and the 2.06 µm CO2 band respectively. 

 

For the January scenarios (not plotted here), the spectral error behavior generally follows 

the pattern discussed above. The only exception is Darwin (tropical Australia), where the 

error initially decreases as aerosol is added, even though the solar zenith angle is small. 

This is because Darwin has been assigned a continental aerosol type with significant 

amounts of carbonaceous and black carbon components [Kahn, Banerjee and McDonald, 
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2001], both of which are strongly absorbing. This has the effect of reducing scattering up 

to the point where Rayleigh scattering is no longer significant. 

 

The radiance errors caused by the scalar model have been investigated before [Natraj et 

al., 2007]; it was shown that they can be as high as 300% (relative to the full vector 

calculation). The corresponding errors introduced by the R-2OS model are typically in 

the range of 0.1% (see, e.g., figures 9.2 and 9.5). For the scenario in figure 9.2, spectral 

radiance errors using only the scalar Radiant model (without 2OS) are plotted in figure 

9.6. It is immediately apparent that the errors from the scalar model are an order of 

magnitude (or more) larger than those induced by the R-2OS model. Further, the Radiant-

only errors primarily arise from neglecting the polarization caused by Rayleigh and 

aerosol scattering; hence, they are sensitive to the particular type of aerosol present in the 

scenario. For example, the errors in the O2 A band decrease with an increase in 

tropospheric aerosol for the Park Falls and Darwin July scenarios (not plotted here). 

These cases are characterized by aerosols that polarize in the p-plane at the scattering 

angles of interest, whereas Rayleigh scattering is s-polarized. In some cases (such as 

Algeria in July), the error actually changes sign for large aerosol extinction. To a large 

extent, the R-2OS model removes this sensitivity to aerosol type. 
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Figure 9.6. Same as figure 9.2 but for radiance errors using the scalar model. 

 

9.5 Linear Sensitivity Analysis 

 

From a carbon source-sink modeling standpoint, it is important to understand the effect of 

the R-2OS approximation on the accuracy of the retrieved CO2 column. The linear error 

analysis technique [Rodgers, 2000] can be used to quantify biases caused by uncertainties 

in non-retrieved forward model parameters (such as absorption cross sections), or by 

inadequacies in the forward model itself (such as the R-2OS approximation). Here we 

peform this linear error analysis using the inverse model in the OCO Level 2 retrieval 
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algorithm [Bösch et al., 2006; Connor et al., 2008]. 

 

The retrieval algorithm iteratively adjusts a set of atmospheric/surface/instrument 

parameters by alternate calls to a forward model and an inverse method. The 

measurement y can be simulated by a forward model f(x): 

 

  �bxy += ),(f ,       (9.2) 

 

where x and b represent retrieved and non-retrieved forward model parameters, 

respectively, and � is the measurement noise. 

 

In the OCO retrieval algorithm, the inverse method is based on optimal estimation 

[Rodgers, 2000] and uses a priori information to constrain the retrieval problem. The a 

priori data provide information about the climatological mean and expected variability of 

the relevant quantities. Weighting functions describing the change of the “measured” 

spectrum with respect to a change in the retrieved parameters are calculated analytically 

by repeated calls to the linearized R-2OS model. The OCO algorithm simultaneously fits 

the spectra of the 3 absorption bands, and retrieves a set of 61 parameters for a 12-level 

atmosphere. These retrieved elements consist of 4 vertical profiles (CO2 vmr, H2O vmr, 

temperature and aerosol extinction optical depth), as well as a number of other elements 

including surface pressure, surface reflectance and its spectral dependence, spectral shift 

and squeeze/stretch. Optimal estimation involves minimizing a regularized cost function 

2χ : 
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T ff xxSxxxySxy −−+−−= −−
εχ ,   (9.3) 

 

where xa is the a priori state vector, Sa is the a priori covariance matrix and Sε is the 

measurement error covariance matrix. The measurement errors are assumed to have no 

correlation between different pixels, i.e., Sε  is a diagonal matrix. The superscript T is the 

transpose operator. 

 

The column-weighted CO2 vmr, 
2COX , is given by: 

 

 xhT
COX =

2
,         (9.4) 

 

where h is the pressure weighting operator [Connor et al., 2008], whose elements are zero 

for all non-CO2 elements. Clearly, 
2COX  depends on the surface pressure and the CO2 

vmr profile. 

 

In the error analysis, we apply the OCO inverse model once to a set of simulated spectra 

calculated assuming that the state vector is the truth, i.e., we assume that the iterative 

retrieval scheme has already converged. The retrieval and smoothing errors and the gain 

matrix are calculated by the retrieval algorithm. The smoothing error describes the error 

in the retrieved parameters due to the limited sensitivity of the retrieval to fine structures 

of atmospheric profiles. The analysis of smoothing errors requires knowledge about the 

real atmospheric variability; we use an a priori CO2 covariance that represents a total, 
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global variability of 12 ppm to avoid over-constraining the retrieval [Connor et al., 2008]. 

Consequently, the calculated smoothing errors will represent a global upper limit. For all 

other retrieval parameters, ad hoc a priori constraints are used, with no cross-correlation 

between different parameters. 

 

Forward model errors are typically systematic and result in a bias x∆  in the retrieved 

parameters. This bias can be expressed as: 

 

FGx ∆=∆ ,         (9.5) 

 

where G is the gain matrix, that represents the mapping of the measurement variations 

into the retrieved state vector variations, and ∆F is the vector of radiance errors made 

using the R-2OS model. Since OCO measures perpendicular to the principal plane, ∆F 

has the following component at wavenumber νj corresponding to the jth detector pixel: 

 

[[[[ ]]]] ))()(())()(( jvecjvecjjj QIQI νννν −−−−−−−−−−−−====F∆ ,    (9.6) 

 

where the subscript vec refers to a full vector multiple-scattering calculation. 

 

The 
2COX  errors using the R-2OS model for the January and July scenarios are presented 

in figures 9.7 and 9.8 respectively. These figures also show the corresponding errors in 

surface pressure. With very few exceptions, the 
2COX  errors are very small and much 
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below the OCO precision requirement of 1 ppm. This is in contrast to the observation that 

ignoring polarization could dominate the error budget [Natraj et al., 2007]. 

 

 

 

Figure 9.7(a). (left) 
2COX  and (right) surface pressure errors using the R-2OS model. 

The top, middle and bottom panels are for Algeria and Darwin in January, and Ny 

Alesund in April, respectively. 
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Figure 9.7(b). (left) 
2COX  and (right) surface pressure errors using the R-2OS model. 

The top, middle and bottom panels are for Lauder, South Pacific and Park Falls in 

January, respectively. 
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Figure 9.8(a). Same as figure 9.7(a) but assuming that the only radiance error 

contribution is from the O2 A band. 
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Figure 9.8(b). Same as figure 9.7(b) but assuming that the only radiance error 

contribution is from the O2 A band. 

 

To understand the error trend, we also plot the errors in 
2COX  and surface pressure 

assuming that there is no radiance error in the CO2 absorption bands (figures 9.9–9.10). 

2COX  errors have contributions from errors in surface pressure and CO2 vmr. The former 

is primarily due to radiance errors in the O2 A band, while the latter comes from 

incorrectly evaluating the radiances in the 1.61 µm CO2 band. There are also cross-

correlations between the two. It is evident from figures 9.7–9.10 that the 
2COX  errors 

mirror the surface pressure errors for low aerosol amounts. This is to be expected since 
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the maximum radiance errors are in the O2 A band, as previously noted. As we increase 

the aerosol extinction, the errors in the CO2 bands start to become more significant. The 

turnaround at large aerosol extinction optical depths is because of the competing effects 

of surface pressure and CO2 vmr errors. Also, as expected, there is an inverse correlation 

between 
2COX  and surface pressure errors. The only exceptions are the winter scenarios 

in Ny Alesund and Park Falls. These cases have surface type snow, which is extremely 

bright in the O2 A band and extremely dark in the CO2 bands. The very low albedo in the 

1.61 µm CO2 band causes significant polarization and gives rise to positive pressure 

partials, i.e., the TOA radiance increases as we increase surface pressure. 

 

The ratio of forward model (FM) error to “measurement” noise is plotted in figure 9.11, 

with the top and bottom rows referring to the R-2OS and scalar models, respectively. The 

R-2OS forward model error is typically less than 20% of the noise error and only in a few 

cases exceed 50%. In contrast, errors using the scalar model exceed unity in almost all 

cases and can be up to 20 times larger. The behavior of the smoothing errors is very 

similar and is not plotted here. 
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Figure 9.9(a). Same as figure 9.7(a) but for July. 
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Figure 9.9(b). Same as figure 9.7(b) but for July. 
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Figure 9.10(a). Same as figure 9.8(a) but for July. 
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Figure 9.10(b). Same as figure 9.8(b) but for July. 
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Figure 9.11. Ratio of FM error to “measurement” noise using the R-2OS model (top 

row) and scalar model (bottom row). The solid, dotted, dashed, dash-dotted, dash-dot-

dot-dotted and long dashed lines refer to Algeria and Darwin in January/July (left/right 

column), Ny Alesund in April/July (left/right column), Lauder, South Pacific and Park 

Falls in January/July (left/right column), respectively. 

 

9.6 Conclusions 

 

For high-resolution accurate forward modeling in remote sensing applications, we have 

developed a joint RT model which computes intensities using a scalar multiple-scattering 
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model along with corrections for polarization effects by means of a two orders of 

scattering RT code. The R-2OS model was employed to simulate backscatter 

measurements of spectral bands by the OCO instrument. A variety of scenarios were 

considered, representing different viewing geometries, surface and aerosol types, and 

aerosol extinctions. It was found that the errors in the radiance were an order of 

magnitude or more less than the errors when polarization was neglected. Further, the 

error characteristics were largely independent of the aerosol type. 

 

Sensitivity studies were performed to evaluate the errors in the retrieved CO2 column 

resulting from using the R-2OS model. It was seen that the 
2COX  errors using the R-2OS 

model were much lower than the smoothing error and “measurement” noise. This is in 

contrast to the observation that the retrieval error budget could be potentially dominated 

by polarization if the scalar model was used. The retrieval error was dominated by 

incorrect estimation of the surface pressure (due to radiance errors in the O2 A band), with 

other effects becoming important for large aerosol amounts. It is worth noting that the 

2OS computation adds only about 10% overhead to the scalar calculation. 
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10.1 Impact of OCO 

 

OCO will provide the first space-based global maps of 
2COX  with the precision, 

resolution and coverage needed to characterize CO2 sources and sinks on seasonal to 

interannual time scales. The space-borne observations will characterize CO2 sources and 

sinks on regional scales, improving the spatial resolution by a factor of ~30 compared to 

the existing state of knowledge. The 1 ppm accuracy of the OCO 
2COX  fields translates 

into a substantial reduction in retrieval errors in regional carbon fluxes. This capability 

will provide the crucial link between carbon cycle processes and regional scale sinks, 

such as the Northern Hemisphere terrestrial carbon sink. Integration of the OCO 

observations into a data assimilation and inverse modeling system, including chemical 

tracer data from ground stations and other satellites, will revolutionize our ability to 

constrain carbon sources and sinks using observations from space. This information will 

lead to dramatic improvements in global carbon cycle models, reduced uncertainties in 

forecasts of atmospheric CO2 abundance and more accurate predictions of global climate 

change. 

 

10.2 Status of the OCO Retrieval Algorithm 

 

An algorithm has been developed to retrieve 
2COX  from spectroscopic measurements of 

absorption in the CO2 band at 1.61 �m, the O2 A band at 0.76 �m and the CO2 band at 

2.06 �m, where the latter two bands are needed to account for the effects of parameters 
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other than the CO2 mixing ratio on the absorption. As a preliminary test of the algorithm, 

column O2 (surface pressure) was retrieved from sunglint measurements over ocean of 

absorption in the O2 A band. The column O2 was retrieved from a single sounding with an 

error of around 1%. With spectral averaging using multiple soundings, it is possible to 

reduce the error to 0.1%. Aerosol optical properties were computed and a database 

created for use in retrievals. PCA was used to speed up RT computations. 

 

The effect of polarization on retrievals of CO2 was examined by comparing retrievals 

using scalar and vector RT models. Polarization was seen to have a significant impact on 

retrieval accuracy, with errors in column CO2 up to 10 ppm caused by neglecting 

polarization. To increase retrieval accuracy while maintaining speeds necessary for 

operational purposes, a technique based on computing two orders of scattering was 

developed to account for polarization effects. The 2OS model was completely linearized 

to also compute analytic weighting functions of the radiances with respect to atmospheric 

and surface properties. The scalar Radiant model was combined with the 2OS 

polarization model to create the R-2OS RT model for OCO. The R-2OS model was found 

to reduce biases in retrieved CO2 columns to well below 1 ppm for most scenarios. 

 

10.3 Outstanding Issues 

 

A lot of progress has been made on the OCO retrieval algorithm. However, several issues 

still need to be investigated. For example, thin cirrus is omnipresent and will 
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considerably change the photon path length distribution. Cirrus models need to be 

incorporated into the RT computations and sensitivity studies performed to assess their 

impact on retrievals. Further, the only polarized surface reflection model currently 

available is the Cox-Munk ocean model. A detailed study of land BRDFs needs to be 

undertaken. Simulations need to be run to quantify the effects of uncertainties in various 

parameters (such as ILS) on the retrieval. Such tests would give invaluable information 

about how accurate the calibration should be, for example. Aerosol vertical distribution 

remains largely unexplored. OCO will generate 2.4 million spectra per day, which need 

to be analyzed in real time. On average, each retrieval has to be done in about 200 

seconds. The current single-sounding retrieval time is about 2000 seconds for nadir 

soundings. Achieving the operational speed target without compromising on the stringent 

accuracy criteria is possibly the single biggest challenge. 

 

 


